Cinder Documentation
Release 19.3.1.dev10

Cinder Contributors

Dec 03, 2024

CONTENTS

1 Whatis Cinder? 3
2 For end users 5
2.1 Toolsforusing Cinder e 5
22 Usingthe Cinder AP 5
3 For operators 7
3.1 Installing Cinder L e e 7
3.1.1 Cinder Installation Guide 7
Prerequisites L L e 7

Adding Cinder to your OpenStack Environment 8

3.1.2 Upgrades o e e e e e 38
Concepts o e e e e e e e e e e e e e 38

Minimal Downtime Upgrade Procedure 40

3.2 Administrating Cinder 42
3.2.1 Cinder Administration 43
Security e e e e e e e 43

Accelerate image compressionol e e e 44

Increase Block Storage API service throughput 45

Manage volumes L e e e e e e e e 45
Troubleshoot your installation 99
Availability-zone types e 107

Generalized filters L 108

Basic volume quality of service 109

Volume multi-attach: Enable attaching a volume to multiple servers 111

33 Reference 113
3.3.1 Cinder Service Configuration 113
Introduction to the Block Storage service 113

Using service tokens Lo e 115

Volume drivers L 117
Backupdrivers 409

Block Storage schedulers L oL 417

Log files used by Block Storage 419

Policy Personas and Permissions 420

Policy configuration 443

Policy configuration HowTo 468

Fibre Channel Zone Manager, 475

Volume encryption supported by the key manager 479

Additional options 483

Block Storage service sample configuration files 495

332 All AboutCinder Drivers 0 i i e e 498

Cinder Driver Support Matrix, 498

Available Drivers e e e e e e e 523

General Considerations e e 648

Current Cinder Drivers e 651

3.3.3 Command-Line Interface Reference 651

Cinder Management Commands 651

Additional Tools and Information 658

3.4 Additional TESOUICES v v v v i e e e e e e e e e e e e e e e e e e 679

4 For contributors 681

4.1 ContributingtoCinder 681

4.1.1 Contributor Guide e 681

Getting Started L. e e 681

Writing Release Notes 686

Programming HowTos and Tutorials 688

Managing the Development Cycle 792

Documentation Contribution 798

Background Concepts forCinder 802

Other Resources i i i e e e e 818

5 For reviewers 1171

6 Additional reference 1173
6.1 Glossary e e e e 1173

Cinder Documentation, Release 19.3.1.dev10

CONTENTS 1

Cinder Documentation, Release 19.3.1.dev10

2 CONTENTS

CHAPTER
ONE

WHAT IS CINDER?

Cinder is the OpenStack Block Storage service for providing volumes to Nova virtual machines, Ironic
bare metal hosts, containers and more. Some of the goals of Cinder are to be/have:

* Component based architecture: Quickly add new behaviors
* Highly available: Scale to very serious workloads
* Fault-Tolerant: Isolated processes avoid cascading failures

* Recoverable: Failures should be easy to diagnose, debug, and rectify

Open Standards: Be a reference implementation for a community-driven api

Cinder Documentation, Release 19.3.1.dev10

4 Chapter 1. What is Cinder?

CHAPTER
TWO

FOR END USERS

As an end user of Cinder, youll use Cinder to create and manage volumes using the Horizon user interface,
command line tools such as the python-cinderclient, or by directly using the REST API.

2.1 Tools for using Cinder

* Horizon: The official web UI for the OpenStack Project.

* OpenStack Client: The official CLI for OpenStack Projects. You should use this as your CLI for
most things, it includes not just nova commands but also commands for most of the projects in
OpenStack.

e Cinder Client: The openstack CLI is recommended, but there are some advanced features and
administrative commands that are not yet available there. For CLI access to these commands, the
cinder CLI can be used instead.

2.2 Using the Cinder API

All features of Cinder are exposed via a REST API that can be used to build more complicated logic or
automation with Cinder. This can be consumed directly or via various SDKs. The following resources
can help you get started consuming the API directly.

¢ Cinder API

* Cinder microversion history

https://docs.openstack.org/python-cinderclient/latest/
https://docs.openstack.org/api-ref/block-storage/
https://docs.openstack.org/horizon/latest/user/manage-volumes.html
https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/python-cinderclient/latest/user/shell.html
https://docs.openstack.org/api-ref/block-storage/

Cinder Documentation, Release 19.3.1.dev10

6 Chapter 2. For end users

CHAPTER
THREE

FOR OPERATORS

This section has details for deploying and maintaining Cinder services.

3.1 Installing Cinder

Cinder can be configured standalone using the configuration setting auth_strategy = noauth, but
in most cases you will want to at least have the Keystone Identity service and other OpenStack services
installed.

3.1.1 Cinder Installation Guide

The Block Storage service (cinder) provides block storage devices to guest instances. The method in
which the storage is provisioned and consumed is determined by the Block Storage driver, or drivers in
the case of a multi-backend configuration. There are a variety of drivers that are available: NAS/SAN,
NES, iSCSI, Ceph, and more.

The Block Storage API and scheduler services typically run on the controller nodes. Depending upon
the drivers used, the volume service can run on controller nodes, compute nodes, or standalone storage
nodes.

For more information, see the Configuration Reference.

Prerequisites

This documentation specifically covers the installation of the Cinder Block Storage service. Before fol-
lowing this guide you will need to prepare your OpenStack environment using the instructions in the
OpenStack Installation Guide.

Once able to Launch an instance in your OpenStack environment follow the instructions below to add
Cinder to the base environment.

https://docs.openstack.org/keystone/latest/install/
https://docs.openstack.org/latest/install/
https://docs.openstack.org/install-guide/

Cinder Documentation, Release 19.3.1.dev10

Adding Cinder to your OpenStack Environment

The following links describe how to install the Cinder Block Storage Service:

Warning: For security reasons Service Tokens must to be configured in OpenStack for Cinder to
operate securely. Pay close attention to the specific section describing it:. See https://bugs.launchpad.
net/nova/+bug/2004555 for details.

Cinder Block Storage service overview

The OpenStack Block Storage service (Cinder) adds persistent storage to a virtual machine. Block Storage
provides an infrastructure for managing volumes, and interacts with OpenStack Compute to provide
volumes for instances. The service also enables management of volume snapshots, and volume types.

The Block Storage service consists of the following components:
cinder-api Accepts API requests, and routes them to the cinder-volume for action.

cinder-volume Interacts directly with the Block Storage service, and processes such as the
cinder-scheduler. It also interacts with these processes through a message queue. The
cinder-volume service responds to read and write requests sent to the Block Storage service
to maintain state. It can interact with a variety of storage providers through a driver architecture.

cinder-scheduler daemon Selects the optimal storage provider node on which to create the volume. A
similar component to the nova-scheduler.

cinder-backup daemon The cinder-backup service provides backing up volumes of any type to a
backup storage provider. Like the cinder-volume service, it can interact with a variety of storage
providers through a driver architecture.

Messaging queue Routes information between the Block Storage processes.

Cinder Installation Guide for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure storage nodes for the Block Storage service. For
simplicity, this configuration references one storage node with an empty local block storage device. The
instructions use /dev/sdb, but you can substitute a different value for your particular node.

The service provisions logical volumes on this device using the LVM driver and provides them to in-
stances via iSCS/ transport. You can follow these instructions with minor modifications to horizontally
scale your environment with additional storage nodes.

8 Chapter 3. For operators

https://bugs.launchpad.net/nova/+bug/2004555
https://bugs.launchpad.net/nova/+bug/2004555

Cinder Documentation, Release 19.3.1.dev10

Install and configure controller node

This section describes how to install and configure the Block Storage service, code-named cinder, on
the controller node. This service requires at least one additional storage node that provides volumes to
instances.

Prerequisites

Before you install and configure the Block Storage service, you must create a database, service creden-
tials, and API endpoints.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

mysql -u root -p

2. Create the cinder database:

3. Grant proper access to the cinder database:

Replace CINDER_DBPASS with a suitable password.
4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. To create the service credentials, complete these steps:

1. Create a cinder user:

openstack user create --domain default --password-prompt cinder

(continues on next page)

3.1. Installing Cinder 9

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

2. Add the admin role to the cinder user:

openstack role add --project service --user cinder admin

Note: This command provides no output.

3. Create the cinderv3 service entity:

openstack service create --name cinderv3
--description volumev3

Note: Beginning with the Xena release, the Block Storage services require only one service
entity. For prior releases, please consult the documentation for that specific release.

4. Create the Block Storage service API endpoints:

openstack endpoint create --region RegionOne
volumev3 public http://controller:8776/v3/%\ (project_id\)s

openstack endpoint create --region RegionOne

(continues on next page)

10 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

volumev3 internal http://controller:8776/v3/%\ (project_id\)s

openstack endpoint create --region RegionOne
volumev3 admin http://controller:8776/v3/%\ (project_id\)s

Install and configure components

1. Install the packages:

zypper install openstack-cinder-api openstack-cinder-scheduler

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [database] section, configure database access:

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

2. In the [DEFAULT] section, configure RabbitMQ message queue access:

3.1. Installing Cinder 11

Cinder Documentation, Release 19.3.1.dev10

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

3. Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

4. In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

3. In the [oslo_concurrency] section, configure the lock path:

12 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configure Compute to use Block Storage

1. Edit the /etc/nova/nova. conf file and add the following to it:

Finalize installation

1. Restart the Compute API service:

systemctl restart openstack-nova-api.service

2. Start the Block Storage services and configure them to start when the system boots:

systemctl enable openstack-cinder-api.service openstack-cinder-
—scheduler.service

systemctl start openstack-cinder-api.service openstack-cinder-scheduler.
—service

Install and configure a storage node

Prerequisites

Before you install and configure the Block Storage service on the storage node, you must prepare the
storage device.

Note: Perform these steps on the storage node.

. Install the supporting utility packages.
. Install the LVM packages:

zypper install lvm2

. (Optional) If you intend to use non-raw image types such as QCOW2 and VMDK, install the

QEMU package:

zypper install gemu

Note: Some distributions include LVM by default.

. Create the LVM physical volume /dev/sdb:

pvcreate /dev/sdb

3.1.

Installing Cinder 13

Cinder Documentation, Release 19.3.1.dev10

5. Create the LVM volume group cinder-volumes:

vgcreate cinder-volumes /dev/sdb

The Block Storage service creates logical volumes in this volume group.

6. Only instances can access Block Storage volumes. However, the underlying operating system man-
ages the devices associated with the volumes. By default, the LVM volume scanning tool scans
the /dev directory for block storage devices that contain volumes. If projects use LVM on their
volumes, the scanning tool detects these volumes and attempts to cache them which can cause a
variety of problems with both the underlying operating system and project volumes. You must
reconfigure LVM to scan only the devices that contain the cinder-volumes volume group. Edit
the /etc/1lvm/1lvm. conf file and complete the following actions:

* In the devices section, add a filter that accepts the /dev/sdb device and rejects all other
devices:

devices

Each item in the filter array begins with a for accept or r for reject and includes a regular
expression for the device name. The array must end with r/.*/ to reject any remaining
devices. You can use the vgs -vvvv command to test filters.

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1lvm/lvm. conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

Install and configure components

1. Install the packages:

zypper install openstack-cinder-volume tgt

2. Edit the /etc/cinder/cinder. conf file and complete the following actions:

* In the [database] section, configure database access:

14 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your storage node, typically 10.0.0.41 for the first node in the example
architecture.

* In the [1vm] section, configure the LVM back end with the LVM driver, cinder-volumes
volume group, iSCSI protocol, and appropriate iSCSI service:

(continues on next page)

3.1. Installing Cinder 15

https://docs.openstack.org/install-guide/overview.html#example-architecture
https://docs.openstack.org/install-guide/overview.html#example-architecture

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

In the [DEFAULT] section, enable the LVM back end:

[DEFAULT]

Note: Back-end names are arbitrary. As an example, this guide uses the name of the driver
as the name of the back end.

* In the [DEFAULT] section, configure the location of the Image service API:

[DEFAULT]

In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]

3. Create the /etc/tgt/conf.d/cinder. conf file with the following data:

include /var/lib/cinder/volumes/*

Finalize installation

1. Start the Block Storage volume service including its dependencies and configure them to start when
the system boots:

systemctl enable openstack-cinder-volume.service tgtd.service
systemctl start openstack-cinder-volume.service tgtd.service

Install and configure the backup service

Optionally, install and configure the backup service. For simplicity, this configuration uses the Block
Storage node and the Object Storage (swift) driver, thus depending on the Object Storage service.

Note: You must install and configure a storage node prior to installing and configuring the backup
service.

16 Chapter 3. For operators

https://docs.openstack.org/swift/latest/install/

Cinder Documentation, Release 19.3.1.dev10

Install and configure components

Note: Perform these steps on the Block Storage node.

1. Install the packages:

zypper install openstack-cinder-backup

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [DEFAULT] section, configure backup options:

Replace SWIFT_URL with the URL of the Object Storage service. The URL can be found by
showing the object-store API endpoints:

openstack catalog show object-store

Finalize installation

Start the Block Storage backup service and configure it to start when the system boots:

systemct]l enable openstack-cinder-backup.service
systemctl start openstack-cinder-backup.service

Verify Cinder operation

Verify operation of the Block Storage service.

Note: Perform these commands on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

2. List service components to verify successful launch of each process:

openstack volume service list

(continues on next page)

3.1. Installing Cinder 17

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Cinder Installation Guide for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure storage nodes for the Block Storage service. For
simplicity, this configuration references one storage node with an empty local block storage device. The
instructions use /dev/sdb, but you can substitute a different value for your particular node.

The service provisions logical volumes on this device using the LVM driver and provides them to in-
stances via iSCS/ transport. You can follow these instructions with minor modifications to horizontally
scale your environment with additional storage nodes.

Install and configure controller node

This section describes how to install and configure the Block Storage service, code-named cinder, on
the controller node. This service requires at least one additional storage node that provides volumes to
instances.

Prerequisites

Before you install and configure the Block Storage service, you must create a database, service creden-
tials, and API endpoints.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

mysql -u root -p

2. Create the cinder database:

3. Grant proper access to the cinder database:

18 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Replace CINDER_DBPASS with a suitable password.
4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. To create the service credentials, complete these steps:

1. Create a cinder user:

openstack user create --domain default --password-prompt cinder

2. Add the admin role to the cinder user:

openstack role add --project service --user cinder admin

Note: This command provides no output.

3. Create the cinderv3 service entity:

openstack service create --name cinderv3
--description volumev3

Note: Beginning with the Xena release, the Block Storage services require only one service
entity. For prior releases, please consult the documentation for that specific release.

3.1. Installing Cinder 19

Cinder Documentation, Release 19.3.1.dev10

4. Create the Block Storage service API endpoints:

openstack endpoint create --region RegionOne
volumev3 public http://controller:8776/v3/%\ (project_id\)s

openstack endpoint create --region RegionOne
volumev3 internal http://controller:8776/v3/%\ (project_id\)s

openstack endpoint create --region RegionOne
volumev3 admin http://controller:8776/v3/%\ (project_id\)s

(continues on next page)

20

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Install and configure components

1. Install the packages:

yum install openstack-cinder

2. Edit the /etc/cinder/cinder. conf file and complete the following actions:

1. In the [database] section, configure database access:

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

2. In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

3. Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

3.1. Installing Cinder 21

Cinder Documentation, Release 19.3.1.dev10

4. In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

3. In the [oslo_concurrency] section, configure the lock path:

4. Populate the Block Storage database:

su -s /bin/sh -c cinder

Note: Ignore any deprecation messages in this output.

Configure Compute to use Block Storage

1. Edit the /etc/nova/nova.conf file and add the following to it:

Finalize installation

1. Restart the Compute API service:

systemctl restart openstack-nova-api.service

2. Start the Block Storage services and configure them to start when the system boots:

systemctl enable openstack-cinder-api.service openstack-cinder-
—scheduler.service

systemctl start openstack-cinder-api.service openstack-cinder-scheduler.
—,service

22 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Install and configure a storage node
Prerequisites

Before you install and configure the Block Storage service on the storage node, you must prepare the
storage device.

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install the LVM packages:

yum install 1lvm2 device-mapper-persistent-data

» Start the LVM metadata service and configure it to start when the system boots:

systemctl enable lvm2-lvmetad.service
systemctl start lvm2-lvmetad.service

Note: Some distributions include LVM by default.

2. Create the LVM physical volume /dev/sdb:

pvcreate /dev/sdb

3. Create the LVM volume group cinder-volumes:

vgcreate cinder-volumes /dev/sdb

The Block Storage service creates logical volumes in this volume group.

4. Only instances can access Block Storage volumes. However, the underlying operating system man-
ages the devices associated with the volumes. By default, the LVM volume scanning tool scans
the /dev directory for block storage devices that contain volumes. If projects use LVM on their
volumes, the scanning tool detects these volumes and attempts to cache them which can cause a
variety of problems with both the underlying operating system and project volumes. You must
reconfigure LVM to scan only the devices that contain the cinder-volumes volume group. Edit
the /etc/1lvm/1lvm. conf file and complete the following actions:

* In the devices section, add a filter that accepts the /dev/sdb device and rejects all other
devices:

devices

3.1. Installing Cinder 23

Cinder Documentation, Release 19.3.1.dev10

Each item in the filter array begins with a for accept or r for reject and includes a regular
expression for the device name. The array must end with r/.*/ to reject any remaining
devices. You can use the vgs -vvvv command to test filters.

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1lvm/lvm. conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

Install and configure components

1. Install the packages:

yum install openstack-cinder targetcli

2. Edit the /etc/cinder/cinder. conf file and complete the following actions:

* In the [database] section, configure database access:

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

(continues on next page)

24 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your storage node, typically 10.0.0.41 for the first node in the example
architecture.

* In the [1vm] section, configure the LVM back end with the LVM driver, cinder-volumes
volume group, iSCSI protocol, and appropriate iSCSI service. If the [1vm] section does not
exist, create it:

e In the [DEFAULT] section, enable the LVM back end:

Note: Back-end names are arbitrary. As an example, this guide uses the name of the driver
as the name of the back end.

* In the [DEFAULT] section, configure the location of the Image service API:

* In the [oslo_concurrency] section, configure the lock path:

3.1. Installing Cinder 25

https://docs.openstack.org/install-guide/overview.html#example-architecture
https://docs.openstack.org/install-guide/overview.html#example-architecture

Cinder Documentation, Release 19.3.1.dev10

[oslo_concurrency]

Finalize installation

« Start the Block Storage volume service including its dependencies and configure them to start when
the system boots:

systemctl enable openstack-cinder-volume.service target.service
systemctl start openstack-cinder-volume.service target.service

Install and configure the backup service

Optionally, install and configure the backup service. For simplicity, this configuration uses the Block
Storage node and the Object Storage (swift) driver, thus depending on the Object Storage service.

Note: You must install and configure a storage node prior to installing and configuring the backup
service.

Install and configure components

Note: Perform these steps on the Block Storage node.

1. Install the packages:

yum install openstack-cinder

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [DEFAULT] section, configure backup options:

[DEFAULT]

Replace SWIFT_URL with the URL of the Object Storage service. The URL can be found by
showing the object-store API endpoints:

openstack catalog show object-store

26 Chapter 3. For operators

https://docs.openstack.org/swift/latest/install/

Cinder Documentation, Release 19.3.1.dev10

Finalize installation

Start the Block Storage backup service and configure it to start when the system boots:

systemct]l enable openstack-cinder-backup.service
systemct]l start openstack-cinder-backup.service

Cinder Installation Guide for Ubuntu

This section describes how to install and configure storage nodes for the Block Storage service. For
simplicity, this configuration references one storage node with an empty local block storage device. The
instructions use /dev/sdb, but you can substitute a different value for your particular node.

The service provisions logical volumes on this device using the LVM driver and provides them to in-
stances via iSCS/ transport. You can follow these instructions with minor modifications to horizontally
scale your environment with additional storage nodes.

Install and configure controller node

This section describes how to install and configure the Block Storage service, code-named cinder, on
the controller node. This service requires at least one additional storage node that provides volumes to
instances.

Prerequisites

Before you install and configure the Block Storage service, you must create a database, service creden-
tials, and API endpoints.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

mysql

2. Create the cinder database:

3. Grant proper access to the cinder database:

Replace CINDER_DBPASS with a suitable password.
4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

3.1. Installing Cinder 27

Cinder Documentation, Release 19.3.1.dev10

admin-openrc

3. To create the service credentials, complete these steps:

1. Create a cinder user:

openstack user create --domain default --password-prompt cinder

2. Add the admin role to the cinder user:

openstack role add --project service --user cinder admin

Note: This command provides no output.

3. Create the cinderv3 service entity:

openstack service create --name cinderv3
--description volumev3

Note: Beginning with the Xena release, the Block Storage services require only one service
entity. For prior releases, please consult the documentation for that specific release.

4. Create the Block Storage service API endpoints:

28 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

openstack endpoint create --region RegionOne
volumev3 public http://controller:8776/v3/%\ (project_id\)s

openstack endpoint create --region RegionOne
volumev3 internal http://controller:8776/v3/%\ (project_id\)s

openstack endpoint create --region RegionOne
volumev3 admin http://controller:8776/v3/%\ (project_id\)s

3.1. Installing Cinder 29

Cinder Documentation, Release 19.3.1.dev10

Install and configure components

1. Install the packages:

apt install cinder-api cinder-scheduler

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

1. In the [database] section, configure database access:

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

2. In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

3. Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

4. In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

30 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

[DEFAULT]

3. In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]

4. Populate the Block Storage database:

su -s /bin/sh -c cinder

Note: Ignore any deprecation messages in this output.

Configure Compute to use Block Storage

1. Edit the /etc/nova/nova. conf file and add the following to it:

[cinder]

Finalize installation

1. Restart the Compute API service:

service nova-api restart

2. Restart the Block Storage services:

service cinder-scheduler restart
service apache2 restart

Install and configure a storage node
Prerequisites

Before you install and configure the Block Storage service on the storage node, you must prepare the
storage device.

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:

3.1. Installing Cinder 31

Cinder Documentation, Release 19.3.1.dev10

apt install lvm2 thin-provisioning-tools

Note: Some distributions include LVM by default.

. Create the LVM physical volume /dev/sdb:

pvcreate /dev/sdb

. Create the LVM volume group cinder-volumes:

vgcreate cinder-volumes /dev/sdb

The Block Storage service creates logical volumes in this volume group.

. Only instances can access Block Storage volumes. However, the underlying operating system man-

ages the devices associated with the volumes. By default, the LVM volume scanning tool scans
the /dev directory for block storage devices that contain volumes. If projects use LVM on their
volumes, the scanning tool detects these volumes and attempts to cache them which can cause a
variety of problems with both the underlying operating system and project volumes. You must
reconfigure LVM to scan only the devices that contain the cinder-volumes volume group. Edit
the /etc/lvm/1lvm. conf file and complete the following actions:

* In the devices section, add a filter that accepts the /dev/sdb device and rejects all other
devices:

devices

Each item in the filter array begins with a for accept or r for reject and includes a regular
expression for the device name. The array must end with r/.*/ to reject any remaining
devices. You can use the vgs -vvvv command to test filters.

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1vm/lvm. conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

32

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Install and configure components

1. Install the packages:

apt install cinder-volume

2. Edit the /etc/cinder/cinder.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace CINDER_DBPASS with the password you chose for the Block Storage database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace CINDER_PASS with the password you chose for the cinder user in the Identity ser-
vice.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [DEFAULT] section, configure the my_ip option:

3.1. Installing Cinder 33

Cinder Documentation, Release 19.3.1.dev10

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your storage node, typically 10.0.0.41 for the first node in the example
architecture.

* In the [1vm] section, configure the LVM back end with the LVM driver, cinder-volumes
volume group, iSCSI protocol, and appropriate iSCSI service:

e In the [DEFAULT] section, enable the LVM back end:

Note: Back-end names are arbitrary. As an example, this guide uses the name of the driver
as the name of the back end.

* In the [DEFAULT] section, configure the location of the Image service API:

* In the [oslo_concurrency] section, configure the lock path:

Finalize installation

1. Restart the Block Storage volume service including its dependencies:

service tgt restart
service cinder-volume restart

34 Chapter 3. For operators

https://docs.openstack.org/install-guide/overview.html#example-architecture
https://docs.openstack.org/install-guide/overview.html#example-architecture

Cinder Documentation, Release 19.3.1.dev10

Install and configure the backup service

Optionally, install and configure the backup service. For simplicity, this configuration uses the Block
Storage node and the Object Storage (swift) driver, thus depending on the Object Storage service.

Note: You must install and configure a storage node prior to installing and configuring the backup
service.

Install and configure components

Note: Perform these steps on the Block Storage node.

1. Install the packages:

apt install cinder-backup

2. Edit the /etc/cinder/cinder. conf file and complete the following actions:

* In the [DEFAULT] section, configure backup options:

[DEFAULT]

Replace SWIFT_URL with the URL of the Object Storage service. The URL can be found by
showing the object-store API endpoints:

openstack catalog show object-store

Finalize installation

Restart the Block Storage backup service:

service cinder-backup restart

Cinder Installation Guide for Windows

This section describes how to install and configure storage nodes for the Block Storage service.

For the moment, Cinder Volume is the only Cinder service supported on Windows.

3.1. Installing Cinder 35

https://docs.openstack.org/swift/latest/install/

Cinder Documentation, Release 19.3.1.dev10

Install and configure a storage node
Prerequisites

The following Windows versions are officially supported by Cinder:
* Windows Server 2012
* Windows Server 2012 R2
* Windows Server 2016

The OpenStack Cinder Volume MSI installer is the recommended deployment tool for Cinder on Win-
dows. You can find it at https://cloudbase.it/openstack-windows-storage/#download.

It installs an independent Python environment, in order to avoid conflicts with existing applications. It
can dynamically generate a cinder. conf file based on the parameters you provide.

The OpenStack Cinder Volume MSI installer can be deployed in a fully automated way using Puppet,
Chef, SaltStack, Ansible, Juju, DSC, Windows Group Policies or any other automated configuration
framework.

Configure NTP

Network time services must be configured to ensure proper operation of the OpenStack nodes. To set
network time on your Windows host you must run the following commands:

net stop w32time
w32tm /config /manualpeerlist:pool.ntp.org,0x8 /syncfromflags:MANUAL
net start w32time

Keep in mind that the node will have to be time synchronized with the other nodes of your OpenStack
environment, so it is important to use the same NTP server.

Note: In case of an Active Directory environment, you may do this only for the AD Domain Controller.

Install and configure components

The MSI may be run in the following modes:

Graphical mode

The installer will walk you through the commonly used cinder options, automatically generating a config
file based on your input.

You may run the following in order to run the installer in graphical mode, also specifying a log file.
Please use the installer full path.

36 Chapter 3. For operators

https://cloudbase.it/openstack-windows-storage/#download

Cinder Documentation, Release 19.3.1.dev10

Unattended mode

The installer will deploy Cinder, taking care of required Windows services and features. A minimal
sample config file will be generated and need to be updated accordingly.

Run the following in order to install Cinder in unattended mode, enabling the iSCSI and SMB volume
drivers.

By default, Cinder will be installed at %¥ProgramFiles%\Cloudbase Solutions\OpenStack. You
may choose a different install directory by using the INSTALLDIR argument, as following:

The installer will generate a Windows service, called cinder-volume.

Note: Previous MSI releases may use a separate service per volume backend (e.g. cinder-volume-smb).
You may double check the cinder services along with their executable paths by running the following:

get-service

Note that sc is also an alias for Set-Content. To use the service control utility, you have to explicitly
call sc.exe.

Configuring Cinder

If youve run the installer in graphical mode, you may skip this part as the MSI already took care of
generating the configuration files.

The Cinder Volume Windows service configured by the MSI expects the cinder config file to reside at:

N\

You may use the following config sample, updating fields appropriately.

(continues on next page)

3.1. Installing Cinder 37

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

[coordination]

[key_manager]

Note: The above sample doesnt configure any Cinder Volume driver. To do so, follow the configuration
guide for the driver of choice, appending driver specific config options.

Currently supported drivers on Windows:
» Windows SMB volume driver

e Windows iSCSI volume driver

Finalize installation

1. Restart the Cinder Volume service:

Restart-Service

2. Ensure that the Cinder Volume service is running:

Get-Service

3.1.2 Upgrades

Cinder aims to provide upgrades with minimal downtime.

This should be achieved for both data and control plane. As Cinder doesnt interfere with data plane, its
upgrade shouldnt affect any volumes being accessed by virtual machines.

Keeping the control plane running during an upgrade is more difficult. This documents goal is to provide
preliminaries and a detailed procedure of such upgrade.

Concepts

Here are the key concepts you need to know before reading the section on the upgrade process:

38 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

RPC version pinning

Through careful RPC versioning, newer services are able to talk to older services (and vice-versa).
The versions are autodetected using information reported in services table. In case of receiving
CappedVersionUnknown or ServiceToo0ld exceptions on service start, youre probably having some
old orphaned records in that table.

Graceful service shutdown

Many cinder services are python processes listening for messages on an AMQP queue. When the op-
erator sends SIGTERM signal to the process, it stops getting new work from its queue, completes any
outstanding work and then terminates. During this process, messages can be left on the queue for when
the python process starts back up. This gives us a way to shutdown a service using older code, and start
up a service using newer code with minimal impact.

Note: Waiting for completion of long-running operations (e.g. slow volume copy operation) may take
a while.

Note: This was tested with RabbitMQ messaging backend and may vary with other backends.

Online Data Migrations

To make DB schema migrations less painful to execute, since Liberty, all data migrations are banned from
schema migration scripts. Instead, the migrations should be done by background process in a manner
that doesnt interrupt running services (you can also execute online data migrations with services turned
off if youre doing a cold upgrade). In Ocata a new cinder-manage db online_data_migrations
utility was added for that purpose. Before upgrading Ocata to Pike, you need to run this tool in the
background, until it tells you no more migrations are needed. Note that you wont be able to apply Pikes
schema migrations before completing Ocatas online data migrations.

API load balancer draining

When upgrading API nodes, you can make your load balancer only send new connections to the newer
API nodes, allowing for a seamless update of your API nodes.

DB prune deleted rows

Currently resources are soft deleted in the database, so users are able to track instances in the DB that
are created and destroyed in production. However, most people have a data retention policy, of say 30
days or 90 days after which they will want to delete those entries. Not deleting those entries affects
DB performance as indices grow very large and data migrations take longer as there is more data to
migrate. To make pruning easier theres a cinder-manage db purge <age_in_days> command that
permanently deletes records older than specified age.

3.1. Installing Cinder 39

Cinder Documentation, Release 19.3.1.dev10

Versioned object backports

RPC pinning ensures new services can talk to the older services method signatures. But many of the
parameters are objects that may well be too new for the old service to understand. Cinder makes sure to
backport an object to a version that it is pinned to before sending.

Minimal Downtime Upgrade Procedure

Plan your upgrade

Read and ensure you understand the release notes for the next release.

Make a backup of your database. Cinder does not support downgrading of the database. Hence,
in case of upgrade failure, restoring database from backup is the only choice.

Note that theres an assumption that live upgrade can be performed only between subsequent re-
leases. This means that you cannot upgrade Liberty directly into Newton, you need to upgrade to
Mitaka first.

To avoid dependency hell it is advised to have your Cinder services deployed separately in con-
tainers or Python venvs.

Note that Cinder is basing version detection on what is reported in the services table in the
DB. Before upgrade make sure you dont have any orphaned old records there, because these can
block starting newer services. You can clean them up using cinder-manage service remove
<binary> <host> command.

Assumed service upgrade order is cinder-scheduler, cinder-volume, cinder-backup and finally
cinder-api.

Rolling upgrade process

To reduce downtime, the services can be upgraded in a rolling fashion. It means upgrading a few services
at a time. To minimise downtime you need to have HA Cinder deployment, so at the moment a service
is upgraded, youll keep other service instances running.

Before maintenance window

* First you should execute required DB schema migrations. To achieve that without interrupting

your existing installation, install new Cinder code in new venv or a container and run the DB sync
(cinder-manage db sync). These schema change operations should have minimal or no effect
on performance, and should not cause any operations to fail.

* At this point, new columns and tables may exist in the database. These DB schema changes are

done in a way that both the N and N+1 release can perform operations against the same schema.

40

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

During maintenance window

1. The first service is cinder-scheduler. It is load-balanced by the message queue, so the only thing

you need to worry about is to shut it down gracefully (using SIGTERM signal) to make sure it will
finish all the requests being processed before shutting down. Then you should upgrade the code
and restart the service.

. Repeat first step for all of your cinder-scheduler services.

. Then you proceed to upgrade cinder-volume services. The problem here is that due to Ac-

tive/Passive character of this service, youre unable to run multiple instances of cinder-volume
managing a single volume backend. This means that there will be a moment when you wont have
any cinder-volume in your deployment and you want that disruption to be as short as possible.

Note: The downtime here is non-disruptive as long as it doesnt exceed the service heartbeat
timeout. If you dont exceed that, then cinder-schedulers will not notice that cinder-volume is gone
and the message queue will take care of queuing any RPC messages until cinder-volume is back.

To make sure its achieved, you can either lengthen the timeout by tweaking service_down_time
value in cinder. conf, or prepare upgraded cinder-volume on another node and do a very quick
switch by shutting down older service and starting the new one just after that.

Also note that in case of A/P HA configuration you need to make sure both primary and secondary
c-vol have the same hostname set (you can override it using host option in cinder.conf), so
both will be listening on the same message queue and will accept the same messages.

. Repeat third step for all cinder-volume services.

. Now we should proceed with (optional) cinder-backup services. You should upgrade them in the

same manner like cinder-scheduler.

Note: Backup operations are time consuming, so shutting down a c-bak service without inter-
rupting ongoing requests can take time. It may be useful to disable the service first using cinder
service-disable command, so it wont accept new requests, and wait a reasonable amount of
time until all the in-progress jobs are completed. Then you can proceed with the upgrade. To make
sure the backup service finished all the ongoing requests, you can check the service logs.

Note: Until Liberty cinder-backup was tightly coupled with cinder-volume service and needed
to coexist on the same physical node. This is not true starting with Mitaka version. If youre still
keeping that coupling, then your upgrade strategy for cinder-backup should be more similar to how
cinder-volume is upgraded.

. cinder-api services should go last. In HA deployment youre typically running them behind a load

balancer (e.g. HAProxy), so you need to take one service instance out of the balancer, shut it down,
upgrade the code and dependencies, and start the service again. Then you can plug it back into the
load balancer.

Note: You may want to start another instance of older c-api to handle the load while youre up-

3.1.

Installing Cinder 41

Cinder Documentation, Release 19.3.1.dev10

grading your original services.

7. Then you should repeat step 6 for all of the cinder-api services.

After maintenance window

* Once all services are running the new code, double check in the DB that there are no old orphaned

records in services table (Cinder doesnt remove the records when service is gone or service host-
name is changed, so you need to take care of that manually; you should be able to distinguish dead
records by looking at when the record was updated). Cinder is basing its RPC version detection
on that, so stale records can prevent you from going forward.

Now all services are upgraded, we need to send the SIGHUP signal, so all the services clear any
cached service version data. When a new service starts, it automatically detects which version
of the services RPC protocol to use, and will downgrade any communication to that version. Be
advised that cinder-api service doesnt handle SIGHUP so it needs to be restarted. Its best to restart
your cinder-api services as last ones, as that way you make sure API will fail fast when user requests
new features on a deployment thats not fully upgraded (new features can fail when RPC messages
are backported to lowest common denominator). Order of the rest of the services shouldnt matter.

Now all the services are upgraded, the system is able to use the latest version of the RPC protocol
and able to access all the features of the new release.

At this point, you must also ensure you update the configuration, to stop using any deprecated
features or options, and perform any required work to transition to alternative features. All the
deprecated options should be supported for one cycle, but should be removed before your next
upgrade is performed.

Since Ocata, you also need to run cinder-manage db online_data_migrations command
to make sure data migrations are applied. The tool lets you limit the impact of the data migrations
by using --max_count option to limit number of migrations executed in one run. If this option
is used, the exit status will be 1 if any migrations were successful (even if others generated errors,
which could be due to dependencies between migrations). The command should be rerun while the
exit status is 1. If no further migrations are possible, the exit status will be 2 if some migrations are
still generating errors, which requires intervention to resolve. The command should be considered
completed successfully only when the exit status is 0. You need to complete all of the migrations
before starting upgrade to the next version (e.g. you need to complete Ocatas data migrations
before proceeding with upgrade to Pike; you wont be able to execute Pikes DB schema migrations
before completing Ocatas data migrations).

3.2 Administrating Cinder

Contents:

42

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

3.2.1 Cinder Administration

The OpenStack Block Storage service works through the interaction of a series of daemon processes
named cinder-* that reside persistently on the host machine or machines. You can run all the binaries
from a single node, or spread across multiple nodes. You can also run them on the same node as other
OpenStack services.

To administer the OpenStack Block Storage service, it is helpful to understand a number of concepts. You
must make certain choices when you configure the Block Storage service in OpenStack. The bulk of the
options come down to two choices - single node or multi-node install. You can read a longer discussion
about Storage Decisions in the OpenStack Operations Guide.

OpenStack Block Storage enables you to add extra block-level storage to your OpenStack Compute in-
stances. This service is similar to the Amazon EC2 Elastic Block Storage (EBS) offering.

Security

Network traffic

Depending on your deployments security requirements, you might be required to encrypt network traffic.
This can be accomplished with TLS.

There are multiple deployment options, with the most common and recommended ones being:

* Only encrypt traffic between clients and public endpoints. This approach results in fewer certifi-
cates to manage, and we refer to it as public TLS. Public endpoints, in this sense, are endpoints
only exposed to end-users. Traffic between internal endpoints is not encrypted.

* Leverages TLS for all endpoints in the entire deployment, including internal endpoints of the Open-
Stack services and with auxiliary services such as the database and the message broker.

You can look at TripleOs documentation on TLS for examples on how to do this.

Cinder drivers should support secure TLS/SSL communication between the cinder volume service and
the backend, as configured by the driver_ssl_cert_verify and driver_ssl_cert_path options
in cinder.conf.

If unsure whether your driver supports TLS/SSL, please check the drivers specific page in the Volume
drivers page or contact the vendor.

Data at rest

Volumes data can be secured at rest using Cinders volume encryption feature.

For encryption keys Cinder uses a Key management service, with Barbican being the recommended
service.

More information on encryption can be found on the Volume encryption supported by the key manager
section.

3.2. Administrating Cinder 43

https://docs.openstack.org/arch-design/design-storage/design-storage-arch.html
https://wiki.openstack.org/wiki/OpsGuide
https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/tls-introduction.html

Cinder Documentation, Release 19.3.1.dev10

Data leakage

Some users and admins worry about data leakage between OpenStack projects or users caused by a new
volume containing partial or full data from a previously deleted volume.

These concerns are sometimes instigated by the volume_clear and volume_clear_size configuration
options, but these options are only relevant to the LVM driver, and only when using thick volumes (which
are not the default, thin volumes are).

Writing data on a Cinder volume as a generic mechanism to prevent data leakage is not implemented for
other drivers because it does not ensure that the data will be actually erased on the physical disks, as the
storage solution could be doing copy-on-write or other optimizations.

Thin provisioned volumes return zeros for unallocated blocks, so we dont have to worry about data
leakage. As for thick volumes, each of the individual Cinder drivers must ensure that data from a deleted
volume can never leak to a newly created volume.

This prevents other OpenStack projects and users from being able to get data from deleted volumes, but
since the data may still be present on the physical disks, somebody with physical access to the disks may
still be able to retrieve that data.

For those concerned with this, we recommend using encrypted volumes or read your storage solutions
documentation or contact your vendor to see if they have some kind of clear policy option available on
their storage solution.

Accelerate image compression

A general framework to accommodate hardware compression accelerators for compression of volumes
uploaded to the Image service (Glance) as images and decompression of compressed images used to
create volumes is introduced in Train release.

The only accelerator supported in this release is Intel QuickAssist Technology (QAT), which produces a
compressed file in gzip format. Additionally, the framework provides software-based compression using
GUNGzip tool if a suitable hardware accelerator is not available. Because this software fallback could
cause performance problems if the Cinder services are not deployed on sufficiently powerful nodes, the
default setting is not to enable compression on image upload or download.

The compressed image of a volume will be stored in the Image service (Glance) with the
container_format image property of compressed. See the Image service documentation for more
information about this image container format.

Configure image compression

To enable the image compression feature, set the following configuration option in the cinder.conf
file:

By default it will be set to False, which means image compression is disabled.

This is to specify image compression format. The only supported format is gzip in Train release.

44 Chapter 3. For operators

https://docs.openstack.org/glance/latest

Cinder Documentation, Release 19.3.1.dev10

System requirement

In order to use this feature, there should be a hardware accelerator existing in system, otherwise no benefit
will get from this feature. Regarding the two accelerators that supported, system should be configured as
below:

e Intel QuickAssist Technology (QAT) - This is the hardware accelerator from Intel. The
driver of QAT should be installed, refer to https://01.org/intel-quickassist-technology. Also the
compression library QATzip should be installed, refer to https://github.com/intel/QATzip.

* GUNzip - The related package of GUNzip should be installed and the command gzip should be
available. This is used as fallback when hardware accelerator is not available.

Increase Block Storage API service throughput

By default, the Block Storage API service runs in one process. This limits the number of API requests
that the Block Storage service can process at any given time. In a production environment, you should
increase the Block Storage API throughput by allowing the Block Storage API service to run in as many
processes as the machine capacity allows.

Note: The Block Storage API service is named openstack-cinder-api on the following distributions:
CentOS, Fedora, openSUSE, Red Hat Enterprise Linux, and SUSE Linux Enterprise. In Ubuntu and
Debian distributions, the Block Storage API service is named cinder-api.

To do so, use the Block Storage API service option osapi_volume_workers. This option allows you
to specify the number of API service workers (or OS processes) to launch for the Block Storage API
service.

To configure this option, open the /etc/cinder/cinder.conf configuration file and set the
osapi_volume_workers configuration key to the number of CPU cores/threads on a machine.

On distributions that include openstack-config, you can configure this by running the following com-
mand instead:

openstack-config --set /etc/cinder/cinder.conf
DEFAULT osapi_volume_workers CORES

Replace CORES with the number of CPU cores/threads on a machine.

Manage volumes

The default OpenStack Block Storage service implementation is an iSCSI solution that uses Logical
Volume Manager (LVM) for Linux.

Note: The OpenStack Block Storage service also provides drivers that enable you to use several vendors
back-end storage devices in addition to the base LVM implementation. These storage devices can also
be used instead of the base LVM installation.

This high-level procedure shows you how to create and attach a volume to a server instance.

To create and attach a volume to an instance

3.2. Administrating Cinder 45

https://01.org/intel-quickassist-technology
https://github.com/intel/QATzip

Cinder Documentation, Release 19.3.1.dev10

1. Configure the OpenStack Compute and the OpenStack Block Storage services through the /etc/
cinder/cinder. conf file.

2. Use the openstack volume create command to create a volume. This command creates an LV
into the volume group (VG) cinder-volumes.

3. Use the openstack server add volume command to attach the volume to an instance. This
command creates a unique /ON that is exposed to the compute node.

* The compute node, which runs the instance, now has an active iSCSI session and new local
storage (usually a /dev/sdX disk).

 Libvirt uses that local storage as storage for the instance. The instance gets a new disk (usually
a /dev/vdX disk).

For this particular walkthrough, one cloud controller runs nova-api, nova-scheduler,
nova-conductor and cinder-* services. Two additional compute nodes run nova-compute.
The walkthrough uses a custom partitioning scheme that carves out 60 GB of space and labels it as

LVM. The network uses the FlatManager and NetworkManager settings for OpenStack Compute.

The network mode does not interfere with OpenStack Block Storage operations, but you must set up
networking for Block Storage to work. For details, see networking.

To set up Compute to use volumes, ensure that Block Storage is installed along with 1vm2. This guide
describes how to troubleshoot your installation and back up your Compute volumes.

Boot from volume

In some cases, you can store and run instances from inside volumes. For information, see Launch an
instance from a volume.

Configure an NFS storage back end

This section explains how to configure OpenStack Block Storage to use NFS storage. You must be able
to access the NFS shares from the server that hosts the cinder volume service.

Note: The cinder volume service is named openstack-cinder-volume on the following distribu-
tions:

e CentOS
e Fedora

* openSUSE

Red Hat Enterprise Linux
» SUSE Linux Enterprise

In Ubuntu and Debian distributions, the cinder volume service is named cinder-volume.

Configure Block Storage to use an NFS storage back end
1. Log in as root to the system hosting the cinder volume service.

2. Create a text file named nfs_shares in the /etc/cinder/ directory.

46 Chapter 3. For operators

https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/nova/latest/user/launch-instance-from-volume.html
https://docs.openstack.org/nova/latest/user/launch-instance-from-volume.html

Cinder Documentation, Release 19.3.1.dev10

3. Add an entry to /etc/cinder/nfs_shares for each NFS share that the cinder volume service
should use for back end storage. Each entry should be a separate line, and should use the following
format:

HOST: SHARE

Where:
e HOST is the IP address or host name of the NFS server.

* SHARE is the absolute path to an existing and accessible NFS share.

4. Set /etc/cinder/nfs_shares to be owned by the root user and the cinder group:

chown root:cinder /etc/cinder/nfs_shares

5. Set /etc/cinder/nfs_shares to be readable by members of the cinder group:

chmod 0640 /etc/cinder/nfs_shares

6. Configure the cinder volume service to use the /etc/cinder/nfs_shares file created
earlier. To do so, open the /etc/cinder/cinder.conf configuration file and set the
nfs_shares_config configuration key to /etc/cinder/nfs_shares.

On distributions that include openstack-config, you can configure this by running the following
command instead:

openstack-config --set /etc/cinder/cinder.conf
DEFAULT nfs_shares_config /etc/cinder/nfs_shares

The following distributions include openstack-config:
* CentOS
* Fedora
* openSUSE
* Red Hat Enterprise Linux
* SUSE Linux Enterprise

7. Optionally, provide any additional NFS mount options required in your environment in the
nfs_mount_options configuration key of /etc/cinder/cinder.conf. If your NFS shares
do not require any additional mount options (or if you are unsure), skip this step.

On distributions that include openstack-config, you can configure this by running the following
command instead:

openstack-config --set /etc/cinder/cinder.conf
DEFAULT nfs_mount_options OPTIONS

Replace OPTIONS with the mount options to be used when accessing NFS shares. See the manual
page for NFS for more information on available mount options (man nfs).

3.2. Administrating Cinder 47

Cinder Documentation, Release 19.3.1.dev10

8. Configure the cinder volume service to use the correct volume driver, namely cinder.volume.
drivers.nfs.NfsDriver. To do so, open the /etc/cinder/cinder.conf configuration file
and set the volume_driver configuration key to cinder.volume.drivers.nfs.NfsDriver.

On distributions that include openstack-config, you can configure this by running the following
command instead:

openstack-config --set /etc/cinder/cinder.conf
DEFAULT volume_driver cinder.volume.drivers.nfs.NfsDriver

9. You can now restart the service to apply the configuration.

Note: The nfs_sparsed_volumes configuration key determines whether volumes are created as
sparse files and grown as needed or fully allocated up front. The default and recommended value
is true, which ensures volumes are initially created as sparse files.

Setting nfs_sparsed_volumes to false will result in volumes being fully allocated at the time
of creation. This leads to increased delays in volume creation.

However, should you choose to set nfs_sparsed_volumes to false, you can do so directly in
/etc/cinder/cinder.conf.

On distributions that include openstack-config, you can configure this by running the following
command instead:

openstack-config --set /etc/cinder/cinder.conf
DEFAULT nfs_sparsed_volumes false

Warning: If a client host has SELinux enabled, the virt_use_nfs boolean should also be
enabled if the host requires access to NFS volumes on an instance. To enable this boolean, run
the following command as the root user:

setsebool -P virt_use_nfs on

This command also makes the boolean persistent across reboots. Run this command on all
client hosts that require access to NFS volumes on an instance. This includes all compute
nodes.

Configure multiple-storage back ends

When you configure multiple-storage back ends, you can create several back-end storage solutions that
serve the same OpenStack Compute configuration and one cinder-volume is launched for each back-
end storage or back-end storage pool.

In a multiple-storage back-end configuration, each back end has a name (volume_backend_name). Sev-
eral back ends can have the same name. In that case, the scheduler properly decides which back end the
volume has to be created in.

The name of the back end is declared as an extra-specification of a volume type (such as,
volume_backend_name=LVM). When a volume is created, the scheduler chooses an appropriate back
end to handle the request, according to the volume type specified by the user.

48 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Enable multiple-storage back ends

To enable a multiple-storage back ends, you must set the enabled_backends flag in the cinder.conf
file. This flag defines the names (separated by a comma) of the configuration groups for the different
back ends: one name is associated to one configuration group for a back end (such as, [1lvmdriver-1]).

Note: The configuration group name is not related to the volume_backend_name.

Note: After setting the enabled_backends flag on an existing cinder service, and restarting the Block
Storage services, the original host service is replaced with a new host service. The new service appears
with a name like host@backend. Use:

cinder-manage volume update_host --currenthost CURRENTHOST --newhost..
—CURRENTHOST@BACKEND

to convert current block devices to the new host name.

The options for a configuration group must be defined in the group (or default options are used). All the
standard Block Storage configuration options (volume_group, volume_driver, and so on) might be
used in a configuration group. Configuration values in the [DEFAULT] configuration group are not used.

These examples show three back ends:

In this configuration, lvmdriver-1 and lvmdriver-2 have the same volume_backend_name. If a
volume creation requests the LVM back end name, the scheduler uses the capacity filter scheduler to
choose the most suitable driver, which is either lvmdriver-1 or lvmdriver-2. The capacity filter
scheduler is enabled by default. The next section provides more information. In addition, this example
presents a lvmdriver-3 back end.

Note: For Fiber Channel drivers that support multipath, the configuration group requires the
use_multipath_for_image_xfer=true option. In the example below, you can see details for HPE
3PAR and EMC Fiber Channel drivers.

3.2. Administrating Cinder 49

Cinder Documentation, Release 19.3.1.dev10

Configure shared volume driver backends

When configuring multiple volume backends, common configuration parameters can be shared using the
[backend_defaults] section. As an example:

In this configuration, backend2 and backend3 have the same image_volume_cache_enabled as it is
defined in the backend_defaults section. In other words, backend2 and backend3 have enabled the
image cache features. image_volume_cache_enabled in backendl is False, that means any overwrit-
ten configuration in a volume backend will ignore the original value in backend_defaults.

Note: The backend_defaults section should be configured according to your cloud environment or
your backend driver information.

50 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configure Block Storage scheduler multi back end

You must enable the filter_scheduler option to use multiple-storage back ends. The filter scheduler:

1. Filters the available back ends. By default, AvailabilityZoneFilter, CapacityFilter and
CapabilitiesFilter are enabled.

2. Weights the previously filtered back ends. By default, the CapacityWeigher option is enabled.
When this option is enabled, the filter scheduler assigns the highest weight to back ends with the
most available capacity.

The scheduler uses filters and weights to pick the best back end to handle the request. The scheduler uses
volume types to explicitly create volumes on specific back ends. For more information about filter and
weighing, see Configure and use driver filter and weighing for scheduler.

Volume type

Before using it, a volume type has to be declared to Block Storage. This can be done by the following
command:

openstack --os-username admin --os-tenant-name admin volume type create lvm

Then, an extra-specification has to be created to link the volume type to a back end name. Run this
command:

openstack --os-username admin --os-tenant-name admin volume type set lvm
--property LVM_iSCSI

This example creates a lvm volume type with volume_backend_name=LVM_iSCSI as extra-
specifications.

Create another volume type:

openstack --os-username admin --os-tenant-name admin volume type create lvm_
v—>gO].d

openstack --os-username admin --os-tenant-name admin volume type set lvm_
—gold
--property LVM_iSCSI_b

This second volume type is named 1vm_gold and has LVM_iSCSI_b as back end name.

Note: To list the extra-specifications, use this command:

openstack --os-username admin --os-tenant-name admin volume type list --long

Note: If a volume type points to a volume_backend_name that does not exist in the Block Storage
configuration, the filter_scheduler returns an error that it cannot find a valid host with the suitable
back end.

3.2. Administrating Cinder 51

Cinder Documentation, Release 19.3.1.dev10

Usage

When you create a volume, you must specify the volume type. The extra-specifications of the volume
type are used to determine which back end has to be used.

openstack volume create --size 1 --type lvm test_multi_backend

Considering the cinder. conf described previously, the scheduler creates this volume on 1vmdriver-1
or lvmdriver-2.

openstack volume create --size 1 --type lvm_gold test_multi_backend

This second volume is created on 1vmdriver-3.

Back up Block Storage service disks

While you can use the LVM snapshot to create snapshots, you can also use it to back up your volumes.
By using LVM snapshot, you reduce the size of the backup; only existing data is backed up instead of the
entire volume.

To back up a volume, you must create a snapshot of it. An LVM snapshot is the exact copy of a log-
ical volume, which contains data in a frozen state. This prevents data corruption because data cannot
be manipulated during the volume creation process. Remember that the volumes created through an
openstack volume create command existin an LVM logical volume.

You must also make sure that the operating system is not using the volume and that all data has been
flushed on the guest file systems. This usually means that those file systems have to be unmounted
during the snapshot creation. They can be mounted again as soon as the logical volume snapshot has
been created.

Before you create the snapshot you must have enough space to save it. As a precaution, you should have
at least twice as much space as the potential snapshot size. If insufficient space is available, the snapshot
might become corrupted.

For this example assume that a 100 GB volume named volume-00000001 was created for an instance
while only 4 GB are used. This example uses these commands to back up only those 4 GB:

* 1lvm2 command. Directly manipulates the volumes.

» kpartx command. Discovers the partition table created inside the instance.

* tar command. Creates a minimum-sized backup.

* shalsum command. Calculates the backup checksum to check its consistency.
You can apply this process to volumes of any size.
To back up Block Storage service disks

1. Create a snapshot of a used volume

¢ Use this command to list all volumes

lvdisplay

* Create the snapshot; you can do this while the volume is attached to an instance:

52 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

lvcreate --size 10G --snapshot --name volume-00000001-snapshot
/dev/cinder-volumes/volume-00000001

Use the --snapshot configuration option to tell LVM that you want a snapshot of an already
existing volume. The command includes the size of the space reserved for the snapshot vol-
ume, the name of the snapshot, and the path of an already existing volume. Generally, this
path is /dev/cinder-volumes/VOLUME_NAME.

The size does not have to be the same as the volume of the snapshot. The --size parameter
defines the space that LVM reserves for the snapshot volume. As a precaution, the size should
be the same as that of the original volume, even if the whole space is not currently used by
the snapshot.

* Run the 1vdisplay command again to verify the snapshot:

open 1

open 0

(continues on next page)

3.2. Administrating Cinder 53

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

2. Partition table discovery

* To exploit the snapshot with the tar command, mount your partition on the Block Storage

service server.

The kpartx utility discovers and maps table partitions. You can use it to view partitions
that are created inside the instance. Without using the partitions created inside instances, you
cannot see its content and create efficient backups.

kpartx -av /dev/cinder-volumes/volume-00000001-snapshot

Note: On a Debian-based distribution, you can use the apt-get install kpartx com-
mand to install kpartx.

If the tools successfully find and map the partition table, no errors are returned.

To check the partition table map, run this command:

ls /dev/mapper/nova*

You can see the cinder--volumes-volume--00000001--snapshotl partition.

If you created more than one partition on that volume, you see several par-
titions; for example: cinder--volumes-volume--00000001--snapshot2,
cinder--volumes-volume--00000001--snapshot3, and so on.

Mount your partition

mount /dev/mapper/cinder--volumes-volume--volume--00000001--
—snapshotl /mnt

If the partition mounts successfully, no errors are returned.

You can directly access the data inside the instance. If a message prompts you for a partition
or you cannot mount it, determine whether enough space was allocated for the snapshot or
the kpartx command failed to discover the partition table.

Allocate more space to the snapshot and try the process again.

3. Use the tar command to create archives

Create a backup of the volume:

tar --exclude --exclude -czf
volume-00000001.tar.gz -C /mnt/ /backup/destination

This command creates a tar.gz file that contains the data, and data only. This ensures that you
do not waste space by backing up empty sectors.

4. Checksum calculation

54

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

You should always have the checksum for your backup files. When you transfer the same file over
the network, you can run a checksum calculation to ensure that your file was not corrupted during
its transfer. The checksum is a unique ID for a file. If the checksums are different, the file is
corrupted.

Run this command to run a checksum for your file and save the result to a file:

shalsum volume-00000001.tar.gz > volume-00000001.checksum

Note: Use the shalsum command carefully because the time it takes to complete the calculation
is directly proportional to the size of the file.

Depending on your CPU, the process might take a long time for files larger than around 4 to 6 GB.

5. After work cleaning
Now that you have an efficient and consistent backup, use this command to clean up the file system:

e Unmount the volume.

umount /mnt

Delete the partition table.

kpartx -dv /dev/cinder-volumes/volume-00000001-snapshot

* Remove the snapshot.

lvremove -f /dev/cinder-volumes/volume-00000001-snapshot

Repeat these steps for all your volumes.
6. Automate your backups

Because more and more volumes might be allocated to your Block Storage service, you might want
to automate your backups. The SCR_5005_V01_NUAC-OPENSTACK-EBS-volumes-backup.sh
script assists you with this task. The script performs the operations from the previous example, but
also provides a mail report and runs the backup based on the backups_retention_days setting.

Launch this script from the server that runs the Block Storage service.

This example shows a mail report:

(continues on next page)

3.2. Administrating Cinder 55

https://github.com/Razique/BashStuff/blob/master/SYSTEMS/OpenStack/SCR_5005_V01_NUAC-OPENSTACK-EBS-volumes-backup.sh

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

The script also enables you to SSH to your instances and run a mysqldump command into them.
To make this work, enable the connection to the Compute project keys. If you do not want to
run the mysqldump command, you can add enable_mysql_dump=0 to the script to turn off this
functionality.

Migrate volumes

OpenStack has the ability to migrate volumes between back ends which support its volume-type. Migrat-
ing a volume transparently moves its data from the current back end for the volume to a new one. This is
an administrator function, and can be used for functions including storage evacuation (for maintenance
or decommissioning), or manual optimizations (for example, performance, reliability, or cost).

These workflows are possible for a migration:

1. If the storage can migrate the volume on its own, it is given the opportunity to do so. This allows

the Block Storage driver to enable optimizations that the storage might be able to perform. If the
back end is not able to perform the migration, the Block Storage uses one of two generic flows, as
follows.

. If the volume is not attached, the Block Storage service creates a volume and copies the data from

the original to the new volume.

Note: While most back ends support this function, not all do. See the driver documentation for
more details.

. If the volume is attached to a VM instance, the Block Storage creates a volume, and calls Compute

to copy the data from the original to the new volume. Currently this is supported only by the
Compute libvirt driver.

As an example, this scenario shows two LVM back ends and migrates an attached volume from one to
the other. This scenario uses the third migration flow.

First, list the available back ends:

cinder get-pools

(continues on next page)

56

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Note: Block Storage API supports cinder get-pools since V2 version.

You can also get available back ends like following:

cinder-manage host list

But it needs to add pool name in the end. For example, serverl@lvmstorage-1#zonel.

Next, as the admin user, you can see the current status of the volume (replace the example ID with your
own):

openstack volume show 6088f80a-f116-4331-ad48-9afb0dfb196¢c

Note these attributes:

e 0s-vol-host-attr:host - the volumes current back end.

3.2. Administrating Cinder 57

Cinder Documentation, Release 19.3.1.dev10

* 0os-vol-mig-status-attr:migstat - the status of this volumes migration (None means that a
migration is not currently in progress).

e 0s-vol-mig-status-attr:name_id - the volume ID that this volumes name on the back end
is based on. Before a volume is ever migrated, its name on the back end storage may be based
on the volumes ID (see the volume_name_template configuration parameter). For example,
if volume_name_template is kept as the default value (volume-%s), your first LVM back end
has a logical volume named volume-6088£80a-£116-4331-ad48-9afb0dfb196c. During the
course of a migration, if you create a volume and copy over the data, the volume get the new name
but keeps its original ID. This is exposed by the name_id attribute.

Note: If you plan to decommission a block storage node, you must stop the cinder volume
service on the node after performing the migration.

On nodes that run CentOS, Fedora, openSUSE, Red Hat Enterprise Linux, or SUSE Linux Enter-
prise, run:

service openstack-cinder-volume stop
chkconfig openstack-cinder-volume off

On nodes that run Ubuntu or Debian, run:

service cinder-volume stop
chkconfig cinder-volume off

Stopping the cinder volume service will prevent volumes from being allocated to the node.

Migrate this volume to the second LVM back end:

openstack volume migrate 6088f80a-f116-4331-ad48-9afb0dfb196¢c
--host server2@lvmstorage-2#lvmstorage-2

You can use the openstack volume showcommand to see the status of the migration. While migrating,
the migstat attribute shows states such asmigrating or completing. Onerror,migstat is setto None
and the host attribute shows the original host. On success, in this example, the output looks like:

openstack volume show 6088f80a-f116-4331-ad48-9afb0dfb196¢c

(continues on next page)

58 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Note that migstat is None, host is the new host, and name_id holds the ID of the volume cre-
ated by the migration. If you look at the second LVM back end, you find the logical volume
volume-133d1£56-9ffc-4£57-8798-d5217d851862.

Note: The migration is not visible to non-admin users (for example, through the volume status).
However, some operations are not allowed while a migration is taking place, such as attaching/detaching
a volume and deleting a volume. If a user performs such an action during a migration, an error is returned.

Note: Migrating volumes that have snapshots are currently not allowed.

Back up and restore volumes and shapshots

The openstack command-line interface provides the tools for creating a volume backup. You can restore
a volume from a backup as long as the backups associated database information (or backup metadata) is
intact in the Block Storage database.

Run this command to create a backup of a volume:

openstack volume backup create --incremental --force VOLUME

Where VOLUME is the name or ID of the volume, incremental is a flag that indicates whether an incre-
mental backup should be performed, and force is a flag that allows or disallows backup of a volume
when the volume is attached to an instance.

Without the incremental flag, a full backup is created by default. With the incremental flag, an
incremental backup is created.

Without the force flag, the volume will be backed up only if its status is available. With the force
flag, the volume will be backed up whether its status is available or in-use. A volume is in-use
when it is attached to an instance. The backup of an in-use volume means your data is crash consistent.
The force flag is False by default.

3.2. Administrating Cinder 59

Cinder Documentation, Release 19.3.1.dev10

Note: The force flag is new in OpenStack Liberty.

The incremental backup is based on a parent backup which is an existing backup with the latest timestamp.
The parent backup can be a full backup or an incremental backup depending on the timestamp.

Note: The first backup of a volume has to be a full backup. Attempting to do an incremental backup
without any existing backups will fail. There is an is_incremental flag that indicates whether a backup
is incremental when showing details on the backup. Another flag, has_dependent_backups, returned
when showing backup details, will indicate whether the backup has dependent backups. If it is true,
attempting to delete this backup will fail.

A new configure option backup_swift_block_size is introduced into cinder.conf for the default
Swift backup driver. This is the size in bytes that changes are tracked for incremental backups. The
existing backup_swift_object_size option, the size in bytes of Swift backup objects, has to be a
multiple of backup_swift_block_size. The default is 32768 for backup_swift_block_size, and
the default is 52428800 for backup_swift_object_size.

The configuration option backup_swift_enable_progress_timer in cinder.conf is used when
backing up the volume to Object Storage back end. This option enables or disables the timer. It is
enabled by default to send the periodic progress notifications to the Telemetry service.

This command also returns a backup ID. Use this backup ID when restoring the volume:

openstack volume backup restore BACKUP_ID VOLUME_ID

When restoring from a full backup, it is a full restore.

When restoring from an incremental backup, a list of backups is built based on the IDs of the parent
backups. A full restore is performed based on the full backup first, then restore is done based on the
incremental backup, laying on top of it in order.

You can view a backup list with the openstack volume backup list command. Optional arguments
to clarify the status of your backups include: running --name, --status, and --volume to filter through
backups by the specified name, status, or volume-id. Search with --all-projects for details of the
projects associated with the listed backups.

Because volume backups are dependent on the Block Storage database, you must also back up your Block
Storage database regularly to ensure data recovery.

Note: Alternatively, you can export and save the metadata of selected volume backups. Doing so
precludes the need to back up the entire Block Storage database. This is useful if you need only a small
subset of volumes to survive a catastrophic database failure.

If you specify a UUID encryption key when setting up the volume specifications, the backup metadata
ensures that the key will remain valid when you back up and restore the volume.

For more information about how to export and import volume backup metadata, see the section called
Export and import backup metadata.

By default, the swift object store is used for the backup repository.

60 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

If instead you want to use an NFS export as the backup repository, add the following configuration options
to the [DEFAULT] section of the cinder. conf file and restart the Block Storage services:

For the backup_share option, replace HOST with the DNS resolvable host name or the IP address of
the storage server for the NFS share, and EXPORT_PATH with the path to that share. If your environment
requires that non-default mount options be specified for the share, set these as follows:

MOUNT_OPTIONS is a comma-separated string of NFS mount options as detailed in the NFS man page.

There are several other options whose default values may be overridden as appropriate for your environ-
ment:

The option backup_compression_algorithmcan be setto z1ib, bz2, zstd or none. The value none
can be a useful setting when the server providing the share for the backup repository itself performs
deduplication or compression on the backup data.

The option backup_file_size must be a multiple of backup_sha_block_size_bytes. It is effec-
tively the maximum file size to be used, given your environment, to hold backup data. Volumes larger
than this will be stored in multiple files in the backup repository. The backup_sha_block_size_bytes
option determines the size of blocks from the cinder volume being backed up on which digital signatures
are calculated in order to enable incremental backup capability.

You also have the option of resetting the state of a backup. When creating or restoring a backup, some-
times it may get stuck in the creating or restoring states due to problems like the database or rabbitmq
being down. In situations like these resetting the state of the backup can restore it to a functional status.

Run this command to restore the state of a backup:

cinder backup-reset-state '--state STATE BACKUP_ID-1 BACKUP_ID-2 ...

Run this command to create a backup of a snapshot:

openstack volume backup create --incremental --force
--snapshot SNAPSHOT_ID VOLUME

Where VOLUME is the name or ID of the volume, SNAPSHOT_ID is the ID of the volumes snapshot.

3.2. Administrating Cinder 61

Cinder Documentation, Release 19.3.1.dev10

Cancelling

Since Liberty it is possible to cancel an ongoing backup operation on any of the Chunked Backup type
of drivers such as Swift, NFS, Google, GlusterFS, and Posix.

To issue a backup cancellation on a backup we must request a force delete on the backup.

openstack volume backup delete --force BACKUP_ID

Note: The policy on force delete defaults to admin only.

Even if the backup is immediately deleted, and therefore no longer appears in the listings, the cancellation
may take a little bit longer, so please check the status of the source resource to see when it stops being
backing-up.

Note: Before Pike the backing-up status would always be stored in the volume, even when backing up a
snapshot, so when backing up a snapshot any delete operation on the snapshot that followed a cancellation
could result in an error if the snapshot was still mapped. Polling on the volume to stop being backing-up
prior to the deletion is required to ensure success.

Since Rocky it is also possible to cancel an ongoing restoring operation on any of the Chunked Backup
type of drivers.

To issue a backup restoration cancellation we need to alter its status to anything other than restoring. We
strongly recommend using the error state to avoid any confusion on whether the restore was successful
or not.

openstack volume backup set --state error BACKUP_ID

Warning: After a restore operation has started, if it is then cancelled, the destination volume is
useless, as there is no way of knowing how much data, or if any, was actually restored, hence our
recommendation of using the error state.

backup_max_operations

With this configuration option will let us select the maximum number of operations, backup and restore,
that can be performed concurrently.

This option has a default value of 15, which means that we can have 15 concurrent backups, or 15
concurrent restores, or any combination of backups and restores as long as the sum of the 2 operations
dont exceed 15.

The concurrency limitation of this configuration option is also enforced when we run multiple processes
for the same backup service using the backup_workers configuration option. It is not a per process
restriction, but global to the service, so we wont be able to run backup_max_operations on each one
of the processes, but on all the running processes from the same backup service.

62 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Backups and restore operations are both CPU and memory intensive, but thanks to this option we can
limit the concurrency and prevent DoS attacks or just service disruptions caused by many concurrent
requests that lead to Out of Memory (OOM) kills.

The amount of memory (RAM) used during the operation depends on the configured chunk size as well
as the compression ratio achieved on the data during the operation.

Example:

Lets have a look at how much memory would be needed if we use the default backup chunk
size (~1.86 GB) while doing a restore to an RBD volume from a non Ceph backend (Swift,
NES etc).

In a restore operation the worst case scenario, from the memory point of view, is when the
compression ratio is close to 0% (the compressed data chunk is almost the same size as the
uncompressed data).

In this case the memory usage would be ~5.58 GB of data for each chunk: ~5.58 GB = read
buffer + decompressed buffer + write buffer used by the librbd library = ~1.86 GB + 1.86
GB + 1.86 GB

For 15 concurrent restore operations, the cinder-backup service will require ~83.7 GB of
memory.

Similar calculations can be done for environment specific scenarios and this config option can be set
accordingly.

Export and import backup metadata

A volume backup can only be restored on the same Block Storage service. This is because restoring a
volume from a backup requires metadata available on the database used by the Block Storage service.

Note: For information about how to back up and restore a volume, see the section called Back up and
restore volumes and snapshots.

You can, however, export the metadata of a volume backup. To do so, run this command as an OpenStack
admin user (presumably, after creating a volume backup):

cinder backup-export BACKUP_ID

Where BACKUP_ID is the volume backups ID. This command should return the backups corresponding
database information as encoded string metadata.

Exporting and storing this encoded string metadata allows you to completely restore the backup, even
in the event of a catastrophic database failure. This will preclude the need to back up the entire Block
Storage database, particularly if you only need to keep complete backups of a small subset of volumes.

If you have placed encryption on your volumes, the encryption will still be in place when you restore the
volume if a UUID encryption key is specified when creating volumes. Using backup metadata support,
UUID keys set up for a volume (or volumes) will remain valid when you restore a backed-up volume.
The restored volume will remain encrypted, and will be accessible with your credentials.

In addition, having a volume backup and its backup metadata also provides volume portability. Specifi-
cally, backing up a volume and exporting its metadata will allow you to restore the volume on a completely

3.2. Administrating Cinder 63

Cinder Documentation, Release 19.3.1.dev10

different Block Storage database, or even on a different cloud service. To do so, first import the backup
metadata to the Block Storage database and then restore the backup.

To import backup metadata, run the following command as an OpenStack admin:

cinder backup-import METADATA

Where METADATA is the backup metadata exported earlier.

Once you have imported the backup metadata into a Block Storage database, restore the volume (see the
section called Back up and restore volumes and snapshots).

Use LIO iSCSI support

The default mode for the target_helper toolis tgtadm. To use LIO iSCSI, install the python-rtslib
package, and set target_helper=1ioadm in the cinder. conf file.

Once configured, you can use the cinder-rtstool command to manage the volumes. This command
enables you to create, delete, and verify volumes and determine targets and add iSCSI initiators to the
system.

Configure and use volume number weigher

OpenStack Block Storage enables you to choose a volume back end according to free_capacity and
allocated_capacity. The volume number weigher feature lets the scheduler choose a volume back
end based on its volume number in the volume back end. This can provide another means to improve the
volume back ends I/O balance and the volumes I/O performance.

Enable volume number weigher

To enable a volume number weigher, set the scheduler_default_weighers to
VolumeNumberWeigher flag in the cinder.conf file to define VolumeNumberWeigher as the
selected weigher.

Configure multiple-storage back ends

To configure VolumeNumberWeigher, use LVMVolumeDriver as the volume driver.

This configuration defines two LVM volume groups: stack-volumes with 10 GB capacity and
stack-volumes-1 with 60 GB capacity. This example configuration defines two back ends:

(continues on next page)

64 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Volume type

Define a volume type in Block Storage:

openstack volume type create lvm

Create an extra specification that links the volume type to a back-end name:

openstack volume type set lvm --property LVM

This example creates a Ivm volume type with volume_backend_name=LVM as extra specifications.

Usage

To create six 1-GB volumes, run the openstack volume create --size 1 --type lvm volumel
command six times:

openstack volume create --size 1 --type lvm volumel

This command creates three volumes in stack-volumes and three volumes in stack-volumes-1.

List the available volumes:

lvs

Capacity based quality of service

In many environments, the performance of the storage system which Cinder manages scales with the
storage space in the cluster. For example, a Ceph RBD cluster could have a capacity of 10,000 IOPs and
1000 GB storage. However, as the RBD cluster scales to 2000 GB, the IOPs scale to 20,000 IOPs.

Basic QoS allows you to define hard limits for volumes, however, if you have a limit of 1000 IOPs for a
volume and you have a user which creates 10x 1GB volumes with 1000 IOPs (in a cluster with 1000GB
storage and 10,000 IOPs), youre not able to guarantee the quality of service without having to add extra
capacity (which will go un-used). The inverse can be problematic, if a user creates a 1000GB volume
with 1000 IOPs, leaving 9000 un-used 1OPs.

3.2. Administrating Cinder 65

Cinder Documentation, Release 19.3.1.dev10

Capacity based quality of service allows you to multiply the quality of service values by the size of the
volume, which will allow you to efficiently use the storage managed by Cinder. In some cases, it will
force the user to provision a larger volume than they need to get the IOPs they need, but that extra space
would have gone un-used if they didnt use it in order to deliver the quality of service.

There are currently 6 options to control capacity based quality of service which values should be fairly
self explanatory:

For dynamic IOPS per volume.
* read_iops_sec_per_gb
* write_iops_sec_per_gb
* total_iops_sec_per_gb
For dynamic bandwidth per volume.
* read_bytes_sec_per_gb
* write_bytes_sec_per_gb
* total_bytes_sec_per_gb

In addition, there are 6 more options which allow you to control the minimum possible value. This can
be useful in cases where a user creates a volume that is very small and ends up with an unusable volume
because of performance.

For minimum IOPS per volume.
* read_iops_sec_per_gb_min
* write_iops_sec_per_gb_min
* total_iops_sec_per_gb_min
For minimum bandwidth per volume.
* read_bytes_sec_per_gb_min
* write_bytes_sec_per_gb_min
* total_bytes_sec_per_gb_min

Capacity based options might be used in conjunction with basic options, like *_sec_max, in order to
set upper limits for volumes. This may be useful for large volumes, which may consume all storage
performance.

For example, in order to create a QoS with 30 IOPs total writes per GB and a throughput of 1IMB per
GB, you might use the Cinder client in the following way:

cinder qos-create high-iops
30 1048576

(continues on next page)

66 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Once this is done, you can associate this QoS with a volume type by using the gos-associate Cinder client
command.

cinder qos-associate <gos-id> <volume-type-id>

You can now create a new volume and attempt to attach it to a consumer such as Nova. If you login to a
Nova compute host, youll be able to see the new calculated limits when checking the XML definition of
the virtual machine with virsh dumpxml.

Consistency groups

Consistency group support is available in OpenStack Block Storage. The support is added for creating
snapshots of consistency groups. This feature leverages the storage level consistency technology. It
allows snapshots of multiple volumes in the same consistency group to be taken at the same point-in-
time to ensure data consistency. The consistency group operations can be performed using the Block
Storage command line.

Note: The Consistency Group APIs have been deprecated since the Queens release. Use the Generic
Volume Group APIs instead.

The Consistency Group APIs are governed by the same policies as the Generic Volume Group APIs. For
information about configuring cinder policies, see Policy configuration.

Before using consistency groups, make sure the Block Storage driver that you are running has consistency
group support by reading the Block Storage manual or consulting the driver maintainer. There are a
small number of drivers that have implemented this feature. The default LVM driver does not support
consistency groups yet because the consistency technology is not available at the storage level.

The following consistency group operations are supported:

* Create a consistency group, given volume types.

Note: A consistency group can support more than one volume type. The scheduler is responsible
for finding a back end that can support all given volume types.

A consistency group can only contain volumes hosted by the same back end.

A consistency group is empty upon its creation. Volumes need to be created and added to it later.

* Show a consistency group.

* List consistency groups.

* Create a volume and add it to a consistency group, given volume type and consistency group id.
* Create a snapshot for a consistency group.

» Show a snapshot of a consistency group.

3.2. Administrating Cinder 67

Cinder Documentation, Release 19.3.1.dev10

* List consistency group snapshots.
* Delete a snapshot of a consistency group.
* Delete a consistency group.
* Modify a consistency group.
* Create a consistency group from the snapshot of another consistency group.
* Create a consistency group from a source consistency group.
The following operations are not allowed if a volume is in a consistency group:
* Volume migration.
* Volume retype.

¢ Volume deletion.

Note: A consistency group has to be deleted as a whole with all the volumes.

The following operations are not allowed if a volume snapshot is in a consistency group snapshot:

* Volume snapshot deletion.

Note: A consistency group snapshot has to be deleted as a whole with all the volume snapshots.

The details of consistency group operations are shown in the following.

Note: Currently, no OpenStack client command is available to run in place of the cinder consistency
group creation commands. Use the cinder commands detailed in the following examples.

Create a consistency group:

Note: The parameter volume-types is required. It can be a list of names or UUIDs of volume
types separated by commas without spaces in between. For example, volumetypel,volumetype2,
volumetype3..

cinder consisgroup-create --name bronzeCG2 volume_type_1

(continues on next page)

68 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Show a consistency group:

cinder consisgroup-show 1de80c27-3b2f-47a6-91a7-e867cbe36462

List consistency groups:

cinder consisgroup-list

Create a volume and add it to a consistency group:

Note: When creating a volume and adding it to a consistency group, a volume type and a consistency
group id must be provided. This is because a consistency group can support more than one volume type.

openstack volume create --type volume_type_1 --consistency-group
1de80c27-3b2f-47a6-91a7-e867chbe36462 --size 1 cgBronzeVol

(continues on next page)

3.2. Administrating Cinder 69

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

[}

Create a snapshot for a consistency group:

70 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

cinder cgsnapshot-create 1de80c27-3b2f-47a6-91a7-e867cbe36462

Show a snapshot of a consistency group:

cinder cgsnapshot-show d4aff465-f50c-40b3-b088-83feb9b349e9

List consistency group snapshots:

cinder cgsnapshot-list

Delete a snapshot of a consistency group:

cinder cgsnapshot-delete d4aff465-£f50c-40b3-b088-83feb9b349e9

Delete a consistency group:

Note: The force flag is needed when there are volumes in the consistency group:

cinder consisgroup-delete --force 1de80c27-3b2f-47a6-91a7-e867che36462

Modify a consistency group:

The parameter CG is required. It can be a name or UUID of a consistency group. UUID1,UUID2, are
UUIDs of one or more volumes to be added to the consistency group, separated by commas. Default is

3.2. Administrating Cinder 7

Cinder Documentation, Release 19.3.1.dev10

None. UUID3,UUID4, are UUIDs of one or more volumes to be removed from the consistency group,
separated by commas. Default is None.

cinder consisgroup-update --name

--description

--add-volumes 0b3923f5-95a4-4596-a536-914c2c84e2db, 1c02528b-3781-4e32-929c-
,618d81£52cf3

--remove-volumes 8cOf6ae4-efb1-458f-a8fc-9da2afcc5fbl,a245423f-bb99-4£94-
—8c8c-02806£9246d8

1de80c27-3b2f-47a6-91a7-e867cbe36462

Create a consistency group from the snapshot of another consistency group:

cinder consisgroup-create-from-src

The parameter CGSNAPSHOT is a name or UUID of a snapshot of a consistency group:

cinder consisgroup-create-from-src
--cgsnapshot 6d9dfb7d-079a-471e-b75a-6e9185ba®c38
--hame --description

Create a consistency group from a source consistency group:

cinder consisgroup-create-from-src

The parameter SOURCECG is a name or UUID of a source consistency group:

cinder consisgroup-create-from-src
--source-cg 6d9dfb7d-079a-471e-b75a-6e9185ba®c38
--hame --description

72 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configure and use driver filter and weighing for scheduler

OpenStack Block Storage enables you to choose a volume back end based on back-end specific properties
by using the DriverFilter and GoodnessWeigher for the scheduler. The driver filter and weigher schedul-
ing can help ensure that the scheduler chooses the best back end based on requested volume properties
as well as various back-end specific properties.

What is driver filter and weigher and when to use it

The driver filter and weigher gives you the ability to more finely control how the OpenStack Block Storage
scheduler chooses the best back end to use when handling a volume request. One example scenario where
using the driver filter and weigher can be if a back end that utilizes thin-provisioning is used. The default
filters use the free capacity property to determine the best back end, but that is not always perfect. If
a back end has the ability to provide a more accurate back-end specific value you can use that as part of
the weighing. Another example of when the driver filter and weigher can prove useful is if a back end
exists where there is a hard limit of 1000 volumes. The maximum volume size is 5004GB. Once 75% of
the total space is occupied the performance of the back end degrades. The driver filter and weigher can
provide a way for these limits to be checked for.

Enable driver filter and weighing

To enable the driver filter, set the scheduler_default_filters option in the cinder.conf file to
DriverFilter. The DriverFilter can also be used along with other filters by adding it to the list if other
filters are already present.

To enable the goodness filter as a weigher, set the scheduler_default_weighers option in the
cinder. conf file to GoodnessWeigher or add it to the list if other weighers are already present.

You can choose to use the DriverFilter without the GoodnessWeigher or vice-versa. The filter and
weigher working together, however, create the most benefits when helping the scheduler choose an ideal
back end.

Important: The GoodnessWeigher can be used along with CapacityWeigher and others, but must be
used with caution as it might obfuscate the CapacityWeigher.

Example cinder.conf configuration file:

Note: It is useful to use the other filters and weighers available in OpenStack in combination with these
custom ones. For example, the CapacityFilter and CapacityWeigher can be combined with these.
Using them together should be done with caution as depending on the defined logic, one might obfuscate
the other.

3.2. Administrating Cinder 73

Cinder Documentation, Release 19.3.1.dev10

Defining your own filter and goodness functions

You can define your own filter and goodness functions through the use of various properties that Open-
Stack Block Storage has exposed. Properties exposed include information about the volume request being
made, volume_type settings, and back-end specific information about drivers. All of these allow for a
lot of control over how the ideal back end for a volume request will be decided.

The filter_function option is a string defining an equation that will determine whether a back end
should be considered as a potential candidate in the scheduler.

The goodness_function option is a string defining an equation that will rate the quality of the potential
host (0 to 100, 0 lowest, 100 highest).

Important: The drive filter and weigher will use default values for filter and goodness functions for
each back end if you do not define them yourself. If complete control is desired then a filter and goodness
function should be defined for each of the back ends in the cinder. conf file.

Supported operations in filter and goodness functions

Below is a table of all the operations currently usable in custom filter and goodness functions created by
you:

Operations Type

+, -, 5 LN standard math

not, and, or, &, |, ! logic

>, >=, <, <=, ==, <>, I= equality

+, - sign

x?a:b ternary

abs(x), max(x, y), min(x, y) | math helper functions

Caution: Syntax errors you define in filter or goodness strings are thrown at a volume request time.

Available properties when creating custom functions

There are various properties that can be used in either the filter_function or the
goodness_function strings. The properties allow access to volume info, qos settings, extra
specs, and so on.

The following properties and their sub-properties are currently available for use:

74 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Host stats for a back end

In order to access these properties, use the following format: stats.<property>
host The hosts name

volume_backend_name The volume back end name

vendor_name The vendor name

driver_version The driver version

storage_protocol The storage protocol

QoS_support Boolean signifying whether QoS is supported

total_capacity_gb The total capacity in GB

allocated_capacity_gb The allocated capacity in GB

free_capacity_gb The free capacity in GB

reserved_percentage The reserved storage percentage

Capabilities specific to a back end

These properties are determined by the specific back end you are creating filter and goodness functions
for. Some back ends may not have any properties available here. Once the capabilities vary too much
according to the backend, it is better to check its properties reported on the scheduler log. The sched-
uler reports these capabilities constantly. In order to access these properties, use the following format:
capabilities.<property>

Requested volume properties

In order to access the volume properties, use the following format: volume.<property>
status Status for the requested volume
volume_type_id The volume type ID

display_name The display name of the volume
volume_metadata Any metadata the volume has
reservations Any reservations the volume has
user_id The volumes user ID

attach_status The attach status for the volume
display_description The volumes display description
id The volumes ID

replication_status The volumes replication status
snapshot_id The volumes snapshot ID
encryption_key_id The volumes encryption key ID

source_volid The source volume ID

3.2. Administrating Cinder 75

Cinder Documentation, Release 19.3.1.dev10

volume_admin_metadata Any admin metadata for this volume
source_replicaid The source replication ID
consistencygroup_id The consistency group ID

size The size of the volume in GB

metadata General metadata

The property most used from here will most likely be the size sub-property.

Extra specs for the requested volume type

View the available properties for volume types by running:

cinder extra-specs-list

Current QoS specs for the requested volume type

View the available properties for volume types by running:

openstack volume gos list

In order to access these properties in a custom string use the following format:

<property>.<sub_property>

Driver filter and weigher usage examples

Below are examples for using the filter and weigher separately, together, and using driver-specific prop-
erties.

Example cinder.conf file configuration for customizing the filter function:

The above example will filter volumes to different back ends depending on the size of the requested
volume. Default OpenStack Block Storage scheduler weighing is done. Volumes with a size less than
104GB are sent to lvm-1 and volumes with a size greater than or equal to 104GB are sent to lvm-2.

76 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Example cinder. conf file configuration for customizing the goodness function:

The above example will determine the goodness rating of a back end based off of the requested volumes
size. Default OpenStack Block Storage scheduler filtering is done. The example shows how the ternary
if statement can be used in a filter or goodness function. If a requested volume is of size 104GB then
Ivm-1 is rated as 50 and Ivm-2 is rated as 100. In this case Ivm-2 wins. If a requested volume is of size
34GB then lvm-1 is rated 100 and Ivm-2 is rated 25. In this case lvm-1 would win.

Example cinder. conf file configuration for customizing both the filter and goodness functions:

The above example combines the techniques from the first two examples. The best back end is now
decided based off of the total capacity of the back end and the requested volumes size.

Example cinder. conf file configuration for accessing driver specific properties:

(continues on next page)

3.2. Administrating Cinder 77

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

The above is an example of how back-end specific properties can be used in the filter and goodness
functions. In this example the LVM drivers total_volumes capability is being used to determine which
host gets used during a volume request. In the above example, lvm-1 and lvm-2 will handle volume
requests for all volumes with a size less than 54GB. Both lvm-1 and Ivm-2 will have the same priority
while lvm-1 contains 3 or less volumes. After that lvm-2 will have priority while it contains 8 or less
volumes. The lvm-3 will collect all volumes greater or equal to SaGB as well as all volumes once lvm-1
and lvm-2 lose priority.

Rate-limit volume copy bandwidth

When you create a new volume from an image or an existing volume, or when you upload a volume
image to the Image service, large data copy may stress disk and network bandwidth. To mitigate slow
down of data access from the instances, OpenStack Block Storage supports rate-limiting of volume data
copy bandwidth.

Configure volume copy bandwidth limit

To configure the volume copy bandwidth limit, set the volume_copy_bps_limit option in the config-
uration groups for each back end in the cinder.conf file. This option takes the integer of maximum
bandwidth allowed for volume data copy in byte per second. If this option is set to 0, the rate-limit is
disabled.

While multiple volume data copy operations are running in the same back end, the specified bandwidth
is divided to each copy.

Example cinder.conf configuration file to limit volume copy bandwidth of 1vmdriver-1 up to 100
MiB/s:

(continues on next page)

78 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Note: This feature requires libcgroup to set up blkio cgroup for disk I/O bandwidth limit. The libcgroup
is provided by the cgroup-tools package in Debian and Ubuntu, or by the libcgroup-tools package in
Fedora, Red Hat Enterprise Linux, CentOS, openSUSE, and SUSE Linux Enterprise.

Note: Some back ends which use remote file systems such as NFS are not supported by this feature.

Oversubscription in thin provisioning

OpenStack Block Storage enables you to choose a volume back end based on virtual capacities for thin
provisioning using the oversubscription ratio.

A reference implementation is provided for the default LVM driver. The illustration below uses the LVM
driver as an example.

Configure oversubscription settings

To support oversubscription in thin provisioning, a flag max_over_subscription_ratio is introduced
into cinder.conf. This is a float representation of the oversubscription ratio when thin provisioning
is involved. Default ratio is 20.0, meaning provisioned capacity can be 20 times of the total physical
capacity. A ratio of 10.5 means provisioned capacity can be 10.5 times of the total physical capacity. A
ratio of 1.0 means provisioned capacity cannot exceed the total physical capacity. A ratio lower than 1.0
is ignored and the default value is used instead.

This parameter also can be set as max_over_subscription_ratio=auto. When using auto, Cinder
will automatically calculate the max_over_subscription_ratio based on the provisioned capacity
and the used space. This allows the creation of a larger number of volumes at the beginning of the pools
life, and start to restrict the creation as the free space approaches to 0 or the reserved limit.

Note: max_over_subscription_ratio can be configured for each back end when multiple-storage
back ends are enabled. It is provided as a reference implementation and is used by the LVM driver.
However, it is not a requirement for a driver to use this option from cinder. conf.

max_over_subscription_ratio is for configuring a back end. For a driver that supports multiple
pools per back end, it can report this ratio for each pool. The LVM driver does not support multiple
pools.

Setting this value to auto. The values calculated by Cinder can dynamically vary according to the pools
provisioned capacity and consumed space.

The existing reserved_percentage flag is used to prevent over provisioning. This flag represents the
percentage of the back-end capacity that is reserved.

3.2. Administrating Cinder 79

Cinder Documentation, Release 19.3.1.dev10

Note: There is a change on how reserved_percentage is used. It was measured against the free
capacity in the past. Now it is measured against the total capacity.

Capabilities

Drivers can report the following capabilities for a back end or a pool:

Where PROVISIONED_CAPACITY is the apparent allocated space indicating how much capacity has
been provisioned and MAX_RATIO is the maximum oversubscription ratio. For the LVM driver, it is
max_over_subscription_ratio in cinder.conf.

Two capabilities are added here to allow a back end or pool to claim support for thin provisioning, or
thick provisioning, or both.

The LVM driver reports thin_provisioning_support=True and
thick_provisioning_support=False if the lvm_type flag in cinder.conf is thin. Other-
wise it reports thin_provisioning_support=False and thick_provisioning_support=True.

Volume type extra specs

If volume type is provided as part of the volume creation request, it can have the following extra specs
defined:

Note: capabilities scope key before thin_provisioning_support and
thick_provisioning_support is not required. So the following works too:

The above extra specs are used by the scheduler to find a back end that supports thin provisioning, thick
provisioning, or both to match the needs of a specific volume type.

80 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Volume replication extra specs

OpenStack Block Storage has the ability to create volume replicas. Administrators can define a storage
policy that includes replication by adjusting the cinder volume driver. Volume replication for OpenStack
Block Storage helps safeguard OpenStack environments from data loss during disaster recovery.

To enable replication when creating volume types, configure the cinder volume with
capabilities:replication="<is> True".

Each volume created with the replication capability set to True generates a copy of the volume on a
storage back end.

One use case for replication involves an OpenStack cloud environment installed across two data centers
located nearby each other. The distance between the two data centers in this use case is the length of a
city.

At each data center, a cinder host supports the Block Storage service. Both data centers include storage
back ends.

Depending on the storage requirements, there can be one or two cinder hosts. The administrator accesses
the /etc/cinder/cinder.conf configuration file and sets capabilities:replication="<is>
True".

If one data center experiences a service failure, administrators can redeploy the VM. The VM will run
using a replicated, backed up volume on a host in the second data center.

Capacity filter

In the capacity filter, max_over_subscription_ratio is used when choosing a back end if
thin_provisioning_support is True and max_over_subscription_ratio is greater than 1.0.

Capacity weigher

In the capacity weigher, virtual free capacity is used for ranking if thin_provisioning_support is
True. Otherwise, real free capacity will be used as before.

Image-Volume cache

OpenStack Block Storage has an optional Image cache which can dramatically improve the performance
of creating a volume from an image. The improvement depends on many factors, primarily how quickly
the configured back end can clone a volume.

When a volume is first created from an image, a new cached image-volume will be created that is owned
by the Block Storage Internal Tenant. Subsequent requests to create volumes from that image will clone
the cached version instead of downloading the image contents and copying data to the volume.

The cache itself is configurable per back end and will contain the most recently used images.

3.2. Administrating Cinder 81

Cinder Documentation, Release 19.3.1.dev10

Configure the Internal Tenant

The Image-Volume cache requires that the Internal Tenant be configured for the Block Storage services.
This project will own the cached image-volumes so they can be managed like normal users including
tools like volume quotas. This protects normal users from having to see the cached image-volumes, but
does not make them globally hidden.

To enable the Block Storage services to have access to an Internal Tenant, set the following options in
the cinder. conf file:

An example cinder. conf configuration file:

Note: The actual user and project that are configured for the Internal Tenant do not require any special
privileges. They can be the Block Storage service project or can be any normal project and user.

Configure the Image-Volume cache

To enable the Image-Volume cache, set the following configuration option in the cinder. conf file:

Note: If you use Ceph as a back end, set the following configuration option in the cinder. conf file:

This can be scoped per back end definition or in the default options.

There are optional configuration settings that can limit the size of the cache. These can also be scoped
per back end or in the default options in the cinder. conf file:

By default they will be set to 0, which means unlimited.

For example, a configuration which would limit the max size to 200 GB and 50 cache entries will be
configured as:

82 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Notifications

Cache actions will trigger Telemetry messages. There are several that will be sent.

* image_volume_cache.miss - A volume is being created from an image which was not found in
the cache. Typically this will mean a new cache entry would be created for it.

* image_volume_cache.hit - A volume is being created from an image which was found in the
cache and the fast path can be taken.

* image_volume_cache.evict - A cached image-volume has been deleted from the cache.

Managing cached Image-Volumes

In normal usage there should be no need for manual intervention with the cache. The entries and their
backing Image-Volumes are managed automatically.

If needed, you can delete these volumes manually to clear the cache. By using the standard volume
deletion APIs, the Block Storage service will clean up correctly.

Volume-backed image

OpenStack Block Storage can quickly create a volume from an image that refers to a volume storing
image data (Image-Volume). Compared to the other stores such as file and swift, creating a volume from
a Volume-backed image performs better when the block storage driver supports efficient volume cloning.

If the image is set to public in the Image service, the volume data can be shared among projects.

Configure the Volume-backed image

Volume-backed image feature requires locations information from the cinder store of the Image ser-
vice. To enable the Image service to use the cinder store, add cinder to the stores option in the
glance_store section of the glance-api . conf file:

To expose locations information, set the following options in the DEFAULT section of the glance-api.
conf file:

To enable the Block Storage services to create a new volume by cloning Image- Volume, set the following
options in the DEFAULT section of the cinder. conf file. For example:

To enable the openstack image create --volume <volume> command to create an image that
refers an Image-Volume, set the following options in each back-end section of the cinder. conf file:

3.2. Administrating Cinder 83

Cinder Documentation, Release 19.3.1.dev10

By default, the openstack image create --volume <volume> command creates the Image-
Volume in the current project. To store the Image-Volume into the internal project, set the following
options in each back-end section of the cinder. conf file:

To make the Image-Volume in the internal project accessible from the Image service, set the following
options in the glance_store section of the glance-api. conf file:

e cinder_store_auth_address
e cinder_store_user_name
e cinder_store_password

e cinder_store_project_name

Creating a Volume-backed image

To register an existing volume as a new Volume-backed image, use the following commands:

openstack image create --disk-format raw --container-format bare IMAGE_NAME

glance location-add <image-uuid> --url cinder://<volume-uuid>

If the image_upload_use_cinder_backend option is enabled, the following command creates a new
Image-Volume by cloning the specified volume and then registers its location to a new image. The disk
format and the container format must be raw and bare (default). Otherwise, the image is uploaded to the
default store of the Image service.

openstack image create --volume SOURCE_VOLUME IMAGE_NAME

Get capabilities

When an administrator configures volume type and extra specs of storage on the back end, the
administrator has to read the right documentation that corresponds to the version of the storage back end.
Deep knowledge of storage is also required.

OpenStack Block Storage enables administrators to configure volume type and extra specs without
specific knowledge of the storage back end.

Note:
* Volume Type: A group of volume policies.

* Extra Specs: The definition of a volume type. This is a group of policies. For example, provision
type, QOS that will be used to define a volume at creation time.

* Capabilities: What the current deployed back end in Cinder is able to do. These correspond to
extra specs.

84 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Usage of cinder client

When an administrator wants to define new volume types for their OpenStack cloud, the administrator
would fetch a list of capabilities for a particular back end using the cinder client.

First, get a list of the services:

openstack volume service list

With one of the listed hosts, pass that to get-capabilities, then the administrator can obtain volume
stats and also back end capabilities as listed below.

cinder get-capabilities blockl@ABC-driver

(continues on next page)

3.2. Administrating Cinder 85

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Disable a service

When an administrator wants to disable a service, identify the Binary and the Host of the service. Use
the :command:‘ openstack volume service set‘ command combined with the Binary and Host to disable
the service:

1. Determine the binary and host of the service you want to remove initially.

openstack volume service list

2. Disable the service using the Binary and Host name, placing the Host before the Binary name.

openstack volume service set --disable HOST_NAME BINARY_NAME

3. Remove the service from the database.

cinder-manage service remove BINARY_NAME HOST_NAME

Usage of REST API

New endpointto get capabilities list for specific storage back end is also available. For more details,
refer to the Block Storage API reference.

API request:

Example of return value:

(continues on next page)

86 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

"pool_name": "pool"

"driver_version": "2.0.0"

"storage_protocol"”: "iSCSI"

"display_name": "Capabilities of Cinder Vendor ABC driver"

"description": "None"

"visibility": "public"

"properties"

"thin_provisioning"
"title": "Thin Provisioning"
"description": "Sets thin provisioning."
"type": "boolean"

"compression"
"title": "Compression"
"description": "Enables compression."

"type": "boolean"

"ABC:compression_type"

"title": "Compression type"

"description": "Specifies compression type."

"type": "string"

"enum"

"lossy", "lossless", "special"

"replication"

"title": "Replication"

"description": "Enables replication."

"type": "boolean"

qgos
"title": "QoS"
"description": "Enables QoS."
"type": "boolean"

"ABC:minIOPS"
"title": "Minimum IOPS QoS"
"description": "Sets minimum IOPS if QoS is enabled."
"type": "integer"

"ABC:maxIOPS"
"title": "Maximum IOPS QoS"
"description": "Sets maximum IOPS if QoS is enabled."
"type": "integer"

"ABC:burstIOPS"
"title": "Burst IOPS QoS"
"description": "Sets burst IOPS if QoS is enabled."
"type": "integer"

(continues on next page)

3.2. Administrating Cinder 87

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Usage of volume type access extension

Some volume types should be restricted only. For example, test volume types where you are testing a
new technology or ultra high performance volumes (for special cases) where you do not want most users
to be able to select these volumes. An administrator/operator can then define private volume types using
cinder client. Volume type access extension adds the ability to manage volume type access. Volume
types are public by default. Private volume types can be created by setting the --private parameter at
creation time. Access to a private volume type can be controlled by adding or removing a project from
it. Private volume types without projects are only visible by users with the admin role/context.

Create a public volume type by setting --public parameter:

openstack volume type create vol_Typel --description testl --public

Create a private volume type by setting --private parameter:

openstack volume type create vol_Type2 --description test2 --private

Get a list of the volume types:

openstack volume type list

Get a list of the projects:

88 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

openstack project list

Add volume type access for the given demo project, using its project-id:

openstack volume type set --project c4860af62ffe465e99edlbc08ef6082e
vol_Type2

List the access information about the given volume type:

openstack volume type show vol_Type2

Remove volume type access for the given project:

openstack volume type unset --project c4860af62ffe465e99edlbc®8ef6082e
vol_Type2
openstack volume type show vol_Type2

3.2. Administrating Cinder

89

Cinder Documentation, Release 19.3.1.dev10

User visible extra specs

Starting in Xena, certain volume type extra specs (i.e. properties) are considered user visible, meaning
their visibility is not restricted to only cloud administrators. This feature provides regular users with more
information about the volume types available to them, and lets them make more informed decisions on
which volume type to choose when creating volumes.

The following extra spec keys are treated as user visible:
e RESKEY:availability_zones
* multiattach

* replication_enabled

Note:
* The set of user visible extra specs is a fixed list that is not configurable.

* The feature is entirely policy based, and does not require a new microversion.

Behavior using openstack client

Consider the following volume type, as viewed from an administrators perspective. In this example,
multiattach is a user visible extra spec and volume_backend_name is not.

Administrator behavior
openstack volume type show vol_type

Here is the output when a regular user executes the same command. Notice only the user visible
multiattach property is listed.

Regular user behavior
openstack volume type show vol_type

(continues on next page)

90 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

The behavior for listing volume types is similar. Administrators will see all extra specs but regular
users will see only user visible extra specs.

Administrator behavior
openstack volume type list --long

Regular user behavior
openstack volume type list --long

Regular users may view these properties, but they may not modify them. Attempts to modify a user
visible property by a non-administrator will fail.

openstack volume type set --property o
—vol_type

3.2. Administrating Cinder 91

Cinder Documentation, Release 19.3.1.dev10

Filtering with extra specs

API microversion 3.52 adds support for using extra specs to filter the list of volume types. Regular
users are able to use that feature to filter for user visible extra specs. If a regular user attempts to filter
on a non-user visible extra spec then an empty list is returned

Administrator behavior
cinder --os-volume-api-version 3.52 type-list
--filters :

cinder --os-volume-api-version 3.52 type-list
--filters :

Regular user behavior
cinder --os-volume-api-version 3.52 type-list
--filters :

cinder --os-volume-api-version 3.52 type-list
--filters :

Security considerations

Cloud administrators who do not wish to expose any extra specs to regular users may restore the
previous behavior by setting the following policies to their pre-Xena default values.

To restrict regular users from using extra specs to filter the list of volume types, modify
/etc/cinder/resource_filters.json to restore the volume_type entry to its pre-Xena default value.

92 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Generic volume groups

Generic volume group support is available in OpenStack Block Storage (cinder) since the Newton release.
The support is added for creating group types and group specs, creating groups of volumes, and creating
snapshots of groups. The group operations can be performed using the Block Storage command line.

A group type is a type for a group just like a volume type for a volume. A group type can also have
associated group specs similar to extra specs for a volume type.

In cinder, there is a group construct called consistency group. Consistency groups only support consistent
group snapshots and only a small number of drivers can support it. The following is a list of drivers that
support consistency groups and the release when the support was added:

e Juno: EMC VNX

* Kilo: EMC VMAX, IBM (GPFS, Storwize, SVC, and XIV), ProphetStor, Pure
* Liberty: Dell Storage Center, EMC XtremIO, HPE 3Par and LeftHand

* Mitaka: EMC ScalelO, NetApp Data ONTAP, SolidFire

* Newton: CoprHD, FalconStor, Huawei

Consistency group cannot be extended easily to serve other purposes. A tenant may want to put volumes
used in the same application together in a group so that it is easier to manage them together, and this group
of volumes may or may not support consistent group snapshot. Generic volume group is introduced to
solve this problem.

There is a plan to migrate existing consistency group operations to use generic volume group operations
in future releases. More information can be found in Cinder specs.

Note: Only Block Storage V3 API supports groups. You can specify --os-volume-api-version
3.x when using the cinder command line for group operations where 3.x contains a microversion value
for that command. The generic volume group feature was completed in several patches. As a result, the
minimum required microversion is different for group types, groups, and group snapshots APIs.

The following group type operations are supported:
* Create a group type.
* Delete a group type.
» Set group spec for a group type.
* Unset group spec for a group type.
 List group types.
* Show a group type details.
» Update a group.
* List group types and group specs.

The following group and group snapshot operations are supported:

3.2. Administrating Cinder 93

https://specs.openstack.org/openstack/cinder-specs/specs/newton/group-snapshots.html

Cinder Documentation, Release 19.3.1.dev10

* Create a group, given group type and volume types.

Note: A group must have one group type. A group can support more than one volume type. The
scheduler is responsible for finding a back end that can support the given group type and volume

types.

A group can only contain volumes hosted by the same back end.

A group is empty upon its creation. Volumes need to be created and added to it later.

» Show a group.

 List groups.

* Delete a group.

* Modify a group.

* Create a volume and add it to a group.

* Create a snapshot for a group.

* Show a group snapshot.

* List group snapshots.

* Delete a group snapshot.

* Create a group from a group snapshot.

* Create a group from a source group.
The following operations are not allowed if a volume is in a group:

* Volume migration.

* Volume retype.

¢ Volume deletion.

Note: A group has to be deleted as a whole with all the volumes.

The following operations are not allowed if a volume snapshot is in a group snapshot:

* Volume snapshot deletion.

Note: A group snapshot has to be deleted as a whole with all the volume snapshots.

The details of group type operations are shown in the following. The minimum microversion to support
group type and group specs is 3.11:

Create a group type:

94 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: The parameter NAME is required. The --is-public IS_PUBLIC determines whether the group
type is accessible to the public. It is True by default. By default, the policy on privileges for creating a
group type is admin-only.

Show a group type:

Note: The parameter GROUP_TYPE is the name or UUID of a group type.

List group types:

Note: Only admin can see private group types.

Update a group type:

Note: The parameter GROUP_TYPE_ID is the UUID of a group type. By default, the policy on privileges
for updating a group type is admin-only.

Delete group type or types:

Note: The parameter GROUP_TYPE is name or UUID of the group type or group types to be deleted. By
default, the policy on privileges for deleting a group type is admin-only.

Set or unset group spec for a group type:

Note: The parameter GROUP_TYPE is the name or UUID of a group type. Valid values for the parameter
ACTION are set or unset. KEY=VALUE is the group specs key and value pair to set or unset. For unset,

3.2. Administrating Cinder 95

Cinder Documentation, Release 19.3.1.dev10

specify only the key. By default, the policy on privileges for setting or unsetting group specs key is
admin-only.

List group types and group specs:

Note: By default, the policy on privileges for seeing group specs is admin-only.

The details of group operations are shown in the following. The minimum microversion to support groups
operations is 3.13.

Create a group:

Note: The parameters GROUP_TYPE and VOLUME_TYPES are required. GROUP_TYPE is the name or
UUID of a group type. VOLUME_TYPES can be a list of names or UUIDs of volume types separated by
commas without spaces in between. For example, volumetypel,volumetype2,volumetype3..

Show a group:

Note: The parameter GROUP is the name or UUID of a group.

List groups:

Note: --all-tenants specifies whether to list groups for all tenants. Only admin can use this option.

Create a volume and add it to a group:

Note: When creating a volume and adding it to a group, the parameters VOLUME_TYPE and GROUP_ID

96 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

must be provided. This is because a group can support more than one volume type.

Delete a group:

Note: --delete-volumes allows or disallows groups to be deleted if they are not empty. If the group
is empty, it can be deleted without --delete-volumes. If the group is not empty, the flag is required
for it to be deleted. When the flag is specified, the group and all volumes in the group will be deleted.

Modify a group:
Note: The parameter UUID1,UUID2,...... is the UUID of one or more volumes to be added to the
group, separated by commas. Similarly the parameter UUID3,UUID4,...... is the UUID of one or

more volumes to be removed from the group, separated by commas.

The details of group snapshots operations are shown in the following. The minimum microversion to
support group snapshots operations is 3.14.

Create a snapshot for a group:

Note: The parameter GROUP is the name or UUID of a group.

Show a group snapshot:

Note: The parameter GROUP_SNAPSHOT is the name or UUID of a group snapshot.

List group snapshots:

3.2. Administrating Cinder 97

Cinder Documentation, Release 19.3.1.dev10

Note: --all-tenants specifies whether to list group snapshots for all tenants. Only admin can use
this option. --status STATUS filters results by a status. --group-id GROUP_ID filters results by a
group id.

Delete group snapshot:

Note: The parameter GROUP_SNAPSHOT specifies the name or UUID of one or more group snapshots to
be deleted.

Create a group from a group snapshot or a source group:

cinder --os-volume-api-version 3.14 group-create-from-src

Note: The parameter GROUP_SNAPSHOT is a name or UUID of a group snapshot. The parameter
SOURCE_GROUP is a name or UUID of a source group. Either GROUP_SNAPSHOT or SOURCE_GROUP
must be specified, but not both.

Note: To enable the use of encrypted volumes, see the setup instructions in Create an encrypted volume
ype.

98 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Troubleshoot your installation

This section provides useful tips to help you troubleshoot your Block Storage installation.

Troubleshoot the Block Storage configuration

Most Block Storage errors are caused by incorrect volume configurations that result in volume creation
failures. To resolve these failures, review these logs:

e cinder-api log (/var/log/cinder/api.log)
* cinder-volume log (/var/log/cinder/volume.log)

The cinder-api log is useful for determining if you have endpoint or connectivity issues. If you send
a request to create a volume and it fails, review the cinder-api log to determine whether the request
made it to the Block Storage service. If the request is logged and you see no errors or tracebacks, check
the cinder-volume log for errors or tracebacks.

Note: Create commands are listed in the cinder-api log.

These entries in the cinder. conf file can be used to assist in troubleshooting your Block Storage con-
figuration.

Print debugging output (set logging level to DEBUG instead
of default WARNING level . ‘boolean value
false

Log output to standard error 'boolean value
true

Default file mode used when creating log files (string

value

0644
format string to use log messages with context (string
value

% asctime s.% msecs 03d % levelname s
% name 's % request_id s % user s % tenant s %/ instance s% message s

format string to use log mes
% msecs 03d % process d % levelname s % name s - % instance s% message s

data to append to log format when level is DEBUG (string
value
% funcName s % pathname s:% lineno d

prefix each line of exception output with this format
string value
% asctime s.% msecs 03d % process d TRACE % name s
% instance s

(continues on next page)

3.2. Administrating Cinder 99

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

list of LEVEL pairs (list value
WARN, sqlalchemy WARN,boto WARN, suds INFO,
INFO,eventlet.wsgi.server WARNsages without context
string value

If an instance is passed with the log message, format it
like this (string value

If an instance UUID is passed with the log message, format
it like this (string value

Format string %% asctime s log records. Default:
% default s (string value
%Y -%m-%d 96H : %M : %S

Optional Name of log file to output to. If not set,
logging will go to stdout. 'string value

<None>
Optional The directory to keep log files will be
prepended to --log-file (string value

<None>

If this option is specified, the logging configuration file
specified is used and overrides any other logging options
specified. Please see the Python logging module

documentation details on logging configuration files.
string value
Use syslog logging. (boolean value
false

syslog facility to receive log lines (string value
LOG_USER
<None>

These common issues might occur during configuration, and the following potential solutions describe
how to address the issues.

100 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Issues with state_path and volumes_dir settings
Problem

The OpenStack Block Storage uses tgtd as the default iSCSI helper and implements persistent targets.
This means that in the case of a tgt restart, or even a node reboot, your existing volumes on that node
will be restored automatically with their original /ON.

By default, Block Storage uses a state_path variable, which if installing with Yum or APT should
be set to /var/lib/cinder/. The next part is the volumes_dir variable, by default this appends a
volumes directory to the state_path. The result is a file-tree: /var/lib/cinder/volumes/.

Solution

In order to ensure nodes are restored to their original IQN, the iSCSI target information needs to be stored
in a file on creation that can be queried in case of restart of the tgt daemon. While the installer should
handle all this, it can go wrong.

If you have trouble creating volumes and this directory does not exist you should see an error message
in the cinder-volume log indicating that the volumes_dir does not exist, and it should provide infor-
mation about which path it was looking for.

The persistent tgt include file
Problem

The Block Storage service may have issues locating the persistent tgt include file. Along with the
volumes_dir option, the iSCSI target driver also needs to be configured to look in the correct place for
the persistent tgt include °° file. This is an entry in the " /etc/tgt/conf.d file that
should have been set during the OpenStack installation.

Solution

If issues occur, verify that you have a /etc/tgt/conf.d/cinder.conf file. If the file is not present,
create it with:

echo >> /etc/tgt/conf.d/cinder.conf

Failed to create iscsi target error in the cinder-volume.log file

Problem

3.2. Administrating Cinder 101

Cinder Documentation, Release 19.3.1.dev10

You might see this error in cinder-volume. log after trying to create a volume that is 1 GB.

Solution

To fix this issue, change the content of the /etc/tgt/targets.conf file from include /etc/tgt/
conf.d/*.conf to include /etc/tgt/conf.d/cinder_tgt.conf, as follows:

include /etc/tgt/conf.d/cinder_tgt.conf
include /etc/tgt/conf.d/cinder.conf
default-driver iscsi

Restart tgt and cinder-* services, so they pick up the new configuration.

Multipath call failed exit

Problem

Multipath call failed exit. This warning occurs in the Compute log if you do not have the optional
multipath-tools package installed on the compute node. This is an optional package and the vol-
ume attachment does work without the multipath tools installed. If the multipath-tools package is
installed on the compute node, it is used to perform the volume attachment. The IDs in your message are
unique to your system.

Solution

Run the following command on the compute node to install the multipath-tools packages.

apt-get install multipath-tools

HTTP bad request in cinder volume log
Problem

These errors appear in the cinder-volume. log file:

(continues on next page)

102 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

3.2. Administrating Cinder 103

Cinder Documentation, Release 19.3.1.dev10

Solution

You need to update your copy of the hp_3par_£fc.py driver which contains the synchronization code.

Duplicate 3PAR host

Problem

This error may be caused by a volume being exported outside of OpenStack using a host name different
from the system name that OpenStack expects. This error could be displayed with the /QN if the host
was exported using iSCSI:

Solution

Change the 3PAR host name to match the one that OpenStack expects. The 3PAR host constructed by the
driver uses just the local host name, not the fully qualified domain name (FQDN) of the compute host.
For example, if the FQDN was myhost.example.com, just myhost would be used as the 3PAR host name.
IP addresses are not allowed as host names on the 3PAR storage server.

Failed to attach volume after detaching
Problem

Failed to attach a volume after detaching the same volume.

Solution

You must change the device name on the nova-attach command. The VM might not clean up after
a nova-detach command runs. This example shows how the nova-attach command fails when you
use the vdb, vdc, or vdd device names:

1s -al /dev/disk/by-path/

(continues on next page)

104 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

[}

You might also have this problem after attaching and detaching the same volume from the same VM with
the same mount point multiple times. In this case, restart the KVM host.

Failed to attach volume, systool is not installed
Problem

This warning and error occurs if you do not have the required sysfsutils package installed on the
compute node:

Solution

Run the following command on the compute node to install the sysfsutils packages:

apt-get install sysfsutils

Failed to connect volume in FC SAN

Problem

The compute node failed to connect to a volume in a Fibre Channel (FC) SAN configuration. The WWN
may not be zoned correctly in your FC SAN that links the compute host to the storage array:

(continues on next page)

3.2. Administrating Cinder 105

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Solution

The network administrator must configure the FC SAN fabric by correctly zoning the WWN (port names)
from your compute node HBAs.

Cannot find suitable emulator for x86_64

Problem

When you attempt to create a VM, the error shows the VM is in the BUILD then ERROR state.

Solution

On the KVM host, run cat /proc/cpuinfo. Make sure the vmx or svm flags are set.

Follow the instructions in the Enable KVM section in the OpenStack Configuration Reference to enable
hardware virtualization support in your BIOS.

Non-existent host

Problem

This error could be caused by a volume being exported outside of OpenStack using a host name different
from the system name that OpenStack expects. This error could be displayed with the /QN if the host
was exported using iSCSI.

106 Chapter 3. For operators

https://docs.openstack.org/ocata/config-reference/compute/hypervisor-kvm.html#enable-kvm

Cinder Documentation, Release 19.3.1.dev10

Solution

Host names constructed by the driver use just the local host name, not the fully qualified domain name
(FQDN) of the Compute host. For example, if the FQDN was myhost.example.com, just myhost would
be used as the 3PAR host name. IP addresses are not allowed as host names on the 3PAR storage server.

Non-existent VLUN

Problem

This error occurs if the 3PAR host exists with the correct host name that the OpenStack Block Storage
drivers expect but the volume was created in a different domain.

Solution

The hpe3par_domain configuration items either need to be updated to use the domain the 3PAR host
currently resides in, or the 3PAR host needs to be moved to the domain that the volume was created in.

Availability-zone types

Background

In a newly deployed region environment, the volume types (SSD, HDD or others) may only exist on part
of the AZs, but end users have no idea which AZ is allowed for one specific volume type and they cant
realize that only when the volume failed to be scheduled to backend. In this case, we have supported
availability zone volume type in Rocky cycle which administrators can take advantage of to fix that.

How to config availability zone types?

We decided to use types extra-specs to store this additional info, administrators can turn it on by updating
volume types key RESKEY:availability_zones as below:

Its an array list whose items are separated by comma and stored in string. Once the availability zone type
is configured, any UI component or client can filter out invalid volume types based on their choice of
availability zone:

Request example:
/v3/{project_id}/types?extra_specs={'RESKEY:availability_zones':'azl'}

Remember, Cinder will always try inexact match for this spec value, for instance, when extra spec
RESKEY:availability_zones is configured with value az1,az2, both azl and az2 are valid inputs

3.2. Administrating Cinder 107

Cinder Documentation, Release 19.3.1.dev10

for query, also this spec will not be used during performing capability filter, instead it will be only used
for choosing suitable availability zones in these two cases below.

1. Create volume, within this feature, now we can specify availability zone via parame-
ter availability_zone, volume source (volume, snapshot, group), configuration option
default_availability_zone and storage_availability_zone. When creating new volume,
Cinder will try to read the AZ(s) in the priority of:

type

{

If there is a conflict between any of them, 400 BadRequest will be raised, also now a AZ list instead of
single AZ will be delivered to AvailabilityZoneFilter.

2. Retype volume, this flow also has been updated, if new type has configured
RESKEY:availability_zones Cinder scheduler will validate this as well.

Generalized filters
Background

Cinder introduced generalized resource filters since Pike. Administrator can control the allowed filter
keys for non-admin user by editing the filter configuration file. Also since this feature, cinder will raise
400 BadRequest if any invalid query filter is specified.

How do | configure the filter keys?

resource_query_filters_file is introduced to cinder to represent the filter config file path, and the
config file accepts the valid filter keys for non-admin user with json format:

the key volume (singular) here stands for the resource you want to apply and the value accepts an list
which contains the allowed filters collection, once the configuration file is changed and API service is
restarted, cinder will only recognize this filter keys, NOTE: the default configuration file will include all
the filters we already enabled.

Which filter keys are supported?

Not all the attributes are supported at present, so we add this table below to indicate which filter keys are
valid and can be used in the configuration.

Since v3.34 we could use ~ to indicate supporting querying resource by inexact match, for example, if
we have a configuration file as below:

108 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

User can query volume both by name=volume and name~=volume, and the volumes named volume123
and a_volume123 are both valid for second input while neither are valid for first. The supported APIs
are marked with * below in the table.

API Valid filter keys

list vol- | id, group_id, name, status, bootable, migration_status, metadata, host, image_metadata,

ume* availability_zone, user_id, volume_type_id, project_id, size, description, replica-
tion_status, multiattach

list id, volume_id, user_id, project_id, status, volume_size, name, description, vol-

snap- ume_type_id, group_snapshot_id, metadata, availability_zone

shot*

list id, name, status, container, availability_zone, description, volume_id, is_incremental, size,

backup*| host, parent_id

list id, user_id, status, availability_zone, group_type, name, description, host

group*

list g- | id, name, description, group_id, group_type_id, status

snapshot

list id, volume_id, instance_id, attach_status, attach_mode, connection_info, mountpoint, at-

attach- | tached_host

ment*

list id, event_id, resource_uuid, resource_type, request_id, message_level, project_id

mes-

sage™

get name, volume_type

pools

list is_public, extra_specs

types

(3.52)

Basic volume quality of service

Basic volume QoS allows you to define hard performance limits for volumes on a per-volume basis.

Performance parameters for attached volumes are controlled using volume types and associated extra-

specs.

As of the 13.0.0 Rocky release, Cinder supports the following options to control volume quality of service,
the values of which should be fairly self-explanatory:

For Fixed IOPS per volume.

* read_iops_sec

* write_iops_sec

* total_iops_sec

For Burst IOPS per volume.

3.2. Administrating Cinder 109

Cinder Documentation, Release 19.3.1.dev10

* read_iops_sec_max
* write_iops_sec_max
* total_iops_sec_max
For Fixed bandwidth per volume.
* read_bytes_sec
* write_bytes_sec
* total_bytes_sec
For Burst bandwidth per volume.
* read_bytes_sec_max
* write_bytes_sec_max
* total_bytes_sec_max
For burst bucket size.
* size_iops_sec

Note that the total_* and total_*_max options for both iops and bytes cannot be used with the equivalent
read and write values.

For example, in order to create a QoS extra-spec with 20000 read IOPs and 10000 write IOPs, you might
use the Cinder client in the following way:

cinder qos-create high-iops
20000 10000

The equivalent OpenStack client command would be:

openstack volume qos create --consumer
--property

--property

high-iops

Once this is done, you can associate this QoS with a volume type by using the gos-associate Cinder client
command.

cinder qos-associate QOS_ID VOLUME_TYPE_ID

or using the openstack volume qos associate OpenStack client command.

110 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

openstack volume qos associate QOS_ID VOLUME_TYPE_ID

You can now create a new volume and attempt to attach it to a consumer such as Nova. If you login to
the Nova compute host, youll be able to see the assigned limits when checking the XML definition of the
virtual machine with virsh dumpxml.

Note: As of the Nova 18.0.0 Rocky release, front end QoS settings are only supported when using the
libvirt driver.

Volume multi-attach: Enable attaching a volume to multiple servers
The ability to attach a volume to multiple hosts/servers simultaneously is a use case desired for ac-
tive/active or active/standby scenarios.

Support was added in both Cinder and Nova in the Queens release to volume multi-attach with read/write
(RW) mode.

Warning: It is the responsibility of the user to ensure that a multiattach or clustered file system is
used on the volumes. Otherwise there may be a high probability of data corruption.

In Cinder the functionality is available from microversion 3.50 or higher.

As a prerequisite new Attach/Detach APIs were added to Cinder in Ocata to overcome earlier limitations
towards achieving volume multi-attach.

In case you use Cinder together with Nova, compute API calls were switched to using the new block
storage volume attachment APIs in Queens, if the required block storage API microversion is available.

For more information on using multiattach volumes with the compute service, refer to the corresponding
compute admin guide section.

How to create a multiattach volume

In order to be able to attach a volume to multiple server instances you need to have the multiattach flag set
to True in the volume details. Please ensure you have the right role and policy settings before performing
the operation.

Currently you can create a multiattach volume in two ways.

Note: For information on back ends that provide the functionality see Back end support.

3.2. Administrating Cinder 111

https://specs.openstack.org/openstack/cinder-specs/specs/queens/enable-multiattach.html
https://specs.openstack.org/openstack/nova-specs/specs/queens/approved/cinder-volume-multi-attach.html
http://specs.openstack.org/openstack/cinder-specs/specs/ocata/add-new-attach-apis.html
https://docs.openstack.org/nova/latest/admin/manage-volumes.html#volume-multi-attach

Cinder Documentation, Release 19.3.1.dev10

Multiattach volume type

Starting from the Queens release the ability to attach a volume to multiple hosts/servers requires that the
volume is of a special type that includes an extra-spec capability setting of multiattach=<is> True.
You can create the volume type the following way:

cinder type-create multiattach
cinder type-key multiattach set

Note: Creating a new volume type is an admin-only operation by default. You can change the settings
in the cinder policy file if needed. For more information about configuring cinder policies, see Policy
configuration.

To create the volume you need to use the volume type you created earlier, like this:

cinder create <volume_size> --name <volume_name> --volume-type <volume_type_
—uuid>

In addition, it is possible to retype a volume to be (or not to be) multiattach capable. Currently however
we only allow retyping a volume if its status is available.

The reasoning behind the limitation is that some consumers/hypervisors need to make special consider-
ations at attach-time for multiattach volumes (like disable caching) and theres no mechanism currently
to update a currently attached volume in a safe way while keeping it attached the whole time.

RO / RW caveats (the secondary RW attachment issue)

By default, secondary volume attachments are made in read/write mode which can be problematic, es-
pecially for operations like volume migration.

There might be improvements to provide support to specify the attach-mode for the secondary attach-
ments, for the latest information please take a look into Cinders specs list for the current release.

Back end support

In order to have the feature available, multi-attach needs to be supported by the chosen back end which
is indicated through capabilities in the corresponding volume driver.

The reference implementation is available on LVM in the Queens release. You can check the Driver
Support Matrix for further information on which back end provides the functionality.

112 Chapter 3. For operators

https://specs.openstack.org/openstack/cinder-specs/index.html

Cinder Documentation, Release 19.3.1.dev10

Policy rules

You can control the availability of volume multi-attach through policies that you can configure in the
cinder policy file. For more information about the cinder policy file, including how to generate a sample
file so you can view the default policy settings, see Policy configuration.

Multiattach policy

The general policy rule to allow the creation or retyping of multiattach volumes is named
volume:multiattach.

Multiattach policy for bootable volumes

This is a policy to disallow the ability to create multiple attachments on a volume that is marked as
bootable with the name volume:multiattach_bootable_volume.

Known issues and limitations

* Retyping an in-use volume from a multiattach-capable type to a non-multiattach-capable type, or
vice-versa, is not supported.

* It is not recommended to retype an in-use multiattach volume if that volume has more than one
active read/write attachment.

* Encryption is not supported with multiattach-capable volumes.

3.3 Reference

Contents:

3.3.1 Cinder Service Configuration
Introduction to the Block Storage service

The Block Storage service provides persistent block storage resources that Compute instances can con-
sume. This includes secondary attached storage similar to the Amazon Elastic Block Storage (EBS)
offering. In addition, you can write images to a Block Storage device for Compute to use as a bootable
persistent instance.

The Block Storage service differs slightly from the Amazon EBS offering. The Block Storage service
does not provide a shared storage solution like NFS. With the Block Storage service, you can attach a
device to only one instance.

The Block Storage service provides:

* cinder-api - a WSGI app that authenticates and routes requests throughout the Block Storage
service. It supports the OpenStack APIs only, although there is a translation that can be done
through Computes EC2 interface, which calls in to the Block Storage client.

3.3. Reference 113

Cinder Documentation, Release 19.3.1.dev10

* cinder-scheduler - schedules and routes requests to the appropriate volume service. Depend-

ing upon your configuration, this may be simple round-robin scheduling to the running volume
services, or it can be more sophisticated through the use of the Filter Scheduler. The Filter Sched-
uler is the default and enables filters on things like Capacity, Availability Zone, Volume Types, and
Capabilities as well as custom filters.

* cinder-volume - manages Block Storage devices, specifically the back-end devices themselves.

* cinder-backup - provides a means to back up a Block Storage volume to OpenStack Object

Storage (swift).

The Block Storage service contains the following components:

* Back-end Storage Devices - the Block Storage service requires some form of back-end storage

that the service is built on. The default implementation is to use LVM on a local volume group
named cinder-volumes. In addition to the base driver implementation, the Block Storage service
also provides the means to add support for other storage devices to be utilized such as external
Raid Arrays or other storage appliances. These back-end storage devices may have custom block
sizes when using KVM or QEMU as the hypervisor.

Users and Tenants (Projects) - the Block Storage service can be used by many different cloud
computing consumers or customers (tenants on a shared system), using role-based access assign-
ments. Roles control the actions that a user is allowed to perform. In the default configuration,
most actions do not require a particular role, but this can be configured by the system administrator
in the cinder policy file that maintains the rules.

Note: For more information about configuring cinder policies, see Policy configuration.

A users access to particular volumes is limited by tenant, but the user name and password are
assigned per user. Key pairs granting access to a volume are enabled per user, but quotas to control
resource consumption across available hardware resources are per tenant.

For tenants, quota controls are available to limit:
— The number of volumes that can be created.
— The number of snapshots that can be created.
— The total number of GBs allowed per tenant (shared between snapshots and volumes).

You can revise the default quota values with the Block Storage CLI, so the limits placed by quotas
are editable by admin users.

Volumes, Snapshots, and Backups - the basic resources offered by the Block Storage service are
volumes and snapshots which are derived from volumes and volume backups:

— Volumes - allocated block storage resources that can be attached to instances as secondary
storage or they can be used as the root store to boot instances. Volumes are persistent R/'W
block storage devices most commonly attached to the compute node through iSCSI.

— Snapshots - a read-only point in time copy of a volume. The snapshot can be created from a
volume that is currently in use (through the use of --force True) or in an available state.
The snapshot can then be used to create a new volume through create from snapshot.

— Backups - an archived copy of a volume currently stored in Object Storage (swift).

114

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Using service tokens

When a user initiates a request whose processing involves multiple services (for example, a boot-from-
volume request to the Compute Service will require processing by the Block Storage Service, and may
require processing by the Image Service), the users token is handed from service to service. This ensures
that the requestor is tracked correctly for audit purposes and also guarantees that the requestor has the
appropriate permissions to do what needs to be done by the other services.

There are several instances where we want to differentiate between a request coming from the user to one
coming from another OpenStack service on behalf of the user:

* For security reasons There are some operations in the Block Storage service, required for normal
operations, that could be exploited by a malicious user to gain access to resources belonging to
other users. By differentiating when the request comes directly from a user and when from another
OpenStack service the Cinder service can protect the deployment.

* To prevent long-running job failures: If the chain of operations takes a long time, the users token
may expire before the action is completed, leading to the failure of the users original request.

One way to deal with this is to set a long token life in Keystone, and this may be what you are
currently doing. But this can be problematic for installations whose security policies prefer short
user token lives. Beginning with the Queens release, an alternative solution is available. You have
the ability to configure some services (particularly Nova and Cinder) to send a service token along
with the users token. When properly configured, the Identity Service will validate an expired user
token when it is accompanied by a valid service token. Thus if the users token expires somewhere
during a long running chain of operations among various OpenStack services, the operations can
continue.

Note: Theres nothing special about a service token. Its a regular token that has been requested by a
service user. And theres nothing special about a service user, its just a user that has been configured in
the Identity Service to have specific roles that identify that user as a service.

The key point here is that the service token doesnt need to have an extra long life it can have the same
short life as all the other tokens because it will be a fresh (and hence valid) token accompanying the
(possibly expired) users token.

Configuration

To configure Cinder to send a service token along with the users token when it makes a request to another
service, you must do the following:

1. Find the [service_user] section in the Cinder configuration file (usually /etc/cinder/
cinder.conf, though it may be in a different location in your installation).

2. In that section, set send_service_user_token = true.

3. Also in that section, fill in the appropriate configuration for your service user (username,
project_name, etc.)

Note: There is no configuration required for a service to receive service tokens. This is automatically
handled by the keystone middleware used by each service (beginning with the Pike release).

3.3. Reference 115

Cinder Documentation, Release 19.3.1.dev10

(The previous statement is true for the default configuration. It is possible for someone to change some
settings so that service tokens will be ignored. See the Troubleshooting section below.)

Troubleshooting

If youve configured this feature and are still having long-running job failures, there are basically three
degrees of freedom to take into account: (1) each source service, (2) each receiving service, and (3) the
Identity Service (Keystone).

1.

Each source service (basically, Nova and Cinder) must have the [service_user] section in the
source service configuration file filled in as described in the Configuration section above.

Note: As of the Train release, Glance does not have the ability to pass service tokens. It can
receive them, though. The place where you may still see a long running failure is when Glance is
using a backend that requires Keystone validation (for example, the Swift backend) and the user
token has expired.

Each receiving service, by default, is set up to accept service tokens. There are two options to
be aware of, however, that can affect whether or not a receiving service (for example, Glance)
will actually accept service tokens. These appear in the [keystone_authtoken] section of the
receiving service configuration file (for example, /etc/glance/glance-api.conf).

service_token_roles The value is a list of roles; the service user passing the service token
must have at least one of these roles or the token will be rejected. (But see the next option.)
The default value is service.

service_token_roles_required This is a boolean; the default value is false. It governs
whether the keystone middleware used by the receiving service will pay any attention to the
service_token_roles setting. (Eventually the default is supposed to become True, but its
still False as of Stein.)

3. There are several things to pay attention to in Keystone:

 If youve decided to turn on service_token_roles_required for any of the receiving
services, then you must make sure that any service user who will be contacting that receiving
service (and for whom you want to enable service token usage) has one of the roles specified
in the receiving servicess service_token_roles setting. (This is a matter of creating and
assigning roles using the Identity Service API, its not a configuration file issue.)

* Even with a service token, an expired user token cannot be used indefinitely. Theres a
Keystone configuration setting that controls this: [token]/allow_expired_window in the
Keystone configuration file. The default setting is 2 days, so some security teams may want
to lower this just on general principles. You need to make sure its not set too low to be
completely ineffective.

e If you are using Fernet tokens, you need to be careful with your Fernet key rota-
tion period. Whoever sets up the key rotation has to pay attention to the [token]/
allow_expired_window setting as well as the obvious [token]/expiration setting. If
keys get rotated faster than expiration + allow_expired_window seconds, an expired
user token might not be decryptable, even though the request using it is being made within
allow_expired_window seconds.

116

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

To summarize, you need to be aware of:
* Keystone: must allow a decent sized allow_expired_window (default is 2 days)

» Each source service: must be configured to be able to create and send service tokens (default is
OFF)

* Each receiving service: has to be configured to accept service tokens (default is ON)

Volume drivers

To use different volume drivers for the cinder-volume service, use the parameters described in these
sections.

These volume drivers are included in the Block Storage repository. To set a volume driver, use the
volume_driver flag.

The default is:

Note that some third party storage systems may maintain more detailed configuration documentation
elsewhere. Contact your vendor for more information if needed.

Driver Configuration Reference
Ceph RADOS Block Device (RBD)

If you use KVM, QEMU or Hyper-V as your hypervisor, you can configure the Compute service to use
Ceph RADOS block devices (RBD) for volumes.

Ceph is a massively scalable, open source, distributed storage system. It is comprised of an object store,
block store, and a POSIX-compliant distributed file system. The platform can auto-scale to the exabyte
level and beyond. It runs on commodity hardware, is self-healing and self-managing, and has no single
point of failure. Due to its open-source nature, you can install and use this portable storage platform in
public or private clouds.

Clients Metadata Cluster

Metadata operations

O
fmmm————— .;'_:':';-.._,-__,' .' ’S}@ Metadata
: [bash [client i [z:@ storage
v LJs | [bfuse] | | _
: |:;3 N Object Storage Cluster
] | rqm=m=m=- =1
I H : . :
[T vis [fuse]! [client | {
: Linux kernel '+ [myproc | |
I H

Fig. 1: Ceph architecture

3.3. Reference 117

https://opendev.org/openstack/cinder
https://ceph.com/ceph-storage/block-storage/

Cinder Documentation, Release 19.3.1.dev10

Note: Supported Ceph versions

The current release cycle model for Ceph targets a new release yearly on 1 March, with there being at
most two active stable releases at any time.

For a given OpenStack release, Cinder supports the current Ceph active stable releases plus the two prior
releases.

For example, at the time of the OpenStack Wallaby release in April 2021, the Ceph active supported
releases are Pacific and Octopus. The Cinder Wallaby release therefore supports Ceph Pacific, Octopus,
Nautilus, and Mimic.

Additionally, it is expected that the version of the Ceph client available to Cinder or any of its associated
libraries (os-brick, cinderlib) is aligned with the Ceph server version. Mixing server and client versions
is unsupported and may lead to anomalous behavior.

The minimum requirements for using Ceph with Hyper-V are Ceph Pacific and Windows Server 2016.

RADOS

Ceph is based on Reliable Autonomic Distributed Object Store (RADOS). RADOS distributes objects
across the storage cluster and replicates objects for fault tolerance. RADOS contains the following major
components:

Object Storage Device (OSD) Daemon The storage daemon for the RADOS service, which interacts
with the OSD (physical or logical storage unit for your data). You must run this daemon on each
server in your cluster. For each OSD, you can have an associated hard drive disk. For performance
purposes, pool your hard drive disk with raid arrays, or logical volume management (LVM). By
default, the following pools are created: data, metadata, and RBD.

Meta-Data Server (MDS) Stores metadata. MDSs build a POSIX file system on top of objects for Ceph
clients. However, if you do not use the Ceph file system, you do not need a metadata server.

Monitor (MON) A lightweight daemon that handles all communications with external applications and
clients. It also provides a consensus for distributed decision making in a Ceph/RADOS cluster. For
instance, when you mount a Ceph shared on a client, you point to the address of a MON server.
It checks the state and the consistency of the data. In an ideal setup, you must run at least three
ceph-mon daemons on separate servers.

Ways to store, use, and expose data

To store and access your data, you can use the following storage systems:
RADOS Use as an object, default storage mechanism.

RBD Use as a block device. The Linux kernel RBD (RADOS block device) driver allows striping a
Linux block device over multiple distributed object store data objects. It is compatible with the
KVM RBD image.

CephFS Use as a file, POSIX-compliant file system.

Ceph exposes RADOS; you can access it through the following interfaces:

118 Chapter 3. For operators

https://docs.ceph.com/en/latest/releases/general/

Cinder Documentation, Release 19.3.1.dev10

RADOS Gateway OpenStack Object Storage and Amazon-S3 compatible RESTful interface (see RA-
DOS_Gateway).

librados and its related C/C++ bindings
RBD and QEMU-RBD Linux kernel and QEMU block devices that stripe data across multiple objects.

RBD pool

The RBD pool used by the Cinder backend is configured with option rbd_pool, and by default the driver
expects exclusive management access to that pool, as in being the only system creating and deleting
resources in it, since thats the recommended deployment choice.

Pool sharing is strongly discouraged, and if we were to share the pool with other services, within Open-
Stack (Nova, Glance, another Cinder backend) or outside of OpenStack (oVirt), then the stats returned
by the driver to the scheduler would not be entirely accurate.

The inaccuracy would be that the actual size in use by the cinder volumes would be lower than the reported
one, since it would be also including the used space by the other services.

We can set the rbd_exclusive_cinder_pool configuration option to false to fix this inaccuracy, but
this has a performance impact.

Warning: Setting rbd_exclusive_cinder_pool to false will increase the burden on the Cinder
driver and the Ceph cluster, since a request will be made for each existing image, to retrieve its size,
during the stats gathering process.

For deployments with large amount of volumes it is recommended to leave the default value of true,
and accept the inaccuracy, as it should not be particularly problematic.

Driver options

The following table contains the configuration options supported by the Ceph RADOS Block Device
driver.

3.3. Reference 119

http://docs.ceph.com/docs/master/radosgw/
http://docs.ceph.com/docs/master/radosgw/

Cinder Documentation, Release 19.3.1.dev10

Table 1: Description of Ceph storage configuration options

Config- Description

uration

option =

Default

value

deferred_ddhetgbonTdmntalelay in seconds before a volume is eligible for permanent removal after

=0 being tagged for deferred deletion.

deferred_ddhetgbonNomrtye dfrseepudd between runs of the periodic task to purge volumes tagged

=60 for deletion.

enable_def@uwadadeFasblendeferred deletion. Upon deletion, volumes are tagged for deletion but

=False will only be removed asynchronously at a later time.

rados_cornndategeiyp®omtout value (in seconds) used when connecting to ceph cluster. If value < 0,

=-1 no timeout is set and default librados value is used.

rados_conndateigem) inteeast ahlue (in seconds) between connection retries to ceph cluster.

=5

rados_cornn@dateigen) Rermtisrof retries if connection to ceph cluster failed.

=3

rbd_ceph_|ctfing) Path to the ceph configuration file

=<>

rbd_clustetStniage The name of ceph cluster

= ceph

rbd_exclus@BeoleinfSet podilse if the pool is shared with other usages. On exclusive use driver

= True wont query images provisioned size as they will match the value calculated by the Cinder
core code for allocated_capacity_gb. This reduces the load on the Ceph cluster as well
as on the volume service. On non exclusive use driver will query the Ceph cluster for per
image used disk, this is an intensive operation having an independent request for each
image.

rbd_flattetBooltampFiattm smlapsisodreated from snapshots to remove dependency from volume

=False | to snapshot

rbd_max_qldnegtep¥aximum number of nested volume clones that are taken before a flatten occurs.

=5 Set to 0 to disable cloning. Note: lowering this value will not affect existing volumes
whose clone depth exceeds the new value.

rbd_pool | (String) The RADOS pool where rbd volumes are stored

=rhd

rbd_secret(Sting) The libvirt uuid of the secret for the rbd_user volumes

= None

rbd_store_dhtagers Volumes will be chunked into objects of this size (in megabytes).

=4

rbd_user | (String) The RADOS client name for accessing rbd volumes - only set when using cephx

= None authentication

replicatiofdnegmepdtnedmesatoe (in seconds) used when connecting to ceph cluster to do a de-

=5 motion/promotion of volumes. If value < 0, no timeout is set and default librados value
is used.

report_dyndiddeanx3dt todfrac Tdydriver to report total capacity as a dynamic value (used + current

=True free) and to False to report a static value (quota max bytes if defined and global size of
cluster if not).

120 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

LVM

The default volume back end uses local volumes managed by LVM.
This driver supports different transport protocols to attach volumes, currently iSCSI and iSER.

Set the following in your cinder. conf configuration file, and use the following options to configure for
iSCSI transport:

Use the following options to configure for the iSER transport:

Table 2: Description of LVM configuration options

Configuration Description
option = Default
value

lvm_conf_file (String) LVM conf file to use for the LVM driver in Cinder; this setting is ig-
= /etc/cinder/ | nored if the specified file does not exist (You can also specify None to not use
lvm.conf a conf file even if one exists).

lvm_mirrors =0 | (Integer) If >0, create LVs with multiple mirrors. Note that this requires
Ivm_mirrors + 2 PVs with available space

lvm_suppress_£fd_wéBnalega) Suppress leaked file descriptor warnings in LVM commands.
=False
lvm_type = auto | (String(choices=[default, thin, auto])) Type of LVM volumes to deploy; (de-
fault, thin, or auto). Auto defaults to thin if thin is supported.

volume_group = | (String) Name for the VG that will contain exported volumes
cinder-volumes

Caution: When extending an existing volume which has a linked snapshot, the re-
lated logical volume is deactivated. This logical volume is automatically reactivated unless
auto_activation_volume_list is defined in LVM configuration file 1vm.conf. See the lvm.
conf file for more information.

If auto activated volumes are restricted, then include the cinder volume group into this list:

This note does not apply for thinly provisioned volumes because they do not need to be deactivated.

3.3. Reference 121

Cinder Documentation, Release 19.3.1.dev10

NFS driver

The Network File System (NFS) is a distributed file system protocol originally developed by Sun Mi-
crosystems in 1984. An NFS server exports one or more of its file systems, known as shares. An
NES client can mount these exported shares on its own file system. You can perform file actions on this
mounted remote file system as if the file system were local.

How the NFS driver works

The NFS driver, and other drivers based on it, work quite differently than a traditional block storage
driver.

The NFS driver does not actually allow an instance to access a storage device at the block level. Instead,
files are created on an NFS share and mapped to instances, which emulates a block device. This works
in a similar way to QEMU, which stores instances in the /var/lib/nova/instances directory.

Enable the NFS driver and related options

To use Cinder with the NFS driver, first set the volume_driver in the cinder. conf configuration file:

The following table contains the options supported by the NFS driver.

Table 3: Description of NFS storage configuration options

Configuration option
= Default value

Description

nfs_mount_attempts
=3

(Integer) The number of attempts to mount NFS shares before raising an
error. At least one attempt will be made to mount an NFS share, regardless
of the value specified.

nfs_mount_options
= None

(String) Mount options passed to the NFS client. See the NFS(5) man page
for details.

nfs_mount_point_bas
= $§state_path/mnt

e(String) Base dir containing mount points for NFS shares.

nfs_gcow2_volumes
=False

(Boolean) Create volumes as QCOW?2 files rather than raw files.

nfs_shares_config
/etc/cinder/
nfs_shares

(String) File with the list of available NFS shares.

nfs_snapshot_suppor
=False

t(Boolean) Enable support for snapshots on the NFS driver. Platforms using
libvirt <1.2.7 will encounter issues with this feature.

nfs_sparsed_volumes
=True

(Boolean) Create volumes as sparsed files which take no space. If set to
False volume is created as regular file. In such case volume creation takes
a lot of time.

Note: As of the Icehouse release, the NFS driver (and other drivers based off it) will attempt to mount
shares using version 4.1 of the NFS protocol (including pNFES). If the mount attempt is unsuccessful due
to a lack of client or server support, a subsequent mount attempt that requests the default behavior of the

122 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

mount .nfs command will be performed. On most distributions, the default behavior is to attempt mount-
ing first with NFS v4.0, then silently fall back to NFS v3.0 if necessary. If the nfs_mount_options
configuration option contains a request for a specific version of NFS to be used, or if specific options are
specified in the shares configuration file specified by the nfs_shares_config configuration option, the
mount will be attempted as requested with no subsequent attempts.

How to use the NFS driver

Creating an NFS server is outside the scope of this document.

Configure with one NFS server

This example assumes access to the following NFS server and mount point:
* 192.168.1.200:/storage
This example demonstrates the usage of this driver with one NFS server.

Set the nas_host option to the IP address or host name of your NFS server, and the nas_share_path
option to the NFS export path:

Configure with multiple NFS servers

Note: You can use the multiple NFS servers with cinder multi back ends feature. Configure the en-
abled_backends option with multiple values, and use the nas_host and nas_share options for each
back end as described above.

The below example is another method to use multiple NFS servers, and demonstrates the usage of this
driver with multiple NFS servers. Multiple servers are not required. One is usually enough.

This example assumes access to the following NFS servers and mount points:
* 192.168.1.200:/storage
* 192.168.1.201:/storage
* 192.168.1.202:/storage

1. Add your list of NFS servers to the file you specified with the nfs_shares_config option. For
example, if the value of this option was set to /etc/cinder/shares.txt file, then:

cat /etc/cinder/shares.txt

Comments are allowed in this file. They begin with a #.

3.3. Reference 123

https://wiki.openstack.org/wiki/Cinder-multi-backend

Cinder Documentation, Release 19.3.1.dev10

2. Configure the nfs_mount_point_base option. This is a directory where cinder-volume
mounts all NFS shares stored in the shares. txt file. For this example, /var/1lib/cinder/nfs
is used. You can, of course, use the default value of $state_path/mnt.

3. Start the cinder-volume service. /var/lib/cinder/nfs should now contain a directory for
each NFS share specified in the shares. txt file. The name of each directory is a hashed name:

ls /var/lib/cinder/nfs/

4. You can now create volumes as you normally would:

openstack volume create --size 5 MYVOLUME
ls /var/lib/cinder/nfs/46c5db75dc3a3a50al0bfd1a456a9f3f

This volume can also be attached and deleted just like other volumes.

NFS driver notes

* cinder-volume manages the mounting of the NFS shares as well as volume creation on the
shares. Keep this in mind when planning your OpenStack architecture. If you have one master
NFS server, it might make sense to only have one cinder-volume service to handle all requests
to that NFS server. However, if that single server is unable to handle all requests, more than one
cinder-volume service is needed as well as potentially more than one NFS server.

* Because data is stored in a file and not actually on a block storage device, you might not see the
same 10 performance as you would with a traditional block storage driver. Please test accordingly.

* Despite possible 10 performance loss, having volume data stored in a file might be beneficial. For
example, backing up volumes can be as easy as copying the volume files.

Note: Regular 10 flushing and syncing still stands.

Datera drivers

Datera iSCSI driver

The Datera Data Services Platform (DSP) is a scale-out storage software that turns standard, commodity
hardware into a RESTful API-driven, intent-based policy controlled storage fabric for large-scale clouds.
The Datera DSP integrates seamlessly with the Block Storage service. It provides storage through the
iSCSI block protocol framework over the iSCSI block protocol. Datera supports all of the Block Storage
services.

124 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

System requirements, prerequisites, and recommendations
Prerequisites

* All nodes must have access to Datera DSP through the iSCSI block protocol.

* All nodes accessing the Datera DSP must have the following packages installed:
— Linux I/O (LIO)
— open-iscsi
— open-iscsi-utils

— wget

3.3. Reference 125

Cinder Documentation, Release 19.3.1.dev10

Table 4: Description of Datera configuration options

Configura- | Description

tion option

= Default

value

datera_503| flmtegsralnterval between 503 retries

=5

datera_503_¢hrmegary Timeout for HTTP 503 retry messages

=120

datera_debugBoolean) True to set function arg and return logging

=False

datera_debu¢Boelehng) Nb¥nFOR/BEHUE/TESTING PURPOSES True to set replica_count to 1
=False

datera_disabReokxrheideth eratadmable sending additional metadata to the Datera backend
=False

datera_disabReolenafSteto True to disable profiling in the Datera driver

=False

datera_disabReoleamp Fat 0 dmertiidisable automatic template override of the size attribute when
=False creating from a template

datera_enab{ldodleage Seathdrue to enable Datera backend image caching

=False

datera_imagéStcadd imdtume]urmp eypalid to use for cached volumes

= None

datera_ldap(Steinggt DAP authentication server

= None

datera_ten

= None

afiStriik) If set to Map > OpenStack project ID will be mapped implicitly to Datera tenant
ID If set to None > Datera tenant ID will not be used during volume provisioning If set
to anything else > Datera tenant ID will be the provided value

datera_vol

=1{}

ufleictydeStdiePabetsngs here will be used as volume-type defaults if the volume-type
setting is not provided. This can be used, for example, to set a very low total_iops_max
value if none is specified in the volume-type to prevent accidental overusage. Op-
tions are specified via the following format, WITHOUT ANY DF: PREFIX: dat-
era_volume_type_defaults=iops_per_gb:100,bandwidth_per_gb:200etc.

datera_api
=7717

|_pSring) Datera API port. DEPRECATED

datera_api
=2.2

|_v®rsigrDatera API version. DEPRECATED

Configuring

Modify the /e

the Datera volume driver

tc/cinder/cinder. conf file for Block Storage service.

¢ Enable the Datera volume driver:

126

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

* Optional. Designate Datera as the default back-end:

* Create a new section for the Datera back-end definition. The VIP can be either the Datera Man-
agement Network VIP or one of the Datera iSCSI Access Network VIPs depending on the network
segregation requirements. For a complete list of parameters that can be configured, please see the
section Volume Driver Cinder.conf Options

Enable the Datera volume driver

* Verify the OpenStack control node can reach the Datera VIP:

$ ping -c 4 <VIP>

« Start the Block Storage service on all nodes running the cinder-volume services:

$ service cinder-volume restart

Configuring one (or more) Datera specific volume types

There are extra volume type parameters that can be used to define Datera volume types with specific QoS
policies (R/W IOPS, R/W bandwidth) and/or placement policies (replica count, type of media, IP pool
to use, etc.)

For a full list of supported options please see the Volume-Type ExtraSpecs section in the driver docu-
mentation. See more examples in the Usage section.

$ openstack volume type create datera_2way --property
. datera --property DF:replica_count 2

$ openstack volume type create datera_iops --property
. datera --property DF:write_iops_max 5000

3.3. Reference 127

https://github.com/Datera/cinder-driver/blob/master/README.rst#volume-driver-cinderconf-options
https://github.com/Datera/cinder-driver/blob/master/README.rst#volume-type-extraspecs
https://github.com/Datera/cinder-driver/blob/master/README.rst#usage

Cinder Documentation, Release 19.3.1.dev10

Supported operations

* Create, delete, attach, detach, manage, unmanage, and list volumes.
* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Support for naming convention changes.

Configuring multipathing

Enabling multipathing is strongly reccomended for reliability and availability reasons. Please refer to
the following file for an example of configuring multipathing in Linux 3.x kernels. Some parameters in
different Linux distributions may be different.

Dell EMC PowerFlex Storage driver
Overview

Dell EMC PowerFlex (formerly named Dell EMC ScalelO/VxFlex OS) is a software-only solution that
uses existing servers local disks and LAN to create a virtual SAN that has all of the benefits of external
storage, but at a fraction of the cost and complexity. Using the driver, Block Storage hosts can connect
to a PowerFlex Storage cluster.

The Dell EMC PowerFlex Cinder driver is designed and tested to work with both PowerFlex and with
ScalelO. The configuration options are identical for both PowerFlex and ScalelO.

Official PowerFlex documentation

To find the PowerFlex documentation:
1. Go to the PowerFlex product documentation page.

2. From the left-side panel, select the relevant PowerFlex version.

128 Chapter 3. For operators

https://github.com/Datera/datera-csi/blob/master/assets/multipath.conf
https://support.emc.com/products/33925_ScaleIO/Documentation/?source=promotion

Cinder Documentation, Release 19.3.1.dev10

Supported PowerFlex, VxFlex OS and ScalelO Versions

The Dell EMC PowerFlex Block Storage driver has been tested against the following versions of ScalelO,
VxFlex OS and PowerFlex and found to be compatible:

e ScalelO 2.0.x
ScalelO 2.5.x
e VxFlex OS 2.6.x

¢ VxFlex OS 3.0.x
¢ PowerFlex 3.5.x

Please consult the Official PowerFlex documentation to determine supported operating systems for each
version of PowerFlex, VxFlex OS or ScalelO.

Deployment prerequisites

* The PowerFlex Gateway must be installed and accessible in the network. For installation steps,
refer to the Preparing the installation Manager and the Gateway section in PowerFlex Deployment
Guide. See Official PowerFlex documentation.

» PowerFlex Storage Data Client (SDC) must be installed on all OpenStack nodes.

Note: Ubuntu users must follow the specific instructions in the PowerFlex OS Deployment Guide for
Ubuntu environments. See the Deploying on Ubuntu Servers section in PowerFlex Deployment
Guide. See Official PowerFlex documentation.

Supported operations

* Create, delete, clone, attach, detach, migrate, manage, and unmanage volumes
* Create, delete, manage, and unmanage volume snapshots

* Create a volume from a snapshot

* Revert a volume to a snapshot

* Copy an image to a volume

* Copy a volume to an image

* Extend a volume

* Get volume statistics

* Create, list, update, and delete consistency groups

* Create, list, update, and delete consistency group snapshots

* OpenStack replication v2.1 support

3.3. Reference 129

Cinder Documentation, Release 19.3.1.dev10

PowerFlex Block Storage driver configuration

This section explains how to configure and connect the block storage nodes to a PowerFlex storage cluster.

Edit the cinder.conf file by adding the configuration below under a new section (for example,
[powerflex]) and change the enable_backends setting (in the [DEFAULT] section) to include this
new back end. The configuration file is usually located at /etc/cinder/cinder. conf.

For a configuration example, refer to the example cinder.conf .

PowerFlex driver name

Configure the driver name by adding the following parameter:

PowerFlex Gateway server IP

The PowerFlex Gateway provides a REST interface to PowerFlex.

Configure the Gateway server IP address by adding the following parameter:

PowerFlex Storage Pools

Multiple Storage Pools and Protection Domains can be listed for use by the virtual machines. The list
should include every Protection Domain and Storage Pool pair that you would like Cinder to utilize.

To retrieve the available Storage Pools, use the command scli --query_all and search for available
Storage Pools.

Configure the available Storage Pools by adding the following parameter:

PowerFlex user credentials

Block Storage requires a PowerFlex user with administrative privileges. Dell EMC recommends creating
a dedicated OpenStack user account that has an administrative user role.

Refer to the PowerFlex User Guide for details on user account management.

Configure the user credentials by adding the following parameters:

130 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Oversubscription

Configure the oversubscription ratio by adding the following parameter under the separate section for
PowerFlex:

Note: The default value for powerflex_max_over_subscription_ratiois 10.0.

Oversubscription is calculated correctly by the Block Storage service only if the extra specification
provisioning:type appears in the volume type regardless of the default provisioning type. Maximum
oversubscription value supported for PowerFlex is 10.0.

Default provisioning type

If provisioning type settings are not specified in the volume type, the default value is set according to
the san_thin_provision option in the configuration file. The default provisioning type will be thin
if the option is not specified in the configuration file. To set the default provisioning type thick, set the
san_thin_provision option to false in the configuration file, as follows:

The configuration file is usually located in /etc/cinder/cinder.conf. For a configuration example,
see: cinder.conf.

Configuration example

cinder.conf example file

You can update the cinder. conf file by editing the necessary parameters as follows:

3.3. Reference 131

Cinder Documentation, Release 19.3.1.dev10

Connector configuration

Before using attach/detach volume operations PowerFlex connector must be properly configured. On
each node where PowerFlex SDC is installed do the following:

1. Create /opt/dellemc/powerflex/openstack/connector.conf if it does not exist.

mkdir -p /opt/dellemc/powerflex/openstack
touch /opt/dellemc/powerflex/openstack/connector.conf

2. For each PowerFlex section in the cinder. conf create the same section in the /opt/dellemc/
powerflex/openstack/connector.conf and populate it with passwords. Example:

Configuration options

The PowerFlex driver supports these configuration options:

132 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 5: Description of PowerFlex configuration options

Configuration option
= Default value

Description

powerflex_allow_mig
=False

rdidaradyAilogy vebumd dnigration during rebuild.

powerflex_allow_non
=False

_{BwaldlednAllamesolumes to be created in Storage Pools when zero padding
is disabled. This option should not be enabled if multiple tenants will utilize
volumes from a shared Storage Pool.

powerflex_max_over
=10.0

stfieat) ipaxi cxverasubscription_ratio setting for the driver. Maximum value
allowed is 10.0.

powerflex_rest_sery
=443

etPgroimtin=0, max=65535)) Gateway REST server port.

powerflex_round_vol
=True

ufPoalaparRoynd volume sizes up to 8GB boundaries. PowerFlex/VxFlex
OS requires volumes to be sized in multiples of 8GB. If set to False, volume
creation will fail for volumes not sized properly

powerflex_server_ap
= None

i(Steing) BowerFlex/ScalelO API version. This value should be left as the
default value unless otherwise instructed by technical support.

powerflex_storage_p
= None

osing) Storage Pools. Comma separated list of storage pools used
to provide volumes. Each pool should be specified as a protec-
tion_domain_name:storage_pool_name value

powerflex_unmap_vol
=False

ufiodile fio) E/pdedpe valomes before deletion.

vxflexos_allow_migx
=False

af ovledny ierpmredud hodwerflex_allow_migration_during_rebuild. DEP-
RECATED

vxflexos_allow_non_|
=False

pdRloeldawp temmsed to powerflex_allow_non_padded_volumes. DEPRE-
CATED

vxflexos_max_over_s
=10.0

uldd oxt)preimemenh ttbo powerflex_max_over_subscription_ratio. DEPRE-

CATED

vxflexos_rest_serve
=443

r(Rwot(min=0, max=65535)) renamed to powerflex_rest_server_port. DEP-
RECATED

vxflexos_round_voly

= True

mBaalpan) tenamed to powerflex_round_volume_capacity,. ~ DEPRE-

CATED

vxflexos_server_api
= None

_rimpomenamed to powerflex_server_api_version. DEPRECATED

vxflexos_storage_pd
= None

o(8tring) renamed to powerflex_storage_pools. DEPRECATED

vxflexos_unmap_volum@bafaere wahateiborto powerflex_round_volume_capacity. = DEPRE-
=False CATED
3.3. Reference 133

Cinder Documentation, Release 19.3.1.dev10

Volume Types

Volume types can be used to specify characteristics of volumes allocated via the PowerFlex Driver. These
characteristics are defined as Extra Specs within Volume Types.

PowerFlex Protection Domain and Storage Pool

When multiple storage pools are specified in the Cinder configuration, users can specify which pool
should be utilized by adding the pool_name Extra Spec to the volume type extra-specs and setting the
value to the requested protection_domain:storage_pool.

openstack volume type create powerflex_type_1

openstack volume type set --property powerflex.,
—powerflex_type_1

openstack volume type set --property Domain2:Pool2 powerflex_type_
-1

PowerFlex thin provisioning support

The Block Storage driver supports creation of thin-provisioned and thick-provisioned volumes. The pro-
visioning type settings can be added as an extra specification of the volume type, as follows:

openstack volume type create powerflex_type_thick
openstack volume type set --property provisioning:type thick powerflex_type_

PowerFlex QoS support

QoS support for the PowerFlex driver includes the ability to set the following capabilities:

maxIOPS The QoS I/O rate limit. If not set, the I/O rate will be unlimited. The setting must be larger
than 10.

maxIOPSperGB The QoS I/O rate limit. The limit will be calculated by the specified value multiplied
by the volume size. The setting must be larger than 10.

maxBWS The QoS I/O bandwidth rate limit in KBs. If not set, the I/O bandwidth rate will be unlimited.
The setting must be a multiple of 1024.

maxBWSperGB The QoS I/O bandwidth rate limit in KBs. The limit will be calculated by the specified
value multiplied by the volume size. The setting must be a multiple of 1024.

The QoS keys above must be created and associated with a volume type. For example:

openstack volume gos create qos-limit-iops --consumer back-end --property.
< 5000

openstack volume type create powerflex_limit_iops

openstack volume gos associate gos-limit-iops powerflex_limit_iops

134 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

The driver always chooses the minimum between the QoS keys value and the relevant calculated value
of maxIOPSperGB or maxBWSperGB.

Since the limits are per SDC, they will be applied after the volume is attached to an instance, and thus to
a compute node/SDC.

PowerFlex compression support

Starting from version 3.0, PowerFlex supports volume compression. By default driver will create volumes
without compression. In order to create a compressed volume, a volume type which enables compression
support needs to be created first:

openstack volume type create powerflex_compressed
openstack volume type set --property provisioning:type compressed powerflex_
—.compressed

If a volume with this type is scheduled to a storage pool which doesnt support compression, then thin
provisioning will be used. See table below for details.

provisioning:type | storage pool supports compression

yes (PowerFlex 3.0 FG pool) | no (other pools)
compressed thin with compression thin
thin thin thin
thick thin thick
not set thin thin

Note: PowerFlex 3.0 Fine Granularity storage pools dont support thick provisioned volumes.

You can add property compression_support="'<is> True' to volume type to limit volumes alloca-
tion only to data pools which supports compression.

openstack volume type set --property o
—powerflex_compressed

PowerFlex replication support

Starting from version 3.5, PowerFlex supports volume replication.

Prerequisites

* PowerFlex replication components must be installed on source and destination systems.

* Source and destination systems must have the same configuration for Protection Domains and their
Storage Pools (i.e. names, zero padding, etc.).

» Source and destination systems must be paired and have at least one Replication Consistency Group
created.

See Official PowerFlex documentation for instructions.

3.3. Reference 135

Cinder Documentation, Release 19.3.1.dev10

Configure replication

1. Enable replication in cinder. conf file.

To enable replication feature for storage backend replication_device must be set as below:

* Only one replication device is supported for storage backend.
* The following parameters are optional for replication device:
— REST API port - powerflex_rest_server_port.

- SSL certificate verification - driver_ssl_cert_verify and
driver_ssl_cert_path.

For more information see Configuration options.

2. Create volume type for volumes with replication enabled.

openstack volume type create powerflex_replicated
openstack volume type set --property o
—powerflex_replicated

3. Set PowerFlex Replication Consistency Group name for volume type.

openstack volume type set --property powerflex:replication_cg
—<replication_cg name>
powerflex_replicated

4. Set Protection Domain and Storage Pool if multiple Protection Domains are specified.

PowerFlex Replication Consistency Group is created between source and destination Protection
Domains. If more than one Protection Domain is specified in cinder.conf you should set
pool_name property for volume type with appropriate Protection Domain and Storage Pool. See
PowerFlex Protection Domain and Storage Pool.

136 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Failover host

In the event of a disaster, or where there is a required downtime the administrator can issue the failover
host command:

cinder failover-host cinder_host@powerflex --backend_id powerflex_repl

After issuing Cinder failover-host command Cinder will switch to configured replication device, however
to get existing instances to use this target and new paths to volumes it is necessary to first shelve Nova
instances and then unshelve them, this will effectively restart the Nova instance and re-establish data
paths between Nova instances and the volumes.

nova shelve <server>
nova unshelve --availability-zone <availability_zone> <server>

If the primary system becomes available, the administrator can initiate failback operation using
--backend_id default:

cinder failover-host cinder_host@powerflex --backend_id default

PowerFlex storage-assisted volume migration

Starting from version 3.0, PowerFlex supports storage-assisted volume migration.

Known limitations

* Migration between different backends is not supported.

* For migration from Medium Granularity (MG) to Fine Granularity (FG) storage pool zero padding
must be enabled on the MG pool.

* For migration from MG to MG pool zero padding must be either enabled or disabled on both pools.

In the above cases host-assisted migration will be perfomed.

Migrate volume

Volume migration is performed by issuing the following command:

cinder migrate <volume> <host>

Note: Volume migration has a timeout of 3600 seconds (1 hour). It is done to prevent from endless
waiting for migration to complete if something unexpected happened. If volume still is in migration after
timeout has expired, volume status will be changed to maintenance to prevent future operations with
this volume. The corresponding warning will be logged.

In this situation the status of the volume should be checked on the storage side. If volume migration
succeeded, its status can be changed manually:

3.3. Reference 137

Cinder Documentation, Release 19.3.1.dev10

cinder reset-state --state available <volume>

Using PowerFlex Storage with a containerized overcloud

1. Create a file with below contents:

parameter_defaults
NovaComputeOptVolumes

CinderVolumeOptVolumes

GlanceApiOptVolumes

Name it whatever you like, e.g. powerflex_volumes.yml.
2. Use -e to include this customization file to deploy command.

3. Install the Storage Data Client (SDC) on all nodes after deploying the overcloud.

Dell EMC PowerMax iSCSI and FC drivers

The Dell EMC PowerMax drivers, PowerMaxISCSIDriver and PowerMaxFCDriver, support the use
of Dell EMC PowerMax and VMAX storage arrays with the Cinder Block Storage project. They both
provide equivalent functions and differ only in support for their respective host attachment methods.

The drivers perform volume operations by communicating with the back-end PowerMax storage man-
agement software. They use the Requests HTTP library to communicate with a Unisphere for PowerMax
instance, using a RESTAPI interface in the backend to perform PowerMax and VMAX storage opera-
tions.

Note: DEPRECATION NOTICE: The VMAX Hybrid series will not be supported from the Z release
of OpenStack. Also, any All Flash array running HyperMaxOS 5977 will no longer be supported from
the Z release onwards.

Note: While PowerMax will be used throughout this document, it will be used to collectively categorize
the following supported arrays, PowerMax 2000, 8000, VMAX All Flash 250F, 450F, 850F and 950F
and VMAX-Hybrid.

138 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

System requirements and licensing

The Dell EMC PowerMax Cinder driver supports the VMAX-Hybrid series, VMAX All-Flash series and
the PowerMax arrays.

The array operating system software, Solutions Enabler 9.2.2 series, and Unisphere for PowerMax 9.2.2
series are required to run Dell EMC PowerMax Cinder driver for the Wallaby release. Please refer to
support-matrix-table for the support matrix of previous OpenStack versions.

Download Solutions Enabler and Unisphere from the Dell EMCs support web site (login is required). See
the Dell EMC Solutions Enabler 9.2.2 Installation and Configuration Guide and Dell EMC Unisphere
for PowerMax Installation Guide at the Dell EMC Support site.

Note: At the time each OpenStack release, support-matrix-table was the recommended PowerMax
management software and OS combinations. Please reach out your local PowerMax representative to see
if these versions are still valid.

Table 6: PowerMax Management software and OS for OpenStack

release
OpenStack | Unisphere for PowerMax | PowerMax OS
Xena 9.2.2 5978.711
Wallaby 9.2.1 5978.711
Victoria 9.2.x 5978.669
Ussuri 9.1.x 5978.479
Train 9.1.x 5978.444
Stein 9.0.x 5978.221

Note: A Hybrid array can only run HyperMax OS 5977, and is still supported until the Z release of
OpenStack. Some functionality will not be available in older versions of the OS. If in any doubt, please
contact your local PowerMax representative.

Note: Newer versions of Unisphere for PowerMax and PowerMax OS are not retrospectively tested on
older versions of OpenStack. If it is necessary to upgrade, the older REST endpoints will be used. For
example, in Ussuri, if upgrading to Unisphere for PowerMax 9.2, the older 91 endpoints will be used.

Required PowerMax software suites for OpenStack

The storage system requires a Unisphere for PowerMax (SMC) eLicense.

3.3. Reference 139

https://www.dell.com/support

Cinder Documentation, Release 19.3.1.dev10

PowerMax

There are two licenses for the PowerMax 2000 and 8000:
* Essentials software package
* Pro software package

The Dell EMC PowerMax cinder driver requires the Pro software package.

All Flash

For full functionality including SRDF for the VMAX All Flash, the FX package, or the F package plus
the SRDF a la carte add on is required.

Hybrid

There are five Dell EMC Software Suites sold with the VMAX-Hybrid arrays:
* Base Suite
* Advanced Suite
* Local Replication Suite
* Remote Replication Suite
* Total Productivity Pack

The Dell EMC PowerMax Cinder driver requires the Advanced Suite and the Local Replication Suite
or the Total Productivity Pack (it includes the Advanced Suite and the Local Replication Suite) for the
VMAX Hybrid.

Using PowerMax Remote Replication functionality will also require the Remote Replication Suite.

Note: Each are licensed separately. For further details on how to get the relevant license(s), reference
eLicensing Support below.

eLicensing support

To activate your entitlements and obtain your PowerMax license files, visit the Service Center on Dell
EMC Support, as directed on your License Authorization Code (LAC) letter emailed to you.

» For help with missing or incorrect entitlements after activation (that is, expected functionality
remains unavailable because it is not licensed), contact your EMC account representative or au-
thorized reseller.

* For help with any errors applying license files through Solutions Enabler, contact the Dell EMC
Customer Support Center.

* If you are missing a LAC letter or require further instructions on activating your licenses through
the Online Support site, contact EMCs worldwide Licensing team at 1icensing@emc . comor call:

140 Chapter 3. For operators

https://www.dell.com/support
https://www.dell.com/support

Cinder Documentation, Release 19.3.1.dev10

North America, Latin America, APJK, Australia, New Zealand: SVC4EMC (800-782-4362) and
follow the voice prompts.

EMEA: +353 (0) 21 4879862 and follow the voice prompts.

PowerMax for OpenStack Cinder customer support

If you require help or assistance with PowerMax and Cinder please open a Service Request (SR) through
standard support channels at Dell EMC Support. When opening a SR please include the following infor-
mation:

* Array Model & uCode level

* Unisphere for PowerMax version

* Solutions Enabler Version

* OpenStack host Operating System (Ubuntu, RHEL, etc.)
* OpenStack version (Usurri, Train, etc.)

¢ PowerMax for Cinder driver version, this can be located in the comments in the PowerMax driver
file: {cinder_install_dir}/cinder/volume/drivers/dell_emc/powermax/fc.py

* Cinder logs

* Detailed description of the issue you are encountering

Supported operations

PowerMax drivers support these operations:
* Create, list, delete, attach, and detach volumes
* Create, list, and delete volume snapshots
* Copy an image to a volume
* Copy a volume to an image
* Clone a volume
* Extend a volume
* Retype a volume (Host and storage assisted volume migration)
* Create a volume from a snapshot
* Create and delete generic volume group
* Create and delete generic volume group snapshot
* Modify generic volume group (add and remove volumes)
* Create generic volume group from source
* Live Migration
* Volume replication SRDF/S, SRDF/A and SRDF Metro
* Quality of service (QoS)

3.3. Reference 141

https://www.dell.com/support

Cinder Documentation, Release 19.3.1.dev10

* Manage and unmanage volumes and snapshots

* List Manageable Volumes/Snapshots

* Backup create, delete, list, restore and show
PowerMax drivers also support the following features:

* Dynamic masking view creation

* Dynamic determination of the target iSCSI IP address

* iSCSI multipath support

* Oversubscription

* Service Level support

* SnapVX support

* Compression support(All Flash and PowerMax)
* Deduplication support(PowerMax)

* CHAP Authentication

* Multi-attach support

* Volume Metadata in logs

* Encrypted Volume support

* Extending attached volume

* Replicated volume retype support

* Retyping attached(in-use) volume

* Unisphere High Availability(HA) support
* Online device expansion of a metro device
* Rapid TDEV deallocation of deletes

» Multiple replication devices

» PowerMax array and storage group tagging
 Short host name and port group templates
* Snap id support

* Seamless Live Migration from SMI-S support

* Port group & port performance load balancing

Note: In certain cases, when creating a volume from a source snapshot or source volume, subsequent
operations using the volumes may fail due to a missing snap_name exception. A manual refresh on the
connected Unisphere instance or waiting until another operation automatically refreshes the connected

Unisphere instance, will alleviate this issue.

142

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

PowerMax naming conventions

Note: shortHostName will be altered using the following formula, if its length exceeds 16 characters.
This is because the storage group and masking view names cannot exceed 64 characters:

if len(shortHostName) > 16:
1. Perform md5 hash on the shortHostName
2. Convert output of 1. to hex
3. Take last 6 characters of shortHostName and append output of 2.
4. If the length of output of 3. exceeds 16 characters, join the
first 8 characters and last 8 characters.

Note: portgroup_name will be altered using the following formula, if its length exceeds 12 characters.
This is because the storage group and masking view names cannot exceed 64 characters:

if len(portgroup_name) > 12:
1. Perform md5 hash on the portgroup_name
2. Convert output of 1. to hex
3. Take last 6 characters of portgroup_name and append output of 2.
4. If the length of output of 3. exceeds 12 characters, join the
first 6 characters and last 6 characters.

Masking view names

Masking views are dynamically created by the PowerMax FC and iSCSI drivers using the following
naming conventions. [protocol] is either I for volumes attached over iSCSI or F for volumes attached
over Fibre Channel.

0S-[shortHostName] - [protocol]-[portgroup_name]-MV

Initiator group names

For each host that is attached to PowerMax volumes using the drivers, an initiator group is created or
re-used (per attachment type). All initiators of the appropriate type known for that host are included
in the group. At each new attach volume operation, the PowerMax driver retrieves the initiators (either
WWNNSs or IQNs) from OpenStack and adds or updates the contents of the Initiator Group as required.
Names are of the following format. [protocol] is either I for volumes attached over iSCSI or F for
volumes attached over Fibre Channel.

Note: Hosts attaching to OpenStack managed PowerMax storage cannot also attach to storage on the
same PowerMax that are not managed by OpenStack.

3.3. Reference 143

Cinder Documentation, Release 19.3.1.dev10

FA port groups

PowerMax array FA ports to be used in a new masking view are retrieved from the port group provided
as the extra spec on the volume type, or chosen from the list provided in the Dell EMC configuration file.

Storage group names

As volumes are attached to a host, they are either added to an existing storage group (if it exists) or a
new storage group is created and the volume is then added. Storage groups contain volumes created
from a pool, attached to a single host, over a single connection type (iSCSI or FC). [protocol] is either
I for volumes attached over iSCSI or F for volumes attached over Fibre Channel. PowerMax Cinder
driver utilizes cascaded storage groups - a parent storage group which is associated with the masking
view, which contains child storage groups for each configured SRP/slo/workload/compression-enabled
or disabled/replication-enabled or disabled combination.

PowerMax, VMAX All Flash and VMAX-Hybrid

Parent storage group:

0S-[shortHostName]-[protocol]-[portgroup_name]-SG

Child storage groups:

0S-[shortHostName]-[SRP]-[ServiceLevel /Workload] - [portgroup_name]-CD-RE

Note: CD and RE are only set if compression is explicitly disabled or replication explicitly enabled. See
the compression /1. All Flash compression support and replication Volume replication support sections
below.

Note: For VMAX All Flash with PowerMax OS (5978) or greater, workload if set will be ignored and
set to NONE.

Table 7: Replication storage group naming conventions

Default storage | Attached child storage | Management Group Replication
group group Type
OS-[SRP]-[SL]-[WL]- | OS-[HOST]-[SRP]- N/A None

SG [SL/WL]-[PG]

OS-[SRP]-[SL]-[WL]- | OS-[HOST]-[SRP]- N/A Synchronous
RE-SG [SL/WL]-[PG]-RE

OS-[SRP]-[SL]-[WL]- | OS-[HOST]-[SRP]- OS-[RDFG]- Asyn-
RA-SG [SL/WL]-[PG]-RA Asynchronous-rdf-sg chronous
OS-[SRP]-[SL]-[WL]- | OS-[HOST]-[SRP]- OS-[RDFG]-Metro-rdf- Metro
RM-SG [SL/WL]-[PG]-RM sg

144 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

PowerMax driver integration

1. Prerequisites

1.

Download Solutions Enabler from Dell EMC Support and install it.

You can install Solutions Enabler on a non-OpenStack host. Supported platforms include different
flavors of Windows, Red Hat, and SUSE Linux. Solutions Enabler can be installed on a physical
server, or as a Virtual Appliance (a VMware ESX server VM). Additionally, starting with HYPER-
MAX OS Q3 2015, you can manage VMAX3 arrays using the Embedded Management (eManage-
ment) container application. See the Dell EMC Solutions Enabler 9.2.1 Installation
and Configuration Guide on Dell EMC Support for more details.

Note: You must discover storage arrays before you can use the PowerMax drivers. Follow in-
structions in Dell EMC Solutions Enabler 9.2.1 Installation and Configuration
Guide on Dell EMC Support for more details.

Download Unisphere from Dell EMC Support and install it.

Unisphere can be installed in local, remote, or embedded configurations - i.e., on the same server
running Solutions Enabler; on a server connected to the Solutions Enabler server; or using the
eManagement container application (containing Solutions Enabler and Unisphere for PowerMax).
See Dell EMC Solutions Enabler 9.2.1 Installation and Configuration Guide at
Dell EMC Support.

2. FC zoning with PowerMax

Zone Manager is required when there is a fabric between the host and array. This is necessary for larger
configurations where pre-zoning would be too complex and open-zoning would raise security concerns.

3. iSCSI with PowerMax

Make sure the open-iscsi package (or distro equivalent) is installed on all Compute nodes.

Note:

You can only ping the PowerMax iSCSI target ports when there is a valid masking view. An

attach operation creates this masking view.

3.3. Reference 145

https://www.dell.com/support
https://www.dell.com/support
https://www.dell.com/support
https://www.dell.com/support
https://www.dell.com/support

Cinder Documentation, Release 19.3.1.dev10

4. Configure block storage in cinder.conf

Table 8: Description of PowerMax configuration options

Configuration
option = Default
value

Description

initiator_check
=False

(Boolean) Use this value to enable the initiator_check.

interval =3

(Integer) Use this value to specify length of the interval in seconds.

load_balance
False

(Boolean) Enable/disable load balancing for a PowerMax backend.

load_balance_real
=False

|_tBmelean) Enable/disable real-time performance metrics for Port level load
balancing for a PowerMax backend.

load_data_format
= Avg

(String) Performance data format, not applicable for real-time metrics. Avail-
able options are avg and max.

load_look_back =
60

(Integer) How far in minutes to look back for diagnostic performance metrics
in load calculation, minimum of 0 maximum of 1440 (24 hours).

load_look_back_re
=1

allntéger) How far in minutes to look back for real-time performance metrics
in load calculation, minimum of 1 maximum of 10.

port_group_load_m
= PercentBusy

etString) Metric used for port group load calculation.

port_load_metric
= PercentBusy

(String) Metric used for port load calculation.

powermax_array =
None

(String) Serial number of the array to connect to.

powermax_array_ta
= None

g (ILiss bf String) List of user assigned name for storage array.

powermax_port_gro
= portGroupName

upStamgs_W empdefired override for port group name.

powermax_port_gro
= None

upkist of String) List of port groups containing frontend ports configured prior
for server connection.

powermax_service_
= None

1 éSeing) Service level to use for provisioning storage. Setting this as an extra
spec in pool_name is preferable.

powermax_short_ho
= shortHostName

s tSam_Wempdefired override for short host name.

powermax_srp
None

(String) Storage resource pool on array to use for provisioning.

retries =200

(Integer) Use this value to specify number of retries.

udp_failover_auto
=True

faBobbkealn) If the driver should automatically failback to the primary instance
of Unisphere when a successful connection is re-established.

udp_failover_back
=1

o fihtdgery drbackoff factor to apply between attempts after the second try (most
errors are resolved immediately by a second try without a delay). Retries will
sleep for: {backoff factor} * (2 * ({number of total retries} - 1)) seconds.

udp_failover_retr
=3

i élmteger) The maximum number of retries each connection should attempt.
Note, this applies only to failed DNS lookups, socket connections and con-
nection timeouts, never to requests where data has made it to the server.

udp_failover_targ
= None

etDict of String) Dictionary of Unisphere failover target info.

udp_failover_time
=20.0

odinteger) How long to wait for the server to send data before giving up.

| vmax_workload

186ne

(String) Workload, setting this as an extra spec in pool_name is preferable
Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: san_api_port is 8443 by default but can be changed if necessary. For the purposes of this
documentation the default is assumed so the tag will not appear in any of the cinder.conf extracts
below.

Note: PowerMax PortGroups must be pre-configured to expose volumes managed by the
array. Port groups can be supplied in cinder.conf, or can be specified as an extra spec
storagetype:portgroupname on a volume type. If a port group is set on a volume type as an ex-
tra specification it takes precedence over any port groups set in cinder.conf. For more information on
port and port group selection please see the section port group & port load balancing.

Note: PowerMax SRP cannot be changed once configured and in-use. SRP renaming on the PowerMax
array is not supported.

Note: Service Level can be added to cinder.conf when the backend is the default case and there is
no associated volume type. This not a recommended configuration as it is too restrictive. Workload is
NONE for PowerMax and any All Flash with PowerMax OS (5978) or greater.

PowerMax parameter | cinder.conf parameter Default | Required
ServiceLevel powermax_service_level | None No

To configure PowerMax block storage, add the following entries to /etc/cinder/cinder.conf:

[CONF_GROUP_ISCSI]

[CONF_GROUP_FC]

(continues on next page)

3.3. Reference 147

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

In this example, two back-end configuration groups are enabled: CONF_GROUP_ISCSI and
CONF_GROUP_FC. Each configuration group has a section describing unique parameters for connections,
drivers and the volume_backend_name.

5. SSL support

1.

Get the CA certificate of the Unisphere server. This pulls the CA cert file and saves it as . pem file:

openssl s_client -showcerts
-connect my_unisphere_host:8443
</dev/null 2>/dev/null
openssl x509 -outform PEM > my_unisphere_host.pem

Where my_unisphere_host 1is the hostname of the unisphere instance and
my_unisphere_host.pem is the name of the .pem file.

Add this path to cinder. conf under the PowerMax backend stanza and set SSL verify to True

OR follow the steps 3-6 below if you would like to add the CA cert to the system certificate bundle
instead of specifying the path to cert:

. OPTIONAL: Copy the .pem cert to the system certificate directory and convert to .crt:

cp my_unisphere_host.pem /usr/share/ca-certificates/ca_cert.crt

OPTIONAL: Update CA certificate database with the following command. Ensure you select to
enable the cert from step 3 when prompted:

sudo dpkg-reconfigure ca-certificates

. OPTIONAL: Set a system environment variable to tell the Requests library to use the system cert

bundle instead of the default Certifi bundle:

export /etc/ssl/certs/ca-certificates.crt

OPTIONAL: Set cert verification to True under the PowerMax backend stanza in cinder. conf:

True

. Ensure driver_ssl_cert_verify is set to True in cinder.conf backend stanzas if steps 3-6

are followed, otherwise ensure both driver_ssl_cert_path and driver_ssl_cert_verify
are set in cinder. conf backend stanzas.

148

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

6. Create volume types

Once cinder.conf has been updated, Openstack CLI commands need to be issued in order to create
and associate OpenStack volume types with the declared volume_backend_names.

Additionally, each volume type will need an associated pool_name - an extra specification indicating the
service level/ workload combination to be used for that volume type.

Note: The pool_name is an additional property which has to be set and is of the format:
<ServicelLevel>+<SRP>+<Array ID>. This can be obtained from the output of the cinder
get-pools--detail. Workload is NONE for PowerMax or any All Flash with PowerMax OS (5978)
or greater.

There is also the option to assign a port group to a volume type by setting the
storagetype:portgroupname extra specification.

openstack volume type create POWERMAX_ISCSI_SILVER

openstack volume type set --property ISCSI_backend
--property Silver+SRP_1+000123456789
--property storagetype:portgroupname 0S-PG2
POWERMAX_ISCSI_SILVER

openstack volume type create POWERMAX_FC_DIAMOND

openstack volume type set --property FC_backend
--property Gold+SRP_1+000123456789
--property storagetype:portgroupname 0S-PG1l
POWERMAX_FC_GOLD

By issuing these commands, the Block Storage volume type POWERMAX_ISCSI_SILVER is associated
with the ISCSI_backend, a Silver Service Level.

The type POWERMAX_FC_DIAMOND is associated with the FC_backend, a Diamond Service Level.

The ServicelLevel manages the underlying storage to provide expected performance. Setting the
ServiceLevel to None means that non-FAST managed storage groups will be created instead (storage
groups not associated with any service level).

Note: PowerMax and VMAX-Hybrid support Diamond, Platinum, Gold, Silver, Bronze,
Optimized, and None service levels. VMAX All Flash running HyperMax OS (5977) supports Diamond
and None. VMAX-Hybrid and All Flash support DSS_REP, DSS, OLTP_REP, OLTP, and None workloads,
the latter up until ucode 5977. Please refer to Stein PowerMax online documentation if you wish to use
workload. There is no support for workloads in PowerMax OS (5978) or greater. These will be silently
ignored if set for VMAX All-Flash arrays which have been upgraded to PowerMax OS (5988).

3.3. Reference 149

https://docs.openstack.org/cinder/latest/cli/cli-manage-volumes.html#volume-types

Cinder Documentation, Release 19.3.1.dev10

7. Interval and retries

By default, interval and retries are 3 seconds and 200 retries respectively. These determine
how long (interval) and how many times (retries) a user is willing to wait for a single Rest call,
3*%200=600seconds. Depending on usage, these may need to be overridden by the user in cinder.
conf. For example, if performance is a factor, then the interval should be decreased to check the job
status more frequently, and if multiple concurrent provisioning requests are issued then retries should
be increased so calls will not timeout prematurely.

In the example below, the driver checks every 3 seconds for the status of the job. It will continue checking
for 200 retries before it times out.

Add the following lines to the PowerMax backend in cinder. conf:

8. CHAP authentication support

This supports one-way initiator CHAP authentication functionality into the PowerMax backend. With
CHAP one-way authentication, the storage array challenges the host during the initial link negotiation
process and expects to receive a valid credential and CHAP secret in response. When challenged, the
host transmits a CHAP credential and CHAP secret to the storage array. The storage array looks for this
credential and CHAP secret which stored in the host initiators initiator group (IG) information in the
ACLX database. Once a positive authentication occurs, the storage array sends an acceptance message
to the host. However, if the storage array fails to find any record of the credential/secret pair, it sends a
rejection message, and the link is closed.

Assumptions, restrictions and prerequisites

1. The host initiator IQN is required along with the credentials the host initiator will use to log into
the storage array with. The same credentials should be used in a multi node system if connecting
to the same array.

2. Enable one-way CHAP authentication for the iSCSI initiator on the storage array using SYMCLI.
Template and example shown below. For the purpose of this setup, the credential/secret used
would be my_username/my_password with iSCSI initiator of ign.1991-05.com.company.
lcseb130

150 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

symaccess -sid <SymmID> -iscsi <iscsi>
enable chap disable chap set chap
-cred <Credential> -secret <Secret>

symaccess -sid 128
-iscsi iqn.1991-05.com.company.lcseb130
set chap -cred my_username -secret my_password

Settings and configuration

1. Set the configuration in the PowerMax backend group in cinder.conf using the following pa-
rameters and restart cinder.

Configuration options | Value required for CHAP | Required for CHAP
use_chap_auth True Yes
chap_username my_username Yes
chap_password my_password Yes

Usage

1. Using SYMCLI, enable CHAP authentication for a host initiator as described above, but do not
set use_chap_auth, chap_username or chap_password in cinder.conf. Create a bootable
volume.

2. Boot instance named test_server using the volume created above:

(continues on next page)

3.3. Reference 151

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

3. Verify the volume operation succeeds but the boot instance fails as CHAP authentication fails.

4. Update cinder.conf with use_chap_auth set to true and chap_username and
chap_password set with the correct credentials.

5. Rerun openstack server create
6. Verify that the boot instance operation ran correctly and the volume is accessible.

7. Verify that both the volume and boot instance operations ran successfully and the user is able to
access the volume.

9. QoS (Quality of Service) support

Quality of service (QoS) has traditionally been associated with network bandwidth usage. Network ad-
ministrators set limitations on certain networks in terms of bandwidth usage for clients. This enables
them to provide a tiered level of service based on cost. The Nova/Cinder QoS offer similar functionality
based on volume type setting limits on host storage bandwidth per service offering. Each volume type
is tied to specific QoS attributes some of which are unique to each storage vendor. In the hypervisor, the
QoS limits the following:

» Limit by throughput - Total bytes/sec, read bytes/sec, write bytes/sec
* Limit by IOPS - Total IOPS/sec, read IOPS/sec, write IOPS/sec

QoS enforcement in Cinder is done either at the hyper-visor (front-end), the storage subsystem (back-
end), or both. This section focuses on QoS limits that are enforced by either the PowerMax backend
and the hyper-visor front end interchangeably or just back end (Vendor Specific). The PowerMax driver
offers support for Total bytes/sec limit in throughput and Total IOPS/sec limit of IOPS.

The PowerMax driver supports the following attributes that are front end/back end agnostic

* total_iops_sec - Maximum IOPs (in I/Os per second). Valid values range from 100 IO/Sec to
100000 I0/sec.

* total_bytes_sec - Maximum bandwidth (throughput) in bytes per second. Valid values range
from 1048576 bytes (1IMB) to 104857600000 bytes (100,000MB)

The PowerMax driver offers the following attribute that is vendor specific to the PowerMax and dependent
on the total_iops_sec and/or total_bytes_sec being set.

* Dynamic Distribution - Enables/Disables dynamic distribution of host I/O limits. Possible
values are:

— Always - Enables full dynamic distribution mode. When enabled, the configured host I/O
limits will be dynamically distributed across the configured ports, thereby allowing the limits
on each individual port to adjust to fluctuating demand.

— OnFailure - Enables port failure capability. When enabled, the fraction of configured host
I/0 limits available to a configured port will adjust based on the number of ports currently
online.

— Never - Disables this feature (Default).

152 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

USE CASE 1 - Default values

Prerequisites - PowerMax
* Host I/O Limit (MB/Sec) - No Limit
e Host I/O Limit (I0/Sec) - No Limit

* Set Dynamic Distribution - N/A

Table 9: Prerequisites - Block Storage (Cinder) back-end (stor-

age group)
Key Value
total_iops_sec 500

total_bytes_sec 104857600 (100MB)
DistributionType | Always

1. Create QoS Specs with the prerequisite values above:

openstack volume gos create --consumer back-end
--property 500
--property 104857600
--property Always
my_qos

2. Associate QoS specs with specified volume type:

openstack volume gos associate my_gos my_volume_type

3. Create volume with the volume type indicated above:

openstack volume create --size 1 --type my_volume_type my_volume

Outcome - PowerMax (storage group)

* Host I/O Limit (MB/Sec) - 100

e Host I/0O Limit (I0/Sec) - 500

* Set Dynamic Distribution - Always
Outcome - Block Storage (Cinder)

Volume is created against volume type and QoS is enforced with the parameters above.

USE CASE 2 - Pre-set limits

Prerequisites - PowerMax
* Host I/O Limit (MB/Sec) - 2000
e Host I/O Limit (I0/Sec) - 2000

* Set Dynamic Distribution - Never

3.3. Reference 153

Cinder Documentation, Release 19.3.1.dev10

Table 10: Prerequisites - Block Storage (Cinder) back-end (stor-

age group)
Key Value
total_iops_sec 500

total_bytes_sec 104857600 (100MB)
DistributionType | Always

1. Create QoS specifications with the prerequisite values above. The consumer in this use case is
both for front-end and back-end:

openstack volume gos create --consumer back-end
--property 500
--property 104857600
--property Always
my_qos

2. Associate QoS specifications with specified volume type:

openstack volume gos associate my_qos my_volume_type

3. Create volume with the volume type indicated above:

openstack volume create --size 1 --type my_volume_type my_volume

4. Attach the volume created in step 3 to an instance

openstack server add volume my_instance my_volume

Outcome - PowerMax (storage group)
e Host I/O Limit (MB/Sec) - 100
e Host I/O Limit (IO/Sec) - 500
* Set Dynamic Distribution - Always
Outcome - Block Storage (Cinder)
Volume is created against volume type and QoS is enforced with the parameters above.
Outcome - Hypervisor (Nova)

Libvirt includes an extra xml flag within the <disk> section called iotune that is responsible for
rate limitation. To confirm that, first get the OS-EXT-SRV-ATTR:instance_name value of the server
instance, for example instance-00000003.

openstack server show <serverid>

(continues on next page)

154 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

[}

[}

(continues on next page)

3.3. Reference 155

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

[}

We then run the following command using the OS-EXT-SRV-ATTR: instance_name retrieved above.

virsh dumpxml instance-00000003 grep -1

The output of the command contains the XML below. It is found between the <disk> start and end tag.

104857600
500

USE CASE 3 - Pre-set limits

Prerequisites - PowerMax
e Host I/O Limit (MB/Sec) - 100
* Host I/O Limit (I0/Sec) - 500

* Set Dynamic Distribution - Always

Table 11: Prerequisites - Block Storage (Cinder) back end (stor-

age group)
Key Value
total_iops_sec 500

total_bytes_sec 104857600 (100MB)
DistributionType | OnFailure

1. Create QoS specifications with the prerequisite values above:

openstack volume gos create --consumer back-end
--property 500
--property 104857600
--property OnFailure
my_qgos

2. Associate QoS specifications with specified volume type:

openstack volume gos associate my_qos my_volume_type

156 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

3. Create volume with the volume type indicated above:

openstack volume create --size 1 --type my_volume_type my_volume

Outcome - PowerMax (storage group)

* Host I/O Limit (MB/Sec) - 100

e Host I/O Limit (IO/Sec) - 500

* Set Dynamic Distribution - OnFailure
Outcome - Block Storage (Cinder)

Volume is created against volume type and QOS is enforced with the parameters above.

USE CASE 4 - Default values

Prerequisites - PowerMax
* Host I/O Limit (MB/Sec) - No Limit
* Host I/O Limit (IO/Sec) - No Limit

* Set Dynamic Distribution - N/A

Table 12: Prerequisites - Block Storage (Cinder) back end (stor-
age group)

Key Value
DistributionType | Always

1. Create QoS specifications with the prerequisite values above:

openstack volume gos create --consumer back-end
--property Always
my_qgos

2. Associate QoS specifications with specified volume type:

openstack volume gos associate my_qos my_volume_type

3. Create volume with the volume type indicated above:

openstack volume create --size 1 --type my_volume_type my_volume

Outcome - PowerMax (storage group)
e Host I/O Limit (MB/Sec) - No Limit
* Host I/0O Limit (I0/Sec) - No Limit
* Set Dynamic Distribution - N/A
Outcome - Block Storage (Cinder)

Volume is created against volume type and there is no QoS change.

3.3. Reference 157

Cinder Documentation, Release 19.3.1.dev10

10. Multi-pathing support

* Install open-iscsi on all nodes on your system if on an iSCSI setup
* Do not install EMC PowerPath as they cannot co-exist with native multi-path software
* Multi-path tools must be installed on all Nova compute nodes

On Ubuntu:

apt-get install multipath-tools
apt-get install sysfsutils sg3-utils
apt-get install scsitools

On openSUSE and SUSE Linux Enterprise Server:

zipper install multipath-tools
zipper install sysfsutils sg3-utils
zipper install scsitools

On Red Hat Enterprise Linux and CentOS:

yum install iscsi-initiator-utils
yum install device-mapper-multipath
yum install sysfsutils sg3-utils

Multipath configuration file

The multi-path configuration file may be edited for better management and performance. Log in as
a privileged user and make the following changes to /etc/multipath.conf on the Compute (Nova)
node(s).

devices {
Device attributed EMC PowerMax
device {
vendor
product
path_grouping_policy multibus
getuid_callout

path_selector
path_checker tur
features
hardware_handler
prio const
rr_weight uniform
no_path_retry 6
rr_min_io 1000
rr_min_io_rq 1

158 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

You may need to reboot the host after installing the MPIO tools or restart iSCSI and multi-path services.

On Ubuntu iSCSI:

service open-iscsi restart
service multipath-tools restart

On Ubuntu FC

service multipath-tools restart

On openSUSE, SUSE Linux Enterprise Server, Red Hat Enterprise Linux, and CentOS iSCSI:

systemct]l restart open-iscsi
systemctl restart multipath-tools

On openSUSE, SUSE Linux Enterprise Server, Red Hat Enterprise Linux, and CentOS FC:

systemctl restart multipath-tools

1sblk

OpenStack configurations

On Compute (Nova) node, add the following flag in the [libvirt] section of nova.conf and
nova-cpu.conf:

On Cinder controller node, multi-path for image transfer can be enabled in cinder . conf for each back-
end section or in [backend_defaults] section as a common configuration for all backends.

Restart nova-compute and cinder-volume services after the change.

3.3. Reference 159

Cinder Documentation, Release 19.3.1.dev10

Verify you have multiple initiators available on the compute node for I/O

1. Create a 3GB PowerMax volume.

2. Create an instance from image out of native LVM storage or from PowerMax storage, for example,
from a bootable volume

3. Attach the 3GB volume to the new instance:

multipath -11

4. Use the 1sblk command to see the multi-path device:

1sblk

11. All Flash compression support

On an All Flash array, the creation of any storage group has a compressed attribute by default. Setting
compression on a storage group does not mean that all the devices will be immediately compressed. It
means that for all incoming writes compression will be considered. Setting compression off on a storage
group does not mean that all the devices will be uncompressed. It means all the writes to compressed
tracks will make these tracks uncompressed.

Note: This feature is only applicable for All Flash arrays, 250F, 450F, 850F and 950F and PowerMax
2000 and 8000. It was first introduced Solutions Enabler 8.3.0.11 or later and is enabled by default when
associated with a Service Level. This means volumes added to any newly created storage groups will be
compressed.

Use case 1 - Compression disabled create, attach, detach, and delete volume

1. Create a new volume type called POWERMAX_COMPRESSION_DISABLED.
2. Set an extra spec volume_backend_name.
3. Set a new extra spec storagetype:disablecompression = True.

4. Create a new volume.

160 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

5. Check in Unisphere or SYMCLI to see if the volume exists in storage group
0S-<srp>-<servicelevel>-<workload>-CD-SG, and compression is disabled on that
storage group.

6. Attach the volume to an instance. Check in Unisphere or SYMCLI to see if the volume exists in
storage group 0S-<shorthostname>-<srp>-<servicelevel /workload>-<portgroup>-CD,
and compression is disabled on that storage group.

7. Detach volume from instance. Check in Unisphere or symcli to see if the volume exists in storage
group 0S-<srp>-<servicelevel>-<workload>-CD-SG, and compression is disabled on that
storage group.

8. Delete the volume. If this was the last volume in the
0S-<srp>-<servicelevel>-<workload>-CD-SG storage group, it should also be deleted.

Use case 2 - Retype from compression disabled to compression enabled

1. Repeat steps 1-4 of Use case 1.

2. Create a new volume type. For example POWERMAX_COMPRESSION_ENABLED.

3. Set extra spec volume_backend_name as before.

4. Set the new extra specs compression as storagetype:disablecompression = False or DO
NOT set this extra spec.

5. Retype from volume type POWERMAX_COMPRESSION_DISABLED to

POWERMAX_COMPRESSION_ENABLED.

6. Check in Unisphere or symcli to see if the volume exists in storage group
0S-<srp>-<servicelevel>-<workload>-SG, and compression is enabled on that stor-
age group.

Note: If extra spec storagetype:disablecompression is set on a VMAX-Hybrid, it is ignored
because compression is not an available feature on a VMAX-Hybrid.

12. Oversubscription support

Please refer to the official OpenStack over-subscription documentation for further information on using
over-subscription with PowerMax.

13. Live migration support

Non-live migration (sometimes referred to simply as migration). The instance is shut down for a period
of time to be moved to another hyper-visor. In this case, the instance recognizes that it was rebooted.

Live migration (or true live migration). Almost no instance downtime. Useful when the instances must
be kept running during the migration. The different types of live migration are:

* Shared storage-based live migration Both hyper-visors have access to shared storage.

* Block live migration No shared storage is required. Incompatible with read-only devices such as
CD-ROMs and Configuration Drive (config_drive).

3.3. Reference 161

https://docs.openstack.org/cinder/latest/admin/blockstorage-over-subscription.html

Cinder Documentation, Release 19.3.1.dev10

* Volume-backed live migration Instances are backed by volumes rather than ephemeral disk. For
PowerMax volume-backed live migration, shared storage is required.

The PowerMax driver supports shared volume-backed live migration.

Architecture

In PowerMax, A volume cannot belong to two or more FAST storage groups at the same time. To get
around this limitation we leverage both cascaded storage groups and a temporary non-FAST storage

group.

A volume can remain live if moved between masking views that have the same initiator group and port
groups which preserves the host path.

During live migration, the following steps are performed by the PowerMax driver on the volume:

1. Within the originating masking view, the volume is moved from the FAST storage group to the
non-FAST storage group within the parent storage group.

2. The volume is added to the FAST storage group within the destination parent storage group of the
destination masking view. At this point the volume belongs to two storage groups.

3. One of two things happen:

¢ If the connection to the destination instance is successful, the volume is removed from the
non-FAST storage group in the originating masking view, deleting the storage group if it
contains no other volumes.

« If the connection to the destination instance fails, the volume is removed from the destina-
tion storage group, deleting the storage group, if empty. The volume is reverted back to the
original storage group.

Live migration configuration

Please refer to the official OpenStack documentation on configuring migrations and live migration usage
for more information.

Note: OpenStack Oslo uses an open standard for messaging middleware known as AMQP. This mes-
saging middleware (the RPC messaging system) enables the OpenStack services that run on multiple
servers to talk to each other. By default, the RPC messaging client is set to timeout after 60 seconds,
meaning if any operation you perform takes longer than 60 seconds to complete the operation will time-
out and fail with the ERROR message Messaging Timeout: Timed out waiting for a reply
to message ID [message_id]

If this occurs, increase the rpc_response_timeout flag value in cinder. conf and nova. conf on all
Cinder and Nova nodes and restart the services.

What to change this value to will depend entirely on your own environment, you might only need to
increase it slightly, or if your environment is under heavy network load it could need a bit more time than
normal. Fine tuning is required here, change the value and run intensive operations to determine if your
timeout value matches your environment requirements.

162 Chapter 3. For operators

https://docs.openstack.org/nova/latest/admin/configuring-migrations.html
https://docs.openstack.org/nova/latest/admin/live-migration-usage.html

Cinder Documentation, Release 19.3.1.dev10

At a minimum please set rpc_response_timeout to 240, but this will need to be raised if high con-
currency is a factor. This should be sufficient for all Cinder backup commands also.

System configuration

NOVA-INST-DIR/instances/ (for example, /opt/stack/data/nova/instances) has to be
mounted by shared storage. Ensure that NOVA-INST-DIR (set with state_path in the nova. conf file)
is the same on all hosts.

1. Configure your DNS or /etc/hosts and ensure it is consistent across all hosts. Make sure that
the three hosts can perform name resolution with each other. As a test, use the ping command to
ping each host from one another.

ping HostA
ping HostB
ping HostC

2. Export NOVA-INST-DIR/instances from HostA, and ensure it is readable and writable by the
Compute user on HostB and HostC. Please refer to the relevant OS documentation for further
details, for example Ubuntu NFS Documentation

3. On all compute nodes, enable the execute/search bit on your shared directory to allow gemu to
be able to use the images within the directories. On all hosts, run the following command:

chmod o+x NOVA-INST-DIR/instances

Note: If migrating from compute to controller, make sure to run step two above on the controller node
to export the instance directory.

Use case

For our use case shown below, we have three hosts with host names HostA, HostB and HostC. HostA is
the controller node while HostB and HostC are the compute nodes. The following were also used in live
migration.

* 2GB bootable volume using the CirrOS image.

* Instance created using the 2GB volume above with a flavor m1.small using 2048 RAM, 20GB of
Disk and 1 VCPU.

1. Create a bootable volume.

openstack volume create --size 2
--image cirros-0.3.5-x86_64-disk
--volume_1lm_1

2. Launch an instance using the volume created above on HostB.

3.3. Reference 163

https://help.ubuntu.com/lts/serverguide/network-file-system.html

Cinder Documentation, Release 19.3.1.dev10

openstack server create --volume volume_lm_1
--flavor ml.small
--nic net-id private
--security-group default
--availability-zone nova:HostB
server_1lm_1

3. Confirm on HostB has the instance created by running:

openstack server show server_lm_1 grep

—

4. Confirm, through virsh using the instance_name returned in step 3 (instance-00000006), on
HostB that the instance is created using:

virsh list --all

5. Migrate the instance from HostB to HostA with:

openstack server migrate --os-compute-api-version 2.30
--live-migration --host HostA
server_lm_1

6. Run the command on step 3 above when the instance is back in available status. The hypervisor
should be on Host A.

7. Run the command on Step 4 on Host A to confirm that the instance is created through virsh.

14. Multi-attach support

PowerMax cinder driver supports the ability to attach a volume to multiple hosts/servers simultaneously.
Please see the official OpenStack multi-attach documentation for configuration information.

Multi-attach architecture

In PowerMax, a volume cannot belong to two or more FAST storage groups at the same time. This can
cause issues when we are attaching a volume to multiple instances on different hosts. To get around this
limitation, we leverage both cascaded storage groups and non-FAST storage groups (i.e. a storage group
with no service level, workload, or SRP specified).

Note: If no service level is assigned to the volume type, no extra work on the backend is required the
volume is attached to and detached from each host as normal.

164 Chapter 3. For operators

https://docs.openstack.org/cinder/latest/admin/blockstorage-volume-multiattach.html

Cinder Documentation, Release 19.3.1.dev10

Example use case

Volume Multi-attach-Vol-1 (with a multi-attach capable volume type, and associated with a Dia-
mond Service Level) is attached to Instance Multi-attach-Instance-A on HostA. We then issue the
command to attach Multi-attach-Vol-1 to Multi-attach-Instance-B on HostB:

1. In the HostA masking view, the volume is moved from the FAST managed storage group to the
non-FAST managed storage group within the parent storage group.

2. The volume is attached as normal on HostB i.e., it is added to a FAST managed storage group
within the parent storage group of the HostB masking view. The volume now belongs to two
masking views, and is exposed to both HostA and HostB.

We then decide to detach the volume from Multi-attach-Instance-B on HostB:

1. The volume is detached as normal from HostB i.e., it is removed from the FAST managed storage
group within the parent storage group of the HostB masking view this includes cleanup of the
associated elements if required. The volume now belongs to one masking view, and is no longer
exposed to HostB.

2. In the HostA masking view, the volume is returned to the FAST managed storage group from
the non-FAST managed storage group within the parent storage group. The non-FAST managed
storage group is cleaned up, if required.

15. Volume encryption support

Encryption is supported through the use of OpenStack Barbican. Only front-end encryption is supported,
back-end encryption is handled at the hardware level with Data at Rest Encryption (D @RE).

For further information on OpenStack Barbican including setup and configuration please refer to the
following official Barbican documentation.

16. Volume metadata

Volume metadata is returned to the user in both the Cinder Volume logs and with volumes and snapshots
created in Cinder via the UI or CLI.

16.1 Volume metadata in logs

If debug is enabled in the default section of cinder.conf, PowerMax Cinder driver will log additional
volume information in the Cinder volume log, on each successful operation. The facilitates bridging the
gap between OpenStack and the Array by tracing and describing the volume from a VMAX/ PowerMax
view point.

[}

. (continues on next page)

3.3. Reference 165

https://www.dellemc.com/resources/en-us/asset/white-papers/products/storage/h13936-dell-emc-powermax-vmax-all-flash-data-rest-encryption.pdf
mailto:D@RE
https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-encryption.html

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

[}

166 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

16.2 Metadata in the Ul and CLI

By default metadata will be set on all volume and snapshot objects created in Cinder. This information
represents the state of the object on the backend PowerMax and will change when volume attributes are
changed by performing actions on them such as re-type or attaching to an instance.

cinder show powermax-volume

17. Unisphere High Availability (HA) support

This feature facilitates high availability of Unisphere for PowerMax servers, allowing for one or more
backup unisphere instances in the event of a loss in connection to the primary Unisphere instance. The
PowerMax driver will cycle through the list of failover instances, trying each until a successful connec-
tion is made. The ordering is first in, first out (FIFO), so the first udp_failover_target specified in
cinder.conf will be the first selected, the second udp_failover_target in cinder.conf will be
the second selected, and so on until all failover targets are exhausted.

3.3. Reference 167

Cinder Documentation, Release 19.3.1.dev10

Requirements

* All required instances of Unisphere for PowerMax are set up and configured for the array(s)

* Array(s) are locally registered with the instance of Unisphere that will be used as a failover instance.
There are two failover types, local and remote:

— Local failover - Primary Unisphere is unreachable, failover to secondary local instance of
Unisphere to resume normal operations at primary site.

— Remote failover - Complete loss of primary site so primary instance of Unisphere is unreach-
able, failover to secondary instance of Unisphere at remote site to resume operations with the
R2 array.

Note: Replication must be configured in advance for remote failover to work successfully. Hu-
man intervention will also be required to failover from R1 array to R2 array in Cinder using cinder
failover-host command (see Volume replication support for replication setup details).

Note: The remote target array must be registered as local to the remote instance of Unisphere

Configuration

The following configuration changes need to be made in cinder.conf under the PowerMax backend
stanza in order to support the failover to secondary Unisphere. Cinder services will need to be restarted
for changes to take effect.

Note: udp_failover_target key value pairs will need to be on the same line (separated by commas)
in cinder. conf. They are displayed on separated lines above for readability.

168 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: To add more than one Unisphere failover target create additional u4p_failover_target details
for the Unisphere instance. These will be cycled through in a first-in, first-out (FIFO) basis, the first
failover target in cinder.conf will be the first backup instance of Unisphere used by the PowerMax
driver.

18. Rapid TDEV deallocation

The PowerMax driver can now leverage the enhanced volume delete feature-set made available in the
PowerMax 5978 Foxtail uCode release. These enhancements allow volume deallocation & deletion to
be combined into a single call. Previously, volume deallocation & deletion were split into separate tasks;
now a single REST call is dispatched and a response code on the projected outcome of their request is
issued rapidly allowing other task execution to proceed without the delay. No additional configuration
is necessary, the system will automatically determine when to use either the rapid or legacy compliant
volume deletion sequence based on the connected PowerMax arrays metadata.

19. PowerMax online (in-use) device expansion

uCode Level Supported In-Use Volume Extend Operations
R1 uCode Level | R2 uCode Level | Sync Async Metro
5978.711 5978.711 Y Y Y
5978.711 5978.669 Y Y Y
5978.711 5978.444 Y Y Y
5978.711 5978.221 Y Y N
5978.669 5978.669 Y Y Y
5978.669 5978.444 Y Y Y
5978.669 5978.221 Y Y N
5978.444 5978.444 Y Y Y
5978.444 5978.221 Y Y N
5978.221 5978.221 Y Y N

Assumptions, restrictions and prerequisites

* ODE in the context of this document refers to extending a volume where it is in-use, that is, attached
to an instance.

* The allow_extend is only applicable on VMAX-Hybrid arrays or All Flash arrays with HyperMax
OS. If included elsewhere, it is ignored.

* Where one array is a lower uCode than the other, the environment is limited to functionality of that
of the lowest uCode level, i.e. if R1 is 5978.444 and R2 is 5978.221, expanding a metro volume is
not supported, both R1 and R2 need to be on 5978.444 uCode at a minimum.

3.3. Reference 169

Cinder Documentation, Release 19.3.1.dev10

20. PowerMax array and storage group tagging

Unisphere for PowerMax 9.1 and later supports tagging of storage groups and arrays, so the user can give
their own tag for ease of searching and/or grouping.

Assumptions, restrictions and prerequisites

The storage group tag(s) is associated with a volume type extra spec key
storagetype:storagegrouptags.

The array tag is associated with the backend stanza using key powermax_array_tag_list.
It expects a list of one or more comma separated values, for example
powermax_array_tag_list=[valuel,value2, value3]

They can be one or more values in a comma separated list.
There is a 64 characters limit of letters, numbers, - and _.
8 tags are allowed per storage group and array.

Tags cannot be modified once a volume has been created with that volume type. This is an Open-
Stack constraint.

Tags can be modified on the backend stanza, but none will ever be removed, only added.

There is no restriction on creating or deleting tags of OpenStack storage groups or arrays outside
of OpenStack, for example Unisphere for PowerMax UI. The max number of 8 tags will apply
however, as this is a Unisphere for PowerMax limit.

Set a storage group tag on a volume type:

openstack volume type set --property.
—storagetype:storagegrouptags myStorageGroupTagl,myStorageGroupTag2

Set an array tag on the PowerMax backend:

170

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

21. PowerMax short host name and port group name override

This functionality allows the user to customize the short host name and port group name that are contained
in the PowerMax driver storage groups and masking views names. For current functionality please refer
to PowerMax naming conventions for more details.

As the storage group name and masking view name are limited to 64 characters the short host name needs
to be truncated to 16 characters or less and port group needs to be truncated to 12 characters or less. This
functionality offers a little bit more flexibility to determine how these truncated components should look.

Note: Once the port group and short host name have been overridden with any new format,
it is not possible to return to the default format or change to another format if any volumes are
in an attached state. This is because there is no way to determine the overridden format once
powermax_short_host_name_template’ or °powermax_port_group_name_template have
been removed or changed.

Assumptions, restrictions, and prerequisites

* Backward compatibility with old format is preserved.

* cinder.conf will have 2 new configuration options, short_host_name_template and
port_group_name_template.

* If a storage group, masking view or initiator group in the old naming convention already exists,
this remains and any new attaches will use the new naming convention where the label for the short
host name and/or port group has been customized by the user.

* Only the short host name and port group name components can be renamed within the storage
group, initiator group and masking view names.

* If the powermax_short_host_name_template and powermax_port_group_name_template
do not adhere to the rules, then the operation will fail early and gracefully with a clear description
as to the problem.

* The templates cannot be changed once volumes have been attached using the new configuration.
* If only one of the templates are configured, then the other will revert to the default option.
* The UUID is generated from the MDS5 hash of the full short host name and port group name

* If userdef is used, the onus is on the user to make sure it will be unique among all short host
names (controller and compute nodes) and unique among port groups.

3.3. Reference 171

Cinder Documentation, Release 19.3.1.dev10

Table 13: Short host name templates

power- Description Rule

max_short_host_name_template

shortHostName This is the default option Existing functionality, if over 16
characters then see PowerMax nam-
ing conventions, otherwise short
host name

shortHost- First x characters of the short host name | Must be less than 16 characters

Name[:x])uuid[:x] and x uuid characters created from md5

e.g. shortHost- | hash of short host name

Name[:6]uuid[:9]

shortHost- First x characters of the short host name | Must be less than 16 characters

Name[:xJuserdef and a user defined x char name. NB - the

e.g. responsibility is on the user for unique-

shortHostName|:6]-
testHost

ness

shortHostName|- Last x characters of the short host name | Must be less than 16 characters
X:Juuid[:x] e.g. | and x uuid characters created from md5

shortHostName|[- hash of short host name

6:]uuid[:9]

shortHostName[- Last x characters of the short host name | Must be less than 16 characters
x:]Juserdef e.g. | and a user defined x char name. NB - the

shortHostName[- responsibility is on the user for unique-

6:]-testHost

ness

Table 14: Port group name templates

power-

max_port_group_n

Description
ame_template

Rule

portGroupName This is the default option Existing functionality, if over 12
characters then see PowerMax nam-
ing conventions, otherwise port
group name

portGroup- First x characters of the port group name | Must be less than 12 characters

Name[:x])uuid[:x] and x uuid characters created from md>5

e.g. portGroup- | hash of port group name

Name[:6]uuid[:5]

portGroup- First x characters of the port group name | Must be less than 12 characters

Name][:x]userdef and a user defined x char name. NB - the

e.g. responsibility is on the user for unique-

portGroupName[:6]-
test

ness

portGroupName][- Last x characters of the port group name | Must be less than 12 characters
x:Juuid[:x] e.g. | and x uuid characters created from md5
portGroupName[- hash of port group name
6:Juuid[:5]
portGroupName|[- Last x characters of the port group name | Must be less than 12 characters
x:]Juserdef e.g. | and a user defined x char name. NB - the
portGroupName|[- responsibility is on the user for unique-
6:]-test ness
172 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

21. Snap ids replacing generations

Snap ids were introduced to the PowerMax in microcde 5978.669.669 and Unisphere for PowerMax 9.2.
Generations existed previously and could cause stale data if deleted out of sequence, even though we
locked against this occurence. This happened when the newer generation(s) inherited its deleted pre-
decessors generation number. So in a series of 0, 1, 2 and 3 generations, if generation 1 gets deleted,
generation 2 now becomes generation 1 and generation 3 becomes generation 2 and so on down the
line. Snap ids are unique to each snapVX and will not change once assigned at creation so out of se-
quence deletions are no longer an issue. Generations will remain for arrays with microcode less than
5978.669.669.

Cinder supported operations

Volume replication support

Note: A mix of RDF1+TDEV and TDEV volumes should not exist in the same storage group. This can hap-
pen on a cleanup operation after breaking the pair and a TDEV remains in the storage group on either the
local or remote array. If this happens, remove the volume from the storage group so that further replicated
volume operations can continue. For example, Remove TDEV from 0S-[SRP]-[SL]-[WL]-RA-SG.

Note: Replication storage groups should exist on both local and remote array but never on just one. For
example, if OS-[SRP]-[SL]-[WL]-RA-SG exists on local array A it must also exist on remote array B. If
this condition does not hold, further replication operations will fail. This applies to management storage
groups in the case of Asynchronous and Metro modes also. See Replication storage group naming
conventions.

Note: The number of devices in replication storage groups in both local and remote arrays should
be same. This also applies to management storage groups in Asynchronous and Metro modes. See
Replication storage group naming conventions.

Configure a single replication target

1. Configure an SRDF group between the chosen source and target arrays for the PowerMax Cinder
driver to use. The source array must correspond with the powermax_array entry in cinder.
conf.

2. Select both the director and the ports for the SRDF emulation to use on both sides. Bear in
mind that network topology is important when choosing director endpoints. Supported modes
are Synchronous, Asynchronous, and Metro.

Note: If the source and target arrays are not managed by the same Unisphere server (that is, the
target array is remotely connected to server - for example, if you are using embedded management),
in the event of a full disaster scenario (i.e. the primary array is completely lost and all connectivity
to it is gone), the Unisphere server would no longer be able to contact the target array. In this

3.3. Reference 173

Cinder Documentation, Release 19.3.1.dev10

scenario, the volumes would be automatically failed over to the target array, but administrator
intervention would be required to either; configure the target (remote) array as local to the current
Unisphere server (if it is a stand-alone server), or enter the details of a second Unisphere server
to the cinder.conf, which is locally connected to the target array (for example, the embedded
management Unisphere server of the target array), and restart the Cinder volume service.

Note: If you are setting up an SRDF/Metro configuration, it is recommended that you configure a
Witness or vWitness for bias management. Please see the SRDF Metro Overview & Best Practices
guide for more information.

Note: The PowerMax Cinder drivers do not support Cascaded SRDF.

Note: The transmit idle functionality must be disabled on the R2 array for Asynchronous rdf
groups. If this is not disabled it will prevent failover promotion in the event of access to the R1
array being lost.

symrdf -sid <sid> -rdfg <rdfg> set rdfa -transmit_idle off

Note: When creating RDF enabled volumes, if there are existing volumes in the target storage
group, all rdf pairs related to that storage group must have the same rdf state i.e. rdf pair states
must be consistent across all volumes in a storage group when attempting to create a new replication
enabled volume. If mixed rdf pair states are found during a volume creation attempt, an error will
be raised by the rdf state validation checks. In this event, please wait until all volumes in the storage
group have reached a consistent state.

. Enable replication in /etc/cinder/cinder.conf. To enable the replication functionality in

PowerMax Cinder driver, it is necessary to create a replication volume-type. The corresponding
back-end stanza in cinder. conf for this volume-type must then include a replication_device
parameter. This parameter defines a single replication target array and takes the form of a list of
key value pairs.

(continues on next page)

174

Chapter 3. For operators

https://www.emc.com/collateral/technical-documentation/h14556-vmax3-srdf-metro-overview-and-best-practices-tech-note.pdf

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Note: replication_device key value pairs will need to be on the same line (separated by com-
mas) in cinder.conf. They are displayed here on separate lines above for improved readability.

* target_device_id The unique PowerMax array serial number of the target array. For full
failover functionality, the source and target PowerMax arrays must be discovered and man-
aged by the same U4V server.

* remote_port_group The name of a PowerMax port group that has been pre-configured to
expose volumes managed by this backend in the event of a failover. Make sure that this port
group contains either all FC or all iSCSI port groups (for a given back end), as appropriate
for the configured driver (iSCSI or FC).

* remote_pool The unique pool name for the given target array.

* rdf_group_label The name of a PowerMax SRDF group that has been pre-configured
between the source and target arrays.

* mode The SRDF replication mode. Options are Synchronous, Asynchronous, and Metro.
This defaults to Synchronous if not set.

* metro_use_bias Flag to indicate if bias protection should be used instead of Witness. This
defaults to False.

* sync_interval How long in seconds to wait between intervals for SRDF sync checks during
Cinder PowerMax SRDF operations. Default is 3 seconds.

* sync_retries How many times to retry RDF sync checks during Cinder PowerMax SRDF
operations. Default is 200 retries.

* allow_extend Only applicable to VMAX-Hybrid arrays or All Flash arrays running Hyper-
Max OS (5977). It is a flag for allowing the extension of replicated volumes. To extend a
volume in an SRDF relationship, this relationship must first be broken, the R1 device ex-
tended, and a new device pair established. If not explicitly set, this flag defaults to False.

Note: As the SRDF link must be severed, due caution should be exercised when performing
this operation. If absolutely necessary, only one source and target pair should be extended
at a time (only only applicable to VMAX-Hybrid arrays or All Flash arrays with HyperMax
0OS).

4. Create a replication-enabled volume type. Once the replication_device parameter has
been entered in the PowerMax backend entry in the cinder.conf, a corresponding volume type
needs to be created replication_enabled property set. See above Create volume types for
details.

3.3. Reference 175

Cinder Documentation, Release 19.3.1.dev10

openstack volume type set --property
POWERMAX_FC_REPLICATION

Note: Service Level and Workload: An attempt will be made to create a storage group on the
target array with the same service level and workload combination as the primary. However, if
this combination is unavailable on the target (for example, in a situation where the source array is
a VMAX-Hybrid, the target array is an All Flash, and an All Flash incompatible service level like
Bronze is configured), no service level will be applied.

Configure multiple replication targets

Setting multiple replication devices in cinder.conf allows the use of all the supported replication modes
simultaneously. Up to three replication devices can be set, one for each of the replication modes available.
An additional volume type extra spec (storagetype:replication_device_backend_id) is then
used to determine which replication device should be utilized when attempting to perform an operation
on a volume which is replication enabled. All details, guidelines and recommendations set out in the
Configure a single replication target section also apply in a multiple replication device scenario.

Multiple replication targets limitations and restrictions:

1. There can only be one of each replication mode present across all of the replication devices
set in cinder.conf.

2. Details for target_device_id, remote_port_group and remote_pool should be iden-
tical across replication devices.

3. The backend_id and rdf_group_label values must be unique across all replication de-
vices.

Adding additional replication_device to cinder.conf:
1. Open cinder. conf for editing

2. If a replication device is already present, add the backend_id key with a value of
backend_id_legacy_rep. If this key is already defined, its value must be updated to
backend_id_legacy_rep.

3. Add the additional replication devices to the backend stanza. Any additional repli-
cation devices must have a backend_id key set. The value of these must not be
backend_id_legacy_rep.

Example existing backend stanza pre-multiple replication:

(continues on next page)

176 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Example updated backend stanza:

3.3. Reference

177

Cinder Documentation, Release 19.3.1.dev10

Note: For environments without existing replication devices. The backend_id values can be set to any
value for all replication devices. The backend_id_legacy_rep value is only needed when updating a
legacy system with an existing replication device to use multiple replication devices.

The additional replication devices defined in cinder.conf will be detected after restarting the cinder
volume service.

To specify which replication_device a volume type should use an additional property named
storagetype:replication_device_backend_id must be added to the extra specs of the volume
type. The id value assigned to the storagetype:replication_device_backend_id key in the vol-
ume type must match the backend_id assigned to the replication_device in cinder.conf.

openstack volume type set
--property storagetype:replication_device_backend_id
<VOLUME_TYPE>

Note: Specifying which replication device to use is done in addition to the basic replication setup for a
volume type seen in Configure a single replication target

Note: In a legacy system where volume types are present that were replication enabled be-
fore adding multiple replication devices, the storagetype:replication_device_backend_id
should be omitted from any volume type that does/will use the legacy replication_device i.e.
when storagetype:replication_device_backend_id is omitted the replication_device with a
backend_id of backend_id_legacy_rep will be used.

Volume replication interoperability with other features

Most features are supported, except for the following:
* Replication Group operations are available for volumes in Synchronous mode only.

* The Ussuri release of OpenStack supports retyping in-use volumes to and from replication enabled
volume types with limited exception of volumes with Metro replication enabled. To retype to a
volume-type that is Metro enabled the volume must first be detached then retyped. The reason for
this is so the paths from the Nova instance to the Metro R1 & R2 volumes must be initialised, this
is not possible on the R2 device whilst a volume is attached.

e The image volume cache functionality is supported (enabled by setting
image_volume_cache_enabled = True), but one of two actions must be taken when
creating the cached volume:

— The first boot volume created on a backend (which will trigger the cached volume to be
created) should be the smallest necessary size. For example, if the minimum size disk to
hold an image is 5GB, create the first boot volume as 5GB. All subsequent boot volumes are
extended to the user specific size.

— Alternatively, ensure that the allow_extend option in the replication_device
parameter is set to True. This is only applicable to VMAX-Hybrid arrays or All Flash
array with HyperMax OS.

178 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Failover host

Note: Failover and failback operations are not applicable in Metro configurations.

In the event of a disaster, or where there is required downtime, upgrade of the primary array for example,
the administrator can issue the failover host command to failover to the configured target:

cinder failover-host cinder_host@POWERMAX_ FC_REPLICATION

After issuing cinder failover-host Cinder will set the R2 array as the target array for Cinder, how-
ever, to get existing instances to use this new array and paths to volumes it is necessary to first shelve
Nova instances and then unshelve them, this will effectively restart the Nova instance and re-establish
data paths between Nova instances and the volumes on the R2 array.

nova shelve <server>
nova unshelve --availability-zone <availability_zone> <server>

When a host is in failover mode performing normal volume or snapshot provisioning will not be possible,
failover host mode simply provides access to replicated volumes to minimise environment down-time.
The primary objective whilst in failover mode should be to get the R1 array back online. When the
primary array becomes available again, you can initiate a fail-back using the same failover command and
specifying --backend_id default:

cinder failover-host cinder_host@POWERMAX_FC_REPLICATION --backend_id..
—default

After issuing the failover command to revert to the default backend host it is necessary to re-issue the Nova
shelve and unshelve commands to restore the data paths between Nova instances and their corresponding
back end volumes. Once reverted to the default backend volume and snapshot provisioning operations
can continue as normal.

Failover promotion

Failover promotion can be used to transfer all existing RDF enabled volumes to the R2 array and overwrite
any references to the original R1 array. This can be used in the event of total R1 array failure or in other
cases where an array transfer is warranted. If the R1 array is online and working and the RDF links are
still enabled the failover promotion will automatically delete rdf pairs as necessary. If the R1 array or
the link to the R1 array is down, a half deletepair must be issued manually for those volumes during the
failover promotion.

1. Issue failover command:

cinder failover-host <host>

2. Enable array promotion:

cinder failover-host --backend_id pmax_failover_start_array_promotion <host>

3. View and re-enable the cinder service

3.3. Reference 179

Cinder Documentation, Release 19.3.1.dev10

cinder service-list
cinder service-enable <host> <binary>

4. Remove all volumes from volume groups

cinder --os-volume-api-version 3.13 group-update --remove-volumes <VollID,.,
—etc..> <volume_group_name>

5. Detach all volumes that are attached to instances

openstack server remove volume <instance_id> <volume_id>

Note: Deleting the instance will call a detach volume for each attached volume. A terminate connection

can be issued manually using the following command for volumes that are stuck in the attached state
without an instance.

cinder --os-volume-api-version 3.50 attachment-delete <attachment_id>

6. Delete all remaining instances

nova delete <instance_id>

7. Create new volume types

New volume types must be created with references to the remote array. All new volume types must adhere
to the following guidelines:

1. Uses the same workload, SLO & compression setting as the previous R1.
—volume type.

2. Uses the remote array instead of the primary for its pool name.

3. Uses the same volume_backend_name as the previous volume type.

4. Must not have replication enabled.

Example existing volume type extra specs.

pool_name="'Gold+None+SRP_1+000297900330', replication_enabled='<is> True',
storagetype:replication_device_backend_id='async-rep-1', volume_backend_name=
< 'POWERMAX_ISCSI_NONE'

Example new volume type extra specs.

pool_name="'Gold+None+SRP_1+000197900049', volume_backend_name='POWERMAX_ISCSI_
—NONE'

8. Retype volumes to new volume types

Additional checks will be performed during failover promotion retype to ensure workload, compression
and slo settings meet the criteria specified above when creating the new volume types.

cinder retype --migration-policy on-demand <volume> <volume_type>

180 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: If the volumes RDF links are offline during this retype then a half deletepair must be performed
manually after retype. Please reference section 8.a. below for guidance on this process.

8.a. Retype and RDF half deletepair

In instances where the rdf links are offline and rdf pairs have been set to partitioned state there are addi-
tional requirements. In that scenario the following order should be adhered to:

. Retype all Synchronous volumes.

. Half _deletepair all Synchronous volumes using the default storage group.
. Retype all Asynchronous volumes.

. Half_deletepair all Asynchronous volumes using their management storage.
—group.

5. Retype all Metro volumes.

6. Half deletepair all Metro volumes using their management storage group.
7. Delete the Asynchronous and Metro management storage groups.

B W N -

Note: A half deletepair cannot be performed on Metro enabled volumes unless the symforce
option has been enabled in the symapi options. In symapi/config/options uncomment and set
SYMAPI_ALLOW_RDF_SYMFORCE = True.

symrdf -sid <sid> -sg <sg> -rdfg <rdfg> -force -symforce half_deletepair

9. Issue failback

Issuing the failback command will disable both the failover and promotion flags. Please ensure all vol-
umes have been retyped and all replication pairs have been deleted before issuing this command.

cinder failover-host --backend_id default <host>

10. Update cinder.conf

Update the cinder.conf file to include details for the new primary array. For more information please see
the Configure block storage in cinder.conf section of this documentation.

11. Restart the cinder services
Restart the cinder volume service to allow it to detect the changes made to the cinder.conf file.
12. Set Metro volumes to ready state

Metro volumes will be set to a Not Ready state after performing rdf pair cleanup. Set these volumes back
to Ready state to allow them to be attached to instances. The U4P instance must be restarted for this
change to be detected.

symdev -sid <sid> ready -devs <dev_idl, dev_id2>

3.3. Reference 181

Cinder Documentation, Release 19.3.1.dev10

Asynchronous and metro replication management groups

Asynchronous and metro volumes in an RDF session, i.e. belonging to an SRDF group, must be managed
together for RDF operations (although there is a consistency exempt option for creating and deleting
pairs in an Async group). To facilitate this management, we create an internal RDF management storage
group on the backend. This RDF management storage group will use the following naming convention:

0S-[rdf_group_label]-[replication_mode]-rdf-sg

It is crucial for correct management that the volumes in this storage group directly correspond to the
volumes in the RDF group. For this reason, it is imperative that the RDF group specified in the cinder.
conf is for the exclusive use by this Cinder backend. If there are any issues with the state of your RDF
enabled volumes prior to performing additional operations in Cinder you will be notified in the Cinder
volume logs.

Metro support

SRDF/Metro is a high availability solution. It works by masking both sides of the RDF relationship to
the host, and presenting all paths to the host, appearing that they all point to the one device. In order to
do this, there needs to be multi-path software running to manage writing to the multiple paths.

Note: The metro issue around formatting volumes when they are added to existing metro RDF groups has
been fixed in Unisphere for PowerMax 9.1, however, it has only been addressed on arrays with PowerMax
OS and will not be available on arrays running a HyperMax OS.

Volume retype - storage assisted volume migration

Volume retype with storage assisted migration is supported now for PowerMax arrays. Cinder requires
that for storage assisted migration, a volume cannot be retyped across backends. For using storage assisted
volume retype, follow these steps:

Note: From the Ussuri release of OpenStack the PowerMax driver supports retyping in-use volumes
to and from replication enabled volume types with limited exception of volumes with Metro replication
enabled. To retype to a volume-type that is Metro enabled the volume must first be detached then retyped.
The reason for this is so the paths from the instance to the Metro R1 & R2 volumes must be initialised,
this is not possible on the R2 device whilst a volume is attached.

Note: When multiple replication devices are configured. If retyping from one replication mode to
another the R1 device ID is preserved and a new R2 side device is created. As a result, the device ID on
the R2 array may be different after the retype operation has completed.

Note: Retyping an in-use volume to a metro enabled volume type is not currently supported via
storage-assisted migration. This retype can still be performed using host-assisted migration by setting
the migration-policy to on-demand.

182 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

1. For migrating a volume from one Service Level or Workload combination to another, use volume
retype with the migration-policy to on-demand. The target volume type should have the same
volume_backend_name configured and should have the desired pool_name to which you are trying
to retype to (please refer to Create volume types for details).

cinder retype --migration-policy on-demand <volume> <volume-type>

Generic volume group support

Generic volume group operations are performed through the CLI using API version 3.1x of the Cinder
API. Generic volume groups are multi-purpose groups which can be used for various features. The Pow-
erMax driver supports consistent group snapshots and replication groups. Consistent group snapshots
allows the user to take group snapshots which are consistent based on the group specs. Replication groups
allow for tenant facing APIs to enable and disable replication, and to failover and failback, a group of
volumes. Generic volume groups have replaced the deprecated consistency groups.

Consistent group snhapshot

To create a consistent group snapshot, set a group-spec, having the key
consistent_group_snapshot_enabled set to <is> True on the group.

cinder --os-volume-api-version 3.11 group-type-key GROUP_TYPE set.

—

Similarly the same key should be set on any volume type which is specified while creating the group.

openstack volume type set --property
=N POWERMAX_GROUP

If this key is not set on the group-spec or volume type, then the generic volume group will be cre-
ated/managed by Cinder (not the PowerMax driver).

Note: The consistent group snapshot should not be confused with the PowerMax consistency group
which is an SRDF construct.

3.3. Reference 183

Cinder Documentation, Release 19.3.1.dev10

Replication groups

As with Consistent group snapshot consistent_group_snapshot_enabled should be set to true on
the group and the volume type for replication groups. Only Synchronous replication is supported for
use with Replication Groups. When a volume is created into a replication group, replication is on by
default. The disable_replication api suspends I/O traffic on the devices, but does NOT remove
replication for the group. The enable_replication api resumes I/O traffic on the RDF links. The
failover_group api allows a group to be failed over and back without failing over the entire host. See
below for usage.

Note: A generic volume group can be both consistent group snapshot enabled and consistent group
replication enabled.

Storage group names

Storage groups are created on the PowerMax as a result of creation of generic volume groups. These
storage groups follow a different naming convention and are of the following format depending upon
whether the groups have a name.

TruncatedGroupName_GroupUUID or GroupUUID

Group type, group, and group snapshot operations

Please refer to the official OpenStack block-storage groups documentation for the most up to date group
operations

Group replication operations

Generic volume group operations no longer require the user to specify the Cinder CLI version, however,
performing generic volume group replication operations still require this setting. When running generic
volume group commands set the value --os-volume-api-version to 3.38. These commands are not
listed in the latest Cinder CLI documentation so will remain here until added to the latest Cinder CLI
version or deprecated from Cinder.

* Enable group replication

* Disable group replication

* Failover group

* Failback group

184 Chapter 3. For operators

https://docs.openstack.org/cinder/latest/admin/blockstorage-groups.html

Cinder Documentation, Release 19.3.1.dev10

Manage and unmanage Volumes

Managing volumes in OpenStack is the process whereby a volume which exists on the storage device is
imported into OpenStack to be made available for use in the OpenStack environment. For a volume to
be valid for managing into OpenStack, the following prerequisites must be met:

* The volume exists in a Cinder managed pool

* The volume is not part of a Masking View

* The volume is not part of an SRDF relationship

* The volume is configured as a TDEV (thin device)

* The volume is set to FBA emulation

* The volume must a whole GB e.g. 5.5GB is not a valid size
* The volume cannot be a SnapVX target

For a volume to exist in a Cinder managed pool, it must reside in the same Storage Resource Pool (SRP)
as the backend which is configured for use in OpenStack. Specifying the pool correctly can be entered
manually as it follows the same format:

Table 15: Pool values

Key Value

service_level | The service level of the volume to be managed

srp The Storage Resource Pool configured for use by the backend
array_id The PowerMax serial number (12 digit numerical)

Manage volumes

With your pool name defined you can now manage the volume into OpenStack, this is possible with the
CLI command cinder manage. The bootable parameter is optional in the command, if the volume to
be managed into OpenStack is not bootable leave this parameter out. OpenStack will also determine the
size of the value when it is managed so there is no need to specify the volume size.

Command format:

cinder manage --name <new_volume_name> --volume-type <powermax_vol_type>
--availability-zone <av_zone> <--bootable> <host> <identifier>

Command Example:

3.3. Reference 185

Cinder Documentation, Release 19.3.1.dev10

cinder manage --name powermax_managed_volume --volume-type POWERMAX_ISCSI_
—DIAMOND

--availability-zone nova demo@POWERMAX_ISCSI_DIAMOND#Diamond+SRP_
~14111111111111 031D8

After the above command has been run, the volume will be available for use in the same way as any other
OpenStack PowerMax volume.

Note: An unmanaged volume with a prefix of 0S- in its identifier name cannot be managed into Open-
Stack, as this is a reserved keyword for managed volumes. If the identifier name has this prefix, an
exception will be thrown by the PowerMax driver on a manage operation.

Managing volumes with replication enabled

Whilst it is not possible to manage volumes into OpenStack that are part of a SRDF relationship, it is
possible to manage a volume into OpenStack and enable replication at the same time. This is done by
having a replication enabled PowerMax volume type (for more information see section Volume Replica-
tion) during the manage volume process you specify the replication volume type as the chosen volume
type. Once managed, replication will be enabled for that volume.

Note: It is not possible to manage into OpenStack SnapVX linked target volumes, only volumes which
are a SnapVX source are permitted. We do not want a scenario where a snapshot source can exist outside
of OpenStack management.

Unmanage volume

Unmanaging a volume is not the same as deleting a volume. When a volume is deleted from OpenStack,
it is also deleted from the PowerMax at the same time. Unmanaging a volume is the process whereby
a volume is removed from OpenStack but it remains for further use on the PowerMax. The volume can
also be managed back into OpenStack at a later date using the process discussed in the previous section.
Unmanaging volume is carried out using the Cinder unmanage CLI command:

Command format:

cinder unmanage <volume_name/volume_id>

Command example:

cinder unmanage powermax_test_vol

Once unmanaged from OpenStack, the volume can still be retrieved using its device ID or OpenStack
volume ID. Within Unisphere you will also notice that the 0S- prefix has been removed, this is another
visual indication that the volume is no longer managed by OpenStack.

186 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Manage/unmanage snhapshots

Users can manage PowerMax SnapVX snapshots into OpenStack if the source volume already exists in
Cinder. Similarly, users will be able to unmanage OpenStack snapshots to remove them from Cinder but
keep them on the storage backend.

Set-up, restrictions and requirements:
1. No additional settings or configuration is required to support this functionality.
2. Manage/Unmanage snapshots requires SnapVX functionality support on PowerMax.

3. Manage/Unmanage Snapshots in OpenStack Cinder is only supported at present through Cinder
CLI commands.

4. It is only possible to manage or unmanage one snapshot at a time in Cinder.

Manage SnapVX shapshot

It is possible to manage PowerMax SnapVX snapshots into OpenStack, where the source volume from
which the snapshot is taken already exists in, and is managed by OpenStack Cinder. The source volume
may have been created in OpenStack Cinder, or it may have been managed in to OpenStack Cinder also.
With the support of managing SnapVX snapshots included in OpenStack Queens, the restriction around
managing SnapVX source volumes has been removed.

Note: It is not possible to manage into OpenStack SnapVX linked target volumes, only volumes which
are a SnapVX source are permitted. We do not want a scenario where a snapshot source can exist outside
of OpenStack management.

Requirements/restrictions:

1. The SnapVX source volume must be present in and managed by Cinder.

2. The SnapVX snapshot name must not begin with OS-.

3. The SnapVX snapshot source volume must not be in a failed-over state.

4. Managing a SnapVX snapshot will only be allowed if the snapshot has no linked target volumes.
Command structure:

1. Identify your SnapVX snapshot for management on the PowerMax, note the name.

2. Ensure the source volume is already managed into OpenStack Cinder, note the device ID.

3. Using the Cinder CLI, use the following command structure to manage a Snapshot into OpenStack
Cinder:

cinder snapshot-manage --id-type source-name

Positional arguments:

3.3. Reference 187

Cinder Documentation, Release 19.3.1.dev10

* <volume name/id> Source OpenStack volume name
* <identifier> Name of existing snapshot on PowerMax backend
Optional arguments:
* --name <name> Snapshot name (Default="None*)
* --description <description> Snapshot description (Default="None*)

* --metadata [<key=value> [<key=value> ...]] Metadata key=value pairs (De-
fault="None*)

Example:

cinder snapshot-manage --name SnapshotManaged
--description
powermax-vol-1 PowerMaxSnapshot

Where:
* The name in OpenStack after managing the SnapVX snapshot will be SnapshotManaged.
* The snapshot will have the description Managed Queens Febl8.
¢ The Cinder volume name is powermax-vol-1.
* The name of the SnapVX snapshot on the PowerMax backend is PowerMaxSnapshot.
Outcome:

After the process of managing the Snapshot has completed, the SnapVX snapshot on the Pow-
erMax backend will be prefixed by the letters 0S-, leaving the snapshot in this example named
0S-PowerMaxSnapshot. The associated snapshot managed by Cinder will be present for use under
the name SnapshotManaged.

Unmanage cinder snapshot

Unmanaging a snapshot in Cinder is the process whereby the snapshot is removed from and no longer
managed by Cinder, but it still exists on the storage backend. Unmanaging a SnapVX snapshot in Open-
Stack Cinder follows this behaviour, whereby after unmanaging a PowerMax SnapVX snapshot from
Cinder, the snapshot is removed from OpenStack but is still present for use on the PowerMax backend.

Requirements/Restrictions:
* The SnapVX source volume must not be in a failed over state.
Command Structure:

Identify the SnapVX snapshot you want to unmanage from OpenStack Cinder, note the snapshot name
or ID as specified by Cinder. Using the Cinder CLI use the following command structure to unmanage
the SnapVX snapshot from Cinder:

cinder snapshot-unmanage <snapshot>

Positional arguments:
* <snapshot> Cinder snapshot name or ID.

Example:

188 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

cinder snapshot-unmanage SnapshotManaged

Where:
* The SnapVX snapshot name in OpenStack Cinder is SnapshotManaged.

After the process of unmanaging the SnapVX snapshot in Cinder, the snapshot on the PowerMax backend
will have the OS- prefix removed to indicate it is no longer OpenStack managed. In the example above, the
snapshot after unmanaging from OpenStack will be named PowerMaxSnapshot on the storage backend.

List manageable volumes and snapshots
Manageable volumes

Volumes that can be managed by and imported into Openstack.
List manageable volume is filtered by:

* Volume size should be 1026MB or greater (1GB PowerMax Cinder Vol = 1026 MB)

* Volume size should be a whole integer GB capacity

* Volume should not be a part of masking view.

¢ Volume status should be Ready

* Volume service state should be Normal

* Volume emulation type should be FBA

* Volume configuration should be TDEV

* Volume should not be a system resource.

¢ Volume should not be private

¢ Volume should not be encapsulated

* Volume should not be reserved

* Volume should not be a part of an RDF session

* Volume should not be a SnapVX Target

* Volume identifier should not begin with 0S-.

* Volume should not be in more than one storage group.

Manageable snaphots

Snapshots that can be managed by and imported into Openstack
List manageable snapshots is filtered by:
* The source volume should be marked as SnapVX source.
* The source volume should be 1026MB or greater

* The source volume should be a whole integer GB capacity.

3.3. Reference 189

Cinder Documentation, Release 19.3.1.dev10

* The source volume emulation type should be FBA.

* The source volume configuration should be TDEV.

e The source volume should not be private.

* The source volume should be not be a system resource.

* The snapshot identifier should not start with 0S- or temp-.
* The snapshot should not be expired.

* The snapshot generation number should npt be greater than 0.

Note: There is some delay in the syncing of the Unisphere for PowerMax database when the
state/properties of a volume is modified using symcli. To prevent this it is preferable to modify
state/properties of volumes within Unisphere.

Cinder backup support

PowerMax Cinder driver support Cinder backup functionality. For further information on setup, config-
uration and usage please see the official OpenStack volume backup documentation and related volume
backup CLI guide.

Port group & port load balancing

By default port groups are selected at random from cinder.conf when connections are initialised be-
tween volumes on the backend array and compute instances in Nova. If a port group is set in the volume
type extra specifications this will take precedence over any port groups configured in cinder.conf. Port
selection within the chosen port group is also selected at random by default.

With port group and port load balancing in the PowerMax for Cinder driver users can now select the port
group and port load by determining which has the lowest load. The load metric is defined by the user
in both instances so the selection process can better match the needs of the user and their environment.
Available metrics are detailed in the performance metrics section.

Port Groups are reported on at five minute time deltas (diagnostic), and FE Ports are reported on at
one minute time deltas (real-time) if real-time metrics are enabled, else default five minute time delta
(diagnostic). The window at which performance metrics are analysed is a user-configured option in
cinder. conf, this is detailed in the configuration section.

Calculating load

The process by which Port Group or Port load is calculated is the same for both. The user specifies the
look back window which determines how many performance intervals to measure, 60 minutes will give
12 intervals of 5 minutes each for example. If no lookback window is specified or is set to O only the most
recent performance metric will be analysed. This will give a slight performance improvement but with
the improvements made to the performance REST endpoints for load this improvement is negligible. For
real-time stats a minimum of 1 minute is required.

190 Chapter 3. For operators

https://docs.openstack.org/cinder/latest/configuration/block-storage/backup-drivers.html
https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/volume-backup.html
https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/volume-backup.html

Cinder Documentation, Release 19.3.1.dev10

Once a call is made to the performance REST endpoints, the performance data for that PG or port is
extracted. Then the metric values are summed and divided by the count of intervals to get the average
for the look back window.

The performance metric average value for each asset is added to a Python heap. Once all assets have
been measured the lowest value will always be at position O in the heap so there is no extra time penalty
requirement for search.

Pre-requisites

Before load balancing can be enabled in the PowerMax for Cinder driver performance metrics collection
must be enabled in Unisphere. Real-time performance metrics collection is enabled separately from di-
agnostic metrics collection. Performance metric collection is only available for local arrays in Unisphere.

After performance metrics registration there is a time delay before Unisphere records performance met-
rics, adequate time must be given before enabling load balancing in Cinder else default random selection
method will be used. It is recommended to wait 4 hours after performance registration before enabling
load balancing in Cinder.

Configuration

A number of configuration options are available for users so load balancing can be set to better suit the
needs of the environment. These configuration options are detailed in the table below.

3.3. Reference 191

Cinder Documentation, Release 19.3.1.dev10

Table 16: Load balance cinder.conf configuration options

cinder.conf
parameter

options

Default

Description

load_balance

True/False

False

Enable/disable load
balancing for

a PowerMax backend.

load_balance_real_tifeue/False

False

Enable/disable
real-time performance

metrics for Port level
metrics

(not available for Port
Group).

load_data_format

Avg/Max

Avg

Performance data
format, not
applicable for
real-time.

load_lookback

int

60

How far in minutes to
look back for
diagnostic
performance metrics
in

load calculation,
minimum of 0

maximum of 1440 (24
hours).

load_real_time_lookbarrk

How far in minutes to
look back for
real-time performance
metrics in

load calculation,
minimum of 1
maximum of 60 (24
hours).

port_group_load_met

1 1See below

PercentBusy

Metric used for port
group load

calculation.

192

Chapter 3. For operators

port_load_metric

See below

PercentBusy

Metric used for port

Cinder Documentation, Release 19.3.1.dev10

Port-Group Metrics

Table 17: Port-group performance metrics

Metric

cinder.conf option

Description

% Busy

PercentBusy

The percent of time the port
group is busy.

Avg 10 Size (KB)

AvgIOSize

Calculated value: (HA Kbytes
transferred per sec /

total IOs per sec)

Host 10s/sec

I0s

The number of host I0
operations performed each
second,

including writes and random
and sequential reads.

Host MBs/sec

MBs

The number of host MBs read
each second.

MBs Read/sec

MBRead

The number of reads per second
in MBs.

MBs Written/sec

MBWritten

The number of writes per sec-
ond in MBs.

Reads/sec

Reads

The average number of host
reads performed per second.

Writes/sec

Writes

The average number of host
writes performed per second.

3.3. Reference

193

Cinder Documentation, Release 19.3.1.dev10

Port Metrics

Table 18: Port performance metrics

Metric

cinder.conf option

Real-Time
ported

Sup-

Description

% Busy

PercentBusy

Yes

The percent of time the
port is busy.

Avg 10 Size (KB)

AvgIOSize

Yes

Calculated value: (HA
Kbytes transferred per
sec/

total IOs per sec)

Host I0s/sec

I0s

Yes

The number of host 10
operations performed
each second,
including writes and
random and sequential
reads.

Host MBs/sec

MBs

Yes

The number of host
MBs read each second.

MBs Read/sec

MBRead

Yes

The number of reads
per second in MBs.

MBs Written/sec

MBWritten

Yes

The number of writes
per second in MBs.

Reads/sec

Reads

Yes

The number of read op-
erations performed by
the port per second.

Writes/sec

Writes

Yes

The number of write
operations performed
each second by the
port.

Speed Gb/sec

SpeedGBs

Speed.

Response Time (ms)

ResponseTime

The average response
time for the reads and
writes.

Read RT (ms)

ReadResponseTime

No

The average time it
takes to serve one read
10.

Write RT (ms)

WriteResponseTime

No

The average time it
takes to serve one write
IO.

194

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Upgrading from SMI-S based driver to REST API based driver

Seamless upgrades from an SMI-S based driver to REST API based driver, following the setup instruc-
tions above, are supported with a few exceptions:

1. Seamless upgrade from SMI-S(Ocata and earlier) to REST(Pike and later) is now available on all
functionality including Live Migration.

2. Consistency groups are deprecated in Pike. Generic Volume Groups are supported from Pike
onwards.

Dell EMC PowerStore driver

This section explains how to configure and connect the block storage nodes to an PowerStore storage
cluster.

Supported operations

e Create, delete, attach and detach volumes.

* Create, delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Get volume statistics.

* Attach a volume to multiple servers simultaneously (multiattach).
* Revert a volume to a snapshot.

* OpenStack replication v2.1 support.

* Create, delete, update Consistency Groups.

* Create, delete Consistency Groups snapshots.
* Clone a Consistency Group.

* Create a Consistency Group from a Consistency Group snapshot.

3.3. Reference 195

Cinder Documentation, Release 19.3.1.dev10

Driver configuration

Add the following content into /etc/cinder/cinder.conf:

Driver options

The driver supports the following configuration options:

Table 19: Description of configuration options

Configuration Description

option = Default

value

powerstore_ports(List of String) Allowed ports. Comma separated list of PowerStore iSCSI IPs
=[] or FC WWNss (ex. 58:cc:f0:98:49:22:07:02) to be used. If option is not set all

ports are allowed.
powerstore_appliénisesf String) Appliances names. Comma separated list of PowerStore appli-
=[] ances names used to provision volumes. DEPRECATED

SSL support

To enable the SSL certificate verification, modify the following options in the cinder . conf file:

By default, the SSL certificate validation is disabled.

If the driver_ssl_cert_path option is omitted, the system default CA will be used.

196 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Thin provisioning and compression

The driver creates thin provisioned compressed volumes by default. Thick provisioning is not supported.

CHAP authentication support

The driver supports one-way (Single mode) CHAP authentication. To use CHAP authentication CHAP
Single mode has to be enabled on the storage side.

Note: When enabling CHAP, any previously added hosts will need to be updated with CHAP config-
uration since there will be I/0 disruption for those hosts. It is recommended that before adding hosts to
the cluster, decide what type of CHAP configuration is required, if any.

CHAP configuration is retrieved from the storage during driver initialization, no additional configuration
is needed. Secrets are generated automatically.

Replication support
Configure replication

1. Pair source and destination PowerStore systems.
2. Create Protection policy and Replication rule with desired RPO.
3. Enable replication in cinder. conf file.

To enable replication feature for storage backend set replication_device as below:

* Only one replication device is supported for storage backend.
* Replication device supports the same options as the main storage backend.

4. Create volume type for volumes with replication enabled.

openstack volume type create powerstore_replicated
openstack volume type set --property o
—powerstore_replicated

5. Set Protection policy name for volume type.

openstack volume type set --property powerstore:protection_policy
—<protection policy name>
powerstore_replicated

3.3. Reference 197

Cinder Documentation, Release 19.3.1.dev10

Failover host

In the event of a disaster, or where there is a required downtime the administrator can issue the failover
host command:

cinder failover-host cinder_host@powerstore --backend_id powerstore_repl_1

After issuing Cinder failover-host command Cinder will switch to configured replication device, however
to get existing instances to use this target and new paths to volumes it is necessary to first shelve Nova
instances and then unshelve them, this will effectively restart the Nova instance and re-establish data
paths between Nova instances and the volumes.

nova shelve <server>
nova unshelve --availability-zone <availability_zone> <server>

If the primary system becomes available, the administrator can initiate failback operation using
--backend_id default:

cinder failover-host cinder_host@powerstore --backend_id default

Consistency Groups support

To use PowerStore Volume Groups create Group Type with consistent group snapshot enabled.

cinder --os-volume-api-version 3.11 group-type-create powerstore_vg
cinder --os-volume-api-version 3.11 group-type-key powerstore_vg set.

—

Note: Currently driver does not support Consistency Groups replication. Adding volume to Consistency
Group and creating volume in Consistency Group will fail if volume is replicated.

Dell EMC PowerVault ME4 Series Fibre Channel and iSCSI drivers

The PVMEFCDriver and PVMEISCSIDriver Cinder drivers allow the Dell EMC PowerVault ME4 Series
storage arrays to be used for Block Storage in OpenStack deployments.

System requirements

To use the PowerVault ME4 Series drivers, the following are required:
* PowerVault ME4 Series storage array with:
— iSCSI or FC host interfaces
— G28x firmware or later

» Network connectivity between the OpenStack hosts and the arrays embedded management inter-
face

198 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

* The HTTPS protocol must be enabled on the array

Supported operations

e Create, delete, attach, and detach volumes.

* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

¢ Clone a volume.

e Extend a volume.

* Migrate a volume with back-end assistance.

* Retype a volume.

* Manage and unmanage a volume.

Configuring the array

1. Verify that the array can be managed via an HTTPS connection. HTTP can also be used if
driver_use_ssl is set to False in the cinder. conf file.

Confirm that virtual pools A and B are already present on the array. If they are missing, create

them.

2. Edit the cinder. conf file to define a storage back-end entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in a key=value format.

The pvme_pool_name value specifies the name of the storage pool or vdisk on the array.

The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

3. The following cinder. conf options generally have identical values for each backend section on
the array:

volume_driver specifies the Cinder driver name.
san_ip specifies the IP addresses or host names of the arrays management controllers.

san_login and san_password specify the username and password of an array user account
with manage privileges

driver_use_ss1 must be set to True to enable use of the HTTPS protocol.

pvme_iscsi_ips specifies the iSCSI IP addresses for the array if using the iSCSI transport
protocol

3.3. Reference 199

Cinder Documentation, Release 19.3.1.dev10

In the examples below, two back ends are defined, one for pool A and one for pool B, and a common
volume_backend_name is used so that a single volume type definition can be used to allocate
volumes from both pools.

iSCSI example back-end entries

Fibre Channel example back-end entries

4. If HTTPS is enabled, you can enable certificate verification with the option
driver_ssl_cert_verify = True. You may also use the driver_ssl_cert_path pa-
rameter to specify the path to a CA_BUNDLE file containing CAs other than those in the default
list.

200 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

5. Modify the [DEFAULT] section of the cinder. conf file to add an enabled_backends parameter
specifying the backend entries you added, and a default_volume_type parameter specifying the
name of a volume type that you will create in the next step.

Example of [DEFAULT] section changes

6. Create a new volume type for each distinct volume_backend_name value that
you added in the cinder.conf file. The example below assumes that the same
volume_backend_name=pvme-array option was specified in all of the entries, and speci-
fies that the volume type pvme can be used to allocate volumes from any of them.

Example of creating a volume type

openstack volume type create pvme
openstack volume type set --property pvme-array pvme

7. After modifying the cinder. conf file, restart the cinder-volume service.

Driver-specific options

The following table contains the configuration options that are specific to the PowerVault ME Series
drivers.

Table 20: Description of PowerVault ME Series configuration op-

tions
Configuration option = Default | Description
value
pvme_iscsi_ips =[] (List of String) List of comma-separated target iSCSI IP ad-
dresses.
pvme_pool_name = A (String) Pool or Vdisk name to use for volume creation.

Dell EMC Unity driver

Unity driver has been integrated in the OpenStack Block Storage project since the Ocata release. The
driver is built on the top of Block Storage framework and a Dell EMC distributed Python package storops.

Prerequisites

Software | Version
Unity OE | 4.1.X or newer
storops 1.2.3 or newer

3.3. Reference 201

https://pypi.org/project/storops

Cinder Documentation, Release 19.3.1.dev10

Supported operations

* Create, delete, attach, and detach volumes.

* Create, delete, attach, and detach compressed volumes.
* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Create an image from a volume.

* Clone a volume.

* Extend a volume.

* Migrate a volume.

* Get volume statistics.

* Efficient non-disruptive volume backup.

* Revert a volume to a snapshot.

* Create thick volumes.

* Create volume with tiering policy.

* Create and delete consistent groups.

* Add/remove volumes to/from a consistent group.
* Create and delete consistent group snapshots.

* Clone a consistent group.

* Create a consistent group from a snapshot.

* Attach a volume to multiple servers simultaneously (multiattach).
* Volume replications.

* Consistency group replications.

Driver configuration

Note: The following instructions should all be performed on Block Storage nodes.

1. Install storops from pypi:

pip install storops

2. Add the following content into /etc/cinder/cinder.conf:

202 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: These are minimal options for Unity driver, for more options, see Driver options.

Note: (Optional) If you require multipath based data access, perform below steps on both Block Storage
and Compute nodes.

1. Install sysfsutils, sg3-utils and multipath-tools:

apt-get install multipath-tools sg3-utils sysfsutils

2. (Required for FC driver in case Auto-zoning Support is disabled) Zone the FC ports of Compute
nodes with Unity FC target ports.

3. Enable Unity storage optimized multipath configuration:

Add the following content into /etc/multipath.conf

blacklist {

Skip the uner iSCSI devices
Different system may need different customization

devnode

devnode

devnode

Skip LUNZ device from VNX/Unity

device {
vendor
product
}
}
defaults {

user_friendly_names no

(continues on next page)

3.3. Reference 203

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

flush_on_last_del yes

}
devices {
Device attributed EMC CLARiiON and VNX/Unity series ALUA
device {
vendor
product
product_blacklist
path_grouping_policy group_by_prio
path_selector
path_checker emc_clariion
features
no_path_retry 12
hardware_handler
prio alua
failback immediate
}
}
4. Restart the multipath service:
service multipath-tools restart
5. Enable multipath for image transfer in /etc/cinder/cinder.conf for each backend or in
[backend_defaults] section as a common configuration for all backends.
Restart the cinder-volume service to load the change.
6. Enable multipath for volume attache/detach in /etc/nova/nova.conf
7. Restart the nova-compute service.
204 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Driver options

Table 21: Description of Unity configuration options

Configuration option =
Default value

Description

remove_empty_host =
False

(Boolean) To remove the host from Unity when the last LUN is detached
from it. By default, it is False.

san_api_port = None

(Port(min=0, max=65535)) Port to use to access the SAN API

san_clustername =
<>

(String) Cluster name to use for creating volumes

san_ip = <>

(String) IP address of SAN controller

san_is_local
False

(Boolean) Execute commands locally instead of over SSH; use if the vol-
ume service is running on the SAN device

san_login = admin

(String) Username for SAN controller

san_password = <>

(String) Password for SAN controller

san_private_key
<>

(String) Filename of private key to use for SSH authentication

san_ssh_port = 22

(Port(min=0, max=65535)) SSH port to use with SAN

san_thin_provision
=True

(Boolean) Use thin provisioning for SAN volumes?

ssh_conn_timeout =
30

(Integer) SSH connection timeout in seconds

ssh_max_pool_conn =
5

(Integer) Maximum ssh connections in the pool

ssh_min_pool_conn =
1

(Integer) Minimum ssh connections in the pool

unity_io_ports =[]

(List of String) A comma-separated list of iSCSI or FC ports to be used.
Each port can be Unix-style glob expressions.

unity_storage_pool_n

=[]

lafleist of String) A comma-separated list of storage pool names to be used.

FC or iSCSI ports option

Specify the list of FC or iSCSI ports to be used to perform the IO. Wild card character is supported. For
iSCSI ports, use the following format:

For FC ports, use the following format:

List the port ID with the uemcli command:

uemcli /net/port/eth show -output csv

(continues on next page)

3.3. Reference

205

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

uemcli /net/port/fc show -output csv

Live migration integration

It is suggested to have multipath configured on Compute nodes for robust data access in VM instances live
migration scenario. Once user_friendly_names no is set in defaults section of /etc/multipath.
conf, Compute nodes will use the WWID as the alias for the multipath devices.

To enable multipath in live migration:

Note: Make sure Driver configuration steps are performed before following steps.

1. Set multipath in /etc/nova/nova.conf:

Restart nova-compute service.

2. Setuser_friendly_names noin /etc/multipath.conf

defaults {
user_friendly_names no

3. Restart the multipath-tools service.

Thin and thick provisioning

By default, the volume created by Unity driver is thin provisioned. Run the following commands to create
a thick volume.

openstack volume type create --property provisioning:type thick
--property thick_volume_type
openstack volume create --type thick_volume_type thick_volume

206 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Compressed volume support

Unity driver supports compressed volume creation, modification and deletion. In order to create a
compressed volume, a volume type which enables compression support needs to be created first:

openstack volume type create CompressedVolumeType
openstack volume type set --property provisioning:type compressed --
—property CompressedVolumeType

Then create volume and specify the new created volume type.

Note: In Unity, only All-Flash pools support compressed volume, for the other type of pools, compres-
sion_support: False will be returned when getting pool stats.

Storage-assisted volume migration support

Unity driver supports storage-assisted volume migration, when the user starts migrating with cinder
migrate --force-host-copy False <volume_id> <host> or cinder migrate <volume_id>
<host>, cinder will try to leverage the Unitys native volume migration functionality. If Unity fails to
migrate the volume, host-assisted migration will be triggered.

In the following scenarios, Unity storage-assisted volume migration will not be triggered. Instead, host-
assisted volume migration will be triggered:

* Volume is to be migrated across backends.

* Migration of cloned volume. For example, if vol_2 was cloned from vol_1, the storage-assisted
volume migration of vol_2 will not be triggered.

Retype volume support

Unity driver supports to change a volumes type after its creation.

cinder retype --migration-policy <never on-demand> <volume> <volume-type>

The migration-policy is not enabled by default. Some retype operations will require migration based
on back-end support. In these cases, the storage-assisted migration will be triggered regardless the
migration-policy. For examples: retype between thin and thick, retype between thick and compressed,
retype to type(s) current host doesnt support.

3.3. Reference 207

Cinder Documentation, Release 19.3.1.dev10

QoS support

Unity driver supports maxBWS and maxIOPS specs for the back-end consumer type. maxBWS represents the
Maximum Bandwidth (KBPS) absolute limit, maxIOPS represents the Maximum IO/S absolute limit on
the Unity respectively.

Storage tiering support

Unity supports fully automated storage tiering which requires the FAST VP license activated on the Unity.
The OpenStack administrator can use the extra spec key storagetype:tiering to set the tiering policy
of a volume and use the key fast_support="'<is> True' to let Block Storage scheduler find a volume
back end which manages a Unity with FAST VP license activated. There are four supported values for
the extra spec key storagetype:tiering when creating volume.

* Key: storagetype:tiering

¢ Possible values:

StartHighThenAuto

Auto

HighestAvailable

LowestAvailable

e Default: StartHighThenAuto

Run the following commands to create a volume type with tiering policy:

openstack volume type create VolumeOnAutoTier
openstack volume type set --property storagetype:tiering Auto --property.
- VolumeOnAutoTier

Auto-zoning support

Unity volume driver supports auto-zoning, and share the same configuration guide for other vendors.
Refer to Fibre Channel Zone Manager for detailed configuration steps.

Solution for LUNZ device

The EMC host team also found LUNZ on all of the hosts, EMC best practice is to present a LUN with
HLU 0 to clear any LUNZ devices as they can cause issues on the host. See KB LUNZ Device.

To workaround this issue, Unity driver creates a Dummy LUN (if not present), and adds it to each host to
occupy the HLU 0 during volume attachment.

Note: This Dummy LUN is shared among all hosts connected to the Unity.

208 Chapter 3. For operators

https://support.emc.com/kb/463402

Cinder Documentation, Release 19.3.1.dev10

Efficient non-disruptive volume backup

The default implementation in Block Storage for non-disruptive volume backup is not efficient since a
cloned volume will be created during backup.

An effective approach to backups is to create a snapshot for the volume and connect this snapshot to the
Block Storage host for volume backup.

SSL support

Admin is able to enable the SSL verification for any communication against Unity REST API.
By default, the SSL verification is disabled, user can enable it by following steps:

1. Setup the Unity array certificate and import it to the Unity, see section Storage system certificate
of Security Configuration Guide.

2. Import the CA certificate to the Cinder nodes on which the driver is running.

3. Enable the changes on cinder nodes and restart the cinder services.

If driver_ssl_cert_path is omitted, the system default CA will be used for CA verification.

IPv6 support

This driver can support IPv6-based control path and data path.
For control path, please follow below steps:
* Enable Unitys Unipshere IPv6 address.
* Configure the IPv6 network to make sure that cinder node can access Unishpere via IPv6 address.

* Change Cinder config file /etc/cinder/cinder.conf. Make the san_ip as Unisphere IPv6
address. For example, san_ip = [£d99:£f17b:37d0::100].

* Restart the Cinder service to make new configuration take effect.

Note: The IPv6 support on control path depends on the fix of cpython bug 32185. Please make sure your
Pythons version includes this bugs fix.

For data path, please follow below steps:
* On Unity, Create iSCSI interface with IPv6 address.

* Configure the IPv6 network to make sure that you can ping the Unitys iSCSI IPv6 address from
the Cinder node.

* If you create a volume using Cinder and attach it to a VM, the connection between this VM and
volume will be IPv6-based iSCSI.

3.3. Reference 209

https://www.emc.com/collateral/TechnicalDocument/docu69321.pdf
https://bugs.python.org/issue32185

Cinder Documentation, Release 19.3.1.dev10

Force detach volume from all hosts

The user could use os-force_detach action to detach a volume from all its attached hosts.
For more detail, please refer to https://docs.openstack.org/api-ref/block-storage/v3/?expanded=
force-detach-a-volume-detail#force-detach-a-volume

Consistent group support

For a group to support consistent group snapshot, the group specs in the corresponding group type should
have the following entry:

Similarly, for a volume to be in a group that supports consistent group snapshots, the volume type extra
specs would also have the following entry:

Refer to Generic volume groups for command lines detail.

Volume replications

To enable volume replications, follow below steps:
1. On Unisphere, configure remote system and interfaces for replications.

The way could be different depending on the type of replications - sync or async. Refer to Unity Repli-
cation White Paper for more detail.

2. Add replication_device to storage backend settings in cinder.conf, then restart Cinder Volume ser-
vice.

Example of cinder.conf for volume replications:

* Only one replication_device can be configured for each primary backend.

» Keys backend_id, san_ip, san_password, and max_time_out_of_sync are supported in repli-
cation_device, while backend_id and san_ip are required.

* san_password uses the same one as primary backends if it is omitted.

* max_time_out_of_sync is the max time in minutes replications are out of sync. It must be
equal or greater than 0. 0 means sync replications of volumes will be created. Note that
remote systems for sync replications need to be created on Unity first. 60 will be used if it is
omitted.

3. Create a volume type with property replication_enabled=<is> True.

210 Chapter 3. For operators

https://docs.openstack.org/api-ref/block-storage/v3/?expanded=force-detach-a-volume-detail#force-detach-a-volume
https://docs.openstack.org/api-ref/block-storage/v3/?expanded=force-detach-a-volume-detail#force-detach-a-volume
https://www.emc.com/collateral/white-papers/h15088-dell-emc-unity-replication-technologies.pdf
https://www.emc.com/collateral/white-papers/h15088-dell-emc-unity-replication-technologies.pdf

Cinder Documentation, Release 19.3.1.dev10

openstack volume type create --property o
—type-replication

4. Any volumes with volume type of step #3 will failover to secondary backend after failover_host is
executed.

cinder failover-host --backend_id unity-secondary stein@unity-primary

5. Later, they could be failed back.

cinder failover-host --backend_id default stein@unity-primary

Note: The volume can be deleted even when it is participating in a replication. The replication session
will be deleted from Unity before the LUN is deleted.

Consistency group replications

To enable consistency group replications, follow below steps:
1. On Unisphere, configure remote system and interfaces for replications.

The way could be different depending on the type of replications - sync or async. Refer to Unity Repli-
cation White Paper for more detail.

2. Add replication_device to storage backend settings in cinder.conf, then restart Cinder Volume ser-
vice.

Example of cinder.conf for volume replications:

* Only one replication_device can be configured for each primary backend.

» Keys backend_id, san_ip, san_password, and max_time_out_of _sync are supported in repli-
cation_device, while backend_id and san_ip are required.

* san_password uses the same one as primary backends if it is omitted.

* max_time_out_of_sync is the max time in minutes replications are out of sync. It must be
equal or greater than 0. 0 means sync replications of volumes will be created. Note that
remote systems for sync replications need to be created on Unity first. 60 will be used if it is
omitted.

3. Create a volume type with property replication_enabled=<is> True.

openstack volume type create --property o
—type-replication

3.3. Reference 211

https://www.emc.com/collateral/white-papers/h15088-dell-emc-unity-replication-technologies.pdf
https://www.emc.com/collateral/white-papers/h15088-dell-emc-unity-replication-technologies.pdf

Cinder Documentation, Release 19.3.1.dev10

4. Create a consistency group type with properties consistent_group_snapshot_enabled=<is> True
and consistent_group_replication_enabled=<is> True.

cinder --os-volume-api-version 3.38 group-type-create type-cg-
—replication

cinder --os-volume-api-version 3.38 group-type-key type-cg-replication.
—set

5. Create a group type with volume types support replication.

cinder --os-volume-api-version 3.38 group-create --name test-cg ' type-
—cg-replication-id type-replication

6. Create volume in the consistency group.

cinder --os-volume-api-version 3.38 create --volume-type type-
—replication --group-id test-cg-id

7. Enable consistency group replication.

cinder --os-volume-api-version 3.38 group-enable-replication test-cg

8. Disable consistency group replication.

cinder --os-volume-api-version 3.38 group-disable-replication test-cg

9. Failover consistency group replication.

cinder --os-volume-api-version 3.38 group-failover-replication test-cg

10. Failback consistency group replication.

cinder --os-volume-api-version 3.38 group-failover-replication test-cg -
—.-secondary-backend-id default

Note: Only support group replication of consistency group, see step 4 and 5 to create consistency group
support replication.

Troubleshooting

To troubleshoot a failure in OpenStack deployment, the best way is to enable verbose and debug log, at
the same time, leverage the build-in Return request ID to caller to track specific Block Storage command
logs.

1. Enable verbose log, set following in /etc/cinder/cinder.conf and restart all Block Storage
services:

212 Chapter 3. For operators

https://specs.openstack.org/openstack/openstack-specs/specs/return-request-id.html

Cinder Documentation, Release 19.3.1.dev10

If other projects (usually Compute) are also involved, set debug and verbose to True.

2. use --debug to trigger any problematic Block Storage operation:

cinder --debug create --name unity_voll 100

You will see the request ID from the console, for example:

3. Use commands like grep, awk to find the error related to the Block Storage operations.

grep cinder-volume.log

Dell EMC VNX driver

EMC VNX driver interacts with configured VNX array. It supports both iSCSI and FC protocol.

The VNX cinder driver performs the volume operations by executing Navisphere CLI (NaviSecCLI)
which is a command-line interface used for management, diagnostics, and reporting functions for VNX.
It also supports both iSCSI and FC protocol.

3.3. Reference 213

Cinder Documentation, Release 19.3.1.dev10

System requirements

* VNX Operational Environment for Block version 5.32 or higher.

VNX Snapshot and Thin Provisioning license should be activated for VNX.

Python library storops version 0.5.7 or higher to interact with VNX.

* Navisphere CLI v7.32 or higher is installed along with the driver.

Supported operations

¢ Create, delete, attach, and detach volumes.

* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Clone a volume.

* Extend a volume.

e Migrate a volume.

* Retype a volume.

* Get volume statistics.

* Create and delete consistency groups.

* Create, list, and delete consistency group snapshots.
* Modify consistency groups.

« Efficient non-disruptive volume backup.

* Create a cloned consistency group.

* Create a consistency group from consistency group snapshots.
* Replication v2.1 support.

* Generic Group support.

* Revert a volume to a snapshot.

Preparation

This section contains instructions to prepare the Block Storage nodes to use the EMC VNX driver. You
should install the Navisphere CLI and ensure you have correct zoning configurations.

214 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Install Navisphere CLI

Navisphere CLI needs to be installed on all Block Storage nodes within an OpenStack deployment. You
need to download different versions for different platforms:

* For Ubuntu x64, DEB is available at EMC OpenStack Github.

* For all other variants of Linux, Navisphere CLI is available at Downloads for VNX2 Series or
Downloads for VNX1 Series.

Install Python library storops

storops is a Python library that interacts with VNX array through Navisphere CLI. Use the following
command to install the storops library:

pip install storops

Check array software

Make sure your have the following software installed for certain features:

Feature Software Required
All ThinProvisioning
All VNXSnapshots
FAST cache support FASTCache

Create volume with type compressed Compression

Create volume with type deduplicated | Deduplication

Required software

You can check the status of your array software in the Software page of Storage System Properties. Here
is how it looks like:

Network configuration

For the FC Driver, FC zoning is properly configured between the hosts and the VNX. Check Register FC
port with VNX for reference.

For the iSCSI Driver, make sure your VNX iSCSI port is accessible by your hosts. Check Register iSCSI
port with VNX for reference.

You can use initiator_auto_registration = True configuration to avoid registering the ports
manually. Check the detail of the configuration in Back-end configuration for reference.

If you are trying to setup multipath, refer to Multipath setup.

3.3. Reference 215

https://github.com/emc-openstack/naviseccli
https://support.emc.com/downloads/36656_VNX2-Series
https://support.emc.com/downloads/12781_VNX1-Series

Cinder Documentation, Release 19.3.1.dev10

APMO0143330785 - Storage System Propertie

General | SP Cache FAST Cache |Software | Envircnment | Encryption

- Packages
Mame
WNX-Block-Operating-Envirenment
INTERMAL_USE_OMNLY-RALabHosts
INTERMAL_USE_OCNLY-FEEAFPLX
INTERMAL_USE_OMLY-AutoPilot
“WMNXSnapshots
-UnisphereFile
-UnisphereBlock
-Unispherefnalyzer
-Unisphere
-ThinProvisioning
-SANCopy
-ODXCopy
-FASTCache
-FAST
-Deduplication
-Compression

'Revision
05.33.006.1.250
05.33.006.1.250
05.33.006.1.250

05.33.006.1.250

' Status
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active
Active

Updates C

ommit Revert

|§an:el || Help |

216

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Back-end configuration

Make the following changes in the /etc/cinder/cinder. conf file.

Minimum configuration

Here is a sample of minimum back-end configuration. See the following sections for the detail of each
option. Set storage_protocol = iscsi if iSCSI protocol is used.

Multiple back-end configuration

Here is a sample of a minimum back-end configuration. See following sections for the detail of each
option. Set storage_protocol = iscsi if iSCSI protocol is used.

The value of the option storage_protocol can be either fc or iscsi, which is case insensitive.

3.3. Reference 217

Cinder Documentation, Release 19.3.1.dev10

For more details on multiple back ends, see Configure multiple-storage back ends.

Required configurations

IP of the VNX Storage Processors
Specify SP A or SP B IP to connect:

VNX login credentials
There are two ways to specify the credentials.
* Use plain text username and password.

Supply for plain username and password:

Valid values for storage_vnx_authentication_type are: global (default), local, and 1dap.
* Use Security file.

This approach avoids the plain text password in your cinder configuration file. Supply a security
file as below:

Check Unisphere CLI user guide or Authenticate by security file for how to create a security file.
Path to your Unisphere CLI

Specify the absolute path to your naviseccli:

Drivers storage protocol

* For the FC Driver, add the following option:

* For iSCSI Driver, add the following option:

218 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Optional configurations

VNX pool nhames

Specify the list of pools to be managed, separated by commas. They should already exist in VNX.

If this value is not specified, all pools of the array will be used.
Initiator auto registration

When initiator_auto_registration is set to True, the driver will automatically register initiators
to all working target ports of the VNX array during volume attaching (The driver will skip those initiators
that have already been registered) if the option io_port_list is not specified in the cinder. conf file.

If the user wants to register the initiators with some specific ports but not register with the other ports,
this functionality should be disabled.

When a comma-separated list is given to io_port_list, the driver will only register the initiator to
the ports specified in the list and only return target port(s) which belong to the target ports in the
io_port_list instead of all target ports.

» Example for FC ports:

a or B is Storage Processor, number 1 and 3 are Port ID.

» Example for iSCSI ports:

a or B is Storage Processor, the first numbers 1 and 3 are Port ID and the second number 0 is
Virtual Port ID

Note:

* Rather than de-registered, the registered ports will be simply bypassed whatever they are in
io_port_list or not.

* The driver will raise an exception if ports in io_port_list do not exist in VNX during startup.

Force delete volumes in storage group

Some available volumes may remain in storage group on the VNX array due to some OpenStack
timeout issue. But the VNX array do not allow the user to delete the volumes which are in storage
group. Option force_delete_lun_in_storagegroup is introduced to allow the user to delete the
available volumes in this tricky situation.

When force_delete_lun_in_storagegroup is set to True in the back-end section, the driver will
move the volumes out of the storage groups and then delete them if the user tries to delete the volumes
that remain in the storage group on the VNX array.

3.3. Reference 219

Cinder Documentation, Release 19.3.1.dev10

The default value of force_delete_lun_in_storagegroup is True.

Over subscription in thin provisioning

Over subscription allows that the sum of all volumes capacity (provisioned capacity) to be larger than the
pools total capacity.

max_over_subscription_ratio in the back-end section is the ratio of provisioned capacity over total
capacity.

The default value of max_over_subscription_ratio is 20.0, which means the provisioned capacity
can be 20 times of the total capacity. If the value of this ratio is set larger than 1.0, the provisioned
capacity can exceed the total capacity.

Storage group automatic deletion

For volume attaching, the driver has a storage group on VNX for each compute node hosting the vim
instances which are going to consume VNX Block Storage (using compute nodes host name as stor-
age groups name). All the volumes attached to the VM instances in a compute node will be put
into the storage group. If destroy_empty_storage_group is set to True, the driver will remove
the empty storage group after its last volume is detached. For data safety, it does not suggest to set
destroy_empty_storage_group=True unless the VNX is exclusively managed by one Block Storage
node because consistent lock_path is required for operation synchronization for this behavior.

Initiator auto deregistration

Enabling storage group automatic deletion is the precondition of this function. If
initiator_auto_deregistration is set to True is set, the driver will deregister all FC and
iSCSI initiators of the host after its storage group is deleted.

FC SAN auto zoning

The EMC VNX driver supports FC SAN auto zoning when ZoneManager is configured and
zoning_mode is set to fabric in cinder.conf. For ZoneManager configuration, refer to Fibre Chan-
nel Zone Manager.

Volume number threshold

In VNX, there is a limitation on the number of pool volumes that can be created in the system. When
the limitation is reached, no more pool volumes can be created even if there is remaining capacity in the
storage pool. In other words, if the scheduler dispatches a volume creation request to a back end that has
free capacity but reaches the volume limitation, the creation fails.

The default value of check_max_pool_luns_threshold is False. When
check_max_pool_luns_threshold=True, the pool-based back end will check the limit and
will report O free capacity to the scheduler if the limit is reached. So the scheduler will be able to skip
this kind of pool-based back end that runs out of the pool volume number.

220 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: From Queens, check_max_pool_luns_threshold is obsolete. And the behavior is like where
check_max_pool_luns_threshold is set to True.

iSCSI initiators

iscsi_initiators is a dictionary of IP addresses of the iSCSI initiator ports on OpenStack compute
and block storage nodes which want to connect to VNX via iSCSI. If this option is configured, the driver
will leverage this information to find an accessible iSCSI target portal for the initiator when attaching
volume. Otherwise, the iSCSI target portal will be chosen in a relative random way.

Note: This option is only valid for iSCSI driver.

Here is an example. VNX will connect host1 with 10.0.0.1and 10.0.0.2. And it will connect host2
with 10.0.0.3.

The key name (host1 in the example) should be the output of hostname command.

Default timeout

Specify the timeout in minutes for operations like LUN migration, LUN creation, etc. For example, LUN
migration is a typical long running operation, which depends on the LUN size and the load of the array.
An upper bound in the specific deployment can be set to avoid unnecessary long wait.

The default value for this option is infinite.

Max LUNs per storage group

The max_luns_per_storage_group specify the maximum number of LUNSs in a storage group. De-
fault value is 255. It is also the maximum value supported by VNX.

Ignore pool full threshold

If ignore_pool_full_thresholdis setto True, driver will force LUN creation even if the full thresh-
old of pool is reached. Default to False.

3.3. Reference 221

Cinder Documentation, Release 19.3.1.dev10

Default value for async migration

Option vnx_async_migrate is used to set the default value of async migration for the backend.
The default value of this option is True if it isnt set in cinder.conf to preserve compatibility. If
async_migrate is not set in metadata of volume, the value of this option will be used. Otherwise,
async_migrate value in metadata will override the value of this option. For more detail, refer to asyn-
chronous migration support.

Extra spec options

Extra specs are used in volume types created in Block Storage as the preferred property of the volume.

The Block Storage scheduler will use extra specs to find the suitable back end for the volume and the
Block Storage driver will create the volume based on the properties specified by the extra spec.

Use the following command to create a volume type:

openstack volume type create demoVolumeType

Use the following command to update the extra spec of a volume type:

openstack volume type set --property provisioning:type thin --property.
< demoVolumeType

The following sections describe the VNX extra keys.

Provisioning type

* Key: provisioning:type
* Possible Values:
- thick
Volume is fully provisioned.

Run the following commands to create a thick volume type:

openstack volume type create ThickVolumeType
openstack volume type set --property provisioning:type thick --
—property ThickVolumeType

— thin
Volume is virtually provisioned.

Run the following commands to create a thin volume type:

openstack volume type create ThinVolumeType
openstack volume type set --property provisioning:type thin --
—,property ThinVolumeType

— deduplicated

222 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Volume is thin and deduplication is enabled. The administrator shall go to VNX to configure
the system level deduplication settings. To create a deduplicated volume, the VNX Dedupli-
cation license must be activated on VNX, and specify deduplication_support=True to
let Block Storage scheduler find the proper volume back end.

Run the following commands to create a deduplicated volume type:

openstack volume type create DeduplicatedVolumeType
openstack volume type set --property.
—provisioning:type deduplicated --property
. DeduplicatedVolumeType

compressed

Volume is thin and compression is enabled. The administrator shall go to the VNX to
configure the system level compression settings. To create a compressed volume, the VNX
Compression license must be activated on VNX, and use compression_support=True to
let Block Storage scheduler find a volume back end. VNX does not support creating snapshots
on a compressed volume.

Run the following commands to create a compressed volume type:

openstack volume type create CompressedVolumeType
openstack volume type set --property provisioning:type compressed -
—-property CompressedVolumeType

e Default: thick

Note: provisioning:type replaces the old spec key storagetype:provisioning. The latter one
is obsolete since the Mitaka release.

Storage tiering support

* Key:

storagetype:tiering

¢ Possible values:

StartHighThenAuto
Auto
HighestAvailable
LowestAvailable

NoMovement

¢ Default: StartHighThenAuto

VNX supports fully automated storage tiering which requires the FAST license activated on the VNX.
The OpenStack administrator can use the extra spec key storagetype:tiering to set the tiering policy
of a volume and use the key fast_support="'<is> True' to let Block Storage scheduler find a volume
back end which manages a VNX with FAST license activated. Here are the five supported values for the
extra spec key storagetype:tiering:

3.3. Reference 223

Cinder Documentation, Release 19.3.1.dev10

Run the following commands to create a volume type with tiering policy:

openstack volume type create ThinVolumeOnAutoTier

openstack volume type set --property provisioning:type thin --property.
—storagetype:tiering Auto --property o
—ThinVolumeOnAutoTier

Note: The tiering policy cannot be applied to a deduplicated volume. Tiering policy of the deduplicated
LUN align with the settings of the pool.

FAST cache support

* Key: fast_cache_enabled
* Possible values:

— True

- False
* Default: False

VNX has FAST Cache feature which requires the FAST Cache license activated on the VNX. Volume
will be created on the backend with FAST cache enabled when <is> True is specified.

Pool name

* Key: pool_name
* Possible values: name of the storage pool managed by cinder
* Default: None

If the user wants to create a volume on a certain storage pool in a back end that manages multiple pools,
a volume type with a extra spec specified storage pool should be created first, then the user can use this
volume type to create the volume.

Run the following commands to create the volume type:

openstack volume type create HighPerf
openstack volume type set --property Pool_02_SASFLASH --property..
< vnx_41 HighPerf

224 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Obsolete extra specs

Note: DO NOT use the following obsolete extra spec keys:
* storagetype:provisioning

* storagetype:pool

Force detach

The user could use os-force_detach action to detach a volume from all its attached hosts.
For more detail, please refer to https://docs.openstack.org/api-ref/block-storage/v3/?expanded=
force-detach-a-volume-detail#force-detach-a-volume

Advanced features
Snap copy

* Metadata Key: snapcopy
* Possible Values:
— True or true
— Falseor false
* Default: False
VNX driver supports snap copy which accelerates the process for creating a copied volume.

By default, the driver will use asynchronous migration support, which will start a VNX migration session.
When snap copy is used, driver creates a snapshot and mounts it as a volume for the 2 kinds of operations
which will be instant even for large volumes.

To enable this functionality, append --metadata snapcopy=True when creating cloned volume or
creating volume from snapshot.

cinder create --source-volid <source-void> --name --
—metadata True

Or

cinder create --snapshot-id <snapshot-id> --name --
—metadata True

The newly created volume is a snap copy instead of a full copy. If a full copy is needed, retype or migrate
can be used to convert the snap-copy volume to a full-copy volume which may be time-consuming.

You can determine whether the volume is a snap-copy volume or not by showing its metadata. If the
snapcopy in metadata is True or true, the volume is a snap-copy volume. Otherwise, it is a full-copy
volume.

3.3. Reference 225

https://docs.openstack.org/api-ref/block-storage/v3/?expanded=force-detach-a-volume-detail#force-detach-a-volume
https://docs.openstack.org/api-ref/block-storage/v3/?expanded=force-detach-a-volume-detail#force-detach-a-volume

Cinder Documentation, Release 19.3.1.dev10

cinder metadata-show <volume>

Constraints

e The number of snap-copy volumes created from a single source volume is limited to 255 at one
point in time.

* The source volume which has snap-copy volume can not be deleted or migrated.

* snapcopy volume will be change to full-copy volume after host-assisted or storage-assisted migra-
tion.

* snapcopy volume can not be added to consisgroup because of VNX limitation.

Efficient non-disruptive volume backup

The default implementation in Block Storage for non-disruptive volume backup is not efficient since a
cloned volume will be created during backup.

The approach of efficient backup is to create a snapshot for the volume and connect this snapshot (a mount
point in VNX) to the Block Storage host for volume backup. This eliminates migration time involved in
volume clone.

Constraints

* Backup creation for a snap-copy volume is not allowed if the volume status is in-use since snap-
shot cannot be taken from this volume.

Configurable migration rate

VNX cinder driver is leveraging the LUN migration from the VNX. LUN migration is involved in
cloning, migrating, retyping, and creating volume from snapshot. When admin set migrate_rate in
volumes metadata, VNX driver can start migration with specified rate. The available values for the
migrate_rate are high, asap, low and medium.

The following is an example to set migrate_rate to asap:

cinder metadata <volume-id> set asap

After set, any cinder volume operations involving VNX LUN migration will take the value as the migra-
tion rate. To restore the migration rate to default, unset the metadata as following:

cinder metadata <volume-id> unset migrate_rate

Note: Do not use the asap migration rate when the system is in production, as the normal host I/O may
be interrupted. Use asap only when the system is offline (free of any host-level I/0).

226 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Replication v2.1 support

Cinder introduces Replication v2.1 support in Mitaka, it supports fail-over and fail-back replication for
specific back end. In VNX cinder driver, MirrorView is used to set up replication for the volume.

To enable this feature, you need to set configuration in cinder.conf as below:

Currently, only synchronized mode MirrorView is supported, and one volume can only have 1 sec-
ondary storage system. Therefore, you can have only one replication_device presented in driver
configuration section.

To create a replication enabled volume, you need to create a volume type:

openstack volume type create replication-type
openstack volume type set --property o
—replication-type

And then create volume with above volume type:

openstack volume create replication-volume --type replication-type --size 1

Supported operations
* Create volume
* Create cloned volume
* Create volume from snapshot

¢ Fail-over volume:

cinder failover-host --backend_id <secondary VNX serial number>
—<hostname>

Fail-back volume:

cinder failover-host --backend_id default <hostname>

Requirements

* 2 VNX systems must be in same domain.

For iSCSI MirrorView, user needs to setup iSCSI connection before enable replication in Cinder.
* For FC MirrorView, user needs to zone specific FC ports from 2 VNX system together.
* MirrorView Sync enabler(MirrorView/S) installed on both systems.

* Write intent log enabled on both VNX systems.

3.3. Reference 227

Cinder Documentation, Release 19.3.1.dev10

For more information on how to configure, please refer to: MirrorView-Knowledgebook:-Releases-30--
33

Asynchronous migration support

VNX Cinder driver now supports asynchronous migration during volume cloning.

The driver now using asynchronous migration when creating a volume from source as the default cloning
method. The driver will return immediately after the migration session starts on the VNX, which dra-
matically reduces the time before a volume is available for use.

To disable this feature, user needs to do any one of below actions:

* Configure vnx_async_migrate = False for the backend in cinder. conf, then restart Cinder
services.

* Add --metadata async_migrate=False when creating new volume from source.
Be aware, async_migrate in metadata overrides the option vnx_async_migrate when both are set.
Constraints

* Before the migration finishes, snapshots cannot be created from the source volume, which could
affect subsequent clones from the same source volume. The typical affected use case is that creating
volume-2 via cloning volume-1 immediately after creating volume-1 via cloning volume-0. To
achieve so, users are advised to take any one of below actions:

1) wait for the first clone finishing, or
2) create volume-2 via cloning volume-0 instead of volume-1, or

3) create volume-1 with --metadata async_migrate=False.

Best practice
Multipath setup

Enabling multipath volume access is recommended for robust data access. The major configuration
includes:

1. Install multipath-tools, sysfsutils and sg3-utils on the nodes hosting compute
and cinder-volume services. Check the operating system manual for the system dis-
tribution for specific installation steps. For Red Hat based distributions, they should be
device-mapper-multipath, sysfsutils and sg3_utils.

2. Specify use_multipath_for_image_xfer=true in the cinder.conf file for each FC/iSCSI
back end.

3. Specify volume_use_multipath=True in libvirt section of the nova.conf file. This op-
tion is valid for both iSCSI and FC driver. In versions prior to Newton, the option was called
iscsi_use_multipath.

For multipath-tools, here is an EMC recommended sample of /etc/multipath.conf file.

user_friendly_names is not specified in the configuration and thus it will take the default value no.
It is not recommended to set it to yes because it may fail operations such as VM live migration.

228 Chapter 3. For operators

https://support.emc.com/docu32906_MirrorView-Knowledgebook:-Releases-30-%E2%80%93-33---A-Detailed-Review.pdf?language=en_US
https://support.emc.com/docu32906_MirrorView-Knowledgebook:-Releases-30-%E2%80%93-33---A-Detailed-Review.pdf?language=en_US

Cinder Documentation, Release 19.3.1.dev10

blacklist {

Skip the under iSCSI devices
Different system may need different customization

devnode

devnode

devnode

Skip LUNZ device from VNX

device {
vendor
product
}
}
defaults {
user_friendly_names no
flush_on_last_del yes
}
devices {
Device attributed EMC CLARiiON and VNX series ALUA
device {
vendor
product
product_blacklist
path_grouping_policy group_by_prio
path_selector
path_checker emc_clariion
features
hardware_handler
prio alua
failback immediate
3
}

Note: When multipath is used in OpenStack, multipath faulty devices may come out in Nova-Compute
nodes due to different issues (Bug 1336683 is a typical example).

A solution to completely avoid faulty devices has not been found yet. faulty_device_cleanup.py
mitigates this issue when VNX iSCSI storage is used. Cloud administrators can deploy the script in all
Nova-Compute nodes and use a CRON job to run the script on each Nova-Compute node periodically so
that faulty devices will not stay too long. Refer to: VNX faulty device cleanup for detailed usage and the
script.

3.3. Reference 229

https://bugs.launchpad.net/nova/+bug/1336683
https://github.com/emc-openstack/vnx-faulty-device-cleanup

Cinder Documentation, Release 19.3.1.dev10

Restrictions and limitations
iSCSI port cache

EMC VNX iSCSI driver caches the iSCSI ports information, so that the user should restart the
cinder-volume service or wait for seconds (which is configured by periodic_interval in the
cinder.conf file) before any volume attachment operation after changing the iSCSI port configura-
tions. Otherwise the attachment may fail because the old iSCSI port configurations were used.

No extending for volume with shapshots

VNX does not support extending the thick volume which has a snapshot. If the user tries to extend a
volume which has a snapshot, the status of the volume would change to error_extending.

Limitations for deploying cinder on computer node

It is not recommended to deploy the driver on a compute node if cinder upload-to-image --force
True is used against an in-use volume. Otherwise, cinder upload-to-image --force True will
terminate the data access of the vm instance to the volume.

Storage group with host names in VNX

When the driver notices that there is no existing storage group that has the host name as the storage group
name, it will create the storage group and also add the compute nodes or Block Storage nodes registered
initiators into the storage group.

If the driver notices that the storage group already exists, it will assume that the registered initiators have
also been put into it and skip the operations above for better performance.

It is recommended that the storage administrator does not create the storage group manually and instead
relies on the driver for the preparation. If the storage administrator needs to create the storage group
manually for some special requirements, the correct registered initiators should be put into the storage
group as well (otherwise the following volume attaching operations will fail).

EMC storage-assisted volume migration

EMC VNX driver supports storage-assisted volume migration, when the user starts migrating
with cinder migrate --force-host-copy False <volume_id> <host> or cinder migrate
<volume_id> <host>, cinder will try to leverage the VNXs native volume migration functionality.

In following scenarios, VNX storage-assisted volume migration will not be triggered:

* in-use volume migration between back ends with different storage protocol, for example, FC and
iSCSIL.

* Volume is to be migrated across arrays.

230 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Appendix
Authenticate by security file

VNX credentials are necessary when the driver connects to the VNX system. Credentials in global,
local and ldap scopes are supported. There are two approaches to provide the credentials.

The recommended one is using the Navisphere CLI security file to provide the credentials which can get
rid of providing the plain text credentials in the configuration file. Following is the instruction on how to
do this.

1. Find out the Linux user id of the cinder-volume processes. Assuming the cinder-volume
service is running by the account cinder.

2. Run su as root user.

3. In /etc/passwd file, change cinder:x:113:120::/var/lib/cinder:/bin/false to
cinder:x:113:120::/var/lib/cinder: /bin/bash (This temporary change is to make step
4 work.)

4. Save the credentials on behalf of cinder user to a security file (assuming the array credentials are
admin/admin in global scope). In the command below, the -secfilepath switch is used to
specify the location to save the security file.

su -1 cinder -c

5. Change cinder:x:113:120::/var/lib/cinder:/bin/bash back to
cinder:x:113:120::/var/lib/cinder: /bin/false in /etc/passwd file.

6. Remove the credentials options san_login, san_password and
storage_vnx_authentication_type from cinder.conf file. (normally it is /etc/
cinder/cinder.conf file). Add option storage_vnx_security_file_dir and set its
value to the directory path of your security file generated in the above step. Omit this option if
-secfilepath is not used in the above step.

7. Restart the cinder-volume service to validate the change.

Register FC port with VNX

This configuration is only required when initiator_auto_registration=False.

To access VNX storage, the Compute nodes should be registered on VNX first if initiator auto registration
is not enabled.

To perform Copy Image to Volume and Copy Volume to Image operations, the nodes running the
cinder-volume service (Block Storage nodes) must be registered with the VNX as well.

The steps mentioned below are for the compute nodes. Follow the same steps for the Block Storage nodes
also (The steps can be skipped if initiator auto registration is enabled).

1. Assume 20:00:00:24:FF:48:BA:C2:21:00:00:24:FF:48:BA:C2 is the WWN of a FC ini-
tiator port name of the compute node whose host name and IP are myhost1l and 10.10.61. 1.
Register 20:00:00:24:FF:48:BA:C2:21:00:00:24:FF:48:BA:C2 in Unisphere:

3.3. Reference 231

Cinder Documentation, Release 19.3.1.dev10

2. Log in to Unisphere, go to FNM0000000000 > Hosts > Initiators.

3. Refresh and wait until the initiator 20:00:00:24:FF:48:BA:C2:21:00:00:24:FF:48:BA:C2
with SP Port A-1 appears.

4. Click the Register button, select CLARiiON/VNX and enter the host name (which is the output of
the hostname command) and IP address:

e Hostname: myhost1l
e [P:10.10.61.1
* Click Register.
5. Then host 10.10.61.1 will appear under Hosts > Host List as well.

6. Register the wwn with more ports if needed.

Register iSCSI port with VNX

This configuration is only required when initiator_auto_registration=False.

To access VNX storage, the compute nodes should be registered on VNX first if initiator auto registration
is not enabled.

To perform Copy Image to Volume and Copy Volume to Image operations, the nodes running the
cinder-volume service (Block Storage nodes) must be registered with the VNX as well.

The steps mentioned below are for the compute nodes. Follow the same steps for the Block Storage nodes
also (The steps can be skipped if initiator auto registration is enabled).

1. On the compute node with IP address 10.10.61. 1 and host name myhost 1, execute the following
commands (assuming 10.10.61.35 is the iSCSI target):

1. Start the iSCSI initiator service on the node:

/etc/init.d/open-iscsi start

2. Discover the iSCSI target portals on VNX:

iscsiadm -m discovery -t st -p 10.10.61.35

3. Change directory to /etc/iscsi:

cd /etc/iscsi

4. Find out the ign of the node:

more initiatorname.iscsi

2. Login to VNX from the compute node using the target corresponding to the SPA port:

iscsiadm -m node -T iqn.1992-04.com.emc:cx.apm01234567890.a0 -p 10.10.
—61.35 -1

3. Assume ign.1993-08.org.debian:01:1a2b3c4d5£f6g is the initiator name of the compute
node. Register ign.1993-08.0org.debian:01:1a2b3c4d5£6g in Unisphere:

232 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

1. Log in to Unisphere, go to FNM0000000000 > Hosts > Initiators.

2. Refresh and wait until the initiator ign.1993-08.org.debian:01:1a2b3c4d5f6g with
SP Port A-8v0 appears.

3. Click the Register button, select CLARiiON/VNX and enter the host name (which is the output
of the hostname command) and IP address:

e Hostname: myhost1
* JP:10.10.61.1
* Click Register.
4. Then host 10.10.61.1 will appear under Hosts > Host List as well.
4. Log out iSCSI on the node:

iscsiadm -m node -u

5. Log in to VNX from the compute node using the target corresponding to the SPB port:

iscsiadm -m node -T ign.1992-04.com.emc:cx.apm01234567890.b8 -p 10.10.
-61.36 -1

6. In Unisphere, register the initiator with the SPB port.
7. Log out iSCSI on the node:

iscsiadm -m node -u

8. Register the ign with more ports if needed.

Dell EMC XtremlO Block Storage driver

The high performance XtremIO All Flash Array (AFA) offers Block Storage services to OpenStack.
Using the driver, OpenStack Block Storage hosts can connect to an XtremlIO Storage cluster.

This section explains how to configure and connect the block storage nodes to an XtremlIO storage cluster.

Support matrix

XtremlO version 4.x is supported.

Supported operations

¢ Create, delete, clone, attach, and detach volumes.
* Create and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

3.3. Reference 233

Cinder Documentation, Release 19.3.1.dev10

e Extend a

volume.

* Manage and unmanage a volume.

* Manage and unmanage a snapshot.

¢ Get volume statistics.

* Create, modify, delete, and list consistency groups.

* Create, modify, delete, and list snapshots of consistency groups.

* Create consistency group from consistency group or consistency group snapshot.

* Volume Migration (host assisted)

XtremlO Block Storage driver configuration

Edit the cinder. conf file by adding the configuration below under the [DEFAULT] section of the file
in case of a single back end or under a separate section in case of multiple back ends (for example
[XTREMIOY]). The configuration file is usually located under the following path /etc/cinder/cinder.

conf.
Table 22: Description of XtremlO configuration options
Configura- | Description
tion option
= Default
value

Xtremio_arn
=5

affntagey) Nenhrherafuetries in case array is busy

xtremio_ary
=5

afintagsy) Irstrval betwarmietries in case array is busy

xtremio_cle
=False

afBonlasedShguld the driver remove initiator groups with no volumes after the last
connection was terminated. Since the behavior till now was to leave the IG be, we
default to False (not deleting IGs without connected volumes); setting this parameter
to True will remove any IG after terminating its connection to the last volume.

xtremio_cluy
=<>

Is@&OnraéMS cluster id in multi-cluster environment

xtremio_poxr

= [l

td.ist of String) Allowed ports. Comma separated list of XtremIO iSCSI IPs or FC
WWNs (ex. 58:cc:f0:98:49:22:07:02) to be used. If option is not set all ports are
allowed.

Xtremio_vo]
=100

ufieegeexrNghawreofcathmes created from each cached glance image

For a configuration example, refer to the configuration Configuration example.

234

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

XtremlO driver name

Configure the driver name by setting the following parameter in the cinder. conf file:

¢ For iSCSI:

¢ For Fibre Channel:

XtremlO management server (XMS) IP

To retrieve the management IP, use the show-xms CLI command.

Configure the management IP by adding the following parameter:

XtremlO cluster name

In XtremlO version 4.0, a single XMS can manage multiple cluster back ends. In such setups, the admin-
istrator is required to specify the cluster name (in addition to the XMS IP). Each cluster must be defined
as a separate back end.

To retrieve the cluster name, run the show-clusters CLI command.

Configure the cluster name by adding the following parameter:

Note: When a single cluster is managed in XtremlO version 4.0, the cluster name is not required.

XtremlO user credentials

OpenStack Block Storage requires an XtremIO XMS user with administrative privileges. XtremlO rec-
ommends creating a dedicated OpenStack user account that holds an administrative user role.

Refer to the XtremIO User Guide for details on user account management.
Create an XMS account using either the XMS GUI or the add-user-account CLI command.

Configure the user credentials by adding the following parameters:

3.3. Reference 235

Cinder Documentation, Release 19.3.1.dev10

Multiple back ends

Configuring multiple storage back ends enables you to create several back-end storage solutions that serve
the same OpenStack Compute resources.

When a volume is created, the scheduler selects the appropriate back end to handle the request, according
to the specified volume type.

Setting thin provisioning and multipathing parameters

To support thin provisioning and multipathing in the XtremIO Array, the following parameters from the
Nova and Cinder configuration files should be modified as follows:

* Thin Provisioning

All XtremlIO volumes are thin provisioned. The default value of 20 should be maintained for the
max_over_subscription_ratio parameter.

The use_cow_images parameter in the nova. conf file should be set to False as follows:

* Multipathing

Theuse_multipath_for_image_xfer parameterinthe cinder. conf file should be set to True
for each backend or in [backend_defaults] section as a common configuration for all backends.

Image service optimization

Limit the number of copies (XtremIO snapshots) taken from each image cache.

The default value is 100. A value of 0 ignores the limit and defers to the array maximum as the effective
limit.

SSL certification

To enable SSL certificate validation, modify the following option in the cinder . conf file:

By default, SSL certificate validation is disabled.

To specify a non-default path to CA_Bundle file or directory with certificates of trusted CAs:

236 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configuring CHAP

The XtremIO Block Storage driver supports CHAP initiator authentication and discovery.
If CHAP initiator authentication is required, set the CHAP Authentication mode to initiator.

To set the CHAP initiator mode using CLI, run the following XMCLI command:

modify-chap chap-authentication-mode initiator

If CHAP initiator discovery is required, set the CHAP discovery mode to initiator.

To set the CHAP initiator discovery mode using CLI, run the following XMCLI command:

modify-chap chap-discovery-mode initiator

The CHAP initiator modes can also be set via the XMS GUI.
Refer to XtremIO User Guide for details on CHAP configuration via GUI and CLI.

The CHAP initiator authentication and discovery credentials (username and password) are generated
automatically by the Block Storage driver. Therefore, there is no need to configure the initial CHAP
credentials manually in XMS.

Configuring ports filtering

The XtremlO Block Storage driver supports ports filtering to define a list of iSCSI IP-addresses or FC
WWNs which will be used to attach volumes. If option is not set all ports are allowed.

Configuration example

You can update the cinder. conf file by editing the necessary parameters as follows:

3.3. Reference 237

Cinder Documentation, Release 19.3.1.dev10

Dell EMC SC Series Fibre Channel and iSCSI drivers

The Dell EMC Storage Center volume driver interacts with configured Storage Center arrays.

The Dell EMC Storage Center driver manages a Storage Center array via the Dell EMC Storage Manager
(DSM) Data Collector or by directly connecting to the Storage Center at the cost of replication and Live
Volume functionality. Also note that the directly connecting to the Storage Center is only supported with
Storage Center OS 7.1.1 or later. Any version of Storage Center OS supported by DSM is supported if
connecting via the Data Collector.

Driver configuration settings and Storage Center options are defined in the cinder. conf file.
Prerequisites:

* Storage Center OS version 7.1.1 or later and OpenStack Ocata or later must be used if connecting
directly to the Storage Center.

* Dell EMC Storage Manager 2015 R1 or later if connecting through DSM.

Supported operations

The Dell EMC Storage Center volume driver provides the following Cinder volume operations:
* Create, delete, attach (map), and detach (unmap) volumes.
* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Create, delete, list and update a consistency group.

* Create, delete, and list consistency group snapshots.

* Manage an existing volume.

* Replication (Requires DSM.)

* Failover-host for replicated back ends. (Requires DSM.)

* Create a replication using Live Volume. (Requires DSM.)

Extra spec options

Volume type extra specs can be used to enable a variety of Dell EMC Storage Center options. Selecting
Storage Profiles, Replay Profiles, enabling replication, replication options including Live Volume and
Active Replay replication. (Replication options are available when connected via DSM.)

Storage Profiles control how Storage Center manages volume data. For a given volume, the selected
Storage Profile dictates which disk tier accepts initial writes, as well as how data progression moves data
between tiers to balance performance and cost. Predefined Storage Profiles are the most effective way to
manage data in Storage Center.

238 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

By default, if no Storage Profile is specified in the volume extra specs, the default Storage Pro-
file for the user account configured for the Block Storage driver is used. The extra spec key
storagetype:storageprofile with the value of the name of the Storage Profile on the Storage Center
can be set to allow to use Storage Profiles other than the default.

For ease of use from the command line, spaces in Storage Profile names are ignored. As an example,
here is how to define two volume types using the High Priority and Low Priority Storage Profiles:

openstack volume type create
openstack volume type set --property.
—»storagetype:storageprofile highpriority
openstack volume type create
openstack volume type set --property storagetype:storageprofile lowpriority

—

Replay Profiles control how often the Storage Center takes a replay of a given volume and how long those
replays are kept. The default profile is the daily profile that sets the replay to occur once a day and to
persist for one week.

The extra spec key storagetype:replayprofiles with the value of the name of the Replay Profile
or profiles on the Storage Center can be set to allow to use Replay Profiles other than the default daily
profile.

As an example, here is how to define a volume type using the hourly Replay Profile and another speci-
fying both hourly and the default daily profile:

openstack volume type create

openstack volume type set --property storagetype:replayprofile hourly

openstack volume type create

openstack volume type set --property storagetype:replayprofiles hourly,
—daily

Note the comma separated string for the HourlyAndDailyType.
Replication for a given volume type is enabled via the extra spec replication_enabled.

To create a volume type that specifies only replication enabled back ends:

openstack volume type create
openstack volume type set --property

—

Extra specs can be used to configure replication. In addition to the Replay Profiles above,
replication:activereplay can be set to enable replication of the volumes active replay. And the
replication type can be changed to synchronous via the replication_type extra spec can be set.

To create a volume type that enables replication of the active replay:

openstack volume type create
openstack volume type key --property
openstack volume type key --property replication:activereplay

—

3.3. Reference 239

Cinder Documentation, Release 19.3.1.dev10

To create a volume type that enables synchronous replication :

openstack volume type create
openstack volume type key --property
openstack volume type key --property

—

To create a volume type that enables replication using Live Volume:

openstack volume type create
openstack volume type key --property
openstack volume type key --property replication:livevolume

—

If QOS options are enabled on the Storage Center they can be enabled via extra specs. The name of the
Volume QOS can be specified via the storagetype:volumeqos extra spec. Likewise the name of the
Group QOS to use can be specified via the storagetype:groupqos extra spec. Volumes created with
these extra specs set will be added to the specified QOS groups.

To create a volume type that sets both Volume and Group QOS:

openstack volume type create
openstack volume type key --property
openstack volume type key --property

—

Data reduction profiles can be specified in the storagetype:datareductionprofile extra spec.
Available options are None, Compression, and Deduplication. Note that not all options are available
on every Storage Center.

To create volume types that support no compression, compression, and deduplication and compression
respectively:

openstack volume type create
openstack volume type key --property
openstack volume type create
openstack volume type key --property
openstack volume type create
openstack volume type key --property

—>

Note: The default is no compression.

240 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

iSCSI configuration

Use the following instructions to update the configuration file for iSCSI:

default_volume_type delliscsi
enabled_backends delliscsi

[delliscsi]

Name to give this storage back-end

volume_backend_name delliscsi

The iSCSI driver to load

volume_driver cinder.volume.drivers.dell_emc.sc.storagecenter_iscsi.
—SCISCSIDriver

IP address of the DSM or the Storage Center if attaching directly.
san_ip 172.23.8.101

DSM user name

san_login = Admin

DSM password

san_password = secret

The Storage Center serial number to use

dell_sc_ssn = 64702

==Optional settings==

The DSM API port

dell_sc_api_port 3033

Server folder to place new server definitions
dell_sc_server_folder devstacksrv

Volume folder to place created volumes
dell_sc_volume_folder devstackvol/Cinder

Fibre Channel configuration

Use the following instructions to update the configuration file for fibre channel:

default_volume_type dellfc
enabled_backends dellfc

[dellfc]

Name to give this storage back-end

volume_backend_name dellfc

The FC driver to load

volume_driver cinder.volume.drivers.dell_emc.sc.storagecenter_fc.SCFCDriver

IP address of the DSM or the Storage Center if attaching directly.
san_ip 172.23.8.101

DSM user name

san_login = Admin

DSM password

(continues on next page)

3.3. Reference 241

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Dual DSM

It is possible to specify a secondary DSM to use in case the primary DSM fails.

Configuration is done through the cinder.conf. Both DSMs have to be configured to manage the same
set of Storage Centers for this backend. That means the dell_sc_ssn and any Storage Centers used for
replication or Live Volume.

Add network and credential information to the backend to enable Dual DSM.

The driver will use the primary until a failure. At that point it will attempt to use the secondary. It will
continue to use the secondary until the volume service is restarted or the secondary fails at which point
it will attempt to use the primary.

Note: Requires two DSM Data Collectors.

Replication configuration

Add the following to the back-end specification to specify another Storage Center to replicate to.

The target_device_id is the SSN of the remote Storage Center and the gosnode is the QoS Node
setup between the two Storage Centers.

Note that more than one replication_device line can be added. This will slow things down, however.

A volume is only replicated if the volume is of a volume-type that has the extra spec
replication_enabled set to <is> True.

242 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Warning: replication_device requires DSM. If this is on a backend that is directly connected to the Storage
Center the driver will not load as it is unable to meet the replication requirement.

Replication notes

This driver supports both standard replication and Live Volume (if supported and licensed). The main
difference is that a VM attached to a Live Volume is mapped to both Storage Centers. In the case of
a failure of the primary Live Volume still requires a failover-host to move control of the volume to the
second controller.

Existing mappings should work and not require the instance to be remapped but it might need to be
rebooted.

Live Volume is more resource intensive than replication. One should be sure to plan accordingly.

Failback

The failover-host command is designed for the case where the primary system is not coming back. If it
has been executed and the primary has been restored it is possible to attempt a failback.

Simply specify default as the backend_id.

cinder failover-host cinder@delliscsi --backend_id default

Non trivial heavy lifting is done by this command. It attempts to recover as best it can but if things have
diverged too far it can only do so much. It is also a one time only command so do not reboot or restart
the service in the middle of it.

Failover and failback are significant operations under OpenStack Cinder. Be sure to consult with support
before attempting.

Server type configuration

This option allows one to set a default Server OS type to use when creating a server definition on the Dell
EMC Storage Center.

When attaching a volume to a node the Dell EMC Storage Center driver creates a server definition on the
storage array. This definition includes a Server OS type. The type used by the Dell EMC Storage Center
cinder driver is Red Hat Linux 6.x. This is a modern operating system definition that supports all the
features of an OpenStack node.

Add the following to the back-end specification to specify the Server OS to use when creating a server
definition. The server type used must come from the drop down list in the DSM.

Note that this server definition is created once. Changing this setting after the fact will not change an
existing definition. The selected Server OS does not have to match the actual OS used on the node.

3.3. Reference 243

Cinder Documentation, Release 19.3.1.dev10

Excluding a domain

This option excludes a list of Storage Center ISCSI fault domains from the ISCSI properties returned by
the initialize_connection call. This only applies to the ISCSI driver.

Add the excluded_domain_ips option into the backend config for several fault domains to be excluded.
This option takes a comma separated list of Target IP addresses listed under the fault domain. Older
versions of DSM (EM) may list this as the Well Known IP Address.

Note that the included_domain_ips takes precedance over excluded_domain_ips. When
included_domain_ips is not an empty list, the option excluded_domain_ips is ignored.

Add the following to the back-end specification to exclude the domains at 172.20.25.15 and 172.20.26.15.

Including domains

This option includes or will whitelist a list of Storage Center ISCSI fault domains from the ISCSI prop-
erties returned by the initialize_connection call. This only applies to the ISCSI driver.

Add the included_domain_ips option into the backend config for several default domains to be in-
cluded or whitelisted. This option takes a comma separated list of Target IP addresses listed under the
fault domain. Older versions of DSM (EM) may list this as the Well Known IP Address.

Note that the included_domain_ips takes precedance over excluded_domain_ips. When
included_domain_ips is not an empty list, the option excluded_domain_ips is ignored.

Add the following to the back-end specification to include or whitelist the domains at 172.20.25.15 and
172.20.26.15.

Setting Dell EMC SC REST API timeouts

The user can specify timeouts for Dell EMC SC REST API calls.
To set the timeout for ASYNC REST API calls in seconds.

To set the timeout for SYNC REST API calls in seconds.

Generally these should not be set without guidance from Dell EMC support.

244 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Driver options

The following table contains the configuration options specific to the Dell EMC Storage Center volume

driver.

Table 23: Description of SC Series configuration options

Configuration option
Default value

Description

dell_api_async_rest_ti
=15

L n(doteger) Dell SC API async call default timeout in seconds.

dell_api_sync_rest_tin
=30

nednteger) Dell SC API sync call default timeout in seconds.

dell_sc_api_port
3033

(Port(min=0, max=65535)) Dell API port

dell_sc_server_folder
= openstack

(String) Name of the server folder to use on the Storage Center

dell_sc_ssn=64702

(Integer) Storage Center System Serial Number

dell_sc_verify_cert=
False

(Boolean) Enable HTTPS SC certificate verification

dell_sc_volume_folder
= openstack

(String) Name of the volume folder to use on the Storage Center

dell_server_os Red

Hat Linux 6.x

(String) Server OS type to use when creating a new server on the Storage
Center.

excluded_domain_ips =

(]

(List of IPAddress) Comma separated Fault Domain IPs to be excluded
from iSCSI returns.

included_domain_ips =

(]

(List of IPAddress) Comma separated Fault Domain IPs to be included
from iSCSI returns.

san_api_port = None

(Port(min=0, max=65535)) Port to use to access the SAN API

san_clustername = <>

(String) Cluster name to use for creating volumes

san_ip =<>

(String) IP address of SAN controller

san_is_local = False

(Boolean) Execute commands locally instead of over SSH; use if the
volume service is running on the SAN device

san_login = admin

(String) Username for SAN controller

san_password = <>

(String) Password for SAN controller

san_private_key = <>

(String) Filename of private key to use for SSH authentication

san_ssh_port = 22

(Port(min=0, max=65535)) SSH port to use with SAN

san_thin_provision
True

(Boolean) Use thin provisioning for SAN volumes?

secondary_san_ip = <>

(String) IP address of secondary DSM controller

secondary_san_login=
Admin

(String) Secondary DSM user name

secondary_san_passwort(
=<>

1 (String) Secondary DSM user password name

secondary_sc_api_port
= 3033

(Port(min=0, max=65535)) Secondary Dell API port

ssh_conn_timeout = 30

(Integer) SSH connection timeout in seconds

ssh_max_pool_conn =5

(Integer) Maximum ssh connections in the pool

ssh_min_pool_conn =1

(Integer) Minimum ssh connections in the pool

excluded_domain_ip
None

(IPAddress) DEPRECATED: Fault Domain IP to be excluded from
iSCSI returns. DEPRECATED

3.3. Reference

245

Cinder Documentation, Release 19.3.1.dev10

Fujitsu ETERNUS DX driver

Fujitsu ETERNUS DX driver provides FC and iSCSI support for ETERNUS DX S3 series.

The driver performs volume operations by communicating with ETERNUS DX. It uses a CIM client in
Python called PyWBEM to perform CIM operations over HTTP.

You can specify RAID Group and Thin Provisioning Pool (TPP) in ETERNUS DX as a storage pool.

System requirements

Supported storages:

* ETERNUS DX60 S3
ETERNUS DX100 S3/DX200 S3
ETERNUS DX500 S3/DX600 S3
ETERNUS DX8700 S3/DX8900 S3
ETERNUS DX200F

Requirements:
* Firmware version V10L30 or later is required.
* The multipath environment with ETERNUS Multipath Driver is unsupported.

* An Advanced Copy Feature license is required to create a snapshot and a clone.

Supported operations

e Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.
* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

e Extend a volume. (*1)

* Get volume statistics.

(*1): It is executable only when you use TPP as a storage pool.

246 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Preparation
Package installation

Install the python-pywbem package for your distribution.

ETERNUS DX setup

Perform the following steps using ETERNUS Web GUI or ETERNUS CLI.

Note:
* These following operations require an account that has the Admin role.

* For detailed operations, refer to ETERNUS Web GUI Users Guide or ETERNUS CLI Users Guide
for ETERNUS DX S3 series.

1. Create an account for communication with cinder controller.

2. Enable the SMI-S of ETERNUS DX.

3. Register an Advanced Copy Feature license and configure copy table size.
4. Create a storage pool for volumes.

5. (Optional) If you want to create snapshots on a different storage pool for volumes, create a storage
pool for snapshots.

6. Create Snap Data Pool Volume (SDPV) to enable Snap Data Pool (SDP) for create a snapshot.
7. Configure storage ports used for OpenStack.
* Set those storage ports to CA mode.
* Enable the host-affinity settings of those storage ports.
(ETERNUS CLI command for enabling host-affinity settings):

8. Ensure LAN connection between cinder controller and MNT port of ETERNUS DX and SAN
connection between Compute nodes and CA ports of ETERNUS DX.

3.3. Reference 247

Cinder Documentation, Release 19.3.1.dev10

Configuration

1.

Add the following entries to /etc/cinder/cinder.conf:

FC entries:

cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_fc.
—FIDXFCDriver
/etc/cinder/eternus_dx.xml

iSCSI entries:

cinder.volume.drivers. fujitsu.eternus_dx.eternus_dx_iscsi.
—FIDXISCSIDriver
/etc/cinder/eternus_dx.xml

If there is no description about cinder_eternus_config_file, then the parameter is set to
default value /etc/cinder/cinder_fujitsu_eternus_dx.xml.

. Create a driver configuration file.

Create a driver configuration file in the file path specified as cinder_eternus_config_file in
cinder.conf, and add parameters to the file as below:

FC configuration:

<?xml version='1.0' encoding='UTF-8'?>
<FUJITSU>

<EternusIP>0.0.0.0</EternusIP>
<EternusPort>5988</EternusPort>
<EternusUser>smisuser</EternusUser>
<EternusPassword>smispassword</EternusPassword>
<EternusPool>raid5_0001</EternusPool>
<EternusPool>tpp_0001</EternusPool>
<EternusPool>raid_0002</EternusPool>
<EternusSnapPool>raid5_0001</EternusSnapPool>
</FUJITSU>

iSCSI configuration:

<?xml version='1.0' encoding='UTF-8'?>
<FUJITSU>

<EternusIP>0.0.0.0</EternusIP>
<EternusPort>5988</EternusPort>
<EternusUser>smisuser</EternusUser>
<EternusPassword>smispassword</EternusPassword>
<EternusPool>raid5_0001</EternusPool>
<EternusPool>tpp_0001</EternusPool>
<EternusPool>raid_0002</EternusPool>
<EternusSnapPool>raid5_0001</EternusSnapPool>
<EternusISCSIIP>1.1.1.1</EternusISCSIIP>
<EternusISCSIIP>1.1.1.2</EternusISCSIIP>
<EternusISCSIIP>1.1.1.3</EternusISCSIIP>

(continues on next page)

248

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

1.1.1.4

Where:
EternusIP IP address for the SMI-S connection of the ETRENUS DX.

Enter the IP address of MNT port of the ETERNUS DX.
EternusPort Port number for the SMI-S connection port of the ETERNUS DX.
EternusUser User name for the SMI-S connection of the ETERNUS DX.
EternusPassword Password for the SMI-S connection of the ETERNUS DX.
EternusPool (Multiple setting allowed) Storage pool name for volumes.

Enter RAID Group name or TPP name in the ETERNUS DX.
EternusSnapPool Storage pool name for snapshots.

Enter RAID Group name in the ETERNUS DX.

EternusISCSIIP (Multiple setting allowed) iSCSI connection IP address of the ETERNUS
DX.

Note:

* For EternusSnapPool, you can specify only RAID Group name and cannot specify TPP
name.

* You can specify the same RAID Group name for EternusPool and EternusSnapPool if
you create volumes and snapshots on a same storage pool.

* For EternusPool, when multiple pools are specified, cinder-scheduler will select one from
multiple pools to create the volume.

Configuration example

1. Edit cinder.conf:

(continues on next page)

3.3. Reference 249

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

2. Create the driver configuration files fc.xml and iscsi.xml.

3. Create a volume type and set extra specs to the type:

openstack volume type create DX_FC

openstack volume type set --property FC DX_FX
openstack volume type create DX_ISCSI

openstack volume type set --property ISCSI DX_ISCSI

By issuing these commands, the volume type DX_FC is associated with the FC, and the type
DX_TISCST is associated with the ISCSI.

Hedvig Volume Driver

Hedvig provides software-defined storage for enterprises building private, hybrid, or multi-cloud envi-
ronments. Hedvigs patented Universal Data Plane technology forms a distributed, scale-out cluster that
transforms commodity servers or cloud computing into a unified data fabric.

The Hedvig Cinder Driver interacts with a configured backend Hedvig Cluster using REST APIs.

Using the Hedvig Volume Driver

With the Hedvig Volume Driver for OpenStack, you can :

* Integrate public and private clouds: Build a unified hybrid environment to easily migrate to or
from your data center and public clouds.

* Set granular virtual disk policies: Assign enterprise-class features on a per volume basis to best
fit your application requirements.

* Connect to any compute environment: Use with any hypervisor, application, or bare-metal sys-
tem.

* Grow seamlessly with an elastic cluster: Scale storage performance and capacity on-the-fly
with off-the-shelf x86 servers.

* Deliver predictable performance: Receive consistent high-IOPS performance for demanding
applications through massive parallelism, dedicated flash, and edge cache configurations.

Requirement

Hedvig Volume Driver, version 1.0.0 and later, supports Hedvig release 3.0 and later.

250 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Supported operations

Hedvig supports the core features of OpenStack Cinder:

Create and delete volumes
Attach and detach volumes
Create and delete snapshots
Create volume from snapshot
Get volume stats

Copy image to volume

Copy volume to image

Clone volume

Extend volume

Enable deduplication, encryption, cache, compression, custom replication policy on a volume level
using volume-type extra-specs

Hedvig Volume Driver configuration

The Hedvig Volume Driver can be configured by editing the cinder.conf file located in the /etc/cinder/
directory.

Run the following commands on the OpenStack Cinder Node to create a Volume Type for Hedvig:

This section contains definitions of the terms used above.

HEDVIG_IP/HOSTNAME The IP address or hostnames of the Hedvig Storage Cluster Nodes

HEDVIG_USER Username to login to the Hedvig Cluster with minimum super user (admin) privi-

lege

HEDVIG_PASSWORD Password to login to the Hedvig Cluster
HEDVIG_CLUSTER Name of the Hedvig Cluster

3.3. Reference 251

Cinder Documentation, Release 19.3.1.dev10

Note: Restart the cinder-volume service after updating the cinder. conf file to apply the changes
and to initialize the Hedvig Volume Driver.

Hedvig QoS Spec parameters and values

* dedup_enable true/false

* compressed_enable true/false

» cache_enable true/false

* replication_factor 1-6

* replication_policy Agnostic/RackAware/DataCenterAware

* replication_policy_info comma-separated list of data center names (applies only to a replica-
tion_policy of DataCenterAware)

e disk_residence Flash/HDD

* encryption true/false

Creating a Hedvig Cinder Volume with custom attributes (QoS Specs)

1. Create a QoS Spec with the list of attributes that you want to associate with a volume. For example,
to create a Cinder Volume with deduplication enabled, create a QoS Spec called dedup_enable with
dedup_enable=true

2. Create a new volume type and associate this QoS Spec with it, OR associate the QoS Spec with an
existing volume type.

3. Every Cinder Volume that you create of the above volume type will have deduplication enabled.

4. If you do create a new volume type, make sure to add the key volume_backend_name so OpenStack
knows that the Hedvig Volume Driver handles all requests for this volume.

Hitachi block storage driver

Hitachi block storage driver provides Fibre Channel and iSCSI support for Hitachi VSP storages.

System requirements

Supported storages:

252 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Storage model Firmware version
VSP E990, 93-01-01 or later
VSP F350, F370, F700, FO00 88-01-04 or later
VSP G350, G370, G700, G900

VSP F400, F600, F800 83-04-43 or later
VSP G200, G400, G600, G800

VSP N400, N600, N800 83-06-01 or later
VSP 5100, 5500, 5100H, 5500H 90-01-41 or later
VSP F1500 80-05-43 or later
VSP G1000, VSP G1500

Required storage licenses:

Hitachi Storage Virtualization Operating System (SVOS)
— Hitachi LUN Manager
— Hitachi Dynamic Provisioning

Hitachi Local Replication (Hitachi Thin Image)

Supported operations

Create, delete, attach, and detach volumes.

Create, list, and delete volume snapshots.

Create a volume from a snapshot.

Create, list, update, and delete consistency groups.
Create, list, and delete consistency group snapshots.
Copy a volume to an image.

Copy an image to a volume.

Clone a volume.

Extend a volume.

Migrate a volume.

Get volume statistics.

Efficient non-disruptive volume backup.

Manage and unmanage a volume.

Attach a volume to multiple instances at once (multi-attach).

Revert a volume to a snapshot.

Note:

The volume having snapshots cannot be extended in this driver.

3.3. Reference

253

Cinder Documentation, Release 19.3.1.dev10

Configuration
Set up Hitachi storage

You need to specify settings as described below for storage systems. For details about each setting, see
the users guide of the storage systems.

1. User accounts

Create a storage device account belonging to the Administrator User Group.
2. DP Pool

Create a DP pool that is used by the driver.
3. Ports

Enable Port Security for the ports used by the driver.

Set up Hitachi storage volume driver

Set the volume driver to Hitachi block storage driver by setting the volume_driver option in the cin-
der.conf file as follows:

If you use Fibre Channel:

If you use iSCSI:

This table shows configuration options for Hitachi block storage driver.

254 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 24: Description of Hitachi block storage driver configuration
options

Configura-
tion option
Default value

Description

hitachi_comput

=[]

e (titroé Stpogx HDs of the storage ports used to attach volumes to compute nodes.
To specify multiple ports, connect them by commas (e.g. CL1-A,CL2-A).

hitachi_discar
= True

d(Bevkzapadinable or disable zero page reclamation in a DP-VOL.

hitachi_group_|
=False

ctBatkan) If True, the driver will create host groups or iSCSI targets on storage
ports as needed.

hitachi_group_|
=False

déBetkean) If True, the driver will delete host groups or iSCSI targets on storage
ports as needed.

hitachi_ldev_r
= None

angeing) Range of the LDEV numbers in the format of xxxx-yyyy that can be used
by the driver. Values can be in decimal format (e.g. 1000) or in colon-separated
hexadecimal format (e.g. 00:03:ES).

hitachi_pool
= None

(String) Pool number or pool name of the DP pool.

hitachi_rest_t
= True

cpBkekaa) Bnables or disables use of REST API tcp keepalive

hitachi_snap_p
= None

063tring) Pool number or pool name of the snapshot pool.

hitachi_storag
= None

e(Stting) Product number of the storage system.

hitachi_target
=[]

|_pbist of String) IDs of the storage ports used to attach volumes to the controller
node. To specify multiple ports, connect them by commas (e.g. CL1-A,CL2-A).

hitachi_zoning
=False

| tBqukesih) If True, the driver will configure FC zoning between the server and the
storage system provided that FC zoning manager is enabled.

Required options

san_ip IP address of SAN controller

san_login Username for SAN controller

san_password Password for SAN controller
hitachi_storage_id Product number of the storage system.

hitachi_pool Pool number or pool name of the DP pool.

3.3. Reference

255

Cinder Documentation, Release 19.3.1.dev10

HPE MSA Fibre Channel and iSCSI drivers

The HPMSAFCDriver and HPMSAISCSIDriver Cinder drivers allow the HPE MSA 2060, 1060, 2050,
1050, 2040, and 1040 arrays to be used for Block Storage in OpenStack deployments.

System requirements

To use the HPMSA drivers, the following are required:
* HPE MSA 2060, 1060, 2050, 1050, 2040 or 1040 array with:
— iSCSI or FC host interfaces
— (G22x, V270 or 1100 firmware or later
» Network connectivity between the OpenStack host and the array management interfaces

e HTTPS or HTTP must be enabled on the array

Supported operations

¢ Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

» Extend a volume.

* Migrate a volume with back-end assistance.
* Retype a volume.

* Manage and unmanage a volume.

Configuring the array

1. Verify that the array can be managed using an HTTPS connection. HTTP can also be used if
hpmsa_api_protocol=http is placed into the appropriate sections of the cinder.conf file,
but this option is deprecated and will be removed in a future release.

Confirm that virtual pools A and B are present if you plan to use virtual pools for OpenStack
storage.

If you plan to use vdisks instead of virtual pools, create or identify one or more vdisks to be used
for OpenStack storage; typically this will mean creating or setting aside one disk group for each of
the A and B controllers.

2. Edit the cinder. conf file to define a storage back-end entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in key=value format.

256 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

* The hpmsa_pool_name value specifies the name of the storage pool or vdisk on the array.

* The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

* The rest of the options will be repeated for each storage pool in a given array:

volume_driver specifies the Cinder driver name.

san_ip specifies the IP addresses or host names of the arrays management controllers.

san_login and san_password specify the username and password of an array user
account with manage privileges.

driver_use_ssl should be set to true to enable use of the HTTPS protocol.

hpmsa_iscsi_ips specifies the iSCSI IP addresses for the array if using the iSCSI
transport protocol.

In the examples below, two back ends are defined, one for pool A and one for pool B, and a common
volume_backend_name is used so that a single volume type definition can be used to allocate
volumes from both pools.

Example: iSCSI example back-end entries

Example: Fibre Channel example back-end entries

(continues on next page)

3.3. Reference 257

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

3. If any volume_backend_name value refers to a vdisk rather than a virtual pool, add an additional
statement hpmsa_pool_type = linear to that back end entry.

4. If HTTPS is not enabled in the array, include hpmsa_api_protocol = http ineach of the back-
end definitions.

5. If HTTPS is enabled, you can enable certificate verification with the option
driver_ssl_cert_verify = True. You may also use the driver_ssl_cert_path op-
tion to specify the path to a CA_BUNDLE file containing CAs other than those in the default
list.

6. Modify the [DEFAULT] section of the cinder. conf file to add an enabled_backends parameter
specifying the back-end entries you added, and a default_volume_type parameter specifying
the name of a volume type that you will create in the next step.

Example: [DEFAULT] section changes

7. Create a new volume type for each distinct volume_backend_name value that
you added to the cinder.conf file. The example below assumes that the same
volume_backend_name=hpmsa-array option was specified in all of the entries, and specifies
that the volume type hpmsa can be used to allocate volumes from any of them.

Example: Creating a volume type

openstack volume type create hpmsa
openstack volume type set --property hpmsa-array..
—hpmsa

8. After modifying the cinder. conf file, restart the cinder-volume service.

258 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Driver-specific options

The following table contains the configuration options that are specific to the HPMSA drivers.

Table 25: Description of HPE MSA configuration options

Configuration option = Default | Description

value

hpmsa_iscsi_ips =[] (List of String) List of comma-separated target iSCSI IP ad-
dresses.

hpmsa_pool_name = A (String) Pool or Vdisk name to use for volume creation.

hpmsa_pool_type = virtual (String(choices=[linear, virtual])) linear (for Vdisk) or virtual
(for Pool).

hpmsa_api_protocol =https (String(choices=[http, https])) HPMSA API interface protocol.
DEPRECATED

hpmsa_verify_certificate = | (Boolean) Whether to verify HPMSA array SSL certificate.

False DEPRECATED

hpmsa_verify_certificate_path(String) HPMSA array SSL certificate path. DEPRECATED

= None

HPE 3PAR, HPE Primera and HPE Alletra 9k Driver

The HPE3PARF(Driver and HPE3PARISCSIDriver drivers, which are based on the Block Storage ser-
vice (Cinder) plug-in architecture, run volume operations by communicating with the HPE 3PAR, HPE
Primera and HPE Alletra 9k storage systems over HT'TP, HTTPS, and SSH connections. The HTTP &
HTTPS communications use python-3parclient, which is part of PyPi.

For information on HPE 3PAR, HPE Primera and HPE Alletra 9k Driver, refer to content kit page.

System requirements

To use the HPE 3PAR, HPE Primera and HPE Alletra 9k drivers, install the following software and
components on the HPE 3PAR storage system:

* HPE 3PAR Operating System software version 3.1.3 MU1 or higher.

— Deduplication provisioning requires SSD disks and HPE 3PAR Operating System software
version 3.2.1 MU or higher.

— Enabling Flash Cache Policy requires the following:
* Array must contain SSD disks.
HPE 3PAR Operating System software version 3.2.1 MU?2 or higher.
% python-3parclient version 4.2.0 or newer.

Flash Cache must be enabled on the array with the CLI command createflashcache
SIZE, where size must be in 16 GB increments. For example, createflashcache
128g will create 128 GB of Flash Cache for each node pair in the array.

— The Dynamic Optimization is required to support any feature that results in a volume chang-
ing provisioning type or CPG. This may apply to the volume migrate, retype and manage
commands.

3.3.

Reference 259

https://www.hpe.com/us/en/product-catalog/storage/storage-software/pip.openstack-device-management-software.1008537377.html

Cinder Documentation, Release 19.3.1.dev10

— The Virtual Copy feature supports any operation that involves volume snapshots. This applies

to the volume snapshot-* commands.
— Enabling Volume Compression requires the following:
* Array must contain SSD disks.
HPE 3PAR Operating System software version 3.3.1 MU1 or higher.
% HPE 3PAR Storage System with 8k or 20k series

* HPE 3PAR Web Services API Server must be enabled and running.

* One Common Provisioning Group (CPG).

system with the enabled Block Storage service volume drivers.

* Additionally, you must install the python-3parclient version 4.2.0 or newer from PyPi on the

To use the HPE Primera and HPE Alletra 9k backends, install the following software and components on
the HPE Primera storage system:

* HPE Primera Operating System software version 4.0.0 or higher.

— On HPE Primera/Alletra 9k storage system, Dedup & Compression is combined as single
option deco. Due to this, only either thin volume or deco volume can be created.

— Also, port number 443 is used instead of 8080. This only affects cinder configuration.

system with the enabled Block Storage service volume drivers.

Supported operations

Create, delete, attach, and detach volumes.
Create, list, and delete volume snapshots.
Create a volume from a snapshot.

Copy an image to a volume.

Copy a volume to an image.

Clone a volume.

Extend a volume.

Migrate a volume with back-end assistance.
Retype a volume.

Manage and unmanage a volume.

Manage and unmanage a snapshot.
Replicate host volumes.

Fail-over host volumes.

Fail-back host volumes.

Retype a replicated volume.

Create, delete, update, snapshot, and clone generic volume groups.

* Additionally, you must install the python-3parclient version 4.2.11 or newer from PyPi on the

260

Chapter 3.

For operators

Cinder Documentation, Release 19.3.1.dev10

* Create and delete generic volume group snapshots.

* Create a generic volume group from a group snapshot or another group.
* Volume Compression.

* Group Replication with More Granularity (Tiramisu).

* Volume Revert to Snapshot.

» Additional Backend Capabilities.

* Report Backend State in Service List.

* Attach a volume to multiple servers simultaneously (multiattach).

* Peer Persistence.

Volume type support for both HPE 3PAR drivers includes the ability to set the following capabilities
in the OpenStack Block Storage API cinder.api.contrib.types_extra_specs volume type extra
specs extension module:

* hpe3par:snap_cpg

e hpe3par:provisioning
* hpe3par:persona

* hpe3par:vvs

e hpe3par:flash_cache
e hpe3par:compression

To work with the default filter scheduler, the key values are case sensitive and scoped with hpe3par:.
For information about how to set the key-value pairs and associate them with a volume type, run the
following command:

openstack help volume type

Note: Volumes that are cloned only support the extra specs keys cpg, snap_cpg, provisioning and vvs.
The others are ignored. In addition the comments section of the cloned volume in the HPE 3PAR /
Primera / Alletra 9k array is not populated.

If volume types are not used or a particular key is not set for a volume type, the following defaults are
used:

* hpe3par:cpg - Defaults to the hpe3par_cpg setting in the cinder. conf file.

* hpe3par:snap_cpg - Defaults to the hpe3par_snap setting in the cinder.conf file. If
hpe3par_snap is not set, it defaults to the hpe3par_cpg setting.

* hpe3par:provisioning - Defaults to thin provisioning, the valid values are thin, full, and
dedup.

* hpe3par:persona - Defaults to the 2 - Generic-ALUA persona. The valid values are:
— 1 - Generic

— 2 - Generic-ALUA

3.3. Reference 261

Cinder Documentation, Release 19.3.1.dev10

|
w
I

Generic-legacy
— 4 - HPUX-legacy
— 5 - AIX-legacy

— 6 - EGENERA

— 7 - ONTAP-legacy
- 8 - VMware

— 9 - OpenVMS

- 10 - HPUX

— 11 - WindowsServer
e hpe3par: flash_cache - Defaults to false, the valid values are true and false.

QoS support for both HPE 3PAR drivers includes the ability to set the following capabilities in the Open-
Stack Block Storage API cinder.api.contrib.qos_specs_manage qos specs extension module:

* minBWS

* maxBWS

* minIOPS
* maxIOPS
e latency
e priority

The qos keys above no longer require to be scoped but must be created and associated to a volume type.
For information about how to set the key-value pairs and associate them with a volume type, run the
following commands:

openstack help volume gos

The following keys require that the HPE 3PAR / Primera / Alletra 9k array has a Priority Optimization
enabled.

hpe3par:vvs The virtual volume set name that has been predefined by the Administrator with quality
of service (QoS) rules associated to it. If you specify extra_specs hpe3par:vvs, the qos_specs
minIOPS, maxIOPS, minBWS, and maxBWS settings are ignored.

minBWS The QoS I/O issue bandwidth minimum goal in MBs. If not set, the I/O issue bandwidth rate
has no minimum goal.

maxBWS The QoS 1/0 issue bandwidth rate limit in MBs. If not set, the I/O issue bandwidth rate has no
limit.

minIOPS The QoS I/O issue count minimum goal. If not set, the I/O issue count has no minimum goal.

maxIOPS The QoS I/O issue count rate limit. If not set, the I/0 issue count rate has no limit.

latency The latency goal in milliseconds.

priority The priority of the QoS rule over other rules. If not set, the priority is normal, valid values
are low, normal and high.

262 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: Since the Icehouse release, minlOPS and maxIOPS must be used together to set I/O limits.
Similarly, minBWS and maxBWS must be used together. If only one is set the other will be set to the
same value.

The following key requires that the HPE 3PAR / Primera / Alletra 9k array has an Adaptive Flash Cache
enabled.

* hpe3par:flash_cache - The flash-cache policy, which can be turned on and off by setting the
value to true or false.

* hpe3par:compression - The volume compression, which can be turned on and off by setting the
value to true or false.

Other restrictions and considerations for hpe3par: compression:

* For a compressed volume, minimum volume size needed is 16 GB; otherwise resulting volume
will be created successfully but will not be a compressed volume.

* A full provisioned volume cannot be compressed, if a compression is enabled and provisioning
type requested is full, the resulting volume defaults to thinly provisioned compressed volume.

* While creating volume on HPE Primera / Alletra 9k storage system, only below two combinations
are supported. If any other combination is used, then volume is not created.

— thin volume: provisioning = thin and compression = false
— deco volume: provisioning = dedup and compression = true
LDAP and AD authentication is now supported in the HPE 3PAR driver.

The 3PAR back end must be properly configured for LDAP and AD authentication prior to configuring
the volume driver. For details on setting up LDAP with 3PAR, see the 3PAR user guide.

Once configured, hpe3par_username and hpe3par_password parameters in cinder.conf can be
used with LDAP and AD credentials.

Enable the HPE 3PAR Fibre Channel and iSCSI drivers

The HPE3PARF(Driver and HPE3PARISCSIDriver are installed with the OpenStack software.

1. Install the python-3parclient Python package on the OpenStack Block Storage system.

pip install

2. Verify that the HPE 3PAR Web Services API server is enabled and running on the HPE 3PAR /
Primera / Alletra 9k storage system.

a. Log onto the HPE 3PAR / Primera / Alletra 9k storage system with administrator access.

ssh 3paradm@<HPE storage system IP Address>

b. View the current state of the Web Services API Server.

3.3. Reference 263

Cinder Documentation, Release 19.3.1.dev10

showwsapi

c. If the Web Services API Server is disabled, start it.

startwsapi

3. If the HTTP or HTTPS state is disabled, enable one of them.

setwsapi -http enable

or

setwsapi -https enable

Note: To stop the Web Services API Server, use the stopwsapi command. For other options run
the setwsapi -h command.

4. If you are not using an existing CPG, create a CPG on the HPE 3PAR / Primera / Alletra 9k storage
system to be used as the default location for creating volumes.

5. Make the following changes in the /etc/cinder/cinder. conf file.

(continues on next page)

264 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Password for SAN controller for SSH access to the array
san_password=3parpass

FIBRE CHANNEL DRIVER
(uncomment the next line to enable the FC driver)
#volume_driver=cinder.volume.drivers.hpe.hpe_3par_fc.HPE3PARFCDriver

1SCSI DRIVER

If you enable the iSCSI driver, you must also set values
for hpe3par_iscsi_ips or iscsi_ip_address in this file.
Note: The iSCSI driver is supported with 3PAR (all versions)
and Primera (version 4.2 or higher). If you configure iSCSI
with Primera 4.0 or 4.1, the driver will fail to start.
(uncomment the next line to enable the iSCSI driver)
#volume_driver=cinder.volume.drivers.hpe.hpe_3par_iscsi.
—HPE3PARISCSIDriver

HOFH W R W R W

1SCSI multiple port configuration
hpe3par_iscsi_ips=10.10.220.253:3261,10.10.222.234

Still available for single port iSCSI configuration
#iscsi_ip_address=10.10.220.253

Enable HTTP debugging to 3PAR / Primera / Alletra 9k
hpe3par_debug=False

Enable CHAP authentication for iSCSI connections.
hpe3par_iscsi_chap_enabled=false

The CPG to use for Snapshots for volumes. If empty hpe3par_cpg will be
used.
hpe3par_cpg_snap=OpenStackSNAP_CPG

Time in hours to retain a snapshot. You can't delete it before this
expires.
hpe3par_snapshot_retention=48

Time in hours when a snapshot expires and is deleted. This must be
larger than retention.
hpe3par_snapshot_expiration=72

The ratio of oversubscription when thin provisioned volumes are
involved. Default ratio is 20.0, this means that a provisioned
capacity can be 20 times of the total physical capacity.
max_over_subscription_ratio=20.0

This flag represents the percentage of reserved back-end capacity.
reserved_percentage=15

3.3.

Reference 265

Cinder Documentation, Release 19.3.1.dev10

Note: You can enable only one driver on each cinder instance unless you enable multiple back-end
support. See the Cinder multiple back-end support instructions to enable this feature.

Note: You can configure one or more iSCSI addresses by using the hpe3par_iscsi_ips option.
Separate multiple IP addresses with a comma (,). When you configure multiple addresses, the
driver selects the iSCSI port with the fewest active volumes at attach time. The 3PAR array does

not allow

the default port 3260 to be changed, so IP ports need not be specified.

6. Save the changes to the cinder. conf file and restart the cinder-volume service.

The HPE 3PAR Fibre Channel and iSCSI drivers are now enabled on your OpenStack system. If you
experience problems, review the Block Storage service log files for errors.

The following t

able contains all the configuration options supported by the HPE 3PAR Fibre Channel

and iSCSI drivers.
Table 26: Description of 3PAR configuration options
Configura- | Description
tion option
= Default
value

hpe3par_api
=<>

|_(8tting) WSAPI Server URL. This setting applies to: 3PAR, Primera and Alletra
9k Example 1: for 3PAR, URL is: https://<3par ip>:8080/api/vl Example 2: for
Primera/Alletra 9k, URL is: https://<primera ip>:443/api/v1

hpe3par_cpg

[OpenStack]

(List of String) List of the 3PAR/Primera/Alletra 9k CPG(s) to use for volume creation

hpe3par_cpg
=<>

|_63taing) The 3PAR/Primera/Alletra 9k CPG to use for snapshots of volumes. If empty
the userCPG will be used.

hpe3par_deb
=False

ugBoolean) Enable HTTP debugging to 3PAR/Primera/Alletra 9k

hpe3par_isc
=False

siBahanekalabdCHAP authentication for iSCSI connections.

hpe3par_isc

=[]

siLispsf String) List of target iSCSI addresses to use.

hpe3par_pas|
=<>

seetrihg) 3PAR/Primera/Alletra 9k password for the user in

hpe3par_username

specified

hpe3par_sna
=<>

p 63toin g Mhiertarnedn hours when a snapshot expires and is deleted. This must be larger
than expiration

hpe3par_sna|
=<>

p 6$toingy efentitmenin hours to retain a snapshot. You cant delete it before this expires.

hpe3par_tar]
=<>

g€&Stringy) The nsp of 3PAR/Primera/Alletra 9k backend to be used when: (1) multipath
is not enabled in cinder.conf. (2) Fiber Channel Zone Manager is not used. (3) the
backend is prezoned with this specific nsp only. For example if nsp is 2 1 2, the format
of the options value is 2:1:2

hpe3par_use

rismmg) 3PAR/Primera/Alletra 9k username with the edit role

=<>

266

Chapter 3. For operators

https:/
https:/

Cinder Documentation, Release 19.3.1.dev10

Specify NSP for FC Bootable Volume

Given a system connected to HPE 3PAR via FC and multipath setting is NOT used in cinder.conf. When
the user tries to create a bootable volume, it fails intermittently with the following error: Fibre Channel
volume device not found

This happens when a zone is created using second or later target from 3PAR backend. In this case, HPE
3PAR client code picks up first target to form initiator target map. This can be illustrated with below
example.

Sample output of showport command:

$ showport -sortcol 6

Suppose zone is created using targets 2:1:2 and 3:1:2 from above output. Then initiator target map is
created using target 0:1:1 only. In such a case, the path is not found, and bootable volume creation fails.

To avoid above mentioned failure, the user can specify the target in 3PAR backend section of cinder.conf
as follows:

hpe3par_target_nsp = 3:1:2

Using above mentioned nsp, respective wwn information is fetched. Later initiator target map is created
using wwn information and bootable volume is created successfully.

Note: If above mentioned option (nsp) is not specified in cinder.conf, then the original flow is executed
i.e first target is picked and bootable volume creation may fail.

3.3. Reference 267

Cinder Documentation, Release 19.3.1.dev10

Peer Persistence support

Given 3PAR/Primera backend configured with replication setup, currently only Active/Passive replication
is supported by 3PAR/Primera in OpenStack. When failover happens, nova does not support volume
force-detach (from dead primary backend) / re-attach to secondary backend. Storage engineers manual
intervention is required.

To overcome above scenario, support for Peer Persistence is added. Given a system with Peer Persistence
configured and replicated volume is created. When this volume is attached to an instance, vlun is created
automatically in secondary backend, in addition to primary backend. So that when a failover happens, it
is seamless.

For Peer Persistence support, perform following steps: 1] enable multipath 2] set replication mode as
sync 3] configure a quorum witness server

Specify ip address of quorum witness server in /etc/cinder/cinder.conf [within backend section]
as given below:

Support duplicated FQDN in network

The 3PAR driver uses the FQDN of the node that is doing the attach as an unique identifier to map the
volume.

The problem is that the FQDN is not always unique, there are environments where the same FQDN can
be found in different systems, and in those cases if both try to attach volumes the second system will fail.

One example of this happening would be on a QA environment where you are creating VMs and they all
have names like controller-0.localdomain and compute-0.localdomain.

To support these kind of environments, the user can specify below flag in backend_defaults section or
the specific cinder driver section of cinder.conf as follows:

unique_fqgdn_network = False

When this flag is used, then during attach volume to instance, iscsi initiator name is used instead of
FQDN.

If above mentioned flag is not specified in cinder.conf, then its value is considered as True (by default)
and FQDN is used (existing behavior).

268 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Huawei volume driver

Huawei volume driver can be used to provide functions such as the logical volume and snapshot for
virtual machines (VMs) in the OpenStack Block Storage driver that supports iSCSI and Fibre Channel
protocols.

Version mappings

The following table describes the version mappings among the Block Storage driver, Huawei storage
system and OpenStack:

Table 27: Version mappings among the Block Storage driver
and Huawei storage system

Description Storage System Version

Create, delete, expand, attach, detach, man- | OceanStor T series V2R2 C00/C20/C30

age and unmanage volumes OceanStor V3 V3R1C10/C20 V3R2C10
Create volumes with assigned storage pools | V3R3C00/C10/C20

Create volumes with assigned disk types OceanStor 2200V3 V300R005C00

Create, delete and update a consistency group | OceanStor 2600V3 V300R005C00

Copy an image to a volume OceanStor 18500/18800 V1R1C00/C20/C30
Copy a volume to an image V3R3C00

Auto Zoning OceanStor Dorado V300R001C00

SmartThin OceanStor V3 V300R006C00

Volume Migration OceanStor 2200V3 V300R006C00

Replication V2.1 OceanStor 2600V3 V300R006C00

Create, delete, manage, unmanage and
backup snapshots
Create and delete a cgsnapshot

Clone a volume OceanStor T series V2R2 C00/C20/C30

Create volume from snapshot OceanStor V3 V3R1C10/C20 V3R2C10
Retype V3R3C00/C10/C20

SmartQoS OceanStor 2200V3 V300R005C00

SmartTier OceanStor 2600V3 V300R005C00

SmartCache OceanStor 18500/18800V 1R1C00/C20/C30

Thick OceanStor V3 V300R006C00

OceanStor 2200V3 V300R006C00
OceanStor 2600V3 V300R006C00
SmartPartition OceanStor T series V2R2 C00/C20/C30
OceanStor V3 V3R1C10/C20 V3R2C10
V3R3C00/C10/C20

OceanStor 2600V3 V300R005C00
OceanStor 18500/18800V 1R1C00/C20/C30
OceanStor V3 V300R006C00

OceanStor 2600V3 V300R006C00
Hypermetro OceanStor V3 V3R3C00/C10/C20
Hypermetro consistency group OceanStor 2600V3 V3R5C00

OceanStor 18500/18800 V3R3C00
OceanStor Dorado V300R001C00
OceanStor V3 V300R006C00

OceanStor 2600V3 V300R006C00

3.3. Reference 269

Cinder Documentation, Release 19.3.1.dev10

Volume driver configuration

This section describes how to configure the Huawei volume driver for either iSCSI storage or Fibre
Channel storage.

Pre-requisites

When creating a volume from image, install the multipath tool and add the following configuration
keys for each backend section or in [backend_defaults] section as a common configuration for all
backends in /etc/cinder/cinder. conf file:

To configure the volume driver, follow the steps below:
1. In /etc/cinder, create a Huawei-customized driver configuration file. The file format is XML.

2. Change the name of the driver configuration file based on the site requirements, for example,
cinder_huawei_conf.xml.

3. Configure parameters in the driver configuration file.

Each product has its own value for the Product parameter under the Storage xml block. The full
xml file with the appropriate Product parameter is as below:

<?xml version="1.0" encoding="UTF-8"7>
<config>
<Storage>
<Product>PRODUCT</Product>
<Protocol>PROTOCOL</Protocol>
<UserName>xxxxxxxx</UserName>
<UserPassword>xxxxxxxx</UserPassword>
<RestURL>https://x.x.x.x:8088/deviceManager/rest/</RestURL>
</Storage>
<LUN>
<LUNType>xxx</LUNType>
<WriteType>xxx</WriteType>
<Prefetch />
<StoragePool>xxx</StoragePool>
</LUN>
<iSCSI>
<DefaultTargetIP>x.x.x.x</DefaultTargetIP>
<Initiator />
</iSCSI>
<Host />
</config>

The corresponding " "Product™ ~ values for each product are as below:

e For T series V2

<Product>TV2</Product>

e For V3

270 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

V3

For OceanStor 18000 series

18000

For OceanStor Dorado series

Dorado

The Protocol value to be used is 1SCSI for iSCSI and FC for Fibre Channel as shown below:

For iSCSI
iSCSI

For Fibre channel
FC

Note: For details about the parameters in the configuration file, see the Configuration file param-
eters section.

4. Configure the cinder. conf file.

In the [default] block of /etc/cinder/cinder.conf, enable the VOLUME_BACKEND:

Add a new block [VOLUME_BACKEND], and add the following contents:

* volume_driver indicates the loaded driver.
* cinder_huawei_conf_file indicates the specified Huawei-customized configuration file.
* volume_backend_name indicates the name of the backend.

Add information about remote devices in /etc/cinder/cinder.conf in target backend block
for Hypermetro.

3.3. Reference 271

Cinder Documentation, Release 19.3.1.dev10

Add information about remote devices in /etc/cinder/cinder.conf in target backend block
for Replication.

Note: By default, the value for Hypermetro and Replication is None. For details about the
parameters in the configuration file, see the Configuration file parameters section.

The volume-driver value for every product is as below:

5. Run the service cinder-volume restart command to restart the Block Storage service.

Configuring iSCSI Multipathing

To configure iSCSI Multipathing, follow the steps below:

1. Add the port group settings in the Huawei-customized driver configuration file and configure the
port group name needed by an initiator.

X.X.X.X

2. Enable the multipathing switch of the Compute service module.
Add volume_use_multipath = Truein [libvirt] of /etc/nova/nova.conf.

3. Run the service nova-compute restart command to restart the nova-compute service.

272 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configuring FC Multipathing

To configure FC Multipathing, follow the steps below:
1. Enable the multipathing switch of the Compute service module.
Add volume_use_multipath = Truein [libvirt] of /etc/nova/nova.conf.

2. Run the service nova-compute restart command to restart the nova-compute service.

Configuring CHAP and ALUA

On a public network, any application server whose IP address resides on the same network segment as
that of the storage systems iSCSI host port can access the storage system and perform read and write
operations in it. This poses risks to the data security of the storage system. To ensure the storage systems
access security, you can configure CHAP authentication to control application servers access to the storage
system.

Adjust the driver configuration file as follows:

ALUA indicates a multipathing mode. O indicates that ALUA is disabled. 1 indicates that ALUA is en-
abled. CHAPinfo indicates the user name and password authenticated by CHAP. The format is mmuser;
mm-user@storage. The user name and password are separated by semicolons (;).

Configuring multiple storage

Multiple storage systems configuration example:

Configuration file parameters

This section describes mandatory and optional configuration file parameters of the Huawei volume driver.

3.3. Reference 273

Cinder Documentation, Release 19.3.1.dev10

Table 28: Mandatory parameters

Parame- | Default Description Appli-
ter value cable
to
Product - Type of a storage product. Possible values are TV2, 18000 and | All
V3.
Protocol - Type of a connection protocol. The possible value is either | All
'iSCSI' or 'FC'.
RestURL | - Access address of the REST interface, https://x.x.x. | All
x/devicemanager/rest/. The value x.x.x.x indicates
the management IP address. OceanStor 18000 uses the
preceding setting, and V2 and V3 requires you to add
port number 8088, for example, https://x.x.x.x:8088/
deviceManager/rest/. If you need to configure multiple
RestURL, separate them by semicolons (;).
User- - User name of a storage administrator. All
Name
UserPass- | - Password of a storage administrator. All
word
Storage- - Name of a storage pool to be used. If you need to configure | All
Pool multiple storage pools, separate them by semicolons (;).

Note: The value of StoragePool cannot contain Chinese characters.

274

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 29: Optional parameters

Parameter Default | Description Applicable
value to
LUNType Thick Type of the LUNSs to be created. The value can be | All
Thick or Thin. Dorado series only support Thin
LUNS.
WriteType 1 Cache write type, possible values are: 1 (write | All
back), 2 (write through), and 3 (mandatory write
back).
LUNcopyWaitln- | 5 After LUN copy is enabled, the plug-in frequently | All
terval queries the copy progress. You can set a value to
specify the query interval.
Timeout 432000 | Timeout interval for waiting LUN copy of a storage | All
device to complete. The unit is second.
Initiator Name - Name of a compute node initiator. All
Initiator TargetIP - IP address of the iSCSI port provided for compute | All
nodes.
Initiator ~ Target- | - IP address of the iSCSI target port that is provided | All
PortGroup for compute nodes.
DefaultTargetIP - Default IP address of the iSCSI target port that is | All
provided for compute nodes.
OSType Linux Operating system of the Nova compute nodes host. | All
HostIP - IP address of the Nova compute nodes host. All
metro_san_user - User name of a storage administrator of hypermetro | V3R3/2600
remote device. V3R5/18000
V3R3
metro_san_password - Password of a storage administrator of hypermetro | V3R3/2600
remote device. V3R5/18000
V3R3
metro_domain_name - Hypermetro domain name configured on ISM. V3R3/2600
V3R5/18000
V3R3
metro_san_address | - Access address of the REST interface, https://x.x.x. | V3R3/2600
x/devicemanager/rest/. The value x.x.x.x indicates | V3R5/18000
the management IP address. V3R3
metro_storage_pools - Remote storage pool for hypermetro. V3R3/2600
V3R5/18000
V3R3
backend_id - Target device ID. All
storage_pool - Pool name of target backend when failover for repli- | All
cation.
san_address - Access address of the REST interface, https://x.x.x. | All
x/devicemanager/rest/. The value x.x.x.x indicates
the management IP address.
san_user - User name of a storage administrator of replication | All
remote device.
san_password - Password of a storage administrator of replicationre- | All
mote device.
iscsi_default_target |ip Remote transaction port IP. All
3.3. Reference 275

https://x.x.x.x/devicemanager/rest/
https://x.x.x.x/devicemanager/rest/
https://x.x.x.x/devicemanager/rest/
https://x.x.x.x/devicemanager/rest/

Cinder Documentation, Release 19.3.1.dev10

Important: The Initiator Name, Initiator TargetIP, and Initiator TargetPortGroup are
ISCSTI parameters and therefore not applicable to FC.

The following are the Huawei driver specific options that may be set in cinder.conf:

Table 30: Description of Huawei configuration options

Configuration option = Default value

Description

cinder_huawei_conf_file =
cinder_huawei_conf.xml

/etc/cinder/

(String) The configuration file for the Cin-
der Huawei driver.

hypermetro_devices = None

(String) The remote device hypermetro will
use.

metro_domain_name = None

(String) The remote metro device domain
name.

metro_san_address = None

(String) The remote metro device request
url.

metro_san_password = None

(String) The remote metro device san pass-
word.

metro_san_user = None

(String) The remote metro device san user.

metro_storage_pools = None

(String) The remote metro device pool
names.

IBM FlashSystem 840/900 driver

The volume driver for FlashSystem provides OpenStack Block Storage hosts with access to IBM Flash-
Systems.

This driver is to be used with IBM FlashSystem 840/900 systems only. For any other FlashSystem storage
systems (including 5xxx, 7xxx, and 9xxx platforms) see the /BM Spectrum Virtualize family volume
driver documentation.

Supported operations

These operations are supported:

Create, delete, attach, and detach volumes.

Create, list, and delete volume snapshots.

Create a volume from a snapshot.

Copy an image to a volume.
Copy a volume to an image.
Clone a volume.

Extend a volume.

Get volume statistics.

Manage and unmanage a volume.

276

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configure FlashSystem
Configure storage array

The volume driver requires a pre-defined array. You must create an array on the FlashSystem before
using the volume driver. An existing array can also be used and existing data will not be deleted.

Note: FlashSystem can only create one array, so no configuration option is needed for the IBM Flash-
System driver to assign it.

Configure user authentication for the driver

The driver requires access to the FlashSystem management interface using SSH. It should be provided
with the FlashSystem management IP using the san_ip flag, and the management port should be pro-
vided by the san_ssh_port flag. By default, the port value is configured to be port 22 (SSH).

Note: Make sure the compute node running the cinder-volume driver has SSH network access to the
storage system.

Using password authentication, assign a password to the user on the FlashSystem. For more detail, see
the driver configuration flags for the user and password here: Enable IBM FlashSystem FC driver or
Enable IBM FlashSystem iSCSI driver.

There are some common configuration options for either driver:

Table 31: List of common configuration options for IBM FlashSys-
tem drivers

Flag name Type Default | Description

san_ip Required Management IP or host name
san_ssh_port | Optional | 22 Management port
san_login Required Management login user name
san_password | Required Management login password

IBM FlashSystem FC driver
Data Path configuration

Using Fiber Channel (FC), each FlashSystem node should have at least one WWPN port configured. If
the flashsystem_multipath_enabled flag is set to True in the Block Storage service configuration
file, the driver uses all available WWPNSs to attach the volume to the instance. If the flag is not set, the
driver uses the WWPN associated with the volumes preferred node (if available). Otherwise, it uses the
first available WWPN of the system. The driver obtains the WWPNs directly from the storage system.
You do not need to provide these WWPNSs to the driver.

3.3. Reference 277

Cinder Documentation, Release 19.3.1.dev10

Note: Using FC, ensure that the block storage hosts have FC connectivity to the FlashSystem.

Enable IBM FlashSystem FC driver

Set the volume driver to the FlashSystem driver by setting the volume_driver option in the cinder.
conf configuration file, as follows:

To enable the IBM FlashSystem FC driver, configure the following options in the cinder. conf config-
uration file:

Table 32: Description of IBM FlashSystem FC configuration op-

tions
Configuration option = Default value Description
flashsystem_connection_protocol = | (String) Connection protocol should be FC. (Default is
FC FC.)
flashsystem_multihostmap_enabled | (Boolean) Allows vdisk to multi host mapping. (Default
= True is True)

IBM FlashSystem iSCSI driver
Network configuration

Using iSCSI, each FlashSystem node should have at least one iSCSI port configured. iSCSI IP addresses
of IBM FlashSystem can be obtained by FlashSystem GUI or CLI. For more information, see the appro-
priate IBM Redbook for the FlashSystem.

Note: Using iSCSI, ensure that the compute nodes have iSCSI network access to the IBM FlashSystem.

Enable IBM FlashSystem iSCSI driver

Set the volume driver to the FlashSystem driver by setting the volume_driver option in the cinder.
conf configuration file, as follows:

To enable IBM FlashSystem iSCSI driver, configure the following options in the cinder.conf config-
uration file:

278 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 33: Description of IBM FlashSystem iSCSI configuration

options
Configuration option = Default value Description
flashsystem_connection_protocol | (String) Connection protocol should be FC. (Default is
=FC FC.)
flashsystem_iscsi_portid=0 (Integer) Default iSCSI Port ID of FlashSystem. (Default
port is 0.)
flashsystem_multihostmap_enabled | (Boolean) Allows vdisk to multi host mapping. (Default
=True is True)

Note: On the cluster of the FlashSystem, the iscsi_ip_address column is the seventh column
IP_address of the output of 1sportip.

Note: On the cluster of the FlashSystem, port ID column is the first column id of the output of
1sportip, not the sixth column port_id.

Limitations and known issues

IBM FlashSystem only works when:

Note: The flashsystem_multihost_enabled setting allows the driver to map a vdisk to more than
one host at a time. This scenario occurs during migration of a virtual machine with an attached volume;
the volume is simultaneously mapped to both the source and destination compute hosts. If your deploy-
ment does not require attaching vdisks to multiple hosts, setting this flag to False will provide added
safety.

IBM Spectrum Scale volume driver

IBM Spectrum Scale is a flexible software-defined storage that can be deployed as high performance
file storage or a cost optimized large-scale content repository. IBM Spectrum Scale, previously known
as IBM General Parallel File System (GPFS), is designed to scale performance and capacity with no
bottlenecks. IBM Spectrum Scale is a cluster file system that provides concurrent access to file systems
from multiple nodes. The storage provided by these nodes can be direct attached, network attached, SAN
attached, or a combination of these methods. Spectrum Scale provides many features beyond common
data access, including data replication, policy based storage management, and space efficient file snapshot
and clone operations.

3.3. Reference 279

Cinder Documentation, Release 19.3.1.dev10

How the Spectrum Scale volume driver works

The Spectrum Scale volume driver, named gpfs.py, enables the use of Spectrum Scale in a fashion
similar to that of the NFS driver. With the Spectrum Scale driver, instances do not actually access a
storage device at the block level. Instead, volume backing files are created in a Spectrum Scale file
system and mapped to instances, which emulate a block device.

Note: Spectrum Scale must be installed and cluster has to be created on the storage nodes in the Open-
Stack environment. A file system must also be created and mounted on these nodes before configuring
the cinder service to use Spectrum Scale storage.For more details, please refer to Spectrum Scale product
documentation.

Optionally, the Image service can be configured to store glance images in a Spectrum Scale file system.
When a Block Storage volume is created from an image, if both image data and volume data reside in the
same Spectrum Scale file system, the data from image file is moved efficiently to the volume file using
copy-on-write optimization strategy.

Supported operations

e Create, delete, attach, and detach volumes.
* Create, delete volume snapshots.

* Create a volume from a snapshot.

* Create cloned volumes.

» Extend a volume.

* Migrate a volume.

* Retype a volume.

* Create, delete consistency groups.

* Create, delete consistency group snapshots.
* Copy an image to a volume.

* Copy a volume to an image.

* Backup and restore volumes.

Driver configurations

The Spectrum Scale volume driver supports three modes of deployment.

280 Chapter 3. For operators

https://ibm.biz/Bdi84g
https://ibm.biz/Bdi84g

Cinder Documentation, Release 19.3.1.dev10

Mode 1 Pervasive Spectrum Scale Client

When Spectrum Scale is running on compute nodes as well as on the cinder node. For example, Spectrum
Scale filesystem is available to both Compute and Block Storage services as a local filesystem.

To use Spectrum Scale driver in this deployment mode, set the volume_driver in the cinder. conf as:

The following table contains the configuration options supported by the Spectrum Scale driver in this
deployment mode.

Table 34: Description of Spectrum Scale volume driver configura-

tion options
Config- | Description
uration
option
= De-
fault
value
[DE-
FAULT]
gpfs_imad8sriddxSpecifies the path of the Image service repository in GPFS. Leave undefined if not
=None | storing images in GPFS.
gpfs_imadSsisppSpcnidbe the type of image copy to be used. Set this when the Image service
= None | repository also uses GPFS so that image files can be transferred efficiently from the Image
service to the Block Storage service. There are two valid values: copy specifies that a
full copy of the image is made; copy_on_write specifies that copy-on-write optimization
strategy is used and unmodified blocks of the image file are shared efficiently.
gpfs_max (Hdtemer)Bpetifies an upper limit on the number of indirections required to reach a specific
=0 block due to snapshots or clones. A lengthy chain of copy-on-write snapshots or clones
can have a negative impact on performance, but improves space utilization. 0 indicates
unlimited clone depth.
gpfs_mourBind nSpdafies the path of the GPFS directory where Block Storage volume and snapshot
=None | files are stored.
gpfs_spaxBaoredmm@gecifies that volumes are created as sparse files which initially consume no
= True space. If set to False, the volume is created as a fully allocated file, in which case, creation
may take a significantly longer time.
gpfs_stoxdgenppSpecifies the storage pool that volumes are assigned to. By default, the system
= storage pool is used.
system

Note: The gpfs_images_share_mode flag is only valid if the Image Service is configured to use
Spectrum Scale with the gpfs_images_dir flag. When the value of this flag is copy_on_write, the
paths specified by the gpfs_mount_point_base and gpfs_images_dir flags must both reside in the
same GPFS file system and in the same GPFS file set.

3.3. Reference 281

Cinder Documentation, Release 19.3.1.dev10

Mode 2 Remote Spectrum Scale Driver with Local Compute Access

When Spectrum Scale is running on compute nodes, but not on the Block Storage node. For example,
Spectrum Scale filesystem is only available to Compute service as Local filesystem where as Block Stor-
age service accesses Spectrum Scale remotely. In this case, cinder-volume service running Spectrum
Scale driver access storage system over SSH and creates volume backing files to make them available
on the compute nodes. This mode is typically deployed when the cinder and glance services are run-
ning inside a Linux container. The container host should have Spectrum Scale client running and GPFS
filesystem mount path should be bind mounted into the Linux containers.

Note: Note that the user IDs present in the containers should match as that in the host machines. For
example, the containers running cinder and glance services should be privileged containers.

To use Spectrum Scale driver in this deployment mode, set the volume_driver in the cinder. conf as:

The following table contains the configuration options supported by the Spectrum Scale driver in this
deployment mode.

282 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 35: Description of Spectrum Scale Remote volume driver
configuration options

Configura-
tion option
Default
value

Description

[DE-
FAULT]

gpfs_hosts

(List) Comma-separated list of IP address or hostnames of GPFS nodes.

gpfs_hosts|

$state_path
ssh_known_h

| k@yring) &ile containing SSH host keys for the gpfs nodes with which driver needs to
communicate. Default=$state_path/ssh_known_hosts
Y/

10sts

gpfs_images
= None

_(&iring) Specifies the path of the Image service repository in GPFS. Leave undefined
if not storing images in GPFS.

gpfs_images
= None

_(Sheing) Mpdeifies the type of image copy to be used. Set this when the Image service
repository also uses GPFS so that image files can be transferred efficiently from the
Image service to the Block Storage service. There are two valid values: copy specifies
that a full copy of the image is made; copy_on_write specifies that copy-on-write opti-
mization strategy is used and unmodified blocks of the image file are shared efficiently.

gpfs_max_cl
=0

ofintedepitBpecifies an upper limit on the number of indirections required to reach a
specific block due to snapshots or clones. A lengthy chain of copy-on-write snapshots
or clones can have a negative impact on performance, but improves space utilization.
0 indicates unlimited clone depth.

gpfs_mount |
= None

|p@irihgpdpecifies the path of the GPFS directory where Block Storage volume and
snapshot files are stored.

gpfs_privat

1e(Steipg) Filename of private key to use for SSH authentication.

gpfs_sparse
=True

_(Bdolmass) Specifies that volumes are created as sparse files which initially consume
no space. If set to False, the volume is created as a fully allocated file, in which case,
creation may take a significantly longer time.

gpfs_ssh_pg
=22

r®Port number) SSH port to use.

gpfs_storag
= system

e(Srag) Specifies the storage pool that volumes are assigned to. By default, the system
storage pool is used.

gpfs_strict
=False

r_(Rediekely Qpoioicto enable strict gpfs host key checking while connecting to gpfs
nodes. Default=False

gpfs_user_1
=root

o@iring) Username for GPFS nodes.

gpfs_user_f

aASriagy Password for GPFS node user.

Note:

The gpfs_images_share_mode flag is only valid if the Image Service is configured to use

Spectrum Scale with the gpfs_images_dir flag. When the value of this flag is copy_on_write, the

paths specified
same GPFS file

by the gpfs_mount_point_base and gpfs_images_dir flags must both reside in the
system and in the same GPFS file set.

3.3. Reference

283

Cinder Documentation, Release 19.3.1.dev10

Mode 3 Remote Spectrum Scale Access

When both Compute and Block Storage nodes are not running Spectrum Scale software and do not have
access to Spectrum Scale file system directly as local filesystem. In this case, we create an NFS export
on the volume path and make it available on the cinder node and on compute nodes.

Optionally, if one wants to use the copy-on-write optimization to create bootable volumes from glance
images, one need to also export the glance images path and mount it on the nodes where glance and cinder
services are running. The cinder and glance services will access the GPFS filesystem through NFS.

To use Spectrum Scale driver in this deployment mode, set the volume_driver in the cinder. conf as:

The following table contains the configuration options supported by the Spectrum Scale driver in this
deployment mode.

284 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 36: Description of Spectrum Scale NFS volume driver con-
figuration options

Config- Description

uration

option =

Default

value

[DE-

FAULT]

gpfs_imageqSdimg) Specifies the path of the Image service repository in GPFS. Leave undefined if

= None not storing images in GPFS.

gpfs_imagegSsalingkSpediéies the type of image copy to be used. Set this when the Image service

= None repository also uses GPFS so that image files can be transferred efficiently from the Im-
age service to the Block Storage service. There are two valid values: copy specifies that a
full copy of the image is made; copy_on_write specifies that copy-on-write optimization
strategy is used and unmodified blocks of the image file are shared efficiently.

gpfs_max_cXbmegeefiecifies an upper limit on the number of indirections required to reach a spe-

= cific block due to snapshots or clones. A lengthy chain of copy-on-write snapshots or
clones can have a negative impact on performance, but improves space utilization. 0
indicates unlimited clone depth.

gpfs_mount _(Suing) Bpamwfies the path of the GPFS directory where Block Storage volume and snap-

= None shot files are stored.

gpfs_sparsdBoolemsSpecifies that volumes are created as sparse files which initially consume no

= True space. If set to False, the volume is created as a fully allocated file, in which case,
creation may take a significantly longer time.

gpfs_storad8tninglSpecifies the storage pool that volumes are assigned to. By default, the system

=system | storage poolis used.

nas_host | (String) IP address or Hostname of NAS system.

nas_login| (String) User name to connect to NAS system.

= admin

nas_passwox8tring) Password to connect to NAS system.

nas_privat€Skeyg) Filename of private key to use for SSH authentication.

nas_ssh_poxPort number) SSH port to use to connect to NAS system.

=22

nfs_mount| @SimughBase dir containing mount points for NFS shares.

$state_path/

mnt

nfs_shares_(S8andgpFile with the list of available NFS shares.

= Jetc/

cinder/

nfs_shares

Additionally, all the options of the base NFS driver are applicable for GPFSNFSDriver. The above table

lists the basic

configuration options which are needed for initialization of the driver.

3.3. Refere

nhce 285

Cinder Documentation, Release 19.3.1.dev10

Note: The gpfs_images_share_mode flag is only valid if the Image Service is configured to use
Spectrum Scale with the gpfs_images_dir flag. When the value of this flag is copy_on_write, the
paths specified by the gpfs_mount_point_base and gpfs_images_dir flags must both reside in the
same GPEFS file system and in the same GPFS file set.

Volume creation options

It is possible to specify additional volume configuration options on a per-volume basis by specifying
volume metadata. The volume is created using the specified options. Changing the metadata after the
volume is created has no effect. The following table lists the volume creation options supported by the
GPFS volume driver.

Table 37: Volume Create Options for Spectrum Scale Volume
Drivers

Metadata ltem Name Description

fstype Specifies whether to create a file system or a swap area on the new vol-
ume. If fstype=swap is specified, the mkswap command is used to create
a swap area. Otherwise the mkfs command is passed the specified file
system type, for example ext3, ext4 or ntfs.

fslabel Sets the file system label for the file system specified by fstype option.
This value is only used if fstype is specified.

data_pool_name Specifies the GPFES storage pool to which the volume is to be assigned.
Note: The GPFS storage pool must already have been created.

replicas Specifies how many copies of the volume file to create. Valid values are
1, 2, and, for Spectrum Scale V3.5.0.7 and later, 3. This value cannot
be greater than the value of the MaxDataReplicasattribute of the file
system.

dio Enables or disables the Direct I/O caching policy for the volume file.
Valid values are yes and no.

write_affinity_depth Specifies the allocation policy to be used for the volume file. Note: This
option only works if allow-write-affinity is set for the GPFS data pool.
block_group_factor Specifies how many blocks are laid out sequentially in the volume file
to behave as a single large block. Note: This option only works if allow-
write-affinity is set for the GPFS data pool.
write_affinity_failure_group Specifies the range of nodes (in GPFS shared nothing architecture)
where replicas of blocks in the volume file are to be written. See Spec-
trum Scale documentation for more details about this option.

This example shows the creation of a S0GB volume with an ext4 file system labeled newfs and direct
IO enabled:

openstack volume create --property ext4 newfs yes
--size 50 VOLUME

Note that if the metadata for the volume is changed later, the changes do not reflect in the backend.
User will have to manually change the volume attributes corresponding to metadata on Spectrum Scale
filesystem.

286 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Operational notes for GPFS driver

Volume snapshots are implemented using the GPFS file clone feature. Whenever a new snapshot is
created, the snapshot file is efficiently created as a read-only clone parent of the volume, and the volume
file uses copy-on-write optimization strategy to minimize data movement.

Similarly when a new volume is created from a snapshot or from an existing volume, the same approach
is taken. The same approach is also used when a new volume is created from an Image service image, if
the source image is in raw format, and gpfs_images_share_mode is set to copy_on_write.

The Spectrum Scale driver supports encrypted volume back end feature. To encrypt a volume at rest,
specify the extra specification gpfs_encryption_rest = True.

IBM Storage Driver for OpenStack
Introduction

The IBM Storage Driver for OpenStack is a software component of the OpenStack cloud environment
that enables utilization of storage resources provided by supported IBM storage systems.

The driver was validated on storage systems, as detailed in the Supported storage systems section below.

After the driver is configured on the OpenStack Cinder nodes, storage volumes can be allocated by the
Cinder nodes to the Nova nodes. Virtual machines on the Nova nodes can then utilize these storage
resources.

Concept diagram

This figure illustrates how an IBM storage system is connected to the OpenStack cloud environment and
provides storage resources when the IBM Storage Driver for OpenStack is configured on the OpenStack
Cinder nodes. The OpenStack cloud is connected to the IBM storage system over Fibre Channel. Re-
mote cloud users can issue requests for storage resources from the OpenStack cloud. These requests are
transparently handled by the IBM Storage Driver, which communicates with the IBM storage system and
controls the storage volumes on it. The IBM storage resources are then provided to the Nova nodes in
the OpenStack cloud.

Compatibility and requirements

This section specifies the compatibility and requirements of the IBM Storage Driver for OpenStack.

3.3. Reference 287

Cinder Documentation, Release 19.3.1.dev10

el 8 dd e T

A
1
I
I
I

Cloud users

Resources management /

Compute and storage Request for resources

resgurces

'

Management over SS|

Nova-compute
nodes

Cinder nodes

Other
OpenStack IBM Storage Driver
nedes and for OpenStack

infrastructure (on Cinder nodes)

IBM Storage System
Private network

IBM DSB000 Family

RN Y

OpensStack cloud environment -

Volumes Storage pools

(LUNs)

(inside the IBM storage system)

Supported storage systems

The IBM Storage Driver for OpenStack supports the IBM storage systems, as detailed in the following
table.

Storage system | Microcode version Connectivity
IBM DS8870 7.5 SP4 or later, 7.5 with RESTful API patch | Fibre Channel (FC)
IBM DS8880 8.1 or later Fibre Channel (FC)

Copy Services license

Copy Services features help you implement storage solutions to keep your business running 24 hours a
day, 7 days a week by providing image caching, replication and cloning functions. The Copy Services
license is based on usable capacity of the volumes involved in Copy Services functionality.

The Copy Services license is available for the following license scopes: FB and ALL (both FB and CKD).
The Copy Services license includes the following features:
* Global Mirror

e Metro Mirror

Metro/Global Mirror

* Point-in-Time Copy/FlashCopy6

z/OS38 Global Mirror

288 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

* 7z/0OS Metro/Global Mirror Incremental Resync (RMZ)

The Copy Services license feature codes are ordered in increments up to a specific capacity. For example,
if you require 160 TB of capacity, order 10 of feature code 8251 (10 TB each up to 100 TB capacity),
and 4 of feature code 8252 (15 TB each, for an extra 60 TB).

The Copy Services license includes the following feature codes.

Feature Code | Feature code for licensed function indicator

8250 CS - inactive

8251 CS - 10 TB (up to 100 TB capacity)

8252 CS - 15 TB (from 100.1 TB to 250 TB capacity)
8253 CS - 25 TB (from 250.1 TB to 500 TB capacity)
8254 CS - 75 TB (from 500.1 to 1250 TB capacity)

8255 CS - 175 TB (from 1250.1 TB to 3000 TB capacity)
8256 CS - 300 TB (from 3000.1 TB to 6000 TB capacity)
8260 CS - 500 TB (from 6000.1 TB to 10,000 TB capacity)

The following ordering rules apply when you order the Copy Services license:

» The Copy Services license should be ordered based on the total usable capacity of all volumes
involved in one or more Copy Services relationships.

* The licensed authorization must be equal to or less that the total usable capacity allocated to the
volumes that participate in Copy Services operations.

* You must purchase features for both the source (primary) and target (secondary) storage system.

Required software on the OpenStack Cinder and Nova nodes

The IBM Storage Driver makes use of the following software on the OpenStack Cinder and Nova-compute

nodes.

Software

Installed on

Ubuntu Server (16.04), x64

Red Hat Enterprise Linux (RHEL) 7.x, x64
CentOS Linux 7.x, x64

KVM for IBM z Systems

All OpenStack Cinder nodes

IBM Storage Host Attachment Kit for Linux

All OpenStack Cinder and Nova compute nodes
that connect to storage systems and use RHEL 7.x
or CentOS Linux 7.x

Linux patch package

All OpenStack Cinder nodes

sysfsutils utility

All OpenStack Cinder nodes on FC network

3.3. Reference

289

Cinder Documentation, Release 19.3.1.dev10

Configuration

Configure the driver manually by changing the cinder . conf file as follows:

Configuration Description for DS8000

Table 38: Description of IBM Storage driver configuration options

Configura-
tion option =
Default value

Description

[DEFAULT]

ds8k_devadd_u

inBteidd) Maypiing between I0ODevice address and unit address.

= auto

ds8k_host_typeString) Set to zLinux if your OpenStack version is prior to Liberty and youre con-

necting to zLinux systems. Otherwise set to auto. Valid values for this parameter
are: auto, AMDLinuxRHEL, AMDLinuxSuse, AppleOSX, Fujitsu, Hp, HpTru64,
HpVms, LinuxDT, LinuxRF, LinuxRHEL, LinuxSuse, Novell, SGI, SVC, SanF-
sAIX, SanFsLinux, Sun, VMWare, Win2000, Win2003, Win2008, Win2012, iL-
inux, nSeries, pLinux, pSeries, pSeriesPowerswap, zLinux, iSeries.

=FF

ds8k_ssid_prefifitring) Set the first two digits of SSID

proxy =
cinder.
volume.
drivers.
ibm.
ibm_storage.
proxy.
IBMStoragePrq

(String) Proxy driver that connects to the IBM Storage Array

Xy

san_clusternam@tring) Cluster name to use for creating volumes

san_ip = (String) IP address of SAN controller
san_login = | (String) Username for SAN controller
admin

san_password

(String) Password for SAN controller

290

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Replication parameters

Parameter Description Applicable
to

replication _de- | Volume replication parameters DS8000
vice

backend_id IP address or host name of the target storage system DS8000
san_login User name to be used during replication procedure DS8000
san_password Password to be used during replication procedure (base64- | DS8000

encoded)
san_clustername | Pool name on the target storage system DS8000
port_pairs ID pairs of 10 ports, participating in replication DS8000
Iss_range_for _cg | LSS range to reserve for consistency groups DS8000
Security

The following information provides an overview of security for the IBM Storage Driver for OpenStack.

Configuring Cinder nodes for trusted communication

The IBM Storage Driver for OpenStack communicates with DS8000 over HTTPS, using self-signed
certificate or certificate signed by a certificate authority (CA). Configure a trusted communication link to
ensure a successful attachment of a Cinder node to a DS8000 storage system, as detailed in the following
sections.

Configuring trusted communication link

Before configuring a DS8000 backend, complete the following steps to establish the chain of trust.

1. In your operating system shell, run this command to obtain the certificate: openssl x509 -in
<(openssl s_client -connect <host fqdn>:8452 -prexit 2>/dev/null) -text
-out <host fqdn>.pem

If the certificate is self-signed, the following information is displayed:

2. Create an exception by moving the certificate <fqdn>.pem to the /opt/ibm/ds8k_certs/
<host>.penm file.

3. Verify that the <host fqdn> is the same as configured in san_ip.

4. If the certificate subject and issuer are different, the certificate is signed by a CA, as illustrated
below:

3.3. Reference 291

Cinder Documentation, Release 19.3.1.dev10

5. Add a public certificate to trusted CA certificate store to complete the chain of trust, as explained
below.

6. Verify trusted communication link, as explained below.

Adding a public certificate to trusted CA certificate store

Add the CA public certificate to the trusted CA certificates store on the Cinder node, according to pro-
cedures for the operating system in use.

1. For RHEL 7.x or CentOS 7.x, place the certificate to be trusted (in PEM format) into the /etc/pki/ca-
trust/source/anchors/ directory. Then, run the sudo update-ca-trust command.

2. For Ubuntu 18.04, place the certificate to be trusted (in PEM format) into the /usr/local/share/ca-

certificates/ directory. Rename the file, using the *.crt extension. Then, run the sudo
update-ca-certificates command.

3. For Python requests library with certifi, run the cat ca_public_certificate.pem command
to append the certificate to the location of the certifi trust store file. For example:

Verifying trusted communication link

Verify the chain of trust has been established successfully.
1. Obtain the location of the Python library requests trust store, according to the installation type.

2. RHEL 7.x or CentOS 7.x:

python3

3. Ubuntu 18.04:

292 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

python3

4. Python requests library with certifi:

python3

5. Run the openssl s_client -CAfile <location> -connect <host fqdn>:8452 </
dev/null command. The following return codes indicate a successful or failed attempt in
establishing a trusted communication link.

* Verify return code: 0 (ok): success.

* Verify return code: 21 (unable to verify the first certificate), or any other non-zero value: failure.

Troubleshooting

Refer to this information to troubleshoot technical problems that you might encounter when using the
IBM Storage Driver for OpenStack.

Checking the Cinder log files

The Cinder log files record operation information that might be useful for troubleshooting.

To achieve optimal and clear logging of events, activate the verbose logging level in the cinder.conf file,
located in the /etc/cinder folder. Add the following line in the file, save the file, and then restart the
cinder-volume service:

To turn off the verbose logging level, change True to False, save the file, and then restart the cinder-
volume service.

Check the log files on a periodic basis to ensure that the IBM Storage Driver is functioning properly. To
check the log file on a Cinder node, go to the /var/log/cinder folder and open the activity log file named
cinder-volume.log or volume.log.

3.3. Reference 293

Cinder Documentation, Release 19.3.1.dev10

Best practices

This section contains the general guidance and best practices.

Configuring volume replication (DS8000 Family)

Volume replication is required for disaster recovery and high-availability applications running on top of
OpenStack-based clouds. The IBM Storage Driver for OpenStack supports synchronous (Metro Mirror)
volume replication for DS8000 storage systems.

1. Verify that:
* Master and remote storage pools exist on DS8000 systems.

* Reliable communication link is established between the primary and secondary sites, includ-
ing physical connection and PPRC path.

* Metro Mirror replication is enabled on DS8000 storage systems.

2. Perform the following procedure, replacing the values in the example with your own:

294 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configuring groups

The IBM Storage Driver for OpenStack supports volume grouping. These groups can be assigned a group
type, and used for replication and group snapshotting.

Replication groups

For better control over replication granularity, the user can employ volume grouping. This enables vol-
ume group replication and failover without affecting the entire backend. The user can choose between
a generic group replication and consistency group (CG) replication. For consistency group replication,
the driver utilizes the storage capabilities to handle CGs and replicate them to a remote site. On the other
hand, in generic group replication, the driver replicates each volume individually. In addition, the user
can select the replication type.

To configure group replication:
1. Create sync replicated consistency-group.

* Create a volume type for replication.

cinder type-create rep-vol-1

* Create a volume type for replication.

cinder type-key rep-vol-1

* Create a group type.

cinder group-type-create rep-gr-1

* Configure the group type.

cinder group-type-key rep-gr-1 set o

—

* Create a replicated group, using existing group type and volume type.

cinder group-create rep-gr-1 rep-vol-1 --name replicated-gr-1

2. Create a volume and add it to the group.

* Create a replicated volume.

cinder create --name vol-1 --volume-type rep-vol-1 1

* Add the volume to the group.

cinder group-update --add-volumes 91492ed9-c3cf-4732-a525-60e146510b90..
—replicated-gr-1

3.3. Reference 295

Cinder Documentation, Release 19.3.1.dev10

Note: You can also create the volume directly into the group by using the group-id parameter,
followed by ID of a group that the new volume belongs to. This function is supported by API
version 3.13 and later.

3. Enable replication.

cinder group-enable-replication replicated-gr-1

4. Disable replication.

cinder group-disable-replication replicated-gr-1

5. Fail over the replicated group.

cinder group-failover-replication replicated-gr-1

Consistency groups

Consistency groups are mostly the same as replication groups, but with additional support of group
snapshots (consistent_group_snapshot_enabled parameter). See configuration example below.

cinder group-type-create cgl

cinder group-type-show cgl

cinder group-type-key cgl set

cinder group-create --name cgl IBM-DS8K_ibm.com_PO_P1l_fibre_channel not_thin,

Using volume types for volume allocation control (DS8000 Family)

For better controls over volume placement granularity, you can use volume types. This enables volumes
to be created on specific LSSes or pools. You can combine both types.

* Storage pool

cinder type-key pool-1_2 set drivers:storage_pool_ids

* LSS

cinder type-key 1ss80_81 set drivers:storage_lss_ids

296 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

IBM Spectrum Virtualize family volume driver

The volume management driver for Spectrum Virtualize family offers various block storage services. It
provides OpenStack Compute instances with access to IBM Spectrum Virtualize family storage products.
These products include the IBM SAN Volume Controller and IBM FlashSystem family members built
with IBM Spectrum Virtualize (including FlashSystem 5xxx, 7200, 9100, 9200, 9200R).

For specific product publications, see IBM Documentation.

Note: IBM Spectrum Virtualize family is formerly known as IBM Storwize. As a result, the product
code contains Storwize terminology and prefixes.

Supported operations

The IBM Spectrum Virtualize family volume driver supports the following block storage service volume
operations:

* Create, list, delete, attach (map), and detach (unmap) volumes.
* Create, list, and delete volume snapshots.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Retype a volume.

* Create a volume from a snapshot.

* Create, list, and delete consistency group.

* Create, list, and delete consistency group snapshot.

* Modify consistency group (add or remove volumes).

* Create consistency group from source (source can be a CG or CG snapshot)
* Manage an existing volume.

* Failover-host for replicated back ends.

* Failback-host for replicated back ends.

* Create, list, and delete replication group.

* Enable, disable replication group.

* Failover, failback replication group.

3.3. Reference 297

Cinder Documentation, Release 19.3.1.dev10

Configure the Spectrum Virtualize family system
Network configuration

The Spectrum Virtualize family system must be configured for iSCSI, Fibre Channel, or both.

If using iSCSI, each Spectrum Virtualize family node should have at least one iSCSI IP address. The
Spectrum Virtualize family driver uses an iSCSI IP address associated with the volumes preferred node
(if available) to attach the volume to the instance, otherwise it uses the first available iSCSI IP address of
the system. The driver obtains the iSCSI IP address directly from the storage system. You do not need
to provide these iSCSI IP addresses directly to the driver.

Note: If using iSCSI, ensure that the compute nodes have iSCSI network access to the Spectrum Virtu-
alize family system.

If using Fibre Channel (FC), each Spectrum Virtualize family node should have at least one WWPN port
configured. The driver uses all available WWPNs to attach the volume to the instance. The driver obtains
the WWPNs directly from the storage system. You do not need to provide these WWPNSs directly to the
driver.

Note: If using FC, ensure that the compute nodes have FC connectivity to the Spectrum Virtualize
family system.

iSCSI CHAP authentication

If using iSCSI for data access and the storwize_svc_iscsi_chap_enabled is set to True, the driver
will associate randomly-generated CHAP secrets with all hosts on the Spectrum Virtualize family. The
compute nodes use these secrets when creating iSCSI connections.

Warning: CHAP secrets are added to existing hosts as well as newly-created ones. If the CHAP
option is enabled, hosts will not be able to access the storage without the generated secrets.

Note: Not all OpenStack Compute drivers support CHAP authentication. Please check compatibility
before using.

Note: CHAP secrets are passed from OpenStack Block Storage to Compute in clear text. This commu-
nication should be secured to ensure that CHAP secrets are not discovered.

298 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configure storage pools

The IBM Spectrum Virtualize family driver can allocate volumes in multiple pools. The pools should be
created in advance and be provided to the driver using the storwize_svc_volpool_name configuration
flag in the form of a comma-separated list. For the complete list of configuration flags, see Spectrum
Virtualize family driver options in cinder.conf .

Configure user authentication for the driver

The driver requires access to the Spectrum Virtualize family system management interface. The driver
communicates with the management using SSH. The driver should be provided with the Spectrum Vir-
tualize family management IP using the san_ip flag, and the management port should be provided by
the san_ssh_port flag. By default, the port value is configured to be port 22 (SSH). Also, you can set
the secondary management IP using the storwize_san_secondary_ip flag.

Note: Make sure the compute node running the cinder-volume management driver has SSH network
access to the storage system.

To allow the driver to communicate with the Spectrum Virtualize family system, you must provide the
driver with a user on the storage system. The driver has two authentication methods: password-based
authentication and SSH key pair authentication. The user should have an Administrator role. It is sug-
gested to create a new user for the management driver. Please consult with your storage and security
administrator regarding the preferred authentication method and how passwords or SSH keys should be
stored in a secure manner.

Note: When creating a new user on the Spectrum Virtualize family system, make sure the user belongs
to the Administrator group or to another group that has an Administrator role.

If using password authentication, assign a password to the user on the Spectrum Virtualize family system.
The driver configuration flags for the user and password are san_login and san_password, respec-
tively.

If you are using the SSH key pair authentication, create SSH private and public keys using the instructions
below or by any other method. Associate the public key with the user by uploading the public key:
select the choose file option in the Spectrum Virtualize family management GUI under SSH public key.
Alternatively, you may associate the SSH public key using the command-line interface; details can be
found in the Spectrum Virtualize family documentation. The private key should be provided to the driver
using the san_private_key configuration flag.

3.3. Reference 299

Cinder Documentation, Release 19.3.1.dev10

Create a SSH key pair with OpenSSH

You can create an SSH key pair using OpenSSH, by running:

ssh-keygen -t rsa

The command prompts for a file to save the key pair. For example, if you select key as the filename,
two files are created: key and key.pub. The key file holds the private SSH key and key . pub holds the
public SSH key.

The command also prompts for a pass phrase, which should be empty.

The private key file should be provided to the driver using the san_private_key configuration flag. The
public key should be uploaded to the Spectrum Virtualize family system using the storage management
GUI or command-line interface.

Note: Ensure that Cinder has read permissions on the private key file.

Configure the Spectrum Virtualize family driver
Enable the Spectrum Virtualize family driver

Set the volume driver to the Spectrum Virtualize family driver by setting the volume_driver option in
the cinder. conf file as follows:

iSCSI:

FC:

300 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Replication configuration

Add the following to the back-end specification to specify another storage to replicate to:

The backend_id is a unique name of the remote storage, the san_ip, san_login, and san_password
is authentication information for the remote storage. The pool_name is the pool name for the replication

target volume.

Note:
replication target is supported now.

Only one replication_device can be configured for one back end storage since only one

Spectrum Virtualize family driver options in cinder.conf

The following options specify default values for all volumes. Some can be over-ridden using volume

types, which are described below.

Note:
code contains Storwize terminology and prefixes.

IBM Spectrum Virtualize family is formerly known as IBM Storwize. As a result, the product

Configuration option = Default value Description
[DEFAULT]
san_ip = (String) IP address of SAN controller.

san_login = admin

(String) Username for SAN controller.

san_password =

(String) Password for SAN controller.

san_private_key =

(String) Filename of private key to use for SSH authentica

san_ssh_port = 22

(Port number) SSH port to use with SAN.

ssh_conn_timeout = 30

(Integer) SSH connection timeout in seconds.

ssh_min_pool_conn =1

(Integer) Minimum SSH connections in the pool.

ssh_max_pool_conn =5

(Integer) Maximum SSH connections in the pool.

storwize_san_secondary_ip = None

(String) Specifies secondary management IP or hostname

storwize_svc_allow_tenant_gos = False

(Boolean) Allow tenants to specify QoS on create.

storwize_svc_flashcopy_rate = 50

(Integer) Specifies the Spectrum Virtualize Family FlashC

storwize_svc_flashcopy_timeout = 120

(Integer) Maximum number of seconds to wait for FlashC

storwize_svc_iscsi_chap_enabled = True

(Boolean) Configure CHAP authentication for iSCSI conr

storwize_svc_multihostmap_enabled = True

(Boolean) DEPRECATED: This option no longer has any

storwize_svc_multipath_enabled = False

(Boolean) Connect with multipath (FC only; iSCSI multiy

storwize_svc_stretched_cluster_partner = None

(String) If operating in stretched cluster mode, specify the

3.3. Reference

301

Cinder Documentation, Release 19.3.1.dev10

Configuration option = Default value

Description

storwize_svc_vol_autoexpand = True

(Boolean) Storage system autoexpand parameter for volun

storwize_svc_vol_compression = False

(Boolean) Storage system compression option for volumes

storwize_svc_vol_easytier = True

(Boolean) Enable Easy Tier for volumes.

storwize_svc_vol_grainsize =256

(Integer) Storage system grain size parameter for volumes

storwize_svc_vol_iogrp =20

(Integer) The I/O group in which to allocate volumes

storwize_svc_vol_nofmtdisk = False

(Boolean) Specifies that the volume not be formatted duris

storwize_svc_vol_rsize=2

(Integer) Storage system space-efficiency parameter for vo

storwize_svc_vol_warning =0

(Integer) Storage system threshold for volume capacity wa

storwize_svc_volpool_name = volpool

(List) Comma separated list of storage system storage poo

storwize_svc_mirror_pool = None

(String) Specifies the name of the pool in which mirrored

storwize_svc_retain_aux_volume = False

(Boolean) Defines an optional parameter to retain an auxil

storwize_peer_pool = None

(String) Specifies the name of the peer pool for a HyperSy

storwize_preferred_host_site = {}

(Dictionary) Specifies the site information for host. One V

cycle_period_seconds = 300

(Integer) Defines an optional cycle period that applies to (

Note the following:

* The authentication requires either a password (san_password) or SSH private key
(san_private_key). One must be specified. If both are specified, the driver uses only
the SSH private key.

* The driver creates thin-provisioned volumes by default. The storwize_svc_vol_rsize flag
defines the initial physical allocation percentage for thin-provisioned volumes, or if set to -1, the
driver creates full allocated volumes. More details about the available options are available in the
Spectrum Virtualize family documentation.

Placement with volume types

The IBM Spectrum Virtualize family exposes capabilities that can be added to the extra specs of
volume types, and used by the filter scheduler to determine placement of new volumes. Make sure to
prefix these keys with capabilities: to indicate that the scheduler should use them. The following
extra specs are supported:

* capabilities:volume_backend_name - Specify a specific back-end where the volume should
be created. The back-end name is a concatenation of the name of the Spectrum Virtualize family
storage system as shown in 1ssystem, an underscore, and the name of the pool (mdisk group).
For example:

* capabilities:compression_support - Specify a back-end according to compression support.
A value of True should be used to request a back-end that supports compression, and a value of
False will request a back-end that does not support compression. If you do not have constraints on
compression support, do not set this key. Note that specifying True does not enable compression;
it only requests that the volume be placed on a back-end that supports compression. Example
syntax:

302 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: Currently, the compression_enabled() API that indicates compression_license support is not fully
functional. It does not work on all storage types. Additional functionalities will be added in a later release.

* capabilities:easytier_support - Similar semantics as the compression_support key, but
for specifying according to support of the Easy Tier feature. Example syntax:

* capabilities:pool_name - Specify a specific pool to create volume if only multiple pools are
configured. pool_name should be one value configured in storwize_svc_volpool_name flag. Ex-
ample syntax:

Configure per-volume creation options

Volume types can also be used to pass options to the IBM Spectrum Virtualize family driver, which
over-ride the default values set in the configuration file. Contrary to the previous examples where the
capabilities scope was used to pass parameters to the Cinder scheduler, options can be passed to the
Spectrum Virtualize family driver with the drivers scope.

The following extra specs keys are supported by the Spectrum Virtualize family driver:
* 18ize
* warning
* autoexpand
* grainsize
e compression
* casytier
* multipath
* jogrp
* mirror_pool
* volume_topology
* peer_pool
* flashcopy_rate
* cycle_period_seconds

These keys have the same semantics as their counterparts in the configuration file. They are set similarly;
for example, rsize=2 or compression=False.

3.3. Reference 303

Cinder Documentation, Release 19.3.1.dev10

Example: Volume types

In the following example, we create a volume type to specify a controller that supports compression, and
enable compression:

openstack volume type create compressed
openstack volume type set --property capabilities:compression_support o
< --property drivers:compression True compressed

We can then create a S0GB volume using this type:

openstack volume create --type compressed --size 50

In the following example, create a volume type that enables synchronous replication (metro mirror):

openstack volume type create ReplicationType

openstack volume type set --property

--property --property
. svc234 ReplicationType

In the following example, we create a volume type to support stretch cluster volume or mirror volume:

openstack volume type create mirror_vol_type
openstack volume type set --property svcl
--property drivers:mirror_pool pool2 mirror_vol_type

Volume types can be used, for example, to provide users with different

» performance levels (such as, allocating entirely on an HDD tier, using Easy Tier for an HDD-SDD
mix, or allocating entirely on an SSD tier)

* resiliency levels (such as, allocating volumes in pools with different RAID levels)

* features (such as, enabling/disabling Real-time Compression, replication volume creation)

QOS

The Spectrum Virtualize family driver provides QOS support for storage volumes by controlling
the I/O amount. QOS is enabled by editing the etc/cinder/cinder.conf file and setting the
storwize_svc_allow_tenant_gos to True.

There are three ways to set the Spectrum Virtualize family I0Throtting parameter for storage volumes:
* Add the qos:I0Throttling key into a QOS specification and associate it with a volume type.
* Add the qos:I0Throttling key into an extra specification with a volume type.

* Add the qos:IOThrottling key to the storage volume metadata.

Note: If you are changing a volume type with QOS to a new volume type without QOS, the QOS
configuration settings will be removed.

304 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Operational notes for the Spectrum Virtualize family driver
Migrate volumes

In the context of OpenStack block storages volume migration feature, the IBM Spectrum Virtualize family
driver enables the storages virtualization technology. When migrating a volume from one pool to another,
the volume will appear in the destination pool almost immediately, while the storage moves the data in
the background.

Note: To enable this feature, both pools involved in a given volume migration must have the same
values for extent_size. If the pools have different values for extent_size, the data will still be
moved directly between the pools (not host-side copy), but the operation will be synchronous.

Extend volumes

The IBM Spectrum Virtualize family driver allows for extending a volumes size, but only for volumes
without snapshots.

Snapshots and clones

Snapshots are implemented using FlashCopy with no background copy (space-efficient). Volume clones
(volumes created from existing volumes) are implemented with FlashCopy, but with background copy
enabled. This means that volume clones are independent, full copies. While this background copy is
taking place, attempting to delete or extend the source volume will result in that operation waiting for the
copy to complete.

Volume retype

The IBM Spectrum Virtualize family driver enables you to modify volume types. When you modify
volume types, you can also change these extra specs properties:

* 18ize

* warning

* autoexpand

* grainsize

e compression

* casytier

* jogrp

* nofmtdisk

* mirror_pool

* volume_topology

* peer_pool

3.3. Reference 305

Cinder Documentation, Release 19.3.1.dev10

* flashcopy_rate

* cycle_period_seconds

Note: When you change the rsize, grainsize or compression properties, volume copies are asyn-
chronously synchronized on the array.

Note: To change the iogrp property, IBM Spectrum Virtualize family firmware version 6.4.0 or later
is required.

Replication operation
Configure replication in volume type

A volume is only replicated if the volume is created with a volume-type that has the extra spec
replication_enabled set to <is> True. Three types of replication are supported now, global mir-
ror(async), global mirror with change volume(async) and metro mirror(sync). It can be specified by
a volume-type that has the extra spec replication_type set to <in> global, <in> gmcv or <in>
metro. If no replication_type is specified, global mirror will be created for replication.

If replication_type setto <in> gmcv, cycle_period_seconds can be set as the cycling time perform
global mirror relationship with multi cycling mode. Default value is 300. Example syntax:

cinder type-create gmcv_type
cinder type-key gmcv_type set
drivers:cycle_period_seconds 500

Note: It is better to establish the partnership relationship between the replication source storage and the
replication target storage manually on the storage back end before replication volume creation.

Failover host

The failover-host command is designed for the case where the primary storage is down.

cinder failover-host cinder@svciscsi --backend_id target_svc_id

If a failover command has been executed and the primary storage has been restored, it is possible to do a
failback by simply specifying default as the backend_id:

cinder failover-host cinder@svciscsi --backend_id default

Note: Before you perform a failback operation, synchronize the data from the replication target volume
to the primary one on the storage back end manually, and do the failback only after the synchronization
is done since the synchronization may take a long time. If the synchronization is not done manually,

306 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Spectrum Virtualize family block storage service driver will perform the synchronization and do the
failback after the synchronization is finished.

Replication group

Before creating replication group, a group-spec which key consistent_group_replication_enabled
set to <is> True should be set in group type. Volume type used to create group must be replica-
tion enabled, and its replication_type should be set either <in> global or <in> metro. The
failover_group api allows group to be failed over and back without failing over the entire host. Example
syntax:

* Create replication group

cinder group-type-create rep-group-type-example
cinder group-type-key rep-group-type-example set
cinder type-create type-global

cinder type-key type-global set

cinder group-create rep-group-type-example type-global --name global-group

* Failover replication group

cinder group-failover-replication --secondary-backend-id target_svc_id.
—group_id

* Failback replication group

cinder group-failover-replication --secondary-backend-id default group_id

Note: Optionally, allow-attached-volume can be used to failover the in-use volume, but fail over/back an
in-use volume is not recommended. If the user does failover operation to an in-use volume, the volume
status remains in-use after failover. But the in-use replication volume would change to read-only since
the primary volume is changed to auxiliary side and the instance is still attached to the master volume.
As a result please detach the replication volume first and attach again if user want to reuse the in-use
replication volume as read-write.

HyperSwap Volumes

A HyperSwap volume is created with a volume-type that has the extra spec drivers:volume_topology
set to hyperswap. To support HyperSwap volumes, IBM Spectrum Virtualize family firmware version
7.6.0 or later is required. Add the following to the back-end configuration to specify the host preferred
site for HyperSwap volume. FC:

iSCSI:

3.3. Reference 307

Cinder Documentation, Release 19.3.1.dev10

The sitel and site2 are names of the two host sites used in Spectrum Virtualize family storage systems.
The WWPNs and IQNs are the connectors used for host mapping in the Spectrum Virtualize family.

cinder type-create hyper_type
cinder type-key hyper_type set drivers:volume_topology hyperswap
drivers:peer_pool Pool_site2

Note: The property rsize is considered as buffersize for the HyperSwap volume. The HyperSwap
property iogrp is selected by storage.

A group is created as a HyperSwap group with a group-type that has the group spec
hyperswap_group_enabled set to <is> True.

INFINIDAT InfiniBox Block Storage driver

The INFINIDAT Block Storage volume driver provides iSCSI and Fibre Channel support for INFINIDAT
InfiniBox storage systems.

This section explains how to configure the INFINIDAT driver.

Supported operations

* Create, delete, attach, and detach volumes.

* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy a volume to an image.

* Copy an image to a volume.

* Clone a volume.

* Extend a volume.

* Get volume statistics.

* Create, modify, delete, and list consistency groups.

* Create, modify, delete, and list snapshots of consistency groups.

* Create consistency group from consistency group or consistency group snapshot.

308 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

External package installation

The driver requires the infinisdk package for communicating with InfiniBox systems. Install the pack-
age from PyPI using the following command:

pip install infinisdk

Setting up the storage array

Create a storage pool object on the InfiniBox array in advance. The storage pool will contain volumes
managed by OpenStack. Refer to the InfiniBox manuals for details on pool management.

Driver configuration

Edit the cinder. conf file, which is usually located under the following path /etc/cinder/cinder.
conf.

¢ Add a section for the INFINIDAT driver back end.

* Under the [DEFAULT] section, set the enabled_backends parameter with the name of the new
back-end section.

Configure the driver back-end section with the parameters below.

* Configure the driver name by setting the following parameter:

* Configure the management IP of the InfiniBox array by adding the following parameter:

* Configure user credentials.

The driver requires an InfiniBox user with administrative privileges. We recommend creating a
dedicated OpenStack user account that holds an administrative user role. Refer to the InfiniBox
manuals for details on user account management. Configure the user credentials by adding the
following parameters:

* Configure the name of the InfiniBox pool by adding the following parameter:

* The back-end name is an identifier for the back end. We recommend using the same name as the
name of the section. Configure the back-end name by adding the following parameter:

3.3. Reference 309

Cinder Documentation, Release 19.3.1.dev10

* Thin provisioning.

The INFINIDAT driver supports creating thin or thick provisioned volumes. Configure thin or
thick provisioning by adding the following parameter:

This parameter defaults to true.
Configure the connectivity protocol.

The InfiniBox driver supports connection to the InfiniBox system in both the fibre channel and
iSCSI protocols. Configure the desired protocol by adding the following parameter:

This parameter defaults to fc.
Configure iSCSI netspaces.

When using the iSCSI protocol to connect to InfiniBox systems, you must configure one or more
iSCSI network spaces in the InfiniBox storage array. Refer to the InfiniBox manuals for details on
network space management. Configure the names of the iSCSI network spaces to connect to by
adding the following parameter:

Multiple network spaces can be specified by a comma separated string.
This parameter is ignored when using the FC protocol.
Configure CHAP

InfiniBox supports CHAP authentication when using the iSCSI protocol. To enable CHAP authen-
tication, add the following parameter:

To manually define the username and password, add the following parameters:

If the CHAP username or password are not defined, they will be auto-generated by the driver.
The CHAP parameters are ignored when using the FC protocol.
Volume compression

Volume compression is disabled by default. To enable volume compression, add the following
parameter:

Volume compression is available on InfiniBox 3.0 onward.

310

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configuration example

Driver-specific options
The following table contains the configuration options that are specific to the INFINIDAT driver.

Table 40: Description of INFINIDAT InfiniBox configuration op-

tions
Configuration option = De- | Description
fault value
infinidat_iscsi_netspaces (List of String) List of names of network spaces to use for iSCSI
=[] connectivity
infinidat_pool_name = | (String) Name of the pool from which volumes are allocated
None
infinidat_storage_protocolString(choices=[iscsi, fc])) Protocol for transferring data between
= fc host and storage back-end.
infinidat_use_compression (Boolean) Specifies whether to turn on compression for newly cre-
=False ated volumes.

Infortrend volume driver

The Infortrend volume driver is a Block Storage driver providing iSCSI and Fibre Channel support for
Infortrend storages.

3.3. Reference 311

http://www.infortrend.com/global

Cinder Documentation, Release 19.3.1.dev10

Supported operations

The Infortrend volume driver supports the following volume operations:
¢ Create, delete, attach, and detach volumes.
* Create and delete a snapshot.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume

* Retype a volume.

* Manage and unmanage a volume.

* Migrate a volume with back-end assistance.

* Live migrate an instance with volumes hosted on an Infortrend backend.

System requirements

To use the Infortrend volume driver, the following settings are required:

Set up Infortrend storage

* Create logical volumes in advance.

* Host side setting Peripheral device type should be No Device Present (Type=0x7f).

Set up cinder-volume node

¢ Install JRE 7 or later.

* Download the Infortrend storage CLI from the release page. Choose the raidemd_ESDS10.jar
file, whichs under v2.1.3 on the github releases page, and assign it to the default path /opt/bin/
Infortrend/.

Driver configuration

On cinder-volume nodes, set the following in your /etc/cinder/cinder. conf, and use the follow-
ing options to configure it:

312 Chapter 3. For operators

https://github.com/infortrend-openstack/infortrend-cinder-driver/releases

Cinder Documentation, Release 19.3.1.dev10

Driver options

Table 41
options

: Description of Infortrend volume driver configuration

Configuration option =
Default value

Description

[DEFAULT]

infortrend_cli_max_x
=5

efinfeeer) The maximum retry times if a command fails.

infortrend_cli_path
= /opt/bin/
Infortrend/
raidcmd_ESDS10. jar

(String) The Infortrend CLI absolute path.

infortrend_cli_timeq
=60

uinteger) The timeout for CLI in seconds.

infortrend_cli_cachs
=False

(Boolean) The Infortrend CLI cache. Make sure the array is only managed
by Openstack, and it is only used by one cinder-volume node. Otherwise,
never enable it! The data might be asynchronous if there were any other
operations.

infortrend_pools_nan
= None

1e(String) The Infortrend logical volumes name list. It is separated with
comma.

infortrend_ign_prefi
ign.2002-10.com.
infortrend

x(String) Infortrend ign prefix for iSCSIL.

infortrend_slots_a_d
= None

thiitries Infbrtrend raid channel ID list on Slot A for OpenStack usage. It
is separated with comma.

infortrend_slots_b_q
= None

th@tnia}s [nfbrtrend raid channel ID list on Slot A for OpenStack usage. It
is separated with comma.

java_path /usr/

bin/java

(String) The Java absolute path.

iSCSI configuration example

3.3. Reference

313

Cinder Documentation, Release 19.3.1.dev10

Fibre Channel configuration example

Multipath configuration

* Enable multipath for image transfer in /etc/cinder/cinder.conf for each back end or in
[backend_defaults] section as a common configuration for all backends.

Restart the cinder-volume service.

* Enable multipath for volume attach and detach in /etc/nova/nova. conf.

Restart the nova-compute service.

Extra spec usage

* infortrend:provisioning - Defaults to full provisioning, the valid values are thin and full.
e infortrend:tiering - Defaults to use all tiering, the valid values are subsets of 0, 1, 2, 3.

If multi-pools are configured in cinder.conf, it can be specified for each pool, separated by

semicolon.

For example:

infortrend:provisioning: POOL-1:thin; POOL-2:full
infortrend:tiering: POOL-1:all; POOL-2:0; POOL-3:0,1,3

For more details, see Infortrend documents.

314 Chapter 3. For operators

http://www.infortrend.com/ImageLoader/LoadDoc/715

Cinder Documentation, Release 19.3.1.dev10

Inspur AS13000 series volume driver

Inspur AS13000 series volume driver provides OpenStack Compute instances with access to Inspur
AS13000 series storage system.

Inspur AS13000 storage can be used with iSCSI connection.

This documentation explains how to configure and connect the block storage nodes to Inspur AS13000
series storage.

Driver options
The following table contains the configuration options supported by the Inspur AS13000 iSCSI driver.

Table 42: Description of Inspur AS13000 configuration options

Configuration Description
option = Default
value
as13000_ipsan_pdgbiss of String) The Storage Pools Cinder should use, a comma separated list.
= [Pool0]
as13000_meta_pp@3tring) The pool which is used as a meta pool when creating a volume, and it
= None should be a replication pool at present. If not set, the driver will choose a repli-
cation pool from the value of as13000_ipsan_pools.
as13000_token_avhitdghlminihe0, max=3600)) The effective time of token validity in seconds.
= 3300

Supported operations

* Create, list, delete, attach (map), and detach (unmap) volumes.
* Create, list and delete volume snapshots.

* Create a volume from a snapshot.

» Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

e Extend a volume.

Configure Inspur AS13000 iSCSI backend

This section details the steps required to configure the Inspur AS13000 storage cinder driver.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the enabled_backends
parameter.

3.3. Reference 315

Cinder Documentation, Release 19.3.1.dev10

2. Add a backend group section for backend group specified in the enabled_backends parameter.

3. In the newly created backend group section, set the following configuration options:

4. Save the changes to the /etc/cinder/cinder. conf file and restart the cinder-volume service.

Inspur InStorage family volume driver

Inspur InStorage family volume driver provides OpenStack Compute instances with access to Inspur
Instorage family storage system.

Inspur InStorage storage system can be used with FC or iSCSI connection.

This documentation explains how to configure and connect the block storage nodes to Inspur InStorage
family storage system.

Supported operations

* Create, list, delete, attach (map), and detach (unmap) volumes.
* Create, list and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Retype a volume.

* Manage and unmanage a volume.

* Create, list, and delete consistency group.

316 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

* Create, list, and delete consistency group snapshot.
* Modify consistency group (add or remove volumes).
* Create consistency group from source.

* Failover and Failback support.

Configure Inspur InStorage iSCSI/FC backend

This section details the steps required to configure the Inspur InStorage Cinder Driver for single FC or
iSCSI backend.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the enabled_backends
parameter with the iSCSI or FC back-end group

¢ For Fibre Channel:

e For iSCSI:

2. Add a back-end group section for back-end group specified in the enabled_backends parameter
3. In the newly created back-end group section, set the following configuration options:

¢ For Fibre Channel:

e For iSCSI:

3.3. Reference 317

Cinder Documentation, Release 19.3.1.dev10

4.

Note: When both san_password and san_private_key are provide, the driver will use private
key prefer to password.

Save the changes to the /etc/cinder/cinder. conf file and restart the cinder-volume service.

Intel Rack Scale Design (RSD) driver

The Intel Rack Scale Design volume driver is a block storage driver providing NVMe-oF support for
RSD storage.

System requirements

To use the RSD driver, the following requirements are needed:

The driver only supports RSD API at version 2.4 or later.
The driver requires rsd-lib.

cinder-volume should be running on one of the composed node in RSD, and have access to the
PODM url.

All the nova-compute services should be running on the composed nodes in RSD.

All the cinder-volume and nova-compute nodes should have installed dmidecode and the latest
nvme-cli with connect/disconnect subcommands.

318

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Supported operations

* Create, delete volumes.

¢ Attach, detach volumes.

* Copy an image to a volume.

* Copy a volume to an image.

* Create, delete snapshots.

* Create a volume from a snapshot.
* Clone a volume.

* Extend a volume.

¢ Get volume statistics.

Configuration

On cinder-volume nodes, using the following configurations in your /etc/cinder/cinder.conft:

The following table contains the configuration options supported by the RSD driver:

Table 43: Description of RSD configuration options

Configuration option = Default value

Description

podm_password = <>

(String) Password of PODM service

podm_url = <>

(String) URL of PODM service

podm_username =<>

(String) Username of PODM service

Kaminario K2 all-flash array iSCSI and FC volume drivers

Kaminarios K2 all-flash array leverages a unique software-defined architecture that delivers highly valued
predictable performance, scalability and cost-efficiency.

Kaminarios K2 all-flash iSCSI and FC arrays can be used in OpenStack Block Storage for providing

block storage using KaminarioISCSIDriver class and KaminarioFCDriver class respectively.

This documentation explains how to configure and connect the block storage nodes to one or more K2

all-flash arrays.

3.3. Reference

319

Cinder Documentation, Release 19.3.1.dev10

Driver requirements

* Kaminarios K2 all-flash iSCSI and/or FC array

K2 REST API version >=2.2.0
* K2 version 5.8 or later are supported

* krest python library(version 1.3.1 or later) should be installed on the Block Storage node using
sudo pip install krest

The Block Storage Node should also have a data path to the K2 array for the following operations:

Create a volume from snapshot

Clone a volume

Copy volume to image

Copy image to volume

Retype dedup without replication<->nodedup without replication

Supported operations

¢ Create, delete, attach, and detach volumes.
* Create and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Retype a volume.

* Manage and unmanage a volume.

* Replicate volume with failover and failback support to K2 array.

Limitations and known issues

If your OpenStack deployment is not setup to use multipath, the network connectivity of the K2 all-flash
array will use a single physical port.

This may significantly limit the following benefits provided by K2:
* available bandwidth
* high-availability
* non disruptive-upgrade

The following steps are required to setup multipath access on the Compute and the Block Storage nodes

320 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

1. Install multipath software on both Compute and Block Storage nodes.

For example:

apt-get install sg3-utils multipath-tools

2. In the [libvirt] section of the mnova.conf configuration file, specify
volume_use_multipath=True. This option is valid for both iSCSI and FC drivers. In
versions prior to Newton, the option was called iscsi_use_multipath.

Additional resources: Kaminario Host Configuration Guide for Linux (for configuring multipath)

3. Restart the compute service for the changes to take effect.

service nova-compute restart

Configure single Kaminario iSCSI/FC back end

This section details the steps required to configure the Kaminario Cinder Driver for single FC or iSCSI
backend.

1. In the cinder.conf -configuration file under the [DEFAULT] section, set the
scheduler_default_filters parameter:

See following documents for more information: Cinder Scheduler Filters and Configure and use
driver filter and weighing for scheduler.

2. Under the [DEFAULT] section, set the enabled_backends parameter with the iSCSI or FC back-end
group

3. Add a back-end group section for back-end group specified in the enabled_backends parameter

4. In the newly created back-end group section, set the following configuration options:

(continues on next page)

3.3. Reference 321

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

volume_driver = cinder.volume.drivers.kaminario.kaminario_fc.
—KaminarioFCDriver

Backend name
volume_backend_name = kaminario_fc_1
kaminario_iscsi_1

K2 driver calculates max_oversubscription_ratio on setting below
option as True. Default value is False
auto_calc_max_oversubscription_ratio = False

Set a limit on total number of volumes to be created on K2 array, for.
—example:
filter_function = '"capabilities.total_volumes < 250"

For replication, replication_device must be set and the replication.,
—peer must be configured
on the primary and the secondary K2 arrays

Syntax:

replication_device = backend_id:<s-array-ip>,login:<s-username>,
—password:<s-password>, rpo:<value>

where:

s-array-ip is the secondary K2 array IP

rpo must be either 60(1 min) or multiple of 300(5 min)

Example:

replication_device = backend _id:10.0.0.50,1login:kaminario,
—password:kaminario,rpo:300

Suppress requests library SSL certificate warnings on setting this.
—option as True

Default value is 'False

suppress_requests_ssl_warnings = False

5. Restart the Block Storage services for the changes to take effect:

service cinder-api restart
service cinder-scheduler restart
service cinder-volume restart

Setting multiple Kaminario iSCSI/FC back ends

The following steps are required to configure multiple K2 iSCSI/FC backends:

1. Inthe cinder. conf file under the [DEFAULT] section, set the enabled_backends parameter with
the comma-separated iSCSI/FC back-end groups.

[DEFAULT]
kaminario-iscsi-1, kaminario-iscsi-2, kaminario-iscsi-3

2. Add aback-end group section for each back-end group specified in the enabled_backends parameter

322 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

3. For each back-end group section, enter the configuration options as described in the above section
Configure single Kaminario iSCSI/FC back end

See Configure multiple-storage back ends for additional information.

4. Restart the cinder volume service for the changes to take effect.

service cinder-volume restart

Creating volume types

Create volume types for supporting volume creation on the multiple K2 iSCSI/FC backends. Set follow-
ing extras-specs in the volume types:

* volume_backend_name : Set value of this spec according to the value of volume_backend_name
in the back-end group sections. If only this spec is set, then dedup Kaminario cinder volumes will
be created without replication support

openstack volume type create kaminario_iscsi_dedup_noreplication

openstack volume type set --property kaminario_
—~iscsi_l

kaminario_iscsi_dedup_noreplication

* kaminario:thin_prov_type : Set this spec in the volume type for creating nodedup Kaminario cinder
volumes. If this spec is not set, dedup Kaminario cinder volumes will be created.

* kaminario:replication : Set this spec in the volume type for creating replication supported Kami-
nario cinder volumes. If this spec is not set, then Kaminario cinder volumes will be created without
replication support.

openstack volume type create kaminario_iscsi_dedup_replication

openstack volume type set --property kaminario_
—iscsi_1

kaminario:replication enabled kaminario_iscsi_dedup_replication

openstack volume type create kaminario_iscsi_nodedup_replication

openstack volume type set --property kaminario_
—iscsi_l

kaminario:replication enabled kaminario:thin_prov_type nodedup

kaminario_iscsi_nodedup_replication

openstack volume type create kaminario_iscsi_nodedup_noreplication

openstack volume type set --property kaminario_
—iscsi_1

kaminario:thin_prov_type nodedup kaminario_iscsi_nodedup_noreplication

3.3. Reference 323

Cinder Documentation, Release 19.3.1.dev10

Supported retype cases

The following are the supported retypes for Kaminario cinder volumes:

* Nodedup-noreplication <> Nodedup-replication

cinder retype volume-id new-type

* Dedup-noreplication <> Dedup-replication

cinder retype volume-id new-type

Dedup-noreplication <> Nodedup-noreplication

cinder retype --migration-policy on-demand volume-id new-type

For non-supported cases, try combinations of the cinder retype command.

Driver options

The following table contains the configuration options that are specific to the Kaminario K2 FC and
iSCSI Block Storage drivers.

Table 44: Description of Kaminario configuration options

Configuration option = Default | Description

value

auto_calc_max_oversubscription(Babiean) K2 driver will calculate

=False max_oversubscription_ratio on setting this option as
True.

disable_discovery = False (Boolean) Disabling iSCSI discovery (sendtargets) for multi-
path connections on K2 driver.

KIOXIA Kumoscale NVMeOF Driver

KIOXIA Kumoscale volume driver provides OpenStack Compute instances with access to KIOXIA Ku-
moscale NVMeOF storage systems.

This documentation explains how to configure Cinder for use with the KIOXIA Kumoscale storage back-
end system.

Driver options

The following table contains the configuration options supported by the KIOXIA Kumoscale NVMeOF
driver.

324 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 45: Description of KIOXIA Kumoscale configuration op-

tions

Configuration option = Default value

Description

kioxia_block_size = 4096

(Integer) Volume block size in bytes - 512 or 4096 (De-
fault).

kioxia_cafile = None

(String) Cert for provisioner REST API SSL

kioxia_desired_bw_per_gb=0

(Integer) Desired bandwidth in B/s per GB.

kioxia_desired_iops_per_gb=0

(Integer) Desired IOPS/GB.

kioxia_max_bw_per_gb =0

(Integer) Upper limit for bandwidth in B/s per GB.

kioxia_max_iops_per_gbh=0

(Integer) Upper limit for IOPS/GB.

kioxia_max_replica_down_time =0

(Integer) Replicated volume max downtime for replica
in minutes.

kioxia_num_replicas=1

(Integer) Number of volume replicas.

kioxia_provisioning_type = THICK

(String(choices=[THICK, THIN])) Thin or thick vol-
ume, Default thick.

kioxia_same_rack_allowed = False

(Boolean) Can more than one replica be allocated to
same rack.

kioxia_snap_reserved_space_percentadénteger) Percentage of the parent volume to be used

=0

for log.

kioxia_snap_vol_reserved_space_per

=0

rdiiitager) Writable snapshot percentage of parent vol-
ume used for log.

kioxia_snap_vol_span_allowed
True

(Boolean) Allow span in snapshot volume - Default
True.

kioxia_span_allowed = True

(Boolean) Allow span - Default True.

kioxia_token = None

(String) KumoScale Provisioner auth token.

kioxia_url = None

(String) KumoScale provisioner REST API URL

kioxia_vol_reserved_space_percenta

=0

yeInteger) Thin volume reserved capacity allocation per-
centage.

kioxia_writable = False

(Boolean) Volumes from snapshot writeable or not.

Supported operations

¢ Create, list, delete, attach and detach volumes

* Create, list and delete volume snapshots

* Create a volume from a snapshot
* Copy an image to a volume.

* Copy a volume to an image.

* Create volume from snapshot

* Clone a volume

¢ Extend a volume

3.3. Reference

325

Cinder Documentation, Release 19.3.1.dev10

Configure KIOXIA Kumoscale NVMeOF backend

This section details the steps required to configure the KIOXIA Kumoscale storage cinder driver.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the enabled_backends
parameter.

2. Add a backend group section for the backend group specified in the enabled_backends parameter.

3. In the newly created backend group section, set the following configuration options:

Lenovo Fibre Channel and iSCSI drivers

The LenovoFCDriver and LenovoISCSIDriver Cinder drivers allow Lenovo S-Series arrays to be
used for block storage in OpenStack deployments.

System requirements

To use the Lenovo drivers, the following are required:
* Lenovo S2200, S3200, DS2200, DS4200 or DS6200 array with:
— iSCSI or FC host interfaces
— G22x firmware or later
* Network connectivity between the OpenStack host and the array management interfaces

e HTTPS or HTTP must be enabled on the array

326 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Supported operations

* Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

» Extend a volume.

* Migrate a volume with back-end assistance.
* Retype a volume.

* Manage and unmanage a volume.

Note: The generic grouping functionality supported in the G265 and later firmware is not supported by
OpenStack Cinder due to differences in the grouping models used in Cinder and the S-Series firmware.

Configuring the array

1. Verify that the array can be managed using an HTTPS connection. HTTP can also be used if
hpmsa_api_protocol=http is placed into the appropriate sections of the cinder.conf file,
but this option is deprecated and will be removed in a future release.

Confirm that virtual pools A and B are present if you plan to use virtual pools for OpenStack
storage.

2. Edit the cinder. conf file to define a storage back-end entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in key=value format.

* The lenovo_pool_name value specifies the name of the storage pool on the array.

e The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

* The rest of the options will be repeated for each storage pool in a given array:

volume_driver specifies the Cinder driver name.
— san_ip specifies the IP addresses or host names of the arrays management controllers.

— san_login and san_password specify the username and password of an array user
account with manage privileges.

— driver_use_ssl should be set to true to enable use of the HTTPS protocol.

— lenovo_iscsi_ips specifies the iSCSI IP addresses for the array if using the iSCSI
transport protocol.

3.3. Reference 327

Cinder Documentation, Release 19.3.1.dev10

In the examples below, two back ends are defined, one for pool A and one for pool B, and a common
volume_backend_name is used so that a single volume type definition can be used to allocate
volumes from both pools.

Example: iSCSI example back-end entries

Example: Fibre Channel example back-end entries

3. IfHTTPS is not enabled in the array, add lenovo_api_protocol = http ineach of the back-end
definitions.

4. If HTTPS is enabled, you can enable certificate verification with the option
driver_ssl_cert_verify = True. You may also use the driver_ssl_cert_path op-

328 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

tion to specify the path to a CA_BUNDLE file containing CAs other than those in the default
list.

. Modify the [DEFAULT] section of the cinder. conf file to add an enabled_backends parameter
specifying the back-end entries you added, and a default_volume_type parameter specifying
the name of a volume type that you will create in the next step.

Example: [DEFAULT] section changes

Create a new volume

type for
you added to the cinder.conf file.

each distinct volume_backend_name value that
The example below assumes that the same

volume_backend_name=lenovo-array option was specified in all of the entries, and
specifies that the volume type lenovo can be used to allocate volumes from any of them.

Example: Creating a volume type

—lenovo

openstack volume type create lenovo
openstack volume type set --property

lenovo-array.

7. After modifying the cinder. conf file, restart the cinder-volume service.

Driver-specific options

The following table contains the configuration options that are specific to the Lenovo drivers.

Table 46: Description of Lenovo configuration options

Configuration option Default

value

Description

lenovo_iscsi_ips =[]

(List of String) List of comma-separated target iSCSI IP ad-
dresses.

lenovo_pool_name = A

(String) Pool or Vdisk name to use for volume creation.

lenovo_pool_type = virtual

(String(choices=[linear, virtual])) linear (for VDisk) or virtual
(for Pool).

lenovo_api_protocol =https

(String(choices=[http, https])) Lenovo api interface protocol.
DEPRECATED

lenovo_verify_certificate
False

(Boolean) Whether to verify Lenovo array SSL certificate.
DEPRECATED

lenovo_verify_ certificate_pat
= None

h(String) Lenovo array SSL certificate path. DEPRECATED

3.3. Reference

329

Cinder Documentatio

n, Release 19.3.1.dev10

LINSTOR driver

The LINSTOR driver allows Cinder to use DRBD/LINSTOR instances.

Configuration

Set the following option in the cinder. conf file for the DRBD transport:

Or use the following for i

SCSI transport:

The following table contains the configuration options supported by the LINSTOR driver:

Table 47: Description of LINSTOR configuration options

Configuration option
= Default value

Description

linstor_autoplace_|
=0

cOmntoer) Autoplace replication count on volume deployment. 0 = Full cluster
replication without autoplace, 1 = Single node deployment without replica-
tion, 2 or greater = Replicated deployment with autoplace.

linstor_controller
= True

(R eklbasy True means Cinder node is a diskless LINSTOR node.

linstor_default_bl
= 4096

ofnsdgea) Default Block size for Image restoration. When using iSCSI trans-
port, this option specifies the block size.

linstor_default_st|

otSigimg)dadfanimfitorage Pool name for LINSTOR.

=DfltStorPool

linstor_default_uri(String) Default storage URI for LINSTOR.
= linstor://

localhost

linstor_default_vo
= drbd-vg

1 (Steingyddgtanitméolume Group name for LINSTOR. Not Cinder Volume.

= 4096

linstor_volume_downghlpat)fRefatdt volume downscale size in KiB = 4 MiB.

330

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

MacroSAN Fibre Channel and iSCSI drivers

The MacroSANFCDriver and MacroSANISCSIDriver Cinder drivers allow the MacroSAN Storage ar-
rays to be used for Block Storage in OpenStack deployments.

System requirements

To use the MacroSAN drivers, the following are required:

* MacroSAN Storage arrays with: - iSCSI or FC host interfaces - Enable RESTful service on the
MacroSAN Storage Appliance. (The service is automatically turned on in the device. You can
check if python /odsp/scripts/devop/devop.py is available via ps -aux|grep python.)

* Network connectivity between the OpenStack host and the array management interfaces
e HTTPS or HTTP must be enabled on the array

When creating a volume from image, install the multipath tool and add the following configuration
keys for each backend section or in [backend_defaults] section as a common configuration for all
backends in /etc/cinder/cinder. conf file:

When creating a instance from image, install the multipath tool and add the following configuration
keys in the [1ibvirt] configuration group of the /etc/nova/nova.conf file:

Supported operations

e Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.
* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Volume Migration (Host Assisted).

* Volume Migration (Storage Assisted).

* Retype a volume.

* Manage and unmanage a volume.

* Manage and unmanage a snapshot.

* Volume Replication.

* Thin Provisioning.

3.3. Reference 331

Cinder Documentation, Release 19.3.1.dev10

Configuring the array

1.

Verify that the array can be managed via an HTTPS connection.

Confirm that virtual pools A and B are present if you plan to use virtual pools for OpenStack
storage.

Edit the cinder. conf file to define a storage backend entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in a key=value format.

* The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

In the examples below, two back ends are defined, one for pool A and one for pool B.

* Add the following configuration keys in the configuration group of enabled_backends of the
/etc/cinder/cinder.conf file:

iSCSI example back-end entries

(continues on next page)

332

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

#macrosan_thin_lun_extent_size, macrosan_thin_lun_low_watermark, macrosan_
—thin_lun_high watermark.
san_thin_provision = False

#The name of Pool in the Storage.
macrosan_pool = Pool-a

#The default ports used for initializing connection.

#Separate the controller by semicolons (;")

#Separate the ports by comma (",)

macrosan_client_default eth-1:0:0, eth-1:0:1; eth-2:0:0, eth-2:0:1

#The switch to force detach volume when deleting
macrosan_force_unmap_itl True

#Set snapshot's resource ratio
macrosan_snapshot_resource_ratio 1

#Calculate the time spent on the operation in the log file.
macrosan_log_timing = True

Optional settings

#Set the thin lun's extent size when the san_thin_provision is True.
macrosan_thin_lun_extent_size = 8

#Set the thin lun's low watermark when the san_thin_provision is True.
#macrosan_thin_lun_low_watermark = 8

#Set the thin lun's high watermark when the san_thin_provision is True.
macrosan_thin_lun_high_watermark = 40

#The setting of Symmetrical Dual Active Storage
macrosan_sdas_ipaddrs 172.17.251.142, 172.17.251.143
macrosan_sdas_username = openstack
macrosan_sdas_password = openstack

#The setting of Replication Storage. When you set ip, you must set
#the macrosan_replication_destination_ports parameter.
macrosan_replication_ipaddrs 172.17.251.142, 172.17.251.143
macrosan_replication_username openstack
macrosan_replication_password = openstack

##The ports used for the Replication Storage.

#Separate the controller by semicolons (°,)

#Separate the ports by semicolons (/)
macrosan_replication_destination_ports = eth-1:0:0/eth-1:0:1, eth-2:0:0/
—~eth-2:0:1

(continues on next page)

3.3.

Reference 333

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

#Macrosan iscsi_clients list. You can configure multiple clients..
—Separate the ports by semicolons (/)

macrosan_client (devstack; controllerlname; eth-1:0:0/eth-1:0:1; eth-
—2:0:0/eth-2:0:1), (dev; controller2name; eth-1:0:0/eth-1:0:1; eth-2:0:0/
—eth-2:0:1)

[cinder-iscsi-b]

iscsi_protocol iscsi

iscsi_helper = tgtadm

volume_driver = cinder.volume.drivers.macrosan.driver.MacroSANISCSIDriver
volume_backend_name macrosan

use_multipath_for_image_xfer = True

san_ip 172.17.251.142, 172.17.251.143

san_login = openstack

san_password openstack

macrosan_pool = Pool-b

san_thin_provision = False

macrosan_force_unmap_itl = True

macrosan_snapshot_resource_ratio 1

macrosan_log_timing = True

macrosan_client_default eth-1:0:0, eth-1:0:1; eth-2:0:0, eth-2:0:1

macrosan_thin_lun_extent_size = 8
macrosan_thin_lun_low_watermark 8
macrosan_thin_lun_high_watermark = 40

macrosan_sdas_ipaddrs 172.17.251.142, 172.17.251.143
macrosan_sdas_username = openstack

macrosan_sdas_password = openstack
macrosan_replication_ipaddrs 172.17.251.142, 172.17.251.143
macrosan_replication_username = openstack
macrosan_replication_password = openstack
macrosan_replication_destination_ports = eth-1:0:0, eth-2:0:0
macrosan_client (devstack; controllerlname; eth-1:0:0; eth-2:0:0), (dev;
s controller2name; eth-1:0:0; eth-2:0:0)

Fibre Channel example backend entries

[DEFAULT]
enabled_backends cinder-fc-a, cinder-fc-b
rpc_response_timeout 300

[cinder-fc-a]

volume_driver cinder.volume.drivers.macrosan.driver.MacroSANFCDriver
volume_backend_name = macrosan

use_multipath_for_image_xfer = True

san_ip 172.17.251.142, 172.17.251.143

san_login = openstack

san_password = openstack

macrosan_pool Pool-a

(continues on next page)

334

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

san_thin_provision = False
macrosan_force_unmap_itl True
macrosan_snapshot_resource_ratio 1
macrosan_log_timing = True

#FC Zoning mode configured.
zoning_mode = fabric

#The number of ports used for initializing connection.
macrosan_fc_use_sp_port_nr = 1

#In the case of an FC connection, the configuration item associated with.,
—the port is maintained.
macrosan_fc_keep_mapped_ports = True

Optional settings

macrosan_thin_lun_extent_size = 8
macrosan_thin_lun_low_watermark = 8
macrosan_thin_lun_high_watermark = 40

macrosan_sdas_ipaddrs 172.17.251.142, 172.17.251.143
macrosan_sdas_username = openstack

macrosan_sdas_password = openstack
macrosan_replication_ipaddrs 172.17.251.142, 172.17.251.143
macrosan_replication_username = openstack
macrosan_replication_password = openstack
macrosan_replication_destination_ports = eth-1:0:0, eth-2:0:0

[cinder-fc-b]

volume_driver cinder.volume.drivers.macrosan.driver.MacroSANFCDriver
volume_backend_name = macrosan
use_multipath_for_image_xfer = True
san_ip 172.17.251.142, 172.17.251.143
san_login = openstack

san_password = openstack

macrosan_pool Pool-b
san_thin_provision = False
macrosan_force_unmap_itl True
macrosan_snapshot_resource_ratio 1
macrosan_log_timing = True

zoning_mode = fabric
macrosan_fc_use_sp_port_nr 1
macrosan_fc_keep_mapped_ports = True

macrosan_thin_lun_extent_size 8
macrosan_thin_lun_low_watermark 8
macrosan_thin_lun_high_watermark = 40
macrosan_sdas_ipaddrs 172.17.251.142, 172.17.251.143

(continues on next page)

3.3.

Reference 335

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

3. After modifying the cinder. conf file, restart the cinder-volume service.
4. Create and use volume types.

Create and use sdas volume types

openstack volume type create sdas
openstack volume type set --property True sdas

Create and use replication volume types

openstack volume type create replication
openstack volume type set --property True..
—replication

Configuration file parameters

This section describes mandatory and optional configuration file parameters of the MacroSAN volume
driver.

336 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 48: Mandatory parameters

Parame- | Default Description Appli-
ter value cable
to
vol- - indicates the name of the backend All
ume_backend_name
vol- cinder. | indicates the loaded driver All
ume_driven volume.
drivers.
lvm.
LVMVolumeDriver
use_multipathafseimage GHfese attach/detach volumes in cinder using multipath for vol- | All
ume to image and image to volume transfers.
san_thin_proVisien Default volume type setting, True is thin lun, and False is thick | All
lun.
macrosan_fofeuanmap | ilorce detach volume when deleting All
macrosan_loErtiming | Calculate the time spent on the operation in the log file. All
macrosan_sndpshot_resou$et sratpshots resource ratio. All
iscsi_helper tgtadm iSCSI target user-land tool to use. iSCSI
iscsi_proto¢al scsi Determines the iSCSI protocol for new iSCSI volumes, created | iSCSI
with tgtadm.
macrosan_¢l¥anelefaulf This is the default connection information for iscsi. This de- | iSCSI
fault configuration is used when no host related information is
obtained.
Zon- True FC Zoning mode configured. Fibre
ing_mode channel
macrosan_{fc luse_sp_partChe use_sp_port_nr parameter is the number of online FC | Fibre
ports used by the single-ended memory when the FC connec- | channel
tion is established in the switch non-all-pass mode. The max-
imum is 4.
macrosan_fc Thesp_mappdd_thertase of an FC connection, the configuration item asso- | Fibre
ciated with the port is maintained. channel

3.3. Reference

337

Cinder Documentation, Release 19.3.1.dev10

Table 49: Optional parameters

multiple clients. You can configure it in this
format: (hostname; client_name; spl_iscsi_port;
sp2_iscsi_port), E.g: (controllerl; decivel; eth-
1:0:0; eth-2:0:0),(controller2; decive2; eth-1:0:0/

eth-1:0:1; eth-2:0:0/ eth-2:0:1)

Parameter Default | Description Applicable
value to
macrosan_sdas_ipaddss The ip of Symmetrical Dual Active Storage All
macrosan_sdas_username The username of Symmetrical Dual Active Storage | All
macrosan_sdas_pasgword The password of Symmetrical Dual Active Storage | All
macrosan_replication -ipaddrs | The ip of replication Storage. | All
When you set ip, you must set the
macrosan_replication_destination_ports parameter.
macrosan_replication -username The username of replication Storage All
macrosan_replication -password The password of replication Storage All
macrosan_replication —destinatiofl lpoports of replication storage when using replica- | All
tion storage.
macrosan_thin_lun_e8tent_sizg Set the thin luns extent size when the | All
san_thin_provision is True.
macrosan_thin_lun_ldv_waterm8dt the thin luns low watermark when the | All
san_thin_provision is True.
macrosan_thin_lun_hth_waternSatk the thin luns high watermark when the | All
san_thin_provision is True.
macrosan_client True Macrosan iscsi_clients list. You can configure | All

Important:

Client_name has the following requirements: [a-zA-Z0-9.-_:], the maximum number of characters is

31

The following are the MacroSAN driver specific options that may be set in cinder.conf:

338

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 50: Description of MacroSAN configuration options

Configuration
option = Default
value

Description

macrosan_clien
= None

t (List of String) Macrosan iscsi_clients list. You can configure multiple clients.
You can configure it in this format: (host; client_name; spl_iscsi_port;
sp2_iscsi_port), (host; client_name; spl_iscsi_port; sp2_iscsi_port) Important
warning, Client_name has the following requirements: [a-zA-Z0-9.-_:], the max-
imum number of characters is 31 E.g: (controllerl; devicel; eth-1:0; eth-2:0),
(controller2; device2; eth-1:0/eth-1:1; eth-2:0/eth-2:1),

macrosan_clien
= None

t (Berfreg)]Ehis is the default connection ports name for iscsi. This default configu-
ration is used when no host related information is obtained.E.g: eth-1:0/eth-1:1;
eth-2:0/eth-2:1

macrosan_fc_ke
= True

efBoabged Ipohct sase of an FC connection, the configuration item associated with
the port is maintained.

macrosan_fc_us
=1

e (kpepartmane=4)) The use_sp_port_nr parameter is the number of online FC ports
used by the single-ended memory when the FC connection is established in the
switch non-all-pass mode. The maximum is 4

macrosan_force
= True

| {Bwapeain) Force disconnect while deleting volume

macrosan_log_t
=True

iriBoglean) Whether enable log timing

macrosan_pool
= None

(String) Pool to use for volume creation

macrosan_repli
eth-1:0/
eth-1:1,
eth-2:0/
eth-2:1

cdLisvmf deEnEn Staendpard s

macrosan_repli
= None

cdlisvof Htaddy MacroSAN replication devices ip addresses

macrosan_repli
= None

cdStromg)elsswaSAN replication devices password

macrosan_repli
= None

cqtromg ulerna®aN replication devices username

macrosan_sdas_
= None

iphikdod String) MacroSAN sdas devices ip addresses

macrosan_sdas_
= None

péSsugg)dMacroSAN sdas devices password

macrosan_sdas_
= None

ugStriagyeMacroSAN sdas devices username

macrosan_snaps
=1.0

hoFlaxesSatrampshbfisoresource ratio

macrosan_thin_
=8

LihntegarerBet shiezehin luns extent size

macrosan_thin_
=20

Linthggh Sea teerttankuns high watermark

macrosan_thin_
=5

Lintdger)wet ehnmérik luns low watermark

3.3. Reference

339

Cinder Documentation, Release 19.3.1.dev10

NEC Storage M series driver

NEC Storage M series are dual-controller disk arrays which support online maintenance. This driver
supports both iSCSI and Fibre Channel.

System requirements

Supported models:
Storage model Storage control software (firmware) | Disk type
M110, M310, M510, M710 | 0979 or later SSD/HDD hybrid
M310F, M710F 0979 or later all flash
M120, M320 1028 or later SSD/HDD hybrid
M320F 1028 or later all flash
Requirements:

* NEC Storage M series requires firmware revision 1028 or later to create more than 1024 volumes

in a pool.

* NEC Storage DynamicDataReplication license.

* (Optional) NEC Storage IO Load Manager license for QoS.

Supported operations

¢ Create, delete, attach, and detach volumes.

* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.
* Copy a volume to an image.
* Clone a volume.

» Extend a volume.

* Migrate a volume.

¢ Get volume statistics.

* Efficient non-disruptive volume backup.

* Manage and unmanage a volume.

* Manage and unmanage a snapshot.

* Attach a volume to multiple instances at once (multi-attach).

Revert a volume to a snapshot.

340

Chapter 3.

For operators

Cinder Documentation, Release 19.3.1.dev10

Preparation

Below is minimum preparation to a disk array. For details of each command, see the NEC Storage
Manager Command Reference (IS052).

¢ Common (iSCSI and Fibre Channel)
1. Initial setup
— Set IP addresses for management and BMC with the network configuration tool.
— Enter license keys. (iSMcfg licenserelease)
2. Create pools
— Create pools for volumes. (iSMcfg poolbind)
— Create pools for snapshots. (iSMcfg poolbind)
3. Create system volumes
— Create a Replication Reserved Volume (RSV) in one of pools. (iSMcfg ldbind)
— Create Snapshot Reserve Areas (SRAs) in each snapshot pool. (iSMcfg srabind)
4. (Optional) Register SSH public key
* iSCSI only
1. Set IP addresses of each iSCSI port. (iISMcfg setiscsiport)
2. Create LD Sets for each node. (iSMcfg addldset)
3. Register initiator names of each node to the corresponding LD Set. (iSMcfg addldsetinitiator)
* Fibre Channel only
1. Start access control. (iSMcfg startacc)
2. Create LD Sets for each node. (iSMcfg addldset)
3. Register WWPNSs of each node to the corresponding LD Set. (iSMcfg addldsetpath)

Configuration

Set the following in your cinder. conf, and use the following options to configure it.

If you use Fibre Channel:

If you use iSCSI:

Also, set volume_backend_name.

3.3. Reference 341

Cinder Documentation, Release 19.3.1.dev10

This table shows configuration options for NEC Storage M series driver.

Table 51: Description of NEC Storage M Series configuration op-

tions

Configuration option
Default value

Description

nec_actual_free_capac
=False

i tPBoolean) Return actual free capacity.

nec_auto_accesscontrol
= True

(Boolean) Configure access control automatically.

nec_backend_max_1d_couninteger) Maximum number of managing sessions.

=1024

nec_backup_ldname_formd$tring) M-Series Storage LD name format for snapshots.

=1X:%s

nec_backup_pools = []

(List of String) M-Series Storage backup pool number to be used.

nec_cv_ldname_format

LX:__ControlVolume_%xh

(String) M-Series Storage Control Volume name format.

nec_diskarray_name
<>

(String) Diskarray name of M-Series Storage.

nec_ismcli_£fip = None

(IPAddress) FIP address of M-Series Storage iSMCLI.

nec_ismcli_password
=<>

(String) Password for M-Series Storage iSMCLI.

nec_ismcli_privkey
<>

(String) Filename of RSA private key for M-Series Storage iSMCLI.

nec_ismcli_user =<>

(String) User name for M-Series Storage iSMCLI.

nec_ismview_alloptimiz&Boolean) Use legacy iSMCLI command with optimization.

=False

nec_ismview_dir
/tmp/nec/cinder

(String) Output path of iSMview file.

nec_ldname_format
LX:%s

(String) M-Series Storage LD name format for volumes.

nec_ldset = <>

(String) M-Series Storage LD Set name for Compute Node.

nec_pools =[]

(List of String) M-Series Storage pool numbers list to be used.

nec_queryconfig_view
=False

(Boolean) Use legacy iSMCLI command.

nec_ssh_pool_port_numbéteger) Port number of ssh pool.

=22

nec_unpairthread_time
= 3600

bi{Integer) Timeout value of Unpairthread.

nec_iscsi_portals_per]| ¢bmteger) Max number of iSCSI portals per controller. 0 => unlimited.

=0

This option is deprecated and may be removed in the next release. DEP-
RECATED

342

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Required options

* nec_ismcli_fip FIP address of M-Series Storage.
* nec_ismcli_user User name for M-Series Storage iSMCLI.
* nec_ismcli_password Password for M-Series Storage iSMCLI.

* nec_ismcli_privkey RSA secretkey file name for iSMCLI (for public key authentication only).
Encrypted RSA secret key file cannot be specified.

* nec_diskarray_name Diskarray name of M-Series Storage. This parameter must be specified to
configure multiple groups (multi back end) by using the same storage device (storage device
that has the same nec_ismcli_£fip). Specify the disk array name targeted by the relevant
config-group for this parameter.

» nec_backup_pools Specify one pool number where snapshots are created. Multiple pools are
not supported.

Timeout configuration

* rpc_response_timeout Set the timeout value in seconds. If three or more volumes can be cre-
ated at the same time, the reference value is 30 seconds multiplied by the number of volumes
created at the same time. Also, Specify nova parameters below in nova. conf file.

* timeout server (HAProxy configuration) In addition, you need to edit the following
value in the HAProxy configuration file (/etc/haproxy/haproxy.cfg) in an environment
where HAProxy is used.

Run the service haproxy reloadcommand after editing the value to reload the HAProxy
settings.

Note: The OpenStack environment set up using Red Hat OpenStack Platform Director may
be set to use HAProxy.

3.3. Reference 343

Cinder Documentation, Release 19.3.1.dev10

Configuration example for /etc/cinder/cinder.conf
When using one config-group

* When using nec_ismcli_password to authenticate iSMCLI (Password authentication):

When using nec_ismcli_privkey to authenticate iSMCLI (Public key authentication):

When using multi config-group (multi-backend)

* Four config-groups (backends)
Storagel, Storage2, Storage3, Storage4

* Two disk arrays
200000255C3A21CC(192.168.1.10) Example for using config-group, Storagel and Storage2
2000000991000316(192.168.1.20) Example for using config-group, Storage3 and Storage4

(continues on next page)

344 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

NetApp unified driver

The NetApp unified driver is a Block Storage driver that supports multiple storage families and protocols.
Currently, the only storage family supported by this driver is the clustered Data ONTAP. The storage
protocol refers to the protocol used to initiate data storage and access operations on those storage systems
like iSCSI and NFS. The NetApp unified driver can be configured to provision and manage OpenStack
volumes on a given storage family using a specified storage protocol.

Also, the NetApp unified driver supports over subscription or over provisioning when thin provisioned
Block Storage volumes are in use. The OpenStack volumes can then be used for accessing and storing
data using the storage protocol on the storage family system. The NetApp unified driver is an extensible
interface that can support new storage families and protocols.

3.3. Reference 345

Cinder Documentation, Release 19.3.1.dev10

Note: With the Juno release of OpenStack, Block Storage has introduced the concept of storage pools,
in which a single Block Storage back end may present one or more logical storage resource pools from
which Block Storage will select a storage location when provisioning volumes.

In releases prior to Juno, the NetApp unified driver contained some scheduling logic that determined
which NetApp storage container (namely, a FlexVol volume for Data ONTAP) that a new Block Storage
volume would be placed into.

With the introduction of pools, all scheduling logic is performed completely within the Block Storage
scheduler, as each NetApp storage container is directly exposed to the Block Storage scheduler as a
storage pool. Previously, the NetApp unified driver presented an aggregated view to the scheduler and
made a final placement decision as to which NetApp storage container the Block Storage volume would
be provisioned into.

NetApp clustered Data ONTAP storage family

The NetApp clustered Data ONTAP storage family represents a configuration group which provides
Compute instances access to clustered Data ONTAP storage systems. At present it can be configured in
Block Storage to work with iSCSI and NFS storage protocols.

NetApp iSCSI configuration for clustered Data ONTAP

The NetApp iSCSI configuration for clustered Data ONTAP is an interface from OpenStack to clustered
Data ONTAP storage systems. It provisions and manages the SAN block storage entity, which is a NetApp
LUN that can be accessed using the iSCSI protocol.

The iSCSI configuration for clustered Data ONTAP is a direct interface from Block Storage to the clus-
tered Data ONTAP instance and as such does not require additional management software to achieve the
desired functionality. It uses NetApp APIs to interact with the clustered Data ONTAP instance.

Configuration options

Configure the volume driver, storage family, and storage protocol to the NetApp unified driver, clustered
Data ONTAP, and iSCSI respectively by setting the volume_driver, netapp_storage_family and
netapp_storage_protocol options in the cinder. conf file as follows:

Note: To use the iSCSI protocol, you must override the default value of netapp_storage_protocol
with iscsi. Note that this is not the same value that is reported by the driver to the scheduler as stor-
age_protocol, which is always 1SCST (case sensitive).

346 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 52: Description of NetApp cDOT iSCSI driver configuration

| name2:dest_agg

options

Con- | Description

figu-

ration

option

= De-

fault

value

[DE-

FAULT]

netappl I8gimg) Administrative user account name used to access the storage system or proxy server.

None

netappl IStingt¥his option defines the type of operating system that will access a LUN exported

= from Data ONTAP; it is assigned to the LUN at the time it is created.

None

netapp| 18trispahisrgsenvdettomines if storage space is reserved for LUN allocation. If enabled,

= LUNs are thick provisioned. If space reservation is disabled, storage space is allocated on

enabled demand.

netapp| gassmprdassword for the administrative user account specified in the netapp_login option.

None

netapp| [§8tlng)iikissgrinthispastetdamestrict provisioning to the specified pools. Specify the value

= (. | of this option to be a regular expression which will be applied to the names of objects from

+) the storage backend which represent pools in Cinder. This option is only utilized when the
storage protocol is configured to use iSCSI or FC.

netapp| XbmkhostiotMaliprepta o _wiqiionaries to represent the aggregate mapping between

= source and destination back ends when using whole back end replication. For ev-

None ery source aggregate associated with a cinder pool (NetApp FlexVol), you would
need to specify the destination aggregate on the replication target device. A repli-
cation target device is configured with the configuration option replication_device.
Specify this option as many times as you have replication devices. Each entry
takes the standard dict config form: netapp_replication_aggregate_map = back-
end_id:<name_of_replication_device_section>,src_aggr_namel:dest_aggr_namel,src_aggr|

netapp| $8mmeg) Theshonatmame (or IP address) for the storage system or proxy server.

None

netappl $hrteger)pbhet TCP port to use for communication with the storage system or proxy server.

= If not specified, Data ONTAP drivers will use 80 for HTTP and 443 for HTTPS.

None

netapp| sFlmtimglirdipd)iElre quantity to be multiplied by the requested volume size to ensure enough

= 1.2 | spaceisavailable on the virtual storage server (Vserver) to fulfill the volume creation request.
Note: this option is deprecated and will be removed in favor of reserved_percentage in the
Mitaka release.

netapp| shappdmde maiissae thiwénudconds to wait for existing SnapMirror transfers to complete

= before aborting during a failover.

3600

netapp| $bomagleThamstdgage family type used on the storage system; the only valid value is on-

= tap_cluster for using clustered Data ONTAP.

ontap_cluster
s Soage T heetorapd i .

3.3. Reference 347
None
netapp| (Bamsgpotie trypeport protocol used when communicating with the storage system or proxy

Cinder Documentation, Release 19.3.1.dev10

Note: If you specify an account in the netapp_login that only has virtual storage server (Vserver)
administration privileges (rather than cluster-wide administration privileges), some advanced features of
the NetApp unified driver will not work and you may see warnings in the Block Storage logs.

Note: The driver supports iSCSI CHAP uni-directional authentication. To enable it, set the
use_chap_auth option to True.

Tip: For more information on these options and other deployment and operational scenarios, visit the
NetApp OpenStack website.

NetApp NFS configuration for clustered Data ONTAP

The NetApp NFS configuration for clustered Data ONTAP is an interface from OpenStack to a clustered
Data ONTAP system for provisioning and managing OpenStack volumes on NFS exports provided by
the clustered Data ONTAP system that are accessed using the NFS protocol.

The NFS configuration for clustered Data ONTAP is a direct interface from Block Storage to the clustered
Data ONTAP instance and as such does not require any additional management software to achieve the
desired functionality. It uses NetApp APIs to interact with the clustered Data ONTAP instance.

Configuration options

Configure the volume driver, storage family, and storage protocol to NetApp unified driver, clustered
Data ONTAP, and NFS respectively by setting the volume_driver, netapp_storage_family, and
netapp_storage_protocol options in the cinder. conf file as follows:

348 Chapter 3. For operators

http://netapp.io/openstack/

Cinder Documentation, Release 19.3.1.dev10

Table 53: Description of NetApp cDOT NFS driver configuration

options

Con- | Description

figu-

ration

option

= De-

fault

value

[DE-

FAULT]

expiry| thrtegemiFhit eption specifies the threshold for last access time for images in the NFS image

=720 | cache. When a cache cleaning cycle begins, images in the cache that have not been accessed
in the last M minutes, where M is the value of this parameter, will be deleted from the cache
to create free space on the NFS share.

netapp| ¢Spyd)fTbisdopitoal spadifies the path of the NetApp copy offload tool binary. Ensure that

= the binary has execute permissions set which allow the effective user of the cinder-volume

None process to execute the file.

netapp| Sstng)yPhis option defines the type of operating system for all initiators that can access a

= LUN. This information is used when mapping LUNSs to individual hosts or groups of hosts.

None

netapp| 18gimg) Administrative user account name used to access the storage system or proxy server.

None

netapp| I8tris)t¥his option defines the type of operating system that will access a LUN exported

= from Data ONTAP; it is assigned to the LUN at the time it is created.

None

netapp| g3ssmgrassword for the administrative user account specified in the netapp_login option.

None

netapp/ Stlngaiieissyrivahispstetdannestrict provisioning to the specified pools. Specify the value

= (. | of this option to be a regular expression which will be applied to the names of objects from

+) the storage backend which represent pools in Cinder. This option is only utilized when the
storage protocol is configured to use iSCSI or FC.

netapp| ¥bmkhost)oMaliprepta oé_uwigiionaries to represent the aggregate mapping between

= source and destination back ends when using whole back end replication. For ev-

None ery source aggregate associated with a cinder pool (NetApp FlexVol), you would
need to specify the destination aggregate on the replication target device. A repli-
cation target device is configured with the configuration option replication_device.
Specify this option as many times as you have replication devices. Each entry
takes the standard dict config form: netapp_replication_aggregate_map = back-
end_id:<name_of_replication_device_section>,src_aggr_namel:dest_aggr_namel,src_aggr|

netapp| $8mex) Tbhs hnamame (or IP address) for the storage system or proxy server.

None

netapp| $hrteger)pbhet TCP port to use for communication with the storage system or proxy server.

= If not specified, Data ONTAP drivers will use 80 for HTTP and 443 for HTTPS.

None

netapp| shappdmde maiissae thiwénudconds to wait for existing SnapMirror transfers to complete

= before aborting during a failover.

3600

ontap_

WT@E%—I:? ge family type used on the storage system; the only vatid vatue is 051-9
ed‘l% uster for using clustered Data ONTAP. 4

cluster

netapp

| $Somaglehestovapd protocol to be used on the data path with the storage system.

| name2:dest_agg

Cinder Documentation, Release 19.3.1.dev10

Note: Additional NetApp NFS configuration options are shared with the generic NFS driver. These
options can be found here: Description of NFS storage configuration options.

Note: If you specify an account in the netapp_login that only has virtual storage server (Vserver)
administration privileges (rather than cluster-wide administration privileges), some advanced features of
the NetApp unified driver will not work and you may see warnings in the Block Storage logs.

NetApp NFS Copy Offload client

A feature was added in the Icehouse release of the NetApp unified driver that enables Image service
images to be efficiently copied to a destination Block Storage volume. When the Block Storage and
Image service are configured to use the NetApp NFS Copy Offload client, a controller-side copy will
be attempted before reverting to downloading the image from the Image service. This improves image
provisioning times while reducing the consumption of bandwidth and CPU cycles on the host(s) running
the Image and Block Storage services. This is due to the copy operation being performed completely
within the storage cluster.

The NetApp NFS Copy Offload client can be used in either of the following scenarios:

* The Image service is configured to store images in an NFS share that is exported from a NetApp
FlexVol volume and the destination for the new Block Storage volume will be on an NFS share
exported from a different FlexVol volume than the one used by the Image service. Both FlexVols
must be located within the same cluster.

* The source image from the Image service has already been cached in an NFS image cache within
a Block Storage back end. The cached image resides on a different Flex Vol volume than the desti-
nation for the new Block Storage volume. Both FlexVols must be located within the same cluster.

To use this feature, you must configure the Image service, as follows:
* Set the default_store configuration option to file.

» Set the filesystem_store_datadir configuration option to the path to the Image service NFS
export.

» Set the show_image_direct_url configuration option to True.
* Set the show_multiple_locations configuration option to True.

* Setthe filesystem_store_metadata_file configuration option to a metadata file. The meta-
data file should contain a JSON object that contains the correct information about the NFS export
used by the Image service.

To use this feature, you must configure the Block Storage service, as follows:

* Set the netapp_copyoffload_tool_path configuration option to the path to the NetApp Copy
Offload binary.

Important: This feature requires that:

— The storage system must have Data ONTAP v8.2 or greater installed.

350 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

— The vStorage feature must be enabled on each storage virtual machine (SVM, also known as
a Vserver) that is permitted to interact with the copy offload client.

— To configure the copy offload workflow, enable NFS v4.0 or greater and export it from the
SVM.

Tip: To download the NetApp copy offload binary to be utilized in conjunction with the
netapp_copyoffload_tool_path configuration option, please visit the Utility Toolchest page at the
NetApp Support portal (login is required).

Tip: For more information on these options and other deployment and operational scenarios, visit the
NetApp OpenStack website.

NetApp-supported extra specs for clustered Data ONTAP

Extra specs enable vendors to specify extra filter criteria. The Block Storage scheduler uses the specs
when the scheduler determines which volume node should fulfill a volume provisioning request. When
you use the NetApp unified driver with a clustered Data ONTAP storage system, you can leverage extra
specs with Block Storage volume types to ensure that Block Storage volumes are created on storage
back ends that have certain properties. An example of this is when you configure QoS, mirroring, or
compression for a storage back end.

Extra specs are associated with Block Storage volume types. When users request volumes of a particular
volume type, the volumes are created on storage back ends that meet the list of requirements. An example
of this is the back ends that have the available space or extra specs. Use the specs in the following table
to configure volumes. Define Block Storage volume types by using the openstack volume type set
command.

3.3. Reference 351

http://mysupport.netapp.com/NOW/download/tools/ntap_openstack_nfs/
http://netapp.io/openstack/

Cinder Documentation, Release 19.3.1.dev10

Table 54: Description of extra specs options for NetApp Unified
Driver with Clustered Data ONTAP

Extra Typeg Description
spec
netapp_rabdringpemit the candidate volume list based on one of the following raid types: raid4,
raid_dp.

netapp_di Skringpémit the candidate volume list based on one of the following disk types: ATA,
BSAS, EATA, FCAL, FSAS, LUN, MSATA, SAS, SATA, SCSI, XATA,
XSAS, or SSD.

netapp : qoStrng Spgcifydhp hame of a QoS policy group, which defines measurable Service Level
Objectives, that should be applied to the OpenStack Block Storage volume at the
time of volume creation. Ensure that the QoS policy group object within Data ON-
TAP should be defined before an OpenStack Block Storage volume is created, and
that the QoS policy group is not associated with the destination FlexVol volume.
netapp : qo Bquddeyt@rowplie iadaptet teinstruct the driver to use an Adaptive QoS policy group
for the netapp:qos_policy_group setting. Leave this unset or set to <is> False in
order to use a standard QoS policy group for the netapp:qos_policy_group setting.
netapp_mi Bowtedhimit the candidate volume list to only the ones that are mirrored on the storage
controller.

netapp_uhmBiartediphit the candidate volume list to only the ones that are not mirrored on the storage
controller.

netapp_dedugwlednimit the candidate volume list to only the ones that have deduplication enabled on
the storage controller.

netapp_npdsdlpdnimit the candidate volume list to only the ones that have deduplication disabled
on the storage controller.

netapp_cpBmodsdnionit the candidate volume list to only the ones that have compression enabled on
the storage controller.

netapp_np isibthe candidate volume list to only the ones that have compression disabled on
the storage controller.

netapp_thBuoghednimst treechndidate volume list to only the ones that support thin provisioning on
the storage controller.

netapp_thBdolpdmmisthenedididate volume list to only the ones that support thick provisioning on
the storage controller.

NexentaStor 4.x NFS and iSCSI drivers

NexentaStor is an Open Source-driven Software-Defined Storage (OpenSDS) platform delivering unified
file (NFS and SMB) and block (FC and iSCSI) storage services, runs on industry standard hardware,
scales from tens of terabytes to petabyte configurations, and includes all data management functionality
by default.

For NexentaStor 4.x user documentation, visit https://nexenta.com/products/downloads/nexentastor.

! Please note that this extra spec has a colon (:) in its name because it is used by the driver to assign the QoS policy group
to the OpenStack Block Storage volume after it has been provisioned.

% In the Juno release, these negative-assertion extra specs are formally deprecated by the NetApp unified driver. Instead
of using the deprecated negative-assertion extra specs (for example, netapp_unmirrored) with a value of true, use the
corresponding positive-assertion extra spec (for example, netapp_mirrored) with a value of false.

352 Chapter 3. For operators

https://nexenta.com/products/downloads/nexentastor

Cinder Documentation, Release 19.3.1.dev10

Supported operations

* Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.
* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Migrate a volume.

* Change volume type.

Nexenta iSCSI driver

The Nexenta iSCSI driver allows you to use a NexentaStor appliance to store Compute volumes. Every
Compute volume is represented by a single zvol in a predefined Nexenta namespace. The Nexenta iSCSI
volume driver should work with all versions of NexentaStor.

The NexentaStor appliance must be installed and configured according to the relevant Nexenta documen-
tation. A volume and an enclosing namespace must be created for all iSCSI volumes to be accessed
through the volume driver. This should be done as specified in the release-specific NexentaStor docu-
mentation.

The NexentaStor Appliance iSCSI driver is selected using the normal procedures for one or multiple
backend volume drivers.

You must configure these items for each NexentaStor appliance that the iSCSI volume driver controls:

1. Make the following changes on the volume node /etc/cinder/cinder.conf file.

3.3. Reference 353

Cinder Documentation, Release 19.3.1.dev10

Note: nexenta_volume represents a zpool which is called volume on NS appliance. It must be pre-
created before enabling the driver.

1. Save the changes to the /etc/cinder/cinder. conf file and restart the cinder-volume service.

Nexenta NFS driver

The Nexenta NFS driver allows you to use NexentaStor appliance to store Compute volumes via NFS.
Every Compute volume is represented by a single NFS file within a shared directory.

While the NFS protocols standardize file access for users, they do not standardize administrative actions
such as taking snapshots or replicating file systems. The OpenStack Volume Drivers bring a common
interface to these operations. The Nexenta NFS driver implements these standard actions using the ZFS
management plane that is already deployed on NexentaStor appliances.

The Nexenta NFS volume driver should work with all versions of NexentaStor. The NexentaStor appli-
ance must be installed and configured according to the relevant Nexenta documentation. A single-parent
file system must be created for all virtual disk directories supported for OpenStack. This directory must
be created and exported on each NexentaStor appliance. This should be done as specified in the release-
specific NexentaStor documentation.

You must configure these items for each NexentaStor appliance that the NFS volume driver controls:

1. Make the following changes on the volume node /etc/cinder/cinder.conf file.

Note: Add your list of Nexenta NFS servers to the file you specified with the
nexenta_shares_config option. For example, this is how this file should look:

192.168.1.200:/volumes/VOLUME_NAME/NFS_SHARE http://USER:PASSWORD@192.168.
—1.200:8457
192.168.1.201:/volumes/VOLUME_NAME/NFS_SHARE http://USER:PASSWORD@192.168.
-1.201:8457
192.168.1.202:/volumes/VOLUME_NAME/NFS_SHARE http://USER:PASSWORD@192.168.
—1.202:8457

Each line in this file represents an NFS share. The first part of the line is the NFS share URL, the second
line is the connection URL to the NexentaStor Appliance.

354 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Driver options

Nexenta Driver supports these options:

3.3. Reference 355

Cinder Documentation, Re

lease 19.3.1.dev10

Table 55: Description of Nexenta driver configuration options

Configuration option = De-
fault value

Description

[DEFAULT]

nexenta_blocksize = | (Integer) Block size for datasets

4096

nexenta_chunksize = | (Integer) NexentaEdge iSCSI LUN object chunk size
32768

nexenta_client_address

(String) NexentaEdge iSCSI Gateway client address for non-VIP ser-
vice

nexenta_dataset_compres
=0on

s®ming) Compression value for new ZFS folders.

nexenta_dataset_dedup
=off

(String) Deduplication value for new ZFS folders.

nexenta_dataset_descrip

t{®¥ming) Human-readable description for the folder.

nexenta_host =

(String) IP address of Nexenta SA

nexenta_iscsi_target_pqg
= 3260

rtlalcgroy Nexenta target portal port

nexenta_mount_point_bas
= $§state_path/mnt

e(String) Base directory that contains NFS share mount points

nexenta_nbd_symlinks_di
= /dev/disk/by-path

r(String) NexentaEdge logical path of directory to store symbolic links
to NBDs

nexenta_nms_cache_volrg
= True

otBoolean) If set True cache NexentaStor appliance volroot option
value.

nexenta_password
nexenta

(String) Password to connect to Nexenta SA

nexenta_rest_port =0

(Integer) HTTP(S) port to connect to Nexenta REST API server. If it
is equal zero, 8443 for HTTPS and 8080 for HTTP is used

nexenta_rest_protocol
= auto

(String) Use http or https for REST connection (default auto)

nexenta_rrmgr_compressi
=0

otinteger) Enable stream compression, level 1..9. 1 - gives best speed;
9 - gives best compression.

nexenta_rrmgr_connectig
=2

ndnteger) Number of TCP connections.

nexenta_rrmgr_tcp_buf_g
= 4096

idateger) TCP Buffer size in KiloBytes.

nexenta_shares_config
/etc/cinder/
nfs_shares

(String) File with the list of available nfs shares

nexenta_sparse = False

(Boolean) Enables or disables the creation of sparse datasets

nexenta_sparsed_volumes
= True

(Boolean) Enables or disables the creation of volumes as sparsed files
that take no space. If disabled (False), volume is created as a regular
file, which takes a long time.

nexenta_target_group_pr
= cinder/

efStxing) Prefix for iSCSI target groups on SA

nexenta_target_prefix
ign.1986-03.com.
sun:02:cinder-

(String) IQN prefix for iSCSI targets

nexenta_use_https
True

(Boolean) Use secure HTTP for REST connection (default True)

3Bgxenta_user = admin

(String) User name to connect to Nexente%mer 3. For operator

nexenta_volume = cinder

(String) SA Pool that holds all volumes

]

Cinder Documentation, Release 19.3.1.dev10

NexentaStor 5.x NFS and iSCSI drivers

NexentaStor is an Open Source-driven Software-Defined Storage (OpenSDS) platform delivering unified
file (NFS and SMB) and block (FC and iSCSI) storage services. NexentaStor runs on industry standard
hardware, scales from tens of terabytes to petabyte configurations, and includes all data management
functionality by default.

For user documentation, see the Nexenta Documentation Center.

Supported operations

¢ Create, delete, attach, and detach volumes.

* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Migrate a volume.

* Change volume type.

* Get volume statistics.

* Revert a volume to a snapshot.

* Manage and unmanage volumes and snapshots.

 List manageable volumes and snapshots.

* Create, modify, delete, and list consistency groups.

* Create, modify, delete, and list snapshots of consistency groups.
* Create consistency group from consistency group or consistency group snapshot.
» Support consistency groups capability to generic volume groups.

* Attach a volume to multiple servers simultaneously (multiattach).

iSCSI driver

The NexentaStor appliance must be installed and configured according to the relevant Nexenta documen-
tation. A pool and an enclosing namespace must be created for all iSCSI volumes to be accessed through
the volume driver. This should be done as specified in the release-specific NexentaStor documentation.

The NexentaStor Appliance iSCSI driver is selected using the normal procedures for one or multiple
back-end volume drivers.

You must configure these items for each NexentaStor appliance that the iSCSI volume driver controls:

1. Make the following changes on the volume node /etc/cinder/cinder.conf file.

3.3. Reference 357

https://nexenta.com/products/documentation

Cinder Documentation, Release 19.3.1.dev10

Note: nexenta_volume represents a zpool, which is called pool on NS 5.x appliance. It must be
pre-created before enabling the driver.

Volume group does not need to be pre-created, the driver will create it if does not exist.

2. Save the changes to the /etc/cinder/cinder. conf file and restart the cinder-volume service.

NFS driver

The Nexenta NFS driver allows you to use NexentaStor appliance to store Compute volumes via NFS.
Every Compute volume is represented by a single NFS file within a shared directory.

While the NFS protocols standardize file access for users, they do not standardize administrative actions
such as taking snapshots or replicating file systems. The OpenStack Volume Drivers bring a common
interface to these operations. The Nexenta NFS driver implements these standard actions using the ZFS
management plane that already is deployed on NexentaStor appliances.

The NexentaStor appliance must be installed and configured according to the relevant Nexenta documen-
tation. A single-parent file system must be created for all virtual disk directories supported for OpenStack.
Create and export the directory on each NexentaStor appliance.

You must configure these items for each NexentaStor appliance that the NFS volume driver controls:

1. Make the following changes on the volume node /etc/cinder/cinder.conf file.

(continues on next page)

358 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

IP address or Hostname of NexentaStor host (string value)
nas_host=HOST-IP

Port for Rest API (integer value)
nexenta_rest_port=8443

Path to parent filesystem (string value)
nas_share_path=POOL/FILESYSTEM

Recommended NFS options
nas_mount_options=vers=3,minorversion=0,timeo=100,nolock

2. Create filesystem on appliance and share via NFS. For example:

"securityContexts": [
{"readWriteList": [{"allow": true, "etype": "fgnip", "entity": "1.1.1.1
~"}]
"root": [{"allow": true, "etype": "fgnip", "entity": "1.1.1.1"}],
"securityModes": ["sys"]}]

3. Create ACL for the filesystem. For example:

"type": "allow"

"principal"”: "everyone@"

"permissions" "list_directory","read_data","add_file",6 "write_data"
"add_subdirectory", "append_data", "read_xattr", "write_xattr", "execute"
"delete_child", "read_attributes", "write_attributes", "delete", "read_acl"
"write_acl", "write_owner","synchronize"

"flags" "file_inherit","dir_inherit"

Driver options

Nexenta Driver supports these options:

3.3. Reference 359

Cinder Documentation, Release 19.3.1.dev10

Table 56: Description of NexentaStor 5 driver configuration op-

tions

Configuration option
= Default value

Description

[DEFAULT]

nexenta_dataset_com
=on

pr8sfignCompression value for new ZFS folders.

nexenta_dataset_ded
=off

u¥String) Deduplication value for new ZFS folders.

nexenta_dataset_des

ct$phignHuman-readable description for the folder.

nexenta_host =

(String) IP address of Nexenta SA

nexenta_iscsi_targe
= 3260

t (horgar) Nexenta target portal port

nexenta_mount_point
= §state_path/mnt

| Baseng) Base directory that contains NFS share mount points

nexenta_ns5_blocksi
=32

zéInteger) Block size for datasets

nexenta_rest_port
=0

(Integer) HTTP(S) port to connect to Nexenta REST API server. If it is
equal zero, 8443 for HTTPS and 8080 for HTTP is used

nexenta_rest_protoc
= auto

p1String) Use http or https for REST connection (default auto)

nexenta_sparse
False

(Boolean) Enables or disables the creation of sparse datasets

nexenta_sparsed_vol
=True

w@Bsolean) Enables or disables the creation of volumes as sparsed files that
take no space. If disabled (False), volume is created as a regular file, which
takes a long time.

nexenta_use_https
=True

(Boolean) Use secure HTTP for REST connection (default True)

nexenta_user
admin

(String) User name to connect to Nexenta SA

nexenta_volume
cinder

(String) SA Pool that holds all volumes

nexenta_volume_grou
=1iscsi

p (String) Volume group for ns5

Nimble & Alletra 6k Storage volume driver

Nimble Storage fully integrates with the OpenStack platform through the Nimble Cinder driver, allowing
a host to configure and manage Nimble and Alletra 6k Storage array features through Block Storage

interfaces.

Support for iSCSI storage protocol is available with NimbleISCSIDriver Volume Driver class and Fibre
Channel with NimbleFCDriver.

Support for the Liberty release and above is available from Nimble OS 2.3.8 or later.

Support for the Ocata release and above is available from Nimble OS 3.6 or later.

For Xena release, Nimble OS 5.3 or later is used and Alletra OS 6.0 or later is used.

360

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Nimble and Alletra 6k Storage Cinder driver does not support port binding with multiple interfaces on
the same subnet due to existing limitation in os-brick. This is partially referenced in the bug https:
//bugs.launchpad.net/os-brick/+bug/1722432 but does not resolve for multiple software iscsi ifaces.

Supported operations

¢ Create, delete, clone, attach, and detach volumes

* Create and delete volume snapshots

* Create a volume from a snapshot

* Copy an image to a volume

* Copy a volume to an image

* Extend a volume

* Get volume statistics

* Manage and unmanage a volume

* Enable encryption and default performance policy for a volume-type extra-specs
* Force backup of an in-use volume

* Retype a volume

* Create a Thinly Provisioned Volume

* Attach a volume to multiple servers simultaneously (multiattach)
* Volume Revert to Snapshot

* Create, list, update, and delete consistency groups

* Create, list, and delete consistency group snapshots

Nimble and Alletra 6k Storage driver configuration

Update the file /etc/cinder/cinder.conf with the given configuration. Note: These parameters
apply to Alletra 6k Storage as well.

In case of a basic (single back-end) configuration, add the parameters within the [default] section as
follows.

In case of multiple back-end configuration, for example, configuration which supports multiple Nim-
ble Storage arrays or a single Nimble Storage array with arrays from other vendors, use the following
parameters.

3.3. Reference 361

https://bugs.launchpad.net/os-brick/+bug/1722432
https://bugs.launchpad.net/os-brick/+bug/1722432

Cinder Documentation, Release 19.3.1.dev10

In case of multiple back-end configuration, Nimble Storage volume type is created and associated with a
back-end name as follows.

Note: Single back-end configuration users do not need to create the volume type.

openstack volume type create NIMBLE_VOLUME_TYPE
openstack volume type set --property NIMBLE_BACKEND_
—NAME NIMBLE_VOLUME_TYPE

This section explains the variables used above:
NIMBLE_MGMT_IP Management IP address of Nimble/Alletra 6k Storage array/group.

NIMBLE_USER Nimble/Alletra 6k Storage account login with minimum power user (admin) priv-
ilege if RBAC is used.

NIMBLE_PASSWORD Password of the admin account for Nimble/Alletra 6k array.

NIMBLE_VOLUME_DRIVER Use either cinder.volume.drivers.nimble.NimbleISCSIDriver for
iSCSI or cinder.volume.drivers.nimble.NimbleFCDriver for Fibre Channel.

NIMBLE_BACKEND_NAME A volume back-end name which is specified in the cinder. conf file.
This is also used while assigning a back-end name to the Nimble volume type.

NIMBLE_VOLUME_TYPE The Nimble volume-type which is created from the CLI and associated
with NIMBLE_BACKEND_NAME.

Note: Restart the cinder-api, cinder-scheduler, and cinder-volume services after updat-
ing the cinder. conf file.

Nimble driver extra spec options

The Nimble volume driver also supports the following extra spec options:
nimble:encryption=yes Used to enable encryption for a volume-type.

nimble:perfpol-name=PERF POL_NAME PERF POL_NAME is the name of a performance policy
which exists on the Nimble/Alletra 6k array and should be enabled for every volume in a volume

type.

362 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Note: When upgrading to OpenStack deployment to Victoria or later, do unset
nimble:multi-initiator extra-spec and set multiattach="'<is> True'.

nimble:dedupe=true Used to enable dedupe support for a volume-type.

nimble:iops-limit=IOPS_LIMIT Used to set the IOPS_LIMIT between 256 and 4294967294 for all
volumes created for this volume-type.

nimble:folder=FOLDER_NAME FOLDER_NAME is the name of the folder which exists on the Nim-
ble/Alletra 6k array and should be enabled for every volume in a volume type

These extra-specs can be enabled by using the following command:

openstack volume type set --property VALUE VOLUME_TYPE

VOLUME_TYPE is the Nimble volume type and KEY and VALUE are the options mentioned above.

Configuration options

The Nimble/Alletra 6k storage driver supports these configuration options:

Table 57: Description of Nimble configuration options

Configuration option = Default value Description

nimble_pool_name = default (String) Nimble Controller pool name
nimble_subnet_label = * (String) Nimble Subnet Label
nimble_verify_cert_path = None (String) Path to Nimble Array SSL certificate

nimble_verify_certificate = False | (Boolean) Whether to verify Nimble SSL Certificate

Multipathing

In OpenStack environments where Cinder block device multipathing is desired there are a few things to
consider.

Configuring mulitpathing varies by system depending on the environment. In a scenario where solely
Nimble devices are being created by Cinder, the following /etc/multipath.conf file may be used:

defaults {
user_friendly_names yes
find_multipaths no
}

blacklist {
devnode "*(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
devnode "*hd[a-z]"

device {
vendor ".*"
product ".*"
}

(continues on next page)

3.3. Reference 363

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

blacklist_exceptions {
device {
vendor "Nimble"
product "Server"

}
}
devices {
device {
vendor "Nimble"
product "Server"
path_grouping_policy group_by_prio
prio "alua"
hardware_handler "1 alua”
path_selector "service-time 0"
path_checker tur
features "1 queue_if_no_path"
no_path_retry 30
failback immediate
fast_io_fail_tmo 5
dev_loss_tmo infinity
rr_min_io_rq 1
rr_weight uniform
3
}

After making changes to /etc/multipath.conf, the multipath subsystem needs to be reconfigured:

multipathd reconfigure

Tip: The latest best practices for Nimble devices can be found in the HPE Nimble Storage Linux
Integration Guide found on https://infosight.hpe.com

Important: OpenStack Cinder is currently not compatible with the HPE Nimble Storage Linux Toolkit
(NLT)

Nova needs to be configured to pickup the actual multipath device created on the host.

In /etc/nova/nova.conf, add the following to the [1ibvirt] section:

Note: In versions prior to Newton, the option was called iscsi_use_multipath

After editing the Nova configuration file, the nova-conductor service needs to be restarted.

364 Chapter 3. For operators

https://infosight.hpe.com

Cinder Documentation, Release 19.3.1.dev10

Tip: Depending on which particular OpenStack distribution is being used, Nova may use a different
configuration file than the default.

To validate that instances get properly connected to the multipath device, inspect the instance devices:

virsh dumpxml <Instance ID Instance Name @ Instance UUID>

Open-E JovianDSS iSCSI driver

The JovianISCSIDriver allows usage of Open-E JovianDSS Data Storage Solution to be used as Block
Storage in OpenStack deployments.

Supported operations

* Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.
* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Migrate a volume with back-end assistance.

Configuring

Edit with your favourite editor Cinder config file. It can be found at /etc/cinder/cinder.conf

Add the field enabled_backends with value open-e-jdss-0:

open 0

Provide settings to Open-E JovianDSS driver by adding open-e-jdss-0 description:

open 0

14

.2016-04.

128
82

(continues on next page)

3.3. Reference 365

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

3260

192.168.0.40

Table 58: Open-E JovianDSS configuration options

Option

Default value

Description

backend_name

Open-EJovianDSS

Name of the back end

chap_password_len

12

Length of the unique generated CHAP pass-
word.

driver_use_ssl True Use SSL to send requests to Open-E Jo-
vianDSS[1]

driver_ssl_cert_veriiie Verify authenticity of Open-E JovianDSS[1]
certificate

driver_ssl_cert_patNone Path to the Open-E JovianDSS[1] certificate for

verification

iscsi_target_prefj

xiqn.2016-04.com.open-
e:01:cinder-

Prefix that will be used to form target name for
volume

jovian_pool Pool-0 Pool name that is going to be used. Must be
created in [2]

jovian_block_size | 128K Block size for newly created volumes

san_api_port 82 Rest port according to the settings in [1]

target_port 3260 Port for iSCSI connections

volume_driver Location of the driver source code

san_hosts Comma separated list of IP address of the
Open-E JovianDSS

san_login admin Must be set according to the settings in [1]

san_password admin Open-E Jovian DSS password [1], should be
changed

san_thin_provision False Using thin provisioning for new volumes

1. Open-E JovianDSS Web interface/System Settings/REST Access

2. Pool can be created by going to Open-E JovianDSS Web interface/Storage

More info about Open-E

Multiple Pools

JovianDSS

In order to add another Open-E JovianDSS Pool, create a copy of Open-E JovianDSS config in cinder.conf

file.
For instance if you want to add Pool-1 located on the same host as Pool-0. You extend cinder.conf
file like:
open 0. open 1
(continues on next page)
366 Chapter 3. For operators

http://blog.open-e.com/?s=how+to

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

open 0
open 0
14
True
False
.2016-04.
0
128
82
3260
192.168.0.40
True
open 1
open 1
14
True
False
.2016-04.
1
128
82
3260
192.168.0.50
True
HA Cluster

To utilize High Availability feature of Open-E JovianDSS:
1. Guide on configuring Pool to high availability cluster
2. Set jovian_hosts with list of virtual IPs associated with this Pool

For instance if you have Pool-2 with 2 virtual IPs 192.168.21.100 and 192.168.31.100 the configuration
file will look like:

open 2
open 2
14
True
False
.2016-04.
0

(continues on next page)

3.3. Reference 367

https://www.youtube.com/watch?v=juWIQT_bAfM

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

128
82
3260

192.168.21.100, 192.168.31.100

Feedback

Please address problems and proposals to andrei.perepiolkin @open-e.com

ProphetStor Fibre Channel and iSCSI drivers

ProhetStor Fibre Channel and iSCSI drivers add support for ProphetStor Flexvisor through the Block
Storage service. ProphetStor Flexvisor enables commodity x86 hardware as software-defined storage
leveraging well-proven ZFS for disk management to provide enterprise grade storage services such as
snapshots, data protection with different RAID levels, replication, and deduplication.

The DPLFCDriver and DPLISCSIDriver drivers run volume operations by communicating with the
ProphetStor storage system over HTTPS.

Supported operations

e Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.
* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

¢ Extend a volume.

Enable the Fibre Channel or iSCSI drivers

The DPLFCDriver and DPLISCSIDriver are installed with the OpenStack software.
1. Query storage pool id to configure dpl_pool of the cinder. conf file.

a. Log on to the storage system with administrator access.

ssh root@STORAGE_IP_ADDRESS

b. View the current usable pool id.

368 Chapter 3. For operators

mailto:andrei.perepiolkin@open-e.com

Cinder Documentation, Release 19.3.1.dev10

$ flvcli show pool list

c. Use d5bd40b58ea84e9da®9dcf25a01fdc®7 to configure the dpl_pool of /etc/
cinder/cinder. conf file.

Note: Other management commands can be referenced with the help command flvcli
-h.

2. Make the following changes on the volume node /etc/cinder/cinder.conf file.

IP address of SAN controller (string value)
STORAGE IP ADDRESS

Username for SAN controller (string value)
USERNAME

Password for SAN controller (string value)
PASSWORD

Use thin provisioning for SAN volumes? (boolean value)
true

The port that the iSCSI daemon is listening on. (integer value)
3260

DPL pool uuid in which DPL volumes are stored. (string value)
d5bd40b58ea84e9da®9dcf25a01£fdcO7

DPL port number. (integer value)
8357

Uncomment one of the next two option to enable Fibre channel or iSCSI
FIBRE CHANNEL (uncomment the next line to enable the FC driver)
#volume_driver=cinder.volume.drivers.prophetstor.dpl_fc.DPLFCDriver

1SCSI (uncomment the next line to enable the iSCSI driver)
#volume_driver=cinder.volume.drivers.prophetstor.dpl_iscsi.DPLISCSIDriver

3. Save the changes to the /etc/cinder/cinder. conf file and restart the cinder-volume service.

The ProphetStor Fibre Channel or iSCSI drivers are now enabled on your OpenStack system. If you
experience problems, review the Block Storage service log files for errors.

The following table contains the options supported by the ProphetStor storage driver.

3.3. Reference 369

Cinder Documentation, Release 19.3.1.dev10

Table 59: Description of ProphetStor Fibre Channel and iSCSi
drivers configuration options

Configuration option = Default | Description

value

[DEFAULT]

dpl_pool = (String) DPL pool uuid in which DPL volumes are stored.

dpl_port = 8357 (Port number) DPL port number.

iscsi_port = 3260 (Port number) The port that the iSCSI daemon is listening
on

san_ip = (String) IP address of SAN controller

san_login = admin (String) Username for SAN controller

san_password = (String) Password for SAN controller

san_thin_provision = True (Boolean) Use thin provisioning for SAN volumes?

Pure Storage iSCSI and Fibre Channel volume drivers

The Pure Storage FlashArray volume drivers for OpenStack Block Storage interact with configured Pure
Storage arrays and support various operations.

Support for iSCSI storage protocol is available with the PureISCSIDriver Volume Driver class, and Fibre
Channel with PureFCDriver.

All drivers are compatible with Purity FlashArrays that support the REST API version 1.2, 1.3, 1.4, 1.5,
1.13, and 1.14 (Purity 4.0.0 and newer). Some features may require newer versions of Purity.

Limitations and known issues

If you do not set up the nodes hosting instances to use multipathing, all network connectivity will use
a single physical port on the array. In addition to significantly limiting the available bandwidth, this
means you do not have the high-availability and non-disruptive upgrade benefits provided by FlashArray.
Multipathing must be used to take advantage of these benefits.

Supported operations

* Create, delete, attach, detach, retype, clone, and extend volumes.
* Create a volume from snapshot.

* Create, list, and delete volume snapshots.

* Create, list, update, and delete consistency groups.

* Create, list, and delete consistency group snapshots.

* Revert a volume to a snapshot.

e Manage and unmanage a volume.

* Manage and unmanage a snapshot.

* Get volume statistics.

* Create a thin provisioned volume.

370 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

* Replicate volumes to remote Pure Storage array(s).

QoS support for the Pure Storage drivers include the ability to set the following capabilities in the Open-
Stack Block Storage API cinder.api.contrib.qos_spec_manage qos specs extension module:

* maxIOPS - Maximum number of IOPs allowed for volume. Range: 100 - 100M
* maxBWS - Maximum bandwidth limit in MB/s. Range: 1 - 524288 (512GB/s)

The qos keys above must be created and asscoiated to a volume type. For information on how to set
the key-value pairs and associate them with a volume type see the volume qos section in the OpenStack
Client command list.

Configure OpenStack and Purity

You need to configure both your Purity array and your OpenStack cluster.

Note: These instructions assume that the cinder-api and cinder-scheduler services are installed
and configured in your OpenStack cluster.

Configure the OpenStack Block Storage service

In these steps, you will edit the cinder. conf file to configure the OpenStack Block Storage service to
enable multipathing and to use the Pure Storage FlashArray as back-end storage.

1. Install Pure Storage PyPI module. A requirement for the Pure Storage driver is the installation of
the Pure Storage Python SDK version 1.4.0 or later from PyPL.

pip install purestorage

2. Retrieve an API token from Purity. The OpenStack Block Storage service configuration requires
an API token from Purity. Actions performed by the volume driver use this token for authorization.
Also, Purity logs the volume drivers actions as being performed by the user who owns this API
token.

If you created a Purity user account that is dedicated to managing your OpenStack Block Storage
volumes, copy the API token from that user account.

Use the appropriate create or list command below to display and copy the Purity API token:

e To create a new API token:

pureadmin create --api-token USER

The following is an example output:

pureadmin create --api-token pureuser

* To list an existing API token:

3.3. Reference 371

https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/volume-qos.html

Cinder Documentation, Release 19.3.1.dev10

pureadmin list --api-token --expose USER

The following is an example output:

pureadmin list --api-token --expose pureuser

3. Copy the API token retrieved (902fdca3-7e3f-d2e4-d6a6-24c2285feld9 from the examples
above) to use in the next step.

4. Edit the OpenStack Block Storage service configuration file. The following sample /etc/cinder/
cinder.conf configuration lists the relevant settings for a typical Block Storage service using a
single Pure Storage array:

Replace the following variables accordingly:

PURE_VOLUME_DRIVER Use either cinder.volume.drivers.pure.PureISCSIDriver
for iSCSI or cinder.volume.drivers.pure.PureFCDriver for Fibre Channel connec-
tivity.

IP_PURE_MGMT The IP address of the Pure Storage arrays management interface or a domain
name that resolves to that IP address.

PURE_API_TOKEN The Purity Authorization token that the volume driver uses to perform vol-
ume management on the Pure Storage array.

Note: The volume driver automatically creates Purity host objects for initiators as needed. If CHAP
authentication is enabled via the use_chap_auth setting, you must ensure there are no manually created
host objects with IQNs that will be used by the OpenStack Block Storage service. The driver will only
modify credentials on hosts that it manages.

Note: If using the PureFCDriver it is recommended to use the OpenStack Block Storage Fibre Channel
Zone Manager.

372 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Volume auto-eradication

To enable auto-eradication of deleted volumes, snapshots, and consistency groups on deletion, modify
the following option in the cinder. conf file:

By default, auto-eradication is disabled and all deleted volumes, snapshots, and consistency groups are
retained on the Pure Storage array in a recoverable state for 24 hours from time of deletion.

Setting host personality

The host personality determines how the Purity system tunes the protocol used between the array and
the initiator. To ensure the array works optimally with the host, set the personality to the name of the
host operating or virtual memory system. Valid values are aix, esxi, hitachi-vsp, hpux, oracle-vm-server,
solaris, and vms. If your system is not listed as one of the valid host personalities, do not set the option.
By default, the host personality is not set.

To set the host personality, modify the following option in the cinder. conf file:

Note: pure_host_personality is available from Purity REST API version 1.14, and affects only
newly-created hosts.

SSL certification

To enable SSL certificate validation, modify the following option in the cinder. conf file:

By default, SSL certificate validation is disabled.

To specify a non-default path to CA_Bundle file or directory with certificates of trusted CAs:

Note: This requires the use of Pure Storage Python SDK > 1.4.0.

3.3. Reference 373

Cinder Documentation, Release 19.3.1.dev10

Replication configuration

Add the following to the back-end specification to specify another Flash Array to replicate to:

Where PURE2_NAUME is the name of the remote Pure Storage system, IP_PURE2_MGMT is the management
IP address of the remote array, and PURE2_API_TOKEN is the Purity Authorization token of the remote
array.

The REPLICATION_TYPE value for the type key can be either sync or async

If the type is sync volumes will be created in a stretched Pod. This requires two arrays pre-configured
with Active Cluster enabled. You can optionally specify uniform as true or false, this will instruct
the driver that data paths are uniform between arrays in the cluster and data connections should be made
to both upon attaching.

Note that more than one replication_device line can be added to allow for multi-target device repli-
cation.

A volume is only replicated if the volume is of a volume-type that has the extra spec
replication_enabled set to <is> True. You can optionally specify the replication_type key
to specify <in> sync or <in> async to choose the type of replication for that volume. If not specified
it will default to async.

To create a volume type that specifies replication to remote back ends with async replication:

openstack volume type create ReplicationType

openstack volume type set --property o
—ReplicationType

openstack volume type set --property o
—~ReplicationType

The following table contains the optional configuration parameters available for async replication con-
figuration with the Pure Storage array.

Table 60: Pure Storage replication configuration options

Option Description Default
pure_replica_interval_defaultSnapshot replication interval in seconds. 3600
pure_replica_retention_short_Retaimn dfsiabshots on target for this time (in sec- | 14400
onds).
pure_replica_retention_long_|tRemipaowdaingehapitots for each day. 3
pure_replica_retention_long_|tRemidefiapdhots per day on target for this time (in
days).
pure_replication_pg_name Pure Protection Group name to use for async repli- | cinder-d
cation (will be created if it does not exist).
pure_replication_pod_name Pure Pod name to use for sync replication (will be | cinder-p
created if it does not exist).

Note: failover-host is only supported from the primary array to any of the multiple secondary arrays,

374 Chapter 3. For operators

roup

od

Cinder Documentation, Release 19.3.1.dev10

but subsequent failover-host is only supported back to the original primary array.

Note: pure_replication_pg_name and pure_replication_pod_name should not be changed after
volumes have been created in the Cinder backend, as this could have unexpected results in both replication
and failover.

Automatic thin-provisioning/oversubscription ratio

This feature allows the driver to calculate the array oversubscription ratio as (total provisioned/actual
used). By default this feature is enabled.

To disable this feature and honor the hard-coded configuration option max_over_subscription_ratio
add the following option in the cinder. conf file

[puredriver-1]

Note: Arrays with very good data reduction rates (compression/data deduplication/thin provisioning)
can get very large oversubscription rates applied.

Scheduling metrics

A large number of metrics are reported by the volume driver which can be useful in implementing more
control over volume placement in multi-backend environments using the driver filter and weighter meth-
ods.

Metrics reported include, but are not limited to:

total_capacity_gb
free_capacity_gb
provisioned_capacity
total_volumes
total_snapshots
total_hosts
total_pgroups
writes_per_sec
reads_per_sec
input_per_sec
output_per_sec
usec_per_read_op
usec_per_read_op
queue_depth
replication_type

Note: All total metrics include non-OpenStack managed objects on the array.

3.3. Reference 375

Cinder Documentation, Release 19.3.1.dev10

In conjunction with QOS extra-specs, you can create very complex algorithms to manage volume place-
ment. More detailed documentation on this is available in other external documentation.

Configuration Options

The following list all Pure driver specific configuration options that can be set in cinder.conf":

Table 61: Description of Pure configuration options

Configuration
option = Default
value

Description

pure_api_token
= None

(String) REST API authorization token.

pure_automatic_|
=True

méBoolearshramipicatin_deddrivine an oversubscription ratio based on the cur-
rent total data reduction values. If used this calculated value will override the
max_over_subscription_ratio config option.

pure_eradicate_|
=False

ofBdelbanny When enabled, all Pure volumes, snapshots, and protection groups
will be eradicated at the time of deletion in Cinder. Data will NOT be recoverable
after a delete with this set to True! When disabled, volumes and snapshots will
go into pending eradication state and can be recovered.

pure_host_persqg
= None

neStifmg(choices=[aix, esxi, hitachi-vsp, hpux, oracle-vm-server, solaris, vms,
None])) Determines how the Purity system tunes the protocol used between the
array and the initiator.

pure_iscsi_cidy
=0.0.0.0/0

(String) CIDR of FlashArray iSCSI targets hosts are allowed to connect to. De-
fault will allow connection to any IPv4 address. This parameter now supports
IPv6 subnets. Ignored when pure_iscsi_cidr_list is set.

pure_iscsi_cidy
= None

_{liistof String) Comma-separated list of CIDR of FlashArray iSCSI targets hosts
are allowed to connect to. It supports IPv4 and IPv6 subnets. This parameter
supersedes pure_iscsi_cidr.

pure_replica_in
= 3600

ténvegkri8hapdhot replication interval in seconds.

pure_replica_re
=7

t@mtdganr) Retajn senpshiet€ et tay on target for this time (in days.)

pure_replica_re
=3

t@mteigen) Rerajn temnnpery sdepstetkafiol €ach day.

pure_replica_re
= 14400

t@mtdgan) Blecain_atlesmapdbdesudrt target for this time (in seconds.)

pure_replicatig
= cinder-group

n($tgingarteire Protection Group name to use for async replication (will be created
if it does not exist).

pure_replicatig
= cinder-pod

n(Stoihgndwre Pod name to use for sync replication (will be created if it does not
exist).

376

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Quobyte driver

The Quobyte volume driver enables storing Block Storage service volumes on a Quobyte storage back
end. Block Storage service back ends are mapped to Quobyte volumes and individual Block Storage
service volumes are stored as files on a Quobyte volume. Selection of the appropriate Quobyte volume
is done by the aforementioned back end configuration that specifies the Quobyte volume explicitly.

Note: Note the dual use of the term volume in the context of Block Storage service volumes and in the
context of Quobyte volumes.

For more information see the Quobyte support webpage.

Supported operations

The Quobyte volume driver supports the following volume operations:
* Create, delete, attach, and detach volumes

* Secure NAS operation (Starting with Mitaka release secure NAS operation is optional but still
default)

* Create and delete a snapshot

* Create a volume from a snapshot
» Extend a volume

* Clone a volume

* Copy a volume to image

* Generic volume migration (no back end optimization)

Note: When running VM instances off Quobyte volumes, ensure that the Quobyte Compute service
driver has been configured in your OpenStack cloud.

Configuration

To activate the Quobyte volume driver, configure the corresponding volume_driver parameter:

The following table contains the configuration options supported by the Quobyte driver:

3.3. Reference 377

http://www.quobyte.com/
http://support.quobyte.com/
https://wiki.openstack.org/wiki/Nova/Quobyte
https://wiki.openstack.org/wiki/Nova/Quobyte

Cinder Documentation, Release 19.3.1.dev10

Table 62: Description of Quobyte USP configuration options

Configura-
tion option
= Default
value

Description

quobyte_cli
= None

e$trinty Path to a Quobyte Client configuration file.

quobyte_mou

$state_path
mnt

ntSpiaig)Bdsesdir containing the mount point for the Quobyte volume.

quobyte_ove
=False

r{Byoleahynéeate new volumes from the volume_from_snapshot_cache by creat-
ing overlay files instead of full copies. This speeds up the creation of volumes
from this cache. This feature requires the options quobyte_qcow2_volumes and
quobyte_volume_from_snapshot_cache to be set to True. If one of these is set to
False this option is ignored.

quobyte_gco
=True

wZBwolaame € reate volumes as QCOW?2 files rather than raw files.

quobyte_spal
= True

r$Bdoleahiyfisrsate volumes as sparse files which take no space. If set to False, volume
is created as regular file.

quobyte_vol
=False

B odleom) Crapsho tadechevolumes from merged snapshots to speed up creation of
multiple volumes from a single snapshot.

quobyte_vol
= None

ugstring) Quobyte URL to the Quobyte volume using e.g. a DNS SRV record (pre-
ferred) or a host list (alternatively) like quobyte://<DIR host1>, <DIR host2>/<volume
name>

SandStone iSCSI Driver

SandStone USP

volume can be used as a block storage resource in the OpenStack Block Storage driver

that supports iSCSI protocols.

Before to go, yo

u should have installed SandStoneUSP.

System requirements

To use the Sand

version
3.2.3+

Cluster
SandStone USP

Stone driver, the following are required:

» Network connectivity between the OpenStack host and the SandStone USP management interfaces.

* HTTPS or HTTP must be enabled on the array.

When creating a volume from image, add the following configuration keys in the [DEFAULT] configura-
tion group of the /etc/cinder/cinder. conf file:

378

Chapter 3. For operators

http://www.szsandstone.com

Cinder Documentation, Release 19.3.1.dev10

Configuration example

The following table contains the configuration options supported by the SandStone driver.

General parameters

Parameter Description

volume_driver Indicates the loaded driver

volume_backend_name Indicates the name of the backend

san_ip IP addresses of the management interfaces of SandStone USP

san_login Storage system user name

san_password Storage system password

default_sandstone _target_ips Default IP address of the iSCSI target port that is provided for com-
pute nodes

chap_username CHAP authentication username

chap_password CHAP authentication password

sandstone_pool SandStone storage pool resource name

initiator_assign _sand- | Initiator assign target with assign ip

stone_target_ip

1. After modifying the cinder. conf file, restart the cinder-volume service.
2. Create and use volume types.

Create and use sds-iscsi volume types

openstack volume type create sandstone
openstack volume type set --property
—sandstone

sds-iscsi.,

3.3. Reference

379

Cinder Documentation, Release 19.3.1.dev10

Seagate Array Fibre Channel and iSCSI drivers

The STXFCDriver and STXISCSIDriver Cinder drivers allow the Seagate Technology (STX) storage
arrays to be used for Block Storage in OpenStack deployments.

System requirements

To use the Seagate drivers, the following are required:
* Seagate storage array with:
— iSCSI or FC host interfaces
— G28x firmware or later
» Network connectivity between the OpenStack host and the array management interfaces

* The HTTPS or HTTP protocol must be enabled on the array

Supported operations

¢ Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

» Extend a volume.

* Migrate a volume with back-end assistance.
* Retype a volume.

* Manage and unmanage a volume.

Configuring the array

1. Verify that the array can be managed via an HTTPS connection. HTTP can also be used if
driver_use_ssl is set to (or defaults to) False in the cinder. conf file.

Confirm that virtual pools A and B are present if you plan to use virtual pools for OpenStack
storage.

If you plan to use vdisks instead of virtual pools, create or identify one or more vdisks to be used
for OpenStack storage; typically this will mean creating or setting aside one disk group for each of
the A and B controllers.

2. Edit the cinder.conf file to define a storage back-end entry for each storage pool on the array
that will be managed by OpenStack. Each entry consists of a unique section name, surrounded by
square brackets, followed by options specified in a key=value format.

380 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

The seagate_pool_name value specifies the name of the storage pool or vdisk on the array.

The volume_backend_name option value can be a unique value, if you wish to be able to
assign volumes to a specific storage pool on the array, or a name that is shared among multiple
storage pools to let the volume scheduler choose where new volumes are allocated.

3. The following cinder.conf options generally have identical values for each backend section on
the array:

volume_driver specifies the Cinder driver name.
san_ip specifies the IP addresses or host names of the arrays management controllers.

san_login and san_password specify the username and password of an array user account
with manage privileges

driver_use_ssl must be set to True to enable use of the HTTPS protocol.

seagate_iscsi_ips specifies the iSCSI IP addresses for the array if using the iSCSI trans-
port protocol

In the examples below, two back ends are defined, one for pool A and one for pool B, and a common
volume_backend_name is used so that a single volume type definition can be used to allocate
volumes from both pools.

iSCSI example back-end entries

Fibre Channel example back-end entries

(continues on next page)

3.3. Reference 381

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

4. If any volume_backend_name value refers to a vdisk rather than a virtual pool, add an additional
statement seagate_backend_type = linear to that back-end entry.

5. If HTTPS is enabled, you can enable certificate verification with the option
driver_ssl_cert_verify = True. You may also use the driver_ssl_cert_path pa-
rameter to specify the path to a CA_BUNDLE file containing CAs other than those in the default
list.

6. Modify the [DEFAULT] section of the cinder . conf file to add an enabled_backends parameter
specifying the backend entries you added, and a default_volume_type parameter specifying the
name of a volume type that you will create in the next step.

Example of [DEFAULT] section changes

7. Create a new volume type for each distinct volume_backend name value that
you added in the cinder.conf file. The example below assumes that the same
volume_backend_name=seagate-array option was specified in all of the entries, and
specifies that the volume type seagate can be used to allocate volumes from any of them.

Example of creating a volume type

openstack volume type create seagate
openstack volume type set --property seagate-array..
—,seagate

8. After modifying the cinder. conf file, restart the cinder-volume service.

382 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Driver-specific options

The following table contains the configuration options that are specific to the Seagate drivers.

Table 63: Description of Seagate configuration options

Configuration option = Default | Description
value
seagate_iscsi_ips=1[] (List of String) List of comma-separated target iSCSI IP ad-
dresses.

seagate_pool_name = A (String) Pool or vdisk name to use for volume creation.
seagate_pool_type = | (String(choices=[linear, virtual])) linear (for vdisk) or virtual (for
virtual virtual pool).

SolidFire

The SolidFire Cluster is a high performance all SSD iSCSI storage device that provides massive scale
out capability and extreme fault tolerance. A key feature of the SolidFire cluster is the ability to set and
modify during operation specific QoS levels on a volume for volume basis. The SolidFire cluster offers
this along with de-duplication, compression, and an architecture that takes full advantage of SSDs.

To configure the use of a SolidFire cluster with Block Storage, modify your cinder. conf file as follows:

Warning: Older versions of the SolidFire driver (prior to Icehouse) created a unique account pre-
fixed with $cinder-volume-service-hostname-$tenant-id on the SolidFire cluster for each
tenant. Unfortunately, this account formation resulted in issues for High Availability (HA) instal-
lations and installations where the cinder-volume service can move to a new node. The current
default implementation does not experience this issue as no prefix is used. For installations created
on a prior release, the OLD default behavior can be configured by using the keyword hostname in
sf_account_prefix.

Note: The SolidFire driver creates names for volumes on the back end using the format UUID-<cinder-
id>. This works well, but there is a possibility of a UUID collision for customers running multiple
clouds against the same cluster. In Mitaka the ability was added to eliminate the possibility of collisions
by introducing the sf_volume_prefix configuration variable. On the SolidFire cluster each volume will
be labeled with the prefix, providing the ability to configure unique volume names for each cloud. The
default prefix is UUID-.

Changing the setting on an existing deployment will result in the existing volumes being inaccessible.
To introduce this change to an existing deployment it is recommended to add the Cluster as if it were a
second backend and disable new deployments to the current back end.

3.3. Reference 383

Cinder Document

ation, Release 19.3.1.dev10

Table 64: Description of SolidFire configuration options

Configuration
option = Default
value

Description

sf_account_pref
= None

1i@String) Create SolidFire accounts with this prefix. Any string can be used here,
but the string hostname is special and will create a prefix using the cinder node
hostname (previous default behavior). The default is NO prefix.

sf_allow_tenant
=False

_@=olean) Allow tenants to specify QOS on create

sf_api_port
443

(Port(min=0, max=65535)) SolidFire API port. Useful if the device api is behind
a proxy on a different port.

sf_api_request|
=30

| tdme@et(min=30)) Sets time in seconds to wait for an api request to complete.

sf_cluster_pairn
=60

iflgtepbm@oint=3)) Sets time in seconds to wait for clusters to complete pairing.

sf_emulate_512
= True

(Boolean) Set 512 byte emulation on volume creation;

sf_enable_vag
=False

(Boolean) Utilize volume access groups on a per-tenant basis.

sf_provisioning

maxProvisioned{

_&adiag(choices=[maxProvisionedSpace, usedSpace])) Change how SolidFire re-
ports used space and provisioning calculations. If this parameter is set to

paseelSpace, the driver will report correct values as expected by Cinder thin pro-
visioning.

sf_svip = None

(String) Overrides default cluster SVIP with the one specified. This is required
or deployments that have implemented the use of VLANs for iSCSI networks in
their cloud.

sf_volume_clone
=600

_{ntepenimin=60)) Sets time in seconds to wait for a clone of a volume or snapshot
to complete.

sf_volume_creat
=60

e(Intirgeoimiin=30)) Sets time in seconds to wait for a create volume operation to
complete.

sf_volume_pairi
= 3600

ndnteizee@nin=30)) Sets time in seconds to wait for a migrating volume to com-
plete pairing and sync.

sf_volume_prefi
= UUID-

x(String) Create SolidFire volumes with this prefix. Volume names are of the form
<sf_volume_prefix><cinder-volume-id>. The default is to use a prefix of UUID-.

Supported operat

Create, delete,

Clone a volum

ions

attach, and detach volumes.

Create, list, and delete volume snapshots.
Create a volume from a snapshot.
Copy an image to a volume.

Copy a volume to an image.

c.

Extend a volume.

Retype a volume.

384

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

* Manage and unmanage a volume.
* Consistency group snapshots.

QoS support for the SolidFire drivers includes the ability to set the following capabilities in the OpenStack
Block Storage API cinder.api.contrib.qos_specs_manage qos specs extension module:

* minIOPS - The minimum number of IOPS guaranteed for this volume. Default = 100.
e maxIOPS - The maximum number of IOPS allowed for this volume. Default = 15,000.
* burstIOPS - The maximum number of IOPS allowed over a short period of time. Default = 15,000.

* scaledIOPS - The presence of this key is a flag indicating that the above IOPS should be scaled
by the following scale values. It is recommended to set the value of scaledIOPS to True, but any
value will work. The absence of this key implies false.

* scaleMin - The amount to scale the minlOPS by for every 1GB of additional volume size. The
value must be an integer.

» scaleMax - The amount to scale the maxIOPS by for every 1GB of additional volume size. The
value must be an integer.

* scaleBurst - The amount to scale the burstlOPS by for every 1GB of additional volume size. The
value must be an integer.

The QoS keys above no longer require to be scoped but must be created and associated to a volume type.
For information about how to set the key-value pairs and associate them with a volume type, see the
volume qos section in the OpenStackClient command list.

Note: When using scaledIOPS, the scale values must be chosen such that the constraint minlOPS <=
maxIOPS <= burstIOPS is always true. The driver will enforce this constraint.

Storage Performance Development Kit driver

Storage Performance Development Kit (SPDK) is a user space, polled-mode, asynchronous, lockless
NVMe driver. It provides zero-copy, highly parallel access directly to an SSD from a user space appli-
cation. SPDK provides NVMe-oF target that is capable of serving disks over the network or to other
processes.

Preparation
SPDK NVMe-oF target installation

Follow instructions available on https://spdk.io/doc/nvmf.html to install and configure environment with
SPDK NVMe-oF target application. Starting from Ussuri release SPDK release v19.10 or higher is
required.

3.3. Reference 385

https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/volume-qos.html
https://spdk.io/doc/nvmf.html

Cinder Documentation, Release 19.3.1.dev10

Storage pools configuration

SPDK Cinder driver requires storage pools to be configured upfront in SPDK NVMe-oF target applica-
tion. SPDK driver uses Logical Volume Stores (LVS) as storage pools. Details on configuring LVS are
available on https://spdk.io/doc/logical_volumes.html. After storage pools are configured remote access
has to be enabled. Launch scripts/rpc_http_proxy.py script from SPDK directory to start an http
server that will manage requests from volume driver.

Supported operations

* Create, delete, attach, and detach volumes.
* Create, list, and delete volume snapshots.
* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

¢ Get volume statistics.

Configuration

Use the following options to configure for the SPDK NVMe-oF transport:

Table 65: Description of SPDK configuration options

Configuration option = Default | Description

value

spdk_max_queue_depth = 64 (Integer(min=1, max=128)) Queue depth for rdma transport.

spdk_rpc_ip = None (String) The NVMe target remote configuration IP address.

spdk_rpc_password = None (String) The NVMe target remote configuration password.

spdk_rpc_port = 8000 (Port(min=0, max=65535)) The NVMe target remote configura-
tion port.

spdk_rpc_protocol =http (String(choices=[http, https])) Protocol to be used with SPDK
RPC proxy

spdk_rpc_username = None (String) The NVMe target remote configuration username.

386 Chapter 3. For operators

https://spdk.io/doc/logical_volumes.html

Cinder Documentation, Release 19.3.1.dev10

StorPool volume driver

StorPool is distributed data storage software running on standard x86 servers. StorPool aggregates the
performance and capacity of all drives into a shared pool of storage distributed among the servers. Within
this storage pool the user creates thin-provisioned volumes that are exposed to the clients as block devices.
StorPool consists of two parts wrapped in one package - a server and a client. The StorPool server allows
a hypervisor to act as a storage node, while the StorPool client allows a hypervisor node to access the
storage pool and act as a compute node. In OpenStack terms the StorPool solution allows each hypervisor
node to be both a storage and a compute node simultaneously.

Prerequisites

* The controller and all the compute nodes must have access to the StorPool API service.

¢ All nodes where StorPool-backed volumes will be attached must have access to the StorPool data
network and run the storpool_block service.

* If StorPool-backed Cinder volumes need to be created directly from Glance images, then the node
running the cinder-volume service must also have access to the StorPool data network and run
the storpool_block service.

* All nodes that need to access the StorPool API (the compute nodes and the node running the
cinder-volume service) must have the following packages installed:

— storpool-config (part of the StorPool installation)
— the storpool Python bindings package

— the storpool.spopenstack Python helper package

Configuring the StorPool volume driver

A valid /etc/storpool. conf file is required; please contact the StorPool support team for assistance.

The StorPool Cinder volume driver has two configuration options that may be specified both in the global
configuration (e.g. in a cinder. conf volume backend definition) and per volume type:

* storpool_template: specifies the StorPool template (replication, placement, etc. specifications
defined once and used for multiple volumes and snapshots) to use for the Cinder volume type or, if
specified globally, as a default value for Cinder volumes. There is no default value for this option,
see storpool_replication.

e storpool_replication: if storpool_template is not set, the volume will be created with the
specified chain replication and with the default placement constraints for the StorPool cluster. The
default value for the chain replication is 3.

3.3. Reference 387

Cinder Documentation, Release 19.3.1.dev10

Using the StorPool volume driver

The most common use for the Cinder StorPool volume driver is probably attaching volumes to Nova
instances. For this to work, the nova-compute service and the os-brick library must recognize the
storpool volume attachment driver; please contact the StorPool support team for more information.

Currently there is no StorPool driver for Nova ephemeral volumes; to run Nova instances with a StorPool-
backed volume as a root device, create a Cinder volume with the root filesystem image, make a snapshot,
and let Nova create the instance with a root device as a new volume created from that snapshot.

Synology DSM volume driver

The SynoISCSIDriver volume driver allows Synology NAS to be used for Block Storage (cinder) in
OpenStack deployments. Information on OpenStack Block Storage volumes is available in the DSM
Storage Manager.

System requirements

The Synology driver has the following requirements:
* DSM version 6.0.2 or later.

* Your Synology NAS model must support advanced file LUN, iSCSI Target, and snapshot features.
Refer to the Support List for applied models.

Note: The DSM driver is available in the OpenStack Newton release.

Supported operations

e Create, delete, clone, attach, and detach volumes.
* Create and delete volume snapshots.

* Create a volume from a snapshot.

* Copy an image to a volume.

* Copy a volume to an image.

* Extend a volume.

¢ Get volume statistics.

388 Chapter 3. For operators

https://www.synology.com/en-global/dsm/6.0/iSCSI_virtualization#OpenStack

Cinder Documentation, Release 19.3.1.dev10

Driver configuration

Edit the /etc/cinder/cinder. conf file on your volume driver host.

Synology driver uses a volume in Synology NAS as the back end of Block Storage. Every time you create
a new Block Storage volume, the system will create an advanced file LUN in your Synology volume to
be used for this new Block Storage volume.

The following example shows how to use different Synology NAS servers as the back end. If you want
to use all volumes on your Synology NAS, add another section with the volume number to differentiate
between volumes within the same Synology NAS.

Each section indicates the volume number and the way in which the connection is established. Below is
an example of a basic configuration:

DS_PORT This is the port for DSM management. The default value for DSM is 5000 (HTTP) and 5001
(HTTPS). To use HTTPS connections, you must set driver_use_ssl = True.

DS_TIP This is the IP address of your Synology NAS.
DS_USER This is the account of any DSM administrator.
DS_PW This is the password for DS_USER.

3.3. Reference 389

Cinder Documentation, Release 19.3.1.dev10

DS_VOLUME This is the volume you want to use as the storage pool for the Block Storage service. The
format is volume [0-9] +, and the number is the same as the volume number in DSM.

Note: If you set driver_use_ssl as True, synology_admin_port must be an HTTPS port.

Configuration options

The Synology DSM driver supports the following configuration options:

TOYOU ACS5000 iSCSI driver

TOYOU ACS5000 series volume driver provides OpenStack Compute instances with access to TOYOU
ACS5000 series storage systems.

TOYOU ACS5000 storage can be used with iSCSI connection.

This documentation explains how to configure and connect the block storage nodes to TOYOU ACS5000
series storage.

Driver options
The following table contains the configuration options supported by the TOYOU ACS5000 iSCSI driver.

Table 66: Description of TOYOU ACS5000 configuration options

Configuration option = De- | Description

fault value

acs5000_copy_interval (Integer(min=3, max=100)) When volume copy task is going
=5 on,refresh volume status interval

acs5000_volpool_name = | (List of String) Comma separated list of storage system storage pools
[pool01] for volumes.

Supported operations

* Create, list, delete, attach (map), and detach (unmap) volumes.
* Create, list and delete volume snapshots.

* Create a volume from a snapshot.

» Copy an image to a volume.

* Copy a volume to an image.

* Clone a volume.

* Extend a volume.

* Migrate a volume.

390 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configure TOYOU ACS5000 iSCSI backend

This section details the steps required to configure the TOYOU ACS5000 storage cinder driver.

1. In the cinder.conf configuration file under the [DEFAULT] section, set the enabled_backends
parameter.

2. Add a backend group section for the backend group specified in the enabled_backends parameter.

3. In the newly created backend group section, set the following configuration options:

Veritas ACCESS iSCSI driver

Veritas Access is a software-defined scale-out network-attached storage (NAS) solution for unstructured
data that works on commodity hardware and takes advantage of placing data on premise or in the cloud
based on intelligent policies. Through Veritas Access iSCSI Driver, OpenStack Block Storage can use
Veritas Access backend as a block storage resource. The driver enables you to create iSCSI volumes that
an OpenStack Block Storage server can allocate to any virtual machine running on a compute host.

3.3. Reference 391

Cinder Documentation, Release 19.3.1.dev10

Requirements

The Veritas ACCESS iSCSI Driver, version 1.0.0 and later, supports Veritas ACCESS release 7.4 and
later.

Supported operations

* Create and delete volumes.
* Create and delete snapshots.
* Create volume from snapshot.

¢ Extend a volume.

Attach and detach volumes.

¢ Clone volumes.

Configuration

1. Enable RESTful service on the Veritas Access Backend.
2. Create Veritas Access iSCSI target, add store and portal IP to it.

You can create target and add portal IP, store to it as follows:

You can add authentication to target as follows:

3. Ensure that the Veritas Access iSCSI target service is online. If the Veritas Access iSCSI target
service is not online, enable the service by using the CLI or REST API.

Define the following required properties in the cinder. conf file:

(continues on next page)

392 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

4. Define Veritas Access Target details in /etc/cinder/vrts_target.xml:

VMware VMDK driver

Use the VMware VMDK driver to enable management of the OpenStack Block Storage volumes on
vCenter-managed data stores. Volumes are backed by VMDK files on data stores that use any VMware-
compatible storage technology such as NFS, iSCSI, FiberChannel, and vSAN.

Note: The VMware VMDK driver requires vCenter version 5.1 at minimum.

Functional context

The VMware VMDK driver connects to vCenter, through which it can dynamically access all the data
stores visible from the ESX hosts in the managed cluster.

When you create a volume, the VMDK driver creates a VMDK file on demand. The VMDK file creation
completes only when the volume is subsequently attached to an instance. The reason for this requirement
is that data stores visible to the instance determine where to place the volume. Before the service creates
the VMDK file, attach a volume to the target instance.

The running vSphere VM is automatically reconfigured to attach the VMDK file as an extra disk. Once
attached, you can log in to the running vSphere VM to rescan and discover this extra disk.

With the update to ESX version 6.0, the VMDK driver now supports NFS version 4.1.

3.3. Reference 393

Cinder Documentation, Release 19.3.1.dev10

Configuration

The recommended volume driver for OpenStack Block Storage is the VMware vCenter VMDK driver.
When you configure the driver, you must match it with the appropriate OpenStack Compute driver from
VMware and both drivers must point to the same server.

In the nova. conf file, use this option to define the Compute driver:

In the cinder. conf file, use this option to define the volume driver:

The following table lists various options that the drivers support for the OpenStack Block Storage con-
figuration (cinder. conf):

394 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 67: Description of VMware configuration options

Configuration
option = Default
value

Description

[DEFAULT]

vmware_adapter_
= 1silogic

tyfeaing) Default adapter type to be used for attaching volumes.

vmware_api_retr
=10

y (batapdr) Number of times VMware vCenter server API must be retried upon
connection related issues.

vmware_ca_file
= None

(String) CA bundle file to use in verifying the vCenter server certificate.

vmware_cluster_1
= None

ndvbulti-valued) Name of a vCenter compute cluster where volumes should be
created.

vmware_connecti
=10

p1tlitegdr) dzarimum number of connections in http connection pool.

vmware_host_ip
= None

(String) IP address for connecting to VMware vCenter server.

vmware_host_pas
= None

sySming) Password for authenticating with VMware vCenter server.

vmware_host_por
=443

t (Port number) Port number for connecting to VMware vCenter server.

vmware_host_use
= None

rifStréng) Username for authenticating with VMware vCenter server.

vmware_host_ver
= None

5{8tring) Optional string specifying the VMware vCenter server version. The
driver attempts to retrieve the version from VMware vCenter server. Set this
configuration only if you want to override the vCenter server version.

vmware_image_tr
=7200

arthffegert ihiecenutsaceconds for VMDK volume transfer between Cinder and
Glance.

vmware_insecure
=False

(Boolean) If true, the vCenter server certificate is not verified. If false, then
the default CA truststore is used for verification. This option is ignored if
vmware_ca_file is set.

vmware_max_obje
=100

c ¢ htegan Mur humber of objects to be retrieved per batch. Query results will be
obtained in batches from the server and not in one shot. Server may still limit
the count to something less than the configured value.

vmware_task_pol
=2.0

| (Fhomgimgapoint) The interval (in seconds) for polling remote tasks invoked on
VMware vCenter server.

vmware_tmp_dir
= /tmp

(String) Directory where virtual disks are stored during volume backup and re-
store.

vmware_volume_f
= Volumes

pX8aing) Name of the vCenter inventory folder that will contain Cinder vol-
umes. This folder will be created under OpenStack/<project_folder>, where
project_folder is of format Project (<volume_project_id>).

vmware_wsdl_loc
= None

atSomng) Optional VIM service WSDL Location e.g http:
/I<server>/vimService.wsdl. Optional over-ride to default location for
bug work-arounds.

3.3. Reference

395

http:/
http:/

Cinder Documentation, Release 19.3.1.dev10

VMDK disk type

The VMware VMDK drivers support the creation of VMDK disk file types thin, lazyZeroedThick
(sometimes called thick or flat), or eagerZeroedThick.

A thin virtual disk is allocated and zeroed on demand as the space is used. Unused space on a Thin disk
is available to other users.

A lazy zeroed thick virtual disk will have all space allocated at disk creation. This reserves the entire
disk space, so it is not available to other users at any time.

An eager zeroed thick virtual disk is similar to a lazy zeroed thick disk, in that the entire disk is allocated
at creation. However, in this type, any previous data will be wiped clean on the disk before the write. This
can mean that the disk will take longer to create, but can also prevent issues with stale data on physical
media.

Use the vmware: vmdk_type extra spec key with the appropriate value to specify the VMDK disk file
type. This table shows the mapping between the extra spec entry and the VMDK disk file type:

Table 68: Extra spec entry to VMDK disk file type mapping

Disk file type Extra spec key Extra spec value
thin vmware:vmdk_type | thin
lazyZeroedThick | vmware:vmdk_type | thick
eagerZeroedThick | vmware:vmdk_type | eagerZeroedThick

If you do not specify a vmdk_type extra spec entry, the disk file type will default to thin.

The following example shows how to create a 1azyZeroedThick VMDK volume by using the appro-
priate vimdk_type:

openstack volume type create THICK_VOLUME
openstack volume type set --property vmware:vmdk_type thick THICK_VOLUME
openstack volume create --size 1 --type THICK_VOLUME VOLUME1l

Clone type

With the VMware VMDK drivers, you can create a volume from another source volume or a snapshot
point. The VMware vCenter VMDK driver supports the full and linked/fast clone types. Use the
vmware : clone_type extra spec key to specify the clone type. The following table captures the mapping
for clone types:

Table 69: Extra spec entry to clone type mapping
Clone type | Extra spec key Extra spec value
full vmware:clone_type | full
linked/fast vmware:clone_type | linked

If you do not specify the clone type, the default is full.

The following example shows linked cloning from a source volume, which is created from an image:

396 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

openstack volume type create FAST_CLONE

openstack volume type set --property vmware:clone_type linked FAST_CLONE

openstack volume create --size 1 --type FAST_CLONE --image MYIMAGE SOURCE_
—VOL

openstack volume create --size 1 --source SOURCE_VOL DEST_VOL

Adapter type

The VMware vCenter VMDK driver supports the adapter types LSI Logic Parallel,
BusLogic Parallel, LSI Logic SAS, VMware Paravirtual and IDE for volumes. Use the
vmware:adapter_type extra spec key to specify the adapter type. The following table captures the
mapping for adapter types:

Table 70: Extra spec entry to adapter type mapping

Adapter type Extra spec key Extra spec value
BusLogic Parallel vmware:adapter_type | busLogic

IDE vmware:adapter_type | ide

LSI Logic Parallel vmware:adapter_type | 1silLogic

LSI Logic SAS vmware:adapter_type | 1silLogicsas
VMware Paravirtual | vmware:adapter_type | paraVirtual

If you do not specify the adapter type, the default is the value specified by the config option
vmware_adapter_type.

Use vCenter storage policies to specify back-end data stores

This section describes how to configure back-end data stores using storage policies. In vCenter 5.5 and
greater, you can create one or more storage policies and expose them as a Block Storage volume-type
to a vimdk volume. The storage policies are exposed to the vimdk driver through the extra spec property
with the vmware:storage_profile key.

For example, assume a storage policy in vCenter named gold_policy. and a Block Storage volume
type named voll with the extra spec key vmware: storage_profile set to the value gold_policy.
Any Block Storage volume creation that uses the vol1 volume type places the volume only in data stores
that match the gold_policy storage policy.

The Block Storage back-end configuration for vSphere data stores is automatically determined based
on the vCenter configuration. If you configure a connection to connect to vCenter version 5.5 or later
in the cinder. conf file, the use of storage policies to configure back-end data stores is automatically
supported.

Note: You must configure any data stores that you configure for the Block Storage service for the
Compute service.

To configure back-end data stores by using storage policies

1. In vCenter, tag the data stores to be used for the back end.

3.3. Reference 397

Cinder Documentation, Release 19.3.1.dev10

OpenStack also supports policies that are created by using vendor-specific capabilities; for example
vSAN-specific storage policies.

Note: The tag value serves as the policy. For details, see Storage policy-based configuration in
vCenter.

Set the extra spec key vmware :storage_profile in the desired Block Storage volume types to
the policy name that you created in the previous step.

. Optionally, for the vmware_host_version parameter, enter the version number of your vSphere

platform. For example, 5.5.

This setting overrides the default location for the corresponding WSDL file. Among other scenar-
ios, you can use this setting to prevent WSDL error messages during the development phase or to
work with a newer version of vCenter.

4. Complete the other vCenter configuration parameters as appropriate.

Note:

Any volume that is created without an associated policy (that is to say, without an associated

volume type that specifies vmware: storage_profile extra spec), there is no policy-based placement
for that volume.

Supported operations

The VMware vCenter VMDK driver supports these operations:

e Create, delete, attach, and detach volumes.

Note: When a volume is attached to an instance, a reconfigure operation is performed on the
instance to add the volumes VMDK to it. The user must manually rescan and mount the device
from within the guest operating system.

Create, list, and delete volume snapshots.

Note: Allowed only if volume is not attached to an instance.

Create a volume from a snapshot.

Note: The vmdk UUID in vCenter will not be set to the volume UUID if the vCenter version is
6.0 or above and the extra spec key vmware:clone_type in the destination volume type is set to
linked.

Copy an image to a volume.

Note: Only images in vmdk disk format with bare container format are supported. The
vmware_disktype property of the image can be preallocated, sparse, streamOptimized

398

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

or thin.

* Copy a volume to an image.

Note:
— Allowed only if the volume is not attached to an instance.

— This operation creates a streamOptimized disk image.

¢ Clone a volume.

Note:
— Supported only if the source volume is not attached to an instance.

— The vindk UUID in vCenter will not be set to the volume UUID if the vCenter version is 6.0
or above and the extra spec key vmware:clone_type in the destination volume type is set
to linked.

* Backup a volume.

Note: This operation creates a backup of the volume in streamOptimized disk format.

* Restore backup to new or existing volume.

Note: Supported only if the existing volume doesnt contain snapshots.

* Change the type of a volume.

Note: This operation is supported only if the volume state is available.

e Extend a volume.

Storage policy-based configuration in vCenter

You can configure Storage Policy-Based Management (SPBM) profiles for vCenter data stores supporting
the Compute, Image service, and Block Storage components of an OpenStack implementation.

In a vSphere OpenStack deployment, SPBM enables you to delegate several data stores for storage, which
reduces the risk of running out of storage space. The policy logic selects the data store based on acces-
sibility and available storage space.

3.3. Reference 399

Cinder Documentation, Release 19.3.1.dev10

Prerequisites

* Determine the data stores to be used by the SPBM policy.
* Determine the tag that identifies the data stores in the OpenStack component configuration.

* Create separate policies or sets of data stores for separate OpenStack components.

Create storage policies in vCenter

1. In vCenter, create the tag that identifies the data stores:
1. From the Home screen, click Tags.
2. Specify a name for the tag.
3. Specify a tag category. For example, spbm-cinder.

2. Apply the tag to the data stores to be used by the SPBM policy.

Note: For details about creating tags in vSphere, see the vSphere documentation.

3. In vCenter, create a tag-based storage policy that uses one or more tags to identify a set of data
stores.

Note: For details about creating storage policies in vSphere, see the vSphere documentation.

Data store selection

If storage policy is enabled, the driver initially selects all the data stores that match the associated storage
policy.

If two or more data stores match the storage policy, the driver chooses a data store that is connected to
the maximum number of hosts.

In case of ties, the driver chooses the data store with lowest space utilization, where space utilization is
defined by the (1-freespace/totalspace) meters.

These actions reduce the number of volume migrations while attaching the volume to instances.

The volume must be migrated if the ESX host for the instance cannot access the data store that contains
the volume.

400 Chapter 3. For operators

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vcenterhost.doc/GUID-05323758-1EBF-406F-99B6-B1A33E893453.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.storage.doc/GUID-D025AA68-BF00-4FC2-9C7E-863E5787E743.html

Cinder Documentation, Release 19.3.1.dev10

Virtuozzo Storage driver

The Virtuozzo Storage driver is a

fault-tolerant distributed storage system that is optimized for virtualiza-

tion workloads. Set the following in your cinder. conf file, and use the following options to configure

it.

Table 71: Description of Virtuozzo Storage configuration options

Configuration option = De-
fault value

Description

vzstorage_default_volume
=raw

_(@Ssring} Default format that will be used when creating volumes if no
volume format is specified.

vzstorage_mount_options
= None

(List of String) Mount options passed to the vzstorage client. See
section of the pstorage-mount man page for details.

vzstorage_mount_point_bd
= $state_path/mnt

s@tring) Base dir containing mount points for vzstorage shares.

vzstorage_shares_config
= /etc/cinder/
vzstorage_shares

(String) File with the list of available vzstorage shares.

vzstorage_sparsed_volume
=True

s(Boolean) Create volumes as sparsed files which take no space rather
than regular files when using raw format, in which case volume cre-
ation takes lot of time.

vzstorage_used_ratio =
0.95

(Float) Percent of ACTUAL usage of the underlying volume before
no new volumes can be allocated to the volume destination.

Windows iSCSI volume driver

Windows Server offers an integrated iSCSI Target service that can be used with OpenStack Block Storage

in your stack.

Being entirely a software solution, consider it in particular for mid-sized networks where the costs of a

SAN might be excessive.

The Windows iSCSI Block Storage driver works with OpenStack Compute on any hypervisor.

This driver creates volumes backed by fixed-type VHD images on Windows Server 2012 and dynamic-
type VHDX on Windows Server 2012 R2 and onwards, stored locally on a user-specified path. The
system uses those images as iSCSI disks and exports them through iSCSI targets. Each volume has its

own iSCSI target.

The cinder-volume service as
the Windows node.

well as the required Python components will be installed directly onto

3.3. Reference

401

Cinder Documentation, Release 19.3.1.dev10

Prerequisites

The Windows iSCSI volume driver depends on the wintarget Windows service. This will require the
iSCSI Target Server Windows feature to be installed.

Note: The Cinder MSI will automatically enable this feature, if available (some minimal Windows
versions do not provide it).

You may check the availability of this feature by running the following:

Get-WindowsFeature

The Windows Server installation requires at least 16 GB of disk space. The volumes hosted by this node
will need extra space.

Configuring cinder-volume

Below is a configuration sample for using the Windows iSCSI Driver. Append those options to your
already existing cinder. conf file, described at Install and configure a storage node.

[DEFAULT]

[winiscsi]

The windows_iscsi_lun_path config option specifies the directory in which VHD backed volumes
will be stored.

Windows SMB volume driver
Description

The Windows SMB volume driver leverages pre-existing SMB shares, used to store volumes as virtual
disk images.

The main reasons to use the Windows SMB driver are:

* ease of management and use

402 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

 great integration with other Microsoft technologies (e.g. Hyper-V Failover Cluster)
* suitable for a various range of deployment types and sizes

The cinder-volume service as well as the required Python components will be installed directly onto
designated Windows nodes (preferably the ones exposing the shares).

Common deployment scenarios

The SMB driver is designed to support a variety of scenarios, such as:
* Scale-Out File Servers (SoFS), providing highly available SMB shares.
* standalone Windows or Samba shares
* any other SMB 3.0 capable device
By using SoFS shares, the virtual disk images are stored on Cluster Shared Volumes (CSV).

A common practice involves deploying CSVs on top of SAN backed LUNs (exposed to all the nodes of
the cluster through iSCSI or Fibre Channel). In absence of a SAN, Storage Spaces/Storage Spaces Direct
(S2D) may be used for the underlying storage.

Note: S2D is commonly used in hyper-converged deployments.

Features

VHD and VHDX are the currently supported image formats and may be consumed by Hyper-V and KVM
compute nodes. By default, dynamic (thinly provisioned) images will be used, unless configured other-
wise.

The driver accepts one or more shares that will be reported to the Cinder scheduler as storage pools. This
can provide means of tiering, allowing specific shares (pools) to be requested through volume types.

Frontend QoS specs may be associated with the volume types and enforced on the consumer side (e.g.
Hyper-V).

The Cinder Backup Service can be run on Windows. This driver stores the volumes using vhdx
images stored on SMB shares which can be attached in order to retrieve the volume data and send it to
the backup service.

Prerequisites:
* All physical disks must be in byte mode

* rb+ must be used when writing backups to disk

3.3. Reference 403

Cinder Documentation, Release 19.3.1.dev10

Clustering support

Active-Active Cinder clustering is currently experimental and should not be used in production. This
implies having multiple Cinder Volume services handling the same share simultaneously.

On the other hand, Active-Passive clustering can easily be achieved, configuring the Cinder Volume
service as clustered using Microsoft Failover Cluster.

By using SoFS, you can provide high availability of the shares used by Cinder. This can be used in
conjunction with the Nova Hyper-V cluster driver, which allows clustering virtual machines. This ensures
that when a compute node is compromised, the virtual machines are transparently migrated to a healthy
node, preserving volume connectivity.

Note: The Windows SMB driver is the only Cinder driver that may be used along with the Nova Hyper-
V cluster driver. The reason is that during an unexpected failover, the volumes need to be available on
the destination compute node side.

Prerequisites

Before setting up the SMB driver, you will need to create and configure one or more SMB shares that
will be used for storing virtual disk images.

Note: The driver does not manage share permissions. You will have to make sure that Cinder as well as
share consumers (e.g. Nova, Hyper-V) have access.

Note that Hyper-V VMs are run using a built-in user group: NT VIRTUAL MACHINE\Virtual
Machines.

The easiest way to provide share access is by using Active Directory accounts. You may grant share
access to the users running OpenStack services, as well as the compute nodes (and optionally storage
nodes), using per computer account access rules. One of the main advantages is that by doing so, you
dont need to pass share credentials to Cinder (and implicitly volume consumers).

By granting access to a computer account, youre basically granting access to the LocalSystem account
of that node, and thus to the VMs running on that host.

Note: By default, OpenStack services deployed using the MSIs are run as LocalSystem.

Once youve granted share access to a specific account, dont forget to also configure file system level
permissions on the directory exported by the share.

404 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Configuring cinder-volume

Below is a configuration sample for using the Windows SMB Driver. Append those options to your
already existing cinder. conf file, described at Install and configure a storage node.

The smbfs_mount_point_base config option allows you to specify where the shares will be mounted.
This directory will contain symlinks pointing to the shares used by Cinder. Each symlink name will be
a hash of the actual share path.

Configuring the list of available shares

In addition to cinder.conf, you will need to have another config file, providing a list of shares that
will be used by Cinder for storing disk images. In the above sample, this file is referenced by the
smbfs_shares_config option.

The share list config file must contain one share per line, optionally including mount options. You may
also add comments, using a # at the beginning of the line.

Bellow is a sample of the share list config file:

Keep in mind that Linux hosts can also consume those volumes. For this reason, the mount options
resemble the ones used by mount.cifs (in fact, those will actually be passed to mount.cifs by the Nova
Linux nodes).

In case of Windows nodes, only the share location, username and password will be used when mounting
the shares. The share address must use slashes instead of backslashes (as opposed to what Windows

3.3. Reference 405

Cinder Documentation, Release 19.3.1.dev10

admins may expect) because of the above mentioned reason.

Depending on the configured share access rules, you may skip including share credentials in the config
file, as described in the Prerequisites section.

Configuring Nova credentials

The SMB volume driver relies on the nova assisted volume snapshots feature when snapshotting
in-use volumes, as do other similar drivers using shared filesystems.

By default, the Nova policy requires admin rights for this operation. You may provide Cinder specific
credentials to be used when requesting Nova assisted volume snapshots, as shown bellow:

Configuring storage pools

Each share is reported to the Cinder scheduler as a storage pool.

By default, the share name will be the name of the pool. If needed, you may provide pool name mappings,
specifying a custom pool name for each share, as shown bellow:

In the above sample, the //addr/share share will be reported as pool®.

Zadara Storage VPSA volume driver

Zadara Storage, Virtual Private Storage Array (VPSA) is the first software defined, Enterprise-Storage-
as-a-Service. It is an elastic and private block and file storage system which, provides enterprise-grade
data protection and data management storage services.

The ZadaraVPSAISCSIDriver volume driver allows the Zadara Storage VPSA to be used as a volume
back end storage in OpenStack deployments.

406 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

System requirements

To use Zadara Storage VPSA Volume Driver you will require:
» Zadara Storage VPSA version 15.07 and above
* iSCSI or iSER host interfaces

Supported operations

¢ Create, delete, attach, and detach volumes
* Create, list, and delete volume snapshots

* Create a volume from a snapshot

* Copy an image to a volume

* Copy a volume to an image

* Clone a volume

* Extend a volume

* Migrate a volume with back end assistance
* Manage and unmanage a volume

* Manage and unmanage volume snapshots

e Multiattach a volume

Configuration

1. Create a VPSA pool(s) or make sure you have an existing pool(s) that will be used for volume
services. The VPSA pool(s) will be identified by its ID (pool-xxxxxxxx). For further details, see
the VPSAs user guide.

2. Adjust the cinder. conf configuration file to define the volume driver name along with a storage
back end entry for each VPSA pool that will be managed by the block storage service. Each back
end entry requires a unique section name, surrounded by square brackets (or parentheses), followed
by options in key=value format.

Note: Restart cinder-volume service after modifying cinder. conf.

Sample minimum back end configuration

(continues on next page)

3.3. Reference 407

http://tinyurl.com/hxo3tt5

Cinder Documentation, Release 19.3.1.dev10

(continued from previous page)

Driver-specific options

This section contains the configuration options that are specific to the Zadara Storage VPSA driver.

Table 72: Description of Zadara configuration options

Configuration
option Default
value

Description

zadara_access_key,
= None

(String) VPSA access key

zadara_default_sn
=False

apBpolehay VPSA - Attach snapshot policy for volumes. If the option is neither
configured nor provided as metadata, the VPSA will inherit the default value.

zadara_gen3_vol_c
=False

ofBoeksn) VPSA - Enable compression for volumes. If the option is neither
configured nor provided as metadata, the VPSA will inherit the default value.

zadara_gen3_vol_d
=False

edBpelean) VPSA - Enable deduplication for volumes. If the option is neither
configured nor provided as metadata, the VPSA will inherit the default value.

zadara_ssl_cert_v
= True

etBdylean) If set to True the http client will validate the SSL certificate of the
VPSA endpoint.

zadara_use_iser
= True

(Boolean) VPSA - Use ISER instead of iSCSI

zadara_vol_encryp
=False

it (Boolean) VPSA - Default encryption policy for volumes. If the option is
neither configured nor provided as metadata, the VPSA will inherit the default
value.

zadara_vol_name_t
= 0S_%s

ettty VPSA - Default template for VPSA volume names

zadara_vpsa_host
= None

(HostAddress) VPSA - Management Host name or IP address

zadara_vpsa_pooln
= None

ai8tring) VPSA - Storage Pool assigned for volumes

zadara_vpsa_port
= None

(Port(min=0, max=65535)) VPSA - Port number

zadara_vpsa_use_s
=False

s{Boolean) VPSA - Use SSL connection

Note: By design, all volumes created within the VPSA are thin provisioned.

408

Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Backup drivers

Ceph backup driver

The Ceph backup driver backs up volumes of any type to a Ceph back-end store. The driver can also detect
whether the volume to be backed up is a Ceph RBD volume, and if so, it tries to perform incremental
and differential backups.

For source Ceph RBD volumes, you can perform backups within the same Ceph pool (not recommended).
You can also perform backups between different Ceph pools and between different Ceph clusters.

At the time of writing, differential backup support in Ceph/librbd was quite new. This driver attempts
a differential backup in the first instance. If the differential backup fails, the driver falls back to full
backup/copy.

If incremental backups are used, multiple backups of the same volume are stored as snapshots so that
minimal space is consumed in the backup store. It takes far less time to restore a volume than to take a
full copy.

Note: Block Storage enables you to:
¢ Restore to a new volume, which is the default and recommended action.

* Restore to the original volume from which the backup was taken. The restore action takes a full
copy because this is the safest action.

To enable the Ceph backup driver, include the following option in the cinder . conf file:

The following configuration options are available for the Ceph backup driver.

Table 73: Description of Ceph backup driver configuration options
Configuration option = | Description
Default value
backup_ceph_chunk_siz@dnteger) The chunk size, in bytes, that a backup is broken into before

= 134217728 transfer to the Ceph object store.

backup_ceph_conf (String) Ceph configuration file to use.

= /etc/ceph/ceph.

conf

backup_ceph_image_jquiadlsan) If True, apply JOURNALING and EXCLUSIVE_LOCK fea-
=False ture bits to the backup RBD objects to allow mirroring
backup_ceph_pool = | (String) The Ceph pool where volume backups are stored.

backups

backup_ceph_stripe_conteger) RBD stripe count to use when creating a backup image.
=0
backup_ceph_stripe_un(lhteger) RBD stripe unit to use when creating a backup image.
=0
backup_ceph_user = | (String) The Ceph user to connect with. Default here is to use the same
cinder user as for Cinder volumes. If not using cephx this should be set to None.
restore_discard_excgs@dglees) If True, always discard excess bytes when restoring volumes i.e.
=True pad with zeroes.

3.3. Reference 409

Cinder Documentation, Release 19.3.1.dev10

This example shows the default options for the Ceph backup driver.

GlusterFS backup driver

The GlusterFS backup driver backs up volumes of any type to GlusterFS.

To enable the GlusterFS backup driver, include the following option in the cinder. conf file:

The following configuration options are available for the GlusterFS backup driver.

Table 74: Description of GlusterFS backup driver configuration
options
Configuration option = Default | Description
value
glusterfs_backup_mount_point | (String) Base dir containing mount point for gluster share.
= $state_path/backup_mount
glusterfs_backup_share = None | (String) GlusterFS share in <host-
namelipv4addrlipvbaddr>:<gluster_vol_name> format.
Eg: 1.2.3.4:backup_vol

NFS backup driver

The backup driver for the NFS back end backs up volumes of any type to an NFS exported backup
repository.

To enable the NFS backup driver, include the following option in the [DEFAULT] section of the cinder.
conf file:

The following configuration options are available for the NFS back-end backup driver.

410 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 75: Description of NFS backup driver configuration options

Configuration
option Default
value

Description

backup_container
= None

(String) Custom directory to use for backups.

backup_enable_pro
=True

gtBsslaainidinable or Disable the timer to send the periodic progress notifica-
tions to Ceilometer when backing up the volume to the backend storage. The
default value is True to enable the timer.

backup_file_size
= 1999994880

(Integer) The maximum size in bytes of the files used to hold back-
ups. If the volume being backed up exceeds this size, then it will
be backed up into multiple files.backup_file_size must be a multiple of
backup_sha_block_size_bytes.

backup_mount_atte
=3

mplrgeger(min=1)) The number of attempts to mount NFS shares before raising
an error.

backup_mount_opti
= None

piiString) Mount options passed to the NFS client. See NFS man page for de-
tails.

backup_mount_poin
$state_path/
backup_mount

t (bases) Base dir containing mount point for NFS share.

backup_posix_path
$state_path/
backup

(String) Path specifying where to store backups.

backup_sha_block_
= 32768

sibkecpori ddhe size in bytes that changes are tracked for incremental backups.
backup_file_size has to be multiple of backup_sha_block_size_bytes.

backup_share

(String) NFS share in hostname:path, ipv4addr:path, or [ipv6addr]:path for-

None

mat.

POSIX file systems backup driver

The POSIX file systems
To enable the POSIX fil

backup driver backs up volumes of any type to POSIX file systems.

e systems backup driver, include the following option in the cinder. conf file:

The following configuration options are available for the POSIX file systems backup driver.

3.3. Reference

411

Cinder Documentation, Release 19.3.1.dev10

Table 76: Description of POSIX backup driver configuration op-
tions

Configura- Description
tion option =
Default value

backup_containefString) Custom directory to use for backups.

= None
backup_enable_jpfBgalean) Fimbie or Disable the timer to send the periodic progress notifications
= True to Ceilometer when backing up the volume to the backend storage. The default

value is True to enable the timer.

backup_file_silzdnteger) The maximum size in bytes of the files used to hold backups. If the
= 1999994880 volume being backed up exceeds this size, then it will be backed up into multiple
files.backup_file_size must be a multiple of backup_sha_block_size_bytes.

backup_posix_pat3tring) Path specifying where to store backups.

$state_path/

backup
backup_sha_blocKknsdges) biHresize in bytes that changes are tracked for incremental backups.
= 32768 backup_file_size has to be multiple of backup_sha_block_size_bytes.

Swift backup driver

The backup driver for the swift back end performs a volume backup to an object storage system.

To enable the swift backup driver, include the following option in the cinder . conf file:

The following configuration options are available for the Swift back-end backup driver.

412 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 77

: Description of Swift backup driver configuration options

Configuration option
Default value

Description

backup_swift_auth
per_user

(String(choices=[per_user, single_user])) Swift authentication mecha-
nism (per_user or single_user).

backup_swift_auth_ins
=False

e@welean) Bypass verification of server certificate when making SSL
connection to Swift.

backup_swift_auth_url|
= None

(URI) The URL of the Keystone endpoint

backup_swift_auth_ver]
=1

si®ming) Swift authentication version. Specify 1 for auth 1.0, or 2 for auth
2.0 or 3 for auth 3.0

backup_swift_block_si
= 32768

z@nteger) The size in bytes that changes are tracked for incre-
mental backups. backup_swift_object_size has to be multiple of
backup_swift_block_size.

backup_swift_ca_cert_|
= None

f{Steing) Location of the CA certificate file to use for swift client requests.

backup_swift_containe
= volumebackups

r(String) The default Swift container to use

backup_swift_create_s
= None

tO6Staime) pilei stprage policy to use when creating the Swift container. If
the container already exists the storage policy cannot be enforced

backup_swift_enable_p
=True

radgoelean} Fmeble or Disable the timer to send the periodic progress noti-
fications to Ceilometer when backing up the volume to the Swift backend
storage. The default value is True to enable the timer.

backup_swift_key
None

(String) Swift key for authentication

backup_swift_object_g
=52428800

idateger) The size in bytes of Swift backup objects

backup_swift_project
= None

(String) Swift project/account name. Required when connecting to an
auth 3.0 system

backup_swift_project_|
= None

d@htaiirg) Swift project domain name. Required when connecting to an
auth 3.0 system

backup_swift_retry_at
=3

témpager) The number of retries to make for Swift operations

backup_swift_retry_ba
=2

cKkofefger) The backoff time in seconds between Swift retries

backup_swift_tenant
= None

(String) Swift tenant/account name. Required when connecting to an
auth 2.0 system

backup_swift_url
None

(URI) The URL of the Swift endpoint

backup_swift_user
None

(String) Swift user name

backup_swift_user_dom
= None

a($tring) Swift user domain name. Required when connecting to an auth
3.0 system

keystone_catalog_info

(String) Info to match when looking for keystone in the ser-

= identity:Identity | vice catalog. Format is: separated values of the form: <ser-

Service:publicURL vice_type>:<service_name>:<endpoint_type> - Only wused if
backup_swift_auth_url is unset

swift_catalog_info = | (String) Info to match when looking for swift in the ser-

object-store:swift:pub¥iceURhtalog. Format is: separated values of the form: <ser-
vice_type>:<service_name>:<endpoint_type> - Only wused if
backup_swift_url is unset

3.3. Reference 413

Cinder Documentation, Release 19.3.1.dev10

To enable the swift backup driver for 1.0, 2.0, or 3.0 authentication version, specify 1, 2, or 3 corre-
spondingly. For example:

In addition, the 2.0 authentication system requires the definition of the backup_swift_tenant setting:

This example shows the default options for the Swift back-end backup driver.

Google Cloud Storage backup driver

The Google Cloud Storage (GCS) backup driver backs up volumes of any type to Google Cloud Storage.

To enable the GCS backup driver, include the following option in the cinder. conf file:

The following configuration options are available for the GCS backup driver.

414 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 78: Description of GCS backup driver configuration options

Configuration
option Default
value

Description

backup_gcs_blockl
= 32768

| shizeger) The size in bytes that changes are tracked for incremental backups.
backup_gcs_object_size has to be multiple of backup_gcs_block_size.

backup_gcs_bucke
= None

t (String) The GCS bucket to use.

backup_gcs_bucke
=US

t (Swwirdilorcation of GCS bucket.

backup_gcs_crede
= None

ntSainghidlsolute path of GCS service account credential file.

backup_gcs_enabl
=True

e (Boopneg imabe vr Disable the timer to send the periodic progress notifica-
tions to Ceilometer when backing up the volume to the GCS backend storage.
The default value is True to enable the timer.

backup_gcs_num_r
=3

etinteser) Number of times to retry.

backup_gcs_objec
=52428800

t (Jsiteger) The size in bytes of GCS backup objects.

backup_gcs_proje
= None

ctStithg) Owner project id for GCS bucket.

backup_gcs_proxy
= None

| GWRI) URL for http proxy access.

backup_gcs_reade
= 2097152

r (chegdes) §3C8 object will be downloaded in chunks of bytes.

backup_gcs_retry
= [429]

| érisonf Sodrg) List of GCS error codes.

backup_gcs_stora
= NEARLINE

g€Strirpy sStorage class of GCS bucket.

backup_gcs_user_|
= gcscinder

ageming) Http user-agent string for gcs api.

backup_gcs_write
=2097152

r (Johtegds) €58 object will be uploaded in chunks of bytes. Pass in a value of -1
if the file is to be uploaded as a single chunk.

S3 Storage backup

driver

The S3 backup driver backs up volumes to any type of Amazon S3 and S3 compatible object storages.

To enable the S3 backup driver, include the following option in the cinder. conf file:

The following configuration options are available for the S3 backup driver.

3.3. Reference

415

Cinder Documentation, Release 19.3.1.dev10

Table 79: Description of S3 backup driver configuration options

Configuration
option Default
value

Description

backup_s3_block_
=32768

sikeeger) The size in bytes that changes are tracked for incremental backups.
backup_s3_object_size has to be multiple of backup_s3_block_size.

backup_s3_ca_cer
= None

t ($trires) path/to/cert/bundle.pem - A filename of the CA cert bundle to use.

backup_s3_enable
=True

| ¥Bogleasiy Hriatde or Disable the timer to send the periodic progress notifica-
tions to Ceilometer when backing up the volume to the S3 backend storage.
The default value is True to enable the timer.

backup_s3_endpoi
= None

ntStrirlg) The url where the S3 server is listening.

backup_s3_http_p
=<>

ré&tring) Address or host for the http proxy server.

backup_s3_https_
=<>

pxBiring) Address or host for the https proxy server.

backup_s3_max_po
=10

o {itegere dtitomaximum number of connections to keep in a connection pool.

backup_s3_md5_va
=True

1 {Babicam) Enable or Disable md5 validation in the s3 backend.

backup_s3_object
=52428800

|_¢lteger) The size in bytes of S3 backup objects

backup_s3_retry_
=14

mékntagdrenmirt $nteger representing the maximum number of retry attempts that
will be made on a single request.

backup_s3_retry_]
= legacy

méBeing) A string representing the type of retry mode. e.g: legacy, standard,
adaptive

backup_s3_sse_cu
= None

s {Btrenrg)dlyo 8BHGstomerAlgorithm. backup_s3_sse_customer_key must be
set at the same time to enable SSE.

backup_s3_sse_cu
= None

s tBmwarg KElye SSECustomerKey. backup_s3_sse_customer_algorithm must be
set at the same time to enable SSE.

backup_s3_store_
= None

acSeam)KElye S3 query token access key.

backup_s3_store_
= volumebackups

b@Skate) The S3 bucket to be used to store the Cinder backup data.

backup_s3_store_
= None

séStratg)KElye S3 query token secret key.

backup_s3_timeou
=60

t (Float) The time in seconds till a timeout exception is thrown.

backup_s3_verify

|_$Bbolean) Enable or Disable ssl verify.

= True

This section describes

how to configure the cinder-backup service and its drivers.

The volume drivers are included with the Block Storage repository. To set a backup driver, use the

backup_driver flag.

By default there is no backup driver enabled.

416

Chapter 3. For operators

https://opendev.org/openstack/cinder

Cinder Documentation, Release 19.3.1.dev10

Block Storage schedulers

Block Storage service uses the cinder-scheduler service to determine how to dispatch block storage
requests.

For more information, see:

Cinder Scheduler Filters
AvailabilityZoneFilter

Filters Backends by availability zone.

CapabilitiesFilter

BackendFilter to work with resource (instance & volume) type records.

CapacityFilter

Capacity filters based on volume backends capacity utilization.

DifferentBackendFilter

Schedule volume on a different back-end from a set of volumes.

DriverFilter

DriverFilter filters backend based on a filter function and metrics.

DriverFilter filters based on volume backends provided filter function and metrics.

InstanceLocalityFilter

Schedule volume on the same host as a given instance.

This filter enables selection of a storage back-end located on the host where the instances hypervisor
is running. This provides data locality: the instance and the volume are located on the same physical
machine.

In order to work:

* The Extended Server Attributes extension needs to be active in Nova (this is by default), so that
the OS-EXT-SRV-ATTR:host property is returned when requesting instance info.

* Either an account with privileged rights for Nova must be configured in Cinder configuration (con-
figure a keystone authentication plugin in the [nova] section), or the user making the call needs to
have sufficient rights (see extended_server_attributes in Nova policy).

3.3. Reference 417

Cinder Documentation, Release 19.3.1.dev10

JsonFilter

Backend filter for simple JSON-based grammar for selecting backends.
If you want to choose one of your backend, make a query hint, for example:

cinder create hint query=[=, $backend_id, rbd:vol @ceph#cloud]

RetryFilter

Filter out previously attempted hosts

A host passes this filter if it has not already been attempted for scheduling. The scheduler needs to add
previously attempted hosts to the retry key of filter_properties in order for this to work correctly. For
example:

SameBackendFilter

Schedule volume on the same back-end as another volume.

Cinder Scheduler Weights
AllocatedCapacityWeigher

Allocated Capacity Weigher weighs hosts by their allocated capacity.

The default behavior is to place new volume to the host allocated the least space. This weigher is intended
to simulate the behavior of SimpleScheduler. If you prefer to place volumes to host allocated the most
space, you can set the allocated_capacity_weight_multiplier option to a positive number and
the weighing has the opposite effect of the default.

CapacityWeigher

Capacity Weigher weighs hosts by their virtual or actual free capacity.

For thin provisioning, weigh hosts by their virtual free capacity calculated by the total capacity multiplied
by the max over subscription ratio and subtracting the provisioned capacity; Otherwise, weigh hosts by
their actual free capacity, taking into account the reserved space.

The default is to spread volumes across all hosts evenly. If you prefer stacking, you can set the
capacity_weight_multiplier option to a negative number and the weighing has the opposite effect
of the default.

418 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

ChanceWeigher

Chance Weigher assigns random weights to hosts.

Used to spread volumes randomly across a list of equally suitable hosts.

GoodnessWeigher

Goodness Weigher. Assign weights based on a hosts goodness function.

Goodness rating is the following:

® -- host is a poor choice
50 -- host is a good choice
100 -- host is a perfect choice

VolumeNumberWeigher

Weigher that weighs hosts by volume number in backends.

The default is to spread volumes across all hosts evenly. If you prefer stacking, you can set the
volume_number_multiplier option to a positive number and the weighing has the opposite effect
of the default.

Log files used by Block Storage

The corresponding log file of each Block Storage service is stored in the /var/log/cinder/ directory
of the host on which each service runs.

Table 80: Log files used by Block Storage services
Log file Service/interface (for CentOS, Fedora, | Service/interface (for
openSUSE, Red Hat Enterprise Linux, and | Ubuntu and Debian)
SUSE Linux Enterprise)

api.log openstack-cinder-api cinder-api
cinder-manage.log cinder-manage cinder-manage
scheduler.log openstack-cinder-scheduler cinder-scheduler
volume.log openstack-cinder-volume cinder-volume

3.3. Reference 419

Cinder Documentation, Release 19.3.1.dev10

Policy Personas and Permissions

Beginning with the Xena release, the Block Storage service API v3 takes advantage of the default au-
thentication and authorization apparatus supplied by the Keystone project to give operators a rich set of
default policies to control how users interact with the Block Storage service API.

This document describes Cinders part in an effort across OpenStack services to provide a consistent and
useful default RBAC configuration. (This effort is referred to as secure RBAC for short.)

Note: The secure RBAC effort not only spans OpenStack services, it is also taking place over several
OpenStack development cycles. Thus its important to make sure that you are looking at the version of
this document that is applicable to the OpenStack release you have deployed.

This document applies to the Xena release.

Additionally, keep in mind that different projects are implementing secure RBAC on different schedules.
This document applies only to Cinder. To get an idea of the full scope of this effort, consult the Consistent
and Secure Default RBAC community goal document.

Vocabulary Note

We need to clarify some terms well be using below.

Project This is a grouping of users into a unit that can own cloud resources. (This is what used to be
called a tenant, but you should never call it that.) Users, projects, and their associations are created
in Keystone.

Service This is an OpenStack component that users interact with through an API it provides. For ex-
ample, Cinder is the OpenStack code name for the service that provides the Block Storage API
version 3. Cinder is also known as the OpenStack Block Storage service.

The point of making this distinction is that theres another use of the term project that is relevant to the
discussion, but that were not going to use. Each OpenStack service is produced and maintained by a
project team. We will not be using the term project in that sense in this document. Well always use the
term service. (If you are new to OpenStack, this wont be a problem. But if youre discussing this content
with someone whos been around OpenStack for a while, youll want to be clear about this so that youre
not talking past each other.)

The Cinder Personas

This is easiest to explain if we introduce the three personas Cinder recognizes in the Xena release. In the
list below, a system refers to the deployed system (that is, Cinder and all its services), and a project refers
to a container or namespace for resources.

* In order to consume resources, a user must be assigned to a project by being given a role (for
example, member) in that project. Thats done in Keystone; its not a Cinder concern.

See Default Roles in the Keystone documentation for more information.

420 Chapter 3. For operators

https://governance.openstack.org/tc/goals/selected/consistent-and-secure-rbac.html
https://governance.openstack.org/tc/goals/selected/consistent-and-secure-rbac.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Cinder Documentation, Release 19.3.1.dev10

Table 81: The Cinder Personas in Xena

who| what

projectHas access to the API for read-only requests that affect only project-specific resources (that is,
reader cannot create, update, or delete resources within a project)

projectA normal user in a project.

memper

systemHas the highest level of authorization on the system and can perform any action in Cinder. In
admin most deployments, only the operator, deployer, or other highly trusted person will be assigned
this persona. This is a Cinder super-user who can do everything, both with respect to the Cinder
system and all individual projects.

Note that if you assign the admin role to a user, that user can affect the entire Cinder system,
not just the project that person is a member of. Please keep this in mind as you assign roles to
users in the Identity service.

Note: The Keystone project provides the ability to describe additional personas, but Cinder does not
recognize them in Xena. In particular:

* Cinder does not recognize the domain scope at all. So even if you successfully request a domain-
scoped token from the Identity service, you wont be able to use it with Cinder. Instead, request a
project-scoped token for the particular project in your domain that you want to act upon.

* Cinder does not recognize a system-member persona, that is, a user with the member role on a
system. Likewise, cinder does not recognize a system-reader persona, that is, a user with the
reader role on a system.

Further, while the Cinder system-admin persona is implemented in Xena, it is not implemented by
using scope.

More information about roles and scope is available in the Keystone Administrator Guides.

Note: Privacy Expectations

Cinders model of resources (volumes, backups, snapshots, etc.) is that they are owned by the project.
Thus, they are shared by all users who have a role assignment on that project, no matter what persona
that user has been assigned.

For example, if Alice and Bob are in Project P, and Alice has persona project-member while Bob has
persona project-reader, if Alice creates volume V in Project P, Bob can see volume V in the volume-
list response, and Bob can read all the volume metadata on volume V that Alice can readeven volume
metadata that Alice may have added to the volume. The key point here is that even though Alice created
volume V, its not her volume. The volume is owned by Project P and is available to all users who have
authorization on that project via role assignments in keystone. What a user can do with volume V depends
on whether that user has an admin, member, or reader role in project P.

With respect to Project P, the personas with system scope (system-admin and system-reader) have access
to the project in the sense that a cinder system-admin can do anything in Project P that the project-admin
can do plus some additional powers. A cinder system-reader has read-only access to everything in Project
P that the system-admin can access.

The above describe the default policy configuration for Cinder. It is possible to modify policies to obtain
different behavior, but that is beyond the scope of this document.

3.3. Reference 421

https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Cinder Documentation, Release 19.3.1.dev10

Implementation Schedule

For reasons that will become clear in this section, the secure RBAC effort is being implemented in Cinder
in two phases. In Xena, there are three personas.

Table 82: The 3 Xena Personas

who Keystone technical info

project- reader role on a project, resulting in project-scope

reader

project- member role on a project, resulting in project-scope

member

system- admin role on a project, but recognized by Cinder as having permission to act on
admin the cinder system

Note that you cannot create a project-admin persona on your own simply by assigning the admin role to
a user. Such assignment results in that user becoming a system-admin.

In the Yoga release, we plan to implement more Cinder personas that the default policy configuration
will recognize. During the development of this OpenStack wide effort, however, some complexities were
discoverd that have affected exactly what this set of personas and their capabilities will be. Please consult
the Yoga version of this document (or the latest version, if at the time you are reading this, Yoga is still
under development) for more information as it becomes available.

Cinder Permissions Matrix

Now that you know who the personas are, heres what they can do with respect to the policies that are
recognized by Cinder. Keep in mind that only three of the personas (project-reader, project-member, and
system-admin) are implemented in the Xena release.

NOTE: the columns in () will be deleted; they are here for comparison as the matrix is validated by human
beings.

422 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 83: Attachments (Microversion 3.27)

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
Create POST / | vol- empty no yes yes yes yes
attach- attachmenmme:attachment_create
ment
Update | PUT / vol- rule:admin_mw_owner yes yes yes yes
attach- attachmentmgé:attachment_update
ment {attachment_id}
Delete DELETE | vol- rule:admin_mw_owner yes yes yes yes
attach- / ume:attachment_delete
ment attachments/
{attachment_id}
Mark a vol- rule:admin my_owner yes yes yes yes
volume ume:attachment_complete
attach- Microversion
ment 3.44
process | POST /
as com- | attachments/
pleted {attachment_id}/
(in-use) | action
(os-
complete)
Allow vol- rule:admin my_owner yes yes yes yes
multiat- . ume:multjattach_bootable_volume
This is a
tach of
bootable | *¢¢
volumes ondary
check
on
POST /
attachments
which is
gov-
erned by
another
policy
3.3. Reference 423

Cinder Documentation, Release 19.3.1.dev10

Table 84: User Messages (Microversion 3.3)

func- API call policy | (oldrule) | project-| project- | system- (old (old
tional- name reader | member| admin | owner) ad-
ity min)
List GET /messages | mes- rule:admin_oyepwner| yes yes yes yes
mes- sage:get _|all
sages
Show GET / mes- rule:admin |oye®wner| yes yes yes yes
mes- messages/ sage:get
sage {message_id}
Delete | DELETE / mes- rule:admin |omoowner| yes yes yes yes
mes- messages/ sage:delgte
sage {message_id}
Table 85: Clusters (Microversion 3.7)

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
List clus- rule:admin mpi no yes no yes
clusters ters:get_all

GET /

clustersg

GET /

clusters/

detail
Show GET / clus- rule:admin mpi no yes no yes
cluster clustersg/ters:get

{cluster_id}
Update | PUT / clus- rule:admin mapi no yes no yes
cluster clusters/ters:update

{cluster_id}

Table 86: Workers (Microversion 3.24)
func- API call policy (old project- | project- | system-| (old (old
tionality name rule) reader | member | admin | owner)| ad-
min)

Clean up | POST / work- rule:adminnapi no yes no yes
workers workers/ ers:cleanup

cleanup
424 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 87: Snapshots

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
List vol- rule:admin_y@s owner yes yes yes yes
snap- GET / ume:get_all_snapshots
shots
snapshots
GET /
snapshots/
detail
List or vol- rule:admin_y@s owner yes yes yes yes
show GET / ume_extension:extended_snapshot_attributep
:E?)It) S_ snapshots/ .
with ex- {snapshogt_id}
tended GET /
at- snapshots/
tributes | detail
Create POST / | vol- rule:admin my_owner yes yes yes yes
snap- snapshotsume:create_snapshot
shot
Show GET / vol- rule:adminp_y@s owner yes yes yes yes
snap- snapshotsyme:get_gnapshot
shot {snapshot_id}
Update | PUT / vol- rule:admin myr_owner yes yes yes yes
snap- snapshotsyme:update_snapshot
shot {snapshot_id}
Delete DELETE | vol- rule:admin my_owner yes yes yes yes
snap- / ume:deletg_snapshot
shot snapshots/
{snapshot_id}
Reset POST / | vol- rule:admin_mpi no yes no yes
status of | snapshotsyme_extension:snapshot_admin_|actions:reset_status
a snap- | {snapshot_id}/
shot. action
(os-
reset_status)
Update | POST / | snap- empty no yes yes yes yes
status snapshotsshot_extemsion:snapshot_actionsjupdate_snapshot_statul
(and op- | {snapshot_id}/
tionally | action
progress) | (os-
of snap- | update_snapshot_status)
shot
Force POST / | vol- rule:admin_rapi no yes no yes
delete snapshotsyme_extension:snapshot_admin_|actions:for¢e_delete
a snap- | {snapshot_id}/
shot action
(os-
force_delete)
3135t Rdference snap- rule:admin_mpi no yes no yes 495
detail) shot_extension:list_manageable
of snap- GET /
shots manageable_snapshots

Cinder Documentation, Release 19.3.1.dev10

Table 88: Snapshot Metadata

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
Show vol- rule:admin_y@s owner yes yes yes yes
snap- GET / ume:get_snapshot_metadata
shots
meta- snapshots/
data {snapshot_id}/
metadata
or one
spec- GET /
ified snapshots/
meta- {snapshot_id}/
data metadata/
with a | tkey}
given
key
Update vol- rule:admin myr_owner yes yes yes yes
snap- ume:update_snapshot_metadata
sholt)s PUT / N
snapshots/
meta- .
data {snapshot_id}/
metadata
or one
spec- PUT /
ified snapshots/
meta- {snapshot_id}/
data metadata/
with a | Tkey}
given
key
Delete DELETE | vol- rule:admin_mw_owner yes yes yes yes
snap- / ume:delete_snapshot| metadata
shots snapshots/
spec- {snapshot_id}/
ified metadata/
meta- {key}
data
with a
given
key

426 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 89: Backups

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
List backup:get ralle:admin_yms owner yes yes yes yes
backups GET /

backups

GET /

backups

detail
Include backup:backule: pdojactapitribute] no yes no yes
project
at- Microversion
tributes | 3.18
in the | Adds
list os-backup-project-attr:prpject_id
back- to the
ups, follow-
show ing
backup | re-
re- sponses:
sponses | GgT /

backups

detail

GET /

backups

{backup_id}

The

ability

to make

these

API

calls is

gov-

erned by

other

policies.
Create POST / | backup:creampty no yes yes yes yes
backup | backups
Show GET / backup:get rule:admin_yas owner yes yes yes yes
backup | backups

{backup|id}
Update backup:updatée:admin_mr_owner yes yes yes yes
backup

Microversion

39

PUT /

backups

{backup_lid}

3.3. Reference 427
Delete DELETE | backup:deletele:admin myr_owner yes yes yes yes
backup | /

backups

Cinder Documentation, Release 19.3.1.dev10

Table 90: Groups (Microversion 3.13)

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
List group:get| alble:admin_yms owner yes yes yes yes
groups GET /
groups
GET /
groups/
detail
Create group:creatempty no yes yes yes yes
BIOuP. | post 4
create
aroup groups
from src
Microversion
3.14:
POST /
groups/
action
(create-
from-
SIc)
Show GET / group:get| rule:admin_yas owner yes yes yes yes
group groups/
{group_id}
Update PUT / group:updatale:admin_mr_owner yes yes yes yes
group groups/
{group_id}
Include group: groppuprajbatitatopibute | no yes no yes
project
at- Microversion
tributes | 3.58
in the | Adds
list projectlid
groups, | to the
show follow-
group ing
re- re-
Sponses | sponses:
GET /
groups/
detail
GET /
groups/
{group_id}
The
ability
to make
these
428 API Chapter 3. For operators
calls is
gov-

Cinder Documentation, Release 19.3.1.dev10

Table 91: Group Types (Microversion 3.11)

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
group: groppulypekninampse no yes no yes
DEPRECATED
new
Create, policies
update split
or delete POST
agroup | py
type DELETE
POST /
group_types/
PUT /
group_types/
{group_type_id}
DELETE
/
group_types/
{group_type_id}
POST / | group:grougneypes:create no yes n/a n/a
NEW group_types/ policy)
Create a
group
type
PUT / group:gropneypes:updase no yes n/a n/a
NEW group_types/ . policy)
{group_type_id}
Update
a group
type
DELETE | group:gropgneypes:de¢lete no yes n/a n/a
aw |/ policy)
group_types/
Delete a {group_t ype_ld}
group
type
Show group:accesslgradimihypgs_specy no yes no yes
BIOUP 1 Adds
type
with group_specs
type to the
Y follow-
specs at- | |
tributes | "€
re-
sponses:
3.3. Refereiide / 429
group_types
GET /
arolin tuvneoc/

Cinder Documentation, Release 19.3.1.dev10

Table 92: Group Snapshots (Microversion 3.14)

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
List group:get| alllgralmpisnapshwiser yes yes yes yes
BIOUP | cET
snap-
shots group_snapshots
GET /
group_snapshots/
detail
Create POST / | group:createngptyup_snapshot yes yes yes yes
group group_snapshots
snap-
shot
Show GET / group:get| grdemdmapsiwst owner yes yes yes yes
group group_snapshots/
snap- {group_snapshot_id}
shot
Delete DELETE | group:del¢teulzradmisnapsloovnen yes yes yes yes
group /
snap- group_snapshots/
shot {group_snapshot_id}
Update group:updatelgmlipismpshener yes yes yes yes
SOUP | pyr
snap-
shot group_snapshots/
{group_snapshot_id}
Note:
even
though
the
policy is
defined,
this call
is not
imple-
mented
in the
Block
Storage
APL
Reset group:resetrgleragnsimpghiot_statusio yes no yes
status of
group Microversion
snap- 3.19
shot POST /
group_snapshots/
{group_snapshot_id}/
action
(re-
430 sel_status Chapter 3. For operators
Include group:groppuketapshit mpdject_attribute yes no yes
project

Cinder Documentation, Release 19.3.1.dev10

Table 93: Group Actions

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
Delete POST / | group:deleteule:admin mo_owner yes yes yes yes
group groups/

{group_id}/

action

(delete)
Reset group:res¢trafatadmin_mpi no yes no yes
status of
group Microversion

3.20

POST /

groups/

{group_id}/

action

(re-

set_status
Enable group:enablelecpdicdtionr_owner yes yes yes yes
replica-
tion Microversion

3.38

POST /

groups/

{group_id}/

action

(en-

able_replication)
Disable group:disablelaxyplichtimn_owner yes yes yes yes
replica-
tion Microversion

3.38

POST /

groups/

{group_id}/

action

(dis-

able_replication)
Fail over group:failpvaereghdation owner yes yes yes yes
replica-
tion Microversion

3.38

POST /

groups/

{group_id}/

action

(failover_replication)
3135t Reference group:list| mplicadinin mwgeiwner yes yes yes yes 431
failover
replica- | Microversion
tion 3.38

Cinder Documentation, Release 19.3.1.dev10

Table 94: QOS specs

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
List qos vol- rule:admin_mpi no yes no yes
specs or | . y ume_extension:qos_specs_manage:get_all
list all
associa- 40S-Spegs
tions GET /
qos-spegs/
{qos_id}/
associations
Show GET / vol- rule:admin mapi no yes no yes
qos gos-spegsyme_extension:qos_specs_manage:get
specs {qos_id}
Create POST / | vol- rule:admin mapi no yes no yes
qos gos-spegsume_extension:qos_specs_manage:create
specs
Update vol- rule:admin mapi no yes no yes
0s me_extension:qos_specs_manage:update
q PUT / ume_ex qos_specs_ geup
specs:
update qos-spegs/
key/values {qos_1d]
in the | GET /
qos- qos-spegs/
spec or {qos_id}/
update associate?
the vol_type_id={volume_id}
volume- | GET /
types qos-speds/
asso- {qos_id}/
ciated disassogiate?
with vol_type_id={volume_id}
the qos- | GET /
spec gos-specs/
{qos_id}/
disassogiate_all
(yes,
these
GETs
are
really
updates)
Delete vol- rule:admin_tapi no yes no yes
a qos- | poprE ume_extension:qos_specs_manage:delete
spec, or /
remove
. gqos-spegs/
a list .
of keys {gos_1d)
from PUT /
the qos. | 90S-speq s/
A8R:c {qos_id}/ Chapter 3. For joperators|
delete_keys

Cinder Documentation, Release 19.3.1.dev10

Table 95: Quotas

func- API call | policy old roject- roject- | system- | (old old ad-
P proj proj
tionality name rule) reader | member | admin owner) | min)
vol- rule:admin_mpi no yes no yes
| ume_extension:quotal classes
DEPRECA%E'
new
Show or .
policies
update .
i split
project GET
quota and
class PUT)
GET /
os-quotd-class-sets/
{project_id}
PUT /
os-quotd-class-sets/
{project_id}
GET / vol- (new no no yes n/a n/a
NEW os-quotd-whassxtsagmiicyiotal classes:get
{project_id}
Show
project
quota
class
PUT / vol- (new no no yes n/a n/a
NEW os-quotd-whassxtsagmiicyiota) classes:update
{project_id}
Update
project
quota
class
Show vol- rule:admin_yas owner yes yes yes yes
project GET / ume_extension:quotas:show
quota
(in- os-quotd-sets/
cluding {project_id}
usage GET /
and os-quotd-sets/
default) {project_id}/
default
GET /
os-quotd-sets/
{project_id}?
usage=True
Update | PUT / vol- rule:admin_mpi no yes no yes
project os-quotd-waesgxtension:quotas:update
quota {project_id}
Pelete DEEETE vol= rateradminTapi no yes no yes
3p'}oj Refe fence ume_extension:quotas:delete 433
quota os-quota-sets/
{project_id}

Cinder Documentation, Release 19.3.1.dev10

Table 96: Capabilities

function- | API call policy (old project; project-| systemr (old | (old

ality name rule) | reader| member admin | owner) ad-
min)

Show GET / vol- rule:admimo api | no yes no yes

backend capabilities/| ume_extension:capabilities

capabili- {host_name}

ties

434 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Table 97: Services

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
List all | GET / vol- rule:admin_mpi no yes no yes
services | os-serviamme_extension:serviges:index
Update vol- rule:admin mapi no yes no yes
service ume_extension:serviges:update
PUT /
os-services/
enable
PUT /
os-services/
disable
PUT /
os-services/
disable+tlog-reason
PUT /
os-services/
freeze
PUT /
os-services/
thaw
PUT /
os-services/
failover_host
PUT /
os-services/
failover
(mi-
crover-
sion
3.26)
PUT /
os-services/
set-log
PUT /
os-services/
get-log
Freeze a | PUT / vol- rule:admin_mapi no yes no yes
backend | os-serviaesg:freeze_host
host. freeze
Sec-
ondary
check;
must
also
satisfy
vol-
ume_extension:servides:update
to make
31Bis Reélference 435
Thaw a | PUT / vol- rule:admin_rapi no yes no yes
backend | os-serviammg:thaw| host
host. thaw

Cinder Documentation, Release 19.3.1.dev10

Table 98: Volume Types

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
vol- rule:admin_mpi no yes no yes
ume_extension:types| manage
DEPRECA?[OESB
types
Create, PUT /
update
types/
and {type_id}
delete ype—
volume DELETE
type /types
(new
policies
for cre-
ate/update/delete)
POST vol- (new no no yes no yes
NEW /types | ume_extengpohitype_create
Create a
volume
type
PUT / vol- (new no no yes no yes
NEW types/ . ume_extengpohitype_ppdate
{type_id}
Update
a
volume
type
DELETE | vol- (new no no yes no yes
NEW / ume_extengpotitype_delete
types/
Delete a {type_icl}
volume
type
Show a | GET / vol- empty yes yes yes yes yes
specific | types/ | ume_extension:type_get
volume {type_id}
type
List GET vol- empty yes yes yes yes yes
volume | /types | ume_extension:type_get_all
types
Conve- | vol- rule:admin_api no yes
nience ume_extension:volume_type_engryption
DEPRECAXRERDIt
Base policy
policy for the
for all situation
ayglume | where Chapter 3. For joperators
type en- | youdont
cryption | want
type op- to con-

Cinder Documentation, Release 19.3.1.dev10

Table 99: Volume Actions

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
Extenda | POST / | vol- rule:admin_mw_owner yes yes yes yes
volume | volumes/ ume:extend
{volume_id}/
action
(0s-
extend)
Extend vol- rule:admin_my_owner yes yes yes yes
an at- ume:extend_attached| volume
tached Microversion
volume | 3.42
POST /
volumes
{volumeid}/
action
(os-
extend)
Revert a vol- rule:admip my_owner yes yes yes yes
volume ume:reverft_to_snapshot
to a | Microversion
snap- 3.40
shot POST /
volumes
{volume_id}/
action
(revert)
Reset POST / | vol- rule:admin_mpi no yes no yes
status volumes/ ume_extension:volume_admin_actions:reset| status
of a | {volume|id}/
volume | action
(os-
reset_status)
Retypea | POST / | vol- rule:admin my_owner yes yes yes yes
volume | volumes/ ume:retype
{volume_id}/
action
(os-
retype)
Update | POST / | vol- rule:admin_ mw_owner yes yes yes yes
a vol- | volumes/ ume:update_readonly, flag
umes {volume_id}/
read- action
only (os-
flag update_readonly_flag)
Force POST / | vol- rule:admin_rapi no yes no yes
delete a | volumes,/ ume_extension:volume_admin_actions:forcg_delete
volume | {volume_lid}/
3.3. Referénce " 437
(0s-
force_delete)
Upload | POST / | vol- rule:admin_mapi no yes no yes

Cinder Documentation, Release 19.3.1.dev10

Table 100: Volume Transfers

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
List vol- rule:admin_y@s owner yes yes yes yes
volume ume:get_all_transfers
GET /
transfer
os-volume-transfer
GET /
os-volume-transfer/
detail
GET /
volume-transfers
GET /
volume-transfers
detail
Create a vol- rule:admin_mwr_owner yes yes yes yes
volume ume:create_transfer
POST /
transfer
os-volume-transfer
POST /
volume-transfers
Show vol- rule:admin_yas owner yes yes yes yes
one ume:get_transfer
Shec GET /
iili)ed os-volume-transfer/
{transfer_id}
volume
transfer | GET /
volume-transfers
{transfer_id}
Accept a vol- empty no yes yes yes yes
volume ume:accept_transfer
POST /
transfer
os-volume-transfer/
{transfer_id}/
accept
POST /
volume-transfers
{transfer_id}/
accept
Delete vol- rule:admin myr_owner yes yes yes yes
volume DELETE ume:delete_transfer
transfer
/
os-volume-transfer/
{transfer_id}
DELETE
/
volume-transfers
{transfer_id}
438 Chapter 3. For operators|

Cinder Documentation, Release 19.3.1.dev10

Table 101: Volume Metadata

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
Show vol- rule:admin_y@s owner yes yes yes yes
volumes ume:get_volume_metadata
GET /
meta-
data volumes
{volume_id}/
or one
metadata
spec-
ified | GET /
meta- volumes
data {volume_id}/
with a metadata/
given {key}
key. POST /
volumes
{volume_id}/
action
(os-
show_image_metadata)
Create POST / | vol- rule:admin_mw_owner yes yes yes yes
volume volumes/ ume:create_volume_inetadata
meta- {volume_id}/
data metadata
Update vol- rule:admin my_owner yes yes yes yes
volumes ume:update_volume_|metadata
PUT /
meta-
data volumes
{volume_id}/
or one
metadata
spec-
ified PUT /
meta- volumes
data {volume|id}/
with a | metadata/
given {key}
key
Delete DELETE | vol- rule:admin my_owner yes yes yes yes
volumes | / ume:delete_volume_metadata
spec- volumes
ified {volume_id}/
meta- metadata/
data {key}
with a
given
key
vol- rule:admin_my_owner yes yes yes yes
ume_extension:volume_image_metadata
DEPRECA%E'
new
policies
Volumes
are
33cReferefée. 439
p uced
ata below to
related

NNAara

split

Cinder Documentation, Release 19.3.1.dev10

Table 102: Volume Type Extra-Specs

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
Listtype | GET / vol- empty yes yes yes yes yes
extra types/ | ume_extension:types]extra_specs:index
specs {type_id}/
extra_specs
Create POST / | vol- rule:admin mapi no yes no yes
type types/ | ume_extension:types|extra_specs:create
extra {type_id}/
specs extra_specs
Show GET / vol- empty yes yes yes yes yes
one types/ | ume_extension:types|extra_specs:show
speci- {type_id}/
fied type | extra_specs/
extra {extra_spec_key}
specs
Update PUT / vol- rule:admin_rapi no yes no yes
type types/ | ume_extension:types|extra_specs:update
extra {type_id}/
specs extra_specs/
{extra_spec_key}
Delete DELETE | vol- rule:admin_rapi no yes no yes
type / ume_extension:types | extra_specs:delete
extra types/
specs {type_id}/
extra_specs/
{extra_spec_key}
Include vol- rule:admin_mpi no yes no yes
ex- GET ume_extension:types | extra_specs:read_sensjtive
that may GET /
reveal types/
sen- {type_id}
sitive GET /
infor- types/
mation | {type_id}/
about extra_specs
the GET /
deploy- types/
ment {type_id}/
that extra_specs/
should {extra_spec_key}
not be | The
exposed | ability
to end | to make
users in | these
various API
volume- | calls is
type gov-
re erned-by
4glgmses other Chapter 3. For operators|
that policies.
show

Cinder Documentation, Release 19.3.1.dev10

Table 103: Volumes

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
Create POST / | vol- empty no yes yes yes yes
volume | volumes | ume:create
Create POST / | vol- empty no yes yes yes yes
volume | volumes | ume:creatg_from_image
from
image
Show GET / vol- rule:admin_y@s owner yes yes yes yes
volume | volumes/ ume:get
{volumeid}
List vol- vol- rule:admin_y@s owner yes yes yes yes
umes or ume:get_4all
GET /
get sum-
volumes
mary of
volumes GET /
volumes
detail
GET /
volumes
summary
Update vol- rule:admin_mw_owner yes yes yes yes
volume ume:update
PUT /
or up-
volumes
date a
volumes | POST /
bootable | olumes/
status {volume_id}/
action
(os-
set_bootable)
Delete DELETE | vol- rule:admin_my_owner yes yes yes yes
volume / ume:delete
volumes
{volume_id}
Force DELETE | vol- rule:admin_mpi no yes no yes
Delete a | / ume:force| delete
volume | volumes
(Mi- {volume_id}?
crover- force=true
sion
3.23)
List or vol- rule:admin_mpi no yes no yes
show ume_extension:volume_host_attiibute
Adds
volume
with os-vol-host-attrihost
to the
host foll
attribute | O O
ing
IC-
3.3. Refereslagﬁsesz 441
GET /

volumes

Cinder Documentation, Release 19.3.1.dev10

Table 104: Default Volume Types (Microversion 3.62)

func- APl call | policy (old project- | project- | system- | (old (old ad-
tionality name rule) reader | member | admin owner) | min)
Set or | PUT / vol- rule:systemnor_domaimer_projecyeadmin | no yes
update defaul t1tymesextension:default_set_or_update
default
volume
type for
a project
Get vol- rule:systemnor_domaimer_projecyeadmin | no yes
default ume_extension:default_get
type for GET /
a project default+types/

{project-id}

(Note: a

project-

k

persona

can

always

deter-

mine

their

effective

default-

type by

making

the GET

/v3/

{project_id}/

types/

default

call,

which is

gov-

erned by

the vol-

ume_extension:type_get

policy.)
Get all | GET / vol- role:admin no no yes no yes
default defaul t+tymes¢xtensiod:dgfault_get_all
types tem_scope:all
Unset DELETE | vol- rule:systemnor_domaimer_projecyeadmin | no yes
default / ume_extension:default_unset
type for | defaultqtypes/
aproject | {project-id}

442 Chapter 3. For operators

Cinder Documentation, Release 19.3.1.dev10

Policy configuration

Configuration

The following is an overview of all available policies in Cinder. For information on how to write a custom
policy file to modify these policies, see policy.yaml in the Cinder configuration documentation.

cinder

admin_or_owner

Default is_admin:True or (role:admin and is_admin_project:True) or
project_id:%(project_id)s

DEPRECATED: This rule will be removed in the Yoga release. Default rule for most non-Admin
APIs.

system_or_domain_or_project_admin

Default (role:admin and system_scope:all) or (role:admin
and domain_id:%(domain_id)s) or (role:admin and
project_id:%(project_id)s)

DEPRECATED: This rule will be removed in the Yoga release. Default rule for admins of cloud,
domain or a project.

context_is_admin
Default role:admin
Decides what is required for the is_admin:True check to succeed.
admin_api
Default is_admin:True or (role:admin and is_admin_project:True)
Default rule for most Admin APIs.
xena_system_admin_or_project_reader
Default (role:admin) or (role:reader and project_id:%(project_id)s)
NOTE: this purely role-based rule recognizes only project scope
xena_system_admin_or_project_member
Default (role:admin) or (role:member and project_id:%(project_id)s)
NOTE: this purely role-based rule recognizes only project scope
volume:attachment_create
Default rule:xena_system_admin_or_project_member
Operations
* POST /attachments
Create attachment.

volume:attachment_update

3.3. Reference 443

Cinder Documentation, Release 19.3.1.dev10

Default rule:xena_system_admin_or_project_member
Operations
* PUT /attachments/{attachment_id}
Update attachment.
volume:attachment_delete
Default rule:xena_system_admin_or_project_member
Operations
* DELETE /attachments/{attachment_id}
Delete attachment.
volume:attachment_complete
Default rule:xena_system_admin_or_project_member

Operations

¢ POST /attachments/{attachment_id}/action (os-complete)

Mark a volume attachment process as completed (in-use)
volume:multiattach_bootable_volume
Default rule:xena_system_admin_or_project_member
Operations
¢ POST /attachments
Allow multiattach of bootable volumes.
message:get_all
Default rule:xena_system_admin_or_project_reader
Operations
¢ GET /messages
List messages.
message:get
Default rule:xena_system_admin_or_project_reader
Operations
* GET /messages/{message_id}
Show message.
message:delete
Default rule:xena_system_admin_or_project_member
Operations
e DELETE /messages/{message_id}

Delete message.

444

Chapter 3.

For operators

Cinder Documentation, Release 19.3.1.dev10

clusters:get_all
Default rule:admin_api
Operations
* GET /clusters
e GET /clusters/detail

List clusters.
clusters:get
Default rule:admin_api
Operations
* GET /clusters/{cluster_id}
Show cluster.
clusters:update
Default rule:admin_api
Operations
e PUT /clusters/{cluster_id}
Update cluster.
workers:cleanup
Default rule:admin_api
Operations
¢ POST /workers/cleanup
Clean up workers.
volume:get_snapshot_metadata
Default rule:xena_system_admin_or_project_reader
Operations
¢ GET /snapshots/{snapshot_id}/metadata
¢ GET /snapshots/{snapshot_id}/metadata/{key}
Show snapshots metadata or one specified metadata with a given key.

volume:update_snapshot_metadata

Default rule:xena_system_admin_or_project_member
Operations

¢ POST /snapshots/{snapshot_id}/metadata

e PUT /snapshots/{snapshot_id}/metadata/{key}

Update snapshots metadata or one specified metadata with a given key.

volume:delete_snapshot_metadata

3.3. Reference 445

Cinder Documentation, Release 19.3.1.dev10

Default rule:xena_system_admin_or_project_member
Operations
e DELETE /snapshots/{snapshot_id}/metadata/{key}
Delete snapshots specified metadata with a given key.
volume:get_all_snapshots
Default rule:xena_system_admin_or_project_reader
Operations
¢ GET /snapshots
¢ GET /snapshots/detail
List snapshots.
volume_extension:extended_snapshot_attributes
Default rule:xena_system_admin_or_project_reader
Operations
¢ GET /snapshots/{snapshot_id}
¢ GET /snapshots/detail
List or show snapshots with extended attributes.
volume:create_snapshot
Default rule:xena_system_admin_or_project_member
Operations
¢ POST /snapshots
Create snapshot.
volume:get_snapshot
Default rule:xena_system_admin_or_project_reader
Operations
¢ GET /snapshots/{snapshot_id}
Show snapshot.
volume:update_snapshot
Default rule:xena_system_admin_or_project_member
Operations
e PUT /snapshots/{snapshot_id}
Update snapshot.
volume:delete_snapshot
Default rule:xena_system_admin_or_project_member

Operations

446 Chapter 3.

For operators

Cinder Documentation, Release 19.3.1.dev10

e DELETE /snapshots/{snapshot_id}
Delete snapshot.
volume_extension:snapshot_admin_actions:reset_status
Default rule:admin_api
Operations
¢ POST /snapshots/{snapshot_id}/action (os-reset_status)
Reset status of a snapshot.
snapshot_extension:snapshot_actions:update_snapshot_status
Default rule:xena_system_admin_or_project_member
Operations

e POST /snapshots/{snapshot_id}/action
(update_snapshot_status)

Update database fields of snapshot.
volume_extension:snapshot_admin_actions: force_delete
Default rule:admin_api
Operations
¢ POST /snapshots/{snapshot_id}/action (os-force_delete)
Force delete a snapshot.
snapshot_extension:list_manageable
Default rule:admin_api
Operations
¢ GET /manageable_snapshots
¢ GET /manageable_snapshots/detail
List (in detail) of snapshots which are available to manage.
snapshot_extension:snapshot_manage
Default rule:admin_api
Operations
¢ POST /manageable_snapshots
Manage an existing snapshot.
snapshot_extension:snapshot_unmanage
Default rule:admin_api
Operations
¢ POST /snapshots/{snapshot_id}/action (os-unmanage)
Stop managing a snapshot.

backup:get_all

3.3. Reference 447

Cinder Documentation, Release 19.3.1.dev10

Default rule:xena_system_admin_or_project_reader
Operations
¢ GET /backups
¢ GET /backups/detail
List backups.
backup:backup_project_attribute
Default rule:admin_api
Operations
* GET /backups/{backup_id}
¢ GET /backups/detail
List backups or show backup with project attributes.
backup:create
Default rule:xena_system_admin_or_project_member
Operations
¢ POST /backups
Create backup.
backup:get
Default rule:xena_system_admin_or_project_reader
Operations
¢ GET /backups/{backup_id}
Show backup.
backup:update
Default rule:xena_system_admin_or_project_member
Operations
e PUT /backups/{backup_id}
Update backup.
backup:delete
Default rule:xena_system_admin_or_project_member
Operations
* DELETE /backups/{backup_id}
Delete backup.
backup:restore
Default rule:xena_system_admin_or_project_member

Operations

448 Chapter 3.

For operators

Cinder Documentation, Release 19.3.1.dev10

¢ POST /backups/{backup_id}/restore
Restore backup.
backup:backup-import
Default rule:admin_api
Operations
¢ POST /backups/{backup_id}/import_record
Import backup.
backup:export-import
Default rule:admin_api
Operations
¢ POST /backups/{backup_id}/export_record
Export backup.
volume_extension:backup_admin_actions:reset_status
Default rule:admin_api
Operations
¢ POST /backups/{backup_id}/action (os-reset_status)
Reset status of a backup.
volume_extension:backup_admin_actions:force_delete
Default rule:admin_api
Operations
¢ POST /backups/{backup_id}/action (os-force_delete)
Force delete a backup.
group:get_all
Default rule:xena_system_admin_or_project_reader
Operations
¢ GET /groups
e GET /groups/detail
List groups.
group:create
Default rule:xena_system_admin_or_project_member
Operations
¢ POST /groups
Create group.

group:get

3.3. Reference 449

Cinder Documentation, Release 19.3.1.dev10

Default rule:xena_system_admin_or_project_reader
Operations
* GET /groups/{group_id}
Show group.
group:update
Default rule:xena_system_admin_or_project_member
Operations
e PUT /groups/{group_id}
Update group.
group:group_project_attribute
Default rule:admin_api
Operations
* GET /groups/{group_id}
¢ GET /groups/detail
List groups or show group with project attributes.
group:group_types:create
Default rule:admin_api
Operations
¢ POST /group_types/
Create a group type.
group:group_types:update
Default rule:admin_api
Operations
e PUT /group_types/{group_type_id}
Update a group type.
group:group_types:delete
Default rule:admin_api
Operations
e DELETE /group_types/{group_type_id}
Delete a group type.
group:access_group_types_specs
Default rule:admin_api
Operations

¢ GET /group_types/{group_type_id}

450 Chapter 3.

For operators

Cinder Documentation, Release 19.3.1.dev10

Show group type with type specs attributes.
group:group_types_specs:get
Default rule:admin_api
Operations
¢ GET /group_types/{group_type_id}/group_specs/{g_spec_id}
Show a group type spec.
group:group_types_specs:get_all
Default rule:admin_api
Operations
e GET /group_types/{group_type_id}/group_specs
List group type specs.
group:group_types_specs:create
Default rule:admin_api
Operations
¢ POST /group_types/{group_type_id}/group_specs
Create a group type spec.
group:group_types_specs:update
Default rule:admin_api
Operations
e PUT /group_types/{group_type_id}/group_specs/{g_spec_id}
Update a group type spec.
group:group_types_specs:delete
Default rule:admin_api
Operations

* DELETE /group_types/{group_type_id}/group