
Ceilometer Documentation
Release 25.1.0.dev58

OpenStack Foundation

Feb 04, 2026





CONTENTS

1 Overview 3
1.1 Installation Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Telemetry Data Collection service overview . . . . . . . . . . . . . . . . . . . 3
1.1.2 Install and Configure Controller Services . . . . . . . . . . . . . . . . . . . . 4

Ceilometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Cinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Glance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Keystone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Neutron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Install and Configure Compute Services . . . . . . . . . . . . . . . . . . . . . 23
Enable Compute service meters for Red Hat Enterprise Linux and CentOS . . . 24
Enable Compute service meters for Ubuntu . . . . . . . . . . . . . . . . . . . . 25

1.1.4 Verify operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.1.5 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Contributor Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Events and Event Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2.3 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Installing development sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Running the Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Guru Meditation Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2.4 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Writing Agent Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Ceilometer + Gnocchi Integration . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.3 Administrator Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.3.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Data processing and pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Telemetry best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Introduction to dynamic pollster subsystem . . . . . . . . . . . . . . . . . . . . 55

1.3.3 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

i



Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1.3.4 Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Troubleshoot Telemetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1.4 Ceilometer Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.4.1 Ceilometer Sample Configuration File . . . . . . . . . . . . . . . . . . . . . . 84

1.5 Ceilometer CLI Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.5.1 ceilometer-status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

CLI interface for Ceilometer status commands . . . . . . . . . . . . . . . . . . 84

2 Appendix 87
2.1 Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.1.1 Folsom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.2 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ii



Ceilometer Documentation, Release 25.1.0.dev58

The Ceilometer project is a data collection service that provides the ability to normalise and transform
data across all current OpenStack core components with work underway to support future OpenStack
components.

Ceilometer is a component of the Telemetry project. Its data can be used to provide customer billing,
resource tracking, and alarming capabilities across all OpenStack core components.

This documentation offers information on how Ceilometer works and how to contribute to the project.

CONTENTS 1



Ceilometer Documentation, Release 25.1.0.dev58

2 CONTENTS



CHAPTER

ONE

OVERVIEW

1.1 Installation Guide

1.1.1 Telemetry Data Collection service overview
The Telemetry Data Collection services provide the following functions:

• Efficiently polls metering data related to OpenStack services.

• Collects event and metering data by monitoring notifications sent from services.

• Publishes collected data to various targets including data stores and message queues.

The Telemetry service consists of the following components:

A compute agent (ceilometer-agent-compute)
Runs on each compute node and polls for resource utilization statistics. This is actually the polling
agent ceilometer-polling running with parameter --polling-namespace compute.

A central agent (ceilometer-agent-central)
Runs on a central management server to poll for resource utilization statistics for resources
not tied to instances or compute nodes. Multiple agents can be started to scale service hor-
izontally. This is actually the polling agent ceilometer-polling running with parameter
--polling-namespace central.

A notification agent (ceilometer-agent-notification)
Runs on a central management server(s) and consumes messages from the message queue(s) to
build event and metering data. Data is then published to defined targets. By default, data is pushed
to Gnocchi.

These services communicate by using the OpenStack messaging bus. Ceilometer data is designed to be
published to various endpoints for storage and analysis.

Note

Ceilometer previously provided a storage and API solution. As of Newton, this functionality is of-
ficially deprecated and discouraged. For efficient storage and statistical analysis of Ceilometer data,
Gnocchi is recommended.

3

https://gnocchi.osci.io
https://gnocchi.osci.io


Ceilometer Documentation, Release 25.1.0.dev58

1.1.2 Install and Configure Controller Services
This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.

Ceilometer

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Telemetry service, code-named ceilometer, on the
controller node.

Prerequisites

Before you install and configure the Telemetry service, you must configure a target to send metering data
to. The recommended endpoint is Gnocchi.

1. Source the admin credentials to gain access to admin-only CLI commands:

$ . admin-openrc

2. To create the service credentials, complete these steps:

• Create the ceilometer user:

$ openstack user create --domain default --password-prompt ceilometer
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | e0353a670a9e496da891347c589539e9 |
| enabled | True |
| id | c859c96f57bd4989a8ea1a0b1d8ff7cd |
| name | ceilometer |
+-----------+----------------------------------+

• Add the admin role to the ceilometer user.

$ openstack role add --project service --user ceilometer admin

Note

This command provides no output.

• Create the ceilometer service entity:

$ openstack service create --name ceilometer \
--description "Telemetry" metering

+-------------+----------------------------------+
| Field | Value |

(continues on next page)

4 Chapter 1. Overview

https://gnocchi.osci.io


Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

+-------------+----------------------------------+
| description | Telemetry |
| enabled | True |
| id | 5fb7fd1bb2954fddb378d4031c28c0e4 |
| name | ceilometer |
| type | metering |
+-------------+----------------------------------+

3. Register Gnocchi service in Keystone:

• Create the gnocchi user:

$ openstack user create --domain default --password-prompt gnocchi
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | e0353a670a9e496da891347c589539e9 |
| enabled | True |
| id | 8bacd064f6434ef2b6bbfbedb79b0318 |
| name | gnocchi |
+-----------+----------------------------------+

• Create the gnocchi service entity:

$ openstack service create --name gnocchi \
--description "Metric Service" metric

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | Metric Service |
| enabled | True |
| id | 205978b411674e5a9990428f81d69384 |
| name | gnocchi |
| type | metric |
+-------------+----------------------------------+

• Add the admin role to the gnocchi user.

$ openstack role add --project service --user gnocchi admin

Note

This command provides no output.

• Create the Metric service API endpoints:

$ openstack endpoint create --region RegionOne \
metric public http://controller:8041

(continues on next page)

1.1. Installation Guide 5



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | b808b67b848d443e9eaaa5e5d796970c |
| interface | public |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 205978b411674e5a9990428f81d69384 |
| service_name | gnocchi |
| service_type | metric |
| url | http://controller:8041 |
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
metric internal http://controller:8041

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | c7009b1c2ee54b71b771fa3d0ae4f948 |
| interface | internal |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 205978b411674e5a9990428f81d69384 |
| service_name | gnocchi |
| service_type | metric |
| url | http://controller:8041 |
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
metric admin http://controller:8041

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | b2c00566d0604551b5fe1540c699db3d |
| interface | admin |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 205978b411674e5a9990428f81d69384 |
| service_name | gnocchi |
| service_type | metric |
| url | http://controller:8041 |
+--------------+----------------------------------+

6 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Install Gnocchi

1. Install the Gnocchi packages. Alternatively, Gnocchi can be install using pip:

# dnf install gnocchi-api gnocchi-metricd python3-gnocchiclient

Note

Depending on your environment size, consider installing Gnocchi separately as it makes exten-
sive use of the cpu.

2. Install the uWSGI packages. The following method uses operating system provided packages.
Another alternative would be to use pip(or pip3, depending on the distribution); using pip is not
described in this doc:

# dnf install uwsgi-plugin-common uwsgi-plugin-python3 uwsgi

Note

Since the provided gnocchi-api wraps around uwsgi, you need to make sure that uWSGI is
installed if you want to use gnocchi-api to run Gnocchi API. As Gnocchi API tier runs using
WSGI, it can also alternatively be run using Apache httpd and mod_wsgi, or any other HTTP
daemon.

3. Create the database for Gnocchi’s indexer:

• Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

• Create the gnocchi database:

CREATE DATABASE gnocchi;

• Grant proper access to the gnocchi database:

GRANT ALL PRIVILEGES ON gnocchi.* TO 'gnocchi'@'localhost' \
IDENTIFIED BY 'GNOCCHI_DBPASS';

GRANT ALL PRIVILEGES ON gnocchi.* TO 'gnocchi'@'%' \
IDENTIFIED BY 'GNOCCHI_DBPASS';

Replace GNOCCHI_DBPASS with a suitable password.

• Exit the database access client.

4. Edit the /etc/gnocchi/gnocchi.conf file and add Keystone options:

• In the [api] section, configure gnocchi to use keystone:

[api]
auth_mode = keystone
port = 8041
uwsgi_mode = http-socket

1.1. Installation Guide 7



Ceilometer Documentation, Release 25.1.0.dev58

• In the [keystone_authtoken] section, configure keystone authentication:

[keystone_authtoken]
...
auth_type = password
auth_url = http://controller:5000/v3
project_domain_name = Default
user_domain_name = Default
project_name = service
username = gnocchi
password = GNOCCHI_PASS
interface = internalURL
region_name = RegionOne

Replace GNOCCHI_PASS with the password you chose for the gnocchi user in the Identity
service.

• In the [indexer] section, configure database access:

[indexer]
url = mysql+pymysql://gnocchi:GNOCCHI_DBPASS@controller/gnocchi

Replace GNOCCHI_DBPASS with the password you chose for Gnocchi’s indexer database.

• In the [storage] section, configure location to store metric data. In this case, we will store it
to the local file system. See Gnocchi documenation for a list of more durable and performant
drivers:

[storage]
# coordination_url is not required but specifying one will improve
# performance with better workload division across workers.
coordination_url = redis://controller:6379
file_basepath = /var/lib/gnocchi
driver = file

5. Initialize Gnocchi:

gnocchi-upgrade

Finalize Gnocchi installation

1. Start the Gnocchi services and configure them to start when the system boots:

# systemctl enable gnocchi-api.service gnocchi-metricd.service
# systemctl start gnocchi-api.service gnocchi-metricd.service

Install and configure components

1. Install the Ceilometer packages:

# dnf install openstack-ceilometer-notification \
openstack-ceilometer-central

8 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

2. Edit the /etc/ceilometer/pipeline.yaml file and complete the following section:

• Configure Gnocchi connection:

publishers:
# set address of Gnocchi
# + filter out Gnocchi-related activity meters (Swift driver),
# or use enable_filter_project=false to disable filtering
# if not required
# + set default archive policy
- gnocchi://?filter_project=service&archive_policy=low

3. Edit the /etc/ceilometer/ceilometer.conf file and complete the following actions:

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [service_credentials] section, configure service credentials:

[service_credentials]
...
auth_type = password
auth_url = http://controller:5000/v3
project_domain_id = default
user_domain_id = default
project_name = service
username = ceilometer
password = CEILOMETER_PASS
interface = internalURL
region_name = RegionOne

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in the
Identity service.

4. Create Ceilometer resources in Gnocchi. Gnocchi should be running by this stage:

# ceilometer-upgrade

Finalize installation

1. Start the Telemetry services and configure them to start when the system boots:

# systemctl enable openstack-ceilometer-notification.service \
openstack-ceilometer-central.service

# systemctl start openstack-ceilometer-notification.service \
openstack-ceilometer-central.service

1.1. Installation Guide 9



Ceilometer Documentation, Release 25.1.0.dev58

Install and configure for Ubuntu

This section describes how to install and configure the Telemetry service, code-named ceilometer, on the
controller node.

Prerequisites

Before you install and configure the Telemetry service, you must configure a target to send metering data
to. The recommended endpoint is Gnocchi.

1. Source the admin credentials to gain access to admin-only CLI commands:

$ . admin-openrc

2. To create the service credentials, complete these steps:

• Create the ceilometer user:

$ openstack user create --domain default --password-prompt ceilometer
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | e0353a670a9e496da891347c589539e9 |
| enabled | True |
| id | c859c96f57bd4989a8ea1a0b1d8ff7cd |
| name | ceilometer |
+-----------+----------------------------------+

• Add the admin role to the ceilometer user.

$ openstack role add --project service --user ceilometer admin

Note

This command provides no output.

• Create the ceilometer service entity:

$ openstack service create --name ceilometer \
--description "Telemetry" metering

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | Telemetry |
| enabled | True |
| id | 5fb7fd1bb2954fddb378d4031c28c0e4 |
| name | ceilometer |
| type | metering |
+-------------+----------------------------------+

10 Chapter 1. Overview

https://gnocchi.osci.io


Ceilometer Documentation, Release 25.1.0.dev58

3. Register Gnocchi service in Keystone:

• Create the gnocchi user:

$ openstack user create --domain default --password-prompt gnocchi
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | e0353a670a9e496da891347c589539e9 |
| enabled | True |
| id | 8bacd064f6434ef2b6bbfbedb79b0318 |
| name | gnocchi |
+-----------+----------------------------------+

• Create the gnocchi service entity:

$ openstack service create --name gnocchi \
--description "Metric Service" metric

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | Metric Service |
| enabled | True |
| id | 205978b411674e5a9990428f81d69384 |
| name | gnocchi |
| type | metric |
+-------------+----------------------------------+

• Add the admin role to the gnocchi user.

$ openstack role add --project service --user gnocchi admin

Note

This command provides no output.

• Create the Metric service API endpoints:

$ openstack endpoint create --region RegionOne \
metric public http://controller:8041

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | b808b67b848d443e9eaaa5e5d796970c |
| interface | public |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 205978b411674e5a9990428f81d69384 |

(continues on next page)

1.1. Installation Guide 11



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

| service_name | gnocchi |
| service_type | metric |
| url | http://controller:8041 |
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
metric internal http://controller:8041

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | c7009b1c2ee54b71b771fa3d0ae4f948 |
| interface | internal |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 205978b411674e5a9990428f81d69384 |
| service_name | gnocchi |
| service_type | metric |
| url | http://controller:8041 |
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
metric admin http://controller:8041

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | b2c00566d0604551b5fe1540c699db3d |
| interface | admin |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 205978b411674e5a9990428f81d69384 |
| service_name | gnocchi |
| service_type | metric |
| url | http://controller:8041 |
+--------------+----------------------------------+

Install Gnocchi

1. Install the Gnocchi packages. Alternatively, Gnocchi can be installed using pip:

# apt-get install gnocchi-api gnocchi-metricd python3-gnocchiclient

Note

Depending on your environment size, consider installing Gnocchi separately as it makes exten-
sive use of the cpu.

2. Install the uWSGI packages. The following method uses operating system provided packages.

12 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Another alternative would be to use pip(or pip3, depending on the distribution); using pip is not
described in this doc:

# apt-get install uwsgi-plugin-python3 uwsgi

Note

Since the provided gnocchi-api wraps around uwsgi, you need to make sure that uWSGI is
installed if you want to use gnocchi-api to run Gnocchi API. As Gnocchi API tier runs using
WSGI, it can also alternatively be run using Apache httpd and mod_wsgi, or any other HTTP
daemon.

3. Create the database for Gnocchi’s indexer:

• Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

• Create the gnocchi database:

CREATE DATABASE gnocchi;

• Grant proper access to the gnocchi database:

GRANT ALL PRIVILEGES ON gnocchi.* TO 'gnocchi'@'localhost' \
IDENTIFIED BY 'GNOCCHI_DBPASS';

GRANT ALL PRIVILEGES ON gnocchi.* TO 'gnocchi'@'%' \
IDENTIFIED BY 'GNOCCHI_DBPASS';

Replace GNOCCHI_DBPASS with a suitable password.

• Exit the database access client.

4. Edit the /etc/gnocchi/gnocchi.conf file and add Keystone options:

• In the [api] section, configure gnocchi to use keystone:

[api]
auth_mode = keystone
port = 8041
uwsgi_mode = http-socket

• In the [keystone_authtoken] section, configure keystone authentication:

[keystone_authtoken]
...
auth_type = password
auth_url = http://controller:5000/v3
project_domain_name = Default
user_domain_name = Default
project_name = service
username = gnocchi
password = GNOCCHI_PASS

(continues on next page)

1.1. Installation Guide 13



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

interface = internalURL
region_name = RegionOne

Replace GNOCCHI_PASS with the password you chose for the gnocchi user in the Identity
service.

• In the [indexer] section, configure database access:

[indexer]
url = mysql+pymysql://gnocchi:GNOCCHI_DBPASS@controller/gnocchi

Replace GNOCCHI_DBPASS with the password you chose for Gnocchi’s indexer database.

• In the [storage] section, configure location to store metric data. In this case, we will store it
to the local file system. See Gnocchi documenation for a list of more durable and performant
drivers:

[storage]
# coordination_url is not required but specifying one will improve
# performance with better workload division across workers.
coordination_url = redis://controller:6379
file_basepath = /var/lib/gnocchi
driver = file

5. Initialize Gnocchi:

gnocchi-upgrade

Finalize Gnocchi installation

1. Restart the Gnocchi services:

# service gnocchi-api restart
# service gnocchi-metricd restart

Install and configure components

1. Install the ceilometer packages:

# apt-get install ceilometer-agent-notification \
ceilometer-agent-central

2. Edit the /etc/ceilometer/pipeline.yaml file and complete the following section:

• Configure Gnocchi connection:

publishers:
# set address of Gnocchi
# + filter out Gnocchi-related activity meters (Swift driver),
# or use enable_filter_project=false to disable filtering
# if not required

(continues on next page)

14 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

# + set default archive policy
- gnocchi://?filter_project=service&archive_policy=low

3. Edit the /etc/ceilometer/ceilometer.conf file and complete the following actions:

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [service_credentials] section, configure service credentials:

[service_credentials]
...
auth_type = password
auth_url = http://controller:5000/v3
project_domain_id = default
user_domain_id = default
project_name = service
username = ceilometer
password = CEILOMETER_PASS
interface = internalURL
region_name = RegionOne

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in the
Identity service.

4. Create Ceilometer resources in Gnocchi. Gnocchi should be running by this stage:

# ceilometer-upgrade

Finalize installation

1. Restart the Telemetry services:

# service ceilometer-agent-central restart
# service ceilometer-agent-notification restart

Additional steps are required to configure services to interact with ceilometer:

Cinder

Enable Block Storage meters for Red Hat Enterprise Linux and CentOS

Telemetry uses notifications to collect Block Storage service meters. Perform these steps on the controller
and Block Storage nodes.

1.1. Installation Guide 15



Ceilometer Documentation, Release 25.1.0.dev58

Note

Your environment must include the Block Storage service.

Configure Cinder to use Telemetry

Edit the /etc/cinder/cinder.conf file and complete the following actions:

• In the [oslo_messaging_notifications] section, configure notifications:

[oslo_messaging_notifications]
...
driver = messagingv2

• Enable periodic usage statistics relating to block storage. To use it, you must run this command in
the following format:

$ cinder-volume-usage-audit --start_time='YYYY-MM-DD HH:MM:SS' \
--end_time='YYYY-MM-DD HH:MM:SS' --send_actions

This script outputs what volumes or snapshots were created, deleted, or exists in a given period of
time and some information about these volumes or snapshots.

Using this script via cron you can get notifications periodically, for example, every 5 minutes:

*/5 * * * * /path/to/cinder-volume-usage-audit --send_actions

Finalize installation

1. Restart the Block Storage services on the controller node:

# systemctl restart openstack-cinder-api.service openstack-cinder-
↪→scheduler.service

2. Restart the Block Storage services on the storage nodes:

# systemctl restart openstack-cinder-volume.service

Enable Block Storage meters for Ubuntu

Telemetry uses notifications to collect Block Storage service meters. Perform these steps on the controller
and Block Storage nodes.

Note

Your environment must include the Block Storage service.

16 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Configure Cinder to use Telemetry

Edit the /etc/cinder/cinder.conf file and complete the following actions:

• In the [oslo_messaging_notifications] section, configure notifications:

[oslo_messaging_notifications]
...
driver = messagingv2

• Enable periodic usage statistics relating to block storage. To use it, you must run this command in
the following format:

$ cinder-volume-usage-audit --start_time='YYYY-MM-DD HH:MM:SS' \
--end_time='YYYY-MM-DD HH:MM:SS' --send_actions

This script outputs what volumes or snapshots were created, deleted, or exists in a given period of
time and some information about these volumes or snapshots.

Using this script via cron you can get notifications periodically, for example, every 5 minutes:

*/5 * * * * /path/to/cinder-volume-usage-audit --send_actions

Finalize installation

1. Restart the Block Storage services on the controller node:

# service cinder-api restart
# service cinder-scheduler restart

2. Restart the Block Storage services on the storage nodes:

# service cinder-volume restart

Glance

Enable Image service meters for Red Hat Enterprise Linux and CentOS

Telemetry uses notifications to collect Image service meters. Perform these steps on the controller node.

Configure the Image service to use Telemetry

• Edit the /etc/glance/glance-api.conf file and complete the following actions:

– In the [DEFAULT], [oslo_messaging_notifications] sections, configure notifications
and RabbitMQ message broker access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

[oslo_messaging_notifications]
...
driver = messagingv2

1.1. Installation Guide 17



Ceilometer Documentation, Release 25.1.0.dev58

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

Finalize installation

• Restart the Image service:

# systemctl restart openstack-glance-api.service

Enable Image service meters for Ubuntu

Telemetry uses notifications to collect Image service meters. Perform these steps on the controller node.

Configure the Image service to use Telemetry

• Edit the /etc/glance/glance-api.conf file and complete the following actions:

– In the [DEFAULT], [oslo_messaging_notifications] sections, configure notifications
and RabbitMQ message broker access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

[oslo_messaging_notifications]
...
driver = messagingv2

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

Finalize installation

• Restart the Image service:

# service glance-api restart

Heat

Enable Orchestration service meters for Red Hat Enterprise Linux and CentOS

Telemetry uses notifications to collect Orchestration service meters. Perform these steps on the controller
node.

Configure the Orchestration service to use Telemetry

• Edit the /etc/heat/heat.conf and complete the following actions:

– In the [oslo_messaging_notifications] sections, enable notifications:

[oslo_messaging_notifications]
...
driver = messagingv2

18 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Finalize installation

• Restart the Orchestration service:

# systemctl restart openstack-heat-api.service \
openstack-heat-api-cfn.service openstack-heat-engine.service

Enable Orchestration service meters for Ubuntu

Telemetry uses notifications to collect Orchestration service meters. Perform these steps on the controller
node.

Configure the Orchestration service to use Telemetry

• Edit the /etc/heat/heat.conf and complete the following actions:

– In the [oslo_messaging_notifications] sections, enable notifications:

[oslo_messaging_notifications]
...
driver = messagingv2

Finalize installation

• Restart the Orchestration service:

# service heat-api restart
# service heat-api-cfn restart
# service heat-engine restart

Keystone

To enable auditing of API requests, Keystone provides middleware which captures API requests to a
service and emits data to Ceilometer. Instructions to enable this functionality is available in Keystone’s
developer documentation. Ceilometer will captures this information as audit.http.* events.

Neutron

Enable Networking service meters for Red Hat Enterprise Linux and CentOS

Telemetry uses notifications to collect Networking service meters. Perform these steps on the controller
node.

Configure the Networking service to use Telemetry

• Edit the /etc/neutron/neutron.conf and complete the following actions:

– In the [oslo_messaging_notifications] sections, enable notifications:

[oslo_messaging_notifications]
...
driver = messagingv2

1.1. Installation Guide 19

https://docs.openstack.org/keystonemiddleware/latest/audit.html
https://docs.openstack.org/keystonemiddleware/latest/audit.html


Ceilometer Documentation, Release 25.1.0.dev58

Finalize installation

• Restart the Networking service:

# systemctl restart neutron-server.service

Enable Networking service meters for Ubuntu

Telemetry uses notifications to collect Networking service meters. Perform these steps on the controller
node.

Configure the Networking service to use Telemetry

• Edit the /etc/neutron/neutron.conf and complete the following actions:

– In the [oslo_messaging_notifications] sections, enable notifications:

[oslo_messaging_notifications]
...
driver = messagingv2

Finalize installation

• Restart the Networking service:

# service neutron-server restart

Swift

Enable Object Storage meters for Red Hat Enterprise Linux and CentOS

Telemetry uses a combination of polling and notifications to collect Object Storage meters.

Note

Your environment must include the Object Storage service.

Prerequisites

The Telemetry service requires access to the Object Storage service using the ResellerAdmin role.
Perform these steps on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands.

$ . admin-openrc

2. Create the ResellerAdmin role:

$ openstack role create ResellerAdmin
+-----------+----------------------------------+
| Field | Value |

(continues on next page)

20 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

+-----------+----------------------------------+
| domain_id | None |
| id | 462fa46c13fd4798a95a3bfbe27b5e54 |
| name | ResellerAdmin |
+-----------+----------------------------------+

3. Add the ResellerAdmin role to the ceilometer user:

$ openstack role add --project service --user ceilometer ResellerAdmin

Note

This command provides no output.

Install components

• Install the packages:

# dnf install python3-ceilometermiddleware

Configure Object Storage to use Telemetry

Perform these steps on the controller and any other nodes that run the Object Storage proxy service.

• Edit the /etc/swift/proxy-server.conf file and complete the following actions:

– In the [filter:keystoneauth] section, add the ResellerAdmin role:

[filter:keystoneauth]
...
operator_roles = admin, user, ResellerAdmin

– In the [pipeline:main] section, add ceilometer:

[pipeline:main]
pipeline = catch_errors gatekeeper healthcheck proxy-logging cache␣
↪→container_sync bulk ratelimit authtoken keystoneauth container-
↪→quotas account-quotas slo dlo versioned_writes proxy-logging␣
↪→ceilometer proxy-server

– In the [filter:ceilometer] section, configure notifications:

[filter:ceilometer]
paste.filter_factory = ceilometermiddleware.swift:filter_factory
...
control_exchange = swift
url = rabbit://openstack:RABBIT_PASS@controller:5672/
driver = messagingv2
topic = notifications
log_level = WARN

1.1. Installation Guide 21



Ceilometer Documentation, Release 25.1.0.dev58

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

Finalize installation

• Restart the Object Storage proxy service:

# systemctl restart openstack-swift-proxy.service

Enable Object Storage meters for Ubuntu

Telemetry uses a combination of polling and notifications to collect Object Storage meters.

Note

Your environment must include the Object Storage service.

Prerequisites

The Telemetry service requires access to the Object Storage service using the ResellerAdmin role.
Perform these steps on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands.

$ . admin-openrc

2. Create the ResellerAdmin role:

$ openstack role create ResellerAdmin
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | None |
| id | 462fa46c13fd4798a95a3bfbe27b5e54 |
| name | ResellerAdmin |
+-----------+----------------------------------+

3. Add the ResellerAdmin role to the ceilometer user:

$ openstack role add --project service --user ceilometer ResellerAdmin

Note

This command provides no output.

Install components

• Install the packages:

22 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

# apt-get install python-ceilometermiddleware

Configure Object Storage to use Telemetry

Perform these steps on the controller and any other nodes that run the Object Storage proxy service.

• Edit the /etc/swift/proxy-server.conf file and complete the following actions:

– In the [filter:keystoneauth] section, add the ResellerAdmin role:

[filter:keystoneauth]
...
operator_roles = admin, user, ResellerAdmin

– In the [pipeline:main] section, add ceilometer:

[pipeline:main]
pipeline = catch_errors gatekeeper healthcheck proxy-logging cache␣
↪→container_sync bulk ratelimit authtoken keystoneauth container-
↪→quotas account-quotas slo dlo versioned_writes proxy-logging␣
↪→ceilometer proxy-server

– In the [filter:ceilometer] section, configure notifications:

[filter:ceilometer]
paste.filter_factory = ceilometermiddleware.swift:filter_factory
...
control_exchange = swift
url = rabbit://openstack:RABBIT_PASS@controller:5672/
driver = messagingv2
topic = notifications
log_level = WARN

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

Finalize installation

• Restart the Object Storage proxy service:

# service swift-proxy restart

1.1.3 Install and Configure Compute Services
This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.

1.1. Installation Guide 23



Ceilometer Documentation, Release 25.1.0.dev58

Enable Compute service meters for Red Hat Enterprise Linux and CentOS

Telemetry uses a combination of notifications and an agent to collect Compute meters. Perform these
steps on each compute node.

Install and configure components

1. Install the packages:

# dnf install openstack-ceilometer-compute
# dnf install openstack-ceilometer-ipmi (optional)

2. Edit the /etc/ceilometer/ceilometer.conf file and complete the following actions:

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [service_credentials] section, configure service credentials:

[service_credentials]
...
auth_url = http://controller:5000
project_domain_id = default
user_domain_id = default
auth_type = password
username = ceilometer
project_name = service
password = CEILOMETER_PASS
interface = internalURL
region_name = RegionOne

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in the
Identity service.

Configure Compute to use Telemetry

• Edit the /etc/nova/nova.conf file and configure notifications in the [DEFAULT] section:

[DEFAULT]
...
instance_usage_audit = True
instance_usage_audit_period = hour

[notifications]
...
notify_on_state_change = vm_and_task_state

(continues on next page)

24 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

[oslo_messaging_notifications]
...
driver = messagingv2

Configure Compute to poll IPMI meters

Note

To enable IPMI meters, ensure IPMITool is installed and the host supports IPMI.

• Edit the /etc/ceilometer/polling.yaml to include the required meters, for example:

- name: ipmi
interval: 300
meters:
- hardware.ipmi.temperature

Finalize installation

1. Start the agent and configure it to start when the system boots:

# systemctl enable openstack-ceilometer-compute.service
# systemctl start openstack-ceilometer-compute.service
# systemctl enable openstack-ceilometer-ipmi.service (optional)
# systemctl start openstack-ceilometer-ipmi.service (optional)

2. Restart the Compute service:

# systemctl restart openstack-nova-compute.service

Enable Compute service meters for Ubuntu

Telemetry uses a combination of notifications and an agent to collect Compute meters. Perform these
steps on each compute node.

Install and configure components

1. Install the packages:

# apt-get install ceilometer-agent-compute
# apt-get install ceilometer-agent-ipmi (optional)

2. Edit the /etc/ceilometer/ceilometer.conf file and complete the following actions:

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

1.1. Installation Guide 25



Ceilometer Documentation, Release 25.1.0.dev58

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [service_credentials] section, configure service credentials:

[service_credentials]
...
auth_url = http://controller:5000
project_domain_id = default
user_domain_id = default
auth_type = password
username = ceilometer
project_name = service
password = CEILOMETER_PASS
interface = internalURL
region_name = RegionOne

Replace CEILOMETER_PASS with the password you chose for the ceilometer user in the
Identity service.

Configure Compute to use Telemetry

• Edit the /etc/nova/nova.conf file and configure notifications in the [DEFAULT] section:

[DEFAULT]
...
instance_usage_audit = True
instance_usage_audit_period = hour

[notifications]
...
notify_on_state_change = vm_and_task_state

[oslo_messaging_notifications]
...
driver = messagingv2

Configure Compute to poll IPMI meters

Note

To enable IPMI meters, ensure IPMITool is installed and the host supports IPMI.

• Edit the /etc/ceilometer/polling.yaml to include the required meters, for example:

- name: ipmi
interval: 300
meters:
- hardware.ipmi.temperature

26 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Finalize installation

1. Restart the agent:

# service ceilometer-agent-compute restart
# service ceilometer-agent-ipmi restart (optional)

2. Restart the Compute service:

# service nova-compute restart

1.1.4 Verify operation
Verify operation of the Telemetry service. These steps only include the Image service meters to reduce
clutter. Environments with ceilometer integration for additional services contain more meters.

Note

Perform these steps on the controller node.

Note

The following uses Gnocchi to verify data. Alternatively, data can be published to a file backend
temporarily by using a file:// publisher.

1. Source the admin credentials to gain access to admin-only CLI commands:

$ . admin-openrc

2. List available resource and its metrics:

$ gnocchi resource list --type image
+--------------------------------------+-------+--------------------------
↪→--------+---------+--------------------------------------+--------------
↪→--------------------+----------+----------------------------------+-----
↪→---------+
| id | type | project_id ␣
↪→ | user_id | original_resource_id | started_at ␣
↪→ | ended_at | revision_start |␣
↪→revision_end |
+--------------------------------------+-------+--------------------------
↪→--------+---------+--------------------------------------+--------------
↪→--------------------+----------+----------------------------------+-----
↪→---------+
| a6b387e1-4276-43db-b17a-e10f649d85a3 | image |␣
↪→6fd9631226e34531b53814a0f39830a9 | None | a6b387e1-4276-43db-b17a-
↪→e10f649d85a3 | 2017-01-25T23:50:14.423584+00:00 | None | 2017-01-
↪→25T23:50:14.423601+00:00 | None |
+--------------------------------------+-------+--------------------------
↪→--------+---------+--------------------------------------+--------------

(continues on next page)

1.1. Installation Guide 27



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

↪→--------------------+----------+----------------------------------+-----
↪→---------+

$ gnocchi resource show a6b387e1-4276-43db-b17a-e10f649d85a3
+-----------------------+-------------------------------------------------
↪→------------------+
| Field | Value ␣
↪→ |
+-----------------------+-------------------------------------------------
↪→------------------+
| created_by_project_id | aca4db3db9904ecc9c1c9bb1763da6a8 ␣
↪→ |
| created_by_user_id | 07b0945689a4407dbd1ea72c3c5b8d2f ␣
↪→ |
| creator |␣
↪→07b0945689a4407dbd1ea72c3c5b8d2f:aca4db3db9904ecc9c1c9bb1763da6a8 |
| ended_at | None ␣
↪→ |
| id | a6b387e1-4276-43db-b17a-e10f649d85a3 ␣
↪→ |
| metrics | image.download: 839afa02-1668-4922-a33e-
↪→6b6ea7780715 |
| | image.serve: 1132e4a0-9e35-4542-a6ad-
↪→d6dc5fb4b835 |
| | image.size: 8ecf6c17-98fd-446c-8018-
↪→b741dc089a76 |
| original_resource_id | a6b387e1-4276-43db-b17a-e10f649d85a3 ␣
↪→ |
| project_id | 6fd9631226e34531b53814a0f39830a9 ␣
↪→ |
| revision_end | None ␣
↪→ |
| revision_start | 2017-01-25T23:50:14.423601+00:00 ␣
↪→ |
| started_at | 2017-01-25T23:50:14.423584+00:00 ␣
↪→ |
| type | image ␣
↪→ |
| user_id | None ␣
↪→ |
+-----------------------+-------------------------------------------------
↪→------------------+

3. Download the CirrOS image from the Image service:

$ IMAGE_ID=$(glance image-list | grep 'cirros' | awk '{ print $2 }')
$ glance image-download $IMAGE_ID > /tmp/cirros.img

4. List available meters again to validate detection of the image download:

28 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

$ gnocchi measures show 839afa02-1668-4922-a33e-6b6ea7780715
+---------------------------+-------------+-----------+
| timestamp | granularity | value |
+---------------------------+-------------+-----------+
| 2017-01-26T15:35:00+00:00 | 300.0 | 3740163.0 |
+---------------------------+-------------+-----------+

5. Remove the previously downloaded image file /tmp/cirros.img:

$ rm /tmp/cirros.img

1.1.5 Next steps
Your OpenStack environment now includes the ceilometer service.

To add additional services, see the OpenStack Installation Tutorials and Guides.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorials and
Guides.

1.2 Contributor Guide
In the Contributor Guide, you will find documented policies for developing with Ceilometer. This in-
cludes the processes we use for bugs, contributor onboarding, core reviewer memberships, and other
procedural items.

Ceilometer follows the same workflow as other OpenStack projects. To start contributing to Ceilometer,
please follow the workflow found here.

Bug tracker
https://bugs.launchpad.net/ceilometer

Mailing list
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss (prefix subjects
with [Ceilometer] for faster responses)

Wiki
https://wiki.openstack.org/wiki/Ceilometer

Code Hosting
https://opendev.org/openstack/ceilometer/

Code Review
https://review.opendev.org/#/q/status:open+project:openstack/ceilometer,n,z

1.2.1 Overview

Overview

Objectives

The Ceilometer project was started in 2012 with one simple goal in mind: to provide an infrastructure
to collect any information needed regarding OpenStack projects. It was designed so that rating engines
could use this single source to transform events into billable items which we label as "metering".

1.2. Contributor Guide 29

https://docs.openstack.org/latest/install
https://docs.openstack.org/install-guide/
https://docs.openstack.org/install-guide/
https://wiki.openstack.org/wiki/Gerrit_Workflow
https://bugs.launchpad.net/ceilometer
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://wiki.openstack.org/wiki/Ceilometer
https://opendev.org/openstack/ceilometer/
https://review.opendev.org/#/q/status:open+project:openstack/ceilometer,n,z


Ceilometer Documentation, Release 25.1.0.dev58

As the project started to come to life, collecting an increasing number of meters across multiple projects,
the OpenStack community started to realize that a secondary goal could be added to Ceilometer: become
a standard way to meter, regardless of the purpose of the collection. This data can then be pushed to any
set of targets using provided publishers mentioned in pipeline-publishers section.

Metering

If you divide a billing process into a 3 step process, as is commonly done in the telco industry, the steps
are:

1. metering

2. rating

3. billing

Ceilometer’s initial goal was, and still is, strictly limited to step one. This is a choice made from the
beginning not to go into rating or billing, as the variety of possibilities seemed too large for the project
to ever deliver a solution that would fit everyone’s needs, from private to public clouds. This means that
if you are looking at this project to solve your billing needs, this is the right way to go, but certainly not
the end of the road for you.

System Architecture

High-Level Architecture

Fig. 1: An overall summary of Ceilometer’s logical architecture.

30 Chapter 1. Overview

https://docs.openstack.org/ceilometer/latest/contributor/measurements.html


Ceilometer Documentation, Release 25.1.0.dev58

Each of Ceilometer’s services are designed to scale horizontally. Additional workers and nodes can be
added depending on the expected load. Ceilometer offers two core services:

1. polling agent - daemon designed to poll OpenStack services and build Meters.

2. notification agent - daemon designed to listen to notifications on message queue, convert them to
Events and Samples, and apply pipeline actions.

Data normalised and collected by Ceilometer can be sent to various targets. Gnocchi was developed to
capture measurement data in a time series format to optimise storage and querying. Gnocchi is intended
to replace the existing metering database interface. Additionally, Aodh is the alarming service which can
send alerts when user defined rules are broken. Lastly, Panko is the event storage project designed to
capture document-oriented data such as logs and system event actions.

Gathering the data

How is data collected?

Fig. 2: This is a representation of how the agents gather data from multiple sources.

The Ceilometer project created 2 methods to collect data:

1. notification agent which takes messages generated on the notification bus and transforms them into
Ceilometer samples or events.

2. polling agent, will poll some API or other tool to collect information at a regular interval. The
polling approach may impose significant on the API services so should only be used on optimised
endpoints.

The first method is supported by the ceilometer-notification agent, which monitors the message queues
for notifications. Polling agents can be configured either to poll the local hypervisor or remote APIs
(public REST APIs exposed by services and host-level IPMI daemons).

1.2. Contributor Guide 31

https://gnocchi.osci.io/
https://docs.openstack.org/aodh/latest/
https://docs.openstack.org/panko/latest/


Ceilometer Documentation, Release 25.1.0.dev58

Notification Agent: Listening for data

Fig. 3: Notification agent consuming messages from services.

The heart of the system is the notification daemon (agent-notification) which monitors the message queue
for data sent by other OpenStack components such as Nova, Glance, Cinder, Neutron, Swift, Keystone,
and Heat, as well as Ceilometer internal communication.

The notification daemon loads one or more listener plugins, using the namespace ceilometer.
notification. Each plugin can listen to any topic, but by default, will listen to notifications.info,
notifications.sample, and notifications.error. The listeners grab messages off the configured
topics and redistributes them to the appropriate plugins(endpoints) to be processed into Events and Sam-
ples.

Sample-oriented plugins provide a method to list the event types they’re interested in and a callback for
processing messages accordingly. The registered name of the callback is used to enable or disable it using
the pipeline of the notification daemon. The incoming messages are filtered based on their event type
value before being passed to the callback so the plugin only receives events it has expressed an interest
in seeing.

Polling Agent: Asking for data

Fig. 4: Polling agent querying services for data.

32 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Polling for compute resources is handled by a polling agent running on the compute node (where com-
munication with the hypervisor is more efficient), often referred to as the compute-agent. Polling via
service APIs for non-compute resources is handled by an agent running on a cloud controller node, often
referred to the central-agent. A single agent can fulfill both roles in an all-in-one deployment. Conversely,
multiple instances of an agent may be deployed, in which case the workload is shared. The polling agent
daemon is configured to run one or more pollster plugins using any combination of ceilometer.poll.
compute, ceilometer.poll.central, and ceilometer.poll.ipmi namespaces

The frequency of polling is controlled via the polling configuration. See Polling for details. The agent
framework then passes the generated samples to the notification agent for processing.

Processing the data

Pipeline Manager

Fig. 5: The assembly of components making the Ceilometer pipeline.

Ceilometer offers the ability to take data gathered by the agents, manipulate it, and publish it in various
combinations via multiple pipelines. This functionality is handled by the notification agents.

Publishing the data

Currently, processed data can be published using different transport options:

1. gnocchi, which publishes samples/events to Gnocchi API;

2. notifier, a notification based publisher which pushes samples to a message queue which can be
consumed by an external system;

3. udp, which publishes samples using UDP packets;

4. http, which targets a REST interface;

5. file, which publishes samples to a file with specified name and location;

6. zaqar, a multi-tenant cloud messaging and notification service for web and mobile developers;

7. https, which is http over SSL and targets a REST interface;

8. prometheus, which publishes samples to Prometheus Pushgateway;

1.2. Contributor Guide 33



Ceilometer Documentation, Release 25.1.0.dev58

Fig. 6: This figure shows how a sample can be published to multiple destinations.

Storing/Accessing the data

Ceilometer is designed solely to generate and normalise cloud data. The data created by Ceilometer
can be pushed to any number of target using publishers mentioned in pipeline-publishers section. The
recommended workflow is to push data to Gnocchi for efficient time-series storage and resource lifecycle
tracking.

1.2.2 Data Types

Measurements

Existing meters

For the list of existing meters see the tables under the Measurements page of Ceilometer in the Admin-
istrator Guide.

New measurements

Ceilometer is designed to collect measurements from OpenStack services and from other external com-
ponents. If you would like to add new meters to the currently existing ones, you need to follow the
guidelines given in this section.

Types

Three type of meters are defined in Ceilometer:

Type Definition
Cumulative Increasing over time (instance hours)
Gauge Discrete items (floating IPs, image uploads) and fluctuating values (disk I/O)
Delta Changing over time (bandwidth)

When you’re about to add a new meter choose one type from the above list, which is applicable.

34 Chapter 1. Overview

https://gnocchi.osci.io/
https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html


Ceilometer Documentation, Release 25.1.0.dev58

Units

1. Whenever a volume is to be measured, SI approved units and their approved symbols or abbrevia-
tions should be used. Information units should be expressed in bits (’b’) or bytes (’B’).

2. For a given meter, the units should NEVER, EVER be changed.

3. When the measurement does not represent a volume, the unit description should always describe
WHAT is measured (ie: apples, disk, routers, floating IPs, etc.).

4. When creating a new meter, if another meter exists measuring something similar, the same units
and precision should be used.

5. Meters and samples should always document their units in Ceilometer (API and Documentation)
and new sampling code should not be merged without the appropriate documentation.

Dimension Unit Abbreviations Note
None N/A Dimension-less variable
Volume byte B
Time seconds s

Naming convention

If you plan on adding meters, please follow the convention below:

1. Always use ’.’ as separator and go from least to most discriminant word. For example, do not use
ephemeral_disk_size but disk.ephemeral.size

2. When a part of the name is a variable, it should always be at the end and start with a ’:’. For
example, do not use <type>.image but image:<type>, where type is your variable name.

3. If you have any hesitation, come and ask in #openstack-telemetry

Meter definitions

Meters definitions by default, are stored in separate configuration file, called ceilometer/data/
meters.d/meters.yaml. This is essentially a replacement for prior approach of writing notification
handlers to consume specific topics.

A detailed description of how to use meter definition is illustrated in the admin_guide.

Events and Event Processing

Events vs. Samples

In addition to Meters, and related Sample data, Ceilometer can also process Events.

While a Sample represents a single numeric datapoint, driving a Meter that represents the changes in that
value over time, an Event represents the state of an object in an OpenStack service (such as an Instance
in Nova, or an Image in Glance) at a point in time when something of interest has occurred. This can
include non-numeric data, such as an instance’s flavor, or network address.

In general, Events let you know when something has changed about an object in an OpenStack system,
such as the resize of an instance, or creation of an image.

1.2. Contributor Guide 35

https://docs.openstack.org/ceilometer/latest/admin/telemetry-data-collection.html#meter-definitions


Ceilometer Documentation, Release 25.1.0.dev58

While Samples can be relatively cheap (small), disposable (losing an individual sample datapoint won’t
matter much), and fast, Events are larger, more informative, and should be handled more consistently
(you do not want to lose one).

Event Structure

To facilitate downstream processing (billing and/or aggregation), a minimum required data set and format
<format> has been defined for services, however events generally contain the following information:

event_type
A dotted string defining what event occurred, such as compute.instance.resize.start

message_id
A UUID for this event.

generated
A timestamp of when the event occurred on the source system.

traits
A flat mapping of key-value pairs. The event’s Traits contain most of the details of the event. Traits
are typed, and can be strings, ints, floats, or datetimes.

raw
(Optional) Mainly for auditing purpose, the full notification message can be stored (unindexed) for
future evaluation.

Events from Notifications

Events are primarily created via the notifications system in OpenStack. OpenStack systems, such as
Nova, Glance, Neutron, etc. will emit notifications in a JSON format to the message queue when some
notable action is taken by that system. Ceilometer will consume such notifications from the message
queue, and process them.

The general philosophy of notifications in OpenStack is to emit any and all data someone might need,
and let the consumer filter out what they are not interested in. In order to make processing simpler and
more efficient, the notifications are stored and processed within Ceilometer as Events. The notification
payload, which can be an arbitrarily complex JSON data structure, is converted to a flat set of key-value
pairs known as Traits. This conversion is specified by a config file, so that only the specific fields within
the notification that are actually needed for processing the event will have to be stored as Traits.

Note that the Event format is meant for efficient processing and querying, there are other means available
for archiving notifications (i.e. for audit purposes, etc), possibly to different datastores.

Converting Notifications to Events

In order to make it easier to allow users to extract what they need, the conversion from Notifications to
Events is driven by a configuration file (specified by the flag definitions_cfg_file in ceilometer.conf).

This includes descriptions of how to map fields in the notification body to Traits, and optional plugins
for doing any programmatic translations (splitting a string, forcing case, etc.)

The mapping of notifications to events is defined per event_type, which can be wildcarded. Traits are
added to events if the corresponding fields in the notification exist and are non-null. (As a special case,
an empty string is considered null for non-text traits. This is due to some openstack projects (mostly
Nova) using empty string for null dates.)

36 Chapter 1. Overview

http://docs.openstack.org/trunk/config-reference/content/ch_configuring-openstack-telemetry.html


Ceilometer Documentation, Release 25.1.0.dev58

If the definitions file is not present, a warning will be logged, but an empty set of definitions will be
assumed. By default, any notifications that do not have a corresponding event definition in the definitions
file will be converted to events with a set of minimal, default traits. This can be changed by setting the flag
drop_unmatched_notifications in the ceilometer.conf file. If this is set to True, then any notifications
that don’t have events defined for them in the file will be dropped. This can be what you want, the
notification system is quite chatty by design (notifications philosophy is "tell us everything, we’ll ignore
what we don’t need"), so you may want to ignore the noisier ones if you don’t use them.

There is a set of default traits (all are TEXT type) that will be added to all events if the notification has
the relevant data:

• service: (All notifications should have this) notification’s publisher

• tenant_id

• request_id

• project_id

• user_id

These do not have to be specified in the event definition, they are automatically added, but their definitions
can be overridden for a given event_type.

Definitions file format

The event definitions file is in YAML format. It consists of a list of event definitions, which are mappings.
Order is significant, the list of definitions is scanned in reverse order (last definition in the file to the first),
to find a definition which matches the notification’s event_type. That definition will be used to generate
the Event. The reverse ordering is done because it is common to want to have a more general wildcarded
definition (such as compute.instance.*) with a set of traits common to all of those events, with a few
more specific event definitions (like compute.instance.exists) afterward that have all of the above
traits, plus a few more. This lets you put the general definition first, followed by the specific ones, and
use YAML mapping include syntax to avoid copying all of the trait definitions.

Event Definitions

Each event definition is a mapping with two keys (both required):

event_type
This is a list (or a string, which will be taken as a 1 element list) of event_types this definition will
handle. These can be wildcarded with unix shell glob syntax. An exclusion listing (starting with a
’!’) will exclude any types listed from matching. If ONLY exclusions are listed, the definition will
match anything not matching the exclusions.

traits
This is a mapping, the keys are the trait names, and the values are trait definitions.

Trait Definitions

Each trait definition is a mapping with the following keys:

type
(optional) The data type for this trait. (as a string). Valid options are: text, int, float, and datetime.
defaults to text if not specified.

1.2. Contributor Guide 37

http://docs.openstack.org/trunk/config-reference/content/ch_configuring-openstack-telemetry.html


Ceilometer Documentation, Release 25.1.0.dev58

fields
A path specification for the field(s) in the notification you wish to extract for this trait. Specifica-
tions can be written to match multiple possible fields, the value for the trait will be derived from
the matching fields that exist and have a non-null values in the notification. By default the value
will be the first such field. (plugins can alter that, if they wish). This is normally a string, but,
for convenience, it can be specified as a list of specifications, which will match the fields for all of
them. (See Field Path Specifications for more info on this syntax.)

plugin
(optional) This is a mapping (For convenience, this value can also be specified as a string, which
is interpreted as the name of a plugin to be loaded with no parameters) with the following keys:

name
(string) name of a plugin to load

parameters
(optional) Mapping of keyword arguments to pass to the plugin on initialization. (See docu-
mentation on each plugin to see what arguments it accepts.)

Field Path Specifications

The path specifications define which fields in the JSON notification body are extracted to provide the
value for a given trait. The paths can be specified with a dot syntax (e.g. payload.host). Square
bracket syntax (e.g. payload[host]) is also supported. In either case, if the key for the field you are
looking for contains special characters, like ’.’, it will need to be quoted (with double or single quotes)
like so:

payload.image_meta.'org.openstack__1__architecture'

The syntax used for the field specification is a variant of JSONPath, and is fairly flexible. (see: https:
//github.com/kennknowles/python-jsonpath-rw for more info)

Example Definitions file

---
- event_type: compute.instance.*

traits: &instance_traits
user_id:

fields: payload.user_id
instance_id:

fields: payload.instance_id
host:

fields: publisher_id
plugin:
name: split
parameters:
segment: 1
max_split: 1

service_name:
fields: publisher_id
plugin: split

instance_type_id:
(continues on next page)

38 Chapter 1. Overview

https://github.com/kennknowles/python-jsonpath-rw
https://github.com/kennknowles/python-jsonpath-rw


Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

type: int
fields: payload.instance_type_id

os_architecture:
fields: payload.image_meta.'org.openstack__1__architecture'

launched_at:
type: datetime
fields: payload.launched_at

deleted_at:
type: datetime
fields: payload.deleted_at

- event_type:
- compute.instance.exists
- compute.instance.update

traits:
<<: *instance_traits
audit_period_beginning:

type: datetime
fields: payload.audit_period_beginning

audit_period_ending:
type: datetime
fields: payload.audit_period_ending

Trait plugins

Trait plugins can be used to do simple programmatic conversions on the value in a notification field, like
splitting a string, lowercasing a value, converting a screwball date into ISO format, or the like. They are
initialized with the parameters from the trait definition, if any, which can customize their behavior for a
given trait. They are called with a list of all matching fields from the notification, so they can derive a
value from multiple fields. The plugin will be called even if there are no fields found matching the field
path(s), this lets a plugin set a default value, if needed. A plugin can also reject a value by returning None,
which will cause the trait not to be added. If the plugin returns anything other than None, the trait’s value
will be set to whatever the plugin returned (coerced to the appropriate type for the trait).

Building Notifications

In general, the payload format OpenStack services emit could be described as the Wild West. The pay-
loads are often arbitrary data dumps at the time of the event which is often susceptible to change. To make
consumption easier, the Ceilometer team offers: CADF, an open, cloud standard which helps model cloud
events.

1.2.3 Getting Started

Installing development sandbox

In a development environment created by devstack, Ceilometer can be tested alongside other OpenStack
services.

1.2. Contributor Guide 39

https://docs.openstack.org/pycadf/latest/
https://docs.openstack.org/devstack/latest/


Ceilometer Documentation, Release 25.1.0.dev58

Configuring devstack

1. Download devstack.

2. Create a local.conf file as input to devstack.

3. The ceilometer services are not enabled by default, so they must be enabled in local.conf but
adding the following:

# Enable the Ceilometer devstack plugin
enable_plugin ceilometer https://opendev.org/openstack/ceilometer.git

By default, all ceilometer services except for ceilometer-ipmi agent will be enabled

4. Enable Gnocchi storage support by including the following in local.conf:

CEILOMETER_BACKEND=gnocchi

Optionally, services which extend Ceilometer can be enabled:

enable_plugin aodh https://opendev.org/openstack/aodh

These plugins should be added before ceilometer.

5. ./stack.sh

Running the Tests

Ceilometer includes an extensive set of automated unit tests which are run through tox.

1. Install tox:

$ sudo pip install tox

2. Run the unit and code-style tests:

$ cd /opt/stack/ceilometer
$ tox -e py27,pep8

As tox is a wrapper around testr, it also accepts the same flags as testr. See the testr documentation for
details about these additional flags.

Use a double hyphen to pass options to testr. For example, to run only tests under tests/unit/image:

$ tox -e py27 -- image

To debug tests (ie. break into pdb debugger), you can use ”debug” tox environment. Here’s an example,
passing the name of a test since you’ll normally only want to run the test that hits your breakpoint:

$ tox -e debug ceilometer.tests.unit.test_bin

For reference, the debug tox environment implements the instructions here: https://wiki.openstack.org/
wiki/Testr#Debugging_.28pdb.29_Tests

40 Chapter 1. Overview

https://docs.openstack.org/devstack/latest/
https://tox.readthedocs.io/en/latest/
https://testrepository.readthedocs.org/en/latest/MANUAL.html
https://wiki.openstack.org/wiki/Testr#Debugging_.28pdb.29_Tests
https://wiki.openstack.org/wiki/Testr#Debugging_.28pdb.29_Tests


Ceilometer Documentation, Release 25.1.0.dev58

Guru Meditation Reports

Ceilometer contains a mechanism whereby developers and system administrators can generate a report
about the state of a running Ceilometer executable. This report is called a Guru Meditation Report (GMR
for short).

Generating a GMR

A GMR can be generated by sending the USR1 signal to any Ceilometer process with support (see below).
The GMR will then be outputted standard error for that particular process.

For example, suppose that ceilometer-polling has process id 8675, and was run with 2>/var/log/
ceilometer/ceilometer-polling.log. Then, kill -USR1 8675 will trigger the Guru Meditation
report to be printed to /var/log/ceilometer/ceilometer-polling.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However, the
base GMR consists of several sections:

Package
Shows information about the package to which this process belongs, including version information

Threads
Shows stack traces and thread ids for each of the threads within this process

Green Threads
Shows stack traces for each of the green threads within this process (green threads don’t have thread
ids)

Configuration
Lists all the configuration options currently accessible via the CONF object for the current process

Adding Support for GMRs to New Executables

Adding support for a GMR to a given executable is fairly easy.

First import the module, as well as the Ceilometer version module:

from oslo_reports import guru_meditation_report as gmr
from ceilometer import version

Then, register any additional sections (optional):

TextGuruMeditation.register_section('Some Special Section',
some_section_generator)

Finally (under main), before running the "main loop" of the executable (usually service.
server(server) or something similar), register the GMR hook:

TextGuruMeditation.setup_autorun(version)

1.2. Contributor Guide 41



Ceilometer Documentation, Release 25.1.0.dev58

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the inline documentation about oslo.reports: oslo.reports

1.2.4 Development

Writing Agent Plugins

This documentation gives you some clues on how to write a new agent or plugin for Ceilometer if you
wish to instrument a measurement which has not yet been covered by an existing plugin.

Plugin Framework

Although we have described a list of the meters Ceilometer should collect, we cannot predict all of the
ways deployers will want to measure the resources their customers use. This means that Ceilometer
needs to be easy to extend and configure so it can be tuned for each installation. A plugin system based
on setuptools entry points makes it easy to add new monitors in the agents. In particular, Ceilometer now
uses Stevedore, and you should put your entry point definitions in the entry_points.txt file of your
Ceilometer egg.

Installing a plugin automatically activates it the next time the ceilometer daemon starts. Rather than
running and reporting errors or simply consuming cycles for no-ops, plugins may disable themselves
at runtime based on configuration settings defined by other components (for example, the plugin for
polling libvirt does not run if it sees that the system is configured using some other virtualization tool).
Additionally, if no valid resources can be discovered the plugin will be disabled.

Polling Agents

The polling agent is implemented in ceilometer/polling/manager.py. As you will see in the man-
ager, the agent loads all plugins defined in the ceilometer.poll.* and ceilometer.builder.poll.
* namespaces, then periodically calls their get_samples() method.

Currently we keep separate namespaces - ceilometer.poll.compute and ceilometer.poll.
central for quick separation of what to poll depending on where is polling agent running. For
example, this will load, among others, the ceilometer.compute.pollsters.instance_stats.
CPUPollster

Pollster

All pollsters are subclasses of ceilometer.polling.plugin_base.PollsterBase class. Pollsters
must implement one method: get_samples(self, manager, cache, resources), which returns
a sequence of Sample objects as defined in the ceilometer/sample.py file.

Compute plugins are defined as subclasses of the ceilometer.compute.pollsters.
GenericComputePollster class as defined in the ceilometer/compute/pollsters/__init__.py
file.

For example, in the CPUPollster plugin, the get_samplesmethod takes in a given list of resources rep-
resenting instances on the local host, loops through them and retrieves the cpu time details from resource.
Similarly, other metrics are built by pulling the appropriate value from the given list of resources.

42 Chapter 1. Overview

https://docs.openstack.org/oslo.reports/latest/
http://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins
https://docs.openstack.org/stevedore/latest/


Ceilometer Documentation, Release 25.1.0.dev58

Notifications

Notifications in OpenStack are consumed by the notification agent and passed through pipelines to be
normalised and re-published to specified targets.

The existing normalisation pipelines are defined in the namespace ceilometer.notification.
pipeline.

Each normalisation pipeline are defined as subclass of ceilometer.pipeline.base.
PipelineManager which interprets and builds pipelines based on a given configuration file.
Pipelines are required to define Source and Sink permutations to describe how to process notification.
Additionally, it must set get_main_endpoints which provides endpoints to be added to the main
queue listener in the notification agent. This main queue endpoint inherits ceilometer.pipeline.
base.NotificationEndpoint and defines which notification priorities to listen, normalises the data,
and redirects the data for pipeline processing.

Notification endpoints should implement:

event_types
A sequence of strings defining the event types the endpoint should handle

process_notifications(self, priority, notifications)
Receives an event message from the list provided to event_types and returns a sequence of ob-
jects. Using the SampleEndpoint, it should yield Sample objects as defined in the ceilometer/
sample.py file.

Two pipeline configurations exist and can be found under ceilometer.pipeline.*. The sample
pipeline loads in multiple endpoints defined in ceilometer.sample.endpoint namespace. Each of
the endpoints normalises a given notification into different samples.

Ceilometer + Gnocchi Integration

Warning

Remember that custom modification may result in conflicts with upstream upgrades. If not intended
to be merged with upstream, it’s advisable to directly create resource-types via Gnocchi API.

Managing Resource Types

Resource types in Gnocchi are managed by Ceilometer. The following describes how to add/remove or
update Gnocchi resource types to support new Ceilometer data.

The modification or creation of Gnocchi resource type definitions are managed re-
sources_update_operations of ceilometer/gnocchi_client.py.

The following operations are supported:

1. Adding a new attribute to a resource type. The following adds flavor_name attribute to an existing
instance resource:

{"desc": "add flavor_name to instance",
"type": "update_attribute_type",
"resource_type": "instance",
"data": [{

"op": "add",
(continues on next page)

1.2. Contributor Guide 43



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

"path": "/attributes/flavor_name",
"value": {"type": "string", "min_length": 0, "max_length": 255,

"required": True, "options": {'fill': ''}}
}]}

2. Remove an existing attribute from a resource type. The following removes server_group attribute
from instance resource:

{"desc": "remove server_group to instance",
"type": "update_attribute_type",
"resource_type": "instance",
"data": [{

"op": "remove",
"path": "/attributes/server_group"

}]}

3. Creating a new resource type. The following creates a new resource type named nova_compute
with a required attribute host_name:

{"desc": "add nova_compute resource type",
"type": "create_resource_type",
"resource_type": "nova_compute",
"data": [{

"attributes": {"host_name": {"type": "string", "min_length": 0,
"max_length": 255, "required": True}}

}]}

Note

Do not modify the existing change steps when making changes. Each modification requires a new
step to be added and for ceilometer-upgrade to be run to apply the change to Gnocchi.

With accomplishing sections above, don’t forget to add a new resource type or attributes of a resource
type into the ceilometer/publisher/data/gnocchi_resources.yaml.

1.3 Administrator Guide

1.3.1 Overview

System architecture

The Telemetry service uses an agent-based architecture. Several modules combine their responsibilities
to collect, normalize, and redirect data to be used for use cases such as metering, monitoring, and alerting.

The Telemetry service is built from the following agents:

ceilometer-polling
Polls for different kinds of meter data by using the polling plug-ins (pollsters) registered in different
namespaces. It provides a single polling interface across different namespaces.

44 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Note

The ceilometer-polling service provides polling support on any namespace but many
distributions continue to provide namespace-scoped agents: ceilometer-agent-central,
ceilometer-agent-compute, and ceilometer-agent-ipmi.

ceilometer-agent-notification
Consumes AMQP messages from other OpenStack services, normalizes messages, and publishes
them to configured targets.

Except for the ceilometer-polling agents polling the compute or ipmi namespaces, all the other
services are placed on one or more controller nodes.

The Telemetry architecture depends on the AMQP service both for consuming notifications coming from
OpenStack services and internal communication.

Supported databases

The other key external component of Telemetry is the database, where samples, alarm definitions, and
alarms are stored. Each of the data models have their own storage service and each support various back
ends.

The list of supported base back ends for measurements:

• gnocchi

The list of supported base back ends for alarms:

• aodh

Supported hypervisors

The Telemetry service collects information about the virtual machines, which requires close connection
to the hypervisor that runs on the compute hosts.

The following is a list of supported hypervisors.

• Libvirt supported hypervisors such as KVM and QEMU

Note

For details about hypervisor support in libvirt please see the Libvirt API support matrix.

1.3.2 Configuration

Data collection

The main responsibility of Telemetry in OpenStack is to collect information about the system that can be
used by billing systems or interpreted by analytic tooling.

Collected data can be stored in the form of samples or events in the supported databases, which are listed
in Supported databases.

The available data collection mechanisms are:

1.3. Administrator Guide 45

https://gnocchi.osci.io/
https://docs.openstack.org/aodh/latest/
http://libvirt.org/
http://libvirt.org/hvsupport.html


Ceilometer Documentation, Release 25.1.0.dev58

Notifications
Processing notifications from other OpenStack services, by consuming messages from the config-
ured message queue system.

Polling
Retrieve information directly from the hypervisor or by using the APIs of other OpenStack services.

Notifications

All OpenStack services send notifications about the executed operations or system state. Several noti-
fications carry information that can be metered. For example, CPU time of a VM instance created by
OpenStack Compute service.

The notification agent is responsible for consuming notifications. This component is responsible for
consuming from the message bus and transforming notifications into events and measurement samples.

By default, the notification agent is configured to build both events and samples. To enable selective data
models, set the required pipelines using pipelines option under the [notification] section.

Additionally, the notification agent is responsible to send to any supported publisher target such as gnoc-
chi or panko. These services persist the data in configured databases.

The different OpenStack services emit several notifications about the various types of events that happen
in the system during normal operation. Not all these notifications are consumed by the Telemetry service,
as the intention is only to capture the billable events and notifications that can be used for monitoring
or profiling purposes. The notifications handled are contained under the ceilometer.sample.endpoint
namespace.

Note

Some services require additional configuration to emit the notifications. Please see the Install and
Configure Controller Services for more details.

Meter definitions

The Telemetry service collects a subset of the meters by filtering notifications emitted by other OpenStack
services. You can find the meter definitions in a separate configuration file, called ceilometer/data/
meters.d/meters.yaml. This enables operators/administrators to add new meters to Telemetry project
by updating the meters.yaml file without any need for additional code changes.

Note

The meters.yaml file should be modified with care. Unless intended, do not remove any existing
meter definitions from the file. Also, the collected meters can differ in some cases from what is
referenced in the documentation.

It also support loading multiple meter definition files and allow users to add their own meter defini-
tions into several files according to different types of metrics under the directory of /etc/ceilometer/
meters.d.

A standard meter definition looks like:

46 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

---
metric:

- name: 'meter name'
event_type: 'event name'
type: 'type of meter eg: gauge, cumulative or delta'
unit: 'name of unit eg: MiB'
volume: 'path to a measurable value eg: $.payload.size'
resource_id: 'path to resource id eg: $.payload.id'
project_id: 'path to project id eg: $.payload.owner'
metadata: 'addiitonal key-value data describing resource'

The definition above shows a simple meter definition with some fields, from which name, event_type,
type, unit, and volume are required. If there is a match on the event type, samples are generated for
the meter.

The meters.yaml file contains the sample definitions for all the meters that Telemetry is collecting from
notifications. The value of each field is specified by using JSON path in order to find the right value from
the notification message. In order to be able to specify the right field you need to be aware of the format
of the consumed notification. The values that need to be searched in the notification message are set with
a JSON path starting with $. For instance, if you need the size information from the payload you can
define it like $.payload.size.

A notification message may contain multiple meters. You can use * in the meter definition to capture all
the meters and generate samples respectively. You can use wild cards as shown in the following example:

---
metric:

- name: $.payload.measurements.[*].metric.[*].name
event_type: 'event_name.*'
type: 'delta'
unit: $.payload.measurements.[*].metric.[*].unit
volume: payload.measurements.[*].result
resource_id: $.payload.target
user_id: $.payload.initiator.id
project_id: $.payload.initiator.project_id

In the above example, the name field is a JSON path with matching a list of meter names defined in the
notification message.

You can use complex operations on JSON paths. In the following example, volume and resource_id
fields perform an arithmetic and string concatenation:

---
metric:
- name: 'compute.node.cpu.idle.percent'
event_type: 'compute.metrics.update'
type: 'gauge'
unit: 'percent'
volume: payload.metrics[?(@.name='cpu.idle.percent')].value * 100
resource_id: $.payload.host + "_" + $.payload.nodename

You can use the timedelta plug-in to evaluate the difference in seconds between two datetime fields
from one notification.

1.3. Administrator Guide 47



Ceilometer Documentation, Release 25.1.0.dev58

---
metric:
- name: 'compute.instance.booting.time'
event_type: 'compute.instance.create.end'
type: 'gauge'
unit: 'sec'
volume:
fields: [$.payload.created_at, $.payload.launched_at]
plugin: 'timedelta'

project_id: $.payload.tenant_id
resource_id: $.payload.instance_id

Polling

The Telemetry service is intended to store a complex picture of the infrastructure. This goal requires
additional information than what is provided by the events and notifications published by each service.
Some information is not emitted directly, like resource usage of the VM instances.

Therefore Telemetry uses another method to gather this data by polling the infrastructure including the
APIs of the different OpenStack services and other assets, like hypervisors. The latter case requires
closer interaction with the compute hosts. To solve this issue, Telemetry uses an agent based architecture
to fulfill the requirements against the data collection.

Configuration

Polling rules are defined by the polling.yaml file. It defines the pollsters to enable and the interval they
should be polled.

Each source configuration encapsulates meter name matching which matches against the entry point of
pollster. It also includes: polling interval determination, optional resource enumeration or discovery.

All samples generated by polling are placed on the queue to be handled by the pipeline configuration
loaded in the notification agent.

The polling definition may look like the following:

---
sources:

- name: 'source name'
interval: 'how often the samples should be generated'
meters:

- 'meter filter'
resources:

- 'list of resource URLs'
discovery:

- 'list of discoverers'

The interval parameter in the sources section defines the cadence of sample generation in seconds.

Polling plugins are invoked according to each source’s section whose meters parameter matches the plu-
gin’s meter name. Its matching logic functions the same as pipeline filtering.

The optional resources section of a polling source allows a list of static resource URLs to be configured.
An amalgamated list of all statically defined resources are passed to individual pollsters for polling.

48 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

The optional discovery section of a polling source contains the list of discoverers. These discoverers can
be used to dynamically discover the resources to be polled by the pollsters.

If both resources and discovery are set, the final resources passed to the pollsters will be the combination
of the dynamic resources returned by the discoverers and the static resources defined in the resources
section.

Agents

There are three types of agents supporting the polling mechanism, the compute agent, the central
agent, and the IPMI agent. Under the hood, all the types of polling agents are the same
ceilometer-polling agent, except that they load different polling plug-ins (pollsters) from different
namespaces to gather data. The following subsections give further information regarding the architectural
and configuration details of these components.

Running ceilometer-agent-compute is exactly the same as:

$ ceilometer-polling --polling-namespaces compute

Running ceilometer-agent-central is exactly the same as:

$ ceilometer-polling --polling-namespaces central

Running ceilometer-agent-ipmi is exactly the same as:

$ ceilometer-polling --polling-namespaces ipmi

Compute agent

This agent is responsible for collecting resource usage data of VM instances on individual compute nodes
within an OpenStack deployment. This mechanism requires a closer interaction with the hypervisor,
therefore a separate agent type fulfills the collection of the related meters, which is placed on the host
machines to retrieve this information locally.

A Compute agent instance has to be installed on each and every compute node, installation instructions
can be found in the Install and Configure Compute Services section in the Installation Tutorials and
Guides.

The list of supported hypervisors can be found in Supported hypervisors. The Compute agent uses the
API of the hypervisor installed on the compute hosts. Therefore, the supported meters may be different
in case of each virtualization back end, as each inspection tool provides a different set of meters.

The list of collected meters can be found in OpenStack Compute. The support column provides the
information about which meter is available for each hypervisor supported by the Telemetry service.

Central agent

This agent is responsible for polling public REST APIs to retrieve additional information on OpenStack
resources not already surfaced via notifications.

Some of the services polled with this agent are:

• OpenStack Networking

• OpenStack Object Storage

1.3. Administrator Guide 49



Ceilometer Documentation, Release 25.1.0.dev58

• OpenStack Block Storage

To install and configure this service use the Install and configure for Red Hat Enterprise Linux and
CentOS section in the Installation Tutorials and Guides.

Although Ceilometer has a set of default polling agents, operators can add new pollsters dynamically via
the dynamic pollsters subsystem Introduction to dynamic pollster subsystem.

IPMI agent

This agent is responsible for collecting IPMI sensor data and Intel Node Manager data on individual
compute nodes within an OpenStack deployment. This agent requires an IPMI capable node with the
ipmitool utility installed, which is commonly used for IPMI control on various Linux distributions.

An IPMI agent instance could be installed on each and every compute node with IPMI support, except
when the node is managed by the Bare metal service and the conductor.send_sensor_data option is
set to true in the Bare metal service. It is no harm to install this agent on a compute node without IPMI
support, as the agent checks for the hardware and if IPMI support is not available, returns empty data. It
is suggested that you install the IPMI agent only on an IPMI capable node for performance reasons.

The list of collected meters can be found in IPMI meters.

Note

Do not deploy both the IPMI agent and the Bare metal service on one compute node. If conductor.
send_sensor_data is set, this misconfiguration causes duplicated IPMI sensor samples.

Data processing and pipelines

The mechanism by which data is processed is called a pipeline. Pipelines, at the configuration level,
describe a coupling between sources of data and the corresponding sinks for publication of data. This
functionality is handled by the notification agents.

A source is a producer of data: samples or events. In effect, it is a set of notification handlers emitting
datapoints for a set of matching meters and event types.

Each source configuration encapsulates name matching and mapping to one or more sinks for publication.

A sink, on the other hand, is a consumer of data, providing logic for the publication of data emitted from
related sources.

In effect, a sink describes a list of one or more publishers.

Pipeline configuration

The notification agent supports two pipelines: one that handles samples and another that handles events.
The pipelines can be enabled and disabled by setting pipelines option in the [notifications] section.

The actual configuration of each pipelines is, by default, stored in separate configuration files:
pipeline.yaml and event_pipeline.yaml. The location of the configuration files can be set by
the pipeline_cfg_file and event_pipeline_cfg_file options listed in Ceilometer Configuration
Options

The meter pipeline definition looks like:

50 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

---
sources:

- name: 'source name'
meters:

- 'meter filter'
sinks:

- 'sink name'
sinks:

- name: 'sink name'
publishers:

- 'list of publishers'

There are several ways to define the list of meters for a pipeline source. The list of valid meters can
be found in Measurements. There is a possibility to define all the meters, or just included or excluded
meters, with which a source should operate:

• To include all meters, use the * wildcard symbol. It is highly advisable to select only the meters
that you intend on using to avoid flooding the metering database with unused data.

• To define the list of meters, use either of the following:

– To define the list of included meters, use the meter_name syntax.

– To define the list of excluded meters, use the !meter_name syntax.

Note

The OpenStack Telemetry service does not have any duplication check between pipelines, and if you
add a meter to multiple pipelines then it is assumed the duplication is intentional and may be stored
multiple times according to the specified sinks.

The above definition methods can be used in the following combinations:

• Use only the wildcard symbol.

• Use the list of included meters.

• Use the list of excluded meters.

• Use wildcard symbol with the list of excluded meters.

Note

At least one of the above variations should be included in the meters section. Included and excluded
meters cannot co-exist in the same pipeline. Wildcard and included meters cannot co-exist in the
same pipeline definition section.

The publishers section contains the list of publishers, where the samples data should be sent.

Similarly, the event pipeline definition looks like:

---
sources:

(continues on next page)

1.3. Administrator Guide 51



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

- name: 'source name'
events:

- 'event filter'
sinks:

- 'sink name'
sinks:

- name: 'sink name'
publishers:

- 'list of publishers'

The event filter uses the same filtering logic as the meter pipeline.

Publishers

The Telemetry service provides several transport methods to transfer the data collected to an external
system. The consumers of this data are widely different, like monitoring systems, for which data loss is
acceptable and billing systems, which require reliable data transportation. Telemetry provides methods
to fulfill the requirements of both kind of systems.

The publisher component makes it possible to save the data into persistent storage through the message
bus or to send it to one or more external consumers. One chain can contain multiple publishers.

To solve this problem, the multi-publisher can be configured for each data point within the Telemetry ser-
vice, allowing the same technical meter or event to be published multiple times to multiple destinations,
each potentially using a different transport.

The following publisher types are supported:

gnocchi (default)

When the gnocchi publisher is enabled, measurement and resource information is pushed to gnocchi for
time-series optimized storage. Gnocchi must be registered in the Identity service as Ceilometer discovers
the exact path via the Identity service.

More details on how to enable and configure gnocchi can be found on its official documentation page.

prometheus

Metering data can be send to the pushgateway of Prometheus by using:

prometheus://pushgateway-host:9091/metrics/job/openstack-telemetry

With this publisher, timestamp are not sent to Prometheus due to Prometheus Pushgateway design. All
timestamps are set at the time it scrapes the metrics from the Pushgateway and not when the metric was
polled on the OpenStack services.

In order to get timeseries in Prometheus that looks like the reality (but with the lag added by the
Prometheus scrapping mechanism). The scrape_interval for the pushgateway must be lower and a mul-
tiple of the Ceilometer polling interval.

You can read more here

Due to this, this is not recommended to use this publisher for billing purpose as timestamps in Prometheus
will not be exact.

52 Chapter 1. Overview

https://gnocchi.osci.io
https://github.com/prometheus/pushgateway
https://github.com/prometheus/pushgateway#about-timestamps


Ceilometer Documentation, Release 25.1.0.dev58

notifier

The notifier publisher can be specified in the form of notifier://?
option1=value1&option2=value2. It emits data over AMQP using oslo.messaging. Any consumer
can then subscribe to the published topic for additional processing.

The following customization options are available:

per_meter_topic
The value of this parameter is 1. It is used for publishing the samples on additional
metering_topic.sample_name topic queue besides the default metering_topic queue.

policy
Used for configuring the behavior for the case, when the publisher fails to send the samples, where
the possible predefined values are:

default
Used for waiting and blocking until the samples have been sent.

drop
Used for dropping the samples which are failed to be sent.

queue
Used for creating an in-memory queue and retrying to send the samples on the
queue in the next samples publishing period (the queue length can be configured with
max_queue_length, where 1024 is the default value).

topic
The topic name of the queue to publish to. Setting this will override the default topic defined
by metering_topic and event_topic options. This option can be used to support multiple
consumers.

udp

This publisher can be specified in the form of udp://<host>:<port>/. It emits metering data over
UDP.

file

The file publisher can be specified in the form of file://path?option1=value1&option2=value2.
This publisher records metering data into a file.

Note

If a file name and location is not specified, the file publisher does not log any meters, instead it logs
a warning message in the configured log file for Telemetry.

The following options are available for the file publisher:

max_bytes
When this option is greater than zero, it will cause a rollover. When the specified size is about
to be exceeded, the file is closed and a new file is silently opened for output. If its value is zero,
rollover never occurs.

1.3. Administrator Guide 53



Ceilometer Documentation, Release 25.1.0.dev58

backup_count
If this value is non-zero, an extension will be appended to the filename of the old log, as ’.1’, ’.2’,
and so forth until the specified value is reached. The file that is written and contains the newest
data is always the one that is specified without any extensions.

json
If this option is present, will force ceilometer to write json format into the file.

http

The Telemetry service supports sending samples to an external HTTP target. The samples are sent with-
out any modification. To set this option as the notification agents’ target, set http:// as a publisher
endpoint in the pipeline definition files. The HTTP target should be set along with the publisher dec-
laration. For example, additional configuration options can be passed in: http://localhost:80/?
option1=value1&option2=value2

The following options are available:

timeout
The number of seconds before HTTP request times out.

max_retries
The number of times to retry a request before failing.

batch
If false, the publisher will send each sample and event individually, whether or not the notification
agent is configured to process in batches.

verify_ssl
If false, the ssl certificate verification is disabled.

The default publisher is gnocchi, without any additional options specified. A sample publishers
section in the /etc/ceilometer/pipeline.yaml looks like the following:

publishers:
- gnocchi://
- udp://10.0.0.2:1234
- notifier://?policy=drop&max_queue_length=512&topic=custom_target

Telemetry best practices

The following are some suggested best practices to follow when deploying and configuring the Telemetry
service.

Data collection

1. The Telemetry service collects a continuously growing set of data. Not all the data will be relevant
for an administrator to monitor.

• Based on your needs, you can edit the polling.yaml and pipeline.yaml configuration
files to include select meters to generate or process

• By default, Telemetry service polls the service APIs every 10 minutes. You can change the
polling interval on a per meter basis by editing the polling.yaml configuration file.

54 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Warning

If the polling interval is too short, it will likely increase the stress on the service APIs.

2. If polling many resources or at a high frequency, you can add additional central and compute agents
as necessary. The agents are designed to scale horizontally. For more information refer to the high
availability guide.

Note

The High Availability Guide is a work in progress and is changing rapidly while testing con-
tinues.

Introduction to dynamic pollster subsystem

The dynamic pollster feature allows system administrators to create/update REST API pollsters
on the fly (without changing code). The system reads YAML configures that are found in
pollsters_definitions_dirs parameter, which has the default at /etc/ceilometer/pollsters.
d. Operators can use a single file per dynamic pollster or multiple dynamic pollsters per file.

Current limitations of the dynamic pollster system

Currently, the following types of APIs are not supported by the dynamic pollster system:

• Tenant APIs: Tenant APIs are the ones that need to be polled in a tenant fashion. This feature is
"a nice" to have, but is currently not implemented.

The dynamic pollsters system configuration (for OpenStack APIs)

Each YAML file in the dynamic pollster feature can use the following attributes to define a dynamic
pollster:

Warning

Caution: Ceilometer does not accept complex value data structure for value and metadata config-
urations. Therefore, if you are extracting a complex data structure (Object, list, map, or others), you
can take advantage of the Operations on extracted attributes feature to transform the object
into a simple value (string or number)

• name: mandatory field. It specifies the name/key of the dynamic pollster. For instance, a pollster
for magnum can use the name dynamic.magnum.cluster;

• sample_type: mandatory field; it defines the sample type. It must be one of the values: gauge,
delta, cumulative;

• unit: mandatory field; defines the unit of the metric that is being collected. For magnum, for
instance, one can use cluster as the unit or some other meaningful String value;

• value_attribute: mandatory attribute; defines the attribute in the response from the URL of
the component being polled. We also accept nested values dictionaries. To use a nested value
one can simply use attribute1.attribute2.<asMuchAsNeeded>.lastattribute. It is also

1.3. Administrator Guide 55

https://docs.openstack.org/ha-guide/
https://docs.openstack.org/ha-guide/


Ceilometer Documentation, Release 25.1.0.dev58

possible to reference the sample itself using "." (dot); the self reference of the sample is inter-
esting in cases when the attribute might not exist. Therefore, together with the operations op-
tions, one can first check if it exist before retrieving it (example: ". | value['some_field']
if 'some_field' in value else ''"). In our magnum example, we can use status as the
value attribute;

• endpoint_type: mandatory field; defines the endpoint type that is used to discover the base URL
of the component to be monitored; for magnum, one can use container-infra. Other values
are accepted such as volume for cinder endpoints, object-store for swift, and so on;

• url_path: mandatory attribute. It defines the path of the request that we execute on the endpoint
to gather data. For example, to gather data from magnum, one can use v1/clusters/detail;

• metadata_fields: optional field. It is a list of all fields that the response of the request executed
with url_path that we want to retrieve. To use a nested value one can simply use attribute1.
attribute2.<asMuchAsNeeded>.lastattribute. As an example, for magnum, one can use
the following values:

metadata_fields:
- "labels"
- "updated_at"
- "keypair"
- "master_flavor_id"
- "api_address"
- "master_addresses"
- "node_count"
- "docker_volume_size"
- "master_count"
- "node_addresses"
- "status_reason"
- "coe_version"
- "cluster_template_id"
- "name"
- "stack_id"
- "created_at"
- "discovery_url"
- "container_version"

• skip_sample_values: optional field. It defines the values that might come in the
value_attribute that we want to ignore. For magnun, one could for instance, ignore some
of the status it has for clusters. Therefore, data is not gathered for clusters in the defined status.

skip_sample_values:
- "CREATE_FAILED"
- "DELETE_FAILED"

• value_mapping: optional attribute. It defines a mapping for the values that the dynamic pollster
is handling. This is the actual value that is sent to Gnocchi or other backends. If there is no
mapping specified, we will use the raw value that is obtained with the use of value_attribute.
An example for magnum, one can use:

value_mapping:
CREATE_IN_PROGRESS: "0"

(continues on next page)

56 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

CREATE_FAILED: "1"
CREATE_COMPLETE: "2"
UPDATE_IN_PROGRESS: "3"
UPDATE_FAILED: "4"
UPDATE_COMPLETE: "5"
DELETE_IN_PROGRESS: "6"
DELETE_FAILED: "7"
DELETE_COMPLETE: "8"
RESUME_COMPLETE: "9"
RESUME_FAILED: "10"
RESTORE_COMPLETE: "11"
ROLLBACK_IN_PROGRESS: "12"
ROLLBACK_FAILED: "13"
ROLLBACK_COMPLETE: "14"
SNAPSHOT_COMPLETE: "15"
CHECK_COMPLETE: "16"
ADOPT_COMPLETE: "17"

• default_value: optional parameter. The default value for the value mapping in case the variable
value receives data that is not mapped to something in the value_mapping configuration. This
attribute is only used when value_mapping is defined. Moreover, it has a default of -1.

• metadata_mapping: optional parameter. The map used to create new metadata fields. The key
is a metadata name that exists in the response of the request we make, and the value of this map
is the new desired metadata field that will be created with the content of the metadata that we are
mapping. The metadata_mapping can be created as follows:

metadata_mapping:
name: "display_name"
some_attribute: "new_attribute_name"

• preserve_mapped_metadata: optional parameter. It indicates if we preserve the old metadata
name when it gets mapped to a new one. The default value is True.

• response_entries_key: optional parameter. This value is used to define the "key" of the re-
sponse that will be used to look-up the entries used in the dynamic pollster processing. If no
response_entries_key is informed by the operator, we will use the first we find. Moreover, if
the response contains a list, instead of an object where one of its attributes is a list of entries, we
use the list directly. Therefore, this option will be ignored when the API is returning the list/array
of entries to be processed directly. We also accept nested values dictionaries. To use a nested value
one can simply use attribute1.attribute2.<asMuchAsNeeded>.lastattribute

• user_id_attribute: optional parameter. The default value is user_id. The name of the
attribute in the entries that are processed from response_entries_key elements that will be
mapped to user_id attribute that is sent to Gnocchi.

• project_id_attribute: optional parameter. The default value is project_id. The name of
the attribute in the entries that are processed from response_entries_key elements that will be
mapped to project_id attribute that is sent to Gnocchi.

• resource_id_attribute: optional parameter. The default value is id. The name of the attribute
in the entries that are processed from response_entries_key elements that will be mapped to
id attribute that is sent to Gnocchi.

1.3. Administrator Guide 57



Ceilometer Documentation, Release 25.1.0.dev58

• headers: optional parameter. It is a map (similar to the metadata_mapping) of key and value
that can be used to customize the header of the request that is executed against the URL. This
configuration works for both OpenStack and non-OpenStack dynamic pollster configuration.

headers:
"x-openstack-nova-api-version": "2.46"

• timeout: optional parameter. Defines the request timeout for the requests executed by the dynamic
pollsters to gather data. The default timeout value is 30 seconds. If it is set to None, this means
that the request never times out on the client side. Therefore, one might have problems if the server
never closes the connection. The pollsters are executed serially, one after the other. Therefore, if
the request hangs, all pollsters (including the non-dynamic ones) will stop executing.

• namespaces: optional parameter. Defines the namespaces (running ceilometer instances) where
the pollster will be instantiated. This parameter accepts a single string value or a list of strings.
The default value is central.

The complete YAML configuration to gather data from Magnum (that has been used as an example) is
the following:

---

- name: "dynamic.magnum.cluster"
sample_type: "gauge"
unit: "cluster"
value_attribute: "status"
endpoint_type: "container-infra"
url_path: "v1/clusters/detail"
metadata_fields:
- "labels"
- "updated_at"
- "keypair"
- "master_flavor_id"
- "api_address"
- "master_addresses"
- "node_count"
- "docker_volume_size"
- "master_count"
- "node_addresses"
- "status_reason"
- "coe_version"
- "cluster_template_id"
- "name"
- "stack_id"
- "created_at"
- "discovery_url"
- "container_version"

value_mapping:
CREATE_IN_PROGRESS: "0"
CREATE_FAILED: "1"
CREATE_COMPLETE: "2"
UPDATE_IN_PROGRESS: "3"

(continues on next page)

58 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

UPDATE_FAILED: "4"
UPDATE_COMPLETE: "5"
DELETE_IN_PROGRESS: "6"
DELETE_FAILED: "7"
DELETE_COMPLETE: "8"
RESUME_COMPLETE: "9"
RESUME_FAILED: "10"
RESTORE_COMPLETE: "11"
ROLLBACK_IN_PROGRESS: "12"
ROLLBACK_FAILED: "13"
ROLLBACK_COMPLETE: "14"
SNAPSHOT_COMPLETE: "15"
CHECK_COMPLETE: "16"
ADOPT_COMPLETE: "17"

We can also replicate and enhance some hardcoded pollsters. For instance, the pollster to gather VPN
connections. Currently, it is always persisting 1 for all of the VPN connections it finds. However, the
VPN connection can have multiple statuses, and we should normally only bill for active resources, and
not resources on ERROR states. An example to gather VPN connections data is the following (this is just
an example, and one can adapt and configure as he/she desires):

---

- name: "dynamic.network.services.vpn.connection"
sample_type: "gauge"
unit: "ipsec_site_connection"
value_attribute: "status"
endpoint_type: "network"
url_path: "v2.0/vpn/ipsec-site-connections"
metadata_fields:

- "name"
- "vpnservice_id"
- "description"
- "status"
- "peer_address"

value_mapping:
ACTIVE: "1"

metadata_mapping:
name: "display_name"

default_value: 0

• response_handlers: optional parameter. Defines the response handlers used to handle the re-
sponse. For now, the supported values are:

json: This handler will interpret the response as a JSON and will convert it to a dictionary which
can be manipulated using the operations options when mapping the attributes:

---

- name: "dynamic.json.response"
(continues on next page)

1.3. Administrator Guide 59



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

sample_type: "gauge"
[...]
response_handlers:

- json

Response to handle:

{
"test": {
"list": [1, 2, 3]

}
}

Response handled:

{
'test': {
'list': [1, 2, 3]

}
}

xml: This handler will interpret the response as an XML and will convert it to a dictionary which
can be manipulated using the operations options when mapping the attributes:

---

- name: "dynamic.json.response"
sample_type: "gauge"
[...]
response_handlers:

- xml

Response to handle:

<test>
<list>1</list>
<list>2</list>
<list>3</list>

</test>

Response handled:

{
'test': {
'list': [1, 2, 3]

}
}

text: This handler will interpret the response as a PlainText and will convert it to a dictionary
which can be manipulated using the operations options when mapping the attributes:

60 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

---

- name: "dynamic.json.response"
sample_type: "gauge"
[...]
response_handlers:

- text

Response to handle:

Plain text response

Response handled:

{
'out': "Plain text response"

}

They can be used together or individually. If not defined, the default value will be json. If you set
2 or more response handlers, the first configured handler will be used to try to handle the response,
if it is not possible, a DEBUG log message will be displayed, then the next will be used and so
on. If no configured handler was able to handle the response, an empty dict will be returned and
a WARNING log will be displayed to warn operators that the response was not able to be handled
by any configured handler.

The dynamic pollsters system configuration (for non-OpenStack APIs)

The dynamic pollster system can also be used for non-OpenStack APIs. to configure non-OpenStack
APIs, one can use all but one attribute of the Dynamic pollster system. The attribute that is not supported
is the endpoint_type. The dynamic pollster system for non-OpenStack APIs is activated automatically
when one uses the configurations module.

The extra parameters (in addition to the original ones) that are available when using the Non-OpenStack
dynamic pollster sub-subsystem are the following:

• module: required parameter. It is the python module name that Ceilometer has to load to use the
authentication object when executing requests against the API. For instance, if one wants to create
a pollster to gather data from RadosGW, he/she can use the awsauth python module.

• authentication_object: mandatory parameter. The name of the class that we can find in the
module that Ceilometer will use as the authentication object in the request. For instance, when
using the awsauth python module to gather data from RadosGW, one can use the authentication
object as S3Auth.

• authentication_parameters: optional parameter. It is a comma separated value that will
be used to instantiate the authentication_object. For instance, if we gather data from Ra-
dosGW, and we use the S3Auth class, the authentication_parameters can be configured as
<rados_gw_access_key>, rados_gw_secret_key, rados_gw_host_name.

• barbican_secret_id: optional parameter. The Barbican secret ID, from which, Ceilometer can
retrieve the comma separated values of the authentication_parameters.

As follows we present an example on how to convert the hard-coded pollster for radosgw.api.request
metric to the dynamic pollster model:

1.3. Administrator Guide 61



Ceilometer Documentation, Release 25.1.0.dev58

---

- name: "dynamic.radosgw.api.request"
sample_type: "gauge"
unit: "request"
value_attribute: "total.ops"
url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"
authentication_parameters: "<access_key>,<secret_key>,<rados_gateway_server>

↪→"
user_id_attribute: "user"
project_id_attribute: "user"
resource_id_attribute: "user"
response_entries_key: "summary"

We can take that example a bit further, and instead of gathering the total .ops variable, which counts for
all the requests (even the unsuccessful ones), we can use the successful_ops.

---

- name: "dynamic.radosgw.api.request.successful_ops"
sample_type: "gauge"
unit: "request"
value_attribute: "total.successful_ops"
url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"
authentication_parameters: "<access_key>, <secret_key>,<rados_gateway_

↪→server>"
user_id_attribute: "user"
project_id_attribute: "user"
resource_id_attribute: "user"
response_entries_key: "summary"

The dynamic pollsters system configuration (for local host commands)

The dynamic pollster system can also be used for local host commands, these commands must be installed
in the system that is running the Ceilometer compute agent. To configure local hosts commands, one can
use all but two attributes of the Dynamic pollster system. The attributes that are not supported are the
endpoint_type and url_path. The dynamic pollster system for local host commands is activated
automatically when one uses the configuration host_command.

The extra parameter (in addition to the original ones) that is available when using the local host commands
dynamic pollster sub-subsystem is the following:

• host_command: required parameter. It is the host command that will be executed in the same host
the Ceilometer dynamic pollster agent is running. The output of the command will be processed
by the pollster and stored in the configured backend.

As follows we present an example on how to use the local host command:

62 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

---

- name: "dynamic.host.command"
sample_type: "gauge"
unit: "request"
value_attribute: "value"
response_entries_key: "test"
host_command: "echo '<test><user_id>id1_u</user_id><project_id>id1_p</

↪→project_id><id>id1</id><meta>meta-data-to-store</meta><value>1</value></
↪→test>'"
metadata_fields:

- "meta"
response_handlers:

- xml

To execute multi page host commands, the next_sample_url_attribute must generate the next sample
command, like the following example:

---

- name: "dynamic.s3.objects.size"
sample_type: "gauge"
unit: "request"
value_attribute: "Size"
project_id_attribute: "Owner.ID"
user_id_attribute: "Owner.ID"
resource_id_attribute: "Key"
response_entries_key: "Contents"
host_command: "aws s3api list-objects"
next_sample_url_attribute: NextToken | 'aws s3api list-objects --starting-

↪→token "' + value + '"'

Operations on extracted attributes

The dynamic pollster system can execute Python operations to transform the attributes that are extracted
from the JSON response that the system handles.

One example of use case is the RadosGW that uses <project_id$project_id> as the username (which is
normally mapped to the Gnocchi resource_id). With this feature (operations on extracted attributes),
one can create configurations in the dynamic pollster to clean/normalize that variable. It is as simple as
defining resource_id_attribute: "user | value.split(’$’)[0].strip()"

The operations are separated by | symbol. The first element of the expression is the key to be retrieved
from the JSON object. The other elements are operations that can be applied to the value variable. The
value variable is the variable we use to hold the data being extracted. The previous example can be
rewritten as: resource_id_attribute: "user | value.split (’$’) | value[0] | value.strip()"

As follows we present a complete configuration for a RadosGW dynamic pollster that is removing the $
symbol, and getting the first part of the String.

---

(continues on next page)

1.3. Administrator Guide 63



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

- name: "dynamic.radosgw.api.request.successful_ops"
sample_type: "gauge"
unit: "request"
value_attribute: "total.successful_ops"
url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"
authentication_parameters: "<access_key>,<secret_key>,<rados_gateway_server>

↪→"
user_id_attribute: "user | value.split ('$') | value[0]"
project_id_attribute: "user | value.split ('$') | value[0]"
resource_id_attribute: "user | value.split ('$') | value[0]"
response_entries_key: "summary"

The Dynamic pollster configuration options that support this feature are the following:

• value_attribute

• response_entries_key

• user_id_attribute

• project_id_attribute

• resource_id_attribute

Multi metric dynamic pollsters (handling attribute values with list of objects)

The initial idea for this feature comes from the categories fields that we can find in the summary object
of the RadosGW API. Each user has a categories attribute in the response; in the categories list, we can
find the object that presents in a granular fashion the consumption of different RadosGW API operations
such as GET, PUT, POST, and may others.

As follows we present an example of such a JSON response.

{
"entries": [

{
"buckets": [

{
"bucket": "",
"categories": [

{
"bytes_received": 0,
"bytes_sent": 40,
"category": "list_buckets",
"ops": 2,
"successful_ops": 2

}
],
"epoch": 1572969600,
"owner": "user",
"time": "2019-11-21 00:00:00.000000Z"

(continues on next page)

64 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

},
{

"bucket": "-",
"categories": [

{
"bytes_received": 0,
"bytes_sent": 0,
"category": "get_obj",
"ops": 1,
"successful_ops": 0

}
],
"epoch": 1572969600,
"owner": "someOtherUser",
"time": "2019-11-21 00:00:00.000000Z"

}
]

}
]
"summary": [

{
"categories": [

{
"bytes_received": 0,
"bytes_sent": 0,
"category": "create_bucket",
"ops": 2,
"successful_ops": 2

},
{

"bytes_received": 0,
"bytes_sent": 2120428,
"category": "get_obj",
"ops": 46,
"successful_ops": 46

},
{

"bytes_received": 0,
"bytes_sent": 21484,
"category": "list_bucket",
"ops": 8,
"successful_ops": 8

},
{

"bytes_received": 6889056,
"bytes_sent": 0,
"category": "put_obj",
"ops": 46,
"successful_ops": 46

(continues on next page)

1.3. Administrator Guide 65



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

}
],
"total": {

"bytes_received": 6889056,
"bytes_sent": 2141912,
"ops": 102,
"successful_ops": 102

},
"user": "user"

},
{

"categories": [
{

"bytes_received": 0,
"bytes_sent": 0,
"category": "create_bucket",
"ops": 1,
"successful_ops": 1

},
{

"bytes_received": 0,
"bytes_sent": 0,
"category": "delete_obj",
"ops": 23,
"successful_ops": 23

},
{

"bytes_received": 0,
"bytes_sent": 5371,
"category": "list_bucket",
"ops": 2,
"successful_ops": 2

},
{

"bytes_received": 3444350,
"bytes_sent": 0,
"category": "put_obj",
"ops": 23,
"successful_ops": 23

}
],
"total": {

"bytes_received": 3444350,
"bytes_sent": 5371,
"ops": 49,
"successful_ops": 49

},
"user": "someOtherUser"

}

(continues on next page)

66 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

]
}

In that context, and having in mind that we have APIs with similar data structures, we developed an
extension for the dynamic pollster that enables multi-metric processing for a single pollster. It works as
follows.

The pollster name will contain a placeholder for the variable that identifies the "submetric". E.g. dy-
namic.radosgw.api.request.{category}. The placeholder {category} indicates the object’s attribute that
is in the list of objects that we use to load the sub metric name. Then, we must use a special notation in
the value_attribute configuration to indicate that we are dealing with a list of objects. This is achieved via
[] (brackets); for instance, in the dynamic.radosgw.api.request.{category}, we can use [categories].ops
as the value_attribute. This indicates that the value we retrieve is a list of objects, and when the dynamic
pollster processes it, we want it (the pollster) to load the ops value for the sub metrics being generated.

Examples on how to create multi-metric pollster to handle data from RadosGW API are presented as
follows:

---

- name: "dynamic.radosgw.api.request.{category}"
sample_type: "gauge"
unit: "request"
value_attribute: "[categories].ops"
url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"
authentication_parameters: "<access_key>, <secret_key>,<rados_gateway_

↪→server>"
user_id_attribute: "user | value.split('$')[0]"
project_id_attribute: "user | value.split('$') | value[0]"
resource_id_attribute: "user | value.split('$') | value[0]"
response_entries_key: "summary"

- name: "dynamic.radosgw.api.request.successful_ops.{category}"
sample_type: "gauge"
unit: "request"
value_attribute: "[categories].successful_ops"
url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"
authentication_parameters: "<access_key>, <secret_key>,<rados_gateway_

↪→server>"
user_id_attribute: "user | value.split('$')[0]"
project_id_attribute: "user | value.split('$') | value[0]"
resource_id_attribute: "user | value.split('$') | value[0]"
response_entries_key: "summary"

- name: "dynamic.radosgw.api.bytes_sent.{category}"
sample_type: "gauge"
unit: "request"

(continues on next page)

1.3. Administrator Guide 67



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

value_attribute: "[categories].bytes_sent"
url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"
authentication_parameters: "<access_key>, <secret_key>,<rados_gateway_

↪→server>"
user_id_attribute: "user | value.split('$')[0]"
project_id_attribute: "user | value.split('$') | value[0]"
resource_id_attribute: "user | value.split('$') | value[0]"
response_entries_key: "summary"

- name: "dynamic.radosgw.api.bytes_received.{category}"
sample_type: "gauge"
unit: "request"
value_attribute: "[categories].bytes_received"
url_path: "http://rgw.service.stage.i.ewcs.ch/admin/usage"
module: "awsauth"
authentication_object: "S3Auth"
authentication_parameters: "<access_key>, <secret_key>,<rados_gateway_

↪→server>"
user_id_attribute: "user | value.split('$')[0]"
project_id_attribute: "user | value.split('$') | value[0]"
resource_id_attribute: "user | value.split('$') | value[0]"
response_entries_key: "summary"

Handling linked API responses

If the consumed API returns a linked response which contains a link to the next response set (page), the
Dynamic pollsters can be configured to follow these links and join all linked responses into a single one.

To enable this behavior the operator will need to configure the parameter next_sample_url_attribute that
must contain a mapper to the response attribute that contains the link to the next response page. This
parameter also supports operations like the others *_attribute dynamic pollster’s parameters.

Examples on how to create a pollster to handle linked API responses are presented as follows:

• Example of a simple linked response:

– API response:

{
"server_link": "http://test.com/v1/test-volumes/marker=c3",
"servers": [

{
"volume": [

{
"name": "a",
"tmp": "ra"

}
],
"id": 1,

(continues on next page)

68 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

"name": "a1"
},
{
"volume": [

{
"name": "b",
"tmp": "rb"

}
],
"id": 2,
"name": "b2"

},
{
"volume": [

{
"name": "c",
"tmp": "rc"

}
],
"id": 3,
"name": "c3"

}
]

}

– Pollster configuration:

---

- name: "dynamic.linked.response"
sample_type: "gauge"
unit: "request"
value_attribute: "[volume].tmp"
url_path: "v1/test-volumes"
response_entries_key: "servers"
next_sample_url_attribute: "server_link"

• Example of a complex linked response:

– API response:

{
"server_link": [

{
"href": "http://test.com/v1/test-volumes/marker=c3",
"rel": "next"

},
{
"href": "http://test.com/v1/test-volumes/marker=b1",
"rel": "prev"

(continues on next page)

1.3. Administrator Guide 69



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

}
],
"servers": [

{
"volume": [

{
"name": "a",
"tmp": "ra"

}
],
"id": 1,
"name": "a1"

},
{
"volume": [

{
"name": "b",
"tmp": "rb"

}
],
"id": 2,
"name": "b2"

},
{
"volume": [

{
"name": "c",
"tmp": "rc"

}
],
"id": 3,
"name": "c3"

}
]

}

– Pollster configuration:

---

- name: "dynamic.linked.response"
sample_type: "gauge"
unit: "request"
value_attribute: "[volume].tmp"
url_path: "v1/test-volumes"
response_entries_key: "servers"
next_sample_url_attribute: "server_link | filter(lambda v: v.

↪→get('rel') == 'next', value) | list(value) | value[0] | value.
↪→get('href')"

70 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

OpenStack Dynamic pollsters metadata enrichment with other OpenStack API’s data

Sometimes we want/need to add/gather extra metadata for the samples being handled by Ceilometer
Dynamic pollsters, such as the project name, domain id, domain name, and other metadata that are not
always accessible via the OpenStack component where the sample is gathered.

For instance, when gathering the status of virtual machines (VMs) from Nova, we only have the tenant_id,
which must be used as the project_id. However, for billing and later invoicing one might need/want the
project name, domain id, and other metadata that are available in Keystone (and maybe some others that
are scattered over other components). To achieve that, one can use the OpenStack metadata enrichment
option. As follows we present an example that shows a dynamic pollster configuration to gather virtual
machine (VM) status, and to enrich the data pushed to the storage backend (e.g. Gnocchi) with project
name, domain ID, and domain name.

---

- name: "dynamic_pollster.instance.status"
next_sample_url_attribute: "server_links | filter(lambda v: v.get(

↪→'rel') == 'next', value) | list(value) | value[0] | value.get('href
↪→') | value.replace('http:', 'https:')"
sample_type: "gauge"
unit: "server"
value_attribute: "status"
endpoint_type: "compute"
url_path: "/v2.1/servers/detail?all_tenants=true"
headers:
"Openstack-API-Version": "compute 2.65"

project_id_attribute: "tenant_id"
metadata_fields:
- "status"
- "name"
- "flavor.vcpus"
- "flavor.ram"
- "flavor.disk"
- "flavor.ephemeral"
- "flavor.swap"
- "flavor.original_name"
- "image | value or { 'id': '' } | value['id']"
- "OS-EXT-AZ:availability_zone"
- "OS-EXT-SRV-ATTR:host"
- "user_id"
- "tags | ','.join(value)"
- "locked"

value_mapping:
ACTIVE: "1"

default_value: 0
metadata_mapping:
"OS-EXT-AZ:availability_zone": "dynamic_availability_zone"
"OS-EXT-SRV-ATTR:host": "dynamic_host"
"flavor.original_name": "dynamic_flavor_name"
"flavor.vcpus": "dynamic_flavor_vcpus"

(continues on next page)

1.3. Administrator Guide 71



Ceilometer Documentation, Release 25.1.0.dev58

(continued from previous page)

"flavor.ram": "dynamic_flavor_ram"
"flavor.disk": "dynamic_flavor_disk"
"flavor.ephemeral": "dynamic_flavor_ephemeral"
"flavor.swap": "dynamic_flavor_swap"
"image | value or { 'id': '' } | value['id']": "dynamic_image_ref

↪→"
"name": "dynamic_display_name"
"locked": "dynamic_locked"
"tags | ','.join(value)": "dynamic_tags"

extra_metadata_fields_cache_seconds: 3600
extra_metadata_fields_skip:
- value: '1'
metadata:
dynamic_flavor_vcpus: 4

- value: '1'
metadata:
dynamic_flavor_vcpus: 2

extra_metadata_fields:
- name: "project_name"
endpoint_type: "identity"
url_path: "'/v3/projects/' + str(sample['project_id'])"
headers:

"Openstack-API-Version": "identity latest"
value: "name"
extra_metadata_fields_cache_seconds: 1800 # overriding the␣

↪→default cache policy
metadata_fields:

- id
- name: "domain_id"
endpoint_type: "identity"
url_path: "'/v3/projects/' + str(sample['project_id'])"
headers:

"Openstack-API-Version": "identity latest"
value: "domain_id"
metadata_fields:

- id
- name: "domain_name"
endpoint_type: "identity"
url_path: "'/v3/domains/' + str(extra_metadata_captured[

↪→'domain_id'])"
headers:

"Openstack-API-Version": "identity latest"
value: "name"
metadata_fields:

- id
- name: "operating-system"
host_command: "'get-vm --vm-name ' + str(extra_metadata_by_

↪→name['project_name']['metadata']['id'])"
value: "os"

72 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

The above example can be used to gather and persist in the backend the status of VMs. It will persist 1
in the backend as a measure for every collecting period if the VM’s status is ACTIVE, and 0 otherwise.
This is quite useful to create hashmap rating rules for running VMs in CloudKitty. Then, to enrich the
resource in the storage backend, we are adding extra metadata that are collected in Keystone and in the
local host via the extra_metadata_fields options. If you have multiples extra_metadata_fields defining
the same metadata_field, the last not None metadata value will be used.

To operate values in the extra_metadata_fields, you can access 3 local variables:

• sample: it is a dictionary which holds the current data of the root sample. The root sample is the
final sample that will be persisted in the configured storage backend.

• extra_metadata_captured: it is a dictionary which holds the current data of all ex-
tra_metadata_fields processed before this one. If you have multiples extra_metadata_fields defin-
ing the same metadata_field, the last not None metadata value will be used.

• extra_metadata_by_name: it is a dictionary which holds the data of all ex-
tra_metadata_fields processed before this one. No data is overwritten in this vari-
able. To access an specific extra_metadata_field using this variable, you can do ex-
tra_metadata_by_name[’<extra_metadata_field_name>’][’value’] to get its value, or ex-
tra_metadata_by_name[’<extra_metadata_field_name>’][’metadata’][’<metadata>’] to get its
metadata.

The metadata enrichment feature has the following options:

• extra_metadata_fields_cache_seconds: optional parameter. Defines the extra metadata re-
quest’s response cache. Some requests, such as the ones executed against Keystone to retrieve extra
metadata are rather static. Therefore, one does not need to constantly re-execute the request. That
is the reason why we cache the response of such requests. By default the cache time to live (TTL)
for responses is 3600 seconds. However, this value can be increased of decreased.

• extra_metadata_fields: optional parameter. This option is a list of objects or a single one,
where each one of its elements is an dynamic pollster configuration set. Each one of the extra
metadata definition can have the same options defined in the dynamic pollsters, including the ex-
tra_metadata_fields option, so this option is a multi-level option. When defined, the result of the
collected data will be merged in the final sample resource metadata. If some of the required dy-
namic pollster configuration is not set in the extra_metadata_fields, will be used the parent pollster
configuration, except the name.

• extra_metadata_fields_skip: optional parameter. This option is a list of objects or a single
one, where each one of its elements is a set of key/value pairs. When defined, if any set of key/value
pairs is a subset of the collected sample, then the extra_metadata_fields gathering of this sample
will be skipped.

1.3.3 Data Types

Measurements

The Telemetry service collects meters within an OpenStack deployment. This section provides a brief
summary about meters format and origin and also contains the list of available meters.

Telemetry collects meters by polling the infrastructure elements and also by consuming the notifications
emitted by other OpenStack services. For more information about the polling mechanism and notifica-
tions see Data collection. There are several meters which are collected by polling and by consuming.
The origin for each meter is listed in the tables below.

1.3. Administrator Guide 73



Ceilometer Documentation, Release 25.1.0.dev58

Note

You may need to configure Telemetry or other OpenStack services in order to be able to collect all
the samples you need. For further information about configuration requirements see the Telemetry
chapter in the Installation Tutorials and Guides.

Telemetry uses the following meter types:

Type Description
Cumulative Increasing over time (instance hours)
Delta Changing over time (bandwidth)
Gauge Discrete items (floating IPs, image uploads) and fluctuating values (disk I/O)

Telemetry provides the possibility to store metadata for samples. This metadata can be extended for
OpenStack Compute and OpenStack Object Storage.

In order to add additional metadata information to OpenStack Compute you have two options to choose
from. The first one is to specify them when you boot up a new instance. The additional information
will be stored with the sample in the form of resource_metadata.user_metadata.*. The new field
should be defined by using the prefix metering.. The modified boot command look like the following:

$ openstack server create --property metering.custom_metadata=a_value my_vm

The other option is to set the reserved_metadata_keys to the list of metadata keys that you would like
to be included in resource_metadata of the instance related samples that are collected for OpenStack
Compute. This option is included in the DEFAULT section of the ceilometer.conf configuration file.

You might also specify headers whose values will be stored along with the sample data of OpenStack
Object Storage. The additional information is also stored under resource_metadata. The format of
the new field is resource_metadata.http_header_$name, where $name is the name of the header
with - replaced by _.

For specifying the new header, you need to set metadata_headers option under the
[filter:ceilometer] section in proxy-server.conf under the swift folder. You can use
this additional data for instance to distinguish external and internal users.

Measurements are grouped by services which are polled by Telemetry or emit notifications that this
service consumes.

OpenStack Compute

The following meters are collected for OpenStack Compute.

Name Type Unit Resource Origin Support Note
Meters added in the Mitaka release or earlier

memory Gauge MiB instance ID Notification, Pollster Libvirt Volume of RAM allocated to the instance
continues on next page

74 Chapter 1. Overview

https://docs.openstack.org/ceilometer/latest/install/index.html
https://docs.openstack.org/ceilometer/latest/install/index.html


Ceilometer Documentation, Release 25.1.0.dev58

Table 1 – continued from previous page
Name Type Unit Resource Origin Support Note
memory.usage Gauge MiB instance ID Pollster Libvirt Volume of RAM used by the instance from the amount of its allocated memory
memory.resident Gauge MiB instance ID Pollster Libvirt Volume of RAM used by the instance on the physical machine
cpu Cumulative ns instance ID Pollster Libvirt CPU time used
vcpus Gauge vcpu instance ID Notification, Pollster Libvirt Number of virtual CPUs allocated to the instance
disk.device.read.requests Cumulative request disk ID Pollster Libvirt Number of read requests
disk.device.write.requests Cumulative request disk ID Pollster Libvirt Number of write requests
disk.device.read.bytes Cumulative B disk ID Pollster Libvirt Volume of reads
disk.device.write.bytes Cumulative B disk ID Pollster Libvirt Volume of writes
disk.root.size Gauge GiB instance ID Notification, Pollster Libvirt Size of root disk
disk.ephemeral.size Gauge GiB instance ID Notification, Pollster Libvirt Size of ephemeral disk
disk.device.capacity Gauge B disk ID Pollster Libvirt The amount of disk per device that the instance can see
disk.device.allocation Gauge B disk ID Pollster Libvirt The amount of disk per device occupied by the instance on the host machine
disk.device.usage Gauge B disk ID Pollster Libvirt The physical size in bytes of the image container on the host per device
network.incoming.bytes Cumulative B interface ID Pollster Libvirt Number of incoming bytes
network.outgoing.bytes Cumulative B interface ID Pollster Libvirt Number of outgoing bytes
network.incoming.packets Cumulative packet interface ID Pollster Libvirt Number of incoming packets
network.outgoing.packets Cumulative packet interface ID Pollster Libvirt Number of outgoing packets

Meters added in the Newton release
perf.cpu.cycles Gauge cycle instance ID Pollster Libvirt the number of cpu cycles one instruction needs
perf.instructions Gauge instruction instance ID Pollster Libvirt the count of instructions
perf.cache.references Gauge count instance ID Pollster Libvirt the count of cache hits
perf.cache.misses Gauge count instance ID Pollster Libvirt the count of cache misses

Meters added in the Ocata release
network.incoming.packets.drop Cumulative packet interface ID Pollster Libvirt Number of incoming dropped packets
network.outgoing.packets.drop Cumulative packet interface ID Pollster Libvirt Number of outgoing dropped packets
network.incoming.packets.error Cumulative packet interface ID Pollster Libvirt Number of incoming error packets
network.outgoing.packets.error Cumulative packet interface ID Pollster Libvirt Number of outgoing error packets

Meters added in the Pike release
memory.swap.in Cumulative MiB instance ID Pollster Libvirt Memory swap in
memory.swap.out Cumulative MiB instance ID Pollster Libvirt Memory swap out

Meters added in the Queens release
disk.device.read.latency Cumulative ns Disk ID Pollster Libvirt Total time read operations have taken
disk.device.write.latency Cumulative ns Disk ID Pollster Libvirt Total time write operations have taken

Meters added in the Epoxy release
power.state Gauge state instance ID Pollster Libvirt virDomainState of the VM

Meters added in the Flamingo release
memory.available Gauge MiB instance ID Pollster Libvirt Volume of RAM available to the instance as seen from within the instance

Note

To enable the libvirt memory.usage support, you need to install libvirt version 1.1.1+, QEMU version
1.5+, and you also need to prepare suitable balloon driver in the image. It is applicable particularly
for Windows guests, most modern Linux distributions already have it built in. Telemetry is not able
to fetch the memory.usage samples without the image balloon driver.

1.3. Administrator Guide 75



Ceilometer Documentation, Release 25.1.0.dev58

Note

To enable libvirt disk.* support when running on RBD-backed shared storage, you need to install
libvirt version 1.2.16+.

OpenStack Compute is capable of collecting CPU related meters from the compute host machines. In
order to use that you need to set the compute_monitors option to cpu.virt_driver in the nova.
conf configuration file. For further information see the Compute configuration section in the Compute
chapter of the OpenStack Configuration Reference.

The following host machine related meters are collected for OpenStack Compute:

Name Type Unit Re-
source

Origin Note

Meters added in the Mitaka release or earlier
com-
pute.node.cpu.frequency

Gauge MHz host ID Notifica-
tion

CPU frequency

com-
pute.node.cpu.kernel.time

Cumula-
tive

ns host ID Notifica-
tion

CPU kernel time

compute.node.cpu.idle.time Cumula-
tive

ns host ID Notifica-
tion

CPU idle time

compute.node.cpu.user.time Cumula-
tive

ns host ID Notifica-
tion

CPU user mode time

com-
pute.node.cpu.iowait.time

Cumula-
tive

ns host ID Notifica-
tion

CPU I/O wait time

com-
pute.node.cpu.kernel.percent

Gauge % host ID Notifica-
tion

CPU kernel percentage

com-
pute.node.cpu.idle.percent

Gauge % host ID Notifica-
tion

CPU idle percentage

com-
pute.node.cpu.user.percent

Gauge % host ID Notifica-
tion

CPU user mode per-
centage

com-
pute.node.cpu.iowait.percent

Gauge % host ID Notifica-
tion

CPU I/O wait percent-
age

compute.node.cpu.percent Gauge % host ID Notifica-
tion

CPU utilization

IPMI meters

Telemetry captures notifications that are emitted by the Bare metal service. The source of the notifications
are IPMI sensors that collect data from the host machine.

Alternatively, IPMI meters can be generated by deploying the ceilometer-agent-ipmi on each IPMI-
capable node. For further information about the IPMI agent see IPMI agent.

Warning

To avoid duplication of metering data and unnecessary load on the IPMI interface, do not deploy
the IPMI agent on nodes that are managed by the Bare metal service and keep the conductor.
send_sensor_data option set to False in the ironic.conf configuration file.

76 Chapter 1. Overview

https://docs.openstack.org/nova/latest/configuration/config.html
https://docs.openstack.org/nova/latest/configuration/config.html


Ceilometer Documentation, Release 25.1.0.dev58

The following IPMI sensor meters are recorded:

Name Type Unit Resource Origin Note
Meters added in the Mitaka release or earlier
hardware.ipmi.fan Gauge RPM fan sensor Notification,

Pollster
Fan rounds per minute
(RPM)

hard-
ware.ipmi.temperature

Gauge C temperature
sensor

Notification,
Pollster

Temperature reading
from sensor

hard-
ware.ipmi.current

Gauge A current sensor Notification,
Pollster

Current reading from
sensor

hard-
ware.ipmi.voltage

Gauge V voltage sensor Notification,
Pollster

Voltage reading from
sensor

Note

The sensor data is not available in the Bare metal service by default. To enable the meters and con-
figure this module to emit notifications about the measured values see the Installation Guide for the
Bare metal service.

OpenStack Image service

The following meters are collected for OpenStack Image service:

Name Type Unit Re-
source

Origin Note

Meters added in the Mitaka release or earlier
image.size Gauge B image ID Notification, Poll-

ster
Size of the uploaded im-
age

im-
age.download

Delta B image ID Notification Image is downloaded

image.serve Delta B image ID Notification Image is served out

OpenStack Block Storage

The following meters are collected for OpenStack Block Storage:

1.3. Administrator Guide 77

https://docs.openstack.org/ironic/latest/install/index.html


Ceilometer Documentation, Release 25.1.0.dev58

Name Type Unit Re-
source

Origin Note

Meters added in the Mitaka release or earlier
volume.size Gauge GiB volume

ID
Notification Size of the volume

snapshot.size Gauge GiB snapshot
ID

Notification Size of the snapshot

Meters added in the Queens release
vol-
ume.provider.capacity.total

Gauge GiB host-
name

Notification Total volume capacity on
host

vol-
ume.provider.capacity.free

Gauge GiB host-
name

Notification Free volume capacity on
host

vol-
ume.provider.capacity.allocated

Gauge GiB host-
name

Notification Assigned volume capacity
on host by Cinder

vol-
ume.provider.capacity.provisioned

Gauge GiB host-
name

Notification Assigned volume capacity
on host

vol-
ume.provider.capacity.virtual_free

Gauge GiB host-
name

Notification Virtual free volume capac-
ity on host

vol-
ume.provider.pool.capacity.total

Gauge GiB host-
name#pool

Notification,
Pollster

Total volume capacity in
pool

vol-
ume.provider.pool.capacity.free

Gauge GiB host-
name#pool

Notification,
Pollster

Free volume capacity in
pool

vol-
ume.provider.pool.capacity.allocated

Gauge GiB host-
name#pool

Notification,
Pollster

Assigned volume capacity
in pool by Cinder

vol-
ume.provider.pool.capacity.provisioned

Gauge GiB host-
name#pool

Notification,
Pollster

Assigned volume capacity
in pool

vol-
ume.provider.pool.capacity.virtual_free

Gauge GiB host-
name#pool

Notification,
Pollster

Virtual free volume capac-
ity in pool

OpenStack File Share

The following meters are collected for OpenStack File Share:

Name Type Unit Re-
source

Origin Note

Meters added in the Pike release
manila.share.size Gauge GiB share ID Notification, Poll-

ster
Size of the file share

Meters added in the Gazpacho release
manila.share.status Gauge status share ID Pollster Numeric status of the

share

OpenStack Object Storage

The following meters are collected for OpenStack Object Storage:

78 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Name Type Unit Resource Origin Note
Meters added in the Mitaka release or earlier
storage.objects Gauge object storage ID Pollster Number of objects
storage.objects.size Gauge B storage ID Pollster Total size of stored objects
stor-
age.objects.containers

Gauge con-
tainer

storage ID Pollster Number of containers

stor-
age.objects.incoming.bytes

Delta B storage ID Notifi-
cation

Number of incoming bytes

stor-
age.objects.outgoing.bytes

Delta B storage ID Notifi-
cation

Number of outgoing bytes

stor-
age.containers.objects

Gauge object storage
ID/container

Pollster Number of objects in con-
tainer

stor-
age.containers.objects.size

Gauge B storage
ID/container

Pollster Total size of stored objects in
container

Ceph Object Storage

In order to gather meters from Ceph, you have to install and configure the Ceph Object Gateway (radosgw)
as it is described in the Installation Manual. You also have to enable usage logging in order to get the
related meters from Ceph. You will need an admin user with users, buckets, metadata and usage
caps configured.

In order to access Ceph from Telemetry, you need to specify a service group for radosgw in the
ceilometer.conf configuration file along with access_key and secret_key of the admin user men-
tioned above.

The following meters are collected for Ceph Object Storage:

Name Type Unit Resource Ori-
gin

Note

Meters added in the Mitaka release or earlier
radosgw.objects Gauge ob-

ject
storage ID Poll-

ster
Number of objects

ra-
dosgw.objects.size

Gauge B storage ID Poll-
ster

Total size of stored objects

ra-
dosgw.objects.containers

Gauge con-
tainer

storage ID Poll-
ster

Number of containers

ra-
dosgw.api.request

Gauge re-
quest

storage ID Poll-
ster

Number of API requests against Ceph
Object Gateway (radosgw)

ra-
dosgw.containers.objects

Gauge ob-
ject

storage
ID/container

Poll-
ster

Number of objects in container

ra-
dosgw.containers.objects.size

Gauge B storage
ID/container

Poll-
ster

Total size of stored objects in container

Note

The usage related information may not be updated right after an upload or download, because the
Ceph Object Gateway needs time to update the usage properties. For instance, the default configura-

1.3. Administrator Guide 79

http://docs.ceph.com/docs/master/radosgw/
http://docs.ceph.com/docs/master/man/8/radosgw/#usage-logging


Ceilometer Documentation, Release 25.1.0.dev58

tion needs approximately 30 minutes to generate the usage logs.

OpenStack Identity

The following meters are collected for OpenStack Identity:

Name Type Unit Re-
source

Origin Note

Meters added in the Mitaka release or earlier
iden-
tity.authenticate.success

Delta user user ID Notifica-
tion

User successfully authenti-
cated

iden-
tity.authenticate.pending

Delta user user ID Notifica-
tion

User pending authentica-
tion

iden-
tity.authenticate.failure

Delta user user ID Notifica-
tion

User failed to authenticate

OpenStack Networking

The following meters are collected for OpenStack Networking:

Name Type Unit Resource Origin Note
Meters added in the Mitaka release or earlier
bandwidth Delta B label ID Notification Bytes through this l3 metering label

VPN-as-a-Service (VPNaaS)

The following meters are collected for VPNaaS:

Name Type Unit Re-
source

Ori-
gin

Note

Meters added in the Mitaka release or earlier
network.services.vpn Gauge vpnservice vpn ID Poll-

ster
Existence of a VPN

net-
work.services.vpn.connections

Gauge ipsec_site_connectionconnec-
tion ID

Poll-
ster

Existence of an IPSec
connection

Firewall-as-a-Service (FWaaS)

The following meters are collected for FWaaS:

80 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Name Type Unit Re-
source

Origin Note

Meters added in the Mitaka release or earlier
network.services.firewall Gauge firewall firewall

ID
Poll-
ster

Existence of a firewall

net-
work.services.firewall.policy

Gauge fire-
wall_policy

firewall
ID

Poll-
ster

Existence of a firewall
policy

Octavia Load Balancer

The following meters are collected for Octavia Load Balancer:

Name Type Unit Re-
source

Origin Note

Meters added in the Gazpacho release
loadbalancer.operating Gauge status lb ID Poll-

ster
Operating status of a load balancer

loadbal-
ancer.provisioning

Gauge status lb ID Poll-
ster

Provisioning status of a load bal-
ancer

Designate DNS

The following meters are collected for Designate DNS:

Name Type Unit Re-
source

Ori-
gin

Note

Meters added in the Gazpacho release
dns.zone.status Gauge status zone ID Poll-

ster
Status of a DNS zone (1=ACTIVE, 2=PEND-
ING, 3=ERROR)

dns.zone.recordsetsGauge record-
set

zone ID Poll-
ster

Number of recordsets in a DNS zone

dns.zone.ttl Gauge sec-
ond

zone ID Poll-
ster

TTL value of a DNS zone

dns.zone.serial Gauge serial zone ID Poll-
ster

Serial number of a DNS zone

Openstack alarming

The following meters are collected for Aodh:

Name Type Unit Re-
source

Ori-
gin

Note

Meters added in the Flamingo release
alarm.evaluation_resultGauge evalua-

tion_result_count
alarm
ID

Poll-
ster

Total count of evaluation results
for each alarm

1.3. Administrator Guide 81



Ceilometer Documentation, Release 25.1.0.dev58

Events

In addition to meters, the Telemetry service collects events triggered within an OpenStack environment.
This section provides a brief summary of the events format in the Telemetry service.

While a sample represents a single, numeric datapoint within a time-series, an event is a broader concept
that represents the state of a resource at a point in time. The state may be described using various data
types including non-numeric data such as an instance’s flavor. In general, events represent any action
made in the OpenStack system.

Event configuration

By default, ceilometer builds event data from the messages it receives from other OpenStack services.

Note

In releases older than Ocata, it is advisable to set disable_non_metric_meters to True when
enabling events in the Telemetry service. The Telemetry service historically represented events as
metering data, which may create duplication of data if both events and non-metric meters are enabled.

Event structure

Events captured by the Telemetry service are represented by five key attributes:

event_type
A dotted string defining what event occurred such as "compute.instance.resize.start".

message_id
A UUID for the event.

generated
A timestamp of when the event occurred in the system.

traits
A flat mapping of key-value pairs which describe the event. The event’s traits contain most of the
details of the event. Traits are typed, and can be strings, integers, floats, or datetimes.

raw
Mainly for auditing purpose, the full event message can be stored (unindexed) for future evaluation.

Event indexing

The general philosophy of notifications in OpenStack is to emit any and all data someone might need,
and let the consumer filter out what they are not interested in. In order to make processing simpler and
more efficient, the notifications are stored and processed within Ceilometer as events. The notification
payload, which can be an arbitrarily complex JSON data structure, is converted to a flat set of key-value
pairs. This conversion is specified by a config file.

Note

The event format is meant for efficient processing and querying. Storage of complete notifications for
auditing purposes can be enabled by configuring store_raw option.

82 Chapter 1. Overview



Ceilometer Documentation, Release 25.1.0.dev58

Event conversion

The conversion from notifications to events is driven by a configuration file defined by the
definitions_cfg_file in the ceilometer.conf configuration file.

This includes descriptions of how to map fields in the notification body to Traits, and optional plug-ins
for doing any programmatic translations (splitting a string, forcing case).

The mapping of notifications to events is defined per event_type, which can be wildcarded. Traits are
added to events if the corresponding fields in the notification exist and are non-null.

Note

The default definition file included with the Telemetry service contains a list of known notifications
and useful traits. The mappings provided can be modified to include more or less data according to
user requirements.

If the definitions file is not present, a warning will be logged, but an empty set of definitions will be
assumed. By default, any notifications that do not have a corresponding event definition in the definitions
file will be converted to events with a set of minimal traits. This can be changed by setting the option
drop_unmatched_notifications in the ceilometer.conf file. If this is set to True, any unmapped
notifications will be dropped.

The basic set of traits (all are TEXT type) that will be added to all events if the notification has the relevant
data are: service (notification’s publisher), tenant_id, and request_id. These do not have to be specified
in the event definition, they are automatically added, but their definitions can be overridden for a given
event_type.

Event definitions format

The event definitions file is in YAML format. It consists of a list of event definitions, which are mappings.
Order is significant, the list of definitions is scanned in reverse order to find a definition which matches
the notification’s event_type. That definition will be used to generate the event. The reverse ordering
is done because it is common to want to have a more general wildcarded definition (such as compute.
instance.*) with a set of traits common to all of those events, with a few more specific event definitions
afterwards that have all of the above traits, plus a few more.

Each event definition is a mapping with two keys:

event_type
This is a list (or a string, which will be taken as a 1 element list) of event_types this definition will
handle. These can be wildcarded with unix shell glob syntax. An exclusion listing (starting with
a !) will exclude any types listed from matching. If only exclusions are listed, the definition will
match anything not matching the exclusions.

traits
This is a mapping, the keys are the trait names, and the values are trait definitions.

Each trait definition is a mapping with the following keys:

fields
A path specification for the field(s) in the notification you wish to extract for this trait. Speci-
fications can be written to match multiple possible fields. By default the value will be the first
such field. The paths can be specified with a dot syntax (payload.host). Square bracket syn-
tax (payload[host]) is also supported. In either case, if the key for the field you are looking

1.3. Administrator Guide 83



Ceilometer Documentation, Release 25.1.0.dev58

for contains special characters, like ., it will need to be quoted (with double or single quotes):
payload.image_meta.`org.openstack__1__architecture`. The syntax used for the field
specification is a variant of JSONPath

type
(Optional) The data type for this trait. Valid options are: text, int, float, and datetime.
Defaults to text if not specified.

plugin
(Optional) Used to execute simple programmatic conversions on the value in a notification field.

Event delivery to external sinks

You can configure the Telemetry service to deliver the events into external sinks. These sinks are con-
figurable in the /etc/ceilometer/event_pipeline.yaml file.

1.3.4 Management

Troubleshoot Telemetry

Logging in Telemetry

The Telemetry service has similar log settings as the other OpenStack services. Multiple options are
available to change the target of logging, the format of the log entries and the log levels.

The log settings can be changed in ceilometer.conf. The list of configuration options are listed in the
logging configuration options table in the Telemetry section in the OpenStack Configuration Reference.

By default stderr is used as standard output for the log messages. It can be changed to either a log file
or syslog. The debug and verbose options are also set to false in the default settings, the default log
levels of the corresponding modules can be found in the table referred above.

1.4 Ceilometer Configuration Options

1.4.1 Ceilometer Sample Configuration File
Configure Ceilometer by editing /etc/ceilometer/ceilometer.conf.

No config file is provided with the source code, it will be created during the installation. In case where
no configuration file was installed, one can be easily created by running:

oslo-config-generator \
--config-file=/etc/ceilometer/ceilometer-config-generator.conf \
--output-file=/etc/ceilometer/ceilometer.conf

1.5 Ceilometer CLI Documentation
In this section you will find information on Ceilometers command line interface.

1.5.1 ceilometer-status

CLI interface for Ceilometer status commands

84 Chapter 1. Overview

https://github.com/kennknowles/python-jsonpath-rw
https://docs.openstack.org/ceilometer/latest/configuration/index.html


Ceilometer Documentation, Release 25.1.0.dev58

Synopsis

ceilometer-status <category> <command> [<args>]

Description

ceilometer-status is a tool that provides routines for checking the status of a Ceilometer deployment.

Options

The standard pattern for executing a ceilometer-status command is:

ceilometer-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

ceilometer-status

Categories are:

• upgrade

Detailed descriptions are below:

You can also run with a category argument such as upgrade to see a list of all commands in that category:

ceilometer-status upgrade

These sections describe the available categories and arguments for ceilometer-status.

Upgrade

ceilometer-status upgrade check
Performs a release-specific readiness check before restarting services with new code. For example,
missing or changed configuration options, incompatible object states, or other conditions that could
lead to failures while upgrading.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

12.0.0 (Stein)

• Sample check to be filled in with checks as they are added in Stein.

1.5. Ceilometer CLI Documentation 85



Ceilometer Documentation, Release 25.1.0.dev58

86 Chapter 1. Overview



CHAPTER

TWO

APPENDIX

2.1 Release Notes

2.1.1 Folsom
This is the first release (Version 0.1) of Ceilometer. Please take all appropriate caution in using it, as it
is a technology preview at this time.

Version of OpenStack
It is currently tested to work with OpenStack 2012.2 Folsom. Due to its use of openstack-common,
and the modification that were made in term of notification to many other components (glance,
cinder, quantum), it will not easily work with any prior version of OpenStack.

Components
Currently covered components are: Nova, Nova-network, Glance, Cinder and Quantum. Notably,
there is no support yet for Swift and it was decided not to support nova-volume in favor of Cinder.
A detailed list of meters covered per component can be found at in Measurements.

Nova with libvirt only
Most of the Nova meters will only work with libvirt fronted hypervisors at the moment, and our test
coverage was mostly done on KVM. Contributors are welcome to implement other virtualization
backends’ meters.

Quantum delete events
Quantum delete notifications do not include the same metadata as the other messages, so we ignore
them for now. This isn’t ideal, since it may mean we miss charging for some amount of time, but
it is better than throwing away the existing metadata for a resource when it is deleted.

Database backend
The only tested and complete database backend is currently MongoDB, the SQLAlchemy one is
still work in progress.

Installation
The current best source of information on how to deploy this project is found as the devstack
implementation but feel free to come to #openstack-metering on OFTC for more info.

Volume of data
Please note that metering can generate lots of data very quickly. Have a look at the following
spreadsheet to evaluate what you will end up with.

https://wiki.openstack.org/wiki/EfficientMetering#Volume_of_data

• Folsom

• Havana

87

https://wiki.openstack.org/wiki/EfficientMetering#Volume_of_data
https://wiki.openstack.org/wiki/ReleaseNotes/Havana#OpenStack_Metering_.28Ceilometer.29


Ceilometer Documentation, Release 25.1.0.dev58

• Icehouse

• Juno

• Kilo

• Liberty

Since Mitaka development cycle, we start to host release notes on Ceilometer Release Notes

2.2 Glossary

agent
Software service running on the OpenStack infrastructure measuring usage and sending the results
to any number of target using the publisher.

billing
Billing is the process to assemble bill line items into a single per customer bill, emitting the bill to
start the payment collection.

bus listener agent
Bus listener agent which takes events generated on the Oslo notification bus and transforms them
into Ceilometer samples. This is the preferred method of data collection.

polling agent
Software service running either on a central management node within the OpenStack infrastructure
or compute node measuring usage and sending the results to a queue.

notification agent
The different OpenStack services emit several notifications about the various types of events. The
notification agent consumes them from respective queues and filters them by the event_type.

data store
Storage system for recording data collected by ceilometer.

meter
The measurements tracked for a resource. For example, an instance has a number of meters, such
as duration of instance, CPU time used, number of disk io requests, etc. Three types of meters are
defined in ceilometer:

• Cumulative: Increasing over time (e.g. disk I/O)

• Gauge: Discrete items (e.g. floating IPs, image uploads) and fluctuating values (e.g. number
of Swift objects)

• Delta: Incremental change to a counter over time (e.g. bandwidth delta)

metering
Metering is the process of collecting information about what, who, when and how much regarding
anything that can be billed. The result of this is a collection of "tickets" (a.k.a. samples) which are
ready to be processed in any way you want.

notification
A message sent via an external OpenStack system (e.g Nova, Glance, etc) using the Oslo notifica-
tion mechanism1. These notifications are usually sent to and received by Ceilometer through the
notifier RPC driver.

1 https://opendev.org/openstack/oslo.messaging/src/branch/master/oslo_messaging/notify/notifier.py

88 Chapter 2. Appendix

https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse#OpenStack_Telemetry_.28Ceilometer.29
https://wiki.openstack.org/wiki/ReleaseNotes/Juno#OpenStack_Telemetry_.28Ceilometer.29
https://wiki.openstack.org/wiki/ReleaseNotes/Kilo#OpenStack_Telemetry_.28Ceilometer.29
https://wiki.openstack.org/wiki/ReleaseNotes/Liberty#OpenStack_Telemetry_.28Ceilometer.29
https://docs.openstack.org/releasenotes/ceilometer/
https://opendev.org/openstack/oslo.messaging/src/branch/master/oslo_messaging/notify/notifier.py


Ceilometer Documentation, Release 25.1.0.dev58

non-repudiable
"Non-repudiation refers to a state of affairs where the purported maker of a statement will not be
able to successfully challenge the validity of the statement or contract. The term is often seen in a
legal setting wherein the authenticity of a signature is being challenged. In such an instance, the
authenticity is being "repudiated"." (Wikipedia,2)

project
The OpenStack tenant or project.

polling agents
The polling agent is collecting measurements by polling some API or other tool at a regular interval.

publisher
The publisher is publishing samples to a specific target.

push agents
The push agent is the only solution to fetch data within projects, which do not expose the required
data in a remotely usable way. This is not the preferred method as it makes deployment a bit more
complex having to add a component to each of the nodes that need to be monitored.

rating
Rating is the process of analysing a series of tickets, according to business rules defined by mar-
keting, in order to transform them into bill line items with a currency value.

resource
The OpenStack entity being metered (e.g. instance, volume, image, etc).

sample
Data sample for a particular meter.

source
The origin of metering data. This field is set to "openstack" by default. It can be configured to a
different value using the sample_source field in the ceilometer.conf file.

user
An OpenStack user.

2 http://en.wikipedia.org/wiki/Non-repudiation

2.2. Glossary 89

http://en.wikipedia.org/wiki/Non-repudiation

	Overview
	Installation Guide
	Telemetry Data Collection service overview
	Install and Configure Controller Services
	Ceilometer
	Install and configure for Red Hat Enterprise Linux and CentOS
	Prerequisites
	Install Gnocchi
	Finalize Gnocchi installation
	Install and configure components
	Finalize installation

	Install and configure for Ubuntu
	Prerequisites
	Install Gnocchi
	Finalize Gnocchi installation
	Install and configure components
	Finalize installation


	Cinder
	Enable Block Storage meters for Red Hat Enterprise Linux and CentOS
	Configure Cinder to use Telemetry
	Finalize installation

	Enable Block Storage meters for Ubuntu
	Configure Cinder to use Telemetry
	Finalize installation


	Glance
	Enable Image service meters for Red Hat Enterprise Linux and CentOS
	Configure the Image service to use Telemetry
	Finalize installation

	Enable Image service meters for Ubuntu
	Configure the Image service to use Telemetry
	Finalize installation


	Heat
	Enable Orchestration service meters for Red Hat Enterprise Linux and CentOS
	Configure the Orchestration service to use Telemetry
	Finalize installation

	Enable Orchestration service meters for Ubuntu
	Configure the Orchestration service to use Telemetry
	Finalize installation


	Keystone
	Neutron
	Enable Networking service meters for Red Hat Enterprise Linux and CentOS
	Configure the Networking service to use Telemetry
	Finalize installation

	Enable Networking service meters for Ubuntu
	Configure the Networking service to use Telemetry
	Finalize installation


	Swift
	Enable Object Storage meters for Red Hat Enterprise Linux and CentOS
	Prerequisites
	Install components
	Configure Object Storage to use Telemetry
	Finalize installation

	Enable Object Storage meters for Ubuntu
	Prerequisites
	Install components
	Configure Object Storage to use Telemetry
	Finalize installation



	Install and Configure Compute Services
	Enable Compute service meters for Red Hat Enterprise Linux and CentOS
	Install and configure components
	Configure Compute to use Telemetry
	Configure Compute to poll IPMI meters
	Finalize installation

	Enable Compute service meters for Ubuntu
	Install and configure components
	Configure Compute to use Telemetry
	Configure Compute to poll IPMI meters
	Finalize installation


	Verify operation
	Next steps

	Contributor Guide
	Overview
	Overview
	Objectives
	Metering

	System Architecture
	High-Level Architecture
	Gathering the data
	How is data collected?
	Notification Agent: Listening for data
	Polling Agent: Asking for data

	Processing the data
	Pipeline Manager
	Publishing the data

	Storing/Accessing the data


	Data Types
	Measurements
	Existing meters
	New measurements
	Types
	Units
	Naming convention
	Meter definitions


	Events and Event Processing
	Events vs. Samples
	Event Structure
	Events from Notifications
	Converting Notifications to Events
	Definitions file format
	Event Definitions
	Trait Definitions
	Field Path Specifications
	Example Definitions file
	Trait plugins

	Building Notifications


	Getting Started
	Installing development sandbox
	Configuring devstack

	Running the Tests
	Guru Meditation Reports
	Generating a GMR
	Structure of a GMR
	Adding Support for GMRs to New Executables
	Extending the GMR


	Development
	Writing Agent Plugins
	Plugin Framework
	Polling Agents
	Pollster

	Notifications

	Ceilometer + Gnocchi Integration
	Managing Resource Types



	Administrator Guide
	Overview
	System architecture
	Supported databases
	Supported hypervisors


	Configuration
	Data collection
	Notifications
	Meter definitions

	Polling
	Configuration
	Agents
	Compute agent
	Central agent
	IPMI agent


	Data processing and pipelines
	Pipeline configuration
	Publishers
	gnocchi (default)
	prometheus
	notifier
	udp
	file
	http


	Telemetry best practices
	Data collection

	Introduction to dynamic pollster subsystem
	Current limitations of the dynamic pollster system
	The dynamic pollsters system configuration (for OpenStack APIs)
	The dynamic pollsters system configuration (for non-OpenStack APIs)
	The dynamic pollsters system configuration (for local host commands)
	Operations on extracted attributes
	Multi metric dynamic pollsters (handling attribute values with list of objects)
	Handling linked API responses
	OpenStack Dynamic pollsters metadata enrichment with other OpenStack API's data


	Data Types
	Measurements
	OpenStack Compute
	IPMI meters
	OpenStack Image service
	OpenStack Block Storage
	OpenStack File Share
	OpenStack Object Storage
	Ceph Object Storage
	OpenStack Identity
	OpenStack Networking
	VPN-as-a-Service (VPNaaS)
	Firewall-as-a-Service (FWaaS)
	Octavia Load Balancer
	Designate DNS
	Openstack alarming

	Events
	Event configuration
	Event structure
	Event indexing
	Event conversion
	Event definitions format
	Event delivery to external sinks



	Management
	Troubleshoot Telemetry
	Logging in Telemetry



	Ceilometer Configuration Options
	Ceilometer Sample Configuration File

	Ceilometer CLI Documentation
	ceilometer-status
	CLI interface for Ceilometer status commands
	Synopsis
	Description
	Options
	Upgrade





	Appendix
	Release Notes
	Folsom

	Glossary


