
Heat Documentation
Release 16.1.1.dev14

Heat Developers

Feb 07, 2025

CONTENTS

1 Heats purpose and vision 3

2 Operating Heat 5
2.1 Installing Heat . 5

2.1.1 Orchestration service overview . 5
2.1.2 Install and configure . 5

Install and configure for openSUSE and SUSE Linux Enterprise 6
Install and configure for Red Hat Enterprise Linux and CentOS 12
Install and configure for Ubuntu . 19
Install and configure for Debian . 25

2.1.3 Verify operation . 32
2.1.4 Launch an instance . 32

Create a template . 32
Create a stack . 33

2.1.5 Next steps . 35
2.2 Running Heat API services in HTTP Server . 35

2.2.1 mod-wsgi . 35
2.2.2 uwsgi . 35

mod_proxy_uwsgi . 36
2.3 Configuring Heat . 37

2.3.1 Configuration options for the Orchestration service 37
DEFAULT . 37
auth_password . 53
clients . 53
clients_aodh . 54
clients_barbican . 54
clients_cinder . 55
clients_designate . 56
clients_glance . 56
clients_heat . 57
clients_keystone . 58
clients_magnum . 59
clients_manila . 59
clients_mistral . 60
clients_monasca . 61
clients_neutron . 61
clients_nova . 62
clients_octavia . 63
clients_sahara . 63

i

clients_senlin . 64
clients_swift . 65
clients_trove . 65
clients_vitrage . 66
clients_zaqar . 67
cors . 67
database . 68
ec2authtoken . 72
eventlet_opts . 73
healthcheck . 73
heat_api . 74
heat_api_cfn . 76
heat_api_cloudwatch . 78
keystone_authtoken . 80
noauth . 85
oslo_messaging_amqp . 85
oslo_messaging_kafka . 92
oslo_messaging_notifications . 95
oslo_messaging_rabbit . 96
oslo_middleware . 100
oslo_policy . 101
paste_deploy . 103
profiler . 103
revision . 105
ssl . 105
trustee . 106
volumes . 109

2.3.2 Heat Configuration Sample . 109
2.3.3 Orchestration log files . 109
2.3.4 Heat Sample Policy . 110

2.4 Administering Heat . 126
2.4.1 Introduction . 126
2.4.2 Orchestration authorization model . 127

Password authorization . 127
OpenStack Identity trusts authorization . 127
Authorization model configuration . 128

2.4.3 Stack domain users . 129
Stack domain users configuration . 129
Usage workflow . 130

2.5 Scaling a Deployment . 131
2.5.1 Assumptions . 131
2.5.2 Architecture . 131

Basic Architecture . 131
Load Balancing . 131
Target Architecture . 132

2.5.3 Deploying Multiple APIs . 132
2.5.4 Deploying Multiple Engines . 133
2.5.5 Deploying the Proxy . 133
2.5.6 Sample . 134

Architecture . 134
Running the API and Engine Services . 135

ii

Setting Up HAProxy . 136
2.6 Upgrades Guideline . 136

2.6.1 Plan to upgrade . 137
2.6.2 Cold Upgrades . 137
2.6.3 Rolling Upgrades . 137

Prerequisites . 137
Procedure . 138

2.6.4 References . 139
2.7 Man pages for services and utilities . 139

2.7.1 Heat services . 139
heat-engine . 139
heat-api . 140
heat-api-cfn . 141

2.7.2 Heat utilities . 141
heat-manage . 141
heat-db-setup . 143
heat-keystone-setup . 144
heat-keystone-setup-domain . 144
heat-status . 146

3 Using Heat 149
3.1 Creating your first stack . 149

3.1.1 Confirming you can access a Heat endpoint 149
3.1.2 Preparing to create a stack . 149
3.1.3 Launching a stack . 150

List stacks . 150
List stack events . 150
Describe the wordpress stack . 151
Verify instance creation . 151
Delete the instance when done . 151

3.2 Glossary . 151
3.3 Working with Templates . 153

3.3.1 Template Guide . 153
Heat Orchestration Template (HOT) Guide . 153
Writing a hello world HOT template . 156
Guideline for features . 160
Heat Orchestration Template (HOT) specification 163
Instances . 198
Software configuration . 205
Environments . 218
Template composition . 223
OpenStack Resource Types . 226
CloudFormation Compatible Resource Types 599
Unsupported Heat Resource Types . 639
Contributed Heat Resource Types . 658
CloudFormation Compatible Functions . 665

3.3.2 Example Templates . 673
Example HOT Templates . 673
Example CFN Templates . 674

3.4 Using the Heat Service . 675

4 Developing Heat 677

iii

4.1 Heat Contributor Guidelines . 677
4.1.1 Heat and DevStack . 677

Configure DevStack to enable heat . 677
Configure DevStack to enable ceilometer and aodh (if using alarms) 678
Configure DevStack to enable OSprofiler . 678
Create a stack . 679

4.1.2 Blueprints and Specs . 679
Spec Notes . 679
Heat Spec Lite . 679
Lite spec Submission Guidelines . 680
Lite spec from existing stories . 680

4.1.3 Heat architecture . 680
Detailed description . 680
Heat services . 681

4.1.4 Heat Resource Plug-in Development Guide 681
Resource Plug-in Life Cycle . 681
Configuring the Engine . 692
Testing . 692
Putting It All Together . 692
Resource Contributions . 692

4.1.5 Heat Stack Lifecycle Scheduler Hints . 693
Enabling the scheduler hints . 693
The hints . 693
Purpose . 693

4.1.6 Guru Meditation Reports . 693
Generating a GMR . 693
Structure of a GMR . 693
Adding support for GMRs to new executable 694
Extending the GMR . 694

4.1.7 Heat Support Status usage Guide . 694
Support Status option and its parameters . 694
Life cycle of resource, property, attribute . 695
Using Support Status during code writing . 696
Translating mechanism for hidden properties 698

4.1.8 Using Rally on Heat gates . 699
How to run Rally for particular patch . 699
Examples of using Rally . 699
create_stack_and_show_output_old . 701
create_stack_and_show_output_new . 702
create_stack_and_list_output_old . 702
create_stack_and_list_output_new . 702

4.2 Source Code Index . 702
4.2.1 heat . 702

heat package . 702

5 Indices and tables 913

iv

Heat Documentation, Release 16.1.1.dev14

Heat is a service to orchestrate composite cloud applications using a declarative template format through
an OpenStack-native REST API.

CONTENTS 1

Heat Documentation, Release 16.1.1.dev14

2 CONTENTS

CHAPTER

ONE

HEATS PURPOSE AND VISION

• Heat provides a template based orchestration for describing a cloud application by executing ap-
propriate OpenStack API calls to generate running cloud applications.

• A Heat template describes the infrastructure for a cloud application in text files which are readable
and writable by humans, and can be managed by version control tools.

• Templates specify the relationships between resources (e.g. this volume is connected to this
server). This enables Heat to call out to the OpenStack APIs to create all of your infrastructure in
the correct order to completely launch your application.

• The software integrates other components of OpenStack. The templates allow creation of most
OpenStack resource types (such as instances, floating ips, volumes, security groups, users, etc), as
well as some more advanced functionality such as instance high availability, instance autoscaling,
and nested stacks.

• Heat primarily manages infrastructure, but the templates integrate well with software configura-
tion management tools such as Puppet and Ansible.

• Operators can customise the capabilities of Heat by installing plugins.

This documentation offers information aimed at end-users, operators and developers of Heat.

3

Heat Documentation, Release 16.1.1.dev14

4 Chapter 1. Heats purpose and vision

CHAPTER

TWO

OPERATING HEAT

2.1 Installing Heat

2.1.1 Orchestration service overview

The Orchestration service provides a template-based orchestration for describing a cloud application
by running OpenStack API calls to generate running cloud applications. The software integrates other
core components of OpenStack into a one-file template system. The templates allow you to create most
OpenStack resource types such as instances, floating IPs, volumes, security groups, and users. It also
provides advanced functionality such as instance high availability, instance auto-scaling, and nested
stacks. This enables OpenStack core projects to receive a larger user base.

The service allows deployers to integrate with the Orchestration service directly or through custom plug-
ins.

The Orchestration service consists of the following components:

heat command-line client A CLI that communicates with the heat-api to run AWS CloudForma-
tion APIs. End developers can directly use the Orchestration REST API.

heat-api component An OpenStack-native REST API that processes API requests by sending them
to the heat-engine over Remote Procedure Call (RPC).

heat-api-cfn component An AWS Query API that is compatible with AWS CloudFormation. It
processes API requests by sending them to the heat-engine over RPC.

heat-engine Orchestrates the launching of templates and provides events back to the API consumer.

2.1.2 Install and configure

This section describes how to install and configure the Orchestration service, code-named heat, on the
controller node.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.

5

Heat Documentation, Release 16.1.1.dev14

Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Orchestration service for openSUSE Leap 42.2
and SUSE Linux Enterprise Server 12 SP2.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

• Create the heat database:

CREATE DATABASE heat;

• Grant proper access to the heat database:

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost' \
IDENTIFIED BY 'HEAT_DBPASS';

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%' \
IDENTIFIED BY 'HEAT_DBPASS';

Replace HEAT_DBPASS with a suitable password.

• Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

• Create the heat user:

$ openstack user create --domain default --password-prompt heat
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	e0353a670a9e496da891347c589539e9
enabled	True
id	ca2e175b851943349be29a328cc5e360
name	heat
+-----------+----------------------------------+

• Add the admin role to the heat user:

$ openstack role add --project service --user heat admin

6 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Note: This command provides no output.

• Create the heat and heat-cfn service entities:

$ openstack service create --name heat \
--description "Orchestration" orchestration

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Orchestration
enabled	True
id	727841c6f5df4773baa4e8a5ae7d72eb
name	heat
type	orchestration
+-------------+----------------------------------+

$ openstack service create --name heat-cfn \
--description "Orchestration" cloudformation

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Orchestration
enabled	True
id	c42cede91a4e47c3b10c8aedc8d890c6
name	heat-cfn
type	cloudformation
+-------------+----------------------------------+

4. Create the Orchestration service API endpoints:

$ openstack endpoint create --region RegionOne \
orchestration public http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	3f4dab34624e4be7b000265f25049609
interface	public
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
orchestration internal http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	9489f78e958e45cc85570fec7e836d98
interface	internal
region	RegionOne

(continues on next page)

2.1. Installing Heat 7

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
orchestration admin http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	76091559514b40c6b7b38dde790efe99
interface	admin
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
cloudformation public http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	b3ea082e019c4024842bf0a80555052c
interface	public
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
cloudformation internal http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	169df4368cdc435b8b115a9cb084044e
interface	internal
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

(continues on next page)

8 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

$ openstack endpoint create --region RegionOne \
cloudformation admin http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	3d3edcd61eb343c1bbd629aa041ff88b
interface	internal
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

• Create the heat domain that contains projects and users for stacks:

$ openstack domain create --description "Stack projects and users
↪→" heat
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Stack projects and users
enabled	True
id	0f4d1bd326f2454dacc72157ba328a47
name	heat
+-------------+----------------------------------+

• Create the heat_domain_admin user to manage projects and users in the heat domain:

$ openstack user create --domain heat --password-prompt heat_
↪→domain_admin
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	0f4d1bd326f2454dacc72157ba328a47
enabled	True
id	b7bd1abfbcf64478b47a0f13cd4d970a
name	heat_domain_admin
+-----------+----------------------------------+

• Add the admin role to the heat_domain_admin user in the heat domain to enable
administrative stack management privileges by the heat_domain_admin user:

$ openstack role add --domain heat --user-domain heat --user heat_
↪→domain_admin admin

Note: This command provides no output.

2.1. Installing Heat 9

Heat Documentation, Release 16.1.1.dev14

• Create the heat_stack_owner role:

$ openstack role create heat_stack_owner
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	15e34f0c4fed4e68b3246275883c8630
name	heat_stack_owner
+-----------+----------------------------------+

• Add the heat_stack_owner role to the demo project and user to enable stack manage-
ment by the demo user:

$ openstack role add --project demo --user demo heat_stack_owner

Note: This command provides no output.

Note: You must add the heat_stack_owner role to each user that manages stacks.

• Create the heat_stack_user role:

$ openstack role create heat_stack_user
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	88849d41a55d4d1d91e4f11bffd8fc5c
name	heat_stack_user
+-----------+----------------------------------+

Note: The Orchestration service automatically assigns the heat_stack_user role to
users that it creates during stack deployment. By default, this role restricts API <Application
Programming Interface (API)> operations. To avoid conflicts, do not add this role to users
with the heat_stack_owner role.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

zypper install openstack-heat-api openstack-heat-api-cfn \
openstack-heat-engine

10 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

2. Edit the /etc/heat/heat.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://heat:HEAT_DBPASS@controller/heat

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [keystone_authtoken], [trustee] and [clients_keystone] sections,
configure Identity service access:

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = heat
password = HEAT_PASS

[trustee]
...
auth_type = password
auth_url = http://controller:5000
username = heat
password = HEAT_PASS
user_domain_name = default

[clients_keystone]
...
auth_uri = http://controller:5000

Replace HEAT_PASSwith the password you chose for the heat user in the Identity service.

• In the [DEFAULT] section, configure the metadata and wait condition URLs:

[DEFAULT]
...
heat_metadata_server_url = http://controller:8000
heat_waitcondition_server_url = http://controller:8000/v1/
↪→waitcondition

• In the [DEFAULT] section, configure the stack domain and administrative credentials:

2.1. Installing Heat 11

Heat Documentation, Release 16.1.1.dev14

[DEFAULT]
...
stack_domain_admin = heat_domain_admin
stack_domain_admin_password = HEAT_DOMAIN_PASS
stack_user_domain_name = heat

Replace HEAT_DOMAIN_PASS with the password you chose for the
heat_domain_admin user in the Identity service.

Finalize installation

• Start the Orchestration services and configure them to start when the system boots:

systemctl enable openstack-heat-api.service \
openstack-heat-api-cfn.service openstack-heat-engine.service

systemctl start openstack-heat-api.service \
openstack-heat-api-cfn.service openstack-heat-engine.service

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Orchestration service for Red Hat Enterprise
Linux 7 and CentOS 7.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

• Create the heat database:

CREATE DATABASE heat;

• Grant proper access to the heat database:

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost' \
IDENTIFIED BY 'HEAT_DBPASS';

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%' \
IDENTIFIED BY 'HEAT_DBPASS';

Replace HEAT_DBPASS with a suitable password.

• Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

12 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

3. To create the service credentials, complete these steps:

• Create the heat user:

$ openstack user create --domain default --password-prompt heat
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	e0353a670a9e496da891347c589539e9
enabled	True
id	ca2e175b851943349be29a328cc5e360
name	heat
+-----------+----------------------------------+

• Add the admin role to the heat user:

$ openstack role add --project service --user heat admin

Note: If installing OpenStack manually following the Keystone install guide, the name of
the services project is service as given above. However, traditional methods of installing
RDO (such as PackStack and TripleO) use services as the name of the service project. If
you installed RDO using a Puppet-based method, substitute services as the project name.

Note: This command provides no output.

• Create the heat and heat-cfn service entities:

$ openstack service create --name heat \
--description "Orchestration" orchestration

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Orchestration
enabled	True
id	727841c6f5df4773baa4e8a5ae7d72eb
name	heat
type	orchestration
+-------------+----------------------------------+

$ openstack service create --name heat-cfn \
--description "Orchestration" cloudformation

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Orchestration
enabled	True
id	c42cede91a4e47c3b10c8aedc8d890c6
name	heat-cfn
type	cloudformation
+-------------+----------------------------------+

4. Create the Orchestration service API endpoints:

2.1. Installing Heat 13

https://docs.openstack.org/keystone/wallaby/install/keystone-users-rdo.html

Heat Documentation, Release 16.1.1.dev14

$ openstack endpoint create --region RegionOne \
orchestration public http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	3f4dab34624e4be7b000265f25049609
interface	public
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
orchestration internal http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	9489f78e958e45cc85570fec7e836d98
interface	internal
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
orchestration admin http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	76091559514b40c6b7b38dde790efe99
interface	admin
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
cloudformation public http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	b3ea082e019c4024842bf0a80555052c
interface	public

(continues on next page)

14 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
cloudformation internal http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	169df4368cdc435b8b115a9cb084044e
interface	internal
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
cloudformation admin http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	3d3edcd61eb343c1bbd629aa041ff88b
interface	internal
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

• Create the heat domain that contains projects and users for stacks:

$ openstack domain create --description "Stack projects and users
↪→" heat
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Stack projects and users
enabled	True
id	0f4d1bd326f2454dacc72157ba328a47
name	heat
+-------------+----------------------------------+

• Create the heat_domain_admin user to manage projects and users in the heat domain:

2.1. Installing Heat 15

Heat Documentation, Release 16.1.1.dev14

$ openstack user create --domain heat --password-prompt heat_
↪→domain_admin
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	0f4d1bd326f2454dacc72157ba328a47
enabled	True
id	b7bd1abfbcf64478b47a0f13cd4d970a
name	heat_domain_admin
+-----------+----------------------------------+

• Add the admin role to the heat_domain_admin user in the heat domain to enable
administrative stack management privileges by the heat_domain_admin user:

$ openstack role add --domain heat --user-domain heat --user heat_
↪→domain_admin admin

Note: This command provides no output.

• Create the heat_stack_owner role:

$ openstack role create heat_stack_owner
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	15e34f0c4fed4e68b3246275883c8630
name	heat_stack_owner
+-----------+----------------------------------+

• Add the heat_stack_owner role to the demo project and user to enable stack manage-
ment by the demo user:

$ openstack role add --project demo --user demo heat_stack_owner

Note: This command provides no output.

Note: You must add the heat_stack_owner role to each user that manages stacks.

• Create the heat_stack_user role:

$ openstack role create heat_stack_user
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | None |
| id | 88849d41a55d4d1d91e4f11bffd8fc5c |

(continues on next page)

16 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

| name | heat_stack_user |
+-----------+----------------------------------+

Note: The Orchestration service automatically assigns the heat_stack_user role to
users that it creates during stack deployment. By default, this role restricts API <Application
Programming Interface (API)> operations. To avoid conflicts, do not add this role to users
with the heat_stack_owner role.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

yum install openstack-heat-api openstack-heat-api-cfn \
openstack-heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://heat:HEAT_DBPASS@controller/heat

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [keystone_authtoken], [trustee], and [clients_keystone] sec-
tions, configure Identity service access:

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default

(continues on next page)

2.1. Installing Heat 17

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

project_name = service
username = heat
password = HEAT_PASS

[trustee]
...
auth_type = password
auth_url = http://controller:5000
username = heat
password = HEAT_PASS
user_domain_name = default

[clients_keystone]
...
auth_uri = http://controller:5000

Replace HEAT_PASSwith the password you chose for the heat user in the Identity service.

• In the [DEFAULT] section, configure the metadata and wait condition URLs:

[DEFAULT]
...
heat_metadata_server_url = http://controller:8000
heat_waitcondition_server_url = http://controller:8000/v1/
↪→waitcondition

• In the [DEFAULT] section, configure the stack domain and administrative credentials:

[DEFAULT]
...
stack_domain_admin = heat_domain_admin
stack_domain_admin_password = HEAT_DOMAIN_PASS
stack_user_domain_name = heat

Replace HEAT_DOMAIN_PASS with the password you chose for the
heat_domain_admin user in the Identity service.

3. Populate the Orchestration database:

su -s /bin/sh -c "heat-manage db_sync" heat

Note: Ignore any deprecation messages in this output.

Finalize installation

• Start the Orchestration services and configure them to start when the system boots:

systemctl enable openstack-heat-api.service \
openstack-heat-api-cfn.service openstack-heat-engine.service

systemctl start openstack-heat-api.service \
openstack-heat-api-cfn.service openstack-heat-engine.service

18 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Install and configure for Ubuntu

This section describes how to install and configure the Orchestration service for Ubuntu 14.04 (LTS).

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

• Create the heat database:

CREATE DATABASE heat;

• Grant proper access to the heat database:

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost' \
IDENTIFIED BY 'HEAT_DBPASS';

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%' \
IDENTIFIED BY 'HEAT_DBPASS';

Replace HEAT_DBPASS with a suitable password.

• Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

• Create the heat user:

$ openstack user create --domain default --password-prompt heat
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	e0353a670a9e496da891347c589539e9
enabled	True
id	ca2e175b851943349be29a328cc5e360
name	heat
+-----------+----------------------------------+

• Add the admin role to the heat user:

$ openstack role add --project service --user heat admin

Note: This command provides no output.

2.1. Installing Heat 19

Heat Documentation, Release 16.1.1.dev14

• Create the heat and heat-cfn service entities:

$ openstack service create --name heat \
--description "Orchestration" orchestration

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Orchestration
enabled	True
id	727841c6f5df4773baa4e8a5ae7d72eb
name	heat
type	orchestration
+-------------+----------------------------------+

$ openstack service create --name heat-cfn \
--description "Orchestration" cloudformation

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Orchestration
enabled	True
id	c42cede91a4e47c3b10c8aedc8d890c6
name	heat-cfn
type	cloudformation
+-------------+----------------------------------+

4. Create the Orchestration service API endpoints:

$ openstack endpoint create --region RegionOne \
orchestration public http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	3f4dab34624e4be7b000265f25049609
interface	public
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
orchestration internal http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	9489f78e958e45cc85570fec7e836d98
interface	internal
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration

(continues on next page)

20 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

| url | http://controller:8004/v1/%(tenant_id)s |
+--------------+---+

$ openstack endpoint create --region RegionOne \
orchestration admin http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	76091559514b40c6b7b38dde790efe99
interface	admin
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
cloudformation public http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	b3ea082e019c4024842bf0a80555052c
interface	public
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
cloudformation internal http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	169df4368cdc435b8b115a9cb084044e
interface	internal
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
cloudformation admin http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |

(continues on next page)

2.1. Installing Heat 21

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

+--------------+----------------------------------+
enabled	True
id	3d3edcd61eb343c1bbd629aa041ff88b
interface	internal
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

• Create the heat domain that contains projects and users for stacks:

$ openstack domain create --description "Stack projects and users
↪→" heat
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Stack projects and users
enabled	True
id	0f4d1bd326f2454dacc72157ba328a47
name	heat
+-------------+----------------------------------+

• Create the heat_domain_admin user to manage projects and users in the heat domain:

$ openstack user create --domain heat --password-prompt heat_
↪→domain_admin
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	0f4d1bd326f2454dacc72157ba328a47
enabled	True
id	b7bd1abfbcf64478b47a0f13cd4d970a
name	heat_domain_admin
+-----------+----------------------------------+

• Add the admin role to the heat_domain_admin user in the heat domain to enable
administrative stack management privileges by the heat_domain_admin user:

$ openstack role add --domain heat --user-domain heat --user heat_
↪→domain_admin admin

Note: This command provides no output.

• Create the heat_stack_owner role:

22 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

$ openstack role create heat_stack_owner
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	15e34f0c4fed4e68b3246275883c8630
name	heat_stack_owner
+-----------+----------------------------------+

• Add the heat_stack_owner role to the demo project and user to enable stack manage-
ment by the demo user:

$ openstack role add --project demo --user demo heat_stack_owner

Note: This command provides no output.

Note: You must add the heat_stack_owner role to each user that manages stacks.

• Create the heat_stack_user role:

$ openstack role create heat_stack_user
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	88849d41a55d4d1d91e4f11bffd8fc5c
name	heat_stack_user
+-----------+----------------------------------+

Note: The Orchestration service automatically assigns the heat_stack_user role to
users that it creates during stack deployment. By default, this role restricts API <Application
Programming Interface (API)> operations. To avoid conflicts, do not add this role to users
with the heat_stack_owner role.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt-get install heat-api heat-api-cfn heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

• In the [database] section, configure database access:

2.1. Installing Heat 23

Heat Documentation, Release 16.1.1.dev14

[database]
...
connection = mysql+pymysql://heat:HEAT_DBPASS@controller/heat

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [keystone_authtoken], [trustee] and [clients_keystone] sections,
configure Identity service access:

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = heat
password = HEAT_PASS

[trustee]
...
auth_type = password
auth_url = http://controller:5000
username = heat
password = HEAT_PASS
user_domain_name = default

[clients_keystone]
...
auth_uri = http://controller:5000

Replace HEAT_PASSwith the password you chose for the heat user in the Identity service.

• In the [DEFAULT] section, configure the metadata and wait condition URLs:

[DEFAULT]
...
heat_metadata_server_url = http://controller:8000
heat_waitcondition_server_url = http://controller:8000/v1/
↪→waitcondition

• In the [DEFAULT] section, configure the stack domain and administrative credentials:

[DEFAULT]
...
stack_domain_admin = heat_domain_admin

(continues on next page)

24 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

stack_domain_admin_password = HEAT_DOMAIN_PASS
stack_user_domain_name = heat

Replace HEAT_DOMAIN_PASS with the password you chose for the
heat_domain_admin user in the Identity service.

3. Populate the Orchestration database:

su -s /bin/sh -c "heat-manage db_sync" heat

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Orchestration services:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

Install and configure for Debian

This section describes how to install and configure the Orchestration service for Debian.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

• Create the heat database:

CREATE DATABASE heat;

• Grant proper access to the heat database:

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost' \
IDENTIFIED BY 'HEAT_DBPASS';

GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%' \
IDENTIFIED BY 'HEAT_DBPASS';

Replace HEAT_DBPASS with a suitable password.

• Exit the database access client.

2.1. Installing Heat 25

Heat Documentation, Release 16.1.1.dev14

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

• Create the heat user:

$ openstack user create --domain default --password-prompt heat
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	e0353a670a9e496da891347c589539e9
enabled	True
id	ca2e175b851943349be29a328cc5e360
name	heat
+-----------+----------------------------------+

• Add the admin role to the heat user:

$ openstack role add --project service --user heat admin

Note: This command provides no output.

• Create the heat and heat-cfn service entities:

$ openstack service create --name heat \
--description "Orchestration" orchestration

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Orchestration
enabled	True
id	727841c6f5df4773baa4e8a5ae7d72eb
name	heat
type	orchestration
+-------------+----------------------------------+

$ openstack service create --name heat-cfn \
--description "Orchestration" cloudformation

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Orchestration
enabled	True
id	c42cede91a4e47c3b10c8aedc8d890c6
name	heat-cfn
type	cloudformation
+-------------+----------------------------------+

4. Create the Orchestration service API endpoints:

26 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

$ openstack endpoint create --region RegionOne \
orchestration public http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	3f4dab34624e4be7b000265f25049609
interface	public
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
orchestration internal http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	9489f78e958e45cc85570fec7e836d98
interface	internal
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
orchestration admin http://controller:8004/v1/%\(tenant_id\)s

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	76091559514b40c6b7b38dde790efe99
interface	admin
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	heat
service_type	orchestration
url	http://controller:8004/v1/%(tenant_id)s
+--------------+---+

$ openstack endpoint create --region RegionOne \
cloudformation public http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	b3ea082e019c4024842bf0a80555052c
interface	public

(continues on next page)

2.1. Installing Heat 27

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
cloudformation internal http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	169df4368cdc435b8b115a9cb084044e
interface	internal
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
cloudformation admin http://controller:8000/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	3d3edcd61eb343c1bbd629aa041ff88b
interface	internal
region	RegionOne
region_id	RegionOne
service_id	c42cede91a4e47c3b10c8aedc8d890c6
service_name	heat-cfn
service_type	cloudformation
url	http://controller:8000/v1
+--------------+----------------------------------+

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

• Create the heat domain that contains projects and users for stacks:

$ openstack domain create --description "Stack projects and users
↪→" heat
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Stack projects and users
enabled	True
id	0f4d1bd326f2454dacc72157ba328a47
name	heat
+-------------+----------------------------------+

• Create the heat_domain_admin user to manage projects and users in the heat domain:

28 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

$ openstack user create --domain heat --password-prompt heat_
↪→domain_admin
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	0f4d1bd326f2454dacc72157ba328a47
enabled	True
id	b7bd1abfbcf64478b47a0f13cd4d970a
name	heat_domain_admin
+-----------+----------------------------------+

• Add the admin role to the heat_domain_admin user in the heat domain to enable
administrative stack management privileges by the heat_domain_admin user:

$ openstack role add --domain heat --user-domain heat --user heat_
↪→domain_admin admin

Note: This command provides no output.

• Create the heat_stack_owner role:

$ openstack role create heat_stack_owner
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	15e34f0c4fed4e68b3246275883c8630
name	heat_stack_owner
+-----------+----------------------------------+

• Add the heat_stack_owner role to the demo project and user to enable stack manage-
ment by the demo user:

$ openstack role add --project demo --user demo heat_stack_owner

Note: This command provides no output.

Note: You must add the heat_stack_owner role to each user that manages stacks.

• Create the heat_stack_user role:

$ openstack role create heat_stack_user
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | None |
| id | 88849d41a55d4d1d91e4f11bffd8fc5c |

(continues on next page)

2.1. Installing Heat 29

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

| name | heat_stack_user |
+-----------+----------------------------------+

Note: The Orchestration service automatically assigns the heat_stack_user role to
users that it creates during stack deployment. By default, this role restricts API <Application
Programming Interface (API)> operations. To avoid conflicts, do not add this role to users
with the heat_stack_owner role.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt-get install heat-api heat-api-cfn heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://heat:HEAT_DBPASS@controller/heat

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [keystone_authtoken], [trustee] and [clients_keystone] sections,
configure Identity service access:

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service

(continues on next page)

30 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

username = heat
password = HEAT_PASS

[trustee]
...
auth_type = password
auth_url = http://controller:5000
username = heat
password = HEAT_PASS
user_domain_name = default

[clients_keystone]
...
auth_uri = http://controller:5000

Replace HEAT_PASSwith the password you chose for the heat user in the Identity service.

• In the [DEFAULT] section, configure the metadata and wait condition URLs:

[DEFAULT]
...
heat_metadata_server_url = http://controller:8000
heat_waitcondition_server_url = http://controller:8000/v1/
↪→waitcondition

• In the [DEFAULT] section, configure the stack domain and administrative credentials:

[DEFAULT]
...
stack_domain_admin = heat_domain_admin
stack_domain_admin_password = HEAT_DOMAIN_PASS
stack_user_domain_name = heat

Replace HEAT_DOMAIN_PASS with the password you chose for the
heat_domain_admin user in the Identity service.

3. Populate the Orchestration database:

su -s /bin/sh -c "heat-manage db_sync" heat

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Orchestration services:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

2.1. Installing Heat 31

Heat Documentation, Release 16.1.1.dev14

2.1.3 Verify operation

Verify operation of the Orchestration service.

Note: Perform these commands on the controller node.

1. Source the admin tenant credentials:

$. admin-openrc

2. List service components to verify successful launch and registration of each process:

$ openstack orchestration service list
+------------+-------------+--------------------------------------+---
↪→---------+--------+----------------------------+--------+
| hostname | binary | engine_id |
↪→host | topic | updated_at | status |
+------------+-------------+--------------------------------------+---
↪→---------+--------+----------------------------+--------+
| controller | heat-engine | 3e85d1ab-a543-41aa-aa97-378c381fb958 |
↪→controller | engine | 2015-10-13T14:16:06.000000 | up |
| controller | heat-engine | 45dbdcf6-5660-4d5f-973a-c4fc819da678 |
↪→controller | engine | 2015-10-13T14:16:06.000000 | up |
| controller | heat-engine | 51162b63-ecb8-4c6c-98c6-993af899c4f7 |
↪→controller | engine | 2015-10-13T14:16:06.000000 | up |
| controller | heat-engine | 8d7edc6d-77a6-460d-bd2a-984d76954646 |
↪→controller | engine | 2015-10-13T14:16:06.000000 | up |
+------------+-------------+--------------------------------------+---
↪→---------+--------+----------------------------+--------+

Note: This output should indicate four heat-engine components (default to 4 or number of
CPUs on the host, whichever is greater) on the controller node.

2.1.4 Launch an instance

In environments that include the Orchestration service, you can create a stack that launches an instance.

Create a template

The Orchestration service uses templates to describe stacks. To learn about the template language, see
the Template Guide.

• Create the demo-template.yml file with the following content:

heat_template_version: 2015-10-15
description: Launch a basic instance with CirrOS image using the

``m1.tiny`` flavor, ``mykey`` key, and one network.

parameters:
NetID:

(continues on next page)

32 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

type: string
description: Network ID to use for the instance.

resources:
server:

type: OS::Nova::Server
properties:

image: cirros
flavor: m1.tiny
key_name: mykey
networks:
- network: { get_param: NetID }

outputs:
instance_name:

description: Name of the instance.
value: { get_attr: [server, name] }

instance_ip:
description: IP address of the instance.
value: { get_attr: [server, first_address] }

Create a stack

Create a stack using the demo-template.yml template.

1. Source the demo credentials to perform the following steps as a non-administrative project:

$. demo-openrc

2. Determine available networks.

$ openstack network list
+--------------------------------------+-------------+----------------
↪→----------------------+
| ID | Name | Subnets
↪→ |
+--------------------------------------+-------------+----------------
↪→----------------------+
| 4716ddfe-6e60-40e7-b2a8-42e57bf3c31c | selfservice | 2112d5eb-f9d6-
↪→45fd-906e-7cabd38b7c7c |
| b5b6993c-ddf9-40e7-91d0-86806a42edb8 | provider | 310911f6-acf0-
↪→4a47-824e-3032916582ff |
+--------------------------------------+-------------+----------------
↪→----------------------+

Note: This output may differ from your environment.

3. Set the NET_ID environment variable to reflect the ID of a network. For example, using the
provider network:

$ export NET_ID=$(openstack network list | awk '/ provider / { print
↪→$2 }')

2.1. Installing Heat 33

Heat Documentation, Release 16.1.1.dev14

4. Create a stack of one CirrOS instance on the provider network:

$ openstack stack create -t demo-template.yml --parameter "NetID=$NET_
↪→ID" stack
+--------------------------------------+------------+-----------------
↪→---+---------------------+--------------+
| ID | Stack Name | Stack Status
↪→ | Creation Time | Updated Time |
+--------------------------------------+------------+-----------------
↪→---+---------------------+--------------+
| dbf46d1b-0b97-4d45-a0b3-9662a1eb6cf3 | stack | CREATE_IN_
↪→PROGRESS | 2015-10-13T15:27:20 | None |
+--------------------------------------+------------+-----------------
↪→---+---------------------+--------------+

5. After a short time, verify successful creation of the stack:

$ openstack stack list
+--------------------------------------+------------+-----------------
↪→+---------------------+--------------+
| ID | Stack Name | Stack Status
↪→| Creation Time | Updated Time |
+--------------------------------------+------------+-----------------
↪→+---------------------+--------------+
| dbf46d1b-0b97-4d45-a0b3-9662a1eb6cf3 | stack | CREATE_COMPLETE
↪→| 2015-10-13T15:27:20 | None |
+--------------------------------------+------------+-----------------
↪→+---------------------+--------------+

6. Show the name and IP address of the instance and compare with the output of the OpenStack
client:

$ openstack stack output show --all stack
[
{

"output_value": "stack-server-3nzfyfofu6d4",
"description": "Name of the instance.",
"output_key": "instance_name"

},
{

"output_value": "10.4.31.106",
"description": "IP address of the instance.",
"output_key": "instance_ip"

}
]

$ openstack server list
+--------------------------------------+---------------------------+--
↪→------+---------------------------------+
| ID | Name |
↪→Status | Networks |
+--------------------------------------+---------------------------+--
↪→------+---------------------------------+
| 0fc2af0c-ae79-4d22-8f36-9e860c257da5 | stack-server-3nzfyfofu6d4 |
↪→ACTIVE | public=10.4.31.106 |
+--------------------------------------+---------------------------+--
↪→------+---------------------------------+

34 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

7. Delete the stack.

$ openstack stack delete --yes stack

2.1.5 Next steps

Your OpenStack environment now includes the heat service.

To add more services, see the additional documentation on installing OpenStack.

To learn more about the heat service, read the Heat documentation.

The Orchestration service (heat) uses a Heat Orchestration Template (HOT) to create and manage cloud
resources.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorial.

2.2 Running Heat API services in HTTP Server

Since the Liberty release Heat has packaged a set of wsgi script entrypoints that enables users to run api
services with a real web server like Apache HTTP Server (httpd).

There are several patterns for deployment. This doc shows some common ways of deploying api services
with httpd.

2.2.1 mod-wsgi

This deployment method is possible since Liberty release.

The httpd/files directory contains sample files that can be changed and copied to the appropriate location
in your httpd server.

On Debian/Ubuntu systems it is:

/etc/apache2/sites-available/heat-api.conf
/etc/apache2/sites-available/heat-api-cfn.conf

On Red Hat based systems it is:

/etc/httpd/conf.d/uwsgi-heat-api.conf
/etc/httpd/conf.d/uwsgi-heat-api-cfn.conf

2.2.2 uwsgi

In this deployment method we use uwsgi as a web server bound to a random local port. Then we
configure apache using mod_proxy to forward all incoming requests on the specified endpoint to that
local webserver. This has the advantage of letting apache manage all inbound http connections, and
uwsgi manage running the python code. It also means when we make changes to Heat api code or
configuration, we dont need to restart all of apache (which may be running other services too) and just
need to restart the local uwsgi daemons.

2.2. Running Heat API services in HTTP Server 35

https://docs.openstack.org/#install-guides
https://docs.openstack.org/#install-guides

Heat Documentation, Release 16.1.1.dev14

The httpd/files directory contains sample files for configuring httpd to run Heat api services under uwsgi
in this configuration. To use the sample configs simply copy uwsgi-heat-api.conf and uwsgi-heat-api-
cfn.conf to the appropriate location for your web server.

On Debian/Ubuntu systems it is:

/etc/apache2/sites-available/uwsgi-heat-api.conf
/etc/apache2/sites-available/uwsgi-heat-api-cfn.conf

On Red Hat based systems it is:

/etc/httpd/conf.d/uwsgi-heat-api.conf
/etc/httpd/conf.d/uwsgi-heat-api-cfn.conf

Enable mod_proxy by running sudo a2enmod proxy

Then on Ubuntu/Debian systems enable the site by creating a symlink from the file in
sites-available to sites-enabled. (This is not required on Red Hat based systems):

ln -s /etc/apache2/sites-available/uwsgi-heat-api.conf /etc/apache2/sites-
↪→enabled
ln -s /etc/apache2/sites-available/uwsgi-heat-api-cfn.conf /etc/apache2/
↪→sites-enabled

Start or restart httpd to pick up the new configuration.

Now we need to configure and start the uwsgi service. Copy the following files to /etc/heat:

heat-api-uwsgi.ini
heat-api-cfn-uwsgi.ini

Update the files to match your system configuration (for example, youll want to set the number of
processes and threads).

Install uwsgi and start the heat-api server using uwsgi:

sudo pip install uwsgi
uwsgi --ini /etc/heat/heat-api-uwsgi.ini
uwsgi --ini /etc/heat/heat-api-cfn-uwsgi.ini

Note: In the sample configs some random ports are used, but this doesnt matter and is just a randomly
selected number. This is not a contract on the port used for the local uwsgi daemon.

mod_proxy_uwsgi

Instead of running uwsgi as a webserver listening on a local port and then having Apache HTTP proxy
all the incoming requests with mod_proxy, the normally recommended way of deploying uwsgi with
Apache httpd is to use mod_proxy_uwsgi and set up a local socket file for uwsgi to listen on. Apache
will send the requests using the uwsgi protocol over this local socket file.

The dsvm jobs in heat upstream gate uses this deployment method.

For more details on using mod_proxy_uwsgi see the official docs.

36 Chapter 2. Operating Heat

https://uwsgi-docs.readthedocs.io/en/latest/Apache.html?highlight=mod_uwsgi_proxy#mod-proxy-uwsgi

Heat Documentation, Release 16.1.1.dev14

2.3 Configuring Heat

2.3.1 Configuration options for the Orchestration service

The following options can be set in the /etc/heat/heat.conf config file. A sample configuration
file is also available.

DEFAULT

host

Type string

Default <Hostname>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Name of the engine node. This can be an opaque identifier. It is not necessarily a hostname,
FQDN, or IP address.

plugin_dirs

Type list

Default ['/usr/lib64/heat', '/usr/lib/heat', '/usr/local/
lib/heat', '/usr/local/lib64/heat']

List of directories to search for plug-ins.

environment_dir

Type string

Default /etc/heat/environment.d

The directory to search for environment files.

template_dir

Type string

Default /etc/heat/templates

The directory to search for template files.

deferred_auth_method

Type string

Default trusts

Valid Values password, trusts

Select deferred auth method, stored password or trusts.

Warning: This option is deprecated for removal since 9.0.0. Its value may be silently ignored
in the future.

2.3. Configuring Heat 37

Heat Documentation, Release 16.1.1.dev14

Reason Stored password based deferred auth is broken when used with keystone
v3 and is not supported.

reauthentication_auth_method

Type string

Default ''

Valid Values , trusts

Allow reauthentication on token expiry, such that long-running tasks may complete. Note this
defeats the expiry of any provided user tokens.

allow_trusts_redelegation

Type boolean

Default False

Create trusts with redelegation enabled. This option is only used when reauthentica-
tion_auth_method is set to trusts. Note that enabling this option does have security implications
as all trusts created by Heat will use both impersonation and redelegation enabled. Enable it only
when there are other services that need to create trusts from tokens Heat uses to access them,
examples are Aodh and Heat in another region when configured to use trusts too.

trusts_delegated_roles

Type list

Default []

Subset of trustor roles to be delegated to heat. If left unset, all roles of a user will be delegated to
heat when creating a stack.

max_resources_per_stack

Type integer

Default 1000

Maximum resources allowed per top-level stack. -1 stands for unlimited.

max_stacks_per_tenant

Type integer

Default 512

Maximum number of stacks any one tenant may have active at one time. -1 stands for unlimited.

action_retry_limit

Type integer

Default 5

Number of times to retry to bring a resource to a non-error state. Set to 0 to disable retries.

client_retry_limit

Type integer

38 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Default 2

Number of times to retry when a client encounters an expected intermittent error. Set to 0 to
disable retries.

max_server_name_length

Type integer

Default 53

Maximum Value 53

Maximum length of a server name to be used in nova.

max_interface_check_attempts

Type integer

Default 10

Minimum Value 1

Number of times to check whether an interface has been attached or detached.

max_nova_api_microversion

Type floating point

Default <None>

Maximum nova API version for client plugin. With this limitation, any nova feature supported
with microversion number above max_nova_api_microversion will not be available.

max_ironic_api_microversion

Type floating point

Default <None>

Maximum ironic API version for client plugin. With this limitation, any ironic feature supported
with microversion number above max_ironic_api_microversion will not be available.

event_purge_batch_size

Type integer

Default 200

Minimum Value 1

Controls how many events will be pruned whenever a stacks events are purged. Set this lower to
keep more events at the expense of more frequent purges.

max_events_per_stack

Type integer

Default 1000

Rough number of maximum events that will be available per stack. Actual number of events can
be a bit higher since purge checks take place randomly 200/event_purge_batch_size percent of the
time. Older events are deleted when events are purged. Set to 0 for unlimited events per stack.

stack_action_timeout

2.3. Configuring Heat 39

Heat Documentation, Release 16.1.1.dev14

Type integer

Default 3600

Timeout in seconds for stack action (ie. create or update).

error_wait_time

Type integer

Default 240

The amount of time in seconds after an error has occurred that tasks may continue to run before
being cancelled.

engine_life_check_timeout

Type integer

Default 2

RPC timeout for the engine liveness check that is used for stack locking.

enable_cloud_watch_lite

Type boolean

Default False

Enable the legacy OS::Heat::CWLiteAlarm resource.

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch Service has been removed.

enable_stack_abandon

Type boolean

Default False

Enable the preview Stack Abandon feature.

enable_stack_adopt

Type boolean

Default False

Enable the preview Stack Adopt feature.

convergence_engine

Type boolean

Default True

Enables engine with convergence architecture. All stacks with this option will be created using
convergence engine.

observe_on_update

Type boolean

40 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Default False

On update, enables heat to collect existing resource properties from reality and converge to up-
dated template.

default_software_config_transport

Type string

Default POLL_SERVER_CFN

Valid Values POLL_SERVER_CFN, POLL_SERVER_HEAT, POLL_TEMP_URL,
ZAQAR_MESSAGE

Template default for how the server should receive the metadata required for software config-
uration. POLL_SERVER_CFN will allow calls to the cfn API action DescribeStackResource
authenticated with the provided keypair (requires enabled heat-api-cfn). POLL_SERVER_HEAT
will allow calls to the Heat API resource-show using the provided keystone credentials (requires
keystone v3 API, and configured stack_user_* config options). POLL_TEMP_URL will create
and populate a Swift TempURL with metadata for polling (requires object-store endpoint which
supports TempURL).ZAQAR_MESSAGE will create a dedicated zaqar queue and post the meta-
data for polling.

default_deployment_signal_transport

Type string

Default CFN_SIGNAL

Valid Values CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, ZA-
QAR_SIGNAL

Template default for how the server should signal to heat with the deployment output values.
CFN_SIGNAL will allow an HTTP POST to a CFN keypair signed URL (requires enabled heat-
api-cfn). TEMP_URL_SIGNAL will create a Swift TempURL to be signaled via HTTP PUT
(requires object-store endpoint which supports TempURL). HEAT_SIGNAL will allow calls to
the Heat API resource-signal using the provided keystone credentials. ZAQAR_SIGNAL will
create a dedicated zaqar queue to be signaled using the provided keystone credentials.

default_user_data_format

Type string

Default HEAT_CFNTOOLS

Valid Values HEAT_CFNTOOLS, RAW, SOFTWARE_CONFIG

Template default for how the user_data should be formatted for the server. For
HEAT_CFNTOOLS, the user_data is bundled as part of the heat-cfntools cloud-init boot config-
uration data. For RAW the user_data is passed to Nova unmodified. For SOFTWARE_CONFIG
user_data is bundled as part of the software config data, and metadata is derived from any associ-
ated SoftwareDeployment resources.

hidden_stack_tags

Type list

Default ['data-processing-cluster']

Stacks containing these tag names will be hidden. Multiple tags should be given in a comma-
delimited list (eg. hidden_stack_tags=hide_me,me_too).

2.3. Configuring Heat 41

Heat Documentation, Release 16.1.1.dev14

onready

Type string

Default <None>

Deprecated.

stack_scheduler_hints

Type boolean

Default False

When this feature is enabled, scheduler hints identifying the heat stack context of a server
or volume resource are passed to the configured schedulers in nova and cinder, for creates
done using heat resource types OS::Cinder::Volume, OS::Nova::Server, and AWS::EC2::Instance.
heat_root_stack_id will be set to the id of the root stack of the resource, heat_stack_id will be set to
the id of the resources parent stack, heat_stack_name will be set to the name of the resources par-
ent stack, heat_path_in_stack will be set to a list of comma delimited strings of stackresourcename
and stackname with list[0] being rootstackname, heat_resource_name will be set to the resources
name, and heat_resource_uuid will be set to the resources orchestration id.

encrypt_parameters_and_properties

Type boolean

Default False

Encrypt template parameters that were marked as hidden and also all the resource properties before
storing them in database.

periodic_interval

Type integer

Default 60

Seconds between running periodic tasks.

heat_metadata_server_url

Type string

Default <None>

URL of the Heat metadata server. NOTE: Setting this is only needed if you require instances to
use a different endpoint than in the keystone catalog

heat_waitcondition_server_url

Type string

Default <None>

URL of the Heat waitcondition server.

heat_watch_server_url

Type string

Default ''

URL of the Heat CloudWatch server.

42 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch Service has been removed.

instance_connection_is_secure

Type string

Default 0

Instance connection to CFN/CW API via https.

instance_connection_https_validate_certificates

Type string

Default 1

Instance connection to CFN/CW API validate certs if SSL is used.

region_name_for_services

Type string

Default <None>

Default region name used to get services endpoints.

region_name_for_shared_services

Type string

Default <None>

Region name for shared services endpoints.

shared_services_types

Type list

Default ['image', 'volume', 'volumev2']

The shared services located in the other region.Needs region_name_for_shared_services option to
be set for this to take effect.

heat_stack_user_role

Type string

Default heat_stack_user

Keystone role for heat template-defined users.

stack_user_domain_id

Type string

Default <None>

Keystone domain ID which contains heat template-defined users. If this option is set,
stack_user_domain_name option will be ignored.

2.3. Configuring Heat 43

Heat Documentation, Release 16.1.1.dev14

Table 1: Deprecated Variations
Group Name
DEFAULT stack_user_domain

stack_user_domain_name

Type string

Default <None>

Keystone domain name which contains heat template-defined users. If stack_user_domain_id
option is set, this option is ignored.

stack_domain_admin

Type string

Default <None>

Keystone username, a user with roles sufficient to manage users and projects in the
stack_user_domain.

stack_domain_admin_password

Type string

Default <None>

Keystone password for stack_domain_admin user.

max_template_size

Type integer

Default 524288

Maximum raw byte size of any template.

max_nested_stack_depth

Type integer

Default 5

Maximum depth allowed when using nested stacks.

num_engine_workers

Type integer

Default <None>

Number of heat-engine processes to fork and run. Will default to either to 4 or number of CPUs
on the host, whichever is greater.

server_keystone_endpoint_type

Type string

Default ''

Valid Values , public, internal, admin

44 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

If set, is used to control which authentication endpoint is used by user-controlled servers to make
calls back to Heat. If unset www_authenticate_uri is used.

auth_encryption_key

Type string

Default notgood but just long enough i t

Key used to encrypt authentication info in the database. Length of this key must be 32 characters.

max_json_body_size

Type integer

Default 1048576

Maximum raw byte size of JSON request body. Should be larger than max_template_size.

cloud_backend

Type string

Default heat.engine.clients.OpenStackClients

Fully qualified class name to use as a client backend.

keystone_backend

Type string

Default heat.engine.clients.os.keystone.
heat_keystoneclient.KsClientWrapper

Fully qualified class name to use as a keystone backend.

default_notification_level

Type string

Default INFO

Default notification level for outgoing notifications.

default_publisher_id

Type string

Default <None>

Default publisher_id for outgoing notifications.

loadbalancer_template

Type string

Default <None>

Custom template for the built-in loadbalancer nested stack.

rpc_conn_pool_size

Type integer

Default 30

Minimum Value 1

2.3. Configuring Heat 45

Heat Documentation, Release 16.1.1.dev14

Size of RPC connection pool.

Table 2: Deprecated Variations
Group Name
DEFAULT rpc_conn_pool_size

conn_pool_min_size

Type integer

Default 2

The pool size limit for connections expiration policy

conn_pool_ttl

Type integer

Default 1200

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size

Type integer

Default 64

Size of executor thread pool when executor is threading or eventlet.

Table 3: Deprecated Variations
Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout

Type integer

Default 60

Seconds to wait for a response from a call.

transport_url

Type string

Default rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass@]host:port[,[userN:passN@]hostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type string

46 Chapter 2. Operating Heat

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Heat Documentation, Release 16.1.1.dev14

Default openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type boolean

Default False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

debug

Type boolean

Default False

Mutable This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.

log_config_append

Type string

Default <None>

Mutable This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging config-
uration files. For details about logging configuration files, see the Python logging module doc-
umentation. Note that when logging configuration files are used then all logging configuration
is set in the configuration file and other logging configuration options are ignored (for example,
log-date-format).

Table 4: Deprecated Variations
Group Name
DEFAULT log-config
DEFAULT log_config

log_date_format

Type string

Default %Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type string

Default <None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

2.3. Configuring Heat 47

Heat Documentation, Release 16.1.1.dev14

Table 5: Deprecated Variations
Group Name
DEFAULT logfile

log_dir

Type string

Default <None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 6: Deprecated Variations
Group Name
DEFAULT logdir

watch_log_file

Type boolean

Default False

Uses logging handler designed to watch file system. When log file is moved or removed this
handler will open a new log file with specified path instantaneously. It makes sense only if log_file
option is specified and Linux platform is used. This option is ignored if log_config_append is set.

use_syslog

Type boolean

Default False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type boolean

Default False

Enable journald for logging. If running in a systemd environment you may wish to enable journal
support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type string

Default LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type boolean

Default False

48 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type boolean

Default False

Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type boolean

Default False

Log output to Windows Event Log.

log_rotate_interval

Type integer

Default 1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is setto interval.

log_rotate_interval_type

Type string

Default days

Valid Values Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type integer

Default 30

Maximum number of rotated log files.

max_logfile_size_mb

Type integer

Default 200

Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type string

Default none

Valid Values interval, size, none

Log rotation type.

2.3. Configuring Heat 49

Heat Documentation, Release 16.1.1.dev14

Possible values

interval Rotate logs at predefined time intervals.

size Rotate logs once they reach a predefined size.

none Do not rotate log files.

logging_context_format_string

Type string

Default %(asctime)s.%(msecs)03d %(process)d %(levelname)s
%(name)s [%(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string

Type string

Default %(asctime)s.%(msecs)03d %(process)d %(levelname)s
%(name)s [-] %(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type string

Default %(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used
by oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type string

Default %(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type string

Default %(user)s %(tenant)s %(domain)s %(user_domain)s
%(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

Type list

Default ['amqp=WARN', 'amqplib=WARN', 'boto=WARN',
'qpid=WARN', 'sqlalchemy=WARN', 'suds=INFO',

50 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

'oslo.messaging=INFO', 'oslo_messaging=INFO',
'iso8601=WARN', 'requests.packages.urllib3.
connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.
urllib3.util.retry=WARN', 'urllib3.util.
retry=WARN', 'keystonemiddleware=WARN', 'routes.
middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO',
'oslo_policy=INFO', 'dogpile.core.dogpile=INFO']

List of package logging levels in logger=LEVEL pairs. This option is ignored if
log_config_append is set.

publish_errors

Type boolean

Default False

Enables or disables publication of error events.

instance_format

Type string

Default "[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type string

Default "[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type integer

Default 0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type integer

Default 0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

Type string

Default CRITICAL

Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG or empty
string. Logs with level greater or equal to rate_limit_except_level are not filtered. An empty string
means that all levels are filtered.

fatal_deprecations

2.3. Configuring Heat 51

Heat Documentation, Release 16.1.1.dev14

Type boolean

Default False

Enables or disables fatal status of deprecations.

run_external_periodic_tasks

Type boolean

Default True

Some periodic tasks can be run in a separate process. Should we run them here?

backdoor_port

Type string

Default <None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0 results in
listening on a random tcp port number; <port> results in listening on the specified port number
(and not enabling backdoor if that port is in use); and <start>:<end> results in listening on the
smallest unused port number within the specified range of port numbers. The chosen port is
displayed in the services log file.

backdoor_socket

Type string

Default <None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

log_options

Type boolean

Default True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful_shutdown_timeout

Type integer

Default 60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

52 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

auth_password

multi_cloud

Type boolean

Default False

Allow orchestration of multiple clouds.

allowed_auth_uris

Type list

Default []

Allowed keystone endpoints for auth_uri when multi_cloud is enabled. At least one endpoint
needs to be specified.

clients

endpoint_type

Type string

Default publicURL

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default False

If set, then the servers certificate will not be verified.

2.3. Configuring Heat 53

Heat Documentation, Release 16.1.1.dev14

clients_aodh

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_barbican

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

54 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_cinder

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

http_log_debug

Type boolean

Default False

2.3. Configuring Heat 55

Heat Documentation, Release 16.1.1.dev14

Allow clients debug log output.

clients_designate

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_glance

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

56 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_heat

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

url

2.3. Configuring Heat 57

Heat Documentation, Release 16.1.1.dev14

Type string

Default ''

Optional heat url in format like http://0.0.0.0:8004/v1/%(tenant_id)s.

clients_keystone

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

auth_uri

Type string

Default ''

Unversioned keystone url in format like http://0.0.0.0:5000.

58 Chapter 2. Operating Heat

http://0.0.0.0:8004/v1/%(tenant_id)s
http://0.0.0.0:5000

Heat Documentation, Release 16.1.1.dev14

clients_magnum

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_manila

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

2.3. Configuring Heat 59

Heat Documentation, Release 16.1.1.dev14

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_mistral

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

60 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

clients_monasca

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_neutron

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

2.3. Configuring Heat 61

Heat Documentation, Release 16.1.1.dev14

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_nova

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

http_log_debug

Type boolean

Default False

62 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Allow clients debug log output.

clients_octavia

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_sahara

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

2.3. Configuring Heat 63

Heat Documentation, Release 16.1.1.dev14

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_senlin

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

64 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

clients_swift

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_trove

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

2.3. Configuring Heat 65

Heat Documentation, Release 16.1.1.dev14

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

clients_vitrage

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

66 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

clients_zaqar

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure

Type boolean

Default <None>

If set, then the servers certificate will not be verified.

cors

allowed_origin

Type list

Default <None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials

Type boolean

Default True

Indicate that the actual request can include user credentials

expose_headers

Type list

2.3. Configuring Heat 67

https://horizon.example.com
https://horizon.example.com

Heat Documentation, Release 16.1.1.dev14

Default ['X-Auth-Token', 'X-Subject-Token',
'X-Service-Token', 'X-OpenStack-Request-ID']

Indicate which headers are safe to expose to the API. Defaults to HTTP Simple Headers.

max_age

Type integer

Default 3600

Maximum cache age of CORS preflight requests.

allow_methods

Type list

Default ['GET', 'PUT', 'POST', 'DELETE', 'PATCH']

Indicate which methods can be used during the actual request.

allow_headers

Type list

Default ['X-Auth-Token', 'X-Identity-Status', 'X-Roles',
'X-Service-Catalog', 'X-User-Id', 'X-Tenant-Id',
'X-OpenStack-Request-ID']

Indicate which header field names may be used during the actual request.

database

sqlite_synchronous

Type boolean

Default True

If True, SQLite uses synchronous mode.

Table 7: Deprecated Variations
Group Name
DEFAULT sqlite_synchronous

backend

Type string

Default sqlalchemy

The back end to use for the database.

Table 8: Deprecated Variations
Group Name
DEFAULT db_backend

connection

68 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Type string

Default <None>

The SQLAlchemy connection string to use to connect to the database.

Table 9: Deprecated Variations
Group Name
DEFAULT sql_connection
DATABASE sql_connection
sql connection

slave_connection

Type string

Default <None>

The SQLAlchemy connection string to use to connect to the slave database.

mysql_sql_mode

Type string

Default TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_enable_ndb

Type boolean

Default False

If True, transparently enables support for handling MySQL Cluster (NDB).

connection_recycle_time

Type integer

Default 3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

Table 10: Deprecated Variations
Group Name
DATABASE idle_timeout
database idle_timeout
DEFAULT sql_idle_timeout
DATABASE sql_idle_timeout
sql idle_timeout

max_pool_size

Type integer

2.3. Configuring Heat 69

Heat Documentation, Release 16.1.1.dev14

Default 5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

Table 11: Deprecated Variations
Group Name
DEFAULT sql_max_pool_size
DATABASE sql_max_pool_size

max_retries

Type integer

Default 10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

Table 12: Deprecated Variations
Group Name
DEFAULT sql_max_retries
DATABASE sql_max_retries

retry_interval

Type integer

Default 10

Interval between retries of opening a SQL connection.

Table 13: Deprecated Variations
Group Name
DEFAULT sql_retry_interval
DATABASE reconnect_interval

max_overflow

Type integer

Default 50

If set, use this value for max_overflow with SQLAlchemy.

Table 14: Deprecated Variations
Group Name
DEFAULT sql_max_overflow
DATABASE sqlalchemy_max_overflow

connection_debug

Type integer

Default 0

70 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Minimum Value 0

Maximum Value 100

Verbosity of SQL debugging information: 0=None, 100=Everything.

Table 15: Deprecated Variations
Group Name
DEFAULT sql_connection_debug

connection_trace

Type boolean

Default False

Add Python stack traces to SQL as comment strings.

Table 16: Deprecated Variations
Group Name
DEFAULT sql_connection_trace

pool_timeout

Type integer

Default <None>

If set, use this value for pool_timeout with SQLAlchemy.

Table 17: Deprecated Variations
Group Name
DATABASE sqlalchemy_pool_timeout

use_db_reconnect

Type boolean

Default False

Enable the experimental use of database reconnect on connection lost.

db_retry_interval

Type integer

Default 1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type boolean

Default True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

2.3. Configuring Heat 71

Heat Documentation, Release 16.1.1.dev14

Type integer

Default 10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

Type integer

Default 20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters

Type string

Default ''

Optional URL parameters to append onto the connection URL at connect time; specify as
param1=value1¶m2=value2&

ec2authtoken

auth_uri

Type string

Default <None>

Authentication Endpoint URI.

multi_cloud

Type boolean

Default False

Allow orchestration of multiple clouds.

allowed_auth_uris

Type list

Default []

Allowed keystone endpoints for auth_uri when multi_cloud is enabled. At least one endpoint
needs to be specified.

cert_file

Type string

Default <None>

Optional PEM-formatted certificate chain file.

key_file

Type string

Default <None>

72 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Optional PEM-formatted file that contains the private key.

ca_file

Type string

Default <None>

Optional CA cert file to use in SSL connections.

insecure

Type boolean

Default False

If set, then the servers certificate will not be verified.

eventlet_opts

wsgi_keep_alive

Type boolean

Default True

If False, closes the client socket connection explicitly.

client_socket_timeout

Type integer

Default 900

Timeout for client connections socket operations. If an incoming connection is idle for this number
of seconds it will be closed. A value of 0 means wait forever.

healthcheck

path

Type string

Default /healthcheck

The path to respond to healtcheck requests on.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

detailed

Type boolean

Default False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

2.3. Configuring Heat 73

Heat Documentation, Release 16.1.1.dev14

backends

Type list

Default []

Additional backends that can perform health checks and report that information back as part of a
request.

disable_by_file_path

Type string

Default <None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

disable_by_file_paths

Type list

Default []

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

heat_api

bind_host

Type ip address

Default 0.0.0.0

Address to bind the server. Useful when selecting a particular network interface.

Table 18: Deprecated Variations
Group Name
DEFAULT bind_host

bind_port

Type port number

Default 8004

Minimum Value 0

Maximum Value 65535

The port on which the server will listen.

Table 19: Deprecated Variations
Group Name
DEFAULT bind_port

backlog

74 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Type integer

Default 4096

Number of backlog requests to configure the socket with.

Table 20: Deprecated Variations
Group Name
DEFAULT backlog

cert_file

Type string

Default <None>

Location of the SSL certificate file to use for SSL mode.

Table 21: Deprecated Variations
Group Name
DEFAULT cert_file

key_file

Type string

Default <None>

Location of the SSL key file to use for enabling SSL mode.

Table 22: Deprecated Variations
Group Name
DEFAULT key_file

workers

Type integer

Default 0

Minimum Value 0

Number of workers for Heat service. Default value 0 means, that service will start number of
workers equal number of cores on server.

Table 23: Deprecated Variations
Group Name
DEFAULT workers

max_header_line

Type integer

Default 16384

2.3. Configuring Heat 75

Heat Documentation, Release 16.1.1.dev14

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated by the Keystone v3 API with big service cata-
logs).

tcp_keepidle

Type integer

Default 600

The value for the socket option TCP_KEEPIDLE. This is the time in seconds that the connection
must be idle before TCP starts sending keepalive probes.

heat_api_cfn

bind_host

Type ip address

Default 0.0.0.0

Address to bind the server. Useful when selecting a particular network interface.

Table 24: Deprecated Variations
Group Name
DEFAULT bind_host

bind_port

Type port number

Default 8000

Minimum Value 0

Maximum Value 65535

The port on which the server will listen.

Table 25: Deprecated Variations
Group Name
DEFAULT bind_port

backlog

Type integer

Default 4096

Number of backlog requests to configure the socket with.

Table 26: Deprecated Variations
Group Name
DEFAULT backlog

cert_file

76 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Type string

Default <None>

Location of the SSL certificate file to use for SSL mode.

Table 27: Deprecated Variations
Group Name
DEFAULT cert_file

key_file

Type string

Default <None>

Location of the SSL key file to use for enabling SSL mode.

Table 28: Deprecated Variations
Group Name
DEFAULT key_file

workers

Type integer

Default 1

Minimum Value 0

Number of workers for Heat service.

Table 29: Deprecated Variations
Group Name
DEFAULT workers

max_header_line

Type integer

Default 16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated by the Keystone v3 API with big service cata-
logs).

tcp_keepidle

Type integer

Default 600

The value for the socket option TCP_KEEPIDLE. This is the time in seconds that the connection
must be idle before TCP starts sending keepalive probes.

2.3. Configuring Heat 77

Heat Documentation, Release 16.1.1.dev14

heat_api_cloudwatch

bind_host

Type ip address

Default 0.0.0.0

Address to bind the server. Useful when selecting a particular network interface.

Table 30: Deprecated Variations
Group Name
DEFAULT bind_host

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch API has been removed.

bind_port

Type port number

Default 8003

Minimum Value 0

Maximum Value 65535

The port on which the server will listen.

Table 31: Deprecated Variations
Group Name
DEFAULT bind_port

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch API has been removed.

backlog

Type integer

Default 4096

Number of backlog requests to configure the socket with.

Table 32: Deprecated Variations
Group Name
DEFAULT backlog

78 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch API has been removed.

cert_file

Type string

Default <None>

Location of the SSL certificate file to use for SSL mode.

Table 33: Deprecated Variations
Group Name
DEFAULT cert_file

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch API has been Removed.

key_file

Type string

Default <None>

Location of the SSL key file to use for enabling SSL mode.

Table 34: Deprecated Variations
Group Name
DEFAULT key_file

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch API has been Removed.

workers

Type integer

Default 1

Minimum Value 0

Number of workers for Heat service.

Table 35: Deprecated Variations
Group Name
DEFAULT workers

2.3. Configuring Heat 79

Heat Documentation, Release 16.1.1.dev14

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch API has been Removed.

max_header_line

Type integer

Default 16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated by the Keystone v3 API with big service cata-
logs.)

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch API has been Removed.

tcp_keepidle

Type integer

Default 600

The value for the socket option TCP_KEEPIDLE. This is the time in seconds that the connection
must be idle before TCP starts sending keepalive probes.

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently
ignored in the future.

Reason Heat CloudWatch API has been Removed.

keystone_authtoken

www_authenticate_uri

Type string

Default <None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 36: Deprecated Variations
Group Name
keystone_authtoken auth_uri

80 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

auth_uri

Type string

Default <None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning: This option is deprecated for removal since Queens. Its value may be silently
ignored in the future.

Reason The auth_uri option is deprecated in favor of www_authenticate_uri and
will be removed in the S release.

auth_version

Type string

Default <None>

API version of the Identity API endpoint.

interface

Type string

Default internal

Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.

delay_auth_decision

Type boolean

Default False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type integer

Default <None>

Request timeout value for communicating with Identity API server.

http_request_max_retries

Type integer

Default 3

How many times are we trying to reconnect when communicating with Identity API Server.

cache

2.3. Configuring Heat 81

Heat Documentation, Release 16.1.1.dev14

Type string

Default <None>

Request environment key where the Swift cache object is stored. When auth_token middleware
is deployed with a Swift cache, use this option to have the middleware share a caching backend
with swift. Otherwise, use the memcached_servers option instead.

certfile

Type string

Default <None>

Required if identity server requires client certificate

keyfile

Type string

Default <None>

Required if identity server requires client certificate

cafile

Type string

Default <None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

Type boolean

Default False

Verify HTTPS connections.

region_name

Type string

Default <None>

The region in which the identity server can be found.

memcached_servers

Type list

Default <None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 37: Deprecated Variations
Group Name
keystone_authtoken memcache_servers

token_cache_time

82 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Type integer

Default 300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy

Type string

Default None

Valid Values None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key

Type string

Default <None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type integer

Default 300

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type integer

Default 10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout

Type integer

Default 3

(Optional) Socket timeout in seconds for communicating with a memcached server.

memcache_pool_unused_timeout

Type integer

Default 60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout

Type integer

2.3. Configuring Heat 83

Heat Documentation, Release 16.1.1.dev14

Default 10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool

Type boolean

Default False

(Optional) Use the advanced (eventlet safe) memcached client pool. The advanced pool will only
work under python 2.x.

include_service_catalog

Type boolean

Default True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type string

Default permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token
will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

service_token_roles

Type list

Default ['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list must
be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required

Type boolean

Default False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the
service_token_roles check as valid. Setting this true will become the default in a future release
and should be enabled if possible.

service_type

Type string

Default <None>

84 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

auth_type

Type unknown type

Default <None>

Authentication type to load

Table 38: Deprecated Variations
Group Name
keystone_authtoken auth_plugin

auth_section

Type unknown type

Default <None>

Config Section from which to load plugin specific options

noauth

token_response

Type string

Default ''

JSON file containing the content returned by the noauth middleware.

oslo_messaging_amqp

container_name

Type string

Default <None>

Name for the AMQP container. must be globally unique. Defaults to a generated UUID

Table 39: Deprecated Variations
Group Name
amqp1 container_name

idle_timeout

Type integer

Default 0

Timeout for inactive connections (in seconds)

2.3. Configuring Heat 85

Heat Documentation, Release 16.1.1.dev14

Table 40: Deprecated Variations
Group Name
amqp1 idle_timeout

trace

Type boolean

Default False

Debug: dump AMQP frames to stdout

Table 41: Deprecated Variations
Group Name
amqp1 trace

ssl

Type boolean

Default False

Attempt to connect via SSL. If no other ssl-related parameters are given, it will use the systems
CA-bundle to verify the servers certificate.

ssl_ca_file

Type string

Default ''

CA certificate PEM file used to verify the servers certificate

Table 42: Deprecated Variations
Group Name
amqp1 ssl_ca_file

ssl_cert_file

Type string

Default ''

Self-identifying certificate PEM file for client authentication

Table 43: Deprecated Variations
Group Name
amqp1 ssl_cert_file

ssl_key_file

Type string

Default ''

86 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Private key PEM file used to sign ssl_cert_file certificate (optional)

Table 44: Deprecated Variations
Group Name
amqp1 ssl_key_file

ssl_key_password

Type string

Default <None>

Password for decrypting ssl_key_file (if encrypted)

Table 45: Deprecated Variations
Group Name
amqp1 ssl_key_password

ssl_verify_vhost

Type boolean

Default False

By default SSL checks that the name in the servers certificate matches the hostname in the trans-
port_url. In some configurations it may be preferable to use the virtual hostname instead, for
example if the server uses the Server Name Indication TLS extension (rfc6066) to provide a cer-
tificate per virtual host. Set ssl_verify_vhost to True if the servers SSL certificate uses the virtual
host name instead of the DNS name.

sasl_mechanisms

Type string

Default ''

Space separated list of acceptable SASL mechanisms

Table 46: Deprecated Variations
Group Name
amqp1 sasl_mechanisms

sasl_config_dir

Type string

Default ''

Path to directory that contains the SASL configuration

Table 47: Deprecated Variations
Group Name
amqp1 sasl_config_dir

sasl_config_name

2.3. Configuring Heat 87

Heat Documentation, Release 16.1.1.dev14

Type string

Default ''

Name of configuration file (without .conf suffix)

Table 48: Deprecated Variations
Group Name
amqp1 sasl_config_name

sasl_default_realm

Type string

Default ''

SASL realm to use if no realm present in username

connection_retry_interval

Type integer

Default 1

Minimum Value 1

Seconds to pause before attempting to re-connect.

connection_retry_backoff

Type integer

Default 2

Minimum Value 0

Increase the connection_retry_interval by this many seconds after each unsuccessful failover at-
tempt.

connection_retry_interval_max

Type integer

Default 30

Minimum Value 1

Maximum limit for connection_retry_interval + connection_retry_backoff

link_retry_delay

Type integer

Default 10

Minimum Value 1

Time to pause between re-connecting an AMQP 1.0 link that failed due to a recoverable error.

default_reply_retry

Type integer

Default 0

88 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Minimum Value -1

The maximum number of attempts to re-send a reply message which failed due to a recoverable
error.

default_reply_timeout

Type integer

Default 30

Minimum Value 5

The deadline for an rpc reply message delivery.

default_send_timeout

Type integer

Default 30

Minimum Value 5

The deadline for an rpc cast or call message delivery. Only used when caller does not provide a
timeout expiry.

default_notify_timeout

Type integer

Default 30

Minimum Value 5

The deadline for a sent notification message delivery. Only used when caller does not provide a
timeout expiry.

default_sender_link_timeout

Type integer

Default 600

Minimum Value 1

The duration to schedule a purge of idle sender links. Detach link after expiry.

addressing_mode

Type string

Default dynamic

Indicates the addressing mode used by the driver. Permitted values: legacy - use legacy non-
routable addressing routable - use routable addresses dynamic - use legacy addresses if the mes-
sage bus does not support routing otherwise use routable addressing

pseudo_vhost

Type boolean

Default True

Enable virtual host support for those message buses that do not natively support virtual hosting
(such as qpidd). When set to true the virtual host name will be added to all message bus addresses,
effectively creating a private subnet per virtual host. Set to False if the message bus supports

2.3. Configuring Heat 89

Heat Documentation, Release 16.1.1.dev14

virtual hosting using the hostname field in the AMQP 1.0 Open performative as the name of the
virtual host.

server_request_prefix

Type string

Default exclusive

address prefix used when sending to a specific server

Table 49: Deprecated Variations
Group Name
amqp1 server_request_prefix

broadcast_prefix

Type string

Default broadcast

address prefix used when broadcasting to all servers

Table 50: Deprecated Variations
Group Name
amqp1 broadcast_prefix

group_request_prefix

Type string

Default unicast

address prefix when sending to any server in group

Table 51: Deprecated Variations
Group Name
amqp1 group_request_prefix

rpc_address_prefix

Type string

Default openstack.org/om/rpc

Address prefix for all generated RPC addresses

notify_address_prefix

Type string

Default openstack.org/om/notify

Address prefix for all generated Notification addresses

multicast_address

Type string

90 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Default multicast

Appended to the address prefix when sending a fanout message. Used by the message bus to
identify fanout messages.

unicast_address

Type string

Default unicast

Appended to the address prefix when sending to a particular RPC/Notification server. Used by the
message bus to identify messages sent to a single destination.

anycast_address

Type string

Default anycast

Appended to the address prefix when sending to a group of consumers. Used by the message bus
to identify messages that should be delivered in a round-robin fashion across consumers.

default_notification_exchange

Type string

Default <None>

Exchange name used in notification addresses. Exchange name resolution precedence: Tar-
get.exchange if set else default_notification_exchange if set else control_exchange if set else no-
tify

default_rpc_exchange

Type string

Default <None>

Exchange name used in RPC addresses. Exchange name resolution precedence: Target.exchange
if set else default_rpc_exchange if set else control_exchange if set else rpc

reply_link_credit

Type integer

Default 200

Minimum Value 1

Window size for incoming RPC Reply messages.

rpc_server_credit

Type integer

Default 100

Minimum Value 1

Window size for incoming RPC Request messages

notify_server_credit

Type integer

2.3. Configuring Heat 91

Heat Documentation, Release 16.1.1.dev14

Default 100

Minimum Value 1

Window size for incoming Notification messages

pre_settled

Type multi-valued

Default rpc-cast

Default rpc-reply

Send messages of this type pre-settled. Pre-settled messages will not receive acknowledgement
from the peer. Note well: pre-settled messages may be silently discarded if the delivery fails.
Permitted values: rpc-call - send RPC Calls pre-settled rpc-reply- send RPC Replies pre-settled
rpc-cast - Send RPC Casts pre-settled notify - Send Notifications pre-settled

oslo_messaging_kafka

kafka_max_fetch_bytes

Type integer

Default 1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type floating point

Default 1.0

Default timeout(s) for Kafka consumers

pool_size

Type integer

Default 10

Pool Size for Kafka Consumers

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_min_size

Type integer

Default 2

The pool size limit for connections expiration policy

92 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_ttl

Type integer

Default 1200

The time-to-live in sec of idle connections in the pool

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

consumer_group

Type string

Default oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type floating point

Default 0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

Type integer

Default 16384

Size of batch for the producer async send

compression_codec

Type string

Default none

Valid Values none, gzip, snappy, lz4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit

Type boolean

Default False

Enable asynchronous consumer commits

2.3. Configuring Heat 93

Heat Documentation, Release 16.1.1.dev14

max_poll_records

Type integer

Default 500

The maximum number of records returned in a poll call

security_protocol

Type string

Default PLAINTEXT

Valid Values PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type string

Default PLAIN

Mechanism when security protocol is SASL

ssl_cafile

Type string

Default ''

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type string

Default ''

Client certificate PEM file used for authentication.

ssl_client_key_file

Type string

Default ''

Client key PEM file used for authentication.

ssl_client_key_password

Type string

Default ''

Client key password file used for authentication.

94 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

oslo_messaging_notifications

driver

Type multi-valued

Default ''

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

Table 52: Deprecated Variations
Group Name
DEFAULT notification_driver

transport_url

Type string

Default <None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 53: Deprecated Variations
Group Name
DEFAULT notification_transport_url

topics

Type list

Default ['notifications']

AMQP topic used for OpenStack notifications.

Table 54: Deprecated Variations
Group Name
rpc_notifier2 topics
DEFAULT notification_topics

retry

Type integer

Default -1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

2.3. Configuring Heat 95

Heat Documentation, Release 16.1.1.dev14

oslo_messaging_rabbit

amqp_durable_queues

Type boolean

Default False

Use durable queues in AMQP.

amqp_auto_delete

Type boolean

Default False

Auto-delete queues in AMQP.

Table 55: Deprecated Variations
Group Name
DEFAULT amqp_auto_delete

ssl

Type boolean

Default False

Connect over SSL.

Table 56: Deprecated Variations
Group Name
oslo_messaging_rabbit rabbit_use_ssl

ssl_version

Type string

Default ''

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 57: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_version

ssl_key_file

Type string

Default ''

SSL key file (valid only if SSL enabled).

96 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Table 58: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_keyfile

ssl_cert_file

Type string

Default ''

SSL cert file (valid only if SSL enabled).

Table 59: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_certfile

ssl_ca_file

Type string

Default ''

SSL certification authority file (valid only if SSL enabled).

Table 60: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_ca_certs

heartbeat_in_pthread

Type boolean

Default True

Run the health check heartbeat thread through a native python thread by default. If this option is
equal to False then the health check heartbeat will inherit the execution model from the parent pro-
cess. For example if the parent process has monkey patched the stdlib by using eventlet/greenlet
then the heartbeat will be run through a green thread.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

kombu_reconnect_delay

Type floating point

Default 1.0

How long to wait before reconnecting in response to an AMQP consumer cancel notification.

Table 61: Deprecated Variations
Group Name
DEFAULT kombu_reconnect_delay

2.3. Configuring Heat 97

Heat Documentation, Release 16.1.1.dev14

kombu_compression

Type string

Default <None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type integer

Default 60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 62: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_reconnect_timeout

kombu_failover_strategy

Type string

Default round-robin

Valid Values round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type string

Default AMQPLAIN

Valid Values PLAIN, AMQPLAIN, RABBIT-CR-DEMO

The RabbitMQ login method.

Table 63: Deprecated Variations
Group Name
DEFAULT rabbit_login_method

rabbit_retry_interval

Type integer

Default 1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type integer

Default 2

98 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

How long to backoff for between retries when connecting to RabbitMQ.

Table 64: Deprecated Variations
Group Name
DEFAULT rabbit_retry_backoff

rabbit_interval_max

Type integer

Default 30

Maximum interval of RabbitMQ connection retries. Default is 30 seconds.

rabbit_ha_queues

Type boolean

Default False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe
the RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-
policy argument when declaring a queue. If you just want to make sure that all queues (except
those with auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA
^(?!amq.).* {ha-mode: all}

Table 65: Deprecated Variations
Group Name
DEFAULT rabbit_ha_queues

rabbit_transient_queues_ttl

Type integer

Default 1800

Minimum Value 1

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues.

rabbit_qos_prefetch_count

Type integer

Default 0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

Type integer

Default 60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate

2.3. Configuring Heat 99

Heat Documentation, Release 16.1.1.dev14

Type integer

Default 2

How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

Type boolean

Default True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does
not exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to
sender to recover.This flag is deprecated and it will not be possible to deactivate this functionality
anymore

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Mandatory flag no longer deactivable.

enable_cancel_on_failover

Type boolean

Default False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

oslo_middleware

max_request_body_size

Type integer

Default 114688

The maximum body size for each request, in bytes.

Table 66: Deprecated Variations
Group Name
DEFAULT osapi_max_request_body_size
DEFAULT max_request_body_size

secure_proxy_ssl_header

Type string

Default X-Forwarded-Proto

The HTTP Header that will be used to determine what the original request protocol scheme was,
even if it was hidden by a SSL termination proxy.

100 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

enable_proxy_headers_parsing

Type boolean

Default False

Whether the application is behind a proxy or not. This determines if the middleware should parse
the headers or not.

oslo_policy

enforce_scope

Type boolean

Default False

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced.
If the scopes do not match, an InvalidScope exception will be raised. If False, a message
will be logged informing operators that policies are being invoked with mismatching scope.

enforce_new_defaults

Type boolean

Default False

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token
is allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged
to enable this flag along with the enforce_scope flag so that you can get the benefits of new
defaults and scope_type together

policy_file

Type string

Default policy.json

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

Table 67: Deprecated Variations
Group Name
DEFAULT policy_file

policy_default_rule

Type string

Default default

2.3. Configuring Heat 101

Heat Documentation, Release 16.1.1.dev14

Default rule. Enforced when a requested rule is not found.

Table 68: Deprecated Variations
Group Name
DEFAULT policy_default_rule

policy_dirs

Type multi-valued

Default policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

Table 69: Deprecated Variations
Group Name
DEFAULT policy_dirs

remote_content_type

Type string

Default application/x-www-form-urlencoded

Valid Values application/x-www-form-urlencoded, application/json

Content Type to send and receive data for REST based policy check

remote_ssl_verify_server_crt

Type boolean

Default False

server identity verification for REST based policy check

remote_ssl_ca_crt_file

Type string

Default <None>

Absolute path to ca cert file for REST based policy check

remote_ssl_client_crt_file

Type string

Default <None>

Absolute path to client cert for REST based policy check

remote_ssl_client_key_file

Type string

Default <None>

Absolute path client key file REST based policy check

102 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

paste_deploy

flavor

Type string

Default <None>

The flavor to use.

api_paste_config

Type string

Default api-paste.ini

The API paste config file to use.

profiler

enabled

Type boolean

Default False

Enable the profiling for all services on this node.

Default value is False (fully disable the profiling feature).

Possible values:

• True: Enables the feature

• False: Disables the feature. The profiling cannot be started via this project operations. If the
profiling is triggered by another project, this project part will be empty.

Table 70: Deprecated Variations
Group Name
profiler profiler_enabled

trace_sqlalchemy

Type boolean

Default False

Enable SQL requests profiling in services.

Default value is False (SQL requests wont be traced).

Possible values:

• True: Enables SQL requests profiling. Each SQL query will be part of the trace and can the
be analyzed by how much time was spent for that.

• False: Disables SQL requests profiling. The spent time is only shown on a higher level of
operations. Single SQL queries cannot be analyzed this way.

hmac_keys

2.3. Configuring Heat 103

Heat Documentation, Release 16.1.1.dev14

Type string

Default SECRET_KEY

Secret key(s) to use for encrypting context data for performance profiling.

This string value should have the following format: <key1>[,<key2>,<keyn>], where each key is
some random string. A user who triggers the profiling via the REST API has to set one of these
keys in the headers of the REST API call to include profiling results of this node for this particular
project.

Both enabled flag and hmac_keys config options should be set to enable profiling. Also, to gener-
ate correct profiling information across all services at least one key needs to be consistent between
OpenStack projects. This ensures it can be used from client side to generate the trace, containing
information from all possible resources.

connection_string

Type string

Default messaging://

Connection string for a notifier backend.

Default value is messaging:// which sets the notifier to oslo_messaging.

Examples of possible values:

• messaging:// - use oslo_messaging driver for sending spans.

• redis://127.0.0.1:6379 - use redis driver for sending spans.

• mongodb://127.0.0.1:27017 - use mongodb driver for sending spans.

• elasticsearch://127.0.0.1:9200 - use elasticsearch driver for sending spans.

• jaeger://127.0.0.1:6831 - use jaeger tracing as driver for sending spans.

es_doc_type

Type string

Default notification

Document type for notification indexing in elasticsearch.

es_scroll_time

Type string

Default 2m

This parameter is a time value parameter (for example: es_scroll_time=2m), indicating for how
long the nodes that participate in the search will maintain relevant resources in order to continue
and support it.

es_scroll_size

Type integer

Default 10000

Elasticsearch splits large requests in batches. This parameter defines maximum size of each batch
(for example: es_scroll_size=10000).

104 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

socket_timeout

Type floating point

Default 0.1

Redissentinel provides a timeout option on the connections. This parameter defines that timeout
(for example: socket_timeout=0.1).

sentinel_service_name

Type string

Default mymaster

Redissentinel uses a service name to identify a master redis service. This parameter defines the
name (for example: sentinal_service_name=mymaster).

filter_error_trace

Type boolean

Default False

Enable filter traces that contain error/exception to a separated place.

Default value is set to False.

Possible values:

• True: Enable filter traces that contain error/exception.

• False: Disable the filter.

revision

heat_revision

Type string

Default unknown

Heat build revision. If you would prefer to manage your build revision separately, you can move
this section to a different file and add it as another config option.

ssl

ca_file

Type string

Default <None>

CA certificate file to use to verify connecting clients.

Table 71: Deprecated Variations
Group Name
DEFAULT ssl_ca_file

cert_file

2.3. Configuring Heat 105

Heat Documentation, Release 16.1.1.dev14

Type string

Default <None>

Certificate file to use when starting the server securely.

Table 72: Deprecated Variations
Group Name
DEFAULT ssl_cert_file

key_file

Type string

Default <None>

Private key file to use when starting the server securely.

Table 73: Deprecated Variations
Group Name
DEFAULT ssl_key_file

version

Type string

Default <None>

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

ciphers

Type string

Default <None>

Sets the list of available ciphers. value should be a string in the OpenSSL cipher list format.

trustee

auth_type

Type unknown type

Default <None>

Authentication type to load

Table 74: Deprecated Variations
Group Name
trustee auth_plugin

auth_section

Type unknown type

106 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Default <None>

Config Section from which to load plugin specific options

auth_url

Type unknown type

Default <None>

Authentication URL

system_scope

Type unknown type

Default <None>

Scope for system operations

domain_id

Type unknown type

Default <None>

Domain ID to scope to

domain_name

Type unknown type

Default <None>

Domain name to scope to

project_id

Type unknown type

Default <None>

Project ID to scope to

Table 75: Deprecated Variations
Group Name
trustee tenant-id
trustee tenant_id

project_name

Type unknown type

Default <None>

Project name to scope to

Table 76: Deprecated Variations
Group Name
trustee tenant-name
trustee tenant_name

2.3. Configuring Heat 107

Heat Documentation, Release 16.1.1.dev14

project_domain_id

Type unknown type

Default <None>

Domain ID containing project

project_domain_name

Type unknown type

Default <None>

Domain name containing project

trust_id

Type unknown type

Default <None>

Trust ID

default_domain_id

Type unknown type

Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type unknown type

Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

user_id

Type unknown type

Default <None>

User id

username

Type unknown type

Default <None>

Username

Table 77: Deprecated Variations
Group Name
trustee user-name
trustee user_name

user_domain_id

108 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Type unknown type

Default <None>

Users domain id

user_domain_name

Type unknown type

Default <None>

Users domain name

password

Type unknown type

Default <None>

Users password

volumes

backups_enabled

Type boolean

Default True

Indicate if cinder-backup service is enabled. This is a temporary workaround until cinder-backup
service becomes discoverable, see LP#1334856.

2.3.2 Heat Configuration Sample

The following is a sample heat configuration for adaptation and use. It is auto-generated from heat when
this documentation is built, so if you are having issues with an option, please compare your version of
heat with the version of this documentation.

See the online version of this documentation for the full example config file.

2.3.3 Orchestration log files

The corresponding log file of each Orchestration service is stored in the /var/log/heat/ directory
of the host on which each service runs.

Table 78: Log files used by Orchestration services
Log filename Service that logs to the file
heat-api.log Orchestration service API Service
heat-engine.log Orchestration service Engine Service
heat-manage.log Orchestration service events

2.3. Configuring Heat 109

Heat Documentation, Release 16.1.1.dev14

2.3.4 Heat Sample Policy

The following is a sample heat policy file that has been auto-generated from default policy values in
code. If youre using the default policies, then the maintenance of this file is not necessary, and it should
not be copied into a deployment. Doing so will result in duplicate policy definitions. It is here to help
explain which policy operations protect specific heat APIs, but it is not suggested to copy and paste
into a deployment unless youre planning on providing a different policy for an operation that is not the
default.

If you wish build a policy file, you can also use tox -e genpolicy to generate it.

The sample policy file can also be downloaded in file form.

Decides what is required for the 'is_admin:True' check to succeed.
#"context_is_admin": "(role:admin and is_admin_project:True) OR
↪→(role:admin and system_scope:all)"

Default rule for project admin.
#"project_admin": "role:admin"

Default rule for deny stack user.
#"deny_stack_user": "not role:heat_stack_user"

Default rule for deny everybody.
#"deny_everybody": "!"

Default rule for allow everybody.
#"allow_everybody": ""

Performs non-lifecycle operations on the stack (Snapshot, Resume,
Cancel update, or check stack resources). This is the default for
all actions but can be overridden by more specific policies for
individual actions.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions
#"actions:action": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)"

DEPRECATED
"actions:action":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:action":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The actions API now supports system scope and default roles.

Create stack snapshot
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions
Intended scope(s): system, project
#"actions:snapshot": "(role:admin and system_scope:all) or (role:member
↪→and project_id:%(project_id)s)"

DEPRECATED
"actions:snapshot":"rule:deny_stack_user" has been deprecated since
W in favor of "actions:snapshot":"(role:admin and system_scope:all)
or (role:member and project_id:%(project_id)s)".
The actions API now supports system scope and default roles.

Suspend a stack.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

(continues on next page)

110 Chapter 2. Operating Heat

../_static/heat.policy.yaml.sample

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

Intended scope(s): system, project
#"actions:suspend": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)"

DEPRECATED
"actions:suspend":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:suspend":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The actions API now supports system scope and default roles.

Resume a suspended stack.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions
Intended scope(s): system, project
#"actions:resume": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)"

DEPRECATED
"actions:resume":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:resume":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The actions API now supports system scope and default roles.

Check stack resources.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions
Intended scope(s): system, project
#"actions:check": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"actions:check":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:check":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The actions API now supports system scope and default roles.

Cancel stack operation and roll back.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions
Intended scope(s): system, project
#"actions:cancel_update": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"actions:cancel_update":"rule:deny_stack_user" has been deprecated
since W in favor of "actions:cancel_update":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The actions API now supports system scope and default roles.

Cancel stack operation without rolling back.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions
Intended scope(s): system, project
#"actions:cancel_without_rollback": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"actions:cancel_without_rollback":"rule:deny_stack_user" has been
deprecated since W in favor of
"actions:cancel_without_rollback":"(role:admin and system_scope:all)

(continues on next page)

2.3. Configuring Heat 111

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

or (role:member and project_id:%(project_id)s)".
The actions API now supports system scope and default roles.

Show build information.
GET /v1/{tenant_id}/build_info
Intended scope(s): system, project
#"build_info:build_info": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"build_info:build_info":"rule:deny_stack_user" has been deprecated
since W in favor of "build_info:build_info":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The build API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:ListStacks": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:ListStacks":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:ListStacks":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:CreateStack": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:CreateStack":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:CreateStack":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DescribeStacks": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:DescribeStacks":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:DescribeStacks":"(role:reader and system_scope:all)
or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DeleteStack": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:DeleteStack":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:DeleteStack":"(role:admin and system_scope:all) or

(continues on next page)

112 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

(role:member and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:UpdateStack": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:UpdateStack":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:UpdateStack":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:CancelUpdateStack": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:CancelUpdateStack":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:CancelUpdateStack":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DescribeStackEvents": "(role:reader and system_scope:all)
↪→or (role:reader and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:DescribeStackEvents":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:DescribeStackEvents":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:ValidateTemplate": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:ValidateTemplate":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:ValidateTemplate":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:GetTemplate": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:GetTemplate":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:GetTemplate":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

(continues on next page)

2.3. Configuring Heat 113

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:EstimateTemplateCost": "(role:reader and system_
↪→scope:all) or (role:reader and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:EstimateTemplateCost":"rule:deny_stack_user" has
been deprecated since W in favor of
"cloudformation:EstimateTemplateCost":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DescribeStackResource": "(role:reader and system_
↪→scope:all) or (role:reader and project_id:%(project_id)s) or (role:heat_
↪→stack_user and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:DescribeStackResource":"rule:allow_everybody" has
been deprecated since W in favor of
"cloudformation:DescribeStackResource":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s) or
(role:heat_stack_user and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DescribeStackResources": "(role:reader and system_
↪→scope:all) or (role:reader and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:DescribeStackResources":"rule:deny_stack_user" has
been deprecated since W in favor of
"cloudformation:DescribeStackResources":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:ListStackResources": "(role:reader and system_scope:all)
↪→or (role:reader and project_id:%(project_id)s)"

DEPRECATED
"cloudformation:ListStackResources":"rule:deny_stack_user" has been
deprecated since W in favor of
"cloudformation:ListStackResources":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

List events.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/events
Intended scope(s): system, project
#"events:index": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"events:index":"rule:deny_stack_user" has been deprecated since W in

(continues on next page)

114 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

favor of "events:index":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The events API now supports system scope and default roles.

Show event.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
↪→name}/events/{event_id}
Intended scope(s): system, project
#"events:show": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"events:show":"rule:deny_stack_user" has been deprecated since W in
favor of "events:show":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The events API now supports system scope and default roles.

List resources.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/resources
Intended scope(s): system, project
#"resource:index": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"resource:index":"rule:deny_stack_user" has been deprecated since W
in favor of "resource:index":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The resources API now supports system scope and default roles.

Show resource metadata.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
↪→name}/metadata
Intended scope(s): system, project
#"resource:metadata": "(role:reader and system_scope:all) or (role:reader
↪→and project_id:%(project_id)s) or (role:heat_stack_user and project_id:
↪→%(project_id)s)"

DEPRECATED
"resource:metadata":"rule:allow_everybody" has been deprecated since
W in favor of "resource:metadata":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s) or
(role:heat_stack_user and project_id:%(project_id)s)".
The resources API now supports system scope and default roles.

Signal resource.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
↪→name}/signal
Intended scope(s): system, project
#"resource:signal": "(role:reader and system_scope:all) or (role:reader
↪→and project_id:%(project_id)s) or (role:heat_stack_user and project_id:
↪→%(project_id)s)"

DEPRECATED
"resource:signal":"rule:allow_everybody" has been deprecated since W
in favor of "resource:signal":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s) or (role:heat_stack_user

(continues on next page)

2.3. Configuring Heat 115

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

and project_id:%(project_id)s)".
The resources API now supports system scope and default roles.

Mark resource as unhealthy.
PATCH /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/
↪→{resource_name_or_physical_id}
Intended scope(s): system, project
#"resource:mark_unhealthy": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"resource:mark_unhealthy":"rule:deny_stack_user" has been deprecated
since W in favor of "resource:mark_unhealthy":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The resources API now supports system scope and default roles.

Show resource.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
↪→name}
Intended scope(s): system, project
#"resource:show": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"resource:show":"rule:deny_stack_user" has been deprecated since W
in favor of "resource:show":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The resources API now supports system scope and default roles.

#"resource_types:OS::Nova::Flavor": "rule:project_admin"

#"resource_types:OS::Cinder::EncryptedVolumeType": "rule:project_admin"

#"resource_types:OS::Cinder::VolumeType": "rule:project_admin"

#"resource_types:OS::Cinder::Quota": "rule:project_admin"

#"resource_types:OS::Neutron::Quota": "rule:project_admin"

#"resource_types:OS::Nova::Quota": "rule:project_admin"

#"resource_types:OS::Octavia::Quota": "rule:project_admin"

#"resource_types:OS::Manila::ShareType": "rule:project_admin"

#"resource_types:OS::Neutron::ProviderNet": "rule:project_admin"

#"resource_types:OS::Neutron::QoSPolicy": "rule:project_admin"

#"resource_types:OS::Neutron::QoSBandwidthLimitRule": "rule:project_admin"

#"resource_types:OS::Neutron::QoSDscpMarkingRule": "rule:project_admin"

#"resource_types:OS::Neutron::QoSMinimumBandwidthRule": "rule:project_admin
↪→"

(continues on next page)

116 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

#"resource_types:OS::Neutron::Segment": "rule:project_admin"

#"resource_types:OS::Nova::HostAggregate": "rule:project_admin"

#"resource_types:OS::Cinder::QoSSpecs": "rule:project_admin"

#"resource_types:OS::Cinder::QoSAssociation": "rule:project_admin"

#"resource_types:OS::Keystone::*": "rule:project_admin"

#"resource_types:OS::Blazar::Host": "rule:project_admin"

#"resource_types:OS::Octavia::Flavor": "rule:project_admin"

#"resource_types:OS::Octavia::FlavorProfile": "rule:project_admin"

#"service:index": "role:reader and system_scope:all"

DEPRECATED
"service:index":"rule:context_is_admin" has been deprecated since W
in favor of "service:index":"role:reader and system_scope:all".
The service API now supports system scope and default roles.

List configs globally.
GET /v1/{tenant_id}/software_configs
Intended scope(s): system, project
#"software_configs:global_index": "role:reader and system_scope:all"

DEPRECATED
"software_configs:global_index":"rule:deny_everybody" has been
deprecated since W in favor of
"software_configs:global_index":"role:reader and system_scope:all".
The software configuration API now support system scope and default
roles.

List configs.
GET /v1/{tenant_id}/software_configs
Intended scope(s): system, project
#"software_configs:index": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"software_configs:index":"rule:deny_stack_user" has been deprecated
since W in favor of "software_configs:index":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The software configuration API now support system scope and default
roles.

Create config.
POST /v1/{tenant_id}/software_configs
Intended scope(s): system, project
#"software_configs:create": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"software_configs:create":"rule:deny_stack_user" has been deprecated

(continues on next page)

2.3. Configuring Heat 117

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

since W in favor of "software_configs:create":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The software configuration API now support system scope and default
roles.

Show config details.
GET /v1/{tenant_id}/software_configs/{config_id}
Intended scope(s): system, project
#"software_configs:show": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"software_configs:show":"rule:deny_stack_user" has been deprecated
since W in favor of "software_configs:show":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The software configuration API now support system scope and default
roles.

Delete config.
DELETE /v1/{tenant_id}/software_configs/{config_id}
Intended scope(s): system, project
#"software_configs:delete": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"software_configs:delete":"rule:deny_stack_user" has been deprecated
since W in favor of "software_configs:delete":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The software configuration API now support system scope and default
roles.

List deployments.
GET /v1/{tenant_id}/software_deployments
Intended scope(s): system, project
#"software_deployments:index": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"software_deployments:index":"rule:deny_stack_user" has been
deprecated since W in favor of
"software_deployments:index":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The software deployment API now supports system scope and default
roles.

Create deployment.
POST /v1/{tenant_id}/software_deployments
Intended scope(s): system, project
#"software_deployments:create": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"software_deployments:create":"rule:deny_stack_user" has been
deprecated since W in favor of
"software_deployments:create":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

(continues on next page)

118 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

The software deployment API now supports system scope and default
roles.

Show deployment details.
GET /v1/{tenant_id}/software_deployments/{deployment_id}
Intended scope(s): system, project
#"software_deployments:show": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"software_deployments:show":"rule:deny_stack_user" has been
deprecated since W in favor of
"software_deployments:show":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The software deployment API now supports system scope and default
roles.

Update deployment.
PUT /v1/{tenant_id}/software_deployments/{deployment_id}
Intended scope(s): system, project
#"software_deployments:update": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"software_deployments:update":"rule:deny_stack_user" has been
deprecated since W in favor of
"software_deployments:update":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The software deployment API now supports system scope and default
roles.

Delete deployment.
DELETE /v1/{tenant_id}/software_deployments/{deployment_id}
Intended scope(s): system, project
#"software_deployments:delete": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"software_deployments:delete":"rule:deny_stack_user" has been
deprecated since W in favor of
"software_deployments:delete":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The software deployment API now supports system scope and default
roles.

Show server configuration metadata.
GET /v1/{tenant_id}/software_deployments/metadata/{server_id}
Intended scope(s): system, project
#"software_deployments:metadata": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s) or (role:heat_stack_user and
↪→project_id:%(project_id)s)"

Abandon stack.
DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/abandon
Intended scope(s): system, project
#"stacks:abandon": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)" (continues on next page)

2.3. Configuring Heat 119

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

DEPRECATED
"stacks:abandon":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:abandon":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Create stack.
POST /v1/{tenant_id}/stacks
Intended scope(s): system, project
#"stacks:create": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:create":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:create":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Delete stack.
DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}
Intended scope(s): system, project
#"stacks:delete": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:delete":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:delete":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

List stacks in detail.
GET /v1/{tenant_id}/stacks
Intended scope(s): system, project
#"stacks:detail": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:detail":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:detail":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Export stack.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/export
Intended scope(s): system, project
#"stacks:export": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:export":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:export":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Generate stack template.
(continues on next page)

120 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/template
Intended scope(s): system, project
#"stacks:generate_template": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"stacks:generate_template":"rule:deny_stack_user" has been
deprecated since W in favor of
"stacks:generate_template":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

List stacks globally.
GET /v1/{tenant_id}/stacks
Intended scope(s): system, project
#"stacks:global_index": "role:reader and system_scope:all"

DEPRECATED
"stacks:global_index":"rule:deny_everybody" has been deprecated
since W in favor of "stacks:global_index":"role:reader and
system_scope:all".
The stack API now supports system scope and default roles.

List stacks.
GET /v1/{tenant_id}/stacks
Intended scope(s): system, project
#"stacks:index": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:index":"rule:deny_stack_user" has been deprecated since W in
favor of "stacks:index":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

List resource types.
GET /v1/{tenant_id}/resource_types
Intended scope(s): system, project
#"stacks:list_resource_types": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"stacks:list_resource_types":"rule:deny_stack_user" has been
deprecated since W in favor of
"stacks:list_resource_types":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

List template versions.
GET /v1/{tenant_id}/template_versions
Intended scope(s): system, project
#"stacks:list_template_versions": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"stacks:list_template_versions":"rule:deny_stack_user" has been

(continues on next page)

2.3. Configuring Heat 121

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

deprecated since W in favor of
"stacks:list_template_versions":"(role:reader and system_scope:all)
or (role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

List template functions.
GET /v1/{tenant_id}/template_versions/{template_version}/functions
Intended scope(s): system, project
#"stacks:list_template_functions": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"stacks:list_template_functions":"rule:deny_stack_user" has been
deprecated since W in favor of
"stacks:list_template_functions":"(role:reader and system_scope:all)
or (role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Find stack.
GET /v1/{tenant_id}/stacks/{stack_identity}
Intended scope(s): system, project
#"stacks:lookup": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s) or (role:heat_stack_user and project_id:
↪→%(project_id)s)"

DEPRECATED
"stacks:lookup":"rule:allow_everybody" has been deprecated since W
in favor of "stacks:lookup":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s) or (role:heat_stack_user
and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Preview stack.
POST /v1/{tenant_id}/stacks/preview
Intended scope(s): system, project
#"stacks:preview": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:preview":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:preview":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Show resource type schema.
GET /v1/{tenant_id}/resource_types/{type_name}
Intended scope(s): system, project
#"stacks:resource_schema": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"stacks:resource_schema":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:resource_schema":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

(continues on next page)

122 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

Show stack.
GET /v1/{tenant_id}/stacks/{stack_identity}
Intended scope(s): system, project
#"stacks:show": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:show":"rule:deny_stack_user" has been deprecated since W in
favor of "stacks:show":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Get stack template.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/template
Intended scope(s): system, project
#"stacks:template": "(role:reader and system_scope:all) or (role:reader
↪→and project_id:%(project_id)s)"

DEPRECATED
"stacks:template":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:template":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Get stack environment.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/environment
Intended scope(s): system, project
#"stacks:environment": "(role:reader and system_scope:all) or (role:reader
↪→and project_id:%(project_id)s)"

DEPRECATED
"stacks:environment":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:environment":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Get stack files.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/files
Intended scope(s): system, project
#"stacks:files": "(role:reader and system_scope:all) or (role:reader and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:files":"rule:deny_stack_user" has been deprecated since W in
favor of "stacks:files":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Update stack.
PUT /v1/{tenant_id}/stacks/{stack_name}/{stack_id}
Intended scope(s): system, project
#"stacks:update": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:update":"rule:deny_stack_user" has been deprecated since W

(continues on next page)

2.3. Configuring Heat 123

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

in favor of "stacks:update":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Update stack (PATCH).
PATCH /v1/{tenant_id}/stacks/{stack_name}/{stack_id}
Intended scope(s): system, project
#"stacks:update_patch": "(role:admin and system_scope:all) or (role:member
↪→and project_id:%(project_id)s)"

DEPRECATED
"stacks:update_patch":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:update_patch":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Update stack (PATCH) with no changes.
PATCH /v1/{tenant_id}/stacks/{stack_name}/{stack_id}
Intended scope(s): system, project
#"stacks:update_no_change": "rule:stacks:update_patch"

Preview update stack.
PUT /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/preview
Intended scope(s): system, project
#"stacks:preview_update": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"stacks:preview_update":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:preview_update":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Preview update stack (PATCH).
PATCH /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/preview
Intended scope(s): system, project
#"stacks:preview_update_patch": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"stacks:preview_update_patch":"rule:deny_stack_user" has been
deprecated since W in favor of
"stacks:preview_update_patch":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Validate template.
POST /v1/{tenant_id}/validate
Intended scope(s): system, project
#"stacks:validate_template": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"stacks:validate_template":"rule:deny_stack_user" has been
deprecated since W in favor of
"stacks:validate_template":"(role:admin and system_scope:all) or

(continues on next page)

124 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Snapshot Stack.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots
Intended scope(s): system, project
#"stacks:snapshot": "(role:admin and system_scope:all) or (role:member and
↪→project_id:%(project_id)s)"

DEPRECATED
"stacks:snapshot":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:snapshot":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Show snapshot.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/{snapshot_
↪→id}
Intended scope(s): system, project
#"stacks:show_snapshot": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"stacks:show_snapshot":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:show_snapshot":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Delete snapshot.
DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/
↪→{snapshot_id}
Intended scope(s): system, project
#"stacks:delete_snapshot": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"stacks:delete_snapshot":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:delete_snapshot":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

List snapshots.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots
Intended scope(s): system, project
#"stacks:list_snapshots": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"stacks:list_snapshots":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:list_snapshots":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Restore snapshot.
POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/{snapshot_
↪→id}/restore

(continues on next page)

2.3. Configuring Heat 125

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

Intended scope(s): system, project
#"stacks:restore_snapshot": "(role:admin and system_scope:all) or
↪→(role:member and project_id:%(project_id)s)"

DEPRECATED
"stacks:restore_snapshot":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:restore_snapshot":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

List outputs.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/outputs
Intended scope(s): system, project
#"stacks:list_outputs": "(role:reader and system_scope:all) or
↪→(role:reader and project_id:%(project_id)s)"

DEPRECATED
"stacks:list_outputs":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:list_outputs":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

Show outputs.
GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/outputs/{output_key}
Intended scope(s): system, project
#"stacks:show_output": "(role:reader and system_scope:all) or (role:reader
↪→and project_id:%(project_id)s)"

DEPRECATED
"stacks:show_output":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:show_output":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

2.4 Administering Heat

2.4.1 Introduction

The OpenStack Orchestration service, a tool for orchestrating clouds, automatically configures and de-
ploys resources in stacks. The deployments can be simple, such as deploying WordPress on Ubuntu with
an SQL back end, or complex, such as starting a server group that auto scales by starting and stopping
using real-time CPU loading information from the Telemetry service.

Orchestration stacks are defined with templates, which are non-procedural documents. Templates de-
scribe tasks in terms of resources, parameters, inputs, constraints, and dependencies. When the Orches-
tration service was originally introduced, it worked with AWS CloudFormation templates, which are in
the JSON format.

The Orchestration service also runs Heat Orchestration Template (HOT) templates that are written in
YAML. YAML is a terse notation that loosely follows structural conventions (colons, returns, indenta-
tion) that are similar to Python or Ruby. Therefore, it is easier to write, parse, grep, generate with tools,
and maintain source-code management systems.

126 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Orchestration can be accessed through a CLI and RESTful queries. The Orchestration service provides
both an OpenStack-native REST API and a CloudFormation-compatible Query API. The Orchestra-
tion service is also integrated with the OpenStack dashboard to perform stack functions through a web
interface.

For more information about using the Orchestration service through the command line, see the Heat
Command-Line Interface reference.

2.4.2 Orchestration authorization model

The Orchestration authorization model defines the authorization process for requests during deferred
operations. A common example is an auto-scaling group update. During the auto-scaling update oper-
ation, the Orchestration service requests resources of other components (such as servers from Compute
or networks from Networking) to extend or reduce the capacity of an auto-scaling group.

The Orchestration service provides the following authorization models:

• Password authorization

• OpenStack Identity trusts authorization

Password authorization

The Orchestration service supports password authorization. Password authorization requires that a user
pass a username and password to the Orchestration service. Encrypted password are stored in the
database, and used for deferred operations.

Password authorization involves the following steps:

1. A user requests stack creation, by providing a token and username and password. The Dashboard
or python-heatclient requests the token on the users behalf.

2. If the stack contains any resources that require deferred operations, then the orchestration engine
fails its validation checks if the user did not provide a valid username/password.

3. The username/password are encrypted and stored in the Orchestration database.

4. Orchestration creates a stack.

5. Later, the Orchestration service retrieves the credentials and requests another token on behalf of
the user. The token is not limited in scope and provides access to all the roles of the stack owner.

OpenStack Identity trusts authorization

A trust is an OpenStack Identity extension that enables delegation, and optionally impersonation through
the OpenStack Identity service. The key terminology is trustor (the user delegating) and trustee (the user
being delegated to).

To create a trust, the trustor (in this case, the user creating the stack in the Orchestration service) provides
the OpenStack Identity service with the following information:

• The ID of the trustee (who you want to delegate to, in this case, the Orchestration service user).

• The roles to be delegated. Configure roles through the heat.conf file. Ensure the configuration
contains whatever roles are required to perform the deferred operations on the users behalf. For
example, launching an OpenStack Compute instance in response to an auto-scaling event.

2.4. Administering Heat 127

https://docs.openstack.org/python-heatclient/wallaby/#openstackclient-command-line
https://docs.openstack.org/python-heatclient/wallaby/#openstackclient-command-line

Heat Documentation, Release 16.1.1.dev14

• Whether to enable impersonation.

The OpenStack Identity service provides a trust ID, which is consumed by only the trustee to obtain a
trust scoped token. This token is limited in scope, such that the trustee has limited access to those roles
delegated. In addition, the trustee has effective impersonation of the trustor user if it was selected when
creating the trust. For more information, see Identity management trusts.

Trusts authorization involves the following steps:

1. A user creates a stack through an API request (only the token is required).

2. The Orchestration service uses the token to create a trust between the stack owner (trustor) and the
Orchestration service user (trustee). The service delegates a special role (or roles) as defined in the
trusts_delegated_roles list in the Orchestration configuration file. By default, the Orchestration
service sets all the roles from trustor available for trustee. Deployers might modify this list to
reflect a local RBAC policy. For example, to ensure that the heat process can access only those
services that are expected while impersonating a stack owner.

3. Orchestration stores the encrypted trust ID in the Orchestration database.

4. When a deferred operation is required, the Orchestration service retrieves the trust ID and requests
a trust scoped token which enables the service user to impersonate the stack owner during the
deferred operation. Impersonation is helpful, for example, so the service user can launch Compute
instances on behalf of the stack owner in response to an auto-scaling event.

Authorization model configuration

Initially, the password authorization model was the default authorization model. Since the Kilo release,
the Identity trusts authorization model is enabled for the Orchestration service by default.

To enable the password authorization model, change the following parameter in the heat.conf file:

deferred_auth_method=password

To enable the trusts authorization model, change the following two parameters in the heat.conf file.

Specify the authentication method for the deferred Orchestration actions. This parameter triggers creat-
ing trust ID and stores it in the Orchestration database:

deferred_auth_method=trusts

Allow reauthentication with the trust scoped token issued by using the stored trust ID for long running
tasks:

reauthentication_auth_method=trusts

To specify the trustor roles that it delegates to trustee during authorization, spec-
ify the trusts_delegated_roles parameter in the heat.conf file. If
trusts_delegated_roles is not defined, then all the trustor roles are delegated to trustee.

Note: The trustor delegated roles must be pre-configured in the OpenStack Identity service before using
them in the Orchestration service.

128 Chapter 2. Operating Heat

https://docs.openstack.org/keystone/wallaby/user/trusts.html

Heat Documentation, Release 16.1.1.dev14

2.4.3 Stack domain users

Stack domain users allow the Orchestration service to authorize and start the following operations within
booted virtual machines:

• Provide metadata to agents inside instances. Agents poll for changes and apply the configuration
that is expressed in the metadata to the instance.

• Detect when an action is complete. Typically, software configuration on a virtual machine af-
ter it is booted. Compute moves the VM state to Active as soon as it creates it, not when the
Orchestration service has fully configured it.

• Provide application level status or meters from inside the instance. For example, allow auto-
scaling actions to be performed in response to some measure of performance or quality of service.

The Orchestration service provides APIs that enable all of these operations, but all of those APIs require
authentication. For example, credentials to access the instance that the agent is running upon. The heat-
cfntools agents use signed requests, which require an ec2 key pair created through Identity. The key pair
is then used to sign requests to the Orchestration CloudFormation and CloudWatch compatible APIs,
which are authenticated through signature validation. Signature validation uses the Identity ec2tokens
extension.

Stack domain users encapsulate all stack-defined users (users who are created as a result of data that is
contained in an Orchestration template) in a separate domain. The separate domain is created specifically
to contain data related to the Orchestration stacks only. A user is created, which is the domain admin,
and Orchestration uses the domain admin to manage the lifecycle of the users in the stack user domain.

Stack domain users configuration

To configure stack domain user, the Orchestration service completes the following tasks:

1. A special OpenStack Identity service domain is created. For example, a domain that is called
heat and the ID is set with the stack_user_domain option in the heat.conf file.

2. A user with sufficient permissions to create and delete projects and users in the heat domain is
created.

3. The username and password for the domain admin user is set in the heat.conf file
(stack_domain_admin and stack_domain_admin_password). This user administers
stack domain users on behalf of stack owners, so they no longer need to be administrators them-
selves. The risk of this escalation path is limited because the heat_domain_admin is only
given administrative permission for the heat domain.

To set up stack domain users, complete the following steps:

1. Create the domain:

$OS_TOKEN refers to a token. For example, the service admin token or some other valid token
for a user with sufficient roles to create users and domains. $KS_ENDPOINT_V3 refers to the v3
OpenStack Identity endpoint (for example, http://keystone_address:5000/v3 where
keystone_address is the IP address or resolvable name for the Identity service).

$ openstack --os-token $OS_TOKEN --os-url=$KS_ENDPOINT_V3 --os-\
identity-api-version=3 domain create heat --description "Owns \
users and projects created by heat"

The domain ID is returned by this command, and is referred to as $HEAT_DOMAIN_ID below.

2.4. Administering Heat 129

Heat Documentation, Release 16.1.1.dev14

2. Create the user:

$ openstack --os-token $OS_TOKEN --os-url=$KS_ENDPOINT_V3 --os-\
identity-api-version=3 user create --password $PASSWORD --domain \
$HEAT_DOMAIN_ID heat_domain_admin --description "Manages users \
and projects created by heat"

The user ID is returned by this command and is referred to as $DOMAIN_ADMIN_ID below.

3. Make the user a domain admin:

$ openstack --os-token $OS_TOKEN --os-url=$KS_ENDPOINT_V3 --os-\
identity-api-version=3 role add --user $DOMAIN_ADMIN_ID --domain \
$HEAT_DOMAIN_ID admin

Then you must add the domain ID, username and password from these steps to the heat.conf
file:

stack_domain_admin_password = password
stack_domain_admin = heat_domain_admin
stack_user_domain = domain id returned from domain create above

Usage workflow

The following steps are run during stack creation:

1. Orchestration creates a new stack domain project in the heat domain if the stack contains any
resources that require creation of a stack domain user.

2. For any resources that require a user, the Orchestration service creates the user in the stack domain
project. The stack domain project is associated with the Orchestration stack in the Orchestration
database, but is separate and unrelated (from an authentication perspective) to the stack owners
project. The users who are created in the stack domain are still assigned the heat_stack_user
role, so the API surface they can access is limited through the policy.json file. For more
information, see OpenStack Identity documentation.

3. When API requests are processed, the Orchestration service performs an internal lookup, and
allows stack details for a given stack to be retrieved. Details are retrieved from the database for
both the stack owners project (the default API path to the stack) and the stack domain project,
subject to the policy.json restrictions.

This means there are now two paths that can result in the same data being retrieved through the Orches-
tration API. The following example is for resource-metadata:

GET v1/{stack_owner_project_id}/stacks/{stack_name}/\
{stack_id}/resources/{resource_name}/metadata

or:

GET v1/{stack_domain_project_id}/stacks/{stack_name}/\
{stack_id}/resources/{resource_name}/metadata

The stack owner uses the former (via openstack stack resource metadata STACK
RESOURCE), and any agents in the instance use the latter.

130 Chapter 2. Operating Heat

https://docs.openstack.org/keystone/wallaby/

Heat Documentation, Release 16.1.1.dev14

2.5 Scaling a Deployment

When deploying in an environment where a large number of incoming requests need to be handled,
the API and engine services can be overloaded. In those scenarios, in order to increase the system
performance, it can be helpful to run multiple load-balanced APIs and engines.

This guide details how to scale out the REST API, the CFN API, and the engine, also known as the
heat-api, heat-api-cfn, and heat-engine services, respectively.

2.5.1 Assumptions

This guide, using a devstack installation of OpenStack, assumes that:

1. You have configured devstack from Single Machine Installation Guide;

2. You have set up heat on devstack, as defined at heat and DevStack;

3. You have installed HAProxy on the devstack server.

2.5.2 Architecture

This section shows the basic heat architecture, the load balancing mechanism used and the target scaled
out architecture.

Basic Architecture

The heat architecture is as defined at heat architecture and shown in the diagram below, where we have
a CLI that sends HTTP requests to the REST and CFN APIs, which in turn make calls using AMQP to
the heat-engine:

|- [REST API] -|
[CLI] -- <HTTP> -- -- <AMQP> -- [ENGINE]

|- [CFN API] -|

Load Balancing

As there is a need to use a load balancer mechanism between the multiple APIs and the CLI, a proxy
has to be deployed.

Because the heat CLI and APIs communicate by exchanging HTTP requests and responses, a HAProxy
HTTP load balancer server will be deployed between them.

This way, the proxy will take the CLIs requests to the APIs and act on their behalf. Once the proxy
receives a response, it will be redirected to the caller CLI.

A round-robin distribution of messages from the AMQP queue will act as the load balancer for multiple
engines. Check that your AMQP service is configured to distribute messages round-robin (RabbitMQ
does this by default).

2.5. Scaling a Deployment 131

https://docs.openstack.org/devstack/wallaby/guides/single-machine.html
https://www.haproxy.org/
https://www.haproxy.org/

Heat Documentation, Release 16.1.1.dev14

Target Architecture

A scaled out heat architecture is represented in the diagram below:

|- [REST-API] -|
|- ... -|
|- [REST-API] -| |- [ENGINE] -|

[CLI] -- <HTTP> -- [PROXY] -- -- <AMQP> -- |- ... -|
|- [API-CFN] -| |- [ENGINE] -|
|- ... -|
|- [API-CFN] -|

Thus, a request sent from the CLI looks like:

1. CLI contacts the proxy;

2. The HAProxy server, acting as a load balancer, redirects the call to an API instance;

3. The API server sends messages to the AMQP queue, and the engines pick up messages in round-
robin fashion.

2.5.3 Deploying Multiple APIs

In order to run a heat component separately, you have to execute one of the python scripts located at the
bin directory of your heat repository.

These scripts take as argument a configuration file. When using devstack, the configuration file is located
at /etc/heat/heat.conf. For instance, to start new REST and CFN API services, you must run:

python bin/heat-api --config-file=/etc/heat/heat.conf
python bin/heat-api-cfn --config-file=/etc/heat/heat.conf

Each API service must have a unique address to listen. This address have to be defined in the configura-
tion file. For REST and CFN APIs, modify the [heat_api] and [heat_api_cfn] blocks, respectively.

[heat_api]
bind_port = {API_PORT}
bind_host = {API_HOST}

...

[heat_api_cfn]
bind_port = {API_CFN_PORT}
bind_host = {API_CFN_HOST}

If you wish to run multiple API processes on the same machine, you must create multiple copies of the
heat.conf file, each containing a unique port number.

In addition, if you want to run some API services in different machines than the devstack server, you
have to update the loopback addresses found at the sql_connection and rabbit_host properties to the
devstack servers IP, which must be reachable from the remote machine.

132 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

2.5.4 Deploying Multiple Engines

All engines must be configured to use the same AMQP service. Ensure that all of the rabbit_* and
kombu_* configuration options in the [DEFAULT] section of /etc/heat/heat.conf match across each ma-
chine that will be running an engine. By using the same AMQP configuration, each engine will subscribe
to the same AMQP engine queue and pick up work in round-robin fashion with the other engines.

One or more engines can be deployed per host. Depending on the hosts CPU architecture, it may be
beneficial to deploy several engines on a single machine.

To start multiple engines on the same machine, simply start multiple heat-engine processes:

python bin/heat-engine --config-file=/etc/heat/heat.conf &
python bin/heat-engine --config-file=/etc/heat/heat.conf &

2.5.5 Deploying the Proxy

In order to simplify the deployment of the HAProxy server, we will replace the REST and CFN APIs
deployed when installing devstack by the HAProxy server. This way, there is no need to update, on the
CLI, the addresses where it should look for the APIs. In this case, when it makes a call to any API, it
will find the proxy, acting on their behalf.

Note that the addresses that the HAProxy will be listening to are the pairs API_HOST:API-PORT and
API_CFN_HOST:API_CFN_PORT, found at the [heat_api] and [heat_api_cfn] blocks on the devstack
servers configuration file. In addition, the original heat-api and heat-api-cfn processes running in these
ports have to be killed, because these addresses must be free to be used by the proxy.

To deploy the HAProxy server on the devstack server, run haproxy -f apis-proxy.conf, where this config-
uration file looks like:

global
daemon
maxconn 4000

defaults
log global
maxconn 8000
option redispatch
retries 3
timeout http-request 10s
timeout queue 1m
timeout connect 10s
timeout client 1m
timeout server 1m
timeout check 10s

listen rest_api_proxy
The values required below are the original ones that were in
/etc/heat/heat.conf on the devstack server.
bind {API_HOST}:{API_PORT}
balance source
option tcpka
option httpchk
The values required below are the different addresses supplied when
running the REST API instances.

(continues on next page)

2.5. Scaling a Deployment 133

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

server SERVER_1 {HOST_1}:{PORT_1}
...
server SERVER_N {HOST_N}:{PORT_N}

listen cfn_api_proxy
The values required below are the original ones that were in
/etc/heat/heat.conf on the devstack server.
bind {API_CFN_HOST}:{API_CFN_PORT}
balance source
option tcpka
option httpchk
The values required below are the different addresses supplied when
running the CFN API instances.
server SERVER_1 {HOST_1}:{PORT_1}
...
server SERVER_N {HOST_N}:{PORT_N}

2.5.6 Sample

This section aims to clarify some aspects of the scaling out solution, as well as to show more details of
the configuration by describing a concrete sample.

Architecture

This section shows a basic OpenStack architecture and the target one that will be used for testing of the
scaled-out heat services.

Basic Architecture

For this sample, consider that:

1. We have an architecture composed by 3 machines configured in a LAN, with the addresses A:
10.0.0.1; B: 10.0.0.2; and C: 10.0.0.3;

2. The OpenStack devstack installation, including the heat module, has been done in the machine A,
as shown in the Assumptions section.

Target Architecture

At this moment, everything is running in a single devstack server. The next subsections show how to
deploy a scaling out heat architecture by:

1. Running one REST and one CFN API on the machines B and C;

2. Setting up the HAProxy server on the machine A.

134 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

Running the API and Engine Services

For each machine, B and C, you must do the following steps:

1. Clone the heat repository https://opendev.org/openstack/heat, run:

:: git clone https://opendev.org/openstack/heat

2. Create a local copy of the configuration file /etc/heat/heat.conf from the machine A;

3. Make required changes on the configuration file;

4. Enter the heat local repository and run:

python bin/heat-api --config-file=/etc/heat/heat.conf
python bin/heat-api-cfn --config-file=/etc/heat/heat.conf

5. Start as many heat-engine processes as you want running on that machine:

python bin/heat-engine --config-file=/etc/heat/heat.conf &
python bin/heat-engine --config-file=/etc/heat/heat.conf &
...

Changes On Configuration

The original file from A looks like:

[DEFAULT]
...
sql_connection = mysql+pymysql://root:admin@127.0.0.1/heat?charset=utf8
rabbit_host = localhost
...
[heat_api]
bind_port = 8004
bind_host = 10.0.0.1
...
[heat_api_cfn]
bind_port = 8000
bind_host = 10.0.0.1

After the changes for B, it looks like:

[DEFAULT]
...
sql_connection = mysql+pymysql://root:admin@10.0.0.1/heat?charset=utf8
rabbit_host = 10.0.0.1
...
[heat_api]
bind_port = 8004
bind_host = 10.0.0.2
...
[heat_api_cfn]
bind_port = 8000
bind_host = 10.0.0.2

2.5. Scaling a Deployment 135

https://opendev.org/openstack/heat
https://opendev.org/openstack/heat

Heat Documentation, Release 16.1.1.dev14

Setting Up HAProxy

On the machine A, kill the heat-api and heat-api-cfn processes by running pkill heat-api and pkill heat-
api-cfn. After, run haproxy -f apis-proxy.conf with the following configuration:

global
daemon
maxconn 4000

defaults
log global
maxconn 8000
option redispatch
retries 3
timeout http-request 10s
timeout queue 1m
timeout connect 10s
timeout client 1m
timeout server 1m
timeout check 10s

listen rest_api_proxy
bind 10.0.0.1:8004
balance source
option tcpka
option httpchk
server rest-server-1 10.0.0.2:8004
server rest-server-2 10.0.0.3:8004

listen cfn_api_proxy
bind 10.0.0.1:8000
balance source
option tcpka
option httpchk
server cfn-server-1 10.0.0.2:8000
server cfn-server-2 10.0.0.3:8000

2.6 Upgrades Guideline

This document outlines several steps and notes for operators to reference when upgrading their heat
from previous versions of OpenStack.

Note: This document is only tested in the case of upgrading between sequential releases.

136 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

2.6.1 Plan to upgrade

• Read and ensure you understand the release notes for the next release.

• Make a backup of your database.

• Upgrades are only supported one series at a time, or within a series.

2.6.2 Cold Upgrades

Heat already supports cold-upgrades, where the heat services have to be down during the upgrade. For
time-consuming upgrades, it may be unacceptable for the services to be unavailable for a long period of
time. This type of upgrade is quite simple, follow the bellow steps:

1. Stop all heat-api and heat-engine services.

2. Uninstall old code.

3. Install new code.

4. Update configurations.

5. Do Database sync (most time-consuming step)

6. Start all heat-api and heat-engine services.

2.6.3 Rolling Upgrades

Note: Rolling Upgrade is supported since Pike, which means operators can rolling upgrade Heat
services from Ocata to Pike release with minimal downtime.

A rolling upgrade would provide a better experience for the users and operators of the cloud. A rolling
upgrade would allow individual heat-api and heat-engine services to be upgraded one at a time, with the
rest of the services still available. This upgrade would have minimal downtime. Please check spec about
rolling upgrades.

Prerequisites

• Multiple Heat nodes.

• A load balancer or some other type of redirection device is being used in front of nodes that run
heat-api services in such a way that a node can be dropped out of rotation. That node continues
running the Heat services (heat-api or heat-engine) but is no longer having requests routed to it.

2.6. Upgrades Guideline 137

https://docs.openstack.org/releasenotes/heat/
https://governance.openstack.org/tc/reference/tags/assert_supports-upgrade.html
https://review.opendev.org/#/c/407989/
https://review.opendev.org/#/c/407989/

Heat Documentation, Release 16.1.1.dev14

Procedure

These following steps are the process to upgrade Heat with minimal downtime:

1. Install the code for the next version of Heat either in a virtual environment or a separate control
plane node, including all the python dependencies.

2. Using the newly installed heat code, run the following command to sync the database up to the
most recent version. These schema change operations should have minimal or no effect on per-
formance, and should not cause any operations to fail.

heat-manage db_sync

3. At this point, new columns and tables may exist in the database. These DB schema changes are
done in a way that both the N and N+1 release can perform operations against the same schema.

4. Create a new rabbitmq vhost for the new release and change the transport_url configuration in
heat.conf file to be:

transport_url = rabbit://<user>:<password>@<host>:5672/
<new_vhost>

for all upgrade services.

5. Stop heat-engine gracefully, Heat has supported graceful shutdown features (see the spec about
rolling upgrades). Then start new heat-engine with new code (and corresponding configuration).

Note: Remember to do Step 4, this would ensure that the existing engines would not communi-
cate with the new engine.

6. A heat-api service is then upgraded and started with the new rabbitmq vhost.

Note: The second way to do this step is switch heat-api service to use new vhost first (but
remember not to shut down heat-api) and upgrade it.

7. The above process can be followed till all heat-api and heat-engine services are upgraded.

Note: Make sure that all heat-api services has been upgraded before you start to upgrade the last
heat-engine service.

Warning: With the convergence architecture, whenever a resource completes the engine will
send RPC messages to another (or the same) engine to start work on the next resource(s) to
be processed. If the last engine is going to be shut down gracefully, it will finish what it
is working on, which may post more messages to queues. It means the graceful shutdown
does not wait for queues to drain. The shutdown leaves some messages unprocessed and any
IN_PROGRESS stacks would get stuck without any forward progress. The operator must be
careful when shutting down the last engine, make sure queues have no unprocessed messages
before doing it. The operator can check the queues directly with RabbitMQs management
plugin.

138 Chapter 2. Operating Heat

https://review.opendev.org/#/c/407989/
https://review.opendev.org/#/c/407989/
http://www.rabbitmq.com/management.html

Heat Documentation, Release 16.1.1.dev14

8. Once all services are upgraded, double check the DB and services

2.6.4 References

2.7 Man pages for services and utilities

2.7.1 Heat services

heat-engine

SYNOPSIS

heat-engine [options]

DESCRIPTION

heat-engine is the heat project server with an internal RPC api called by the heat-api server.

INVENTORY

The heat-engine does all the orchestration work and is the layer in which the resource integration is
implemented.

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file set is sorted, so as to provide a pre-
dictable parse order if individual options are over-ridden. The set is parsed after the file(s), if any,
specified via config-file, hence over-ridden options in the directory take precedence.

--version
Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

2.7. Man pages for services and utilities 139

Heat Documentation, Release 16.1.1.dev14

FILES

• /etc/heat/heat.conf

heat-api

SYNOPSIS

heat-api [options]

DESCRIPTION

heat-api provides an external REST API to the heat project.

INVENTORY

heat-api is a service that exposes an external REST based api to the heat-engine service. The communi-
cation between the heat-api and heat-engine uses message queue based RPC.

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file set is sorted, so as to provide a pre-
dictable parse order if individual options are over-ridden. The set is parsed after the file(s), if any,
specified via config-file, hence over-ridden options in the directory take precedence.

--version
Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

FILES

• /etc/heat/heat.conf

140 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

heat-api-cfn

SYNOPSIS

heat-api-cfn [options]

DESCRIPTION

heat-api-cfn is a CloudFormation compatible API service to the heat project.

INVENTORY

heat-api-cfn is a service that exposes an external REST based api to the heat-engine service. The com-
munication between the heat-api-cfn and heat-engine uses message queue based RPC.

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file set is sorted, so as to provide a pre-
dictable parse order if individual options are over-ridden. The set is parsed after the file(s), if any,
specified via config-file, hence over-ridden options in the directory take precedence.

--version
Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

FILES

• /etc/heat/heat.conf

2.7.2 Heat utilities

heat-manage

SYNOPSIS

heat-manage <action> [options]

2.7. Man pages for services and utilities 141

Heat Documentation, Release 16.1.1.dev14

DESCRIPTION

heat-manage helps manage heat specific database operations.

OPTIONS

The standard pattern for executing a heat-manage command is: heat-manage <command>
[<args>]

Run with -h to see a list of available commands: heat-manage -h

Commands are db_version, db_sync, purge_deleted, migrate_convergence_1,
migrate_properties_data, and service. Detailed descriptions are below.

heat-manage db_version

Print out the db schema version.

heat-manage db_sync

Sync the database up to the most recent version.

heat-manage purge_deleted [-g {days,hours,minutes,seconds}] [-p
project_id] [age]

Purge db entries marked as deleted and older than [age]. When project_id argument is
provided, only entries belonging to this project will be purged.

heat-manage migrate_properties_data

Migrates properties data from the legacy locations in the db (resource.properties_data and
event.resource_properties) to the modern location, the resource_properties_data table.

heat-manage migrate_convergence_1 [stack_id]

Migrates [stack_id] from non-convergence to convergence. This requires running conver-
gence enabled heat engine(s) and cant be done when they are offline.

heat-manage service list

Shows details for all currently running heat-engines.

heat-manage service clean

Clean dead engine records.

heat-manage --version

Shows programs version number and exit. The output could be empty if the distribution
didnt specify any version information.

142 Chapter 2. Operating Heat

Heat Documentation, Release 16.1.1.dev14

FILES

The /etc/heat/heat.conf file contains global options which can be used to configure some aspects of
heat-manage, for example the DB connection and logging.

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-db-setup

SYNOPSIS

heat-db-setup [COMMANDS] [OPTIONS]

DESCRIPTION

heat-db-setup is a tool which configures the local MySQL database for heat. Typically distro-specific
tools would provide this functionality so please read the distro-specific documentation for configuring
heat.

COMMANDS

rpm

Indicate the distribution is a RPM packaging based distribution.

deb

Indicate the distribution is a DEB packaging based distribution.

OPTIONS

-h, --help
Print usage information.

-p, --password
Specify the password for the heat MySQL user that the script will use to connect to the heat
MySQL database. By default, the password heat will be used.

-r, --rootpw
Specify the root MySQL password. If the script installs the MySQL server, it will set the root
password to this value instead of prompting for a password. If the MySQL server is already
installed, this password will be used to connect to the database instead of having to prompt for it.

-y, --yes
In cases where the script would normally ask for confirmation before doing something, such as in-
stalling mysql-server, just assume yes. This is useful if you want to run the script non-interactively.

2.7. Man pages for services and utilities 143

https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 16.1.1.dev14

EXAMPLES

heat-db-setup rpm -p heat_password -r mysql_pwd -y

heat-db-setup deb -p heat_password -r mysql_pwd -y

heat-db-setup rpm

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-keystone-setup

SYNOPSIS

heat-keystone-setup

DESCRIPTION

Warning: This script is deprecated, please use other tool to setup keystone for heat.

The heat-keystone-setup tool configures keystone for use with heat. This script requires admin
keystone credentials to be available in the shell environment and write access to /etc/keystone.

Distributions may provide other tools to setup keystone for use with Heat, so check the distro documen-
tation first.

EXAMPLES

heat-keystone-setup

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-keystone-setup-domain

SYNOPSIS

heat-keystone-setup-domain [OPTIONS]

144 Chapter 2. Operating Heat

https://storyboard.openstack.org/#!/project/989
https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 16.1.1.dev14

DESCRIPTION

The heat-keystone-setup-domain tool configures keystone by creating a stack user domain and the user
credential used to manage this domain. A stack user domain can be treated as a namespace for projects,
groups and users created by heat. The domain will have an admin user that manages other users, groups
and projects in the domain.

This script requires admin keystone credentials to be available in the shell environment by setting
OS_USERNAME and OS_PASSWORD.

After running this script, a user needs to take actions to check or modify the heat configuration file (e.g.
/etc/heat/heat.conf). The tool is NOT performing these updates on behalf of the user.

Distributions may provide other tools to setup stack user domain for use with heat, so check the distro
documentation first. Other tools are available to set up the stack user domain, for example python-
openstackclient, which is preferred to this tool where it is available.

OPTIONS

-h, --help
Print usage information.

--config-dir <DIR>
Path to a config directory from which to read the heat.conf file(s). This file set is sorted, so as
to provide a predictable parse order if individual options are over-ridden. The set is parsed after
the file(s) specified via previous config-file, arguments hence over-ridden options in the directory
take precedence.

--config-file <PATH>
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence. The default files used is /etc/heat/heat.conf.

--stack-domain-admin <USERNAME>
Name of a user for Keystone to create, which has roles sufficient to manage users (i.e. stack
domain users) and projects (i.e. stack domain projects) in the stack user domain.

Another way to specify the admin user name is by setting an environment variable
STACK_DOMAIN_ADMIN before running this tool. If both command line arguments and en-
vironment variable are specified, the command line arguments take precedence.

--stack-domain-admin-password <PASSWORD>
Password for the stack-domain-admin user.

The password can be instead specified using an environment variable
STACK_DOMAIN_ADMIN_PASSWORD before invoking this tool. If both command line
arguments and environment variable are specified, the command line arguments take precedence.

--stack-user-domain-name <DOMAIN>
Name of domain to create for stack users.

The domain name can be instead specified using an environment variable
STACK_USER_DOMAIN_NAME before invoking this tool. If both command line arguments and
environment variable are specified, the command line argument take precedence.

2.7. Man pages for services and utilities 145

Heat Documentation, Release 16.1.1.dev14

--version
Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

EXAMPLES

heat-keystone-setup-domain

heat-keystone-setup-domain stack-user-domain-name heat_user_domain stack-
domain-admin heat_domain_admin stack-domain-admin-password verysecrete

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-status

Synopsis

heat-status <category> <command> [<args>]

Description

heat-status is a tool that provides routines for checking the status of a Heat deployment.

Options

The standard pattern for executing a heat-status command is:

heat-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

heat-status

Categories are:

• upgrade

Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that
category:

heat-status upgrade

These sections describe the available categories and arguments for heat-status.

146 Chapter 2. Operating Heat

https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 16.1.1.dev14

Upgrade

heat-status upgrade check Performs a release-specific readiness check before restarting ser-
vices with new code. This command expects to have complete configuration and access to
databases and services.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to

do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated.

This should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

12.0.0 (Stein)

• Placeholder to be filled in with checks as they are added in Stein.

2.7. Man pages for services and utilities 147

Heat Documentation, Release 16.1.1.dev14

148 Chapter 2. Operating Heat

CHAPTER

THREE

USING HEAT

3.1 Creating your first stack

3.1.1 Confirming you can access a Heat endpoint

Before any Heat commands can be run, your cloud credentials need to be sourced:

$ source openrc

You can confirm that Heat is available with this command:

$ openstack stack list

This should return an empty line

3.1.2 Preparing to create a stack

Download and register the image:

$ wget http://cloud.fedoraproject.org/fedora-20.x86_64.qcow2
$ openstack image create \

--disk-format=qcow2 \
--container-format=bare \
--file=fedora-20.x86_64.qcow2 \
fedora-20.x86_64

Your cloud will have different flavors and images available for launching instances, you can discover
what is available by running:

$ openstack flavor list
$ openstack image list

To allow you to SSH into instances launched by Heat, a keypair will be generated:

$ openstack keypair create heat_key > heat_key.priv
$ chmod 600 heat_key.priv

149

Heat Documentation, Release 16.1.1.dev14

3.1.3 Launching a stack

Now lets launch a stack, using an example template from the heat-templates repository:

$ openstack stack create -t https://opendev.org/openstack/heat-templates/
↪→raw/src/branch/master/hot/F20/WordPress_Native.yaml --parameter key_
↪→name=heat_key --parameter image_id=my-fedora-image --parameter instance_
↪→type=m1.small teststack

Which will respond:

+--------------------------------------+-----------+--------------------+--
↪→--------------------+
| ID | Name | Status |
↪→Created |
+--------------------------------------+-----------+--------------------+--
↪→--------------------+
| 718a712a-2571-4eac-aa03-426de00ecb43 | teststack | CREATE_IN_PROGRESS |
↪→2017-04-11T03:06:24Z |
+--------------------------------------+-----------+--------------------+--
↪→--------------------+

Note: Link on Heat template presented in command above should reference on RAW template. In case
if it be a html page with template, Heat will return an error.

Note: You cannot rename a stack after it has been launched.

List stacks

List the stacks in your tenant:

$ openstack stack list

List stack events

List the events related to a particular stack:

150 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

$ openstack stack event list teststack

Describe the wordpress stack

Show detailed state of a stack:

$ openstack stack show teststack

Note: After a few seconds, the stack_status should change from IN_PROGRESS to
CREATE_COMPLETE.

Verify instance creation

Because the software takes some time to install from the repository, it may be a few minutes before the
Wordpress instance is in a running state.

Point a web browser at the location given by the WebsiteURL output as shown by openstack
stack output show:

$ WebsiteURL=$(openstack stack output show teststack WebsiteURL -c output_
↪→value -f value)
$ curl $WebsiteURL

Delete the instance when done

Note: The list operation will show no running stack.:

$ openstack stack delete teststack
$ openstack stack list

You can explore other heat commands by referring to the Heat command reference for the OpenStack
Command-Line Interface; then read the Template Guide and start authoring your own templates.

3.2 Glossary

API server HTTP REST API service for heat.

CFN An abbreviated form of AWS CloudFormation.

constraint Defines valid input parameters for a template.

dependency When a resource must wait for another resource to finish creation before being created
itself. Heat adds an implicit dependency when a resource references another resource or one of its
attributes. An explicit dependency can also be created by the user in the template definition.

environment Used to affect the run-time behavior of the template. Provides a way to override the
default resource implementation and parameters passed to Heat. See Environments.

Heat Orchestration Template A particular template format that is native to Heat. Heat Orchestration
Templates are expressed in YAML and are not backwards-compatible with CloudFormation tem-
plates.

3.2. Glossary 151

https://docs.openstack.org/python-heatclient/wallaby/cli/
https://docs.openstack.org/python-openstackclient/wallaby/
https://docs.openstack.org/python-openstackclient/wallaby/

Heat Documentation, Release 16.1.1.dev14

HOT An acronym for Heat Orchestration Template.

input parameters See parameters.

Metadata May refer to Resource Metadata, Nova Instance metadata, or the Metadata service.

Metadata service A Compute service that enables virtual machine instances to retrieve instance-
specific data. See Nova Metadata service documentation.

multi-region A feature of Heat that supports deployment to multiple regions.

nested resource A resource instantiated as part of a nested stack.

nested stack A template referenced by URL inside of another template. Used to reduce redundant
resource definitions and group complex architectures into logical groups.

Nova Instance metadata User-provided key:value pairs associated with a Compute Instance. See
Instance-specific data (OpenStack Operations Guide).

OpenStack Open source software for building private and public clouds.

orchestrate Arrange or direct the elements of a situation to produce a desired effect.

outputs A top-level block in a template that defines what data will be returned by a stack after instanti-
ation.

parameters A top-level block in a template that defines what data can be passed to customise a template
when it is used to create or update a stack.

provider resource A resource implemented by a provider template. The parent resources properties
become the nested stacks parameters.

provider template Allows user-definable resource providers to be specified via nested stacks. The
nested stacks outputs become the parent stacks attributes.

resource An element of OpenStack infrastructure instantiated from a particular resource provider. See
also nested resource.

resource attribute Data that can be obtained from a resource, e.g. a servers public IP or name. Usually
passed to another resources properties or added to the stacks outputs.

resource group A resource provider that creates one or more identically configured resources or nested
resources.

Resource Metadata A resource property that contains CFN-style template metadata. See
AWS::CloudFormation::Init (AWS CloudFormation User Guide)

resource plugin Python code that understands how to instantiate and manage a resource. See Heat
Resource Plugins (OpenStack wiki).

resource property Data utilized for the instantiation of a resource. Can be defined statically in a tem-
plate or passed in as input parameters.

resource provider The implementation of a particular resource type. May be a resource plugin or a
provider template.

stack A collection of instantiated resources that are defined in a single template.

stack resource A resource provider that allows the management of a nested stack as a resource in a
parent stack.

template An orchestration document that details everything needed to carry out an orchestration.

152 Chapter 3. Using Heat

https://docs.openstack.org/nova/wallaby/user/metadata.html#metadata-service
https://wiki.openstack.org/wiki/OpsGuide/User-Facing_Operations#using-instance-specific-data
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
https://wiki.openstack.org/wiki/Heat/Plugins#Heat_Resource_Plugins
https://wiki.openstack.org/wiki/Heat/Plugins#Heat_Resource_Plugins

Heat Documentation, Release 16.1.1.dev14

template resource See provider resource.

user data A resource property that contains a user-provided data blob. User data gets passed to cloud-
init to automatically configure instances at boot time. See also Nova User data documentation.

wait condition A resource provider that provides a way to communicate data or events from servers
back to the orchestration engine. Most commonly used to pause the creation of the stack while
the server is being configured.

3.3 Working with Templates

3.3.1 Template Guide

Heat Orchestration Template (HOT) Guide

HOT is a template format supported by the heat, along with the other template format, i.e. the Heat
CloudFormation-compatible format (CFN). This guide is targeted towards template authors and explains
how to write HOT templates based on examples. A detailed specification of HOT can be found at Heat
Orchestration Template (HOT) specification.

Status

HOT is in the process of surpassing the functionality of the CFN. This guide will be updated periodically
whenever new features get implemented for HOT.

Writing a hello world HOT template

This section gives an introduction on how to write HOT templates, starting from very basic steps and
then going into more and more detail by means of examples.

A most basic template

The most basic template you can think of may contain only a single resource definition using only
predefined properties (along with the mandatory Heat template version tag). For example, the template
below could be used to simply deploy a single compute instance.

heat_template_version: 2015-04-30

description: Simple template to deploy a single compute instance

resources:
my_instance:

type: OS::Nova::Server
properties:

key_name: my_key
image: F18-x86_64-cfntools
flavor: m1.small

3.3. Working with Templates 153

https://cloudinit.readthedocs.io/
https://cloudinit.readthedocs.io/
https://docs.openstack.org/nova/wallaby/user/metadata.html#user-provided-data

Heat Documentation, Release 16.1.1.dev14

Each HOT template has to include the heat_template_version key with a valid version of HOT, e.g.
2015-10-15 (see Heat template version for a list of all versions). While the description is optional, it is
good practice to include some useful text that describes what users can do with the template. In case you
want to provide a longer description that does not fit on a single line, you can provide multi-line text in
YAML, for example:

description: >
This is how you can provide a longer description
of your template that goes over several lines.

The resources section is required and must contain at least one resource definition. In the example above,
a compute instance is defined with fixed values for the key_name, image and flavor parameters.

Note that all those elements, i.e. a key-pair with the given name, the image and the flavor have to exist
in the OpenStack environment where the template is used. Typically a template is made more easily
reusable, though, by defining a set of input parameters instead of hard-coding such values.

Template input parameters

Input parameters defined in the parameters section of a HOT template (see also Parameters section)
allow users to customize a template during deployment. For example, this allows for providing custom
key-pair names or image IDs to be used for a deployment. From a template authors perspective, this
helps to make a template more easily reusable by avoiding hardcoded assumptions.

Sticking to the example used above, it makes sense to allow users to provide their custom key-pairs,
provide their own image, and to select a flavor for the compute instance. This can be achieved by
extending the initial template as follows:

heat_template_version: 2015-04-30

description: Simple template to deploy a single compute instance

parameters:
key_name:

type: string
label: Key Name
description: Name of key-pair to be used for compute instance

image_id:
type: string
label: Image ID
description: Image to be used for compute instance

instance_type:
type: string
label: Instance Type
description: Type of instance (flavor) to be used

resources:
my_instance:

type: OS::Nova::Server
properties:

key_name: { get_param: key_name }
image: { get_param: image_id }
flavor: { get_param: instance_type }

In the example above, three input parameters have been defined that have to be provided by the user upon

154 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

deployment. The fixed values for the respective resource properties have been replaced by references to
the corresponding input parameters by means of the get_param function (see also Intrinsic functions).

You can also define default values for input parameters which will be used in case the user does not
provide the respective parameter during deployment. For example, the following definition for the in-
stance_type parameter would select the m1.small flavor unless specified otherwise by the user.

parameters:
instance_type:

type: string
label: Instance Type
description: Type of instance (flavor) to be used
default: m1.small

Another option that can be specified for a parameter is to hide its value when users request information
about a stack deployed from a template. This is achieved by the hidden attribute and useful, for example
when requesting passwords as user input:

parameters:
database_password:

type: string
label: Database Password
description: Password to be used for database
hidden: true

Restricting user input

In some cases you might want to restrict the values of input parameters that users can supply. For
example, you might know that the software running in a compute instance needs a certain amount of
resources so you might want to restrict the instance_type parameter introduced above. Parameters in
HOT templates can be restricted by adding a constraints section (see also Parameter Constraints). For
example, the following would allow only three values to be provided as input for the instance_type
parameter:

parameters:
instance_type:

type: string
label: Instance Type
description: Type of instance (flavor) to be used
constraints:

- allowed_values: [m1.medium, m1.large, m1.xlarge]
description: Value must be one of m1.medium, m1.large or m1.xlarge.

The constraints section allows for defining a list of constraints that must all be fulfilled by user input.
For example, the following list of constraints could be used to clearly specify format requirements on a
password to be provided by users:

parameters:
database_password:

type: string
label: Database Password
description: Password to be used for database
hidden: true
constraints:

(continues on next page)

3.3. Working with Templates 155

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

- length: { min: 6, max: 8 }
description: Password length must be between 6 and 8 characters.

- allowed_pattern: "[a-zA-Z0-9]+"
description: Password must consist of characters and numbers only.

- allowed_pattern: "[A-Z]+[a-zA-Z0-9]*"
description: Password must start with an uppercase character.

Note that you can define multiple constraints of the same type. Especially in the case of allowed patterns
this not only allows for keeping regular expressions simple and maintainable, but also for keeping error
messages to be presented to users precise.

Providing template outputs

In addition to template customization through input parameters, you will typically want to provide out-
puts to users, which can be done in the outputs section of a template (see also Outputs section). For
example, the IP address by which the instance defined in the example above can be accessed should be
provided to users. Otherwise, users would have to look it up themselves. The definition for providing
the IP address of the compute instance as an output is shown in the following snippet:

outputs:
instance_ip:

description: The IP address of the deployed instance
value: { get_attr: [my_instance, first_address] }

Output values are typically resolved using intrinsic function such as the get_attr function in the example
above (see also Intrinsic functions).

Writing a hello world HOT template

HOT is a new template format meant to replace the CloudFormation-compatible format (CFN) as the
native format supported by the Orchestration module over time. This guide is targeted towards template
authors and explains how to write HOT templates based on examples. A detailed specification of HOT
can be found at Heat Orchestration Template (HOT) specification.

This section gives an introduction on how to write HOT templates, starting from very basic steps and
then going into more and more detail by means of examples.

A most basic template

The most basic template you can think of contains only a single resource definition using only predefined
properties. For example, the template below could be used to deploy a single compute instance:

heat_template_version: 2015-04-30

description: Simple template to deploy a single compute instance

resources:
my_instance:

type: OS::Nova::Server
properties:

(continues on next page)

156 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

key_name: my_key
image: ubuntu-trusty-x86_64
flavor: m1.small

Each HOT template must include the heat_template_version key with the HOT version value,
for example, 2013-05-23. Consult the Heat template version list for allowed values and their features.

The description key is optional, however it is good practice to include some useful text that de-
scribes what users can do with the template. In case you want to provide a longer description that does
not fit on a single line, you can provide multi-line text in YAML, for example:

description: >
This is how you can provide a longer description
of your template that goes over several lines.

The resources section is required and must contain at least one resource definition. In the above
example, a compute instance is defined with fixed values for the key_name, image and flavor
properties.

Note: All the defined elements (key pair, image, flavor) have to exist in the OpenStack environment
where the template is used.

Input parameters

Input parameters defined in the parameters section of a template allow users to customize a template
during deployment. For example, this allows for providing custom key pair names or image IDs to be
used for a deployment. From a template authors perspective, this helps to make a template more easily
reusable by avoiding hardcoded assumptions.

The following example extends the previous template to provide parameters for the key pair, image and
flavor properties of the resource:

heat_template_version: 2015-04-30

description: Simple template to deploy a single compute instance

parameters:
key_name:

type: string
label: Key Name
description: Name of key-pair to be used for compute instance

image_id:
type: string
label: Image ID
description: Image to be used for compute instance

flavor:
type: string
label: Instance Type
description: Type of instance (flavor) to be used

resources:
(continues on next page)

3.3. Working with Templates 157

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

my_instance:
type: OS::Nova::Server
properties:

key_name: { get_param: key_name }
image: { get_param: image_id }
flavor: { get_param: flavor }

Values for the three parameters must be defined by the template user during the deployment of a stack.
The get_param intrinsic function retrieves a user-specified value for a given parameter and uses this
value for the associated resource property.

For more information about intrinsic functions, see Intrinsic functions.

Providing default values

You can provide default values for parameters. If a user doesnt define a value for a parameter, the default
value is used during the stack deployment. The following example defines a default value m1.small
for the flavor property:

parameters:
flavor:

type: string
label: Instance Type
description: Flavor to be used
default: m1.small

Note: If a template doesnt define a default value for a parameter, then the user must define the value,
otherwise the stack creation will fail.

Hiding parameters values

The values that a user provides when deploying a stack are available in the stack details and can be
accessed by any user in the same tenant. To hide the value of a parameter, use the hidden boolean
attribute of the parameter:

parameters:
database_password:

type: string
label: Database Password
description: Password to be used for database
hidden: true

158 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Restricting user input

You can restrict the values of an input parameter to make sure that the user defines valid data for this
parameter. The constraints property of an input parameter defines a list of constraints to apply for
the parameter. The following example restricts the flavor parameter to a list of three possible values:

parameters:
flavor:

type: string
label: Instance Type
description: Type of instance (flavor) to be used
constraints:

- allowed_values: [m1.medium, m1.large, m1.xlarge]
description: Value must be one of m1.medium, m1.large or m1.xlarge.

The following example defines multiple constraints for a password definition:

parameters:
database_password:

type: string
label: Database Password
description: Password to be used for database
hidden: true
constraints:

- length: { min: 6, max: 8 }
description: Password length must be between 6 and 8 characters.

- allowed_pattern: "[a-zA-Z0-9]+"
description: Password must consist of characters and numbers only.

- allowed_pattern: "[A-Z]+[a-zA-Z0-9]*"
description: Password must start with an uppercase character.

The list of supported constraints is available in the Parameter Constraints section.

Note: You can define multiple constraints of the same type. Especially in the case of allowed patterns
this not only allows for keeping regular expressions simple and maintainable, but also for keeping error
messages to be presented to users precise.

Template outputs

In addition to template customization through input parameters, you can provide information about the
resources created during the stack deployment to the users in the outputs section of a template. In the
following example the output section provides the IP address of the my_instance resource:

outputs:
instance_ip:

description: The IP address of the deployed instance
value: { get_attr: [my_instance, first_address] }

Note: Output values are typically resolved using intrinsic function such as the get_attr. See Intrin-
sic functions for more information about intrinsic functions..

3.3. Working with Templates 159

Heat Documentation, Release 16.1.1.dev14

See Outputs section for more information about the outputs section.

Guideline for features

Here are guideline for features:

Multi-Clouds support

Start from Stein release (version 12.0.0), Heat support multi-clouds orchestration. This document means
to provide guideline for how to use multi-clouds features, and whats the environment requirement.

Note: If you like to create a stack in multi-region environment, you dont need this feature at all. all
you need to do is provide region_name under context property for OS::Heat::Stack. If you like to see
information on how to provide SSL support for your multi-region environment, you can jump to Use CA
cert (Optional) .

Requirements

• Barbican service - For better security concerns, multi-cloud orchestration feature depends on
Barbican service. So you have to make sure Barbican service is ready in your environment before
you use this feature.

• Access to remote Orchestration service - Before you run your multi-cloud template. Make
sure youre able to access to remote Orchestration service with correct endpoint information, legal
access right, and ability to access to the remote site KeyStone, and Orchestration service API
endpoint from local site. You need to make sure local Orchestration service is able to trigger and
complete necessary API calls from local site to remote site. So we can complete stack actions
without facing any access error.

• Template complete resources/functions compatibility - In your Orchestration template, you
might want to use all kind of template functions or resource types as your template version and
your Orchestration service allows. But please aware that once you plan to use Orchestration
services across multiple OpenStack clouds, you have to also consider the compatibility. Make
sure the template version and resource types are ready to use before you ask remote site to run it.
If you accidentally provide wrong template version (which not provided in remote site), you will
get error message from remote site which prevent you from actually create remote resources. But
its even better if we can just find such an error earlier.

Prepare

First of all, you need to put your remote cloud credential in a Barbican secret. To build your own
multi-clouds stack, you need to build a Barbican secret first with most information for remote endpoint
information.

160 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Gathering credential information

Before we start generating secret, lets talk about what credential format we need. credential is a JSON
format string contains two keys auth_type, and auth. auth_type, and auth following auth plu-
gin loader rules from Keystone. You can find plugin options and authentication plugins in keystoneauth
documents.

• auth_type - auth_type is a string for plugin name. Allows value like v3applicationcredential,
password, v3oidcclientcredentials, etc. You need to provide available plugins <plugin-
options.html#available-plugins>.

• auth - auth is a dictionary contains all parameters for plugins to perform authentication. You
can find all valid parameter references from available plugins or get to all class path from plugin
names for more detail allowed value or trace plugin class from there.

As you can tell, all allowed authentication plugins for credentials follows plugins keystoneauth rules.
So once new change in keystoneauth, it will also directly reflect credentials too. Actually we just call
keystoneauth to get plugin loader for remote authentication plugins. So keep an eye on keystoneauth if
youre using this feature.

Validate your credential

Now you have all your credential information ready, try to validate first if you can. You can either
directly test them via config, via CLI, or via keystoneauth sessions.

build credential secret

Once youre sure its valid, we can start building the secret out. To build a secret you just have to follow
the standard Barbican CLI or API to store your secret.

The local site will read this secret to perform stack actions in remote site. Lets give a quick example
here: Said you have two OpenStack cloud site A and site B. If you need to control site B from site A,
make sure you have a secret with site Bs access information in site A. If you also like to control site A
from site B, make sure you have a secret with site As access information in site B.

openstack secret store -n appcred --payload '{"auth_type":
↪→"v3applicationcredential", "auth": {"auth_url": "{Keystone_URL}",
↪→"application_credential_id": "{ID}", "application_credential_secret": "
↪→{SECRET}"}}'

Note: One common error for JSON format is to use single quote() instead of double quote () inner your
JSON schema.

3.3. Working with Templates 161

https://docs.openstack.org/keystoneauth/wallaby/plugin-options.html
https://docs.openstack.org/keystoneauth/wallaby/authentication-plugins.html#loading-plugins-by-name
https://docs.openstack.org/keystoneauth/wallaby/plugin-options.html#available-plugins
https://docs.openstack.org/keystoneauth/wallaby/authentication-plugins.html#loading-plugins-by-name
https://docs.openstack.org/keystoneauth/wallaby/authentication-plugins.html#loading-plugins-by-name
https://docs.openstack.org/keystoneauth/wallaby/plugin-options.html#using-plugins-via-config-file
https://docs.openstack.org/keystoneauth/wallaby/plugin-options.html#using-plugins-via-cli
https://docs.openstack.org/keystoneauth/wallaby/using-sessions.html
https://docs.openstack.org/python-barbicanclient/wallaby/cli/cli_usage.html#secret-create

Heat Documentation, Release 16.1.1.dev14

Create remote stacks

Now, you have a secret id generated for your Barbican secret. Use that id as input for template.

To create a remote stack, you can simply use an OS::Heat::Stack resource in your template.

In resource properties, provide credential_secret_id (Barbican secret ID from the secret we just builded
for credential) under context property.

Here is an template example for you:

heat_template_version: rocky

resources:
stack_in_remote_cloud:

type: OS::Heat::Stack
properties:

context:
credential_secret_id: {$Your_Secret_ID}

template: { get_file: "remote-app.yaml" }

And thats all you need to do. The rest looks the same as usual.

Local Heat will read that secret, parse the credential information out, replace current authentication
plugin in context, and make remote calls.

Heat will not store your credential information anywhere. so your secret security will remains within
Barbican. That means if you wish to change your credential or make sure other people cant access to it.
All you need to do is to update your Barbican secret or strong the security for it. But aware of this. If
you plan to switch the credential content, make sure that wont affect resources/stacks in remote site. So
do such actions with super care.

Use CA cert (Optional)

For production clouds, its very important to have SSL support. Here we provide CA cert method for
your SSL access. If you wish to use that, use ca_cert under context property. Which ca_cert is the
contents of a CA Certificate file that can be used to verify a remote cloud or regions server certificate.
Or you can use insecure (a boolean option) under context property if you like to use insecure mode (For
security concerns, dont do it!) and you dont want to use CA cert.

Here is an example for you:

heat_template_version: rocky

resources:
stack_in_remote_cloud:

type: OS::Heat::Stack
properties:

context:
credential_secret_id: {$Your_Secret_ID}
ca_cert: {$Contents of a CA cert}

template: { get_file: "remote-app.yaml" }

Note: If insecure flag is on, ca_cert will be ignored.

162 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Heat Orchestration Template (HOT) specification

HOT is a new template format meant to replace the Heat CloudFormation-compatible format (CFN) as
the native format supported by the Heat over time. This specification explains in detail all elements of
the HOT template format. An example driven guide to writing HOT templates can be found at Heat
Orchestration Template (HOT) Guide.

Status

HOT is considered reliable, supported, and standardized as of our Icehouse (April 2014) release. The
Heat core team may make improvements to the standard, which very likely would be backward compati-
ble. The template format is also versioned. Since Juno release, Heat supports multiple different versions
of the HOT specification.

Template structure

HOT templates are defined in YAML and follow the structure outlined below.

heat_template_version: 2016-10-14

description:
a description of the template

parameter_groups:
a declaration of input parameter groups and order

parameters:
declaration of input parameters

resources:
declaration of template resources

outputs:
declaration of output parameters

conditions:
declaration of conditions

heat_template_version This key with value 2013-05-23 (or a later date) indicates that the YAML
document is a HOT template of the specified version.

description This optional key allows for giving a description of the template, or the workload that can
be deployed using the template.

parameter_groups This section allows for specifying how the input parameters should be grouped and
the order to provide the parameters in. This section is optional and can be omitted when necessary.

parameters This section allows for specifying input parameters that have to be provided when instan-
tiating the template. The section is optional and can be omitted when no input is required.

resources This section contains the declaration of the single resources of the template. This section
with at least one resource should be defined in any HOT template, or the template would not
really do anything when being instantiated.

3.3. Working with Templates 163

Heat Documentation, Release 16.1.1.dev14

outputs This section allows for specifying output parameters available to users once the template has
been instantiated. This section is optional and can be omitted when no output values are required.

conditions This optional section includes statements which can be used to restrict when a resource is
created or when a property is defined. They can be associated with resources and resource prop-
erties in the resources section, also can be associated with outputs in the outputs sections
of a template.

Note: Support for this section is added in the Newton version.

Heat template version

The value of heat_template_version tells Heat not only the format of the template but also
features that will be validated and supported. Beginning with the Newton release, the version can be
either the date of the Heat release or the code name of the Heat release. Heat currently supports the
following values for the heat_template_version key:

2013-05-23

The key with value 2013-05-23 indicates that the YAML document is a HOT template and it may
contain features implemented until the Icehouse release. This version supports the following functions
(some are back ported to this version):

get_attr
get_file
get_param
get_resource
list_join
resource_facade
str_replace
Fn::Base64
Fn::GetAZs
Fn::Join
Fn::MemberListToMap
Fn::Replace
Fn::ResourceFacade
Fn::Select
Fn::Split
Ref

2014-10-16

The key with value 2014-10-16 indicates that the YAML document is a HOT template and it may
contain features added and/or removed up until the Juno release. This version removes most CFN
functions that were supported in the Icehouse release, i.e. the 2013-05-23 version. So the supported
functions now are:

get_attr
get_file
get_param
get_resource

(continues on next page)

164 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

list_join
resource_facade
str_replace
Fn::Select

2015-04-30

The key with value 2015-04-30 indicates that the YAML document is a HOT template and it may
contain features added and/or removed up until the Kilo release. This version adds the repeat function.
So the complete list of supported functions is:

get_attr
get_file
get_param
get_resource
list_join
repeat
digest
resource_facade
str_replace
Fn::Select

2015-10-15

The key with value 2015-10-15 indicates that the YAML document is a HOT template and it
may contain features added and/or removed up until the Liberty release. This version removes the
Fn::Select function, path based get_attr/get_param references should be used instead. More-
over get_attr since this version returns dict of all attributes for the given resource excluding show
attribute, if theres no <attribute name> specified, e.g. { get_attr: [<resource name>]}.
This version also adds the str_split function and support for passing multiple lists to the existing list_join
function. The complete list of supported functions is:

get_attr
get_file
get_param
get_resource
list_join
repeat
digest
resource_facade
str_replace
str_split

3.3. Working with Templates 165

Heat Documentation, Release 16.1.1.dev14

2016-04-08

The key with value 2016-04-08 indicates that the YAML document is a HOT template and it may con-
tain features added and/or removed up until the Mitaka release. This version also adds the map_merge
function which can be used to merge the contents of maps. The complete list of supported functions is:

digest
get_attr
get_file
get_param
get_resource
list_join
map_merge
repeat
resource_facade
str_replace
str_split

2016-10-14 | newton

The key with value 2016-10-14 or newton indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Newton release. This version adds the
yaql function which can be used for evaluation of complex expressions, the map_replace function
that can do key/value replacements on a mapping, and the if function which can be used to return
corresponding value based on condition evaluation. The complete list of supported functions is:

digest
get_attr
get_file
get_param
get_resource
list_join
map_merge
map_replace
repeat
resource_facade
str_replace
str_split
yaql
if

This version adds equals condition function which can be used to compare whether two values are
equal, the not condition function which acts as a NOT operator, the and condition function which acts
as an AND operator to evaluate all the specified conditions, the or condition function which acts as an
OR operator to evaluate all the specified conditions. The complete list of supported condition functions
is:

equals
get_param
not
and
or

166 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

2017-02-24 | ocata

The key with value 2017-02-24 or ocata indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Ocata release. This version adds the
str_replace_strict function which raises errors for missing params and the filter function
which filters out values from lists. The complete list of supported functions is:

digest
filter
get_attr
get_file
get_param
get_resource
list_join
map_merge
map_replace
repeat
resource_facade
str_replace
str_replace_strict
str_split
yaql
if

The complete list of supported condition functions is:

equals
get_param
not
and
or

2017-09-01 | pike

The key with value 2017-09-01 or pike indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Pike release. This version adds
the make_url function for assembling URLs, the list_concat function for combining multiple
lists, the list_concat_unique function for combining multiple lists without repeating items, the
string_replace_vstrict function which raises errors for missing and empty params, and the
contains function which checks whether specific value is in a sequence. The complete list of sup-
ported functions is:

digest
filter
get_attr
get_file
get_param
get_resource
list_join
make_url
list_concat
list_concat_unique
contains

(continues on next page)

3.3. Working with Templates 167

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

map_merge
map_replace
repeat
resource_facade
str_replace
str_replace_strict
str_replace_vstrict
str_split
yaql
if

We support yaql and contains as condition functions in this version. The complete list of supported
condition functions is:

equals
get_param
not
and
or
yaql
contains

2018-03-02 | queens

The key with value 2018-03-02 or queens indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Queens release. The complete list of
supported functions is:

digest
filter
get_attr
get_file
get_param
get_resource
list_join
make_url
list_concat
list_concat_unique
contains
map_merge
map_replace
repeat
resource_facade
str_replace
str_replace_strict
str_replace_vstrict
str_split
yaql
if

The complete list of supported condition functions is:

168 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

equals
get_param
not
and
or
yaql
contains

2018-08-31 | rocky

The key with value 2018-08-31 or rocky indicates that the YAML document is a HOT template and
it may contain features added and/or removed up until the Rocky release. The complete list of supported
functions is:

digest
filter
get_attr
get_file
get_param
get_resource
list_join
make_url
list_concat
list_concat_unique
contains
map_merge
map_replace
repeat
resource_facade
str_replace
str_replace_strict
str_replace_vstrict
str_split
yaql
if

The complete list of supported condition functions is:

equals
get_param
not
and
or
yaql
contains

3.3. Working with Templates 169

Heat Documentation, Release 16.1.1.dev14

2021-04-16 | wallaby

The key with value 2021-04-16 or wallaby indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Wallaby release.

This version adds a 2-argument variant of the if function. When the condition is false and no third
argument is supplied, the entire enclosing item (which may be e.g. a list item, a key-value pair in a
dict, or a property value) will be elided. This allows for e.g. conditional definition of properties while
keeping the default value when the condition is false.

The complete list of supported functions is:

digest
filter
get_attr
get_file
get_param
get_resource
list_join
make_url
list_concat
list_concat_unique
contains
map_merge
map_replace
repeat
resource_facade
str_replace
str_replace_strict
str_replace_vstrict
str_split
yaql
if

The complete list of supported condition functions is:

equals
get_param
not
and
or
yaql
contains

Parameter groups section

The parameter_groups section allows for specifying how the input parameters should be grouped
and the order to provide the parameters in. These groups are typically used to describe expected behavior
for downstream user interfaces.

These groups are specified in a list with each group containing a list of associated parameters. The
lists are used to denote the expected order of the parameters. Each parameter should be associated to a
specific group only once using the parameter name to bind it to a defined parameter in the parameters
section.

170 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

parameter_groups:
- label: <human-readable label of parameter group>

description: <description of the parameter group>
parameters:
- <param name>
- <param name>

label A human-readable label that defines the associated group of parameters.

description This attribute allows for giving a human-readable description of the parameter group.

parameters A list of parameters associated with this parameter group.

param name The name of the parameter that is defined in the associated parameters section.

Parameters section

The parameters section allows for specifying input parameters that have to be provided when instan-
tiating the template. Such parameters are typically used to customize each deployment (e.g. by setting
custom user names or passwords) or for binding to environment-specifics like certain images.

Each parameter is specified in a separated nested block with the name of the parameters defined in the
first line and additional attributes such as type or default value defined as nested elements.

parameters:
<param name>:

type: <string | number | json | comma_delimited_list | boolean>
label: <human-readable name of the parameter>
description: <description of the parameter>
default: <default value for parameter>
hidden: <true | false>
constraints:

<parameter constraints>
immutable: <true | false>
tags: <list of parameter categories>

param name The name of the parameter.

type The type of the parameter. Supported types are string, number, comma_delimited_list,
json and boolean. This attribute is required.

label A human readable name for the parameter. This attribute is optional.

description A human readable description for the parameter. This attribute is optional.

default A default value for the parameter. This value is used if the user doesnt specify his own value
during deployment. This attribute is optional.

hidden Defines whether the parameters should be hidden when a user requests information about a stack
created from the template. This attribute can be used to hide passwords specified as parameters.

This attribute is optional and defaults to false.

constraints A list of constraints to apply. The constraints are validated by the Orchestration engine
when a user deploys a stack. The stack creation fails if the parameter value doesnt comply to the
constraints. This attribute is optional.

3.3. Working with Templates 171

Heat Documentation, Release 16.1.1.dev14

immutable Defines whether the parameter is updatable. Stack update fails, if this is set to true and
the parameter value is changed. This attribute is optional and defaults to false.

tags A list of strings to specify the category of a parameter. This value is used to categorize a parameter
so that users can group the parameters. This attribute is optional.

The table below describes all currently supported types with examples:

Type Description Examples
string A literal string. String param
number An integer or float. 2; 0.2
comma_delimited_listAn array of literal strings that are separated by commas. The

total number of strings should be one more than the total
number of commas.

[one, two]; one, two;
Note: one, two returns
[one, two]

json A JSON-formatted map or list. {key: value}
boolean Boolean type value, which can be equal t, true, on, y, yes, or

1 for true value and f, false, off, n, no, or 0 for false value.
on; n

The following example shows a minimalistic definition of two parameters

parameters:
user_name:

type: string
label: User Name
description: User name to be configured for the application

port_number:
type: number
label: Port Number
description: Port number to be configured for the web server

Note: The description and the label are optional, but defining these attributes is good practice to provide
useful information about the role of the parameter to the user.

Parameter Constraints

The constraints block of a parameter definition defines additional validation constraints that ap-
ply to the value of the parameter. The parameter values provided by a user are validated against the
constraints at instantiation time. The constraints are defined as a list with the following syntax

constraints:
- <constraint type>: <constraint definition>

description: <constraint description>

constraint type Type of constraint to apply. The set of currently supported constraints is given below.

constraint definition The actual constraint, depending on the constraint type. The concrete syntax for
each constraint type is given below.

description A description of the constraint. The text is presented to the user when the value he defines
violates the constraint. If omitted, a default validation message is presented to the user. This
attribute is optional.

172 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The following example shows the definition of a string parameter with two constraints. Note that while
the descriptions for each constraint are optional, it is good practice to provide concrete descriptions to
present useful messages to the user at deployment time.

parameters:
user_name:

type: string
label: User Name
description: User name to be configured for the application
constraints:

- length: { min: 6, max: 8 }
description: User name must be between 6 and 8 characters

- allowed_pattern: "[A-Z]+[a-zA-Z0-9]*"
description: User name must start with an uppercase character

Note: While the descriptions for each constraint are optional, it is good practice to provide concrete
descriptions so useful messages can be presented to the user at deployment time.

The following sections list the supported types of parameter constraints, along with the concrete syntax
for each type.

length

The length constraint applies to parameters of type string, comma_delimited_list and
json.

It defines a lower and upper limit for the length of the string value or list/map collection.

The syntax of the length constraint is

length: { min: <lower limit>, max: <upper limit> }

It is possible to define a length constraint with only a lower limit or an upper limit. However, at least
one of min or max must be specified.

range

The range constraint applies to parameters of type number. It defines a lower and upper limit for the
numeric value of the parameter.

The syntax of the range constraint is

range: { min: <lower limit>, max: <upper limit> }

It is possible to define a range constraint with only a lower limit or an upper limit. However, at least one
of min or max must be specified.

The minimum and maximum boundaries are included in the range. For example, the following range
constraint would allow for all numeric values between 0 and 10

range: { min: 0, max: 10 }

3.3. Working with Templates 173

Heat Documentation, Release 16.1.1.dev14

modulo

The modulo constraint applies to parameters of type number. The value is valid if it is a multiple of
step, starting with offset.

The syntax of the modulo constraint is

modulo: { step: <step>, offset: <offset> }

Both step and offset must be specified.

For example, the following modulo constraint would only allow for odd numbers

modulo: { step: 2, offset: 1 }

allowed_values

The allowed_values constraint applies to parameters of type string or number. It specifies a
set of possible values for a parameter. At deployment time, the user-provided value for the respective
parameter must match one of the elements of the list.

The syntax of the allowed_values constraint is

allowed_values: [<value>, <value>, ...]

Alternatively, the following YAML list notation can be used

allowed_values:
- <value>
- <value>
- ...

For example

parameters:
instance_type:

type: string
label: Instance Type
description: Instance type for compute instances
constraints:

- allowed_values:
- m1.small
- m1.medium
- m1.large

174 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

allowed_pattern

The allowed_pattern constraint applies to parameters of type string. It specifies a regular
expression against which a user-provided parameter value must evaluate at deployment.

The syntax of the allowed_pattern constraint is

allowed_pattern: <regular expression>

For example

parameters:
user_name:

type: string
label: User Name
description: User name to be configured for the application
constraints:

- allowed_pattern: "[A-Z]+[a-zA-Z0-9]*"
description: User name must start with an uppercase character

custom_constraint

The custom_constraint constraint adds an extra step of validation, generally to check that the
specified resource exists in the backend. Custom constraints get implemented by plug-ins and can pro-
vide any kind of advanced constraint validation logic.

The syntax of the custom_constraint constraint is

custom_constraint: <name>

The name attribute specifies the concrete type of custom constraint. It corresponds to the name under
which the respective validation plugin has been registered in the Orchestration engine.

For example

parameters:
key_name

type: string
description: SSH key pair
constraints:

- custom_constraint: nova.keypair

The following section lists the custom constraints and the plug-ins that support them.

Name Plug-in
barbican.container heat.engine.clients.os.barbican:ContainerConstraint
barbican.secret heat.engine.clients.os.barbican:SecretConstraint
blazar.reservation heat.engine.clients.os.blazar:ReservationConstraint
cinder.backup heat.engine.clients.os.cinder:VolumeBackupConstraint
cinder.qos_specs heat.engine.clients.os.cinder:QoSSpecsConstraint
cinder.snapshot heat.engine.clients.os.cinder:VolumeSnapshotConstraint
cinder.volume heat.engine.clients.os.cinder:VolumeConstraint

continues on next page

3.3. Working with Templates 175

Heat Documentation, Release 16.1.1.dev14

Table 1 – continued from previous page
Name Plug-in
cinder.vtype heat.engine.clients.os.cinder:VolumeTypeConstraint
cron_expression heat.engine.constraint.common_constraints:CRONExpressionConstraint
designate.zone heat.engine.clients.os.designate:DesignateZoneConstraint
dns_domain heat.engine.constraint.common_constraints:DNSDomainConstraint
dns_name heat.engine.constraint.common_constraints:DNSNameConstraint
expiration heat.engine.constraint.common_constraints:ExpirationConstraint
glance.image heat.engine.clients.os.glance:ImageConstraint
ip_addr heat.engine.constraint.common_constraints:IPConstraint
ip_or_cidr heat.engine.constraint.common_constraints:IPCIDRConstraint
ironic.node heat.engine.clients.os.ironic:NodeConstraint
ironic.portgroup heat.engine.clients.os.ironic:PortGroupConstraint
iso_8601 heat.engine.constraint.common_constraints:ISO8601Constraint
keystone.domain heat.engine.clients.os.keystone.keystone_constraints:KeystoneDomainConstraint
keystone.group heat.engine.clients.os.keystone.keystone_constraints:KeystoneGroupConstraint
keystone.project heat.engine.clients.os.keystone.keystone_constraints:KeystoneProjectConstraint
keystone.region heat.engine.clients.os.keystone.keystone_constraints:KeystoneRegionConstraint
keystone.role heat.engine.clients.os.keystone.keystone_constraints:KeystoneRoleConstraint
keystone.service heat.engine.clients.os.keystone.keystone_constraints:KeystoneServiceConstraint
keystone.user heat.engine.clients.os.keystone.keystone_constraints:KeystoneUserConstraint
mac_addr heat.engine.constraint.common_constraints:MACConstraint
magnum.baymodel heat.engine.clients.os.magnum:BaymodelConstraint
magnum.cluster_template heat.engine.clients.os.magnum:ClusterTemplateConstraint
manila.share_network heat.engine.clients.os.manila:ManilaShareNetworkConstraint
manila.share_snapshot heat.engine.clients.os.manila:ManilaShareSnapshotConstraint
manila.share_type heat.engine.clients.os.manila:ManilaShareTypeConstraint
mistral.workflow heat.engine.clients.os.mistral:WorkflowConstraint
monasca.notification heat.engine.clients.os.monasca:MonascaNotificationConstraint
net_cidr heat.engine.constraint.common_constraints:CIDRConstraint
neutron.address_scope heat.engine.clients.os.neutron.neutron_constraints:AddressScopeConstraint
neutron.flow_classifier heat.engine.clients.os.neutron.neutron_constraints:FlowClassifierConstraint
neutron.lb.provider heat.engine.clients.os.neutron.neutron_constraints:LBaasV1ProviderConstraint
neutron.lbaas.listener heat.engine.clients.os.neutron.lbaas_constraints:ListenerConstraint
neutron.lbaas.loadbalancer heat.engine.clients.os.neutron.lbaas_constraints:LoadbalancerConstraint
neutron.lbaas.pool heat.engine.clients.os.neutron.lbaas_constraints:PoolConstraint
neutron.lbaas.provider heat.engine.clients.os.neutron.lbaas_constraints:LBaasV2ProviderConstraint
neutron.network heat.engine.clients.os.neutron.neutron_constraints:NetworkConstraint
neutron.port heat.engine.clients.os.neutron.neutron_constraints:PortConstraint
neutron.port_pair heat.engine.clients.os.neutron.neutron_constraints:PortPairConstraint
neutron.port_pair_group heat.engine.clients.os.neutron.neutron_constraints:PortPairGroupConstraint
neutron.qos_policy heat.engine.clients.os.neutron.neutron_constraints:QoSPolicyConstraint
neutron.router heat.engine.clients.os.neutron.neutron_constraints:RouterConstraint
neutron.security_group heat.engine.clients.os.neutron.neutron_constraints:SecurityGroupConstraint
neutron.segment heat.engine.clients.os.openstacksdk:SegmentConstraint
neutron.subnet heat.engine.clients.os.neutron.neutron_constraints:SubnetConstraint
neutron.subnetpool heat.engine.clients.os.neutron.neutron_constraints:SubnetPoolConstraint
neutron.taas.tap_flow heat.engine.clients.os.neutron.taas_constraints:TapFlowConstraint
neutron.taas.tap_service heat.engine.clients.os.neutron.taas_constraints:TapServiceConstraint

continues on next page

176 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Table 1 – continued from previous page
Name Plug-in
nova.flavor heat.engine.clients.os.nova:FlavorConstraint
nova.host heat.engine.clients.os.nova:HostConstraint
nova.keypair heat.engine.clients.os.nova:KeypairConstraint
nova.network heat.engine.constraint.common_constraints:TestConstraintDelay
nova.server heat.engine.clients.os.nova:ServerConstraint
octavia.flavor heat.engine.clients.os.octavia:FlavorConstraint
octavia.flavorprofile heat.engine.clients.os.octavia:FlavorProfileConstraint
octavia.l7policy heat.engine.clients.os.octavia:L7PolicyConstraint
octavia.listener heat.engine.clients.os.octavia:ListenerConstraint
octavia.loadbalancer heat.engine.clients.os.octavia:LoadbalancerConstraint
octavia.pool heat.engine.clients.os.octavia:PoolConstraint
rel_dns_name heat.engine.constraint.common_constraints:RelativeDNSNameConstraint
sahara.cluster heat.engine.clients.os.sahara:ClusterConstraint
sahara.cluster_template heat.engine.clients.os.sahara:ClusterTemplateConstraint
sahara.data_source heat.engine.clients.os.sahara:DataSourceConstraint
sahara.image heat.engine.clients.os.sahara:ImageConstraint
sahara.job_binary heat.engine.clients.os.sahara:JobBinaryConstraint
sahara.job_type heat.engine.clients.os.sahara:JobTypeConstraint
sahara.plugin heat.engine.clients.os.sahara:PluginConstraint
senlin.cluster heat.engine.clients.os.senlin:ClusterConstraint
senlin.policy heat.engine.clients.os.senlin:PolicyConstraint
senlin.policy_type heat.engine.clients.os.senlin:PolicyTypeConstraint
senlin.profile heat.engine.clients.os.senlin:ProfileConstraint
senlin.profile_type heat.engine.clients.os.senlin:ProfileTypeConstraint
test_constr heat.engine.constraint.common_constraints:TestConstraintDelay
timezone heat.engine.constraint.common_constraints:TimezoneConstraint
trove.flavor heat.engine.clients.os.trove:FlavorConstraint
zaqar.queue heat.engine.clients.os.zaqar:QueueConstraint

Pseudo parameters

In addition to parameters defined by a template author, Heat also creates three parameters for every stack
that allow referential access to the stacks name, stacks identifier and projects identifier. These param-
eters are named OS::stack_name for the stack name, OS::stack_id for the stack identifier and
OS::project_id for the project identifier. These values are accessible via the get_param intrinsic
function, just like user-defined parameters.

Note: OS::project_id is available since 2015.1 (Kilo).

3.3. Working with Templates 177

Heat Documentation, Release 16.1.1.dev14

Resources section

The resources section defines actual resources that make up a stack deployed from the HOT template
(for instance compute instances, networks, storage volumes).

Each resource is defined as a separate block in the resources section with the following syntax

resources:
<resource ID>:

type: <resource type>
properties:

<property name>: <property value>
metadata:

<resource specific metadata>
depends_on: <resource ID or list of ID>
update_policy: <update policy>
deletion_policy: <deletion policy>
external_id: <external resource ID>
condition: <condition name or expression or boolean>

resource ID A resource ID which must be unique within the resources section of the template.

type The resource type, such as OS::Nova::Server or OS::Neutron::Port. This attribute is
required.

properties A list of resource-specific properties. The property value can be provided in place, or via a
function (see Intrinsic functions). This section is optional.

metadata Resource-specific metadata. This section is optional.

depends_on Dependencies of the resource on one or more resources of the template. See Resource
dependencies for details. This attribute is optional.

update_policy Update policy for the resource, in the form of a nested dictionary. Whether update poli-
cies are supported and what the exact semantics are depends on the type of the current resource.
This attribute is optional.

deletion_policy Deletion policy for the resource. The allowed deletion policies are Delete, Retain,
and Snapshot. Beginning with heat_template_version 2016-10-14, the lowercase
equivalents delete, retain, and snapshot are also allowed. This attribute is optional; the
default policy is to delete the physical resource when deleting a resource from the stack.

external_id Allows for specifying the resource_id for an existing external (to the stack) resource. Exter-
nal resources can not depend on other resources, but we allow other resources depend on external
resource. This attribute is optional. Note: when this is specified, properties will not be used for
building the resource and the resource is not managed by Heat. This is not possible to update that
attribute. Also resource wont be deleted by heat when stack is deleted.

condition Condition for the resource. Which decides whether to create the resource or not. This at-
tribute is optional.

Note: Support condition for resource is added in the Newton version.

Depending on the type of resource, the resource block might include more resource specific data.

All resource types that can be used in CFN templates can also be used in HOT templates, adapted to the
YAML structure as outlined above.

178 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The following example demonstrates the definition of a simple compute resource with some fixed prop-
erty values

resources:
my_instance:

type: OS::Nova::Server
properties:

flavor: m1.small
image: F18-x86_64-cfntools

Resource dependencies

The depends_on attribute of a resource defines a dependency between this resource and one or more
other resources.

If a resource depends on just one other resource, the ID of the other resource is specified as string of the
depends_on attribute, as shown in the following example

resources:
server1:

type: OS::Nova::Server
depends_on: server2

server2:
type: OS::Nova::Server

If a resource depends on more than one other resources, the value of the depends_on attribute is
specified as a list of resource IDs, as shown in the following example

resources:
server1:

type: OS::Nova::Server
depends_on: [server2, server3]

server2:
type: OS::Nova::Server

server3:
type: OS::Nova::Server

Outputs section

The outputs section defines output parameters that should be available to the user after a stack has
been created. This would be, for example, parameters such as IP addresses of deployed instances, or
URLs of web applications deployed as part of a stack.

Each output parameter is defined as a separate block within the outputs section according to the following
syntax

outputs:
<parameter name>:

description: <description>

(continues on next page)

3.3. Working with Templates 179

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

value: <parameter value>
condition: <condition name or expression or boolean>

parameter name The output parameter name, which must be unique within the outputs section of a
template.

description A short description of the output parameter. This attribute is optional.

parameter value The value of the output parameter. This value is usually resolved by means of a
function. See Intrinsic functions for details about the functions. This attribute is required.

condition To conditionally define an output value. None value will be shown if the condition is False.
This attribute is optional.

Note: Support condition for output is added in the Newton version.

The example below shows how the IP address of a compute resource can be defined as an output param-
eter

outputs:
instance_ip:

description: IP address of the deployed compute instance
value: { get_attr: [my_instance, first_address] }

Conditions section

The conditions section defines one or more conditions which are evaluated based on input parameter
values provided when a user creates or updates a stack. The condition can be associated with resources,
resource properties and outputs. For example, based on the result of a condition, user can conditionally
create resources, user can conditionally set different values of properties, and user can conditionally give
outputs of a stack.

The conditions section is defined with the following syntax

conditions:
<condition name1>: {expression1}
<condition name2>: {expression2}
...

condition name The condition name, which must be unique within the conditions section of a
template.

expression The expression which is expected to return True or False. Usually, the condition functions
can be used as expression to define conditions:

equals
get_param
not
and
or
yaql

Note: In condition functions, you can reference a value from an input parameter, but you cannot
reference resource or its attribute. We support referencing other conditions (by condition name)
in condition functions. We support yaql as condition function in the Pike version.

180 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

An example of conditions section definition

conditions:
cd1: True
cd2:

get_param: param1
cd3:

equals:
- get_param: param2
- yes

cd4:
not:

equals:
- get_param: param3
- yes

cd5:
and:
- equals:

- get_param: env_type
- prod

- not:
equals:
- get_param: zone
- beijing

cd6:
or:
- equals:

- get_param: zone
- shanghai

- equals:
- get_param: zone
- beijing

cd7:
not: cd4

cd8:
and:
- cd1
- cd2

cd9:
yaql:

expression: $.data.services.contains('heat')
data:

services:
get_param: ServiceNames

cd10:
contains:
- 'neutron'
- get_param: ServiceNames

The example below shows how to associate condition with resources

parameters:
env_type:

default: test
type: string

conditions:
create_prod_res: {equals : [{get_param: env_type}, "prod"]}

(continues on next page)

3.3. Working with Templates 181

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

resources:
volume:

type: OS::Cinder::Volume
condition: create_prod_res
properties:

size: 1

The create_prod_res condition evaluates to true if the env_type parameter is equal to prod. In the above
sample template, the volume resource is associated with the create_prod_res condition. Therefore, the
volume resource is created only if the env_type is equal to prod.

The example below shows how to conditionally define an output

outputs:
vol_size:

value: {get_attr: [my_volume, size]}
condition: create_prod_res

In the above sample template, the vol_size output is associated with the create_prod_res condition.
Therefore, the vol_size output is given corresponding value only if the env_type is equal to prod, other-
wise the value of the output is None.

Intrinsic functions

HOT provides a set of intrinsic functions that can be used inside templates to perform specific tasks,
such as getting the value of a resource attribute at runtime. The following section describes the role and
syntax of the intrinsic functions.

Note: these functions can only be used within the properties section of each resource or in the outputs
section.

get_attr

The get_attr function references an attribute of a resource. The attribute value is resolved at runtime
using the resource instance created from the respective resource definition.

Path based attribute referencing using keys or indexes requires heat_template_version
2014-10-16 or higher.

The syntax of the get_attr function is

get_attr:
- <resource name>
- <attribute name>
- <key/index 1> (optional)
- <key/index 2> (optional)
- ...

resource name The resource name for which the attribute needs to be resolved.

The resource name must exist in the resources section of the template.

182 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

attribute name The attribute name to be resolved. If the attribute returns a complex data structure such
as a list or a map, then subsequent keys or indexes can be specified. These additional parameters
are used to navigate the data structure to return the desired value.

The following example demonstrates how to use the get_attr function:

resources:
my_instance:

type: OS::Nova::Server
...

outputs:
instance_ip:

description: IP address of the deployed compute instance
value: { get_attr: [my_instance, first_address] }

instance_private_ip:
description: Private IP address of the deployed compute instance
value: { get_attr: [my_instance, networks, private, 0] }

In this example, if the networks attribute contained the following data:

{"public": ["2001:0db8:0000:0000:0000:ff00:0042:8329", "1.2.3.4"],
"private": ["10.0.0.1"]}

then the value of get_attr function would resolve to 10.0.0.1 (first item of the private entry
in the networks map).

From heat_template_version: 2015-10-15 <attribute_name> is optional and if <at-
tribute_name> is not specified, get_attr returns dict of all attributes for the given resource excluding
show attribute. In this case syntax would be next:

get_attr:
- <resource_name>

get_file

The get_file function returns the content of a file into the template. It is generally used as a file
inclusion mechanism for files containing scripts or configuration files.

The syntax of get_file function is

get_file: <content key>

The content key is used to look up the files dictionary that is provided in the REST API call.
The Orchestration client command (heat) is get_file aware and populates the files dictionary
with the actual content of fetched paths and URLs. The Orchestration client command supports relative
paths and transforms these to the absolute URLs required by the Orchestration API.

Note: The get_file argument must be a static path or URL and not rely on intrinsic functions like
get_param. the Orchestration client does not process intrinsic functions (they are only processed by
the Orchestration engine).

The example below demonstrates the get_file function usage with both relative and absolute URLs

3.3. Working with Templates 183

Heat Documentation, Release 16.1.1.dev14

resources:
my_instance:

type: OS::Nova::Server
properties:

general properties ...
user_data:

get_file: my_instance_user_data.sh
my_other_instance:

type: OS::Nova::Server
properties:

general properties ...
user_data:

get_file: http://example.com/my_other_instance_user_data.sh

The files dictionary generated by the Orchestration client during instantiation of the stack would
contain the following keys:

• file:///path/to/my_instance_user_data.sh

• http://example.com/my_other_instance_user_data.sh

get_param

The get_param function references an input parameter of a template. It resolves to the value provided
for this input parameter at runtime.

The syntax of the get_param function is

get_param:
- <parameter name>
- <key/index 1> (optional)
- <key/index 2> (optional)
- ...

parameter name The parameter name to be resolved. If the parameters returns a complex data struc-
ture such as a list or a map, then subsequent keys or indexes can be specified. These additional
parameters are used to navigate the data structure to return the desired value.

The following example demonstrates the use of the get_param function

parameters:
instance_type:

type: string
label: Instance Type
description: Instance type to be used.

server_data:
type: json

resources:
my_instance:

type: OS::Nova::Server
properties:

flavor: { get_param: instance_type}
metadata: { get_param: [server_data, metadata] }
key_name: { get_param: [server_data, keys, 0] }

184 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

In this example, if the instance_type and server_data parameters contained the following data:

{"instance_type": "m1.tiny",
{"server_data": {"metadata": {"foo": "bar"},

"keys": ["a_key","other_key"]}}}

then the value of the property flavor would resolve to m1.tiny, metadata would resolve to
{"foo": "bar"} and key_name would resolve to a_key.

get_resource

The get_resource function references another resource within the same template. At runtime, it is
resolved to reference the ID of the referenced resource, which is resource type specific. For example,
a reference to a floating IP resource returns the respective IP address at runtime. The syntax of the
get_resource function is

get_resource: <resource ID>

The resource ID of the referenced resource is given as single parameter to the get_resource function.

For example

resources:
instance_port:

type: OS::Neutron::Port
properties: ...

instance:
type: OS::Nova::Server
properties:

...
networks:

port: { get_resource: instance_port }

list_join

The list_join function joins a list of strings with the given delimiter.

The syntax of the list_join function is

list_join:
- <delimiter>
- <list to join>

For example

list_join: [', ', ['one', 'two', 'and three']]

This resolve to the string one, two, and three.

From HOT version 2015-10-15 you may optionally pass additional lists, which will be appended to
the previous lists to join.

For example:

3.3. Working with Templates 185

Heat Documentation, Release 16.1.1.dev14

list_join: [', ', ['one', 'two'], ['three', 'four']]

This resolve to the string one, two, three, four.

From HOT version 2015-10-15 you may optionally also pass non-string list items (e.g json/map/list
parameters or attributes) and they will be serialized as json before joining.

digest

The digest function allows for performing digest operations on a given value. This function has been
introduced in the Kilo release and is usable with HOT versions later than 2015-04-30.

The syntax of the digest function is

digest:
- <algorithm>
- <value>

algorithm The digest algorithm. Valid algorithms are the ones provided natively by hashlib (md5, sha1,
sha224, sha256, sha384, and sha512) or any one provided by OpenSSL.

value The value to digest. This function will resolve to the corresponding hash of the value.

For example

from a user supplied parameter
pwd_hash: { digest: ['sha512', { get_param: raw_password }] }

The value of the digest function would resolve to the corresponding hash of the value of
raw_password.

repeat

The repeat function allows for dynamically transforming lists by iterating over the contents of one or
more source lists and replacing the list elements into a template. The result of this function is a new list,
where the elements are set to the template, rendered for each list item.

The syntax of the repeat function is

repeat:
template:

<template>
for_each:

<var>: <list>

template The template argument defines the content generated for each iteration, with placeholders
for the elements that need to be replaced at runtime. This argument can be of any supported type.

for_each The for_each argument is a dictionary that defines how to generate the repetitions of the
template and perform substitutions. In this dictionary the keys are the placeholder names that will
be replaced in the template, and the values are the lists to iterate on. On each iteration, the function
will render the template by performing substitution with elements of the given lists. If a single
key/value pair is given in this argument, the template will be rendered once for each element in
the list. When more than one key/value pairs are given, the iterations will be performed on all

186 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

the permutations of values between the given lists. The values in this dictionary can be given as
functions such as get_attr or get_param.

The following example shows how a security group resource can be defined to include a list of ports
given as a parameter

parameters:
ports:

type: comma_delimited_list
label: ports
default: "80,443,8080"

resources:
security_group:

type: OS::Neutron::SecurityGroup
properties:

name: web_server_security_group
rules:

repeat:
for_each:

<%port%>: { get_param: ports }
template:

protocol: tcp
port_range_min: <%port%>
port_range_max: <%port%>

The following example demonstrates how the use of multiple lists enables the security group to also
include parameterized protocols

parameters:
ports:

type: comma_delimited_list
label: ports
default: "80,443,8080"

protocols:
type: comma_delimited_list
label: protocols
default: "tcp,udp"

resources:
security_group:

type: OS::Neutron::SecurityGroup
properties:

name: web_server_security_group
rules:

repeat:
for_each:

<%port%>: { get_param: ports }
<%protocol%>: { get_param: protocols }

template:
protocol: <%protocol%>
port_range_min: <%port%>

Note how multiple entries in the for_each argument are equivalent to nested for-loops in most pro-
gramming languages.

From HOT version 2016-10-14 you may also pass a map as value for the for_each key, in which
case the list of map keys will be used as value.

3.3. Working with Templates 187

Heat Documentation, Release 16.1.1.dev14

From HOT version 2017-09-01 (or pike) you may specify a argument permutations to decide
whether to iterate nested the over all the permutations of the elements in the given lists. If permutations
is not specified, we set the default value to true to compatible with before behavior. The args have to be
lists instead of dicts if permutations is False because keys in a dict are unordered, and the list args all
have to be of the same length.

parameters:
subnets:

type: comma_delimited_list
label: subnets
default: "sub1, sub2"

networks:
type: comma_delimited_list
label: networks
default: "net1, net2"

resources:
my_server:

type: OS::Nova:Server
properties:

networks:
repeat:

for_each:
<%sub%>: { get_param: subnets }
<%net%>: { get_param: networks }

template:
subnet: <%sub%>
network: <%net%>

permutations: false

After resolved, we will get the networks of server like: [{subnet: sub1, network: net1}, {subnet: sub2,
network: net2}]

resource_facade

The resource_facade function retrieves data in a parent provider template.

A provider template provides a custom definition of a resource, called its facade. For more information
about custom templates, see Template composition. The syntax of the resource_facade function is

resource_facade: <data type>

data type can be one of metadata, deletion_policy or update_policy.

str_replace

The str_replace function dynamically constructs strings by providing a template string with place-
holders and a list of mappings to assign values to those placeholders at runtime. The placeholders are
replaced with mapping values wherever a mapping key exactly matches a placeholder.

The syntax of the str_replace function is

188 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

str_replace:
template: <template string>
params: <parameter mappings>

template Defines the template string that contains placeholders which will be substituted at runtime.

params Provides parameter mappings in the form of dictionary. Each key refers to a placeholder used
in the template attribute. From HOT version 2015-10-15 you may optionally pass non-
string parameter values (e.g json/map/list parameters or attributes) and they will be serialized as
json before replacing, prior heat/HOT versions require string values.

The following example shows a simple use of the str_replace function in the outputs section of a
template to build a URL for logging into a deployed application

resources:
my_instance:

type: OS::Nova::Server
general metadata and properties ...

outputs:
Login_URL:

description: The URL to log into the deployed application
value:

str_replace:
template: http://host/MyApplication
params:

host: { get_attr: [my_instance, first_address] }

The following examples show the use of the str_replace function to build an instance initialization
script

parameters:
DBRootPassword:

type: string
label: Database Password
description: Root password for MySQL
hidden: true

resources:
my_instance:

type: OS::Nova::Server
properties:

general properties ...
user_data:

str_replace:
template: |

#!/bin/bash
echo "Hello world"
echo "Setting MySQL root password"
mysqladmin -u root password $db_rootpassword
do more things ...

params:
$db_rootpassword: { get_param: DBRootPassword }

In the example above, one can imagine that MySQL is being configured on a compute instance and the
root password is going to be set based on a user provided parameter. The script for doing this is provided
as userdata to the compute instance, leveraging the str_replace function.

3.3. Working with Templates 189

Heat Documentation, Release 16.1.1.dev14

str_replace_strict

str_replace_strict behaves identically to the str_replace function, only an error is raised
if any of the params are not present in the template. This may help catch typos or other issues sooner
rather than later when processing a template.

str_replace_vstrict

str_replace_vstrict behaves identically to the str_replace_strict function, only an er-
ror is raised if any of the params are empty. This may help catch issues (i.e., prevent resources from
being created with bogus values) sooner rather than later if it is known that all the params should be
non-empty.

str_split

The str_split function allows for splitting a string into a list by providing an arbitrary delimiter, the
opposite of list_join.

The syntax of the str_split function is as follows:

str_split:
- ','
- string,to,split

Or:

str_split: [',', 'string,to,split']

The result of which is:

['string', 'to', 'split']

Optionally, an index may be provided to select a specific entry from the resulting list, similar to
get_attr/get_param:

str_split: [',', 'string,to,split', 0]

The result of which is:

'string'

Note: The index starts at zero, and any value outside the maximum (e.g the length of the list minus one)
will cause an error.

190 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

map_merge

The map_merge function merges maps together. Values in the latter maps override any values in
earlier ones. Can be very useful when composing maps that contain configuration data into a single
consolidated map.

The syntax of the map_merge function is

map_merge:
- <map 1>
- <map 2>
- ...

For example

map_merge: [{'k1': 'v1', 'k2': 'v2'}, {'k1': 'v2'}]

This resolves to a map containing {'k1': 'v2', 'k2': 'v2'}.

Maps containing no items resolve to {}.

map_replace

The map_replace function does key/value replacements on an existing mapping. An input mapping
is processed by iterating over all keys/values and performing a replacement if an exact match is found
in either of the optional keys/values mappings.

The syntax of the map_replace function is

map_replace:
- <input map>
- keys: <map of key replacements>

values: <map of value replacements>

For example

map_replace:
- k1: v1

k2: v2
- keys:

k1: K1
values:

v2: V2

This resolves to a map containing {'K1': 'v1', 'k2': 'V2'}.

The keys/values mappings are optional, either or both may be specified.

Note that an error is raised if a replacement defined in keys results in a collision with an existing keys in
the input or output map.

Also note that while unhashable values (e.g lists) in the input map are valid, they will be ignored by the
values replacement, because no key can be defined in the values mapping to define their replacement.

3.3. Working with Templates 191

Heat Documentation, Release 16.1.1.dev14

yaql

The yaql evaluates yaql expression on a given data.

The syntax of the yaql function is

yaql:
expression: <expression>
data: <data>

For example

parameters:
list_param:

type: comma_delimited_list
default: [1, 2, 3]

outputs:
max_elem:

value:
yaql:

expression: $.data.list_param.select(int($)).max()
data:

list_param: {get_param: list_param}

max_elem output will be evaluated to 3

equals

The equals function compares whether two values are equal.

The syntax of the equals function is

equals: [value_1, value_2]

The value can be any type that you want to compare. This function returns true if the two values are
equal or false if they arent.

For example

equals: [{get_param: env_type}, 'prod']

If param env_type equals to prod, this function returns true, otherwise returns false.

if

The if function returns the corresponding value based on the evaluation of a condition.

The syntax of the if function is

if: [condition_name, value_if_true, value_if_false]

For example

192 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

conditions:
create_prod_res: {equals : [{get_param: env_type}, "prod"]}

resources:
test_server:

type: OS::Nova::Server
properties:

name: {if: ["create_prod_res", "s_prod", "s_test"]}

The name property is set to s_prod if the condition create_prod_res evaluates to true (if parameter
env_type is prod), and is set to s_test if the condition create_prod_res evaluates to false (if parame-
ter env_type isnt prod).

Note: You define all conditions in the conditions section of a template except for if conditions.
You can use the if condition in the property values in the resources section and outputs sections
of a template.

Beginning with the wallaby template version, the third argument is optional. If only two arguments
are passed, the entire enclosing item is removed when the condition is false.

For example:

conditions:
override_name: {not: {equals: [{get_param: server_name}, ""]}}

resources:
test_server:

type: OS::Nova::Server
properties:

name: {if: [override_name, {get_param: server_name}]}

In this example, the default name for the server (which is generated by Heat when the property value is
not specified) would be used when the server_name parameter value is an empty string.

not

The not function acts as a NOT operator.

The syntax of the not function is

not: condition

Note: A condition can be an expression such as equals, or and and that evaluates to true or false,
can be a boolean, and can be other condition name defined in conditions section of template.

Returns true for a condition that evaluates to false or returns false for a condition that evaluates to true.

For example

not:
equals:
- get_param: env_type
- prod

If param env_type equals to prod, this function returns false, otherwise returns true.

Another example with boolean value definition

3.3. Working with Templates 193

Heat Documentation, Release 16.1.1.dev14

not: True

This function returns false.

Another example reference other condition name

not: my_other_condition

This function returns false if my_other_condition evaluates to true, otherwise returns true.

and

The and function acts as an AND operator to evaluate all the specified conditions.

The syntax of the and function is

and: [{condition_1}, {condition_2}, ... {condition_n}]

Note: A condition can be an expression such as equals, or and not that evaluates to true or false,
can be a boolean, and can be other condition names defined in conditions section of template.

Returns true if all the specified conditions evaluate to true, or returns false if any one of the conditions
evaluates to false.

For example

and:
- equals:

- get_param: env_type
- prod

- not:
equals:
- get_param: zone
- beijing

If param env_type equals to prod, and param zone is not equal to beijing, this function returns true,
otherwise returns false.

Another example reference with other conditions

and:
- other_condition_1
- other_condition_2

This function returns true if other_condition_1 and other_condition_2 evaluate to true both, otherwise
returns false.

194 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

or

The or function acts as an OR operator to evaluate all the specified conditions.

The syntax of the or function is

or: [{condition_1}, {condition_2}, ... {condition_n}]

Note: A condition can be an expression such as equals, and and not that evaluates to true or false,
can be a boolean, and can be other condition names defined in conditions section of template.

Returns true if any one of the specified conditions evaluate to true, or returns false if all of the conditions
evaluates to false.

For example

or:
- equals:

- get_param: env_type
- prod

- not:
equals:
- get_param: zone
- beijing

If param env_type equals to prod, or the param zone is not equal to beijing, this function returns true,
otherwise returns false.

Another example reference other conditions

or:
- other_condition_1
- other_condition_2

This function returns true if any one of other_condition_1 or other_condition_2 evaluate to true, other-
wise returns false.

filter

The filter function removes values from lists.

The syntax of the filter function is

filter:
- <values>
- <list>

For example

parameters:
list_param:

type: comma_delimited_list
default: [1, 2, 3]

outputs:
(continues on next page)

3.3. Working with Templates 195

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

output_list:
value:

filter:
- [3]
- {get_param: list_param}

output_list will be evaluated to [1, 2].

make_url

The make_url function builds URLs.

The syntax of the make_url function is

make_url:
scheme: <protocol>
username: <username>
password: <password>
host: <hostname or IP>
port: <port>
path: <path>
query:

<key1>: <value1>
<key2>: <value2>

fragment: <fragment>

All parameters are optional.

For example

outputs:
server_url:

value:
make_url:

scheme: http
host: {get_attr: [server, networks, <network_name>, 0]}
port: 8080
path: /hello
query:

recipient: world
fragment: greeting

server_url will be evaluated to a URL in the form:

http://[<server IP>]:8080/hello?recipient=world#greeting

196 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

list_concat

The list_concat function concatenates lists together.

The syntax of the list_concat function is

list_concat:
- <list #1>
- <list #2>
- ...

For example

list_concat: [['v1', 'v2'], ['v3', 'v4']]

Will resolve to the list ['v1', 'v2', 'v3', 'v4'].

Null values will be ignored.

list_concat_unique

The list_concat_unique function behaves identically to the function list_concat, only re-
moves the repeating items of lists.

For example

list_concat_unique: [['v1', 'v2'], ['v2', 'v3']]

Will resolve to the list ['v1', 'v2', 'v3'].

contains

The contains function checks whether the specific value is in a sequence.

The syntax of the contains function is

contains: [<value>, <sequence>]

This function returns true if value is in sequence or false if it isnt.

For example

contains: ['v1', ['v1', 'v2', 'v3']]

Will resolve to boolean true.

3.3. Working with Templates 197

Heat Documentation, Release 16.1.1.dev14

Instances

Manage instances

Create an instance

Use the OS::Nova::Server resource to create a Compute instance. The flavor property is
the only mandatory one, but you need to define a boot source using one of the image or
block_device_mapping properties.

You also need to define the networks property to indicate to which networks your instance must
connect if multiple networks are available in your tenant.

The following example creates a simple instance, booted from an image, and connecting to the
private network:

resources:
instance:

type: OS::Nova::Server
properties:

flavor: m1.small
image: ubuntu-trusty-x86_64
networks:

- network: private

Connect an instance to a network

Use the networks property of an OS::Nova::Server resource to define which networks an instance
should connect to. Define each network as a YAML map, containing one of the following keys:

port The ID of an existing Networking port. You usually create this port in the same template using
an OS::Neutron::Port resource. You will be able to associate a floating IP to this port, and the port
to your Compute instance.

network The name or ID of an existing network. You dont need to create an OS::Neutron::Port
resource if you use this property. But you will not be able to use neutron floating IP association
for this instance because there will be no specified port for server.

The following example demonstrates the use of the port and network properties:

resources:
instance_port:

type: OS::Neutron::Port
properties:

network: private
fixed_ips:

- subnet_id: "private-subnet"

instance1:
type: OS::Nova::Server
properties:

flavor: m1.small
image: ubuntu-trusty-x86_64
networks:

(continues on next page)

198 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

- port: { get_resource: instance_port }

instance2:
type: OS::Nova::Server
properties:

flavor: m1.small
image: ubuntu-trusty-x86_64
networks:

- network: private

Create and associate security groups to an instance

Use the OS::Neutron::SecurityGroup resource to create security groups.

Define the security_groups property of the OS::Neutron::Port resource to associate security
groups to a port, then associate the port to an instance.

The following example creates a security group allowing inbound connections on ports 80 and 443 (web
server) and associates this security group to an instance port:

resources:
web_secgroup:

type: OS::Neutron::SecurityGroup
properties:

rules:
- protocol: tcp

remote_ip_prefix: 0.0.0.0/0
port_range_min: 80
port_range_max: 80

- protocol: tcp
remote_ip_prefix: 0.0.0.0/0
port_range_min: 443
port_range_max: 443

instance_port:
type: OS::Neutron::Port
properties:

network: private
security_groups:

- default
- { get_resource: web_secgroup }

fixed_ips:
- subnet_id: private-subnet

instance:
type: OS::Nova::Server
properties:

flavor: m1.small
image: ubuntu-trusty-x86_64
networks:

- port: { get_resource: instance_port }

3.3. Working with Templates 199

Heat Documentation, Release 16.1.1.dev14

Create and associate a floating IP to an instance

You can use two sets of resources to create and associate floating IPs to instances.

OS::Nova resources

Use the OS::Nova::FloatingIP resource to create a floating IP, and the OS::Nova::FloatingIPAssociation
resource to associate the floating IP to an instance.

The following example creates an instance and a floating IP, and associate the floating IP to the instance:

resources:
floating_ip:

type: OS::Nova::FloatingIP
properties:

pool: public

inst1:
type: OS::Nova::Server
properties:

flavor: m1.small
image: ubuntu-trusty-x86_64
networks:

- network: private

association:
type: OS::Nova::FloatingIPAssociation
properties:

floating_ip: { get_resource: floating_ip }
server_id: { get_resource: inst1 }

OS::Neutron resources

Note: The Networking service (neutron) must be enabled on your OpenStack deployment to use these
resources.

Use the OS::Neutron::FloatingIP resource to create a floating IP, and the
OS::Neutron::FloatingIPAssociation resource to associate the floating IP to a port:

parameters:
net:

description: name of network used to launch instance.
type: string
default: private

resources:
inst1:

type: OS::Nova::Server
properties:

flavor: m1.small
image: ubuntu-trusty-x86_64

(continues on next page)

200 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

networks:
- network: {get_param: net}

floating_ip:
type: OS::Neutron::FloatingIP
properties:

floating_network: public

association:
type: OS::Neutron::FloatingIPAssociation
properties:

floatingip_id: { get_resource: floating_ip }
port_id: {get_attr: [inst1, addresses, {get_param: net}, 0, port]}

You can also create an OS::Neutron::Port and associate that with the server and the floating IP. However
the approach mentioned above will work better with stack updates.

resources:
instance_port:

type: OS::Neutron::Port
properties:

network: private
fixed_ips:

- subnet_id: "private-subnet"

floating_ip:
type: OS::Neutron::FloatingIP
properties:

floating_network: public

association:
type: OS::Neutron::FloatingIPAssociation
properties:

floatingip_id: { get_resource: floating_ip }
port_id: { get_resource: instance_port }

Enable remote access to an instance

The key_name attribute of the OS::Nova::Server resource defines the key pair to use to enable SSH
remote access:

resources:
my_instance:

type: OS::Nova::Server
properties:

flavor: m1.small
image: ubuntu-trusty-x86_64
key_name: my_key

Note: For more information about key pairs, see Configure access and security for instances.

3.3. Working with Templates 201

https://docs.openstack.org/ocata/user-guide/cli-nova-configure-access-security-for-instances.html

Heat Documentation, Release 16.1.1.dev14

Create a key pair

You can create new key pairs with the OS::Nova::KeyPair resource. Key pairs can be imported or created
during the stack creation.

If the public_key property is not specified, the Orchestration module creates a new key pair. If the
save_private_key property is set to true, the private_key attribute of the resource holds the
private key.

The following example creates a new key pair and uses it as authentication key for an instance:

resources:
my_key:

type: OS::Nova::KeyPair
properties:

save_private_key: true
name: my_key

my_instance:
type: OS::Nova::Server
properties:

flavor: m1.small
image: ubuntu-trusty-x86_64
key_name: { get_resource: my_key }

outputs:
private_key:

description: Private key
value: { get_attr: [my_key, private_key] }

Manage networks

Create a network and a subnet

Note: The Networking service (neutron) must be enabled on your OpenStack deployment to create and
manage networks and subnets. Networks and subnets cannot be created if your deployment uses legacy
networking (nova-network).

Use the OS::Neutron::Net resource to create a network, and the OS::Neutron::Subnet resource to provide
a subnet for this network:

resources:
new_net:

type: OS::Neutron::Net

new_subnet:
type: OS::Neutron::Subnet
properties:

network_id: { get_resource: new_net }
cidr: "10.8.1.0/24"
dns_nameservers: ["8.8.8.8", "8.8.4.4"]
ip_version: 4

202 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Create and manage a router

Use the OS::Neutron::Router resource to create a router. You can define its gateway with the
external_gateway_info property:

resources:
router1:

type: OS::Neutron::Router
properties:

external_gateway_info: { network: public }

You can connect subnets to routers with the OS::Neutron::RouterInterface resource:

resources:
subnet1_interface:

type: OS::Neutron::RouterInterface
properties:

router_id: { get_resource: router1 }
subnet: private-subnet

Complete network example

The following example creates a network stack:

• A network and an associated subnet.

• A router with an external gateway.

• An interface to the new subnet for the new router.

In this example, the public network is an existing shared network:

resources:
internal_net:

type: OS::Neutron::Net

internal_subnet:
type: OS::Neutron::Subnet
properties:

network_id: { get_resource: internal_net }
cidr: "10.8.1.0/24"
dns_nameservers: ["8.8.8.8", "8.8.4.4"]
ip_version: 4

internal_router:
type: OS::Neutron::Router
properties:

external_gateway_info: { network: public }

internal_interface:
type: OS::Neutron::RouterInterface
properties:

router_id: { get_resource: internal_router }
subnet: { get_resource: internal_subnet }

3.3. Working with Templates 203

Heat Documentation, Release 16.1.1.dev14

Manage volumes

Create a volume

Use the OS::Cinder::Volume resource to create a new Block Storage volume.

For example:

resources:
my_new_volume:

type: OS::Cinder::Volume
properties:

size: 10

The volumes that you create are empty by default. Use the image property to create a bootable volume
from an existing image:

resources:
my_new_bootable_volume:

type: OS::Cinder::Volume
properties:

size: 10
image: ubuntu-trusty-x86_64

You can also create new volumes from another volume, a volume snapshot, or a volume backup. Use the
source_volid, snapshot_id or backup_id properties to create a new volume from an existing
source.

For example, to create a new volume from a backup:

resources:
another_volume:

type: OS::Cinder::Volume
properties:

backup_id: 2fff50ab-1a9c-4d45-ae60-1d054d6bc868

In this example the size property is not defined because the Block Storage service uses the size of the
backup to define the size of the new volume.

Attach a volume to an instance

Use the OS::Cinder::VolumeAttachment resource to attach a volume to an instance.

The following example creates a volume and an instance, and attaches the volume to the instance:

resources:
new_volume:

type: OS::Cinder::Volume
properties:

size: 1

new_instance:
type: OS::Nova::Server
properties:

(continues on next page)

204 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

flavor: m1.small
image: ubuntu-trusty-x86_64

volume_attachment:
type: OS::Cinder::VolumeAttachment
properties:

volume_id: { get_resource: new_volume }
instance_uuid: { get_resource: new_instance }

Boot an instance from a volume

Use the block_device_mapping property of the OS::Nova::Server resource to define a volume
used to boot the instance. This property is a list of volumes to attach to the instance before its boot.

The following example creates a bootable volume from an image, and uses it to boot an instance:

resources:
bootable_volume:

type: OS::Cinder::Volume
properties:

size: 10
image: ubuntu-trusty-x86_64

instance:
type: OS::Nova::Server
properties:

flavor: m1.small
networks:

- network: private
block_device_mapping:

- device_name: vda
volume_id: { get_resource: bootable_volume }
delete_on_termination: false

Software configuration

There are a variety of options to configure the software which runs on the servers in your stack. These
can be broadly divided into the following:

• Custom image building

• User-data boot scripts and cloud-init

• Software deployment resources

This section will describe each of these options and provide examples for using them together in your
stacks.

3.3. Working with Templates 205

Heat Documentation, Release 16.1.1.dev14

Image building

The first opportunity to influence what software is configured on your servers is by booting them with a
custom-built image. There are a number of reasons you might want to do this, including:

• Boot speed - since the required software is already on the image there is no need to download and
install anything at boot time.

• Boot reliability - software downloads can fail for a number of reasons including transient network
failures and inconsistent software repositories.

• Test verification - custom built images can be verified in test environments before being promoted
to production.

• Configuration dependencies - post-boot configuration may depend on agents already being in-
stalled and enabled

A number of tools are available for building custom images, including:

• diskimage-builder image building tools for OpenStack

• imagefactory builds images for a variety of operating system/cloud combinations

Examples in this guide that require custom images will use diskimage-builder.

User-data boot scripts and cloud-init

When booting a server it is possible to specify the contents of the user-data to be passed to that server.
This user-data is made available either from configured config-drive or from the Metadata service

How this user-data is consumed depends on the image being booted, but the most commonly used tool
for default cloud images is cloud-init.

Whether the image is using cloud-init or not, it should be possible to specify a shell script in the
user_data property and have it be executed by the server during boot:

resources:

the_server:
type: OS::Nova::Server
properties:

flavor, image etc
user_data: |

#!/bin/bash
echo "Running boot script"
...

Note: Debugging these scripts it is often useful to view the boot log using nova console-log
<server-id> to view the progress of boot script execution.

Often there is a need to set variable values based on parameters or resources in the stack. This can be
done with the str_replace intrinsic function:

206 Chapter 3. Using Heat

https://docs.openstack.org/diskimage-builder/wallaby/
https://imgfac.org/
https://docs.openstack.org/diskimage-builder/wallaby/
https://docs.openstack.org/nova/wallaby/user/metadata.html#metadata-service
https://cloudinit.readthedocs.io/
https://cloudinit.readthedocs.io/

Heat Documentation, Release 16.1.1.dev14

parameters:
foo:

default: bar

resources:

the_server:
type: OS::Nova::Server
properties:

flavor, image etc
user_data:

str_replace:
template: |

#!/bin/bash
echo "Running boot script with $FOO"
...

params:
$FOO: {get_param: foo}

Warning: If a stack-update is performed and there are any changes at all to the content of user_data
then the server will be replaced (deleted and recreated) so that the modified boot configuration can
be run on a new server.

When these scripts grow it can become difficult to maintain them inside the template, so the get_file
intrinsic function can be used to maintain the script in a separate file:

parameters:
foo:

default: bar

resources:

the_server:
type: OS::Nova::Server
properties:

flavor, image etc
user_data:

str_replace:
template: {get_file: the_server_boot.sh}
params:

$FOO: {get_param: foo}

Note: str_replace can replace any strings, not just strings starting with $. However doing this for
the above example is useful because the script file can be executed for testing by passing in environment
variables.

3.3. Working with Templates 207

Heat Documentation, Release 16.1.1.dev14

Choosing the user_data_format

The OS::Nova::Server user_data_format property determines how the user_data should be
formatted for the server. For the default value HEAT_CFNTOOLS, the user_data is bundled as part
of the heat-cfntools cloud-init boot configuration data. While HEAT_CFNTOOLS is the default for
user_data_format, it is considered legacy and RAW or SOFTWARE_CONFIG will generally be
more appropriate.

For RAW the user_data is passed to Nova unmodified. For a cloud-init enabled image, the following are
both valid RAW user-data:

resources:

server_with_boot_script:
type: OS::Nova::Server
properties:

flavor, image etc
user_data_format: RAW
user_data: |

#!/bin/bash
echo "Running boot script"
...

server_with_cloud_config:
type: OS::Nova::Server
properties:

flavor, image etc
user_data_format: RAW
user_data: |

#cloud-config
final_message: "The system is finally up, after $UPTIME seconds"

For SOFTWARE_CONFIG user_data is bundled as part of the software config data, and metadata is
derived from any associated Software deployment resources.

Signals and wait conditions

Often it is necessary to pause further creation of stack resources until the boot configuration script
has notified that it has reached a certain state. This is usually either to notify that a service is now
active, or to pass out some generated data which is needed by another resource. The resources
OS::Heat::WaitCondition and OS::Heat::SwiftSignal both perform this function using different tech-
niques and tradeoffs.

OS::Heat::WaitCondition is implemented as a call to the Orchestration API resource signal. The token
is created using credentials for a user account which is scoped only to the wait condition handle resource.
This user is created when the handle is created, and is associated to a project which belongs to the stack,
in an identity domain which is dedicated to the orchestration service.

Sending the signal is a simple HTTP request, as with this example using curl:

curl -i -X POST -H 'X-Auth-Token: <token>' \
-H 'Content-Type: application/json' -H 'Accept: application/json' \
'<wait condition URL>' --data-binary '<json containing signal data>'

The JSON containing the signal data is expected to be of the following format:

208 Chapter 3. Using Heat

https://cloudinit.readthedocs.io/
https://docs.openstack.org/api-ref/orchestration/v1/
https://curl.haxx.se/

Heat Documentation, Release 16.1.1.dev14

{
"status": "SUCCESS",
"reason": "The reason which will appear in the 'heat event-list' output",
"data": "Data to be used elsewhere in the template via get_attr",
"id": "Optional unique ID of signal"

}

All of these values are optional, and if not specified will be set to the following defaults:

{
"status": "SUCCESS",
"reason": "Signal <id> received",
"data": null,
"id": "<sequential number starting from 1 for each signal received>"

}

If status is set to FAILURE then the resource (and the stack) will go into a FAILED state using the
reason as failure reason.

The following template example uses the convenience attribute curl_cli which builds a curl com-
mand with a valid token:

resources:
wait_condition:

type: OS::Heat::WaitCondition
properties:

handle: {get_resource: wait_handle}
Note, count of 5 vs 6 is due to duplicate signal ID 5 sent below
count: 5
timeout: 300

wait_handle:
type: OS::Heat::WaitConditionHandle

the_server:
type: OS::Nova::Server
properties:

flavor, image etc
user_data_format: RAW
user_data:

str_replace:
template: |

#!/bin/sh
Below are some examples of the various ways signals
can be sent to the Handle resource

Simple success signal
wc_notify --data-binary '{"status": "SUCCESS"}'

Or you optionally can specify any of the additional fields
wc_notify --data-binary '{"status": "SUCCESS", "reason":

↪→"signal2"}'
wc_notify --data-binary '{"status": "SUCCESS", "reason":

↪→"signal3", "data": "data3"}'
wc_notify --data-binary '{"status": "SUCCESS", "reason":

↪→"signal4", "id": "id4", "data": "data4"}'

(continues on next page)

3.3. Working with Templates 209

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

If you require control of the ID, you can pass it.
The ID should be unique, unless you intend for duplicate
signals to overwrite each other. The following two calls
do the exact same thing, and will be treated as one signal
(You can prove this by changing count above to 7)
wc_notify --data-binary '{"status": "SUCCESS", "id": "id5"}'
wc_notify --data-binary '{"status": "SUCCESS", "id": "id5"}'

Example of sending a failure signal, optionally
reason, id, and data can be specified as above
wc_notify --data-binary '{"status": "FAILURE"}'

params:
wc_notify: { get_attr: [wait_handle, curl_cli] }

outputs:
wc_data:

value: { get_attr: [wait_condition, data] }
this would return the following json
{"1": null, "2": null, "3": "data3", "id4": "data4", "id5": null}

wc_data_4:
value: { 'Fn::Select': ['id4', { get_attr: [wait_condition, data] }] }
this would return "data4"

OS::Heat::SwiftSignal is implemented by creating an Object Storage API temporary URL which is
populated with signal data with an HTTP PUT. The orchestration service will poll this object until the
signal data is available. Object versioning is used to store multiple signals.

Sending the signal is a simple HTTP request, as with this example using curl:

curl -i -X PUT '<object URL>' --data-binary '<json containing signal data>'

The above template example only needs to have the type changed to the swift signal resources:

resources:
signal:

type: OS::Heat::SwiftSignal
properties:

handle: {get_resource: wait_handle}
timeout: 300

signal_handle:
type: OS::Heat::SwiftSignalHandle

...

The decision to use OS::Heat::WaitCondition or OS::Heat::SwiftSignal will depend on a few factors:

• OS::Heat::SwiftSignal depends on the availability of an Object Storage API

• OS::Heat::WaitCondition depends on whether the orchestration service has been configured with
a dedicated stack domain (which may depend on the availability of an Identity V3 API).

• The preference to protect signal URLs with token authentication or a secret webhook URL.

210 Chapter 3. Using Heat

https://curl.haxx.se/

Heat Documentation, Release 16.1.1.dev14

Software config resources

Boot configuration scripts can also be managed as their own resources. This allows configuration to
be defined once and run on multiple server resources. These software-config resources are stored and
retrieved via dedicated calls to the Orchestration API. It is not possible to modify the contents of an ex-
isting software-config resource, so a stack-update which changes any existing software-config resource
will result in API calls to create a new config and delete the old one.

The resource OS::Heat::SoftwareConfig is used for storing configs represented by text scripts, for ex-
ample:

resources:
boot_script:

type: OS::Heat::SoftwareConfig
properties:

group: ungrouped
config: |

#!/bin/bash
echo "Running boot script"
...

server_with_boot_script:
type: OS::Nova::Server
properties:

flavor, image etc
user_data_format: SOFTWARE_CONFIG
user_data: {get_resource: boot_script}

The resource OS::Heat::CloudConfig allows cloud-init cloud-config to be represented as template
YAML rather than a block string. This allows intrinsic functions to be included when building the
cloud-config. This also ensures that the cloud-config is valid YAML, although no further checks for
valid cloud-config are done.

parameters:
file_content:

type: string
description: The contents of the file /tmp/file

resources:
boot_config:

type: OS::Heat::CloudConfig
properties:

cloud_config:
write_files:
- path: /tmp/file

content: {get_param: file_content}

server_with_cloud_config:
type: OS::Nova::Server
properties:

flavor, image etc
user_data_format: SOFTWARE_CONFIG
user_data: {get_resource: boot_config}

The resource OS::Heat::MultipartMime allows multiple OS::Heat::SoftwareConfig and
OS::Heat::CloudConfig resources to be combined into a single cloud-init multi-part message:

3.3. Working with Templates 211

https://docs.openstack.org/api-ref/orchestration/v1/
https://cloudinit.readthedocs.io/
https://cloudinit.readthedocs.io/

Heat Documentation, Release 16.1.1.dev14

parameters:
file_content:

type: string
description: The contents of the file /tmp/file

other_config:
type: string
description: The ID of a software-config resource created elsewhere

resources:
boot_config:

type: OS::Heat::CloudConfig
properties:

cloud_config:
write_files:
- path: /tmp/file

content: {get_param: file_content}

boot_script:
type: OS::Heat::SoftwareConfig
properties:

group: ungrouped
config: |

#!/bin/bash
echo "Running boot script"
...

server_init:
type: OS::Heat::MultipartMime
properties:

parts:
- config: {get_resource: boot_config}
- config: {get_resource: boot_script}
- config: {get_param: other_config}

server:
type: OS::Nova::Server
properties:

flavor, image etc
user_data_format: SOFTWARE_CONFIG
user_data: {get_resource: server_init}

Software deployment resources

There are many situations where it is not desirable to replace the server whenever there is a configuration
change. The OS::Heat::SoftwareDeployment resource allows any number of software configurations to
be added or removed from a server throughout its life-cycle.

212 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Building custom image for software deployments

OS::Heat::SoftwareConfig resources are used to store software configuration, and a
OS::Heat::SoftwareDeployment resource is used to associate a config resource with one server.
The group attribute on OS::Heat::SoftwareConfig specifies what tool will consume the config content.

OS::Heat::SoftwareConfig has the ability to define a schema of inputs and which the configuration
script supports. Inputs are mapped to whatever concept the configuration tool has for assigning vari-
ables/parameters.

Likewise, outputs are mapped to the tools capability to export structured data after configuration
execution. For tools which do not support this, outputs can always be written to a known file path for
the hook to read.

The OS::Heat::SoftwareDeployment resource allows values to be assigned to the config inputs, and the
resource remains in an IN_PROGRESS state until the server signals to heat what (if any) output values
were generated by the config script.

Custom image script

Each of the following examples requires that the servers be booted with a custom image. The following
script uses diskimage-builder to create an image required in later examples:

Clone the required repositories. Some of these are also available
via pypi or as distro packages.
git clone https://opendev.org/openstack/tripleo-image-elements
git clone https://opendev.org/openstack/heat-agents

Install diskimage-builder from source
sudo pip install git+https://opendev.org/openstack/diskimage-builder

Required by diskimage-builder to discover element collections
export ELEMENTS_PATH=tripleo-image-elements/elements:heat-agents/

The base operating system element(s) provided by the diskimage-builder
elements collection. Other values which may work include:
centos7, debian, opensuse, rhel, rhel7, or ubuntu
export BASE_ELEMENTS="fedora selinux-permissive"
Install and configure the os-collect-config agent to poll the metadata
server (heat service or zaqar message queue and so on) for configuration
changes to execute
export AGENT_ELEMENTS="os-collect-config os-refresh-config os-apply-config"

heat-config installs an os-refresh-config script which will invoke the
appropriate hook to perform configuration. The element heat-config-script
installs a hook to perform configuration with shell scripts
export DEPLOYMENT_BASE_ELEMENTS="heat-config heat-config-script"

Install a hook for any other chosen configuration tool(s).
Elements which install hooks include:
heat-config-cfn-init, heat-config-puppet, or heat-config-salt
export DEPLOYMENT_TOOL=""

The name of the qcow2 image to create, and the name of the image
(continues on next page)

3.3. Working with Templates 213

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

uploaded to the OpenStack image registry.
export IMAGE_NAME=fedora-software-config

Create the image
disk-image-create vm $BASE_ELEMENTS $AGENT_ELEMENTS \

$DEPLOYMENT_BASE_ELEMENTS $DEPLOYMENT_TOOL -o $IMAGE_NAME.qcow2

Upload the image, assuming valid credentials are already sourced
openstack image create --disk-format qcow2 --container-format bare \

$IMAGE_NAME < $IMAGE_NAME.qcow2

Note: Above script uses diskimage-builder, make sure the environment already fulfill all requirements
in requirements.txt of diskimage-builder.

Configuring with scripts

The Custom image script already includes the heat-config-script element so the built image
will already have the ability to configure using shell scripts.

Config inputs are mapped to shell environment variables. The script can communicate outputs to heat by
writing to the $heat_outputs_path.output name file. See the following example for a script
which expects inputs foo, bar and generates an output result.

resources:
config:

type: OS::Heat::SoftwareConfig
properties:

group: script
inputs:
- name: foo
- name: bar
outputs:
- name: result
config: |

#!/bin/sh -x
echo "Writing to /tmp/$bar"
echo $foo > /tmp/$bar
echo -n "The file /tmp/$bar contains `cat /tmp/$bar` for server

↪→$deploy_server_id during $deploy_action" > $heat_outputs_path.result
echo "Written to /tmp/$bar"
echo "Output to stderr" 1>&2

deployment:
type: OS::Heat::SoftwareDeployment
properties:

config:
get_resource: config

server:
get_resource: server

input_values:
foo: fooooo
bar: baaaaa

(continues on next page)

214 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

server:
type: OS::Nova::Server
properties:

flavor, image etc
user_data_format: SOFTWARE_CONFIG

outputs:
result:

value:
get_attr: [deployment, result]

stdout:
value:

get_attr: [deployment, deploy_stdout]
stderr:

value:
get_attr: [deployment, deploy_stderr]

status_code:
value:

get_attr: [deployment, deploy_status_code]

Note: A config resource can be associated with multiple deployment resources, and each deployment
can specify the same or different values for the server and input_values properties.

As can be seen in the outputs section of the above template, the result config output value is avail-
able as an attribute on the deployment resource. Likewise the captured stdout, stderr and status_code
are also available as attributes.

Configuring with os-apply-config

The agent toolchain of os-collect-config, os-refresh-config and os-apply-config
can actually be used on their own to inject heat stack configuration data into a server running a custom
image.

The custom image needs to have the following to use this approach:

• All software dependencies installed

• os-refresh-config scripts to be executed on configuration changes

• os-apply-config templates to transform the heat-provided config data into service configuration
files

The projects tripleo-image-elements and tripleo-heat-templates demonstrate this approach.

3.3. Working with Templates 215

https://opendev.org/openstack/os-refresh-config
https://opendev.org/openstack/os-apply-config
https://opendev.org/openstack/tripleo-image-elements
https://opendev.org/openstack/tripleo-heat-templates

Heat Documentation, Release 16.1.1.dev14

Configuring with cfn-init

Likely the only reason to use the cfn-init hook is to migrate templates which contain
AWS::CloudFormation::Init metadata without needing a complete rewrite of the config metadata. It
is included here as it introduces a number of new concepts.

To use the cfn-init tool the heat-config-cfn-init element is required to be on the built
image, so Custom image script needs to be modified with the following:

export DEPLOYMENT_TOOL="heat-config-cfn-init"

Configuration data which used to be included in the AWS::CloudFormation::Init section of
resource metadata is instead moved to the config property of the config resource, as in the following
example:

resources:

config:
type: OS::Heat::StructuredConfig
properties:

group: cfn-init
inputs:
- name: bar
config:

config:
files:

/tmp/foo:
content:
get_input: bar

mode: '000644'

deployment:
type: OS::Heat::StructuredDeployment
properties:

name: 10_deployment
signal_transport: NO_SIGNAL
config:

get_resource: config
server:

get_resource: server
input_values:

bar: baaaaa

other_deployment:
type: OS::Heat::StructuredDeployment
properties:

name: 20_other_deployment
signal_transport: NO_SIGNAL
config:

get_resource: config
server:

get_resource: server
input_values:

bar: barmy

server:
(continues on next page)

216 Chapter 3. Using Heat

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

type: OS::Nova::Server
properties:

image: {get_param: image}
flavor: {get_param: flavor}
key_name: {get_param: key_name}
user_data_format: SOFTWARE_CONFIG

There are a number of things to note about this template example:

• OS::Heat::StructuredConfig is like OS::Heat::SoftwareConfig except that the config property
contains structured YAML instead of text script. This is useful for a number of other configuration
tools including ansible, salt and os-apply-config.

• cfn-init has no concept of inputs, so {get_input: bar} acts as a placeholder which
gets replaced with the OS::Heat::StructuredDeployment input_values value when the de-
ployment resource is created.

• cfn-init has no concept of outputs, so specifying signal_transport: NO_SIGNAL
will mean that the deployment resource will immediately go into the CREATED state instead of
waiting for a completed signal from the server.

• The template has 2 deployment resources deploying the same config with different
input_values. The order these are deployed in on the server is determined by sorting the
values of the name property for each resource (10_deployment, 20_other_deployment)

Configuring with puppet

The puppet hook makes it possible to write configuration as puppet manifests which are deployed and
run in a masterless environment.

To specify configuration as puppet manifests the heat-config-puppet element is required to be
on the built image, so Custom image script needs to be modified with the following:

export DEPLOYMENT_TOOL="heat-config-puppet"

resources:

config:
type: OS::Heat::SoftwareConfig
properties:

group: puppet
inputs:
- name: foo
- name: bar
outputs:
- name: result
config:

get_file: example-puppet-manifest.pp

deployment:
type: OS::Heat::SoftwareDeployment
properties:

config:
get_resource: config

(continues on next page)

3.3. Working with Templates 217

https://puppet.com/

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

server:
get_resource: server

input_values:
foo: fooooo
bar: baaaaa

server:
type: OS::Nova::Server
properties:

image: {get_param: image}
flavor: {get_param: flavor}
key_name: {get_param: key_name}
user_data_format: SOFTWARE_CONFIG

outputs:
result:

value:
get_attr: [deployment, result]

stdout:
value:

get_attr: [deployment, deploy_stdout]

This demonstrates the use of the get_file function, which will attach the contents of the file
example-puppet-manifest.pp, containing:

file { 'barfile':
ensure => file,
mode => '0644',
path => '/tmp/$::bar',
content => '$::foo',

}

file { 'output_result':
ensure => file,
path => '$::heat_outputs_path.result',
mode => '0644',
content => 'The file /tmp/$::bar contains $::foo',

}

Environments

The environment affects the runtime behavior of a template. It provides a way to override the resource
implementations and a mechanism to place parameters that the service needs.

To fully understand the runtime behavior you have to consider what plug-ins are installed on the cloud
youre using.

218 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Environment file format

The environment is a yaml text file that contains two main sections:

parameters A list of key/value pairs.

resource_registry Definition of custom resources.

It also can contain some other sections:

parameter_defaults Default parameters passed to all template resources.

encrypted_parameters List of encrypted parameters.

event_sinks List of endpoints that would receive stack events.

parameter_merge_strategies Merge strategies for merging parameters and parameter defaults
from the environment file.

Use the -e option of the openstack stack create command to create a stack using the environ-
ment defined in such a file.

You can also provide environment parameters as a list of key/value pairs using the parameter option of
the openstack stack create command.

In the following example the environment is read from the my_env.yaml file and an extra parameter
is provided using the parameter option:

$ openstack stack create my_stack -e my_env.yaml --parameter "param1=val1;
↪→param2=val2" -t my_tmpl.yaml

Environment Merging

Parameters and their defaults (parameter_defaults) are merged based on merge strategies in an
environment file.

There are three merge strategy types:

overwrite Overwrites a parameter, existing parameter values are replaced.

merge Merges the existing parameter value and the new value. String values are concatenated, comma
delimited lists are extended and json values are updated.

deep_merge Json values are deep merged. Not useful for other types like comma delimited lists and
strings. If specified for them, it falls back to merge.

You can provide a default merge strategy and/or parameter specific merge strategies per environ-
ment file. Parameter specific merge strategy is only used for that parameter. An example of
parameter_merge_strategies section in an environment file:

parameter_merge_strategies:
default: merge
param1: overwrite
param2: deep_merge

If no merge strategy is provided in an environment file, overwrite becomes the default merge strategy
for all parameters and parameter_defaults in that environment file.

3.3. Working with Templates 219

Heat Documentation, Release 16.1.1.dev14

Global and effective environments

The environment used for a stack is the combination of the environment you use with the template
for the stack, and a global environment that is determined by your cloud operator. An entry in the
user environment takes precedence over the global environment. OpenStack includes a default global
environment, but your cloud operator can add additional environment entries.

The cloud operator can add to the global environment by putting environment files in a con-
figurable directory wherever the Orchestration engine runs. The configuration variable is named
environment_dir and is found in the [DEFAULT] section of /etc/heat/heat.conf. The
default for that directory is /etc/heat/environment.d. Its contents are combined in whatever
order the shell delivers them when the service starts up, which is the time when these files are read. If the
my_env.yaml file from the example above had been put in the environment_dir then the users
command line could be this:

openstack stack create my_stack --parameter "some_parm=bla" -t my_tmpl.yaml

Global templates

A global template directory allows files to be pre-loaded in the global environment. A global template
is determined by your cloud operator. An entry in the user template takes precedence over the global
environment. OpenStack includes a default global template, but your cloud operator can add additional
template entries.

The cloud operator can add new global templates by putting template files in a configurable directory
wherever the Orchestration engine runs. The configuration variable is named template_dir and is
found in the [DEFAULT] section of /etc/heat/heat.conf. The default for that directory is /
etc/heat/templates. Its contents are combined in whatever order the shell delivers them when
the service starts up, which is the time when these files are read. If the my_tmpl.yaml file from the
example below has been put in the template_dir, other templates which we used to create stacks
could contain following way to include my_tmpl.yaml in it:

resourceA:
type: {get_file: "my_tmpl.yaml"}

Usage examples

Define values for template arguments

You can define values for the template arguments in the parameters section of an environment file:

parameters:
KeyName: heat_key
InstanceType: m1.micro
ImageId: F18-x86_64-cfntools

220 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Define defaults to parameters

You can define default values for all template arguments in the parameter_defaults section of an
environment file. These defaults are passed into all template resources:

parameter_defaults:
KeyName: heat_key

Mapping resources

You can map one resource to another in the resource_registry section of an environment file. The
resource you provide in this manner must have an identifier, and must reference either another resources
ID or the URL of an existing template file.

The following example maps a new OS::Networking::FloatingIP resource to an existing
OS::Nova::FloatingIP resource:

resource_registry:
"OS::Networking::FloatingIP": "OS::Nova::FloatingIP"

You can use wildcards to map multiple resources, for example to map all OS::Neutron resources to
OS::Network:

resource_registry:
"OS::Network*": "OS::Neutron*"

Override a resource with a custom resource

To create or override a resource with a custom resource, create a template file to define this resource,
and provide the URL to the template file in the environment file:

resource_registry:
"AWS::EC2::Instance": file:///path/to/my_instance.yaml

The supported URL schemes are file, http and https.

Note: The template file extension must be .yaml or .template, or it will not be treated as a custom
template resource.

You can limit the usage of a custom resource to a specific resource of the template:

resource_registry:
resources:

my_db_server:
"OS::DBInstance": file:///home/mine/all_my_cool_templates/db.yaml

3.3. Working with Templates 221

Heat Documentation, Release 16.1.1.dev14

Pause stack creation, update or deletion on a given resource

If you want to debug your stack as its being created, updated or deleted, or if you want to run it in
phases, you can set pre-create, pre-update, pre-delete, post-create, post-update
and post-delete hooks in the resources section of resource_registry.

To set a hook, add either hooks: $hook_name (for example hooks: pre-update) to the
resources dictionary. You can also use a list (hooks: [pre-create, pre-update]) to stop
on several actions.

You can combine hooks with other resources properties such as provider templates or type mapping:

resource_registry:
resources:

my_server:
"OS::DBInstance": file:///home/mine/all_my_cool_templates/db.yaml
hooks: pre-create

nested_stack:
nested_resource:

hooks: pre-update
another_resource:

hooks: [pre-create, pre-update]

When heat encounters a resource that has a hook, it pauses the resource action until the hook clears.
Any resources that depend on the paused action wait as well. Non-dependent resources are created in
parallel unless they have their own hooks.

It is possible to perform a wild card match using an asterisk (*) in the resource name. For example, the
following entry pauses while creating app_server and database_server, but not server or
app_network:

resource_registry:
resources:

"*_server":
hooks: pre-create

Clear hooks by signaling the resource with {unset_hook: $hook_name} (for example
{unset_hook: pre-update}).

Retrieving events

By default events are stored in the database and can be retrieved via the API. Using the environment,
you can register an endpoint which will receive events produced by your stack, so that you dont have to
poll Heat.

You can specify endpoints using the event_sinks property:

event_sinks:
- type: zaqar-queue

target: myqueue
ttl: 1200

222 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Restrict update or replace of a given resource

If you want to restrict update or replace of a resource when your stack is being updated, you can set
restricted_actions in the resources section of resource_registry.

To restrict update or replace, add restricted_actions: update or
restricted_actions: replace to the resource dictionary. You can also use [update,
replace] to restrict both actions.

You can combine restricted actions with other resources properties such as provider templates or
type mapping or hooks:

resource_registry:
resources:

my_server:
"OS::DBInstance": file:///home/mine/all_my_cool_templates/db.yaml
restricted_actions: replace
hooks: pre-create

nested_stack:
nested_resource:

restricted_actions: update
another_resource:

restricted_actions: [update, replace]

It is possible to perform a wild card match using an asterisk (*) in the resource name. For example,
the following entry restricts replace for app_server and database_server, but not server or
app_network:

resource_registry:
resources:

"*_server":
restricted_actions: replace

Template composition

When writing complex templates you are encouraged to break up your template into separate smaller
templates. These can then be brought together using template resources. This is a mechanism to define
a resource using a template, thus composing one logical stack with multiple templates.

Template resources provide a feature similar to the AWS::CloudFormation::Stack resource, but also
provide a way to:

• Define new resource types and build your own resource library.

• Override the default behavior of existing resource types.

To achieve this:

• The Orchestration client gets the associated template files and passes them along in the files
section of the POST stacks/ API request.

• The environment in the Orchestration engine manages the mapping of resource type to template
creation.

• The Orchestration engine translates template parameters into resource properties.

3.3. Working with Templates 223

Heat Documentation, Release 16.1.1.dev14

The following examples illustrate how you can use a custom template to define new types of resources.
These examples use a custom template stored in a my_nova.yaml file

heat_template_version: 2015-04-30

parameters:
key_name:

type: string
description: Name of a KeyPair

resources:
server:

type: OS::Nova::Server
properties:

key_name: {get_param: key_name}
flavor: m1.small
image: ubuntu-trusty-x86_64

Use the template filename as type

The following template defines the my_nova.yaml file as value for the type property of a resource

heat_template_version: 2015-04-30

resources:
my_server:

type: my_nova.yaml
properties:

key_name: my_key

The key_name argument of the my_nova.yaml template gets its value from the key_name property
of the new template.

Note: The above reference to my_nova.yaml assumes it is in the same directory. You can use any of
the following forms:

• Relative path (my_nova.yaml)

• Absolute path (file:///home/user/templates/my_nova.yaml)

• Http URL (http://example.com/templates/my_nova.yaml)

• Https URL (https://example.com/templates/my_nova.yaml)

To create the stack run:

$ openstack stack create -t main.yaml stack1

224 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Define a new resource type

You can associate a name to the my_nova.yaml template in an environment file. If the name is already
known by the Orchestration module then your new resource will override the default one.

In the following example a new OS::Nova::Server resource overrides the default resource of the
same name.

An env.yaml environment file holds the definition of the new resource

resource_registry:
"OS::Nova::Server": my_nova.yaml

Note: See Environments for more detail about environment files.

You can now use the new OS::Nova::Server in your new template

heat_template_version: 2015-04-30

resources:
my_server:

type: OS::Nova::Server
properties:

key_name: my_key

To create the stack run:

$ openstack stack create -t main.yaml -e env.yaml example-two

Get access to nested attributes

There are implicit attributes of a template resource. Accessing nested attributes requires
heat_template_version 2014-10-16 or higher. These are accessible as follows

heat_template_version: 2015-04-30

resources:
my_server:

type: my_nova.yaml

outputs:
test_out:

value: {get_attr: my_server, resource.server, first_address}

3.3. Working with Templates 225

Heat Documentation, Release 16.1.1.dev14

Making your template resource more transparent

Note: Available since 2015.1 (Kilo).

If you wish to be able to return the ID of one of the inner resources instead of the nested stacks identifier,
you can add the special reserved output OS::stack_id to your template resource

heat_template_version: 2015-04-30

resources:
server:

type: OS::Nova::Server

outputs:
OS::stack_id:

value: {get_resource: server}

Now when you use get_resource from the outer template heat will use the nova server id and not
the template resource identifier.

OpenStack Resource Types

OS::Aodh::CompositeAlarm

Available since 8.0.0 (Ocata)

A resource that implements Aodh composite alarm.

Allows to specify multiple rules when creating a composite alarm, and the rules combined with logical
operators: and, or.

Required Properties

composite_ruleű

Composite threshold rules in JSON format.

Map value expected.

Can be updated without replacement.

Map properties:

operatorű

Required.

The operator indicates how to combine the rules.

String value expected.

Can be updated without replacement.

226 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Allowed values: or, and

rulesű

Rules list. Basic threshold/gnocchi rules and nested dict which combine threshold/gnocchi rules
by and or or are allowed. For example, the form is like: [RULE1, RULE2, {and: [RULE3,
RULE4]}], the basic threshold/gnocchi rules must include a type field.

List value expected.

Can be updated without replacement.

The length must be at least 2.

Optional Properties

alarm_actionsű

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.

Can be updated without replacement.

alarm_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

descriptionű

Description for the alarm.

String value expected.

Can be updated without replacement.

enabledű

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

3.3. Working with Templates 227

Heat Documentation, Release 16.1.1.dev14

insufficient_data_actionsű

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

ok_actionsű

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.

Can be updated without replacement.

ok_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

repeat_actionsű

228 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

severityű

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.

Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsű

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.

durationű

Required.

Duration for the time constraint.

Integer value expected.

3.3. Working with Templates 229

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

The value must be at least 0.

nameű

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.

startű

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezoneű

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Aodh::CompositeAlarm
properties:

alarm_actions: [Value, Value, ...]
alarm_queues: [String, String, ...]
composite_rule: {"operator": String, "rules": [Value, Value, ...]}
description: String
enabled: Boolean
insufficient_data_actions: [Value, Value, ...]
insufficient_data_queues: [String, String, ...]
ok_actions: [Value, Value, ...]

(continues on next page)

230 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

ok_queues: [String, String, ...]
repeat_actions: Boolean
severity: String
time_constraints: [{"name": String, "start": String, "description":

↪→String, "duration": Integer, "timezone": String}, {"name": String, "start
↪→": String, "description": String, "duration": Integer, "timezone":
↪→String}, ...]

OS::Aodh::EventAlarm

Available since 8.0.0 (Ocata)

A resource that implements event alarms.

Allows users to define alarms which can be evaluated based on events passed from other OpenStack ser-
vices. The events can be emitted when the resources from other OpenStack services have been updated,
created or deleted, such as compute.instance.reboot.end, scheduler.select_destinations.end.

Optional Properties

alarm_actionsű

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.

Can be updated without replacement.

alarm_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

descriptionű

Description for the alarm.

3.3. Working with Templates 231

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

enabledű

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

event_typeű

Event type to evaluate against. If not specified will match all events.

String value expected.

Can be updated without replacement.

Defaults to "*"

insufficient_data_actionsű

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

ok_actionsű

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.

Can be updated without replacement.

ok_queuesű

232 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

queryű

A list for filtering events. Query conditions used to filter specific events when evaluating the alarm.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

fieldű

Optional.

Name of attribute to compare.

String value expected.

Can be updated without replacement.

opű

Optional.

Comparison operator.

String value expected.

Can be updated without replacement.

Allowed values: le, ge, eq, lt, gt, ne

typeű

Optional.

The type of the attribute.

String value expected.

3.3. Working with Templates 233

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Defaults to "string"

Allowed values: integer, float, string, boolean, datetime

valueű

Optional.

String value with which to compare.

String value expected.

Can be updated without replacement.

repeat_actionsű

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

severityű

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.

Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsű

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

234 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

descriptionű

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.

durationű

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.

nameű

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.

startű

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezoneű

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

3.3. Working with Templates 235

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Aodh::EventAlarm
properties:

alarm_actions: [Value, Value, ...]
alarm_queues: [String, String, ...]
description: String
enabled: Boolean
event_type: String
insufficient_data_actions: [Value, Value, ...]
insufficient_data_queues: [String, String, ...]
ok_actions: [Value, Value, ...]
ok_queues: [String, String, ...]
query: [{"field": String, "type": String, "op": String, "value":

↪→String}, {"field": String, "type": String, "op": String, "value": String}
↪→, ...]

repeat_actions: Boolean
severity: String
time_constraints: [{"name": String, "start": String, "description":

↪→String, "duration": Integer, "timezone": String}, {"name": String, "start
↪→": String, "description": String, "duration": Integer, "timezone":
↪→String}, ...]

OS::Aodh::GnocchiAggregationByMetricsAlarm

Available since 2015.1 (Kilo)

A resource that implements alarm with specified metrics.

A resource that implements alarm which allows to use specified by user metrics in metrics list.

Required Properties

metricsű

A list of metric ids.

List value expected.

Can be updated without replacement.

thresholdű

236 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Threshold to evaluate against.

Number value expected.

Can be updated without replacement.

Optional Properties

aggregation_methodű

The aggregation method to compare to the threshold.

String value expected.

Can be updated without replacement.

alarm_actionsű

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.

Can be updated without replacement.

alarm_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

comparison_operatorű

Operator used to compare specified statistic with threshold.

String value expected.

Can be updated without replacement.

Allowed values: le, ge, eq, lt, gt, ne

descriptionű

Description for the alarm.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 237

Heat Documentation, Release 16.1.1.dev14

enabledű

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

evaluation_periodsű

Number of periods to evaluate over.

Integer value expected.

Can be updated without replacement.

granularityű

The time range in seconds.

Integer value expected.

Can be updated without replacement.

insufficient_data_actionsű

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

ok_actionsű

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.

Can be updated without replacement.

ok_queuesű

238 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

repeat_actionsű

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

severityű

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.

Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsű

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

3.3. Working with Templates 239

Heat Documentation, Release 16.1.1.dev14

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.

durationű

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.

nameű

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.

startű

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezoneű

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

240 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Aodh::GnocchiAggregationByMetricsAlarm
properties:

aggregation_method: String
alarm_actions: [Value, Value, ...]
alarm_queues: [String, String, ...]
comparison_operator: String
description: String
enabled: Boolean
evaluation_periods: Integer
granularity: Integer
insufficient_data_actions: [Value, Value, ...]
insufficient_data_queues: [String, String, ...]
metrics: [Value, Value, ...]
ok_actions: [Value, Value, ...]
ok_queues: [String, String, ...]
repeat_actions: Boolean
severity: String
threshold: Number
time_constraints: [{"name": String, "start": String, "description":

↪→String, "duration": Integer, "timezone": String}, {"name": String, "start
↪→": String, "description": String, "duration": Integer, "timezone":
↪→String}, ...]

OS::Aodh::GnocchiAggregationByResourcesAlarm

Available since 2015.1 (Kilo)

A resource that implements alarm as an aggregation of resources alarms.

A resource that implements alarm which uses aggregation of resources alarms with some condition. If
state of a system is satisfied alarm condition, alarm is activated.

3.3. Working with Templates 241

Heat Documentation, Release 16.1.1.dev14

Required Properties

metricű

Metric name watched by the alarm.

String value expected.

Can be updated without replacement.

queryű

The query to filter the metrics.

String value expected.

Can be updated without replacement.

resource_typeű

Resource type.

String value expected.

Can be updated without replacement.

thresholdű

Threshold to evaluate against.

Number value expected.

Can be updated without replacement.

Optional Properties

aggregation_methodű

The aggregation method to compare to the threshold.

String value expected.

Can be updated without replacement.

alarm_actionsű

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.

Can be updated without replacement.

alarm_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.

Can be updated without replacement.

242 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

comparison_operatorű

Operator used to compare specified statistic with threshold.

String value expected.

Can be updated without replacement.

Allowed values: le, ge, eq, lt, gt, ne

descriptionű

Description for the alarm.

String value expected.

Can be updated without replacement.

enabledű

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

evaluation_periodsű

Number of periods to evaluate over.

Integer value expected.

Can be updated without replacement.

granularityű

The time range in seconds.

Integer value expected.

Can be updated without replacement.

insufficient_data_actionsű

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuesű

3.3. Working with Templates 243

Heat Documentation, Release 16.1.1.dev14

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

ok_actionsű

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.

Can be updated without replacement.

ok_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

repeat_actionsű

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

severityű

244 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.

Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsű

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.

durationű

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.

nameű

Required.

Name for the time constraint.

String value expected.

3.3. Working with Templates 245

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

startű

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezoneű

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Aodh::GnocchiAggregationByResourcesAlarm
properties:

aggregation_method: String
alarm_actions: [Value, Value, ...]
alarm_queues: [String, String, ...]
comparison_operator: String
description: String
enabled: Boolean
evaluation_periods: Integer
granularity: Integer
insufficient_data_actions: [Value, Value, ...]
insufficient_data_queues: [String, String, ...]
metric: String
ok_actions: [Value, Value, ...]
ok_queues: [String, String, ...]
query: String
repeat_actions: Boolean
resource_type: String
severity: String

(continues on next page)

246 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

threshold: Number
time_constraints: [{"name": String, "start": String, "description":

↪→String, "duration": Integer, "timezone": String}, {"name": String, "start
↪→": String, "description": String, "duration": Integer, "timezone":
↪→String}, ...]

OS::Aodh::GnocchiResourcesAlarm

Available since 2015.1 (Kilo)

A resource allowing for the watch of some specified resource.

An alarm that evaluates threshold based on some metric for the specified resource.

Required Properties

metricű

Metric name watched by the alarm.

String value expected.

Can be updated without replacement.

resource_idű

Id of a resource.

String value expected.

Can be updated without replacement.

resource_typeű

Resource type.

String value expected.

Can be updated without replacement.

thresholdű

Threshold to evaluate against.

Number value expected.

Can be updated without replacement.

3.3. Working with Templates 247

Heat Documentation, Release 16.1.1.dev14

Optional Properties

aggregation_methodű

The aggregation method to compare to the threshold.

String value expected.

Can be updated without replacement.

alarm_actionsű

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.

Can be updated without replacement.

alarm_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

comparison_operatorű

Operator used to compare specified statistic with threshold.

String value expected.

Can be updated without replacement.

Allowed values: le, ge, eq, lt, gt, ne

descriptionű

Description for the alarm.

String value expected.

Can be updated without replacement.

enabledű

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

248 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Defaults to "true"

evaluation_periodsű

Number of periods to evaluate over.

Integer value expected.

Can be updated without replacement.

granularityű

The time range in seconds.

Integer value expected.

Can be updated without replacement.

insufficient_data_actionsű

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

ok_actionsű

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.

Can be updated without replacement.

ok_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

List value expected.

3.3. Working with Templates 249

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

repeat_actionsű

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

severityű

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.

Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsű

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

250 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.

durationű

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.

nameű

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.

startű

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezoneű

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showű Detailed information about resource.

3.3. Working with Templates 251

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Aodh::GnocchiResourcesAlarm
properties:

aggregation_method: String
alarm_actions: [Value, Value, ...]
alarm_queues: [String, String, ...]
comparison_operator: String
description: String
enabled: Boolean
evaluation_periods: Integer
granularity: Integer
insufficient_data_actions: [Value, Value, ...]
insufficient_data_queues: [String, String, ...]
metric: String
ok_actions: [Value, Value, ...]
ok_queues: [String, String, ...]
repeat_actions: Boolean
resource_id: String
resource_type: String
severity: String
threshold: Number
time_constraints: [{"name": String, "start": String, "description":

↪→String, "duration": Integer, "timezone": String}, {"name": String, "start
↪→": String, "description": String, "duration": Integer, "timezone":
↪→String}, ...]

OS::Aodh::LBMemberHealthAlarm

Available since 13.0.0 (Train)

A resource that implements a Loadbalancer Member Health Alarm.

Allows setting alarms based on the health of load balancer pool members, where the health of a member
is determined by the member reporting an operating_status of ERROR beyond an initial grace period
after creation (120 seconds by default).

252 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

autoscaling_group_idű

ID of the Heat autoscaling group that contains the loadbalancer members. Unhealthy members will be
marked as such before an update is triggered on the root stack.

String value expected.

Can be updated without replacement.

poolű

Name or ID of the loadbalancer pool for which the health of each member will be evaluated.

String value expected.

Can be updated without replacement.

stackű

Name or ID of the root / top level Heat stack containing the loadbalancer pool and members. An update
will be triggered on the root Stack if an unhealthy member is detected in the loadbalancer pool.

String value expected.

Updates cause replacement.

Optional Properties

alarm_actionsű

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.

Can be updated without replacement.

alarm_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

descriptionű

3.3. Working with Templates 253

Heat Documentation, Release 16.1.1.dev14

Description for the alarm.

String value expected.

Can be updated without replacement.

enabledű

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

insufficient_data_actionsű

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

ok_actionsű

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.

Can be updated without replacement.

ok_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

List value expected.

Can be updated without replacement.

254 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

repeat_actionsű

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

severityű

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

Can be updated without replacement.

Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsű

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

Optional.

3.3. Working with Templates 255

Heat Documentation, Release 16.1.1.dev14

Description for the time constraint.

String value expected.

Updates cause replacement.

durationű

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.

nameű

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.

startű

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezoneű

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showű Detailed information about resource.

256 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Aodh::LBMemberHealthAlarm
properties:

alarm_actions: [Value, Value, ...]
alarm_queues: [String, String, ...]
autoscaling_group_id: String
description: String
enabled: Boolean
insufficient_data_actions: [Value, Value, ...]
insufficient_data_queues: [String, String, ...]
ok_actions: [Value, Value, ...]
ok_queues: [String, String, ...]
pool: String
repeat_actions: Boolean
severity: String
stack: String
time_constraints: [{"name": String, "start": String, "description":

↪→String, "duration": Integer, "timezone": String}, {"name": String, "start
↪→": String, "description": String, "duration": Integer, "timezone":
↪→String}, ...]

OS::Barbican::CertificateContainer

Available since 6.0.0 (Mitaka)

A resource for creating barbican certificate container.

A certificate container is used for storing the secrets that are relevant to certificates.

Optional Properties

certificate_refű

Reference to certificate.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

intermediates_refű

Reference to intermediates.

String value expected.

Updates cause replacement.

3.3. Working with Templates 257

Heat Documentation, Release 16.1.1.dev14

Value must be of type barbican.secret

nameű

Human-readable name for the container.

String value expected.

Updates cause replacement.

private_key_passphrase_refű

Reference to private key passphrase.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

private_key_refű

Reference to private key.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

Attributes

consumersű The URIs to container consumers.

container_refű The URI to the container.

secret_refsű The URIs to secrets stored in container.

showű Detailed information about resource.

statusű The status of the container.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Barbican::CertificateContainer
properties:

certificate_ref: String
intermediates_ref: String
name: String
private_key_passphrase_ref: String
private_key_ref: String

258 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Barbican::GenericContainer

Available since 6.0.0 (Mitaka)

A resource for creating Barbican generic container.

A generic container is used for any type of secret that a user may wish to aggregate. There are no
restrictions on the amount of secrets that can be held within this container.

Optional Properties

nameű

Human-readable name for the container.

String value expected.

Updates cause replacement.

secretsű

References to secrets that will be stored in container.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

nameű

Required.

Name of the secret.

String value expected.

Updates cause replacement.

refű

Required.

Reference to the secret.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

3.3. Working with Templates 259

Heat Documentation, Release 16.1.1.dev14

Attributes

consumersű The URIs to container consumers.

container_refű The URI to the container.

secret_refsű The URIs to secrets stored in container.

showű Detailed information about resource.

statusű The status of the container.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Barbican::GenericContainer
properties:

name: String
secrets: [{"name": String, "ref": String}, {"name": String, "ref":

↪→String}, ...]

OS::Barbican::Order

Available since 2014.2 (Juno)

A resource allowing for the generation secret material by Barbican.

The resource allows to generate some secret material. It can be, for example, some key or certificate.
The order encapsulates the workflow and history for the creation of a secret. The time to generate a
secret can vary depending on the type of secret.

Required Properties

typeű

Available since 5.0.0 (Liberty)

The type of the order.

String value expected.

Updates cause replacement.

Allowed values: key, asymmetric, certificate

260 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

algorithmű

The algorithm type used to generate the secret. Required for key and asymmetric types of order.

String value expected.

Updates cause replacement.

bit_lengthű

The bit-length of the secret. Required for key and asymmetric types of order.

Integer value expected.

Updates cause replacement.

ca_idű

Available since 5.0.0 (Liberty)

The identifier of the CA to use.

String value expected.

Updates cause replacement.

expirationű

The expiration date for the secret in ISO-8601 format.

String value expected.

Updates cause replacement.

Value must be of type expiration

modeű

The type/mode of the algorithm associated with the secret information.

String value expected.

Updates cause replacement.

nameű

Human readable name for the secret.

String value expected.

Updates cause replacement.

pass_phraseű

Available since 5.0.0 (Liberty)

The passphrase of the created key. Can be set only for asymmetric type of order.

String value expected.

3.3. Working with Templates 261

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

payload_content_typeű

The type/format the secret data is provided in.

String value expected.

Updates cause replacement.

profileű

Available since 5.0.0 (Liberty)

The profile of certificate to use.

String value expected.

Updates cause replacement.

request_dataű

Available since 5.0.0 (Liberty)

The content of the CSR. Only for certificate orders.

String value expected.

Updates cause replacement.

request_typeű

Available since 5.0.0 (Liberty)

The type of the certificate request.

String value expected.

Updates cause replacement.

Allowed values: stored-key, simple-cmc, custom

source_container_refű

Available since 5.0.0 (Liberty)

The source of certificate request.

String value expected.

Updates cause replacement.

Value must be of type barbican.container

subject_dnű

262 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Available since 5.0.0 (Liberty)

The subject of the certificate request.

String value expected.

Updates cause replacement.

Attributes

certificateű

Available since 5.0.0 (Liberty)

The payload of the created certificate, if available.

container_refű

Available since 5.0.0 (Liberty)

The URI to the created container.

intermediatesű

Available since 5.0.0 (Liberty)

The payload of the created intermediates, if available.

order_refű The URI to the order.

private_keyű

Available since 5.0.0 (Liberty)

The payload of the created private key, if available.

public_keyű

Available since 5.0.0 (Liberty)

The payload of the created public key, if available.

secret_refű The URI to the created secret.

showű Detailed information about resource.

statusű The status of the order.

3.3. Working with Templates 263

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Barbican::Order
properties:

algorithm: String
bit_length: Integer
ca_id: String
expiration: String
mode: String
name: String
pass_phrase: String
payload_content_type: String
profile: String
request_data: String
request_type: String
source_container_ref: String
subject_dn: String
type: String

OS::Barbican::RSAContainer

Available since 6.0.0 (Mitaka)

A resource for creating barbican RSA container.

An RSA container is used for storing RSA public keys, private keys, and private key pass phrases.

Optional Properties

nameű

Human-readable name for the container.

String value expected.

Updates cause replacement.

private_key_passphrase_refű

Reference to private key passphrase.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

private_key_refű

Reference to private key.

264 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

public_key_refű

Reference to public key.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

Attributes

consumersű The URIs to container consumers.

container_refű The URI to the container.

secret_refsű The URIs to secrets stored in container.

showű Detailed information about resource.

statusű The status of the container.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Barbican::RSAContainer
properties:

name: String
private_key_passphrase_ref: String
private_key_ref: String
public_key_ref: String

OS::Barbican::Secret

Available since 2014.2 (Juno)

The resource provides access to the secret/keying stored material.

A secret is a singular item that stored within Barbican. A secret is anything you want it to be; however,
the formal use case is a key that you wish to store away from prying eyes. Secret may include private
keys, passwords and so on.

3.3. Working with Templates 265

Heat Documentation, Release 16.1.1.dev14

Optional Properties

algorithmű

The algorithm type used to generate the secret.

String value expected.

Updates cause replacement.

bit_lengthű

The bit-length of the secret.

Integer value expected.

Updates cause replacement.

The value must be at least 0.

expirationű

The expiration date for the secret in ISO-8601 format.

String value expected.

Updates cause replacement.

Value must be of type expiration

modeű

The type/mode of the algorithm associated with the secret information.

String value expected.

Updates cause replacement.

nameű

Human readable name for the secret.

String value expected.

Updates cause replacement.

payloadű

The unencrypted plain text of the secret.

String value expected.

Updates cause replacement.

payload_content_encodingű

The encoding format used to provide the payload data.

String value expected.

Updates cause replacement.

Allowed values: base64

payload_content_typeű

The type/format the secret data is provided in.

266 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Allowed values: text/plain, application/octet-stream

secret_typeű

Available since 5.0.0 (Liberty)

The type of the secret.

String value expected.

Updates cause replacement.

Defaults to "opaque"

Allowed values: symmetric, public, private, certificate, passphrase, opaque

Attributes

decrypted_payloadű The decrypted secret payload.

showű Detailed information about resource.

statusű The status of the secret.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Barbican::Secret
properties:

algorithm: String
bit_length: Integer
expiration: String
mode: String
name: String
payload: String
payload_content_encoding: String
payload_content_type: String
secret_type: String

3.3. Working with Templates 267

Heat Documentation, Release 16.1.1.dev14

OS::Blazar::Host

Available since 12.0.0 (Stein)

A resource to manage Blazar hosts.

Host resource manages the physical hosts for the lease/reservation within OpenStack.

TODO(asmita): Based on an agreement with Blazar team, this resource class does not support updating
host resource as currently Blazar does not support to delete existing extra_capability keys while updating
host. Also, in near future, when Blazar team will come up with a new alternative API to resolve this
issue, we will need to modify this class.

Required Properties

nameű

The name of the host.

String value expected.

Updates cause replacement.

Optional Properties

extra_capabilityű

The extra capability of the host.

Map value expected.

Updates cause replacement.

Attributes

cpu_infoű Information of the CPU of the host.

created_atű The date and time when the host was created. The date and time format must be CCYY-
MM-DD hh:mm.

extra_capabilityű The extra capability of the host.

hypervisor_hostnameű The hypervisor name of the host.

hypervisor_typeű The hypervisor type the host.

hypervisor_versionű The hypervisor version of the host.

local_gbű Gigabytes of the disk of the host.

memory_mbű Megabytes of the memory of the host.

reservableű The flag which represents whether the host is reservable or not.

service_nameű The compute service name of the host.

268 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

showű Detailed information about resource.

statusű The status of the host.

trust_idű The UUID of the trust of the host operator.

updated_atű The date and time when the host was updated. The date and time format must be CCYY-
MM-DD hh:mm.

vcpusű The number of the VCPUs of the host.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Blazar::Host
properties:

extra_capability: {...}
name: String

OS::Blazar::Lease

Available since 12.0.0 (Stein)

A resource to manage Blazar leases.

Lease resource manages the reservations of specific type/amount of cloud resources within OpenStack.

Note: Based on an agreement with Blazar team, this resource class does not support updating, because
current Blazar lease scheme is not suitable for Heat, if you want to update a lease, you need to specify
reservations id, which is one of attribute of lease.

Required Properties

end_dateű

The end date and time of the lease The date and time format must be CCYY-MM-DD hh:mm.

String value expected.

Updates cause replacement.

Value must match pattern: \d{4}-\d{2}-\d{2}\s\d{2}:\d{2}

nameű

The name of the lease.

String value expected.

Updates cause replacement.

3.3. Working with Templates 269

Heat Documentation, Release 16.1.1.dev14

reservationsű

The list of reservations.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

affinityű

Optional.

The affinity of instances to reserve.

Boolean value expected.

Updates cause replacement.

Defaults to false

amountű

Optional.

The amount of instances to reserve.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 2147483647.

before_endű

Optional.

The before-end-action of the reservation.

String value expected.

Updates cause replacement.

Defaults to "default"

Allowed values: default, snapshot

disk_gbű

Optional.

Gigabytes of the local disk per the instance.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 2147483647.

hypervisor_propertiesű

270 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional.

Properties of the hypervisor to reserve.

String value expected.

Updates cause replacement.

maxű

Optional.

The maximum number of hosts to reserve.

Integer value expected.

Updates cause replacement.

The value must be at least 1.

memory_mbű

Optional.

Megabytes of memory per the instance.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 2147483647.

minű

Optional.

The minimum number of hosts to reserve.

Integer value expected.

Updates cause replacement.

The value must be at least 1.

resource_propertiesű

Optional.

Properties of the resource to reserve.

String value expected.

Updates cause replacement.

resource_typeű

Required.

The type of the resource to reserve.

String value expected.

Updates cause replacement.

Allowed values: virtual:instance, physical:host

vcpusű

3.3. Working with Templates 271

Heat Documentation, Release 16.1.1.dev14

Optional.

The number of VCPUs per the instance.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 2147483647.

start_dateű

The start date and time of the lease. The date and time format must be CCYY-MM-DD hh:mm.

String value expected.

Updates cause replacement.

Value must match pattern: \d{4}-\d{2}-\d{2}\s\d{2}:\d{2}

Optional Properties

before_end_dateű

The date and time for the before-end-action of the lease. The date and time format must be CCYY-
MM-DD hh:mm.

String value expected.

Updates cause replacement.

Value must match pattern: \d{4}-\d{2}-\d{2}\s\d{2}:\d{2}

eventsű

A list of event objects.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

event_typeű

Required.

The type of the event (e.g. notification).

String value expected.

Updates cause replacement.

timeű

Required.

272 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The date and time of the event. The date and time format must be CCYY-MM-DD hh:mm.

String value expected.

Updates cause replacement.

Attributes

created_atű The date and time when the lease was created. The date and time format is CCYY-MM-
DD hh:mm.

degradedű The flag which represents condition of reserved resources of the lease. If it is true, the
amount of reserved resources is less than the request or reserved resources were changed.

end_dateű The end date and time of the lease. The date and time format is CCYY-MM-DD hh:mm.

eventsű Event information of the lease.

nameű The name of the lease.

project_idű The UUID the project which owns the lease.

reservationsű A list of reservation objects.

showű Detailed information about resource.

start_dateű The start date and time of the lease. The date and time format is CCYY-MM-DD hh:mm.

statusű The status of the lease.

trust_idű The UUID of the trust of the lease owner.

updated_atű The date and time when the lease was updated. The date and time format is CCYY-MM-
DD hh:mm.

user_idű The UUID of the lease owner.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Blazar::Lease
properties:

before_end_date: String
end_date: String
events: [{"event_type": String, "time": String}, {"event_type":

↪→String, "time": String}, ...]
name: String
reservations: [{"resource_type": String, "min": Integer, "max":

↪→Integer, "hypervisor_properties": String, "resource_properties": String,
↪→"before_end": String, "amount": Integer, "vcpus": Integer, "memory_mb":
↪→Integer, "disk_gb": Integer, "affinity": Boolean}, {"resource_type":
↪→String, "min": Integer, "max": Integer, "hypervisor_properties": String,
↪→"resource_properties": String, "before_end": String, "amount": Integer,
↪→"vcpus": Integer, "memory_mb": Integer, "disk_gb": Integer, "affinity":
↪→Boolean}, ...] (continues on next page)

3.3. Working with Templates 273

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

start_date: String

OS::Cinder::EncryptedVolumeType

Available since 5.0.0 (Liberty)

A resource for encrypting a cinder volume type.

A Volume Encryption Type is a collection of settings used to conduct encryption for a specific volume
type.

Note that default cinder security policy usage of this resource is limited to being used by administrators
only.

Required Properties

providerű

The class that provides encryption support. For example, nova.volume.encryptors.luks.LuksEncryptor.

String value expected.

Can be updated without replacement.

volume_typeű

Name or id of volume type (OS::Cinder::VolumeType).

String value expected.

Updates cause replacement.

Value must be of type cinder.vtype

Optional Properties

cipherű

The encryption algorithm or mode. For example, aes-xts-plain64.

String value expected.

Can be updated without replacement.

Allowed values: aes-xts-plain64, aes-cbc-essiv

control_locationű

Notional service where encryption is performed For example, front-end. For Nova.

String value expected.

Can be updated without replacement.

Defaults to "front-end"

274 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Allowed values: front-end, back-end

key_sizeű

Size of encryption key, in bits. For example, 128 or 256.

Integer value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Cinder::EncryptedVolumeType
properties:

cipher: String
control_location: String
key_size: Integer
provider: String
volume_type: String

OS::Cinder::QoSAssociation

Available since 8.0.0 (Ocata)

A resource to associate cinder QoS specs with volume types.

Usage of this resource restricted to admins only by default policy.

Required Properties

qos_specsű

ID or Name of the QoS specs.

String value expected.

Updates cause replacement.

Value must be of type cinder.qos_specs

volume_typesű

List of volume type IDs or Names to be attached to QoS specs.

3.3. Working with Templates 275

Heat Documentation, Release 16.1.1.dev14

List value expected.

Can be updated without replacement.

List contents:

Optional.

A volume type to attach specs.

String value expected.

Can be updated without replacement.

Value must be of type cinder.vtype

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Cinder::QoSAssociation
properties:

qos_specs: String
volume_types: [String, String, ...]

OS::Cinder::QoSSpecs

Available since 7.0.0 (Newton)

A resource for creating cinder QoS specs.

Users can ask for a specific volume type. Part of that volume type is a string that defines the QoS of
the volume IO (fast, normal, or slow). Backends that can handle all of the demands of the volume type
become candidates for scheduling. Usage of this resource restricted to admins only by default policy.

276 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

specsű

The specs key and value pairs of the QoS.

Map value expected.

Can be updated without replacement.

Optional Properties

nameű

Name of the QoS.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Cinder::QoSSpecs
properties:

name: String
specs: {...}

OS::Cinder::Quota

Available since 7.0.0 (Newton)

A resource for creating cinder quotas.

Cinder Quota is used to manage operational limits for projects. Currently, this resource can manage
Cinders gigabytes, snapshots, and volumes quotas.

Note that default cinder security policy usage of this resource is limited to being used by administrators
only. Administrators should be careful to create only one Cinder Quota resource per project, otherwise
it will be hard for them to manage the quota properly.

3.3. Working with Templates 277

Heat Documentation, Release 16.1.1.dev14

Required Properties

projectű

OpenStack Keystone Project.

String value expected.

Updates cause replacement.

Value must be of type keystone.project

Optional Properties

backup_gigabytesű

Available since 16.0.0

Quota for the amount of backups disk space (in Gigabytes). Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

backupsű

Available since 16.0.0

Quota for the number of backups. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

gigabytesű

Quota for the amount of disk space (in Gigabytes). Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

snapshotsű

Quota for the number of snapshots. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

volumesű

278 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Quota for the number of volumes. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Cinder::Quota
properties:

backup_gigabytes: Integer
backups: Integer
gigabytes: Integer
project: String
snapshots: Integer
volumes: Integer

OS::Cinder::Volume

A resource that implements Cinder volumes.

Cinder volume is a storage in the form of block devices. It can be used, for example, for providing
storage to instance. Volume supports creation from snapshot, backup or image. Also volume can be
created only by size.

Optional Properties

availability_zoneű

The availability zone in which the volume will be created.

String value expected.

Updates cause replacement.

backup_idű

If specified, the backup to create the volume from.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 279

Heat Documentation, Release 16.1.1.dev14

Value must be of type cinder.backup

descriptionű

A description of the volume.

String value expected.

Can be updated without replacement.

imageű

If specified, the name or ID of the image to create the volume from.

String value expected.

Updates cause replacement.

Value must be of type glance.image

metadataű

Key/value pairs to associate with the volume.

Map value expected.

Can be updated without replacement.

Defaults to {}

nameű

A name used to distinguish the volume.

String value expected.

Can be updated without replacement.

read_onlyű

Available since 5.0.0 (Liberty)

Enables or disables read-only access mode of volume.

Boolean value expected.

Can be updated without replacement.

scheduler_hintsű

Available since 2015.1 (Kilo)

Arbitrary key-value pairs specified by the client to help the Cinder scheduler creating a volume.

Map value expected.

Updates cause replacement.

sizeű

The size of the volume in GB. On update only increase in size is supported. This property is required
unless property backup_id or source_volid or snapshot_id is specified.

280 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Integer value expected.

Can be updated without replacement.

The value must be at least 1.

snapshot_idű

If specified, the snapshot to create the volume from.

String value expected.

Updates cause replacement.

Value must be of type cinder.snapshot

source_volidű

If specified, the volume to use as source.

String value expected.

Updates cause replacement.

Value must be of type cinder.volume

volume_typeű

If specified, the type of volume to use, mapping to a specific backend.

String value expected.

Can be updated without replacement.

Value must be of type cinder.vtype

Attributes

attachmentsű

DEPRECATED since 9.0.0 (Pike) - Use property attachments_list.

Available since 2015.1 (Kilo)

A string representation of the list of attachments of the volume.

attachments_listű

Available since 9.0.0 (Pike)

The list of attachments of the volume.

availability_zoneű The availability zone in which the volume is located.

bootableű Boolean indicating if the volume can be booted or not.

created_atű The timestamp indicating volume creation.

3.3. Working with Templates 281

Heat Documentation, Release 16.1.1.dev14

display_descriptionű Description of the volume.

display_nameű Name of the volume.

encryptedű Boolean indicating if the volume is encrypted or not.

metadataű Key/value pairs associated with the volume.

metadata_valuesű Key/value pairs associated with the volume in raw dict form.

multiattachű

Available since 6.0.0 (Mitaka)

Boolean indicating whether allow the volume to be attached more than once.

showű Detailed information about resource.

sizeű The size of the volume in GB.

snapshot_idű The snapshot the volume was created from, if any.

source_volidű The volume used as source, if any.

statusű The current status of the volume.

volume_typeű The type of the volume mapping to a backend, if any.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Cinder::Volume
properties:

availability_zone: String
backup_id: String
description: String
image: String
metadata: {...}
name: String
read_only: Boolean
scheduler_hints: {...}
size: Integer
snapshot_id: String
source_volid: String
volume_type: String

282 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Cinder::VolumeAttachment

Resource for associating volume to instance.

Resource for associating existing volume to instance. Also, the location where the volume is exposed
on the instance can be specified.

Required Properties

instance_uuidű

The ID of the server to which the volume attaches.

String value expected.

Can be updated without replacement.

volume_idű

The ID of the volume to be attached.

String value expected.

Can be updated without replacement.

Value must be of type cinder.volume

Optional Properties

mountpointű

The location where the volume is exposed on the instance. This assignment may not be honored and it
is advised that the path /dev/disk/by-id/virtio-<VolumeId> be used instead.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Cinder::VolumeAttachment
properties:

instance_uuid: String
mountpoint: String
volume_id: String

3.3. Working with Templates 283

Heat Documentation, Release 16.1.1.dev14

OS::Cinder::VolumeType

Available since 2015.1 (Kilo)

A resource for creating cinder volume types.

Volume type resource allows to define, whether volume, which will be use this type, will public and
which projects are allowed to work with it. Also, there can be some user-defined metadata.

Note that default cinder security policy usage of this resource is limited to being used by administrators
only.

Required Properties

nameű

Name of the volume type.

String value expected.

Can be updated without replacement.

Optional Properties

descriptionű

Available since 5.0.0 (Liberty)

Description of the volume type.

String value expected.

Can be updated without replacement.

is_publicű

Available since 5.0.0 (Liberty)

Whether the volume type is accessible to the public.

Boolean value expected.

Can be updated without replacement.

Defaults to true

metadataű

The extra specs key and value pairs of the volume type.

Map value expected.

Can be updated without replacement.

284 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

projectsű

Available since 5.0.0 (Liberty)

Projects to add volume type access to. NOTE: This property is only supported since Cinder API V2.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Cinder::VolumeType
properties:

description: String
is_public: Boolean
metadata: {...}
name: String
projects: [String, String, ...]

OS::Designate::RecordSet

Available since 8.0.0 (Ocata)

Heat Template Resource for Designate RecordSet.

Designate provides DNS-as-a-Service services for OpenStack. RecordSet helps to add more than one
records.

3.3. Working with Templates 285

Heat Documentation, Release 16.1.1.dev14

Required Properties

recordsű

A list of data for this RecordSet. Each item will be a separate record in Designate These items should
conform to the DNS spec for the record type - e.g. A records must be IPv4 addresses, CNAME
records must be a hostname. DNS record data varies based on the type of record. For more details,
please refer rfc 1035.

List value expected.

Can be updated without replacement.

typeű

DNS RecordSet type.

String value expected.

Updates cause replacement.

Allowed values: A, AAAA, CNAME, MX, SRV, TXT, SPF, NS, PTR, SSHFP, SOA

zoneű

DNS Zone id or name.

String value expected.

Updates cause replacement.

Value must be of type designate.zone

Optional Properties

descriptionű

Description of RecordSet.

String value expected.

Can be updated without replacement.

The length must be no greater than 160.

nameű

RecordSet name.

String value expected.

Updates cause replacement.

The length must be no greater than 255.

ttlű

Time To Live (Seconds).

Integer value expected.

Can be updated without replacement.

286 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The value must be in the range 1 to 2147483647.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Designate::RecordSet
properties:

description: String
name: String
records: [Value, Value, ...]
ttl: Integer
type: String
zone: String

OS::Designate::Zone

Available since 8.0.0 (Ocata)

Heat Template Resource for Designate Zone.

Designate provides DNS-as-a-Service services for OpenStack. So, zone, part of domain is a realm with
an identification string, unique in DNS.

Required Properties

nameű

DNS Name for the zone.

String value expected.

Updates cause replacement.

The length must be no greater than 255.

3.3. Working with Templates 287

Heat Documentation, Release 16.1.1.dev14

Optional Properties

descriptionű

Description of zone.

String value expected.

Can be updated without replacement.

The length must be no greater than 160.

emailű

E-mail for the zone. Used in SOA records for the zone. It is required for PRIMARY Type, otherwise
ignored.

String value expected.

Can be updated without replacement.

primariesű

The primary servers to transfer DNS zone information from. Mandatory for zone type SECONDARY,
otherwise ignored.

List value expected.

Can be updated without replacement.

ttlű

Time To Live (Seconds) for the zone.

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 2147483647.

typeű

Type of zone. PRIMARY is controlled by Designate, SECONDARY zones are transferred from another
DNS Server.

String value expected.

Updates cause replacement.

Defaults to "PRIMARY"

Allowed values: PRIMARY, SECONDARY

mastersű

DEPRECATED since 15.0.0 (Victoria) - Use “primaries“ instead.

The primary servers to transfer DNS zone information from. Mandatory for zone type SECONDARY,
otherwise ignored.

List value expected.

Can be updated without replacement.

288 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

serialű DNS zone serial number.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Designate::Zone
properties:

description: String
email: String
name: String
primaries: [Value, Value, ...]
ttl: Integer
type: String

OS::Glance::WebImage

Available since 12.0.0 (Stein)

A resource managing images in Glance using web-download import.

This provides image support for recent Glance installation.

Required Properties

container_formatű

Container format of image.

String value expected.

Updates cause replacement.

Allowed values: ami, ari, aki, bare, ovf, ova, docker

disk_formatű

Disk format of image.

String value expected.

Updates cause replacement.

Allowed values: ami, ari, aki, vhd, vhdx, vmdk, raw, qcow2, vdi, iso, ploop

locationű

3.3. Working with Templates 289

Heat Documentation, Release 16.1.1.dev14

URL where the data for this image already resides. For example, if the image data is stored in swift,
you could specify swift://example.com/container/obj.

String value expected.

Updates cause replacement.

Optional Properties

activeű

Available since 16.0.0

Activate or deactivate the image. Requires Admin Access.

Boolean value expected.

Can be updated without replacement.

Defaults to true

architectureű

Operating system architecture.

String value expected.

Can be updated without replacement.

idű

The image ID. Glance will generate a UUID if not specified.

String value expected.

Updates cause replacement.

kernel_idű

ID of image stored in Glance that should be used as the kernel when booting an AMI-style image.

String value expected.

Can be updated without replacement.

Value must match pattern: ^([0-9a-fA-F]){8}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-
([0-9a-fA-F]){12}$

membersű

Available since 16.0.0

List of additional members that are permitted to read the image. This may be a Keystone Project IDs
or User IDs, depending on the Glance configuration in use.

List value expected.

Can be updated without replacement.

List contents:

290 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional.

A member ID. This may be a Keystone Project ID or User ID, depending on the Glance config-
uration in use.

String value expected.

Can be updated without replacement.

min_diskű

Amount of disk space (in GB) required to boot image. Default value is 0 if not specified and means no
limit on the disk size.

Integer value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

min_ramű

Amount of ram (in MB) required to boot image. Default value is 0 if not specified and means no limit
on the ram size.

Integer value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

nameű

Name for the image. The name of an image is not unique to a Image Service node.

String value expected.

Updates cause replacement.

os_distroű

The common name of the operating system distribution in lowercase.

String value expected.

Can be updated without replacement.

os_versionű

Operating system version as specified by the distributor.

String value expected.

Can be updated without replacement.

ownerű

Owner of the image.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 291

Heat Documentation, Release 16.1.1.dev14

protectedű

Whether the image can be deleted. If the value is True, the image is protected and cannot be deleted.

Boolean value expected.

Can be updated without replacement.

Defaults to false

ramdisk_idű

ID of image stored in Glance that should be used as the ramdisk when booting an AMI-style image.

String value expected.

Can be updated without replacement.

Value must match pattern: ^([0-9a-fA-F]){8}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-
([0-9a-fA-F]){12}$

tagsű

List of image tags.

List value expected.

Can be updated without replacement.

visibilityű

Scope of image accessibility.

String value expected.

Can be updated without replacement.

Defaults to "private"

Allowed values: public, private, community, shared

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Glance::WebImage
properties:

active: Boolean
architecture: String
container_format: String
disk_format: String
id: String

(continues on next page)

292 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

kernel_id: String
location: String
members: [String, String, ...]
min_disk: Integer
min_ram: Integer
name: String
os_distro: String
os_version: String
owner: String
protected: Boolean
ramdisk_id: String
tags: [Value, Value, ...]
visibility: String

OS::Heat::AccessPolicy

Resource for defining which resources can be accessed by users.

NOTE: Now this resource is actually associated with an AWS user resource, not any OS:: resource
though it is registered under the OS namespace below.

Resource for defining resources that users are allowed to access by the DescribeStackResource API.

Required Properties

AllowedResourcesű

Resources that users are allowed to access by the DescribeStackResource API.

List value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::AccessPolicy
properties:

AllowedResources: [Value, Value, ...]

3.3. Working with Templates 293

Heat Documentation, Release 16.1.1.dev14

OS::Heat::AutoScalingGroup

Available since 2014.1 (Icehouse)

An autoscaling group that can scale arbitrary resources.

An autoscaling group allows the creation of a desired count of similar resources, which are defined with
the resource property in HOT format. If there is a need to create many of the same resources (e.g. one
hundred sets of Server, WaitCondition and WaitConditionHandle or even Neutron Nets), AutoScaling-
Group is a convenient and easy way to do that.

Required Properties

max_sizeű

Maximum number of resources in the group.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

min_sizeű

Minimum number of resources in the group.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

resourceű

Resource definition for the resources in the group, in HOT format. The value of this property is the
definition of a resource just as if it had been declared in the template itself.

Map value expected.

Can be updated without replacement.

Optional Properties

cooldownű

Cooldown period, in seconds.

Integer value expected.

Can be updated without replacement.

desired_capacityű

Desired initial number of resources.

Integer value expected.

294 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

rolling_updatesű

Policy for rolling updates for this scaling group.

Map value expected.

Can be updated without replacement.

Defaults to {"min_in_service": 0, "max_batch_size": 1, "pause_time":
0}

Map properties:

max_batch_sizeű

Optional.

The maximum number of resources to replace at once.

Integer value expected.

Can be updated without replacement.

Defaults to 1

The value must be at least 1.

min_in_serviceű

Optional.

The minimum number of resources in service while rolling updates are being executed.

Integer value expected.

Can be updated without replacement.

Defaults to 0

The value must be at least 0.

pause_timeű

Optional.

The number of seconds to wait between batches of updates.

Number value expected.

Can be updated without replacement.

Defaults to 0

The value must be at least 0.

3.3. Working with Templates 295

Heat Documentation, Release 16.1.1.dev14

Attributes

current_sizeű

Available since 2015.1 (Kilo)

The current size of AutoscalingResourceGroup.

outputsű

Available since 2014.2 (Juno)

A map of resource names to the specified attribute of each individual resource that is part of the
AutoScalingGroup. This map specifies output parameters that are available once the AutoScal-
ingGroup has been instantiated.

outputs_listű

Available since 2014.2 (Juno)

A list of the specified attribute of each individual resource that is part of the AutoScalingGroup.
This list of attributes is available as an output once the AutoScalingGroup has been instantiated.

refsű

Available since 7.0.0 (Newton)

A list of resource IDs for the resources in the group.

refs_mapű

Available since 7.0.0 (Newton)

A map of resource names to IDs for the resources in the group.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::AutoScalingGroup
properties:

cooldown: Integer
desired_capacity: Integer
max_size: Integer

(continues on next page)

296 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

min_size: Integer
resource: {...}
rolling_updates: {"min_in_service": Integer, "max_batch_size":

↪→Integer, "pause_time": Number}

OS::Heat::CloudConfig

Available since 2014.1 (Icehouse)

A configuration resource for representing cloud-init cloud-config.

This resource allows cloud-config YAML to be defined and stored by the config API. Any intrinsic
functions called in the config will be resolved before storing the result.

This resource will generally be referenced by OS::Nova::Server user_data, or OS::Heat::MultipartMime
parts config. Since cloud-config is boot-only configuration, any changes to the definition will result in
the replacement of all servers which reference it.

Optional Properties

cloud_configű

Map representing the cloud-config data structure which will be formatted as YAML.

Map value expected.

Updates cause replacement.

Attributes

configű The config value of the software config.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::CloudConfig
properties:

cloud_config: {...}

3.3. Working with Templates 297

Heat Documentation, Release 16.1.1.dev14

OS::Heat::Delay

Available since 11.0.0 (Rocky)

A resource that pauses for a configurable delay.

By manipulating the dependency relationships between resources in the template, a delay can be inserted
at an arbitrary point during e.g. stack creation or deletion. They delay will occur after any resource
that it depends on during CREATE or SUSPEND, and before any resource that it depends on during
DELETE or RESUME. Similarly, it will occur before any resource that depends on it during CREATE
or SUSPEND, and after any resource thet depends on it during DELETE or RESUME.

If a non-zero maximum jitter is specified, a random amount of jitter - chosen with uniform probability
in the range from 0 to the product of the maximum jitter value and the jitter multiplier (1s by default) -
is added to the minimum delay time. This can be used, for example, in the scaled unit of a large scaling
group to prevent thundering herd issues.

Optional Properties

actionsű

Actions during which the delay will occur.

List value expected.

Can be updated without replacement.

Defaults to ["CREATE"]

Allowed values: CREATE, DELETE, SUSPEND, RESUME

jitter_multiplierű

Number of seconds to multiply the maximum jitter value by.

Number value expected.

Can be updated without replacement.

Defaults to 1.0

The value must be at least 0.

max_jitterű

Maximum jitter to add to the minimum wait time.

Number value expected.

Can be updated without replacement.

Defaults to 0

The value must be at least 0.

min_waitű

Minimum time in seconds to wait during the specified actions.

Number value expected.

298 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Defaults to 0

The value must be at least 0.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::Delay
properties:

actions: [Value, Value, ...]
jitter_multiplier: Number
max_jitter: Number
min_wait: Number

OS::Heat::DeployedServer

A resource for managing servers that are already deployed.

A DeployedServer resource manages resources for servers that have been deployed externally from
OpenStack. These servers can be associated with SoftwareDeployments for further orchestration via
Heat.

Optional Properties

deployment_swift_dataű

Available since 9.0.0 (Pike)

Swift container and object to use for storing deployment data for the server resource. The parameter
is a map value with the keys container and object, and the values are the corresponding container
and object names. The software_config_transport parameter must be set to POLL_TEMP_URL
for swift to be used. If not specified, and software_config_transport is set to POLL_TEMP_URL,
a container will be automatically created from the resource name, and the object name will be a
generated uuid.

Map value expected.

Can be updated without replacement.

Defaults to {}

3.3. Working with Templates 299

Heat Documentation, Release 16.1.1.dev14

Map properties:

containerű

Optional.

Name of the container.

String value expected.

Can be updated without replacement.

The length must be at least 1.

objectű

Optional.

Name of the object.

String value expected.

Can be updated without replacement.

The length must be at least 1.

nameű

Server name.

String value expected.

Can be updated without replacement.

software_config_transportű

How the server should receive the metadata required for software configuration. POLL_SERVER_CFN
will allow calls to the cfn API action DescribeStackResource authenticated with the provided key-
pair. POLL_SERVER_HEAT will allow calls to the Heat API resource-show using the provided
keystone credentials. POLL_TEMP_URL will create and populate a Swift TempURL with meta-
data for polling. ZAQAR_MESSAGE will create a dedicated zaqar queue and post the metadata
for polling.

String value expected.

Can be updated without replacement.

Defaults to "POLL_SERVER_CFN"

Allowed values: POLL_SERVER_CFN, POLL_SERVER_HEAT, POLL_TEMP_URL, ZA-
QAR_MESSAGE

metadataű

DEPRECATED since 9.0.0 (Pike) - This property will be ignored

Available since 8.0.0 (Ocata)

Arbitrary key/value metadata to store for this server. Both keys and values must be 255 characters or
less. Non-string values will be serialized to JSON (and the serialized string must be 255 characters
or less).

300 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Map value expected.

Can be updated without replacement.

Attributes

nameű Name of the server.

os_collect_configű

Available since 9.0.0 (Pike)

The os-collect-config configuration for the servers local agent to be configured to connect to Heat
to retrieve deployment data.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::DeployedServer
properties:

deployment_swift_data: {"container": String, "object": String}
name: String
software_config_transport: String

OS::Heat::InstanceGroup

An instance group that can scale arbitrary instances.

A resource allowing for the creating number of defined with AWS::AutoScaling::LaunchConfiguration
instances. Allows to associate scaled resources with loadbalancer resources.

Required Properties

AvailabilityZonesű

Not Implemented.

List value expected.

Updates cause replacement.

LaunchConfigurationNameű

The reference to a LaunchConfiguration resource.

String value expected.

3.3. Working with Templates 301

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Sizeű

Desired number of instances.

Integer value expected.

Can be updated without replacement.

Optional Properties

LoadBalancerNamesű

List of LoadBalancer resources.

List value expected.

Updates cause replacement.

Tagsű

Tags to attach to this group.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

Keyű

Required.

Tag key.

String value expected.

Updates cause replacement.

Valueű

Required.

Tag value.

String value expected.

Updates cause replacement.

302 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

InstanceListű A comma-delimited list of server ip addresses. (Heat extension).

showű Detailed information about resource.

update_policy

RollingUpdateű

Map value expected.

Updates cause replacement.

Map properties:

MaxBatchSizeű

Optional.

Integer value expected.

Updates cause replacement.

Defaults to 1

MinInstancesInServiceű

Optional.

Integer value expected.

Updates cause replacement.

Defaults to 0

PauseTimeű

Optional.

String value expected.

Updates cause replacement.

Defaults to "PT0S"

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::InstanceGroup
properties:

AvailabilityZones: [Value, Value, ...]
LaunchConfigurationName: String
LoadBalancerNames: [Value, Value, ...]

(continues on next page)

3.3. Working with Templates 303

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

Size: Integer
Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":

↪→String}, ...]

OS::Heat::MultipartMime

Available since 2014.1 (Icehouse)

Assembles a collection of software configurations as a multi-part mime.

Parts in the message can be populated with inline configuration or references to other config resources.
If the referenced resource is itself a valid multi-part mime message, that will be broken into parts and
those parts appended to this message.

The resulting multi-part mime message will be stored by the configs API and can be referenced in
properties such as OS::Nova::Server user_data.

This resource is generally used to build a list of cloud-init configuration elements including scripts and
cloud-config. Since cloud-init is boot-only configuration, any changes to the definition will result in the
replacement of all servers which reference it.

Optional Properties

groupű

Available since 14.0.0 (Ussuri)

Namespace to group this multi-part configs by when delivered to a server. This may imply what
configuration tool is going to perform the configuration.

String value expected.

Updates cause replacement.

Defaults to "Heat::Ungrouped"

partsű

Parts belonging to this message.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

304 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

configű

Required.

Content of part to attach, either inline or by referencing the ID of another software config
resource.

String value expected.

Updates cause replacement.

filenameű

Optional.

Optional filename to associate with part.

String value expected.

Updates cause replacement.

subtypeű

Optional.

Optional subtype to specify with the type.

String value expected.

Updates cause replacement.

typeű

Optional.

Whether the part content is text or multipart.

String value expected.

Updates cause replacement.

Defaults to "text"

Allowed values: text, multipart

Attributes

configű The config value of the software config.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::MultipartMime
properties:

(continues on next page)

3.3. Working with Templates 305

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

group: String
parts: [{"config": String, "filename": String, "type": String,

↪→"subtype": String}, {"config": String, "filename": String, "type":
↪→String, "subtype": String}, ...]

OS::Heat::None

Available since 5.0.0 (Liberty)

Enables easily disabling certain resources via the resource_registry.

It does nothing, but can effectively stub out any other resource because it will accept any properties and
return any attribute (as None). Note this resource always does nothing on update (e.g it is not replaced
even if a change to the stubbed resource properties would cause replacement).

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::None

OS::Heat::RandomString

Available since 2014.1 (Icehouse)

A resource which generates a random string.

This is useful for configuring passwords and secrets on services. Random string can be generated from
specified character sequences, which means that all characters will be randomly chosen from specified
sequences, or with some classes, e.g. letterdigits, which means that all character will be randomly
chosen from union of ascii letters and digits. Output string will be randomly generated string with
specified length (or with length of 32, if length property doesnt specified).

306 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

character_classesű

A list of character class and their constraints to generate the random string from.

List value expected.

Updates cause replacement.

Defaults to [{"class": "lettersdigits", "min": 1}]

List contents:

Map value expected.

Updates cause replacement.

Map properties:

classű

Optional.

A character class and its corresponding min constraint to generate the random string from.

String value expected.

Updates cause replacement.

Defaults to "lettersdigits"

Allowed values: lettersdigits, letters, lowercase, uppercase, digits, hexdigits, octdigits

minű

Optional.

The minimum number of characters from this character class that will be in the generated
string.

Integer value expected.

Updates cause replacement.

Defaults to 1

The value must be in the range 1 to 512.

character_sequencesű

A list of character sequences and their constraints to generate the random string from.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

minű

3.3. Working with Templates 307

Heat Documentation, Release 16.1.1.dev14

Optional.

The minimum number of characters from this sequence that will be in the generated string.

Integer value expected.

Updates cause replacement.

Defaults to 1

The value must be in the range 1 to 512.

sequenceű

Required.

A character sequence and its corresponding min constraint to generate the random string
from.

String value expected.

Updates cause replacement.

lengthű

Length of the string to generate.

Integer value expected.

Updates cause replacement.

Defaults to 32

The value must be in the range 1 to 512.

saltű

Value which can be set or changed on stack update to trigger the resource for replacement with a new
random string. The salt value itself is ignored by the random generator.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

valueű The random string generated by this resource. This value is also available by referencing the
resource.

308 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::RandomString
properties:

character_classes: [{"class": String, "min": Integer}, {"class":
↪→String, "min": Integer}, ...]

character_sequences: [{"sequence": String, "min": Integer}, {
↪→"sequence": String, "min": Integer}, ...]

length: Integer
salt: String

OS::Heat::ResourceChain

Available since 6.0.0 (Mitaka)

Creates one or more resources with the same configuration.

The types of resources to be created are passed into the chain through the resources property.
One resource will be created for each type listed. Each is passed the configuration specified under
resource_properties.

The concurrent property controls if the resources will be created concurrently. If omitted or set to
false, each resource will be treated as having a dependency on the resource before it in the list.

Required Properties

resourcesű

The list of resource types to create. This list may contain type names or aliases defined in the resource
registry. Specific template names are not supported.

List value expected.

Can be updated without replacement.

Optional Properties

concurrentű

If true, the resources in the chain will be created concurrently. If false or omitted, each resource will
be treated as having a dependency on the previous resource in the list.

Boolean value expected.

Updates cause replacement.

Defaults to false

3.3. Working with Templates 309

Heat Documentation, Release 16.1.1.dev14

resource_propertiesű

Properties to pass to each resource being created in the chain.

Map value expected.

Updates cause replacement.

Attributes

attributesű A map of resource names to the specified attribute of each individual resource.

refsű A list of resource IDs for the resources in the chain.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::ResourceChain
properties:

concurrent: Boolean
resource_properties: {...}
resources: [Value, Value, ...]

OS::Heat::ResourceGroup

Available since 2014.1 (Icehouse)

Creates one or more identically configured nested resources.

In addition to the refs attribute, this resource implements synthetic attributes that mirror those of the
resources in the group. When getting an attribute from this resource, however, a list of attribute values
for each resource in the group is returned. To get attribute values for a single resource in the group,
synthetic attributes of the form resource.{resource index}.{attribute name} can be used. The resource
ID of a particular resource in the group can be obtained via the synthetic attribute resource.{resource
index}. Note, that if you get attribute without {resource index}, e.g. [resource, {attribute_name}], youll
get a list of this attributes value for all resources in group.

While each resource in the group will be identically configured, this resource does allow for some index-
based customization of the properties of the resources in the group. For example:

resources:
my_indexed_group:

type: OS::Heat::ResourceGroup
properties:

count: 3

(continues on next page)

310 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

resource_def:
type: OS::Nova::Server
properties:

create a unique name for each server
using its index in the group
name: my_server_%index%
image: CentOS 6.5
flavor: 4GB Performance

would result in a group of three servers having the same image and flavor, but names of my_server_0,
my_server_1, and my_server_2. The variable used for substitution can be customized by using the
index_var property.

Required Properties

resource_defű

Resource definition for the resources in the group. The value of this property is the definition of a
resource just as if it had been declared in the template itself.

Map value expected.

Can be updated without replacement.

Map properties:

metadataű

Available since 5.0.0 (Liberty)

Supplied metadata for the resources in the group.

Map value expected.

Can be updated without replacement.

propertiesű

Property values for the resources in the group.

Map value expected.

Can be updated without replacement.

typeű

Required.

The type of the resources in the group.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 311

Heat Documentation, Release 16.1.1.dev14

Optional Properties

countű

The number of resources to create.

Integer value expected.

Can be updated without replacement.

Defaults to 1

The value must be at least 0.

index_varű

Available since 2014.2 (Juno)

A variable that this resource will use to replace with the current index of a given resource in the
group. Can be used, for example, to customize the name property of grouped servers in order to
differentiate them when listed with nova client.

String value expected.

Updates cause replacement.

Defaults to "%index%"

The length must be at least 3.

removal_policiesű

Available since 2015.1 (Kilo)

Policies for removal of resources on update.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Policy to be processed when doing an update which requires removal of specific resources.

Map value expected.

Can be updated without replacement.

Map properties:

resource_listű

List of resources to be removed when doing an update which requires removal of specific
resources. The resource may be specified several ways: (1) The resource name, as in
the nested stack, (2) The resource reference returned from get_resource in a template,
as available via the refs attribute. Note this is destructive on update when specified;
even if the count is not being reduced, and once a resource name is removed, its name
is never reused in subsequent updates.

312 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

List value expected.

Can be updated without replacement.

Defaults to []

removal_policies_modeű

Available since 10.0.0 (Queens)

How to handle changes to removal_policies on update. The default append mode appends to the internal
list, update replaces it on update.

String value expected.

Can be updated without replacement.

Defaults to "append"

Allowed values: append, update

Attributes

attributesű

Available since 2014.2 (Juno)

A map of resource names to the specified attribute of each individual resource. Requires
heat_template_version: 2014-10-16.

refsű A list of resource IDs for the resources in the group.

refs_mapű

Available since 7.0.0 (Newton)

A map of resource names to IDs for the resources in the group.

removed_rsrc_listű

Available since 7.0.0 (Newton)

A list of removed resource names.

showű Detailed information about resource.

3.3. Working with Templates 313

Heat Documentation, Release 16.1.1.dev14

update_policy

batch_createű

Available since 5.0.0 (Liberty)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_sizeű

Optional.

The maximum number of resources to create at once.

Integer value expected.

Updates cause replacement.

Defaults to 1

The value must be at least 1.

pause_timeű

Optional.

The number of seconds to wait between batches.

Number value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

rolling_updateű

Available since 5.0.0 (Liberty)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_sizeű

Optional.

The maximum number of resources to replace at once.

Integer value expected.

Updates cause replacement.

Defaults to 1

314 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The value must be at least 1.

min_in_serviceű

Optional.

The minimum number of resources in service while rolling updates are being executed.

Integer value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

pause_timeű

Optional.

The number of seconds to wait between batches of updates.

Number value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::ResourceGroup
properties:

count: Integer
index_var: String
removal_policies: [{"resource_list": [Value, Value, ...]}, {

↪→"resource_list": [Value, Value, ...]}, ...]
removal_policies_mode: String
resource_def: {"type": String, "properties": {...}, "metadata": {...}

↪→}

OS::Heat::ScalingPolicy

A resource to manage scaling of OS::Heat::AutoScalingGroup.

Note while it may incidentally support AWS::AutoScaling::AutoScalingGroup for now, please dont use
it for that purpose and use AWS::AutoScaling::ScalingPolicy instead.

Resource to manage scaling for OS::Heat::AutoScalingGroup, i.e. define which metric should be scaled
and scaling adjustment, set cooldown etc.

3.3. Working with Templates 315

Heat Documentation, Release 16.1.1.dev14

Required Properties

adjustment_typeű

Type of adjustment (absolute or percentage).

String value expected.

Can be updated without replacement.

Allowed values: change_in_capacity, exact_capacity, percent_change_in_capacity

auto_scaling_group_idű

AutoScaling group ID to apply policy to.

String value expected.

Updates cause replacement.

scaling_adjustmentű

Size of adjustment.

Number value expected.

Can be updated without replacement.

Optional Properties

cooldownű

Cooldown period, in seconds.

Number value expected.

Can be updated without replacement.

min_adjustment_stepű

Minimum number of resources that are added or removed when the AutoScaling group scales up
or down. This can be used only when specifying percent_change_in_capacity for the adjust-
ment_type property.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

Attributes

alarm_urlű A signed url to handle the alarm.

showű Detailed information about resource.

signal_urlű

316 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Available since 5.0.0 (Liberty)

A url to handle the alarm using native API.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::ScalingPolicy
properties:

adjustment_type: String
auto_scaling_group_id: String
cooldown: Number
min_adjustment_step: Integer
scaling_adjustment: Number

OS::Heat::SoftwareComponent

Available since 2014.2 (Juno)

A resource for describing and storing a software component.

This resource is similar to OS::Heat::SoftwareConfig. In contrast to SoftwareConfig which allows
for storing only one configuration (e.g. one script), SoftwareComponent allows for storing multiple
configurations to address handling of all lifecycle hooks (CREATE, UPDATE, SUSPEND, RESUME,
DELETE) for a software component in one place.

This resource is backed by the persistence layer and the API of the SoftwareConfig resource, and only
adds handling for the additional configs property and attribute.

Required Properties

configsű

The list of configurations for the different lifecycle actions of the represented software component.

List value expected.

Updates cause replacement.

The length must be at least 1.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

3.3. Working with Templates 317

Heat Documentation, Release 16.1.1.dev14

actionsű

Lifecycle actions to which the configuration applies. The string values provided for this
property can include the standard resource actions CREATE, DELETE, UPDATE, SUS-
PEND and RESUME supported by Heat.

List value expected.

Updates cause replacement.

Defaults to ["CREATE", "UPDATE"]

The length must be at least 1.

List contents:

Optional.

String value expected.

Updates cause replacement.

configű

Optional.

Configuration script or manifest which specifies what actual configuration is performed.

String value expected.

Updates cause replacement.

toolű

Required.

The configuration tool used to actually apply the configuration on a server. This string
property has to be understood by in-instance tools running inside deployed servers.

String value expected.

Updates cause replacement.

Optional Properties

inputsű

Schema representing the inputs that this software config is expecting.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

defaultű

Optional.

318 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Default value for the input if none is specified.

Any value expected.

Updates cause replacement.

descriptionű

Optional.

Description of the input.

String value expected.

Updates cause replacement.

nameű

Required.

Name of the input.

String value expected.

Updates cause replacement.

replace_on_changeű

Optional.

Replace the deployment instead of updating it when the input value changes.

Boolean value expected.

Updates cause replacement.

Defaults to false

typeű

Optional.

Type of the value of the input.

String value expected.

Updates cause replacement.

Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

optionsű

Map containing options specific to the configuration management tool used by this resource.

Map value expected.

Updates cause replacement.

outputsű

Schema representing the outputs that this software config will produce.

List value expected.

Updates cause replacement.

3.3. Working with Templates 319

Heat Documentation, Release 16.1.1.dev14

List contents:

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

Optional.

Description of the output.

String value expected.

Updates cause replacement.

error_outputű

Optional.

Denotes that the deployment is in an error state if this output has a value.

Boolean value expected.

Updates cause replacement.

Defaults to false

nameű

Required.

Name of the output.

String value expected.

Updates cause replacement.

typeű

Optional.

Type of the value of the output.

String value expected.

Updates cause replacement.

Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

Attributes

configű The config value of the software config.

showű Detailed information about resource.

320 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::SoftwareComponent
properties:

configs: [{"actions": [String, String, ...], "config": String, "tool
↪→": String}, {"actions": [String, String, ...], "config": String, "tool":
↪→String}, ...]

inputs: [{"name": String, "description": String, "type": String,
↪→"default": Any, "replace_on_change": Boolean}, {"name": String,
↪→"description": String, "type": String, "default": Any, "replace_on_change
↪→": Boolean}, ...]

options: {...}
outputs: [{"name": String, "description": String, "type": String,

↪→"error_output": Boolean}, {"name": String, "description": String, "type
↪→": String, "error_output": Boolean}, ...]

OS::Heat::SoftwareConfig

Available since 2014.1 (Icehouse)

A resource for describing and storing software configuration.

The software_configs API which backs this resource creates immutable configs, so any change to the
template resource definition will result in a new config being created, and the old one being deleted.

Configs can be defined in the same template which uses them, or they can be created in one stack, and
passed to another stack via a parameter.

A config resource can be referenced in other resource properties which are config-aware. This
includes the properties OS::Nova::Server user_data, OS::Heat::SoftwareDeployment config and
OS::Heat::MultipartMime parts config.

Along with the config script itself, this resource can define schemas for inputs and outputs which the
config script is expected to consume and produce. Inputs and outputs are optional and will map to
concepts which are specific to the configuration tool being used.

Optional Properties

configű

Configuration script or manifest which specifies what actual configuration is performed.

String value expected.

Updates cause replacement.

groupű

3.3. Working with Templates 321

Heat Documentation, Release 16.1.1.dev14

Namespace to group this software config by when delivered to a server. This may imply what configu-
ration tool is going to perform the configuration.

String value expected.

Updates cause replacement.

Defaults to "Heat::Ungrouped"

inputsű

Schema representing the inputs that this software config is expecting.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

defaultű

Optional.

Default value for the input if none is specified.

Any value expected.

Updates cause replacement.

descriptionű

Optional.

Description of the input.

String value expected.

Updates cause replacement.

nameű

Required.

Name of the input.

String value expected.

Updates cause replacement.

replace_on_changeű

Optional.

Replace the deployment instead of updating it when the input value changes.

Boolean value expected.

Updates cause replacement.

Defaults to false

typeű

322 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional.

Type of the value of the input.

String value expected.

Updates cause replacement.

Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

optionsű

Map containing options specific to the configuration management tool used by this resource.

Map value expected.

Updates cause replacement.

outputsű

Schema representing the outputs that this software config will produce.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

Optional.

Description of the output.

String value expected.

Updates cause replacement.

error_outputű

Optional.

Denotes that the deployment is in an error state if this output has a value.

Boolean value expected.

Updates cause replacement.

Defaults to false

nameű

Required.

Name of the output.

String value expected.

Updates cause replacement.

3.3. Working with Templates 323

Heat Documentation, Release 16.1.1.dev14

typeű

Optional.

Type of the value of the output.

String value expected.

Updates cause replacement.

Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

Attributes

configű The config value of the software config.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::SoftwareConfig
properties:

config: String
group: String
inputs: [{"name": String, "description": String, "type": String,

↪→"default": Any, "replace_on_change": Boolean}, {"name": String,
↪→"description": String, "type": String, "default": Any, "replace_on_change
↪→": Boolean}, ...]

options: {...}
outputs: [{"name": String, "description": String, "type": String,

↪→"error_output": Boolean}, {"name": String, "description": String, "type
↪→": String, "error_output": Boolean}, ...]

OS::Heat::SoftwareDeployment

Available since 2014.1 (Icehouse)

This resource associates a server with some configuration.

The configuration is to be deployed to that server.

A deployment allows input values to be specified which map to the inputs schema defined in the config
resource. These input values are interpreted by the configuration tool in a tool-specific manner.

Whenever this resource goes to an IN_PROGRESS state, it creates an ephemeral config that includes the
inputs values plus a number of extra inputs which have names prefixed with deploy_. The extra inputs

324 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

relate to the current state of the stack, along with the information and credentials required to signal back
the deployment results.

Unless signal_transport=NO_SIGNAL, this resource will remain in an IN_PROGRESS state until the
server signals it with the output values for that deployment. Those output values are then available as re-
source attributes, along with the default attributes deploy_stdout, deploy_stderr and deploy_status_code.

Specifying actions other than the default CREATE and UPDATE will result in the deployment being
triggered in those actions. For example this would allow cleanup configuration to be performed during
actions SUSPEND and DELETE. A config could be designed to only work with some specific actions,
or a config can read the value of the deploy_action input to allow conditional logic to perform different
configuration for different actions.

Required Properties

serverű

ID of resource to apply configuration to. Normally this should be a Nova server ID.

String value expected.

Updates cause replacement.

Optional Properties

actionsű

Which lifecycle actions of the deployment resource will result in this deployment being triggered.

List value expected.

Can be updated without replacement.

Defaults to ["CREATE", "UPDATE"]

Allowed values: CREATE, UPDATE, DELETE, SUSPEND, RESUME

configű

ID of software configuration resource to execute when applying to the server.

String value expected.

Can be updated without replacement.

input_valuesű

Input values to apply to the software configuration on this server.

Map value expected.

Can be updated without replacement.

nameű

Name of the derived config associated with this deployment. This is used to apply a sort order to the
list of configurations currently deployed to a server.

String value expected.

3.3. Working with Templates 325

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

signal_transportű

How the server should signal to heat with the deployment output values. CFN_SIGNAL will allow an
HTTP POST to a CFN keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL
to be signaled via HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal
using the provided keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue
to be signaled using the provided keystone credentials. NO_SIGNAL will result in the resource
going to the COMPLETE state without waiting for any signal.

String value expected.

Updates cause replacement.

Defaults to "CFN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL

Attributes

deploy_status_codeű Returned status code from the configuration execution.

deploy_stderrű Captured stderr from the configuration execution.

deploy_stdoutű Captured stdout from the configuration execution.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::SoftwareDeployment
properties:

actions: [Value, Value, ...]
config: String
input_values: {...}
name: String
server: String
signal_transport: String

326 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Heat::SoftwareDeploymentGroup

Available since 5.0.0 (Liberty)

This resource associates a group of servers with some configuration.

The configuration is to be deployed to all servers in the group.

The properties work in a similar way to OS::Heat::SoftwareDeployment, and in addition to the attributes
documented, you may pass any attribute supported by OS::Heat::SoftwareDeployment, including those
exposing arbitrary outputs, and return a map of deployment names to the specified attribute.

Required Properties

serversű

A map of names and server IDs to apply configuration to. The name is arbitrary and is used as the Heat
resource name for the corresponding deployment.

Map value expected.

Can be updated without replacement.

Optional Properties

actionsű

Which lifecycle actions of the deployment resource will result in this deployment being triggered.

List value expected.

Can be updated without replacement.

Defaults to ["CREATE", "UPDATE"]

Allowed values: CREATE, UPDATE, DELETE, SUSPEND, RESUME

configű

ID of software configuration resource to execute when applying to the server.

String value expected.

Can be updated without replacement.

input_valuesű

Input values to apply to the software configuration on this server.

Map value expected.

Can be updated without replacement.

nameű

Name of the derived config associated with this deployment. This is used to apply a sort order to the
list of configurations currently deployed to a server.

3.3. Working with Templates 327

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

signal_transportű

How the server should signal to heat with the deployment output values. CFN_SIGNAL will allow an
HTTP POST to a CFN keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL
to be signaled via HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal
using the provided keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue
to be signaled using the provided keystone credentials. NO_SIGNAL will result in the resource
going to the COMPLETE state without waiting for any signal.

String value expected.

Updates cause replacement.

Defaults to "CFN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL

Attributes

deploy_status_codesű A map of Nova names and returned status code from the configuration execu-
tion.

deploy_stderrsű A map of Nova names and captured stderrs from the configuration execution to each
server.

deploy_stdoutsű A map of Nova names and captured stdouts from the configuration execution to each
server.

showű Detailed information about resource.

update_policy

batch_createű

Available since 7.0.0 (Newton)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_sizeű

Optional.

The maximum number of resources to create at once.

Integer value expected.

Updates cause replacement.

Defaults to 1

328 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The value must be at least 1.

pause_timeű

Optional.

The number of seconds to wait between batches.

Number value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

rolling_updateű

Available since 7.0.0 (Newton)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_sizeű

Optional.

The maximum number of deployments to replace at once.

Integer value expected.

Updates cause replacement.

Defaults to 1

The value must be at least 1.

pause_timeű

Optional.

The number of seconds to wait between batches of updates.

Number value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

3.3. Working with Templates 329

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::SoftwareDeploymentGroup
properties:

actions: [Value, Value, ...]
config: String
input_values: {...}
name: String
servers: {...}
signal_transport: String

OS::Heat::Stack

A Resource representing a stack.

A resource that allowing for the creating stack, where should be defined stack template in HOT format,
parameters (if template has any parameters with no default value), and timeout of creating. After creating
current stack will have remote stack.

Required Properties

templateű

Template that specifies the stack to be created as a resource.

String value expected.

Can be updated without replacement.

Optional Properties

contextű

Context for this stack.

Map value expected.

Can be updated without replacement.

Map properties:

ca_certű

Available since 12.0.0 (Stein)

Optional.

CA Cert for SSL.

330 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

credential_secret_idű

Available since 12.0.0 (Stein)

Optional.

A Barbican secret ID. The Barbican secret should contain an OpenStack credential that can be
used to access a remote cloud.

String value expected.

Can be updated without replacement.

insecureű

Available since 12.0.0 (Stein)

Optional.

If set, then the servers certificate will not be verified.

Boolean value expected.

Can be updated without replacement.

Defaults to false

region_nameű

Optional.

Region name in which this stack will be created.

String value expected.

Can be updated without replacement.

parametersű

Set of parameters passed to this stack.

Map value expected.

Can be updated without replacement.

Defaults to {}

timeoutű

Number of minutes to wait for this stack creation.

Integer value expected.

Can be updated without replacement.

3.3. Working with Templates 331

Heat Documentation, Release 16.1.1.dev14

Attributes

outputsű A dict of key-value pairs output from the stack.

showű Detailed information about resource.

stack_nameű Name of the stack.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::Stack
properties:

context: {"region_name": String, "credential_secret_id": String, "ca_
↪→cert": String, "insecure": Boolean}

parameters: {...}
template: String
timeout: Integer

OS::Heat::StructuredConfig

Available since 2014.1 (Icehouse)

A resource which has same logic with OS::Heat::SoftwareConfig.

This resource is like OS::Heat::SoftwareConfig except that the config property is represented by a Map
rather than a String.

This is useful for configuration tools which use YAML or JSON as their configuration syntax. The
resulting configuration is transferred, stored and returned by the software_configs API as parsed JSON.

Optional Properties

configű

Map representing the configuration data structure which will be serialized to JSON format.

Map value expected.

Updates cause replacement.

groupű

Namespace to group this software config by when delivered to a server. This may imply what configu-
ration tool is going to perform the configuration.

String value expected.

Updates cause replacement.

332 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Defaults to "Heat::Ungrouped"

inputsű

Schema representing the inputs that this software config is expecting.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

defaultű

Optional.

Default value for the input if none is specified.

Any value expected.

Updates cause replacement.

descriptionű

Optional.

Description of the input.

String value expected.

Updates cause replacement.

nameű

Required.

Name of the input.

String value expected.

Updates cause replacement.

replace_on_changeű

Optional.

Replace the deployment instead of updating it when the input value changes.

Boolean value expected.

Updates cause replacement.

Defaults to false

typeű

Optional.

Type of the value of the input.

String value expected.

3.3. Working with Templates 333

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

optionsű

Map containing options specific to the configuration management tool used by this resource.

Map value expected.

Updates cause replacement.

outputsű

Schema representing the outputs that this software config will produce.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

Optional.

Description of the output.

String value expected.

Updates cause replacement.

error_outputű

Optional.

Denotes that the deployment is in an error state if this output has a value.

Boolean value expected.

Updates cause replacement.

Defaults to false

nameű

Required.

Name of the output.

String value expected.

Updates cause replacement.

typeű

Optional.

Type of the value of the output.

334 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Defaults to "String"

Allowed values: String, Number, CommaDelimitedList, Json, Boolean

Attributes

configű The config value of the software config.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::StructuredConfig
properties:

config: {...}
group: String
inputs: [{"name": String, "description": String, "type": String,

↪→"default": Any, "replace_on_change": Boolean}, {"name": String,
↪→"description": String, "type": String, "default": Any, "replace_on_change
↪→": Boolean}, ...]

options: {...}
outputs: [{"name": String, "description": String, "type": String,

↪→"error_output": Boolean}, {"name": String, "description": String, "type
↪→": String, "error_output": Boolean}, ...]

OS::Heat::StructuredDeployment

Available since 2014.1 (Icehouse)

A resource which has same logic with OS::Heat::SoftwareDeployment.

A deployment resource like OS::Heat::SoftwareDeployment, but which performs input value substitu-
tion on the config defined by a OS::Heat::StructuredConfig resource.

Some configuration tools have no concept of inputs, so the input value substitution needs to occur in the
deployment resource. An example of this is the JSON metadata consumed by the cfn-init tool.

Where the config contains {get_input: input_name} this will be substituted with the value of input_name
in this resources input_values. If get_input needs to be passed through to the substituted configuration
then a different input_key property value can be specified.

3.3. Working with Templates 335

Heat Documentation, Release 16.1.1.dev14

Required Properties

serverű

ID of resource to apply configuration to. Normally this should be a Nova server ID.

String value expected.

Updates cause replacement.

Optional Properties

actionsű

Which lifecycle actions of the deployment resource will result in this deployment being triggered.

List value expected.

Can be updated without replacement.

Defaults to ["CREATE", "UPDATE"]

Allowed values: CREATE, UPDATE, DELETE, SUSPEND, RESUME

configű

ID of software configuration resource to execute when applying to the server.

String value expected.

Can be updated without replacement.

input_keyű

Name of key to use for substituting inputs during deployment.

String value expected.

Updates cause replacement.

Defaults to "get_input"

input_valuesű

Input values to apply to the software configuration on this server.

Map value expected.

Can be updated without replacement.

input_values_validateű

Perform a check on the input values passed to verify that each required input has a corresponding value.
When the property is set to STRICT and no value is passed, an exception is raised.

String value expected.

Updates cause replacement.

Defaults to "LAX"

Allowed values: LAX, STRICT

nameű

336 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Name of the derived config associated with this deployment. This is used to apply a sort order to the
list of configurations currently deployed to a server.

String value expected.

Can be updated without replacement.

signal_transportű

How the server should signal to heat with the deployment output values. CFN_SIGNAL will allow an
HTTP POST to a CFN keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL
to be signaled via HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal
using the provided keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue
to be signaled using the provided keystone credentials. NO_SIGNAL will result in the resource
going to the COMPLETE state without waiting for any signal.

String value expected.

Updates cause replacement.

Defaults to "CFN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL

Attributes

deploy_status_codeű Returned status code from the configuration execution.

deploy_stderrű Captured stderr from the configuration execution.

deploy_stdoutű Captured stdout from the configuration execution.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::StructuredDeployment
properties:

actions: [Value, Value, ...]
config: String
input_key: String
input_values: {...}
input_values_validate: String
name: String
server: String
signal_transport: String

3.3. Working with Templates 337

Heat Documentation, Release 16.1.1.dev14

OS::Heat::StructuredDeploymentGroup

Available since 5.0.0 (Liberty)

This resource associates a group of servers with some configuration.

This resource works similar as OS::Heat::SoftwareDeploymentGroup, but for structured resources.

Required Properties

serversű

A map of names and server IDs to apply configuration to. The name is arbitrary and is used as the Heat
resource name for the corresponding deployment.

Map value expected.

Can be updated without replacement.

Optional Properties

actionsű

Which lifecycle actions of the deployment resource will result in this deployment being triggered.

List value expected.

Can be updated without replacement.

Defaults to ["CREATE", "UPDATE"]

Allowed values: CREATE, UPDATE, DELETE, SUSPEND, RESUME

configű

ID of software configuration resource to execute when applying to the server.

String value expected.

Can be updated without replacement.

input_keyű

Name of key to use for substituting inputs during deployment.

String value expected.

Updates cause replacement.

Defaults to "get_input"

input_valuesű

Input values to apply to the software configuration on this server.

Map value expected.

Can be updated without replacement.

338 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

input_values_validateű

Perform a check on the input values passed to verify that each required input has a corresponding value.
When the property is set to STRICT and no value is passed, an exception is raised.

String value expected.

Updates cause replacement.

Defaults to "LAX"

Allowed values: LAX, STRICT

nameű

Name of the derived config associated with this deployment. This is used to apply a sort order to the
list of configurations currently deployed to a server.

String value expected.

Can be updated without replacement.

signal_transportű

How the server should signal to heat with the deployment output values. CFN_SIGNAL will allow an
HTTP POST to a CFN keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL
to be signaled via HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal
using the provided keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue
to be signaled using the provided keystone credentials. NO_SIGNAL will result in the resource
going to the COMPLETE state without waiting for any signal.

String value expected.

Updates cause replacement.

Defaults to "CFN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL

Attributes

deploy_status_codesű A map of Nova names and returned status code from the configuration execu-
tion.

deploy_stderrsű A map of Nova names and captured stderrs from the configuration execution to each
server.

deploy_stdoutsű A map of Nova names and captured stdouts from the configuration execution to each
server.

showű Detailed information about resource.

3.3. Working with Templates 339

Heat Documentation, Release 16.1.1.dev14

update_policy

batch_createű

Available since 7.0.0 (Newton)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_sizeű

Optional.

The maximum number of resources to create at once.

Integer value expected.

Updates cause replacement.

Defaults to 1

The value must be at least 1.

pause_timeű

Optional.

The number of seconds to wait between batches.

Number value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

rolling_updateű

Available since 7.0.0 (Newton)

Map value expected.

Updates cause replacement.

Map properties:

max_batch_sizeű

Optional.

The maximum number of deployments to replace at once.

Integer value expected.

Updates cause replacement.

Defaults to 1

340 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The value must be at least 1.

pause_timeű

Optional.

The number of seconds to wait between batches of updates.

Number value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::StructuredDeploymentGroup
properties:

actions: [Value, Value, ...]
config: String
input_key: String
input_values: {...}
input_values_validate: String
name: String
servers: {...}
signal_transport: String

OS::Heat::SwiftSignal

Available since 2014.2 (Juno)

Resource for handling signals received by SwiftSignalHandle.

This resource handles signals received by SwiftSignalHandle and is same as WaitCondition resource.

Required Properties

handleű

URL of TempURL where resource will signal completion and optionally upload data.

String value expected.

Updates cause replacement.

timeoutű

3.3. Working with Templates 341

Heat Documentation, Release 16.1.1.dev14

The maximum number of seconds to wait for the resource to signal completion. Once the timeout is
reached, creation of the signal resource will fail.

Number value expected.

Updates cause replacement.

The value must be in the range 1 to 43200.

Optional Properties

countű

The number of success signals that must be received before the stack creation process continues.

Integer value expected.

Updates cause replacement.

Defaults to 1

The value must be in the range 1 to 1000.

Attributes

dataű JSON data that was uploaded via the SwiftSignalHandle.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::SwiftSignal
properties:

count: Integer
handle: String
timeout: Number

OS::Heat::SwiftSignalHandle

Available since 2014.2 (Juno)

Resource for managing signals from Swift resources.

This resource is same as WaitConditionHandle, but designed for using by Swift resources.

342 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

curl_cliű Convenience attribute, provides curl CLI command prefix, which can be used for signalling
handle completion or failure. You can signal success by adding data-binary {status: SUCCESS} ,
or signal failure by adding data-binary {status: FAILURE}.

endpointű Endpoint/url which can be used for signalling handle.

showű Detailed information about resource.

tokenű Tokens are not needed for Swift TempURLs. This attribute is being kept for compatibility with
the OS::Heat::WaitConditionHandle resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::SwiftSignalHandle

OS::Heat::TestResource

Available since 5.0.0 (Liberty)

A resource which stores the string value that was provided.

This resource is to be used only for testing. It has control knobs such as update_replace, fail, wait_secs.

Optional Properties

action_wait_secsű

Options for simulating waiting.

Map value expected.

Can be updated without replacement.

Map properties:

createű

Optional.

Seconds to wait after a create. Defaults to the global wait_secs.

Number value expected.

Can be updated without replacement.

deleteű

3.3. Working with Templates 343

Heat Documentation, Release 16.1.1.dev14

Optional.

Seconds to wait after a delete. Defaults to the global wait_secs.

Number value expected.

Can be updated without replacement.

updateű

Optional.

Seconds to wait after an update. Defaults to the global wait_secs.

Number value expected.

Can be updated without replacement.

attr_wait_secsű

Available since 6.0.0 (Mitaka)

Number value for timeout during resolving output value.

Number value expected.

Can be updated without replacement.

Defaults to 0

client_nameű

Client to poll.

String value expected.

Can be updated without replacement.

Defaults to ""

constraint_prop_secsű

Available since 6.0.0 (Mitaka)

Number value for delay during resolve constraint.

Number value expected.

Can be updated without replacement.

Defaults to 0

Value must be of type test_constr

entity_nameű

Client entity to poll.

String value expected.

Can be updated without replacement.

Defaults to ""

344 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

failű

Value which can be set to fail the resource operation to test failure scenarios.

Boolean value expected.

Can be updated without replacement.

Defaults to false

update_replaceű

Value which can be set to trigger update replace for the particular resource.

Boolean value expected.

Can be updated without replacement.

Defaults to false

update_replace_valueű

Available since 7.0.0 (Newton)

Some value that can be stored but can not be updated.

String value expected.

Updates cause replacement.

valueű

The input string to be stored.

String value expected.

Can be updated without replacement.

Defaults to "test_string"

wait_secsű

Seconds to wait after an action (-1 is infinite).

Number value expected.

Can be updated without replacement.

Defaults to 0

Attributes

outputű The string that was stored. This value is also available by referencing the resource.

showű Detailed information about resource.

3.3. Working with Templates 345

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::TestResource
properties:

action_wait_secs: {"create": Number, "update": Number, "delete":
↪→Number}

attr_wait_secs: Number
client_name: String
constraint_prop_secs: Number
entity_name: String
fail: Boolean
update_replace: Boolean
update_replace_value: String
value: String
wait_secs: Number

OS::Heat::UpdateWaitConditionHandle

Available since 2014.1 (Icehouse)

WaitConditionHandle that clears signals and changes handle on update.

This works similarly to an AWS::CloudFormation::WaitConditionHandle, except that on update it clears
all signals received and changes the handle. Using this handle means that you must setup the signal
senders to send their signals again any time the update handle changes. This allows us to roll out new
configurations and be confident that they are rolled out once UPDATE COMPLETE is reached.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::UpdateWaitConditionHandle

346 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Heat::Value

Available since 7.0.0 (Newton)

A resource which exposes its value property as an attribute.

This is useful for exposing a value that is a simple manipulation of other template parameters and/or
other resources.

Required Properties

valueű

The expression to generate the value attribute.

Any value expected.

Can be updated without replacement.

Optional Properties

typeű

The type of the value property.

String value expected.

Can be updated without replacement.

Allowed values: string, number, comma_delimited_list, json, boolean

Attributes

showű Detailed information about resource.

valueű The value generated by this resources properties value expression, with type determined from
the properties type.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::Value
properties:

type: String
value: Any

3.3. Working with Templates 347

Heat Documentation, Release 16.1.1.dev14

OS::Heat::WaitCondition

Available since 2014.2 (Juno)

Resource for handling signals received by WaitConditionHandle.

Resource takes WaitConditionHandle and starts to create. Resource is in CREATE_IN_PROGRESS
status until WaitConditionHandle doesnt receive sufficient number of successful signals (this number
can be specified with count property) and successfully creates after that, or fails due to timeout.

Required Properties

handleű

A reference to the wait condition handle used to signal this wait condition.

String value expected.

Updates cause replacement.

timeoutű

The number of seconds to wait for the correct number of signals to arrive.

Number value expected.

Updates cause replacement.

The value must be in the range 1 to 43200.

Optional Properties

countű

The number of success signals that must be received before the stack creation process continues.

Integer value expected.

Can be updated without replacement.

Defaults to 1

The value must be at least 1.

Attributes

dataű JSON string containing data associated with wait condition signals sent to the handle.

showű Detailed information about resource.

348 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::WaitCondition
properties:

count: Integer
handle: String
timeout: Number

OS::Heat::WaitConditionHandle

Available since 2014.2 (Juno)

Resource for managing instance signals.

The main points of this resource are:

• have no dependencies (so the instance can reference it).

• create credentials to allow for signalling from the instance.

• handle signals from the instance, validate and store result.

Optional Properties

signal_transportű

Available since 6.0.0 (Mitaka)

How the client will signal the wait condition. CFN_SIGNAL will allow an HTTP POST to a CFN
keypair signed URL. TEMP_URL_SIGNAL will create a Swift TempURL to be signalled via
HTTP PUT. HEAT_SIGNAL will allow calls to the Heat API resource-signal using the provided
keystone credentials. ZAQAR_SIGNAL will create a dedicated zaqar queue to be signalled using
the provided keystone credentials. TOKEN_SIGNAL will allow and HTTP POST to a Heat API
endpoint with the provided keystone token. NO_SIGNAL will result in the resource going to a
signalled state without waiting for any signal.

String value expected.

Updates cause replacement.

Defaults to "TOKEN_SIGNAL"

Allowed values: CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, NO_SIGNAL, ZA-
QAR_SIGNAL, TOKEN_SIGNAL

3.3. Working with Templates 349

Heat Documentation, Release 16.1.1.dev14

Attributes

curl_cliű Convenience attribute, provides curl CLI command prefix, which can be used for signalling
handle completion or failure when signal_transport is set to TOKEN_SIGNAL. You can signal
success by adding data-binary {status: SUCCESS} , or signal failure by adding data-binary {sta-
tus: FAILURE}. This attribute is set to None for all other signal transports.

endpointű Endpoint/url which can be used for signalling handle when signal_transport is set to TO-
KEN_SIGNAL. None for all other signal transports.

showű Detailed information about resource.

signalű JSON serialized map that includes the endpoint, token and/or other attributes the client must
use for signalling this handle. The contents of this map depend on the type of signal selected in
the signal_transport property.

tokenű Token for stack-user which can be used for signalling handle when signal_transport is set to
TOKEN_SIGNAL. None for all other signal transports.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Heat::WaitConditionHandle
properties:

signal_transport: String

OS::Ironic::Port

Available since 13.0.0 (Train)

A resource that creates a ironic port.

Node UUID and physical hardware address for the Port (MAC address in most cases) are needed (all
Ports must be associated to a Node when created).

Required Properties

addressű

Physical hardware address of this network Port, typically the hardware MAC address.

String value expected.

Can be updated without replacement.

nodeű

UUID or name of the Node this resource belongs to.

350 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

Value must be of type ironic.node

Optional Properties

extraű

A set of one or more arbitrary metadata key and value pairs.

Map value expected.

Can be updated without replacement.

is_smartnicű

Indicates whether the Port is a Smart NIC port.

Boolean value expected.

Can be updated without replacement.

local_link_connectionű

The Port binding profile. If specified, must contain switch_id (only a MAC address or an OpenFlow
based datapath_id of the switch are accepted in this field) and port_id (identifier of the physical
port on the switch to which nodes port is connected to) fields. switch_info is an optional string
field to be used to store any vendor-specific information.

Map value expected.

Can be updated without replacement.

physical_networkű

The name of the physical network to which a port is connected. May be empty.

String value expected.

Can be updated without replacement.

portgroupű

UUID or name of the Portgroup this resource belongs to.

String value expected.

Can be updated without replacement.

Value must be of type ironic.portgroup

pxe_enabledű

Indicates whether PXE is enabled or disabled on the Port.

Boolean value expected.

Can be updated without replacement.

3.3. Working with Templates 351

Heat Documentation, Release 16.1.1.dev14

Attributes

addressű Physical hardware address of this network Port, typically the hardware MAC address.

extraű A set of one or more arbitrary metadata key and value pairs.

internal_infoű Internal metadata set and stored by the Port. This field is read-only.

is_smartnicű Indicates whether the Port is a Smart NIC port.

local_link_connectionű The Port binding profile. If specified, must contain switch_id (only a MAC ad-
dress or an OpenFlow based datapath_id of the switch are accepted in this field) and port_id (iden-
tifier of the physical port on the switch to which nodes port is connected to) fields. switch_info is
an optional string field to be used to store any vendor-specific information.

node_uuidű UUID of the Node this resource belongs to.

physical_networkű The name of the physical network to which a port is connected. May be empty.

portgroup_uuidű UUID of the Portgroup this resource belongs to.

pxe_enabledű Indicates whether PXE is enabled or disabled on the Port.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Ironic::Port
properties:

address: String
extra: {...}
is_smartnic: Boolean
local_link_connection: {...}
node: String
physical_network: String
portgroup: String
pxe_enabled: Boolean

OS::Keystone::Domain

Available since 8.0.0 (Ocata) - Supported versions: keystone v3

Heat Template Resource for Keystone Domain.

This plug-in helps to create, update and delete a keystone domain. Also it can be used for enable or
disable a given keystone domain.

352 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

descriptionű

Description of keystone domain.

String value expected.

Can be updated without replacement.

enabledű

This domain is enabled or disabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true

nameű

The name of the domain.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::Domain
properties:

description: String
enabled: Boolean
name: String

OS::Keystone::Endpoint

Available since 5.0.0 (Liberty) - Supported versions: keystone v3

Heat Template Resource for Keystone Service Endpoint.

Keystone endpoint is just the URL that can be used for accessing a service within OpenStack. Endpoint
can be accessed by admin, by services or public, i.e. everyone can use this endpoint.

3.3. Working with Templates 353

Heat Documentation, Release 16.1.1.dev14

Required Properties

interfaceű

Interface type of keystone service endpoint.

String value expected.

Can be updated without replacement.

Allowed values: public, internal, admin

serviceű

Name or Id of keystone service.

String value expected.

Can be updated without replacement.

Value must be of type keystone.service

urlű

URL of keystone service endpoint.

String value expected.

Can be updated without replacement.

Optional Properties

enabledű

Available since 6.0.0 (Mitaka)

This endpoint is enabled or disabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true

nameű

Name of keystone endpoint.

String value expected.

Can be updated without replacement.

regionű

Name or Id of keystone region.

String value expected.

Can be updated without replacement.

Value must be of type keystone.region

354 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::Endpoint
properties:

enabled: Boolean
interface: String
name: String
region: String
service: String
url: String

OS::Keystone::Group

Available since 2015.1 (Kilo) - Supported versions: keystone v3

Heat Template Resource for Keystone Group.

Groups are a container representing a collection of users. A group itself must be owned by a specific
domain, and hence all group names are not globally unique, but only unique to their domain.

Optional Properties

descriptionű

Description of keystone group.

String value expected.

Can be updated without replacement.

Defaults to ""

domainű

Name or id of keystone domain.

String value expected.

Can be updated without replacement.

Defaults to "default"

Value must be of type keystone.domain

nameű

3.3. Working with Templates 355

Heat Documentation, Release 16.1.1.dev14

Name of keystone group.

String value expected.

Can be updated without replacement.

rolesű

List of role assignments.

List value expected.

Can be updated without replacement.

List contents:

Map between role with either project or domain.

Map value expected.

Can be updated without replacement.

Map properties:

domainű

Optional.

Keystone domain.

String value expected.

Can be updated without replacement.

Value must be of type keystone.domain

projectű

Optional.

Keystone project.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project

roleű

Required.

Keystone role.

String value expected.

Can be updated without replacement.

Value must be of type keystone.role

356 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::Group
properties:

description: String
domain: String
name: String
roles: [{"role": String, "project": String, "domain": String}, {"role

↪→": String, "project": String, "domain": String}, ...]

OS::Keystone::GroupRoleAssignment

Available since 5.0.0 (Liberty) - Supported versions: keystone v3

Resource for granting roles to a group.

Resource for specifying groups and theirs roles.

Required Properties

groupű

Name or id of keystone group.

String value expected.

Can be updated without replacement.

Value must be of type keystone.group

Optional Properties

rolesű

List of role assignments.

List value expected.

Can be updated without replacement.

List contents:

Map between role with either project or domain.

3.3. Working with Templates 357

Heat Documentation, Release 16.1.1.dev14

Map value expected.

Can be updated without replacement.

Map properties:

domainű

Optional.

Keystone domain.

String value expected.

Can be updated without replacement.

Value must be of type keystone.domain

projectű

Optional.

Keystone project.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project

roleű

Required.

Keystone role.

String value expected.

Can be updated without replacement.

Value must be of type keystone.role

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::GroupRoleAssignment
properties:

group: String
roles: [{"role": String, "project": String, "domain": String}, {"role

↪→": String, "project": String, "domain": String}, ...]

358 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Keystone::Project

Available since 2015.1 (Kilo) - Supported versions: keystone v3

Heat Template Resource for Keystone Project.

Projects represent the base unit of ownership in OpenStack, in that all resources in OpenStack should be
owned by a specific project. A project itself must be owned by a specific domain, and hence all project
names are not globally unique, but unique to their domain. If the domain for a project is not specified,
then it is added to the default domain.

Optional Properties

descriptionű

Description of keystone project.

String value expected.

Can be updated without replacement.

Defaults to ""

domainű

Name or id of keystone domain.

String value expected.

Can be updated without replacement.

Defaults to "default"

Value must be of type keystone.domain

enabledű

This project is enabled or disabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true

nameű

Name of keystone project.

String value expected.

Can be updated without replacement.

parentű

Available since 6.0.0 (Mitaka)

The name or ID of parent of this keystone project in hierarchy.

3.3. Working with Templates 359

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Value must be of type keystone.project

tagsű

Available since 10.0.0 (Queens)

A list of tags for labeling and sorting projects.

List value expected.

Can be updated without replacement.

Defaults to []

Attributes

domain_idű

Available since 10.0.0 (Queens)

Domain id for project.

enabledű

Available since 10.0.0 (Queens)

Flag of enable project.

is_domainű

Available since 10.0.0 (Queens)

Indicates whether the project also acts as a domain.

nameű

Available since 10.0.0 (Queens)

Project name.

parent_idű

Available since 10.0.0 (Queens)

Parent project id.

showű Detailed information about resource.

360 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::Project
properties:

description: String
domain: String
enabled: Boolean
name: String
parent: String
tags: [Value, Value, ...]

OS::Keystone::Region

Available since 6.0.0 (Mitaka) - Supported versions: keystone v3

Heat Template Resource for Keystone Region.

This plug-in helps to create, update and delete a keystone region. Also it can be used for enable or
disable a given keystone region.

Optional Properties

descriptionű

Description of keystone region.

String value expected.

Can be updated without replacement.

enabledű

This region is enabled or disabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true

idű

The user-defined region ID and should unique to the OpenStack deployment. While creating the region,
heat will url encode this ID.

String value expected.

Updates cause replacement.

parent_regionű

3.3. Working with Templates 361

Heat Documentation, Release 16.1.1.dev14

If the region is hierarchically a child of another region, set this parameter to the ID of the parent region.

String value expected.

Can be updated without replacement.

Value must be of type keystone.region

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::Region
properties:

description: String
enabled: Boolean
id: String
parent_region: String

OS::Keystone::Role

Available since 2015.1 (Kilo) - Supported versions: keystone v3

Heat Template Resource for Keystone Role.

Roles dictate the level of authorization the end user can obtain. Roles can be granted at either the domain
or project level. Role can be assigned to the individual user or at the group level. Role name is unique
within the owning domain.

Optional Properties

domainű

Available since 16.0.0

Name or id of keystone domain.

String value expected.

Updates cause replacement.

Value must be of type keystone.domain

362 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

nameű

Name of keystone role.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::Role
properties:

domain: String
name: String

OS::Keystone::Service

Available since 5.0.0 (Liberty) - Supported versions: keystone v3

Heat Template Resource for Keystone Service.

A resource that allows to create new service and manage it by Keystone.

Required Properties

typeű

Type of keystone Service.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 363

Heat Documentation, Release 16.1.1.dev14

Optional Properties

descriptionű

Description of keystone service.

String value expected.

Can be updated without replacement.

enabledű

Available since 6.0.0 (Mitaka)

This service is enabled or disabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true

nameű

Name of keystone service.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::Service
properties:

description: String
enabled: Boolean
name: String
type: String

364 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Keystone::User

Available since 2015.1 (Kilo) - Supported versions: keystone v3

Heat Template Resource for Keystone User.

Users represent an individual API consumer. A user itself must be owned by a specific domain, and
hence all user names are not globally unique, but only unique to their domain.

Optional Properties

default_projectű

Name or ID of default project of keystone user.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project

descriptionű

Description of keystone user.

String value expected.

Can be updated without replacement.

Defaults to ""

domainű

Name or ID of keystone domain.

String value expected.

Can be updated without replacement.

Defaults to "default"

Value must be of type keystone.domain

emailű

Email address of keystone user.

String value expected.

Can be updated without replacement.

enabledű

Keystone user is enabled or disabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true

groupsű

3.3. Working with Templates 365

Heat Documentation, Release 16.1.1.dev14

Keystone user groups.

List value expected.

Can be updated without replacement.

List contents:

Optional.

Keystone user group.

String value expected.

Can be updated without replacement.

Value must be of type keystone.group

nameű

Name of keystone user.

String value expected.

Can be updated without replacement.

passwordű

Password of keystone user.

String value expected.

Can be updated without replacement.

rolesű

List of role assignments.

List value expected.

Can be updated without replacement.

List contents:

Map between role with either project or domain.

Map value expected.

Can be updated without replacement.

Map properties:

domainű

Optional.

Keystone domain.

String value expected.

Can be updated without replacement.

Value must be of type keystone.domain

projectű

Optional.

366 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Keystone project.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project

roleű

Required.

Keystone role.

String value expected.

Can be updated without replacement.

Value must be of type keystone.role

Attributes

default_project_idű

Available since 9.0.0 (Pike)

Default project id for user.

domain_idű

Available since 9.0.0 (Pike)

Domain id for user.

enabledű

Available since 9.0.0 (Pike)

Flag of enable user.

nameű

Available since 9.0.0 (Pike)

User name.

password_expires_atű

Available since 9.0.0 (Pike)

Show user password expiration time.

showű Detailed information about resource.

3.3. Working with Templates 367

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::User
properties:

default_project: String
description: String
domain: String
email: String
enabled: Boolean
groups: [String, String, ...]
name: String
password: String
roles: [{"role": String, "project": String, "domain": String}, {"role

↪→": String, "project": String, "domain": String}, ...]

OS::Keystone::UserRoleAssignment

Available since 5.0.0 (Liberty) - Supported versions: keystone v3

Resource for granting roles to a user.

Resource for specifying users and theirs roles.

Required Properties

userű

Name or id of keystone user.

String value expected.

Can be updated without replacement.

Value must be of type keystone.user

Optional Properties

rolesű

List of role assignments.

List value expected.

Can be updated without replacement.

List contents:

Map between role with either project or domain.

368 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Map value expected.

Can be updated without replacement.

Map properties:

domainű

Optional.

Keystone domain.

String value expected.

Can be updated without replacement.

Value must be of type keystone.domain

projectű

Optional.

Keystone project.

String value expected.

Can be updated without replacement.

Value must be of type keystone.project

roleű

Required.

Keystone role.

String value expected.

Can be updated without replacement.

Value must be of type keystone.role

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Keystone::UserRoleAssignment
properties:

roles: [{"role": String, "project": String, "domain": String}, {"role
↪→": String, "project": String, "domain": String}, ...]

user: String

3.3. Working with Templates 369

Heat Documentation, Release 16.1.1.dev14

OS::Magnum::Cluster

Available since 9.0.0 (Pike)

A resource that creates a magnum cluster.

This resource creates a magnum cluster, which is a collection of node objects where work is scheduled.

Required Properties

cluster_templateű

The name or ID of the cluster template.

String value expected.

Updates cause replacement.

Value must be of type magnum.cluster_template

Optional Properties

create_timeoutű

Timeout for creating the cluster in minutes. Set to 0 for no timeout.

Integer value expected.

Can be updated without replacement.

Defaults to 60

The value must be at least 0.

discovery_urlű

Specifies a custom discovery url for node discovery.

String value expected.

Can be updated without replacement.

keypairű

The name of the keypair. If not presented, use keypair in cluster template.

String value expected.

Updates cause replacement.

Value must be of type nova.keypair

master_countű

The number of master nodes for this cluster.

Integer value expected.

Can be updated without replacement.

370 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Defaults to 1

The value must be at least 1.

nameű

The cluster name.

String value expected.

Updates cause replacement.

node_countű

The node count for this cluster.

Integer value expected.

Can be updated without replacement.

Defaults to 1

The value must be at least 1.

Attributes

api_addressű The endpoint URL of COE API exposed to end-users.

cluster_template_idű The UUID of the cluster template.

coe_versionű Version info of chosen COE in cluster for helping client in picking the right version of
client.

container_versionű Version info of constainer engine in the chosen COE in cluster for helping client
in picking the right version of client.

create_timeoutű The timeout for cluster creation in minutes.

discovery_urlű The custom discovery url for node discovery.

keypairű The name of the keypair.

master_addressesű List of floating IP of all master nodes.

master_countű The number of servers that will serve as master for the cluster.

nameű Name of the resource.

node_addressesű List of floating IP of all servers that serve as node.

node_countű The number of servers that will serve as node in the cluster.

showű Detailed information about resource.

stack_idű The reference UUID of orchestration stack for this COE cluster.

statusű The status for this COE cluster.

status_reasonű The reason of cluster current status.

3.3. Working with Templates 371

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Magnum::Cluster
properties:

cluster_template: String
create_timeout: Integer
discovery_url: String
keypair: String
master_count: Integer
name: String
node_count: Integer

OS::Magnum::ClusterTemplate

Available since 9.0.0 (Pike)

A resource for the ClusterTemplate in Magnum.

ClusterTemplate is an object that stores template information about the cluster which is used to create
new clusters consistently.

Required Properties

coeű

The Container Orchestration Engine for cluster.

String value expected.

Updates cause replacement.

Allowed values: kubernetes, swarm, mesos

external_networkű

The external neutron network name or UUID to attach the Cluster.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

imageű

The image name or UUID to use as a base image for cluster.

String value expected.

Updates cause replacement.

372 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Value must be of type glance.image

Optional Properties

dns_nameserverű

The DNS nameserver address.

String value expected.

Updates cause replacement.

Value must be of type ip_addr

docker_storage_driverű

Select a docker storage driver.

String value expected.

Updates cause replacement.

Defaults to "devicemapper"

Allowed values: devicemapper, overlay

docker_volume_sizeű

The size in GB of the docker volume.

Integer value expected.

Updates cause replacement.

The value must be at least 1.

fixed_networkű

The fixed neutron network name or UUID to attach the Cluster.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

fixed_subnetű

The fixed neutron subnet name or UUID to attach the Cluster.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

flavorű

The nova flavor name or UUID to use when launching the cluster.

String value expected.

Updates cause replacement.

Value must be of type nova.flavor

3.3. Working with Templates 373

Heat Documentation, Release 16.1.1.dev14

floating_ip_enabledű

Indicates whether created clusters should have a floating ip or not.

Boolean value expected.

Updates cause replacement.

Defaults to true

http_proxyű

The http_proxy address to use for nodes in cluster.

String value expected.

Updates cause replacement.

https_proxyű

The https_proxy address to use for nodes in cluster.

String value expected.

Updates cause replacement.

keypairű

The name of the SSH keypair to load into the cluster nodes.

String value expected.

Updates cause replacement.

Value must be of type nova.keypair

labelsű

Arbitrary labels in the form of key=value pairs to associate with cluster.

Map value expected.

Updates cause replacement.

master_flavorű

The nova flavor name or UUID to use when launching the master node of the cluster.

String value expected.

Updates cause replacement.

Value must be of type nova.flavor

master_lb_enabledű

Indicates whether created clusters should have a load balancer for master nodes or not.

Boolean value expected.

Updates cause replacement.

Defaults to true

nameű

The cluster template name.

374 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

network_driverű

The name of the driver used for instantiating container networks. By default, Magnum will choose the
pre-configured network driver based on COE type.

String value expected.

Updates cause replacement.

no_proxyű

A comma separated list of addresses for which proxies should not be used in the cluster.

String value expected.

Updates cause replacement.

publicű

Make the cluster template public. To enable this option, you must own the right to publish in magnum.
Which default set to admin only.

Boolean value expected.

Can be updated without replacement.

Defaults to false

registry_enabledű

Enable the docker registry in the cluster.

Boolean value expected.

Updates cause replacement.

Defaults to false

server_typeű

Specify the server type to be used.

String value expected.

Updates cause replacement.

Defaults to "vm"

Allowed values: vm, bm

tls_disabledű

Disable TLS in the cluster.

Boolean value expected.

Updates cause replacement.

Defaults to false

volume_driverű

The volume driver name for instantiating container volume.

3.3. Working with Templates 375

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Allowed values: cinder, rexray

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Magnum::ClusterTemplate
properties:

coe: String
dns_nameserver: String
docker_storage_driver: String
docker_volume_size: Integer
external_network: String
fixed_network: String
fixed_subnet: String
flavor: String
floating_ip_enabled: Boolean
http_proxy: String
https_proxy: String
image: String
keypair: String
labels: {...}
master_flavor: String
master_lb_enabled: Boolean
name: String
network_driver: String
no_proxy: String
public: Boolean
registry_enabled: Boolean
server_type: String
tls_disabled: Boolean
volume_driver: String

376 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Manila::SecurityService

Available since 5.0.0 (Liberty)

A resource that implements security service of Manila.

A security_service is a set of options that defines a security domain for a particular shared filesystem
protocol, such as an Active Directory domain or a Kerberos domain.

Required Properties

typeű

Security service type.

String value expected.

Updates cause replacement.

Allowed values: ldap, kerberos, active_directory

Optional Properties

descriptionű

Security service description.

String value expected.

Can be updated without replacement.

dns_ipű

DNS IP address used inside tenants network.

String value expected.

Can be updated without replacement.

domainű

Security service domain.

String value expected.

Can be updated without replacement.

nameű

Security service name.

String value expected.

Can be updated without replacement.

passwordű

Password used by user.

3.3. Working with Templates 377

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

serverű

Security service IP address or hostname.

String value expected.

Can be updated without replacement.

userű

Security service user or group used by tenant.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Manila::SecurityService
properties:

description: String
dns_ip: String
domain: String
name: String
password: String
server: String
type: String
user: String

OS::Manila::Share

Available since 5.0.0 (Liberty)

A resource that creates shared mountable file system.

The resource creates a manila share - shared mountable filesystem that can be attached to any client(or
clients) that has a network access and permission to mount filesystem. Share is a unit of storage with
specific size that supports pre-defined share protocol and advanced security model (access lists, share
networks and security services).

378 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

share_protocolű

Share protocol supported by shared filesystem.

String value expected.

Updates cause replacement.

Allowed values: NFS, CIFS, GlusterFS, HDFS, CEPHFS

sizeű

Share storage size in GB.

Integer value expected.

Updates cause replacement.

Optional Properties

access_rulesű

A list of access rules that define access from IP to Share.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

access_levelű

Optional.

Level of access that need to be provided for guest.

String value expected.

Can be updated without replacement.

Allowed values: ro, rw

access_toű

Required.

IP or other address information about guest that allowed to access to Share.

String value expected.

Can be updated without replacement.

access_typeű

3.3. Working with Templates 379

Heat Documentation, Release 16.1.1.dev14

Required.

Type of access that should be provided to guest.

String value expected.

Can be updated without replacement.

Allowed values: ip, user, cert, cephx

descriptionű

Share description.

String value expected.

Can be updated without replacement.

is_publicű

Defines if shared filesystem is public or private.

Boolean value expected.

Can be updated without replacement.

Defaults to false

metadataű

Metadata key-values defined for share.

Map value expected.

Can be updated without replacement.

nameű

Share name.

String value expected.

Can be updated without replacement.

share_networkű

Name or ID of shared network defined for shared filesystem.

String value expected.

Updates cause replacement.

Value must be of type manila.share_network

share_typeű

Name or ID of shared filesystem type. Types defines some share filesystem profiles that will be used
for share creation.

String value expected.

Updates cause replacement.

Value must be of type manila.share_type

snapshotű

Name or ID of shared file system snapshot that will be restored and created as a new share.

380 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Value must be of type manila.share_snapshot

Attributes

availability_zoneű The availability zone of shared filesystem.

created_atű Datetime when a share was created.

export_locationsű Export locations of share.

hostű Share host.

project_idű Share project ID.

share_server_idű ID of server (VM, etc) on host that is used for exporting network file-system.

showű Detailed information about resource.

statusű Current share status.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Manila::Share
properties:

access_rules: [{"access_to": String, "access_type": String, "access_
↪→level": String}, {"access_to": String, "access_type": String, "access_
↪→level": String}, ...]

description: String
is_public: Boolean
metadata: {...}
name: String
share_network: String
share_protocol: String
share_type: String
size: Integer
snapshot: String

3.3. Working with Templates 381

Heat Documentation, Release 16.1.1.dev14

OS::Manila::ShareNetwork

Available since 5.0.0 (Liberty)

A resource that stores network information for share servers.

Stores network information that will be used by share servers, where shares are hosted.

Optional Properties

descriptionű

Share network description.

String value expected.

Can be updated without replacement.

nameű

Name of the share network.

String value expected.

Can be updated without replacement.

neutron_networkű

Neutron network id.

String value expected.

Can be updated without replacement.

Value must be of type neutron.network

neutron_subnetű

Neutron subnet id.

String value expected.

Can be updated without replacement.

Value must be of type neutron.subnet

nova_networkű

Nova network id.

String value expected.

Can be updated without replacement.

security_servicesű

A list of security services IDs or names.

List value expected.

Can be updated without replacement.

382 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Attributes

cidrű CIDR of subnet.

ip_versionű Version of IP address.

network_typeű The physical mechanism by which the virtual network is implemented.

segmentation_idű VLAN ID for VLAN networks or tunnel-id for GRE/VXLAN networks.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Manila::ShareNetwork
properties:

description: String
name: String
neutron_network: String
neutron_subnet: String
nova_network: String
security_services: [String, String, ...]

OS::Manila::ShareType

Available since 5.0.0 (Liberty)

A resource for creating manila share type.

A share_type is an administrator-defined type of service, comprised of a tenant visible description,
and a list of non-tenant-visible key/value pairs (extra_specs) which the Manila scheduler uses to make
scheduling decisions for shared filesystem tasks.

Please note that share type is intended to use mostly by administrators. So it is very likely that Manila
will prohibit creation of the resource without administration grants.

3.3. Working with Templates 383

Heat Documentation, Release 16.1.1.dev14

Required Properties

driver_handles_share_serversű

Required extra specification. Defines if share drivers handles share servers.

Boolean value expected.

Updates cause replacement.

nameű

Name of the share type.

String value expected.

Updates cause replacement.

Optional Properties

extra_specsű

Extra specs key-value pairs defined for share type.

Map value expected.

Can be updated without replacement.

is_publicű

Defines if share type is accessible to the public.

Boolean value expected.

Updates cause replacement.

Defaults to true

snapshot_supportű

Available since 6.0.0 (Mitaka)

Boolean extra spec that used for filtering of backends by their capability to create share snapshots.

Boolean value expected.

Updates cause replacement.

Defaults to true

384 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Manila::ShareType
properties:

driver_handles_share_servers: Boolean
extra_specs: {...}
is_public: Boolean
name: String
snapshot_support: Boolean

OS::Mistral::CronTrigger

Available since 5.0.0 (Liberty)

A resource implements Mistral cron trigger.

Cron trigger is an object allowing to run workflow on a schedule. User specifies what workflow with
what input needs to be run and also specifies how often it should be run. Pattern property is used to
describe the frequency of workflow execution.

Required Properties

workflowű

Workflow to execute.

Map value expected.

Updates cause replacement.

Map properties:

inputű

Input values for the workflow.

Map value expected.

Updates cause replacement.

nameű

Required.

Name or ID of the workflow.

3.3. Working with Templates 385

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Value must be of type mistral.workflow

Optional Properties

countű

Remaining executions.

Integer value expected.

Updates cause replacement.

first_timeű

Time of the first execution in format YYYY-MM-DD HH:MM.

String value expected.

Updates cause replacement.

nameű

Name of the cron trigger.

String value expected.

Updates cause replacement.

patternű

Cron expression.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

Attributes

next_execution_timeű Time of the next execution in format YYYY-MM-DD HH:MM:SS.

remaining_executionsű Number of remaining executions.

showű Detailed information about resource.

386 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Mistral::CronTrigger
properties:

count: Integer
first_time: String
name: String
pattern: String
workflow: {"name": String, "input": {...}}

OS::Mistral::ExternalResource

Available since 9.0.0 (Pike)

A plugin for managing user-defined resources via Mistral workflows.

This resource allows users to manage resources that are not known to Heat. The user may specify a
Mistral workflow to handle each resource action, such as CREATE, UPDATE, or DELETE.

The workflows may return an output named resource_id, which will be treated as the physical ID of the
resource by Heat.

Once the resource is created, subsequent workflow runs will receive the output of the last work-
flow execution in the heat_extresource_data key in the workflow environment (accessible as env().
heat_extresource_data in the workflow).

The template author may specify a subset of inputs as causing replacement of the resource when they
change, as an alternative to running the UPDATE workflow.

Required Properties

actionsű

Resource action which triggers a workflow execution.

Map value expected.

Updates cause replacement.

Map properties:

CREATEű

Dictionary which defines the workflow to run and its params.

Map value expected.

Updates cause replacement.

Map properties:

3.3. Working with Templates 387

Heat Documentation, Release 16.1.1.dev14

paramsű

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.

Updates cause replacement.

Defaults to {}

workflowű

Required.

Workflow to execute.

String value expected.

Updates cause replacement.

Value must be of type mistral.workflow

DELETEű

Dictionary which defines the workflow to run and its params.

Map value expected.

Updates cause replacement.

Map properties:

paramsű

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.

Updates cause replacement.

Defaults to {}

workflowű

Required.

Workflow to execute.

String value expected.

Updates cause replacement.

Value must be of type mistral.workflow

RESUMEű

Dictionary which defines the workflow to run and its params.

Map value expected.

Updates cause replacement.

Map properties:

paramsű

388 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.

Updates cause replacement.

Defaults to {}

workflowű

Required.

Workflow to execute.

String value expected.

Updates cause replacement.

Value must be of type mistral.workflow

SUSPENDű

Dictionary which defines the workflow to run and its params.

Map value expected.

Updates cause replacement.

Map properties:

paramsű

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.

Updates cause replacement.

Defaults to {}

workflowű

Required.

Workflow to execute.

String value expected.

Updates cause replacement.

Value must be of type mistral.workflow

UPDATEű

Dictionary which defines the workflow to run and its params.

Map value expected.

Updates cause replacement.

Map properties:

paramsű

3.3. Working with Templates 389

Heat Documentation, Release 16.1.1.dev14

Workflow additional parameters. If workflow is reverse typed, params requires task_name,
which defines initial task.

Map value expected.

Updates cause replacement.

Defaults to {}

workflowű

Required.

Workflow to execute.

String value expected.

Updates cause replacement.

Value must be of type mistral.workflow

Optional Properties

always_updateű

Triggers UPDATE action execution even if input is unchanged.

Boolean value expected.

Updates cause replacement.

Defaults to false

descriptionű

Workflow execution description.

String value expected.

Updates cause replacement.

Defaults to "Heat managed"

inputű

Dictionary which contains input for the workflows.

Map value expected.

Can be updated without replacement.

Defaults to {}

replace_on_change_inputsű

A list of inputs that should cause the resource to be replaced when their values change.

List value expected.

Updates cause replacement.

Defaults to []

390 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

outputű Output from the execution.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Mistral::ExternalResource
properties:

actions: {"CREATE": {"workflow": String, "params": {...}}, "UPDATE":
↪→{"workflow": String, "params": {...}}, "SUSPEND": {"workflow": String,
↪→"params": {...}}, "RESUME": {"workflow": String, "params": {...}},
↪→"DELETE": {"workflow": String, "params": {...}}}

always_update: Boolean
description: String
input: {...}
replace_on_change_inputs: [Value, Value, ...]

OS::Mistral::Workflow

Available since 2015.1 (Kilo)

A resource that implements Mistral workflow.

Workflow represents a process that can be described in a various number of ways and that can do some
job interesting to the end user. Each workflow consists of tasks (at least one) describing what exact steps
should be made during workflow execution.

For detailed description how to use Workflow, read Mistral documentation.

Required Properties

tasksű

Dictionary containing workflow tasks.

List value expected.

Can be updated without replacement.

The length must be at least 1.

List contents:

Map value expected.

Can be updated without replacement.

3.3. Working with Templates 391

Heat Documentation, Release 16.1.1.dev14

Map properties:

actionű

Optional.

Name of the action associated with the task. Either action or workflow may be defined in
the task.

String value expected.

Can be updated without replacement.

concurrencyű

Available since 8.0.0 (Ocata)

Optional.

Defines a max number of actions running simultaneously in a task. Applicable only for
tasks that have with-items.

Integer value expected.

Can be updated without replacement.

descriptionű

Optional.

Task description.

String value expected.

Can be updated without replacement.

inputű

Actual input parameter values of the task.

Map value expected.

Can be updated without replacement.

joinű

Available since 6.0.0 (Mitaka)

Optional.

Allows to synchronize multiple parallel workflow branches and aggregate their data. Valid
inputs: all - the task will run only if all upstream tasks are completed. Any numeric
value - then the task will run once at least this number of upstream tasks are completed
and corresponding conditions have triggered.

String value expected.

Can be updated without replacement.

keep_resultű

392 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Available since 5.0.0 (Liberty)

Optional.

Allowing not to store action results after task completion.

Boolean value expected.

Can be updated without replacement.

nameű

Required.

Task name.

String value expected.

Can be updated without replacement.

on_completeű

List of tasks which will run after the task has completed regardless of whether it is success-
ful or not.

List value expected.

Can be updated without replacement.

on_errorű

List of tasks which will run after the task has completed with an error.

List value expected.

Can be updated without replacement.

on_successű

List of tasks which will run after the task has completed successfully.

List value expected.

Can be updated without replacement.

pause_beforeű

Available since 5.0.0 (Liberty)

Optional.

Defines whether Mistral Engine should put the workflow on hold or not before starting a
task.

Boolean value expected.

Can be updated without replacement.

publishű

Dictionary of variables to publish to the workflow context.

Map value expected.

3.3. Working with Templates 393

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

requiresű

List of tasks which should be executed before this task. Used only in reverse workflows.

List value expected.

Can be updated without replacement.

retryű

Available since 5.0.0 (Liberty)

Defines a pattern how task should be repeated in case of an error.

Map value expected.

Can be updated without replacement.

targetű

Available since 5.0.0 (Liberty)

Optional.

It defines an executor to which task action should be sent to.

String value expected.

Can be updated without replacement.

timeoutű

Available since 5.0.0 (Liberty)

Optional.

Defines a period of time in seconds after which a task will be failed automatically by engine
if hasnt completed.

Integer value expected.

Can be updated without replacement.

wait_afterű

Available since 5.0.0 (Liberty)

Optional.

Defines a delay in seconds that Mistral Engine should wait after a task has completed before
starting next tasks defined in on-success, on-error or on-complete.

Integer value expected.

Can be updated without replacement.

394 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

wait_beforeű

Available since 5.0.0 (Liberty)

Optional.

Defines a delay in seconds that Mistral Engine should wait before starting a task.

Integer value expected.

Can be updated without replacement.

with_itemsű

Available since 5.0.0 (Liberty)

Optional.

If configured, it allows to run action or workflow associated with a task multiple times on
a provided list of items.

String value expected.

Can be updated without replacement.

workflowű

Optional.

Name of the workflow associated with the task. Can be defined by intrinsic function
get_resource or by name of the referenced workflow, i.e. { workflow: wf_name } or
{ workflow: { get_resource: wf_name }}. Either action or workflow may be defined in
the task.

String value expected.

Can be updated without replacement.

Value must be of type mistral.workflow

typeű

Workflow type.

String value expected.

Can be updated without replacement.

Allowed values: direct, reverse

3.3. Working with Templates 395

Heat Documentation, Release 16.1.1.dev14

Optional Properties

descriptionű

Workflow description.

String value expected.

Can be updated without replacement.

inputű

Dictionary which contains input for workflow.

Map value expected.

Can be updated without replacement.

nameű

Workflow name.

String value expected.

Updates cause replacement.

outputű

Any data structure arbitrarily containing YAQL expressions that defines workflow output. May be
nested.

Map value expected.

Can be updated without replacement.

paramsű

Workflow additional parameters. If Workflow is reverse typed, params requires task_name, which
defines initial task.

Map value expected.

Can be updated without replacement.

tagsű

Available since 10.0.0 (Queens)

List of tags to set on the workflow.

List value expected.

Can be updated without replacement.

task_defaultsű

Available since 5.0.0 (Liberty)

Default settings for some of task attributes defined at workflow level.

Map value expected.

396 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Map properties:

concurrencyű

Available since 8.0.0 (Ocata)

Optional.

Defines a max number of actions running simultaneously in a task. Applicable only for tasks
that have with-items.

Integer value expected.

Can be updated without replacement.

on_completeű

List of tasks which will run after the task has completed regardless of whether it is successful or
not.

List value expected.

Can be updated without replacement.

on_errorű

List of tasks which will run after the task has completed with an error.

List value expected.

Can be updated without replacement.

on_successű

List of tasks which will run after the task has completed successfully.

List value expected.

Can be updated without replacement.

pause_beforeű

Optional.

Defines whether Mistral Engine should put the workflow on hold or not before starting a task.

Boolean value expected.

Can be updated without replacement.

requiresű

List of tasks which should be executed before this task. Used only in reverse workflows.

List value expected.

Can be updated without replacement.

retryű

Defines a pattern how task should be repeated in case of an error.

Map value expected.

3.3. Working with Templates 397

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

timeoutű

Optional.

Defines a period of time in seconds after which a task will be failed automatically by engine if
hasnt completed.

Integer value expected.

Can be updated without replacement.

wait_afterű

Optional.

Defines a delay in seconds that Mistral Engine should wait after a task has completed before
starting next tasks defined in on-success, on-error or on-complete.

Integer value expected.

Can be updated without replacement.

wait_beforeű

Optional.

Defines a delay in seconds that Mistral Engine should wait before starting a task.

Integer value expected.

Can be updated without replacement.

use_request_body_as_inputű

Available since 6.0.0 (Mitaka)

Defines the method in which the request body for signaling a workflow would be parsed. In case this
property is set to True, the body would be parsed as a simple json where each key is a workflow
input, in other cases body would be parsed expecting a specific json format with two keys: input
and params.

Boolean value expected.

Can be updated without replacement.

Attributes

alarm_urlű A signed url to create executions for workflows specified in Workflow resource.

dataű A dictionary which contains name and input of the workflow.

executionsű List of workflows executions, each of them is a dictionary with information about execu-
tion. Each dictionary returns values for next keys: id, workflow_name, created_at, updated_at,
state for current execution state, input, output.

showű Detailed information about resource.

398 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Mistral::Workflow
properties:

description: String
input: {...}
name: String
output: {...}
params: {...}
tags: [Value, Value, ...]
task_defaults: {"on_success": [Value, Value, ...], "on_error":

↪→[Value, Value, ...], "on_complete": [Value, Value, ...], "requires":
↪→[Value, Value, ...], "retry": {...}, "wait_before": Integer, "wait_after
↪→": Integer, "pause_before": Boolean, "timeout": Integer, "concurrency":
↪→Integer}

tasks: [{"name": String, "description": String, "input": {...},
↪→"action": String, "workflow": String, "publish": {...}, "on_success":
↪→[Value, Value, ...], "on_error": [Value, Value, ...], "on_complete":
↪→[Value, Value, ...], "policies": {...}, "requires": [Value, Value, ...],
↪→"retry": {...}, "wait_before": Integer, "wait_after": Integer, "pause_
↪→before": Boolean, "timeout": Integer, "with_items": String, "keep_result
↪→": Boolean, "concurrency": Integer, "target": String, "join": String}, {
↪→"name": String, "description": String, "input": {...}, "action": String,
↪→"workflow": String, "publish": {...}, "on_success": [Value, Value, ...],
↪→"on_error": [Value, Value, ...], "on_complete": [Value, Value, ...],
↪→"policies": {...}, "requires": [Value, Value, ...], "retry": {...},
↪→"wait_before": Integer, "wait_after": Integer, "pause_before": Boolean,
↪→"timeout": Integer, "with_items": String, "keep_result": Boolean,
↪→"concurrency": Integer, "target": String, "join": String}, ...]

type: String
use_request_body_as_input: Boolean

OS::Monasca::AlarmDefinition

Available since 7.0.0 (Newton)

UNSUPPORTED since 5.0.0 (Liberty)

Heat Template Resource for Monasca Alarm definition.

Monasca Alarm definition helps to define the required expression for a given alarm situation. This plugin
helps to create, update and delete the alarm definition.

Alarm definitions is necessary to describe and manage alarms in a one-to-many relationship in order to
avoid having to manually declare each alarm even though they may share many common attributes and
differ in only one, such as hostname.

3.3. Working with Templates 399

Heat Documentation, Release 16.1.1.dev14

Required Properties

expressionű

Expression of the alarm to evaluate.

String value expected.

Updates cause replacement.

Optional Properties

actions_enabledű

Whether to enable the actions or not.

Boolean value expected.

Can be updated without replacement.

Defaults to true

alarm_actionsű

The notification methods to use when an alarm state is ALARM.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

Monasca notification.

String value expected.

Can be updated without replacement.

Value must be of type monasca.notification

descriptionű

Description of the alarm.

String value expected.

Can be updated without replacement.

match_byű

The metric dimensions to match to the alarm dimensions. One or more dimension key names separated
by a comma.

List value expected.

Updates cause replacement.

Defaults to []

nameű

400 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Name of the alarm. By default, physical resource name is used.

String value expected.

Can be updated without replacement.

ok_actionsű

The notification methods to use when an alarm state is OK.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

Monasca notification.

String value expected.

Can be updated without replacement.

Value must be of type monasca.notification

severityű

Severity of the alarm.

String value expected.

Can be updated without replacement.

Defaults to "low"

Allowed values: low, medium, high, critical

undetermined_actionsű

The notification methods to use when an alarm state is UNDETERMINED.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

Monasca notification.

String value expected.

Can be updated without replacement.

Value must be of type monasca.notification

3.3. Working with Templates 401

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Monasca::AlarmDefinition
properties:

actions_enabled: Boolean
alarm_actions: [String, String, ...]
description: String
expression: String
match_by: [Value, Value, ...]
name: String
ok_actions: [String, String, ...]
severity: String
undetermined_actions: [String, String, ...]

OS::Monasca::Notification

Available since 7.0.0 (Newton)

UNSUPPORTED since 5.0.0 (Liberty)

Heat Template Resource for Monasca Notification.

A resource which is used to notificate if there is some alarm. Monasca Notification helps to declare the
hook points, which will be invoked once alarm is generated. This plugin helps to create, update and
delete the notification.

Required Properties

addressű

Address of the notification. It could be a valid email address, url or service key based on notification
type.

String value expected.

Can be updated without replacement.

The length must be no greater than 512.

typeű

402 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Type of the notification.

String value expected.

Can be updated without replacement.

Allowed values: email, webhook, pagerduty

Optional Properties

nameű

Name of the notification. By default, physical resource name is used.

String value expected.

Can be updated without replacement.

periodű

Available since 7.0.0 (Newton)

Interval in seconds to invoke webhooks if the alarm state does not transition away from the defined
trigger state. A value of 0 will disable continuous notifications. This property is only applicable
for the webhook notification type and has default period interval of 60 seconds.

Integer value expected.

Can be updated without replacement.

Allowed values: 0, 60

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Monasca::Notification
properties:

address: String
name: String
period: Integer
type: String

3.3. Working with Templates 403

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::AddressScope

Available since 6.0.0 (Mitaka)

A resource for Neutron address scope.

This resource can be associated with multiple subnet pools in a one-to-many relationship. The subnet
pools under an address scope must not overlap.

Optional Properties

ip_versionű

Address family of the address scope, which is 4 or 6.

Integer value expected.

Updates cause replacement.

Defaults to 4

Allowed values: 4, 6

nameű

The name for the address scope.

String value expected.

Can be updated without replacement.

sharedű

Whether the address scope should be shared to other tenants. Note that the default policy setting re-
stricts usage of this attribute to administrative users only, and restricts changing of shared address
scope to unshared with update.

Boolean value expected.

Can be updated without replacement.

Defaults to false

tenant_idű

The owner tenant ID of the address scope. Only administrative users can specify a tenant ID other than
their own.

String value expected.

Updates cause replacement.

Value must be of type keystone.project

404 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::AddressScope
properties:

ip_version: Integer
name: String
shared: Boolean
tenant_id: String

OS::Neutron::ExtraRouteSet

Available since 14.0.0 (Ussuri)

Resource for specifying extra routes for a Neutron router.

Requires Neutron extraroute-atomic extension to be enabled:

$ openstack extension show extraroute-atomic

An extra route is a static routing table entry that is added beyond the routes managed implicitly by router
interfaces and router gateways.

The destination of an extra route is any IP network in /CIDR notation. The nexthop of an extra
route is an IP in a subnet that is directly connected to the router.

In a single OS::Neutron::ExtraRouteSet resource you can specify a set of extra routes (repre-
sented as a list) on the same virtual router. As an improvement over the (never formally
supported) OS::Neutron::ExtraRoute resource this resource plugin uses a Neutron API extension
(extraroute-atomic) that is not prone to race conditions when used to manage multiple extra
routes of the same router. It is safe to manage multiple extra routes of the same router from multiple
stacks.

On the other hand use of the same route on the same router is not safe from multiple stacks (or between
Heat and non-Heat managed Neutron extra routes).

3.3. Working with Templates 405

Heat Documentation, Release 16.1.1.dev14

Required Properties

routerű

The router id.

String value expected.

Updates cause replacement.

Value must be of type neutron.router

Optional Properties

routesű

A set of route dictionaries for the router.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

destinationű

Required.

The destination network in CIDR notation.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr

nexthopű

Required.

The next hop for the destination.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

406 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::ExtraRouteSet
properties:

router: String
routes: [{"destination": String, "nexthop": String}, {"destination":

↪→String, "nexthop": String}, ...]

OS::Neutron::Firewall

A resource for the Firewall resource in Neutron FWaaS.

Resource for using the Neutron firewall implementation. Firewall is a network security system that
monitors and controls the incoming and outgoing network traffic based on predetermined security rules.

Required Properties

firewall_policy_idű

The ID of the firewall policy that this firewall is associated with.

String value expected.

Can be updated without replacement.

Optional Properties

admin_state_upű

Administrative state of the firewall. If false (down), firewall does not forward packets and will drop all
traffic to/from VMs behind the firewall.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description for the firewall.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 407

Heat Documentation, Release 16.1.1.dev14

nameű

Name for the firewall.

String value expected.

Can be updated without replacement.

value_specsű

Available since 5.0.0 (Liberty)

Extra parameters to include in the request. Parameters are often specific to installed hardware or exten-
sions.

Map value expected.

Can be updated without replacement.

Defaults to {}

sharedű

UNSUPPORTED since 6.0.0 (Mitaka) - There is no such option during 5.0.0, so need to make
this property unsupported while it not used.

Available since 2015.1 (Kilo)

Whether this firewall should be shared across all tenants. NOTE: The default policy setting in Neutron
restricts usage of this property to administrative users only.

Boolean value expected.

Can be updated without replacement.

Attributes

admin_state_upű The administrative state of the firewall.

descriptionű Description of the firewall.

firewall_policy_idű Unique identifier of the firewall policy used to create the firewall.

nameű Name for the firewall.

sharedű

UNSUPPORTED since 6.0.0 (Mitaka) - There is no such option during 5.0.0, so need to make
this attribute unsupported, otherwise error will raised.

Shared status of this firewall.

showű Detailed information about resource.

statusű The status of the firewall.

408 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

tenant_idű Id of the tenant owning the firewall.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::Firewall
properties:

admin_state_up: Boolean
description: String
firewall_policy_id: String
name: String
value_specs: {...}

OS::Neutron::FirewallPolicy

A resource for the FirewallPolicy resource in Neutron FWaaS.

FirewallPolicy resource is an ordered collection of firewall rules. A firewall policy can be shared across
tenants.

Optional Properties

auditedű

Whether this policy should be audited. When set to True, each time the firewall policy or the associated
firewall rules are changed, this attribute will be set to False and will have to be explicitly set to
True through an update operation.

Boolean value expected.

Can be updated without replacement.

Defaults to false

descriptionű

Description for the firewall policy.

String value expected.

Can be updated without replacement.

firewall_rulesű

An ordered list of firewall rules to apply to the firewall. (Prior to version 14.0.0 this was a required
property).

List value expected.

Can be updated without replacement.

nameű

3.3. Working with Templates 409

Heat Documentation, Release 16.1.1.dev14

Name for the firewall policy.

String value expected.

Can be updated without replacement.

sharedű

Whether this policy should be shared across all tenants.

Boolean value expected.

Can be updated without replacement.

Defaults to false

Attributes

auditedű Audit status of this firewall policy.

descriptionű Description of the firewall policy.

firewall_rulesű List of firewall rules in this firewall policy.

nameű Name for the firewall policy.

sharedű Shared status of this firewall policy.

showű Detailed information about resource.

tenant_idű Id of the tenant owning the firewall policy.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::FirewallPolicy
properties:

audited: Boolean
description: String
firewall_rules: [Value, Value, ...]
name: String
shared: Boolean

410 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::FirewallRule

A resource for the FirewallRule resource in Neutron FWaaS.

FirewallRule represents a collection of attributes like ports, ip addresses etc. which define match criteria
and action (allow, or deny) that needs to be taken on the matched data traffic.

Optional Properties

actionű

Action to be performed on the traffic matching the rule.

String value expected.

Can be updated without replacement.

Defaults to "deny"

Allowed values: allow, deny

descriptionű

Description for the firewall rule.

String value expected.

Can be updated without replacement.

destination_ip_addressű

Destination IP address or CIDR.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr

destination_portű

Destination port number or a range.

String value expected.

Can be updated without replacement.

enabledű

Whether this rule should be enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true

ip_versionű

Internet protocol version.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 411

Heat Documentation, Release 16.1.1.dev14

Defaults to "4"

Allowed values: 4, 6

nameű

Name for the firewall rule.

String value expected.

Can be updated without replacement.

protocolű

Protocol for the firewall rule.

String value expected.

Can be updated without replacement.

Defaults to "any"

Allowed values: tcp, udp, icmp, any

sharedű

Whether this rule should be shared across all tenants.

Boolean value expected.

Can be updated without replacement.

Defaults to false

source_ip_addressű

Source IP address or CIDR.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr

source_portű

Source port number or a range.

String value expected.

Can be updated without replacement.

Attributes

actionű Allow or deny action for this firewall rule.

descriptionű Description of the firewall rule.

destination_ip_addressű Destination ip_address for this firewall rule.

destination_portű Destination port range for this firewall rule.

enabledű Indicates whether this firewall rule is enabled or not.

firewall_policy_idű Unique identifier of the firewall policy to which this firewall rule belongs.

412 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

ip_versionű Ip_version for this firewall rule.

nameű Name for the firewall rule.

positionű Position of the rule within the firewall policy.

protocolű Protocol value for this firewall rule.

sharedű Shared status of this firewall rule.

showű Detailed information about resource.

source_ip_addressű Source ip_address for this firewall rule.

source_portű Source port range for this firewall rule.

tenant_idű Id of the tenant owning the firewall.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::FirewallRule
properties:

action: String
description: String
destination_ip_address: String
destination_port: String
enabled: Boolean
ip_version: String
name: String
protocol: String
shared: Boolean
source_ip_address: String
source_port: String

OS::Neutron::FloatingIP

A resource for managing Neutron floating ips.

Floating IP addresses can change their association between routers by action of the user. One of the
most common use cases for floating IPs is to provide public IP addresses to a private cloud, where there
are a limited number of IP addresses available. Another is for a public cloud user to have a static IP
address that can be reassigned when an instance is upgraded or moved.

3.3. Working with Templates 413

Heat Documentation, Release 16.1.1.dev14

Required Properties

floating_networkű

Available since 2014.2 (Juno)

Network to allocate floating IP from.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

Optional Properties

dns_domainű

Available since 7.0.0 (Newton)

DNS domain associated with floating ip.

String value expected.

Can be updated without replacement.

Value must be of type dns_domain

dns_nameű

Available since 7.0.0 (Newton)

DNS name associated with floating ip.

String value expected.

Can be updated without replacement.

Value must be of type rel_dns_name

fixed_ip_addressű

IP address to use if the port has multiple addresses.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

floating_ip_addressű

Available since 5.0.0 (Liberty)

414 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

IP address of the floating IP. NOTE: The default policy setting in Neutron restricts usage of this property
to administrative users only.

String value expected.

Updates cause replacement.

Value must be of type ip_addr

floating_subnetű

Available since 9.0.0 (Pike)

Subnet to allocate floating IP from.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

port_idű

ID of an existing port with at least one IP address to associate with this floating IP.

String value expected.

Can be updated without replacement.

Value must be of type neutron.port

value_specsű

Extra parameters to include in the floatingip object in the creation request. Parameters are often specific
to installed hardware or extensions.

Map value expected.

Updates cause replacement.

Defaults to {}

Attributes

fixed_ip_addressű IP address of the associated port, if specified.

floating_ip_addressű The allocated address of this IP.

floating_network_idű ID of the network in which this IP is allocated.

port_idű ID of the port associated with this IP.

router_idű ID of the router used as gateway, set when associated with a port.

showű Detailed information about resource.

tenant_idű The tenant owning this floating IP.

3.3. Working with Templates 415

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::FloatingIP
properties:

dns_domain: String
dns_name: String
fixed_ip_address: String
floating_ip_address: String
floating_network: String
floating_subnet: String
port_id: String
value_specs: {...}

OS::Neutron::FloatingIPAssociation

A resource for associating floating ips and ports.

This resource allows associating a floating IP to a port with at least one IP address to associate with this
floating IP.

Required Properties

floatingip_idű

ID of the floating IP to associate.

String value expected.

Can be updated without replacement.

port_idű

ID of an existing port with at least one IP address to associate with this floating IP.

String value expected.

Can be updated without replacement.

Value must be of type neutron.port

416 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

fixed_ip_addressű

IP address to use if the port has multiple addresses.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::FloatingIPAssociation
properties:

fixed_ip_address: String
floatingip_id: String
port_id: String

OS::Neutron::IKEPolicy

A resource for IKE policy in Neutron.

The Internet Key Exchange policy identifies the authentication and encryption algorithm used during
phase one and phase two negotiation of a VPN connection.

Optional Properties

auth_algorithmű

Authentication hash algorithm for the ike policy.

String value expected.

Can be updated without replacement.

Defaults to "sha1"

Allowed values: sha1, sha256, sha384, sha512

descriptionű

Description for the ike policy.

3.3. Working with Templates 417

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

encryption_algorithmű

Encryption algorithm for the ike policy.

String value expected.

Can be updated without replacement.

Defaults to "aes-128"

Allowed values: 3des, aes-128, aes-192, aes-256

ike_versionű

Version for the ike policy.

String value expected.

Can be updated without replacement.

Defaults to "v1"

Allowed values: v1, v2

lifetimeű

Safety assessment lifetime configuration for the ike policy.

Map value expected.

Can be updated without replacement.

Map properties:

unitsű

Optional.

Safety assessment lifetime units.

String value expected.

Can be updated without replacement.

Defaults to "seconds"

Allowed values: seconds, kilobytes

valueű

Optional.

Safety assessment lifetime value in specified units.

Integer value expected.

Can be updated without replacement.

Defaults to 3600

nameű

Name for the ike policy.

418 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

pfsű

Perfect forward secrecy in lowercase for the ike policy.

String value expected.

Can be updated without replacement.

Defaults to "group5"

Allowed values: group2, group5, group14

phase1_negotiation_modeű

Negotiation mode for the ike policy.

String value expected.

Updates cause replacement.

Defaults to "main"

Allowed values: main

Attributes

auth_algorithmű The authentication hash algorithm used by the ike policy.

descriptionű The description of the ike policy.

encryption_algorithmű The encryption algorithm used by the ike policy.

ike_versionű The version of the ike policy.

lifetimeű The safety assessment lifetime configuration for the ike policy.

nameű The name of the ike policy.

pfsű The perfect forward secrecy of the ike policy.

phase1_negotiation_modeű The negotiation mode of the ike policy.

showű Detailed information about resource.

tenant_idű The unique identifier of the tenant owning the ike policy.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::IKEPolicy
properties:

auth_algorithm: String

(continues on next page)

3.3. Working with Templates 419

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

description: String
encryption_algorithm: String
ike_version: String
lifetime: {"units": String, "value": Integer}
name: String
pfs: String
phase1_negotiation_mode: String

OS::Neutron::IPsecPolicy

A resource for IPsec policy in Neutron.

The IP security policy specifying the authentication and encryption algorithm, and encapsulation mode
used for the established VPN connection.

Optional Properties

auth_algorithmű

Authentication hash algorithm for the ipsec policy.

String value expected.

Updates cause replacement.

Defaults to "sha1"

Allowed values: sha1

descriptionű

Description for the ipsec policy.

String value expected.

Can be updated without replacement.

encapsulation_modeű

Encapsulation mode for the ipsec policy.

String value expected.

Updates cause replacement.

Defaults to "tunnel"

Allowed values: tunnel, transport

encryption_algorithmű

Encryption algorithm for the ipsec policy.

String value expected.

Updates cause replacement.

Defaults to "aes-128"

420 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Allowed values: 3des, aes-128, aes-192, aes-256

lifetimeű

Safety assessment lifetime configuration for the ipsec policy.

Map value expected.

Updates cause replacement.

Map properties:

unitsű

Optional.

Safety assessment lifetime units.

String value expected.

Updates cause replacement.

Defaults to "seconds"

Allowed values: seconds, kilobytes

valueű

Optional.

Safety assessment lifetime value in specified units.

Integer value expected.

Updates cause replacement.

Defaults to 3600

nameű

Name for the ipsec policy.

String value expected.

Can be updated without replacement.

pfsű

Perfect forward secrecy for the ipsec policy.

String value expected.

Updates cause replacement.

Defaults to "group5"

Allowed values: group2, group5, group14

transform_protocolű

Transform protocol for the ipsec policy.

String value expected.

Updates cause replacement.

Defaults to "esp"

3.3. Working with Templates 421

Heat Documentation, Release 16.1.1.dev14

Allowed values: esp, ah, ah-esp

Attributes

auth_algorithmű The authentication hash algorithm of the ipsec policy.

descriptionű The description of the ipsec policy.

encapsulation_modeű The encapsulation mode of the ipsec policy.

encryption_algorithmű The encryption algorithm of the ipsec policy.

lifetimeű The safety assessment lifetime configuration of the ipsec policy.

nameű The name of the ipsec policy.

pfsű The perfect forward secrecy of the ipsec policy.

showű Detailed information about resource.

tenant_idű The unique identifier of the tenant owning the ipsec policy.

transform_protocolű The transform protocol of the ipsec policy.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::IPsecPolicy
properties:

auth_algorithm: String
description: String
encapsulation_mode: String
encryption_algorithm: String
lifetime: {"units": String, "value": Integer}
name: String
pfs: String
transform_protocol: String

OS::Neutron::IPsecSiteConnection

A resource for IPsec site connection in Neutron.

This resource has details for the site-to-site IPsec connection, including the peer CIDRs, MTU, peer
address, DPD settings and status.

422 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

ikepolicy_idű

Unique identifier for the ike policy associated with the ipsec site connection.

String value expected.

Updates cause replacement.

ipsecpolicy_idű

Unique identifier for the ipsec policy associated with the ipsec site connection.

String value expected.

Updates cause replacement.

peer_addressű

Remote branch router public IPv4 address or IPv6 address or FQDN.

String value expected.

Updates cause replacement.

peer_cidrsű

Remote subnet(s) in CIDR format.

List value expected.

Updates cause replacement.

List contents:

Optional.

String value expected.

Updates cause replacement.

Value must be of type net_cidr

peer_idű

Remote branch router identity.

String value expected.

Updates cause replacement.

pskű

Pre-shared key string for the ipsec site connection.

String value expected.

Updates cause replacement.

vpnservice_idű

Unique identifier for the vpn service associated with the ipsec site connection.

String value expected.

Updates cause replacement.

3.3. Working with Templates 423

Heat Documentation, Release 16.1.1.dev14

Optional Properties

admin_state_upű

Administrative state for the ipsec site connection.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description for the ipsec site connection.

String value expected.

Can be updated without replacement.

dpdű

Dead Peer Detection protocol configuration for the ipsec site connection.

Map value expected.

Updates cause replacement.

Map properties:

actionsű

Optional.

Controls DPD protocol mode.

String value expected.

Updates cause replacement.

Defaults to "hold"

Allowed values: clear, disabled, hold, restart, restart-by-peer

intervalű

Optional.

Number of seconds for the DPD delay.

Integer value expected.

Updates cause replacement.

Defaults to 30

timeoutű

Optional.

Number of seconds for the DPD timeout.

Integer value expected.

Updates cause replacement.

Defaults to 120

424 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

initiatorű

Initiator state in lowercase for the ipsec site connection.

String value expected.

Updates cause replacement.

Defaults to "bi-directional"

Allowed values: bi-directional, response-only

mtuű

Maximum transmission unit size (in bytes) for the ipsec site connection.

Integer value expected.

Updates cause replacement.

Defaults to 1500

nameű

Name for the ipsec site connection.

String value expected.

Can be updated without replacement.

Attributes

admin_state_upű The administrative state of the ipsec site connection.

auth_modeű The authentication mode of the ipsec site connection.

descriptionű The description of the ipsec site connection.

dpdű The dead peer detection protocol configuration of the ipsec site connection.

ikepolicy_idű The unique identifier of ike policy associated with the ipsec site connection.

initiatorű The initiator of the ipsec site connection.

ipsecpolicy_idű The unique identifier of ipsec policy associated with the ipsec site connection.

mtuű The maximum transmission unit size (in bytes) of the ipsec site connection.

nameű The name of the ipsec site connection.

peer_addressű The remote branch router public IPv4 address or IPv6 address or FQDN.

peer_cidrsű The remote subnet(s) in CIDR format of the ipsec site connection.

peer_idű The remote branch router identity of the ipsec site connection.

pskű The pre-shared key string of the ipsec site connection.

route_modeű The route mode of the ipsec site connection.

showű Detailed information about resource.

statusű The status of the ipsec site connection.

tenant_idű The unique identifier of the tenant owning the ipsec site connection.

3.3. Working with Templates 425

Heat Documentation, Release 16.1.1.dev14

vpnservice_idű The unique identifier of vpn service associated with the ipsec site connection.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::IPsecSiteConnection
properties:

admin_state_up: Boolean
description: String
dpd: {"actions": String, "interval": Integer, "timeout": Integer}
ikepolicy_id: String
initiator: String
ipsecpolicy_id: String
mtu: Integer
name: String
peer_address: String
peer_cidrs: [String, String, ...]
peer_id: String
psk: String
vpnservice_id: String

OS::Neutron::L2Gateway

Available since 12.0.0 (Stein)

A resource for managing Neutron L2 Gateways.

The are a number of use cases that can be addressed by an L2 Gateway API. Most notably in cloud
computing environments, a typical use case is bridging the virtual with the physical. Translate this to
Neutron and the OpenStack world, and this means relying on L2 Gateway capabilities to extend Neutron
logical (overlay) networks into physical (provider) networks that are outside the OpenStack realm.

Required Properties

devicesű

List of gateway devices.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

426 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

device_nameű

Required.

The name of the gateway device.

String value expected.

Can be updated without replacement.

interfacesű

List of gateway device interfaces.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

nameű

Required.

The name of the interface on the gateway device.

String value expected.

Can be updated without replacement.

segmentation_idű

A list of segmentation ids of the interface.

List value expected.

Can be updated without replacement.

nameű

A symbolic name for the l2-gateway, which is not required to be unique.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

3.3. Working with Templates 427

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::L2Gateway
properties:

devices: [{"device_name": String, "interfaces": [{"name": String,
↪→"segmentation_id": [Value, Value, ...]}, {"name": String, "segmentation_
↪→id": [Value, Value, ...]}, ...]}, {"device_name": String, "interfaces": [
↪→{"name": String, "segmentation_id": [Value, Value, ...]}, {"name":
↪→String, "segmentation_id": [Value, Value, ...]}, ...]}, ...]

name: String

OS::Neutron::L2GatewayConnection

Available since 12.0.0 (Stein)

A resource for managing Neutron L2 Gateway Connections.

The L2 Gateway Connection provides a mapping to connect a Neutron network to a L2 Gateway on a
particular segmentation ID.

Required Properties

l2_gateway_idű

A string specifying a id of the l2gateway resource.

String value expected.

Updates cause replacement.

network_idű

A string specifying a id of the network resource to connect to the l2gateway.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

428 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

segmentation_idű

A string specifying a segmentation id for the interface on the l2gateway.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::L2GatewayConnection
properties:

l2_gateway_id: String
network_id: String
segmentation_id: String

OS::Neutron::LBaaS::HealthMonitor

Available since 6.0.0 (Mitaka)

A resource to handle load balancer health monitors.

This resource creates and manages Neutron LBaaS v2 healthmonitors, which watches status of the load
balanced servers.

Required Properties

delayű

The minimum time in milliseconds between regular connections of the member.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

max_retriesű

Number of permissible connection failures before changing the member status to INACTIVE.

3.3. Working with Templates 429

Heat Documentation, Release 16.1.1.dev14

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 10.

poolű

ID or name of the load balancing pool.

String value expected.

Updates cause replacement.

Value must be of type neutron.lbaas.pool

timeoutű

Maximum number of milliseconds for a monitor to wait for a connection to be established before it
times out.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

typeű

One of predefined health monitor types.

String value expected.

Updates cause replacement.

Allowed values: PING, TCP, HTTP, HTTPS

Optional Properties

admin_state_upű

The administrative state of the health monitor.

Boolean value expected.

Can be updated without replacement.

Defaults to true

expected_codesű

The HTTP status codes expected in response from the member to declare it healthy. Specify one of the
following values: a single value, such as 200. a list, such as 200, 202. a range, such as 200-204.

String value expected.

Can be updated without replacement.

Defaults to "200"

http_methodű

The HTTP method used for requests by the monitor of type HTTP.

String value expected.

430 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Defaults to "GET"

Allowed values: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH

tenant_idű

ID of the tenant who owns the health monitor.

String value expected.

Updates cause replacement.

url_pathű

The HTTP path used in the HTTP request used by the monitor to test a member health. A valid value
is a string the begins with a forward slash (/).

String value expected.

Can be updated without replacement.

Defaults to "/"

Attributes

poolsű The list of Pools related to this monitor.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::LBaaS::HealthMonitor
properties:

admin_state_up: Boolean
delay: Integer
expected_codes: String
http_method: String
max_retries: Integer
pool: String
tenant_id: String
timeout: Integer
type: String
url_path: String

3.3. Working with Templates 431

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::LBaaS::L7Policy

Available since 7.0.0 (Newton)

A resource for managing LBaaS v2 L7Policies.

This resource manages Neutron-LBaaS v2 L7Policies, which represent a collection of L7Rules.
L7Policy holds the action that should be performed when the rules are matched (Redirect to Pool, Redi-
rect to URL, Reject). L7Policy holds a Listener id, so a Listener can evaluate a collection of L7Policies.
L7Policy will return True when all of the L7Rules that belong to this L7Policy are matched. L7Policies
under a specific Listener are ordered and the first l7Policy that returns a match will be executed. When
none of the policies match the request gets forwarded to listener.default_pool_id.

Required Properties

actionű

Action type of the policy.

String value expected.

Can be updated without replacement.

Allowed values: REJECT, REDIRECT_TO_POOL, REDIRECT_TO_URL

listenerű

ID or name of the listener this policy belongs to.

String value expected.

Updates cause replacement.

Value must be of type neutron.lbaas.listener

Optional Properties

admin_state_upű

The administrative state of the policy.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description of the policy.

String value expected.

Can be updated without replacement.

nameű

Name of the policy.

432 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

positionű

L7 policy position in ordered policies list. This must be an integer starting from 1. If not specified,
policy will be placed at the tail of existing policies list.

Number value expected.

Can be updated without replacement.

The value must be at least 1.

redirect_poolű

ID or name of the pool for REDIRECT_TO_POOL action type.

String value expected.

Can be updated without replacement.

Value must be of type neutron.lbaas.pool

redirect_urlű

URL for REDIRECT_TO_URL action type. This should be a valid URL string.

String value expected.

Can be updated without replacement.

Attributes

rulesű L7Rules associated with this policy.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::LBaaS::L7Policy
properties:

action: String
admin_state_up: Boolean
description: String
listener: String
name: String
position: Number
redirect_pool: String
redirect_url: String

3.3. Working with Templates 433

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::LBaaS::L7Rule

Available since 7.0.0 (Newton)

A resource for managing LBaaS v2 L7Rules.

This resource manages Neutron-LBaaS v2 L7Rules, which represent a set of attributes that defines which
part of the request should be matched and how it should be matched.

Required Properties

compare_typeű

Rule compare type.

String value expected.

Can be updated without replacement.

Allowed values: REGEX, STARTS_WITH, ENDS_WITH, CONTAINS, EQUAL_TO

l7policyű

ID or name of L7 policy this rule belongs to.

String value expected.

Updates cause replacement.

typeű

Rule type.

String value expected.

Can be updated without replacement.

Allowed values: HOST_NAME, PATH, FILE_TYPE, HEADER, COOKIE

valueű

Value to compare.

String value expected.

Can be updated without replacement.

Optional Properties

admin_state_upű

The administrative state of the rule.

Boolean value expected.

Can be updated without replacement.

Defaults to true

434 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

invertű

Invert the compare type.

Boolean value expected.

Can be updated without replacement.

Defaults to false

keyű

Key to compare. Relevant for HEADER and COOKIE types only.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::LBaaS::L7Rule
properties:

admin_state_up: Boolean
compare_type: String
invert: Boolean
key: String
l7policy: String
type: String
value: String

OS::Neutron::LBaaS::Listener

Available since 6.0.0 (Mitaka)

A resource for managing LBaaS v2 Listeners.

This resource creates and manages Neutron LBaaS v2 Listeners, which represent a listening endpoint
for the vip.

3.3. Working with Templates 435

Heat Documentation, Release 16.1.1.dev14

Required Properties

protocolű

Protocol on which to listen for the client traffic.

String value expected.

Updates cause replacement.

Allowed values: TCP, HTTP, HTTPS, TERMINATED_HTTPS

protocol_portű

TCP or UDP port on which to listen for client traffic.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

Optional Properties

admin_state_upű

The administrative state of this listener.

Boolean value expected.

Can be updated without replacement.

Defaults to true

connection_limitű

The maximum number of connections permitted for this load balancer. Defaults to -1, which is infinite.

Integer value expected.

Can be updated without replacement.

Defaults to -1

The value must be at least -1.

default_poolű

Available since 9.0.0 (Pike)

ID or name of the default pool for the listener. Requires shared_pools service extension.

String value expected.

Can be updated without replacement.

Value must be of type neutron.lbaas.pool

default_tls_container_refű

Default TLS container reference to retrieve TLS information.

436 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

descriptionű

Description of this listener.

String value expected.

Can be updated without replacement.

Defaults to ""

loadbalancerű

ID or name of the load balancer with which listener is associated.

String value expected.

Updates cause replacement.

Value must be of type neutron.lbaas.loadbalancer

nameű

Name of this listener.

String value expected.

Can be updated without replacement.

sni_container_refsű

List of TLS container references for SNI.

List value expected.

Can be updated without replacement.

tenant_idű

The ID of the tenant who owns the listener.

String value expected.

Updates cause replacement.

Attributes

default_pool_idű ID of the default pool this listener is associated to.

loadbalancersű ID of the load balancer this listener is associated to.

showű Detailed information about resource.

3.3. Working with Templates 437

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::LBaaS::Listener
properties:

admin_state_up: Boolean
connection_limit: Integer
default_pool: String
default_tls_container_ref: String
description: String
loadbalancer: String
name: String
protocol: String
protocol_port: Integer
sni_container_refs: [Value, Value, ...]
tenant_id: String

OS::Neutron::LBaaS::LoadBalancer

Available since 6.0.0 (Mitaka)

A resource for creating LBaaS v2 Load Balancers.

This resource creates and manages Neutron LBaaS v2 Load Balancers, which allows traffic to be directed
between servers.

Required Properties

vip_subnetű

The name or ID of the subnet on which to allocate the VIP address.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

438 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

admin_state_upű

The administrative state of this Load Balancer.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description of this Load Balancer.

String value expected.

Can be updated without replacement.

Defaults to ""

nameű

Name of this Load Balancer.

String value expected.

Can be updated without replacement.

providerű

Provider for this Load Balancer.

String value expected.

Updates cause replacement.

Value must be of type neutron.lbaas.provider

tenant_idű

The ID of the tenant who owns the Load Balancer. Only administrative users can specify a tenant ID
other than their own.

String value expected.

Updates cause replacement.

Value must be of type keystone.project

vip_addressű

IP address for the VIP.

String value expected.

Updates cause replacement.

Value must be of type ip_addr

3.3. Working with Templates 439

Heat Documentation, Release 16.1.1.dev14

Attributes

poolsű

Available since 9.0.0 (Pike)

Pools this LoadBalancer is associated with.

showű Detailed information about resource.

vip_addressű The VIP address of the LoadBalancer.

vip_port_idű The VIP port of the LoadBalancer.

vip_subnet_idű The VIP subnet of the LoadBalancer.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::LBaaS::LoadBalancer
properties:

admin_state_up: Boolean
description: String
name: String
provider: String
tenant_id: String
vip_address: String
vip_subnet: String

OS::Neutron::LBaaS::Pool

Available since 6.0.0 (Mitaka)

A resource for managing LBaaS v2 Pools.

This resources manages Neutron-LBaaS v2 Pools, which represent a group of nodes. Pools define the
subnet where nodes reside, balancing algorithm, and the nodes themselves.

440 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

lb_algorithmű

The algorithm used to distribute load between the members of the pool.

String value expected.

Can be updated without replacement.

Allowed values: ROUND_ROBIN, LEAST_CONNECTIONS, SOURCE_IP

protocolű

Protocol of the pool.

String value expected.

Updates cause replacement.

Allowed values: TCP, HTTP, HTTPS

Optional Properties

admin_state_upű

The administrative state of this pool.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description of this pool.

String value expected.

Can be updated without replacement.

Defaults to ""

listenerű

Listener name or ID to be associated with this pool.

String value expected.

Updates cause replacement.

Value must be of type neutron.lbaas.listener

loadbalancerű

Available since 9.0.0 (Pike)

Loadbalancer name or ID to be associated with this pool. Requires shared_pools service extension.

String value expected.

3.3. Working with Templates 441

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

Value must be of type neutron.lbaas.loadbalancer

nameű

Name of this pool.

String value expected.

Can be updated without replacement.

session_persistenceű

Configuration of session persistence.

Map value expected.

Updates cause replacement.

Map properties:

cookie_nameű

Optional.

Name of the cookie, required if type is APP_COOKIE.

String value expected.

Updates cause replacement.

typeű

Required.

Method of implementation of session persistence feature.

String value expected.

Updates cause replacement.

Allowed values: SOURCE_IP, HTTP_COOKIE, APP_COOKIE

Attributes

healthmonitor_idű ID of the health monitor associated with this pool.

listenersű Listener associated with this pool.

membersű Members associated with this pool.

showű Detailed information about resource.

442 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::LBaaS::Pool
properties:

admin_state_up: Boolean
description: String
lb_algorithm: String
listener: String
loadbalancer: String
name: String
protocol: String
session_persistence: {"type": String, "cookie_name": String}

OS::Neutron::LBaaS::PoolMember

Available since 6.0.0 (Mitaka)

A resource for managing LBaaS v2 Pool Members.

A pool member represents a single backend node.

Required Properties

addressű

IP address of the pool member on the pool network.

String value expected.

Updates cause replacement.

Value must be of type ip_addr

poolű

Name or ID of the load balancing pool.

String value expected.

Updates cause replacement.

Value must be of type neutron.lbaas.pool

protocol_portű

Port on which the pool member listens for requests or connections.

Integer value expected.

Updates cause replacement.

3.3. Working with Templates 443

Heat Documentation, Release 16.1.1.dev14

The value must be in the range 1 to 65535.

subnetű

Subnet name or ID of this member.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

Optional Properties

admin_state_upű

The administrative state of the pool member.

Boolean value expected.

Can be updated without replacement.

Defaults to true

weightű

Weight of pool member in the pool (default to 1).

Integer value expected.

Can be updated without replacement.

Defaults to 1

The value must be in the range 0 to 256.

Attributes

addressű The IP address of the pool member.

pool_idű The ID of the pool to which the pool member belongs.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::LBaaS::PoolMember
properties:

address: String
admin_state_up: Boolean
pool: String
protocol_port: Integer

(continues on next page)

444 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

subnet: String
weight: Integer

OS::Neutron::MeteringLabel

Available since 2014.1 (Icehouse)

A resource for creating neutron metering label.

The idea is to meter this at the L3 routers levels. The point is to allow operators to configure IP ranges
and to assign a label to them. For example we will be able to set two labels; one for the internal traffic,
and the other one for the external traffic. Each label will measure the traffic for a specific set of IP range.
Then, bandwidth measurement will be sent for each label to the Oslo notification system and could be
collected by Ceilometer.

Optional Properties

descriptionű

Description of the metering label.

String value expected.

Updates cause replacement.

nameű

Name of the metering label.

String value expected.

Updates cause replacement.

sharedű

Available since 2015.1 (Kilo)

Whether the metering label should be shared across all tenants.

Boolean value expected.

Updates cause replacement.

Defaults to false

3.3. Working with Templates 445

Heat Documentation, Release 16.1.1.dev14

Attributes

descriptionű Description of the metering label.

nameű Name of the metering label.

sharedű Shared status of the metering label.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::MeteringLabel
properties:

description: String
name: String
shared: Boolean

OS::Neutron::MeteringRule

Available since 2014.1 (Icehouse)

A resource to create rule for some label.

Resource for allowing specified label to measure the traffic for a specific set of ip range.

Required Properties

metering_label_idű

The metering label ID to associate with this metering rule.

String value expected.

Updates cause replacement.

remote_ip_prefixű

Indicates remote IP prefix to be associated with this metering rule.

String value expected.

Updates cause replacement.

446 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

directionű

The direction in which metering rule is applied, either ingress or egress.

String value expected.

Updates cause replacement.

Defaults to "ingress"

Allowed values: ingress, egress

excludedű

Specify whether the remote_ip_prefix will be excluded or not from traffic counters of the metering
label. For example to not count the traffic of a specific IP address of a range.

Boolean value expected.

Updates cause replacement.

Defaults to "False"

Attributes

directionű The direction in which metering rule is applied.

excludedű Exclude state for cidr.

metering_label_idű The metering label ID to associate with this metering rule.

remote_ip_prefixű CIDR to be associated with this metering rule.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::MeteringRule
properties:

direction: String
excluded: Boolean
metering_label_id: String
remote_ip_prefix: String

3.3. Working with Templates 447

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::Net

A resource for managing Neutron net.

A network is a virtual isolated layer-2 broadcast domain which is typically reserved to the tenant who
created it, unless the network has been explicitly configured to be shared.

Optional Properties

admin_state_upű

A boolean value specifying the administrative status of the network.

Boolean value expected.

Can be updated without replacement.

Defaults to true

dhcp_agent_idsű

The IDs of the DHCP agent to schedule the network. Note that the default policy setting in Neutron
restricts usage of this property to administrative users only.

List value expected.

Can be updated without replacement.

dns_domainű

Available since 7.0.0 (Newton)

DNS domain associated with this network.

String value expected.

Can be updated without replacement.

Value must be of type dns_domain

nameű

A string specifying a symbolic name for the network, which is not required to be unique.

String value expected.

Can be updated without replacement.

port_security_enabledű

Available since 5.0.0 (Liberty)

Flag to enable/disable port security on the network. It provides the default value for the attribute of the
ports created on this network.

Boolean value expected.

Can be updated without replacement.

448 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

qos_policyű

Available since 6.0.0 (Mitaka)

The name or ID of QoS policy to attach to this network.

String value expected.

Can be updated without replacement.

Value must be of type neutron.qos_policy

sharedű

Whether this network should be shared across all tenants. Note that the default policy setting restricts
usage of this attribute to administrative users only.

Boolean value expected.

Can be updated without replacement.

Defaults to false

tagsű

Available since 9.0.0 (Pike)

The tags to be added to the network.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

tenant_idű

The ID of the tenant which will own the network. Only administrative users can set the tenant identifier;
this cannot be changed using authorization policies.

String value expected.

Updates cause replacement.

value_specsű

Extra parameters to include in the request. Parameters are often specific to installed hardware or exten-
sions.

Map value expected.

Can be updated without replacement.

Defaults to {}

3.3. Working with Templates 449

Heat Documentation, Release 16.1.1.dev14

Attributes

admin_state_upű The administrative status of the network.

l2_adjacencyű

Available since 9.0.0 (Pike)

A boolean value for L2 adjacency, True means that you can expect L2 connectivity throughout the
Network.

mtuű

Available since 5.0.0 (Liberty)

The maximum transmission unit size(in bytes) for the network.

nameű The name of the network.

port_security_enabledű

Available since 5.0.0 (Liberty)

Port security enabled of the network.

qos_policy_idű

Available since 6.0.0 (Mitaka)

The QoS policy ID attached to this network.

segmentsű

Available since 11.0.0 (Rocky)

The segments of this network.

showű Detailed information about resource.

statusű The status of the network.

subnetsű Subnets of this network.

tenant_idű The tenant owning this network.

450 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::Net
properties:

admin_state_up: Boolean
dhcp_agent_ids: [Value, Value, ...]
dns_domain: String
name: String
port_security_enabled: Boolean
qos_policy: String
shared: Boolean
tags: [String, String, ...]
tenant_id: String
value_specs: {...}

OS::Neutron::NetworkGateway

Available since 2014.1 (Icehouse)

Network Gateway resource in Neutron Network Gateway.

Resource for connecting internal networks with specified devices.

Required Properties

devicesű

Device info for this network gateway.

List value expected.

Can be updated without replacement.

The length must be at least 1.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

idű

Required.

The device id for the network gateway.

String value expected.

3.3. Working with Templates 451

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

interface_nameű

Required.

The interface name for the network gateway.

String value expected.

Can be updated without replacement.

Optional Properties

connectionsű

Connection info for this network gateway.

List value expected.

Can be updated without replacement.

Defaults to {}

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

networkű

Available since 2014.2 (Juno)

Required.

The internal network to connect on the network gateway.

String value expected.

Can be updated without replacement.

Value must be of type neutron.network

segmentation_idű

Optional.

The id for L2 segment on the external side of the network gateway. Must be specified when
using vlan.

Integer value expected.

Can be updated without replacement.

The value must be in the range 0 to 4094.

segmentation_typeű

Optional.

452 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

L2 segmentation strategy on the external side of the network gateway.

String value expected.

Can be updated without replacement.

Defaults to "flat"

Allowed values: flat, vlan

nameű

The name of the network gateway.

String value expected.

Can be updated without replacement.

Attributes

defaultű A boolean value of default flag.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::NetworkGateway
properties:

connections: [{"network_id": String, "network": String,
↪→"segmentation_type": String, "segmentation_id": Integer}, {"network_id":
↪→String, "network": String, "segmentation_type": String, "segmentation_id
↪→": Integer}, ...]

devices: [{"id": String, "interface_name": String}, {"id": String,
↪→"interface_name": String}, ...]

name: String

OS::Neutron::Port

A resource for managing Neutron ports.

A port represents a virtual switch port on a logical network switch. Virtual instances attach their inter-
faces into ports. The logical port also defines the MAC address and the IP address(es) to be assigned to
the interfaces plugged into them. When IP addresses are associated to a port, this also implies the port
is associated with a subnet, as the IP address was taken from the allocation pool for a specific subnet.

3.3. Working with Templates 453

Heat Documentation, Release 16.1.1.dev14

Required Properties

networkű

Available since 2014.2 (Juno)

Network this port belongs to. If you plan to use current port to assign Floating IP, you should specify
fixed_ips with subnet. Note if this changes to a different network update, the port will be replaced.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

Optional Properties

admin_state_upű

The administrative state of this port.

Boolean value expected.

Can be updated without replacement.

Defaults to true

allowed_address_pairsű

Additional MAC/IP address pairs allowed to pass through the port.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

ip_addressű

Required.

IP address to allow through this port.

String value expected.

Can be updated without replacement.

Value must be of type ip_or_cidr

mac_addressű

Optional.

MAC address to allow through this port.

String value expected.

454 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Value must be of type mac_addr

binding:vnic_typeű

Available since 2015.1 (Kilo)

The vnic type to be bound on the neutron port. To support SR-IOV PCI passthrough networking, you
can request that the neutron port to be realized as normal (virtual nic), direct (pci passthrough),
or macvtap (virtual interface with a tap-like software interface). Note that this only works for
Neutron deployments that support the bindings extension.

String value expected.

Can be updated without replacement.

Defaults to "normal"

Allowed values: normal, direct, macvtap, direct-physical, baremetal, virtio-forwarder, smart-nic

device_idű

Device ID of this port.

String value expected.

Can be updated without replacement.

Defaults to ""

device_ownerű

Name of the network owning the port. The value is typically network:floatingip or net-
work:router_interface or network:dhcp.

String value expected.

Can be updated without replacement.

Defaults to ""

dns_nameű

Available since 7.0.0 (Newton)

DNS name associated with the port.

String value expected.

Can be updated without replacement.

Value must be of type dns_name

fixed_ipsű

Desired IPs for this port.

List value expected.

Can be updated without replacement.

3.3. Working with Templates 455

Heat Documentation, Release 16.1.1.dev14

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

ip_addressű

Optional.

IP address desired in the subnet for this port.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

subnetű

Available since 2014.2 (Juno)

Optional.

Subnet in which to allocate the IP address for this port.

String value expected.

Can be updated without replacement.

Value must be of type neutron.subnet

mac_addressű

MAC address to give to this port. The default update policy of this property in neutron is that allow
admin role only.

String value expected.

Updates cause replacement.

Value must be of type mac_addr

nameű

A symbolic name for this port.

String value expected.

Can be updated without replacement.

no_fixed_ipsű

Available since 16.0.0

Flag to disable all fixed ips on the port.

Boolean value expected.

Can be updated without replacement.

456 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Defaults to false

port_security_enabledű

Available since 5.0.0 (Liberty)

Flag to enable/disable port security on the port. When disable this feature(set it to False), there will be
no packages filtering, like security-group and address-pairs.

Boolean value expected.

Can be updated without replacement.

propagate_uplink_statusű

Available since 15.0.0 (Victoria)

Flag to enable/disable propagate uplink status on the port.

Boolean value expected.

Can be updated without replacement.

qos_policyű

Available since 6.0.0 (Mitaka)

The name or ID of QoS policy to attach to this port.

String value expected.

Can be updated without replacement.

Value must be of type neutron.qos_policy

security_groupsű

Security group IDs to associate with this port.

List value expected.

Can be updated without replacement.

tagsű

Available since 9.0.0 (Pike)

The tags to be added to the port.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

3.3. Working with Templates 457

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

value_specsű

Extra parameters to include in the request.

Map value expected.

Can be updated without replacement.

Defaults to {}

Attributes

admin_state_upű The administrative state of this port.

allowed_address_pairsű Additional MAC/IP address pairs allowed to pass through a port.

device_idű Unique identifier for the device.

device_ownerű Name of the network owning the port.

dns_assignmentű

Available since 7.0.0 (Newton)

The DNS assigned to this port.

fixed_ipsű Fixed IP addresses.

mac_addressű MAC address of the port.

nameű Friendly name of the port.

networkű

Available since 11.0.0 (Rocky)

The attributes of the network owning the port. (The full list of response parameters can
be found in the ‘Openstack Networking service API reference <https://docs.openstack.org/api-
ref/network/>‘_.) The following examples demonstrate some (not all) possible expressions. (Ob-
tains the network, the MTU (Maximum transmission unit), the network tags and the l2_adjacency
property): “{get_attr: [<port>, network]}“, “{get_attr: [<port>, network, mtu]}“, “{get_attr:
[<port>, network, tags]}¿‘, “{get_attr: [<port>, network, l2_adjacency]}“.

network_idű Unique identifier for the network owning the port.

port_security_enabledű

Available since 5.0.0 (Liberty)

Port security enabled of the port.

propagate_uplink_statusű

458 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Available since 15.0.0 (Victoria)

Enable/Disable propagate uplink status for the port.

qos_policy_idű

Available since 6.0.0 (Mitaka)

The QoS policy ID attached to this port.

security_groupsű A list of security groups for the port.

showű Detailed information about resource.

statusű The status of the port.

subnetsű A list of all subnet attributes for the port.

tenant_idű Tenant owning the port.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::Port
properties:

admin_state_up: Boolean
allowed_address_pairs: [{"mac_address": String, "ip_address": String}

↪→, {"mac_address": String, "ip_address": String}, ...]
binding:vnic_type: String
device_id: String
device_owner: String
dns_name: String
fixed_ips: [{"subnet_id": String, "subnet": String, "ip_address":

↪→String}, {"subnet_id": String, "subnet": String, "ip_address": String}, .
↪→..]

mac_address: String
name: String
network: String
no_fixed_ips: Boolean
port_security_enabled: Boolean
propagate_uplink_status: Boolean
qos_policy: String
security_groups: [Value, Value, ...]
tags: [String, String, ...]
value_specs: {...}

3.3. Working with Templates 459

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::ProviderNet

Available since 2014.1 (Icehouse)

A resource for managing Neutron provider networks.

Provider networks specify details of physical realisation of the existing network.

The default policy usage of this resource is limited to administrators only.

Required Properties

network_typeű

A string specifying the provider network type for the network.

String value expected.

Can be updated without replacement.

Allowed values: local, vlan, vxlan, gre, geneve, flat

Optional Properties

admin_state_upű

A boolean value specifying the administrative status of the network.

Boolean value expected.

Can be updated without replacement.

Defaults to true

dns_domainű

Available since 15.0.0 (Victoria)

DNS domain associated with this network.

String value expected.

Can be updated without replacement.

Value must be of type dns_domain

nameű

A string specifying a symbolic name for the network, which is not required to be unique.

String value expected.

Can be updated without replacement.

physical_networkű

A string specifying physical network mapping for the network.

460 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

port_security_enabledű

Available since 8.0.0 (Ocata)

Flag to enable/disable port security on the network. It provides the default value for the attribute of the
ports created on this network.

Boolean value expected.

Can be updated without replacement.

router_externalű

Available since 6.0.0 (Mitaka)

Whether the network contains an external router.

Boolean value expected.

Can be updated without replacement.

Defaults to false

segmentation_idű

A string specifying the segmentation id for the network.

String value expected.

Can be updated without replacement.

sharedű

Whether this network should be shared across all tenants.

Boolean value expected.

Can be updated without replacement.

Defaults to true

tagsű

Available since 12.0.0 (Stein)

The tags to be added to the provider network.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

3.3. Working with Templates 461

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Attributes

segmentsű

Available since 16.0.0

The segments of this network.

showű Detailed information about resource.

statusű The status of the network.

subnetsű Subnets of this network.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::ProviderNet
properties:

admin_state_up: Boolean
dns_domain: String
name: String
network_type: String
physical_network: String
port_security_enabled: Boolean
router_external: Boolean
segmentation_id: String
shared: Boolean
tags: [String, String, ...]

OS::Neutron::QoSBandwidthLimitRule

Available since 6.0.0 (Mitaka)

A resource for Neutron QoS bandwidth limit rule.

This rule can be associated with QoS policy, and then the policy can be used by neutron port and network,
to provide bandwidth limit QoS capabilities.

The default policy usage of this resource is limited to administrators only.

462 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

max_kbpsű

Max bandwidth in kbps.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

policyű

ID or name of the QoS policy.

String value expected.

Updates cause replacement.

Value must be of type neutron.qos_policy

Optional Properties

directionű

Available since 13.0.0 (Train)

Traffic direction from the point of view of the port.

String value expected.

Can be updated without replacement.

Defaults to "egress"

Allowed values: egress, ingress

max_burst_kbpsű

Max burst bandwidth in kbps.

Integer value expected.

Can be updated without replacement.

Defaults to 0

The value must be at least 0.

tenant_idű

The owner tenant ID of this rule.

String value expected.

Updates cause replacement.

3.3. Working with Templates 463

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::QoSBandwidthLimitRule
properties:

direction: String
max_burst_kbps: Integer
max_kbps: Integer
policy: String
tenant_id: String

OS::Neutron::QoSDscpMarkingRule

Available since 7.0.0 (Newton)

A resource for Neutron QoS DSCP marking rule.

This rule can be associated with QoS policy, and then the policy can be used by neutron port and network,
to provide DSCP marking QoS capabilities.

The default policy usage of this resource is limited to administrators only.

Required Properties

dscp_markű

DSCP mark between 0 and 56, except 2-6, 42, 44, and 50-54.

Integer value expected.

Can be updated without replacement.

Allowed values: 0, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 46, 48, 56

policyű

ID or name of the QoS policy.

String value expected.

Updates cause replacement.

Value must be of type neutron.qos_policy

464 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

tenant_idű

The owner tenant ID of this rule.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::QoSDscpMarkingRule
properties:

dscp_mark: Integer
policy: String
tenant_id: String

OS::Neutron::QoSMinimumBandwidthRule

Available since 14.0.0 (Ussuri)

A resource for guaranteeing bandwidth.

This rule can be associated with a QoS policy, and then the policy can be used by a neutron port to
provide guaranteed bandwidth QoS capabilities.

Depending on drivers the guarantee may be enforced on two levels. First when a server is placed (sched-
uled) on physical infrastructure and/or second in the data plane of the physical hypervisor. For details
please see Neutron documentation:

https://docs.openstack.org/neutron/latest/admin/config-qos-min-bw.html

The default policy usage of this resource is limited to administrators only.

3.3. Working with Templates 465

https://docs.openstack.org/neutron/latest/admin/config-qos-min-bw.html

Heat Documentation, Release 16.1.1.dev14

Required Properties

min_kbpsű

Min bandwidth in kbps.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

policyű

ID or name of the QoS policy.

String value expected.

Updates cause replacement.

Value must be of type neutron.qos_policy

Optional Properties

directionű

Traffic direction from the point of view of the port.

String value expected.

Can be updated without replacement.

Defaults to "egress"

Allowed values: egress, ingress

tenant_idű

The owner tenant ID of this rule.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::QoSMinimumBandwidthRule
properties:

(continues on next page)

466 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

direction: String
min_kbps: Integer
policy: String
tenant_id: String

OS::Neutron::QoSPolicy

Available since 6.0.0 (Mitaka)

A resource for Neutron QoS Policy.

This QoS policy can be associated with neutron resources, such as port and network, to provide QoS
capabilities.

The default policy usage of this resource is limited to administrators only.

Optional Properties

descriptionű

The description for the QoS policy.

String value expected.

Can be updated without replacement.

nameű

The name for the QoS policy.

String value expected.

Can be updated without replacement.

sharedű

Whether this QoS policy should be shared to other tenants.

Boolean value expected.

Can be updated without replacement.

Defaults to false

tenant_idű

The owner tenant ID of this QoS policy.

String value expected.

Updates cause replacement.

3.3. Working with Templates 467

Heat Documentation, Release 16.1.1.dev14

Attributes

rulesű A list of all rules for the QoS policy.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::QoSPolicy
properties:

description: String
name: String
shared: Boolean
tenant_id: String

OS::Neutron::Quota

Available since 8.0.0 (Ocata)

A resource for managing neutron quotas.

Neutron Quota is used to manage operational limits for projects. Currently, this resource can manage
Neutrons quotas for:

• subnet

• network

• floatingip

• security_group_rule

• security_group

• router

• port

• subnetpool

• rbac_policy

Note that default neutron security policy usage of this resource is limited to being used by administrators
only. Administrators should be careful to create only one Neutron Quota resource per project, otherwise
it will be hard for them to manage the quota properly.

468 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

projectű

Name or id of the project to set the quota for.

String value expected.

Updates cause replacement.

Value must be of type keystone.project

Optional Properties

floatingipű

Quota for the number of floating IPs. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

networkű

Quota for the number of networks. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

portű

Quota for the number of ports. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

rbac_policyű

Available since 12.0.0 (Stein)

Quota for the number of rbac policies. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

routerű

Quota for the number of routers. Setting -1 means unlimited.

Integer value expected.

3.3. Working with Templates 469

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

The value must be at least -1.

security_groupű

Quota for the number of security groups. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

security_group_ruleű

Quota for the number of security group rules. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

subnetű

Quota for the number of subnets. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

subnetpoolű

Available since 12.0.0 (Stein)

Quota for the number of subnet pools. Setting -1 means unlimited.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

Attributes

showű Detailed information about resource.

470 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::Quota
properties:

floatingip: Integer
network: Integer
port: Integer
project: String
rbac_policy: Integer
router: Integer
security_group: Integer
security_group_rule: Integer
subnet: Integer
subnetpool: Integer

OS::Neutron::RBACPolicy

Available since 6.0.0 (Mitaka)

A Resource for managing RBAC policy in Neutron.

This resource creates and manages Neutron RBAC policy, which allows to share Neutron networks and
qos-policies to subsets of tenants.

Required Properties

actionű

Action for the RBAC policy. The allowed actions differ for different object types - only network objects
can have an access_as_external action.

String value expected.

Updates cause replacement.

Allowed values: access_as_shared, access_as_external

object_idű

ID or name of the RBAC object.

String value expected.

Updates cause replacement.

object_typeű

Type of the object that RBAC policy affects.

String value expected.

3.3. Working with Templates 471

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

Allowed values: network, qos_policy

target_tenantű

ID of the tenant to which the RBAC policy will be enforced.

String value expected.

Can be updated without replacement.

Optional Properties

tenant_idű

The owner tenant ID. Only required if the caller has an administrative role and wants to create a RBAC
for another tenant.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::RBACPolicy
properties:

action: String
object_id: String
object_type: String
target_tenant: String
tenant_id: String

OS::Neutron::Router

A resource that implements Neutron router.

Router is a physical or virtual network device that passes network traffic between different networks.

472 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

admin_state_upű

The administrative state of the router.

Boolean value expected.

Can be updated without replacement.

Defaults to true

distributedű

Available since 2015.1 (Kilo)

Indicates whether or not to create a distributed router. NOTE: The default policy setting in Neutron
restricts usage of this property to administrative users only. This property can not be used in
conjunction with the L3 agent ID.

Boolean value expected.

Updates cause replacement.

external_gateway_infoű

External network gateway configuration for a router.

Map value expected.

Can be updated without replacement.

Map properties:

enable_snatű

Optional.

Enables Source NAT on the router gateway. NOTE: The default policy setting in Neutron restricts
usage of this property to administrative users only.

Boolean value expected.

Can be updated without replacement.

external_fixed_ipsű

Available since 6.0.0 (Mitaka)

External fixed IP addresses for the gateway.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

3.3. Working with Templates 473

Heat Documentation, Release 16.1.1.dev14

Map properties:

ip_addressű

Optional.

External fixed IP address.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

subnetű

Optional.

Subnet of external fixed IP address.

String value expected.

Can be updated without replacement.

Value must be of type neutron.subnet

networkű

Required.

ID or name of the external network for the gateway.

String value expected.

Can be updated without replacement.

haű

Available since 2015.1 (Kilo)

Indicates whether or not to create a highly available router. NOTE: The default policy setting in Neutron
restricts usage of this property to administrative users only. And now neutron do not support
distributed and ha at the same time.

Boolean value expected.

Updates cause replacement.

l3_agent_idsű

Available since 2015.1 (Kilo)

ID list of the L3 agent. User can specify multi-agents for highly available router. NOTE: The default
policy setting in Neutron restricts usage of this property to administrative users only.

List value expected.

Can be updated without replacement.

List contents:

Optional.

474 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

nameű

The name of the router.

String value expected.

Can be updated without replacement.

tagsű

Available since 9.0.0 (Pike)

The tags to be added to the router.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

value_specsű

Extra parameters to include in the creation request.

Map value expected.

Can be updated without replacement.

Defaults to {}

Attributes

admin_state_upű Administrative state of the router.

external_gateway_infoű Gateway network for the router.

nameű Friendly name of the router.

showű Detailed information about resource.

statusű The status of the router.

tenant_idű Tenant owning the router.

3.3. Working with Templates 475

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::Router
properties:

admin_state_up: Boolean
distributed: Boolean
external_gateway_info: {"network": String, "enable_snat": Boolean,

↪→"external_fixed_ips": [{"ip_address": String, "subnet": String}, {"ip_
↪→address": String, "subnet": String}, ...]}

ha: Boolean
l3_agent_ids: [String, String, ...]
name: String
tags: [String, String, ...]
value_specs: {...}

OS::Neutron::RouterInterface

A resource for managing Neutron router interfaces.

Router interfaces associate routers with existing subnets or ports.

Required Properties

routerű

The router.

String value expected.

Updates cause replacement.

Value must be of type neutron.router

Optional Properties

portű

Available since 2015.1 (Kilo)

The port, either subnet or port should be specified.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

subnetű

476 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The subnet, either subnet or port should be specified.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::RouterInterface
properties:

port: String
router: String
subnet: String

OS::Neutron::SecurityGroup

Available since 2014.1 (Icehouse)

A resource for managing Neutron security groups.

Security groups are sets of IP filter rules that are applied to an instances networking. They are project
specific, and project members can edit the default rules for their group and add new rules sets. All
projects have a default security group, which is applied to instances that have no other security group
defined.

Optional Properties

descriptionű

Description of the security group.

String value expected.

Can be updated without replacement.

nameű

A string specifying a symbolic name for the security group, which is not required to be unique.

String value expected.

3.3. Working with Templates 477

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

rulesű

List of security group rules.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

directionű

Optional.

The direction in which the security group rule is applied. For a compute instance, an ingress
security group rule matches traffic that is incoming (ingress) for that instance. An egress
rule is applied to traffic leaving the instance.

String value expected.

Can be updated without replacement.

Defaults to "ingress"

Allowed values: ingress, egress

ethertypeű

Optional.

Ethertype of the traffic.

String value expected.

Can be updated without replacement.

Defaults to "IPv4"

Allowed values: IPv4, IPv6

port_range_maxű

Optional.

The maximum port number in the range that is matched by the security group rule. The
port_range_min attribute constrains the port_range_max attribute. If the protocol is
ICMP, this value must be an ICMP type.

Integer value expected.

Can be updated without replacement.

The value must be in the range 0 to 65535.

port_range_minű

Optional.

478 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The minimum port number in the range that is matched by the security group rule. If
the protocol is TCP or UDP, this value must be less than or equal to the value of the
port_range_max attribute. If the protocol is ICMP, this value must be an ICMP type.

Integer value expected.

Can be updated without replacement.

The value must be in the range 0 to 65535.

protocolű

Optional.

The protocol that is matched by the security group rule. Valid values include tcp, udp, and
icmp.

String value expected.

Can be updated without replacement.

remote_group_idű

Optional.

The remote group ID to be associated with this security group rule. If no value is specified
then this rule will use this security group for the remote_group_id. The remote mode
parameter must be set to remote_group_id.

String value expected.

Can be updated without replacement.

Value must be of type neutron.security_group

remote_ip_prefixű

Optional.

The remote IP prefix (CIDR) to be associated with this security group rule.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr

remote_modeű

Optional.

Whether to specify a remote group or a remote IP prefix.

String value expected.

Can be updated without replacement.

Defaults to "remote_ip_prefix"

Allowed values: remote_ip_prefix, remote_group_id

3.3. Working with Templates 479

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::SecurityGroup
properties:

description: String
name: String
rules: [{"direction": String, "ethertype": String, "port_range_min":

↪→Integer, "port_range_max": Integer, "protocol": String, "remote_mode":
↪→String, "remote_group_id": String, "remote_ip_prefix": String}, {
↪→"direction": String, "ethertype": String, "port_range_min": Integer,
↪→"port_range_max": Integer, "protocol": String, "remote_mode": String,
↪→"remote_group_id": String, "remote_ip_prefix": String}, ...]

OS::Neutron::SecurityGroupRule

Available since 7.0.0 (Newton)

A resource for managing Neutron security group rules.

Rules to use in security group resource.

Required Properties

security_groupű

Security group name or ID to add rule.

String value expected.

Updates cause replacement.

Value must be of type neutron.security_group

480 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

descriptionű

Description of the security group rule.

String value expected.

Updates cause replacement.

directionű

The direction in which the security group rule is applied. For a compute instance, an ingress security
group rule matches traffic that is incoming (ingress) for that instance. An egress rule is applied to
traffic leaving the instance.

String value expected.

Updates cause replacement.

Defaults to "ingress"

Allowed values: ingress, egress

ethertypeű

Ethertype of the traffic.

String value expected.

Updates cause replacement.

Defaults to "IPv4"

Allowed values: IPv4, IPv6

port_range_maxű

The maximum port number in the range that is matched by the security group rule. The port_range_min
attribute constrains the port_range_max attribute. If the protocol is ICMP, this value must be an
ICMP code.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 65535.

port_range_minű

The minimum port number in the range that is matched by the security group rule. If the protocol is
TCP or UDP, this value must be less than or equal to the value of the port_range_max attribute. If
the protocol is ICMP, this value must be an ICMP type.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 65535.

protocolű

3.3. Working with Templates 481

Heat Documentation, Release 16.1.1.dev14

The protocol that is matched by the security group rule. Allowed values are ah, dccp, egp, esp, gre,
icmp, icmpv6, igmp, ipv6-encap, ipv6-frag, ipv6-icmp, ipv6-nonxt, ipv6-opts, ipv6-route, ospf,
pgm, rsvp, sctp, tcp, udp, udplite, vrrp and integer representations [0-255].

String value expected.

Updates cause replacement.

Defaults to "tcp"

Allowed values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197,
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216,
217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235,
236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
255, ah, dccp, egp, esp, gre, icmp, icmpv6, igmp, ipv6-encap, ipv6-frag, ipv6-icmp, ipv6-nonxt,
ipv6-opts, ipv6-route, ospf, pgm, rsvp, sctp, tcp, udp, udplite, vrrp

remote_groupű

The remote group name or ID to be associated with this security group rule.

String value expected.

Updates cause replacement.

Value must be of type neutron.security_group

remote_ip_prefixű

The remote IP prefix (CIDR) to be associated with this security group rule.

String value expected.

Updates cause replacement.

Value must be of type net_cidr

Attributes

showű Detailed information about resource.

482 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::SecurityGroupRule
properties:

description: String
direction: String
ethertype: String
port_range_max: Integer
port_range_min: Integer
protocol: String
remote_group: String
remote_ip_prefix: String
security_group: String

OS::Neutron::Segment

Available since 9.0.0 (Pike)

A resource for Neutron Segment.

This requires enabling the segments service plug-in by appending segments to the list of service_plugins
in the neutron.conf.

The default policy usage of this resource is limited to administrators only.

Required Properties

networkű

The name/id of network to associate with this segment.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

network_typeű

Type of network to associate with this segment.

String value expected.

Updates cause replacement.

Allowed values: local, vlan, vxlan, gre, geneve, flat

3.3. Working with Templates 483

Heat Documentation, Release 16.1.1.dev14

Optional Properties

descriptionű

Description of the segment.

String value expected.

Can be updated without replacement.

nameű

Name of the segment.

String value expected.

Can be updated without replacement.

physical_networkű

Name of physical network to associate with this segment.

String value expected.

Updates cause replacement.

segmentation_idű

Segmentation ID for this segment.

Integer value expected.

Updates cause replacement.

The value must be at least 1.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::Segment
properties:

description: String
name: String
network: String
network_type: String
physical_network: String
segmentation_id: Integer

484 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::Subnet

A resource for managing Neutron subnets.

A subnet represents an IP address block that can be used for assigning IP addresses to virtual instances.
Each subnet must have a CIDR and must be associated with a network. IPs can be either selected from
the whole subnet CIDR, or from allocation pools that can be specified by the user.

Required Properties

networkű

Available since 2014.2 (Juno)

The ID of the attached network.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

Optional Properties

allocation_poolsű

The start and end addresses for the allocation pools.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

endű

Required.

End address for the allocation pool.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

startű

Required.

Start address for the allocation pool.

String value expected.

3.3. Working with Templates 485

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Value must be of type ip_addr

cidrű

The CIDR.

String value expected.

Updates cause replacement.

Value must be of type net_cidr

dns_nameserversű

A specified set of DNS name servers to be used.

List value expected.

Can be updated without replacement.

Defaults to []

enable_dhcpű

Set to true if DHCP is enabled and false if DHCP is disabled.

Boolean value expected.

Can be updated without replacement.

Defaults to true

gateway_ipű

The gateway IP address. Set to any of [null | ~ |] to create/update a subnet without a gateway.
If omitted when creation, neutron will assign the first free IP address within the subnet to the
gateway automatically. If remove this from template when update, the old gateway IP address
will be detached.

String value expected.

Can be updated without replacement.

host_routesű

A list of host route dictionaries for the subnet.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

destinationű

Required.

The destination for static route.

486 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

Value must be of type net_cidr

nexthopű

Required.

The next hop for the destination.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

ip_versionű

The IP version, which is 4 or 6.

Integer value expected.

Updates cause replacement.

Defaults to 4

Allowed values: 4, 6

ipv6_address_modeű

Available since 2015.1 (Kilo)

IPv6 address mode.

String value expected.

Updates cause replacement.

Allowed values: dhcpv6-stateful, dhcpv6-stateless, slaac

ipv6_ra_modeű

Available since 2015.1 (Kilo)

IPv6 RA (Router Advertisement) mode.

String value expected.

Updates cause replacement.

Allowed values: dhcpv6-stateful, dhcpv6-stateless, slaac

nameű

The name of the subnet.

String value expected.

Can be updated without replacement.

prefixlenű

3.3. Working with Templates 487

Heat Documentation, Release 16.1.1.dev14

Available since 6.0.0 (Mitaka)

Prefix length for subnet allocation from subnet pool.

Integer value expected.

Updates cause replacement.

The value must be at least 0.

segmentű

Available since 11.0.0 (Rocky) - Update allowed since version 11.0.0.

Available since 9.0.0 (Pike)

The name/ID of the segment to associate.

String value expected.

Can be updated without replacement.

Value must be of type neutron.segment

subnetpoolű

Available since 6.0.0 (Mitaka)

The name or ID of the subnet pool.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnetpool

tagsű

Available since 9.0.0 (Pike)

The tags to be added to the subnet.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

tenant_idű

488 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The ID of the tenant who owns the network. Only administrative users can specify a tenant ID other
than their own.

String value expected.

Updates cause replacement.

value_specsű

Extra parameters to include in the request.

Map value expected.

Can be updated without replacement.

Defaults to {}

Attributes

allocation_poolsű Ip allocation pools and their ranges.

cidrű CIDR block notation for this subnet.

dns_nameserversű List of dns nameservers.

enable_dhcpű true if DHCP is enabled for this subnet; false otherwise.

gateway_ipű Ip of the subnets gateway.

host_routesű Additional routes for this subnet.

ip_versionű Ip version for the subnet.

nameű Friendly name of the subnet.

network_idű Parent network of the subnet.

showű Detailed information about resource.

tenant_idű Tenant owning the subnet.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::Subnet
properties:

allocation_pools: [{"start": String, "end": String}, {"start":
↪→String, "end": String}, ...]

cidr: String
dns_nameservers: [Value, Value, ...]
enable_dhcp: Boolean
gateway_ip: String
host_routes: [{"destination": String, "nexthop": String}, {

↪→"destination": String, "nexthop": String}, ...]
ip_version: Integer

(continues on next page)

3.3. Working with Templates 489

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

ipv6_address_mode: String
ipv6_ra_mode: String
name: String
network: String
prefixlen: Integer
segment: String
subnetpool: String
tags: [String, String, ...]
tenant_id: String
value_specs: {...}

OS::Neutron::SubnetPool

Available since 6.0.0 (Mitaka)

A resource that implements neutron subnet pool.

This resource can be used to create a subnet pool with a large block of addresses and create subnets from
it.

Required Properties

prefixesű

List of subnet prefixes to assign.

List value expected.

Can be updated without replacement.

The length must be at least 1.

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr

Optional Properties

address_scopeű

An address scope ID to assign to the subnet pool.

String value expected.

Can be updated without replacement.

Value must be of type neutron.address_scope

490 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

default_prefixlenű

The size of the prefix to allocate when the cidr or prefixlen attributes are not specified while creating a
subnet.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

default_quotaű

A per-tenant quota on the prefix space that can be allocated from the subnet pool for tenant subnets.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

is_defaultű

Whether this is default IPv4/IPv6 subnet pool. There can only be one default subnet pool for each IP
family. Note that the default policy setting restricts administrative users to set this to True.

Boolean value expected.

Can be updated without replacement.

Defaults to false

max_prefixlenű

Maximum prefix size that can be allocated from the subnet pool.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

min_prefixlenű

Smallest prefix size that can be allocated from the subnet pool.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

nameű

Name of the subnet pool.

String value expected.

Can be updated without replacement.

sharedű

Whether the subnet pool will be shared across all tenants. Note that the default policy setting restricts
usage of this attribute to administrative users only.

Boolean value expected.

3.3. Working with Templates 491

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

Defaults to false

tagsű

Available since 9.0.0 (Pike)

The tags to be added to the subnetpool.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

tenant_idű

The ID of the tenant who owns the subnet pool. Only administrative users can specify a tenant ID other
than their own.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::SubnetPool
properties:

address_scope: String
default_prefixlen: Integer
default_quota: Integer
is_default: Boolean
max_prefixlen: Integer
min_prefixlen: Integer
name: String
prefixes: [String, String, ...]
shared: Boolean
tags: [String, String, ...]
tenant_id: String

492 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::TaaS::TapFlow

Available since 12.0.0 (Stein)

A resource for neutron tap-as-a-service tap-flow.

This plug-in requires neutron-taas. So to enable this plug-in, install this library and restart the heat-
engine.

A Tap-Flow represents the port from which the traffic needs to be mirrored.

Required Properties

portű

ID or name of the tap-flow neutron port.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

tap_serviceű

ID or name of the neutron tap-service.

String value expected.

Updates cause replacement.

Value must be of type neutron.taas.tap_service

Optional Properties

descriptionű

Description for the Tap-Flow.

String value expected.

Can be updated without replacement.

Defaults to ""

directionű

The Direction to capture the traffic on.

String value expected.

Updates cause replacement.

Defaults to "BOTH"

Allowed values: IN, OUT, BOTH

nameű

3.3. Working with Templates 493

Heat Documentation, Release 16.1.1.dev14

Name for the Tap-Flow.

String value expected.

Can be updated without replacement.

Defaults to ""

vlan_filterű

Comma separated list of VLANs, data for which needs to be captured on probe VM.

String value expected.

Updates cause replacement.

Value must match pattern: ^([0-9]+(-[0-9]+)?)(,([0-9]+(-[0-9]+)?))*$

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::TaaS::TapFlow
properties:

description: String
direction: String
name: String
port: String
tap_service: String
vlan_filter: String

OS::Neutron::TaaS::TapService

Available since 12.0.0 (Stein)

A resource for neutron tap-as-a-service tap-service.

This plug-in requires neutron-taas. So to enable this plug-in, install this library and restart the heat-
engine.

A Tap-Service represents the port on which the mirrored traffic is delivered. Any VM that uses the
mirrored data is attached to this port.

494 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

portű

ID or name of the tap-service neutron port.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

Optional Properties

descriptionű

Description for the Tap-Service.

String value expected.

Can be updated without replacement.

Defaults to ""

nameű

Name for the Tap-Service.

String value expected.

Can be updated without replacement.

Defaults to ""

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::TaaS::TapService
properties:

description: String
name: String
port: String

3.3. Working with Templates 495

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::Trunk

Available since 9.0.0 (Pike)

A resource for managing Neutron trunks.

Requires Neutron Trunk Extension to be enabled:

$ openstack extension show trunk

The network trunk service allows multiple networks to be connected to an instance using a single virtual
NIC (vNIC). Multiple networks can be presented to an instance by connecting the instance to a single
port.

Users can create a port, associate it with a trunk (as the trunks parent) and launch an instance on that
port. Users can dynamically attach and detach additional networks without disrupting operation of the
instance.

Every trunk has a parent port and can have any number (0, 1,) of subports. The parent port is the port
that the instance is directly associated with and its traffic is always untagged inside the instance. Users
must specify the parent port of the trunk when launching an instance attached to a trunk.

A network presented by a subport is the network of the associated port. When creating a subport, a
segmentation_type and segmentation_id may be required by the driver so the user can dis-
tinguish the networks inside the instance. As of release Pike only segmentation_type vlan is
supported. segmentation_id defines the segmentation ID on which the subport network is pre-
sented to the instance.

Note that some Neutron backends (primarily Open vSwitch) only allow trunk creation before an instance
is booted on the parent port. To avoid a possible race condition when booting an instance with a trunk
it is strongly recommended to refer to the trunks parent port indirectly in the template via get_attr.
For example:

trunk:
type: OS::Neutron::Trunk
properties:

port: ...
instance:

type: OS::Nova::Server
properties:

networks:
- { port: { get_attr: [trunk, port_id] } }

Though other Neutron backends may tolerate the direct port reference (and the possible reverse ordering
of API requests implied) its a good idea to avoid writing Neutron backend specific templates.

496 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

portű

ID or name of a port to be used as a parent port.

String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Value must be of type neutron.port

Optional Properties

admin_state_upű

Enable/disable subport addition, removal and trunk delete.

Boolean value expected.

Can be updated without replacement.

descriptionű

Description for the trunk.

String value expected.

Can be updated without replacement.

nameű

A string specifying a symbolic name for the trunk, which is not required to be uniqe.

String value expected.

Can be updated without replacement.

sub_portsű

List with 0 or more map elements containing subport details.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

portű

Required.

ID or name of a port to be used as a subport.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 497

Heat Documentation, Release 16.1.1.dev14

Value must be of type neutron.port

segmentation_idű

Required.

The segmentation ID on which the subport network is presented to the instance.

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 4094.

segmentation_typeű

Required.

Segmentation type to be used on the subport.

String value expected.

Can be updated without replacement.

Allowed values: vlan

Attributes

port_idű ID or name of a port used as a parent port.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::Trunk
properties:

admin_state_up: Boolean
description: String
name: String
port: String
sub_ports: [{"port": String, "segmentation_type": String,

↪→"segmentation_id": Integer}, {"port": String, "segmentation_type":
↪→String, "segmentation_id": Integer}, ...]

498 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::VPNService

A resource for VPN service in Neutron.

VPN service is a high level object that associates VPN with a specific subnet and router.

Required Properties

routerű

Available since 2015.1 (Kilo)

The router to which the vpn service will be inserted.

String value expected.

Updates cause replacement.

Value must be of type neutron.router

subnetű

Available since 2014.2 (Juno)

Subnet in which the vpn service will be created.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

Optional Properties

admin_state_upű

Administrative state for the vpn service.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description for the vpn service.

String value expected.

Can be updated without replacement.

nameű

Name for the vpn service.

String value expected.

3.3. Working with Templates 499

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Attributes

admin_state_upű The administrative state of the vpn service.

descriptionű The description of the vpn service.

nameű The name of the vpn service.

router_idű The unique identifier of the router to which the vpn service was inserted.

showű Detailed information about resource.

statusű The status of the vpn service.

subnet_idű The unique identifier of the subnet in which the vpn service was created.

tenant_idű The unique identifier of the tenant owning the vpn service.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::VPNService
properties:

admin_state_up: Boolean
description: String
name: String
router: String
subnet: String

OS::Nova::Flavor

Available since 2014.2 (Juno)

A resource for creating OpenStack virtual hardware templates.

Due to default nova security policy usage of this resource is limited to being used by administrators only.
The rights may also be delegated to other users by redefining the access controls on the nova-api server.

Note that the current implementation of the Nova Flavor resource does not allow specifying the name
and flavorid properties for the resource. This is done to avoid potential naming collision upon flavor
creation as all flavor have a global scope.

500 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

ramű

Memory in MB for the flavor.

Integer value expected.

Updates cause replacement.

vcpusű

Number of VCPUs for the flavor.

Integer value expected.

Updates cause replacement.

Optional Properties

diskű

Size of local disk in GB. The 0 size is a special case that uses the native base image size as the size of
the ephemeral root volume.

Integer value expected.

Updates cause replacement.

Defaults to 0

ephemeralű

Size of a secondary ephemeral data disk in GB.

Integer value expected.

Updates cause replacement.

Defaults to 0

extra_specsű

Key/Value pairs to extend the capabilities of the flavor.

Map value expected.

Can be updated without replacement.

flavoridű

Available since 7.0.0 (Newton)

Unique ID of the flavor. If not specified, an UUID will be auto generated and used.

String value expected.

Updates cause replacement.

is_publicű

3.3. Working with Templates 501

Heat Documentation, Release 16.1.1.dev14

Available since 6.0.0 (Mitaka)

Scope of flavor accessibility. Public or private. Default value is True, means public, shared across all
projects.

Boolean value expected.

Updates cause replacement.

Defaults to true

nameű

Available since 7.0.0 (Newton)

Name of the flavor.

String value expected.

Updates cause replacement.

rxtx_factorű

RX/TX factor.

Number value expected.

Updates cause replacement.

Defaults to 1.0

swapű

Swap space in MB.

Integer value expected.

Updates cause replacement.

Defaults to 0

tenantsű

Available since 8.0.0 (Ocata)

List of tenants.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

502 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Value must be of type keystone.project

Attributes

extra_specsű

Available since 7.0.0 (Newton)

Extra specs of the flavor in key-value pairs.

is_publicű

Available since 6.0.0 (Mitaka)

Whether the flavor is shared across all projects.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Nova::Flavor
properties:

disk: Integer
ephemeral: Integer
extra_specs: {...}
flavorid: String
is_public: Boolean
name: String
ram: Integer
rxtx_factor: Number
swap: Integer
tenants: [String, String, ...]
vcpus: Integer

OS::Nova::HostAggregate

Available since 6.0.0 (Mitaka)

A resource for further partition an availability zone with hosts.

While availability zones are visible to users, host aggregates are only visible to administrators. Host
aggregates started out as a way to use Xen hypervisor resource pools, but has been generalized to provide
a mechanism to allow administrators to assign key-value pairs to groups of machines. Each node can
have multiple aggregates, each aggregate can have multiple key-value pairs, and the same key-value pair

3.3. Working with Templates 503

Heat Documentation, Release 16.1.1.dev14

can be assigned to multiple aggregate. This information can be used in the scheduler to enable advanced
scheduling, to set up xen hypervisor resources pools or to define logical groups for migration.

Required Properties

nameű

Name for the aggregate.

String value expected.

Can be updated without replacement.

Optional Properties

availability_zoneű

Name for the availability zone.

String value expected.

Can be updated without replacement.

hostsű

List of hosts to join aggregate.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type nova.host

metadataű

Arbitrary key/value metadata to store information for aggregate.

Map value expected.

Can be updated without replacement.

Defaults to {}

504 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Nova::HostAggregate
properties:

availability_zone: String
hosts: [String, String, ...]
metadata: {...}
name: String

OS::Nova::KeyPair

Available since 2014.1 (Icehouse)

A resource for creating Nova key pairs.

A keypair is a ssh key that can be injected into a server on launch.

Note that if a new key is generated setting save_private_key to True results in the system saving the
private key which can then be retrieved via the private_key attribute of this resource.

Setting the public_key property means that the private_key attribute of this resource will always return
an empty string regardless of the save_private_key setting since there will be no private key data to save.

Required Properties

nameű

The name of the key pair.

String value expected.

Updates cause replacement.

The length must be in the range 1 to 255.

3.3. Working with Templates 505

Heat Documentation, Release 16.1.1.dev14

Optional Properties

public_keyű

The optional public key. This allows users to supply the public key from a pre-existing key pair. If not
supplied, a new key pair will be generated.

String value expected.

Updates cause replacement.

save_private_keyű

True if the system should remember a generated private key; False otherwise.

Boolean value expected.

Updates cause replacement.

Defaults to false

typeű

Available since 8.0.0 (Ocata)

Keypair type. Supported since Nova api version 2.2.

String value expected.

Updates cause replacement.

Allowed values: ssh, x509

userű

Available since 9.0.0 (Pike)

ID or name of user to whom to add key-pair. The usage of this property is limited to being used by
administrators only. Supported since Nova api version 2.10.

String value expected.

Updates cause replacement.

Value must be of type keystone.user

Attributes

private_keyű The private key if it has been saved.

public_keyű The public key.

showű Detailed information about resource.

506 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Nova::KeyPair
properties:

name: String
public_key: String
save_private_key: Boolean
type: String
user: String

OS::Nova::Quota

Available since 8.0.0 (Ocata)

A resource for creating nova quotas.

Nova Quota is used to manage operational limits for projects. Currently, this resource can manage Novas
quotas for:

• cores

• fixed_ips

• floating_ips

• instances

• injected_files

• injected_file_content_bytes

• injected_file_path_bytes

• key_pairs

• metadata_items

• ram

• security_groups

• security_group_rules

• server_groups

• server_group_members

Note that default nova security policy usage of this resource is limited to being used by administrators
only. Administrators should be careful to create only one Nova Quota resource per project, otherwise it
will be hard for them to manage the quota properly.

3.3. Working with Templates 507

Heat Documentation, Release 16.1.1.dev14

Required Properties

projectű

Name or id of the project to set the quota for.

String value expected.

Updates cause replacement.

Value must be of type keystone.project

Optional Properties

coresű

Quota for the number of cores. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

fixed_ipsű

Quota for the number of fixed IPs. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

floating_ipsű

Quota for the number of floating IPs. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

instancesű

Quota for the number of instances. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

key_pairsű

Quota for the number of key pairs. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

508 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

metadata_itemsű

Quota for the number of metadata items. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

ramű

Quota for the amount of ram (in megabytes). Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

security_group_rulesű

Quota for the number of security group rules. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

security_groupsű

Quota for the number of security groups. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

server_group_membersű

Quota for the number of server group members. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

server_groupsű

Quota for the number of server groups. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

injected_file_content_bytesű

DEPRECATED since 14.0.0 (Ussuri) - File injection is deprecated from compute REST API
OS::Nova::Quota resource will not support it in the future.

3.3. Working with Templates 509

Heat Documentation, Release 16.1.1.dev14

Quota for the number of injected file content bytes. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

injected_file_path_bytesű

DEPRECATED since 14.0.0 (Ussuri) - File injection is deprecated from compute REST API
OS::Nova::Quota resource will not support it in the future.

Quota for the number of injected file path bytes. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

injected_filesű

DEPRECATED since 14.0.0 (Ussuri) - File injection is deprecated from compute REST API
OS::Nova::Quota resource will not support it in the future.

Quota for the number of injected files. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Nova::Quota
properties:

cores: Integer
fixed_ips: Integer
floating_ips: Integer
instances: Integer
key_pairs: Integer
metadata_items: Integer
project: String

(continues on next page)

510 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

ram: Integer
security_group_rules: Integer
security_groups: Integer
server_group_members: Integer
server_groups: Integer

OS::Nova::Server

A resource for managing Nova instances.

A Server resource manages the running virtual machine instance within an OpenStack cloud.

Required Properties

flavorű

The ID or name of the flavor to boot onto.

String value expected.

Can be updated without replacement.

Value must be of type nova.flavor

Optional Properties

admin_passű

The administrator password for the server.

String value expected.

Can be updated without replacement.

availability_zoneű

Name of the availability zone for server placement.

String value expected.

Updates cause replacement.

block_device_mappingű

Block device mappings for this server.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

3.3. Working with Templates 511

Heat Documentation, Release 16.1.1.dev14

delete_on_terminationű

Optional.

Indicate whether the volume should be deleted when the server is terminated.

Boolean value expected.

Updates cause replacement.

device_nameű

Required.

A device name where the volume will be attached in the system at /dev/device_name. This
value is typically vda.

String value expected.

Updates cause replacement.

snapshot_idű

Optional.

The ID of the snapshot to create a volume from.

String value expected.

Updates cause replacement.

Value must be of type cinder.snapshot

volume_idű

Optional.

The ID of the volume to boot from. Only one of volume_id or snapshot_id should be
provided.

String value expected.

Updates cause replacement.

Value must be of type cinder.volume

volume_sizeű

Optional.

The size of the volume, in GB. It is safe to leave this blank and have the Compute service
infer the size.

Integer value expected.

Updates cause replacement.

block_device_mapping_v2ű

Available since 2015.1 (Kilo)

Block device mappings v2 for this server.

List value expected.

512 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

boot_indexű

Optional.

Integer used for ordering the boot disks. If it is not specified, value 0 will be set for bootable
sources (volume, snapshot, image); value -1 will be set for non-bootable sources.

Integer value expected.

Updates cause replacement.

delete_on_terminationű

Optional.

Indicate whether the volume should be deleted when the server is terminated. Defaults to
False in case of a volume, snapshot or image and to True in case of swap or ephemeral.

Boolean value expected.

Updates cause replacement.

device_nameű

Optional.

A device name where the volume will be attached in the system at /dev/device_name. This
value is typically vda.

String value expected.

Updates cause replacement.

device_typeű

Optional.

Device type: at the moment we can make distinction only between disk and cdrom.

String value expected.

Updates cause replacement.

Allowed values: cdrom, disk

disk_busű

Optional.

Bus of the device: hypervisor driver chooses a suitable default if omitted.

String value expected.

Updates cause replacement.

Allowed values: ide, lame_bus, scsi, usb, virtio

3.3. Working with Templates 513

Heat Documentation, Release 16.1.1.dev14

ephemeral_formatű

Available since 8.0.0 (Ocata)

Optional.

The format of the local ephemeral block device. If no format is specified, uses default
value, defined in nova configuration file.

String value expected.

Updates cause replacement.

Allowed values: ext2, ext3, ext4, xfs, ntfs

ephemeral_sizeű

Available since 8.0.0 (Ocata)

Optional.

The size of the local ephemeral block device, in GB.

Integer value expected.

Updates cause replacement.

The value must be at least 1.

imageű

Available since 7.0.0 (Newton)

Optional.

The ID or name of the image to create a volume from.

String value expected.

Updates cause replacement.

Value must be of type glance.image

snapshot_idű

Optional.

The ID of the snapshot to create a volume from.

String value expected.

Updates cause replacement.

Value must be of type cinder.snapshot

swap_sizeű

Optional.

The size of the swap, in MB.

514 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Integer value expected.

Updates cause replacement.

volume_idű

Optional.

The volume_id can be boot or non-boot device to the server.

String value expected.

Updates cause replacement.

Value must be of type cinder.volume

volume_sizeű

Optional.

Size of the block device in GB. If it is omitted, hypervisor driver calculates size.

Integer value expected.

Updates cause replacement.

config_driveű

If True, enable config drive on the server.

Boolean value expected.

Updates cause replacement.

deployment_swift_dataű

Available since 9.0.0 (Pike)

Swift container and object to use for storing deployment data for the server resource. The parameter
is a map value with the keys container and object, and the values are the corresponding container
and object names. The software_config_transport parameter must be set to POLL_TEMP_URL
for swift to be used. If not specified, and software_config_transport is set to POLL_TEMP_URL,
a container will be automatically created from the resource name, and the object name will be a
generated uuid.

Map value expected.

Can be updated without replacement.

Defaults to {}

Map properties:

containerű

Optional.

Name of the container.

String value expected.

Can be updated without replacement.

The length must be at least 1.

3.3. Working with Templates 515

Heat Documentation, Release 16.1.1.dev14

objectű

Optional.

Name of the object.

String value expected.

Can be updated without replacement.

The length must be at least 1.

diskConfigű

Control how the disk is partitioned when the server is created.

String value expected.

Updates cause replacement.

Allowed values: AUTO, MANUAL

flavor_update_policyű

Policy on how to apply a flavor update; either by requesting a server resize or by replacing the entire
server.

String value expected.

Can be updated without replacement.

Defaults to "RESIZE"

Allowed values: RESIZE, REPLACE

imageű

The ID or name of the image to boot with.

String value expected.

Can be updated without replacement.

Value must be of type glance.image

image_update_policyű

Policy on how to apply an image-id update; either by requesting a server rebuild or by replacing the
entire server.

String value expected.

Can be updated without replacement.

Defaults to "REBUILD"

Allowed values: REBUILD, REPLACE, REBUILD_PRESERVE_EPHEMERAL

key_nameű

Name of keypair to inject into the server.

String value expected.

Updates cause replacement.

Value must be of type nova.keypair

516 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

metadataű

Arbitrary key/value metadata to store for this server. Both keys and values must be 255 characters or
less. Non-string values will be serialized to JSON (and the serialized string must be 255 characters
or less).

Map value expected.

Can be updated without replacement.

Defaults to {}

nameű

Server name.

String value expected.

Can be updated without replacement.

networksű

An ordered list of nics to be added to this server, with information about connected networks, fixed ips,
port etc.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

allocate_networkű

Available since 9.0.0 (Pike)

Optional.

The special string values of network, auto: means either a network that is already available
to the project will be used, or if one does not exist, will be automatically created for the
project; none: means no networking will be allocated for the created server. Supported
by Nova API since version 2.37. This property can not be used with other network keys.

String value expected.

Can be updated without replacement.

Allowed values: none, auto

fixed_ipű

Optional.

Fixed IP address to specify for the port created on the requested network.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 517

Heat Documentation, Release 16.1.1.dev14

Value must be of type ip_addr

floating_ipű

Available since 6.0.0 (Mitaka)

Optional.

ID of the floating IP to associate.

String value expected.

Can be updated without replacement.

networkű

Optional.

Name or ID of network to create a port on.

String value expected.

Can be updated without replacement.

Value must be of type neutron.network

portű

Optional.

ID of an existing port to associate with this server.

String value expected.

Can be updated without replacement.

Value must be of type neutron.port

port_extra_propertiesű

Available since 6.0.0 (Mitaka)

Dict, which has expand properties for port. Used only if port property is not specified for
creating port.

Map value expected.

Can be updated without replacement.

Map properties:

admin_state_upű

Optional.

The administrative state of this port.

Boolean value expected.

Can be updated without replacement.

Defaults to true

518 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

allowed_address_pairsű

Additional MAC/IP address pairs allowed to pass through the port.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

ip_addressű

Required.

IP address to allow through this port.

String value expected.

Can be updated without replacement.

Value must be of type ip_or_cidr

mac_addressű

Optional.

MAC address to allow through this port.

String value expected.

Can be updated without replacement.

Value must be of type mac_addr

binding:vnic_typeű

Available since 2015.1 (Kilo)

Optional.

The vnic type to be bound on the neutron port. To support SR-IOV PCI passthrough
networking, you can request that the neutron port to be realized as normal (virtual
nic), direct (pci passthrough), or macvtap (virtual interface with a tap-like software
interface). Note that this only works for Neutron deployments that support the
bindings extension.

String value expected.

Can be updated without replacement.

Defaults to "normal"

Allowed values: normal, direct, macvtap, direct-physical, baremetal, virtio-forwarder,
smart-nic

mac_addressű

Optional.

3.3. Working with Templates 519

Heat Documentation, Release 16.1.1.dev14

MAC address to give to this port. The default update policy of this property in neutron
is that allow admin role only.

String value expected.

Can be updated without replacement.

Value must be of type mac_addr

no_fixed_ipsű

Available since 16.0.0

Optional.

Flag to disable all fixed ips on the port.

Boolean value expected.

Can be updated without replacement.

Defaults to false

port_security_enabledű

Available since 5.0.0 (Liberty)

Optional.

Flag to enable/disable port security on the port. When disable this feature(set it to
False), there will be no packages filtering, like security-group and address-pairs.

Boolean value expected.

Can be updated without replacement.

propagate_uplink_statusű

Available since 15.0.0 (Victoria)

Optional.

Flag to enable/disable propagate uplink status on the port.

Boolean value expected.

Can be updated without replacement.

qos_policyű

Available since 6.0.0 (Mitaka)

Optional.

The name or ID of QoS policy to attach to this port.

String value expected.

520 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Value must be of type neutron.qos_policy

value_specsű

Extra parameters to include in the request.

Map value expected.

Can be updated without replacement.

Defaults to {}

subnetű

Available since 5.0.0 (Liberty)

Optional.

Subnet in which to allocate the IP address for port. Used for creating port, based on derived
properties. If subnet is specified, network property becomes optional.

String value expected.

Can be updated without replacement.

tagű

Available since 9.0.0 (Pike)

Optional.

Port tag. Heat ignores any update on this property as nova does not support it.

String value expected.

Can be updated without replacement.

reservation_idű

A UUID for the set of servers being requested.

String value expected.

Updates cause replacement.

scheduler_hintsű

Arbitrary key-value pairs specified by the client to help boot a server.

Map value expected.

Updates cause replacement.

security_groupsű

List of security group names or IDs. Cannot be used if neutron ports are associated with this server;
assign security groups to the ports instead.

List value expected.

Updates cause replacement.

3.3. Working with Templates 521

Heat Documentation, Release 16.1.1.dev14

Defaults to []

software_config_transportű

How the server should receive the metadata required for software configuration. POLL_SERVER_CFN
will allow calls to the cfn API action DescribeStackResource authenticated with the provided key-
pair. POLL_SERVER_HEAT will allow calls to the Heat API resource-show using the provided
keystone credentials. POLL_TEMP_URL will create and populate a Swift TempURL with meta-
data for polling. ZAQAR_MESSAGE will create a dedicated zaqar queue and post the metadata
for polling.

String value expected.

Can be updated without replacement.

Defaults to "POLL_SERVER_CFN"

Allowed values: POLL_SERVER_CFN, POLL_SERVER_HEAT, POLL_TEMP_URL, ZA-
QAR_MESSAGE

tagsű

Available since 8.0.0 (Ocata)

Server tags. Supported since client version 2.26.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

user_dataű

User data script to be executed by cloud-init or CoreOS ignition. Changes cause replacement of the
resource by default, but can be ignored altogether by setting the ‘user_data_update_policy‘ prop-
erty.

String value expected.

Can be updated without replacement.

Defaults to ""

user_data_formatű

How the user_data should be formatted for the server. For HEAT_CFNTOOLS, the user_data is bun-
dled as part of the heat-cfntools cloud-init boot configuration data. For RAW the user_data is
passed to Nova unmodified. For SOFTWARE_CONFIG user_data is bundled as part of the soft-
ware config data, and metadata is derived from any associated SoftwareDeployment resources.
And if the user_data is in CoreOS ignition(json) format, the metadata will be injected into the
user_data automatically by Heat.

String value expected.

522 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

Defaults to "HEAT_CFNTOOLS"

Allowed values: HEAT_CFNTOOLS, RAW, SOFTWARE_CONFIG

user_data_update_policyű

Available since 6.0.0 (Mitaka)

Policy on how to apply a user_data update; either by ignoring it or by replacing the entire server.

String value expected.

Can be updated without replacement.

Defaults to "REPLACE"

Allowed values: REPLACE, IGNORE

personalityű

DEPRECATED since 12.0.0 (Stein) - This is not supported with nova api microversion 2.57
and above. OS::Nova::Server resource will not support it in the future. Please use user_data or
metadata instead. However, you can set heat config option max_nova_api_microversion < 2.57
to use this property in the meantime.

A map of files to create/overwrite on the server upon boot. Keys are file names and values are the file
contents.

Map value expected.

Updates cause replacement.

Defaults to {}

Attributes

accessIPv4ű

DEPRECATED since 14.0.0 (Ussuri)

Available since 2015.1 (Kilo)

The manually assigned alternative public IPv4 address of the server.

accessIPv6ű

DEPRECATED since 14.0.0 (Ussuri)

3.3. Working with Templates 523

Heat Documentation, Release 16.1.1.dev14

Available since 2015.1 (Kilo)

The manually assigned alternative public IPv6 address of the server.

addressesű

Available since 11.0.0 (Rocky) - The attribute was extended to include subnets and network
with version 11.0.0.

A dict of all network addresses with corresponding port_id and subnets. Each network will have
two keys in dict, they are network name and network id. The port ID may be obtained through
the following expression: “{get_attr: [<server>, addresses, <network name_or_id>, 0, port]}“.
The subnets may be obtained trough the following expression: “{get_attr: [<server>, addresses,
<network name_or_id>, 0, subnets]}“. The network may be obtained through the following ex-
pression: “{get_attr: [<server>, addresses, <network name_or_id>, 0, network]}“.

console_urlsű

Available since 2015.1 (Kilo)

URLs of servers consoles. To get a specific console type, the requested type can be specified
as parameter to the get_attr function, e.g. get_attr: [<server>, console_urls, novnc]. Currently
supported types are novnc, xvpvnc, spice-html5, rdp-html5, serial and webmks.

instance_nameű AWS compatible instance name.

nameű Name of the server.

networksű A dict of assigned network addresses of the form: {public: [ip1, ip2], private: [ip3, ip4],
public_uuid: [ip1, ip2], private_uuid: [ip3, ip4]}. Each network will have two keys in dict, they
are network name and network id.

os_collect_configű

Available since 9.0.0 (Pike)

The os-collect-config configuration for the servers local agent to be configured to connect to Heat
to retrieve deployment data.

showű Detailed information about resource.

tagsű

Available since 8.0.0 (Ocata)

Tags from the server. Supported since client version 2.26.

524 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Nova::Server
properties:

admin_pass: String
availability_zone: String
block_device_mapping: [{"device_name": String, "volume_id": String,

↪→"snapshot_id": String, "volume_size": Integer, "delete_on_termination":
↪→Boolean}, {"device_name": String, "volume_id": String, "snapshot_id":
↪→String, "volume_size": Integer, "delete_on_termination": Boolean}, ...]

block_device_mapping_v2: [{"device_name": String, "volume_id":
↪→String, "image_id": String, "image": String, "snapshot_id": String,
↪→"swap_size": Integer, "ephemeral_size": Integer, "ephemeral_format":
↪→String, "device_type": String, "disk_bus": String, "boot_index": Integer,
↪→ "volume_size": Integer, "delete_on_termination": Boolean}, {"device_name
↪→": String, "volume_id": String, "image_id": String, "image": String,
↪→"snapshot_id": String, "swap_size": Integer, "ephemeral_size": Integer,
↪→"ephemeral_format": String, "device_type": String, "disk_bus": String,
↪→"boot_index": Integer, "volume_size": Integer, "delete_on_termination":
↪→Boolean}, ...]

config_drive: Boolean
deployment_swift_data: {"container": String, "object": String}
diskConfig: String
flavor: String
flavor_update_policy: String
image: String
image_update_policy: String
key_name: String
metadata: {...}
name: String
networks: [{"uuid": String, "network": String, "allocate_network":

↪→String, "fixed_ip": String, "port": String, "port_extra_properties": {
↪→"value_specs": {...}, "admin_state_up": Boolean, "mac_address": String,
↪→"allowed_address_pairs": [{"mac_address": String, "ip_address": String},
↪→{"mac_address": String, "ip_address": String}, ...], "binding:vnic_type
↪→": String, "port_security_enabled": Boolean, "qos_policy": String,
↪→"propagate_uplink_status": Boolean, "no_fixed_ips": Boolean}, "subnet":
↪→String, "floating_ip": String, "tag": String}, {"uuid": String, "network
↪→": String, "allocate_network": String, "fixed_ip": String, "port":
↪→String, "port_extra_properties": {"value_specs": {...}, "admin_state_up
↪→": Boolean, "mac_address": String, "allowed_address_pairs": [{"mac_
↪→address": String, "ip_address": String}, {"mac_address": String, "ip_
↪→address": String}, ...], "binding:vnic_type": String, "port_security_
↪→enabled": Boolean, "qos_policy": String, "propagate_uplink_status":
↪→Boolean, "no_fixed_ips": Boolean}, "subnet": String, "floating_ip":
↪→String, "tag": String}, ...]

reservation_id: String
scheduler_hints: {...}
security_groups: [Value, Value, ...]
software_config_transport: String
tags: [String, String, ...]

(continues on next page)

3.3. Working with Templates 525

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

user_data: String
user_data_format: String
user_data_update_policy: String

OS::Nova::ServerGroup

Available since 2014.2 (Juno)

A resource for managing a Nova server group.

Server groups allow you to make sure instances (VM/VPS) are on the same hypervisor host or on a
different one.

Optional Properties

nameű

Server Group name.

String value expected.

Updates cause replacement.

policiesű

A list of string policies to apply. Defaults to anti-affinity.

List value expected.

Updates cause replacement.

Defaults to ["anti-affinity"]

Allowed values: anti-affinity, affinity, soft-anti-affinity, soft-affinity

List contents:

Optional.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

526 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Nova::ServerGroup
properties:

name: String
policies: [String, String, ...]

OS::Octavia::Flavor

Available since 14.0.0 (Ussuri)

A resource for creating octavia Flavors.

This resource creates and manages octavia Flavors, which allows to tune Load Balancers capabilities.

Required Properties

flavor_profileű

The ID or the name of the Flavor Profile.

String value expected.

Updates cause replacement.

Value must be of type octavia.flavorprofile

Optional Properties

descriptionű

Description of this Flavor.

String value expected.

Can be updated without replacement.

Defaults to ""

enabledű

If the resource if available for use.

Boolean value expected.

Can be updated without replacement.

Defaults to true

nameű

3.3. Working with Templates 527

Heat Documentation, Release 16.1.1.dev14

Name of this Flavor.

String value expected.

Can be updated without replacement.

Attributes

flavor_profile_idű The ID of the flavor profile.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::Flavor
properties:

description: String
enabled: Boolean
flavor_profile: String
name: String

OS::Octavia::FlavorProfile

Available since 14.0.0 (Ussuri)

A resource for creating octavia Flavor Profiles.

This resource creates and manages octavia Flavor Profiles, which allows to tune Load Balancers capa-
bilities.

Required Properties

flavor_dataű

JSON string containing the flavor metadata.

String value expected.

Can be updated without replacement.

528 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

nameű

Name of this Flavor Profile.

String value expected.

Can be updated without replacement.

provider_nameű

Provider name of this Flavor Profile.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::FlavorProfile
properties:

flavor_data: String
name: String
provider_name: String

OS::Octavia::HealthMonitor

Available since 10.0.0 (Queens)

A resource to handle load balancer health monitors.

This resource creates and manages octavia healthmonitors, which watches status of the load balanced
servers.

3.3. Working with Templates 529

Heat Documentation, Release 16.1.1.dev14

Required Properties

delayű

The minimum time in seconds between regular connections of the member.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

max_retriesű

Number of permissible connection failures before changing the member status to INACTIVE.

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 10.

poolű

ID or name of the load balancing pool.

String value expected.

Updates cause replacement.

Value must be of type octavia.pool

timeoutű

Maximum number of seconds for a monitor to wait for a connection to be established before it times
out.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

typeű

One of predefined health monitor types.

String value expected.

Updates cause replacement.

Allowed values: PING, TCP, HTTP, HTTPS, UDP-CONNECT

530 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

admin_state_upű

The administrative state of the health monitor.

Boolean value expected.

Can be updated without replacement.

Defaults to true

expected_codesű

The HTTP status codes expected in response from the member to declare it healthy. Specify one of the
following values: a single value, such as 200. a list, such as 200, 202. a range, such as 200-204.

String value expected.

Can be updated without replacement.

http_methodű

The HTTP method used for requests by the monitor of type HTTP.

String value expected.

Can be updated without replacement.

Allowed values: GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH

tenant_idű

ID of the tenant who owns the health monitor.

String value expected.

Updates cause replacement.

url_pathű

The HTTP path used in the HTTP request used by the monitor to test a member health. A valid value
is a string the begins with a forward slash (/).

String value expected.

Can be updated without replacement.

Attributes

poolsű The list of Pools related to this monitor.

showű Detailed information about resource.

3.3. Working with Templates 531

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::HealthMonitor
properties:

admin_state_up: Boolean
delay: Integer
expected_codes: String
http_method: String
max_retries: Integer
pool: String
tenant_id: String
timeout: Integer
type: String
url_path: String

OS::Octavia::L7Policy

Available since 10.0.0 (Queens)

A resource for managing octavia L7Policies.

This resource manages L7Policies, which represent a collection of L7Rules. L7Policy holds the action
that should be performed when the rules are matched (Redirect to Pool, Redirect to URL, Reject).
L7Policy holds a Listener id, so a Listener can evaluate a collection of L7Policies. L7Policy will return
True when all of the L7Rules that belong to this L7Policy are matched. L7Policies under a specific
Listener are ordered and the first l7Policy that returns a match will be executed. When none of the
policies match the request gets forwarded to listener.default_pool_id.

Required Properties

actionű

Action type of the policy.

String value expected.

Can be updated without replacement.

Allowed values: REJECT, REDIRECT_TO_POOL, REDIRECT_TO_URL

listenerű

ID or name of the listener this policy belongs to.

String value expected.

Updates cause replacement.

Value must be of type octavia.listener

532 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

admin_state_upű

The administrative state of the policy.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description of the policy.

String value expected.

Can be updated without replacement.

nameű

Name of the policy.

String value expected.

Can be updated without replacement.

positionű

L7 policy position in ordered policies list. This must be an integer starting from 1. If not specified,
policy will be placed at the tail of existing policies list.

Number value expected.

Can be updated without replacement.

The value must be at least 1.

redirect_poolű

ID or name of the pool for REDIRECT_TO_POOL action type.

String value expected.

Can be updated without replacement.

Value must be of type octavia.pool

redirect_urlű

URL for REDIRECT_TO_URL action type. This should be a valid URL string.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 533

Heat Documentation, Release 16.1.1.dev14

Attributes

rulesű L7Rules associated with this policy.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::L7Policy
properties:

action: String
admin_state_up: Boolean
description: String
listener: String
name: String
position: Number
redirect_pool: String
redirect_url: String

OS::Octavia::L7Rule

Available since 10.0.0 (Queens)

A resource for managing octavia L7Rules.

This resource manages L7Rules, which represent a set of attributes that defines which part of the request
should be matched and how it should be matched.

Required Properties

compare_typeű

Rule compare type.

String value expected.

Can be updated without replacement.

Allowed values: REGEX, STARTS_WITH, ENDS_WITH, CONTAINS, EQUAL_TO

l7policyű

ID or name of L7 policy this rule belongs to.

String value expected.

Updates cause replacement.

534 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Value must be of type octavia.l7policy

typeű

Rule type.

String value expected.

Can be updated without replacement.

Allowed values: HOST_NAME, PATH, FILE_TYPE, HEADER, COOKIE

valueű

Value to compare.

String value expected.

Can be updated without replacement.

Optional Properties

admin_state_upű

The administrative state of the rule.

Boolean value expected.

Can be updated without replacement.

Defaults to true

invertű

Invert the compare type.

Boolean value expected.

Can be updated without replacement.

Defaults to false

keyű

Key to compare. Relevant for HEADER and COOKIE types only.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

3.3. Working with Templates 535

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::L7Rule
properties:

admin_state_up: Boolean
compare_type: String
invert: Boolean
key: String
l7policy: String
type: String
value: String

OS::Octavia::Listener

Available since 10.0.0 (Queens)

A resource for managing octavia Listeners.

This resource creates and manages Neutron octavia Listeners, which represent a listening endpoint for
the vip.

Required Properties

protocolű

Protocol on which to listen for the client traffic.

String value expected.

Updates cause replacement.

Allowed values: TCP, HTTP, HTTPS, TERMINATED_HTTPS, PROXY, UDP

protocol_portű

TCP or UDP port on which to listen for client traffic.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

536 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

admin_state_upű

The administrative state of this listener.

Boolean value expected.

Can be updated without replacement.

Defaults to true

allowed_cidrsű

Available since 14.0.0 (Ussuri)

A list of IPv4, IPv6 or mix of both CIDRs. The default is all allowed. When a list of CIDRs is provided,
the default switches to deny all.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type net_cidr

connection_limitű

The maximum number of connections permitted for this load balancer. Defaults to -1, which is infinite.

Integer value expected.

Can be updated without replacement.

Defaults to -1

The value must be at least -1.

default_poolű

ID or name of the default pool for the listener.

String value expected.

Can be updated without replacement.

Value must be of type octavia.pool

default_tls_container_refű

Default TLS container reference to retrieve TLS information.

String value expected.

Can be updated without replacement.

descriptionű

3.3. Working with Templates 537

Heat Documentation, Release 16.1.1.dev14

Description of this listener.

String value expected.

Can be updated without replacement.

Defaults to ""

loadbalancerű

ID or name of the load balancer with which listener is associated.

String value expected.

Updates cause replacement.

Value must be of type octavia.loadbalancer

nameű

Name of this listener.

String value expected.

Can be updated without replacement.

sni_container_refsű

List of TLS container references for SNI.

List value expected.

Can be updated without replacement.

tenant_idű

The ID of the tenant who owns the listener.

String value expected.

Updates cause replacement.

Attributes

default_pool_idű ID of the default pool this listener is associated to.

loadbalancersű ID of the load balancer this listener is associated to.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::Listener
properties:

admin_state_up: Boolean

(continues on next page)

538 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

allowed_cidrs: [String, String, ...]
connection_limit: Integer
default_pool: String
default_tls_container_ref: String
description: String
loadbalancer: String
name: String
protocol: String
protocol_port: Integer
sni_container_refs: [Value, Value, ...]
tenant_id: String

OS::Octavia::LoadBalancer

Available since 10.0.0 (Queens)

A resource for creating octavia Load Balancers.

This resource creates and manages octavia Load Balancers, which allows traffic to be directed between
servers.

Required Properties

vip_subnetű

The name or ID of the subnet on which to allocate the VIP address.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

Optional Properties

admin_state_upű

The administrative state of this Load Balancer.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description of this Load Balancer.

String value expected.

Can be updated without replacement.

Defaults to ""

3.3. Working with Templates 539

Heat Documentation, Release 16.1.1.dev14

flavorű

Available since 14.0.0 (Ussuri)

The name or ID of the flavor of the Load Balancer.

String value expected.

Updates cause replacement.

Value must be of type octavia.flavor

nameű

Name of this Load Balancer.

String value expected.

Can be updated without replacement.

providerű

Provider for this Load Balancer.

String value expected.

Updates cause replacement.

tenant_idű

The ID of the tenant who owns the Load Balancer. Only administrative users can specify a tenant ID
other than their own.

String value expected.

Updates cause replacement.

Value must be of type keystone.project

vip_addressű

IP address for the VIP.

String value expected.

Updates cause replacement.

Value must be of type ip_addr

Attributes

flavor_idű The flavor ID of the LoadBalancer.

poolsű Pools this LoadBalancer is associated with.

showű Detailed information about resource.

vip_addressű The VIP address of the LoadBalancer.

vip_port_idű The VIP port of the LoadBalancer.

vip_subnet_idű The VIP subnet of the LoadBalancer.

540 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::LoadBalancer
properties:

admin_state_up: Boolean
description: String
flavor: String
name: String
provider: String
tenant_id: String
vip_address: String
vip_subnet: String

OS::Octavia::Pool

Available since 10.0.0 (Queens)

A resource for managing Octavia Pools.

This resources manages octavia LBaaS Pools, which represent a group of nodes. Pools define the subnet
where nodes reside, balancing algorithm, and the nodes themselves.

Required Properties

lb_algorithmű

The algorithm used to distribute load between the members of the pool.

String value expected.

Can be updated without replacement.

Allowed values: ROUND_ROBIN, LEAST_CONNECTIONS, SOURCE_IP, SOURCE_IP_PORT

protocolű

Protocol of the pool.

String value expected.

Updates cause replacement.

Allowed values: TCP, HTTP, HTTPS, TERMINATED_HTTPS, PROXY, UDP

3.3. Working with Templates 541

Heat Documentation, Release 16.1.1.dev14

Optional Properties

admin_state_upű

The administrative state of this pool.

Boolean value expected.

Can be updated without replacement.

Defaults to true

descriptionű

Description of this pool.

String value expected.

Can be updated without replacement.

Defaults to ""

listenerű

Listener name or ID to be associated with this pool.

String value expected.

Updates cause replacement.

Value must be of type octavia.listener

loadbalancerű

Loadbalancer name or ID to be associated with this pool.

String value expected.

Updates cause replacement.

Value must be of type octavia.loadbalancer

nameű

Name of this pool.

String value expected.

Can be updated without replacement.

session_persistenceű

Configuration of session persistence.

Map value expected.

Updates cause replacement.

Map properties:

cookie_nameű

Optional.

Name of the cookie, required if type is APP_COOKIE.

String value expected.

542 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

typeű

Required.

Method of implementation of session persistence feature.

String value expected.

Updates cause replacement.

Allowed values: SOURCE_IP, HTTP_COOKIE, APP_COOKIE

tls_enabledű

Available since 14.0.0 (Ussuri)

Enable backend member re-encryption.

Boolean value expected.

Can be updated without replacement.

Defaults to false

Attributes

healthmonitor_idű ID of the health monitor associated with this pool.

listenersű Listener associated with this pool.

membersű Members associated with this pool.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::Pool
properties:

admin_state_up: Boolean
description: String
lb_algorithm: String
listener: String
loadbalancer: String
name: String
protocol: String
session_persistence: {"type": String, "cookie_name": String}
tls_enabled: Boolean

3.3. Working with Templates 543

Heat Documentation, Release 16.1.1.dev14

OS::Octavia::PoolMember

Available since 10.0.0 (Queens)

A resource for managing Octavia Pool Members.

A pool member represents a single backend node.

Required Properties

addressű

IP address of the pool member on the pool network.

String value expected.

Updates cause replacement.

Value must be of type ip_addr

poolű

Name or ID of the load balancing pool.

String value expected.

Updates cause replacement.

Value must be of type octavia.pool

protocol_portű

Port on which the pool member listens for requests or connections.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

Optional Properties

admin_state_upű

The administrative state of the pool member.

Boolean value expected.

Can be updated without replacement.

Defaults to true

monitor_addressű

Alternate IP address which health monitor can use for health check.

String value expected.

Updates cause replacement.

544 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Value must be of type ip_addr

monitor_portű

Alternate Port which health monitor can use for health check.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

subnetű

Subnet name or ID of this member.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

tagsű

Available since 13.0.0 (Train)

A list of simple strings assigned to the member. The property is supported with Stein Octavia or newer
version.

List value expected.

Can be updated without replacement.

weightű

Weight of pool member in the pool (default to 1).

Integer value expected.

Can be updated without replacement.

Defaults to 1

The value must be in the range 0 to 256.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::PoolMember
properties:

(continues on next page)

3.3. Working with Templates 545

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

address: String
admin_state_up: Boolean
monitor_address: String
monitor_port: Integer
pool: String
protocol_port: Integer
subnet: String
tags: [Value, Value, ...]
weight: Integer

OS::Octavia::Quota

Available since 14.0.0 (Ussuri)

A resource for creating Octavia quotas.

Ocatavia Quota is used to manage operational limits for Octavia. Currently, this resource can manage
Octavias quotas for:

• healthmonitor

• listener

• loadbalancer

• pool

• member

Note that default octavia security policy usage of this resource is limited to being used by administrators
only. Administrators should be careful to create only one Octavia Quota resource per project, otherwise
it will be hard for them to manage the quota properly.

Required Properties

projectű

Name or id of the project to set the quota for.

String value expected.

Updates cause replacement.

Value must be of type keystone.project

546 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

healthmonitorű

Quota for the number of healthmonitors. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

listenerű

Quota for the number of listeners. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

loadbalancerű

Quota for the number of load balancers. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

memberű

Quota for the number of m. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

poolű

Quota for the number of pools. Setting the value to -1 removes the limit.

Integer value expected.

Can be updated without replacement.

The value must be at least -1.

Attributes

showű Detailed information about resource.

3.3. Working with Templates 547

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Octavia::Quota
properties:

healthmonitor: Integer
listener: Integer
loadbalancer: Integer
member: Integer
pool: Integer
project: String

OS::Sahara::Cluster

A resource for managing Sahara clusters.

The Cluster entity represents a collection of VM instances that all have the same data processing frame-
work installed. It is mainly characterized by a VM image with a pre-installed framework which will be
used for cluster deployment. Users may choose one of the pre-configured Cluster Templates to start a
Cluster. To get access to VMs after a Cluster has started, the user should specify a keypair.

Required Properties

cluster_template_idű

ID of the Cluster Template used for Node Groups and configurations.

String value expected.

Updates cause replacement.

Value must be of type sahara.cluster_template

hadoop_versionű

Version of Hadoop running on instances.

String value expected.

Updates cause replacement.

neutron_management_networkű

Name or UUID of network.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

plugin_nameű

Plugin name.

548 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Value must be of type sahara.plugin

Optional Properties

default_image_idű

Available since 2015.1 (Kilo)

Default name or UUID of the image used to boot Hadoop nodes.

String value expected.

Updates cause replacement.

Value must be of type sahara.image

key_nameű

Keypair added to instances to make them accessible for user.

String value expected.

Updates cause replacement.

Value must be of type nova.keypair

nameű

Hadoop cluster name.

String value expected.

Updates cause replacement.

The length must be in the range 1 to 80.

Value must match pattern: ^(([a-zA-Z]|[a-zA-Z][a-zA-Z0-9-]*[a-zA-Z0-9]).)*([A-Za-z]|[A-Za-z][A-
Za-z0-9-]*[A-Za-z0-9])$

sharesű

Available since 6.0.0 (Mitaka)

List of manila shares to be mounted.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

3.3. Working with Templates 549

Heat Documentation, Release 16.1.1.dev14

access_levelű

Optional.

Governs permissions set in manila for the cluster ips.

String value expected.

Updates cause replacement.

Defaults to "rw"

Allowed values: rw, ro

idű

Required.

Id of the manila share.

String value expected.

Updates cause replacement.

pathű

Optional.

Local path on each cluster node on which to mount the share. Defaults to /mnt/{share_id}.

String value expected.

Updates cause replacement.

use_autoconfigű

Available since 5.0.0 (Liberty)

Configure most important configs automatically.

Boolean value expected.

Updates cause replacement.

Attributes

infoű Cluster information.

showű Detailed information about resource.

statusű Cluster status.

550 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Sahara::Cluster
properties:

cluster_template_id: String
default_image_id: String
hadoop_version: String
key_name: String
name: String
neutron_management_network: String
plugin_name: String
shares: [{"id": String, "path": String, "access_level": String}, {"id

↪→": String, "path": String, "access_level": String}, ...]
use_autoconfig: Boolean

OS::Sahara::ClusterTemplate

Available since 2014.2 (Juno)

A resource for managing Sahara cluster templates.

A Cluster Template is designed to bring Node Group Templates together to form a Cluster. A Cluster
Template defines what Node Groups will be included and how many instances will be created in each.
Some data processing framework configurations can not be applied to a single node, but to a whole
Cluster. A user can specify these kinds of configurations in a Cluster Template. Sahara enables users
to specify which processes should be added to an anti-affinity group within a Cluster Template. If a
process is included into an anti-affinity group, it means that VMs where this process is going to be
launched should be scheduled to different hardware hosts.

Required Properties

hadoop_versionű

Version of Hadoop running on instances.

String value expected.

Can be updated without replacement.

plugin_nameű

Plugin name.

String value expected.

Can be updated without replacement.

Value must be of type sahara.plugin

3.3. Working with Templates 551

Heat Documentation, Release 16.1.1.dev14

Optional Properties

anti_affinityű

List of processes to enable anti-affinity for.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

cluster_configsű

Cluster configs dictionary.

Map value expected.

Can be updated without replacement.

default_image_idű

ID of the default image to use for the template.

String value expected.

Can be updated without replacement.

Value must be of type sahara.image

descriptionű

Description of the Sahara Group Template.

String value expected.

Can be updated without replacement.

Defaults to ""

nameű

Name for the Sahara Cluster Template.

String value expected.

Can be updated without replacement.

The length must be in the range 1 to 50.

Value must match pattern: ^(([a-zA-Z]|[a-zA-Z][a-zA-Z0-9-]*[a-zA-Z0-9]).)*([A-Za-z]|[A-Za-z][A-
Za-z0-9-]*[A-Za-z0-9])$

neutron_management_networkű

Name or UUID of network.

String value expected.

Can be updated without replacement.

552 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Value must be of type neutron.network

node_groupsű

Node groups.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

countű

Required.

Number of instances in the Node group.

Integer value expected.

Can be updated without replacement.

The value must be at least 1.

nameű

Required.

Name of the Node group.

String value expected.

Can be updated without replacement.

node_group_template_idű

Required.

ID of the Node Group Template.

String value expected.

Can be updated without replacement.

sharesű

Available since 6.0.0 (Mitaka)

List of manila shares to be mounted.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

3.3. Working with Templates 553

Heat Documentation, Release 16.1.1.dev14

Map properties:

access_levelű

Optional.

Governs permissions set in manila for the cluster ips.

String value expected.

Can be updated without replacement.

Defaults to "rw"

Allowed values: rw, ro

idű

Required.

Id of the manila share.

String value expected.

Can be updated without replacement.

pathű

Optional.

Local path on each cluster node on which to mount the share. Defaults to /mnt/{share_id}.

String value expected.

Can be updated without replacement.

use_autoconfigű

Available since 5.0.0 (Liberty)

Configure most important configs automatically.

Boolean value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

554 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Sahara::ClusterTemplate
properties:

anti_affinity: [String, String, ...]
cluster_configs: {...}
default_image_id: String
description: String
hadoop_version: String
name: String
neutron_management_network: String
node_groups: [{"name": String, "count": Integer, "node_group_

↪→template_id": String}, {"name": String, "count": Integer, "node_group_
↪→template_id": String}, ...]

plugin_name: String
shares: [{"id": String, "path": String, "access_level": String}, {"id

↪→": String, "path": String, "access_level": String}, ...]
use_autoconfig: Boolean

OS::Sahara::DataSource

Available since 5.0.0 (Liberty)

A resource for creating sahara data source.

A data source stores an URL which designates the location of input or output data and any credentials
needed to access the location.

Required Properties

typeű

Type of the data source.

String value expected.

Can be updated without replacement.

Allowed values: swift, hdfs, maprfs, manila

urlű

URL for the data source.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 555

Heat Documentation, Release 16.1.1.dev14

Optional Properties

credentialsű

Credentials used for swift. Not required if sahara is configured to use proxy users and delegated trusts
for access.

Map value expected.

Can be updated without replacement.

Map properties:

passwordű

Required.

Password for accessing the data source URL.

String value expected.

Can be updated without replacement.

userű

Required.

Username for accessing the data source URL.

String value expected.

Can be updated without replacement.

descriptionű

Description of the data source.

String value expected.

Can be updated without replacement.

Defaults to ""

nameű

Name of the data source.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

556 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Sahara::DataSource
properties:

credentials: {"user": String, "password": String}
description: String
name: String
type: String
url: String

OS::Sahara::ImageRegistry

Available since 6.0.0 (Mitaka)

A resource for registering an image in sahara.

Allows to register an image in the sahara image registry and add tags.

Required Properties

imageű

ID or name of the image to register.

String value expected.

Updates cause replacement.

Value must be of type glance.image

usernameű

Username of privileged user in the image.

String value expected.

Can be updated without replacement.

Optional Properties

descriptionű

Description of the image.

String value expected.

Can be updated without replacement.

Defaults to ""

3.3. Working with Templates 557

Heat Documentation, Release 16.1.1.dev14

tagsű

Tags to add to the image.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Sahara::ImageRegistry
properties:

description: String
image: String
tags: [String, String, ...]
username: String

OS::Sahara::Job

Available since 8.0.0 (Ocata)

A resource for creating Sahara Job.

A job specifies the type of the job and lists all of the individual job binary objects. Can be launched
using resource-signal.

558 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

typeű

Type of the job.

String value expected.

Updates cause replacement.

Value must be of type sahara.job_type

Optional Properties

default_execution_dataű

Default execution data to use when run signal.

Map value expected.

Can be updated without replacement.

Map properties:

argsű

Arguments to add to the job.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

clusterű

Required.

ID or name of the cluster to run the job in.

String value expected.

Can be updated without replacement.

Value must be of type sahara.cluster

configsű

Config parameters to add to the job.

Map value expected.

Can be updated without replacement.

Defaults to {}

3.3. Working with Templates 559

Heat Documentation, Release 16.1.1.dev14

inputű

Optional.

ID or name of the input data source.

String value expected.

Can be updated without replacement.

Value must be of type sahara.data_source

interfaceű

Interface arguments to add to the job.

Map value expected.

Can be updated without replacement.

Defaults to {}

is_publicű

Optional.

If True, execution will be shared across the tenants.

Boolean value expected.

Can be updated without replacement.

Defaults to false

outputű

Optional.

ID or name of the output data source.

String value expected.

Can be updated without replacement.

Value must be of type sahara.data_source

paramsű

Parameters to add to the job.

Map value expected.

Can be updated without replacement.

Defaults to {}

descriptionű

Description of the job.

String value expected.

Can be updated without replacement.

is_protectedű

If True, job will be protected from modifications and can not be deleted until this property is set to
False.

560 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Boolean value expected.

Can be updated without replacement.

Defaults to false

is_publicű

If True, job will be shared across the tenants.

Boolean value expected.

Can be updated without replacement.

Defaults to false

libsű

IDs or names of jobs lib job binaries.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Optional.

String value expected.

Updates cause replacement.

Value must be of type sahara.job_binary

mainsű

IDs or names of jobs main job binary. In case of specific Sahara service, this property designed as a
list, but accepts only one item.

List value expected.

Updates cause replacement.

Defaults to []

The length must be no greater than 1.

List contents:

Optional.

ID of jobs main job binary.

String value expected.

Updates cause replacement.

Value must be of type sahara.job_binary

nameű

Name of the job.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 561

Heat Documentation, Release 16.1.1.dev14

The length must be in the range 1 to 50.

Value must match pattern: ^[a-zA-Z0-9][a-zA-Z0-9-_.]*$

Attributes

default_execution_urlű A signed url to create execution specified in default_execution_data property.

executionsű List of the job executions.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Sahara::Job
properties:

default_execution_data: {"cluster": String, "input": String, "output
↪→": String, "configs": {...}, "params": {...}, "args": [String, String, ..
↪→.], "is_public": Boolean, "interface": {...}}

description: String
is_protected: Boolean
is_public: Boolean
libs: [String, String, ...]
mains: [String, String, ...]
name: String
type: String

OS::Sahara::JobBinary

Available since 5.0.0 (Liberty)

A resource for creating sahara job binary.

A job binary stores an URL to a single script or Jar file and any credentials needed to retrieve the file.

Required Properties

urlű

URL for the job binary. Must be in the format swift://<container>/<path> or internal-db://<uuid>.

String value expected.

Can be updated without replacement.

562 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

credentialsű

Credentials used for swift. Not required if sahara is configured to use proxy users and delegated trusts
for access.

Map value expected.

Can be updated without replacement.

Map properties:

passwordű

Required.

Password for accessing the job binary URL.

String value expected.

Can be updated without replacement.

userű

Required.

Username for accessing the job binary URL.

String value expected.

Can be updated without replacement.

descriptionű

Description of the job binary.

String value expected.

Can be updated without replacement.

Defaults to ""

nameű

Name of the job binary.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

3.3. Working with Templates 563

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Sahara::JobBinary
properties:

credentials: {"user": String, "password": String}
description: String
name: String
url: String

OS::Sahara::NodeGroupTemplate

Available since 2014.2 (Juno)

A resource for managing Sahara node group templates.

A Node Group Template describes a group of nodes within cluster. It contains a list of hadoop processes
that will be launched on each instance in a group. Also a Node Group Template may provide node
scoped configurations for those processes.

Required Properties

flavorű

Name or ID Nova flavor for the nodes.

String value expected.

Can be updated without replacement.

Value must be of type nova.flavor

hadoop_versionű

Version of Hadoop running on instances.

String value expected.

Can be updated without replacement.

node_processesű

List of processes to run on every node.

List value expected.

Can be updated without replacement.

The length must be at least 1.

List contents:

564 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional.

String value expected.

Can be updated without replacement.

plugin_nameű

Plugin name.

String value expected.

Can be updated without replacement.

Value must be of type sahara.plugin

Optional Properties

auto_security_groupű

Defines whether auto-assign security group to this Node Group template.

Boolean value expected.

Can be updated without replacement.

availability_zoneű

Availability zone to create servers in.

String value expected.

Can be updated without replacement.

descriptionű

Description of the Node Group Template.

String value expected.

Can be updated without replacement.

Defaults to ""

floating_ip_poolű

Name or UUID of the Neutron floating IP network or name of the Nova floating ip pool to use. Should
not be provided when used with Nova-network that auto-assign floating IPs.

String value expected.

Can be updated without replacement.

image_idű

ID of the image to use for the template.

String value expected.

Can be updated without replacement.

Value must be of type sahara.image

is_proxy_gatewayű

3.3. Working with Templates 565

Heat Documentation, Release 16.1.1.dev14

Available since 5.0.0 (Liberty)

Provide access to nodes using other nodes of the cluster as proxy gateways.

Boolean value expected.

Can be updated without replacement.

nameű

Name for the Sahara Node Group Template.

String value expected.

Can be updated without replacement.

The length must be in the range 1 to 50.

Value must match pattern: ^(([a-zA-Z]|[a-zA-Z][a-zA-Z0-9-]*[a-zA-Z0-9]).)*([A-Za-z]|[A-Za-z][A-
Za-z0-9-]*[A-Za-z0-9])$

node_configsű

Dictionary of node configurations.

Map value expected.

Can be updated without replacement.

security_groupsű

List of security group names or IDs to assign to this Node Group template.

List value expected.

Can be updated without replacement.

List contents:

Optional.

String value expected.

Can be updated without replacement.

sharesű

Available since 6.0.0 (Mitaka)

List of manila shares to be mounted.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

566 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

access_levelű

Optional.

Governs permissions set in manila for the cluster ips.

String value expected.

Can be updated without replacement.

Defaults to "rw"

Allowed values: rw, ro

idű

Required.

Id of the manila share.

String value expected.

Can be updated without replacement.

pathű

Optional.

Local path on each cluster node on which to mount the share. Defaults to /mnt/{share_id}.

String value expected.

Can be updated without replacement.

use_autoconfigű

Available since 5.0.0 (Liberty)

Configure most important configs automatically.

Boolean value expected.

Can be updated without replacement.

volume_local_to_instanceű

Available since 5.0.0 (Liberty)

Create volumes on the same physical port as an instance.

Boolean value expected.

Can be updated without replacement.

volume_typeű

Type of the volume to create on Cinder backend.

String value expected.

Can be updated without replacement.

Value must be of type cinder.vtype

3.3. Working with Templates 567

Heat Documentation, Release 16.1.1.dev14

volumes_availability_zoneű

Availability zone to create volumes in.

String value expected.

Can be updated without replacement.

volumes_per_nodeű

Volumes per node.

Integer value expected.

Can be updated without replacement.

Defaults to 0

The value must be at least 0.

volumes_sizeű

Size of the volumes, in GB.

Integer value expected.

Can be updated without replacement.

The value must be at least 1.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Sahara::NodeGroupTemplate
properties:

auto_security_group: Boolean
availability_zone: String
description: String
flavor: String
floating_ip_pool: String
hadoop_version: String
image_id: String
is_proxy_gateway: Boolean
name: String
node_configs: {...}
node_processes: [String, String, ...]
plugin_name: String
security_groups: [String, String, ...]
shares: [{"id": String, "path": String, "access_level": String}, {"id

↪→": String, "path": String, "access_level": String}, ...]

(continues on next page)

568 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

use_autoconfig: Boolean
volume_local_to_instance: Boolean
volume_type: String
volumes_availability_zone: String
volumes_per_node: Integer
volumes_size: Integer

OS::Senlin::Cluster

Available since 6.0.0 (Mitaka)

A resource that creates a Senlin Cluster.

Cluster resource in senlin can create and manage objects of the same nature, e.g. Nova servers, Heat
stacks, Cinder volumes, etc. The collection of these objects is referred to as a cluster.

Required Properties

profileű

The name or id of the Senlin profile.

String value expected.

Can be updated without replacement.

Value must be of type senlin.profile

Optional Properties

desired_capacityű

Desired initial number of resources in cluster.

Integer value expected.

Can be updated without replacement.

Defaults to 0

max_sizeű

Maximum number of resources in the cluster. -1 means unlimited.

Integer value expected.

Can be updated without replacement.

Defaults to -1

The value must be at least -1.

metadataű

Metadata key-values defined for cluster.

3.3. Working with Templates 569

Heat Documentation, Release 16.1.1.dev14

Map value expected.

Can be updated without replacement.

Defaults to {}

min_sizeű

Minimum number of resources in the cluster.

Integer value expected.

Can be updated without replacement.

Defaults to 0

The value must be at least 0.

nameű

Name of the cluster. By default, physical resource name is used.

String value expected.

Can be updated without replacement.

policiesű

Available since 8.0.0 (Ocata)

A list of policies to attach to this cluster.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

enabledű

Optional.

Whether enable this policy on this cluster.

Boolean value expected.

Can be updated without replacement.

Defaults to true

policyű

Required.

The name or ID of the policy.

String value expected.

570 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Value must be of type senlin.policy

timeoutű

The number of seconds to wait for the cluster actions.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

Attributes

collectű

Available since 8.0.0 (Ocata)

Attributes collected from cluster. According to the jsonpath following this attribute, it will return
a list of attributes collected from the nodes of this cluster.

desired_capacityű Desired capacity of the cluster.

max_sizeű Max size of the cluster.

metadataű Cluster metadata.

min_sizeű Min size of the cluster.

nameű Cluster name.

nodesű Nodes list in the cluster.

policiesű

Available since 8.0.0 (Ocata)

Policies attached to the cluster.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Senlin::Cluster
properties:

desired_capacity: Integer
max_size: Integer
metadata: {...}

(continues on next page)

3.3. Working with Templates 571

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

min_size: Integer
name: String
policies: [{"policy": String, "enabled": Boolean}, {"policy": String,

↪→ "enabled": Boolean}, ...]
profile: String
timeout: Integer

OS::Senlin::Node

Available since 6.0.0 (Mitaka)

A resource that creates a Senlin Node.

Node is an object that belongs to at most one Cluster, it can be created based on a profile.

Required Properties

profileű

Name or ID of senlin profile to create this node.

String value expected.

Can be updated without replacement.

Value must be of type senlin.profile

Optional Properties

clusterű

Available since 8.0.0 (Ocata)

The name of senlin cluster to attach to.

String value expected.

Can be updated without replacement.

Value must be of type senlin.cluster

metadataű

Metadata key-values defined for node.

Map value expected.

Can be updated without replacement.

nameű

Name of the senlin node. By default, physical resource name is used.

572 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

Attributes

cluster_idű The cluster ID this node belongs to.

detailsű The details of physical object.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Senlin::Node
properties:

cluster: String
metadata: {...}
name: String
profile: String

OS::Senlin::Policy

Available since 6.0.0 (Mitaka)

A resource that creates a Senlin Policy.

A policy is a set of rules that can be checked and/or enforced when an action is performed on a Cluster.

Required Properties

typeű

The type of senlin policy.

String value expected.

Updates cause replacement.

Value must be of type senlin.policy_type

3.3. Working with Templates 573

Heat Documentation, Release 16.1.1.dev14

Optional Properties

bindingsű

A list of clusters to which this policy is attached.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

clusterű

Required.

The name or ID of target cluster.

String value expected.

Can be updated without replacement.

Value must be of type senlin.cluster

enabledű

Optional.

Whether enable this policy on that cluster.

Boolean value expected.

Can be updated without replacement.

Defaults to true

nameű

Name of the senlin policy. By default, physical resource name is used.

String value expected.

Can be updated without replacement.

propertiesű

Properties of this policy.

Map value expected.

Updates cause replacement.

574 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Senlin::Policy
properties:

bindings: [{"cluster": String, "enabled": Boolean}, {"cluster":
↪→String, "enabled": Boolean}, ...]

name: String
properties: {...}
type: String

OS::Senlin::Profile

Available since 6.0.0 (Mitaka)

A resource that creates a Senlin Profile.

Profile resource in senlin is a template describing how to create nodes in cluster.

Required Properties

typeű

The type of profile.

String value expected.

Updates cause replacement.

Value must be of type senlin.profile_type

Optional Properties

metadataű

Metadata key-values defined for profile.

Map value expected.

Can be updated without replacement.

nameű

Name of the senlin profile. By default, physical resource name is used.

3.3. Working with Templates 575

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

propertiesű

Properties for profile.

Map value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Senlin::Profile
properties:

metadata: {...}
name: String
properties: {...}
type: String

OS::Senlin::Receiver

Available since 6.0.0 (Mitaka)

A resource that creates Senlin Receiver.

Receiver is an abstract resource created at the senlin engine that can be used to hook the engine to some
external event/alarm sources.

Required Properties

actionű

The action to be executed when the receiver is signaled.

String value expected.

Updates cause replacement.

Allowed values: CLUSTER_SCALE_OUT, CLUSTER_SCALE_IN

clusterű

576 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Name or ID of target cluster.

String value expected.

Updates cause replacement.

Value must be of type senlin.cluster

Optional Properties

nameű

Name of the senlin receiver. By default, physical resource name is used.

String value expected.

Updates cause replacement.

paramsű

The parameters passed to action when the receiver is signaled.

Map value expected.

Updates cause replacement.

typeű

Type of receiver.

String value expected.

Updates cause replacement.

Defaults to "webhook"

Allowed values: webhook

Attributes

channelű The channel for receiving signals.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Senlin::Receiver
properties:

action: String
cluster: String
name: String
params: {...}
type: String

3.3. Working with Templates 577

Heat Documentation, Release 16.1.1.dev14

OS::Swift::Container

A resource for managing Swift containers.

A container defines a namespace for objects. An object with the same name in two different containers
represents two different objects.

Optional Properties

PurgeOnDeleteű

Available since 2015.1 (Kilo)

If True, delete any objects in the container when the container is deleted. Otherwise, deleting a non-
empty container will result in an error.

Boolean value expected.

Updates cause replacement.

Defaults to false

X-Account-Metaű

A map of user-defined meta data to associate with the account. Each key in the map will set the header
X-Account-Meta-{key} with the corresponding value.

Map value expected.

Updates cause replacement.

Defaults to {}

X-Container-Metaű

A map of user-defined meta data to associate with the container. Each key in the map will set the header
X-Container-Meta-{key} with the corresponding value.

Map value expected.

Updates cause replacement.

Defaults to {}

X-Container-Readű

Specify the ACL permissions on who can read objects in the container.

String value expected.

Updates cause replacement.

X-Container-Writeű

Specify the ACL permissions on who can write objects to the container.

String value expected.

Updates cause replacement.

nameű

578 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Name for the container. If not specified, a unique name will be generated.

String value expected.

Updates cause replacement.

Attributes

BytesUsedű The number of bytes stored in the container.

DomainNameű The host from the container URL.

HeadContainerű A map containing all headers for the container.

ObjectCountű The number of objects stored in the container.

RootURLű The parent URL of the container.

WebsiteURLű The URL of the container.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Swift::Container
properties:

PurgeOnDelete: Boolean
X-Account-Meta: {...}
X-Container-Meta: {...}
X-Container-Read: String
X-Container-Write: String
name: String

OS::Trove::Cluster

Available since 2015.1 (Kilo)

A resource for managing Trove clusters.

A Cluster is an opaque cluster used to store Database clusters.

3.3. Working with Templates 579

Heat Documentation, Release 16.1.1.dev14

Required Properties

datastore_typeű

Name of registered datastore type.

String value expected.

Updates cause replacement.

The length must be no greater than 255.

datastore_versionű

Name of the registered datastore version. It must exist for provided datastore type. Defaults to using
single active version. If several active versions exist for provided datastore type, explicit value for
this parameter must be specified.

String value expected.

Updates cause replacement.

The length must be no greater than 255.

instancesű

List of database instances.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

availability_zoneű

Available since 14.0.0 (Ussuri)

Optional.

Name of the availability zone for DB instance.

String value expected.

Updates cause replacement.

flavorű

Required.

Flavor of the instance.

String value expected.

Updates cause replacement.

Value must be of type trove.flavor

580 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

networksű

Available since 10.0.0 (Queens)

List of network interfaces to create on instance.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

fixed_ipű

Optional.

Fixed IPv4 address for this NIC.

String value expected.

Updates cause replacement.

Value must be of type ip_addr

networkű

Optional.

Name or UUID of the network to attach this NIC to. Either port or network must
be specified.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

portű

Optional.

Name or UUID of Neutron port to attach this NIC to. Either port or network must
be specified.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

volume_sizeű

Required.

Size of the instance disk volume in GB.

Integer value expected.

3.3. Working with Templates 581

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

The value must be in the range 1 to 150.

Optional Properties

nameű

Name of the cluster to create.

String value expected.

Updates cause replacement.

The length must be no greater than 255.

Attributes

instancesű A list of instances ids.

ipű A list of cluster instance IPs.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Trove::Cluster
properties:

datastore_type: String
datastore_version: String
instances: [{"flavor": String, "volume_size": Integer, "networks": [{

↪→"network": String, "port": String, "fixed_ip": String}, {"network":
↪→String, "port": String, "fixed_ip": String}, ...], "availability_zone":
↪→String}, {"flavor": String, "volume_size": Integer, "networks": [{
↪→"network": String, "port": String, "fixed_ip": String}, {"network":
↪→String, "port": String, "fixed_ip": String}, ...], "availability_zone":
↪→String}, ...]

name: String

582 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Trove::Instance

Available since 2014.1 (Icehouse)

OpenStack cloud database instance resource.

Trove is Database as a Service for OpenStack. Its designed to run entirely on OpenStack, with the
goal of allowing users to quickly and easily utilize the features of a relational or non-relational database
without the burden of handling complex administrative tasks.

Required Properties

flavorű

Reference to a flavor for creating DB instance.

String value expected.

Can be updated without replacement.

Value must be of type trove.flavor

sizeű

Database volume size in GB.

Integer value expected.

Can be updated without replacement.

The value must be in the range 1 to 150.

Optional Properties

availability_zoneű

Name of the availability zone for DB instance.

String value expected.

Updates cause replacement.

databasesű

List of databases to be created on DB instance creation.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

3.3. Working with Templates 583

Heat Documentation, Release 16.1.1.dev14

character_setű

Optional.

Set of symbols and encodings.

String value expected.

Can be updated without replacement.

Defaults to "utf8"

collateű

Optional.

Set of rules for comparing characters in a character set.

String value expected.

Can be updated without replacement.

Defaults to "utf8_general_ci"

nameű

Required.

Specifies database names for creating databases on instance creation.

String value expected.

Can be updated without replacement.

The length must be no greater than 64.

Value must match pattern: [a-zA-Z0-9_-]+[a-zA-Z0-9_@?#\s-]*[a-zA-Z0-9_-]+

datastore_typeű

Name of registered datastore type.

String value expected.

Updates cause replacement.

The length must be no greater than 255.

datastore_versionű

Name of the registered datastore version. It must exist for provided datastore type. Defaults to using
single active version. If several active versions exist for provided datastore type, explicit value for
this parameter must be specified.

String value expected.

Updates cause replacement.

The length must be no greater than 255.

nameű

Name of the DB instance to create.

String value expected.

Can be updated without replacement.

584 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The length must be no greater than 255.

networksű

List of network interfaces to create on instance.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

fixed_ipű

Optional.

Fixed IPv4 address for this NIC.

String value expected.

Updates cause replacement.

Value must be of type ip_addr

networkű

Optional.

Name or UUID of the network to attach this NIC to. Either port or network must be
specified.

String value expected.

Updates cause replacement.

Value must be of type neutron.network

portű

Optional.

Name or UUID of Neutron port to attach this NIC to. Either port or network must be
specified.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

replica_countű

Available since 5.0.0 (Liberty)

The number of replicas to be created.

Integer value expected.

3.3. Working with Templates 585

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

replica_ofű

Available since 5.0.0 (Liberty)

Identifier of the source instance to replicate.

String value expected.

Updates cause replacement.

restore_pointű

DB instance restore point.

String value expected.

Updates cause replacement.

usersű

List of users to be created on DB instance creation.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

databasesű

Names of databases that those users can access on instance creation.

List value expected.

Can be updated without replacement.

The length must be at least 1.

List contents:

Optional.

String value expected.

Can be updated without replacement.

hostű

Optional.

The host from which a user is allowed to connect to the database.

String value expected.

Can be updated without replacement.

586 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Defaults to "%"

nameű

Required.

User name to create a user on instance creation.

String value expected.

Can be updated without replacement.

The length must be no greater than 16.

Value must match pattern: [a-zA-Z0-9_]+[a-zA-Z0-9_@?#\s]*[a-zA-Z0-9_]+

passwordű

Required.

Password for those users on instance creation.

String value expected.

Can be updated without replacement.

Value must match pattern: [a-zA-Z0-9_]+[a-zA-Z0-9_@?#\s]*[a-zA-Z0-9_]+

Attributes

hostnameű Hostname of the instance.

hrefű Api endpoint reference of the instance.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Trove::Instance
properties:

availability_zone: String
databases: [{"character_set": String, "collate": String, "name":

↪→String}, {"character_set": String, "collate": String, "name": String}, ..
↪→.]

datastore_type: String
datastore_version: String
flavor: String
name: String
networks: [{"network": String, "port": String, "fixed_ip": String}, {

↪→"network": String, "port": String, "fixed_ip": String}, ...]
replica_count: Integer
replica_of: String
restore_point: String

(continues on next page)

3.3. Working with Templates 587

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

size: Integer
users: [{"name": String, "password": String, "host": String,

↪→"databases": [String, String, ...]}, {"name": String, "password": String,
↪→ "host": String, "databases": [String, String, ...]}, ...]

OS::Vitrage::Template

Available since 16.0.0

A resource for managing Vitrage templates.

A Vitrage template defines conditions and actions, based on the Vitrage topology graph. For example, if
there is an instance down alarm on an instance, then execute a Mistral healing workflow.

The VitrageTemplate resource generates and adds to Vitrage a template based on the input parameters.

Required Properties

template_fileű

Path of the Vitrage template to use.

String value expected.

Updates cause replacement.

template_paramsű

Input parameters for the Vitrage template.

Map value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Vitrage::Template
properties:

template_file: String
template_params: {...}

588 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Zaqar::MistralTrigger

Available since 8.0.0 (Ocata)

A Zaqar subscription for triggering Mistral workflows.

This Zaqar subscription type listens for messages in a queue and triggers a Mistral workflow execution
each time one is received.

The content of the Zaqar message is passed to the workflow in the environment with the name notifica-
tion, and thus is accessible from within the workflow as:

<% env().notification %>

Other environment variables can be set using the env key in the params property.

Required Properties

queue_nameű

Name of the queue to subscribe to.

String value expected.

Updates cause replacement.

Value must be of type zaqar.queue

workflow_idű

UUID of the Mistral workflow to trigger.

String value expected.

Can be updated without replacement.

Value must be of type mistral.workflow

Optional Properties

inputű

Input values to pass to the Mistral workflow.

Map value expected.

Can be updated without replacement.

Defaults to {}

paramsű

Parameters to pass to the Mistral workflow execution. The parameters depend on the workflow type.

Map value expected.

Can be updated without replacement.

Defaults to {}

3.3. Working with Templates 589

Heat Documentation, Release 16.1.1.dev14

ttlű

Time to live of the subscription in seconds.

Integer value expected.

Can be updated without replacement.

Defaults to 220367260800

The value must be at least 60.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Zaqar::MistralTrigger
properties:

input: {...}
params: {...}
queue_name: String
ttl: Integer
workflow_id: String

OS::Zaqar::Queue

Available since 2014.2 (Juno)

A resource for managing Zaqar queues.

Queue is a logical entity that groups messages. Ideally a queue is created per work type. For example, if
you want to compress files, you would create a queue dedicated for this job. Any application that reads
from this queue would only compress files.

Optional Properties

metadataű

Arbitrary key/value metadata to store contextual information about this queue.

Map value expected.

Can be updated without replacement.

nameű

590 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Name of the queue instance to create.

String value expected.

Updates cause replacement.

The length must be no greater than 64.

Attributes

hrefű The resource href of the queue.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Zaqar::Queue
properties:

metadata: {...}
name: String

OS::Zaqar::SignedQueueURL

Available since 8.0.0 (Ocata)

A resource for managing signed URLs of Zaqar queues.

Signed URLs allow to give specific access to queues, for example to be used as alarm notifications. To
supply a signed queue URL to Aodh as an action URL, pass zaqar://? followed by the query_str attribute
of the signed queue URL resource.

Required Properties

queueű

Name of the queue instance to create a URL for.

String value expected.

Updates cause replacement.

3.3. Working with Templates 591

Heat Documentation, Release 16.1.1.dev14

Optional Properties

methodsű

List of allowed HTTP methods to be used. Default to allow GET.

List value expected.

Updates cause replacement.

List contents:

Optional.

String value expected.

Updates cause replacement.

Allowed values: GET, DELETE, PATCH, POST, PUT

pathsű

List of allowed paths to be accessed. Default to allow queue messages URL.

List value expected.

Updates cause replacement.

ttlű

Time validity of the URL, in seconds. Default to one day.

Integer value expected.

Updates cause replacement.

Attributes

expiresű Expiration date of the URL.

methodsű Comma-delimited list of methods for convenience.

pathsű Comma-delimited list of paths for convenience.

projectű The ID of the Keystone project containing the queue.

query_strű An HTTP URI query fragment.

showű Detailed information about resource.

signatureű Signature of the URL built by Zaqar.

592 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Zaqar::SignedQueueURL
properties:

methods: [String, String, ...]
paths: [Value, Value, ...]
queue: String
ttl: Integer

OS::Zaqar::Subscription

Available since 8.0.0 (Ocata)

A resource for managing Zaqar subscriptions.

A Zaqar subscription listens for messages in a queue and sends a notification over email or webhook.

Required Properties

queue_nameű

Name of the queue to subscribe to.

String value expected.

Updates cause replacement.

Value must be of type zaqar.queue

subscriberű

URI of the subscriber which will be notified. Must be in the format: <TYPE>:<VALUE>.

String value expected.

Can be updated without replacement.

Optional Properties

optionsű

Options used to configure this subscription.

Map value expected.

Can be updated without replacement.

ttlű

3.3. Working with Templates 593

Heat Documentation, Release 16.1.1.dev14

Time to live of the subscription in seconds.

Integer value expected.

Can be updated without replacement.

Defaults to 220367260800

The value must be at least 60.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Zaqar::Subscription
properties:

options: {...}
queue_name: String
subscriber: String
ttl: Integer

OS::Zun::Container

Available since 9.0.0 (Pike)

A resource that creates a Zun Container.

This resource creates a Zun container.

Required Properties

imageű

Name or ID of the image.

String value expected.

Updates cause replacement.

594 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

commandű

Send command to the container.

String value expected.

Updates cause replacement.

cpuű

The number of virtual cpus.

Number value expected.

Can be updated without replacement.

environmentű

The environment variables.

Map value expected.

Updates cause replacement.

hintsű

Available since 10.0.0 (Queens)

Arbitrary key-value pairs for scheduler to select host.

Map value expected.

Updates cause replacement.

hostnameű

Available since 10.0.0 (Queens)

The hostname of the container.

String value expected.

Updates cause replacement.

image_driverű

The image driver to use to pull container image.

String value expected.

Updates cause replacement.

Allowed values: docker, glance

image_pull_policyű

The policy which determines if the image should be pulled prior to starting the container.

String value expected.

3.3. Working with Templates 595

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

Allowed values: ifnotpresent, always, never

interactiveű

Keep STDIN open even if not attached.

Boolean value expected.

Updates cause replacement.

labelsű

Adds a map of labels to a container. May be used multiple times.

Map value expected.

Updates cause replacement.

memoryű

The container memory size in MiB.

Integer value expected.

Can be updated without replacement.

mountsű

A list of volumes mounted inside the container.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

mount_pathű

Required.

The filesystem path inside the container.

String value expected.

Updates cause replacement.

volume_idű

Optional.

The ID or name of the cinder volume mount to the container.

String value expected.

Updates cause replacement.

Value must be of type cinder.volume

volume_sizeű

596 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional.

The size of the cinder volume to create.

Integer value expected.

Updates cause replacement.

nameű

Name of the container.

String value expected.

Can be updated without replacement.

networksű

Available since 11.0.0 (Rocky)

An ordered list of nics to be added to this server, with information about connected networks, fixed ips,
port etc.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

fixed_ipű

Optional.

Fixed IP address to specify for the port created on the requested network.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

networkű

Optional.

Name or ID of network to create a port on.

String value expected.

Can be updated without replacement.

Value must be of type neutron.network

portű

Optional.

ID of an existing port to associate with this container.

3.3. Working with Templates 597

Heat Documentation, Release 16.1.1.dev14

String value expected.

Can be updated without replacement.

Value must be of type neutron.port

restart_policyű

Restart policy to apply when a container exits. Possible values are no, on-failure[:max-retry], always,
and unless-stopped.

String value expected.

Updates cause replacement.

security_groupsű

Available since 10.0.0 (Queens)

List of security group names or IDs.

List value expected.

Updates cause replacement.

Defaults to []

ttyű

Available since 14.0.0 (Ussuri)

Whether the container allocates a TTY for itself.

Boolean value expected.

Updates cause replacement.

workdirű

The working directory for commands to run in.

String value expected.

Updates cause replacement.

Attributes

addressesű A dict of all network addresses with corresponding port_id. Each network will have two
keys in dict, they are network name and network id. The port ID may be obtained through the
following expression: {get_attr: [<container>, addresses, <network name_or_id>, 0, port]}.

nameű Name of the container.

showű Detailed information about resource.

598 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Zun::Container
properties:

command: String
cpu: Number
environment: {...}
hints: {...}
hostname: String
image: String
image_driver: String
image_pull_policy: String
interactive: Boolean
labels: {...}
memory: Integer
mounts: [{"volume_id": String, "volume_size": Integer, "mount_path":

↪→String}, {"volume_id": String, "volume_size": Integer, "mount_path":
↪→String}, ...]

name: String
networks: [{"network": String, "fixed_ip": String, "port": String}, {

↪→"network": String, "fixed_ip": String, "port": String}, ...]
restart_policy: String
security_groups: [Value, Value, ...]
tty: Boolean
workdir: String

CloudFormation Compatible Resource Types

AWS::AutoScaling::AutoScalingGroup

Available since 2014.1 (Icehouse)

Utility class to encapsulate Cooldown related logic.

This logic includes both cooldown timestamp comparing and scaling in progress checking.

Required Properties

AvailabilityZonesű

Not Implemented.

List value expected.

Updates cause replacement.

MaxSizeű

3.3. Working with Templates 599

Heat Documentation, Release 16.1.1.dev14

Maximum number of instances in the group.

Integer value expected.

Can be updated without replacement.

MinSizeű

Minimum number of instances in the group.

Integer value expected.

Can be updated without replacement.

Optional Properties

Cooldownű

Cooldown period, in seconds.

Integer value expected.

Can be updated without replacement.

DesiredCapacityű

Desired initial number of instances.

Integer value expected.

Can be updated without replacement.

HealthCheckGracePeriodű

Note:

Not implemented.

HealthCheckTypeű

Note:

Not implemented.

InstanceIdű

The ID of an existing instance to use to create the Auto Scaling group. If specify this property, will
create the group use an existing instance instead of a launch configuration.

String value expected.

Updates cause replacement.

Value must be of type nova.server

LaunchConfigurationNameű

The reference to a LaunchConfiguration resource.

String value expected.

600 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

LoadBalancerNamesű

List of LoadBalancer resources.

List value expected.

Updates cause replacement.

Tagsű

Tags to attach to this group.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

Keyű

Required.

String value expected.

Updates cause replacement.

Valueű

Required.

String value expected.

Updates cause replacement.

VPCZoneIdentifierű

Use only with Neutron, to list the internal subnet to which the instance will be attached; needed only if
multiple exist; list length must be exactly 1.

List value expected.

Updates cause replacement.

List contents:

Optional.

UUID of the internal subnet to which the instance will be attached.

String value expected.

Updates cause replacement.

3.3. Working with Templates 601

Heat Documentation, Release 16.1.1.dev14

Attributes

InstanceListű A comma-delimited list of server ip addresses. (Heat extension).

showű Detailed information about resource.

update_policy

AutoScalingRollingUpdateű

Map value expected.

Updates cause replacement.

Map properties:

MaxBatchSizeű

Optional.

Integer value expected.

Updates cause replacement.

Defaults to 1

MinInstancesInServiceű

Optional.

Integer value expected.

Updates cause replacement.

Defaults to 0

PauseTimeű

Optional.

String value expected.

Updates cause replacement.

Defaults to "PT0S"

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::AutoScaling::AutoScalingGroup
properties:

AvailabilityZones: [Value, Value, ...]
Cooldown: Integer
DesiredCapacity: Integer
InstanceId: String

(continues on next page)

602 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

LaunchConfigurationName: String
LoadBalancerNames: [Value, Value, ...]
MaxSize: Integer
MinSize: Integer
Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":

↪→String}, ...]
VPCZoneIdentifier: [String, String, ...]

AWS::AutoScaling::LaunchConfiguration

Optional Properties

BlockDeviceMappingsű

Block device mappings to attach to instance.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

DeviceNameű

Required.

A device name where the volume will be attached in the system at /dev/device_name.e.g.
vdb

String value expected.

Updates cause replacement.

Ebsű

The ebs volume to attach to the instance.

Map value expected.

Updates cause replacement.

Map properties:

DeleteOnTerminationű

Optional.

Indicate whether the volume should be deleted when the instance is terminated.

Boolean value expected.

Updates cause replacement.

Defaults to true

3.3. Working with Templates 603

Heat Documentation, Release 16.1.1.dev14

Iopsű

Not implemented.

SnapshotIdű

Optional.

The ID of the snapshot to create a volume from.

String value expected.

Updates cause replacement.

Value must be of type cinder.snapshot

VolumeSizeű

Optional.

The size of the volume, in GB. Must be equal or greater than the size of the snapshot.
It is safe to leave this blank and have the Compute service infer the size.

String value expected.

Updates cause replacement.

VolumeTypeű

Not implemented.

NoDeviceű

Not implemented.

VirtualNameű

Not implemented.

ImageIdű

Glance image ID or name.

String value expected.

Updates cause replacement.

Value must be of type glance.image

InstanceIdű

The ID of an existing instance you want to use to create the launch configuration. All properties are
derived from the instance with the exception of BlockDeviceMapping.

String value expected.

Updates cause replacement.

Value must be of type nova.server

InstanceTypeű

Nova instance type (flavor).

String value expected.

Updates cause replacement.

604 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Value must be of type nova.flavor

KernelIdű

Note:

Not implemented.

KeyNameű

Optional Nova keypair name.

String value expected.

Updates cause replacement.

Value must be of type nova.keypair

NovaSchedulerHintsű

Scheduler hints to pass to Nova (Heat extension).

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

Keyű

Required.

String value expected.

Updates cause replacement.

Valueű

Required.

String value expected.

Updates cause replacement.

RamDiskIdű

Note:

Not implemented.

SecurityGroupsű

Security group names to assign.

List value expected.

Updates cause replacement.

3.3. Working with Templates 605

Heat Documentation, Release 16.1.1.dev14

UserDataű

User data to pass to instance.

String value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::AutoScaling::LaunchConfiguration
properties:

BlockDeviceMappings: [{"DeviceName": String, "Ebs": {
↪→"DeleteOnTermination": Boolean, "SnapshotId": String, "VolumeSize":
↪→String}}, {"DeviceName": String, "Ebs": {"DeleteOnTermination": Boolean,
↪→"SnapshotId": String, "VolumeSize": String}}, ...]

ImageId: String
InstanceId: String
InstanceType: String
KeyName: String
NovaSchedulerHints: [{"Key": String, "Value": String}, {"Key":

↪→String, "Value": String}, ...]
SecurityGroups: [Value, Value, ...]
UserData: String

AWS::AutoScaling::ScalingPolicy

A resource to manage scaling of OS::Heat::AutoScalingGroup.

Note while it may incidentally support AWS::AutoScaling::AutoScalingGroup for now, please dont use
it for that purpose and use AWS::AutoScaling::ScalingPolicy instead.

Resource to manage scaling for OS::Heat::AutoScalingGroup, i.e. define which metric should be scaled
and scaling adjustment, set cooldown etc.

606 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Required Properties

AdjustmentTypeű

Type of adjustment (absolute or percentage).

String value expected.

Can be updated without replacement.

Allowed values: ChangeInCapacity, ExactCapacity, PercentChangeInCapacity

AutoScalingGroupNameű

AutoScaling group name to apply policy to.

String value expected.

Updates cause replacement.

ScalingAdjustmentű

Size of adjustment.

Integer value expected.

Can be updated without replacement.

Optional Properties

Cooldownű

Cooldown period, in seconds.

Integer value expected.

Can be updated without replacement.

MinAdjustmentStepű

Minimum number of resources that are added or removed when the AutoScaling group scales up or
down. This can be used only when specifying PercentChangeInCapacity for the AdjustmentType
property.

Integer value expected.

Can be updated without replacement.

The value must be at least 0.

Attributes

AlarmUrlű A signed url to handle the alarm. (Heat extension).

showű Detailed information about resource.

3.3. Working with Templates 607

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::AutoScaling::ScalingPolicy
properties:

AdjustmentType: String
AutoScalingGroupName: String
Cooldown: Integer
MinAdjustmentStep: Integer
ScalingAdjustment: Integer

AWS::CloudFormation::Stack

Represents a child stack to allow composition of templates.

Required Properties

TemplateURLű

The URL of a template that specifies the stack to be created as a resource.

String value expected.

Can be updated without replacement.

Optional Properties

Parametersű

The set of parameters passed to this nested stack.

Map value expected.

Can be updated without replacement.

TimeoutInMinutesű

The length of time, in minutes, to wait for the nested stack creation.

Integer value expected.

Can be updated without replacement.

608 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::CloudFormation::Stack
properties:

Parameters: {...}
TemplateURL: String
TimeoutInMinutes: Integer

AWS::CloudFormation::WaitCondition

Available since 2014.1 (Icehouse)

Resource for handling signals received by WaitConditionHandle.

Resource takes WaitConditionHandle and starts to create. Resource is in CREATE_IN_PROGRESS
status until WaitConditionHandle doesnt receive sufficient number of successful signals (this number
can be specified with count property) and successfully creates after that, or fails due to timeout.

Required Properties

Handleű

A reference to the wait condition handle used to signal this wait condition.

String value expected.

Updates cause replacement.

Timeoutű

The number of seconds to wait for the correct number of signals to arrive.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 43200.

3.3. Working with Templates 609

Heat Documentation, Release 16.1.1.dev14

Optional Properties

Countű

The number of success signals that must be received before the stack creation process continues.

Integer value expected.

Can be updated without replacement.

Defaults to 1

The value must be at least 1.

Attributes

Dataű JSON string containing data associated with wait condition signals sent to the handle.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::CloudFormation::WaitCondition
properties:

Count: Integer
Handle: String
Timeout: Integer

AWS::CloudFormation::WaitConditionHandle

Available since 2014.1 (Icehouse)

AWS WaitConditionHandle resource.

the main point of this class is to : have no dependencies (so the instance can reference it) generate a
unique url (to be returned in the reference) then the cfn-signal will use this url to post to and WaitCon-
dition will poll it to see if has been written to.

610 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::CloudFormation::WaitConditionHandle

AWS::EC2::EIP

Optional Properties

InstanceIdű

Instance ID to associate with EIP.

String value expected.

Can be updated without replacement.

Value must be of type nova.server

Domainű

DEPRECATED since 9.0.0 (Pike) - Now we only allow vpc here, so no need to set up this tag
anymore.

Set to vpc to have IP address allocation associated to your VPC.

String value expected.

Updates cause replacement.

Allowed values: vpc

Attributes

AllocationIdű ID that AWS assigns to represent the allocation of the address for use with Amazon
VPC. Returned only for VPC elastic IP addresses.

showű Detailed information about resource.

3.3. Working with Templates 611

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::EIP
properties:

InstanceId: String

AWS::EC2::EIPAssociation

Optional Properties

AllocationIdű

Allocation ID for VPC EIP address.

String value expected.

Can be updated without replacement.

EIPű

EIP address to associate with instance.

String value expected.

Can be updated without replacement.

Value must be of type ip_addr

InstanceIdű

Instance ID to associate with EIP specified by EIP property.

String value expected.

Can be updated without replacement.

Value must be of type nova.server

NetworkInterfaceIdű

Network interface ID to associate with EIP.

String value expected.

Can be updated without replacement.

612 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::EIPAssociation
properties:

AllocationId: String
EIP: String
InstanceId: String
NetworkInterfaceId: String

AWS::EC2::Instance

Utility class to encapsulate Scheduler Hint related logic.

Required Properties

ImageIdű

Glance image ID or name.

String value expected.

Updates cause replacement.

Value must be of type glance.image

InstanceTypeű

Nova instance type (flavor).

String value expected.

Can be updated without replacement.

Value must be of type nova.flavor

3.3. Working with Templates 613

Heat Documentation, Release 16.1.1.dev14

Optional Properties

AvailabilityZoneű

Availability zone to launch the instance in.

String value expected.

Updates cause replacement.

BlockDeviceMappingsű

Block device mappings to attach to instance.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

DeviceNameű

Required.

A device name where the volume will be attached in the system at /dev/device_name.e.g.
vdb

String value expected.

Updates cause replacement.

Ebsű

The ebs volume to attach to the instance.

Map value expected.

Updates cause replacement.

Map properties:

DeleteOnTerminationű

Optional.

Indicate whether the volume should be deleted when the instance is terminated.

Boolean value expected.

Updates cause replacement.

Defaults to true

Iopsű

Not implemented.

SnapshotIdű

Optional.

614 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

The ID of the snapshot to create a volume from.

String value expected.

Updates cause replacement.

Value must be of type cinder.snapshot

VolumeSizeű

Optional.

The size of the volume, in GB. Must be equal or greater than the size of the snapshot.
It is safe to leave this blank and have the Compute service infer the size.

String value expected.

Updates cause replacement.

VolumeTypeű

Not implemented.

NoDeviceű

Not implemented.

VirtualNameű

Not implemented.

DisableApiTerminationű

Note:

Not implemented.

KernelIdű

Note:

Not implemented.

KeyNameű

Optional Nova keypair name.

String value expected.

Updates cause replacement.

Value must be of type nova.keypair

Monitoringű

Note:

Not implemented.

NetworkInterfacesű

3.3. Working with Templates 615

Heat Documentation, Release 16.1.1.dev14

Network interfaces to associate with instance.

List value expected.

Can be updated without replacement.

NovaSchedulerHintsű

Scheduler hints to pass to Nova (Heat extension).

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

Keyű

Required.

String value expected.

Updates cause replacement.

Valueű

Required.

String value expected.

Updates cause replacement.

PlacementGroupNameű

Note:

Not implemented.

PrivateIpAddressű

Note:

Not implemented.

RamDiskIdű

Note:

Not implemented.

SecurityGroupIdsű

Security group IDs to assign.

616 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

List value expected.

Updates cause replacement.

SecurityGroupsű

Security group names to assign.

List value expected.

Updates cause replacement.

SourceDestCheckű

Note:

Not implemented.

SubnetIdű

Subnet ID to launch instance in.

String value expected.

Can be updated without replacement.

Tagsű

Tags to attach to instance.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

Keyű

Required.

String value expected.

Can be updated without replacement.

Valueű

Required.

String value expected.

Can be updated without replacement.

Tenancyű

Note:

Not implemented.

3.3. Working with Templates 617

Heat Documentation, Release 16.1.1.dev14

UserDataű

User data to pass to instance.

String value expected.

Updates cause replacement.

Volumesű

Volumes to attach to instance.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

Deviceű

Required.

The device where the volume is exposed on the instance. This assignment may not be hon-
ored and it is advised that the path /dev/disk/by-id/virtio-<VolumeId> be used instead.

String value expected.

Updates cause replacement.

VolumeIdű

Required.

The ID of the volume to be attached.

String value expected.

Updates cause replacement.

Value must be of type cinder.volume

Attributes

AvailabilityZoneű The Availability Zone where the specified instance is launched.

PrivateDnsNameű Private DNS name of the specified instance.

PrivateIpű Private IP address of the specified instance.

PublicDnsNameű Public DNS name of the specified instance.

PublicIpű Public IP address of the specified instance.

showű Detailed information about resource.

618 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::Instance
properties:

AvailabilityZone: String
BlockDeviceMappings: [{"DeviceName": String, "Ebs": {

↪→"DeleteOnTermination": Boolean, "SnapshotId": String, "VolumeSize":
↪→String}}, {"DeviceName": String, "Ebs": {"DeleteOnTermination": Boolean,
↪→"SnapshotId": String, "VolumeSize": String}}, ...]

ImageId: String
InstanceType: String
KeyName: String
NetworkInterfaces: [Value, Value, ...]
NovaSchedulerHints: [{"Key": String, "Value": String}, {"Key":

↪→String, "Value": String}, ...]
SecurityGroupIds: [Value, Value, ...]
SecurityGroups: [Value, Value, ...]
SubnetId: String
Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":

↪→String}, ...]
UserData: String
Volumes: [{"Device": String, "VolumeId": String}, {"Device": String,

↪→"VolumeId": String}, ...]

AWS::EC2::InternetGateway

Optional Properties

Tagsű

List value expected.

Updates cause replacement.

List contents:

Not implemented.

Attributes

showű Detailed information about resource.

3.3. Working with Templates 619

Heat Documentation, Release 16.1.1.dev14

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::InternetGateway
properties:

Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":
↪→String}, ...]

AWS::EC2::NetworkInterface

Required Properties

SubnetIdű

Subnet ID to associate with this interface.

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

Optional Properties

Descriptionű

Description for this interface.

String value expected.

Updates cause replacement.

GroupSetű

List of security group IDs associated with this interface.

List value expected.

Can be updated without replacement.

PrivateIpAddressű

String value expected.

Updates cause replacement.

SourceDestCheckű

Note:

Not implemented.

620 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Tagsű

List value expected.

Updates cause replacement.

List contents:

Not implemented.

Attributes

PrivateIpAddressű Private IP address of the network interface.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::NetworkInterface
properties:

Description: String
GroupSet: [Value, Value, ...]
PrivateIpAddress: String
SubnetId: String
Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":

↪→String}, ...]

AWS::EC2::RouteTable

Available since 2014.1 (Icehouse)

Required Properties

VpcIdű

VPC ID for where the route table is created.

String value expected.

Updates cause replacement.

3.3. Working with Templates 621

Heat Documentation, Release 16.1.1.dev14

Optional Properties

Tagsű

List value expected.

Updates cause replacement.

List contents:

Not implemented.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::RouteTable
properties:

Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":
↪→String}, ...]

VpcId: String

AWS::EC2::SecurityGroup

Required Properties

GroupDescriptionű

Description of the security group.

String value expected.

Updates cause replacement.

Optional Properties

SecurityGroupEgressű

List value expected.

Can be updated without replacement.

List contents:

List of security group egress rules.

622 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Map value expected.

Can be updated without replacement.

Map properties:

CidrIpű

Optional.

String value expected.

Can be updated without replacement.

FromPortű

Optional.

String value expected.

Can be updated without replacement.

IpProtocolű

Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupIdű

Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupNameű

Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupOwnerIdű

Not implemented.

ToPortű

Optional.

String value expected.

Can be updated without replacement.

SecurityGroupIngressű

List value expected.

Can be updated without replacement.

List contents:

List of security group ingress rules.

3.3. Working with Templates 623

Heat Documentation, Release 16.1.1.dev14

Map value expected.

Can be updated without replacement.

Map properties:

CidrIpű

Optional.

String value expected.

Can be updated without replacement.

FromPortű

Optional.

String value expected.

Can be updated without replacement.

IpProtocolű

Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupIdű

Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupNameű

Optional.

String value expected.

Can be updated without replacement.

SourceSecurityGroupOwnerIdű

Not implemented.

ToPortű

Optional.

String value expected.

Can be updated without replacement.

VpcIdű

Physical ID of the VPC. Not implemented.

String value expected.

Updates cause replacement.

624 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::SecurityGroup
properties:

GroupDescription: String
SecurityGroupEgress: [{"CidrIp": String, "FromPort": String, "ToPort

↪→": String, "IpProtocol": String, "SourceSecurityGroupId": String,
↪→"SourceSecurityGroupName": String}, {"CidrIp": String, "FromPort":
↪→String, "ToPort": String, "IpProtocol": String, "SourceSecurityGroupId":
↪→String, "SourceSecurityGroupName": String}, ...]

SecurityGroupIngress: [{"CidrIp": String, "FromPort": String, "ToPort
↪→": String, "IpProtocol": String, "SourceSecurityGroupId": String,
↪→"SourceSecurityGroupName": String}, {"CidrIp": String, "FromPort":
↪→String, "ToPort": String, "IpProtocol": String, "SourceSecurityGroupId":
↪→String, "SourceSecurityGroupName": String}, ...]

VpcId: String

AWS::EC2::Subnet

Required Properties

CidrBlockű

CIDR block to apply to subnet.

String value expected.

Updates cause replacement.

VpcIdű

Ref structure that contains the ID of the VPC on which you want to create the subnet.

String value expected.

Updates cause replacement.

3.3. Working with Templates 625

Heat Documentation, Release 16.1.1.dev14

Optional Properties

AvailabilityZoneű

Availability zone in which you want the subnet.

String value expected.

Updates cause replacement.

Tagsű

List value expected.

Updates cause replacement.

List contents:

Not implemented.

Attributes

AvailabilityZoneű Availability Zone of the subnet.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::Subnet
properties:

AvailabilityZone: String
CidrBlock: String
Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":

↪→String}, ...]
VpcId: String

AWS::EC2::SubnetRouteTableAssociation

Required Properties

RouteTableIdű

Route table ID.

String value expected.

Updates cause replacement.

SubnetIdű

Subnet ID.

626 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

Value must be of type neutron.subnet

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::SubnetRouteTableAssociation
properties:

RouteTableId: String
SubnetId: String

AWS::EC2::VPC

Optional Properties

CidrBlockű

CIDR block to apply to the VPC.

String value expected.

Updates cause replacement.

InstanceTenancyű

Note:

Not implemented.

Tagsű

List value expected.

Updates cause replacement.

List contents:

Not implemented.

3.3. Working with Templates 627

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::VPC
properties:

CidrBlock: String
Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":

↪→String}, ...]

AWS::EC2::VPCGatewayAttachment

Required Properties

VpcIdű

VPC ID for this gateway association.

String value expected.

Updates cause replacement.

Optional Properties

InternetGatewayIdű

ID of the InternetGateway.

String value expected.

Updates cause replacement.

VpnGatewayIdű

Note:

Not implemented.

628 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::VPCGatewayAttachment
properties:

InternetGatewayId: String
VpcId: String

AWS::EC2::Volume

Base Volume Manager.

Required Properties

AvailabilityZoneű

The availability zone in which the volume will be created.

String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Optional Properties

Sizeű

The size of the volume in GB.

Integer value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

The value must be at least 1.

SnapshotIdű

If specified, the backup used as the source to create the volume.

String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Value must be of type cinder.backup

Tagsű

The list of tags to associate with the volume.

3.3. Working with Templates 629

Heat Documentation, Release 16.1.1.dev14

List value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

List contents:

Map value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Map properties:

Keyű

Required.

String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Valueű

Required.

String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::Volume
properties:

AvailabilityZone: String
Size: Integer
SnapshotId: String
Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":

↪→String}, ...]

630 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

AWS::EC2::VolumeAttachment

Base Volume Attachment Manager.

Required Properties

Deviceű

The device where the volume is exposed on the instance. This assignment may not be honored and it
is advised that the path /dev/disk/by-id/virtio-<VolumeId> be used instead.

String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Value must match pattern: /dev/vd[b-z]

InstanceIdű

The ID of the instance to which the volume attaches.

String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Value must be of type nova.server

VolumeIdű

The ID of the volume to be attached.

String value expected.

Updates are not supported. Resource update will fail on any attempt to update this property.

Value must be of type cinder.volume

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::EC2::VolumeAttachment
properties:

Device: String
InstanceId: String
VolumeId: String

3.3. Working with Templates 631

Heat Documentation, Release 16.1.1.dev14

AWS::ElasticLoadBalancing::LoadBalancer

Implements a HAProxy-bearing instance as a nested stack.

The template for the nested stack can be redefined with loadbalancer_template option in heat.
conf.

Generally the image used for the instance must have the following packages installed or available for
installation at runtime:

- heat-cfntools and its dependencies like python-psutil
- cronie
- socat
- haproxy

Current default builtin template uses Fedora 21 x86_64 base cloud image (https://getfedora.org/cloud/
download/) and apart from installing packages goes through some hoops around SELinux due to pecu-
larities of heat-cfntools.

Required Properties

AvailabilityZonesű

The Availability Zones in which to create the load balancer.

List value expected.

Updates cause replacement.

Listenersű

One or more listeners for this load balancer.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

InstancePortű

Required.

TCP port on which the instance server is listening.

Integer value expected.

Updates cause replacement.

LoadBalancerPortű

Required.

The external load balancer port number.

Integer value expected.

632 Chapter 3. Using Heat

https://getfedora.org/cloud/download/
https://getfedora.org/cloud/download/

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

PolicyNamesű

Not implemented.

Protocolű

Required.

The load balancer transport protocol to use.

String value expected.

Updates cause replacement.

Allowed values: TCP, HTTP

SSLCertificateIdű

Not implemented.

Optional Properties

AppCookieStickinessPolicyű

Note:

Not implemented.

HealthCheckű

An application health check for the instances.

Map value expected.

Updates cause replacement.

Map properties:

HealthyThresholdű

Required.

The number of consecutive health probe successes required before moving the instance to the
healthy state.

Integer value expected.

Updates cause replacement.

Intervalű

Required.

The approximate interval, in seconds, between health checks of an individual instance.

Integer value expected.

Updates cause replacement.

Targetű

3.3. Working with Templates 633

Heat Documentation, Release 16.1.1.dev14

Required.

The port being checked.

String value expected.

Updates cause replacement.

Timeoutű

Required.

Health probe timeout, in seconds.

Integer value expected.

Updates cause replacement.

UnhealthyThresholdű

Required.

The number of consecutive health probe failures required before moving the instance to the
unhealthy state

Integer value expected.

Updates cause replacement.

Instancesű

The list of instance IDs load balanced.

List value expected.

Can be updated without replacement.

LBCookieStickinessPolicyű

Note:

Not implemented.

SecurityGroupsű

List of Security Groups assigned on current LB.

List value expected.

Can be updated without replacement.

Subnetsű

Note:

Not implemented.

634 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

CanonicalHostedZoneNameű The name of the hosted zone that is associated with the LoadBalancer.

CanonicalHostedZoneNameIDű The ID of the hosted zone name that is associated with the LoadBal-
ancer.

DNSNameű The DNS name for the LoadBalancer.

SourceSecurityGroup.GroupNameű The security group that you can use as part of your inbound rules
for your LoadBalancers back-end instances.

SourceSecurityGroup.OwnerAliasű Owner of the source security group.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::ElasticLoadBalancing::LoadBalancer
properties:

AvailabilityZones: [Value, Value, ...]
HealthCheck: {"HealthyThreshold": Integer, "Interval": Integer,

↪→"Target": String, "Timeout": Integer, "UnhealthyThreshold": Integer}
Instances: [Value, Value, ...]
Listeners: [{"InstancePort": Integer, "LoadBalancerPort": Integer,

↪→"Protocol": String}, {"InstancePort": Integer, "LoadBalancerPort":
↪→Integer, "Protocol": String}, ...]

SecurityGroups: [Value, Value, ...]

AWS::IAM::AccessKey

Required Properties

UserNameű

The name of the user that the new key will belong to.

String value expected.

Updates cause replacement.

3.3. Working with Templates 635

Heat Documentation, Release 16.1.1.dev14

Optional Properties

Serialű

Note:

Not implemented.

Statusű

Note:

Not implemented.

Attributes

SecretAccessKeyű Keypair secret key.

UserNameű Username associated with the AccessKey.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::IAM::AccessKey
properties:

UserName: String

AWS::IAM::User

Optional Properties

Groupsű

Not Implemented.

List value expected.

Updates cause replacement.

LoginProfileű

A login profile for the user.

Map value expected.

636 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

Map properties:

Passwordű

Optional.

String value expected.

Updates cause replacement.

Pathű

Not Implemented.

String value expected.

Updates cause replacement.

Policiesű

Access policies to apply to the user.

List value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::IAM::User
properties:

Groups: [Value, Value, ...]
LoginProfile: {"Password": String}
Path: String
Policies: [Value, Value, ...]

AWS::S3::Bucket

Optional Properties

AccessControlű

A predefined access control list (ACL) that grants permissions on the bucket.

String value expected.

Updates cause replacement.

3.3. Working with Templates 637

Heat Documentation, Release 16.1.1.dev14

Allowed values: Private, PublicRead, PublicReadWrite, AuthenticatedRead, BucketOwnerRead,
BucketOwnerFullControl

Tagsű

Tags to attach to the bucket.

List value expected.

Updates cause replacement.

List contents:

Map value expected.

Updates cause replacement.

Map properties:

Keyű

Required.

The tag key name.

String value expected.

Updates cause replacement.

Valueű

Required.

The tag value.

String value expected.

Updates cause replacement.

WebsiteConfigurationű

Information used to configure the bucket as a static website.

Map value expected.

Updates cause replacement.

Map properties:

ErrorDocumentű

Optional.

The name of the error document.

String value expected.

Updates cause replacement.

IndexDocumentű

Optional.

The name of the index document.

String value expected.

Updates cause replacement.

638 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Attributes

DomainNameű The DNS name of the specified bucket.

WebsiteURLű The website endpoint for the specified bucket.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: AWS::S3::Bucket
properties:

AccessControl: String
Tags: [{"Key": String, "Value": String}, {"Key": String, "Value":

↪→String}, ...]
WebsiteConfiguration: {"IndexDocument": String, "ErrorDocument":

↪→String}

Unsupported Heat Resource Types

These resources are enabled, but are not officially supported.

OS::Aodh::Alarm

DEPRECATED since 10.0.0 (Queens) - Theshold alarm relies on ceilometer-api and has been depre-
cated in aodh since Ocata. Use OS::Aodh::GnocchiAggregationByResourcesAlarm instead.

Available since 2014.1 (Icehouse)

A resource that implements alarming service of Aodh.

A resource that allows for the setting alarms based on threshold evaluation for a collection of samples.
Also, you can define actions to take if state of watched resource will be satisfied specified conditions.
For example, it can watch for the memory consumption and when it reaches 70% on a given instance if
the instance has been up for more than 10 min, some action will be called.

3.3. Working with Templates 639

Heat Documentation, Release 16.1.1.dev14

Required Properties

meter_nameű

Meter name watched by the alarm.

String value expected.

Updates cause replacement.

thresholdű

Threshold to evaluate against.

Number value expected.

Can be updated without replacement.

Optional Properties

alarm_actionsű

A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.

Can be updated without replacement.

alarm_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

comparison_operatorű

Operator used to compare specified statistic with threshold.

String value expected.

Can be updated without replacement.

Allowed values: le, ge, eq, lt, gt, ne

descriptionű

640 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Description for the alarm.

String value expected.

Can be updated without replacement.

enabledű

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

evaluation_periodsű

Number of periods to evaluate over.

Integer value expected.

Can be updated without replacement.

insufficient_data_actionsű

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

matching_metadataű

Meter should match this resource metadata (key=value) additionally to the meter_name.

Map value expected.

Can be updated without replacement.

Defaults to {}

ok_actionsű

3.3. Working with Templates 641

Heat Documentation, Release 16.1.1.dev14

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.

Can be updated without replacement.

ok_queuesű

Available since 8.0.0 (Ocata)

A list of Zaqar queues to post to when state transitions to ok.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

String value expected.

Can be updated without replacement.

Value must be of type zaqar.queue

periodű

Period (seconds) to evaluate over.

Integer value expected.

Can be updated without replacement.

queryű

Available since 2015.1 (Kilo)

A list of query factors, each comparing a Sample attribute with a value. Implicitly combined with
matching_metadata, if any.

List value expected.

Can be updated without replacement.

List contents:

Map value expected.

Can be updated without replacement.

Map properties:

fieldű

Optional.

Name of attribute to compare. Names of the form metadata.user_metadata.X or meta-
data.metering.X are equivalent to what you can address through matching_metadata;

642 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

the former for Nova meters, the latter for all others. To see the attributes of your Sam-
ples, use ‘ceilometer debug sample-list‘.

String value expected.

Can be updated without replacement.

opű

Optional.

Comparison operator.

String value expected.

Can be updated without replacement.

Allowed values: le, ge, eq, lt, gt, ne

typeű

Available since 8.0.0 (Ocata)

Optional.

The type of the attribute.

String value expected.

Can be updated without replacement.

Defaults to "string"

Allowed values: integer, float, string, boolean, datetime

valueű

Optional.

String value with which to compare.

String value expected.

Can be updated without replacement.

repeat_actionsű

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"

severityű

Available since 5.0.0 (Liberty)

Severity of the alarm.

String value expected.

3.3. Working with Templates 643

Heat Documentation, Release 16.1.1.dev14

Can be updated without replacement.

Defaults to "low"

Allowed values: low, moderate, critical

statisticű

Meter statistic to evaluate.

String value expected.

Can be updated without replacement.

Allowed values: count, avg, sum, min, max

time_constraintsű

Available since 5.0.0 (Liberty)

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

descriptionű

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.

durationű

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.

nameű

Required.

Name for the time constraint.

644 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

String value expected.

Updates cause replacement.

startű

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezoneű

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Aodh::Alarm
properties:

alarm_actions: [Value, Value, ...]
alarm_queues: [String, String, ...]
comparison_operator: String
description: String
enabled: Boolean
evaluation_periods: Integer
insufficient_data_actions: [Value, Value, ...]
insufficient_data_queues: [String, String, ...]
matching_metadata: {...}
meter_name: String
ok_actions: [Value, Value, ...]
ok_queues: [String, String, ...]
period: Integer
query: [{"field": String, "type": String, "op": String, "value":

↪→String}, {"field": String, "type": String, "op": String, "value": String}
↪→, ...]

repeat_actions: Boolean
(continues on next page)

3.3. Working with Templates 645

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

severity: String
statistic: String
threshold: Number
time_constraints: [{"name": String, "start": String, "description":

↪→String, "duration": Integer, "timezone": String}, {"name": String, "start
↪→": String, "description": String, "duration": Integer, "timezone":
↪→String}, ...]

OS::Glance::Image

DEPRECATED since 8.0.0 (Ocata) - Creating a Glance Image based on an existing URL location
requires the Glance v1 API, which is deprecated.

Available since 2014.2 (Juno)

A resource managing images in Glance.

A resource provides managing images that are meant to be used with other services.

Required Properties

container_formatű

Container format of image.

String value expected.

Updates cause replacement.

Allowed values: ami, ari, aki, bare, ova, ovf

disk_formatű

Disk format of image.

String value expected.

Updates cause replacement.

Allowed values: ami, ari, aki, vhd, vmdk, raw, qcow2, vdi, iso

locationű

URL where the data for this image already resides. For example, if the image data is stored in swift,
you could specify swift://example.com/container/obj.

String value expected.

Updates cause replacement.

646 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Optional Properties

architectureű

Available since 7.0.0 (Newton)

Operating system architecture.

String value expected.

Can be updated without replacement.

extra_propertiesű

Available since 7.0.0 (Newton)

Arbitrary properties to associate with the image.

Map value expected.

Can be updated without replacement.

Defaults to {}

idű

The image ID. Glance will generate a UUID if not specified.

String value expected.

Updates cause replacement.

is_publicű

Scope of image accessibility. Public or private. Default value is False means private. Note: The policy
setting of glance allows only users with admin roles to create public image by default.

Boolean value expected.

Updates cause replacement.

Defaults to false

kernel_idű

Available since 7.0.0 (Newton)

ID of image stored in Glance that should be used as the kernel when booting an AMI-style image.

String value expected.

Can be updated without replacement.

Value must match pattern: ^([0-9a-fA-F]){8}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-
([0-9a-fA-F]){12}$

min_diskű

3.3. Working with Templates 647

Heat Documentation, Release 16.1.1.dev14

Amount of disk space (in GB) required to boot image. Default value is 0 if not specified and means no
limit on the disk size.

Integer value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

min_ramű

Amount of ram (in MB) required to boot image. Default value is 0 if not specified and means no limit
on the ram size.

Integer value expected.

Updates cause replacement.

Defaults to 0

The value must be at least 0.

nameű

Name for the image. The name of an image is not unique to a Image Service node.

String value expected.

Updates cause replacement.

os_distroű

Available since 7.0.0 (Newton)

The common name of the operating system distribution in lowercase.

String value expected.

Can be updated without replacement.

ownerű

Available since 7.0.0 (Newton)

Owner of the image.

String value expected.

Can be updated without replacement.

protectedű

Whether the image can be deleted. If the value is True, the image is protected and cannot be deleted.

Boolean value expected.

Updates cause replacement.

Defaults to false

ramdisk_idű

648 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Available since 7.0.0 (Newton)

ID of image stored in Glance that should be used as the ramdisk when booting an AMI-style image.

String value expected.

Can be updated without replacement.

Value must match pattern: ^([0-9a-fA-F]){8}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-([0-9a-fA-F]){4}-
([0-9a-fA-F]){12}$

tagsű

Available since 7.0.0 (Newton)

List of image tags.

List value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Glance::Image
properties:

architecture: String
container_format: String
disk_format: String
extra_properties: {...}
id: String
is_public: Boolean
kernel_id: String
location: String
min_disk: Integer
min_ram: Integer
name: String
os_distro: String
owner: String
protected: Boolean
ramdisk_id: String
tags: [Value, Value, ...]

3.3. Working with Templates 649

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::ExtraRoute

UNSUPPORTED - Use this resource at your own risk.

Resource for specifying extra routes for Neutron router.

Resource allows to specify nexthop IP and destination network for router.

Required Properties

destinationű

Network in CIDR notation.

String value expected.

Updates cause replacement.

nexthopű

Nexthop IP address.

String value expected.

Updates cause replacement.

router_idű

The router id.

String value expected.

Updates cause replacement.

Value must be of type neutron.router

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::ExtraRoute
properties:

destination: String
nexthop: String
router_id: String

650 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::FlowClassifier

UNSUPPORTED since 8.0.0 (Ocata)

Heat Template Resource for networking-sfc flow-classifier.

This resource used to select the traffic that can access the service chain. Traffic that matches any flow
classifier will be directed to the first port in the chain.

Optional Properties

descriptionű

Description for the Flow Classifier.

String value expected.

Can be updated without replacement.

destination_ip_prefixű

Destination IP prefix or subnet.

String value expected.

Updates cause replacement.

Value must be of type net_cidr

destination_port_range_maxű

Destination protocol port maximum.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

destination_port_range_minű

Destination protocol port minimum.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

ethertypeű

L2 ethertype.

String value expected.

Updates cause replacement.

Defaults to "IPv4"

Allowed values: IPv4, IPv6

logical_destination_portű

3.3. Working with Templates 651

Heat Documentation, Release 16.1.1.dev14

ID or name of the neutron destination port.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

logical_source_portű

ID or name of the neutron source port.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

nameű

Name of the Flow Classifier.

String value expected.

Can be updated without replacement.

protocolű

IP Protocol for the Flow Classifier.

String value expected.

Updates cause replacement.

Allowed values: tcp, udp, icmp

source_ip_prefixű

Source IP prefix or subnet.

String value expected.

Updates cause replacement.

Value must be of type net_cidr

source_port_range_maxű

Source protocol port Maximum.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

source_port_range_minű

Source protocol port Minimum.

Integer value expected.

Updates cause replacement.

The value must be in the range 1 to 65535.

l7_parametersű

652 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

UNSUPPORTED - Currently, no value is supported for this option.

Dictionary of L7-parameters.

Map value expected.

Updates cause replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::FlowClassifier
properties:

description: String
destination_ip_prefix: String
destination_port_range_max: Integer
destination_port_range_min: Integer
ethertype: String
logical_destination_port: String
logical_source_port: String
name: String
protocol: String
source_ip_prefix: String
source_port_range_max: Integer
source_port_range_min: Integer

OS::Neutron::PortChain

UNSUPPORTED since 8.0.0 (Ocata)

A resource for neutron networking-sfc.

This resource used to define the service function path by arranging networking-sfc port-pair-groups and
set of flow classifiers, to specify the classified traffic flows to enter the chain.

3.3. Working with Templates 653

Heat Documentation, Release 16.1.1.dev14

Required Properties

port_pair_groupsű

A list of port pair groups to apply to the Port Chain.

List value expected.

Can be updated without replacement.

List contents:

Optional.

Port Pair Group ID or Name .

String value expected.

Can be updated without replacement.

Value must be of type neutron.port_pair_group

Optional Properties

chain_parametersű

Dictionary of chain parameters. Currently, only correlation=mpls is supported by default.

Map value expected.

Updates cause replacement.

Defaults to {"correlation": "mpls"}

descriptionű

Description for the Port Chain.

String value expected.

Can be updated without replacement.

flow_classifiersű

A list of flow classifiers to apply to the Port Chain.

List value expected.

Can be updated without replacement.

Defaults to []

List contents:

Optional.

Flow Classifier ID or Name .

String value expected.

Can be updated without replacement.

Value must be of type neutron.flow_classifier

654 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

nameű

Name of the Port Chain.

String value expected.

Can be updated without replacement.

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::PortChain
properties:

chain_parameters: {...}
description: String
flow_classifiers: [String, String, ...]
name: String
port_pair_groups: [String, String, ...]

OS::Neutron::PortPair

UNSUPPORTED since 7.0.0 (Newton)

A resource for neutron networking-sfc port-pair.

This plug-in requires networking-sfc>=1.0.0. So to enable this plug-in, install this library and restart the
heat-engine.

A Port Pair represents a service function instance. The ingress port and the egress port of the service
function may be specified. If a service function has one bidirectional port, the ingress port has the same
value as the egress port.

Required Properties

egressű

ID or name of the egress neutron port.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

3.3. Working with Templates 655

Heat Documentation, Release 16.1.1.dev14

ingressű

ID or name of the ingress neutron port.

String value expected.

Updates cause replacement.

Value must be of type neutron.port

Optional Properties

descriptionű

Description for the Port Pair.

String value expected.

Can be updated without replacement.

nameű

Name for the Port Pair.

String value expected.

Can be updated without replacement.

service_function_parametersű

Dictionary of service function parameter. Currently only correlation=None is supported.

Map value expected.

Updates cause replacement.

Defaults to {"correlation": null}

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::PortPair
properties:

description: String
egress: String
ingress: String
name: String
service_function_parameters: {...}

656 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

OS::Neutron::PortPairGroup

UNSUPPORTED since 8.0.0 (Ocata)

Heat Template Resource for networking-sfc port-pair-group.

Multiple port-pairs may be included in a port-pair-group to allow the specification of a set of functionally
equivalent Service Functions that can be used for load distribution.

Required Properties

port_pairsű

A list of Port Pair IDs or names to apply.

List value expected.

Can be updated without replacement.

List contents:

Optional.

Port Pair ID or name .

String value expected.

Can be updated without replacement.

Value must be of type neutron.port_pair

Optional Properties

descriptionű

Description for the Port Pair Group.

String value expected.

Can be updated without replacement.

nameű

Name for the Port Pair Group.

String value expected.

Can be updated without replacement.

3.3. Working with Templates 657

Heat Documentation, Release 16.1.1.dev14

Attributes

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: OS::Neutron::PortPairGroup
properties:

description: String
name: String
port_pairs: [String, String, ...]

Contributed Heat Resource Types

These resources are not enabled by default.

DockerInc Resource

This resource is not enabled by default.

This plugin enables the use of Docker containers in a Heat template and requires the docker-py package.
You can find more information in the DOCKER_README.

DockerInc::Docker::Container

UNSUPPORTED - This resource is not supported, use at your own risk.

Optional Properties

cap_addű

Available since 2015.1 (Kilo)

Be used to add kernel capabilities (only supported for API version >= 1.2.0).

List value expected.

Updates cause replacement.

Defaults to []

List contents:

658 Chapter 3. Using Heat

https://pypi.org/project/docker-py
https://opendev.org/openstack/heat/src/branch/master/contrib/heat_docker/README.md

Heat Documentation, Release 16.1.1.dev14

Optional.

The security features provided by Linux kernels.

String value expected.

Updates cause replacement.

Allowed values: SETPCAP, SYS_MODULE, SYS_RAWIO, SYS_PACCT, SYS_ADMIN,
SYS_NICE, SYS_RESOURCE, SYS_TIME, SYS_TTY_CONFIG, MKNOD, AU-
DIT_WRITE, AUDIT_CONTROL, MAC_OVERRIDE, MAC_ADMIN, NET_ADMIN,
SYSLOG, CHOWN, NET_RAW, DAC_OVERRIDE, FOWNER, DAC_READ_SEARCH,
FSETID, KILL, SETGID, SETUID, LINUX_IMMUTABLE, NET_BIND_SERVICE,
NET_BROADCAST, IPC_LOCK, IPC_OWNER, SYS_CHROOT, SYS_PTRACE,
SYS_BOOT, LEASE, SETFCAP, WAKE_ALARM, BLOCK_SUSPEND, ALL

cap_dropű

Available since 2015.1 (Kilo)

Be used to drop kernel capabilities (only supported for API version >= 1.2.0).

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Optional.

The security features provided by Linux kernels.

String value expected.

Updates cause replacement.

Allowed values: SETPCAP, SYS_MODULE, SYS_RAWIO, SYS_PACCT, SYS_ADMIN,
SYS_NICE, SYS_RESOURCE, SYS_TIME, SYS_TTY_CONFIG, MKNOD, AU-
DIT_WRITE, AUDIT_CONTROL, MAC_OVERRIDE, MAC_ADMIN, NET_ADMIN,
SYSLOG, CHOWN, NET_RAW, DAC_OVERRIDE, FOWNER, DAC_READ_SEARCH,
FSETID, KILL, SETGID, SETUID, LINUX_IMMUTABLE, NET_BIND_SERVICE,
NET_BROADCAST, IPC_LOCK, IPC_OWNER, SYS_CHROOT, SYS_PTRACE,
SYS_BOOT, LEASE, SETFCAP, WAKE_ALARM, BLOCK_SUSPEND, ALL

cmdű

Command to run after spawning the container.

List value expected.

Updates cause replacement.

Defaults to []

cpu_setű

3.3. Working with Templates 659

Heat Documentation, Release 16.1.1.dev14

Available since 5.0.0 (Liberty)

The CPUs in which to allow execution (only supported for API version >= 1.12).

String value expected.

Updates cause replacement.

cpu_sharesű

Available since 5.0.0 (Liberty)

Relative weight which determines the allocation of the CPU processing power(only supported for API
version >= 1.8).

Integer value expected.

Updates cause replacement.

Defaults to 0

devicesű

Available since 5.0.0 (Liberty)

Device mappings (only supported for API version >= 1.14).

List value expected.

Updates cause replacement.

Defaults to []

List contents:

Map value expected.

Updates cause replacement.

Map properties:

path_in_containerű

Optional.

The device path of the container mappings to the host.

String value expected.

Updates cause replacement.

The length must be no greater than 255.

Value must match pattern: ^/dev/[/_-a-zA-Z0-9]+$

path_on_hostű

Required.

The device path on the host.

String value expected.

660 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

The length must be no greater than 255.

Value must match pattern: ^/dev/[/_-a-zA-Z0-9]+$

permissionsű

Optional.

The permissions of the container to read/write/create the devices.

String value expected.

Updates cause replacement.

Defaults to "rwm"

Allowed values: r, w, m, rw, rm, wm, rwm

dnsű

Set custom dns servers.

List value expected.

Updates cause replacement.

docker_endpointű

Docker daemon endpoint (by default the local docker daemon will be used).

String value expected.

Updates cause replacement.

envű

Set environment variables.

List value expected.

Updates cause replacement.

hostnameű

Hostname of the container.

String value expected.

Updates cause replacement.

Defaults to ""

imageű

Image name.

String value expected.

Updates cause replacement.

linksű

Links to other containers.

Map value expected.

3.3. Working with Templates 661

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

memoryű

Memory limit (Bytes).

Integer value expected.

Updates cause replacement.

nameű

Name of the container.

String value expected.

Updates cause replacement.

open_stdinű

Open stdin.

Boolean value expected.

Updates cause replacement.

Defaults to false

port_bindingsű

TCP/UDP ports bindings.

Map value expected.

Updates cause replacement.

port_specsű

TCP/UDP ports mapping.

List value expected.

Updates cause replacement.

privilegedű

Enable extended privileges.

Boolean value expected.

Updates cause replacement.

Defaults to false

read_onlyű

Available since 2015.1 (Kilo)

If true, mount the containers root filesystem as read only (only supported for API version >= 1.17).

Boolean value expected.

Updates cause replacement.

Defaults to false

662 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

restart_policyű

Available since 2015.1 (Kilo)

Restart policies (only supported for API version >= 1.2.0).

Map value expected.

Updates cause replacement.

Defaults to {}

Map properties:

MaximumRetryCountű

Optional.

A maximum restart count for the on-failure policy.

Integer value expected.

Updates cause replacement.

Defaults to 0

Nameű

Optional.

The behavior to apply when the container exits.

String value expected.

Updates cause replacement.

Defaults to "no"

Allowed values: no, on-failure, always

stdin_onceű

If true, close stdin after the 1 attached client disconnects.

Boolean value expected.

Updates cause replacement.

Defaults to false

ttyű

Allocate a pseudo-tty.

Boolean value expected.

Updates cause replacement.

Defaults to false

userű

Username or UID.

String value expected.

3.3. Working with Templates 663

Heat Documentation, Release 16.1.1.dev14

Updates cause replacement.

Defaults to ""

volumesű

Create a bind mount.

Map value expected.

Updates cause replacement.

Defaults to {}

volumes_fromű

Mount all specified volumes.

List value expected.

Updates cause replacement.

Defaults to ""

Attributes

infoű Container info.

logsű Container logs.

logs_headű Container first logs line.

logs_tailű Container last logs line.

network_gatewayű Container ip gateway.

network_infoű Container network info.

network_ipű Container ip address.

network_tcp_portsű Container TCP ports.

network_udp_portsű Container UDP ports.

showű Detailed information about resource.

HOT Syntax

heat_template_version: 2015-04-30
...
resources:

...
the_resource:

type: DockerInc::Docker::Container
properties:

cap_add: [String, String, ...]
cap_drop: [String, String, ...]
cmd: [Value, Value, ...]
cpu_set: String
cpu_shares: Integer

(continues on next page)

664 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

devices: [{"path_on_host": String, "path_in_container": String,
↪→"permissions": String}, {"path_on_host": String, "path_in_container":
↪→String, "permissions": String}, ...]

dns: [Value, Value, ...]
docker_endpoint: String
env: [Value, Value, ...]
hostname: String
image: String
links: {...}
memory: Integer
name: String
open_stdin: Boolean
port_bindings: {...}
port_specs: [Value, Value, ...]
privileged: Boolean
read_only: Boolean
restart_policy: {"Name": String, "MaximumRetryCount": Integer}
stdin_once: Boolean
tty: Boolean
user: String
volumes: {...}
volumes_from: [Value, Value, ...]

CloudFormation Compatible Functions

There are a number of functions that you can use to help you write CloudFormation compatible tem-
plates. While most CloudFormation functions are supported in HOT version 2013-05-23, Fn::Select
is the only CloudFormation function supported in HOT templates since version 2014-10-16 which is
introduced in Juno.

All of these functions (except Ref) start with Fn::.

Ref

Returns the value of the named parameter or resource.

Parameters

name [String] The name of the resource or parameter.

Usage

{Ref: my_server}

Returns the nova instance ID. For example, d8093de0-850f-4513-b202-7979de6c0d55.

3.3. Working with Templates 665

Heat Documentation, Release 16.1.1.dev14

Fn::Base64

This is a placeholder for a function to convert an input string to Base64. This function in Heat actually
performs no conversion. It is included for the benefit of CFN templates that convert UserData to Base64.
Heat only accepts UserData in plain text.

Parameters

value [String] The string to convert.

Usage

{"Fn::Base64": "convert this string please."}

Returns the original input string.

Fn::FindInMap

Returns the value corresponding to keys into a two-level map declared in the Mappings section.

Parameters

map_name [String] The logical name of a mapping declared in the Mappings section that contains the
keys and values.

top_level_key [String] The top-level key name. Its value is a list of key-value pairs.

second_level_key [String] The second-level key name, which is set to one of the keys from the list
assigned to top_level_key.

Usage

Mapping:
MyContacts:

jone: {phone: 337, email: a@b.com}
jim: {phone: 908, email: g@b.com}

{"Fn::FindInMap": ["MyContacts", "jim", "phone"] }

Returns 908.

666 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Fn::GetAtt

Returns an attribute of a resource within the template.

Parameters

resource [String] The name of the resource.

attribute [String] The name of the attribute.

Usage

{Fn::GetAtt: [my_server, PublicIp]}

Returns an IP address such as 10.0.0.2.

Fn::GetAZs

Returns the Availability Zones within the given region.

Note: AZs and regions are not fully implemented in Heat.

Parameters

region [String] The name of the region.

Usage

{Fn::GetAZs: ""}

Returns the list provided by nova availability-zone-list.

Fn::Join

Like python join, it joins a list of strings with the given delimiter.

Parameters

delimiter [String] The string to join the list with.

list [list] The list to join.

3.3. Working with Templates 667

Heat Documentation, Release 16.1.1.dev14

Usage

{Fn::Join: [",", ["beer", "wine", "more beer"]]}

Returns beer, wine, more beer.

Fn::Select

Select an item from a list.

Heat extension: Select an item from a map

Parameters

selector [string or integer] The number of item in the list or the name of the item in the map.

collection [map or list] The collection to select the item from.

Usage

For a list lookup:

{ "Fn::Select" : ["2", ["apples", "grapes", "mangoes"]] }

Returns mangoes.

For a map lookup:

{ "Fn::Select" : ["red", {"red": "a", "flu": "b"}] }

Returns a.

Fn::Split

This is the reverse of Join. Convert a string into a list based on the delimiter.

Parameters

delimiter [string] Matching string to split on.

string [String] The string to split.

668 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Usage

{ "Fn::Split" : [",", "str1,str2,str3,str4"]}

Returns {["str1", "str2", "str3", "str4"]}.

Fn::Replace

Find and replace one string with another.

Parameters

substitutions [map] A map of substitutions.

string: String The string to do the substitutions in.

Usage

{"Fn::Replace": [
{'$var1': 'foo', '%var2%': 'bar'},
'$var1 is %var2%'

]}

Returns "foo is bar".

Fn::ResourceFacade

When writing a Template Resource:

• user writes a template that will fill in for a resource (the resource is the facade).

• when they are writing their template they need to access the metadata from the facade.

Parameters

attribute_name [String] One of Metadata, DeletionPolicy or UpdatePolicy.

Usage

{'Fn::ResourceFacade': 'Metadata'}
{'Fn::ResourceFacade': 'DeletionPolicy'}
{'Fn::ResourceFacade': 'UpdatePolicy'}

3.3. Working with Templates 669

Heat Documentation, Release 16.1.1.dev14

Example

Here is a top level template top.yaml

resources:
my_server:

type: OS::Nova::Server
metadata:

key: value
some: more stuff

Here is a resource template my_actual_server.yaml

resources:
_actual_server_:

type: OS::Nova::Server
metadata: {'Fn::ResourceFacade': Metadata}

The environment file env.yaml

resource_registry:
resources:

my_server:
"OS::Nova::Server": my_actual_server.yaml

To use it

$ openstack stack create -t top.yaml -e env.yaml mystack

What happened is the metadata in top.yaml (key: value, some: more stuff) gets passed into the
resource template via the Fn::ResourceFacade function.

Fn::MemberListToMap

Convert an AWS style member list into a map.

Parameters

key name: string The name of the key (normally Name or Key).

value name: string The name of the value (normally Value).

list: A list of strings The string to convert.

670 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Usage

{'Fn::MemberListToMap': ['Name', 'Value', ['.member.0.Name=key',
'.member.0.Value=door',
'.member.1.Name=colour',
'.member.1.Value=green']]}

Returns {'key': 'door', 'colour': 'green'}.

Fn::Equals

Compares whether two values are equal. And returns true if the two values are equal or false if they
arent.

Parameters

value1: A value of any type that you want to compare.

value2: A value of any type that you want to compare.

Usage

{'Fn::Equals': [{'Ref': 'env_type'}, 'prod']}

Returns true if the param env_type equals to prod, otherwise returns false.

Fn::If

Returns one value if the specified condition evaluates to true and another value if the specified condition
evaluates to false.

Parameters

condition_name: A reference to a condition in the Conditions section.

value_if_true: A value to be returned if the specified condition evaluates to true.

value_if_false: A value to be returned if the specified condition evaluates to false.

3.3. Working with Templates 671

Heat Documentation, Release 16.1.1.dev14

Usage

{'Fn::If': ['create_prod', 'value_true', 'value_false']}

Returns value_true if the condition create_prod evaluates to true, otherwise returns value_false.

Fn::Not

Acts as a NOT operator.

The syntax of the Fn::Not function is

{'Fn::Not': [condition]}

Returns true for a condition that evaluates to false or returns false for a condition that evaluates to true.

Parameters

condition: A condition such as Fn::Equals that evaluates to true or false can be defined in this
function, also we can set a boolean value as a condition.

Usage

{'Fn::Not': [{'Fn::Equals': [{'Ref': env_type'}, 'prod']}]}

Returns false if the param env_type equals to prod, otherwise returns true.

Fn::And

Acts as an AND operator to evaluate all the specified conditions. Returns true if all the specified condi-
tions evaluate to true, or returns false if any one of the conditions evaluates to false.

Parameters

condition: A condition such as Fn::Equals that evaluates to true or false.

Usage

{'Fn::And': [{'Fn::Equals': [{'Ref': env_type}, 'prod']},
{'Fn::Not': [{'Fn::Equals': [{'Ref': zone}, 'beijing']}]}]

Returns true if the param env_type equals to prod and the param zone is not equal to beijing, otherwise
returns false.

672 Chapter 3. Using Heat

Heat Documentation, Release 16.1.1.dev14

Fn::Or

Acts as an OR operator to evaluate all the specified conditions. Returns true if any one of the specified
conditions evaluate to true, or returns false if all of the conditions evaluates to false.

Parameters

condition: A condition such as Fn::Equals that evaluates to true or false.

Usage

{'Fn::Or': [{'Fn::Equals': [{'Ref': zone}, 'shanghai']},
{'Fn::Equals': [{'Ref': zone}, 'beijing']}]}

Returns true if the param zone equals to shanghai or beijing, otherwise returns false.

3.3.2 Example Templates

This page documents the templates at https://opendev.org/openstack/heat-templates/

Example HOT Templates

Hello World HOT Template

https://opendev.org/openstack/heat-templates/src/branch/master/hot/hello_world.yaml

Description

Hello world HOT template that just defines a single compute instance. Contains just base features to
verify base HOT support.

Parameters

key_name (required)

type string

description Name of an existing key pair to use for the instance

flavor (optional)

type string

description Flavor for the instance to be created

image (required)

type string

description Image ID or image name to use for the instance

3.3. Working with Templates 673

https://opendev.org/openstack/heat-templates/
https://opendev.org/openstack/heat-templates/src/branch/master/hot/hello_world.yaml

Heat Documentation, Release 16.1.1.dev14

admin_pass (required)

type string

description The admin password for the instance

db_port (optional)

type number

description The database port number

Example CFN Templates

AWS Wordpress Single Instance Template

https://opendev.org/openstack/heat-templates/src/branch/master/cfn/F18/WordPress_Single_Instance.
template

Description

AWS CloudFormation Sample Template WordPress_Single_Instance: WordPress is web software you
can use to create a beautiful website or blog. This template installs a single-instance WordPress deploy-
ment using a local MySQL database to store the data.

Parameters

KeyName (required)

type string

description Name of an existing EC2 KeyPair to enable SSH access to the instance

InstanceType (optional)

type string

description The EC2 instance type

DBName (optional)

type string

description The WordPress database name

DBUsernameName (optional)

type string

description The WordPress database admin account username

DBPassword (optional)

type string

description The WordPress database admin account password

DBRootPassword (optional)

674 Chapter 3. Using Heat

https://opendev.org/openstack/heat-templates/src/branch/master/cfn/F18/WordPress_Single_Instance.template
https://opendev.org/openstack/heat-templates/src/branch/master/cfn/F18/WordPress_Single_Instance.template

Heat Documentation, Release 16.1.1.dev14

type string

description Root password for MySQL

LinuxDistribution (optional)

type string

description Linux distribution of choice

3.4 Using the Heat Service

• OpenStack Orchestration API v1 Reference

• Python and CLI client

3.4. Using the Heat Service 675

https://docs.openstack.org/api-ref/orchestration/v1/
https://docs.openstack.org/python-heatclient/wallaby/

Heat Documentation, Release 16.1.1.dev14

676 Chapter 3. Using Heat

CHAPTER

FOUR

DEVELOPING HEAT

4.1 Heat Contributor Guidelines

In the contributor guide, you will find documented policies for developing with heat. This includes the
processes we use for blueprints and specs, bugs, contributor onboarding, core reviewer memberships,
and other procedural items.

Note: This guideline also includes documentation for developers.

4.1.1 Heat and DevStack

Heat is fully integrated into DevStack. This is a convenient way to try out or develop heat alongside the
current development state of all the other OpenStack projects. Heat on DevStack works on both Ubuntu
and Fedora.

These instructions assume you already have a working DevStack installation which can launch basic
instances.

Configure DevStack to enable heat

Heat is configured by default on devstack for Icehouse and Juno releases.

Newer versions of OpenStack require enabling heat services in devstack local.conf. Add the following
to [[local|localrc]] section of local.conf :

[[local|localrc]]

#Enable heat services
enable_service h-eng h-api h-api-cfn h-api-cw

Since Newton release, heat is available as a devstack plugin. To enable the plugin add the following to
the [[local|localrc]] section of local.conf :

[[local|localrc]]

#Enable heat plugin
enable_plugin heat https://opendev.org/openstack/heat

677

Heat Documentation, Release 16.1.1.dev14

To use stable branches, make sure devstack is on that branch, and specify the branch name to en-
able_plugin, for example:

enable_plugin heat https://opendev.org/openstack/heat stable/newton

It would also be useful to automatically download and register a VM image that heat can launch. To do
that add the following to [[local|localrc]] section of local.conf :

IMAGE_URL_SITE="https://download.fedoraproject.org"
IMAGE_URL_PATH="/pub/fedora/linux/releases/37/Cloud/x86_64/images/"
IMAGE_URL_FILE="Fedora-Cloud-Base-37-1.7.x86_64.qcow2"
IMAGE_URLS+=","$IMAGE_URL_SITE$IMAGE_URL_PATH$IMAGE_URL_FILE

URLs for any cloud image may be specified, but fedora images from F20 contain the heat-cfntools
package which is required for some heat functionality.

That is all the configuration that is required. When you run ./stack.sh the heat processes will be launched
in screen with the labels prefixed with h-.

Configure DevStack to enable ceilometer and aodh (if using alarms)

To use aodh alarms you need to enable ceilometer and aodh in devstack. Adding the following lines to
[[local|localrc]] section of local.conf will enable the services:

CEILOMETER_BACKEND=mongodb
enable_plugin ceilometer https://opendev.org/openstack/ceilometer
enable_plugin aodh https://opendev.org/openstack/aodh

Configure DevStack to enable OSprofiler

Adding the following line to [[local|localrc]] section of local.conf will add the profiler notifier to your
ceilometer:

CEILOMETER_NOTIFICATION_TOPICS=notifications,profiler

Enable the profiler in /etc/heat/heat.conf:

$ echo -e "[profiler]\nenabled = True\n"\
"trace_sqlalchemy = True\n"\
"hmac_keys = SECRET_KEY\n"\
>> /etc/heat/heat.conf

Run any command with profile SECRET_KEY:

$ heat --profile SECRET_KEY stack-list
it will print <Trace ID>

Get pretty HTML with traces:

$ osprofiler trace show --html <Trace ID>

Note that osprofiler should be run with the admin user name & tenant.

678 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Create a stack

Now that you have a working heat environment you can go to Creating your first stack.

4.1.2 Blueprints and Specs

The Heat team uses the heat-specs repository for its specification reviews. Detailed information can be
found here.

Please note that we use a template for spec submissions. Please use the template for the latest release. It
is not required to fill out all sections in the template.

You have to create a Story in StoryBoard heat storyboard. And create tasks that fit with the plan to
implement this spec (A task to link to a patch in gerrit).

Spec Notes

There are occasions when a spec is approved and the code does not land in the cycle it was targeted for.
For these cases, the workflow to get the spec into the next release is as below:

• Anyone can propose a patch to heat-specs which moves a spec from the previous release backlog
into the new release directory.

The specs which are moved in this way can be fast-tracked into the next release. Please note that it is
required to re-propose the spec for the new release and itll be evaluated based on the resources available
and cycle priorities.

Heat Spec Lite

Lite specs are small feature requests tracked as StoryBoard stories, and tagged with spec-lite and
priority-wishlist tag. These allow for submission and review of these feature requests before code is
submitted.

These can be used for small features that dont warrant a detailed spec to be proposed, evaluated, and
worked on. The team evaluates these requests as it evaluates specs.

Once a spec-lite story has been approved/triaged as a Request for Enhancement(RFE), itll be targeted
for a release.

The workflow for the life of a spec-lite in StoryBoard is as follows:

• File a story with a small summary of what the requested change is and tag it as spec-lite and
priority-wishlist.

• Create tasks that fit to your plan in story.

• The story is evaluated and marked with tag as triaged to announce approval or Invalid to request
a full spec or its not a valided task.

• The task is moved to Progress once the code is up and ready to review.

• The task is moved to Merged once the patch lands.

• The story is moved to Merged once all tasks merged.

The drivers team will discuss the following story reports in IRC meetings:

4.1. Heat Contributor Guidelines 679

https://opendev.org/openstack/heat-specs
https://wiki.openstack.org/wiki/Blueprints#Heat
https://opendev.org/openstack/heat-specs/src/branch/master/specs/templates
https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 16.1.1.dev14

• heat stories

• heat story filter

Lite spec Submission Guidelines

When a story is submitted, there is field that must be filled: Description.

The Description section must be a description of what you would like to see implemented in heat. The
description should provide enough details for a knowledgeable developer to understand what is the
existing problem and whats the proposed solution.

Add spec-lite tag to the story.

Lite spec from existing stories

If theres an already existing story that describes a small feature suitable for a spec-lite, add a spec-lite
tag to the story. There is no need to create a new story. The comments and history of the existing story
are important for its review.

4.1.3 Heat architecture

Heat is a service to orchestrate multiple composite cloud applications using the AWS CloudFormation
template format, through both an OpenStack-native REST API and a CloudFormation-compatible Query
API.

Detailed description

What is the purpose of the project and vision for it?

Heat provides an AWS CloudFormation implementation for OpenStack that orchestrates an AWS Cloud-
Formation template describing a cloud application by executing appropriate OpenStack API calls to
generate running cloud applications.

Describe the relevance of the project to other OpenStack projects and the OpenStack mission to provide
a ubiquitous cloud computing platform:

The software integrates other core components of OpenStack into a one-file template system. The tem-
plates allow creation of most OpenStack resource types (such as instances, floating IPs, volumes, secu-
rity groups and users), as well as some more advanced functionality such as instance high availability,
instance autoscaling, and nested stacks. By providing very tight integration with other OpenStack core
projects, all OpenStack core projects could receive a larger user base.

Currently no other CloudFormation implementation exists for OpenStack. The developers believe cloud
developers have a strong desire to move workloads from AWS to OpenStack deployments. Given the
missing gap of a well-implemented and integrated CloudFormation API in OpenStack, we provide a
high quality implementation of this gap improving the ubiquity of OpenStack.

680 Chapter 4. Developing Heat

https://storyboard.openstack.org/#!/project_group/82
https://storyboard.openstack.org/#!/board/71
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html?r=7078

Heat Documentation, Release 16.1.1.dev14

Heat services

The developers are focused on creating an OpenStack style project using OpenStack design tenets, im-
plemented in Python. We have started with full integration with keystone. We have a number of compo-
nents.

As the developers have only started development in March 2012, the architecture is evolving rapidly.

heat

The heat tool is a CLI which communicates with the heat-api to execute AWS CloudFormation APIs.
End developers could also use the heat REST API directly.

heat-api

The heat-api component provides an OpenStack-native REST API that processes API requests by send-
ing them to the heat-engine over RPC.

heat-api-cfn

The heat-api-cfn component provides an AWS Query API that is compatible with AWS CloudFormation
and processes API requests by sending them to the heat-engine over RPC.

heat-engine

The heat-engines main responsibility is to orchestrate the launching of templates and provide events
back to the API consumer.

The templates integrate well with Puppet and Chef.

4.1.4 Heat Resource Plug-in Development Guide

Heat allows service providers to extend the capabilities of the orchestration service by writing their
own resource plug-ins. These plug-ins are written in Python and included in a directory configured by
the service provider. This guide describes a resource plug-in structure and life cycle in order to assist
developers in writing their own resource plug-ins.

Resource Plug-in Life Cycle

A resource plug-in is relatively simple in that it needs to extend a base Resource class and implement
some relevant life cycle handler methods. The basic life cycle methods of a resource are:

create The plug-in should create a new physical resource.

update The plug-in should update an existing resource with new configuration or tell the engine that
the resource must be destroyed and re-created. This method is optional; the default behavior is to
create a replacement resource and then delete the old resource.

suspend The plug-in should suspend operation of the physical resource; this is an optional operation.

4.1. Heat Contributor Guidelines 681

https://s3.amazonaws.com/cloudformation-examples/IntegratingAWSCloudFormationWithPuppet.pdf
https://www.full360.com/2011/02/27/integrating-aws-cloudformation-and-chef.html

Heat Documentation, Release 16.1.1.dev14

resume The plug-in should resume operation of the physical resource; this is an optional operation.

delete The plug-in should delete the physical resource.

The base class Resource implements each of these life cycle methods and defines one or more handler
methods that plug-ins can implement in order to manifest and manage the actual physical resource
abstracted by the plug-in. These handler methods will be described in detail in the following sections.

Heat Resource Base Class

Plug-ins must extend the class heat.engine.resource.Resource.

This class is responsible for managing the overall life cycle of the plug-in. It defines methods corre-
sponding to the life cycle as well as the basic hooks for plug-ins to handle the work of communicating
with specific down-stream services. For example, when the engine determines it is time to create a
resource, it calls the create method of the applicable plug-in. This method is implemented in the
Resource base class and handles most of the bookkeeping and interaction with the engine. This
method then calls a handle_create method defined in the plug-in class (if implemented) which is
responsible for using specific service calls or other methods needed to instantiate the desired physical
resource (server, network, volume, etc).

Resource Status and Action

The base class handles reporting state of the resource back to the engine. A resources state is the combi-
nation of the life cycle action and the status of that action. For example, if a resource is created success-
fully, the state of that resource will be CREATE_COMPLETE. Alternatively, if the plug-in encounters an
error when attempting to create the physical resource, the state would be CREATE_FAILED. The base
class handles the reporting and persisting of resource state, so a plug-ins handler methods only need to
return data or raise exceptions as appropriate.

Resource Support Status

New resource should be marked from which OpenStack release it will be available with support_status
option. For more details, see Heat Support Status usage Guide.

Resource description

An important part of future resources is a concisely written description. It should be in class docstring
and contain information about the resource and how it could be useful to the end-user. The docstring
description is used in documentation generation and should be always defined, if resource is designed
for public use. Docstring should follows PEP 257.

class CustomResource(resource.Resource):
"""This custom resource has description.

Now end-users could understand the meaning of the resource existing
and will use it correctly without any additional questions.
"""

682 Chapter 4. Developing Heat

https://www.python.org/dev/peps/pep-0257/

Heat Documentation, Release 16.1.1.dev14

Properties and Attributes

A resources properties define the settings the template author can manipulate when including that re-
source in a template. Some examples would be:

• Which flavor and image to use for a Nova server

• The port to listen to on Neutron LBaaS nodes

• The size of a Cinder volume

Note: Properties should normally be accessed through self.properties. This resolves intrinsic func-
tions, provides default values when required and performs property translation for backward compatible
schema changes. The self.properties.data dict provides access to the raw data supplied by the user in the
template without any of those transformations.

Attributes describe runtime state data of the physical resource that the plug-in can expose to other re-
sources in a Stack. Generally, these arent available until the physical resource has been created and is in
a usable state. Some examples would be:

• The host id of a Nova server

• The status of a Neutron network

• The creation time of a Cinder volume

Defining Resource Properties

Each property that a resource supports must be defined in a schema that informs the engine and validation
logic what the properties are, what type each is, and validation constraints. The schema is a dictionary
whose keys define property names and whose values describe the constraints on that property. This
dictionary must be assigned to the properties_schema attribute of the plug-in.

from heat.common.i18n import _
from heat.engine import constraints
from heat.engine import properties

nested_schema = {
"foo": properties.Schema(

properties.Schema.STRING,
_('description of foo field'),
constraints=[

constraints.AllowedPattern('(Ba[rc]?)+'),
constraints.Length(max=10,

description="don't go crazy")
]

)
}
properties_schema = {

"property_name": properties.Schema(
properties.Schema.MAP,
_('Internationalized description of property'),
required=True,
default={"Foo": "Bar"},

(continues on next page)

4.1. Heat Contributor Guidelines 683

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

schema=nested_schema
)

}

As shown above, some properties may themselves be complex and reference nested schema definitions.
Following are the parameters to the Schema constructor; all but the first have defaults.

data_type:

Defines the type of the propertys value. The valid types are the members of the list
properties.Schema.TYPES, currently INTEGER, STRING, NUMBER, BOOLEAN,
MAP, LIST and ANY; please use those symbolic names rather than the literals to which
they are equated. For LIST and MAP type properties, the schema referenced constrains
the format of complex items in the list or map.

description: A description of the property and its function; also used in documentation generation.
Default is None but you should always provide a description.

default: The default value to assign to this property if none was supplied in the template. Default is
None.

schema: This propertys value is complex and its members must conform to this referenced schema
in order to be valid. The referenced schema dictionary has the same format as the
properties_schema. Default is None.

required: True if the property must have a value for the template to be valid; False otherwise. The
default is False

constraints: A list of constraints that apply to the propertys value. See Property Constraints.

update_allowed: True if an existing resource can be updated, False means update is accomplished
by delete and re-create. Default is False.

immutable: True means updates are not supported, resource update will fail on every change of this
property. False otherwise. Default is False.

support_status: Defines current status of the property. Read Heat Support Status usage Guide for de-
tails.

Accessing property values of the plug-in at runtime is then a simple call to:

self.properties['PropertyName']

Based on the property type, properties without a set value will return the default empty value for that
type:

Type Empty Value
String
Number 0
Integer 0
List []
Map {}
Boolean False

684 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Property Constraints

Following are the available kinds of constraints. The description is optional and, if given, states the
constraint in plain language for the end user.

AllowedPattern(regex, description): Constrains the value to match the given regular expression; appli-
cable to STRING.

AllowedValues(allowed, description): Lists the allowed values. allowed must be a collections.
abc.Sequence or string. Applicable to all types of value except MAP.

Length(min, max, description): Constrains the length of the value. Applicable to STRING, LIST,
MAP. Both min and max default to None.

Range(min, max, description): Constrains a numerical value. Applicable to INTEGER and NUMBER.
Both min and max default to None.

Modulo(step, offset, description): Starting with the specified offset, every multiple of step is a
valid value. Applicable to INTEGER and NUMBER.

Available from template version 2017-02-24.

CustomConstraint(name, description, environment): This constructor brings in a named constraint
class from an environment. If the given environment is None (its default) then the environment
used is the global one.

Defining Resource Attributes

Attributes communicate runtime state of the physical resource. Note that some plug-ins do not de-
fine any attributes and doing so is optional. If the plug-in needs to expose attributes, it will define an
attributes_schema similar to the properties schema described above. Each item in the schema
dictionary consists of an attribute name and an attribute Schema object.

attributes_schema = {
"foo": attributes.Schema(

_("The foo attribute"),
type=attribute.Schema.STRING

),
"bar": attributes.Schema(

_("The bar attribute"),
type=attribute.Schema.STRING

),
"baz": attributes.Schema(

_("The baz attribute"),
type=attribute.Schema.STRING

)
}

Following are the parameters to the Schema.

description A description of the attribute; also used in documentation generation. Default is None but
you should always provide a description.

type Defines the type of attribute value. The valid types are the members of the list attributes.
Schema.TYPES, currently STRING, NUMBER, BOOLEAN, MAP, and LIST; please use those
symbolic names rather than the literals to which they are equated.

4.1. Heat Contributor Guidelines 685

Heat Documentation, Release 16.1.1.dev14

support_status Defines current status of the attribute. Read Heat Support Status usage Guide for details.

If attributes are defined, their values must also be resolved by the plug-in. The simplest way to do this is
to override the _resolve_attribute method from the Resource class:

def _resolve_attribute(self, name):
_example_get_physical_resource is just an example and is not
defined in the Resource class
phys_resource = self._example_get_physical_resource()
if phys_resource:

if not hasattr(phys_resource, name):
this is usually not needed, but this is a simple
example
raise exception.InvalidTemplateAttribute(name)

return getattr(phys_resource, name)
return None

If the plug-in needs to be more sophisticated in its attribute resolution, the plug-in may instead choose
to override FnGetAtt. However, if this method is chosen, validation and accessibility of the attribute
would be the plug-ins responsibility.

Also, each resource has show attribute by default. The attribute uses default implementation from
heat.engine.resource.Resource class, but if resource has different way of resolving show
attribute, the _show_resource method from the Resource class will need to be overridden:

def _show_resource(self):
"""Default implementation; should be overridden by resources.

:returns: the map of resource information or None
"""

if self.entity:
try:

obj = getattr(self.client(), self.entity)
resource = obj.get(self.resource_id)
if isinstance(resource, dict):

return resource
else:

return resource.to_dict()
except AttributeError as ex:

LOG.warning("Resolving 'show' attribute has failed : %s",
ex)

return None

Property and Attribute Example

Assume the following simple property and attribute definition:

properties_schema = {
'foo': properties.Schema(

properties.Schema.STRING,
_('foo prop description'),
default='foo',
required=True

),
'bar': properties.Schema(

(continues on next page)

686 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

properties.Schema.INTEGER,
_('bar prop description'),
required=True,
constraints=[

constraints.Range(5, 10)
]

)
}

attributes_schema = {
'Attr_1': attributes.Schema(

_('The first attribute'),
support_status=support.Status('5.0.0'),
type=attributes.Schema.STRING

),
'Attr_2': attributes.Schema(

_('The second attribute'),
type=attributes.Schema.MAP

)
}

Also assume the plug-in defining the above has been registered under the template reference name
Resource::Foo (see Registering Resource Plug-ins). A template author could then use this plug-in in a
stack by simply making following declarations in a template:

... other sections omitted for brevity ...

resources:
resource-1:

type: Resource::Foo
properties:

foo: Value of the foo property
bar: 7

outputs:
foo-attrib-1:

value: { get_attr: [resource-1, Attr_1] }
description: The first attribute of the foo resource

foo-attrib-2:
value: { get_attr: [resource-1, Attr_2] }
description: The second attribute of the foo resource

Life Cycle Handler Methods

To do the work of managing the physical resource the plug-in supports, the following life cycle handler
methods should be implemented. Note that the plug-in need not implement all of these methods; optional
handlers will be documented as such.

Generally, the handler methods follow a basic pattern. The basic handler method for any life cy-
cle step follows the format handle_<life cycle step>. So for the create step, the handler
method would be handle_create. Once a handler is called, an optional check_<life cycle
step>_complete may also be implemented so that the plug-in may return immediately from the
basic handler and then take advantage of cooperative multi-threading built in to the base class and pe-
riodically poll a down-stream service for completion; the check method is polled until it returns True.

4.1. Heat Contributor Guidelines 687

Heat Documentation, Release 16.1.1.dev14

Again, for the create step, this method would be check_create_complete.

Create

handle_create(self)
Create a new physical resource. This function should make the required calls to create the physical
resource and return as soon as there is enough information to identify the resource. The function
should return this identifying information and implement check_create_complete which
will take this information in as a parameter and then periodically be polled. This allows for
cooperative multi-threading between multiple resources that have had their dependencies satisfied.

Note once the native identifier of the physical resource is known, this function should call self.
resource_id_set passing the native identifier of the physical resource. This will persist the
identifier and make it available to the plug-in by accessing self.resource_id.

Returns A representation of the created physical resource

Raise any Exception if the create failed

check_create_complete(self, token)
If defined, will be called with the return value of handle_create

Parameters token the return value of handle_create; used to poll the physical
resources status.

Returns True if the physical resource is active and ready for use; False otherwise.

Raise any Exception if the create failed.

Update (Optional)

Note that there is a default implementation of handle_update in heat.engine.resource.
Resource that simply raises an exception indicating that updates require the engine to delete and
re-create the resource (this is the default behavior) so implementing this is optional.

handle_update(self, json_snippet, tmpl_diff, prop_diff)
Update the physical resources using updated information.

Parameters

• json_snippet (collections.abc.Mapping) the resource defini-
tion from the updated template

• tmpl_diff (collections.abc.Mapping) values in the updated def-
inition that have changed with respect to the original template definition.

• prop_diff (collections.abc.Mapping) property values that are
different between the original definition and the updated definition; keys are
property names and values are the new values. Deleted or properties that were
originally present but now absent have values of None

Note Before calling handle_update we check whether need to replace the re-
source, especially for resource in *_FAILED state, there is a default implementation of
needs_replace_failed in heat.engine.resource.Resource that simply returns
True indicating that updates require replacement. And we override the implementation for

688 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

OS::Nova::Server, OS::Cinder::Volume and all of neutron resources. The base princi-
ple is that to check whether the resource exists underlying and whether the real status is available.
So override the method needs_replace_failed for your resource plug-ins if needed.

check_update_complete(self, token)
If defined, will be called with the return value of handle_update

Parameters token the return value of handle_update; used to poll the physical
resources status.

Returns True if the update has finished; False otherwise.

Raise any Exception if the update failed.

Suspend (Optional)

These handler functions are optional and only need to be implemented if the physical resource supports
suspending

handle_suspend(self)
If the physical resource supports it, this function should call the native API and sus-
pend the resources operation. This function should return information sufficient for
check_suspend_complete to poll the native API to verify the operations status.

Returns a token containing enough information for check_suspend_complete
to verify operation status.

Raise any Exception if the suspend operation fails.

check_suspend_complete(self, token)
Verify the suspend operation completed successfully.

Parameters token the return value of handle_suspend

Returns True if the suspend operation completed and the physical resource is now
suspended; False otherwise.

Raise any Exception if the suspend operation failed.

Resume (Optional)

These handler functions are optional and only need to be implemented if the physical resource supports
resuming from a suspended state

handle_resume(self)
If the physical resource supports it, this function should call the native API and resume
a suspended resources operation. This function should return information sufficient for
check_resume_complete to poll the native API to verify the operations status.

Returns a token containing enough information for check_resume_complete to
verify operation status.

Raise any Exception if the resume operation fails.

check_resume_complete(self, token)
Verify the resume operation completed successfully.

4.1. Heat Contributor Guidelines 689

Heat Documentation, Release 16.1.1.dev14

Parameters token the return value of handle_resume

Returns True if the resume operation completed and the physical resource is now
active; False otherwise.

Raise any Exception if the resume operation failed.

Delete

handle_delete(self)
Delete the physical resource.

Returns a token containing sufficient data to verify the operations status

Raise any Exception if the delete operation failed

Note: As of the Liberty release, implementing handle_delete is optional. The parent resource
class can handle the most common pattern for deleting resources:

def handle_delete(self):
if self.resource_id is not None:

try:
self.client().<entity>.delete(self.resource_id)

except Exception as ex:
self.client_plugin().ignore_not_found(ex)
return None

return self.resource_id

For this to work for a particular resource, the entity and default_client_name attributes must be
overridden in the resource implementation. For example, entity of Aodh Alarm should equals to
alarm and default_client_name to aodh.

handle_delete_snapshot(self, snapshot)
Delete resource snapshot.

Parameters snapshot dictionary describing current snapshot.

Returns a token containing sufficient data to verify the operations status

Raise any Exception if the delete operation failed

handle_snapshot_delete(self, state)
Called instead of handle_delete when the deletion policy is SNAPSHOT. Create backup of
resource and then delete resource.

Parameters state the (action, status) tuple of the resource to make sure that backup
may be created for the current resource

Returns a token containing sufficient data to verify the operations status

Raise any Exception if the delete operation failed

check_delete_complete(self, token)
Verify the delete operation completed successfully.

690 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Parameters token the return value of handle_delete or
handle_snapshot_delete (for deletion policy - Snapshot) used to
verify the status of the operation

Returns True if the delete operation completed and the physical resource is deleted;
False otherwise.

Raise any Exception if the delete operation failed.

check_delete_snapshot_complete(self, token)
Verify the delete snapshot operation completed successfully.

Parameters token the return value of handle_delete_snapshot used to ver-
ify the status of the operation

Returns True if the delete operation completed and the snapshot is deleted; False
otherwise.

Raise any Exception if the delete operation failed.

Resource Dependencies

Ideally, your resource should not have any hidden dependencies, i.e. Heat should be able to infer
any inbound or outbound dependencies of your resource instances from resource properties and the
other resources/resource attributes they reference. This is handled by heat.engine.resource.
Resource.add_dependencies().

If this is not possible, please do not simply override add_dependencies() in your resource plugin! This
has previously caused problems for multiple operations, usually due to uncaught exceptions, If you feel
you need to override add_dependencies(), please reach out to Heat developers on the #heat IRC channel
on FreeNode or on the openstack-discuss mailing list to discuss the possibility of a better solution.

Registering Resource Plug-ins

To make your plug-in available for use in stack templates, the plug-in must register a reference name
with the engine. This is done by defining a resource_mapping function in your plug-in module that
returns a map of template resource type names and their corresponding implementation classes:

def resource_mapping():
return { 'My::Custom::Plugin': MyResourceClass }

This would allow a template author to define a resource as:

resources:
my_resource:

type: My::Custom::Plugin
properties:
... your plug-in's properties ...

Note that you can define multiple plug-ins per module by simply returning a map containing a unique
template type name for each. You may also use this to register a single resource plug-in under multiple
template type names (which you would only want to do when constrained by backwards compatibility).

4.1. Heat Contributor Guidelines 691

https://bugs.launchpad.net/heat/+bug/1554625
mailto:openstack-discuss@lists.openstack.org

Heat Documentation, Release 16.1.1.dev14

Configuring the Engine

In order to use your plug-in, Heat must be configured to read your resources from a particular directory.
The plugin_dirs configuration option lists the directories on the local file system where the engine
will search for plug-ins. Simply place the file containing your resource in one of these directories and
the engine will make them available next time the service starts.

See Configuring Heat for more information on configuring the orchestration service.

Testing

Tests can live inside the plug-in under the tests namespace/directory. The Heat plug-in loader will im-
plicitly not load anything under that directory. This is useful when your plug-in tests have dependencies
you dont want installed in production.

Putting It All Together

You can find the plugin classes in heat/engine/resources. An exceptionally simple one to start
with is random_string.py; it is unusual in that it does not manipulate anything in the cloud!

Resource Contributions

The Heat team is interested in adding new resources that give Heat access to additional OpenStack or
StackForge projects. The following checklist defines the requirements for a candidate resource to be
considered for inclusion:

• Must wrap an OpenStack or StackForge project, or a third party project that is relevant to Open-
Stack users.

• Must have its dependencies listed in OpenStacks global-requirements.txt file, or else
it should be able to conditionally disable itself when there are missing dependencies, without
crashing or otherwise affecting the normal operation of the heat-engine service.

• The resources support status flag must be set to UNSUPPORTED, to indicate that the Heat team is
not responsible for supporting this resource.

• The code must be of comparable quality to official resources. The Heat team can help with this
during the review phase.

If you have a resource that is a good fit, you are welcome to contact the Heat team. If for any reason your
resource does not meet the above requirements, but you still think it can be useful to other users, you are
encouraged to host it on your own repository and share it as a regular Python installable package. You
can find example resource plug-ins that have all the required packaging files in the contrib directory
of the official Heat git repository.

692 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

4.1.5 Heat Stack Lifecycle Scheduler Hints

This is a mechanism whereby when heat processes a stack with Server or Volume resources, the stack
id, root stack id, stack resource uuid, stack resource name and the path in the stack can be passed by heat
to nova and cinder as scheduler hints.

Enabling the scheduler hints

By default, passing the lifecycle scheduler hints is disabled. To enable it, set stack_scheduler_hints to
True in heat.conf.

The hints

When heat processes a stack, and the feature is enabled, the stack id, root stack id, stack resource uuid,
stack resource name, and the path in the stack (as a list of comma delimited strings of stackresourcename
and stackname) will be passed by heat to nova and cinder as scheduler hints.

Purpose

A heat provider may have a need for custom code to examine stack requests prior to performing the
operations to create or update a stack. After the custom code completes, the provider may want to
provide hints to the nova or cinder schedulers with stack related identifiers, for processing by any custom
scheduler plug-ins configured for nova or cinder.

4.1.6 Guru Meditation Reports

Heat contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Heat executable. This report is called a Guru Meditation Report (GMR for short).

Generating a GMR

A GMR can be generated by sending the USR2 signal to any Heat process with support (see below). The
GMR will then be outputted standard error for that particular process.

For example, suppose that heat-api has process id 10172, and was run with 2>/var/log/heat/
heat-api-err.log. Then, kill -USR2 10172 will trigger the Guru Meditation report to be
printed to /var/log/heat/heat-api-err.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However,
the base GMR consists of several sections:

Package Shows information about the package to which this process belongs, including version infor-
mation

Threads Shows stack traces and thread ids for each of the threads within this process

4.1. Heat Contributor Guidelines 693

Heat Documentation, Release 16.1.1.dev14

Green Threads Shows stack traces for each of the green threads within this process (green threads dont
have thread ids)

Configuration Lists all the configuration options currently accessible via the CONF object for the cur-
rent process

Adding support for GMRs to new executable

Adding support for a GMR to a given executable is fairly easy.

First import the module (currently residing in oslo-incubator), as well as the Heat version module:

from oslo_reports import guru_meditation_report as gmr
from heat import version

Then, register any additional sections (optional):

TextGuruMeditation.register_section('Some Special Section',
some_section_generator)

Finally (under main), before running the main loop of the executable (usually server.start() or
something similar), register the GMR hook:

TextGuruMeditation.setup_autorun(version)

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the documentation about oslo.reports.

4.1.7 Heat Support Status usage Guide

Heat allows to use for each resource, property, attribute special option named support_status, which
describes current state of object: current status, since what time this status is actual, any additional
information about objects state. This guide describes a detailed state life cycle of resources, properties
and attributes.

Support Status option and its parameters

Support status of object may be specified by using class SupportStatus, which has follow options:

status:

Current status of object. Allowed values:

• SUPPORTED. Default value of status parameter. All objects with this status are avail-
able and can be used.

• DEPRECATED. Object with this status is available, but using it in code or templates is
undesirable. As usual, can be reference in message to new object, which can be used
instead of deprecated resource.

694 Chapter 4. Developing Heat

https://docs.openstack.org/oslo.reports/wallaby/

Heat Documentation, Release 16.1.1.dev14

• HIDDEN. The last step in the deprecation process. Old stacks containing resources
in this status will continue functioning. Certain functionality is disabled for resources
in this status (resource-type-list, resource-type-show, and resource-type-template). Re-
sources in HIDDEN status are not included in the documentation. A known limitation
is that new stacks can be created with HIDDEN resources. See below for more details
about the removal and deprecation process.

• UNSUPPORTED. Resources with UNSUPPORTED status are not supported by Heat
team, i.e. user can use it, but it may be broken.

substitute_class: Assign substitute class for object. If replacing the object with new object which in-
herited (or extended) from the substitute class will transfer the object to new class type gracefully
(without calling update replace).

version: Release name, since which current status is active. Parameter is optional, but should be defined
or changed any time SupportStatus is specified or status changed. It used for better understanding
from which release object in current status. .. note:

Since Liberty release mark looks like 5.0.0 instead of 2015.2.

message: Any additional information about objects state, e.g. 'Use property new_property
instead.'.

previous_status: Option, which allows to display objects previous status, if any. This is helpful for
displaying full life cycle of object. Type of previous_status is SupportStatus.

Life cycle of resource, property, attribute

This section describes life cycle of such objects as resource, property and attribute. All these objects
have same life cycle:

UNSUPPORTED -> SUPPORTED -> DEPRECATED -> HIDDEN
\
-> UNSUPPORTED

where UNSUPPORTED is optional.

Creating process of object

During creating object there is a reason to add support status. So new object should contains sup-
port_status parameter equals to SupportStatus class with defined version of object and, maybe,
substitute_class or some message. This parameter allows user to understand, from which OpenStack
release this object is available and can be used.

4.1. Heat Contributor Guidelines 695

Heat Documentation, Release 16.1.1.dev14

Deprecating process of object

When some object becomes obsolete, user should know about that, so there is need to add information
about deprecation in support_status of object. Status of SupportStatus must equals to DEPRE-
CATED. If there is no version parameter, need to add one with current release otherwise move current
status to previous_status and add to version current release as value. If some new object replaces old
object, it will be good decision to add some information about new object to support_status message of
old object, e.g. Use property new_property instead.. If old object is directly replaceable by new object,
we should add substitute_class to support_status in old object.

Removing process of object

After at least one full release cycle deprecated object should be hidden and support_status status
should equals to HIDDEN. HIDDEN status means hiding object from documentation and from result
of resource-type-list CLI command, if object is resource. Also, resource-type-show
command with such resource will raise NotSupported exception.

The purpose of hiding, rather than removing, obsolete resources or properties is to ensure that users
can continue to operate existing stacks - replacing or removing the offending resources, or deleting the
entire stack. Steps should be taken to ensure that these operations can succeed, e.g. by replacing a hidden
resource types implementation with one that is equivalent to OS::Heat::None when the underlying
API no longer exists, supplying a substitute_class for a resource type, or adding a property translation
rule.

Using Support Status during code writing

When adding new objects or adding objects instead of some old (e.g. property subnet instead of sub-
net_id in OS::Neutron::RouterInterface), there is some information about time of adding objects (since
which release it will be available or unavailable). This section described SupportStatus during
creating/deprecating/removing resources and properties and attributes. Note, that SupportStatus
locates in support.py, so you need to import support. For specifying status, use support constant names,
e.g. support.SUPPORTED. All constant names described in section above.

Using Support Status during creation

Option support_status may be used for whole resource:

class ResourceWithType(resource.Resource):

support_status=support.SupportStatus(
version='5.0.0',
message=_('Optional message')

)

To define support_status for property or attribute, follow next steps:

PROPERTY: properties.Schema(
...
support_status=support.SupportStatus(

version='5.0.0',

(continues on next page)

696 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

message=_('Optional message')
)

)

Same support_status definition for attribute schema.

Note, that in this situation status parameter of SupportStatus uses default value, equals to SUP-
PORTED.

Using Support Status during deprecation and hiding

When time of deprecation or hiding resource/property/attribute comes, follow next steps:

1. If there is some support_status in object, add previous_status parameter with current
SupportStatus value and change all other parameters for current status, version and, maybe,
substitute_class or message.

2. If there is no support_status option, add new one with parameters status equals to current status,
version equals to current release note and, optionally, some message.

Using Support Status during resource deprecating looks like:

class ResourceWithType(resource.Resource):

support_status=support.SupportStatus(
status=support.DEPRECATED,
version='5.0.0',
substitute_class=SubstituteResourceWithType,
message=_('Optional message'),
previous_status=support.SupportStatus(version='2014.2')

)

Using Support Status during attribute (or property) deprecating looks like:

ATTRIBUTE: attributes.Schema(
...
support_status=support.SupportStatus(

status=support.DEPRECATED,
version='5.0.0',
message=_('Optional message like: Use attribute new_attr'),
previous_status=support.SupportStatus(

version='2014.2',
message=_('Feature available since 2014.2'))

)
)

Same support_status defining for property schema.

Note, that during hiding object status should be equal support.HIDDEN instead of sup-
port.DEPRECATED. Besides that, SupportStatus with DEPRECATED status should be moved to pre-
vious_status, e.g.:

support.SupportStatus(
status=support.HIDDEN,
version='6.0.0',

(continues on next page)

4.1. Heat Contributor Guidelines 697

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

message=_('Some message'),
previous_status=support.SupportStatus(

status=support.DEPRECATED,
version='2015.1',
substitute_class=SubstituteResourceWithType,
previous_status=support.SupportStatus(version='2014.2')

)
)

During hiding properties, if some hidden property has alternative, use translation mechanism for trans-
lating properties from old to new one. See below, how to use this mechanism.

Translating mechanism for hidden properties

Sometimes properties become deprecated and replaced by another. There is translation mechanism for
that. Mechanism used for such cases:

1. If there are two properties in properties_schema, which have STRING, INTEGER, NUMBER or
BOOLEAN type.

2. If there are two properties: one in LIST or MAP property sub-schema and another on the top
schema.

3. If there are two properties in LIST property.

4. If there are non-LIST property and LIST property, which is designed to replace non-LIST property.

5. If there is STRING property, which contains name or ID of some entity, e.g. subnet, and should
be resolved to entitys ID.

Mechanism has rules and executes them. To define rule, TranslationRule class called and specifies
translation_path - list with path in properties_schema for property which will be affected; value - value,
which will be added to property, specified by previous parameter; value_name - name of old property,
used for case 4; value_path - list with path in properties_schema for property which will be used for
getting value. TranslationRule supports next rules:

• ADD. This rule allows to add some value to LIST-type properties. Only LIST-type values can be
added to such properties. Using for other cases is prohibited and will be returned with error.

• REPLACE. This rule allows to replace some property value to another. Used for all types of
properties. Note, that if property has list type, then value will be replaced for all elements of list,
where it needed. If element in such property must be replaced by value of another element of this
property, value_name must be defined.

• DELETE. This rule allows to delete some property. If property has list type, then deleting affects
value in all list elements.

• RESOLVE - This rule allows to resolve some property using client and the finder function. Finders
may require an additional entity key.

Each resource, which has some hidden properties, which can be replaced by new, must overload trans-
lation_rules method, which should return a list of TranslationRules, for example:

def translation_rules(self, properties):
rules = [

translation.TranslationRule(
(continues on next page)

698 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

properties,
translation.TranslationRule.REPLACE,
translation_path=[self.NETWORKS, self.NETWORK_ID],
value_name=self.NETWORK_UUID),

translation.TranslationRule(
properties,
translation.TranslationRule.RESOLVE,
translation_path=[self.FLAVOR],
client_plugin=self.client_plugin('nova'),
finder='find_flavor_by_name_or_id')]

return rules

4.1.8 Using Rally on Heat gates

Heat gate allows to use Rally for performance testing for each particular patch. This functionality can be
used for checking patch on performance regressions and also for detecting any floating bugs for common
scenarios.

How to run Rally for particular patch

As was mentioned above Heat allows to execute Rally scenarios as a gate job for particular patch. It can
be done by posting comment with text check experimental for patch on review. It will run bunch
of jobs, one of which has name gate-rally-dsvm-fakevirt-heat.

List of scenarios, which will be executed, is presented in file heat-fakevirt.yaml. Default version
of this file is available here: https://github.com/openstack/heat/blob/master/rally-scenarios/heat-fakevirt.
yaml

Obviously performance analysis make sense, when it can be compared with some another performance
data. So two different approaches can be used for it:

• Comparison of one part of code with some custom changes (see Check performance or how to
detect regression)

• Comparison of two different code parts (see Compare output API performance)

Examples of using Rally

Previously two main approaches of using Rally job for Heat were highlighted. Corresponding examples
will be described in this part of documentation.

However need to note, that there are a lot of other ways how to use Rally job for Heat performance. For
example, this job can be launched periodically (twice in week) for random patches and these results will
be compared between each other. It allows to see, that Heat has not any performance regressions.

4.1. Heat Contributor Guidelines 699

https://github.com/openstack/heat/blob/master/rally-scenarios/heat-fakevirt.yaml
https://github.com/openstack/heat/blob/master/rally-scenarios/heat-fakevirt.yaml

Heat Documentation, Release 16.1.1.dev14

Check performance or how to detect regression

The easiest way of using Rally is to execute already existing scenarios. One of the examples is presented
in patch https://review.opendev.org/#/c/279450/ . In this patch was executed scenario already existing in
Rally HeatStacks.create_and_delete_stack. During executing this scenario Rally creates
and then, when stack is created, delete Heat stack. All existing scenarios can be found here: https:
//github.com/openstack/rally-openstack/blob/master/rally_openstack/scenarios/heat/stacks.py

Mentioned scenario uses Heat template as a parameter for task. The template path should be mentioned
for argument template_path. It can be one of Heat templates presented in Rally repository (https://
github.com/openstack/rally-openstack/tree/master/samples/tasks/scenarios/heat/templates) or new one,
like it was done for mentioned patch. New added template should be placed in rally-scenarios/
extra/ directory.

Also its possible to specify other fields for each Rally task, like sla or context. More
information about other configuration setting is available by link https://rally.readthedocs.io/en/
latest/plugins/#rally-plugins Mentioned patch was proposed for confirmation caching mechanism of
Heat template validation process (see https://specs.openstack.org/openstack/heat-specs/specs/liberty/
constraint-validation-cache.html). So it contains some changes in OS::Heat::TestResource resource,
which allows to demonstrate mentioned caching feature improvements.

Initially test was run against current devstack installation, where caching is disabled (e.g. Patch Set 7).
The follow results were gotten:

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 38.223 48.085 42.971 100.0% 10
heat.delete_stack 11.755 18.155 14.085 100.0% 10
total 50.188 65.361 57.057 100.0% 10

In the next patch set (Patch Set 8) was updated by adding Depends-On reference to commit message. It
let to execute the same test with patch for devstack, which turns on caching (https://review.opendev.org/
#/c/279400/). The results for this case were:

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 11.863 16.074 14.174 100.0% 10
heat.delete_stack 9.144 11.663 10.595 100.0% 10
total 21.557 27.18 24.77 100.0% 10

Comparison average values for create_stack action in the first and the second executions shows, that
with enabled caching create_stack works faster in 3 times. It is a tangible improvement for create_stack
operation. Need to note, that in described test delay for each constraint validation request takes 0.3 sec.
as specified in constraint_prop_secs property of TestResource. It may be more, than real time
delay, but it allows to confirm, that caching works correct.

Also this approach may be used for detecting regressions. In this case workflow may be presented as
follow list of steps:

• add to task list (heat-fakevirt.yaml) existing or new tasks.

• wait a result of this execution.

• upload patchset with changes (new feature) and launch the same test again.

• compare performance results.

700 Chapter 4. Developing Heat

https://review.opendev.org/#/c/279450/
https://github.com/openstack/rally-openstack/blob/master/rally_openstack/scenarios/heat/stacks.py
https://github.com/openstack/rally-openstack/blob/master/rally_openstack/scenarios/heat/stacks.py
https://github.com/openstack/rally-openstack/tree/master/samples/tasks/scenarios/heat/templates
https://github.com/openstack/rally-openstack/tree/master/samples/tasks/scenarios/heat/templates
https://rally.readthedocs.io/en/latest/plugins/#rally-plugins
https://rally.readthedocs.io/en/latest/plugins/#rally-plugins
https://specs.openstack.org/openstack/heat-specs/specs/liberty/constraint-validation-cache.html
https://specs.openstack.org/openstack/heat-specs/specs/liberty/constraint-validation-cache.html
https://review.opendev.org/#/c/279400/
https://review.opendev.org/#/c/279400/

Heat Documentation, Release 16.1.1.dev14

Compare output API performance

Another example of using Rally job is writing custom Rally scenarios in Heat repository. There is an
example of this is presented on review: https://review.opendev.org/#/c/270225/

Its similar on the first example, but requires more Rally specific coding. New tasks in
heat-fakevirt.yaml use undefined in Rally repository scenarios:

• CustomHeatBenchmark.create_stack_and_show_output_new

• CustomHeatBenchmark.create_stack_and_show_output_old

• CustomHeatBenchmark.create_stack_and_list_output_new

• CustomHeatBenchmark.create_stack_and_list_output_old

All these scenarios are defined in the same patch and placed in rally-scenarios/plugins/
directory.

The aim of these scenarios and tasks is to demonstrate differences between new and old API calls.
Heat client has a two commands for operating stack outputs: heat output-list and heat
output-show <output-id>. Previously there are no special API calls for getting this informa-
tion from server and this data was obtained from whole Heat Stack object. This was changed after
implementation new API for outputs: https://specs.openstack.org/openstack/heat-specs/specs/mitaka/
api-calls-for-output.html

As described in the mentioned specification outputs can be obtained via special requests to Heat API.
According to this changes code in Heat client was updated to use new API, if its available.

The initial problem for this change was performance issue, which can be formulated as: execution
command heat output-show <output-id> with old approach required resolving all outputs in
Heat Stack, before getting only one output specified by user.

The same issue was and with heat output-list, which required to resolve all outputs only for
providing list of output keys without resolved values.

Two scenarios with suffix *_new use new output API. These scenarios are not presented in Rally yet,
because its new API. Another two scenarios with suffix *_old are based on the old approach of getting
outputs. This code was partially replaced by new API, so its not possible to use it on fresh devstack. As
result this custom code was written as two custom scenarios.

All these scenarios were added to task list and executed in the same time. Results of execution are shown
below:

create_stack_and_show_output_old

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 13.559 14.298 13.899 100.0% 5
heat.show_output_old 5.214 5.297 5.252 100.0% 5
heat.delete_stack 5.445 6.962 6.008 100.0% 5
total 24.243 26.146 25.159 100.0% 5

4.1. Heat Contributor Guidelines 701

https://review.opendev.org/#/c/270225/
https://specs.openstack.org/openstack/heat-specs/specs/mitaka/api-calls-for-output.html
https://specs.openstack.org/openstack/heat-specs/specs/mitaka/api-calls-for-output.html

Heat Documentation, Release 16.1.1.dev14

create_stack_and_show_output_new

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 13.719 14.286 13.935 100.0% 5
heat.show_output_new 0.699 0.835 0.762 100.0% 5
heat.delete_stack 5.398 6.457 5.636 100.0% 5
total 19.873 21.21 20.334 100.0% 5

Average value for execution output-show for old approach obviously more, then for new API. It
happens, because new API resolve only one specified output.

Same results are for output-list:

create_stack_and_list_output_old

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 13.861 14.573 14.141 100.0% 5
heat.list_output_old 5.247 5.339 5.281 100.0% 5
heat.delete_stack 6.727 6.845 6.776 100.0% 5
total 25.886 26.696 26.199 100.0% 5

create_stack_and_list_output_new

Action Min (sec) Max (sec) Avg (sec) Success Count
heat.create_stack 13.902 21.117 16.729 100.0% 5
heat.list_output_new 0.147 0.363 0.213 100.0% 5
heat.delete_stack 6.616 8.202 7.022 100.0% 5
total 20.838 27.908 23.964 100.0% 5

Its also expected, because for getting list of output names is not necessary resolved values, how it is
done in new API.

All mentioned results clearly show performance changes and allow to confirm, that new approach works
correctly.

4.2 Source Code Index

4.2.1 heat

heat package

Subpackages

heat.api package

702 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Subpackages

heat.api.aws package

Submodules

heat.api.aws.ec2token module

class heat.api.aws.ec2token.EC2Token(app, conf)
Bases: heat.common.wsgi.Middleware

Authenticate an EC2 request with keystone and convert to token.

property ssl_options

heat.api.aws.ec2token.EC2Token_filter_factory(global_conf, **local_conf)
Factory method for paste.deploy.

heat.api.aws.ec2token.list_opts()

heat.api.aws.exception module

Heat API exception subclasses - maps API response errors to AWS Errors.

exception heat.api.aws.exception.AlreadyExistsError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Resource with the name requested already exists.

code = 400

explanation = 'Resource with the name requested already exists'

title = 'AlreadyExists'

exception heat.api.aws.exception.HeatAPIException(detail=None)
Bases: webob.exc.HTTPError

webob HTTPError subclass that creates a serialized body.

Subclass webob HTTPError so we can correctly serialize the wsgi response into the http response
body, using the format specified by the request. Note this should not be used directly, instead use
the subclasses defined below which map to AWS API errors.

code = 400

err_type = 'Sender'

explanation = 'Generic HeatAPIException, please use specific subclasses!'

get_unserialized_body()
Return a dict suitable for serialization in the wsgi controller.

This wraps the exception details in a format which maps to the expected format for the AWS
API.

title = 'HeatAPIException'

4.2. Source Code Index 703

Heat Documentation, Release 16.1.1.dev14

exception heat.api.aws.exception.HeatAPINotImplementedError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

API action is not yet implemented.

code = 500

err_type = 'Server'

explanation = 'The requested action is not yet implemented'

title = 'APINotImplemented'

exception heat.api.aws.exception.HeatAccessDeniedError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Authentication fails due to user IAM group memberships.

This is the response given when authentication fails due to user IAM group memberships meaning
we deny access.

code = 403

explanation = 'User is not authorized to perform action'

title = 'AccessDenied'

exception heat.api.aws.exception.HeatActionInProgressError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Cannot perform action on stack in its current state.

code = 400

explanation = 'Cannot perform action on stack while other actions are in progress'

title = 'InvalidAction'

exception heat.api.aws.exception.HeatIncompleteSignatureError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

The request signature does not conform to AWS standards.

code = 400

explanation = 'The request signature does not conform to AWS standards'

title = 'IncompleteSignature'

exception heat.api.aws.exception.HeatInternalFailureError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

The request processing has failed due to some unknown error.

code = 500

err_type = 'Server'

explanation = 'The request processing has failed due to an internal error'

title = 'InternalFailure'

exception heat.api.aws.exception.HeatInvalidActionError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

The action or operation requested is invalid.

704 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

code = 400

explanation = 'The action or operation requested is invalid'

title = 'InvalidAction'

exception heat.api.aws.exception.HeatInvalidClientTokenIdError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

The X.509 certificate or AWS Access Key ID provided does not exist.

code = 403

explanation = 'The certificate or AWS Key ID provided does not exist'

title = 'InvalidClientTokenId'

exception heat.api.aws.exception.HeatInvalidParameterCombinationError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Parameters that must not be used together were used together.

code = 400

explanation = 'Incompatible parameters were used together'

title = 'InvalidParameterCombination'

exception heat.api.aws.exception.HeatInvalidParameterValueError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

A bad or out-of-range value was supplied for the input parameter.

code = 400

explanation = 'A bad or out-of-range value was supplied'

title = 'InvalidParameterValue'

exception heat.api.aws.exception.HeatInvalidQueryParameterError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

AWS query string is malformed, does not adhere to AWS standards.

code = 400

explanation = 'AWS query string is malformed, does not adhere to AWS spec'

title = 'InvalidQueryParameter'

exception heat.api.aws.exception.HeatMalformedQueryStringError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

The query string is malformed.

code = 404

explanation = 'The query string is malformed'

title = 'MalformedQueryString'

exception heat.api.aws.exception.HeatMissingActionError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

The request is missing an action or operation parameter.

4.2. Source Code Index 705

Heat Documentation, Release 16.1.1.dev14

code = 400

explanation = 'The request is missing an action or operation parameter'

title = 'MissingAction'

exception heat.api.aws.exception.HeatMissingAuthenticationTokenError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Does not contain a valid AWS Access Key or certificate.

Request must contain either a valid (registered) AWS Access Key ID or X.509 certificate.

code = 403

explanation = 'Does not contain a valid AWS Access Key or certificate'

title = 'MissingAuthenticationToken'

exception heat.api.aws.exception.HeatMissingParameterError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

A mandatory input parameter is missing.

An input parameter that is mandatory for processing the request is missing.

code = 400

explanation = 'A mandatory input parameter is missing'

title = 'MissingParameter'

exception heat.api.aws.exception.HeatOptInRequiredError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

The AWS Access Key ID needs a subscription for the service.

code = 403

explanation = 'The AWS Access Key ID needs a subscription for the service'

title = 'OptInRequired'

exception heat.api.aws.exception.HeatRequestExpiredError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Request expired or more than 15 minutes in the future.

Request is past expires date or the request date (either with 15 minute padding), or the request
date occurs more than 15 minutes in the future.

code = 400

explanation = 'Request expired or more than 15mins in the future'

title = 'RequestExpired'

exception heat.api.aws.exception.HeatRequestLimitExceeded(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Payload size of the request exceeds maximum allowed size.

code = 400

explanation = 'Payload exceeds maximum allowed size'

706 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

title = 'RequestLimitExceeded'

exception heat.api.aws.exception.HeatServiceUnavailableError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

The request has failed due to a temporary failure of the server.

code = 503

err_type = 'Server'

explanation = 'Service temporarily unavailable'

title = 'ServiceUnavailable'

exception heat.api.aws.exception.HeatSignatureError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Authentication fails due to a bad signature.

code = 403

explanation = 'The request signature we calculated does not match the signature you provided'

title = 'SignatureDoesNotMatch'

exception heat.api.aws.exception.HeatThrottlingError(detail=None)
Bases: heat.api.aws.exception.HeatAPIException

Request was denied due to request throttling.

code = 400

explanation = 'Request was denied due to request throttling'

title = 'Throttling'

heat.api.aws.exception.map_remote_error(ex)
Map rpc_common.RemoteError exceptions to HeatAPIException subclasses.

Map rpc_common.RemoteError exceptions returned by the engine to HeatAPIException sub-
classes which can be used to return properly formatted AWS error responses.

heat.api.aws.utils module

Helper utilities related to the AWS API implementations.

heat.api.aws.utils.extract_param_list(params, prefix=”)
Extract a list-of-dicts based on parameters containing AWS style list.

MetricData.member.1.MetricName=buffers MetricData.member.1.Unit=Bytes Metric-
Data.member.1.Value=231434333 MetricData.member.2.MetricName=buffers2 Metric-
Data.member.2.Unit=Bytes MetricData.member.2.Value=12345

This can be extracted by passing prefix=MetricData, resulting in a list containing two dicts.

heat.api.aws.utils.extract_param_pairs(params, prefix=”, keyname=”, value-
name=”)

Extract user input params from AWS style parameter-pair encoded list.

In the AWS API list items appear as two key-value pairs (passed as query parameters) with keys
of the form below:

4.2. Source Code Index 707

Heat Documentation, Release 16.1.1.dev14

Prefix.member.1.keyname=somekey Prefix.member.1.keyvalue=somevalue Pre-
fix.member.2.keyname=anotherkey Prefix.member.2.keyvalue=somevalue

We reformat this into a dict here to match the heat engine API expected format.

heat.api.aws.utils.format_response(action, response)
Format response from engine into API format.

heat.api.aws.utils.get_param_value(params, key)
Looks up an expected parameter in a parsed params dict.

Helper function, looks up an expected parameter in a parsed params dict and returns the result. If
params does not contain the requested key we raise an exception of the appropriate type.

heat.api.aws.utils.reformat_dict_keys(keymap=None, inputdict=None)
Utility function for mapping one dict format to another.

Module contents

heat.api.cfn package

Subpackages

heat.api.cfn.v1 package

Submodules

heat.api.cfn.v1.signal module

class heat.api.cfn.v1.signal.SignalController(options)
Bases: object

signal(req, arn, body=None)

update_waitcondition(req, body, arn)

heat.api.cfn.v1.signal.create_resource(options)
Signal resource factory method.

heat.api.cfn.v1.stacks module

Stack endpoint for Heat CloudFormation v1 API.

class heat.api.cfn.v1.stacks.StackController(options)
Bases: object

WSGI controller for stacks resource in Heat CloudFormation v1 API.

Implements the API actions.

CREATE_OR_UPDATE_ACTION = ('CreateStack', 'UpdateStack')

CREATE_STACK = 'CreateStack'

UPDATE_STACK = 'UpdateStack'

708 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

cancel_update(req)

create(req)

create_or_update(req, action=None)
Implements CreateStack and UpdateStack API actions.

Create or update stack as defined in template file.

default(req, **args)

delete(req)
Implements the DeleteStack API action.

Deletes the specified stack.

describe(req)
Implements DescribeStacks API action.

Gets detailed information for a stack (or all stacks).

describe_stack_resource(req)
Implements the DescribeStackResource API action.

Return the details of the given resource belonging to the given stack.

describe_stack_resources(req)
Implements the DescribeStackResources API action.

Return details of resources specified by the parameters.

StackName: returns all resources belonging to the stack.

PhysicalResourceId: returns all resources belonging to the stack this resource is associated
with.

Only one of the parameters may be specified.

Optional parameter:

LogicalResourceId: filter the resources list by the logical resource id.

estimate_template_cost(req)
Implements the EstimateTemplateCost API action.

Get the estimated monthly cost of a template.

events_list(req)
Implements the DescribeStackEvents API action.

Returns events related to a specified stack (or all stacks).

get_template(req)
Implements the GetTemplate API action.

Get the template body for an existing stack.

list(req)
Implements ListStacks API action.

Lists summary information for all stacks.

list_stack_resources(req)
Implements the ListStackResources API action.

4.2. Source Code Index 709

Heat Documentation, Release 16.1.1.dev14

Return summary of the resources belonging to the specified stack.

update(req)

validate_template(req)
Implements the ValidateTemplate API action.

Validates the specified template.

heat.api.cfn.v1.stacks.create_resource(options)
Stacks resource factory method.

Module contents

class heat.api.cfn.v1.API(conf, **local_conf)
Bases: heat.common.wsgi.Router

WSGI router for Heat CloudFormation v1 API requests.

Submodules

heat.api.cfn.versions module

Controller that returns information on the heat API versions.

Now its a subclass of module versions, because of identity with OpenStack module versions.

Module contents

heat.api.cfn.version_negotiation_filter(app, conf, **local_conf)

heat.api.middleware package

Submodules

heat.api.middleware.fault module

A middleware that turns exceptions into parsable string.

Inspired by Cinders faultwrapper.

class heat.api.middleware.fault.Fault(error)
Bases: object

class heat.api.middleware.fault.FaultWrapper(application)
Bases: heat.common.wsgi.Middleware

Replace error body with something the client can parse.

error_map = {'ActionInProgress': <class 'webob.exc.HTTPConflict'>, 'AttributeError': <class 'webob.exc.HTTPBadRequest'>, 'DownloadLimitExceeded': <class 'webob.exc.HTTPBadRequest'>, 'EntityNotFound': <class 'webob.exc.HTTPNotFound'>, 'EventSendFailed': <class 'webob.exc.HTTPInternalServerError'>, 'Forbidden': <class 'webob.exc.HTTPForbidden'>, 'ImmutableParameterModified': <class 'webob.exc.HTTPBadRequest'>, 'IncompatibleObjectVersion': <class 'webob.exc.HTTPBadRequest'>, 'Invalid': <class 'webob.exc.HTTPBadRequest'>, 'InvalidBreakPointHook': <class 'webob.exc.HTTPBadRequest'>, 'InvalidEncryptionKey': <class 'webob.exc.HTTPInternalServerError'>, 'InvalidGlobalResource': <class 'webob.exc.HTTPInternalServerError'>, 'InvalidSchemaError': <class 'webob.exc.HTTPBadRequest'>, 'InvalidTemplateReference': <class 'webob.exc.HTTPBadRequest'>, 'InvalidTemplateSection': <class 'webob.exc.HTTPBadRequest'>, 'InvalidTemplateVersion': <class 'webob.exc.HTTPBadRequest'>, 'InvalidTenant': <class 'webob.exc.HTTPForbidden'>, 'MissingCredentialError': <class 'webob.exc.HTTPBadRequest'>, 'NotFound': <class 'webob.exc.HTTPNotFound'>, 'NotSupported': <class 'webob.exc.HTTPBadRequest'>, 'ObjectActionError': <class 'webob.exc.HTTPBadRequest'>, 'ObjectFieldInvalid': <class 'webob.exc.HTTPBadRequest'>, 'OrphanedObjectError': <class 'webob.exc.HTTPBadRequest'>, 'PhysicalResourceIDAmbiguity': <class 'webob.exc.HTTPBadRequest'>, 'PhysicalResourceNameAmbiguity': <class 'webob.exc.HTTPBadRequest'>, 'PropertyUnspecifiedError': <class 'webob.exc.HTTPBadRequest'>, 'ReadOnlyFieldError': <class 'webob.exc.HTTPBadRequest'>, 'RequestLimitExceeded': <class 'webob.exc.HTTPBadRequest'>, 'ResourceActionNotSupported': <class 'webob.exc.HTTPBadRequest'>, 'ResourceNotAvailable': <class 'webob.exc.HTTPNotFound'>, 'ResourcePropertyConflict': <class 'webob.exc.HTTPBadRequest'>, 'ResourceTypeUnavailable': <class 'webob.exc.HTTPBadRequest'>, 'RevertFailed': <class 'webob.exc.HTTPInternalServerError'>, 'ServerBuildFailed': <class 'webob.exc.HTTPInternalServerError'>, 'StackExists': <class 'webob.exc.HTTPConflict'>, 'StackValidationFailed': <class 'webob.exc.HTTPBadRequest'>, 'StopActionFailed': <class 'webob.exc.HTTPInternalServerError'>, 'UnknownUserParameter': <class 'webob.exc.HTTPBadRequest'>, 'UnsupportedObjectError': <class 'webob.exc.HTTPBadRequest'>, 'UserParameterMissing': <class 'webob.exc.HTTPBadRequest'>, 'ValueError': <class 'webob.exc.HTTPBadRequest'>}

710 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

process_request(req)
Called on each request.

If this returns None, the next application down the stack will be executed. If it returns a
response then that response will be returned and execution will stop here.

heat.api.middleware.version_negotiation module

Inspects the requested URI for a version string and/or Accept headers.

Also attempts to negotiate an API controller to return.

class heat.api.middleware.version_negotiation.VersionNegotiationFilter(version_controller,
app,
conf,
**lo-
cal_conf)

Bases: heat.common.wsgi.Middleware

process_request(req)
Process Accept header or simply return correct API controller.

If there is a version identifier in the URI, return the correct API controller, otherwise, if we
find an Accept: header, process it

Module contents

heat.api.openstack package

Subpackages

heat.api.openstack.v1 package

Subpackages

heat.api.openstack.v1.views package

Submodules

heat.api.openstack.v1.views.stacks_view module

heat.api.openstack.v1.views.stacks_view.collection(req, stacks,
count=None, in-
clude_project=False)

heat.api.openstack.v1.views.stacks_view.format_stack(req, stack,
keys=None, in-
clude_project=False)

4.2. Source Code Index 711

Heat Documentation, Release 16.1.1.dev14

heat.api.openstack.v1.views.views_common module

heat.api.openstack.v1.views.views_common.get_collection_links(request,
items)

Retrieve next link, if applicable.

Module contents

Submodules

heat.api.openstack.v1.actions module

class heat.api.openstack.v1.actions.ActionController(options)
Bases: object

WSGI controller for Actions in Heat v1 API.

Implements the API for stack actions

ACTIONS = ('suspend', 'resume', 'check', 'cancel_update', 'cancel_without_rollback')

CANCEL_UPDATE = 'cancel_update'

CANCEL_WITHOUT_ROLLBACK = 'cancel_without_rollback'

CHECK = 'check'

REQUEST_SCOPE = 'actions'

RESUME = 'resume'

SUSPEND = 'suspend'

action(req, tenant_id, stack_name, stack_id, body=None)
Performs a specified action on a stack.

The body is expecting to contain exactly one item whose key specifies the action.

cancel_update(req, identity, body=None)

cancel_without_rollback(req, identity, body=None)

check(req, identity, body=None)

resume(req, identity, body=None)

suspend(req, identity, body=None)

heat.api.openstack.v1.actions.create_resource(options)
Actions action factory method.

712 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.api.openstack.v1.build_info module

class heat.api.openstack.v1.build_info.BuildInfoController(options)
Bases: object

WSGI controller for BuildInfo in Heat v1 API.

Returns build information for current app.

REQUEST_SCOPE = 'build_info'

build_info(req)

heat.api.openstack.v1.build_info.create_resource(options)
BuildInfo factory method.

heat.api.openstack.v1.events module

class heat.api.openstack.v1.events.EventController(options)
Bases: object

WSGI controller for Events in Heat v1 API.

Implements the API actions.

REQUEST_SCOPE = 'events'

index(req, identity, resource_name=None)
Lists summary information for all events.

show(req, identity, resource_name, event_id)
Gets detailed information for an event.

heat.api.openstack.v1.events.create_resource(options)
Events resource factory method.

heat.api.openstack.v1.events.format_event(req, event, keys=None)

heat.api.openstack.v1.resources module

class heat.api.openstack.v1.resources.ResourceController(options)
Bases: object

WSGI controller for Resources in Heat v1 API.

Implements the API actions.

REQUEST_SCOPE = 'resource'

index(req, identity)
Lists information for all resources.

mark_unhealthy(req, identity, resource_name, body)
Mark a resource as healthy or unhealthy.

metadata(req, identity, resource_name)
Gets metadata information for a resource.

4.2. Source Code Index 713

Heat Documentation, Release 16.1.1.dev14

show(req, identity, resource_name)
Gets detailed information for a resource.

signal(req, identity, resource_name, body=None)

heat.api.openstack.v1.resources.create_resource(options)
Resources resource factory method.

heat.api.openstack.v1.resources.format_resource(req, res, keys=None)

heat.api.openstack.v1.services module

class heat.api.openstack.v1.services.ServiceController(options)
Bases: object

WSGI controller for reporting the heat engine status in Heat v1 API.

REQUEST_SCOPE = 'service'

index(req)

heat.api.openstack.v1.services.create_resource(options)

heat.api.openstack.v1.software_configs module

class heat.api.openstack.v1.software_configs.SoftwareConfigController(options)
Bases: object

WSGI controller for Software config in Heat v1 API.

Implements the API actions.

REQUEST_SCOPE = 'software_configs'

create(req, body)
Create a new software config.

default(req, **args)

delete(req, config_id)
Delete an existing software config.

global_index(req)

index(req)
Lists summary information for all software configs.

show(req, config_id)
Gets detailed information for a software config.

heat.api.openstack.v1.software_configs.create_resource(options)
Software configs resource factory method.

714 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.api.openstack.v1.software_deployments module

class heat.api.openstack.v1.software_deployments.SoftwareDeploymentController(options)
Bases: object

WSGI controller for Software deployments in Heat v1 API.

Implements the API actions.

REQUEST_SCOPE = 'software_deployments'

create(req, body)
Create a new software deployment.

default(req, **args)

delete(req, deployment_id)
Delete an existing software deployment.

index(req)
List software deployments.

metadata(req, server_id)
List software deployments grouped by the group name.

This is done for the requested server.

show(req, deployment_id)
Gets detailed information for a software deployment.

update(req, deployment_id, body)
Update an existing software deployment.

heat.api.openstack.v1.software_deployments.create_resource(options)
Software deployments resource factory method.

heat.api.openstack.v1.stacks module

Stack endpoint for Heat v1 REST API.

class heat.api.openstack.v1.stacks.InstantiationData(data,
patch=False)

Bases: object

The data to create or update a stack.

The data accompanying a PUT or POST request.

PARAMS = ('stack_name', 'template', 'template_url', 'parameters', 'environment', 'files', 'environment_files', 'files_container')

PARAM_ENVIRONMENT = 'environment'

PARAM_ENVIRONMENT_FILES = 'environment_files'

PARAM_FILES = 'files'

PARAM_FILES_CONTAINER = 'files_container'

PARAM_STACK_NAME = 'stack_name'

PARAM_TEMPLATE = 'template'

4.2. Source Code Index 715

Heat Documentation, Release 16.1.1.dev14

PARAM_TEMPLATE_URL = 'template_url'

PARAM_USER_PARAMS = 'parameters'

args()
Get any additional arguments supplied by the user.

environment()
Get the user-supplied environment for the stack in YAML format.

If the user supplied Parameters then merge these into the environment global options.

environment_files()

files()

files_container()

no_change()

static parse_error_check(data_type)

stack_name()
Return the stack name.

template()
Get template file contents.

Get template file contents, either inline, from stack adopt data or from a URL, in JSON or
YAML format.

class heat.api.openstack.v1.stacks.StackController(options)
Bases: object

WSGI controller for stacks resource in Heat v1 API.

Implements the API actions.

REQUEST_SCOPE = 'stacks'

abandon(req, identity)
Abandons specified stack.

Abandons specified stack by deleting the stack and its resources from the database, but
underlying resources will not be deleted.

create(req, body)
Create a new stack.

default(req, **args)

delete(req, identity)
Delete the specified stack.

delete_snapshot(req, identity, snapshot_id)

detail(req)
Lists detailed information for all stacks.

environment(req, identity)
Get the environment for an existing stack.

716 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

export(req, identity)
Export specified stack.

Return stack data in JSON format.

files(req, identity)
Get the files for an existing stack.

generate_template(req, type_name)
Generates a template based on the specified type.

global_index(req)

index(req)
Lists summary information for all stacks.

list_outputs(req, identity)

list_resource_types(req)
Returns a resource types list which may be used in template.

list_snapshots(req, identity)

list_template_functions(req, template_version)
Returns a list of available functions in a given template.

list_template_versions(req)
Returns a list of available template versions.

lookup(req, stack_name, path=”, body=None)
Redirect to the canonical URL for a stack.

prepare_args(data, is_update=False)

preview(req, body)
Preview the outcome of a template and its params.

preview_update(req, identity, body)
Preview update for existing stack with a new template/parameters.

preview_update_patch(req, identity, body)
Preview PATCH update for existing stack.

resource_schema(req, type_name, with_description=False)
Returns the schema of the given resource type.

restore_snapshot(req, identity, snapshot_id)

show(req, identity)
Gets detailed information for a stack.

show_output(req, identity, output_key)

show_snapshot(req, identity, snapshot_id)

snapshot(req, identity, body)

template(req, identity)
Get the template body for an existing stack.

update(req, identity, body)
Update an existing stack with a new template and/or parameters.

4.2. Source Code Index 717

Heat Documentation, Release 16.1.1.dev14

update_patch(req, identity, body)
Update an existing stack with a new template.

Update an existing stack with a new template by patching the parameters Add the flag patch
to the args so the engine code can distinguish

validate_template(req, body)
Implements the ValidateTemplate API action.

Validates the specified template.

class heat.api.openstack.v1.stacks.StackSerializer
Bases: heat.common.serializers.JSONResponseSerializer

Handles serialization of specific controller method responses.

create(response, result)

heat.api.openstack.v1.stacks.create_resource(options)
Stacks resource factory method.

heat.api.openstack.v1.util module

heat.api.openstack.v1.util.get_allowed_params(params, param_types)
Extract from params all entries listed in param_types.

The returning dict will contain an entry for a key if, and only if, theres an entry in param_types
for that key and at least one entry in params. If params contains multiple entries for the same
key, it will yield an array of values: {key: [v1, v2,...]}

Parameters

• params a NestedMultiDict from webob.Request.params

• param_types an dict of allowed parameters and their types

Returns a dict with {key: value} pairs

heat.api.openstack.v1.util.make_link(req, identity, relationship=’self’)
Return a link structure for the supplied identity dictionary.

heat.api.openstack.v1.util.make_url(req, identity)
Return the URL for the supplied identity dictionary.

heat.api.openstack.v1.util.no_policy_enforce(handler)
Decorator that does not enforce policies.

Checks the path matches the request context.

This is a handler method decorator.

heat.api.openstack.v1.util.registered_identified_stack(handler)
Decorator that passes a stack identifier instead of path components.

This is a handler method decorator. Policy is enforced using a registered policy name.

heat.api.openstack.v1.util.registered_policy_enforce(handler)
Decorator that enforces policies.

Checks the path matches the request context and enforce policy defined in policies.

718 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

This is a handler method decorator.

Module contents

class heat.api.openstack.v1.API(conf, **local_conf)
Bases: heat.common.wsgi.Router

WSGI router for Heat v1 REST API requests.

Submodules

heat.api.openstack.versions module

Controller that returns information on the heat API versions.

Now its a subclass of module versions, because of identity with cfn module versions. It can be changed,
if there will be another API version.

Module contents

heat.api.openstack.faultwrap_filter(app, conf, **local_conf)

heat.api.openstack.version_negotiation_filter(app, conf, **local_conf)

Submodules

heat.api.versions module

Controller that returns information on the heat API versions.

class heat.api.versions.Controller(conf)
Bases: object

A controller that produces information on the heat API versions.

get_href(req)

Module contents

heat.common package

Submodules

heat.common.auth_password module

class heat.common.auth_password.KeystonePasswordAuthProtocol(app,
conf)

Bases: object

4.2. Source Code Index 719

Heat Documentation, Release 16.1.1.dev14

Middleware uses username and password to authenticate against Keystone.

Alternative authentication middleware that uses username and password to authenticate against
Keystone instead of validating existing auth token. The benefit being that you no longer require
admin/service token to authenticate users.

heat.common.auth_password.filter_factory(global_conf, **local_conf)
Returns a WSGI filter app for use with paste.deploy.

heat.common.auth_plugin module

heat.common.auth_plugin.get_keystone_plugin_loader(auth, key-
stone_session)

heat.common.auth_plugin.parse_auth_credential_to_dict(cred)
Parse credential to dict

heat.common.auth_plugin.validate_auth_plugin(auth_plugin, key-
stone_session)

Validate if this auth_plugin is valid to use.

heat.common.auth_url module

class heat.common.auth_url.AuthUrlFilter(app, conf)
Bases: heat.common.wsgi.Middleware

property auth_url

process_request(req)
Called on each request.

If this returns None, the next application down the stack will be executed. If it returns a
response then that response will be returned and execution will stop here.

heat.common.auth_url.filter_factory(global_conf, **local_conf)

heat.common.cache module

The code related to integration between oslo.cache module and heat.

heat.common.cache.get_cache_region()

heat.common.cache.register_cache_configurations(conf)
Register all configurations required for oslo.cache.

The procedure registers all configurations required for oslo.cache. It should be called before
configuring of cache region

Parameters conf instance of heat configuration

Returns updated heat configuration

720 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.common.config module

Routines for configuring Heat.

heat.common.config.get_client_option(client, option)

heat.common.config.get_ssl_options(client)

heat.common.config.list_opts()

heat.common.config.load_paste_app(app_name=None)
Builds and returns a WSGI app from a paste config file.

We assume the last config file specified in the supplied ConfigOpts object is the paste config file.

Parameters app_name name of the application to load

Raises RuntimeError when config file cannot be located or application cannot be
loaded from config file

heat.common.config.set_config_defaults()
This method updates all configuration default values.

heat.common.config.startup_sanity_check()

heat.common.context module

class heat.common.context.ContextMiddleware(app, conf, **local_conf)
Bases: heat.common.wsgi.Middleware

process_request(req)
Constructs an appropriate context from extracted auth information.

Extract any authentication information in the request and construct an appropriate context
from it.

heat.common.context.ContextMiddleware_filter_factory(global_conf,
**local_conf)

Factory method for paste.deploy.

class heat.common.context.RequestContext(username=None, pass-
word=None, aws_creds=None,
auth_url=None, roles=None,
is_admin=None, read_only=False,
show_deleted=False, over-
write=True, trust_id=None,
trustor_user_id=None,
request_id=None,
auth_token_info=None,
region_name=None,
auth_plugin=None,
trusts_auth_plugin=None,
user_domain_id=None,
project_domain_id=None,
project_name=None, **kwargs)

Bases: oslo_context.context.RequestContext

4.2. Source Code Index 721

Heat Documentation, Release 16.1.1.dev14

Stores information about the security context.

Under the security context the user accesses the system, as well as additional request information.

property auth_plugin

cache(cache_cls)

property clients

classmethod from_dict(values)
Construct a context object from a provided dictionary.

property keystone_session

property keystone_v3_endpoint

reload_auth_plugin()

property session

property tenant_id

to_dict()
Return a dictionary of context attributes.

to_policy_values()
A dictionary of context attributes to enforce policy with.

oslo.policy enforcement requires a dictionary of attributes representing the current logged
in user on which it applies policy enforcement. This dictionary defines a standard list of
attributes that should be available for enforcement across services.

It is expected that services will often have to override this method with either deprecated
values or additional attributes used by that service specific policy.

property trusts_auth_plugin

class heat.common.context.StoredContext(username=None, pass-
word=None, aws_creds=None,
auth_url=None, roles=None,
is_admin=None, read_only=False,
show_deleted=False, over-
write=True, trust_id=None,
trustor_user_id=None,
request_id=None,
auth_token_info=None,
region_name=None,
auth_plugin=None,
trusts_auth_plugin=None,
user_domain_id=None,
project_domain_id=None,
project_name=None, **kwargs)

Bases: heat.common.context.RequestContext

property project_domain_id

property roles

property user_domain_id

722 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.common.context.get_admin_context(show_deleted=False)

heat.common.context.list_opts()

heat.common.context.request_context(func)

heat.common.crypt module

class heat.common.crypt.SymmetricCrypto(enctype=’AES’)
Bases: object

Symmetric Key Crypto object.

This class creates a Symmetric Key Crypto object that can be used to decrypt arbitrary data.

Note: This is a reimplementation of the decryption algorithm from oslo-incubator, and is provided
for backward compatibility. Once we have a DB migration script available to re-encrypt using new
encryption method as part of upgrade, this can be removed.

Parameters enctype Encryption Cipher name (default: AES)

decrypt(key, msg, b64decode=True)
Decrypts the provided ciphertext.

The ciphertext can be optionally base64 encoded.

Uses AES-128-CBC with an IV by default.

Parameters

• key The Encryption key.

• msg the ciphetext, the first block is the IV

Returns the plaintext message, after padding is removed.

heat.common.crypt.cryptography_decrypt_v1(value, encryption_key=None)

heat.common.crypt.decrypt(method, data, encryption_key=None)

heat.common.crypt.decrypted_dict(data, encryption_key=None)
Return a decrypted dict. Assume input values are encrypted json fields.

heat.common.crypt.encrypt(value, encryption_key=None)

heat.common.crypt.encrypted_dict(data, encryption_key=None)
Return an encrypted dict. Values converted to json before encrypted

heat.common.crypt.get_valid_encryption_key(encryption_key,
fix_length=False)

heat.common.crypt.heat_decrypt(value, encryption_key=None)
Decrypt data that has been encrypted using an older version of Heat.

Note: the encrypt function returns the function that is needed to decrypt the data. The database
then stores this. When the data is then retrieved (potentially by a later version of Heat) the decrypt
function must still exist. So whilst it may seem that this function is not referenced, it will be
referenced from the database.

heat.common.crypt.list_opts()

heat.common.crypt.oslo_decrypt_v1(value, encryption_key=None)

4.2. Source Code Index 723

Heat Documentation, Release 16.1.1.dev14

heat.common.custom_backend_auth module

Middleware for authenticating against custom backends.

class heat.common.custom_backend_auth.AuthProtocol(app, conf)
Bases: object

heat.common.custom_backend_auth.filter_factory(global_conf, **lo-
cal_conf)

heat.common.endpoint_utils module

heat.common.endpoint_utils.get_auth_uri(v3=True)

heat.common.environment_format module

heat.common.environment_format.default_for_missing(env)
Checks a parsed environment for missing sections.

heat.common.environment_format.parse(env_str)
Takes a string and returns a dict containing the parsed structure.

heat.common.environment_format.validate(env)

heat.common.environment_util module

heat.common.environment_util.get_param_merge_strategy(merge_strategies,
param_key,
avail-
able_strategies=None)

heat.common.environment_util.merge_environments(environment_files,
files, params,
param_schemata)

Merges environment files into the stack input parameters.

If a list of environment files have been specified, this call will pull the contents of each from the
files dict, parse them as environments, and merge them into the stack input params. This behavior
is the same as earlier versions of the Heat client that performed this params population client-side.

Parameters

• environment_files (list or None) ordered names of the environ-
ment files found in the files dict

• files (dict) mapping of stack filenames to contents

• params (dict) parameters describing the stack

• param_schemata (dict) parameter schema dict

heat.common.environment_util.merge_list(old, new)
merges lists and comma delimited lists.

724 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.common.environment_util.merge_map(old, new, deep_merge=False)
Merge nested dictionaries.

heat.common.environment_util.merge_parameters(old, new, param_schemata,
strategies_in_file, avail-
able_strategies, env_file)

heat.common.environment_util.parse_param(p_val, p_schema)

heat.common.exception module

Heat exception subclasses

exception heat.common.exception.ActionInProgress(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Stack %(stack_name)s already has an action (%(action)s) in progress.'

exception heat.common.exception.ActionNotComplete(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Stack %(stack_name)s has an action (%(action)s) in progress or failed state.'

exception heat.common.exception.AuthorizationFailure(failure_reason=”)
Bases: heat.common.exception.HeatException

msg_fmt = 'Authorization failed.%(failure_reason)s'

exception heat.common.exception.ClientNotAvailable(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The client (%(client_name)s) is not available.'

exception heat.common.exception.ConcurrentTransaction(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Concurrent transaction for %(action)s'

exception heat.common.exception.ConflictingMergeStrategyForParam(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = "Conflicting merge strategy '%(strategy)s' for parameter '%(param)s' in file '%(env_file)s'."

exception heat.common.exception.DownloadLimitExceeded(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Permissible download limit exceeded: %(message)s'

exception heat.common.exception.EgressRuleNotAllowed(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = "Egress rules are only allowed when Neutron is used and the 'VpcId' property is set."

exception heat.common.exception.EntityNotFound(entity=None, name=None,
**kwargs)

Bases: heat.common.exception.HeatException

msg_fmt = 'The %(entity)s (%(name)s) could not be found.'

exception heat.common.exception.Error(msg)
Bases: heat.common.exception.HeatException

4.2. Source Code Index 725

Heat Documentation, Release 16.1.1.dev14

msg_fmt = '%(message)s'

exception heat.common.exception.EventSendFailed(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Failed to send message to stack (%(stack_name)s) on other engine (%(engine_id)s)'

exception heat.common.exception.Forbidden(action=’this action’)
Bases: heat.common.exception.HeatException

msg_fmt = 'You are not authorized to use %(action)s.'

exception heat.common.exception.HTTPExceptionDisguise(exception)
Bases: Exception

Disguises HTTP exceptions.

They can be handled by the webob fault application in the wsgi pipeline.

safe = True

exception heat.common.exception.HeatException(**kwargs)
Bases: Exception

Base Heat Exception.

To correctly use this class, inherit from it and define a msg_fmt property. That msg_fmt will get
formatted with the keyword arguments provided to the constructor.

error_code = None

message = 'An unknown exception occurred.'

safe = True

exception heat.common.exception.HeatExceptionWithPath(error=None,
path=None,
mes-
sage=None)

Bases: heat.common.exception.HeatException

msg_fmt = '%(error)s%(path)s%(message)s'

exception heat.common.exception.ImmutableParameterModified(*args,
**kwargs)

Bases: heat.common.exception.HeatException

msg_fmt = 'The following parameters are immutable and may not be updated: %(keys)s'

exception heat.common.exception.IncompatibleObjectVersion(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Version %(objver)s of %(objname)s is not supported'

exception heat.common.exception.InterfaceAttachFailed(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Failed to attach interface (%(port)s) to server (%(server)s)'

exception heat.common.exception.InterfaceDetachFailed(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Failed to detach interface (%(port)s) from server (%(server)s)'

726 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

exception heat.common.exception.Invalid(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Data supplied was not valid: %(reason)s'

exception heat.common.exception.InvalidBreakPointHook(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = '%(message)s'

exception heat.common.exception.InvalidContentType(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Invalid content type %(content_type)s'

exception heat.common.exception.InvalidEncryptionKey(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Can not decrypt data with the auth_encryption_key in heat config.'

exception heat.common.exception.InvalidExternalResourceDependency(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Invalid dependency with external %(resource_type)s resource: %(external_id)s'

exception heat.common.exception.InvalidGlobalResource(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'There was an error loading the definition of the global resource type %(type_name)s.'

exception heat.common.exception.InvalidMergeStrategyForParam(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = "Invalid merge strategy '%(strategy)s' for parameter '%(param)s'."

exception heat.common.exception.InvalidRestrictedAction(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = '%(message)s'

exception heat.common.exception.InvalidSchemaError(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = '%(message)s'

exception heat.common.exception.InvalidServiceVersion(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Invalid service %(service)s version %(version)s'

exception heat.common.exception.InvalidTemplateAttribute(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The Referenced Attribute (%(resource)s %(key)s) is incorrect.'

exception heat.common.exception.InvalidTemplateReference(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The specified reference "%(resource)s" (in %(key)s) is incorrect.'

exception heat.common.exception.InvalidTemplateSection(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The template section is invalid: %(section)s'

4.2. Source Code Index 727

Heat Documentation, Release 16.1.1.dev14

exception heat.common.exception.InvalidTemplateVersion(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The template version is invalid: %(explanation)s'

exception heat.common.exception.InvalidTemplateVersions(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'A template version alias %(version)s was added for a template class that has no official YYYY-MM-DD version.'

exception heat.common.exception.InvalidTenant(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Searching Tenant %(target)s from Tenant %(actual)s forbidden.'

exception heat.common.exception.KeystoneServiceNameConflict(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Keystone has more than one service with same name %(service)s. Please use service id instead of name'

exception heat.common.exception.MissingCredentialError(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Missing required credential: %(required)s'

exception heat.common.exception.NotAuthenticated(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'You are not authenticated.'

exception heat.common.exception.NotAuthorized(action=’this action’)
Bases: heat.common.exception.Forbidden

msg_fmt = 'You are not authorized to complete this action.'

exception heat.common.exception.NotFound(msg_fmt=’Not found’)
Bases: heat.common.exception.HeatException

exception heat.common.exception.NotSupported(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = '%(feature)s is not supported.'

exception heat.common.exception.ObjectActionError(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Object action %(action)s failed because: %(reason)s'

exception heat.common.exception.ObjectFieldInvalid(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Field %(field)s of %(objname)s is not an instance of Field'

exception heat.common.exception.OrphanedObjectError(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Cannot call %(method)s on orphaned %(objtype)s object'

exception heat.common.exception.PhysicalResourceExists(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The physical resource for (%(name)s) exists.'

728 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

exception heat.common.exception.PhysicalResourceIDAmbiguity(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Multiple resources were found with the physical ID (%(phys_id)s).'

exception heat.common.exception.PhysicalResourceNameAmbiguity(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Multiple physical resources were found with name (%(name)s).'

exception heat.common.exception.PropertyUnspecifiedError(*args,
**kwargs)

Bases: heat.common.exception.HeatException

msg_fmt = 'At least one of the following properties must be specified: %(props)s.'

exception heat.common.exception.ReadOnlyFieldError(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Cannot modify readonly field %(field)s'

exception heat.common.exception.RequestLimitExceeded(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Request limit exceeded: %(message)s'

exception heat.common.exception.ResourceActionNotSupported(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = '%(action)s is not supported for resource.'

exception heat.common.exception.ResourceActionRestricted(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = '%(action)s is restricted for resource.'

exception heat.common.exception.ResourceFailure(exception_or_error, re-
source, action=None)

Bases: heat.common.exception.HeatExceptionWithPath

exception heat.common.exception.ResourceInError(status_reason=’Unknown’,
**kwargs)

Bases: heat.common.exception.HeatException

msg_fmt = 'Went to status %(resource_status)s due to "%(status_reason)s"'

exception heat.common.exception.ResourceNotAvailable(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The Resource (%(resource_name)s) is not available.'

exception heat.common.exception.ResourceNotFound(entity=None,
name=None,
**kwargs)

Bases: heat.common.exception.EntityNotFound

msg_fmt = 'The Resource (%(resource_name)s) could not be found in Stack %(stack_name)s.'

exception heat.common.exception.ResourcePropertyConflict(*args,
**kwargs)

Bases: heat.common.exception.HeatException

msg_fmt = 'Cannot define the following properties at the same time: %(props)s.'

4.2. Source Code Index 729

Heat Documentation, Release 16.1.1.dev14

exception heat.common.exception.ResourcePropertyDependency(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = '%(prop1)s cannot be specified without %(prop2)s.'

exception heat.common.exception.ResourcePropertyValueDependency(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = '%(prop1)s property should only be specified for %(prop2)s with value %(value)s.'

exception heat.common.exception.ResourceTypeUnavailable(**kwargs)
Bases: heat.common.exception.HeatException

error_code = '99001'

exception heat.common.exception.ResourceUnknownStatus(result=’Resource
failed’, sta-
tus_reason=’Unknown’,
**kwargs)

Bases: heat.common.exception.HeatException

msg_fmt = '%(result)s - Unknown status %(resource_status)s due to "%(status_reason)s"'

exception heat.common.exception.SIGHUPInterrupt(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'System SIGHUP signal received.'

exception heat.common.exception.SnapshotNotFound(entity=None,
name=None,
**kwargs)

Bases: heat.common.exception.EntityNotFound

msg_fmt = 'The Snapshot (%(snapshot)s) for Stack (%(stack)s) could not be found.'

exception heat.common.exception.StackExists(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The Stack (%(stack_name)s) already exists.'

exception heat.common.exception.StackResourceLimitExceeded(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Maximum resources per stack exceeded.'

exception heat.common.exception.StackValidationFailed(error=None,
path=None,
mes-
sage=None, re-
source=None)

Bases: heat.common.exception.HeatExceptionWithPath

exception heat.common.exception.StopActionFailed(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Failed to stop stack (%(stack_name)s) on other engine (%(engine_id)s)'

exception heat.common.exception.TemplateOutputError(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Error in %(resource)s output %(attribute)s: %(message)s'

730 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

exception heat.common.exception.UnableToAutoAllocateNetwork(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Unable to automatically allocate a network: %(message)s'

exception heat.common.exception.UnknownUserParameter(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The Parameter (%(key)s) was not defined in template.'

exception heat.common.exception.UnsupportedObjectError(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Unsupported object type %(objtype)s'

exception heat.common.exception.UpdateInProgress(resource_name=’Unknown’)
Bases: Exception

exception heat.common.exception.UpdateReplace(resource_name=’Unknown’)
Bases: Exception

Raised when resource update requires replacement.

exception heat.common.exception.UserParameterMissing(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'The Parameter (%(key)s) was not provided.'

heat.common.grouputils module

class heat.common.grouputils.GroupInspector(context, rpc_client,
group_identity)

Bases: object

A class for returning data about a scaling group.

All data is fetched over RPC, and the groups stack is never loaded into memory locally. Data is
cached so it will be fetched only once. To refresh the data, create a new GroupInspector.

classmethod from_parent_resource(parent_resource)
Create a GroupInspector from a parent resource.

This is a convenience method to instantiate a GroupInspector from a Heat StackResource
object.

member_names(include_failed)
Return an iterator over the names of the group members

If include_failed is False, only members not in a FAILED state will be included.

size(include_failed)
Return the size of the group.

If include_failed is False, only members not in a FAILED state will be counted.

template()
Return a Template object representing the groups current template.

Note that this does not include any environment data.

4.2. Source Code Index 731

Heat Documentation, Release 16.1.1.dev14

heat.common.grouputils.get_child_template_files(context, stack,
is_rolling_update,
old_template_id)

Return a merged map of old and new template files.

For rolling update files for old and new defintions are required as the nested stack is updated in
batches of scaled units.

heat.common.grouputils.get_member_definitions(group, in-
clude_failed=False)

Get member definitions in (name, ResourceDefinition) pair for group.

The List is sorted first by created_time then by name. If include_failed is set, failed members will
be put first in the List sorted by created_time then by name.

heat.common.grouputils.get_member_names(group)
Get a list of resource names of the resources in the specified group.

Failed resources will be ignored.

heat.common.grouputils.get_member_refids(group)
Get a list of member resources managed by the specified group.

The list of resources is sorted first by created_time then by name.

heat.common.grouputils.get_members(group, include_failed=False)
Get a list of member resources managed by the specified group.

Sort the list of instances first by created_time then by name. If include_failed is set, failed mem-
bers will be put first in the list sorted by created_time then by name.

heat.common.grouputils.get_nested_attrs(stack, key, use_indices, *path)

heat.common.grouputils.get_resource(stack, resource_name, use_indices,
key=None)

heat.common.grouputils.get_rsrc_attr(stack, key, use_indices, resource_name,
*attr_path)

heat.common.grouputils.get_rsrc_id(stack, key, use_indices, resource_name)

heat.common.grouputils.get_size(group, include_failed=False)
Get number of member resources managed by the specified group.

The size excludes failed members by default; set include_failed=True to get the total size.

heat.common.i18n module

heat.common.identifier module

class heat.common.identifier.EventIdentifier(tenant, stack_name, stack_id,
path, event_id=None)

Bases: heat.common.identifier.HeatIdentifier

An identifier for an event.

EVENT_ID = 'event_id'

RESOURCE_NAME = 'resource_name'

732 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

resource()
Return a HeatIdentifier for the owning resource.

stack()
Return a HeatIdentifier for the owning stack.

class heat.common.identifier.HeatIdentifier(tenant, stack_name, stack_id,
path=”)

Bases: collections.abc.Mapping

FIELDS = ('tenant', 'stack_name', 'stack_id', 'path')

PATH = 'path'

STACK_ID = 'stack_id'

STACK_NAME = 'stack_name'

TENANT = 'tenant'

arn()
Return as an ARN.

Returned in the form: arn:openstack:heat::<tenant>:stacks/<stack_name>/<stack_id><path>

arn_url_path()
Return an ARN quoted correctly for use in a URL.

classmethod from_arn(arn)
Generate a new HeatIdentifier by parsing the supplied ARN.

classmethod from_arn_url(url)
Generate a new HeatIdentifier by parsing the supplied URL.

The URL is expected to contain a valid arn as part of the path.

path_re = re.compile('stacks/([^/]+)/([^/]+)(.*)')

stack_path()
Return a URL-encoded path segment of a URL without a tenant.

Returned in the form: <stack_name>/<stack_id>

url_path()
Return a URL-encoded path segment of a URL.

Returned in the form: <tenant>/stacks/<stack_name>/<stack_id><path>

class heat.common.identifier.ResourceIdentifier(tenant, stack_name,
stack_id, path, re-
source_name=None)

Bases: heat.common.identifier.HeatIdentifier

An identifier for a resource.

RESOURCE_NAME = 'resource_name'

stack()
Return a HeatIdentifier for the owning stack.

4.2. Source Code Index 733

Heat Documentation, Release 16.1.1.dev14

heat.common.lifecycle_plugin_utils module

Utility for fetching and running plug point implementation classes.

heat.common.lifecycle_plugin_utils.do_post_ops(cnxt, stack, cur-
rent_stack=None,
action=None,
is_stack_failure=False)

Call available post-op methods sequentially.

In order determined with get_ordinal(), with parameters context, stack, current_stack, action,
is_stack_failure.

heat.common.lifecycle_plugin_utils.do_pre_ops(cnxt, stack, cur-
rent_stack=None, ac-
tion=None)

Call available pre-op methods sequentially.

In order determined with get_ordinal(), with parameters context, stack, current_stack, action.

On failure of any pre_op method, will call post-op methods corresponding to successful calls of
pre-op methods.

heat.common.lifecycle_plugin_utils.get_plug_point_class_instances()
Instances of classes that implements pre/post stack operation methods.

Get list of instances of classes that (may) implement pre and post stack operation methods.

The list of class instances is sorted using get_ordinal methods on the plug point classes. If
class1.ordinal() < class2.ordinal(), then class1 will be before class2 in the list.

heat.common.messaging module

class heat.common.messaging.RequestContextSerializer(base)
Bases: oslo_messaging.serializer.Serializer

static deserialize_context(ctxt)
Deserialize a dictionary into a request context.

Parameters ctxt Request context dictionary

Returns Deserialized form of entity

deserialize_entity(ctxt, entity)
Deserialize something from primitive form.

Parameters

• ctxt Request context, in deserialized form

• entity Primitive to be deserialized

Returns Deserialized form of entity

static serialize_context(ctxt)
Serialize a request context into a dictionary.

Parameters ctxt Request context

Returns Serialized form of context

734 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

serialize_entity(ctxt, entity)
Serialize something to primitive form.

Parameters

• ctxt Request context, in deserialized form

• entity Entity to be serialized

Returns Serialized form of entity

heat.common.messaging.cleanup()
Cleanup the oslo_messaging layer.

heat.common.messaging.get_notifier(publisher_id)
Return a configured oslo_messaging notifier.

heat.common.messaging.get_rpc_client(**kwargs)
Return a configured oslo_messaging RPCClient.

heat.common.messaging.get_rpc_server(target, endpoint)
Return a configured oslo_messaging rpc server.

heat.common.messaging.get_specific_transport(url, optional, exmods,
is_for_notifications=False)

heat.common.messaging.setup(url=None, optional=False)
Initialise the oslo_messaging layer.

heat.common.messaging.setup_transports(url, optional)

heat.common.netutils module

heat.common.netutils.is_prefix_subset(orig_prefixes, new_prefixes)
Check whether orig_prefixes is subset of new_prefixes.

This takes valid prefix lists for orig_prefixes and new_prefixes, returns True, if orig_prefixes is
subset of new_prefixes.

heat.common.netutils.validate_dns_format(data)

heat.common.noauth module

Middleware that accepts any authentication.

class heat.common.noauth.NoAuthProtocol(app, conf)
Bases: object

heat.common.noauth.filter_factory(global_conf, **local_conf)

4.2. Source Code Index 735

Heat Documentation, Release 16.1.1.dev14

heat.common.param_utils module

heat.common.param_utils.delim_string_to_list(value)

heat.common.param_utils.extract_bool(name, value)
Convert any true/false string to its corresponding boolean value.

Value is case insensitive.

heat.common.param_utils.extract_int(name, value, allow_zero=True, al-
low_negative=False)

heat.common.param_utils.extract_tags(subject)

heat.common.param_utils.extract_template_type(subject)

heat.common.password_gen module

class heat.common.password_gen.CharClass(allowed_chars, min_count)
Bases: tuple

allowed_chars
Alias for field number 0

min_count
Alias for field number 1

heat.common.password_gen.generate_openstack_password()
Generate a random password suitable for a Keystone User.

heat.common.password_gen.generate_password(length, char_classes)
Generate a random password.

The password will be of the specified length, and comprised of characters from the spec-
ified character classes, which can be generated using the named_char_class() and
special_char_class() functions. Where a minimum count is specified in the character
class, at least that number of characters in the resulting password are guaranteed to be from that
character class.

Parameters

• length The length of the password to generate, in characters

• char_classes Iterable over classes of characters from which to generate
a password

heat.common.password_gen.named_char_class(char_class, min_count=0)
Return a predefined character class.

The result of this function can be passed to generate_password() as one of the character
classes to use in generating a password.

Parameters

• char_class Any of the character classes named in
CHARACTER_CLASSES

• min_count The minimum number of members of this class to appear in a
generated password

736 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.common.password_gen.special_char_class(allowed_chars, min_count=0)
Return a character class containing custom characters.

The result of this function can be passed to generate_password() as one of the character
classes to use in generating a password.

Parameters

• allowed_chars Iterable of the characters in the character class

• min_count The minimum number of members of this class to appear in a
generated password

heat.common.plugin_loader module

Utilities to dynamically load plugin modules.

Modules imported this way remain accessible to static imports, regardless of the order in which they
are imported. For modules that are not part of an existing package tree, use create_subpackage() to
dynamically create a package for them before loading them.

heat.common.plugin_loader.create_subpackage(path, parent_package_name,
subpackage_name=’plugins’)

Dynamically create a package into which to load plugins.

This allows us to not include an __init__.py in the plugins directory. We must still create a package
for plugins to go in, otherwise we get warning messages during import. This also provides a
convenient place to store the path(s) to the plugins directory.

heat.common.plugin_loader.load_modules(package, ignore_error=False)
Dynamically load all modules from a given package.

heat.common.pluginutils module

heat.common.pluginutils.log_fail_msg(manager, entrypoint, exception)

heat.common.policy module

Policy Engine For Heat.

class heat.common.policy.Enforcer(scope=’heat’, exc=<class
’heat.common.exception.Forbidden’>, de-
fault_rule=<oslo_policy._checks.FalseCheck
object>, policy_file=None)

Bases: object

Responsible for loading and enforcing rules.

check_is_admin(context)
Whether or not is admin according to policy.

By default the rule will check whether or not roles contains admin role and is admin project.

param context Heat request context

returns A non-False value if the user is admin according to policy

4.2. Source Code Index 737

Heat Documentation, Release 16.1.1.dev14

enforce(context, action, scope=None, target=None, is_registered_policy=False)
Verifies that the action is valid on the target in this context.

Parameters

• context Heat request context

• action String representing the action to be checked

• target Dictionary representing the object of the action.

Raises heat.common.exception.Forbidden When permission is denied
(or self.exc if supplied).

Returns A non-False value if access is allowed.

load_rules(force_reload=False)
Set the rules found in the json file on disk.

set_rules(rules, overwrite=True)
Create a new Rules object based on the provided dict of rules.

class heat.common.policy.ResourceEnforcer(default_rule=<oslo_policy._checks.TrueCheck
object>, **kwargs)

Bases: heat.common.policy.Enforcer

enforce(context, res_type, scope=None, target=None, is_registered_policy=False)
Verifies that the action is valid on the target in this context.

Parameters

• context Heat request context

• action String representing the action to be checked

• target Dictionary representing the object of the action.

Raises heat.common.exception.Forbidden When permission is denied
(or self.exc if supplied).

Returns A non-False value if access is allowed.

enforce_stack(stack, scope=None, target=None, is_registered_policy=False)

heat.common.policy.get_enforcer()

heat.common.policy.get_policy_enforcer()

heat.common.profiler module

heat.common.profiler.setup(binary, host)

738 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.common.serializers module

Utility methods for serializing responses.

class heat.common.serializers.JSONResponseSerializer
Bases: object

default(response, result)

to_json(data)

class heat.common.serializers.XMLResponseSerializer
Bases: object

default(response, result)

object_to_element(obj, element)

to_xml(data)

heat.common.service_utils module

heat.common.service_utils.engine_alive(context, engine_id)

heat.common.service_utils.format_service(service)

heat.common.service_utils.generate_engine_id()

heat.common.short_id module

Utilities for creating short ID strings based on a random UUID.

The IDs each comprise 12 (lower-case) alphanumeric characters.

heat.common.short_id.generate_id()
Generate a short (12 character), random id.

heat.common.short_id.get_id(source_uuid)
Derive a short (12 character) id from a random UUID.

The supplied UUID must be a version 4 UUID object.

heat.common.template_format module

heat.common.template_format.convert_json_to_yaml(json_str)
Convert AWS JSON template format to Heat YAML format.

Parameters json_str a string containing the AWS JSON template format.

Returns the equivalent string containing the Heat YAML format.

heat.common.template_format.parse(tmpl_str, tmpl_url=None)
Takes a string and returns a dict containing the parsed structure.

This includes determination of whether the string is using the JSON or YAML format.

heat.common.template_format.simple_parse(tmpl_str, tmpl_url=None)

4.2. Source Code Index 739

Heat Documentation, Release 16.1.1.dev14

heat.common.template_format.validate_template_limit(contain_str)
Validate limit for the template.

Check if the contain exceeds allowed size range.

class heat.common.template_format.yaml_dumper(stream, de-
fault_style=None, de-
fault_flow_style=False,
canonical=None, in-
dent=None, width=None,
allow_unicode=None,
line_break=None, en-
coding=None, ex-
plicit_start=None, ex-
plicit_end=None, ver-
sion=None, tags=None,
sort_keys=True)

Bases: yaml.cyaml.CSafeDumper

represent_ordered_dict(data)

yaml_representers = {<class 'NoneType'>: <function SafeRepresenter.represent_none>, <class 'str'>: <function SafeRepresenter.represent_str>, <class 'bytes'>: <function SafeRepresenter.represent_binary>, <class 'bool'>: <function SafeRepresenter.represent_bool>, <class 'int'>: <function SafeRepresenter.represent_int>, <class 'float'>: <function SafeRepresenter.represent_float>, <class 'list'>: <function SafeRepresenter.represent_list>, <class 'tuple'>: <function SafeRepresenter.represent_list>, <class 'dict'>: <function SafeRepresenter.represent_dict>, <class 'set'>: <function SafeRepresenter.represent_set>, <class 'datetime.date'>: <function SafeRepresenter.represent_date>, <class 'datetime.datetime'>: <function SafeRepresenter.represent_datetime>, None: <function SafeRepresenter.represent_undefined>, <class 'collections.OrderedDict'>: <function yaml_dumper.represent_ordered_dict>}

class heat.common.template_format.yaml_loader(stream)
Bases: yaml.cyaml.CSafeLoader

yaml_constructors = {'tag:yaml.org,2002:null': <function SafeConstructor.construct_yaml_null>, 'tag:yaml.org,2002:bool': <function SafeConstructor.construct_yaml_bool>, 'tag:yaml.org,2002:int': <function SafeConstructor.construct_yaml_int>, 'tag:yaml.org,2002:float': <function SafeConstructor.construct_yaml_float>, 'tag:yaml.org,2002:binary': <function SafeConstructor.construct_yaml_binary>, 'tag:yaml.org,2002:timestamp': <function yaml_loader._construct_yaml_str>, 'tag:yaml.org,2002:omap': <function SafeConstructor.construct_yaml_omap>, 'tag:yaml.org,2002:pairs': <function SafeConstructor.construct_yaml_pairs>, 'tag:yaml.org,2002:set': <function SafeConstructor.construct_yaml_set>, 'tag:yaml.org,2002:str': <function yaml_loader._construct_yaml_str>, 'tag:yaml.org,2002:seq': <function SafeConstructor.construct_yaml_seq>, 'tag:yaml.org,2002:map': <function SafeConstructor.construct_yaml_map>, None: <function SafeConstructor.construct_undefined>}

heat.common.timeutils module

Utilities for handling ISO 8601 duration format.

class heat.common.timeutils.Duration(timeout=0)
Bases: object

endtime()

expired()

heat.common.timeutils.isotime(at)
Stringify UTC time in ISO 8601 format.

Parameters at Timestamp in UTC to format.

heat.common.timeutils.parse_isoduration(duration)
Convert duration in ISO 8601 format to second(s).

Year, Month, Week, and Day designators are not supported. Example: PT12H30M5S

heat.common.timeutils.retry_backoff_delay(attempt, scale_factor=1.0, jit-
ter_max=0.0)

Calculate an exponential backoff delay with jitter.

Delay is calculated as 2^attempt + (uniform random from [0,1) * jitter_max)

Parameters

• attempt The count of the current retry attempt

• scale_factor Multiplier to scale the exponential delay by

740 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

• jitter_max Maximum of random seconds to add to the delay

Returns Seconds since epoch to wait until

heat.common.urlfetch module

Utility for fetching a resource (e.g. a template) from a URL.

exception heat.common.urlfetch.URLFetchError(msg)
Bases: heat.common.exception.Error, OSError

heat.common.urlfetch.get(url, allowed_schemes=(’http’, ’https’))
Get the data at the specified URL.

The URL must use the http: or https: schemes. The file: scheme is also supported if you override
the allowed_schemes argument. Raise an IOError if getting the data fails.

heat.common.wsgi module

Utility methods for working with WSGI servers.

class heat.common.wsgi.AppFactory(conf)
Bases: heat.common.wsgi.BasePasteFactory

A Generic paste.deploy app factory.

This requires heat.app_factory to be set to a callable which returns a WSGI app when invoked.
The format of the name is <module>:<callable> e.g.

[app:apiv1app] paste.app_factory = heat.common.wsgi:app_factory heat.app_factory
= heat.api.cfn.v1:API

The WSGI app constructor must accept a ConfigOpts object and a local config dict as its two
arguments.

KEY = 'heat.app_factory'

class heat.common.wsgi.BasePasteFactory(conf)
Bases: object

A base class for paste app and filter factories.

Sub-classes must override the KEY class attribute and provide a __call__ method.

KEY = None

class heat.common.wsgi.Debug(application)
Bases: heat.common.wsgi.Middleware

Helper class to get information about the request and response.

Helper class that can be inserted into any WSGI application chain to get information about the
request and response.

static print_generator(app_iter)
Prints the contents of a wrapper string iterator when iterated.

4.2. Source Code Index 741

Heat Documentation, Release 16.1.1.dev14

class heat.common.wsgi.DefaultMethodController
Bases: object

Controller that handles the OPTIONS request method.

This controller handles the OPTIONS request method and any of the HTTP methods that are not
explicitly implemented by the application.

options(req, allowed_methods, *args, **kwargs)
Return a response that includes the Allow header.

Return a response that includes the Allow header listing the methods that are implemented.
A 204 status code is used for this response.

reject(req, allowed_methods, *args, **kwargs)
Return a 405 method not allowed error.

As a convenience, the Allow header with the list of implemented methods is included in the
response as well.

class heat.common.wsgi.FilterFactory(conf)
Bases: heat.common.wsgi.AppFactory

A Generic paste.deploy filter factory.

This requires heat.filter_factory to be set to a callable which returns a WSGI filter when invoked.
The format is <module>:<callable> e.g.

[filter:cache] paste.filter_factory = heat.common.wsgi:filter_factory heat.filter_factory
= heat.api.middleware.cache:CacheFilter

The WSGI filter constructor must accept a WSGI app, a ConfigOpts object and a local config dict
as its three arguments.

KEY = 'heat.filter_factory'

class heat.common.wsgi.JSONRequestDeserializer
Bases: object

default(request)

from_json(datastring)

has_body(request)
Returns whether a Webob.Request object will possess an entity body.

Parameters request Webob.Request object

class heat.common.wsgi.Middleware(application)
Bases: object

Base WSGI middleware wrapper.

These classes require an application to be initialized that will be called next. By default the mid-
dleware will simply call its wrapped app, or you can override __call__ to customize its behavior.

process_request(req)
Called on each request.

If this returns None, the next application down the stack will be executed. If it returns a
response then that response will be returned and execution will stop here.

742 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

process_response(response)
Do whatever youd like to the response.

class heat.common.wsgi.Request(environ, charset=None, unicode_errors=None, de-
code_param_names=None, **kw)

Bases: webob.request.Request

Add some OpenStack API-specific logic to the base webob.Request.

best_match_content_type()
Determine the requested response content-type.

best_match_language()
Determines best available locale from the Accept-Language header.

Returns the best language match or None if the Accept-Language header was not
available in the request.

get_content_type(allowed_content_types)
Determine content type of the request body.

class heat.common.wsgi.Resource(controller, deserializer, serializer=None)
Bases: object

WSGI app that handles (de)serialization and controller dispatch.

Reads routing information supplied by RoutesMiddleware and calls the requested action method
upon its deserializer, controller, and serializer. Those three objects may implement any of the
basic controller action methods (create, update, show, index, delete) along with any that may be
specified in the api router. A default method may also be implemented to be used in place of
any non-implemented actions. Deserializer methods must accept a request argument and return
a dictionary. Controller methods must accept a request argument. Additionally, they must also
accept keyword arguments that represent the keys returned by the Deserializer. They may raise a
webob.exc exception or return a dict, which will be serialized by requested content type.

dispatch(obj, action, *args, **kwargs)
Find action-specific method on self and call it.

get_action_args(request_environment)
Parse dictionary created by routes library.

class heat.common.wsgi.Router(mapper)
Bases: object

WSGI middleware that maps incoming requests to WSGI apps.

class heat.common.wsgi.Server(name, conf, threads=1000)
Bases: object

Server class to manage multiple WSGI sockets and applications.

configure_socket(old_conf=None, has_changed=None)
Ensure a socket exists and is appropriately configured.

This function is called on start up, and can also be called in the event of a configuration
reload.

When called for the first time a new socket is created. If reloading and either bind_host or
bind port have been changed the existing socket must be closed and a new socket opened
(laws of physics).

4.2. Source Code Index 743

Heat Documentation, Release 16.1.1.dev14

In all other cases (bind_host/bind_port have not changed) the existing socket is reused.

Parameters

• old_conf Cached old configuration settings (if any)

• changed (has) callable to determine if a parameter has changed

hup(*args)
Reloads configuration files with zero down time.

kill_children(*args)
Kills the entire process group.

reload()
Reload and re-apply configuration settings.

Existing child processes are sent a SIGHUP signal and will exit after completing existing
requests. New child processes, which will have the updated configuration, are spawned.
This allows preventing interruption to the service.

run_child()

run_server()
Run a WSGI server.

start(application, default_port)
Run a WSGI server with the given application.

Parameters

• application The application to run in the WSGI server

• default_port Port to bind to if none is specified in conf

start_wsgi()

stash_conf_values()
Make a copy of some of the current global CONFs settings.

Allows determining if any of these values have changed when the config is reloaded.

wait()
Wait until all servers have completed running.

wait_on_children()

heat.common.wsgi.debug_filter(app, conf, **local_conf)

heat.common.wsgi.get_bind_addr(conf, default_port=None)
Return the host and port to bind to.

heat.common.wsgi.get_socket(conf, default_port)
Bind socket to bind ip:port in conf.

Note: Mostly comes from Swift with a few small changes

Parameters

• conf a cfg.ConfigOpts object

• default_port port to bind to if none is specified in conf

744 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Returns a socket object as returned from socket.listen or ssl.wrap_socket if conf spec-
ifies cert_file

heat.common.wsgi.is_json_content_type(request)

heat.common.wsgi.list_opts()

heat.common.wsgi.log_exception(err, exc_info)

heat.common.wsgi.paste_deploy_app(paste_config_file, app_name, conf)
Load a WSGI app from a PasteDeploy configuration.

Use deploy.loadapp() to load the app from the PasteDeploy configuration, ensuring that the sup-
plied ConfigOpts object is passed to the app and filter constructors.

Parameters

• paste_config_file a PasteDeploy config file

• app_name the name of the app/pipeline to load from the file

• conf a ConfigOpts object to supply to the app and its filters

Returns the WSGI app

heat.common.wsgi.setup_paste_factories(conf)
Set up the generic paste app and filter factories.

Set things up so that:

paste.app_factory = heat.common.wsgi:app_factory

and

paste.filter_factory = heat.common.wsgi:filter_factory

work correctly while loading PasteDeploy configuration.

The app factories are constructed at runtime to allow us to pass a ConfigOpts object to the WSGI
classes.

Parameters conf a ConfigOpts object

heat.common.wsgi.teardown_paste_factories()
Reverse the effect of setup_paste_factories().

heat.common.wsgi.translate_exception(exc, locale)
Translates all translatable elements of the given exception.

Module contents

heat.db package

Subpackages

heat.db.sqlalchemy package

Subpackages

4.2. Source Code Index 745

Heat Documentation, Release 16.1.1.dev14

heat.db.sqlalchemy.migrate_repo package

Submodules

heat.db.sqlalchemy.migrate_repo.manage module

Module contents

Submodules

heat.db.sqlalchemy.api module

Implementation of SQLAlchemy backend.

heat.db.sqlalchemy.api.db_decrypt_parameters_and_properties(ctxt,
en-
cryp-
tion_key,
batch_size=50,
ver-
bose=False)

Decrypt parameters and properties for all templates in db.

Parameters

• ctxt RPC context

• encryption_key key that will be used for parameter and property de-
cryption

• batch_size number of templates requested from DB in each iteration. 50
means that heat requests 50 templates, encrypt them and proceed with next 50
items.

• verbose log an INFO message when processing of each raw_template or
resource begins or ends

Returns list of exceptions encountered during decryption

heat.db.sqlalchemy.api.db_encrypt_parameters_and_properties(ctxt,
en-
cryp-
tion_key,
batch_size=50,
ver-
bose=False)

Encrypt parameters and properties for all templates in db.

Parameters

• ctxt RPC context

• encryption_key key that will be used for parameter and property en-
cryption

746 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

• batch_size number of templates requested from DB in each iteration. 50
means that heat requests 50 templates, encrypt them and proceed with next 50
items.

• verbose log an INFO message when processing of each raw_template or
resource begins or ends

Returns list of exceptions encountered during encryption

heat.db.sqlalchemy.api.db_properties_data_migrate(ctxt, batch_size=50)
Migrate properties data from legacy columns to new location in db.

Parameters

• ctxt RPC context

• batch_size number of templates requested from DB in each iteration. 50
means that heat requests 50 templates, encrypt them and proceed with next 50
items.

heat.db.sqlalchemy.api.db_sync(engine, version=None)
Migrate the database to version or the most recent version.

heat.db.sqlalchemy.api.db_version(engine)
Display the current database version.

heat.db.sqlalchemy.api.delete_softly(context, obj)
Mark this object as deleted.

heat.db.sqlalchemy.api.engine_get_all_locked_by_stack(context,
stack_id)

heat.db.sqlalchemy.api.event_count_all_by_stack(context, stack_id)

heat.db.sqlalchemy.api.event_create(context, values)

heat.db.sqlalchemy.api.event_get_all_by_stack(context, stack_id,
limit=None, marker=None,
sort_keys=None,
sort_dir=None, fil-
ters=None)

heat.db.sqlalchemy.api.event_get_all_by_tenant(context, limit=None,
marker=None,
sort_keys=None,
sort_dir=None, fil-
ters=None)

heat.db.sqlalchemy.api.get_engine()

heat.db.sqlalchemy.api.get_facade()

heat.db.sqlalchemy.api.get_session()

heat.db.sqlalchemy.api.persist_state_and_release_lock(context,
stack_id,
engine_id,
values)

heat.db.sqlalchemy.api.purge_deleted(age, granularity=’days’,
project_id=None, batch_size=20)

heat.db.sqlalchemy.api.raw_template_create(context, values)

4.2. Source Code Index 747

Heat Documentation, Release 16.1.1.dev14

heat.db.sqlalchemy.api.raw_template_delete(context, template_id)

heat.db.sqlalchemy.api.raw_template_files_create(context, values)

heat.db.sqlalchemy.api.raw_template_files_get(context, files_id)

heat.db.sqlalchemy.api.raw_template_get(context, template_id)

heat.db.sqlalchemy.api.raw_template_update(context, template_id, values)

heat.db.sqlalchemy.api.reset_stack_status(context, stack_id, stack=None)

heat.db.sqlalchemy.api.resource_attr_data_delete(context, resource_id,
attr_id)

heat.db.sqlalchemy.api.resource_attr_id_set(context, resource_id,
atomic_key, attr_id)

heat.db.sqlalchemy.api.resource_create(context, values)

heat.db.sqlalchemy.api.resource_create_replacement(context, ex-
isting_res_id,
new_res_values,
atomic_key, ex-
pected_engine_id=None)

heat.db.sqlalchemy.api.resource_data_delete(context, resource_id, key)

heat.db.sqlalchemy.api.resource_data_get(context, resource_id, key)
Lookup value of resources data by key.

Decrypts resource data if necessary.

heat.db.sqlalchemy.api.resource_data_get_all(context, resource_id,
data=None)

Looks up resource_data by resource.id.

If data is encrypted, this method will decrypt the results.

heat.db.sqlalchemy.api.resource_data_get_by_key(context, resource_id,
key)

Looks up resource_data by resource_id and key.

Does not decrypt resource_data.

heat.db.sqlalchemy.api.resource_data_set(context, resource_id, key, value,
redact=False)

Save resources key/value pair to database.

heat.db.sqlalchemy.api.resource_delete(context, resource_id)

heat.db.sqlalchemy.api.resource_exchange_stacks(context, resource_id1,
resource_id2)

heat.db.sqlalchemy.api.resource_get(context, resource_id, refresh=False, re-
fresh_data=False, eager=True)

heat.db.sqlalchemy.api.resource_get_all(context)

heat.db.sqlalchemy.api.resource_get_all_active_by_stack(context,
stack_id)

748 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.db.sqlalchemy.api.resource_get_all_by_physical_resource_id(context,
phys-
i-
cal_resource_id)

heat.db.sqlalchemy.api.resource_get_all_by_root_stack(context,
stack_id,
filters=None,
stack_id_only=False)

heat.db.sqlalchemy.api.resource_get_all_by_stack(context, stack_id, fil-
ters=None)

heat.db.sqlalchemy.api.resource_get_by_name_and_stack(context, re-
source_name,
stack_id)

heat.db.sqlalchemy.api.resource_get_by_physical_resource_id(context,
physi-
cal_resource_id)

heat.db.sqlalchemy.api.resource_prop_data_create(context, values)

heat.db.sqlalchemy.api.resource_prop_data_create_or_update(context,
values,
rpd_id=None)

heat.db.sqlalchemy.api.resource_prop_data_get(context, re-
source_prop_data_id)

heat.db.sqlalchemy.api.resource_purge_deleted(context, stack_id)

heat.db.sqlalchemy.api.resource_update(context, resource_id, val-
ues, atomic_key, ex-
pected_engine_id=None)

heat.db.sqlalchemy.api.resource_update_and_save(context, resource_id, val-
ues)

heat.db.sqlalchemy.api.retry_on_db_error(func)

heat.db.sqlalchemy.api.service_create(context, values)

heat.db.sqlalchemy.api.service_delete(context, service_id, soft_delete=True)

heat.db.sqlalchemy.api.service_get(context, service_id)

heat.db.sqlalchemy.api.service_get_all(context)

heat.db.sqlalchemy.api.service_get_all_by_args(context, host, binary, host-
name)

heat.db.sqlalchemy.api.service_update(context, service_id, values)

heat.db.sqlalchemy.api.snapshot_create(context, values)

heat.db.sqlalchemy.api.snapshot_delete(context, snapshot_id)

heat.db.sqlalchemy.api.snapshot_get(context, snapshot_id)

heat.db.sqlalchemy.api.snapshot_get_all(context, stack_id)

heat.db.sqlalchemy.api.snapshot_get_by_stack(context, snapshot_id, stack)

heat.db.sqlalchemy.api.snapshot_update(context, snapshot_id, values)

4.2. Source Code Index 749

Heat Documentation, Release 16.1.1.dev14

heat.db.sqlalchemy.api.soft_delete_aware_query(context, *args, **kwargs)
Stack query helper that accounts for contexts show_deleted field.

Parameters show_deleted if True, overrides contexts show_deleted field.

heat.db.sqlalchemy.api.software_config_create(context, values)

heat.db.sqlalchemy.api.software_config_delete(context, config_id)

heat.db.sqlalchemy.api.software_config_get(context, config_id)

heat.db.sqlalchemy.api.software_config_get_all(context, limit=None,
marker=None)

heat.db.sqlalchemy.api.software_deployment_create(context, values)

heat.db.sqlalchemy.api.software_deployment_delete(context, deploy-
ment_id)

heat.db.sqlalchemy.api.software_deployment_get(context, deployment_id)

heat.db.sqlalchemy.api.software_deployment_get_all(context,
server_id=None)

heat.db.sqlalchemy.api.software_deployment_update(context, deploy-
ment_id, values)

heat.db.sqlalchemy.api.stack_count_all(context, filters=None,
show_deleted=False,
show_nested=False,
show_hidden=False, tags=None,
tags_any=None, not_tags=None,
not_tags_any=None)

heat.db.sqlalchemy.api.stack_count_total_resources(context, stack_id)

heat.db.sqlalchemy.api.stack_create(context, values)

heat.db.sqlalchemy.api.stack_delete(context, stack_id)

heat.db.sqlalchemy.api.stack_get(context, stack_id, show_deleted=False, ea-
ger_load=True)

heat.db.sqlalchemy.api.stack_get_all(context, limit=None, sort_keys=None,
marker=None, sort_dir=None, fil-
ters=None, show_deleted=False,
show_nested=False,
show_hidden=False, tags=None,
tags_any=None, not_tags=None,
not_tags_any=None, eager_load=False)

heat.db.sqlalchemy.api.stack_get_all_by_owner_id(context, owner_id)

heat.db.sqlalchemy.api.stack_get_all_by_root_owner_id(context,
owner_id)

heat.db.sqlalchemy.api.stack_get_by_name(context, stack_name)

heat.db.sqlalchemy.api.stack_get_by_name_and_owner_id(context,
stack_name,
owner_id)

heat.db.sqlalchemy.api.stack_get_root_id(context, stack_id)

heat.db.sqlalchemy.api.stack_get_status(context, stack_id)

750 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.db.sqlalchemy.api.stack_lock_create(context, stack_id, engine_id)

heat.db.sqlalchemy.api.stack_lock_get_engine_id(context, stack_id)

heat.db.sqlalchemy.api.stack_lock_release(context, stack_id, engine_id)

heat.db.sqlalchemy.api.stack_lock_steal(context, stack_id, old_engine_id,
new_engine_id)

heat.db.sqlalchemy.api.stack_tags_delete(context, stack_id)

heat.db.sqlalchemy.api.stack_tags_get(context, stack_id)

heat.db.sqlalchemy.api.stack_tags_set(context, stack_id, tags)

heat.db.sqlalchemy.api.stack_update(context, stack_id, values, exp_trvsl=None)

heat.db.sqlalchemy.api.sync_point_create(context, values)

heat.db.sqlalchemy.api.sync_point_delete_all_by_stack_and_traversal(context,
stack_id,
traver-
sal_id)

heat.db.sqlalchemy.api.sync_point_get(context, entity_id, traversal_id,
is_update)

heat.db.sqlalchemy.api.sync_point_update_input_data(context, en-
tity_id, traver-
sal_id, is_update,
atomic_key, in-
put_data)

heat.db.sqlalchemy.api.update_and_save(context, obj, values)

heat.db.sqlalchemy.api.user_creds_create(context)

heat.db.sqlalchemy.api.user_creds_delete(context, user_creds_id)

heat.db.sqlalchemy.api.user_creds_get(context, user_creds_id)

heat.db.sqlalchemy.filters module

heat.db.sqlalchemy.filters.exact_filter(query, model, filters)
Applies exact match filtering to a query.

Returns the updated query. Modifies filters argument to remove filters consumed.

Parameters

• query query to apply filters to

• model model object the query applies to, for IN-style filtering

• filters dictionary of filters; values that are lists, tuples, sets, or frozensets
cause an IN test to be performed, while exact matching (== operator) is used
for other values

4.2. Source Code Index 751

Heat Documentation, Release 16.1.1.dev14

heat.db.sqlalchemy.migration module

heat.db.sqlalchemy.migration.db_sync(engine, version=None)

heat.db.sqlalchemy.migration.db_version(engine)

heat.db.sqlalchemy.migration.db_version_control(engine, version=None)

heat.db.sqlalchemy.models module

SQLAlchemy models for heat data.

class heat.db.sqlalchemy.models.Event(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Represents an event generated by the heat engine.

created_at

id

physical_resource_id

resource_action

resource_name

resource_properties

resource_status

property resource_status_reason

resource_type

rsrc_prop_data

rsrc_prop_data_id

stack

stack_id

updated_at

uuid

class heat.db.sqlalchemy.models.HeatBase
Bases: oslo_db.sqlalchemy.models.ModelBase, oslo_db.sqlalchemy.
models.TimestampMixin

Base class for Heat Models.

class heat.db.sqlalchemy.models.RawTemplate(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Represents an unparsed template which should be in JSON format.

created_at

752 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

environment

files

files_id

id

template

updated_at

class heat.db.sqlalchemy.models.RawTemplateFiles(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Where template files json dicts are stored.

created_at

files

id

updated_at

class heat.db.sqlalchemy.models.Resource(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase, heat.db.sqlalchemy.models.StateAware

Represents a resource created by the heat engine.

action

atomic_key

attr_data

attr_data_id

created_at

current_template_id

data

engine_id

id

name

needed_by

physical_resource_id

properties_data

properties_data_encrypted

replaced_by

replaces

requires

root_stack_id

4.2. Source Code Index 753

Heat Documentation, Release 16.1.1.dev14

rsrc_metadata

rsrc_prop_data

rsrc_prop_data_id

stack

stack_id

status

status_reason

updated_at

uuid

class heat.db.sqlalchemy.models.ResourceData(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Key/value store of arbitrary, resource-specific data.

created_at

decrypt_method

id

key

redact

resource_id

updated_at

value

class heat.db.sqlalchemy.models.ResourcePropertiesData(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Represents resource properties data, current or older

created_at

data

encrypted

id

updated_at

class heat.db.sqlalchemy.models.Service(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase, heat.db.sqlalchemy.models.SoftDelete

binary

created_at

deleted_at

754 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

engine_id

host

hostname

id

report_interval

topic

updated_at

class heat.db.sqlalchemy.models.Snapshot(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

created_at

data

id

name

stack

stack_id

status

status_reason

tenant

updated_at

class heat.db.sqlalchemy.models.SoftDelete
Bases: object

deleted_at = Column(None, DateTime(), table=None)

class heat.db.sqlalchemy.models.SoftwareConfig(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Represents a software configuration resource.

Represents a software configuration resource to be applied to one or more servers.

config

created_at

group

id

name

tenant

updated_at

4.2. Source Code Index 755

Heat Documentation, Release 16.1.1.dev14

class heat.db.sqlalchemy.models.SoftwareDeployment(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase, heat.db.sqlalchemy.models.StateAware

Represents a software deployment resource.

Represents applying a software configuration resource to a single server resource.

action

config

config_id

created_at

id

input_values

output_values

server_id

stack_user_project_id

status

status_reason

tenant

updated_at

class heat.db.sqlalchemy.models.Stack(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase, heat.db.sqlalchemy.models.SoftDelete, heat.db.
sqlalchemy.models.StateAware

Represents a stack created by the heat engine.

action

backup

convergence

created_at

current_deps

current_traversal

deleted_at

disable_rollback

id

name

nested_depth

owner_id

parent_resource_name

756 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

prev_raw_template

prev_raw_template_id

raw_template

raw_template_id

stack_user_project_id

status

status_reason

tags

tenant

timeout

updated_at

user_creds_id

username

class heat.db.sqlalchemy.models.StackLock(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Store stack locks for deployments with multiple-engines.

created_at

engine_id

stack_id

updated_at

class heat.db.sqlalchemy.models.StackTag(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Key/value store of arbitrary stack tags.

created_at

id

stack_id

tag

updated_at

class heat.db.sqlalchemy.models.StateAware
Bases: object

action = Column('action', String(length=255), table=None)

status = Column('status', String(length=255), table=None)

status_reason = Column('status_reason', Text(), table=None)

4.2. Source Code Index 757

Heat Documentation, Release 16.1.1.dev14

class heat.db.sqlalchemy.models.SyncPoint(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Represents a syncpoint for a stack that is being worked on.

atomic_key

created_at

entity_id

input_data

is_update

stack_id

traversal_id

updated_at

class heat.db.sqlalchemy.models.UserCreds(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base, heat.db.sqlalchemy.
models.HeatBase

Represents user credentials.

Also, mirrors the context handed in by wsgi.

auth_url

created_at

decrypt_method

id

password

region_name

stack

tenant

tenant_id

trust_id

trustor_user_id

updated_at

username

758 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.db.sqlalchemy.types module

class heat.db.sqlalchemy.types.Json(*args, **kwargs)
Bases: heat.db.sqlalchemy.types.LongText

process_bind_param(value, dialect)
Receive a bound parameter value to be converted.

Subclasses override this method to return the value that should be passed along to the under-
lying TypeEngine object, and from there to the DBAPI execute() method.

The operation could be anything desired to perform custom behavior, such as transforming
or serializing data. This could also be used as a hook for validating logic.

This operation should be designed with the reverse operation in mind, which would be the
process_result_value method of this class.

Parameters

• value Data to operate upon, of any type expected by this method in the
subclass. Can be None.

• dialect the Dialect in use.

process_result_value(value, dialect)
Receive a result-row column value to be converted.

Subclasses should implement this method to operate on data fetched from the database.

Subclasses override this method to return the value that should be passed back to the ap-
plication, given a value that is already processed by the underlying TypeEngine object,
originally from the DBAPI cursor method fetchone() or similar.

The operation could be anything desired to perform custom behavior, such as transforming
or serializing data. This could also be used as a hook for validating logic.

Parameters

• value Data to operate upon, of any type expected by this method in the
subclass. Can be None.

• dialect the Dialect in use.

This operation should be designed to be reversible by the process_bind_param method of
this class.

class heat.db.sqlalchemy.types.List(*args, **kwargs)
Bases: sqlalchemy.sql.type_api.TypeDecorator

impl
alias of sqlalchemy.sql.sqltypes.Text

load_dialect_impl(dialect)
Return a TypeEngine object corresponding to a dialect.

This is an end-user override hook that can be used to provide differing types depending on
the given dialect. It is used by the TypeDecorator implementation of type_engine()
to help determine what type should ultimately be returned for a given TypeDecorator.

By default returns self.impl.

4.2. Source Code Index 759

Heat Documentation, Release 16.1.1.dev14

process_bind_param(value, dialect)
Receive a bound parameter value to be converted.

Subclasses override this method to return the value that should be passed along to the under-
lying TypeEngine object, and from there to the DBAPI execute() method.

The operation could be anything desired to perform custom behavior, such as transforming
or serializing data. This could also be used as a hook for validating logic.

This operation should be designed with the reverse operation in mind, which would be the
process_result_value method of this class.

Parameters

• value Data to operate upon, of any type expected by this method in the
subclass. Can be None.

• dialect the Dialect in use.

process_result_value(value, dialect)
Receive a result-row column value to be converted.

Subclasses should implement this method to operate on data fetched from the database.

Subclasses override this method to return the value that should be passed back to the ap-
plication, given a value that is already processed by the underlying TypeEngine object,
originally from the DBAPI cursor method fetchone() or similar.

The operation could be anything desired to perform custom behavior, such as transforming
or serializing data. This could also be used as a hook for validating logic.

Parameters

• value Data to operate upon, of any type expected by this method in the
subclass. Can be None.

• dialect the Dialect in use.

This operation should be designed to be reversible by the process_bind_param method of
this class.

class heat.db.sqlalchemy.types.LongText(*args, **kwargs)
Bases: sqlalchemy.sql.type_api.TypeDecorator

impl
alias of sqlalchemy.sql.sqltypes.Text

load_dialect_impl(dialect)
Return a TypeEngine object corresponding to a dialect.

This is an end-user override hook that can be used to provide differing types depending on
the given dialect. It is used by the TypeDecorator implementation of type_engine()
to help determine what type should ultimately be returned for a given TypeDecorator.

By default returns self.impl.

760 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.db.sqlalchemy.utils module

heat.db.sqlalchemy.utils.clone_table(name, parent, meta, newcols=None, ig-
norecols=None, swapcols=None, ignore-
cons=None)

Helper function that clones parent table schema onto new table.

Parameters

• name new table name

• parent parent table to copy schema from

• newcols names of new columns to be added

• ignorecols names of columns to be ignored while cloning

• swapcols alternative column schema

• ignorecons names of constraints to be ignored

Returns sqlalchemy.Table instance

heat.db.sqlalchemy.utils.migrate_data(migrate_engine, table, new_table,
skip_columns=None)

heat.db.sqlalchemy.utils.retry_on_stale_data_error(func)

Module contents

Module contents

heat.engine package

Subpackages

heat.engine.cfn package

Submodules

heat.engine.cfn.functions module

class heat.engine.cfn.functions.And(stack, fn_name, args)
Bases: heat.engine.hot.functions.And

A function that acts as an AND operator on conditions.

Takes the form:

{ "Fn::And" : ["<condition_1>", "<condition_2>", ...] }

Returns true if all the specified conditions evaluate to true, or returns false if any one of the
conditions evaluates to false. The minimum number of conditions that you can include is 2.

4.2. Source Code Index 761

Heat Documentation, Release 16.1.1.dev14

class heat.engine.cfn.functions.Base64(stack, fn_name, args)
Bases: heat.engine.function.Function

A placeholder function for converting to base64.

Takes the form:

{ "Fn::Base64" : "<string>" }

This function actually performs no conversion. It is included for the benefit of templates that
convert UserData to Base64. Heat accepts UserData in plain text.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.cfn.functions.Equals(stack, fn_name, args)
Bases: heat.engine.hot.functions.Equals

A function for comparing whether two values are equal.

Takes the form:

{ "Fn::Equals" : ["<value_1>", "<value_2>"] }

The value can be any type that you want to compare. Returns true if the two values are equal or
false if they arent.

class heat.engine.cfn.functions.FindInMap(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for resolving keys in the template mappings.

Takes the form:

{ "Fn::FindInMap" : ["mapping",
"key",
"value"] }

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.cfn.functions.GetAZs(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for retrieving the availability zones.

Takes the form:

{ "Fn::GetAZs" : "<region>" }

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.cfn.functions.GetAtt(stack, fn_name, args)
Bases: heat.engine.hot.functions.GetAttThenSelect

762 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

A function for resolving resource attributes.

Takes the form:

{ "Fn::GetAtt" : ["<resource_name>",
"<attribute_name>"] }

class heat.engine.cfn.functions.If(stack, fn_name, raw_args, parse_func, tem-
plate)

Bases: heat.engine.hot.functions.If

A function to return corresponding value based on condition evaluation.

Takes the form:

{ "Fn::If" : ["<condition_name>",
"<value_if_true>",
"<value_if_false>"] }

The value_if_true to be returned if the specified condition evaluates to true, the value_if_false to
be returned if the specified condition evaluates to false.

class heat.engine.cfn.functions.Join(stack, fn_name, args)
Bases: heat.engine.hot.functions.Join

A function for joining strings.

Takes the form:

{ "Fn::Join" : ["<delim>", ["<string_1>", "<string_2>", ...]] }

And resolves to:

"<string_1><delim><string_2><delim>..."

class heat.engine.cfn.functions.MemberListToMap(stack, fn_name, args)
Bases: heat.engine.function.Function

A function to convert lists with enumerated keys and values to mapping.

Takes the form:

{ 'Fn::MemberListToMap' : ['Name',
'Value',
['.member.0.Name=<key_0>',
'.member.0.Value=<value_0>',
...]] }

And resolves to:

{ "<key_0>" : "<value_0>", ... }

The first two arguments are the names of the key and value.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

4.2. Source Code Index 763

Heat Documentation, Release 16.1.1.dev14

class heat.engine.cfn.functions.Not(stack, fn_name, args)
Bases: heat.engine.hot.functions.Not

A function that acts as a NOT operator on a condition.

Takes the form:

{ "Fn::Not" : ["<condition>"] }

Returns true for a condition that evaluates to false or returns false for a condition that evaluates to
true.

class heat.engine.cfn.functions.Or(stack, fn_name, args)
Bases: heat.engine.hot.functions.Or

A function that acts as an OR operator on conditions.

Takes the form:

{ "Fn::Or" : ["<condition_1>", "<condition_2>", ...] }

Returns true if any one of the specified conditions evaluate to true, or returns false if all of the
conditions evaluates to false. The minimum number of conditions that you can include is 2.

class heat.engine.cfn.functions.ParamRef(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for resolving parameter references.

Takes the form:

{ "Ref" : "<param_name>" }

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

heat.engine.cfn.functions.Ref(stack, fn_name, args)
A function for resolving parameters or resource references.

Takes the form:

{ "Ref" : "<param_name>" }

or:

{ "Ref" : "<resource_name>" }

class heat.engine.cfn.functions.Replace(stack, fn_name, args)
Bases: heat.engine.hot.functions.Replace

A function for performing string substitutions.

Takes the form:

{ "Fn::Replace" : [
{ "<key_1>": "<value_1>", "<key_2>": "<value_2>", ... },
"<key_1> <key_2>"

] }

764 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

And resolves to:

"<value_1> <value_2>"

When keys overlap in the template, longer matches are preferred. For keys of equal length, lexi-
cographically smaller keys are preferred.

class heat.engine.cfn.functions.ResourceFacade(stack, fn_name, args)
Bases: heat.engine.hot.functions.ResourceFacade

A function for retrieving data in a parent provider template.

A function for obtaining data from the facade resource from within the corresponding provider
template.

Takes the form:

{ "Fn::ResourceFacade": "<attribute_type>" }

where the valid attribute types are Metadata, DeletionPolicy and UpdatePolicy.

DELETION_POLICY = 'DeletionPolicy'

METADATA = 'Metadata'

UPDATE_POLICY = 'UpdatePolicy'

class heat.engine.cfn.functions.Select(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for selecting an item from a list or map.

Takes the form (for a list lookup):

{ "Fn::Select" : ["<index>", ["<value_1>", "<value_2>", ...]] }

or (for a map lookup):

{ "Fn::Select" : ["<index>", { "<key_1>": "<value_1>", ... }] }

If the selected index is not found, this function resolves to an empty string.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.cfn.functions.Split(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for splitting strings.

Takes the form:

{ "Fn::Split" : ["<delim>", "<string_1><delim><string_2>..."] }

And resolves to:

["<string_1>", "<string_2>", ...]

4.2. Source Code Index 765

Heat Documentation, Release 16.1.1.dev14

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

heat.engine.cfn.parameters module

class heat.engine.cfn.parameters.CfnParameters(stack_identifier, tmpl,
user_params=None,
param_defaults=None)

Bases: heat.engine.parameters.Parameters

PARAM_REGION = 'AWS::Region'

PARAM_STACK_ID = 'AWS::StackId'

PARAM_STACK_NAME = 'AWS::StackName'

PSEUDO_PARAMETERS = ('AWS::StackId', 'AWS::StackName', 'AWS::Region')

heat.engine.cfn.template module

class heat.engine.cfn.template.CfnTemplate(template, *args, **kwargs)
Bases: heat.engine.cfn.template.CfnTemplateBase

CONDITIONS = 'Conditions'

HOT_TO_CFN_RES_ATTRS = {'condition': 'Condition', 'deletion_policy': 'DeletionPolicy', 'depends_on': 'DependsOn', 'metadata': 'Metadata', 'properties': 'Properties', 'type': 'Type', 'update_policy': 'UpdatePolicy'}

OUTPUT_CONDITION = 'Condition'

OUTPUT_KEYS = ('Description', 'Value', 'Condition')

RES_CONDITION = 'Condition'

SECTIONS = ('AWSTemplateFormatVersion', 'HeatTemplateFormatVersion', 'Description', 'Mappings', 'Parameters', 'Resources', 'Outputs', 'Conditions')

SECTIONS_NO_DIRECT_ACCESS = {'AWSTemplateFormatVersion', 'Conditions', 'HeatTemplateFormatVersion', 'Parameters'}

condition_functions = {'Fn::And': <class 'heat.engine.cfn.functions.And'>, 'Fn::Equals': <class 'heat.engine.cfn.functions.Equals'>, 'Fn::FindInMap': <class 'heat.engine.cfn.functions.FindInMap'>, 'Fn::Not': <class 'heat.engine.cfn.functions.Not'>, 'Fn::Or': <class 'heat.engine.cfn.functions.Or'>, 'Ref': <class 'heat.engine.cfn.functions.ParamRef'>}

functions = {'Fn::Base64': <class 'heat.engine.cfn.functions.Base64'>, 'Fn::FindInMap': <class 'heat.engine.cfn.functions.FindInMap'>, 'Fn::GetAZs': <class 'heat.engine.cfn.functions.GetAZs'>, 'Fn::GetAtt': <class 'heat.engine.cfn.functions.GetAtt'>, 'Fn::If': <class 'heat.engine.cfn.functions.If'>, 'Fn::Join': <class 'heat.engine.cfn.functions.Join'>, 'Fn::MemberListToMap': <class 'heat.engine.cfn.functions.MemberListToMap'>, 'Fn::Replace': <class 'heat.engine.cfn.functions.Replace'>, 'Fn::ResourceFacade': <class 'heat.engine.cfn.functions.ResourceFacade'>, 'Fn::Select': <class 'heat.engine.cfn.functions.Select'>, 'Fn::Split': <class 'heat.engine.cfn.functions.Split'>, 'Ref': <function Ref>}

class heat.engine.cfn.template.CfnTemplateBase(template, *args,
**kwargs)

Bases: heat.engine.template_common.CommonTemplate

The base implementation of cfn template.

ALTERNATE_VERSION = 'HeatTemplateFormatVersion'

DESCRIPTION = 'Description'

HOT_TO_CFN_OUTPUT_ATTRS = {'description': 'Description', 'value': 'Value'}

HOT_TO_CFN_RES_ATTRS = {'condition': 'Condition', 'deletion_policy': 'DeletionPolicy', 'depends_on': 'DependsOn', 'metadata': 'Metadata', 'properties': 'Properties', 'type': 'Type', 'update_policy': 'UpdatePolicy'}

MAPPINGS = 'Mappings'

OUTPUTS = 'Outputs'

766 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

OUTPUT_DESCRIPTION = 'Description'

OUTPUT_KEYS = ('Description', 'Value')

OUTPUT_VALUE = 'Value'

PARAMETERS = 'Parameters'

RESOURCES = 'Resources'

RES_DELETION_POLICY = 'DeletionPolicy'

RES_DEPENDS_ON = 'DependsOn'

RES_DESCRIPTION = 'Description'

RES_METADATA = 'Metadata'

RES_PROPERTIES = 'Properties'

RES_TYPE = 'Type'

RES_UPDATE_POLICY = 'UpdatePolicy'

SECTIONS = ('AWSTemplateFormatVersion', 'HeatTemplateFormatVersion', 'Description', 'Mappings', 'Parameters', 'Resources', 'Outputs')

SECTIONS_NO_DIRECT_ACCESS = {'AWSTemplateFormatVersion', 'HeatTemplateFormatVersion', 'Parameters'}

VERSION = 'AWSTemplateFormatVersion'

add_output(definition)
Add an output to the template.

The output is passed as a OutputDefinition object.

add_resource(definition, name=None)
Add a resource to the template.

The resource is passed as a ResourceDefinition object. If no name is specified, the name
from the ResourceDefinition should be used.

deletion_policies = {'Delete': 'Delete', 'Retain': 'Retain', 'Snapshot': 'Snapshot'}

functions = {'Fn::Base64': <class 'heat.engine.cfn.functions.Base64'>, 'Fn::FindInMap': <class 'heat.engine.cfn.functions.FindInMap'>, 'Fn::GetAZs': <class 'heat.engine.cfn.functions.GetAZs'>, 'Fn::GetAtt': <class 'heat.engine.cfn.functions.GetAtt'>, 'Fn::Join': <class 'heat.engine.cfn.functions.Join'>, 'Fn::Select': <class 'heat.engine.cfn.functions.Select'>, 'Ref': <function Ref>}

get_section_name(section)
Get the name of a field within a resource or output definition.

Return the name of the given field (specified by the constants given in heat.engine.rsrc_defn
and heat.engine.output) in the template format. This is used in error reporting to help users
find the location of errors in the template.

Note that section here does not refer to a top-level section of the template (like parameters,
resources, &c.) as it does everywhere else.

param_schemata(param_defaults=None)
Return a dict of parameters.Schema objects for the parameters.

parameters(stack_identifier, user_params, param_defaults=None)
Return a parameters.Parameters object for the stack.

resource_definitions(stack)
Return a dictionary of ResourceDefinition objects.

4.2. Source Code Index 767

Heat Documentation, Release 16.1.1.dev14

class heat.engine.cfn.template.HeatTemplate(template, *args, **kwargs)
Bases: heat.engine.cfn.template.CfnTemplateBase

functions = {'Fn::Base64': <class 'heat.engine.cfn.functions.Base64'>, 'Fn::FindInMap': <class 'heat.engine.cfn.functions.FindInMap'>, 'Fn::GetAZs': <class 'heat.engine.cfn.functions.GetAZs'>, 'Fn::GetAtt': <class 'heat.engine.cfn.functions.GetAtt'>, 'Fn::Join': <class 'heat.engine.cfn.functions.Join'>, 'Fn::MemberListToMap': <class 'heat.engine.cfn.functions.MemberListToMap'>, 'Fn::Replace': <class 'heat.engine.cfn.functions.Replace'>, 'Fn::ResourceFacade': <class 'heat.engine.cfn.functions.ResourceFacade'>, 'Fn::Select': <class 'heat.engine.cfn.functions.Select'>, 'Fn::Split': <class 'heat.engine.cfn.functions.Split'>, 'Ref': <function Ref>}

Module contents

heat.engine.clients package

Subpackages

heat.engine.clients.os package

Subpackages

heat.engine.clients.os.keystone package

Submodules

heat.engine.clients.os.keystone.fake_keystoneclient module

A fake FakeKeystoneClient. This can be used during some runtime scenarios where you want to disable
Heats internal Keystone dependencies entirely. One example is the TripleO Undercloud installer.

To use this class at runtime set to following heat.conf config setting:

keystone_backend = heat.engine.clients.os.keystone.fake_keystoneclient .FakeKey-
stoneClient

class heat.engine.clients.os.keystone.fake_keystoneclient.FakeKeystoneClient(username=’test_username’,
pass-
word=’password’,
user_id=’1234’,
ac-
cess=’4567’,
se-
cret=’8901’,
cre-
den-
tial_id=’abcdxyz’,
auth_token=’abcd1234’,
con-
text=None,
stack_domain_id=’4321’,
client=None)

Bases: object

create_ec2_keypair(user_id)

create_stack_domain_project(stack_id)

create_stack_domain_user(username, project_id, password=None)

768 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

create_stack_domain_user_keypair(user_id, project_id)

create_stack_user(username, password=”)

create_trust_context()

delete_ec2_keypair(credential_id=None, user_id=None, access=None)

delete_stack_domain_project(project_id)

delete_stack_domain_user(user_id, project_id)

delete_stack_domain_user_keypair(user_id, project_id, credential_id)

delete_stack_user(user_id)

delete_trust(trust_id)

disable_stack_domain_user(user_id, project_id)

disable_stack_user(user_id)

enable_stack_domain_user(user_id, project_id)

enable_stack_user(user_id)

get_ec2_keypair(access, user_id)

regenerate_trust_context()

server_keystone_endpoint_url(fallback_endpoint)

stack_domain_user_token(user_id, project_id, password)

heat.engine.clients.os.keystone.heat_keystoneclient module

Keystone Client functionality for use by resources.

class heat.engine.clients.os.keystone.heat_keystoneclient.AccessKey(id,
ac-
cess,
se-
cret)

Bases: tuple

access
Alias for field number 1

id
Alias for field number 0

secret
Alias for field number 2

class heat.engine.clients.os.keystone.heat_keystoneclient.KeystoneClient(context,
re-
gion_name=None)

Bases: object

Keystone Auth Client.

Delay choosing the backend client module until the clients class needs to be initialized.

4.2. Source Code Index 769

Heat Documentation, Release 16.1.1.dev14

class heat.engine.clients.os.keystone.heat_keystoneclient.KsClientWrapper(context,
re-
gion_name)

Bases: object

Wrap keystone client so we can encapsulate logic used in resources.

Note this is intended to be initialized from a resource on a per-session basis, so the session context
is passed in on initialization Also note that an instance of this is created in each request context
as part of a lazy-loaded cloud backend and it can be easily referenced in each resource as self.
keystone(), so there should not be any need to directly instantiate instances of this class inside
resources themselves.

property auth_region_name

property client

property context

create_ec2_keypair(user_id=None)

create_stack_domain_project(stack_id)
Create a project in the heat stack-user domain.

create_stack_domain_user(username, project_id, password=None)
Create a domain user defined as part of a stack.

The user is defined either via template or created internally by a resource. This user will
be added to the heat_stack_user_role as defined in the config, and created in the specified
project (which is expected to be in the stack_domain).

Returns the keystone ID of the resulting user.

create_stack_domain_user_keypair(user_id, project_id)

create_stack_user(username, password=”)
Create a user defined as part of a stack.

The user is defined either via template or created internally by a resource. This user will be
added to the heat_stack_user_role as defined in the config.

Returns the keystone ID of the resulting user.

create_trust_context()
Create a trust using the trustor identity in the current context.

The trust is created with the trustee as the heat service user.

If the current context already contains a trust_id, we do nothing and return the current con-
text.

Returns a context containing the new trust_id.

delete_ec2_keypair(credential_id=None, access=None, user_id=None)
Delete credential containing ec2 keypair.

delete_stack_domain_project(project_id)

delete_stack_domain_user(user_id, project_id)

delete_stack_domain_user_keypair(user_id, project_id, credential_id)

delete_stack_user(user_id)

770 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

delete_trust(trust_id)
Delete the specified trust.

disable_stack_domain_user(user_id, project_id)

disable_stack_user(user_id)

property domain_admin_auth

property domain_admin_client

enable_stack_domain_user(user_id, project_id)

enable_stack_user(user_id)

get_ec2_keypair(credential_id=None, access=None, user_id=None)
Get an ec2 keypair via v3/credentials, by id or access.

regenerate_trust_context()
Regenerate a trust using the trustor identity of current user_id.

The trust is created with the trustee as the heat service user.

Returns a context containing the new trust_id.

server_keystone_endpoint_url(fallback_endpoint)

property stack_domain
Domain scope data.

This is only used for checking for scoping data, not using the value.

property stack_domain_id

stack_domain_user_token(user_id, project_id, password)
Get a token for a stack domain user.

heat.engine.clients.os.keystone.heat_keystoneclient.list_opts()

heat.engine.clients.os.keystone.keystone_constraints module

class heat.engine.clients.os.keystone.keystone_constraints.KeystoneBaseConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

entity = None

resource_client_name = 'keystone'

validate_with_client(client, resource_id)

class heat.engine.clients.os.keystone.keystone_constraints.KeystoneDomainConstraint
Bases: heat.engine.clients.os.keystone.keystone_constraints.
KeystoneBaseConstraint

entity = 'KeystoneDomain'

resource_getter_name = 'get_domain_id'

class heat.engine.clients.os.keystone.keystone_constraints.KeystoneGroupConstraint
Bases: heat.engine.clients.os.keystone.keystone_constraints.
KeystoneBaseConstraint

4.2. Source Code Index 771

Heat Documentation, Release 16.1.1.dev14

entity = 'KeystoneGroup'

resource_getter_name = 'get_group_id'

class heat.engine.clients.os.keystone.keystone_constraints.KeystoneProjectConstraint
Bases: heat.engine.clients.os.keystone.keystone_constraints.
KeystoneBaseConstraint

entity = 'KeystoneProject'

resource_getter_name = 'get_project_id'

class heat.engine.clients.os.keystone.keystone_constraints.KeystoneRegionConstraint
Bases: heat.engine.clients.os.keystone.keystone_constraints.
KeystoneBaseConstraint

entity = 'KeystoneRegion'

resource_getter_name = 'get_region_id'

class heat.engine.clients.os.keystone.keystone_constraints.KeystoneRoleConstraint
Bases: heat.engine.clients.os.keystone.keystone_constraints.
KeystoneBaseConstraint

entity = 'KeystoneRole'

resource_getter_name = 'get_role_id'

class heat.engine.clients.os.keystone.keystone_constraints.KeystoneServiceConstraint
Bases: heat.engine.clients.os.keystone.keystone_constraints.
KeystoneBaseConstraint

entity = 'KeystoneService'

expected_exceptions = (<class 'heat.common.exception.EntityNotFound'>, <class 'heat.common.exception.KeystoneServiceNameConflict'>)

resource_getter_name = 'get_service_id'

class heat.engine.clients.os.keystone.keystone_constraints.KeystoneUserConstraint
Bases: heat.engine.clients.os.keystone.keystone_constraints.
KeystoneBaseConstraint

entity = 'KeystoneUser'

resource_getter_name = 'get_user_id'

Module contents

class heat.engine.clients.os.keystone.KeystoneClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

IDENTITY = 'identity'

exceptions_module = [<module 'keystoneauth1.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/keystoneauth1/exceptions/__init__.py'>, <module 'heat.common.exception' from '/home/zuul/src/opendev.org/openstack/heat/heat/common/exception.py'>]

get_domain_id(domain)

get_group_id(group, domain=None)

get_project_id(project, domain=None)

get_region_id(region)

772 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

get_role_id(role, domain=None)

get_service_id(service)

get_user_id(user, domain=None)

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

parse_entity_with_domain(entity_with_domain, entity_type)
Parse keystone entity user/role/project with domain.

entity_with_domain should be in entity{domain} format.

Returns a tuple of (entity, domain).

service_types = ['identity']

heat.engine.clients.os.neutron package

Submodules

heat.engine.clients.os.neutron.lbaas_constraints module

class heat.engine.clients.os.neutron.lbaas_constraints.LBaasV2ProviderConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
ProviderConstraint

service_type = 'LOADBALANCERV2'

class heat.engine.clients.os.neutron.lbaas_constraints.ListenerConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

extension = 'lbaasv2'

resource_name = 'listener'

class heat.engine.clients.os.neutron.lbaas_constraints.LoadbalancerConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

extension = 'lbaasv2'

resource_name = 'loadbalancer'

class heat.engine.clients.os.neutron.lbaas_constraints.PoolConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

extension = 'lbaasv2'

resource_name = 'pool'

4.2. Source Code Index 773

Heat Documentation, Release 16.1.1.dev14

heat.engine.clients.os.neutron.neutron_constraints module

class heat.engine.clients.os.neutron.neutron_constraints.AddressScopeConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

extension = 'address-scope'

resource_name = 'address_scope'

class heat.engine.clients.os.neutron.neutron_constraints.FlowClassifierConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronExtConstraint

extension = 'sfc'

resource_name = 'flow_classifier'

class heat.engine.clients.os.neutron.neutron_constraints.LBaasV1ProviderConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
ProviderConstraint

service_type = 'LOADBALANCER'

class heat.engine.clients.os.neutron.neutron_constraints.NetworkConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

resource_name = 'network'

class heat.engine.clients.os.neutron.neutron_constraints.NeutronConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'neutronclient.common.exceptions.NeutronClientException'>, <class 'heat.common.exception.EntityNotFound'>)

extension = None

resource_name = None

validate_with_client(client, value)

class heat.engine.clients.os.neutron.neutron_constraints.NeutronExtConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

validate_with_client(client, value)

class heat.engine.clients.os.neutron.neutron_constraints.PortConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

resource_name = 'port'

class heat.engine.clients.os.neutron.neutron_constraints.PortPairConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronExtConstraint

extension = 'sfc'

resource_name = 'port_pair'

774 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

class heat.engine.clients.os.neutron.neutron_constraints.PortPairGroupConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronExtConstraint

extension = 'sfc'

resource_name = 'port_pair_group'

class heat.engine.clients.os.neutron.neutron_constraints.ProviderConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.common.exception.StackValidationFailed'>,)

service_type = None

validate_with_client(client, value)

class heat.engine.clients.os.neutron.neutron_constraints.QoSPolicyConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

extension = 'qos'

resource_name = 'policy'

class heat.engine.clients.os.neutron.neutron_constraints.RouterConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

resource_name = 'router'

class heat.engine.clients.os.neutron.neutron_constraints.SecurityGroupConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

resource_name = 'security_group'

class heat.engine.clients.os.neutron.neutron_constraints.SubnetConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

resource_name = 'subnet'

class heat.engine.clients.os.neutron.neutron_constraints.SubnetPoolConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronConstraint

resource_name = 'subnetpool'

heat.engine.clients.os.neutron.taas_constraints module

class heat.engine.clients.os.neutron.taas_constraints.TaaSProviderConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
ProviderConstraint

service_type = 'TAPASASERVICE'

class heat.engine.clients.os.neutron.taas_constraints.TapFlowConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronExtConstraint

4.2. Source Code Index 775

Heat Documentation, Release 16.1.1.dev14

extension = 'taas'

resource_name = 'tap_flow'

class heat.engine.clients.os.neutron.taas_constraints.TapServiceConstraint
Bases: heat.engine.clients.os.neutron.neutron_constraints.
NeutronExtConstraint

extension = 'taas'

resource_name = 'tap_service'

Module contents

class heat.engine.clients.os.neutron.NeutronClientPlugin(*args,
**kwargs)

Bases: heat.engine.clients.os.ExtensionMixin, heat.engine.clients.
client_plugin.ClientPlugin

NETWORK = 'network'

RES_TYPES = ('network', 'subnet', 'router', 'port', 'subnetpool', 'address_scope', 'security_group', 'policy', 'loadbalancer', 'listener', 'pool', 'l7policy')

RES_TYPE_ADDRESS_SCOPE = 'address_scope'

RES_TYPE_LB_L7POLICY = 'l7policy'

RES_TYPE_LB_LISTENER = 'listener'

RES_TYPE_LB_POOL = 'pool'

RES_TYPE_LOADBALANCER = 'loadbalancer'

RES_TYPE_NETWORK = 'network'

RES_TYPE_PORT = 'port'

RES_TYPE_QOS_POLICY = 'policy'

RES_TYPE_ROUTER = 'router'

RES_TYPE_SECURITY_GROUP = 'security_group'

RES_TYPE_SUBNET = 'subnet'

RES_TYPE_SUBNET_POOL = 'subnetpool'

check_ext_resource_status(resource, resource_id)

check_lb_status(lb_id)

create_ext_resource(resource, props)
Returns created ext resource record.

delete_ext_resource(resource, resource_id)
Deletes ext resource record and returns status.

exceptions_module = <module 'neutronclient.common.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/neutronclient/common/exceptions.py'>

find_resourceid_by_name_or_id(resource, name_or_id, cmd_resource=None)
Find a resource ID given either a name or an ID.

The resource argument should be one of the constants defined in RES_TYPES.

776 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

get_qos_policy_id(policy)
Returns the id of QoS policy.

Args: policy: ID or name of the policy.

get_secgroup_uuids(security_groups)
Returns a list of security group UUIDs.

Args: security_groups: List of security group names or UUIDs

is_conflict(ex)
Returns True if the exception is a conflict.

is_invalid(ex)

is_no_unique(ex)

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

network_id_from_subnet_id(subnet_id)

resolve_ext_resource(resource, name_or_id)
Returns the id and validate neutron ext resource.

resolve_pool(props, pool_key, pool_id_key)

resolve_router(props, router_key, router_id_key)

service_types = ['network']

show_ext_resource(resource, resource_id)
Returns specific ext resource record.

update_ext_resource(resource, prop_diff, resource_id)
Returns updated ext resource record.

Submodules

heat.engine.clients.os.aodh module

class heat.engine.clients.os.aodh.AodhClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

ALARMING = 'alarming'

V2 = '2'

default_version = '2'

exceptions_module = <module 'aodhclient.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/aodhclient/exceptions.py'>

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

4.2. Source Code Index 777

Heat Documentation, Release 16.1.1.dev14

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['alarming']

supported_versions = ['2']

heat.engine.clients.os.barbican module

class heat.engine.clients.os.barbican.BarbicanClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

KEY_MANAGER = 'key-manager'

create_certificate(**props)

create_generic_container(**props)

create_rsa(**props)

get_container_by_ref(container_ref)

get_secret_by_ref(secret_ref)

get_secret_payload_by_ref(secret_ref)

is_not_found(ex)
Returns True if the exception is a not-found.

service_types = ['key-manager']

class heat.engine.clients.os.barbican.ContainerConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.common.exception.EntityNotFound'>,)

resource_client_name = 'barbican'

resource_getter_name = 'get_container_by_ref'

class heat.engine.clients.os.barbican.SecretConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.common.exception.EntityNotFound'>,)

resource_client_name = 'barbican'

resource_getter_name = 'get_secret_by_ref'

heat.engine.clients.os.blazar module

class heat.engine.clients.os.blazar.BlazarBaseConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'blazar'

class heat.engine.clients.os.blazar.BlazarClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

RESERVATION = 'reservation'

778 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

create_host(**args)

create_lease(**args)

get_host(id)

get_lease(id)

has_host()

is_not_found(exc)
Returns True if the exception is a not-found.

service_types = ['reservation']

class heat.engine.clients.os.blazar.ReservationConstraint
Bases: heat.engine.clients.os.blazar.BlazarBaseConstraint

expected_exceptions = (<class 'heat.common.exception.EntityNotFound'>, <class 'blazarclient.exception.BlazarClientException'>)

resource_getter_name = 'get_lease'

heat.engine.clients.os.cinder module

class heat.engine.clients.os.cinder.BaseCinderConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'cinder'

class heat.engine.clients.os.cinder.CinderClientPlugin(*args,
**kwargs)

Bases: heat.engine.clients.os.ExtensionMixin, heat.engine.clients.
client_plugin.ClientPlugin

VOLUME_V2 = 'volumev2'

VOLUME_V3 = 'volumev3'

check_attach_volume_complete(vol_id)

check_detach_volume_complete(vol_id, server_id=None)

exceptions_module = <module 'cinderclient.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/cinderclient/exceptions.py'>

get_qos_specs(qos_specs)

get_volume(volume)

get_volume_api_version()
Returns the most recent API version.

get_volume_backup(backup)

get_volume_snapshot(snapshot)

get_volume_type(volume_type)

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

4.2. Source Code Index 779

Heat Documentation, Release 16.1.1.dev14

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['volumev2', 'volumev3']

class heat.engine.clients.os.cinder.QoSSpecsConstraint
Bases: heat.engine.clients.os.cinder.BaseCinderConstraint

expected_exceptions = (<class 'cinderclient.exceptions.NotFound'>,)

resource_getter_name = 'get_qos_specs'

class heat.engine.clients.os.cinder.VolumeBackupConstraint
Bases: heat.engine.clients.os.cinder.BaseCinderConstraint

resource_getter_name = 'get_volume_backup'

class heat.engine.clients.os.cinder.VolumeConstraint
Bases: heat.engine.clients.os.cinder.BaseCinderConstraint

resource_getter_name = 'get_volume'

class heat.engine.clients.os.cinder.VolumeSnapshotConstraint
Bases: heat.engine.clients.os.cinder.BaseCinderConstraint

resource_getter_name = 'get_volume_snapshot'

class heat.engine.clients.os.cinder.VolumeTypeConstraint
Bases: heat.engine.clients.os.cinder.BaseCinderConstraint

resource_getter_name = 'get_volume_type'

heat.engine.clients.os.designate module

class heat.engine.clients.os.designate.DesignateClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

DNS = 'dns'

exceptions_module = [<module 'designateclient.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/designateclient/exceptions.py'>]

get_zone_id(zone_id_or_name)

is_not_found(ex)
Returns True if the exception is a not-found.

service_types = ['dns']

class heat.engine.clients.os.designate.DesignateZoneConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'designate'

resource_getter_name = 'get_zone_id'

780 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.clients.os.glance module

class heat.engine.clients.os.glance.GlanceClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

IMAGE = 'image'

V1 = '1'

V2 = '2'

default_version = '2'

exceptions_module = [<module 'heat.engine.clients.client_exception' from '/home/zuul/src/opendev.org/openstack/heat/heat/engine/clients/client_exception.py'>, <module 'glanceclient.exc' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/glanceclient/exc.py'>]

find_image_by_name_or_id(image_identifier)
Return the ID for the specified image name or identifier.

Parameters image_identifier image name or a UUID-like identifier

Returns the id of the requested :image_identifier:

get_image(image_identifier)
Return the image object for the specified image name/id.

Parameters image_identifier image name

Returns an image object with name/id :image_identifier:

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['image']

supported_versions = ['1', '2']

class heat.engine.clients.os.glance.ImageConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.engine.clients.client_exception.EntityMatchNotFound'>, <class 'heat.engine.clients.client_exception.EntityUniqueMatchNotFound'>)

resource_client_name = 'glance'

resource_getter_name = 'find_image_by_name_or_id'

4.2. Source Code Index 781

Heat Documentation, Release 16.1.1.dev14

heat.engine.clients.os.heat_plugin module

class heat.engine.clients.os.heat_plugin.HeatClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

CLOUDFORMATION = 'cloudformation'

ORCHESTRATION = 'orchestration'

exceptions_module = <module 'heatclient.exc' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/heatclient/exc.py'>

get_cfn_metadata_server_url()

get_heat_cfn_url()

get_heat_url()

get_insecure_option()

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['orchestration', 'cloudformation']

heat.engine.clients.os.ironic module

class heat.engine.clients.os.ironic.IronicClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

BAREMETAL = 'baremetal'

IRONIC_API_VERSION = 1.58

get_node(value)

get_portgroup(value)

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

max_ironic_api_microversion = None

max_microversion = 1.58

service_types = ['baremetal']

class heat.engine.clients.os.ironic.NodeConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

782 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

resource_client_name = 'ironic'

resource_getter_name = 'get_node'

class heat.engine.clients.os.ironic.PortGroupConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'ironic'

resource_getter_name = 'get_portgroup'

heat.engine.clients.os.magnum module

class heat.engine.clients.os.magnum.BaymodelConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'magnum'

resource_getter_name = 'get_baymodel'

class heat.engine.clients.os.magnum.ClusterTemplateConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'magnum'

resource_getter_name = 'get_cluster_template'

class heat.engine.clients.os.magnum.MagnumClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

CONTAINER = 'container-infra'

get_baymodel(value)

get_cluster_template(value)

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['container-infra']

heat.engine.clients.os.manila module

class heat.engine.clients.os.manila.ManilaClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

SHARE = 'sharev2'

exceptions_module = <module 'manilaclient.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/manilaclient/exceptions.py'>

get_security_service(service_identity)

get_share_network(share_network_identity)

4.2. Source Code Index 783

Heat Documentation, Release 16.1.1.dev14

get_share_snapshot(snapshot_identity)

get_share_type(share_type_identity)

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['sharev2']

class heat.engine.clients.os.manila.ManilaShareBaseConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.common.exception.EntityNotFound'>, <class 'manilaclient.common.apiclient.exceptions.NoUniqueMatch'>)

resource_client_name = 'manila'

class heat.engine.clients.os.manila.ManilaShareNetworkConstraint
Bases: heat.engine.clients.os.manila.ManilaShareBaseConstraint

resource_getter_name = 'get_share_network'

class heat.engine.clients.os.manila.ManilaShareSnapshotConstraint
Bases: heat.engine.clients.os.manila.ManilaShareBaseConstraint

resource_getter_name = 'get_share_snapshot'

class heat.engine.clients.os.manila.ManilaShareTypeConstraint
Bases: heat.engine.clients.os.manila.ManilaShareBaseConstraint

resource_getter_name = 'get_share_type'

heat.engine.clients.os.mistral module

class heat.engine.clients.os.mistral.MistralClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

WORKFLOW_V2 = 'workflowv2'

get_workflow_by_identifier(workflow_identifier)

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['workflowv2']

class heat.engine.clients.os.mistral.WorkflowConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.common.exception.EntityNotFound'>,)

784 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

resource_client_name = 'mistral'

resource_getter_name = 'get_workflow_by_identifier'

heat.engine.clients.os.monasca module

class heat.engine.clients.os.monasca.MonascaClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

MONITORING = 'monitoring'

VERSION = '2_0'

exceptions_module = [<module 'keystoneauth1.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/keystoneauth1/exceptions/__init__.py'>]

get_notification(notification)

is_not_found(ex)
Returns True if the exception is a not-found.

is_un_processable(ex)

service_types = ['monitoring']

class heat.engine.clients.os.monasca.MonascaNotificationConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'monasca'

resource_getter_name = 'get_notification'

heat.engine.clients.os.nova module

class heat.engine.clients.os.nova.FlavorConstraint
Bases: heat.engine.clients.os.nova.NovaBaseConstraint

expected_exceptions = (<class 'novaclient.exceptions.NotFound'>,)

resource_getter_name = 'find_flavor_by_name_or_id'

class heat.engine.clients.os.nova.HostConstraint
Bases: heat.engine.clients.os.nova.NovaBaseConstraint

expected_exceptions = (<class 'novaclient.exceptions.NotFound'>,)

resource_getter_name = 'get_host'

class heat.engine.clients.os.nova.KeypairConstraint
Bases: heat.engine.clients.os.nova.NovaBaseConstraint

resource_getter_name = 'get_keypair'

validate_with_client(client, key_name)

class heat.engine.clients.os.nova.NovaBaseConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'nova'

4.2. Source Code Index 785

Heat Documentation, Release 16.1.1.dev14

class heat.engine.clients.os.nova.NovaClientPlugin(context)
Bases: heat.engine.clients.microversion_mixin.MicroversionMixin,
heat.engine.clients.client_plugin.ClientPlugin

COMPUTE = 'compute'

NOVA_API_VERSION = '2.1'

absolute_limits()
Return the absolute limits as a dictionary.

associate_floatingip(server_id, floatingip_id)

associate_floatingip_address(server_id, fip_address)

attach_volume(server_id, volume_id, device)

static build_ignition_data(metadata, userdata)

build_userdata(metadata, userdata=None, instance_user=None,
user_data_format=’HEAT_CFNTOOLS’)

Build multipart data blob for CloudInit and Ignition.

Data blob includes user-supplied Metadata, user data, and the required Heat in-instance
configuration.

Parameters

• resource (heat.engine.Resource) the resource implementation

• userdata (str or None) user data string

• instance_user (string) the user to create on the server

• user_data_format (string) Format of user data to return

Returns multipart mime as a string

check_delete_server_complete(server_id)
Wait for server to disappear from Nova.

check_detach_volume_complete(server_id, attach_id)
Check that nova server lost attachment.

This check is needed for immediate reattachment when updating: there might be some time
between cinder marking volume as available and nova removing attachment from its own
objects, so we check that nova already knows that the volume is detached.

check_interface_attach(server_id, port_id)

check_interface_detach(server_id, port_id)

check_rebuild(server_id)
Verify that a rebuilding server is rebuilt.

Raise error if it ends up in an ERROR state.

check_resize(server_id, flavor)
Verify that a resizing server is properly resized.

If thats the case, confirm the resize, if not raise an error.

check_verify_resize(server_id)

786 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

deferred_server_statuses = {'BUILD', 'HARD_REBOOT', 'PASSWORD', 'REBOOT', 'RESCUE', 'RESIZE', 'REVERT_RESIZE', 'SHUTOFF', 'SUSPENDED', 'VERIFY_RESIZE'}

detach_volume(server_id, attach_id)

dissociate_floatingip(floatingip_id)

dissociate_floatingip_address(fip_address)

exceptions_module = <module 'novaclient.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/novaclient/exceptions.py'>

fetch_server(server_id)
Fetch fresh server object from Nova.

Log warnings and return None for non-critical API errors. Use this method in various
check_*_complete resource methods, where intermittent errors can be tolerated.

fetch_server_attr(server_id, attr)

find_flavor_by_name_or_id(flavor)
Find the specified flavor by name or id.

Parameters flavor the name of the flavor to find

Returns the id of :flavor:

get_console_urls(server)
Return dict-like structure of servers console urls.

The actual console url is lazily resolved on access.

get_flavor(flavor_identifier)
Get the flavor object for the specified flavor name or id.

Parameters flavor_identifier the name or id of the flavor to find

Returns a flavor object with name or id :flavor:

get_host(hypervisor_hostname)
Gets list of matching hypervisors by specified name.

Parameters hypervisor_hostname the name of host to find

Returns list of matching hypervisor hosts

Raises nova client exceptions.NotFound

get_ip(server, net_type, ip_version)
Return the servers IP of the given type and version.

get_keypair(key_name)
Get the public key specified by :key_name:

Parameters key_name the name of the key to look for

Returns the keypair (name, public_key) for :key_name:

Raises exception.EntityNotFound

get_max_microversion()

get_server(server)
Return fresh server object.

Substitutes Novas NotFound for Heats EntityNotFound, to be returned to user as HTTP error.

4.2. Source Code Index 787

Heat Documentation, Release 16.1.1.dev14

get_status(server)
Return the servers status.

Parameters server server object

Returns status as a string

interface_attach(server_id, port_id=None, net_id=None, fip=None, secu-
rity_groups=None)

interface_detach(server_id, port_id)

is_bad_request(ex)

is_conflict(ex)
Returns True if the exception is a conflict.

static is_ignition_format(userdata)

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

is_unprocessable_entity(ex)

is_version_supported(version)

max_microversion = None

meta_serialize(metadata)
Serialize non-string metadata values before sending them to Nova.

meta_update(server, metadata)
Delete/Add the metadata in nova as needed.

rebuild(server_id, image_id, password=None, preserve_ephemeral=False, meta=None,
files=None)

Rebuild the server and call check_rebuild to verify.

refresh_server(server)
Refresh servers attributes.

Also log warnings for non-critical API errors.

rename(server, name)
Update the name for a server.

resize(server_id, flavor_id)
Resize the server.

server_to_ipaddress(server)
Return the servers IP address, fetching it from Nova.

service_types = ['compute']

verify_resize(server_id)

class heat.engine.clients.os.nova.ServerConstraint
Bases: heat.engine.clients.os.nova.NovaBaseConstraint

resource_getter_name = 'get_server'

788 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.clients.os.octavia module

class heat.engine.clients.os.octavia.FlavorConstraint
Bases: heat.engine.clients.os.octavia.OctaviaConstraint

base_url = '/lbaas/flavors'

class heat.engine.clients.os.octavia.FlavorProfileConstraint
Bases: heat.engine.clients.os.octavia.OctaviaConstraint

base_url = '/lbaas/flavorprofiles'

class heat.engine.clients.os.octavia.L7PolicyConstraint
Bases: heat.engine.clients.os.octavia.OctaviaConstraint

base_url = '/lbaas/l7policies'

class heat.engine.clients.os.octavia.ListenerConstraint
Bases: heat.engine.clients.os.octavia.OctaviaConstraint

base_url = '/lbaas/listeners'

class heat.engine.clients.os.octavia.LoadbalancerConstraint
Bases: heat.engine.clients.os.octavia.OctaviaConstraint

base_url = '/lbaas/loadbalancers'

class heat.engine.clients.os.octavia.OctaviaClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

LOADBALANCER = 'load-balancer'

V2 = '2'

default_version = '2'

exceptions_module = <module 'octaviaclient.api.v2.octavia' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/octaviaclient/api/v2/octavia.py'>

get_flavor(value)

get_flavorprofile(value)

get_l7policy(value)

get_listener(value)

get_loadbalancer(value)

get_pool(value)

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['load-balancer']

supported_versions = ['2']

4.2. Source Code Index 789

Heat Documentation, Release 16.1.1.dev14

class heat.engine.clients.os.octavia.OctaviaConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

base_url = None

expected_exceptions = (<class 'osc_lib.exceptions.NotFound'>, <class 'octaviaclient.api.exceptions.OctaviaClientException'>)

validate_with_client(client, value)

class heat.engine.clients.os.octavia.PoolConstraint
Bases: heat.engine.clients.os.octavia.OctaviaConstraint

base_url = '/lbaas/pools'

heat.engine.clients.os.openstacksdk module

class heat.engine.clients.os.openstacksdk.OpenStackSDKPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

CLUSTERING = 'clustering'

NETWORK = 'network'

exceptions_module = <module 'openstack.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/openstack/exceptions.py'>

find_network_segment(value)

is_not_found(ex)
Returns True if the exception is a not-found.

service_types = ['network', 'clustering']

class heat.engine.clients.os.openstacksdk.SegmentConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'openstack.exceptions.ResourceNotFound'>, <class 'openstack.exceptions.DuplicateResource'>)

validate_with_client(client, value)

heat.engine.clients.os.sahara module

class heat.engine.clients.os.sahara.ClusterConstraint
Bases: heat.engine.clients.os.sahara.SaharaBaseConstraint

resource_name = 'clusters'

class heat.engine.clients.os.sahara.ClusterTemplateConstraint
Bases: heat.engine.clients.os.sahara.SaharaBaseConstraint

resource_name = 'cluster_templates'

class heat.engine.clients.os.sahara.DataSourceConstraint
Bases: heat.engine.clients.os.sahara.SaharaBaseConstraint

resource_name = 'data_sources'

class heat.engine.clients.os.sahara.ImageConstraint
Bases: heat.engine.clients.os.sahara.SaharaBaseConstraint

resource_name = 'images'

790 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

class heat.engine.clients.os.sahara.JobBinaryConstraint
Bases: heat.engine.clients.os.sahara.SaharaBaseConstraint

resource_name = 'job_binaries'

class heat.engine.clients.os.sahara.JobTypeConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'sahara'

resource_getter_name = 'get_job_type'

class heat.engine.clients.os.sahara.PluginConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'sahara'

resource_getter_name = 'get_plugin_id'

class heat.engine.clients.os.sahara.SaharaBaseConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.common.exception.EntityNotFound'>, <class 'heat.common.exception.PhysicalResourceNameAmbiguity'>)

resource_name = None

validate_with_client(client, resource_id)

class heat.engine.clients.os.sahara.SaharaClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

DATA_PROCESSING = 'data-processing'

exceptions_module = <module 'saharaclient.api.base' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/saharaclient/api/base.py'>

find_resource_by_name(resource_name, value)
Return the ID for the specified entity name.

Raises

• exception.EntityNotFound

• exception.PhysicalResourceNameAmbiguity

find_resource_by_name_or_id(resource_name, value)
Return the ID for the specified name or identifier.

Parameters

• resource_name API name of entity

• value ID or name of entity

Returns the id of the requested :value:

Raises

• exception.EntityNotFound

• exception.PhysicalResourceNameAmbiguity

get_image_id(image_identifier)
Return the ID for the specified image name or identifier.

Parameters image_identifier image name or a UUID-like identifier

4.2. Source Code Index 791

Heat Documentation, Release 16.1.1.dev14

Returns the id of the requested :image_identifier:

Raises

• exception.EntityNotFound

• exception.PhysicalResourceNameAmbiguity

get_job_type(job_type)
Find the job type

Parameters job_type the name of sahara job type to find

Returns the name of :job_type:

Raises exception.EntityNotFound

get_plugin_id(plugin_name)
Get the id for the specified plugin name.

Parameters plugin_name the name of the plugin to find

Returns the id of :plugin:

Raises exception.EntityNotFound

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_not_registered(ex)

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['data-processing']

validate_hadoop_version(plugin_name, hadoop_version)

heat.engine.clients.os.senlin module

class heat.engine.clients.os.senlin.ClusterConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'openstack.exceptions.HttpException'>,)

validate_with_client(client, value)

class heat.engine.clients.os.senlin.PolicyConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'openstack.exceptions.HttpException'>,)

validate_with_client(client, value)

class heat.engine.clients.os.senlin.PolicyTypeConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.common.exception.StackValidationFailed'>,)

validate_with_client(client, value)

792 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

class heat.engine.clients.os.senlin.ProfileConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'openstack.exceptions.HttpException'>,)

validate_with_client(client, profile)

class heat.engine.clients.os.senlin.ProfileTypeConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'heat.common.exception.StackValidationFailed'>,)

validate_with_client(client, value)

class heat.engine.clients.os.senlin.SenlinClientPlugin(context)
Bases: heat.engine.clients.os.openstacksdk.OpenStackSDKPlugin

check_action_status(action_id)

cluster_is_active(cluster_id)

exceptions_module = <module 'openstack.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/openstack/exceptions.py'>

execute_actions(actions)

generate_spec(spec_type, spec_props)

get_cluster_id(cluster_name)

get_policy_id(policy_name)

get_profile_id(profile_name)

is_bad_request(ex)

heat.engine.clients.os.swift module

class heat.engine.clients.os.swift.SwiftClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

OBJECT_STORE = 'object-store'

exceptions_module = <module 'swiftclient.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/swiftclient/exceptions.py'>

get_files_from_container(files_container, files_to_skip=None)
Gets the file contents from a container.

Get the file contents from the container in a files map. A list of files to skip can also be
specified and those would not be downloaded from swift.

get_signal_url(container_name, obj_name, timeout=None)
Turn on object versioning.

We can use a single TempURL for multiple signals and return a Swift TempURL.

get_temp_url(container_name, obj_name, timeout=None, method=’PUT’)
Return a Swift TempURL.

is_client_exception(ex)
Returns True if the current exception comes from the client.

4.2. Source Code Index 793

Heat Documentation, Release 16.1.1.dev14

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

is_valid_temp_url_path(path)
Return True if path is a valid Swift TempURL path, False otherwise.

A Swift TempURL path must: - Be five parts, [, v1, account, container, object] - Be a v1
request - Have account, container, and object values - Have an object value with more than
just /s

Parameters path (string) The TempURL path

parse_last_modified(lm)
Parses the last-modified value.

For example, last-modified values from a swift object header. Returns the datetime.datetime
of that value.

Parameters lm (string) The last-modified value (or None)

Returns An offset-naive UTC datetime of the value (or None)

service_types = ['object-store']

heat.engine.clients.os.trove module

class heat.engine.clients.os.trove.FlavorConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

expected_exceptions = (<class 'troveclient.apiclient.exceptions.NotFound'>,)

resource_client_name = 'trove'

resource_getter_name = 'find_flavor_by_name_or_id'

class heat.engine.clients.os.trove.TroveClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

DATABASE = 'database'

exceptions_module = <module 'troveclient.exceptions' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/troveclient/exceptions.py'>

find_flavor_by_name_or_id(flavor)
Find the specified flavor by name or id.

Parameters flavor the name of the flavor to find

Returns the id of :flavor:

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

794 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = ['database']

validate_datastore(datastore_type, datastore_version, ds_type_key,
ds_version_key)

heat.engine.clients.os.vitrage module

class heat.engine.clients.os.vitrage.VitrageClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

RCA = 'rca'

exceptions_module = None

service_types = ['rca']

heat.engine.clients.os.zaqar module

class heat.engine.clients.os.zaqar.QueueConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

resource_client_name = 'zaqar'

resource_getter_name = 'get_queue'

class heat.engine.clients.os.zaqar.ZaqarClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

DEFAULT_TTL = 3600

MESSAGING = 'messaging'

create_for_tenant(tenant_id, token)

create_from_signed_url(project_id, paths, expires, methods, signature)

exceptions_module = <module 'zaqarclient.transport.errors' from '/home/zuul/src/opendev.org/openstack/heat/.tox/pdf-docs/lib/python3.8/site-packages/zaqarclient/transport/errors.py'>

get_queue(queue_name)

is_not_found(ex)
Returns True if the exception is a not-found.

service_types = ['messaging']

class heat.engine.clients.os.zaqar.ZaqarEventSink(target, ttl=None)
Bases: object

consume(context, event)

4.2. Source Code Index 795

Heat Documentation, Release 16.1.1.dev14

heat.engine.clients.os.zun module

class heat.engine.clients.os.zun.ZunClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

CONTAINER = 'container'

V1_12 = '1.12'

V1_18 = '1.18'

V1_36 = '1.36'

check_network_attach(container_id, port_id)

check_network_detach(container_id, port_id)

default_version = '1.12'

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

network_attach(container_id, port_id=None, net_id=None, fip=None, secu-
rity_groups=None)

network_detach(container_id, port_id)

service_types = ['container']

supported_versions = ['1.12', '1.18', '1.36']

update_container(container_id, **prop_diff)

Module contents

class heat.engine.clients.os.ExtensionMixin(*args, **kwargs)
Bases: object

has_extension(alias)
Check if specific extension is present.

Submodules

heat.engine.clients.client_exception module

exception heat.engine.clients.client_exception.EntityMatchNotFound(entity=None,
args=None,
**kwargs)

Bases: heat.common.exception.HeatException

msg_fmt = 'No %(entity)s matching %(args)s.'

796 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

exception heat.engine.clients.client_exception.EntityUniqueMatchNotFound(entity=None,
args=None,
**kwargs)

Bases: heat.engine.clients.client_exception.EntityMatchNotFound

msg_fmt = 'No %(entity)s unique match found for %(args)s.'

exception heat.engine.clients.client_exception.InterfaceNotFound(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'No network interface found for server %(id)s.'

heat.engine.clients.client_plugin module

class heat.engine.clients.client_plugin.ClientPlugin(context)
Bases: object

client(version=None)

property clients

property context

default_version = None

does_endpoint_exist(service_type, service_name)

exceptions_module = None

ignore_conflict_and_not_found(ex)
Raises the exception unless it is a conflict or not-found.

ignore_not_found(ex)
Raises the exception unless it is a not-found.

is_client_exception(ex)
Returns True if the current exception comes from the client.

is_conflict(ex)
Returns True if the exception is a conflict.

is_not_found(ex)
Returns True if the exception is a not-found.

is_over_limit(ex)
Returns True if the exception is an over-limit.

service_types = []

supported_versions = []

url_for(**kwargs)

heat.engine.clients.client_plugin.retry_if_connection_err(exception)

heat.engine.clients.client_plugin.retry_if_result_is_false(result)

4.2. Source Code Index 797

Heat Documentation, Release 16.1.1.dev14

heat.engine.clients.default_client_plugin module

class heat.engine.clients.default_client_plugin.DefaultClientPlugin(context)
Bases: heat.engine.clients.client_plugin.ClientPlugin

A ClientPlugin that has no client.

This is provided so that Resource can make use of the is_not_found() and is_conflict() methods
even if the resource plugin has not specified a client plugin.

heat.engine.clients.microversion_mixin module

class heat.engine.clients.microversion_mixin.MicroversionMixin
Bases: object

Mixin For microversion support.

client(version=None)

abstract get_max_microversion()

abstract is_version_supported(version)

heat.engine.clients.progress module

Helper classes that are simple key-value storages meant to be passed between handle_* and
check_*_complete, being mutated during subsequent check_*_complete calls.

Some of them impose restrictions on client plugin API, thus they are put in this client-plugin-agnostic
module.

class heat.engine.clients.progress.ContainerUpdateProgress(container_id,
handler,
com-
plete=False,
called=False,
han-
dler_extra=None,
checker_extra=None)

Bases: heat.engine.clients.progress.UpdateProgressBase

class heat.engine.clients.progress.PoolDeleteProgress(task_complete=False)
Bases: object

class heat.engine.clients.progress.ServerCreateProgress(server_id,
com-
plete=False)

Bases: object

class heat.engine.clients.progress.ServerDeleteProgress(server_id,
im-
age_id=None,
im-
age_complete=True)

Bases: object

798 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

class heat.engine.clients.progress.ServerUpdateProgress(server_id,
handler,
com-
plete=False,
called=False,
han-
dler_extra=None,
checker_extra=None)

Bases: heat.engine.clients.progress.UpdateProgressBase

class heat.engine.clients.progress.UpdateProgressBase(resource_id,
handler, com-
plete=False,
called=False,
han-
dler_extra=None,
checker_extra=None)

Bases: object

Keeps track on particular server update task.

handler is a method of client plugin performing required update operation. Its first positional
argument must be resource_id and this method must be resilent to intermittent failures, re-
turning True if API was successfully called, False otherwise.

If result of API call is asynchronous, client plugin must have corresponding check_<handler>
method. Its first positional argument must be resource_id and it must return True or False
indicating completeness of the update operation.

For synchronous API calls, set complete attribute of this object to True.

[handler|checker]_extra arguments, if passed to constructor, should be dictionaries of

{args: tuple(), kwargs: dict()}

structure and contain parameters with which corresponding handler and check_<handler>
methods of client plugin must be called. args is automatically prepended with resource_id.
Missing args or kwargs are interpreted as empty tuple/dict respectively. Defaults are inter-
preted as both args and kwargs being empty.

class heat.engine.clients.progress.VolumeAttachProgress(srv_id,
vol_id,
device,
task_complete=False)

Bases: object

class heat.engine.clients.progress.VolumeBackupRestoreProgress(vol_id,
backup_id)

Bases: object

class heat.engine.clients.progress.VolumeDeleteProgress(task_complete=False)
Bases: object

class heat.engine.clients.progress.VolumeDetachProgress(srv_id,
vol_id,
attach_id,
task_complete=False)

Bases: object

4.2. Source Code Index 799

Heat Documentation, Release 16.1.1.dev14

class heat.engine.clients.progress.VolumeResizeProgress(task_complete=False,
size=None)

Bases: object

class heat.engine.clients.progress.VolumeUpdateAccessModeProgress(task_complete=False,
read_only=None)

Bases: object

Module contents

class heat.engine.clients.ClientBackend(context)
Bases: object

Class for delaying choosing the backend client module.

Delay choosing the backend client module until the clients class needs to be initialized.

heat.engine.clients.Clients
alias of heat.engine.clients.ClientBackend

class heat.engine.clients.OpenStackClients(context)
Bases: object

Convenience class to create and cache client instances.

client(name, version=None)

client_plugin(name)

property context

heat.engine.clients.has_client(name)

heat.engine.clients.initialise()

heat.engine.clients.list_opts()

heat.engine.constraint package

Submodules

heat.engine.constraint.common_constraints module

class heat.engine.constraint.common_constraints.CIDRConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context, template=None)

class heat.engine.constraint.common_constraints.CRONExpressionConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context, template=None)

class heat.engine.constraint.common_constraints.DNSDomainConstraint
Bases: heat.engine.constraint.common_constraints.DNSNameConstraint

validate(value, context)

800 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

class heat.engine.constraint.common_constraints.DNSNameConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context)

class heat.engine.constraint.common_constraints.ExpirationConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context)

class heat.engine.constraint.common_constraints.IPCIDRConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context, template=None)

class heat.engine.constraint.common_constraints.IPConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context, template=None)

class heat.engine.constraint.common_constraints.ISO8601Constraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context, template=None)

class heat.engine.constraint.common_constraints.MACConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context, template=None)

class heat.engine.constraint.common_constraints.RelativeDNSNameConstraint
Bases: heat.engine.constraint.common_constraints.DNSNameConstraint

validate(value, context)

class heat.engine.constraint.common_constraints.TestConstraintDelay
Bases: heat.engine.constraints.BaseCustomConstraint

validate_with_client(client, value)

class heat.engine.constraint.common_constraints.TimezoneConstraint
Bases: heat.engine.constraints.BaseCustomConstraint

validate(value, context, template=None)

Module contents

heat.engine.hot package

Submodules

heat.engine.hot.functions module

class heat.engine.hot.functions.And(stack, fn_name, args)
Bases: heat.engine.hot.functions.ConditionBoolean

A function that acts as an AND operator on conditions.

Takes the form:

4.2. Source Code Index 801

Heat Documentation, Release 16.1.1.dev14

and:
- <condition_1>
- <condition_2>
- ...

Returns true if all the specified conditions evaluate to true, or returns false if any one of the
conditions evaluates to false. The minimum number of conditions that you can include is 2.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.ConditionBoolean(stack, fn_name, args)
Bases: heat.engine.function.Function

Abstract parent class of boolean condition functions.

class heat.engine.hot.functions.Contains(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for checking whether specific value is in sequence.

Takes the form:

contains:
- <value>
- <sequence>

The value can be any type that you want to check. Returns true if the specific value is in the
sequence, otherwise returns false.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.Digest(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for performing digest operations.

Takes the form:

digest:
- <algorithm>
- <value>

Valid algorithms are the ones provided by natively by hashlib (md5, sha1, sha224, sha256, sha384,
and sha512) or any one provided by OpenSSL.

digest(algorithm, value)

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

validate_usage(args)

802 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

class heat.engine.hot.functions.Equals(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for comparing whether two values are equal.

Takes the form:

equals:
- <value_1>
- <value_2>

The value can be any type that you want to compare. Returns true if the two values are equal or
false if they arent.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.Filter(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for filtering out values from lists.

Takes the form:

filter:
- <values>
- <list>

Returns a new list without the values.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.GetAtt(stack, fn_name, args)
Bases: heat.engine.hot.functions.GetAttThenSelect

A function for resolving resource attributes.

Takes the form:

get_attr:
- <resource_name>
- <attribute_name>
- <path1>
- ...

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.GetAttAllAttributes(stack, fn_name,
args)

Bases: heat.engine.hot.functions.GetAtt

A function for resolving resource attributes.

Takes the form:

4.2. Source Code Index 803

Heat Documentation, Release 16.1.1.dev14

get_attr:
- <resource_name>
- <attributes_name>
- <path1>
- ...

where <attributes_name> and <path1>, are optional arguments. If there is no <attributes_name>,
result will be dict of all resources attributes. Else function returns resolved resources attribute.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.GetAttThenSelect(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for resolving resource attributes.

Takes the form:

get_attr:
- <resource_name>
- <attribute_name>
- <path1>
- ...

all_dep_attrs()
Return resource, attribute name pairs of all attributes referenced.

Return an iterator over the resource name, attribute name tuples of all attributes that this
function references.

The special value heat.engine.attributes.ALL_ATTRIBUTES may be used to indicate that
all attributes of the resource are required.

By default this calls the dep_attrs() method, but subclasses can override to provide a more
efficient implementation.

dep_attrs(resource_name)
Return the attributes of the specified resource that are referenced.

Return an iterator over any attributes of the specified resource that this function references.

The special value heat.engine.attributes.ALL_ATTRIBUTES may be used to indicate that
all attributes of the resource are required.

dependencies(path)

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

validate()
Validate arguments without resolving the function.

Function subclasses must override this method to validate their args.

class heat.engine.hot.functions.GetFile(stack, fn_name, args)
Bases: heat.engine.function.Function

804 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

A function for including a file inline.

Takes the form:

get_file: <file_key>

And resolves to the content stored in the files dictionary under the given key.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.GetParam(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for resolving parameter references.

Takes the form:

get_param: <param_name>

or:

get_param:
- <param_name>
- <path1>
- ...

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.GetResource(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for resolving resource references.

Takes the form:

get_resource: <resource_name>

dependencies(path)

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.If(stack, fn_name, raw_args, parse_func, tem-
plate)

Bases: heat.engine.function.Macro

A function to return corresponding value based on condition evaluation.

Takes the form:

if:
- <condition_name>

(continues on next page)

4.2. Source Code Index 805

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

- <value_if_true>
- <value_if_false>

The value_if_true to be returned if the specified condition evaluates to true, the value_if_false to
be returned if the specified condition evaluates to false.

parse_args(parse_func)
Parse the macro using the supplied parsing function.

Macro subclasses should override this method to control parsing of the arguments.

class heat.engine.hot.functions.IfNullable(stack, fn_name, raw_args,
parse_func, template)

Bases: heat.engine.hot.functions.If

A function to return corresponding value based on condition evaluation.

Takes the form:

if:
- <condition_name>
- <value_if_true>
- <value_if_false>

The value_if_true to be returned if the specified condition evaluates to true, the value_if_false to
be returned if the specified condition evaluates to false.

If the value_if_false is omitted and the condition is false, the enclosing item (list item, dictionary
key/value pair, property definition) will be treated as if it were not mentioned in the template:

if:
- <condition_name>
- <value_if_true>

class heat.engine.hot.functions.Join(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for joining strings.

Takes the form:

list_join:
- <delim>
- - <string_1>

- <string_2>
- ...

And resolves to:

"<string_1><delim><string_2><delim>..."

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.JoinMultiple(stack, fn_name, args)
Bases: heat.engine.function.Function

806 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

A function for joining one or more lists of strings.

Takes the form:

list_join:
- <delim>
- - <string_1>

- <string_2>
- ...

- - ...

And resolves to:

"<string_1><delim><string_2><delim>..."

Optionally multiple lists may be specified, which will also be joined.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.ListConcat(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for extending lists.

Takes the form:

list_concat:
- [<value 1>, <value 2>]
- [<value 3>, <value 4>]

And resolves to:

[<value 1>, <value 2>, <value 3>, <value 4>]

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.ListConcatUnique(stack, fn_name, args)
Bases: heat.engine.hot.functions.ListConcat

A function for extending lists with unique items.

list_concat_unique is identical to the list_concat function, only contains unique items in retuning
list.

class heat.engine.hot.functions.MakeURL(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for performing substitutions on maps.

Takes the form:

make_url:
scheme: <protocol>
username: <username>

(continues on next page)

4.2. Source Code Index 807

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

password: <password>
host: <hostname or IP>
port: <port>
path: <path>
query:

<key1>: <value1>
fragment: <fragment>

And resolves to a correctly-escaped URL constructed from the various components.

FRAGMENT = 'fragment'

HOST = 'host'

PASSWORD = 'password'

PATH = 'path'

PORT = 'port'

QUERY = 'query'

SCHEME = 'scheme'

USERNAME = 'username'

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

validate()
Validate arguments without resolving the function.

Function subclasses must override this method to validate their args.

class heat.engine.hot.functions.MapMerge(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for merging maps.

Takes the form:

map_merge:
- <k1>: <v1>

<k2>: <v2>
- <k1>: <v3>

And resolves to:

{"<k1>": "<v3>", "<k2>": "<v2>"}

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.MapReplace(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for performing substitutions on maps.

808 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Takes the form:

map_replace:
- <k1>: <v1>

<k2>: <v2>
- keys:

<k1>: <K1>
values:

<v2>: <V2>

And resolves to:

{"<K1>": "<v1>", "<k2>": "<V2>"}

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.Not(stack, fn_name, args)
Bases: heat.engine.hot.functions.ConditionBoolean

A function that acts as a NOT operator on a condition.

Takes the form:

not: <condition>

Returns true for a condition that evaluates to false or returns false for a condition that evaluates to
true.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.Or(stack, fn_name, args)
Bases: heat.engine.hot.functions.ConditionBoolean

A function that acts as an OR operator on conditions.

Takes the form:

or:
- <condition_1>
- <condition_2>
- ...

Returns true if any one of the specified conditions evaluate to true, or returns false if all of the
conditions evaluates to false. The minimum number of conditions that you can include is 2.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.Removed(stack, fn_name, args)
Bases: heat.engine.function.Function

This function existed in previous versions of HOT, but has been removed.

4.2. Source Code Index 809

Heat Documentation, Release 16.1.1.dev14

Check the HOT guide for an equivalent native function.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

validate()
Validate arguments without resolving the function.

Function subclasses must override this method to validate their args.

class heat.engine.hot.functions.Repeat(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for iterating over a list of items.

Takes the form:

repeat:
template:

<body>
for_each:

<var>: <list>

The result is a new list of the same size as <list>, where each element is a copy of <body> with
any occurrences of <var> replaced with the corresponding item of <list>.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

validate()
Validate arguments without resolving the function.

Function subclasses must override this method to validate their args.

class heat.engine.hot.functions.RepeatWithMap(stack, fn_name, args)
Bases: heat.engine.hot.functions.Repeat

A function for iterating over a list of items or a dict of keys.

Takes the form:

repeat:
template:

<body>
for_each:

<var>: <list> or <dict>

The result is a new list of the same size as <list> or <dict>, where each element is a copy of
<body> with any occurrences of <var> replaced with the corresponding item of <list> or key of
<dict>.

class heat.engine.hot.functions.RepeatWithNestedLoop(stack, fn_name,
args)

Bases: heat.engine.hot.functions.RepeatWithMap

A function for iterating over a list of items or a dict of keys.

Takes the form:

810 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

repeat:
template:

<body>
for_each:

<var>: <list> or <dict>

The result is a new list of the same size as <list> or <dict>, where each element is a copy of
<body> with any occurrences of <var> replaced with the corresponding item of <list> or key of
<dict>.

This function also allows to specify permutations to decide whether to iterate nested the over all
the permutations of the elements in the given lists.

Takes the form:

repeat:
template:

var: %var%
bar: %bar%

for_each:
%var%: <list1>
%bar%: <list2>

permutations: false

If permutations is not specified, we set the default value to true to compatible with before behav-
ior. The args have to be lists instead of dicts if permutations is False because keys in a dict are
unordered, and the list args all have to be of the same length.

class heat.engine.hot.functions.Replace(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for performing string substitutions.

Takes the form:

str_replace:
template: <key_1> <key_2>
params:

<key_1>: <value_1>
<key_2>: <value_2>
...

And resolves to:

"<value_1> <value_2>"

When keys overlap in the template, longer matches are preferred. For keys of equal length, lexi-
cographically smaller keys are preferred.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.ReplaceJson(stack, fn_name, args)
Bases: heat.engine.hot.functions.Replace

A function for performing string substitutions.

4.2. Source Code Index 811

Heat Documentation, Release 16.1.1.dev14

Takes the form:

str_replace:
template: <key_1> <key_2>
params:

<key_1>: <value_1>
<key_2>: <value_2>
...

And resolves to:

"<value_1> <value_2>"

When keys overlap in the template, longer matches are preferred. For keys of equal length, lexi-
cographically smaller keys are preferred.

Non-string param values (e.g maps or lists) are serialized as JSON before being substituted in.

class heat.engine.hot.functions.ReplaceJsonStrict(stack, fn_name, args)
Bases: heat.engine.hot.functions.ReplaceJson

A function for performing string substitutions.

str_replace_strict is identical to the str_replace function, only a ValueError is raised if any of the
params are not present in the template.

class heat.engine.hot.functions.ReplaceJsonVeryStrict(stack, fn_name,
args)

Bases: heat.engine.hot.functions.ReplaceJsonStrict

A function for performing string substitutions.

str_replace_vstrict is identical to the str_replace_strict function, only a ValueError is raised if any
of the params are None or empty.

class heat.engine.hot.functions.ResourceFacade(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for retrieving data in a parent provider template.

A function for obtaining data from the facade resource from within the corresponding provider
template.

Takes the form:

resource_facade: <attribute_type>

where the valid attribute types are metadata, deletion_policy and update_policy.

DELETION_POLICY = 'deletion_policy'

METADATA = 'metadata'

UPDATE_POLICY = 'update_policy'

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.StrSplit(stack, fn_name, args)
Bases: heat.engine.function.Function

812 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

A function for splitting delimited strings into a list.

Optionally extracting a specific list member by index.

Takes the form:

str_split:
- <delimiter>
- <string>
- <index>

If <index> is specified, the specified list item will be returned otherwise, the whole list is returned,
similar to get_attr with path based attributes accessing lists.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.hot.functions.Yaql(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for executing a yaql expression.

Takes the form:

yaql:
expression:

<body>
data:

<var>: <list>

Evaluates expression <body> on the given data.

classmethod get_yaql_parser()

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

validate()
Validate arguments without resolving the function.

Function subclasses must override this method to validate their args.

heat.engine.hot.parameters module

class heat.engine.hot.parameters.HOTParamSchema(data_type, de-
scription=None,
default=None,
schema=None, con-
straints=None, hid-
den=False, label=None,
immutable=False,
tags=None)

Bases: heat.engine.parameters.Schema

HOT parameter schema.

4.2. Source Code Index 813

Heat Documentation, Release 16.1.1.dev14

BOOLEAN = 'boolean'

CONSTRAINTS = 'constraints'

DEFAULT = 'default'

DESCRIPTION = 'description'

HIDDEN = 'hidden'

IMMUTABLE = 'immutable'

KEYS = ('type', 'description', 'default', 'schema', 'constraints', 'hidden', 'label', 'immutable')

LABEL = 'label'

LIST = 'comma_delimited_list'

MAP = 'json'

NUMBER = 'number'

PARAMETER_KEYS = ('type', 'description', 'default', 'schema', 'constraints', 'hidden', 'label', 'immutable')

SCHEMA = 'schema'

STRING = 'string'

TYPE = 'type'

TYPES = ('string', 'number', 'comma_delimited_list', 'json', 'boolean')

classmethod from_dict(param_name, schema_dict)
Return a Parameter Schema object from a legacy schema dictionary.

Parameters param_name (str) name of the parameter owning the schema;
used for more verbose logging

class heat.engine.hot.parameters.HOTParamSchema20170224(data_type,
descrip-
tion=None,
de-
fault=None,
schema=None,
con-
straints=None,
hid-
den=False,
label=None,
im-
mutable=False,
tags=None)

Bases: heat.engine.hot.parameters.HOTParamSchema

814 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

class heat.engine.hot.parameters.HOTParamSchema20180302(data_type,
descrip-
tion=None,
de-
fault=None,
schema=None,
con-
straints=None,
hid-
den=False,
label=None,
im-
mutable=False,
tags=None)

Bases: heat.engine.hot.parameters.HOTParamSchema20170224

KEYS = ('type', 'description', 'default', 'schema', 'constraints', 'hidden', 'label', 'immutable', 'tags')

KEYS_20180302 = ('tags',)

PARAMETER_KEYS = ('type', 'description', 'default', 'schema', 'constraints', 'hidden', 'label', 'immutable', 'tags')

TAGS = 'tags'

classmethod from_dict(param_name, schema_dict)
Return a Parameter Schema object from a legacy schema dictionary.

Parameters param_name (str) name of the parameter owning the schema;
used for more verbose logging

class heat.engine.hot.parameters.HOTParameters(stack_identifier, tmpl,
user_params=None,
param_defaults=None)

Bases: heat.engine.parameters.Parameters

PARAM_PROJECT_ID = 'OS::project_id'

PARAM_REGION = 'OS::region'

PARAM_STACK_ID = 'OS::stack_id'

PARAM_STACK_NAME = 'OS::stack_name'

PSEUDO_PARAMETERS = ('OS::stack_id', 'OS::stack_name', 'OS::region', 'OS::project_id')

set_stack_id(stack_identifier)
Set the StackId pseudo parameter value.

heat.engine.hot.template module

class heat.engine.hot.template.HOTemplate20130523(template, *args,
**kwargs)

Bases: heat.engine.template_common.CommonTemplate

A Heat Orchestration Template format stack template.

DESCRIPTION = 'description'

MAPPINGS = '__undefined__'

4.2. Source Code Index 815

Heat Documentation, Release 16.1.1.dev14

OUTPUTS = 'outputs'

OUTPUT_DESCRIPTION = 'description'

OUTPUT_KEYS = ('description', 'value')

OUTPUT_VALUE = 'value'

PARAMETERS = 'parameters'

PARAMETER_GROUPS = 'parameter_groups'

RESOURCES = 'resources'

RES_DELETION_POLICY = 'deletion_policy'

RES_DEPENDS_ON = 'depends_on'

RES_DESCRIPTION = 'description'

RES_METADATA = 'metadata'

RES_PROPERTIES = 'properties'

RES_TYPE = 'type'

RES_UPDATE_POLICY = 'update_policy'

SECTIONS = ('heat_template_version', 'description', 'parameter_groups', 'parameters', 'resources', 'outputs', '__undefined__')

SECTIONS_NO_DIRECT_ACCESS = {'heat_template_version', 'parameters'}

VERSION = 'heat_template_version'

add_output(definition)
Add an output to the template.

The output is passed as a OutputDefinition object.

add_resource(definition, name=None)
Add a resource to the template.

The resource is passed as a ResourceDefinition object. If no name is specified, the name
from the ResourceDefinition should be used.

deletion_policies = {'Delete': 'Delete', 'Retain': 'Retain', 'Snapshot': 'Snapshot'}

functions = {'Fn::Base64': <class 'heat.engine.cfn.functions.Base64'>, 'Fn::GetAZs': <class 'heat.engine.cfn.functions.GetAZs'>, 'Fn::Join': <class 'heat.engine.cfn.functions.Join'>, 'Fn::MemberListToMap': <class 'heat.engine.cfn.functions.MemberListToMap'>, 'Fn::Replace': <class 'heat.engine.cfn.functions.Replace'>, 'Fn::ResourceFacade': <class 'heat.engine.cfn.functions.ResourceFacade'>, 'Fn::Select': <class 'heat.engine.cfn.functions.Select'>, 'Fn::Split': <class 'heat.engine.cfn.functions.Split'>, 'Ref': <function Ref>, 'get_attr': <class 'heat.engine.hot.functions.GetAttThenSelect'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'list_join': <class 'heat.engine.hot.functions.Join'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.Replace'>}

get_section_name(section)
Get the name of a field within a resource or output definition.

Return the name of the given field (specified by the constants given in heat.engine.rsrc_defn
and heat.engine.output) in the template format. This is used in error reporting to help users
find the location of errors in the template.

Note that section here does not refer to a top-level section of the template (like parameters,
resources, &c.) as it does everywhere else.

param_schema_class
alias of heat.engine.hot.parameters.HOTParamSchema

param_schemata(param_defaults=None)
Return a dict of parameters.Schema objects for the parameters.

816 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

parameters(stack_identifier, user_params, param_defaults=None)
Return a parameters.Parameters object for the stack.

resource_definitions(stack)
Return a dictionary of ResourceDefinition objects.

validate_section(section, sub_section, data, allowed_keys)

class heat.engine.hot.template.HOTemplate20141016(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20130523

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.cfn.functions.Select'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'get_attr': <class 'heat.engine.hot.functions.GetAtt'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'list_join': <class 'heat.engine.hot.functions.Join'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.Replace'>}

class heat.engine.hot.template.HOTemplate20150430(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20141016

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.cfn.functions.Select'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'get_attr': <class 'heat.engine.hot.functions.GetAtt'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'list_join': <class 'heat.engine.hot.functions.Join'>, 'repeat': <class 'heat.engine.hot.functions.Repeat'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.Replace'>}

class heat.engine.hot.template.HOTemplate20151015(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20150430

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'get_attr': <class 'heat.engine.hot.functions.GetAttAllAttributes'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'list_join': <class 'heat.engine.hot.functions.JoinMultiple'>, 'repeat': <class 'heat.engine.hot.functions.Repeat'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.ReplaceJson'>, 'str_split': <class 'heat.engine.hot.functions.StrSplit'>}

class heat.engine.hot.template.HOTemplate20160408(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20151015

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'get_attr': <class 'heat.engine.hot.functions.GetAttAllAttributes'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'list_join': <class 'heat.engine.hot.functions.JoinMultiple'>, 'map_merge': <class 'heat.engine.hot.functions.MapMerge'>, 'repeat': <class 'heat.engine.hot.functions.Repeat'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.ReplaceJson'>, 'str_split': <class 'heat.engine.hot.functions.StrSplit'>}

class heat.engine.hot.template.HOTemplate20161014(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20160408

CONDITIONS = 'conditions'

OUTPUT_CONDITION = 'condition'

OUTPUT_KEYS = ('description', 'value', 'condition')

RES_CONDITION = 'condition'

RES_EXTERNAL_ID = 'external_id'

SECTIONS = ('heat_template_version', 'description', 'parameter_groups', 'parameters', 'resources', 'outputs', '__undefined__', 'conditions')

SECTIONS_NO_DIRECT_ACCESS = {'conditions', 'heat_template_version', 'parameters'}

condition_functions = {'and': <class 'heat.engine.hot.functions.And'>, 'equals': <class 'heat.engine.hot.functions.Equals'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'not': <class 'heat.engine.hot.functions.Not'>, 'or': <class 'heat.engine.hot.functions.Or'>}

deletion_policies = {'Delete': 'Delete', 'Retain': 'Retain', 'Snapshot': 'Snapshot', 'delete': 'Delete', 'retain': 'Retain', 'snapshot': 'Snapshot'}

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'get_attr': <class 'heat.engine.hot.functions.GetAttAllAttributes'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'if': <class 'heat.engine.hot.functions.If'>, 'list_join': <class 'heat.engine.hot.functions.JoinMultiple'>, 'map_merge': <class 'heat.engine.hot.functions.MapMerge'>, 'map_replace': <class 'heat.engine.hot.functions.MapReplace'>, 'repeat': <class 'heat.engine.hot.functions.RepeatWithMap'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.ReplaceJson'>, 'str_split': <class 'heat.engine.hot.functions.StrSplit'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

class heat.engine.hot.template.HOTemplate20170224(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20161014

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'filter': <class 'heat.engine.hot.functions.Filter'>, 'get_attr': <class 'heat.engine.hot.functions.GetAttAllAttributes'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'if': <class 'heat.engine.hot.functions.If'>, 'list_join': <class 'heat.engine.hot.functions.JoinMultiple'>, 'map_merge': <class 'heat.engine.hot.functions.MapMerge'>, 'map_replace': <class 'heat.engine.hot.functions.MapReplace'>, 'repeat': <class 'heat.engine.hot.functions.RepeatWithMap'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.ReplaceJson'>, 'str_replace_strict': <class 'heat.engine.hot.functions.ReplaceJsonStrict'>, 'str_split': <class 'heat.engine.hot.functions.StrSplit'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

param_schema_class
alias of heat.engine.hot.parameters.HOTParamSchema20170224

4.2. Source Code Index 817

Heat Documentation, Release 16.1.1.dev14

class heat.engine.hot.template.HOTemplate20170901(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20170224

condition_functions = {'and': <class 'heat.engine.hot.functions.And'>, 'contains': <class 'heat.engine.hot.functions.Contains'>, 'equals': <class 'heat.engine.hot.functions.Equals'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'not': <class 'heat.engine.hot.functions.Not'>, 'or': <class 'heat.engine.hot.functions.Or'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'contains': <class 'heat.engine.hot.functions.Contains'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'filter': <class 'heat.engine.hot.functions.Filter'>, 'get_attr': <class 'heat.engine.hot.functions.GetAttAllAttributes'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'if': <class 'heat.engine.hot.functions.If'>, 'list_concat': <class 'heat.engine.hot.functions.ListConcat'>, 'list_concat_unique': <class 'heat.engine.hot.functions.ListConcatUnique'>, 'list_join': <class 'heat.engine.hot.functions.JoinMultiple'>, 'make_url': <class 'heat.engine.hot.functions.MakeURL'>, 'map_merge': <class 'heat.engine.hot.functions.MapMerge'>, 'map_replace': <class 'heat.engine.hot.functions.MapReplace'>, 'repeat': <class 'heat.engine.hot.functions.RepeatWithNestedLoop'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.ReplaceJson'>, 'str_replace_strict': <class 'heat.engine.hot.functions.ReplaceJsonStrict'>, 'str_replace_vstrict': <class 'heat.engine.hot.functions.ReplaceJsonVeryStrict'>, 'str_split': <class 'heat.engine.hot.functions.StrSplit'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

class heat.engine.hot.template.HOTemplate20180302(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20170901

condition_functions = {'and': <class 'heat.engine.hot.functions.And'>, 'contains': <class 'heat.engine.hot.functions.Contains'>, 'equals': <class 'heat.engine.hot.functions.Equals'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'not': <class 'heat.engine.hot.functions.Not'>, 'or': <class 'heat.engine.hot.functions.Or'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'contains': <class 'heat.engine.hot.functions.Contains'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'filter': <class 'heat.engine.hot.functions.Filter'>, 'get_attr': <class 'heat.engine.hot.functions.GetAttAllAttributes'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'if': <class 'heat.engine.hot.functions.If'>, 'list_concat': <class 'heat.engine.hot.functions.ListConcat'>, 'list_concat_unique': <class 'heat.engine.hot.functions.ListConcatUnique'>, 'list_join': <class 'heat.engine.hot.functions.JoinMultiple'>, 'make_url': <class 'heat.engine.hot.functions.MakeURL'>, 'map_merge': <class 'heat.engine.hot.functions.MapMerge'>, 'map_replace': <class 'heat.engine.hot.functions.MapReplace'>, 'repeat': <class 'heat.engine.hot.functions.RepeatWithNestedLoop'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.ReplaceJson'>, 'str_replace_strict': <class 'heat.engine.hot.functions.ReplaceJsonStrict'>, 'str_replace_vstrict': <class 'heat.engine.hot.functions.ReplaceJsonVeryStrict'>, 'str_split': <class 'heat.engine.hot.functions.StrSplit'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

param_schema_class
alias of heat.engine.hot.parameters.HOTParamSchema20180302

class heat.engine.hot.template.HOTemplate20180831(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20180302

condition_functions = {'and': <class 'heat.engine.hot.functions.And'>, 'contains': <class 'heat.engine.hot.functions.Contains'>, 'equals': <class 'heat.engine.hot.functions.Equals'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'not': <class 'heat.engine.hot.functions.Not'>, 'or': <class 'heat.engine.hot.functions.Or'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'contains': <class 'heat.engine.hot.functions.Contains'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'filter': <class 'heat.engine.hot.functions.Filter'>, 'get_attr': <class 'heat.engine.hot.functions.GetAttAllAttributes'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'if': <class 'heat.engine.hot.functions.If'>, 'list_concat': <class 'heat.engine.hot.functions.ListConcat'>, 'list_concat_unique': <class 'heat.engine.hot.functions.ListConcatUnique'>, 'list_join': <class 'heat.engine.hot.functions.JoinMultiple'>, 'make_url': <class 'heat.engine.hot.functions.MakeURL'>, 'map_merge': <class 'heat.engine.hot.functions.MapMerge'>, 'map_replace': <class 'heat.engine.hot.functions.MapReplace'>, 'repeat': <class 'heat.engine.hot.functions.RepeatWithNestedLoop'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.ReplaceJson'>, 'str_replace_strict': <class 'heat.engine.hot.functions.ReplaceJsonStrict'>, 'str_replace_vstrict': <class 'heat.engine.hot.functions.ReplaceJsonVeryStrict'>, 'str_split': <class 'heat.engine.hot.functions.StrSplit'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

class heat.engine.hot.template.HOTemplate20210416(template, *args,
**kwargs)

Bases: heat.engine.hot.template.HOTemplate20180831

functions = {'Fn::Base64': <class 'heat.engine.hot.functions.Removed'>, 'Fn::GetAZs': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Join': <class 'heat.engine.hot.functions.Removed'>, 'Fn::MemberListToMap': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Replace': <class 'heat.engine.hot.functions.Removed'>, 'Fn::ResourceFacade': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Select': <class 'heat.engine.hot.functions.Removed'>, 'Fn::Split': <class 'heat.engine.hot.functions.Removed'>, 'Ref': <class 'heat.engine.hot.functions.Removed'>, 'contains': <class 'heat.engine.hot.functions.Contains'>, 'digest': <class 'heat.engine.hot.functions.Digest'>, 'filter': <class 'heat.engine.hot.functions.Filter'>, 'get_attr': <class 'heat.engine.hot.functions.GetAttAllAttributes'>, 'get_file': <class 'heat.engine.hot.functions.GetFile'>, 'get_param': <class 'heat.engine.hot.functions.GetParam'>, 'get_resource': <class 'heat.engine.hot.functions.GetResource'>, 'if': <class 'heat.engine.hot.functions.IfNullable'>, 'list_concat': <class 'heat.engine.hot.functions.ListConcat'>, 'list_concat_unique': <class 'heat.engine.hot.functions.ListConcatUnique'>, 'list_join': <class 'heat.engine.hot.functions.JoinMultiple'>, 'make_url': <class 'heat.engine.hot.functions.MakeURL'>, 'map_merge': <class 'heat.engine.hot.functions.MapMerge'>, 'map_replace': <class 'heat.engine.hot.functions.MapReplace'>, 'repeat': <class 'heat.engine.hot.functions.RepeatWithNestedLoop'>, 'resource_facade': <class 'heat.engine.hot.functions.ResourceFacade'>, 'str_replace': <class 'heat.engine.hot.functions.ReplaceJson'>, 'str_replace_strict': <class 'heat.engine.hot.functions.ReplaceJsonStrict'>, 'str_replace_vstrict': <class 'heat.engine.hot.functions.ReplaceJsonVeryStrict'>, 'str_split': <class 'heat.engine.hot.functions.StrSplit'>, 'yaql': <class 'heat.engine.hot.functions.Yaql'>}

Module contents

heat.engine.notification package

Submodules

heat.engine.notification.autoscaling module

heat.engine.notification.autoscaling.send(stack, adjustment=None, ad-
justment_type=None, capac-
ity=None, groupname=None,
message=’error’, suffix=None)

Send autoscaling notifications to the configured notification driver.

818 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.notification.stack module

heat.engine.notification.stack.send(stack)
Send usage notifications to the configured notification driver.

Module contents

heat.engine.notification.get_default_level()

heat.engine.notification.list_opts()

heat.engine.notification.notify(context, event_type, level, body)

heat.engine.resources package

Submodules

heat.engine.resources.alarm_base module

class heat.engine.resources.alarm_base.BaseAlarm(name, definition,
stack)

Bases: heat.engine.resource.Resource

Base Alarm Manager.

QF_FIELD = 'field'

QF_OP = 'op'

QF_OP_VALS = <heat.engine.constraints.AllowedValues object>

QF_TYPE = 'type'

QF_TYPE_VALS = <heat.engine.constraints.AllowedValues object>

QF_VALUE = 'value'

QUERY_FACTOR_FIELDS = ('field', 'op', 'value', 'type')

actions_to_urls(props)

alarm_type = 'threshold'

default_client_name = 'aodh'

entity = 'alarm'

handle_check()

handle_resume()

handle_suspend()

4.2. Source Code Index 819

Heat Documentation, Release 16.1.1.dev14

heat.engine.resources.scheduler_hints module

class heat.engine.resources.scheduler_hints.SchedulerHintsMixin
Bases: object

Utility class to encapsulate Scheduler Hint related logic.

HEAT_PATH_IN_STACK = 'heat_path_in_stack'

HEAT_RESOURCE_NAME = 'heat_resource_name'

HEAT_RESOURCE_UUID = 'heat_resource_uuid'

HEAT_ROOT_STACK_ID = 'heat_root_stack_id'

HEAT_STACK_ID = 'heat_stack_id'

HEAT_STACK_NAME = 'heat_stack_name'

heat.engine.resources.server_base module

class heat.engine.resources.server_base.BaseServer(name, definition,
stack)

Bases: heat.engine.resources.stack_user.StackUser

Base Server resource.

property access_key

check_create_complete(server_id)

check_delete_complete(prg)

entity = 'servers'

handle_delete()
Default implementation; should be overridden by resources.

handle_snapshot_delete(state)

handle_update(json_snippet, tmpl_diff, prop_diff)

metadata_update(new_metadata=None)
Refresh the metadata if new_metadata is None.

property password

physical_resource_name_limit = 53

property secret_key

transport_poll_server_cfn(props)

transport_poll_server_heat(props)

transport_poll_temp_url(props)

transport_zaqar_message(props)

820 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.resources.signal_responder module

class heat.engine.resources.signal_responder.SignalResponder(name,
def-
ini-
tion,
stack)

Bases: heat.engine.resources.stack_user.StackUser

ATTRIBUTES = ('signal',)

PROPERTIES = ('signal_transport',)

SIGNAL_ATTR = 'signal'

SIGNAL_TRANSPORT = 'signal_transport'

handle_delete()
Default implementation; should be overridden by resources.

property password

requires_deferred_auth = True

heat.engine.resources.stack_resource module

class heat.engine.resources.stack_resource.StackResource(name,
definition,
stack)

Bases: heat.engine.resource.Resource

Allows entire stack to be managed as a resource in a parent stack.

An abstract Resource subclass that allows the management of an entire Stack as a resource in a
parent stack.

check_adopt_complete(cookie=None)

check_check_complete(cookie=None)

check_create_complete(cookie=None)

check_delete_complete(cookie=None)

check_resume_complete(cookie=None)

check_suspend_complete(cookie=None)

check_update_complete(cookie=None)

child_definition(child_template=None, user_params=None,
nested_identifier=None)

child_params()
Default implementation to get the child params.

Resources that inherit from StackResource should override this method with specific details
about the parameters used by them.

4.2. Source Code Index 821

Heat Documentation, Release 16.1.1.dev14

child_template()
Default implementation to get the child template.

Resources that inherit from StackResource should override this method with specific details
about the template used by them.

child_template_files(child_env)
Default implementation to get the files map for child template.

create_with_template(child_template, user_params=None, timeout_mins=None,
adopt_data=None)

Create the nested stack with the given template.

delete_nested()
Delete the nested stack.

get_nested_parameters_stack()
Return a stack for schema validation.

This returns a stack to be introspected for building parameters schema. It can be customized
by subclass to return a restricted version of what will be running.

get_output(op)
Return the specified Output value from the nested stack.

If the output key does not exist, raise a NotFound exception.

handle_check()

handle_create_cancel(cookie)

handle_delete()
Default implementation; should be overridden by resources.

handle_preempt()
Pre-empt an in-progress update when a new update is available.

This method is called when a previous convergence update is in progress but a new update
for the resource is available. By default it does nothing, but subclasses may override it to
cancel the in-progress update if it is safe to do so.

Note that this method does not run in the context of the in-progress update and has no ac-
cess to runtime information about it; nor is it safe to make changes to the Resource in the
database. If implemented, this method should cause the existing update to complete by ex-
ternal means. If this leaves the resource in a FAILED state, that should be taken into account
in needs_replace_failed().

handle_resume()

handle_suspend()

handle_update_cancel(cookie)

has_nested()
Return True if the resource has an existing nested stack.

nested()
Return a Stack object representing the nested (child) stack.

If we catch NotFound exception when loading, return None.

nested_identifier()

822 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

prepare_abandon()

preview()
Preview a StackResource as resources within a Stack.

This method overrides the original Resource.preview to return a preview of all the resources
contained in this Stack. For this to be possible, the specific resources need to override both
child_template and child_params with specific information to allow the stack to
be parsed correctly. If any of these methods is missing, the entire StackResource will be
returned as if it were a regular Resource.

requires_deferred_auth = True

property template_url
Template url for the stack resource.

When stack resource is a TemplateResource, its the template location. For group resources
like ResourceGroup where the template is constructed dynamically, its just a placeholder.

translate_remote_exceptions(ex)

update_with_template(child_template, user_params=None, timeout_mins=None)
Update the nested stack with the new template.

validate()
Validate the resource.

This may be overridden by resource plugins to add extra validation logic specific to the
resource implementation.

validate_nested_stack()

heat.engine.resources.stack_user module

class heat.engine.resources.stack_user.StackUser(name, definition,
stack)

Bases: heat.engine.resource.Resource

handle_create()

handle_delete()
Default implementation; should be overridden by resources.

handle_resume()

handle_suspend()

heat.engine.resources.template_resource module

class heat.engine.resources.template_resource.TemplateResource(name,
def-
i-
ni-
tion,
stack)

Bases: heat.engine.resources.stack_resource.StackResource

A resource implemented by a nested stack.

4.2. Source Code Index 823

Heat Documentation, Release 16.1.1.dev14

This implementation passes resource properties as parameters to the nested stack. Outputs of the
nested stack are exposed as attributes of this resource.

child_params()
Override method of child_params for the resource.

Returns parameter values for our nested stack based on our properties

child_template()
Default implementation to get the child template.

Resources that inherit from StackResource should override this method with specific details
about the template used by them.

get_attribute(key, *path)
Default implementation for function get_attr and Fn::GetAtt.

This may be overridden by resource plugins to add extra logic specific to the resource im-
plementation.

get_reference_id()
Default implementation for function get_resource.

This may be overridden by resource plugins to add extra logic specific to the resource im-
plementation.

static get_schemas(tmpl, param_defaults)

static get_template_file(template_name, allowed_schemes)

handle_adopt(resource_data=None)

handle_create()

handle_update(json_snippet, tmpl_diff, prop_diff)

metadata_update(new_metadata=None)
Refresh the metadata if new_metadata is None.

regenerate_info_schema(definition)
Default implementation; should be overridden by resources.

Should be overridden by resources that would require schema refresh during update, ex.
TemplateResource.

Definition Resource Definition

template_data()

property template_url
Template url for the stack resource.

When stack resource is a TemplateResource, its the template location. For group resources
like ResourceGroup where the template is constructed dynamically, its just a placeholder.

validate()
Validate the resource.

This may be overridden by resource plugins to add extra validation logic specific to the
resource implementation.

824 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

validate_template()
Validate structural/syntax aspects of the resource definition.

Resource plugins should not override this, because this interface is expected to be called
pre-create so things normally valid in an overridden validate() such as accessing properties
may not work.

heat.engine.resources.template_resource.generate_class_from_template(name,
data,
param_defaults)

heat.engine.resources.volume_base module

class heat.engine.resources.volume_base.BaseVolume(name, definition,
stack)

Bases: heat.engine.resource.Resource

Base Volume Manager.

check_create_complete(vol_id)

check_delete_complete(prg)

default_client_name = 'cinder'

handle_check()

handle_create()

handle_delete()
Default implementation; should be overridden by resources.

handle_snapshot_delete(state)

classmethod validate_deletion_policy(policy)

class heat.engine.resources.volume_base.BaseVolumeAttachment(name,
def-
ini-
tion,
stack)

Bases: heat.engine.resource.Resource

Base Volume Attachment Manager.

check_create_complete(volume_id)

check_delete_complete(prg)

default_client_name = 'cinder'

handle_create()

handle_delete()
Default implementation; should be overridden by resources.

4.2. Source Code Index 825

Heat Documentation, Release 16.1.1.dev14

heat.engine.resources.wait_condition module

class heat.engine.resources.wait_condition.BaseWaitConditionHandle(name,
def-
i-
ni-
tion,
stack)

Bases: heat.engine.resources.signal_responder.SignalResponder

Base WaitConditionHandle resource.

The main point of this class is to : - have no dependencies (so the instance can reference it) - create
credentials to allow for signalling from the instance. - handle signals from the instance, validate
and store result

STATUS_FAILURE = 'FAILURE'

STATUS_SUCCESS = 'SUCCESS'

WAIT_STATUSES = ('FAILURE', 'SUCCESS')

get_status()
Return a list of the Status values for the handle signals.

get_status_reason(status)
Return a list of reasons associated with a particular status.

handle_create()

handle_signal(details=None)

normalise_signal_data(signal_data, latest_metadata)

properties_schema = {}

exception heat.engine.resources.wait_condition.WaitConditionFailure(wait_condition,
han-
dle)

Bases: heat.common.exception.Error

exception heat.engine.resources.wait_condition.WaitConditionTimeout(wait_condition,
han-
dle)

Bases: heat.common.exception.Error

Module contents

heat.engine.resources.global_env()

heat.engine.resources.initialise()

heat.engine.resources.list_opts()

826 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Submodules

heat.engine.api module

heat.engine.api.extract_args(params)
Extract arguments passed as parameters and return them as a dictionary.

Extract any arguments passed as parameters through the API and return them as a dictionary. This
allows us to filter the passed args and do type conversion where appropriate

heat.engine.api.format_event(event, stack_identifier, root_stack_identifier=None,
include_rsrc_prop_data=True)

heat.engine.api.format_notification_body(stack)

heat.engine.api.format_resource_attributes(resource, with_attr=None)

heat.engine.api.format_resource_properties(resource)

heat.engine.api.format_snapshot(snapshot)

heat.engine.api.format_software_config(sc, detail=True, in-
clude_project=False)

heat.engine.api.format_software_deployment(sd)

heat.engine.api.format_stack(stack, preview=False, resolve_outputs=True)
Return a representation of the given stack.

Return a representation of the given stack that matches the API output expectations.

heat.engine.api.format_stack_db_object(stack)
Return a summary representation of the given stack.

Given a stack versioned DB object, return a representation of the given stack for a stack listing.

heat.engine.api.format_stack_output(output_defn, resolve_value=True)

heat.engine.api.format_stack_outputs(outputs, resolve_value=False)
Return a representation of the given output template.

Return a representation of the given output template for the given stack that matches the API
output expectations.

heat.engine.api.format_stack_preview(stack)

heat.engine.api.format_stack_resource(resource, detail=True,
with_props=False, with_attr=None)

Return a representation of the given resource.

Return a representation of the given resource that matches the API output expectations.

heat.engine.api.format_validate_parameter(param)
Format a template parameter for validate template API call.

Formats a template parameter and its schema information from the engines internal representation
(i.e. a Parameter object and its associated Schema object) to a representation expected by the
current API (for example to be compatible to CFN syntax).

heat.engine.api.format_watch(watch)

heat.engine.api.format_watch_data(wd, rule_names)

4.2. Source Code Index 827

Heat Documentation, Release 16.1.1.dev14

heat.engine.api.translate_filters(params)
Translate filter names to their corresponding DB field names.

Parameters params A dictionary containing keys from engine.api.STACK_KEYS
and other keys previously leaked to users.

Returns A dict containing only valid DB filed names.

heat.engine.attributes module

class heat.engine.attributes.Attribute(attr_name, schema)
Bases: object

An Attribute schema.

as_output(resource_name, template_type=’cfn’)
Output entry for a provider template with the given resource name.

Parameters

• resource_name the logical name of the provider resource

• template_type the template type to generate

Returns This attribute as a template Output entry for cfn template and output entry
for hot template

support_status()

class heat.engine.attributes.Attributes(res_name, schema, resolver)
Bases: collections.abc.Mapping

Models a collection of Resource Attributes.

static as_outputs(resource_name, resource_class, template_type=’cfn’)
Dict of Output entries for a provider template with resource name.

Parameters

• resource_name logical name of the resource

• resource_class resource implementation class

Returns The attributes of the specified resource_class as a template Output map

property cached_attrs

get_cache_mode(attribute_name)
Return the cache mode for the specified attribute.

If the attribute is not defined in the schema, the default cache mode (CACHE_LOCAL) is
returned.

has_new_cached_attrs()
Returns True if cached_attrs have changed

Allows the caller to determine if this instances cached_attrs have been updated since they
were initially set (if at all).

reset_resolved_values()

static schema_from_outputs(json_snippet)

828 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

set_cached_attr(key, value)

set_schema(schema)

class heat.engine.attributes.Schema(description=None, sup-
port_status=<heat.engine.support.SupportStatus
object>, cache_mode=’cache_local’,
type=None)

Bases: heat.engine.constraints.Schema

Simple schema class for attributes.

Schema objects are serializable to dictionaries following a superset of the HOT input Parameter
schema using dict().

BOOLEAN = 'Boolean'

CACHE_LOCAL = 'cache_local'

CACHE_MODES = ('cache_local', 'cache_none')

CACHE_NONE = 'cache_none'

DESCRIPTION = 'description'

INTEGER = 'Integer'

KEYS = ('description', 'type')

LIST = 'List'

MAP = 'Map'

STRING = 'String'

TYPE = 'type'

TYPES = (None, 'String', 'Map', 'List', 'Integer', 'Boolean')

UNKNOWN = None

classmethod from_attribute(schema_dict)
Return a Property Schema corresponding to a Attribute Schema.

heat.engine.attributes.schemata(schema)
Return dictionary of Schema objects for given dictionary of schemata.

heat.engine.attributes.select_from_attribute(attribute_value, path)
Select an element from an attribute value.

Parameters

• attribute_value the attribute value.

• path a list of path components to select from the attribute.

Returns the selected attribute component value.

4.2. Source Code Index 829

Heat Documentation, Release 16.1.1.dev14

heat.engine.check_resource module

exception heat.engine.check_resource.CancelOperation
Bases: BaseException

Exception to cancel an in-progress operation on a resource.

This exception is raised when operations on a resource are cancelled.

class heat.engine.check_resource.CheckResource(engine_id, rpc_client,
thread_group_mgr,
msg_queue, input_data)

Bases: object

check(cnxt, resource_id, current_traversal, resource_data, is_update, adopt_stack_data,
rsrc, stack)

Process a node in the dependency graph.

The node may be associated with either an update or a cleanup of its associated resource.

retrigger_check_resource(cnxt, resource_id, stack)

heat.engine.check_resource.check_resource_cleanup(rsrc, template_id,
engine_id, timeout,
msg_queue)

Delete the Resource if appropriate.

heat.engine.check_resource.check_resource_update(rsrc, template_id,
requires, engine_id,
stack, msg_queue)

Create or update the Resource if appropriate.

heat.engine.check_resource.check_stack_complete(cnxt, stack, cur-
rent_traversal,
sender_id, deps,
is_update)

Mark the stack complete if the update is complete.

Complete is currently in the sense that all desired resources are in service, not that superfluous
ones have been cleaned up.

heat.engine.check_resource.load_resource(cnxt, resource_id, resource_data,
current_traversal, is_update)

heat.engine.check_resource.propagate_check_resource(cnxt, rpc_client,
next_res_id, cur-
rent_traversal,
predecessors,
sender_key,
sender_data,
is_update,
adopt_stack_data)

Trigger processing of node if all of its dependencies are satisfied.

830 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.conditions module

class heat.engine.conditions.Conditions(conditions_dict)
Bases: object

is_enabled(condition_name)

validate()

heat.engine.constraints module

class heat.engine.constraints.AllowedPattern(pattern, description=None)
Bases: heat.engine.constraints.Constraint

Constrain values to a predefined regular expression pattern.

Serializes to JSON as:

{
'allowed_pattern': <pattern>,
'description': <description>

}

valid_types = ('STRING',)

class heat.engine.constraints.AllowedValues(allowed, description=None)
Bases: heat.engine.constraints.Constraint

Constrain values to a predefined set.

Serializes to JSON as:

{
'allowed_values': [<allowed1>, <allowed2>, ...],
'description': <description>

}

valid_types = ('STRING', 'INTEGER', 'NUMBER', 'BOOLEAN', 'LIST')

class heat.engine.constraints.AnyIndexDict(value)
Bases: collections.abc.Mapping

A Mapping that returns the same value for any integer index.

Used for storing the schema for a list. When converted to a dictionary, it contains a single item
with the key *.

ANYTHING = '*'

class heat.engine.constraints.BaseCustomConstraint
Bases: object

A base class for validation using API clients.

It will provide a better error message, and reduce a bit of duplication. Subclass must provide
expected_exceptions and implement validate_with_client.

error(value)

4.2. Source Code Index 831

Heat Documentation, Release 16.1.1.dev14

expected_exceptions = (<class 'heat.common.exception.EntityNotFound'>,)

resource_client_name = None

resource_getter_name = None

validate(value, context)

validate_with_client(client, resource_id)

class heat.engine.constraints.Constraint(description=None)
Bases: collections.abc.Mapping

Parent class for constraints on allowable values for a Property.

Constraints are serializable to dictionaries following the HOT input Parameter constraints schema
using dict().

DESCRIPTION = 'description'

validate(value, schema=None, context=None)

class heat.engine.constraints.CustomConstraint(name, description=None,
environment=None)

Bases: heat.engine.constraints.Constraint

A constraint delegating validation to an external class.

property custom_constraint

valid_types = ('STRING', 'INTEGER', 'NUMBER', 'BOOLEAN', 'LIST')

class heat.engine.constraints.Length(min=None, max=None, descrip-
tion=None)

Bases: heat.engine.constraints.Range

Constrain the length of values within a range.

Serializes to JSON as:

{
'length': {'min': <min>, 'max': <max>},
'description': <description>

}

valid_types = ('STRING', 'LIST', 'MAP')

class heat.engine.constraints.Modulo(step=None, offset=None, descrip-
tion=None)

Bases: heat.engine.constraints.Constraint

Constrain values to modulo.

Serializes to JSON as:

{
'modulo': {'step': <step>, 'offset': <offset>},
'description': <description>

}

OFFSET = 'offset'

STEP = 'step'

832 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

valid_types = ('INTEGER', 'NUMBER')

class heat.engine.constraints.Range(min=None, max=None, descrip-
tion=None)

Bases: heat.engine.constraints.Constraint

Constrain values within a range.

Serializes to JSON as:

{
'range': {'min': <min>, 'max': <max>},
'description': <description>

}

MAX = 'max'

MIN = 'min'

valid_types = ('INTEGER', 'NUMBER')

class heat.engine.constraints.Schema(data_type, description=None, de-
fault=None, schema=None, re-
quired=False, constraints=None, la-
bel=None, immutable=False)

Bases: collections.abc.Mapping

Schema base class for validating properties or parameters.

Schema objects are serializable to dictionaries following a superset of the HOT input Parameter
schema using dict().

Serialises to JSON in the form:

{
'type': 'list',
'required': False
'constraints': [

{
'length': {'min': 1},
'description': 'List must not be empty'

}
],
'schema': {

'*': {
'type': 'string'

}
},
'description': 'An example list property.'

}

ANY = 'Any'

BOOLEAN = 'Boolean'

BOOLEAN_TYPE = 'BOOLEAN'

CONSTRAINTS = 'constraints'

DEFAULT = 'default'

DESCRIPTION = 'description'

4.2. Source Code Index 833

Heat Documentation, Release 16.1.1.dev14

IMMUTABLE = 'immutable'

INTEGER = 'Integer'

INTEGER_TYPE = 'INTEGER'

KEYS = ('type', 'description', 'default', 'schema', 'required', 'constraints', 'immutable')

LIST = 'List'

LIST_TYPE = 'LIST'

MAP = 'Map'

MAP_TYPE = 'MAP'

NUMBER = 'Number'

NUMBER_TYPE = 'NUMBER'

REQUIRED = 'required'

SCHEMA = 'schema'

STRING = 'String'

STRING_TYPE = 'STRING'

TYPE = 'type'

TYPES = ('Integer', 'String', 'Number', 'Boolean', 'Map', 'List', 'Any')

TYPE_KEYS = ('INTEGER', 'STRING', 'NUMBER', 'BOOLEAN', 'MAP', 'LIST')

set_default(default=None)
Set the default value for this Schema object.

static str_to_num(value)
Convert a string representation of a number into a numeric type.

to_schema_type(value)
Returns the value in the schemas data type.

validate(context=None)
Validates the schema.

This method checks if the schema itself is valid, and if the default value - if present - complies
to the schemas constraints.

validate_constraints(value, context=None, skipped=None)

heat.engine.dependencies module

exception heat.engine.dependencies.CircularDependencyException(**kwargs)
Bases: heat.common.exception.HeatException

msg_fmt = 'Circular Dependency Found: %(cycle)s'

class heat.engine.dependencies.Dependencies(edges=None)
Bases: object

Helper class for calculating a dependency graph.

834 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

graph(reverse=False)
Return a copy of the underlying dependency graph.

leaves()
Return an iterator over all of the leaf nodes in the graph.

required_by(last)
List the keys that require the specified node.

requires(source)
List the keys that the specified node requires.

roots()
Return an iterator over all of the root nodes in the graph.

translate(transform)
Translate all of the nodes using a transform function.

Returns a new Dependencies object.

class heat.engine.dependencies.Graph(*args)
Bases: collections.defaultdict

A mutable mapping of objects to nodes in a dependency graph.

copy()
Return a copy of the graph.

edges()
Return an iterator over all of the edges in the graph.

map(func)
Map the supplied function onto each node in the graph.

Return a dictionary derived from mapping the supplied function onto each node in the graph.

reverse_copy()
Return a copy of the graph with the edges reversed.

static toposort(graph)
Return a topologically sorted iterator over a dependency graph.

This is a destructive operation for the graph.

class heat.engine.dependencies.Node(requires=None, required_by=None)
Bases: object

A node in a dependency graph.

copy()
Return a copy of the node.

disjoint()
Return True if this node is both a leaf and a stem.

require

required_by(source=None)
List the keys that require this node, and optionally add new one.

requires(target=None)
List the keys that this node requires, and optionally add a new one.

4.2. Source Code Index 835

Heat Documentation, Release 16.1.1.dev14

reverse_copy()
Return a copy of the node with the edge directions reversed.

satisfy

stem()
Return True if this node is a stem (required by nothing).

heat.engine.environment module

class heat.engine.environment.ClassResourceInfo(registry, path, value)
Bases: heat.engine.environment.ResourceInfo

Store the mapping of resource name to python class implementation.

description = 'Plugin'

get_class(files=None)

class heat.engine.environment.Environment(env=None, user_env=True)
Bases: object

env_as_dict()
Get the entire environment as a dict.

get_class(resource_type, resource_name=None, files=None)

get_class_to_instantiate(resource_type, resource_name=None)

get_constraint(name)

get_event_sinks()

get_resource_info(resource_type, resource_name=None, registry_type=None, ig-
nore=None)

get_stack_lifecycle_plugins()

get_types(cnxt=None, support_status=None, type_name=None, version=None,
with_description=False)

load(env_snippet)

register_class(resource_type, resource_class, path=None)

register_constraint(constraint_name, constraint)

register_event_sink(event_sink_name, event_sink_class)

register_stack_lifecycle_plugin(stack_lifecycle_name,
stack_lifecycle_class)

user_env_as_dict()
Get the environment as a dict, only user-allowed keys.

class heat.engine.environment.GlobResourceInfo(registry, path, value)
Bases: heat.engine.environment.MapResourceInfo

Store the mapping (with wild cards) of one resource type to another.

like: OS::Networking::* -> OS::Neutron::*

836 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Also supports many-to-one mapping (mostly useful together with special OS::Heat::None re-
source)

like: OS::* -> OS::Heat::None

description = 'Wildcard Mapping'

get_resource_info(resource_type=None, resource_name=None)

matches(resource_type)

class heat.engine.environment.MapResourceInfo(registry, path, value)
Bases: heat.engine.environment.ResourceInfo

Store the mapping of one resource type to another.

like: OS::Networking::FloatingIp -> OS::Neutron::FloatingIp

description = 'Mapping'

get_class(files=None)

get_resource_info(resource_type=None, resource_name=None)

class heat.engine.environment.ResourceInfo(registry, path, value)
Bases: object

Base mapping of resource type to implementation.

get_class()

get_class_to_instantiate()

get_resource_info(resource_type=None, resource_name=None)

matches(resource_type)

name

path

property registry

user_resource

value

class heat.engine.environment.ResourceRegistry(global_registry,
param_defaults)

Bases: object

By looking at the environment, find the resource implementation.

as_dict()
Return user resources in a dict format.

get_class(resource_type, resource_name=None, files=None)

get_class_to_instantiate(resource_type, resource_name=None)

get_resource_info(resource_type, resource_name=None, registry_type=None, ig-
nore=None)

Find possible matches to the resource type and name.

Chain the results from the global and user registry to find a match.

4.2. Source Code Index 837

Heat Documentation, Release 16.1.1.dev14

get_rsrc_restricted_actions(resource_name)
Returns a set of restricted actions.

For a given resource we get the set of restricted actions.

Actions are set in this format via resources:

{
"restricted_actions": [update, replace]

}

A restricted_actions value is either update, replace or a list of those values. Resources
support wildcard matching. The asterisk sign matches everything.

get_types(cnxt=None, support_status=None, type_name=None, version=None,
with_description=False)

Return a list of valid resource types.

iterable_by(resource_type, resource_name=None)

load(json_snippet)

log_resource_info(show_all=False, prefix=None)

matches_hook(resource_name, hook)
Return whether a resource have a hook set in the environment.

For a given resource and a hook type, we check to see if the passed group of resources has
the right hook associated with the name.

Hooks are set in this format via resources:

{
"res_name": {

"hooks": [pre-create, pre-update]
},
"*_suffix": {

"hooks": pre-create
},
"prefix_*": {

"hooks": pre-update
}

}

A hook value is either pre-create, pre-update or a list of those values. Resources support
wildcard matching. The asterisk sign matches everything.

register_class(resource_type, resource_class, path=None)

remove_item(info)

remove_resources_except(resource_name)

class heat.engine.environment.TemplateResourceInfo(registry, path,
value)

Bases: heat.engine.environment.ResourceInfo

Store the info needed to start a TemplateResource.

description = 'Template'

get_class(files=None)

838 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

get_class_to_instantiate()

template_name

heat.engine.environment.get_child_environment(parent_env, child_params,
item_to_remove=None,
child_resource_name=None)

Build a child environment using the parent environment and params.

This is built from the child_params and the parent env so some resources can use user-provided
parameters as if they come from an environment.

1. resource_registry must be merged (child env should be loaded after the parent env to take
precedence).

2. child parameters must overwrite the parents as they wont be relevant in the child template.

If child_resource_name is provided, resources in the registry will be replaced with the contents of
the matching child resource plus anything that passes a wildcard match.

heat.engine.environment.is_hook_definition(key, value)

heat.engine.environment.is_valid_restricted_action(key, value)

heat.engine.environment.read_global_environment(env, env_dir=None)

heat.engine.environment.valid_hook_type(hook)

heat.engine.environment.valid_restricted_actions(action)

heat.engine.event module

class heat.engine.event.Event(context, stack, action, status, reason, physi-
cal_resource_id, resource_prop_data_id, re-
source_properties, resource_name, resource_type,
uuid=None, timestamp=None, id=None)

Bases: object

Class representing a Resource state change.

as_dict()

identifier()
Return a unique identifier for the event.

store()
Store the Event in the database.

heat.engine.function module

class heat.engine.function.Function(stack, fn_name, args)
Bases: object

Abstract base class for template functions.

all_dep_attrs()
Return resource, attribute name pairs of all attributes referenced.

4.2. Source Code Index 839

Heat Documentation, Release 16.1.1.dev14

Return an iterator over the resource name, attribute name tuples of all attributes that this
function references.

The special value heat.engine.attributes.ALL_ATTRIBUTES may be used to indicate that
all attributes of the resource are required.

By default this calls the dep_attrs() method, but subclasses can override to provide a more
efficient implementation.

dep_attrs(resource_name)
Return the attributes of the specified resource that are referenced.

Return an iterator over any attributes of the specified resource that this function references.

The special value heat.engine.attributes.ALL_ATTRIBUTES may be used to indicate that
all attributes of the resource are required.

dependencies(path)

abstract result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

property stack

validate()
Validate arguments without resolving the function.

Function subclasses must override this method to validate their args.

class heat.engine.function.Invalid(stack, fn_name, args)
Bases: heat.engine.function.Function

A function for checking condition functions and to force failures.

This function is used to force failures for functions that are not supported in condition definition.

result()
Return the result of resolving the function.

Function subclasses must override this method to calculate their results.

class heat.engine.function.Macro(stack, fn_name, raw_args, parse_func, tem-
plate)

Bases: heat.engine.function.Function

Abstract base class for template macros.

A macro differs from a function in that it controls how the template is parsed. As such, it operates
on the syntax tree itself, not on the parsed output.

all_dep_attrs()
Return resource, attribute name pairs of all attributes referenced.

Return an iterator over the resource name, attribute name tuples of all attributes that this
function references.

The special value heat.engine.attributes.ALL_ATTRIBUTES may be used to indicate that
all attributes of the resource are required.

By default this calls the dep_attrs() method, but subclasses can override to provide a more
efficient implementation.

840 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

dep_attrs(resource_name)
Return the attributes of the specified resource that are referenced.

Return an iterator over any attributes of the specified resource that this function references.

The special value heat.engine.attributes.ALL_ATTRIBUTES may be used to indicate that
all attributes of the resource are required.

dependencies(path)

abstract parse_args(parse_func)
Parse the macro using the supplied parsing function.

Macro subclasses should override this method to control parsing of the arguments.

result()
Return the resolved result of the macro contents.

property template

validate()
Validate arguments without resolving the result.

heat.engine.function.all_dep_attrs(snippet)
Iterator over resource, attribute name pairs referenced in a snippet.

The snippet should be already parsed to insert Function objects where appropriate.

Returns an iterator over the resource name, attribute name tuples of all attributes that
are referenced in the template snippet.

heat.engine.function.dep_attrs(snippet, resource_name)
Iterator over dependent attrs of a resource in a template snippet.

The snippet should be already parsed to insert Function objects where appropriate.

Returns an iterator over the attributes of the specified resource that are referenced in
the template snippet.

heat.engine.function.dependencies(snippet, path=”)
Return an iterator over Resource dependencies in a template snippet.

The snippet should be already parsed to insert Function objects where appropriate.

heat.engine.function.resolve(snippet, nullable=False)

heat.engine.function.validate(snippet, path=None)

heat.engine.lifecycle_plugin module

class heat.engine.lifecycle_plugin.LifecyclePlugin
Bases: object

Base class for pre-op and post-op work on a stack.

Implementations should extend this class and override the methods.

do_post_op(cnxt, stack, current_stack=None, action=None, is_stack_failure=False)
Method to be run by heat after stack operations, including failures.

4.2. Source Code Index 841

Heat Documentation, Release 16.1.1.dev14

On failure to execute all the registered pre_ops, this method will be called if and only if the
corresponding pre_op was successfully called. On failures of the actual stack operation, this
method will be called if all the pre operations were successfully called.

do_pre_op(cnxt, stack, current_stack=None, action=None)
Method to be run by heat before stack operations.

get_ordinal()
Get the sort order for pre and post operation execution.

The values returned by get_ordinal are used to create a partial order for pre and post
operation method invocations. The default ordinal value of 100 may be overridden. If
class1inst.ordinal() < class2inst.ordinal(), then the method on class1inst will be executed be-
fore the method on class2inst. If class1inst.ordinal() > class2inst.ordinal(), then the method
on class1inst will be executed after the method on class2inst. If class1inst.ordinal() ==
class2inst.ordinal(), then the order of method invocation is indeterminate.

heat.engine.node_data module

class heat.engine.node_data.NodeData(primary_key, resource_name, uuid, refer-
ence_id, attributes, action, status)

Bases: object

Data about a node in the graph, to be passed along to other nodes.

action

as_dict()
Return a dict representation of the data.

This is the format that is serialised and stored in the databases SyncPoints.

attribute(attr_name)
Return the specified attribute value.

attribute_names()
Iterate over valid top-level attribute names.

attributes()
Return a dict of all available top-level attribute values.

classmethod from_dict(node_data)
Create a new NodeData object from deserialised data.

This reads the format that is stored in the database, and is the inverse of as_dict().

name

primary_key

reference_id()
Return the reference ID of the resource.

i.e. the result that the {get_resource: } intrinsic function should return for this resource.

status

uuid

842 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.node_data.load_resources_data(data)
Return the data for all of the resources that meet at a SyncPoint.

The input is the input_data dict from a SyncPoint received over RPC. The keys (which are ignored)
are resource primary keys.

The output is a dict of NodeData objects with the resource names as the keys.

heat.engine.output module

class heat.engine.output.OutputDefinition(name, value, description=None)
Bases: object

A definition of a stack output, independent of any template format.

dep_attrs(resource_name, load_all=False)
Iterate over attributes of a given resource that this references.

Return an iterator over dependent attributes for specified resource_name in the outputs value
field.

description()
Return a description of the output.

get_value()
Resolve the value of the output.

render_hot()

required_resource_names()

validate()
Validate the output value without resolving it.

heat.engine.parameter_groups module

class heat.engine.parameter_groups.ParameterGroups(tmpl)
Bases: object

The ParameterGroups specified by the stacks template.

validate()
Validate the parameter group.

Validate that each parameter belongs to only one Parameter Group and that each parameter
name in the group references a valid parameter.

4.2. Source Code Index 843

Heat Documentation, Release 16.1.1.dev14

heat.engine.parameters module

class heat.engine.parameters.BooleanParam(name, schema, value=None)
Bases: heat.engine.parameters.Parameter

A template parameter of type Boolean.

value()
Get the parameter value, optionally sanitising it for output.

class heat.engine.parameters.CommaDelimitedListParam(name, schema,
value=None)

Bases: heat.engine.parameters.ParsedParameter, collections.abc.
Sequence

A template parameter of type CommaDelimitedList.

default_parsed()

parse(value)

value()
Get the parameter value, optionally sanitising it for output.

class heat.engine.parameters.JsonParam(name, schema, value=None)
Bases: heat.engine.parameters.ParsedParameter

A template parameter whos value is map or list.

default_parsed()

parse(value)

value()
Get the parameter value, optionally sanitising it for output.

class heat.engine.parameters.NumberParam(name, schema, value=None)
Bases: heat.engine.parameters.Parameter

A template parameter of type Number.

value()
Get the parameter value, optionally sanitising it for output.

class heat.engine.parameters.Parameter(name, schema, value=None)
Bases: object

A template parameter.

default()
Return the default value of the parameter.

description()
Return the description of the parameter.

has_default()
Return whether the parameter has a default value.

has_value()
Parameter has a user or default value.

844 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

hidden()
Return whether the parameter is hidden.

Hidden parameters should be sanitised in any output to the user.

label()
Return the label or param name.

name

schema

set_default(value)

tags()
Return the tags associated with the parameter

user_default

user_value

validate(validate_value=True, context=None)
Validates the parameter.

This method validates if the parameters schema is valid, and if the default value - if present
- or the user-provided value for the parameter comply with the schema.

value()
Get the parameter value, optionally sanitising it for output.

class heat.engine.parameters.Parameters(stack_identifier, tmpl,
user_params=None,
param_defaults=None)

Bases: collections.abc.Mapping

Parameters of a stack.

The parameters of a stack, with type checking, defaults, etc. specified by the stacks template.

immutable_params_modified(new_parameters, input_params)

map(func, filter_func=<function Parameters.<lambda»)
Map the supplied function onto each Parameter.

Map the supplied function onto each Parameter (with an optional filter function) and return
the resulting dictionary.

set_stack_id(stack_identifier)
Set the StackId pseudo parameter value.

validate(validate_value=True, context=None)
Validates all parameters.

This method validates if all user-provided parameters are actually defined in the template,
and if all parameters are valid.

class heat.engine.parameters.ParsedParameter(name, schema, value=None)
Bases: heat.engine.parameters.Parameter

A template parameter with cached parsed value.

property parsed

4.2. Source Code Index 845

Heat Documentation, Release 16.1.1.dev14

class heat.engine.parameters.Schema(data_type, description=None, de-
fault=None, schema=None, con-
straints=None, hidden=False, label=None,
immutable=False, tags=None)

Bases: heat.engine.constraints.Schema

Parameter schema.

BOOLEAN = 'Boolean'

CONSTRAINTS = 'Constraints'

DEFAULT = 'Default'

DESCRIPTION = 'Description'

HIDDEN = 'NoEcho'

IMMUTABLE = 'Immutable'

KEYS = ('Type', 'Description', 'Default', 'Schema', 'Constraints', 'NoEcho', 'Label', 'Immutable', 'Tags')

LABEL = 'Label'

LIST = 'CommaDelimitedList'

MAP = 'Json'

NUMBER = 'Number'

PARAMETER_KEYS = ('Type', 'Default', 'NoEcho', 'AllowedValues', 'AllowedPattern', 'MaxLength', 'MinLength', 'MaxValue', 'MinValue', 'Description', 'ConstraintDescription', 'Label')

SCHEMA = 'Schema'

STRING = 'String'

TAGS = 'Tags'

TYPE = 'Type'

TYPES = ('String', 'Number', 'CommaDelimitedList', 'Json', 'Boolean')

classmethod from_dict(param_name, schema_dict)
Return a Parameter Schema object from a legacy schema dictionary.

Parameters param_name (str) name of the parameter owning the schema;
used for more verbose logging

static get_num(key, context)

set_default(default=None)
Set the default value for this Schema object.

validate_value(value, context=None)

class heat.engine.parameters.StringParam(name, schema, value=None)
Bases: heat.engine.parameters.Parameter

A template parameter of type String.

value()
Get the parameter value, optionally sanitising it for output.

846 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.parent_rsrc module

class heat.engine.parent_rsrc.ParentResourceProxy(context, par-
ent_resource_name,
parent_stack_id)

Bases: object

Proxy for the TemplateResource that owns a provider stack.

This is an interface through which the Fn::ResourceFacade/resource_facade intrinsic functions in
a stack can access data about the TemplateResource in the parent stack for which it was created.

This API can be considered stable by third-party Function plugins, and no part of it should be
changed or removed without an appropriate deprecation process.

metadata_get()
Return the resource metadata.

property t
The resource definition.

heat.engine.parent_rsrc.use_parent_stack(parent_proxy, stack)

heat.engine.plugin_manager module

class heat.engine.plugin_manager.PluginManager(*extra_packages)
Bases: object

A class for managing plugin modules.

map_to_modules(function)
Iterate over the results of calling a function on every module.

class heat.engine.plugin_manager.PluginMapping(names, *args, **kwargs)
Bases: object

A class for managing plugin mappings.

load_all(plugin_manager)
Iterate over the mappings from all modules in the plugin manager.

Mappings are returned as a list of (key, value) tuples.

load_from_module(module)
Return the mapping specified in the given module.

If no such mapping is specified, an empty dictionary is returned.

4.2. Source Code Index 847

Heat Documentation, Release 16.1.1.dev14

heat.engine.properties module

class heat.engine.properties.Properties(schema, data, resolver=<function
_default_resolver>, par-
ent_name=None, context=None,
section=None, translation=None,
rsrc_description=None)

Bases: collections.abc.Mapping

get_user_value(key)

static schema_from_params(params_snippet)
Create properties schema from the parameters section of a template.

Parameters params_snippet parameter definition from a template

Returns equivalent properties schemata for the specified parameters

classmethod schema_to_parameters_and_properties(schema, tem-
plate_type=’cfn’)

Convert a schema to template parameters and properties.

This can be used to generate a provider template that matches the given properties schemata.

Parameters schema A resource types properties_schema

Returns A tuple of params and properties dicts

ex: input: {foo: {Type: List}}

output: {foo: {Type: CommaDelimitedList}}, {foo: {Fn::Split: {Ref: foo}}}

ex: input: {foo: {Type: String}, bar: {Type: Map}}

output: {foo: {Type: String}, bar: {Type: Json}}, {foo: {Ref: foo}, bar: {Ref:
bar}}

update_translation(rules, client_resolve=True, ignore_resolve_error=False)

validate(with_value=True)

class heat.engine.properties.Property(schema, name=None, context=None,
path=None)

Bases: object

default()

get_value(value, validate=False, translation=None)
Get value from raw value and sanitize according to data type.

has_default()

immutable()

implemented()

make_path(name, path=None)

required()

support_status()

type()

848 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

update_allowed()

class heat.engine.properties.Schema(data_type, description=None, de-
fault=None, schema=None, re-
quired=False, constraints=None, imple-
mented=True, update_allowed=False,
immutable=False, sup-
port_status=<heat.engine.support.SupportStatus
object>, allow_conversion=False)

Bases: heat.engine.constraints.Schema

Schema class for validating resource properties.

This class is used for defining schema constraints for resource properties. It inherits generic
validation features from the base Schema class and add processing that is specific to resource
properties.

CONSTRAINTS = 'constraints'

DEFAULT = 'default'

DESCRIPTION = 'description'

IMMUTABLE = 'immutable'

KEYS = ('type', 'description', 'default', 'schema', 'required', 'constraints', 'update_allowed', 'immutable')

REQUIRED = 'required'

SCHEMA = 'schema'

TYPE = 'type'

UPDATE_ALLOWED = 'update_allowed'

allowed_param_prop_type()
Return allowed type of Property Schema converted from parameter.

Especially, when generating Schema from parameter, Integer Property Schema will be sup-
plied by Number parameter.

classmethod from_legacy(schema_dict)
Return a Property Schema object from a legacy schema dictionary.

classmethod from_parameter(param)
Return a Property Schema corresponding to a Parameter Schema.

Convert a parameter schema from a provider template to a property Schema for the corre-
sponding resource facade.

validate(context=None)
Validates the schema.

This method checks if the schema itself is valid, and if the default value - if present - complies
to the schemas constraints.

heat.engine.properties.schemata(schema_dicts)
Return dictionary of Schema objects for given dictionary of schemata.

The input schemata are converted from the legacy (dictionary-based) format to Schema objects
where necessary.

4.2. Source Code Index 849

Heat Documentation, Release 16.1.1.dev14

heat.engine.properties_group module

class heat.engine.properties_group.PropertiesGroup(schema, proper-
ties=None)

Bases: object

A class for specifying properties relationships.

Properties group allows to specify relations between properties or other properties groups with
operators AND, OR and XOR by one-key dict with list value. For example, if there are two
properties: subprop1, which is child of property prop1, and property prop2, and they should not
be specified together, then properties group for them should be next:

{XOR: [["prop1", "subprop1"], ["prop2"]]}

where each property name should be set as list of strings. Also, if these properties are exclusive
with properties prop3 and prop4, which should be specified both, then properties group will be
defined such way:

{XOR: [["prop1", "subprop1"], ["prop2"],
{AND: [["prop3"], ["prop4"]]}]}

where one-key dict with key AND is nested properties group.

validate_schema(current_schema)

heat.engine.resource module

exception heat.engine.resource.NoActionRequired(res_name=’Unknown’,
reason=”)

Bases: Exception

Exception raised when a signal is ignored.

Resource subclasses should raise this exception from handle_signal() to suppress recording of an
event corresponding to the signal.

exception heat.engine.resource.PollDelay(period)
Bases: Exception

Exception to delay polling of the resource.

This exception may be raised by a Resource subclasss check_*_complete() methods to indicate
that it need not be polled again immediately. If this exception is raised, the check_*_complete()
method will not be called again until the nth time that the resource becomes eligible for polling.
A PollDelay period of 1 is equivalent to returning False.

class heat.engine.resource.Resource(name, definition, stack)
Bases: heat.engine.status.ResourceStatus

BASE_ATTRIBUTES = ('show',)

FnGetAtt(key, *path)
For the intrinsic function Fn::GetAtt.

Parameters

• key the attribute key.

850 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

• path a list of path components to select from the attribute.

Returns the attribute value.

FnGetRefId()
For the intrinsic function Ref.

Results the id or name of the resource.

LOCK_ACQUIRE = 1

LOCK_ACTIONS = (None, 1, -1, 0)

LOCK_NONE = None

LOCK_RELEASE = -1

LOCK_RESPECT = 0

SHOW = 'show'

action_handler_task(action, args=None, action_prefix=None)
A task to call the Resource subclasss handler methods for action.

Calls the handle_<ACTION>() method for the given action and then calls the
check_<ACTION>_complete() method with the result in a loop until it returns True. If
the methods are not provided, the call is omitted.

Any args provided are passed to the handler.

If a prefix is supplied, the handler method handle_<PREFIX>_<ACTION>() is called in-
stead.

add_dependencies(deps)
Add implicit dependencies specific to the resource type.

Some resource types may have implicit dependencies on other resources in the same stack
that are not linked by a property value (that would be set using get_resource or get_attr for
example, thus creating an explicit dependency). Such dependencies are opaque to the user
and should be avoided wherever possible, however in some circumstances they are required
due to magic in the underlying API.

The deps parameter is a Dependencies object to which dependency pairs may be added.

add_explicit_dependencies(deps)
Add all dependencies explicitly specified in the template.

The deps parameter is a Dependencies object to which dependency pairs are added.

adopt(resource_data)
Adopt the existing resource.

Resource subclasses can provide a handle_adopt() method to customise adopt.

always_replace_on_check_failed = True

attributes_schema = {}

base_attributes_schema = {'show': <heat.engine.attributes.Schema object>}

static build_template_dict(res_name, res_type, tmpl_type, params, props, out-
puts, description)

calc_update_allowed(props)

4.2. Source Code Index 851

Heat Documentation, Release 16.1.1.dev14

cancel_grace_period()

check()
Checks that the physical resource is in its expected state.

Gets the current status of the physical resource and updates the database accordingly. If
check is not supported by the resource, default action is to fail and revert the resources status
to its original state with the added message that check was not performed.

classmethod check_is_substituted(new_res_type)

cinder()

clear_hook(hook)

clear_stored_attributes()

client(name=None, version=None)

client_plugin(name=None)

create()
Create the resource.

Subclasses should provide a handle_create() method to customise creation.

create_convergence(template_id, requires, engine_id, timeout,
progress_callback=None)

Creates the resource by invoking the scheduler TaskRunner.

data()
Return the resource data for this resource.

Use methods data_set and data_delete to modify the resource data for this resource.

Returns a dict representing the resource data for this resource.

data_delete(key)
Remove a key from the resource data.

Returns True if the key existed to delete.

data_set(key, value, redact=False)
Set a key in the resource data.

default_client_name = None

delete()
A task to delete the resource.

Subclasses should provide a handle_delete() method to customise deletion.

delete_convergence(template_id, engine_id, timeout, progress_callback=None)
Destroys the resource if it doesnt belong to given template.

The given template is suppose to be the current template being provisioned.

Also, since this resource is visited as part of clean-up phase, the needed_by should be up-
dated. If this resource was replaced by more recent resource, then delete this and update the
replacement resources replaces field.

delete_snapshot(data)

852 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

destroy()
A task to delete the resource and remove it from the database.

entity = None

property external_id

frozen_definition()
Return a frozen ResourceDefinition with stored property values.

The returned definition will contain the property values read from the database, and will have
all intrinsic functions resolved (note that this makes it useless for calculating dependencies).

frozen_properties()
Context manager to use the frozen property values from the database.

The live property values are always substituted back when the context ends.

get_attribute(key, *path)
Default implementation for function get_attr and Fn::GetAtt.

This may be overridden by resource plugins to add extra logic specific to the resource im-
plementation.

get_live_resource_data()
Default implementation; can be overridden by resources.

Get resource data and handle it with exceptions.

get_live_state(resource_properties)
Default implementation; should be overridden by resources.

Parameters resource_properties resources object of Properties class.

Returns dict of resources real state of properties.

get_nested_parameters_stack()
Return the nested stack for schema validation.

Regular resources dont have such a thing.

get_reference_id()
Default implementation for function get_resource.

This may be overridden by resource plugins to add extra logic specific to the resource im-
plementation.

classmethod getdoc()

glance()

handle_adopt(resource_data=None)

handle_delete()
Default implementation; should be overridden by resources.

handle_metadata_reset()
Default implementation; should be overridden by resources.

Now we override this method to reset the metadata for scale-policy and scale-group re-
sources, because their metadata might hang in a wrong state (scaling_in_progress is always
True) if engine restarts while scaling.

4.2. Source Code Index 853

Heat Documentation, Release 16.1.1.dev14

handle_preempt()
Pre-empt an in-progress update when a new update is available.

This method is called when a previous convergence update is in progress but a new update
for the resource is available. By default it does nothing, but subclasses may override it to
cancel the in-progress update if it is safe to do so.

Note that this method does not run in the context of the in-progress update and has no ac-
cess to runtime information about it; nor is it safe to make changes to the Resource in the
database. If implemented, this method should cause the existing update to complete by ex-
ternal means. If this leaves the resource in a FAILED state, that should be taken into account
in needs_replace_failed().

handle_update(json_snippet, tmpl_diff, prop_diff)

has_hook(hook)

has_interface(resource_type)
Check if resource is mapped to resource_type or is resource_type.

Check to see if this resource is either mapped to resource_type or is a resource_type.

has_nested()
Return True if the resource has an existing nested stack.

For most resource types, this will always return False. StackResource subclasses return
True when appropriate. Resource subclasses that may return True must also provide a
nested_identifier() method to return the identifier of the nested stack, and a nested() method
to return a Stack object for the nested stack.

heat()

identifier()
Return an identifier for this resource.

classmethod is_service_available(context)

is_using_neutron()

keystone()

classmethod load(context, resource_id, current_traversal, is_update, data)
Load a specified resource from the database to check.

Returns a tuple of the Resource, the StackDefinition corresponding to the resources Re-
sourceDefinition (i.e. the one the resource was last updated to if it has already been created,
or the one it will be created with if it hasnt been already), and the Stack containing the latest
StackDefinition (i.e. the one that the latest traversal is updating to.

The latter two must remain in-scope, because the Resource holds weak references to them.

lock(engine_id)

make_replacement(new_tmpl_id, requires)
Create a replacement resource in the database.

Returns the DB ID of the new resource, or None if the new resource cannot be created (gen-
erally because the template ID does not exist). Raises UpdateInProgress if another traversal
has already locked the current resource.

metadata_get(refresh=False)

854 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

metadata_set(metadata, merge_metadata=None)
Write new metadata to the database.

The caller may optionally provide a merge_metadata() function, which takes two arguments -
the metadata passed to metadata_set() and the current metadata of the resource - and returns
the merged metadata to write. If merge_metadata is not provided, the metadata passed to
metadata_set() is written verbatim, overwriting any existing metadata.

If a race condition is detected, the write will be retried with the new result of
merge_metadata() (if it is supplied) or the verbatim data (if it is not).

metadata_update(new_metadata=None)
No-op for resources which dont explicitly override this method.

needs_replace(after_props)
Mandatory replace based on certain properties.

needs_replace_failed()
Needs replace if resource is in *_FAILED.

needs_replace_with_prop_diff(changed_properties_set, after_props, be-
fore_props)

Needs replace based on prop_diff.

needs_replace_with_tmpl_diff(tmpl_diff)
Needs replace based on tmpl_diff.

neutron()

no_signal_actions = ('SUSPEND', 'DELETE')

node_data(stk_defn=None, for_resources=True, for_outputs=False)
Return a NodeData object representing the resource.

The NodeData object returned contains basic data about the resource, including its name, ID
and state, as well as its reference ID and any attribute values that are used.

By default, those attribute values that are referenced by other resources are included. These
can be ignored by setting the for_resources parameter to False. If the for_outputs parame-
ter is True, those attribute values that are referenced by stack outputs are included. If the
for_outputs parameter is an iterable of output names, only those attribute values referenced
by the specified stack outputs are included.

The set of referenced attributes is calculated from the StackDefinition object provided, or
from the stacks current definition if none is passed.

After calling this method, the resources attribute cache is populated with any cacheable
attribute values referenced by stack outputs, even if they are not also referenced by other
resources.

nova()

parse_live_resource_data(resource_properties, resource_data)
Default implementation; can be overridden by resources.

Parse resource data for using it in updating properties with live state. :param re-
source_properties: properties of stored resource plugin. :param resource_data: data from
current live state of a resource.

static pause()

4.2. Source Code Index 855

Heat Documentation, Release 16.1.1.dev14

physical_resource_name()

physical_resource_name_limit = 255

physical_resource_name_or_FnGetRefId()

prepare_abandon()

prepare_for_replace()
Prepare resource for replacing.

Some resources requires additional actions before replace them. If resource need to be
changed before replacing, this method should be implemented in resource class.

preview()
Default implementation of Resource.preview.

This method should be overridden by child classes for specific behavior.

preview_update(after, before, after_props, before_props, prev_resource,
check_init_complete=False)

Simulates update without actually updating the resource.

Raises UpdateReplace, if replacement is required or returns True, if in-place update is re-
quired.

static reduce_physical_resource_name(name, limit)
Reduce length of physical resource name to a limit.

The reduced name will consist of the following:

• the first 2 characters of the name

• a hyphen

• the end of the name, truncated on the left to bring the name length within the limit

Parameters

• name The name to reduce the length of

• limit The max length limit

Returns A name whose length is less than or equal to the limit

referenced_attrs(stk_defn=None, in_resources=True, in_outputs=True,
load_all=False)

Return the set of all attributes referenced in the template.

This enables the resource to calculate which of its attributes will be used. By default, at-
tributes referenced in either other resources or outputs will be included. Either can be ex-
cluded by setting the in_resources or in_outputs parameters to False. To limit to a subset of
outputs, pass an iterable of the output names to examine for the in_outputs parameter.

The set of referenced attributes is calculated from the StackDefinition object provided, or
from the stacks current definition if none is passed.

regenerate_info_schema(definition)
Default implementation; should be overridden by resources.

Should be overridden by resources that would require schema refresh during update, ex.
TemplateResource.

856 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Definition Resource Definition

reparse(client_resolve=True)
Reparse the resource properties.

Optional translate flag for property translation and client_resolve flag for resolving proper-
ties by doing client lookup.

required_by()
List of resources that require this one as a dependency.

Returns a list of names of resources that depend on this resource directly.

required_service_extension = None

requires_deferred_auth = False

resource_id_set(inst)

classmethod resource_to_template(resource_type, template_type=’cfn’)
Generate a provider template that mirrors the resource.

Parameters

• resource_type The resource type to be displayed in the template

• template_type the template type to generate, cfn or hot.

Returns A template where the resources properties_schema is mapped as param-
eters, and the resources attributes_schema is mapped as outputs

restore_prev_rsrc(convergence=False)
Restore resource after rollback.

Some resources requires additional actions after rollback. If resource need to be changed
during rollback, this method should be implemented in resource class.

resume()
Return a task to resume the resource.

Subclasses should provide a handle_resume() method to implement resume.

rpc_client()
Return a client for making engine RPC calls.

signal(details=None, need_check=True)
Signal the resource.

Returns True if the metadata for all resources in the stack needs to be regenerated as a result
of the signal, False if it should not be.

Subclasses should provide a handle_signal() method to implement the signal. The base-class
raise an exception if no handler is implemented.

signal_needs_metadata_updates = True

snapshot()
Snapshot the resource and return the created data, if any.

property stack

property state
Returns state, tuple of action, status.

4.2. Source Code Index 857

Heat Documentation, Release 16.1.1.dev14

state_reset()
Reset state to (INIT, COMPLETE).

state_set(action, status, reason=’state changed’, lock=None)

store(set_metadata=False, lock=None)
Create the resource in the database.

If self.id is set, we update the existing stack.

store_attributes()

strict_dependency = True

support_status = <heat.engine.support.SupportStatus object>

suspend()
Return a task to suspend the resource.

Subclasses should provide a handle_suspend() method to implement suspend.

swift()

translate_properties(properties, client_resolve=True, ig-
nore_resolve_error=False)

Set resource specific rules for properties translation.

The properties parameter is a properties object and the optional client_resolve flag is to
specify whether to do RESOLVE translation with client lookup.

translation_rules(properties)
Return specified rules for resource.

trigger_hook(hook)

trove()

type()

update(after, before=None, prev_resource=None, new_template_id=None,
new_requires=None)

Return a task to update the resource.

Subclasses should provide a handle_update() method to customise update, the base-class
handle_update will fail by default.

update_allowed_properties = ()

update_convergence(template_id, new_requires, engine_id, timeout, new_stack,
progress_callback=None)

Update the resource synchronously.

Persist the resources current_template_id to template_id and resources requires to list of
the required resource ids from the given resource_data and existing resources requires, then
updates the resource by invoking the scheduler TaskRunner.

update_policy_schema = {}

update_template_diff(after, before)
Returns the difference between the before and after json snippets.

If something has been removed in after which exists in before we set it to None.

858 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

update_template_diff_properties(after_props, before_props)
Return changed Properties between the before and after properties.

If any property having immutable as True is updated, raises NotSupported error. If any
properties have changed which are not in update_allowed_properties, raises UpdateReplace.

validate()
Validate the resource.

This may be overridden by resource plugins to add extra validation logic specific to the
resource implementation.

classmethod validate_deletion_policy(policy)

validate_external()

validate_template()
Validate structural/syntax aspects of the resource definition.

Resource plugins should not override this, because this interface is expected to be called
pre-create so things normally valid in an overridden validate() such as accessing properties
may not work.

heat.engine.rsrc_defn module

class heat.engine.rsrc_defn.ResourceDefinition(name, resource_type,
properties=None,
metadata=None, de-
pends=None, dele-
tion_policy=None,
update_policy=None,
description=None, ex-
ternal_id=None, condi-
tion=None)

Bases: object

A definition of a resource, independent of any template format.

DELETE = 'Delete'

DELETION_POLICIES = ('Delete', 'Retain', 'Snapshot')

class Diff(old_defn, new_defn)
Bases: object

A diff between two versions of the same resource definition.

metadata_changed()
Return True if the resource metadata has changed.

properties_changed()
Return True if the resource properties have changed.

update_policy_changed()
Return True if the resource update policy has changed.

RETAIN = 'Retain'

SNAPSHOT = 'Snapshot'

4.2. Source Code Index 859

Heat Documentation, Release 16.1.1.dev14

condition()
Return the name of the conditional inclusion rule, if any.

Returns None if the resource is included unconditionally.

deletion_policy()
Return the deletion policy for the resource.

The policy will be one of those listed in DELETION_POLICIES.

dep_attrs(resource_name, load_all=False)
Iterate over attributes of a given resource that this references.

Return an iterator over dependent attributes for specified resource_name in resources prop-
erties and metadata fields.

dependencies(stack)
Return the Resource objects in given stack on which this depends.

external_id()
Return the external resource id.

freeze(**overrides)
Return a frozen resource definition, with all functions resolved.

This return a new resource definition with fixed data (containing no intrinsic functions).
Named arguments passed to this method override the values passed as arguments to the
constructor.

metadata()
Return the resource metadata.

properties(schema, context=None)
Return a Properties object representing the resource properties.

The Properties object is constructed from the given schema, and may require a context to
validate constraints.

render_hot()
Return a HOT snippet for the resource definition.

reparse(stack, template)
Reinterpret the resource definition in the context of a new stack.

This returns a new resource definition, with all of the functions parsed in the context of the
specified stack and template.

Any conditions are not included - it is assumed that the resource is being interpreted in any
context that it should be enabled in that context.

required_resource_names()
Return a set of names of all resources on which this depends.

Note that this is done entirely in isolation from the rest of the template, so the re-
source names returned may refer to resources that dont actually exist, or would have
strict_dependency=False. Use the dependencies() method to get validated dependencies.

set_translation_rules(rules=None, client_resolve=True)
Helper method to update properties with translation rules.

860 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

update_policy(schema, context=None)
Return a Properties object representing the resource update policy.

The Properties object is constructed from the given schema, and may require a context to
validate constraints.

validate()
Validate intrinsic functions that appear in the definition.

heat.engine.scheduler module

class heat.engine.scheduler.DependencyTaskGroup(dependencies,
task=<function
Dependency-
TaskGroup.<lambda»,
reverse=False,
name=None, er-
ror_wait_time=None,
aggre-
gate_exceptions=False)

Bases: object

Task which manages group of subtasks that have ordering dependencies.

cancel_all(grace_period=None)

exception heat.engine.scheduler.ExceptionGroup(exceptions=None)
Bases: Exception

Container for multiple exceptions.

This exception is used by DependencyTaskGroup when the flag aggregate_exceptions is set to
True and its re-raised again when all tasks are finished. This way it can be caught later on so that
the individual exceptions can be acted upon.

class heat.engine.scheduler.TaskRunner(task, *args, **kwargs)
Bases: object

Wrapper for a resumable task (co-routine).

as_task(timeout=None, progress_callback=None)
Return a task that drives the TaskRunner.

cancel(grace_period=None)
Cancel the task and mark it as done.

done()
Return True if the task is complete.

run_to_completion(wait_time=1, progress_callback=None)
Run the task to completion.

The task will sleep for wait_time seconds between steps. To avoid sleeping, pass None for
wait_time.

start(timeout=None)
Initialise the task and run its first step.

4.2. Source Code Index 861

Heat Documentation, Release 16.1.1.dev14

If a timeout is specified, any attempt to step the task after that number of seconds has elapsed
will result in a Timeout being raised inside the task.

started()
Return True if the task has been started.

step()
Run another step of the task.

Return True if the task is complete; False otherwise.

exception heat.engine.scheduler.TimedCancel(task_runner, timeout)
Bases: heat.engine.scheduler.Timeout

trigger(generator)
Trigger the timeout on a given generator.

exception heat.engine.scheduler.Timeout(task_runner, timeout)
Bases: BaseException

Raised when task has exceeded its allotted (wallclock) running time.

This allows the task to perform any necessary cleanup, as well as use a different exception to
notify the controlling task if appropriate. If the task suppresses the exception altogether, it will be
cancelled but the controlling task will not be notified of the timeout.

earlier_than(other)

expired()

trigger(generator)
Trigger the timeout on a given generator.

heat.engine.scheduler.task_description(task)
Return a human-readable string description of a task.

The description is used to identify the task when logging its status.

heat.engine.scheduler.wrappertask(task)
Decorator for a task that needs to drive a subtask.

This is essentially a replacement for the Python 3-only yield from keyword (PEP 380), using the
yield keyword that is supported in Python 2. For example:

@wrappertask
def parent_task(self):

self.setup()

yield self.child_task()

self.cleanup()

862 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.service module

class heat.engine.service.EngineListener(host, engine_id,
thread_group_mgr)

Bases: object

Listen on an AMQP queue named for the engine.

Allows individual engines to communicate with each other for multi-engine support.

ACTIONS = ('stop_stack', 'send')

SEND = 'send'

STOP_STACK = 'stop_stack'

listening(ctxt)
Respond to a watchdog request.

Respond affirmatively to confirm that the engine performing the action is still alive.

send(ctxt, stack_identity, message)

start()

stop()

stop_stack(ctxt, stack_identity)
Stop any active threads on a stack.

class heat.engine.service.EngineService(host, topic)
Bases: oslo_service.service.ServiceBase

Manages the running instances from creation to destruction.

All the methods in here are called from the RPC backend. This is all done dynamically so if a call
is made via RPC that does not have a corresponding method here, an exception will be thrown
when it attempts to call into this class. Arguments to these methods are also dynamically added
and will be named as keyword arguments by the RPC caller.

RPC_API_VERSION = '1.36'

abandon_stack(cnxt, stack_identity, abandon=True)
Abandon a given stack.

Parameters

• cnxt RPC context.

• stack_identity Name of the stack you want to abandon.

• abandon Delete Heat stack but not physical resources.

authenticated_to_backend(cnxt)
Validate the credentials in the RPC context.

Verify that the credentials in the RPC context are valid for the current cloud backend.

check_software_deployment(cnxt, deployment_id, timeout)

4.2. Source Code Index 863

Heat Documentation, Release 16.1.1.dev14

count_stacks(cnxt, filters=None, tenant_safe=True, show_deleted=False,
show_nested=False, show_hidden=False, tags=None, tags_any=None,
not_tags=None, not_tags_any=None)

Return the number of stacks that match the given filters.

Parameters

• cnxt RPC context.

• filters a dict of ATTR:VALUE to match against stacks

• tenant_safe DEPRECATED, if true, scope the request by the current
tenant

• show_deleted if true, count will include the deleted stacks

• show_nested if true, count will include nested stacks

• show_hidden if true, count will include hidden stacks

• tags count stacks containing these tags. If multiple tags are passed, they
will be combined using the boolean AND expression

• tags_any count stacks containing these tags. If multiple tags are passed,
they will be combined using the boolean OR expression

• not_tags count stacks not containing these tags. If multiple tags are
passed, they will be combined using the boolean AND expression

• not_tags_any count stacks not containing these tags. If multiple tags
are passed, they will be combined using the boolean OR expression

Returns an integer representing the number of matched stacks

create_software_config(cnxt, group, name, config, inputs, outputs, options)

create_software_deployment(cnxt, server_id, config_id, input_values, action,
status, status_reason, stack_user_project_id, de-
ployment_id=None)

create_stack(cnxt, stack_name, template, params, files, args, environ-
ment_files=None, files_container=None, owner_id=None,
nested_depth=0, user_creds_id=None, stack_user_project_id=None,
parent_resource_name=None, template_id=None)

Create a new stack using the template provided.

Note that at this stage the template has already been fetched from the heat-api process if
using a template-url.

Parameters

• cnxt RPC context.

• stack_name Name of the stack you want to create.

• template Template of stack you want to create.

• params Stack Input Params

• files Files referenced from the template

• args Request parameters/args passed from API

864 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

• environment_files (list or None) optional ordered list of envi-
ronment file names included in the files dict

• files_container optional swift container name

• owner_id parent stack ID for nested stacks, only expected when called
from another heat-engine (not a user option)

• nested_depth the nested depth for nested stacks, only expected when
called from another heat-engine

• user_creds_id the parent user_creds record for nested stacks

• stack_user_project_id the parent stack_user_project_id for nested
stacks

• parent_resource_name the parent resource name

• template_id the ID of a pre-stored template in the DB

delete_snapshot(cnxt, stack_identity, snapshot_id)

delete_software_config(cnxt, config_id)

delete_software_deployment(cnxt, deployment_id)

delete_stack(cnxt, stack_identity)
Delete a given stack.

Parameters

• cnxt RPC context.

• stack_identity Name of the stack you want to delete.

describe_stack_resource(cnxt, stack_identity, resource_name, with_attr=None)

describe_stack_resources(cnxt, stack_identity, resource_name)

export_stack(cnxt, stack_identity)
Exports the stack data json.

Intended to be used to safely retrieve the stack data before performing the abandon action.

Parameters

• cnxt RPC context.

• stack_identity Name of the stack you want to export.

find_physical_resource(cnxt, physical_resource_id)
Return an identifier for the specified resource.

Parameters

• cnxt RPC context.

• physical_resource_id The physical resource ID to look up.

generate_template(cnxt, type_name, template_type=’cfn’)
Generate a template based on the specified type.

Parameters

• cnxt RPC context.

4.2. Source Code Index 865

Heat Documentation, Release 16.1.1.dev14

• type_name Name of the resource type to generate a template for.

• template_type the template type to generate, cfn or hot.

get_environment(cnxt, stack_identity)
Returns the environment for an existing stack.

Parameters

• cnxt RPC context

• stack_identity identifies the stack

Return type dict

get_files(cnxt, stack_identity)
Returns the files for an existing stack.

Parameters

• cnxt RPC context

• stack_identity identifies the stack

Return type dict

get_revision(cnxt)

get_template(cnxt, stack_identity)
Get the template.

Parameters

• cnxt RPC context.

• stack_identity Name of the stack you want to see.

identify_stack(cnxt, stack_name)
The full stack identifier for a single, live stack with stack_name.

Parameters

• cnxt RPC context.

• stack_name Name or UUID of the stack to look up.

list_events(cnxt, stack_identity, filters=None, limit=None, marker=None,
sort_keys=None, sort_dir=None, nested_depth=None)

Lists all events associated with a given stack.

It supports pagination (limit and marker), sorting (sort_keys and sort_dir) and
filtering(filters) of the results.

Parameters

• cnxt RPC context.

• stack_identity Name of the stack you want to get events for

• filters a dict with attribute:value to filter the list

• limit the number of events to list (integer or string)

• marker the ID of the last event in the previous page

• sort_keys an array of fields used to sort the list

866 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

• sort_dir the direction of the sort (asc or desc).

• nested_depth Levels of nested stacks to list events for.

list_outputs(cntx, stack_identity)
Get a list of stack outputs.

Parameters

• cntx RPC context.

• stack_identity Name of the stack you want to see.

Returns list of stack outputs in defined format.

list_resource_types(cnxt, support_status=None, type_name=None,
heat_version=None, with_description=False)

Get a list of supported resource types.

Parameters

• cnxt RPC context.

• support_status Support status of resource type

• type_name Resource types name (regular expression allowed)

• heat_version Heat version

• with_description Either return resource type description or not

list_services(cnxt)

list_software_configs(cnxt, limit=None, marker=None, tenant_safe=True)

list_software_deployments(cnxt, server_id)

list_stack_resources(cnxt, stack_identity, nested_depth=0, with_detail=False, fil-
ters=None)

list_stacks(cnxt, limit=None, marker=None, sort_keys=None, sort_dir=None, fil-
ters=None, tenant_safe=True, show_deleted=False, show_nested=False,
show_hidden=False, tags=None, tags_any=None, not_tags=None,
not_tags_any=None)

Returns attributes of all stacks.

It supports pagination (limit and marker), sorting (sort_keys and sort_dir) and
filtering (filters) of the results.

Parameters

• cnxt RPC context

• limit the number of stacks to list (integer or string)

• marker the ID of the last item in the previous page

• sort_keys an array of fields used to sort the list

• sort_dir the direction of the sort (asc or desc)

• filters a dict with attribute:value to filter the list

• tenant_safe DEPRECATED, if true, scope the request by the current
tenant

4.2. Source Code Index 867

Heat Documentation, Release 16.1.1.dev14

• show_deleted if true, show soft-deleted stacks

• show_nested if true, show nested stacks

• show_hidden if true, show hidden stacks

• tags show stacks containing these tags. If multiple tags are passed, they
will be combined using the boolean AND expression

• tags_any show stacks containing these tags. If multiple tags are passed,
they will be combined using the boolean OR expression

• not_tags show stacks not containing these tags. If multiple tags are
passed, they will be combined using the boolean AND expression

• not_tags_any show stacks not containing these tags. If multiple tags
are passed, they will be combined using the boolean OR expression

Returns a list of formatted stacks

list_template_functions(cnxt, template_version, with_condition=False)

list_template_versions(cnxt)

metadata_software_deployments(cnxt, server_id)

migrate_convergence_1(ctxt, stack_id)

preview_stack(cnxt, stack_name, template, params, files, args, environ-
ment_files=None, files_container=None)

Simulate a new stack using the provided template.

Note that at this stage the template has already been fetched from the heat-api process if
using a template-url.

Parameters

• cnxt RPC context.

• stack_name Name of the stack you want to create.

• template Template of stack you want to create.

• params Stack Input Params

• files Files referenced from the template

• args Request parameters/args passed from API

• environment_files (list or None) optional ordered list of envi-
ronment file names included in the files dict

• files_container optional swift container name

preview_update_stack(cnxt, stack_identity, template, params, files, args, environ-
ment_files=None, files_container=None)

Shows the resources that would be updated.

The preview_update_stack method shows the resources that would be changed with an up-
date to an existing stack based on the provided template and parameters. See update_stack
for description of parameters.

This method cannot guarantee that an update will have the actions specified because resource
plugins can influence changes/replacements at runtime.

868 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

Note that at this stage the template has already been fetched from the heat-api process if
using a template-url.

reset()
Reset service.

Called in case service running in daemon mode receives SIGHUP.

reset_stack_status()

resource_mark_unhealthy(cnxt, stack_identity, resource_name, mark_unhealthy,
resource_status_reason=None)

Mark the resource as healthy or unhealthy.

Put the resource in CHECK_FAILED state if mark_unhealthy is true. Put the re-
source in CHECK_COMPLETE if mark_unhealthy is false and the resource is in
CHECK_FAILED state. Otherwise, make no change.

Parameters

• resource_name either the logical name of the resource or the physical
resource ID.

• mark_unhealthy indicates whether the resource is unhealthy.

• resource_status_reason reason for health change.

resource_schema(cnxt, type_name, with_description=False)
Return the schema of the specified type.

Parameters

• cnxt RPC context.

• type_name Name of the resource type to obtain the schema of.

• with_description Return result with description or not.

resource_signal(cnxt, stack_identity, resource_name, details, sync_call=False)
Calls resources signal for the specified resource.

Parameters sync_call indicates whether a synchronized call behavior is ex-
pected. This is reserved for CFN WaitCondition implementation.

service_manage_cleanup()

service_manage_report()

show_output(cntx, stack_identity, output_key)
Returns dict with specified output key, value and description.

Parameters

• cntx RPC context.

• stack_identity Name of the stack you want to see.

• output_key key of desired stack output.

Returns dict with output key, value and description in defined format.

show_snapshot(cnxt, stack_identity, snapshot_id)

4.2. Source Code Index 869

Heat Documentation, Release 16.1.1.dev14

show_software_config(cnxt, config_id)

show_software_deployment(cnxt, deployment_id)

show_stack(cnxt, stack_identity, resolve_outputs=True)
Return detailed information about one or all stacks.

Parameters

• cnxt RPC context.

• stack_identity Name of the stack you want to show, or None to show
all

• resolve_outputs If True, outputs for given stack/stacks will be re-
solved

signal_software_deployment(cnxt, deployment_id, details, updated_at)

stack_cancel_update(cnxt, stack_identity, cancel_with_rollback=True)
Cancel currently running stack update.

Parameters

• cnxt RPC context.

• stack_identity Name of the stack for which to cancel update.

• cancel_with_rollback Force rollback when cancel update.

stack_check(cnxt, stack_identity)
Handle request to perform a check action on a stack.

stack_list_snapshots(cnxt, stack_identity)

stack_restore(cnxt, stack_identity, snapshot_id)

stack_resume(cnxt, stack_identity)
Handle request to perform a resume action on a stack.

stack_snapshot(cnxt, stack_identity, name)

stack_suspend(cnxt, stack_identity)
Handle request to perform suspend action on a stack.

start()
Start service.

stop()
Stop service.

update_software_deployment(cnxt, deployment_id, config_id, input_values, out-
put_values, action, status, status_reason, up-
dated_at)

update_stack(cnxt, stack_identity, template, params, files, args, environ-
ment_files=None, files_container=None, template_id=None)

Update an existing stack based on the provided template and params.

Note that at this stage the template has already been fetched from the heat-api process if
using a template-url.

Parameters

870 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

• cnxt RPC context.

• stack_identity Name of the stack you want to create.

• template Template of stack you want to create.

• params Stack Input Params

• files Files referenced from the template

• args Request parameters/args passed from API

• environment_files (list or None) optional ordered list of envi-
ronment file names included in the files dict

• files_container optional swift container name

• template_id the ID of a pre-stored template in the DB

validate_template(cnxt, template, params=None, files=None, environ-
ment_files=None, files_container=None, show_nested=False,
ignorable_errors=None)

Check the validity of a template.

Checks, so far as we can, that a template is valid, and returns information about the parame-
ters suitable for producing a user interface through which to specify the parameter values.

Parameters

• cnxt RPC context.

• template Template of stack you want to create.

• params Stack Input Params

• files Files referenced from the template

• environment_files (list or None) optional ordered list of envi-
ronment file names included in the files dict

• files_container optional swift container name

• show_nested if True, any nested templates will be checked

• ignorable_errors List of error_code to be ignored as part of valida-
tion

wait()
Wait for service to complete.

class heat.engine.service.NotifyEvent
Bases: object

signal()
Signal the event.

signalled()

wait()
Wait for the event.

class heat.engine.service.ThreadGroupManager
Bases: object

4.2. Source Code Index 871

Heat Documentation, Release 16.1.1.dev14

add_msg_queue(stack_id, msg_queue)

add_timer(stack_id, func, *args, **kwargs)
Define a periodic task in the stack threadgroups.

The task is run in a separate greenthread.

Periodicity is cfg.CONF.periodic_interval

remove_msg_queue(gt, stack_id, msg_queue)

send(stack_id, message)

start(stack_id, func, *args, **kwargs)
Run the given method in a sub-thread.

start_with_acquired_lock(stack, lock, func, *args, **kwargs)
Run the given method in a sub-thread with an existing stack lock.

Release the provided lock when the thread finishes.

Parameters

• stack (heat.engine.parser.Stack) Stack to be operated on

• lock (heat.engine.stack_lock.StackLock) The acquired
stack lock

• func (function or instancemethod) Callable to be invoked in
sub-thread

• args Args to be passed to func

• kwargs Keyword-args to be passed to func

start_with_lock(cnxt, stack, engine_id, func, *args, **kwargs)
Run the method in sub-thread after acquiring the stack lock.

Release the lock when the thread finishes.

Parameters

• cnxt RPC context

• stack (heat.engine.parser.Stack) Stack to be operated on

• engine_id The UUID of the engine/worker acquiring the lock

• func (function or instancemethod) Callable to be invoked in
sub-thread

• args Args to be passed to func

• kwargs Keyword-args to be passed to func.

stop(stack_id, graceful=False)
Stop any active threads on a stack.

stop_timers(stack_id)

872 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.service_software_config module

class heat.engine.service_software_config.SoftwareConfigService
Bases: object

check_software_deployment(cnxt, deployment_id, timeout)

create_software_config(cnxt, group, name, config, inputs, outputs, options)

create_software_deployment(cnxt, server_id, config_id, input_values, action,
status, status_reason, stack_user_project_id, de-
ployment_id=None)

delete_software_config(cnxt, config_id)

delete_software_deployment(cnxt, deployment_id)

list_software_configs(cnxt, limit=None, marker=None)

list_software_deployments(cnxt, server_id)

metadata_software_deployments(cnxt, server_id)

show_software_config(cnxt, config_id)

show_software_deployment(cnxt, deployment_id)

signal_software_deployment(cnxt, deployment_id, details, updated_at)

update_software_deployment(cnxt, deployment_id, config_id, input_values, out-
put_values, action, status, status_reason, up-
dated_at)

heat.engine.software_config_io module

APIs for dealing with input and output definitions for Software Configurations.

class heat.engine.software_config_io.IOConfig(**config)
Bases: object

Base class for the configuration data for a single input or output.

as_dict()
Return a dict representation suitable for persisting.

name()
Return the name of the input or output.

class heat.engine.software_config_io.InputConfig(value=<object ob-
ject>, **config)

Bases: heat.engine.software_config_io.IOConfig

Class representing the configuration data for a single input.

as_dict()
Return a dict representation suitable for persisting.

default()
Return the default value of the input.

4.2. Source Code Index 873

Heat Documentation, Release 16.1.1.dev14

input_data()
Return a name, value pair for the input.

replace_on_change()

schema = {'default': <heat.engine.properties.Schema object>, 'description': <heat.engine.properties.Schema object>, 'name': <heat.engine.properties.Schema object>, 'replace_on_change': <heat.engine.properties.Schema object>, 'type': <heat.engine.properties.Schema object>}

class heat.engine.software_config_io.OutputConfig(**config)
Bases: heat.engine.software_config_io.IOConfig

Class representing the configuration data for a single output.

error_output()
Return True if the presence of the output indicates an error.

schema = {'description': <heat.engine.properties.Schema object>, 'error_output': <heat.engine.properties.Schema object>, 'name': <heat.engine.properties.Schema object>, 'type': <heat.engine.properties.Schema object>}

heat.engine.software_config_io.check_io_schema_list(io_configs)
Check that an input or output schema list is of the correct type.

Raises TypeError if the list itself is not a list, or if any of the members are not dicts.

heat.engine.stack module

class heat.engine.stack.ConvergenceNode(rsrc_id, is_update)
Bases: tuple

is_update
Alias for field number 1

rsrc_id
Alias for field number 0

exception heat.engine.stack.ForcedCancel(with_rollback=True)
Bases: Exception

Exception raised to cancel task execution.

class heat.engine.stack.Stack(context, stack_name, tmpl, stack_id=None,
action=None, status=None, sta-
tus_reason=”, timeout_mins=None, dis-
able_rollback=True, parent_resource=None,
owner_id=None, adopt_stack_data=None,
stack_user_project_id=None, created_time=None,
updated_time=None, user_creds_id=None, ten-
ant_id=None, use_stored_context=False, user-
name=None, nested_depth=0, strict_validate=True,
convergence=False, current_traversal=None,
tags=None, prev_raw_template_id=None,
current_deps=None, cache_data=None,
deleted_time=None, converge=False, re-
fresh_cred=False)

Bases: collections.abc.Mapping

ACTIONS = ('CREATE', 'DELETE', 'UPDATE', 'ROLLBACK', 'SUSPEND', 'RESUME', 'ADOPT', 'SNAPSHOT', 'CHECK', 'RESTORE')

ADOPT = 'ADOPT'

CHECK = 'CHECK'

874 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

COMPLETE = 'COMPLETE'

CREATE = 'CREATE'

DELETE = 'DELETE'

FAILED = 'FAILED'

IN_PROGRESS = 'IN_PROGRESS'

RESTORE = 'RESTORE'

RESUME = 'RESUME'

ROLLBACK = 'ROLLBACK'

SNAPSHOT = 'SNAPSHOT'

STATUSES = ('IN_PROGRESS', 'FAILED', 'COMPLETE')

SUSPEND = 'SUSPEND'

UPDATE = 'UPDATE'

access_allowed(credential_id, resource_name)
Is credential_id authorised to access resource by resource_name.

add_resource(resource)
Insert the given resource into the stack.

adopt()
Adopt existing resources into a new stack.

check(notify=None)

converge_stack(template, action=’UPDATE’, new_stack=None,
pre_converge=None)

Update the stack template and trigger convergence for resources.

property convergence_dependencies

create(msg_queue=None)
Create the stack and all of the resources.

create_stack_user_project_id()

db_active_resources_get()

db_resource_get(name)

defer_state_persist()
Return whether to defer persisting the state.

If persistence is deferred, the new state will not be written to the database until the stack lock
is released (by calling persist_state_and_release_lock()). This prevents races in the legacy
path where an observer sees the stack COMPLETE but an engine still holds the lock.

delete(action=’DELETE’, backup=False, abandon=False, notify=None)
Delete all of the resources, and then the stack itself.

The action parameter is used to differentiate between a user initiated delete and an auto-
matic stack rollback after a failed create, which amount to the same thing, but the states are
recorded differently.

4.2. Source Code Index 875

Heat Documentation, Release 16.1.1.dev14

Note abandon is a delete where all resources have been set to a RETAIN deletion policy, but
we also dont want to delete anything required for those resources, e.g the stack_user_project.

delete_all_snapshots()
Remove all snapshots for this stack.

delete_snapshot(snapshot)
Remove a snapshot from the backends.

property dependencies

dependent_resource_ids(resource_id)
Return a set of resource IDs that are dependent on another.

Given a resource ID, return a set of all other resource IDs that are dependent on that one -
that is to say, those that must be cleaned up before the given resource is cleaned up.

dispatch_event(ev)

property env
The stack environment

get_availability_zones()

get_kwargs_for_cloning(keep_status=False, only_db=False, keep_tags=False)
Get common kwargs for calling Stack() for cloning.

The point of this method is to reduce the number of places that we need to update when
a kwarg to Stack.__init__() is modified. It is otherwise easy to forget an option and cause
some unexpected error if this option is lost.

Note:

• This doesnt return the args(name, template) but only the kwargs.

• We often want to start fresh so dont want to maintain the old status, action and sta-
tus_reason.

• We sometimes only want the DB attributes.

get_nested_parameters(filter_func)
Return nested parameters schema, if any.

This introspects the resources to return the parameters of the nested stacks. It uses the
get_nested_parameters_stack API to build the stack.

has_timed_out()
Returns True if this stack has timed-out.

identifier()
Return an identifier for this stack.

iter_resources(nested_depth=0, filters=None)
Iterates over all the resources in a stack.

Iterating includes nested stacks up to nested_depth levels below.

classmethod load(context, stack_id=None, stack=None, show_deleted=True,
use_stored_context=False, force_reload=False,
cache_data=None, load_template=True,
check_refresh_cred=False)

Retrieve a Stack from the database.

876 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

classmethod load_all(context, limit=None, marker=None, sort_keys=None,
sort_dir=None, filters=None, show_deleted=False,
show_nested=False, show_hidden=False, tags=None,
tags_any=None, not_tags=None, not_tags_any=None)

mark_complete()
Mark the convergence update as complete.

mark_failed(failure_reason)
Mark the convergence update as failed.

migrate_to_convergence()

object_path_in_stack()
Return stack resources and stacks in path from the root stack.

If this is not nested return (None, self), else return stack resources and stacks in path from
the root stack and including this stack.

Note that this is horribly inefficient, as it requires us to load every stack in the chain back to
the root in memory at the same time.

Returns a list of (stack_resource, stack) tuples.

property outputs

property parameters

property parent_resource
Dynamically load up the parent_resource.

Note: this should only be used by Fn::ResourceFacade

property parent_resource_name

path_in_stack()
Return tuples of names in path from the root stack.

If this is not nested return (None, self.name), else return tuples of names
(stack_resource.name, stack.name) in path from the root stack and including this stack.

Returns a list of (string, string) tuples.

persist_state_and_release_lock(engine_id)
Persist stack state to database and release stack lock

prepare_abandon()

preview_resources()
Preview the stack with all of the resources.

purge_db()
Cleanup database after stack has completed/failed.

1. Delete the resources from DB.

2. If the stack failed, update the current_traversal to empty string so that the resource
workers bail out.

3. Delete previous raw template if stack completes successfully.

4. Deletes all sync points. They are no longer needed after stack has completed/failed.

4.2. Source Code Index 877

Heat Documentation, Release 16.1.1.dev14

5. Delete the stack if the action is DELETE.

register_access_allowed_handler(credential_id, handler)
Register an authorization handler function.

Register a function which determines whether the credentials with a given ID can have access
to a named resource.

remove_resource(resource_name)
Remove the resource with the specified name.

requires_deferred_auth()
Determine whether to perform API requests with deferred auth.

Returns whether this stack may need to perform API requests during its lifecycle using the
configured deferred authentication method.

reset_dependencies()

reset_stack_and_resources_in_progress(reason)

resource_by_refid(refid)
Return the resource in this stack with the specified refid.

Returns resource in this stack with the specified refid, or None if not found.

resource_get(name)
Return a stack resource, even if not in the current template.

property resources

restore(snapshot, notify=None)
Restore the given snapshot.

Invokes handle_restore on all resources.

restore_data(snapshot)

resume(notify=None)
Resume the stack.

Invokes handle_resume for all stack resources.

Waits for all resources to become RESUME_COMPLETE then declares the stack RE-
SUME_COMPLETE. Note the default implementation for all resources is to do noth-
ing other than move to RESUME_COMPLETE, so the resources must implement han-
dle_resume for this to have any effect.

rollback()

root_stack_id()

set_parent_stack(parent_stack)

set_stack_user_project_id(project_id)

snapshot(save_snapshot_func)
Snapshot the stack, invoking handle_snapshot on all resources.

stack_task(action, reverse=False, post_func=None, aggregate_exceptions=False,
pre_completion_func=None, notify=None)

A task to perform an action on the stack.

878 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

All of the resources are traversed in forward or reverse dependency order.

Parameters

• action action that should be executed with stack resources

• reverse define if action on the resources need to be executed in reverse
dependency order

• post_func function that need to be executed after action complete on the
stack

• aggregate_exceptions define if exceptions should be aggregated

• pre_completion_func function that need to be executed right before
action completion; uses stack, action, status and reason as input parameters

property state
Returns state, tuple of action, status.

state_set(action, status, reason)
Update the stack state.

store(backup=False, exp_trvsl=None, ignore_traversal_check=False)
Store the stack in the database and return its ID.

If self.id is set, we update the existing stack.

stored_context()

supports_check_action()

suspend(notify=None)
Suspend the stack.

Invokes handle_suspend for all stack resources.

Waits for all resources to become SUSPEND_COMPLETE then declares the stack SUS-
PEND_COMPLETE. Note the default implementation for all resources is to do nothing other
than move to SUSPEND_COMPLETE, so the resources must implement handle_suspend
for this to have any effect.

property t
The stack template.

property tags

time_elapsed()
Time elapsed in seconds since the stack operation started.

time_remaining()
Time left before stack times out.

timeout_secs()
Return the stack action timeout in seconds.

total_resources(stack_id=None)
Return the total number of resources in a stack.

Includes nested stacks below.

update(newstack, msg_queue=None, notify=None)
Update the stack.

4.2. Source Code Index 879

Heat Documentation, Release 16.1.1.dev14

Compare the current stack with newstack, and where necessary create/update/delete the re-
sources until this stack aligns with newstack.

Note update of existing stack resources depends on update being implemented in the under-
lying resource types

Update will fail if it exceeds the specified timeout. The default is 60 minutes, set in the
constructor

update_task(newstack, action=’UPDATE’, msg_queue=None, notify=None)

validate(ignorable_errors=None, validate_res_tmpl_only=False)
Validates the stack.

property worker_client
Return a client for making engine RPC calls.

heat.engine.stack.reset_state_on_error(func)

heat.engine.stack_lock module

class heat.engine.stack_lock.StackLock(context, stack_id, engine_id)
Bases: object

acquire(retry=True)
Acquire a lock on the stack.

Parameters retry (boolean) When True, retry if lock was released while
stealing.

get_engine_id()
Return the ID of the engine which currently holds the lock.

Returns None if there is no lock held on the stack.

release()
Release a stack lock.

thread_lock(retry=True)
Acquire a lock and release it only if there is an exception.

The release method still needs to be scheduled to be run at the end of the thread using the
Thread.link method.

Parameters retry (boolean) When True, retry if lock was released while
stealing.

try_acquire()
Try to acquire a stack lock.

Dont raise an ActionInProgress exception or try to steal lock.

try_thread_lock()
Similar to thread_lock, but acquire the lock using try_acquire.

Only release it upon any exception after a successful acquisition.

880 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.status module

class heat.engine.status.ResourceStatus
Bases: object

ACTIONS = ('INIT', 'CREATE', 'DELETE', 'UPDATE', 'ROLLBACK', 'SUSPEND', 'RESUME', 'ADOPT', 'SNAPSHOT', 'CHECK')

ADOPT = 'ADOPT'

CHECK = 'CHECK'

COMPLETE = 'COMPLETE'

CREATE = 'CREATE'

DELETE = 'DELETE'

FAILED = 'FAILED'

INIT = 'INIT'

IN_PROGRESS = 'IN_PROGRESS'

RESUME = 'RESUME'

ROLLBACK = 'ROLLBACK'

SNAPSHOT = 'SNAPSHOT'

STATUSES = ('IN_PROGRESS', 'FAILED', 'COMPLETE')

SUSPEND = 'SUSPEND'

UPDATE = 'UPDATE'

heat.engine.stk_defn module

class heat.engine.stk_defn.ResourceProxy(name, definition, resource_data)
Bases: heat.engine.status.ResourceStatus

A lightweight API for essential data about a resource.

This is the interface through which template functions will access data about particular resources
in the stack definition, such as the resource definition and current values of reference IDs and
attributes.

Resource proxies for some or all resources in the stack will potentially be loaded for every check
resource operation, so it is essential that this API is implemented efficiently, using only the data
received over RPC and without reference to the resource data stored in the database.

This API can be considered stable by third-party Template or Function plugins, and no part of it
should be changed or removed without an appropriate deprecation process.

FnGetAtt(attr, *path)
For the intrinsic function get_attr.

FnGetAtts()
For the intrinsic function get_attr when getting all attributes.

Returns a dict of all of the resources attribute values, excluding the show attribute.

4.2. Source Code Index 881

Heat Documentation, Release 16.1.1.dev14

FnGetRefId()
For the intrinsic function get_resource.

property action
The current action of the resource.

property attributes_schema
A set of the valid top-level attribute names.

This is provided for backwards-compatibility for functions that require a container with all
of the valid attribute names in order to validate the template. Other operations on it are
invalid because we dont actually have access to the attributes schema here; hence we return
a set instead of a dict.

property external_id
The external ID of the resource.

name

property state
The current state (action, status) of the resource.

property status
The current status of the resource.

property t
The resource definition.

class heat.engine.stk_defn.StackDefinition(context, template,
stack_identifier, resource_data,
parent_info=None)

Bases: object

Class representing the definition of a Stack, but not its current state.

This is the interface through which template functions will access data about the stack definition,
including the template and current values of resource reference IDs and attributes.

This API can be considered stable by third-party Template or Function plugins, and no part of it
should be changed or removed without an appropriate deprecation process.

all_rsrc_names()
Return the set of names of all resources in the template.

This includes resources that are disabled due to false conditionals.

clone_with_new_template(new_template, stack_identifier,
clear_resource_data=False)

Create a new StackDefinition with a different template.

enabled_output_names()
Return the set of names of all enabled outputs in the template.

enabled_rsrc_names()
Return the set of names of all enabled resources in the template.

property env
The stacks environment.

get_availability_zones()
Return the list of Nova availability zones.

882 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

output_definition(output_name)
Return the definition of the given output.

property parent_resource
Return a proxy for the parent resource.

Returns None if the stack is not a provider stack for a TemplateResource.

resource_definition(resource_name)
Return the definition of the given resource.

property t
The stacks template.

heat.engine.stk_defn.add_resource(stack_definition, resource_definition)
Insert the given resource definition into the stack definition.

Add the resource to the template and store any temporary data.

heat.engine.stk_defn.remove_resource(stack_definition, resource_name)
Remove the named resource from the stack definition.

Remove the resource from the template and eliminate references to it.

heat.engine.stk_defn.update_resource_data(stack_definition, resource_name,
resource_data)

Store new resource state data for the specified resource.

This function enables the legacy (non-convergence) path to store updated NodeData as resources
are created/updated in a single StackDefinition that lasts for the entire lifetime of the stack opera-
tion.

heat.engine.support module

class heat.engine.support.SupportStatus(status=’SUPPORTED’, mes-
sage=None, version=None,
previous_status=None, substi-
tute_class=None)

Bases: object

is_substituted(substitute_class)

to_dict()

validate()

heat.engine.support.is_valid_status(status)

4.2. Source Code Index 883

Heat Documentation, Release 16.1.1.dev14

heat.engine.sync_point module

heat.engine.sync_point.create(context, entity_id, traversal_id, is_update,
stack_id)

Creates a sync point entry in DB.

heat.engine.sync_point.delete_all(context, stack_id, traversal_id)
Deletes all sync points of a stack associated with a traversal_id.

heat.engine.sync_point.deserialize_input_data(db_input_data)

heat.engine.sync_point.get(context, entity_id, traversal_id, is_update)
Retrieves a sync point entry from DB.

heat.engine.sync_point.make_key(*components)

heat.engine.sync_point.serialize_input_data(input_data)

heat.engine.sync_point.str_pack_tuple(t)

heat.engine.sync_point.sync(cnxt, entity_id, current_traversal, is_update, propa-
gate, predecessors, new_data)

heat.engine.sync_point.update_input_data(context, entity_id, cur-
rent_traversal, is_update,
atomic_key, input_data)

heat.engine.template module

class heat.engine.template.Template(template, *args, **kwargs)
Bases: collections.abc.Mapping

Abstract base class for template format plugins.

All template formats (both internal and third-party) should derive from Template and implement
the abstract functions to provide resource definitions and other data.

This is a stable third-party API. Do not add implementations that are specific to internal template
formats. Do not add new abstract methods.

add_output(definition)
Add an output to the template.

The output is passed as a OutputDefinition object.

abstract add_resource(definition, name=None)
Add a resource to the template.

The resource is passed as a ResourceDefinition object. If no name is specified, the name
from the ResourceDefinition should be used.

all_param_schemata(files)

condition_functions = {}

conditions(stack)
Return a dictionary of resolved conditions.

884 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

classmethod create_empty_template(version=(’heat_template_version’,
’2015-04-30’), from_template=None)

Create an empty template.

Creates a new empty template with given version. If version is not provided, a new empty
HOT template of version 2015-04-30 is returned.

Parameters version A tuple containing version header of the template version
key and value, e.g. ('heat_template_version', '2015-04-30')

Returns A new empty template.

property files

functions = {}

abstract get_section_name(section)
Get the name of a field within a resource or output definition.

Return the name of the given field (specified by the constants given in heat.engine.rsrc_defn
and heat.engine.output) in the template format. This is used in error reporting to help users
find the location of errors in the template.

Note that section here does not refer to a top-level section of the template (like parameters,
resources, &c.) as it does everywhere else.

classmethod load(context, template_id, t=None)
Retrieve a Template with the given ID from the database.

merge_snippets(other)

abstract outputs(stack)
Return a dictionary of OutputDefinition objects.

abstract param_schemata(param_defaults=None)
Return a dict of parameters.Schema objects for the parameters.

abstract parameters(stack_identifier, user_params, param_defaults=None)
Return a parameters.Parameters object for the stack.

parse(stack, snippet, path=”)

parse_condition(stack, snippet, path=”)

remove_all_resources()
Remove all the resources from the template.

remove_resource(name)
Remove a resource from the template.

abstract resource_definitions(stack)
Return a dictionary of ResourceDefinition objects.

store(context)
Store the Template in the database and return its ID.

validate()
Validate the template.

Validates the top-level sections of the template as well as syntax inside select sections. Some
sections are not checked here but in code parts that are responsible for working with the
respective sections (e.g. parameters are check by parameters schema class).

4.2. Source Code Index 885

Heat Documentation, Release 16.1.1.dev14

validate_resource_definitions(stack)
Check validity of resource definitions.

This method is deprecated. Subclasses should validate the resource definitions in the process
of generating them when calling resource_definitions(). However, for now this method is
still called in case any third-party plugins are relying on this for validation and need time to
migrate.

heat.engine.template_common module

class heat.engine.template_common.CommonTemplate(template, *args,
**kwargs)

Bases: heat.engine.template.Template

A class of the common implementation for HOT and CFN templates.

This is not a stable interface, and any third-parties who create derived classes from it do so at their
own risk.

conditions(stack)
Return a dictionary of resolved conditions.

outputs(stack)
Return a dictionary of OutputDefinition objects.

heat.engine.template_files module

class heat.engine.template_files.ReadOnlyDict
Bases: dict

class heat.engine.template_files.TemplateFiles(files)
Bases: collections.abc.Mapping

store(ctxt)

update(files)

heat.engine.template_files.get_files_from_container(cnxt,
files_container,
files=None)

heat.engine.timestamp module

class heat.engine.timestamp.Timestamp(db_fetch, attribute)
Bases: object

A descriptor for writing a timestamp to the database.

886 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.engine.translation module

class heat.engine.translation.Translation(properties=None)
Bases: object

Mechanism for translating one properties to other.

Mechanism allows to handle properties - update deprecated/hidden properties to new, resolve
values, remove unnecessary. It uses list of TranslationRule objects as rules for translation.

add(key, add_rule, prop_value=None, prop_data=None, validate=False)

cast_key_to_rule(key)

has_translation(key)

is_deleted(key)

is_replaced(key)

replace(key, replace_rule, prop_value=None, prop_data=None, validate=False)

set_rules(rules, client_resolve=True, ignore_resolve_error=False)

translate(key, prop_value=None, prop_data=None, validate=False)

class heat.engine.translation.TranslationRule(properties, rule, transla-
tion_path, value=None,
value_name=None,
value_path=None,
client_plugin=None,
finder=None, entity=None,
custom_value_path=None)

Bases: object

Translating mechanism one properties to another.

Mechanism uses list of rules, each defines by this class, and can be executed. Working principe:
during resource creating after properties defining resource take list of rules, specified by method
translation_rules, which should be overloaded for each resource, if its needed, and execute each
rule using translate_properties method. Next operations are allowed:

• ADD. This rule allows to add some value to list-type properties. Only list-type values
can be added to such properties. Using for other cases is prohibited and will be returned
with error.

• REPLACE. This rule allows to replace some property value to another. Used for all
types of properties. Note, that if property has list type, then value will be replaced for
all elements of list, where it needed. If element in such property must be replaced by
value of another element of this property, value_name must be defined.

• DELETE. This rule allows to delete some property. If property has list type, then
deleting affects value in all list elements.

• RESOLVE. This rule allows to resolve some property using client and the finder func-
tion. Finders may require an additional entity key.

ADD = 'Add'

DELETE = 'Delete'

4.2. Source Code Index 887

Heat Documentation, Release 16.1.1.dev14

REPLACE = 'Replace'

RESOLVE = 'Resolve'

RULE_KEYS = ('Add', 'Replace', 'Delete', 'Resolve')

get_value_absolute_path(full_value_name=False)

validate()

heat.engine.translation.get_value(path, props, validate=False)

heat.engine.translation.resolve_and_find(value, cplugin, finder, entity=None,
ignore_resolve_error=False)

heat.engine.update module

class heat.engine.update.StackUpdate(existing_stack, new_stack, previ-
ous_stack, rollback=False)

Bases: object

A Task to perform the update of an existing stack to a new template.

dependencies()
Return the Dependencies graph for the update.

Returns a Dependencies object representing the dependencies between update operations to
move from an existing stack definition to a new one.

preview()

heat.engine.worker module

class heat.engine.worker.WorkerService(host, topic, engine_id,
thread_group_mgr)

Bases: object

Service that has worker actor in convergence.

This service is dedicated to handle internal messages to the worker (a.k.a. converger) actor in
convergence. Messages on this bus will use the cast rather than call method to anycast the message
to an engine that will handle it asynchronously. It wont wait for or expect replies from these
messages.

RPC_API_VERSION = '1.4'

cancel_check_resource(cnxt, stack_id)
Cancel check_resource for given stack.

All the workers running for the given stack will be cancelled.

check_resource(cnxt, resource_id, current_traversal, data, is_update,
adopt_stack_data, converge=False)

Process a node in the dependency graph.

The node may be associated with either an update or a cleanup of its associated resource.

start()

stop()

888 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

stop_all_workers(stack)
Cancel all existing worker threads for the stack.

Threads will stop running at their next yield point, whether or not the resource operations
are complete.

stop_traversal(stack)
Update current traversal to stop workers from propagating.

Marks the stack as FAILED due to cancellation, but, allows all in_progress resources to
complete normally; no worker is stopped abruptly.

Any in-progress traversals are also stopped on all nested stacks that are descendants of the
one passed.

heat.engine.worker.log_exceptions(func)

Module contents

heat.objects package

Submodules

heat.objects.base module

Heat common internal object model

class heat.objects.base.HeatObject(context=None, **kwargs)
Bases: oslo_versionedobjects.base.VersionedObject

OBJ_PROJECT_NAMESPACE = 'heat'

VERSION = '1.0'

class heat.objects.base.HeatObjectRegistry(*args, **kwargs)
Bases: oslo_versionedobjects.base.VersionedObjectRegistry

heat.objects.event module

Event object.

class heat.objects.event.Event(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.base.
VersionedObjectDictCompat

classmethod count_all_by_stack(context, stack_id)

classmethod create(context, values)

fields = {'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'physical_resource_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'resource_action': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'resource_name': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'resource_status': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'resource_status_reason': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'resource_type': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'rsrc_prop_data_id': Object(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'stack_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all_by_stack(context, stack_id, **kwargs)

classmethod get_all_by_tenant(context, **kwargs)

identifier(stack_identifier)
Return a unique identifier for the event.

4.2. Source Code Index 889

Heat Documentation, Release 16.1.1.dev14

property resource_properties

heat.objects.fields module

class heat.objects.fields.Json
Bases: oslo_versionedobjects.fields.FieldType

coerce(obj, attr, value)
This is called to coerce (if possible) a value on assignment.

This method should convert the value given into the designated type, or throw an exception
if this is not possible.

Param:obj The VersionedObject on which an attribute is being set

Param:attr The name of the attribute being set

Param:value The value being set

Returns A properly-typed value

from_primitive(obj, attr, value)
This is called to deserialize a value.

This method should deserialize a value from the form given by to_primitive() to the desig-
nated type.

Param:obj The VersionedObject on which the value is to be set

Param:attr The name of the attribute which will hold the value

Param:value The serialized form of the value

Returns The natural form of the value

to_primitive(obj, attr, value)
This is called to serialize a value.

This method should serialize a value to the form expected by from_primitive().

Param:obj The VersionedObject on which the value is set

Param:attr The name of the attribute holding the value

Param:value The natural form of the value

Returns The serialized form of the value

class heat.objects.fields.JsonField(**kwargs)
Bases: oslo_versionedobjects.fields.AutoTypedField

AUTO_TYPE = <heat.objects.fields.Json object>

class heat.objects.fields.ListField(**kwargs)
Bases: oslo_versionedobjects.fields.AutoTypedField

AUTO_TYPE = <oslo_versionedobjects.fields.List object>

890 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.objects.raw_template module

RawTemplate object.

class heat.objects.raw_template.RawTemplate(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

VERSION = '1.1'

classmethod create(context, values)

classmethod delete(context, template_id)

classmethod encrypt_hidden_parameters(tmpl)

property environment

fields = {'environment': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'files': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'files_id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'template': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property files

property files_id

static from_db_object(context, tpl, db_tpl)

classmethod get_by_id(context, template_id)

property id

property template

classmethod update_by_id(context, template_id, values)

heat.objects.raw_template_files module

RawTemplateFiles object.

class heat.objects.raw_template_files.RawTemplateFiles(context=None,
**kwargs)

Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

VERSION = '1.0'

classmethod create(context, values)

fields = {'files': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

property files

property id

4.2. Source Code Index 891

Heat Documentation, Release 16.1.1.dev14

heat.objects.resource module

Resource object.

class heat.objects.resource.Resource(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

property attr_data

classmethod attr_data_delete(context, resource_id, attr_id)

convert_to_convergence(current_template_id, requires)

classmethod create(context, values)

classmethod delete(context, resource_id)

static encrypt_properties_data(data)

classmethod exchange_stacks(context, resource_id1, resource_id2)

fields = {'action': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'atomic_key': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'attr_data': Object(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'attr_data_id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'current_template_id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'data': List(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'engine_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'name': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'needed_by': List(default=None,nullable=True), 'physical_resource_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'replaced_by': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'replaces': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'requires': List(default=None,nullable=True), 'root_stack_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'rsrc_metadata': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'rsrc_prop_data_id': Object(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'stack_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'status': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'status_reason': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'uuid': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod get_all(context)

classmethod get_all_active_by_stack(context, stack_id)

classmethod get_all_by_physical_resource_id(context, physi-
cal_resource_id)

classmethod get_all_by_root_stack(context, stack_id, filters, cache=False)

classmethod get_all_by_stack(context, stack_id, filters=None)

classmethod get_all_stack_ids_by_root_stack(context, stack_id)

classmethod get_by_name_and_stack(context, resource_name, stack_id)

classmethod get_obj(context, resource_id, refresh=False, fields=None)

property properties_data

classmethod purge_deleted(context, stack_id)

refresh()

classmethod replacement(context, existing_res_id, new_res_values,
atomic_key=0, expected_engine_id=None)

select_and_update(values, expected_engine_id=None, atomic_key=0)

classmethod select_and_update_by_id(context, resource_id, values,
expected_engine_id=None,
atomic_key=0)

classmethod store_attributes(context, resource_id, atomic_key, attr_data,
attr_id)

update_and_save(values)

classmethod update_by_id(context, resource_id, values)

update_metadata(metadata)

892 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

class heat.objects.resource.ResourceCache
Bases: object

delete_all()

set_by_stack_id(resources)

heat.objects.resource.retry_on_conflict(func)

heat.objects.resource_data module

ResourceData object.

class heat.objects.resource_data.ResourceData(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

classmethod delete(resource, key)

fields = {'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'decrypt_method': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'key': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'redact': Boolean(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'resource_id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'value': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_all(resource, *args, **kwargs)

classmethod get_by_key(context, resource_id, key)

classmethod get_obj(resource, key)

classmethod get_val(resource, key)

classmethod set(resource, key, value, *args, **kwargs)

heat.objects.resource_properties_data module

ResourcePropertiesData object.

class heat.objects.resource_properties_data.ResourcePropertiesData(context=None,
**kwargs)

Bases: oslo_versionedobjects.base.VersionedObject,
oslo_versionedobjects.base.VersionedObjectDictCompat,
oslo_versionedobjects.base.ComparableVersionedObject

classmethod create(context, data)

classmethod create_or_update(context, data, rpd_id=None)

static encrypt_properties_data(data)

fields = {'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'data': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

static get_by_id(context, id)

4.2. Source Code Index 893

Heat Documentation, Release 16.1.1.dev14

heat.objects.service module

Service object.

class heat.objects.service.Service(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

classmethod active_service_count(context)
Return the number of services reportedly active.

classmethod create(context, values)

classmethod delete(context, service_id, soft_delete=True)

fields = {'binary': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'deleted_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'engine_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'host': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'hostname': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'report_interval': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'topic': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_all(context)

classmethod get_all_by_args(context, host, binary, hostname)

classmethod get_by_id(context, service_id)

classmethod update_by_id(context, service_id, values)

heat.objects.snapshot module

Snapshot object.

class heat.objects.snapshot.Snapshot(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

classmethod create(context, values)

classmethod delete(context, snapshot_id)

fields = {'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'data': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'name': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'stack_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'status': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'status_reason': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'tenant': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_all(context, stack_id)

classmethod get_snapshot_by_stack(context, snapshot_id, stack)

classmethod update(context, snapshot_id, values)

heat.objects.software_config module

SoftwareConfig object.

class heat.objects.software_config.SoftwareConfig(context=None,
**kwargs)

Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

classmethod create(context, values)

894 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

classmethod delete(context, config_id)

fields = {'config': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'group': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'name': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'tenant': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_all(context, **kwargs)

classmethod get_by_id(context, config_id)

heat.objects.software_deployment module

SoftwareDeployment object.

class heat.objects.software_deployment.SoftwareDeployment(context=None,
**kwargs)

Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

classmethod create(context, values)

classmethod delete(context, deployment_id)

fields = {'action': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'config': Object(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'config_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'input_values': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'output_values': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'server_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'stack_user_project_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'status': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'status_reason': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'tenant': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_all(context, server_id=None)

classmethod get_by_id(context, deployment_id)

classmethod update_by_id(context, deployment_id, values)
Note this is a bit unusual as it returns the object.

Other update_by_id methods return a bool (was it updated).

heat.objects.stack module

Stack object.

class heat.objects.stack.Stack(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

classmethod count_all(context, **kwargs)

classmethod count_total_resources(context, stack_id)

classmethod create(context, values)

classmethod delete(context, stack_id)

classmethod encrypt_hidden_parameters(tmpl)

fields = {'action': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'backup': Boolean(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'convergence': Boolean(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'current_deps': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'current_traversal': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'deleted_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'disable_rollback': Boolean(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'name': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'nested_depth': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'owner_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'parent_resource_name': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'prev_raw_template': Object(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'prev_raw_template_id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'raw_template_id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'raw_template_obj': Object(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'stack_user_project_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'status': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'status_reason': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'tenant': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'timeout': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'user_creds_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'username': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_all(context, limit=None, sort_keys=None, marker=None,
sort_dir=None, filters=None, show_deleted=False,
show_nested=False, show_hidden=False, tags=None,
tags_any=None, not_tags=None, not_tags_any=None,
eager_load=False)

4.2. Source Code Index 895

Heat Documentation, Release 16.1.1.dev14

classmethod get_all_by_owner_id(context, owner_id)

classmethod get_all_by_root_owner_id(context, root_owner_id)

classmethod get_by_id(context, stack_id, **kwargs)

classmethod get_by_name(context, stack_name)

classmethod get_by_name_and_owner_id(context, stack_name, owner_id)

classmethod get_root_id(context, stack_id)

classmethod get_status(context, stack_id)
Return action and status for the given stack.

identifier()
Return an identifier for this stack.

classmethod persist_state_and_release_lock(context, stack_id, en-
gine_id, values)

property raw_template

refresh()

classmethod select_and_update(context, stack_id, values, exp_trvsl=None)
Update the stack by selecting on traversal ID.

Uses UPDATE WHERE (compare and swap) to catch any concurrent update problem.

If the stack is found with given traversal, it is updated.

If there occurs a race while updating, only one will succeed and other will get return value
of False.

property tags

update_and_save(values)

classmethod update_by_id(context, stack_id, values)
Update and return (boolean) if it was updated.

Note: the underlying stack_update filters by current_traversal and stack_id.

heat.objects.stack_lock module

StackLock object.

class heat.objects.stack_lock.StackLock(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

classmethod create(context, stack_id, engine_id)

fields = {'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'engine_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'stack_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_engine_id(context, stack_id)

classmethod release(context, stack_id, engine_id)

classmethod steal(context, stack_id, old_engine_id, new_engine_id)

896 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.objects.stack_tag module

StackTag object.

class heat.objects.stack_tag.StackTag(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

fields = {'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'id': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'stack_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'tag': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_obj(context, tag)

class heat.objects.stack_tag.StackTagList(*args, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.base.
ObjectListBase

classmethod delete(context, stack_id)

fields = {'objects': List(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False)}

classmethod from_db_object(context, db_tags)

classmethod get(context, stack_id)

classmethod set(context, stack_id, tags)

heat.objects.sync_point module

SyncPoint object.

class heat.objects.sync_point.SyncPoint(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

classmethod create(context, values)

classmethod delete_all_by_stack_and_traversal(context, stack_id,
traversal_id)

fields = {'atomic_key': Integer(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'entity_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'input_data': Json(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'is_update': Boolean(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'stack_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'traversal_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_key(context, entity_id, traversal_id, is_update)

classmethod update_input_data(context, entity_id, traversal_id, is_update,
atomic_key, input_data)

4.2. Source Code Index 897

Heat Documentation, Release 16.1.1.dev14

heat.objects.user_creds module

UserCreds object.

class heat.objects.user_creds.UserCreds(context=None, **kwargs)
Bases: heat.objects.base.HeatObject, oslo_versionedobjects.
base.VersionedObjectDictCompat, oslo_versionedobjects.base.
ComparableVersionedObject

property auth_url

classmethod create(context)

property created_at

property decrypt_method

classmethod delete(context, user_creds_id)

fields = {'auth_url': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'created_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'decrypt_method': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=False), 'password': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'region_name': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'tenant': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'tenant_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'trust_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'trustor_user_id': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'updated_at': DateTime(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True), 'username': String(default=<class 'oslo_versionedobjects.fields.UnspecifiedDefault'>,nullable=True)}

classmethod get_by_id(context, user_creds_id)

property id

property password

property region_name

property tenant

property tenant_id

property trust_id

property trustor_user_id

property updated_at

property username

Module contents

heat.policies package

Submodules

heat.policies.actions module

heat.policies.actions.list_rules()

898 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.policies.base module

heat.policies.base.list_rules()

heat.policies.build_info module

heat.policies.build_info.list_rules()

heat.policies.cloudformation module

heat.policies.cloudformation.list_rules()

heat.policies.events module

heat.policies.events.list_rules()

heat.policies.resource module

heat.policies.resource.list_rules()

heat.policies.resource_types module

heat.policies.resource_types.list_rules()

heat.policies.service module

heat.policies.service.list_rules()

heat.policies.software_configs module

heat.policies.software_configs.list_rules()

heat.policies.software_deployments module

heat.policies.software_deployments.list_rules()

4.2. Source Code Index 899

Heat Documentation, Release 16.1.1.dev14

heat.policies.stacks module

heat.policies.stacks.list_rules()

Module contents

heat.policies.list_rules()

heat.rpc package

Submodules

heat.rpc.api module

heat.rpc.client module

Client side of the heat engine RPC API.

class heat.rpc.client.EngineClient
Bases: object

Client side of the heat engine rpc API.

API version history:

1.0 - Initial version.
1.1 - Add support_status argument to list_resource_types()
1.4 - Add support for service list
1.9 - Add template_type option to generate_template()
1.10 - Add support for software config list
1.11 - Add support for template versions list
1.12 - Add with_detail option for stack resources list
1.13 - Add support for template functions list
1.14 - Add cancel_with_rollback option to stack_cancel_update
1.15 - Add preview_update_stack() call
1.16 - Adds version, type_name to list_resource_types()
1.17 - Add files to validate_template
1.18 - Add show_nested to validate_template
1.19 - Add show_output and list_outputs for returning stack outputs
1.20 - Add resolve_outputs to stack show
1.21 - Add deployment_id to create_software_deployment
1.22 - Add support for stack export
1.23 - Add environment_files to create/update/preview/validate
1.24 - Adds ignorable_errors to validate_template
1.25 - list_stack_resource filter update
1.26 - Add mark_unhealthy
1.27 - Add check_software_deployment
1.28 - Add get_environment call
1.29 - Add template_id to create_stack/update_stack
1.30 - Add possibility to resource_type_* return descriptions
1.31 - Add nested_depth to list_events, when nested_depth is specified

add root_stack_id to response

(continues on next page)

900 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

(continued from previous page)

1.32 - Add get_files call
1.33 - Remove tenant_safe from list_stacks, count_stacks

and list_software_configs
1.34 - Add migrate_convergence_1 call
1.35 - Add with_condition to list_template_functions
1.36 - Add files_container to create/update/preview/validate

BASE_RPC_API_VERSION = '1.0'

abandon_stack(ctxt, stack_identity)
Deletes a given stack but resources would not be deleted.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack you want to abandon.

authenticated_to_backend(ctxt)
Validate the credentials in the RPC context.

Verify that the credentials in the RPC context are valid for the current cloud backend.

Parameters ctxt RPC context.

call(ctxt, msg, version=None, timeout=None)

cast(ctxt, msg, version=None)

check_software_deployment(cnxt, deployment_id, timeout)

count_stacks(ctxt, filters=None, show_deleted=False, show_nested=False,
show_hidden=False, tags=None, tags_any=None, not_tags=None,
not_tags_any=None)

Returns the number of stacks that match the given filters.

Parameters

• ctxt RPC context.

• filters a dict of ATTR:VALUE to match against stacks

• show_deleted if true, count will include the deleted stacks

• show_nested if true, count will include nested stacks

• show_hidden if true, count will include hidden stacks

• tags count stacks containing these tags. If multiple tags are passed, they
will be combined using the boolean AND expression

• tags_any count stacks containing these tags. If multiple tags are passed,
they will be combined using the boolean OR expression

• not_tags count stacks not containing these tags. If multiple tags are
passed, they will be combined using the boolean AND expression

• not_tags_any count stacks not containing these tags. If multiple tags
are passed, they will be combined using the boolean OR expression

Returns an integer representing the number of matched stacks

4.2. Source Code Index 901

Heat Documentation, Release 16.1.1.dev14

create_software_config(cnxt, group, name, config, inputs=None, outputs=None,
options=None)

create_software_deployment(cnxt, server_id, config_id=None, in-
put_values=None, action=’INIT’, sta-
tus=’COMPLETE’, status_reason=”,
stack_user_project_id=None, deploy-
ment_id=None)

create_stack(ctxt, stack_name, template, params, files, args, environment_files=None,
files_container=None)

Creates a new stack using the template provided.

Note that at this stage the template has already been fetched from the heat-api process if
using a template-url.

Parameters

• ctxt RPC context.

• stack_name Name of the stack you want to create.

• template Template of stack you want to create.

• params Stack Input Params/Environment

• files files referenced from the environment.

• args Request parameters/args passed from API

• environment_files (list or None) optional ordered list of envi-
ronment file names included in the files dict

• files_container name of swift container

delete_snapshot(cnxt, stack_identity, snapshot_id)

delete_software_config(cnxt, config_id)

delete_software_deployment(cnxt, deployment_id)

delete_stack(ctxt, stack_identity, cast=False)
Deletes a given stack.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack you want to delete.

• cast cast the message instead of using call (default: False)

You probably never want to use cast(). If you do, youll never hear about any exceptions the
call might raise.

describe_stack_resource(ctxt, stack_identity, resource_name, with_attr=False)
Get detailed resource information about a particular resource.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack.

• resource_name the Resource.

902 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

describe_stack_resources(ctxt, stack_identity, resource_name)
Get detailed resource information about one or more resources.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack.

• resource_name the Resource.

export_stack(ctxt, stack_identity)
Exports the stack data in JSON format.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack you want to export.

find_physical_resource(ctxt, physical_resource_id)
Return an identifier for the resource.

Parameters

• ctxt RPC context.

• physcial_resource_id The physical resource ID to look up.

generate_template(ctxt, type_name, template_type=’cfn’)
Generate a template based on the specified type.

Parameters

• ctxt RPC context.

• type_name The resource type name to generate a template for.

• template_type the template type to generate, cfn or hot.

get_environment(context, stack_identity)
Returns the environment for an existing stack.

Parameters

• context RPC context

• stack_identity identifies the stack

Return type dict

get_files(context, stack_identity)
Returns the files for an existing stack.

Parameters

• context RPC context

• stack_identity identifies the stack

Return type dict

get_revision(ctxt)

get_template(ctxt, stack_identity)
Get the template.

4.2. Source Code Index 903

Heat Documentation, Release 16.1.1.dev14

Parameters

• ctxt RPC context.

• stack_name Name of the stack you want to see.

identify_stack(ctxt, stack_name)
Returns the full stack identifier for a single, live stack.

Parameters

• ctxt RPC context.

• stack_name Name of the stack you want to see, or None to see all

ignore_error_by_name(name)
Returns a context manager that filters exceptions with a given name.

Parameters name Name to compare the local exception name to.

ignore_error_named(error, name)
Raises the error unless its local name matches the supplied name.

Parameters

• error Remote raised error to derive the local name from.

• name Name to compare local name to.

list_events(ctxt, stack_identity, filters=None, limit=None, marker=None,
sort_keys=None, sort_dir=None, nested_depth=None)

Lists all events associated with a given stack.

It supports pagination (limit and marker), sorting (sort_keys and sort_dir) and
filtering(filters) of the results.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack you want to get events for

• filters a dict with attribute:value to filter the list

• limit the number of events to list (integer or string)

• marker the ID of the last event in the previous page

• sort_keys an array of fields used to sort the list

• sort_dir the direction of the sort (asc or desc).

• nested_depth Levels of nested stacks to list events for.

list_outputs(cntx, stack_identity)

list_resource_types(ctxt, support_status=None, type_name=None,
heat_version=None, with_description=False)

Get a list of valid resource types.

Parameters

• ctxt RPC context.

• support_status Support status of resource type

904 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

• type_name Resource types name (regular expression allowed)

• heat_version Heat version

• with_description Either return resource type description or not

list_services(cnxt)

list_software_configs(cnxt, limit=None, marker=None)

list_software_deployments(cnxt, server_id=None)

list_stack_resources(ctxt, stack_identity, nested_depth=0, with_detail=False, fil-
ters=None)

List the resources belonging to a stack.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack.

• nested_depth Levels of nested stacks of which list resources.

• with_detail show detail for resources in list.

• filters a dict with attribute:value to search the resources

list_stacks(ctxt, limit=None, marker=None, sort_keys=None, sort_dir=None,
filters=None, show_deleted=False, show_nested=False,
show_hidden=False, tags=None, tags_any=None, not_tags=None,
not_tags_any=None)

Returns attributes of all stacks.

It supports pagination (limit and marker), sorting (sort_keys and sort_dir) and
filtering (filters) of the results.

Parameters

• ctxt RPC context.

• limit the number of stacks to list (integer or string)

• marker the ID of the last item in the previous page

• sort_keys an array of fields used to sort the list

• sort_dir the direction of the sort (asc or desc)

• filters a dict with attribute:value to filter the list

• show_deleted if true, show soft-deleted stacks

• show_nested if true, show nested stacks

• show_hidden if true, show hidden stacks

• tags show stacks containing these tags. If multiple tags are passed, they
will be combined using the boolean AND expression

• tags_any show stacks containing these tags. If multiple tags are passed,
they will be combined using the boolean OR expression

• not_tags show stacks not containing these tags. If multiple tags are
passed, they will be combined using the boolean AND expression

4.2. Source Code Index 905

Heat Documentation, Release 16.1.1.dev14

• not_tags_any show stacks not containing these tags. If multiple tags
are passed, they will be combined using the boolean OR expression

Returns a list of stacks

list_template_functions(ctxt, template_version, with_condition=False)
Get a list of available functions in a given template type.

Parameters

• ctxt RPC context

• template_version template format/version tuple for which you want
to get the list of functions.

• with_condition return includes condition functions.

list_template_versions(ctxt)
Get a list of available template versions.

Parameters ctxt RPC context.

local_error_name(error)
Returns the name of the error with any _Remote postfix removed.

Parameters error Remote raised error to derive the name from.

static make_msg(method, **kwargs)

metadata_software_deployments(cnxt, server_id)

migrate_convergence_1(ctxt, stack_id)
Migrate the stack to convergence engine

Parameters

• ctxt RPC context

• stack_name Name of the stack you want to migrate

preview_stack(ctxt, stack_name, template, params, files, args, environ-
ment_files=None, files_container=None)

Simulates a new stack using the provided template.

Note that at this stage the template has already been fetched from the heat-api process if
using a template-url.

Parameters

• ctxt RPC context.

• stack_name Name of the stack you want to create.

• template Template of stack you want to create.

• params Stack Input Params/Environment

• files files referenced from the environment.

• args Request parameters/args passed from API

• environment_files (list or None) optional ordered list of envi-
ronment file names included in the files dict

• files_container name of swift container

906 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

preview_update_stack(ctxt, stack_identity, template, params, files, args, environ-
ment_files=None, files_container=None)

Returns the resources that would be changed in an update.

Based on the provided template and parameters.

Requires RPC version 1.15 or above.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack you wish to update.

• template New template for the stack.

• params Stack Input Params/Environment

• files files referenced from the environment.

• args Request parameters/args passed from API

• environment_files (list or None) optional ordered list of envi-
ronment file names included in the files dict

• files_container name of swift container

resource_mark_unhealthy(ctxt, stack_identity, resource_name, mark_unhealthy,
resource_status_reason=None)

Mark the resource as unhealthy or healthy.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack.

• resource_name the Resource.

• mark_unhealthy indicates whether the resource is unhealthy.

• resource_status_reason reason for health change.

resource_schema(ctxt, type_name, with_description=False)
Get the schema for a resource type.

Parameters

• ctxt RPC context.

• with_description Return resource with description or not.

resource_signal(ctxt, stack_identity, resource_name, details, sync_call=False)
Generate an alarm on the resource.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack.

• resource_name the Resource.

• details the details of the signal.

show_output(cntx, stack_identity, output_key)

4.2. Source Code Index 907

Heat Documentation, Release 16.1.1.dev14

show_snapshot(cnxt, stack_identity, snapshot_id)

show_software_config(cnxt, config_id)

show_software_deployment(cnxt, deployment_id)

show_stack(ctxt, stack_identity, resolve_outputs=True)
Returns detailed information about one or all stacks.

Parameters

• ctxt RPC context.

• stack_identity Name of the stack you want to show, or None to show
all

• resolve_outputs If True, stack outputs will be resolved

signal_software_deployment(cnxt, deployment_id, details, updated_at=None)

stack_cancel_update(ctxt, stack_identity, cancel_with_rollback=True)

stack_check(ctxt, stack_identity)

stack_list_snapshots(cnxt, stack_identity)

stack_restore(cnxt, stack_identity, snapshot_id)

stack_resume(ctxt, stack_identity)

stack_snapshot(ctxt, stack_identity, name)

stack_suspend(ctxt, stack_identity)

update_software_deployment(cnxt, deployment_id, config_id=None, in-
put_values=None, output_values=None, ac-
tion=None, status=None, status_reason=None,
updated_at=None)

update_stack(ctxt, stack_identity, template, params, files, args, environ-
ment_files=None, files_container=None)

Updates an existing stack based on the provided template and params.

Note that at this stage the template has already been fetched from the heat-api process if
using a template-url.

Parameters

• ctxt RPC context.

• stack_name Name of the stack you want to create.

• template Template of stack you want to create.

• params Stack Input Params/Environment

• files files referenced from the environment.

• args Request parameters/args passed from API

• environment_files (list or None) optional ordered list of envi-
ronment file names included in the files dict

• files_container name of swift container

908 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

validate_template(ctxt, template, params=None, files=None, environ-
ment_files=None, files_container=None, show_nested=False,
ignorable_errors=None)

Uses the stack parser to check the validity of a template.

Parameters

• ctxt RPC context.

• template Template of stack you want to create.

• params Stack Input Params/Environment

• files files referenced from the environment/template.

• environment_files ordered list of environment file names included
in the files dict

• files_container name of swift container

• show_nested if True nested templates will be validated

• ignorable_errors List of error_code to be ignored as part of valida-
tion

heat.rpc.listener_client module

Client side of the heat worker RPC API.

class heat.rpc.listener_client.EngineListenerClient(engine_id)
Bases: object

Client side of the heat listener RPC API.

API version history:

1.0 - Initial version.

BASE_RPC_API_VERSION = '1.0'

is_alive(ctxt)

heat.rpc.worker_api module

heat.rpc.worker_client module

Client side of the heat worker RPC API.

class heat.rpc.worker_client.WorkerClient
Bases: object

Client side of the heat worker RPC API.

API version history:

4.2. Source Code Index 909

Heat Documentation, Release 16.1.1.dev14

1.0 - Initial version.
1.1 - Added check_resource.
1.2 - Add adopt data argument to check_resource.
1.3 - Added cancel_check_resource API.
1.4 - Add converge argument to check_resource

BASE_RPC_API_VERSION = '1.0'

cancel_check_resource(ctxt, stack_id, engine_id)
Send check-resource cancel message.

Sends a cancel message to given heat engine worker.

cast(ctxt, msg, version=None)

check_resource(ctxt, resource_id, current_traversal, data, is_update,
adopt_stack_data, converge=False)

static make_msg(method, **kwargs)

Module contents

heat.scaling package

Submodules

heat.scaling.cooldown module

class heat.scaling.cooldown.CooldownMixin
Bases: object

Utility class to encapsulate Cooldown related logic.

This logic includes both cooldown timestamp comparing and scaling in progress checking.

handle_metadata_reset()

heat.scaling.lbutils module

heat.scaling.lbutils.reconfigure_loadbalancers(load_balancers, id_list)
Notify the LoadBalancer to reload its config.

This must be done after activation (instance in ACTIVE state), otherwise the instances IP ad-
dresses may not be available.

910 Chapter 4. Developing Heat

Heat Documentation, Release 16.1.1.dev14

heat.scaling.rolling_update module

heat.scaling.rolling_update.needs_update(targ_capacity, curr_capacity,
num_up_to_date)

Return whether there are more batch updates to do.

Inputs are the target size for the group, the current size of the group, and the number of members
that already have the latest definition.

heat.scaling.rolling_update.next_batch(targ_capacity, curr_capacity,
num_up_to_date, batch_size,
min_in_service)

Return details of the next batch in a batched update.

The result is a tuple containing the new size of the group and the number of members that may
receive the new definition (by a combination of creating new members and updating existing
ones).

Inputs are the target size for the group, the current size of the group, the number of members that
already have the latest definition, the batch size, and the minimum number of members to keep in
service during a rolling update.

heat.scaling.scalingutil module

heat.scaling.scalingutil.calculate_new_capacity(current, adjustment,
adjustment_type,
min_adjustment_step,
minimum, maximum)

Calculates new capacity from the given adjustments.

Given the current capacity, calculates the new capacity which results from applying the given
adjustment of the given adjustment-type. The new capacity will be kept within the maximum and
minimum bounds.

heat.scaling.template module

heat.scaling.template.make_template(resource_definitions, ver-
sion=(’heat_template_version’, ’2015-
04-30’), child_env=None)

Return a Template object containing the given resource definitions.

By default, the template will be in the HOT format. A different format can be specified by passing
a (version_type, version_string) tuple matching any of the available template format plugins.

heat.scaling.template.member_definitions(old_resources, new_definition,
num_resources, num_new,
get_new_id, customise=<function
_identity>)

Iterate over resource definitions for a scaling group

Generates the definitions for the next change to the scaling group. Each item is a (name, definition)
tuple.

The input is a list of (name, definition) tuples for existing resources in the group, sorted in the order
that they should be replaced or removed (i.e. the resource that should be the first to be replaced

4.2. Source Code Index 911

Heat Documentation, Release 16.1.1.dev14

(on update) or removed (on scale down) appears at the beginning of the list.) New resources are
added or old resources removed as necessary to ensure a total of num_resources.

The number of resources to have their definition changed to the new one is controlled by num_new.
This value includes any new resources to be added, with any shortfall made up by modifying the
definitions of existing resources.

Module contents

Module contents

912 Chapter 4. Developing Heat

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

913

	Heat’s purpose and vision
	Operating Heat
	Installing Heat
	Orchestration service overview
	Install and configure
	Install and configure for openSUSE and SUSE Linux Enterprise
	Install and configure for Red Hat Enterprise Linux and CentOS
	Install and configure for Ubuntu
	Install and configure for Debian

	Verify operation
	Launch an instance
	Create a template
	Create a stack

	Next steps

	Running Heat API services in HTTP Server
	mod-wsgi
	uwsgi
	mod_proxy_uwsgi

	Configuring Heat
	Configuration options for the Orchestration service
	DEFAULT
	auth_password
	clients
	clients_aodh
	clients_barbican
	clients_cinder
	clients_designate
	clients_glance
	clients_heat
	clients_keystone
	clients_magnum
	clients_manila
	clients_mistral
	clients_monasca
	clients_neutron
	clients_nova
	clients_octavia
	clients_sahara
	clients_senlin
	clients_swift
	clients_trove
	clients_vitrage
	clients_zaqar
	cors
	database
	ec2authtoken
	eventlet_opts
	healthcheck
	heat_api
	heat_api_cfn
	heat_api_cloudwatch
	keystone_authtoken
	noauth
	oslo_messaging_amqp
	oslo_messaging_kafka
	oslo_messaging_notifications
	oslo_messaging_rabbit
	oslo_middleware
	oslo_policy
	paste_deploy
	profiler
	revision
	ssl
	trustee
	volumes

	Heat Configuration Sample
	Orchestration log files
	Heat Sample Policy

	Administering Heat
	Introduction
	Orchestration authorization model
	Password authorization
	OpenStack Identity trusts authorization
	Authorization model configuration

	Stack domain users
	Stack domain users configuration
	Usage workflow

	Scaling a Deployment
	Assumptions
	Architecture
	Basic Architecture
	Load Balancing
	Target Architecture

	Deploying Multiple APIs
	Deploying Multiple Engines
	Deploying the Proxy
	Sample
	Architecture
	Running the API and Engine Services
	Setting Up HAProxy

	Upgrades Guideline
	Plan to upgrade
	Cold Upgrades
	Rolling Upgrades
	Prerequisites
	Procedure

	References

	Man pages for services and utilities
	Heat services
	heat-engine
	heat-api
	heat-api-cfn

	Heat utilities
	heat-manage
	heat-db-setup
	heat-keystone-setup
	heat-keystone-setup-domain
	heat-status

	Using Heat
	Creating your first stack
	Confirming you can access a Heat endpoint
	Preparing to create a stack
	Launching a stack
	List stacks
	List stack events
	Describe the wordpress stack
	Verify instance creation
	Delete the instance when done

	Glossary
	Working with Templates
	Template Guide
	Heat Orchestration Template (HOT) Guide
	Writing a hello world HOT template
	Guideline for features
	Heat Orchestration Template (HOT) specification
	Instances
	Software configuration
	Environments
	Template composition
	OpenStack Resource Types
	CloudFormation Compatible Resource Types
	Unsupported Heat Resource Types
	Contributed Heat Resource Types
	CloudFormation Compatible Functions

	Example Templates
	Example HOT Templates
	Example CFN Templates

	Using the Heat Service

	Developing Heat
	Heat Contributor Guidelines
	Heat and DevStack
	Configure DevStack to enable heat
	Configure DevStack to enable ceilometer and aodh (if using alarms)
	Configure DevStack to enable OSprofiler
	Create a stack

	Blueprints and Specs
	Spec Notes
	Heat Spec Lite
	Lite spec Submission Guidelines
	Lite spec from existing stories

	Heat architecture
	Detailed description
	Heat services

	Heat Resource Plug-in Development Guide
	Resource Plug-in Life Cycle
	Configuring the Engine
	Testing
	Putting It All Together
	Resource Contributions

	Heat Stack Lifecycle Scheduler Hints
	Enabling the scheduler hints
	The hints
	Purpose

	Guru Meditation Reports
	Generating a GMR
	Structure of a GMR
	Adding support for GMRs to new executable
	Extending the GMR

	Heat Support Status usage Guide
	Support Status option and its parameters
	Life cycle of resource, property, attribute
	Using Support Status during code writing
	Translating mechanism for hidden properties

	Using Rally on Heat gates
	How to run Rally for particular patch
	Examples of using Rally
	create_stack_and_show_output_old
	create_stack_and_show_output_new
	create_stack_and_list_output_old
	create_stack_and_list_output_new

	Source Code Index
	heat
	heat package

	Indices and tables

