Aodh Documentation
Release 14.1.1.dev3

OpenStack Foundation

Jan 25, 2024

CONTENTS

1 Installation Guide 3
1.1 Telemetry Alarming service overview L e 3
1.2 Install and configure for openSUSE and SUSE Linux Enterprise 3

1.2.1 Prerequisites o e e e 4
1.2.2 Install and configure components 6
1.2.3 Finalize installation L 7
1.3 Install and configure for Red Hat Enterprise Linux and CentOS 8
1.3.1 Prerequisites e e e e e 8
1.3.2 Install and configure componentso 10
1.3.3 Finalizeinstallation 12
1.4 Install and configure for Ubuntu 12
1.4.1 PrerequiSites e 12
1.4.2 Install and configure components 14
1.43 Finalize installation L 16
1.5 NeXUSIEPS .« v v o o e o e 16

2 Contributor Guide 17

2.1 Overviewo e e e e e 17

2.1.1 System Architecture 17
High-Level Architecture, 17
Evaluatingthedata L 17

Alarm Rules 18

Alarm Evaluators 18

Alarm Notifiers L 19

Alarm Storage L. e 21

2.1.2 Web APL e 21
V2Web APL o e 21

2.2 Developer Documentation e 33
2.2.1 Installing Aodh 33
Installing development sandbox oL, 33
Installing Manually e 34
Installing the API behind mod_wsgi 34
Installing the API withuwsgi 35

222 RunningtheTests e 36
2.2.3 Contributingto Aodh 37
Project Hosting Details 37

224 Eventalarm L 37
Usage o e 37
Configuration e e 38

2.2.5 Guru Meditation Reports e
GeneratingaGMR L
Structureof aGMR e
Adding Support for GMRs to New Executables
Extendingthe GMR e
23 AppendiX e e
23.1 Release NOtes o i e
2.4 Indicesandtables e e
Administration Guide
3.1 AIArmS e e e e
3.1.1 Alarmdefinitions
Threshold rule alarms
Compositerule alarms e
3.1.2 Alarmdimensioning L. oL
3.1.3 Alarmevaluation e e e e
Alarmactions L e e e e e
3.1.4 Usingalarms L e e e e e e e e e
Alarm creation e e e e e e e e
Alarmretrieval e
Alarmupdate L
Alarmdeletion
Debugalarms L
3.2 Resource Quota Managementttt e
32.1 QuotaAPL. e
Configuration Guide
4.1 Aodh Sample Configuration File
4.2 Aodh Configuration Options o v v i it
4.2.1 aodh: DEFAULT e e e e
422 aodh:api e e e
4.2.3 aodh: coordination e e
424 aodh: database
425 aodh:evaluator e e e
42.6 aodh: listener e
427 aodh: notifier e e e
4.2.8 aodh: service_credentials L
4.2.9 aodh: SETVICe_types v . e e e e e e e e e e e e e e
4.3 Aodh Sample Policy Configuration File
4.3.1 aodh e e e e
4.4 policyyaml oL e e
Aodh CLI Documentation
5.1 aodh-status e e e
5.1.1 CLI interface for Aodh statuscommands
SYnopsis e e e e e e
Description Lo
Options e e e e
Glossary

53
53
53
53
55
56
57
58
58
59
59
60
60
60
64

69
69
69
69
69
69

71

Aodh Documentation, Release 14.1.1.dev3

The Alarming service (aodh) project provides a service that enables the ability to trigger actions based
on defined rules against metric or event data collected by Ceilometer or Gnocchi.

CONTENTS 1

Aodh Documentation, Release 14.1.1.dev3

2 CONTENTS

CHAPTER
ONE

INSTALLATION GUIDE

1.1 Telemetry Alarming service overview

The Telemetry Alarming services trigger alarms when the collected metering or event data break the
defined rules.

The Telemetry Alarming service consists of the following components:

An API server (aodh-api) Runs on one or more central management servers to provide access to the
alarm information stored in the data store.

An alarm evaluator (aodh-evaluator) Runs on one or more central management servers to deter-
mine when alarms fire due to the associated statistic trend crossing a threshold over a sliding time
window.

A notification listener (aodh-listener) Runs on a central management server and determines when
to fire alarms. The alarms are generated based on defined rules against events, which are captured
by the Telemetry Data Collection service’s notification agents.

An alarm notifier (aodh-notifier) Runs on one or more central management servers to allow alarms
to be set based on the threshold evaluation for a collection of samples.

These services communicate by using the OpenStack messaging bus.

1.2 Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Telemetry Alarming service, code-named aodh,
on the controller node.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Aodh Documentation, Release 14.1.1.dev3

1.2.1 Prerequisites
Before you install and configure the Telemetry service, you must create a database, service credentials,
and API endpoints.

1. To create the database, complete these steps:

» Use the database access client to connect to the database server as the root user:

mysql -u root -p

Create the aodh database:

Grant proper access to the aodh database:

Replace AODH_DBPASS with a suitable password.
» Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the aodh user:

openstack user create --domain default
--password-prompt aodh

Add the admin role to the aodh user:

openstack role add --project service --user aodh admin

4 Chapter 1. Installation Guide

Aodh Documentation, Release 14.1.1.dev3

Note: This command provides no output.

* Create the aodh service entity:

openstack service create --name aodh
--description alarming

4. Create the Alarming service API endpoints:

openstack endpoint create --region RegionOne
alarming public http://controller:8042

openstack endpoint create --region RegionOne
alarming internal http://controller:8042

(continues on next page)

1.2. Install and configure for openSUSE and SUSE Linux Enterprise 5

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

openstack endpoint create --region RegionOne
alarming admin http://controller:8042

1.2.2 Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

zypper install openstack-aodh-api
openstack-aodh-evaluator openstack-aodh-notifier
openstack-aodh-listener openstack-aodh-expirer
python-aodhclient

2. Edit the /etc/aodh/aodh. conf file and complete the following actions:

* In the [database] section, configure database access:

Replace AODH_DBPASS with the password you chose for the Telemetry Alarming module
database. You must escape special characters such as :, /, +, and @ in the connection string
in accordance with RFC2396.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

6 Chapter 1. Installation Guide

https://www.ietf.org/rfc/rfc2396.txt

Aodh Documentation, Release 14.1.1.dev3

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace AODH_PASS with the password you chose for the aodh user in the Identity service.

* Inthe [service_credentials] section, configure service credentials:

Replace AODH_PASS with the password you chose for the aodh user in the Identity service.

3. In order to initialize the database please run the aodh-dbsync script.

1.2.3 Finalize installation

1. Start the Telemetry Alarming services and configure them to start when the system boots:

systemctl enable openstack-aodh-api.service
openstack-aodh-evaluator.service
openstack-aodh-notifier.service
openstack-aodh-listener.service
systemctl start openstack-aodh-api.service
openstack-aodh-evaluator.service

(continues on next page)

1.2. Install and configure for openSUSE and SUSE Linux Enterprise 7

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

openstack-aodh-notifier.service
openstack-aodh-listener.service

1.3 Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Telemetry Alarming service, code-named aodh,
on the controller node.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

1.3.1 Prerequisites
Before you install and configure the Telemetry service, you must create a database, service credentials,
and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysql -u root -p

Create the aodh database:

Grant proper access to the aodh database:

Replace AODH_DBPASS with a suitable password.
¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the aodh user:

openstack user create --domain default
--password-prompt aodh

(continues on next page)

8 Chapter 1. Installation Guide

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

Add the admin role to the aodh user:

openstack role add --project service --user aodh admin

Note: This command provides no output.

* Create the aodh service entity:

openstack service create --name aodh
--description alarming

4. Create the Alarming service API endpoints:

openstack endpoint create --region RegionOne
alarming public http://controller:8042

openstack endpoint create --region RegionOne
alarming internal http://controller:8042

(continues on next page)

1.3. Install and configure for Red Hat Enterprise Linux and CentOS 9

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

openstack endpoint create --region RegionOne
alarming admin http://controller:8042

1.3.2 Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

yum install openstack-aodh-api
openstack-aodh-evaluator openstack-aodh-notifier
openstack-aodh-listener openstack-aodh-expirer
python-aodhclient

2. Edit the /etc/aodh/aodh. conf file and complete the following actions:

* In the [database] section, configure database access:

10 Chapter 1. Installation Guide

Aodh Documentation, Release 14.1.1.dev3

Replace AODH_DBPASS with the password you chose for the Telemetry Alarming module
database. You must escape special characters such as :, /, +, and @ in the connection string
in accordance with RFC2396.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace AODH_PASS with the password you chose for the aodh user in the Identity service.

* In the [service_credentials] section, configure service credentials:

Replace AODH_PASS with the password you chose for the aodh user in the Identity service.

3. In order to initialize the database please run the aodh-dbsync script.

1.3. Install and configure for Red Hat Enterprise Linux and CentOS 11

https://www.ietf.org/rfc/rfc2396.txt

Aodh Documentation, Release 14.1.1.dev3

1.3.3 Finalize installation

1. Start the Telemetry Alarming services and configure them to start when the system boots:

systemctl enable openstack-aodh-api.service
openstack-aodh-evaluator.service
openstack-aodh-notifier.service
openstack-aodh-listener.service
systemctl start openstack-aodh-api.service
openstack-aodh-evaluator.service
openstack-aodh-notifier.service
openstack-aodh-listener.service

1.4 Install and configure for Ubuntu

This section describes how to install and configure the Telemetry Alarming service, code-named aodh,
on the controller node.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

1.4.1 Prerequisites
Before you install and configure the Telemetry service, you must create a database, service credentials,
and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysql -u root -p

Create the aodh database:

Grant proper access to the aodh database:

Replace AODH_DBPASS with a suitable password.
» Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

3. To create the service credentials, complete these steps:

12 Chapter 1. Installation Guide

Aodh Documentation, Release 14.1.1.dev3

¢ Create the aodh user:

openstack user create --domain default
--password-prompt aodh

Add the admin role to the aodh user:

openstack role add --project service --user aodh admin

Note: This command provides no output.

* Create the aodh service entity:

openstack service create --name aodh
--description alarming

4. Create the Alarming service API endpoints:

openstack endpoint create --region RegionOne
alarming public http://controller:8042

(continues on next page)

1.4. Install and configure for Ubuntu 13

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

openstack endpoint create --region RegionOne
alarming internal http://controller:8042

openstack endpoint create --region RegionOne
alarming admin http://controller:8042

1.4.2 Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt-get install aodh-api aodh-evaluator aodh-notifier
aodh-listener aodh-expirer python-aodhclient

14 Chapter 1. Installation Guide

Aodh Documentation, Release 14.1.1.dev3

2. Edit the /etc/aodh/aodh. conf file and complete the following actions:

* In the [database] section, configure database access:

Replace AODH_DBPASS with the password you chose for the Telemetry Alarming module
database. You must escape special characters such as :, /, +, and @ in the connection string
in accordance with RFC2396.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace AODH_PASS with the password you chose for the aodh user in the Identity service.

* In the [service_credentials] section, configure service credentials:

1.4. Install and configure for Ubuntu 15

https://www.ietf.org/rfc/rfc2396.txt

Aodh Documentation, Release 14.1.1.dev3

Replace AODH_PASS with the password you chose for the aodh user in the Identity service.

3. In order to initialize the database please run the aodh-dbsync script.

1.4.3 Finalize installation

1. Restart the Alarming services:

service aodh-api restart

service aodh-evaluator restart
service aodh-notifier restart
service aodh-listener restart

1.5 Next steps

Your OpenStack environment now includes the aodh service.
To add additional services, see the OpenStack Installation Tutorials and Guides

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorials and
Guides.

16 Chapter 1. Installation Guide

https://docs.openstack.org/#install-guides
https://docs.openstack.org/#install-guides
https://docs.openstack.org/#install-guides

CHAPTER
TWO

CONTRIBUTOR GUIDE

In the Contributions Guide, you will find documented policies for developing with Aodh. This includes
the processes we use for bugs, contributor onboarding, core reviewer memberships, and other procedural
items.

2.1 Overview

2.1.1 System Architecture
High-Level Architecture

Each of Aodh’s services are designed to scale horizontally. Additional workers and nodes can be added
depending on the expected load. It provides daemons to evaluate and notify based on defined alarming
rules.

Evaluating the data

Alarming Service

The alarming component of Aodh, first delivered in Ceilometer service during Havana development cycle
then split out to this independent project in Liberty development cycle, allows you to set alarms based on
threshold evaluation for a collection of samples or a dedicate event. An alarm can be set on a single meter,
or on a combination. For example, you may want to trigger an alarm when the memory consumption
reaches 70% on a given instance if the instance has been up for more than 10 min. To setup an alarm,
you will call Aodh’s API server specifying the alarm conditions and an action to take.

Of course, if you are not administrator of the cloud itself, you can only set alarms on meters for your own
components.

There can be multiple form of actions, but only several actions have been implemented so far:

1. HTTP callback: you provide a URL to be called whenever the alarm has been set off. The payload
of the request contains all the details of why the alarm was triggered.

2. log: mostly useful for debugging, stores alarms in a log file.

3. zagar: Send notification to messaging service via Zaqar APIL.

17

Aodh Documentation, Release 14.1.1.dev3

Alarm Rules

composite

Composite alarm rule.

A simple dict type to preset composite rule.

event

Alarm Event Rule.

Describe when to trigger the alarm based on an event

gnocchi_aggregation_by metrics_threshold

Base class Alarm Rule extension and wsme.types.

gnocchi_aggregation_by resources_threshold

Base class Alarm Rule extension and wsme.types.

gnocchi_resources_threshold

Base class Alarm Rule extension and wsme.types.

loadbalancer_member_health

Base class Alarm Rule extension and wsme.types.

Alarm Evaluators

composite

Base class for alarm rule evaluator plugins.

gnocchi_aggregation_by metrics_threshold

Base class for alarm rule evaluator plugins.

18 Chapter 2. Contributor Guide

Aodh Documentation, Release 14.1.1.dev3

gnocchi_aggregation_by_resources_threshold

Base class for alarm rule evaluator plugins.

gnocchi_resources_threshold

Base class for alarm rule evaluator plugins.

loadbalancer_member_health

Base class for alarm rule evaluator plugins.
Alarm Notifiers

http

Rest alarm notifier.

https

Rest alarm notifier.

log

Log alarm notifier.

test

Test alarm notifier.

trust+heat

Heat autohealing notifier.
The auto-healing notifier works together with loadbalancer_member_health evaluator.

Presumably, the end user defines a Heat template which contains an autoscaling group and all the mem-
bers in the group are joined in an Octavia load balancer in order to expose service to the outside, so that
when the stack scales up or scales down, Heat makes sure the new members are joining the load balancer
automatically and the old members are removed.

However, this notifier deals with the situation that when some member fails, the stack could be recovered
by marking the given autoscaling group member unhealthy, then update Heat stack in place. In order to
do that, the notifier needs to know:

* Heat top/root stack ID.

2.1. Overview 19

Aodh Documentation, Release 14.1.1.dev3

* Heat autoscaling group ID.

* The failed Octavia pool members.

trust+http

Notifier supporting keystone trust authentication.

This alarm notifier is intended to be used to call an endpoint using keystone authentication. It uses the
aodh service user to authenticate using the trust ID provided.

The URL must be in the form trust+http://host/action.

trust+https

Notifier supporting keystone trust authentication.

This alarm notifier is intended to be used to call an endpoint using keystone authentication. It uses the
aodh service user to authenticate using the trust ID provided.

The URL must be in the form trust+http://host/action.

trust+zaqar

Zaqar notifier using a Keystone trust to post to user-defined queues.

The URL must be in the form trust+zagar://?queue_name=example.

zaqgar

Zaqar notifier.

This notifier posts alarm notifications either to a Zagar subscription or to an existing Zaqar queue with a
pre-signed URL.

To create a new subscription in the service project, use a notification URL of the form:

zagar://?topic=example&subscriber=mailto%3A//test%40example.com&tt1=3600

Multiple subscribers are allowed. ttl is the time to live of the subscription. The queue will be created
automatically, in the service project, with a name based on the topic and the alarm ID.

To use a pre-signed URL for an existing queue, use a notification URL with the scheme zaqar:// and
the pre-signing data from Zaqgar in the query string:

zagar://?queue_name=example&project_id=foo&
paths=/messages&methods=POST&expires=1970-01-01T00: 00Z&
signature=abcdefg

20 Chapter 2. Contributor Guide

Aodh Documentation, Release 14.1.1.dev3

Alarm Storage
log

Log the data.

mysql

Put the data into a SQLAlchemy database.

mysql+pymysql

Put the data into a SQLAIlchemy database.

postgresql

Put the data into a SQLAlchemy database.

sqlite

Put the data into a SQLAlchemy database.

2.1.2 Web API
V2 Web API
Capabilities

The Capabilities API allows you to directly discover which functions from the V2 API functionality,
including the selectable aggregate functions, are supported by the currently configured storage driver. A
capabilities query returns a flattened dictionary of properties with associated boolean values - a "False’
or absent value means that the corresponding feature is not available in the backend.

GET /v2/capabilities
Returns a flattened dictionary of API capabilities.

Capabilities supported by the currently configured storage driver.
Return type Capabilities

type Capabilities
A representation of the API and storage capabilities.

Usually constrained by restrictions imposed by the storage driver.
Data samples:

Json

2.1. Overview 21

Aodh Documentation, Release 14.1.1.dev3

true
true
true
true
true
XML
b'<value>\n <api>\n <item>\n <key>
—alarms:history:query:complex</key>\n <value>true</value>\n
—</item>\n <item>\n <key>alarms:history:query:simple</key>\
<h <value>true</value>\n </item>\n <item>\n <key>
—alarms:query:complex</key>\n <value>true</value>\n </item>\
—n <item>\n <key>alarms:query:simple</key>\n <value>
—true</value>\n </item>\n </api>\n <alarm_storage>\n <item>\
—n <key>storage:production_ready</key>\n <value>true</
—value>\n </item>\n </alarm_storage>\n</value>'
alarm_storage

Type dict(str: bool)

A flattened dictionary of alarm storage capabilities

api
Type dict(str: bool)

A flattened dictionary of API capabilities

Alarms

GET /v2/alarms
Return all alarms, based on the query provided.

Parameters
¢ q (list(Query)) -- Filter rules for the alarms to be returned.
» sort (list(str)) -- A list of pairs of sort key and sort dir.
e limit (int) -- The maximum number of items to be return.
» marker (str) -- The pagination query marker.

Return type list(Alarm)

22 Chapter 2. Contributor Guide

Aodh Documentation, Release 14.1.1.dev3

POST /v2/alarms
Create a new alarm.

Parameters
* data (Alarm) -- an alarm within the request body.
Return type Alarm

GET /v2/alarms/(alarm_id)
Return this alarm.

Return type Alarm

PUT /v2/alarms/(alarm_id)
Modify this alarm.

Parameters
* data (Alarm) -- an alarm within the request body.
Return type Alarm

DELETE /v2/alarms/(alarm_id)
Delete this alarm.

GET /v2/alarms/(alarm_id) /history
Assembles the alarm history requested.

Parameters
* q (list(Query)) -- Filter rules for the changes to be described.
» sort (list(str)) -- A list of pairs of sort key and sort dir.
e limit (int) -- The maximum number of items to be return.
* marker (str) -- The pagination query marker.

Return type list(AlarmChange)

PUT /v2/alarms/(alarm_id)/state
Set the state of this alarm.

Parameters

e state (Enum(ok, alarm, insufficient data)) -- an alarm state within
the request body.

Return type Enum(ok, alarm, insufficient data)

GET /v2/alarms/(alarm_id) /state
Get the state of this alarm.

Return type Enum(ok, alarm, insufficient data)

type Alarm
Representation of an alarm.

Data samples:

Json

2.1. Overview 23

Aodh Documentation, Release 14.1.1.dev3

"alarm_actions"
"http://site:8000/alarm"

"alarm_id": null
"description": "An alarm"
"enabled": true
"insufficient_data_actions"
"http://site:8000/nodata"

"name": "SwiftObjectAlarm"
"ok_actions"
"http://site:8000/0k"

"project_id": "c96c887c216949acbdfbd8b494863567"
"repeat_actions": false

"severity": "moderate"
"state": "ok"
"state_reason": "threshold over 90%"

"state_timestamp": "2015-01-01T12:00:00"
"time_constraints"

"description": "nightly build every night at 23h for 3.
~hours"

"duration": 10800

"name": "SampleConstraint"

"start": "@ 23 * * *"

"timezone": "Europe/Ljubljana"

"timestamp": "2015-01-01T12:00:00"
"type": "gnocchi_aggregation_by_metrics_threshold"
"user_id": "c96c887c216949acbdfbd8b494863567"

XML

b'<value>\n <alarm_id "true" />\n <name>SwiftObjectAlarm</name>
—-\n <description>An alarm</description>\n <enabled>true</enabled>\
~n <ok_actions>\n <item>http://site:8000/ok</item>\n </ok_
—actions>\n <alarm_actions>\n <item>http://site:8000/alarm</
witem>\n </alarm_actions>\n <insufficient_data_actions>\n
—<item>http://site:8000/nodata</item>\n </insufficient_data_
—actions>\n <repeat_actions>false</repeat_actions>\n <type>
—»gnocchi_aggregation_by_metrics_threshold</type>\n <time_
—constraints>\n <item>\n <name>SampleConstraint</name>\n .
— <description>nightly build every night at 23h for 3 hours</
—description>\n <start>® 23 * * *</start>\n <duration>

- 10800</duration>\n <timezone>Europe/Ljubljana</timezone>\n
~</item>\n </time_ constra1nts>\n <pr03ect id>

ontinues on next page

cﬂc96c887c216949acbdfbd8b494863567</user 1d>\n <t1mestamp>2®15 -01-

2015-01-01T12:00:00</state timestanp>\n Chapter.2. ContibutgrGuide

—over 90%</state_reason>\n <severity>moderate</severity>\n</value>'

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

l |

alarm_actions

Type list(str)

The actions to do when alarm state change to alarm

alarm_id
Type str

The UUID of the alarm

property description
The description of the alarm

enabled
Type bool

This alarm is enabled?

evaluate_timestamp
Type datetime

The latest alarm evaluation time

insufficient_data_actions
Type list(str)

The actions to do when alarm state change to insufficient data

name
Type str

The name for the alarm

ok_actions
Type list(str)

The actions to do when alarm state change to ok

project_id
Type str

The ID of the project or tenant that owns the alarm

repeat_actions

. Overview 25

Aodh Documentation, Release 14.1.1.dev3

Type bool

The actions should be re-triggered on each evaluation cycle

property severity
The severity of the alarm

property state
The state offset the alarm

state_reason
Type str

The reason of the current state

state_timestamp
Type datetime

The date of the last alarm state changed

time_constraints
Type list(AlarmTimeConstraint)

Describe time constraints for the alarm

timestamp
Type datetime

The date of the last alarm definition update

property type
Explicit type specifier to select which rule to follow below.

user_id

Type str

The ID of the user who created the alarm

type MetricOfResourceRule
Data samples:

Json

60

XML

26 Chapter 2. Contributor Guide

Aodh Documentation, Release 14.1.1.dev3

b'<value>\n <comparison_operator>eq</comparison_operator>\n
—<evaluation_periods>1</evaluation_periods>\n <granularity>60</
—granularity>\n</value>'

metric

Type str

The name of the metric

resource_id

Type str

The id of a resource

resource_type

Type str

The resource type

type AggregationMetricByResourcesLookupRule
Data samples:

Json
"comparison_operator": "eq"
"evaluation_periods": 1
"granularity": 60
XML
b'<value>\n <comparison_operator>eq</comparison_operator>\n
—s<evaluation_periods>1</evaluation_periods>\n <granularity>60</
—granularity>\n</value>'

metric
Type str

The name of the metric

query

Type str

The query to filter the metric, Don’t forget to filter out deleted resources (example: {"and":
[{"=": {"ended_at": null}}, ...]}), Otherwise Gnocchi will try to create the aggregate against
obsolete resources

resource_type

2.1. Overview 27

Aodh Documentation, Release 14.1.1.dev3

Type str

The resource type

type AggregationMetricsByIdLookupRule
Data samples:

Json
"comparison_operator": "eq"
"evaluation_periods": 1
"granularity": 60
XML
b'<value>\n <comparison_operator>eq</comparison_operator>\n
—<evaluation_periods>1</evaluation_periods>\n <granularity>60</
—granularity>\n</value>'

metrics

Type list(str)

A list of metric Ids

type AlarmTimeConstraint
Representation of a time constraint on an alarm.

Data samples:

Json
"description": "nightly build every night at 23h for 3 hours"
"duration": 10800
"name": "SampleConstraint"
llstartll ll® 23 b3 b3 VLAl
"timezone": "Europe/Ljubljana"
XML

b'<value>\n <name>SampleConstraint</name>\n <description>nightly.,
—build every night at 23h for 3 hours</description>\n <start>0 23.
o® % %< /start>\n <duration>10800</duration>\n <timezone>Europe/
—Ljubljana</timezone>\n</value>'

property description
The description of the constraint

duration

Type integer

28 Chapter 2. Contributor Guide

Aodh Documentation, Release 14.1.1.dev3

How long the constraint should last, in seconds

name
Type str

The name of the constraint

start

Type cron

Start point of the time constraint, in cron format

timezone
Type str

Timezone of the constraint

type AlarmChange
Representation of an event in an alarm’s history.

Data samples:

Json

XML
b' \n e8£ff32£772a44a478182c3felf7cadba \n._
o rule change \n {"threshold": 42.0,
—"evaluation_periods": 4} \nh

—b6£16144010811e387e4de429e99¢ee8cC
—3e5d11fda79448ac99ccefb20bel87ca
—92159030020611e3b26dde429e99ee8c
~01-01T12:00:00 \n

\n
\n
\n 2015-

alarm_id

Type str

The UUID of the alarm

detail

2.1. Overview

29

Aodh Documentation, Release 14.1.1.dev3

Type str

JSON fragment describing change

event_id
Type str

The UUID of the change event
on_behalf of

Type str

The tenant on behalf of which the change is being made

project_id
Type str

The project ID of the initiating identity

timestamp
Type datetime

The time/date of the alarm change

type
Type Enum(creation, rule change, state transition, deletion)

The type of change

user_id

Type str

The user ID of the initiating identity

Filtering Queries

The filter expressions of the query feature operate on the fields of Alarm and AlarmChange. The following
comparison operators are supported: =, /=, <, <=, >, >= and in; and the following logical operators
can be used: and or and not. The field names are validated against the database models.

n,on

Complex Query supports defining the list of orderby expressions in the form of [{"field_name": "asc"},
{"field_name?2": "desc"}, ...].

The number of the returned items can be bounded using the /imit option.
The filter, orderby and limit are all optional fields in a query.

POST /v2/query/alarms
Define query for retrieving Alarm data.

30 Chapter 2. Contributor Guide

Aodh Documentation, Release 14.1.1.dev3

Parameters
* body (ComplexQuery) -- Query rules for the alarms to be returned.
Return type list(Alarm)

POST /v2/query/alarms/history
Define query for retrieving AlarmChange data.

Parameters
* body (ComplexQuery) -- Query rules for the alarm history to be returned.
Return type list(AlarmChange)

type ComplexQuery
Holds a sample query encoded in json.

Data samples:

Json
42

XML
b' \n {"and": [{"and": [{"=": {"counter_name": "cpu_
—util"}}, {" ": {"counter_volume": 0.23}}, {" ": {"counter_
—~volume": 0.26}}1}, {"or": [{"and": [{" " {"timestamp": "2013-
12-01T18:00:00"}}, {" ": {"timestamp": "2013-12-01T18:15:00"}}1}
<, {"and": [{" ": {"timestamp": "2013-12-01T18:30:00"}}, {"
<" {"timestamp": "2013-12-01T18:45:00"}}13}13}1% \n
. [{"counter_volume": "ASC"}, {"timestamp": "DESC"}]
o \n 42 \n !

filter

Type str

The filter expression encoded in json.
limit
Type int

The maximum number of results to be returned.

2.1. Overview 31

Aodh Documentation, Release 14.1.1.dev3

orderby

Type str

List of single-element dicts for specifing the ordering of the results.

Composite rule Alarm

The composite type alarm allows users to specify a composite rule to define an alarm with multiple
triggering conditions, using a combination of and and or relations. A composite rule is composed of
multiple threshold rules or gnocchi rules. A sample composite alarm request form is as follows:

A sub-rule in composite_rule is same as a threshold_rule in threshold alarm or a gnocchi_rule in gnocchi
alarm. Additionally it has a mandatory type field to specify the rule type, like in the following sample:

0.8

You can get API version list via request to endpoint root path. For example:

127.0.0.1:8042

Sample response:

(continues on next page)

32 Chapter 2. Contributor Guide

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

2.2 Developer Documentation

2.2.1 Installing Aodh
Installing development sandbox

Configuring devstack

1. Download devstack.

2. Create a local. conf file as input to devstack.

Note: local.conf replaces the former configuration file called localrc. If you used localrc
before, remove it to switch to using the new file. For further information see the devstack config-
uration.

3. The aodh services are not enabled by default, so they must be enabled in local.conf before
running stack. sh.

This example local . conf file shows all of the settings required for aodh:

(continues on next page)

2.2. Developer Documentation 33

https://docs.openstack.org/devstack/latest/
https://docs.openstack.org/devstack/latest/configuration.html
https://docs.openstack.org/devstack/latest/configuration.html

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

Installing Manually

Installing the API Server

There are two recommended ways to start api server:
1. Starting API server through mod_wsgi;
2. Starting API server through: uwsgi.

Not recommended, for testing purpose, we can also start api server by aodh-api binary:

8042

Database configuration

You can use any SQLAlchemy-supported DB such as PostgreSQL or MySQL. To use MySQL as the
storage backend, change the ’database’ section in aodh.conf as follows:

[database]
connection = mysql+pymysql://username:password@host/aodh?charset=utf8

Installing the APl behind mod_wsgi

Aodh comes with a WSGI application file named aodh/api/app.wsgi for configuring the API service to
run behind Apache with mod_wsgi. This file is installed with the rest of the Aodh application code, and
should not need to be modified.

You can then configure Apache with something like this:

8042

8042

2.4

(continues on next page)

34 Chapter 2. Contributor Guide

../install/mod_wsgi.html
../install/uwsgi.html

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

Modify the WSGIDaemonProcess directive to set the user and group values to an appropriate user on
your server. In many installations aodh will be correct.

Installing the API with uwsgi

Aodh comes with a few example files for configuring the API service to run behind Apache with
mod_wsgi.

app.wsgi

The file aodh/api/app.wsgi sets up the V2 API WSGI application. The file is installed with the rest
of the Aodh application code, and should not need to be modified.

Example of uwsgi configuration file

Create aodh-uwsgi.ini file:

0.0.0.0:8041

This is running standalone

Set die-on-term & exit-on-reload so that uwsgi shuts down

uwsgi recommends this to prevent thundering herd on accept.

Override the default size for headers from the 4k default. (mainly for.
—keystone token)
65535

Set the number of threads usually with the returns of command nproc
8
Make sure the client doesn't try to re-use the connection.

Set uid and gip to an appropriate user on your server. In many
installations “‘aodh™ will be correct.

Then start the uwsgi server:

2.2. Developer Documentation 35

Aodh Documentation, Release 14.1.1.dev3

Or start in background with:

Configuring with uwsgi-plugin-python on Debian/Ubuntu

Install the Python plugin for uwsgi:

apt-get install uwsgi-plugin-python

Run the server:

uwsgi_python --master --die-on-term --logto /var/log/aodh/aodh-api.log --http-socket
:8042 --wsgi-file /usr/share/aodh-common/app.wsgi

2.2.2 Running the Tests

Aodh includes an extensive set of automated unit tests which are run through tox.

1. Install tox:

$ sudo pip install tox

2. On Ubuntu install 1ibmysqlclient-dev packages:

$ sudo apt-get install libmysqlclient-dev

For Fedora20 there is no libmysgqlclient-dev package, so youll need to install
mariadb-devel .x86-64 (or mariadb-devel.i386) instead:

$ sudo yum install mariadb-devel.x86_64

. Run the unit and code-style tests:

$ cd /opt/stack/aodh
$ tox -e py27,pep8

As tox is a wrapper around testr, it also accepts the same flags as testr. See the testr documentation
for details about these additional flags.

Use a double hyphen to pass options to testr. For example, to run only tests under
tests/functional/api/v2:

$ tox -e py27 -- functional.api.v2

To debug tests (ie. break into pdb debugger), you can use “debug” tox environment. Here’s an
example, passing the name of a test since you’ll normally only want to run the test that hits your
breakpoint:

$ tox -e debug aodh.tests.unit.test_bin

For reference, the debug tox environment implements the instructions here: https://wiki.openstack.
org/wiki/Testr#Debugging_.28pdb.29_Tests

36

Chapter 2. Contributor Guide

https://tox.readthedocs.io/en/latest/
https://testrepository.readthedocs.org/en/latest/MANUAL.html
https://wiki.openstack.org/wiki/Testr#Debugging_.28pdb.29_Tests
https://wiki.openstack.org/wiki/Testr#Debugging_.28pdb.29_Tests

Aodh Documentation, Release 14.1.1.dev3

4. There is a growing suite of tests which use a tool called gabbi to test and validate the behavior of
the Aodh API. These tests are run when using the usual functional tox target but if desired they
can be run by themselves:

$ tox -e gabbi

The YAML files used to drive the gabbi tests can be found in aodh/tests/functional/gabbi/
gabbits. If you are adding to or adjusting the API you should consider adding tests here.

See also:

¢ tox

2.2.3 Contributing to Aodh

Aodh follows the same workflow as other OpenStack projects. To start contributing to Aodh, please
follow the workflow found here.

Project Hosting Details

Bug tracker https://bugs.launchpad.net/aodh

Mailing list http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev (prefix sub-
jects with [Aodh] for faster responses)

Code Hosting https://opendev.org/openstack/aodh/

Code Review https://review.opendev.org/#/q/status:open+project:openstack/aodh,n,z

2.2.4 Event alarm

Aodh allows users to define alarms which can be evaluated based on events passed from other Open-
Stack services. The events can be emitted when the resources from other OpenStack services have been
updated, created or deleted, such as ’compute.instance.reboot.end’, ’scheduler.select_destinations.end’.
When creating an alarm with type of "event”, an event_type can be specified to identify the type of event
that will trigger the alarm. The event_type field support fuzzy matching with wildcard. Additionally,
users can also specify query conditions to filter specific events used to trigger the alarm.

This feature was implemented with proposal event-alarm.

Usage

When creating an alarm of "event" type, the "event_rule" need to be specified, which includes an
"event_type" field and a "query" field, the "event_type" allow users to specify a specific event type used
to match the incoming events when evaluating alarm, and the "query" field includes a list of query con-
ditions used to filter specific events when evaluating the alarm.

The following is an example of event alarm rule:

(continues on next page)

2.2. Developer Documentation 37

https://gabbi.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://wiki.openstack.org/wiki/Gerrit_Workflow
https://bugs.launchpad.net/aodh
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
https://opendev.org/openstack/aodh/
https://review.opendev.org/#/q/status:open+project:openstack/aodh,n,z
https://blueprints.launchpad.net/ceilometer/+spec/event-alarm-evaluator

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

Configuration

To enable this functionality, config the Ceilometer to be able to publish events to the queue the aodh-
listener service listen on. The event_alarm_topic config option of Aodh identify which messaging topic
the aodh-listener on, the default value is "alarm.all". In Ceilometer side, a publisher of notifier type need
to be configured in the event pipeline config file(event_pipeline.yaml as default), the notifier should
be with a messaging topic same as the event_alarm_topic option defined. For an example:

sources:

- name: event_source
events:
sinks:

- event_sink
sinks:

- name: event_sink
transformers:
publishers:

- notifier://
- notifier://?topic=alarm.all

38

Chapter 2. Contributor Guide

Aodh Documentation, Release 14.1.1.dev3

2.2.5 Guru Meditation Reports

Aodh contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Aodh executable. This report is called a Guru Meditation Report (GMR for short).

Generating a GMR
A GMR can be generated by sending the USRI signal to any Aodh process with support (see below). The
GMR will then be outputted standard error for that particular process.

For example, suppose that aodh-1istener has process id 8675, and was run with 2>/var/log/aodh/
aodh-listener.log. Then, kill -USR1 8675 will trigger the Guru Meditation report to be printed
to /var/log/aodh/aodh-1listener.log.

Structure of a GMR
The GMR is designed to be extensible; any particular executable may add its own sections. However, the
base GMR consists of several sections:

Package Shows information about the package to which this process belongs, including version infor-
mation

Threads Shows stack traces and thread ids for each of the threads within this process

Green Threads Shows stack traces for each of the green threads within this process (green threads don’t
have thread ids)

Configuration Lists all the configuration options currently accessible via the CONF object for the cur-
rent process

Adding Support for GMRs to New Executables

Adding support for a GMR to a given executable is fairly easy.

First import the module (currently residing in oslo-incubator), as well as the Aodh version module:

oslo_reports
aodh

Then, register any additional sections (optional):

Finally (under main), before running the "main loop" of the executable (usually service.
server(server) or something similar), register the GMR hook:

2.2. Developer Documentation 39

Aodh Documentation, Release 14.1.1.dev3

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the inline documentation about oslo.reports: oslo.reports

2.3 Appendix

2.3.1 Release Notes

* Liberty

Since Mitaka development cycle, we start to host release notes on: Aodh Release Notes

2.4 Indices and tables

* genindex
* modindex

e search

40 Chapter 2. Contributor Guide

https://docs.openstack.org/oslo.reports/latest/
https://wiki.openstack.org/wiki/ReleaseNotes/Liberty#OpenStack_Telemetry_.28Ceilometer.29
https://docs.openstack.org/releasenotes/aodh/

CHAPTER
THREE

ADMINISTRATION GUIDE

This guide contains information that will help you understand how to deploy, operate, and upgrade Aodh

3.1 Alarms

Alarms provide user-oriented Monitoring-as-a-Service for resources running on OpenStack. This type of
monitoring ensures you can automatically scale in or out a group of instances through the Orchestration
service, but you can also use alarms for general-purpose awareness of your cloud resources’ health.

These alarms follow a tri-state model:
ok The rule governing the alarm has been evaluated as False.
alarm The rule governing the alarm has been evaluated as True.

insufficient data There are not enough datapoints available in the evaluation periods to meaningfully
determine the alarm state.

3.1.1 Alarm definitions

The definition of an alarm provides the rules that govern when a state transition should occur, and the
actions to be taken thereon. The nature of these rules depend on the alarm type.

Threshold rule alarms

For conventional threshold-oriented alarms, state transitions are governed by:
* A static threshold value with a comparison operator such as greater than or less than.
* A statistic selection to aggregate the data.
* A sliding time window to indicate how far back into the recent past you want to look.

Both Ceilometer and Gnocchi are supported as data source of the threshold rule alarm. Valid threshold
alarms are:

* threshold
* gnocchi_resources_threshold
* gnocchi_aggregation_by_metrics_threshold

* gnocchi_aggregation_by_resources_threshold

41

Aodh Documentation, Release 14.1.1.dev3

Composite rule alarms

Composite alarms enable users to define an alarm with multiple triggering conditions, using a combina-
tion of and and or relations.

3.1.2 Alarm dimensioning

A key associated concept is the notion of dimensioning which defines the set of matching meters that feed
into an alarm evaluation. Recall that meters are per-resource-instance, so in the simplest case an alarm
might be defined over a particular meter applied to all resources visible to a particular user. More useful
however would be the option to explicitly select which specific resources you are interested in alarming
on.

At one extreme you might have narrowly dimensioned alarms where this selection would have only a
single target (identified by resource ID). At the other extreme, you could have widely dimensioned alarms
where this selection identifies many resources over which the statistic is aggregated. For example all
instances booted from a particular image or all instances with matching user metadata (the latter is how
the Orchestration service identifies autoscaling groups).

3.1.3 Alarm evaluation

Alarms are evaluated by the alarm-evaluator service on a periodic basis, defaulting to once every
minute.

Alarm actions

Any state transition of individual alarm (to ok, alarm, or insufficient data) may have one or more
actions associated with it. These actions effectively send a signal to a consumer that the state transi-
tion has occurred, and provide some additional context. This includes the new and previous states, with
some reason data describing the disposition with respect to the threshold, the number of datapoints in-
volved and most recent of these. State transitions are detected by the alarm-evaluator, whereas the
alarm-notifier effects the actual notification action.

HTTP/HTTPS action These are the de facto notification type used by Telemetry alarming and simply
involve an HTTP(S) POST request being sent to an endpoint, with a request body containing a
description of the state transition encoded as a JSON fragment.

OpenStack Services The user is able to define an alarm that simply trigger some OpenStack ser-
vice by directly specifying the service URL, e.g. trust+http://127.0.0.1:7070/v1/
webhooks/ab91ef39-3e4a-4750-a8b8-0271518cd481/invoke. aodh-notifier will pre-
pare X-Auth-Token header and send HTTP(S) POST request to that URL, containing the alarm
information in the request body.

Heat Autoscaling This notifier works together with 1loadbalancer_member_health evaluator. Pre-
sumably, the end user defines a Heat template which contains an autoscaling group and all the
members in the group are joined in an Octavia load balancer in order to expose highly available
service to the outside, so that when the stack scales up or scales down, Heat makes sure the new
members are joining the load balancer automatically and the old members are removed. How-
ever, this notifier deals with the situation that when some member fails, the Heat stack could be
recovered automatically. More information here

42 Chapter 3. Administration Guide

https://docs.openstack.org/self-healing-sig/latest/use-cases/loadbalancer-member.html

Aodh Documentation, Release 14.1.1.dev3

Log actions These are a lightweight alternative to webhooks, whereby the state transition is simply
logged by the alarm-notifier, and are intended primarily for testing purposes by admin users.

If none of the above actions satisfy your requirement, you can implement your own alarm actions accord-
ing to the current suppported actions in aodh/notifier folder.

3.1.4 Using alarms
Alarm creation

Threshold based alarm

An example of creating a Gnocchi threshold-oriented alarm, based on an upper bound on the CPU uti-
lization for a particular instance:

aodh alarm create

--name cpu_hi

--type gnocchi_resources_threshold
--description

--metric cpu_util
--threshold 70.0
--comparison-operator gt
--aggregation-method mean
--granularity 600
--evaluation-periods 3
--alarm-action
--resource-id INSTANCE_ID
--resource-type instance

This creates an alarm that will fire when the average CPU utilization for an individual instance exceeds
70% for three consecutive 10 minute periods. The notification in this case is simply a log message,
though it could alternatively be a webhook URL.

Note: Alarm names must be unique for the alarms associated with an individual project. Administrator
can limit the maximum resulting actions for three different states, and the ability for a normal user to
create log:// and test:// notifiers is disabled. This prevents unintentional consumption of disk and
memory resources by the Telemetry service.

The sliding time window over which the alarm is evaluated is 30 minutes in this example. This window
is not clamped to wall-clock time boundaries, rather it’s anchored on the current time for each evaluation
cycle, and continually creeps forward as each evaluation cycle rolls around (by default, this occurs every
minute).

Note: The alarm granularity must match the granularities of the metric configured in Gnocchi.

Otherwise the alarm will tend to flit in and out of the insufficient data state due to the mismatch
between the actual frequency of datapoints in the metering store and the statistics queries used to compare
against the alarm threshold. If a shorter alarm period is needed, then the corresponding interval should
be adjusted in the pipeline.yaml file.

3.1. Alarms 43

Aodh Documentation, Release 14.1.1.dev3

Other notable alarm attributes that may be set on creation, or via a subsequent update, include:
state The initial alarm state (defaults to insufficient data).

description A free-text description of the alarm (defaults to a synopsis of the alarm rule).
enabled True if evaluation and actioning is to be enabled for this alarm (defaults to True).

repeat-actions True if actions should be repeatedly notified while the alarm remains in the target state
(defaults to False).

ok-action An action to invoke when the alarm state transitions to ok.
insufficient-data-action An action to invoke when the alarm state transitions to insufficient data.

time-constraint Used to restrict evaluation of the alarm to certain times of the day or days of the week
(expressed as cron expression with an optional timezone).

Composite alarm

An example of creating a composite alarm, based on the composite of two basic rules:

aodh alarm create
--name meta

--type composite
--composite-rule

--alarm-action

This creates an alarm that will fire when either of two basic rules meets the condition. The notification
in this case is a webhook call. Any number of basic rules can be composed into a composite rule this
way, using either and or or. Additionally, composite rules can contain nested conditions:

Note: Observe the underscore in resource_id & resource_type in composite rule as opposed to
--resource-id & --resource-type CLI arguments.

aodh alarm create
--name meta
--type composite
--composite-rule
--alarm-action

44 Chapter 3. Administration Guide

Aodh Documentation, Release 14.1.1.dev3

Event based alarm

An example of creating a event alarm based on power state of instance:

aodh alarm create

--type event

--name instance_off
--description

--event-type

--enable True

--query

--alarm-action

--ok-action
--insufficient-data-action

Valid list of event-type and traits can be found in event_definitions.yaml file. --query may
also contain mix of traits for example to create alarm when instance is powered on but went into error
state:

aodh alarm create

--type event

--name instance_on_but_in_err_state

--description

--event-type

--enable True

--query o
.

--alarm-action

--ok-action

--insufficient-data-action

Sample output of alarm type event:

(continues on next page)

3.1. Alarms 45

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

[}

Note: To enable event alarms please refer Configuration

Alarm retrieval

You can display all your alarms via (some attributes are omitted for brevity):

aodh alarm list

In this case, the state is reported as insufficient data which could indicate that:

* meters have not yet been gathered about this instance over the evaluation window into the recent
past (for example a brand-new instance)

* or, that the identified instance is not visible to the user/project owning the alarm

46 Chapter 3. Administration Guide

https://docs.openstack.org/aodh/latest/contributor/event-alarm.html#configuration

Aodh Documentation, Release 14.1.1.dev3

* or, simply that an alarm evaluation cycle hasn’t kicked off since the alarm was created (by default,
alarms are evaluated once per minute).

Note: The visibility of alarms depends on the role and project associated with the user issuing the query:
* admin users see all alarms, regardless of the owner

* non-admin users see only the alarms associated with their project (as per the normal project seg-
regation in OpenStack)

Alarm update

Once the state of the alarm has settled down, we might decide that we set that bar too low with 70%, in
which case the threshold (or most any other alarm attribute) can be updated thusly:

aodh alarm update ALARM_ID --threshold 75

The change will take effect from the next evaluation cycle, which by default occurs every minute.

Most alarm attributes can be changed in this way, but there is also a convenient short-cut for getting and
setting the alarm state:

openstack alarm state get ALARM_ID
openstack alarm state set --state ok ALARM_ID

Over time the state of the alarm may change often, especially if the threshold is chosen to be close to the
trending value of the statistic. You can follow the history of an alarm over its lifecycle via the audit API:

aodh alarm-history show ALARM_ID

(continues on next page)

3.1. Alarms 47

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

—

Alarm deletion

An alarm that is no longer required can be disabled so that it is no longer actively evaluated:

aodh alarm update --enabled False ALARM_ID

or even deleted permanently (an irreversible step):

aodh alarm delete ALARM_ID

48 Chapter 3. Administration Guide

Aodh Documentation, Release 14.1.1.dev3

Debug alarms

A good place to start is to add --debug flag when creating or updating an alarm. For example:

aodh --debug alarm create <OTHER_PARANMS>

Look for the state to transition when event 1is triggered in /var/log/aodh/
listener.log file. For example, the below logs shows the transition state of
alarm with id 85a2942f-a2ec-4310-baea-d58f9db98654 triggered by event id
abe437a3-b75b-40b4-a3cb-26022a919f5e

il

The below entry in /var/log/aodh/notifier.log also confirms that event id
abe437a3-b75b-40b4-a3cb-26022a919f5e hits the query matching instance id
bb912729-fa51-443b-bac6-bf4c795£081d

aodh alarm-history as mentioned earlier will also display the transition:

aodh alarm-history show 85a2942f-a2ec-4310-baea-d58f9db98654

(continues on next page)

3.1. Alarms 49

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

3.2 Resource Quota Management

The amount of resources(e.g. alarms) that could be created by each OpenStack project is controlled by
quota. The default resource quota for each project is set in Aodh config file as follows unless changed by
the cloud administrator via Quota API.

user_alarm_quota The default alarm quota for an openstack user, default is unlimited. Sometimes the
alarm creation request satisfies the project quota but fails the user quota.

project_alarm_quota The default alarm quota for an openstack project, default is unlimited. The cloud
administrator can change project quota using Quota API, see examples below.

alarm_max_actions The maximum number of alarm actions could be created per alarm, default is un-
limited.

50 Chapter 3. Administration Guide

Aodh Documentation, Release 14.1.1.dev3

3.2.1 Quota API

Aodh Quota API is aiming for multi-tenancy support. By default, only the admin user is able to change
the resource quota for projects as defined by the default policy rule "telemetry:update_quotas’. User alarm
quota and alarm action quota are not supported in Quota APL

An HTTP request example using httpie command:

3.2. Resource Quota Management 51

Aodh Documentation, Release 14.1.1.dev3

52 Chapter 3. Administration Guide

CHAPTER
FOUR

CONFIGURATION GUIDE

4.1 Aodh Sample Configuration File

Configure Aodh by editing /etc/aodh/aodh.conf.

No config file is provided with the source code, it will be created during the installation. In case where
no configuration file was installed, one can be easily created by running:

4.2 Aodh Configuration Options

4.2.1 aodh: DEFAULT

record_history

Type boolean
Default True

Record alarm change events.

event_alarm_cache_ttl

Type integer
Default 60

TTL of event alarm caches, in seconds. Set to 0 to disable caching.

additional_ingestion_lag

Type integer

Default 0

Minimum Value 0
The number of seconds to extend the evaluation windows to compensate the reporting/ingestion
lag.

member_creation_time

53

Aodh Documentation, Release 14.1.1.dev3

Type integer
Default 120

The time in seconds to wait for the load balancer member creation.

rest_notifier_certificate_file

Type string
Default '’

SSL Client certificate file for REST notifier.

rest_notifier_certificate_key

Type string
Default '’

SSL Client private key file for REST notifier.

rest_notifier_ca_bundle_certificate_path

Type string

Default <None>

SSL CA_BUNDLE certificate for REST notifier

rest_notifier_ssl_verify

Type boolean
Default True

Whether to verify the SSL Server certificate when calling alarm action.

rest_notifier_max_retries

Type integer
Default 0

Number of retries for REST notifier

notifier_topic

Type string

Default alarming

The topic that aodh uses for alarm notifier messages.

http_timeout

Type integer
Default 600

54 Chapter 4

. Configuration Guide

Aodh Documentation, Release 14.1.1.dev3

Timeout seconds for HTTP requests. Set it to None to disable timeout.

evaluation_interval

Type integer
Default 60

Period of evaluation cycle, should be >= than configured pipeline interval for collection of under-
lying meters.

4.2.2 aodh: api

paste_config

Type string

Default api-paste.ini

Configuration file for WSGI definition of APL
auth_mode

Type string

Default keystone

Authentication mode to use. Unset to disable authentication

gnocchi_external_project_owner

Type string

Default service

Project name of resources creator in Gnocchi. (For example the Ceilometer project name

gnocchi_external_domain_name

Type string
Default Default

Domain name of resources creator in Gnocchi. (For example, default or service_domain

user_alarm_quota

Type integer
Default -1

Maximum number of alarms defined for a user.

Table 1: Deprecated Variations

Group Name
DEFAULT | user_alarm_quota

4.2. Aodh Configuration Options 55

Aodh Documentation, Release 14.1.1.dev3

project_alarm_quota

Type integer
Default -1

Maximum number of alarms defined for a project.

Table 2: Deprecated Variations

Group Name
DEFAULT | project_alarm_quota

alarm_max_actions

Type integer
Default -1

Maximum count of actions for each state of an alarm, non-positive number means no limit.

Table 3: Deprecated Variations

Group Name
DEFAULT | alarm_max_actions

4.2.3 aodh: coordination

backend_url

Type string

Default <None>
The backend URL to use for distributed coordination. If left empty, alarm evaluation won’t do
workload partitioning and will only function correctly if a single instance of the service is running.

heartbeat_interval

Type floating point
Default 1.0

Number of seconds between heartbeats for distributed coordination.

Table 4: Deprecated Variations

Group Name
coordination | heartbeat

check_watchers

Type floating point

56 Chapter 4. Configuration Guide

Aodh Documentation, Release 14.1.1.dev3

Default 10.0

Number of seconds between checks to see if group membership has changed

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason This parameter is no longer used.

retry_backoff

Type integer
Default 1

Retry backoff factor when retrying to connect with coordination backend

max_retry_interval

Type integer
Default 30

Maximum number of seconds between retry to join partitioning group

4.2.4 aodh: database
alarm_history_time_to_live

Type integer
Default -1

Number of seconds that alarm histories are kept in the database for (<= 0 means forever).

alarm_histories_delete_batch_size

Type integer
Default 0

Minimum Value 0

Number of alarm histories to be deleted in one iteration from the database (0 means all).

4.2. Aodh Configuration Options 57

Aodh Documentation, Release 14.1.1.dev3

4.2.5 aodh: evaluator
workers

Type integer
Default 1

Minimum Value 1

Number of workers for evaluator service. default value is 1.

4.2.6 aodh: listener
workers

Type integer
Default 1

Minimum Value 1

Number of workers for listener service. default value is 1.

event_alarm_topic

Type string
Default alarm.all

The topic that aodh uses for event alarm evaluation.

Table 5: Deprecated Variations

Group Name
DEFAULT | event_alarm_topic

batch_size

Type integer
Default 1

Number of notification messages to wait before dispatching them.

batch_timeout

Type integer

Default <None>

Number of seconds to wait before dispatching samples when batch_size is not reached (None means
indefinitely).

58 Chapter 4. Configuration Guide

Aodh Documentation, Release 14.1.1.dev3

4.2.7 aodh: notifier

batch_size

Type integer
Default 1

Number of notification messages to wait before dispatching them.

batch_timeout

Type integer

Default <None>

Number of seconds to wait before dispatching samples when batch_size is not reached (None means
indefinitely).

workers

Type integer
Default 1

Minimum Value 1

Number of workers for notifier service. default value is 1.

4.2.8 aodh: service credentials
region_name

Type string

Default <None>

Region name to use for OpenStack service endpoints.

Table 6: Deprecated Variations
Group Name
service_credentials | os-region-name
service_credentials | os_region_name

interface

Type string
Default public

Valid Values public, internal, admin, auth, publicURL, internalURL, adminURL

4.2. Aodh Configuration Options 59

Aodh Documentation, Release 14.1.1.dev3

Type of endpoint in Identity service catalog to use for communication with OpenStack services.

Table 7: Deprecated Variations
Group Name
service_credentials | os-endpoint-type
service_credentials | os_endpoint_type

4.2.9 aodh: service_types
zaqar

Type string

Default messaging

Message queue service type.

4.3 Aodh Sample Policy Configuration File

Warning: JSON formatted policy file is deprecated since Aodh 12.0.0 (Wallaby). This oslopolicy-
convert-json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML in a
backward-compatible way.

The following is an overview of all available policies in Aodh. For a sample configuration file, refer to
policy.yaml.

4.3.1 aodh

context_is_admin
Default role:admin
(no description provided)
segregation
Default rule:context_is_admin
(no description provided)
admin_or_owner
Default rule:context_is_admin or project_id:%(project_id)s
(no description provided)
default
Default rule:context_is_admin or project_id:%(project_id)s

(no description provided)

60 Chapter 4. Configuration Guide

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Aodh Documentation, Release 14.1.1.dev3

telemetry:get_alarm

Default (role:reader and system_scope:all) or (role:reader and
project_id:%(project_id)s)

Operations
e GET /v2/alarms/{alarm_id}
Scope Types
* system
* project
Get an alarm.
telemetry:get_alarms

Default (role:reader and system_scope:all) or (role:reader and
project_id:%(project_id)s)

Operations
* GET /v2/alarms
Scope Types
* system
* project
Get all alarms, based on the query provided.
telemetry:get_alarms:all_projects
Default role:reader and system_scope:all
Operations
e GET /v2/alarms
Scope Types
* system
* project
Get alarms of all projects.
telemetry:query_alarm

Default (role:reader and system_scope:all) or (role:reader and
project_id:%(project_id)s)

Operations

* POST /v2/query/alarms
Scope Types

* system

* project

Get all alarms, based on the query provided.

4.3. Aodh Sample Policy Configuration File 61

Aodh Documentation, Release 14.1.1.dev3

telemetry:create_alarm

Default (role:admin and system_scope:all) or (role:member and
project_id:%(project_id)s)

Operations
* POST /v2/alarms
Scope Types
* system
* project
Create a new alarm.
telemetry:change_alarm

Default (role:admin and system_scope:all) or (role:member and
project_id:%(project_id)s)

Operations
* PUT /v2/alarms/{alarm_id}
Scope Types
* system
* project
Modify this alarm.
telemetry:delete_alarm

Default (role:admin and system_scope:all) or (role:member and
project_id:%(project_id)s)

Operations
* DELETE /v2/alarms/{alarm_id}
Scope Types
* system
* project
Delete this alarm.
telemetry:get_alarm_state

Default (role:reader and system_scope:all) or (role:reader and
project_id:%(project_id)s)

Operations

* GET /v2/alarms/{alarm_id}/state
Scope Types

* system

* project

Get the state of this alarm.

62 Chapter 4. Configuration Guide

Aodh Documentation, Release 14.1.1.dev3

telemetry:change_alarm_state

Default (role:admin and system_scope:all) or (role:member and
project_id:%(project_id)s)

Operations
e PUT /v2/alarms/{alarm_id}/state
Scope Types
* system
* project
Set the state of this alarm.
telemetry:alarm_history

Default (role:reader and system_scope:all) or (role:reader and
project_id:%(project_id)s)

Operations
e GET /v2/alarms/{alarm_id}/history
Scope Types
* system
* project
Assembles the alarm history requested.
telemetry:query_alarm_history

Default (role:reader and system_scope:all) or (role:reader and
project_id:%(project_id)s)

Operations
e POST /v2/query/alarms/history
Scope Types
* system
* project
Define query for retrieving AlarmChange data.
telemetry:update_quotas
Default role:admin and system_scope:all
Operations
e« POST /v2/quotas
Scope Types
* system
Update resources quotas for project.

telemetry:delete_quotas

4.3. Aodh Sample Policy Configuration File 63

Aodh Documentation, Release 14.1.1.dev3

Default role:admin and system_scope:all
Operations

e DELETE /v2/quotas/{project_id}
Scope Types

* system

Delete resources quotas for project.

4.4 policy.yaml

Warning: JSON formatted policy file is deprecated since Aodh 12.0.0 (Wallaby). This oslopolicy-
convert-json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML in a
backward-compatible way.

Use the policy.yaml file to define additional access controls that will be applied to Aodh:

#"context_is_admin": "role:admin"

#"segregation": '"rule:context_is_admin"

#"admin_or_owner'": "rule:context_is_admin or project_id:%(project_id)s"
#"default": "rule:context_is_admin or project_id:%(project_id)s"

Get an alarm.

GET /v2/alarms/{alarm_id}

Intended scope(s): system, project

#"telemetry:get_alarm": "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

DEPRECATED

"telemetry:get_alarm":"rule:context_is_admin or

project_id:%(project_id)s" has been deprecated since W in favor of
"telemetry:get_alarm":"(role:reader and system_scope:all) or

(role:reader and project_id:%(project_id)s)".

The alarm and quota APIs now support system-scope and default roles.

Get all alarms, based on the query provided.

GET /v2/alarms

Intended scope(s): system, project

#"telemetry:get_alarms": "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

DEPRECATED
"telemetry:get_alarms":"rule:context_is_admin or
project_id:%(project_id)s" has been deprecated since W in favor of

(continues on next page)

64 Chapter 4. Configuration Guide

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

"telemetry:get_alarms":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The alarm and quota APIs now support system-scope and default roles.

Get alarms of all projects.

GET /v2/alarms

Intended scope(s): system, project
#"telemetry:get_alarms:all_projects": "role:reader and system_scope:all"

DEPRECATED

"telemetry:get_alarms:all_projects":"rule:context_is_admin" has been
deprecated since W in favor of

"telemetry:get_alarms:all _projects":"role:reader and

system_scope:all"”.

#

The alarm and quota APIs now support system-scope and default roles.

Get all alarms, based on the query provided.

POST /v2/query/alarms

Intended scope(s): system, project

#"telemetry:query_alarm": "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

DEPRECATED

"telemetry:query_alarm":"rule:context_is_admin or

project_id:%(project_id)s" has been deprecated since W in favor of
"telemetry:query_alarm":"(role:reader and system_scope:all) or

(role:reader and project_id:%(project_id)s)".

The alarm and quota APIs now support system-scope and default roles.

Create a new alarm.

POST /v2/alarms

Intended scope(s): system, project

#"telemetry:create_alarm": "(role:admin and system_scope:all) or (role:member.,
—and project_id:%(project_id)s)"

DEPRECATED

"telemetry:create_alarm":"" has been deprecated since W in favor of
"telemetry:create_alarm":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The alarm and quota APIs now support system-scope and default roles.

H R W R R

Modify this alarm.

PUT /v2/alarms/{alarm_id}

Intended scope(s): system, project

#"telemetry:change_alarm": "(role:admin and system_scope:all) or (role:member.
—and project_id:%(project_id)s)"

DEPRECATED
"telemetry:change_alarm":"rule:context_is_admin or

(continues on next page)

4.4. policy.yaml 65

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

project_id:%(project_id)s" has been deprecated since W in favor of
"telemetry:change_alarm":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The alarm and quota APIs now support system-scope and default roles.

Delete this alarm.

DELETE /v2/alarms/{alarm_id}

Intended scope(s): system, project

#"telemetry:delete_alarm”: "(role:admin and system_scope:all) or (role:member.,
—and project_id:%(project_id)s)"

DEPRECATED

"telemetry:delete_alarm":"rule:context_is_admin or

project_id:%(project_id)s" has been deprecated since W in favor of
"telemetry:delete_alarm":"(role:admin and system_scope:all) or

(role:member and project_id:%(project_id)s)".

The alarm and quota APIs now support system-scope and default roles.

Get the state of this alarm.

GET /v2/alarms/{alarm_id}/state

Intended scope(s): system, project

#"telemetry:get_alarm_state": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"telemetry:get_alarm_state":'"rule:context_is_admin or

project_id:%(project_id)s" has been deprecated since W in favor of
"telemetry:get_alarm_state":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The alarm and quota APIs now support system-scope and default roles.

Set the state of this alarm.

PUT /v2/alarms/{alarm_id}/state

Intended scope(s): system, project

#"telemetry:change_alarm_state": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"telemetry:change_alarm_state":'"rule:context_is_admin or

project_id:%(project_id)s" has been deprecated since W in favor of
"telemetry:change_alarm_state":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The alarm and quota APIs now support system-scope and default roles.

Assembles the alarm history requested.

GET /v2/alarms/{alarm_id}/history

Intended scope(s): system, project

#"telemetry:alarm_history": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

(continues on next page)

66 Chapter 4. Configuration Guide

Aodh Documentation, Release 14.1.1.dev3

(continued from previous page)

DEPRECATED

"telemetry:alarm_history":"rule:context_is_admin or

project_id:%(project_id)s" has been deprecated since W in favor of
"telemetry:alarm_history":"(role:reader and system_scope:all) or

(role:reader and project_id:%(project_id)s)".

The alarm and quota APIs now support system-scope and default roles.

Define query for retrieving AlarmChange data.

POST /v2/query/alarms/history

Intended scope(s): system, project

#"telemetry:query_alarm_history": "(role:reader and system_scope:all) or.
— (role:reader and project_id:%(project_id)s)"

DEPRECATED

"telemetry:query_alarm_history":"rule:context_is_admin or

project_id:%(project_id)s" has been deprecated since W in favor of
"telemetry:query_alarm_history":"(role:reader and system_scope:all)
or (role:reader and project_id:%(project_id)s)".

#

The alarm and quota APIs now support system-scope and default roles.

Update resources quotas for project.

POST /v2/quotas

Intended scope(s): system

#"telemetry:update_quotas'": "role:admin and system_scope:all"

DEPRECATED

#
"telemetry:update_quotas":"rule:context_is_admin" has been

deprecated since W in favor of "telemetry:update_quotas':'role:admin
and system_scope:all".

#

The alarm and quota APIs now support system-scope and default roles.

Delete resources quotas for project.

DELETE /v2/quotas/{project_id}

Intended scope(s): system

#"telemetry:delete_quotas'": "role:admin and system_scope:all"

DEPRECATED

"telemetry:delete_quotas":"rule:context_is_admin" has been

deprecated since W in favor of "telemetry:delete_quotas':'"role:admin
and system_scope:all".

The alarm and quota APIs now support system-scope and default roles.

4.4. policy.yaml 67

Aodh Documentation, Release 14.1.1.dev3

68 Chapter 4. Configuration Guide

CHAPTER
FIVE

AODH CLI DOCUMENTATION

In this section you will find information on Aodhs command line interface.

5.1 aodh-status

5.1.1 CLI interface for Aodh status commands

Synopsis

Description

aodh-status is a tool that provides routines for checking the status of a Aodh deployment.

Options

The standard pattern for executing a aodh-status command is:

Run without arguments to see a list of available command categories:

Categories are:
e upgrade
Detailed descriptions are below:

You can also run with a category argument such as upgrade to see a list of all commands in that category:

These sections describe the available categories and arguments for aodh-status.

69

Aodh Documentation, Release 14.1.1.dev3

Upgrade

aodh-status upgrade check Performs a release-specific readiness check before restarting services
with new code. For example, missing or changed configuration options, incompatible object states,
or other conditions that could lead to failures while upgrading.

Return Codes

Return code Description

0 All upgrade readiness checks passed successfully and there is nothing to do.

1 At least one check encountered an issue and requires further investigation.
This is considered a warning but the upgrade may be OK.

2 There was an upgrade status check failure that needs to be investigated. This
should be considered something that stops an upgrade.

255 An unexpected error occurred.

History of Checks

8.0.0 (Stein)
» Sample check to be filled in with checks as they are added in Stein.

70 Chapter 5. Aodh CLI Documentation

CHAPTER
SIX

GLOSSARY

alarm An action triggered whenever a meter reaches a certain threshold.
API server HTTP REST API service for Aodh.

HTTP callback HTTP callback is used for calling a predefined URL, whenever an alarm has been set
off. The payload of the request contains all the details of why the alarm was triggered.

log Logging is one of the alarm actions that is useful mostly for debugging, it stores the alarms in a log
file.

zaqar According to Zagar Developer Documentation:

Zaqar is a multi-tenant cloud messaging and notification service for web and mobile
developers.

project The OpenStack tenant or project.
resource The OpenStack entity being metered (e.g. instance, volume, image, etc).

user An OpenStack user.

71

https://docs.openstack.org/zaqar/latest/

	Installation Guide
	Telemetry Alarming service overview
	Install and configure for openSUSE and SUSE Linux Enterprise
	Prerequisites
	Install and configure components
	Finalize installation

	Install and configure for Red Hat Enterprise Linux and CentOS
	Prerequisites
	Install and configure components
	Finalize installation

	Install and configure for Ubuntu
	Prerequisites
	Install and configure components
	Finalize installation

	Next steps

	Contributor Guide
	Overview
	System Architecture
	High-Level Architecture
	Evaluating the data
	Alarming Service

	Alarm Rules
	composite
	event
	gnocchi_aggregation_by_metrics_threshold
	gnocchi_aggregation_by_resources_threshold
	gnocchi_resources_threshold
	loadbalancer_member_health

	Alarm Evaluators
	composite
	gnocchi_aggregation_by_metrics_threshold
	gnocchi_aggregation_by_resources_threshold
	gnocchi_resources_threshold
	loadbalancer_member_health

	Alarm Notifiers
	http
	https
	log
	test
	trust+heat
	trust+http
	trust+https
	trust+zaqar
	zaqar

	Alarm Storage
	log
	mysql
	mysql+pymysql
	postgresql
	sqlite

	Web API
	V2 Web API
	Capabilities
	Alarms
	Filtering Queries
	Composite rule Alarm

	Developer Documentation
	Installing Aodh
	Installing development sandbox
	Configuring devstack

	Installing Manually
	Installing the API Server
	Database configuration

	Installing the API behind mod_wsgi
	Installing the API with uwsgi
	app.wsgi
	Example of uwsgi configuration file
	Configuring with uwsgi-plugin-python on Debian/Ubuntu

	Running the Tests
	Contributing to Aodh
	Project Hosting Details

	Event alarm
	Usage
	Configuration

	Guru Meditation Reports
	Generating a GMR
	Structure of a GMR
	Adding Support for GMRs to New Executables
	Extending the GMR

	Appendix
	Release Notes

	Indices and tables

	Administration Guide
	Alarms
	Alarm definitions
	Threshold rule alarms
	Composite rule alarms

	Alarm dimensioning
	Alarm evaluation
	Alarm actions

	Using alarms
	Alarm creation
	Threshold based alarm
	Composite alarm
	Event based alarm

	Alarm retrieval
	Alarm update
	Alarm deletion
	Debug alarms

	Resource Quota Management
	Quota API

	Configuration Guide
	Aodh Sample Configuration File
	Aodh Configuration Options
	aodh: DEFAULT
	aodh: api
	aodh: coordination
	aodh: database
	aodh: evaluator
	aodh: listener
	aodh: notifier
	aodh: service_credentials
	aodh: service_types

	Aodh Sample Policy Configuration File
	aodh

	policy.yaml

	Aodh CLI Documentation
	aodh-status
	CLI interface for Aodh status commands
	Synopsis
	Description
	Options
	Upgrade

	Glossary

