
Keystone Documentation
Release 21.0.2.dev4

OpenStack

Jul 01, 2024

CONTENTS

1 Keystone Installation Tutorial 1
1.1 Keystone Installation Tutorial for openSUSE and SUSE Linux Enterprise 1

1.1.1 Abstract . 1
1.1.2 Contents . 1

Identity service overview . 1
Install and configure . 2
Create a domain, projects, users, and roles . 6
Verify operation . 8
Create OpenStack client environment scripts 9

1.2 Keystone Installation Tutorial for Red Hat Enterprise Linux and CentOS 11
1.2.1 Abstract . 11
1.2.2 Contents . 11

Identity service overview . 11
Install and configure . 12
Create a domain, projects, users, and roles . 15
Verify operation . 17
Create OpenStack client environment scripts 18

1.3 Keystone Installation Tutorial for Ubuntu . 20
1.3.1 Abstract . 20
1.3.2 Contents . 20

Identity service overview . 20
Install and configure . 21
Create a domain, projects, users, and roles . 24
Verify operation . 26
Create OpenStack client environment scripts 28

2 Getting Started 31
2.1 Keystone Architecture . 31

2.1.1 Services . 31
Identity . 31
Resource . 32
Assignment . 32
Token . 33
Catalog . 33

2.1.2 Application Construction . 33
2.1.3 Service Backends . 35

Templated Backend . 36
2.1.4 Data Model . 36
2.1.5 Approach to CRUD . 37

i

2.1.6 Approach to Authorization (Policy) . 37
Rules . 37
Capability RBAC . 38

2.1.7 Approach to Authentication . 38
What is Scope? . 40

2.2 Mapping of policy target to API . 40
2.3 Getting Involved . 45

2.3.1 How to Join the Community . 45
#openstack-keystone on OFTC IRC Network 45
Keystone on Launchpad . 45
OpenStack Blog . 45
Twitter . 46

3 Code Documentation 47
3.1 keystone . 47

3.1.1 keystone package . 47
Subpackages . 47
Submodules . 325
Module contents . 338

4 Indices and tables 339

5 Contributor Documentation 341
5.1 So You Want to Contribute . 341

5.1.1 Communication . 341
5.1.2 Contacting the Core Team . 341
5.1.3 New Feature Planning . 341
5.1.4 Task Tracking . 341
5.1.5 Reporting a Bug . 342
5.1.6 Getting Your Patch Merged . 342

Project Team Lead Duties . 342
5.2 How Can I Help? . 342

5.2.1 The Meaning of Low Hanging Fruit . 343
5.3 Setting up Keystone . 343

5.3.1 Prerequisites . 343
5.3.2 Installing from source . 344
5.3.3 Development environment . 344
5.3.4 Deploying configuration files . 344

Configuring Keystone with a sample file . 345
5.3.5 Bootstrapping a test deployment . 345
5.3.6 Verifying keystone is set up . 345
5.3.7 Database setup . 345
5.3.8 Initializing Keystone . 346

Initial Sample Data . 346
5.3.9 Interacting with Keystone . 346

5.4 Identity API v2.0 and v3 History . 347
5.4.1 Specifications . 347
5.4.2 History . 347
5.4.3 How do I migrate from v2.0 to v3? . 347

I am a deployer . 347
I have a Python client . 348
I have a non-Python client . 348

ii

5.4.4 Why do I see deployments with Keystone running on two ports? 349
5.4.5 HTTP/1.1 Chunked Encoding . 350

5.5 Proposing Features . 350
5.5.1 RFE Bug Reports . 350
5.5.2 Specifications . 350

5.6 Working with Release Notes . 351
5.6.1 Release Notes for Bugs . 352
5.6.2 Release Notes for Features . 352

5.7 Testing Keystone . 353
5.7.1 Running Tests . 353

Interactive debugging . 353
5.7.2 Building the Documentation . 354
5.7.3 Tests Structure . 354
5.7.4 Testing Schema Migrations . 354
5.7.5 LDAP Tests . 355
5.7.6 Work in progress Tests . 355
5.7.7 API & Scenario Tests . 356

Writing new API & Scenario Tests . 356
5.8 Developing doctor checks . 359
5.9 Making an API Change . 360

5.9.1 Prerequisites . 360
5.9.2 Proposing a change . 360

Create . 360
Agreement . 360

5.9.3 Implementing a change . 361
Architectural Recapitulation . 361
Changing the SQL Model and Driver . 361
Changing the Manager . 362
Changing the API Interface . 362

5.9.4 Conclusion . 363
5.10 Authentication Plugins . 363

5.10.1 How to Implement an Authentication Plugin 363
5.11 Database Migrations . 364
5.12 Identity entity ID management for domain-specific backends 365
5.13 Translated responses . 365
5.14 Learning Architecture Internals . 366

5.14.1 Caching Layer . 366
5.14.2 Filtering responsibilities between API resources and drivers 367
5.14.3 Entity list truncation by drivers . 367

5.15 Keystone for Other Services . 368
5.15.1 Glossary . 368
5.15.2 Domains . 368
5.15.3 The default domain . 369
5.15.4 Authorization Scopes . 369

System Scope . 369
Domain Scope . 370
Project Scope . 370
Unscoped . 370

5.15.5 Why are authorization scopes important? . 370
Flexibility for exposing your work . 370
Less custom code . 371

iii

Reusable default roles . 372
5.15.6 How do I incorporate authorization scopes into a service? 373

Ruthless Testing . 373
Auditing the API . 374
Setting scope types . 374
Rewriting check string . 375
Communication . 375

5.15.7 Auth Token middleware . 375
Service tokens . 375

5.15.8 Picking the version . 375
5.15.9 Hierarchical Multitenancy . 376

5.16 Developing Keystone Drivers . 376
5.16.1 In/Out of Tree . 376
5.16.2 How To Make a Driver . 376
5.16.3 Driver Interface Changes . 377

Removing Methods . 377
Adding Methods . 377
Updating Methods . 377

5.17 Service Catalog Overview . 377
5.17.1 An example service catalog . 378
5.17.2 Services . 378
5.17.3 Endpoints . 379

5.18 Technical Vision for Keystone . 380
5.18.1 Mission Statement . 380
5.18.2 Vision for OpenStack . 380

Self-service . 380
Application Control . 380
Interoperability . 380
Bidirectional Compatibility . 380
Partitioning . 381
Basic Physical Data Center Management . 381
Plays Well With Others . 381
Customizable Integration . 381
Graphical User Interface . 381
Secure by Design . 381

5.19 Programming Exercises for Interns and New Contributors 382
5.19.1 Add a Parameter to an API . 382
5.19.2 Write an External Driver . 382
5.19.3 Write an Auth Plugin . 383

6 User Documentation 385
6.1 Supported clients . 385

6.1.1 Authenticating with a Password via CLI . 385
6.2 Application Credentials . 386

6.2.1 Managing Application Credentials . 386
6.2.2 Access Rules . 390
6.2.3 Using Application Credentials . 391
6.2.4 Rotating Application Credentials . 391
6.2.5 Frequently Asked Questions . 392

Why is the application credential owned by the user rather than the project? . . . 392
6.3 Trusts . 392

iv

6.4 API Discovery with JSON Home . 393
6.4.1 What is JSON Home? . 393
6.4.2 Requesting JSON Home Documents . 393

6.5 API Examples using Curl . 394
6.5.1 v3 API Examples Using Curl . 394

GET / . 394
Tokens . 396
Domains . 407
Projects . 408
GET /v3/services . 409
GET /v3/endpoints . 410
Users . 411
PUT /v3/projects/{project_id}/groups/{group_id}/roles/{role_id} 413
POST /v3/OS-TRUST/trusts . 414

6.6 Multi-Factor Authentication . 415
6.6.1 Configuring MFA . 415
6.6.2 Using MFA . 415

Single step . 415
Multi-Step . 416

7 CLI Documentation 419
7.1 keystone-manage . 419

7.1.1 Keystone Management Utility . 419
SYNOPSIS . 419
DESCRIPTION . 419
USAGE . 419
OPTIONS . 420
FILES . 422
SEE ALSO . 422
SOURCE . 422

7.2 keystone-status . 422
7.2.1 Keystone Status Utility . 422

SYNOPSIS . 422
DESCRIPTION . 422
USAGE . 423
OPTIONS . 423
FILES . 424
SEE ALSO . 424
SOURCE . 424

8 Administrator Guides 425
8.1 Getting Started . 425

8.1.1 Identity concepts . 425
User management . 426
Service management . 429
Groups . 429

8.1.2 Configuring Keystone . 430
Identity sources . 430

8.1.3 Bootstrapping Identity . 432
Using the CLI . 432
Using a shared secret . 434

8.1.4 Manage projects, users, and roles . 434

v

Projects . 435
Users . 436
Roles and role assignments . 438

8.1.5 Create and manage services and service users 441
Service Catalog . 441
Service users . 444

8.2 Keystone Configuration . 446
8.2.1 Troubleshoot the Identity service . 446
8.2.2 Logging . 446
8.2.3 Domain-specific configuration . 446

Enable drivers for domain-specific configuration files 447
Enable drivers for storing configuration options in SQL database 447
Public ID Generators . 449
Migrate domain-specific configuration files to the SQL database 449

8.2.4 Integrate Identity with LDAP . 450
Identity LDAP server set up . 450
Integrate Identity back end with LDAP . 452
Secure the OpenStack Identity service connection to an LDAP back end 456

8.2.5 Caching layer . 457
Caching for tokens and tokens validation . 459
Caching for non-token resources . 459
Cache invalidation . 460
Configure the Memcached back end example 460
Verbose cache logging . 460

8.2.6 Security compliance and PCI-DSS . 461
Setting an account lockout threshold . 461
Disabling inactive users . 461
Force users to change password upon first use 462
Configuring password expiration . 462
Configuring password strength requirements 462
Requiring a unique password history . 463
Prevent Self-Service Password Changes . 464

8.2.7 Performance and scaling . 464
Keystone configuration options that affect performance 464
Keystonemiddleware configuration options that affect performance 464

8.2.8 URL safe naming of projects and domains . 465
8.2.9 Limiting list return size . 465
8.2.10 Endpoint Filtering . 466
8.2.11 Endpoint Policy . 466

8.3 Keystone Operations . 466
8.3.1 Upgrading Keystone . 466

Before you begin . 467
Upgrading with downtime . 467
Upgrading with minimal downtime . 467
Upgrading without downtime . 468

8.3.2 Case-Insensitivity in keystone . 470
Resources in keystone . 470
Backends . 471

8.3.3 Managing trusts . 472
Removing Expired Trusts . 472

8.4 All about keystone tokens . 472

vi

8.4.1 Keystone tokens . 472
Authorization scopes . 473
Token providers . 474

8.4.2 Fernet - Frequently Asked Questions . 477
What is a fernet token? . 477
What is a fernet key? . 477
What are the different types of keys? . 477
So, how does a staged key help me and why do I care about it? 478
Where do I put my key repository? . 478
What is the recommended way to rotate and distribute keys? 478
Do fernet tokens still expire? . 478
Why should I choose fernet tokens over UUID tokens? 478
Why should I choose fernet tokens over PKI or PKIZ tokens? 479
Should I rotate and distribute keys from the same keystone node every rotation? . 479
How do I add new keystone nodes to a deployment? 479
How should I approach key distribution? . 479
How long should I keep my keys around? . 480
Is a fernet token still a bearer token? . 480
What if I need to revoke all my tokens? . 480
What can an attacker do if they compromise a fernet key in my deployment? . . . 481
I rotated keys and now tokens are invalidating early, what did I do? 481

8.4.3 JWS key rotation . 483
Initial setup . 483
Continued operations . 484

8.4.4 Token provider . 484
8.5 Default Roles . 485

8.5.1 Primer . 485
8.5.2 Roles Definitions . 485

Reader . 486
Member . 486
Admin . 487

8.5.3 System Personas . 487
System Administrators . 487
System Members & System Readers . 488

8.5.4 Domain Personas . 489
Domain Administrators . 489
Domain Members & Domain Readers . 490

8.5.5 Project Personas . 490
Project Administrators . 491
Project Members & Project Readers . 491

8.5.6 Writing Policies . 492
8.6 Advanced Keystone Features . 492

8.6.1 Unified Limits . 492
What is a limit? . 492
Limits and usage . 494
Enforcement models . 494

8.6.2 Resource Options . 504
User Options . 504
Role Options . 507
Project Options . 507
Domain Options . 508

vii

8.6.3 Credential Encryption . 508
Configuring credential encryption . 509
How credential encryption works . 509
Encrypting existing credentials . 509
Encryption key management . 510

8.6.4 Health Check . 511
8.6.5 Keystone Event Notifications . 511

Common Notification Structure . 511
Auditing with CADF . 512
Basic Notifications . 518
Recommendations for consumers . 519
Opting out of certain notifications . 520

8.7 Authentication Mechanisms . 520
8.7.1 Multi-Factor Authentication . 520

Configuring MFA . 520
Using MFA . 521
Supported multi-factor authentication methods 521

8.7.2 Time-based One-time Password (TOTP) . 521
Configuring TOTP . 521
Authenticate with TOTP . 523

8.7.3 Federated Identity . 524
Introduction to Keystone Federation . 524
Configuring Keystone for Federation . 534
Mapping Combinations . 556

8.7.4 Using external authentication with Keystone 574
Configuration . 575
Using HTTPD authentication . 575

8.7.5 Configuring Keystone for Tokenless Authorization 576
Definitions . 576
Keystone Configuration . 579
Setup Mapping . 581
SSL Terminator Configuration . 583
Setup auth_token middleware . 585

8.7.6 OAuth1 1.0a . 585

9 Keystone Configuration Options 587
9.1 API Configuration options . 587

9.1.1 Configuration . 587
DEFAULT . 587
application_credential . 596
assignment . 597
auth . 597
cache . 599
catalog . 604
cors . 605
credential . 606
database . 607
domain_config . 611
endpoint_filter . 612
endpoint_policy . 612
eventlet_server . 612

viii

federation . 614
fernet_receipts . 616
fernet_tokens . 617
healthcheck . 617
identity . 618
identity_mapping . 621
jwt_tokens . 622
ldap . 622
memcache . 632
oauth1 . 633
oslo_messaging_amqp . 634
oslo_messaging_kafka . 641
oslo_messaging_notifications . 644
oslo_messaging_rabbit . 645
oslo_middleware . 650
oslo_policy . 651
policy . 653
profiler . 653
receipt . 656
resource . 657
revoke . 659
role . 659
saml . 660
security_compliance . 663
shadow_users . 665
token . 665
tokenless_auth . 667
totp . 668
trust . 668
unified_limit . 669
wsgi . 670

9.1.2 Domain-specific Identity drivers . 670
9.2 Policy configuration . 670

9.2.1 Configuration . 670
keystone . 671

ix

x

CHAPTER

ONE

KEYSTONE INSTALLATION TUTORIAL

The OpenStack system consists of several key services that are separately installed. These services work
together depending on your cloud needs and include the Compute, Identity, Networking, Image, Block
Storage, Object Storage, Telemetry, Orchestration, and Database services. You can install any of these
projects separately and configure them stand-alone or as connected entities.

This section describes how to install and configure the OpenStack Identity service, code-named keystone,
on the controller node. For scalability purposes, this configuration deploys Fernet tokens and the Apache
HTTP server to handle requests.

1.1 Keystone Installation Tutorial for openSUSE and SUSE Linux
Enterprise

1.1.1 Abstract

This guide will show you how to install OpenStack by using packages on openSUSE Leap 42.2 and SUSE
Linux Enterprise Server 12 - for both SP1 and SP2 - through the Open Build Service Cloud repository.

Explanations of configuration options and sample configuration files are included.

Warning: This guide is a work-in-progress and is subject to updates frequently. Pre-release packages
have been used for testing, and some instructions may not work with final versions. Please help us
make this guide better by reporting any errors you encounter.

1.1.2 Contents

Identity service overview

The OpenStack Identity service provides a single point of integration for managing authentication, au-
thorization, and a catalog of services.

The Identity service is typically the first service a user interacts with. Once authenticated, an end user
can use their identity to access other OpenStack services. Likewise, other OpenStack services leverage
the Identity service to ensure users are who they say they are and discover where other services are within
the deployment. The Identity service can also integrate with some external user management systems
(such as LDAP).

1

Keystone Documentation, Release 21.0.2.dev4

Users and services can locate other services by using the service catalog, which is managed by the Iden-
tity service. As the name implies, a service catalog is a collection of available services in an OpenStack
deployment. Each service can have one or many endpoints and each endpoint can be one of three types:
admin, internal, or public. In a production environment, different endpoint types might reside on separate
networks exposed to different types of users for security reasons. For instance, the public API network
might be visible from the Internet so customers can manage their clouds. The admin API network might
be restricted to operators within the organization that manages cloud infrastructure. The internal API
network might be restricted to the hosts that contain OpenStack services. Also, OpenStack supports
multiple regions for scalability. For simplicity, this guide uses the management network for all endpoint
types and the default RegionOne region. Together, regions, services, and endpoints created within the
Identity service comprise the service catalog for a deployment. Each OpenStack service in your deploy-
ment needs a service entry with corresponding endpoints stored in the Identity service. This can all be
done after the Identity service has been installed and configured.

The Identity service contains these components:

Server A centralized server provides authentication and authorization services using a RESTful inter-
face.

Drivers Drivers or a service back end are integrated to the centralized server. They are used for ac-
cessing identity information in repositories external to OpenStack, and may already exist in the
infrastructure where OpenStack is deployed (for example, SQL databases or LDAP servers).

Modules Middleware modules run in the address space of the OpenStack component that is using the
Identity service. These modules intercept service requests, extract user credentials, and send them
to the centralized server for authorization. The integration between the middleware modules and
OpenStack components uses the Python Web Server Gateway Interface.

Install and configure

This section describes how to install and configure the OpenStack Identity service, code-named keystone,
on the controller node. For scalability purposes, this configuration deploys Fernet tokens and the Apache
HTTP server to handle requests.

Note: Ensure that you have completed the prerequisite installation steps in the Openstack Install Guide
before proceeding.

Prerequisites

Before you install and configure the Identity service, you must create a database.

Note: Before you begin, ensure you have the most recent version of python-pyasn1 installed.

1. Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

2. Create the keystone database:

2 Chapter 1. Keystone Installation Tutorial

https://docs.openstack.org/install-guide/environment-packages-obs.html#finalize-the-installation
https://pypi.org/project/pyasn1

Keystone Documentation, Release 21.0.2.dev4

MariaDB [(none)]> CREATE DATABASE keystone;

3. Grant proper access to the keystone database:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@
↪→'localhost' \
IDENTIFIED BY 'KEYSTONE_DBPASS';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \
IDENTIFIED BY 'KEYSTONE_DBPASS';

Replace KEYSTONE_DBPASS with a suitable password.

4. Exit the database access client.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

Note: Starting with the Newton release, SUSE OpenStack packages are shipping with the upstream
default configuration files. For example /etc/keystone/keystone.conf, with customizations in /
etc/keystone/keystone.conf.d/010-keystone.conf. While the following instructions modify
the default configuration file, adding a new file in /etc/keystone/keystone.conf.d achieves the
same result.

1. Run the following command to install the packages:

zypper install openstack-keystone apache2 apache2-mod_wsgi

2. Edit the /etc/keystone/keystone.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://keystone:KEYSTONE_DBPASS@controller/
↪→keystone

Replace KEYSTONE_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database] section.

• In the [token] section, configure the Fernet token provider:

1.1. Keystone Installation Tutorial for openSUSE and SUSE Linux Enterprise 3

Keystone Documentation, Release 21.0.2.dev4

[token]
...
provider = fernet

3. Populate the Identity service database:

su -s /bin/sh -c "keystone-manage db_sync" keystone

4. Initialize Fernet key repositories:

Note: The --keystone-user and --keystone-group flags are used to specify the operating
systems user/group that will be used to run keystone. These are provided to allow running key-
stone under another operating system user/group. In the example below, we call the user & group
keystone.

keystone-manage fernet_setup --keystone-user keystone --keystone-group␣
↪→keystone
keystone-manage credential_setup --keystone-user keystone --keystone-
↪→group keystone

5. Bootstrap the Identity service:

Note: Before the Queens release, keystone needed to be run on two separate ports to accommodate
the Identity v2 API which ran a separate admin-only service commonly on port 35357. With the
removal of the v2 API, keystone can be run on the same port for all interfaces.

keystone-manage bootstrap --bootstrap-password ADMIN_PASS \
--bootstrap-admin-url http://controller:5000/v3/ \
--bootstrap-internal-url http://controller:5000/v3/ \
--bootstrap-public-url http://controller:5000/v3/ \
--bootstrap-region-id RegionOne

Replace ADMIN_PASS with a suitable password for an administrative user.

Configure the Apache HTTP server

1. Edit the /etc/sysconfig/apache2 file and configure the APACHE_SERVERNAME option to refer-
ence the controller node:

APACHE_SERVERNAME="controller"

The APACHE_SERVERNAME entry will need to be added if it does not already exist.

2. Create the /etc/apache2/conf.d/wsgi-keystone.conf file with the following content:

Listen 5000

<VirtualHost *:5000>
(continues on next page)

4 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

WSGIDaemonProcess keystone-public processes=5 threads=1 user=keystone␣
↪→group=keystone display-name=%{GROUP}

WSGIProcessGroup keystone-public
WSGIScriptAlias / /usr/bin/keystone-wsgi-public
WSGIApplicationGroup %{GLOBAL}
WSGIPassAuthorization On
ErrorLogFormat "%{cu}t %M"
ErrorLog /var/log/apache2/keystone.log
CustomLog /var/log/apache2/keystone_access.log combined

<Directory /usr/bin>
Require all granted

</Directory>
</VirtualHost>

3. Recursively change the ownership of the /etc/keystone directory:

chown -R keystone:keystone /etc/keystone

SSL

A secure deployment should have the web server configured to use SSL or running behind an SSL ter-
minator.

Finalize the installation

1. Start the Apache HTTP service and configure it to start when the system boots:

systemctl enable apache2.service
systemctl start apache2.service

2. Configure the administrative account by setting the proper environmental variables:

$ export OS_USERNAME=admin
$ export OS_PASSWORD=ADMIN_PASS
$ export OS_PROJECT_NAME=admin
$ export OS_USER_DOMAIN_NAME=Default
$ export OS_PROJECT_DOMAIN_NAME=Default
$ export OS_AUTH_URL=http://controller:5000/v3
$ export OS_IDENTITY_API_VERSION=3

These values shown here are the default ones created from keystone-manage bootstrap.

Replace ADMIN_PASS with the password used in the keystone-manage bootstrap command
in keystone-install-configure-obs.

1.1. Keystone Installation Tutorial for openSUSE and SUSE Linux Enterprise 5

Keystone Documentation, Release 21.0.2.dev4

Create a domain, projects, users, and roles

The Identity service provides authentication services for each OpenStack service. The authentication
service uses a combination of domains, projects, users, and roles.

1. Although the default domain already exists from the keystone-manage bootstrap step in this guide,
a formal way to create a new domain would be:

$ openstack domain create --description "An Example Domain" example

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	An Example Domain
enabled	True
id	2f4f80574fd84fe6ba9067228ae0a50c
name	example
tags	[]
+-------------+----------------------------------+

2. This guide uses a service project that contains a unique user for each service that you add to your
environment. Create the service project:

$ openstack project create --domain default \
--description "Service Project" service

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Service Project
domain_id	default
enabled	True
id	24ac7f19cd944f4cba1d77469b2a73ed
is_domain	False
name	service
parent_id	default
tags	[]
+-------------+----------------------------------+

3. Regular (non-admin) tasks should use an unprivileged project and user. As an example, this guide
creates the myproject project and myuser user.

• Create the myproject project:

$ openstack project create --domain default \
--description "Demo Project" myproject

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | Demo Project |
| domain_id | default |

(continues on next page)

6 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

enabled	True
id	231ad6e7ebba47d6a1e57e1cc07ae446
is_domain	False
name	myproject
parent_id	default
tags	[]
+-------------+----------------------------------+

Note: Do not repeat this step when creating additional users for this project.

• Create the myuser user:

$ openstack user create --domain default \
--password-prompt myuser

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	aeda23aa78f44e859900e22c24817832
name	myuser
options	{}
password_expires_at	None
+---------------------+----------------------------------+

• Create the myrole role:

$ openstack role create myrole

+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	997ce8d05fc143ac97d83fdfb5998552
name	myrole
+-----------+----------------------------------+

• Add the myrole role to the myproject project and myuser user:

$ openstack role add --project myproject --user myuser myrole

Note: This command provides no output.

1.1. Keystone Installation Tutorial for openSUSE and SUSE Linux Enterprise 7

Keystone Documentation, Release 21.0.2.dev4

Note: You can repeat this procedure to create additional projects and users.

Verify operation

Verify operation of the Identity service before installing other services.

Note: Perform these commands on the controller node.

1. Unset the temporary OS_AUTH_URL and OS_PASSWORD environment variable:

$ unset OS_AUTH_URL OS_PASSWORD

2. As the admin user, request an authentication token:

$ openstack --os-auth-url http://controller:5000/v3 \
--os-project-domain-name Default --os-user-domain-name Default \
--os-project-name admin --os-username admin token issue

Password:
+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:14:07.056119Z ␣
↪→ |
| id | gAAAAABWvi7_B8kKQD9wdXac8MoZiQldmjEO643d-e_j-
↪→XXq9AmIegIbA7UHGPv |
| | atnN21qtOMjCFWX7BReJEQnVOAj3nclRQgAYRsfSU_
↪→MrsuWb4EDtnjU7HEpoBb4 |
| | o6ozsA_NmFWEpLeKy0uNn_WeKbAhYygrsmQGA49dclHVnz-OMVLiyM9ws ␣
↪→ |
| project_id | 343d245e850143a096806dfaefa9afdc ␣
↪→ |
| user_id | ac3377633149401296f6c0d92d79dc16 ␣
↪→ |
+------------+--
↪→-----+

Note: This command uses the password for the admin user.

3. As the myuser user created in the previous section, request an authentication token:

$ openstack --os-auth-url http://controller:5000/v3 \
--os-project-domain-name Default --os-user-domain-name Default \

(continues on next page)

8 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

--os-project-name myproject --os-username myuser token issue

Password:
+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:15:39.014479Z ␣
↪→ |
| id | gAAAAABWvi9bsh7vkiby5BpCCnc-JkbGhm9wH3fabS_cY7uabOubesi-
↪→Me6IGWW |
| | yQqNegDDZ5jw7grI26vvgy1J5nCVwZ_zFRqPiz_
↪→qhbq29mgbQLglbkq6FQvzBRQ |
| | JcOzq3uwhzNxszJWmzGC7rJE_H0A_a3UFhqv8M4zMRYSbS2YF0MyFmp_U ␣
↪→ |
| project_id | ed0b60bf607743088218b0a533d5943f ␣
↪→ |
| user_id | 58126687cbcc4888bfa9ab73a2256f27 ␣
↪→ |
+------------+--
↪→-----+

Create OpenStack client environment scripts

The previous sections used a combination of environment variables and command options to interact
with the Identity service via the openstack client. To increase efficiency of client operations, OpenStack
supports simple client environment scripts also known as OpenRC files. These scripts typically contain
common options for all clients, but also support unique options. For more information, see the OpenStack
End User Guide.

Creating the scripts

Create client environment scripts for the admin and demo projects and users. Future portions of this
guide reference these scripts to load appropriate credentials for client operations.

Note: The paths of the client environment scripts are unrestricted. For convenience, you can place the
scripts in any location, however ensure that they are accessible and located in a secure place appropriate
for your deployment, as they do contain sensitive credentials.

1. Create and edit the admin-openrc file and add the following content:

Note: The OpenStack client also supports using a clouds.yaml file. For more information, see
the os-client-config.

1.1. Keystone Installation Tutorial for openSUSE and SUSE Linux Enterprise 9

https://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html
https://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html
http://docs.openstack.org/os-client-config/latest

Keystone Documentation, Release 21.0.2.dev4

export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=ADMIN_PASS
export OS_AUTH_URL=http://controller:5000/v3
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2

Replace ADMIN_PASS with the password you chose for the admin user in the Identity service.

2. Create and edit the demo-openrc file and add the following content:

export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=myproject
export OS_USERNAME=myuser
export OS_PASSWORD=DEMO_PASS
export OS_AUTH_URL=http://controller:5000/v3
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2

Replace DEMO_PASS with the password you chose for the demo user in the Identity service.

Using the scripts

To run clients as a specific project and user, you can simply load the associated client environment script
prior to running them. For example:

1. Load the admin-openrc file to populate environment variables with the location of the Identity
service and the admin project and user credentials:

$. admin-openrc

2. Request an authentication token:

$ openstack token issue

+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:44:35.659723Z ␣
↪→ |
| id | gAAAAABWvjYj-
↪→Zjfg8WXFaQnUd1DMYTBVrKw4h3fIagi5NoEmh21U72SrRv2trl |
| | JWFYhLi2_uPR31Igf6A8mH2Rw9kv_bxNo1jbLNPLGzW_
↪→u5FC7InFqx0yYtTwa1e |
| | eq2b0f6-18KZyQhs7F3teAta143kJEWuNEYET-y7u29y0be1_64KYkM7E ␣
↪→ | (continues on next page)

10 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

| project_id | 343d245e850143a096806dfaefa9afdc ␣
↪→ |
| user_id | ac3377633149401296f6c0d92d79dc16 ␣
↪→ |
+------------+--
↪→-----+

1.2 Keystone Installation Tutorial for Red Hat Enterprise Linux and
CentOS

1.2.1 Abstract

This guide will show you how to install Keystone by using packages available on Red Hat Enterprise
Linux 7 and its derivatives through the RDO repository.

Explanations of configuration options and sample configuration files are included.

Warning: This guide is a work-in-progress and is subject to updates frequently. Pre-release packages
have been used for testing, and some instructions may not work with final versions. Please help us
make this guide better by reporting any errors you encounter.

1.2.2 Contents

Identity service overview

The OpenStack Identity service provides a single point of integration for managing authentication, au-
thorization, and a catalog of services.

The Identity service is typically the first service a user interacts with. Once authenticated, an end user
can use their identity to access other OpenStack services. Likewise, other OpenStack services leverage
the Identity service to ensure users are who they say they are and discover where other services are within
the deployment. The Identity service can also integrate with some external user management systems
(such as LDAP).

Users and services can locate other services by using the service catalog, which is managed by the Iden-
tity service. As the name implies, a service catalog is a collection of available services in an OpenStack
deployment. Each service can have one or many endpoints and each endpoint can be one of three types:
admin, internal, or public. In a production environment, different endpoint types might reside on separate
networks exposed to different types of users for security reasons. For instance, the public API network
might be visible from the Internet so customers can manage their clouds. The admin API network might
be restricted to operators within the organization that manages cloud infrastructure. The internal API
network might be restricted to the hosts that contain OpenStack services. Also, OpenStack supports
multiple regions for scalability. For simplicity, this guide uses the management network for all endpoint
types and the default RegionOne region. Together, regions, services, and endpoints created within the
Identity service comprise the service catalog for a deployment. Each OpenStack service in your deploy-
ment needs a service entry with corresponding endpoints stored in the Identity service. This can all be
done after the Identity service has been installed and configured.

1.2. Keystone Installation Tutorial for Red Hat Enterprise Linux and CentOS 11

Keystone Documentation, Release 21.0.2.dev4

The Identity service contains these components:

Server A centralized server provides authentication and authorization services using a RESTful inter-
face.

Drivers Drivers or a service back end are integrated to the centralized server. They are used for ac-
cessing identity information in repositories external to OpenStack, and may already exist in the
infrastructure where OpenStack is deployed (for example, SQL databases or LDAP servers).

Modules Middleware modules run in the address space of the OpenStack component that is using the
Identity service. These modules intercept service requests, extract user credentials, and send them
to the centralized server for authorization. The integration between the middleware modules and
OpenStack components uses the Python Web Server Gateway Interface.

Install and configure

This section describes how to install and configure the OpenStack Identity service, code-named keystone,
on the controller node. For scalability purposes, this configuration deploys Fernet tokens and the Apache
HTTP server to handle requests.

Note: Ensure that you have completed the prerequisite installation steps in the Openstack Install Guide
before proceeding.

Prerequisites

Before you install and configure the Identity service, you must create a database.

1. Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

2. Create the keystone database:

MariaDB [(none)]> CREATE DATABASE keystone;

3. Grant proper access to the keystone database:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@
↪→'localhost' \
IDENTIFIED BY 'KEYSTONE_DBPASS';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \
IDENTIFIED BY 'KEYSTONE_DBPASS';

Replace KEYSTONE_DBPASS with a suitable password.

4. Exit the database access client.

12 Chapter 1. Keystone Installation Tutorial

https://docs.openstack.org/install-guide/environment-packages-rdo.html#finalize-the-installation

Keystone Documentation, Release 21.0.2.dev4

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Run the following command to install the packages:

yum install openstack-keystone httpd mod_wsgi

Note: For RHEL8/Centos8 and above install package python3-mod_wsgi.

2. Edit the /etc/keystone/keystone.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://keystone:KEYSTONE_DBPASS@controller/
↪→keystone

Replace KEYSTONE_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database] section.

Note: The host, controller in this example, must be resolvable.

• In the [token] section, configure the Fernet token provider:

[token]
...
provider = fernet

3. Populate the Identity service database:

su -s /bin/sh -c "keystone-manage db_sync" keystone

4. Initialize Fernet key repositories:

Note: The --keystone-user and --keystone-group flags are used to specify the operating
systems user/group that will be used to run keystone. These are provided to allow running key-
stone under another operating system user/group. In the example below, we call the user & group
keystone.

1.2. Keystone Installation Tutorial for Red Hat Enterprise Linux and CentOS 13

Keystone Documentation, Release 21.0.2.dev4

keystone-manage fernet_setup --keystone-user keystone --keystone-group␣
↪→keystone
keystone-manage credential_setup --keystone-user keystone --keystone-
↪→group keystone

5. Bootstrap the Identity service:

Note: Before the Queens release, keystone needed to be run on two separate ports to accommodate
the Identity v2 API which ran a separate admin-only service commonly on port 35357. With the
removal of the v2 API, keystone can be run on the same port for all interfaces.

keystone-manage bootstrap --bootstrap-password ADMIN_PASS \
--bootstrap-admin-url http://controller:5000/v3/ \
--bootstrap-internal-url http://controller:5000/v3/ \
--bootstrap-public-url http://controller:5000/v3/ \
--bootstrap-region-id RegionOne

Replace ADMIN_PASS with a suitable password for an administrative user.

Configure the Apache HTTP server

1. Edit the /etc/httpd/conf/httpd.conf file and configure the ServerName option to reference
the controller node:

ServerName controller

The ServerName entry will need to be added if it does not already exist.

2. Create a link to the /usr/share/keystone/wsgi-keystone.conf file:

ln -s /usr/share/keystone/wsgi-keystone.conf /etc/httpd/conf.d/

SSL

A secure deployment should have the web server configured to use SSL or running behind an SSL ter-
minator.

Finalize the installation

1. Start the Apache HTTP service and configure it to start when the system boots:

systemctl enable httpd.service
systemctl start httpd.service

2. Configure the administrative account by setting the proper environmental variables:

14 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

$ export OS_USERNAME=admin
$ export OS_PASSWORD=ADMIN_PASS
$ export OS_PROJECT_NAME=admin
$ export OS_USER_DOMAIN_NAME=Default
$ export OS_PROJECT_DOMAIN_NAME=Default
$ export OS_AUTH_URL=http://controller:5000/v3
$ export OS_IDENTITY_API_VERSION=3

These values shown here are the default ones created from keystone-manage bootstrap.

Replace ADMIN_PASS with the password used in the keystone-manage bootstrap command
in keystone-install-configure-rdo.

Create a domain, projects, users, and roles

The Identity service provides authentication services for each OpenStack service. The authentication
service uses a combination of domains, projects, users, and roles.

1. Although the default domain already exists from the keystone-manage bootstrap step in this guide,
a formal way to create a new domain would be:

$ openstack domain create --description "An Example Domain" example

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	An Example Domain
enabled	True
id	2f4f80574fd84fe6ba9067228ae0a50c
name	example
tags	[]
+-------------+----------------------------------+

2. This guide uses a service project that contains a unique user for each service that you add to your
environment. Create the service project:

$ openstack project create --domain default \
--description "Service Project" service

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Service Project
domain_id	default
enabled	True
id	24ac7f19cd944f4cba1d77469b2a73ed
is_domain	False
name	service
parent_id	default
tags	[]
+-------------+----------------------------------+

1.2. Keystone Installation Tutorial for Red Hat Enterprise Linux and CentOS 15

Keystone Documentation, Release 21.0.2.dev4

3. Regular (non-admin) tasks should use an unprivileged project and user. As an example, this guide
creates the myproject project and myuser user.

• Create the myproject project:

$ openstack project create --domain default \
--description "Demo Project" myproject

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Demo Project
domain_id	default
enabled	True
id	231ad6e7ebba47d6a1e57e1cc07ae446
is_domain	False
name	myproject
parent_id	default
tags	[]
+-------------+----------------------------------+

Note: Do not repeat this step when creating additional users for this project.

• Create the myuser user:

$ openstack user create --domain default \
--password-prompt myuser

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	aeda23aa78f44e859900e22c24817832
name	myuser
options	{}
password_expires_at	None
+---------------------+----------------------------------+

• Create the myrole role:

$ openstack role create myrole

+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | None |
| id | 997ce8d05fc143ac97d83fdfb5998552 |

(continues on next page)

16 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

| name | myrole |
+-----------+----------------------------------+

• Add the myrole role to the myproject project and myuser user:

$ openstack role add --project myproject --user myuser myrole

Note: This command provides no output.

Note: You can repeat this procedure to create additional projects and users.

Verify operation

Verify operation of the Identity service before installing other services.

Note: Perform these commands on the controller node.

1. Unset the temporary OS_AUTH_URL and OS_PASSWORD environment variable:

$ unset OS_AUTH_URL OS_PASSWORD

2. As the admin user, request an authentication token:

$ openstack --os-auth-url http://controller:5000/v3 \
--os-project-domain-name Default --os-user-domain-name Default \
--os-project-name admin --os-username admin token issue

Password:
+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:14:07.056119Z ␣
↪→ |
| id | gAAAAABWvi7_B8kKQD9wdXac8MoZiQldmjEO643d-e_j-
↪→XXq9AmIegIbA7UHGPv |
| | atnN21qtOMjCFWX7BReJEQnVOAj3nclRQgAYRsfSU_
↪→MrsuWb4EDtnjU7HEpoBb4 |
| | o6ozsA_NmFWEpLeKy0uNn_WeKbAhYygrsmQGA49dclHVnz-OMVLiyM9ws ␣
↪→ |
| project_id | 343d245e850143a096806dfaefa9afdc ␣
↪→ |
| user_id | ac3377633149401296f6c0d92d79dc16 ␣
↪→ | (continues on next page)

1.2. Keystone Installation Tutorial for Red Hat Enterprise Linux and CentOS 17

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

+------------+--
↪→-----+

Note: This command uses the password for the admin user.

3. As the myuser user created in the previous section, request an authentication token:

$ openstack --os-auth-url http://controller:5000/v3 \
--os-project-domain-name Default --os-user-domain-name Default \
--os-project-name myproject --os-username myuser token issue

Password:
+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:15:39.014479Z ␣
↪→ |
| id | gAAAAABWvi9bsh7vkiby5BpCCnc-JkbGhm9wH3fabS_cY7uabOubesi-
↪→Me6IGWW |
| | yQqNegDDZ5jw7grI26vvgy1J5nCVwZ_zFRqPiz_
↪→qhbq29mgbQLglbkq6FQvzBRQ |
| | JcOzq3uwhzNxszJWmzGC7rJE_H0A_a3UFhqv8M4zMRYSbS2YF0MyFmp_U ␣
↪→ |
| project_id | ed0b60bf607743088218b0a533d5943f ␣
↪→ |
| user_id | 58126687cbcc4888bfa9ab73a2256f27 ␣
↪→ |
+------------+--
↪→-----+

Create OpenStack client environment scripts

The previous sections used a combination of environment variables and command options to interact
with the Identity service via the openstack client. To increase efficiency of client operations, OpenStack
supports simple client environment scripts also known as OpenRC files. These scripts typically contain
common options for all clients, but also support unique options. For more information, see the OpenStack
End User Guide.

18 Chapter 1. Keystone Installation Tutorial

https://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html
https://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html

Keystone Documentation, Release 21.0.2.dev4

Creating the scripts

Create client environment scripts for the admin and demo projects and users. Future portions of this
guide reference these scripts to load appropriate credentials for client operations.

Note: The paths of the client environment scripts are unrestricted. For convenience, you can place the
scripts in any location, however ensure that they are accessible and located in a secure place appropriate
for your deployment, as they do contain sensitive credentials.

1. Create and edit the admin-openrc file and add the following content:

Note: The OpenStack client also supports using a clouds.yaml file. For more information, see
the os-client-config.

export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=ADMIN_PASS
export OS_AUTH_URL=http://controller:5000/v3
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2

Replace ADMIN_PASS with the password you chose for the admin user in the Identity service.

2. Create and edit the demo-openrc file and add the following content:

export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=myproject
export OS_USERNAME=myuser
export OS_PASSWORD=DEMO_PASS
export OS_AUTH_URL=http://controller:5000/v3
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2

Replace DEMO_PASS with the password you chose for the demo user in the Identity service.

Using the scripts

To run clients as a specific project and user, you can simply load the associated client environment script
prior to running them. For example:

1. Load the admin-openrc file to populate environment variables with the location of the Identity
service and the admin project and user credentials:

$. admin-openrc

2. Request an authentication token:

1.2. Keystone Installation Tutorial for Red Hat Enterprise Linux and CentOS 19

http://docs.openstack.org/os-client-config/latest

Keystone Documentation, Release 21.0.2.dev4

$ openstack token issue

+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:44:35.659723Z ␣
↪→ |
| id | gAAAAABWvjYj-
↪→Zjfg8WXFaQnUd1DMYTBVrKw4h3fIagi5NoEmh21U72SrRv2trl |
| | JWFYhLi2_uPR31Igf6A8mH2Rw9kv_bxNo1jbLNPLGzW_
↪→u5FC7InFqx0yYtTwa1e |
| | eq2b0f6-18KZyQhs7F3teAta143kJEWuNEYET-y7u29y0be1_64KYkM7E ␣
↪→ |
| project_id | 343d245e850143a096806dfaefa9afdc ␣
↪→ |
| user_id | ac3377633149401296f6c0d92d79dc16 ␣
↪→ |
+------------+--
↪→-----+

1.3 Keystone Installation Tutorial for Ubuntu

1.3.1 Abstract

This guide will walk through an installation by using packages available through Canonicals Ubuntu
Cloud archive repository for Ubuntu 16.04 (LTS).

Explanations of configuration options and sample configuration files are included.

Warning: This guide is a work-in-progress and is subject to updates frequently. Pre-release packages
have been used for testing, and some instructions may not work with final versions. Please help us
make this guide better by reporting any errors you encounter.

1.3.2 Contents

Identity service overview

The OpenStack Identity service provides a single point of integration for managing authentication, au-
thorization, and a catalog of services.

The Identity service is typically the first service a user interacts with. Once authenticated, an end user
can use their identity to access other OpenStack services. Likewise, other OpenStack services leverage
the Identity service to ensure users are who they say they are and discover where other services are within
the deployment. The Identity service can also integrate with some external user management systems
(such as LDAP).

20 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

Users and services can locate other services by using the service catalog, which is managed by the Iden-
tity service. As the name implies, a service catalog is a collection of available services in an OpenStack
deployment. Each service can have one or many endpoints and each endpoint can be one of three types:
admin, internal, or public. In a production environment, different endpoint types might reside on separate
networks exposed to different types of users for security reasons. For instance, the public API network
might be visible from the Internet so customers can manage their clouds. The admin API network might
be restricted to operators within the organization that manages cloud infrastructure. The internal API
network might be restricted to the hosts that contain OpenStack services. Also, OpenStack supports
multiple regions for scalability. For simplicity, this guide uses the management network for all endpoint
types and the default RegionOne region. Together, regions, services, and endpoints created within the
Identity service comprise the service catalog for a deployment. Each OpenStack service in your deploy-
ment needs a service entry with corresponding endpoints stored in the Identity service. This can all be
done after the Identity service has been installed and configured.

The Identity service contains these components:

Server A centralized server provides authentication and authorization services using a RESTful inter-
face.

Drivers Drivers or a service back end are integrated to the centralized server. They are used for ac-
cessing identity information in repositories external to OpenStack, and may already exist in the
infrastructure where OpenStack is deployed (for example, SQL databases or LDAP servers).

Modules Middleware modules run in the address space of the OpenStack component that is using the
Identity service. These modules intercept service requests, extract user credentials, and send them
to the centralized server for authorization. The integration between the middleware modules and
OpenStack components uses the Python Web Server Gateway Interface.

Install and configure

This section describes how to install and configure the OpenStack Identity service, code-named keystone,
on the controller node. For scalability purposes, this configuration deploys Fernet tokens and the Apache
HTTP server to handle requests.

Note: Ensure that you have completed the prerequisite installation steps in the Openstack Install Guide
before proceeding.

Prerequisites

Before you install and configure the Identity service, you must create a database.

1. Use the database access client to connect to the database server as the root user:

mysql

2. Create the keystone database:

MariaDB [(none)]> CREATE DATABASE keystone;

3. Grant proper access to the keystone database:

1.3. Keystone Installation Tutorial for Ubuntu 21

https://docs.openstack.org/install-guide/environment-packages-ubuntu.html#finalize-the-installation

Keystone Documentation, Release 21.0.2.dev4

MariaDB [(none)]> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@
↪→'localhost' \
IDENTIFIED BY 'KEYSTONE_DBPASS';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' \
IDENTIFIED BY 'KEYSTONE_DBPASS';

Replace KEYSTONE_DBPASS with a suitable password.

4. Exit the database access client.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

Note: This guide uses the Apache HTTP server with mod_wsgi to serve Identity service requests on
port 5000. By default, the keystone service still listens on this port. The package handles all of the
Apache configuration for you (including the activation of the mod_wsgi apache2 module and keystone
configuration in Apache).

1. Run the following command to install the packages:

apt install keystone

2. Edit the /etc/keystone/keystone.conf file and complete the following actions:

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://keystone:KEYSTONE_DBPASS@controller/
↪→keystone

Replace KEYSTONE_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database] section.

• In the [token] section, configure the Fernet token provider:

[token]
...
provider = fernet

3. Populate the Identity service database:

su -s /bin/sh -c "keystone-manage db_sync" keystone

22 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

4. Initialize Fernet key repositories:

Note: The --keystone-user and --keystone-group flags are used to specify the operating
systems user/group that will be used to run keystone. These are provided to allow running key-
stone under another operating system user/group. In the example below, we call the user & group
keystone.

keystone-manage fernet_setup --keystone-user keystone --keystone-group␣
↪→keystone
keystone-manage credential_setup --keystone-user keystone --keystone-
↪→group keystone

5. Bootstrap the Identity service:

Note: Before the Queens release, keystone needed to be run on two separate ports to accommodate
the Identity v2 API which ran a separate admin-only service commonly on port 35357. With the
removal of the v2 API, keystone can be run on the same port for all interfaces.

keystone-manage bootstrap --bootstrap-password ADMIN_PASS \
--bootstrap-admin-url http://controller:5000/v3/ \
--bootstrap-internal-url http://controller:5000/v3/ \
--bootstrap-public-url http://controller:5000/v3/ \
--bootstrap-region-id RegionOne

Replace ADMIN_PASS with a suitable password for an administrative user.

Configure the Apache HTTP server

1. Edit the /etc/apache2/apache2.conf file and configure the ServerName option to reference
the controller node:

ServerName controller

The ServerName entry will need to be added if it does not already exist.

SSL

A secure deployment should have the web server configured to use SSL or running behind an SSL ter-
minator.

1.3. Keystone Installation Tutorial for Ubuntu 23

Keystone Documentation, Release 21.0.2.dev4

Finalize the installation

1. Restart the Apache service:

service apache2 restart

2. Configure the administrative account by setting the proper environmental variables:

$ export OS_USERNAME=admin
$ export OS_PASSWORD=ADMIN_PASS
$ export OS_PROJECT_NAME=admin
$ export OS_USER_DOMAIN_NAME=Default
$ export OS_PROJECT_DOMAIN_NAME=Default
$ export OS_AUTH_URL=http://controller:5000/v3
$ export OS_IDENTITY_API_VERSION=3

These values shown here are the default ones created from keystone-manage bootstrap.

Replace ADMIN_PASS with the password used in the keystone-manage bootstrap command
in keystone-install-configure-ubuntu.

Create a domain, projects, users, and roles

The Identity service provides authentication services for each OpenStack service. The authentication
service uses a combination of domains, projects, users, and roles.

1. Although the default domain already exists from the keystone-manage bootstrap step in this guide,
a formal way to create a new domain would be:

$ openstack domain create --description "An Example Domain" example

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	An Example Domain
enabled	True
id	2f4f80574fd84fe6ba9067228ae0a50c
name	example
tags	[]
+-------------+----------------------------------+

2. This guide uses a service project that contains a unique user for each service that you add to your
environment. Create the service project:

$ openstack project create --domain default \
--description "Service Project" service

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | Service Project |

(continues on next page)

24 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

domain_id	default
enabled	True
id	24ac7f19cd944f4cba1d77469b2a73ed
is_domain	False
name	service
parent_id	default
tags	[]
+-------------+----------------------------------+

3. Regular (non-admin) tasks should use an unprivileged project and user. As an example, this guide
creates the myproject project and myuser user.

• Create the myproject project:

$ openstack project create --domain default \
--description "Demo Project" myproject

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Demo Project
domain_id	default
enabled	True
id	231ad6e7ebba47d6a1e57e1cc07ae446
is_domain	False
name	myproject
parent_id	default
tags	[]
+-------------+----------------------------------+

Note: Do not repeat this step when creating additional users for this project.

• Create the myuser user:

$ openstack user create --domain default \
--password-prompt myuser

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	aeda23aa78f44e859900e22c24817832
name	myuser
options	{}
password_expires_at	None
+---------------------+----------------------------------+

1.3. Keystone Installation Tutorial for Ubuntu 25

Keystone Documentation, Release 21.0.2.dev4

• Create the myrole role:

$ openstack role create myrole

+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	997ce8d05fc143ac97d83fdfb5998552
name	myrole
+-----------+----------------------------------+

• Add the myrole role to the myproject project and myuser user:

$ openstack role add --project myproject --user myuser myrole

Note: This command provides no output.

Note: You can repeat this procedure to create additional projects and users.

Verify operation

Verify operation of the Identity service before installing other services.

Note: Perform these commands on the controller node.

1. Unset the temporary OS_AUTH_URL and OS_PASSWORD environment variable:

$ unset OS_AUTH_URL OS_PASSWORD

2. As the admin user, request an authentication token:

$ openstack --os-auth-url http://controller:5000/v3 \
--os-project-domain-name Default --os-user-domain-name Default \
--os-project-name admin --os-username admin token issue

Password:
+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:14:07.056119Z ␣
↪→ |
| id | gAAAAABWvi7_B8kKQD9wdXac8MoZiQldmjEO643d-e_j-
↪→XXq9AmIegIbA7UHGPv |

(continues on next page)

26 Chapter 1. Keystone Installation Tutorial

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

| | atnN21qtOMjCFWX7BReJEQnVOAj3nclRQgAYRsfSU_
↪→MrsuWb4EDtnjU7HEpoBb4 |
| | o6ozsA_NmFWEpLeKy0uNn_WeKbAhYygrsmQGA49dclHVnz-OMVLiyM9ws ␣
↪→ |
| project_id | 343d245e850143a096806dfaefa9afdc ␣
↪→ |
| user_id | ac3377633149401296f6c0d92d79dc16 ␣
↪→ |
+------------+--
↪→-----+

Note: This command uses the password for the admin user.

3. As the myuser user created in the previous, request an authentication token:

$ openstack --os-auth-url http://controller:5000/v3 \
--os-project-domain-name Default --os-user-domain-name Default \
--os-project-name myproject --os-username myuser token issue

Password:
+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:15:39.014479Z ␣
↪→ |
| id | gAAAAABWvi9bsh7vkiby5BpCCnc-JkbGhm9wH3fabS_cY7uabOubesi-
↪→Me6IGWW |
| | yQqNegDDZ5jw7grI26vvgy1J5nCVwZ_zFRqPiz_
↪→qhbq29mgbQLglbkq6FQvzBRQ |
| | JcOzq3uwhzNxszJWmzGC7rJE_H0A_a3UFhqv8M4zMRYSbS2YF0MyFmp_U ␣
↪→ |
| project_id | ed0b60bf607743088218b0a533d5943f ␣
↪→ |
| user_id | 58126687cbcc4888bfa9ab73a2256f27 ␣
↪→ |
+------------+--
↪→-----+

1.3. Keystone Installation Tutorial for Ubuntu 27

Keystone Documentation, Release 21.0.2.dev4

Create OpenStack client environment scripts

The previous sections used a combination of environment variables and command options to interact
with the Identity service via the openstack client. To increase efficiency of client operations, OpenStack
supports simple client environment scripts also known as OpenRC files. These scripts typically contain
common options for all clients, but also support unique options. For more information, see the OpenStack
End User Guide.

Creating the scripts

Create client environment scripts for the admin and demo projects and users. Future portions of this
guide reference these scripts to load appropriate credentials for client operations.

Note: The paths of the client environment scripts are unrestricted. For convenience, you can place the
scripts in any location, however ensure that they are accessible and located in a secure place appropriate
for your deployment, as they do contain sensitive credentials.

1. Create and edit the admin-openrc file and add the following content:

Note: The OpenStack client also supports using a clouds.yaml file. For more information, see
the os-client-config.

export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=ADMIN_PASS
export OS_AUTH_URL=http://controller:5000/v3
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2

Replace ADMIN_PASS with the password you chose for the admin user in the Identity service.

2. Create and edit the demo-openrc file and add the following content:

export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=myproject
export OS_USERNAME=myuser
export OS_PASSWORD=DEMO_PASS
export OS_AUTH_URL=http://controller:5000/v3
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2

Replace DEMO_PASS with the password you chose for the demo user in the Identity service.

28 Chapter 1. Keystone Installation Tutorial

https://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html
https://docs.openstack.org/user-guide/common/cli_set_environment_variables_using_openstack_rc.html
http://docs.openstack.org/os-client-config/latest

Keystone Documentation, Release 21.0.2.dev4

Using the scripts

To run clients as a specific project and user, you can simply load the associated client environment script
prior to running them. For example:

1. Load the admin-openrc file to populate environment variables with the location of the Identity
service and the admin project and user credentials:

$. admin-openrc

2. Request an authentication token:

$ openstack token issue

+------------+--
↪→-----+
| Field | Value ␣
↪→ |
+------------+--
↪→-----+
| expires | 2016-02-12T20:44:35.659723Z ␣
↪→ |
| id | gAAAAABWvjYj-
↪→Zjfg8WXFaQnUd1DMYTBVrKw4h3fIagi5NoEmh21U72SrRv2trl |
| | JWFYhLi2_uPR31Igf6A8mH2Rw9kv_bxNo1jbLNPLGzW_
↪→u5FC7InFqx0yYtTwa1e |
| | eq2b0f6-18KZyQhs7F3teAta143kJEWuNEYET-y7u29y0be1_64KYkM7E ␣
↪→ |
| project_id | 343d245e850143a096806dfaefa9afdc ␣
↪→ |
| user_id | ac3377633149401296f6c0d92d79dc16 ␣
↪→ |
+------------+--
↪→-----+

1.3. Keystone Installation Tutorial for Ubuntu 29

Keystone Documentation, Release 21.0.2.dev4

30 Chapter 1. Keystone Installation Tutorial

CHAPTER

TWO

GETTING STARTED

2.1 Keystone Architecture

Much of the design assumes that in most deployments auth backends will be shims in front of existing
user systems.

2.1.1 Services

Keystone is organized as a group of internal services exposed on one or many endpoints. Many of these
services are used in a combined fashion by the frontend. For example, an authenticate call will validate
user/project credentials with the Identity service and, upon success, create and return a token with the
Token service.

Identity

The Identity service provides auth credential validation and data about users and groups. In the basic case,
this data is managed by the Identity service, allowing it to also handle all CRUD operations associated
with this data. In more complex cases, the data is instead managed by an authoritative backend service.
An example of this would be when the Identity service acts as a frontend for LDAP. In that case the LDAP
server is the source of truth and the role of the Identity service is to relay that information accurately.

Users

Users represent an individual API consumer. A user itself must be owned by a specific domain, and
hence all user names are not globally unique, but only unique to their domain.

Groups

Groups are a container representing a collection of users. A group itself must be owned by a specific
domain, and hence all group names are not globally unique, but only unique to their domain.

31

Keystone Documentation, Release 21.0.2.dev4

Resource

The Resource service provides data about projects and domains.

Projects

Projects represent the base unit of ownership in OpenStack, in that all resources in OpenStack should
be owned by a specific project. A project itself must be owned by a specific domain, and hence all project
names are not globally unique, but unique to their domain. If the domain for a project is not specified,
then it is added to the default domain.

Domains

Domains are a high-level container for projects, users and groups. Each is owned by exactly one domain.
Each domain defines a namespace where an API-visible name attribute exists. Keystone provides a
default domain, aptly named Default.

In the Identity v3 API, the uniqueness of attributes is as follows:

• Domain Name. Globally unique across all domains.

• Role Name. Unique within the owning domain.

• User Name. Unique within the owning domain.

• Project Name. Unique within the owning domain.

• Group Name. Unique within the owning domain.

Due to their container architecture, domains may be used as a way to delegate management of OpenStack
resources. A user in a domain may still access resources in another domain, if an appropriate assignment
is granted.

Assignment

The Assignment service provides data about roles and role assignments.

Roles

Roles dictate the level of authorization the end user can obtain. Roles can be granted at either the domain
or project level. A role can be assigned at the individual user or group level. Role names are unique within
the owning domain.

32 Chapter 2. Getting Started

Keystone Documentation, Release 21.0.2.dev4

Role Assignments

A 3-tuple that has a Role, a Resource and an Identity.

Token

The Token service validates and manages tokens used for authenticating requests once a users credentials
have already been verified.

Catalog

The Catalog service provides an endpoint registry used for endpoint discovery.

2.1.2 Application Construction

Keystone is an HTTP front-end to several services. Since the Rocky release Keystone uses the Flask-
RESTful library to provide a REST API interface to these services.

Keystone defines functions related to Flask-RESTful in keystone.server.flask.common. Keystone
creates API resources which inherit from class keystone.server.flask.common.ResourceBase
and exposes methods for each supported HTTP methods GET, PUT , POST, PATCH and DELETE.
For example, the User resource will look like:

class UserResource(ks_flask.ResourceBase):
collection_key = 'users'
member_key = 'user'
get_member_from_driver = PROVIDERS.deferred_provider_lookup(

api='identity_api', method='get_user')

def get(self, user_id=None):
"""Get a user resource or list users.
GET/HEAD /v3/users
GET/HEAD /v3/users/{user_id}
"""
...

def post(self):
"""Create a user.
POST /v3/users
"""
...

class UserChangePasswordResource(ks_flask.ResourceBase):
@ks_flask.unenforced_api
def post(self, user_id):

...

Routes for each API resource are defined by classes which inherit from keystone.server.flask.
common.APIBase. For example, the UserAPI will look like:

2.1. Keystone Architecture 33

https://flask-restful.readthedocs.io/en/latest/
https://flask-restful.readthedocs.io/en/latest/
https://flask-restful.readthedocs.io/en/latest/

Keystone Documentation, Release 21.0.2.dev4

class UserAPI(ks_flask.APIBase):
_name = 'users'
_import_name = __name__
resources = [UserResource]
resource_mapping = [

ks_flask.construct_resource_map(
resource=UserChangePasswordResource,
url='/users/<string:user_id>/password',
resource_kwargs={},
rel='user_change_password',
path_vars={'user_id': json_home.Parameters.USER_ID}

),
...

The methods _add_resources() or _add_mapped_resources() in keystone.server.flask.
common.APIBase bind the resources with the APIs. Within each API, one or more managers are loaded
(for example, see keystone.catalog.core.Manager), which are thin wrapper classes which load the
appropriate service driver based on the keystone configuration.

• Assignment

– keystone.api.role_assignments

– keystone.api.role_inferences

– keystone.api.roles

– keystone.api.os_inherit

– keystone.api.system

• Authentication

– keystone.api.auth

– keystone.api.ec2tokens

– keystone.api.s3tokens

• Catalog

– keystone.api.endpoints

– keystone.api.os_ep_filter

– keystone.api.regions

– keystone.api.services

• Credentials

– keystone.api.credentials

• Federation

– keystone.api.os_federation

• Identity

– keystone.api.groups

– keystone.api.users

34 Chapter 2. Getting Started

Keystone Documentation, Release 21.0.2.dev4

• Limits

– keystone.api.registered_limits

– keystone.api.limits

• Oauth1

– keystone.api.os_oauth1

• Policy

– keystone.api.policy

• Resource

– keystone.api.domains

– keystone.api.projects

• Revoke

– keystone.api.os_revoke

• Trust

– keystone.api.trusts

2.1.3 Service Backends

Each of the services can be configured to use a backend to allow keystone to fit a variety of environments
and needs. The backend for each service is defined in the keystone.conf file with the key driver under
a group associated with each service.

A general class exists under each backend to provide an abstract base class for any implementations,
identifying the expected service implementations. The abstract base classes are stored in the services
backends directory as base.py. The corresponding drivers for the services are:

• keystone.assignment.backends.base.AssignmentDriverBase

• keystone.assignment.role_backends.base.RoleDriverBase

• keystone.auth.plugins.base.AuthMethodHandler

• keystone.catalog.backends.base.CatalogDriverBase

• keystone.credential.backends.base.CredentialDriverBase

• keystone.endpoint_policy.backends.base.EndpointPolicyDriverBase

• keystone.federation.backends.base.FederationDriverBase

• keystone.identity.backends.base.IdentityDriverBase

• keystone.identity.mapping_backends.base.MappingDriverBase

• keystone.identity.shadow_backends.base.ShadowUsersDriverBase

• keystone.oauth1.backends.base.Oauth1DriverBase

• keystone.policy.backends.base.PolicyDriverBase

• keystone.resource.backends.base.ResourceDriverBase

• keystone.resource.config_backends.base.DomainConfigDriverBase

2.1. Keystone Architecture 35

Keystone Documentation, Release 21.0.2.dev4

• keystone.revoke.backends.base.RevokeDriverBase

• keystone.token.providers.base.Provider

• keystone.trust.backends.base.TrustDriverBase

If you implement a backend driver for one of the keystone services, youre expected to subclass from these
classes.

Templated Backend

Largely designed for a common use case around service catalogs in the keystone project, a templated
backend is a catalog backend that simply expands pre-configured templates to provide catalog data.

Example paste.deploy config (uses $ instead of % to avoid ConfigParsers interpolation)

[DEFAULT]
catalog.RegionOne.identity.publicURL = http://localhost:$(public_port)s/v3
catalog.RegionOne.identity.adminURL = http://localhost:$(public_port)s/v3
catalog.RegionOne.identity.internalURL = http://localhost:$(public_port)s/v3
catalog.RegionOne.identity.name = 'Identity Service'

2.1.4 Data Model

Keystone was designed from the ground up to be amenable to multiple styles of backends. As such, many
of the methods and data types will happily accept more data than they know what to do with and pass
them on to a backend.

There are a few main data types:

• User: has account credentials, is associated with one or more projects or domains

• Group: a collection of users, is associated with one or more projects or domains

• Project: unit of ownership in OpenStack, contains one or more users

• Domain: unit of ownership in OpenStack, contains users, groups and projects

• Role: a first-class piece of metadata associated with many user-project pairs.

• Token: identifying credential associated with a user or user and project

• Extras: bucket of key-value metadata associated with a user-project pair.

• Rule: describes a set of requirements for performing an action.

While the general data model allows a many-to-many relationship between users and groups to projects
and domains; the actual backend implementations take varying levels of advantage of that functionality.

36 Chapter 2. Getting Started

Keystone Documentation, Release 21.0.2.dev4

2.1.5 Approach to CRUD

While it is expected that any real deployment at a large company will manage their users and groups in
their existing user systems, a variety of CRUD operations are provided for the sake of development and
testing.

CRUD is treated as an extension or additional feature to the core feature set, in that a backend is not
required to support it. It is expected that backends for services that dont support the CRUD operations
will raise a keystone.exception.NotImplemented .

2.1.6 Approach to Authorization (Policy)

Various components in the system require that different actions are allowed based on whether the user is
authorized to perform that action.

For the purposes of keystone there are only a couple levels of authorization being checked for:

• Require that the performing user is considered an admin.

• Require that the performing user matches the user being referenced.

Other systems wishing to use the policy engine will require additional styles of checks and will possibly
write completely custom backends. By default, keystone leverages policy enforcement that is maintained
in oslo.policy.

Rules

Given a list of matches to check for, simply verify that the credentials contain the matches. For example:

credentials = {'user_id': 'foo', 'is_admin': 1, 'roles': ['nova:netadmin']}

An admin only call:
policy_api.enforce(('is_admin:1',), credentials)

An admin or owner call:
policy_api.enforce(('is_admin:1', 'user_id:foo'), credentials)

A netadmin call:
policy_api.enforce(('roles:nova:netadmin',), credentials)

Credentials are generally built from the user metadata in the extras part of the Identity API. So, adding a
role to the user just means adding the role to the user metadata.

2.1. Keystone Architecture 37

https://opendev.org/openstack/oslo.policy/

Keystone Documentation, Release 21.0.2.dev4

Capability RBAC

(Not yet implemented.)

Another approach to authorization can be action-based, with a mapping of roles to which capabilities are
allowed for that role. For example:

credentials = {'user_id': 'foo', 'is_admin': 1, 'roles': ['nova:netadmin']}

add a policy
policy_api.add_policy('action:nova:add_network', ('roles:nova:netadmin',))

policy_api.enforce(('action:nova:add_network',), credentials)

In the backend this would look up the policy for action:nova:add_network and then do what is effectively
a Simple Match style match against the credentials.

2.1.7 Approach to Authentication

Keystone provides several authentication plugins that inherit from keystone.auth.plugins.base.
The following is a list of available plugins.

• keystone.auth.plugins.external.Base

• keystone.auth.plugins.mapped.Mapped

• keystone.auth.plugins.oauth1.OAuth

• keystone.auth.plugins.password.Password

• keystone.auth.plugins.token.Token

• keystone.auth.plugins.totp.TOTP

In the most basic plugin password, two pieces of information are required to authenticate with keystone,
a bit of Resource information and a bit of Identity.

Take the following call POST data for instance:

{
"auth": {

"identity": {
"methods": [

"password"
],
"password": {

"user": {
"id": "0ca8f6",
"password": "secretsecret"

}
}

},
"scope": {

"project": {
"id": "263fd9"

(continues on next page)

38 Chapter 2. Getting Started

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

}
}

}
}

The user (ID of 0ca8f6) is attempting to retrieve a token that is scoped to project (ID of 263fd9).

To perform the same call with names instead of IDs, we now need to supply information about the domain.
This is because usernames are only unique within a given domain, but user IDs are supposed to be unique
across the deployment. Thus, the auth request looks like the following:

{
"auth": {

"identity": {
"methods": [

"password"
],
"password": {

"user": {
"domain": {

"name": "acme"
}
"name": "userA",
"password": "secretsecret"

}
}

},
"scope": {

"project": {
"domain": {

"id": "1789d1"
},
"name": "project-x"

}
}

}
}

For both the user and the project portion, we must supply either a domain ID or a domain name, in order
to properly determine the correct user and project.

Alternatively, if we wanted to represent this as environment variables for a command line, it would be:

$ export OS_PROJECT_DOMAIN_ID=1789d1
$ export OS_USER_DOMAIN_NAME=acme
$ export OS_USERNAME=userA
$ export OS_PASSWORD=secretsecret
$ export OS_PROJECT_NAME=project-x

Note that the project the user is attempting to access must be in the same domain as the user.

2.1. Keystone Architecture 39

Keystone Documentation, Release 21.0.2.dev4

What is Scope?

Scope is an overloaded term.

In reference to authenticating, as seen above, scope refers to the portion of the POST data that dictates
what Resource (project, domain, or system) the user wants to access.

In reference to tokens, scope refers to the effectiveness of a token, i.e.: a project-scoped token is only
useful on the project it was initially granted for. A domain-scoped token may be used to perform domain-
related function. A system-scoped token is only useful for interacting with APIs that affect the entire
deployment.

In reference to users, groups, and projects, scope often refers to the domain that the entity is owned by.
i.e.: a user in domain X is scoped to domain X.

2.2 Mapping of policy target to API

The following table shows the target in the policy.yaml file for each API.

Target API
identity:get_region GET /v3/regions/{region_id}
identity:list_regions GET /v3/regions
identity:create_region POST /v3/regions
identity:update_region PATCH /v3/regions/{region_id}
identity:delete_region DELETE /v3/regions/{region_id}
identity:get_service GET /v3/services/{service_id}
identity:list_services GET /v3/services
identity:create_service POST /v3/services
identity:update_service PATCH /v3/services/{service__id}
identity:delete_service DELETE /v3/services/{service__id}
identity:get_endpoint GET /v3/endpoints/{endpoint_id}
identity:list_endpoints GET /v3/endpoints
identity:create_endpoint POST /v3/endpoints
identity:update_endpoint PATCH /v3/endpoints/{endpoint_id}
identity:delete_endpoint DELETE /v3/endpoints/{endpoint_id}
identity:get_registered_limit GET /v3/registered_limits/{registered_limit_id}
identity:list_registered_limits GET /v3/registered_limits
identity:create_registered_limits POST /v3/registered_limits
identity:update_registered_limit PATCH /v3/registered_limits/{registered_limit_id}
identity:delete_registered_limit DELETE /v3/registered_limits/{registered_limit_id}
identity:get_limit GET /v3/limits/{limit_id}
identity:list_limits GET /v3/limits
identity:create_limits POST /v3/limits
identity:update_limit PATCH /v3/limits/{limit_id}
identity:delete_limit DELETE /v3/limits/{limit_id}
identity:get_limit_model GET /v3/limits/model HEAD /v3/limits/model
identity:get_domain GET /v3/domains/{domain_id}
identity:list_domains GET /v3/domains
identity:create_domain POST /v3/domains

continues on next page

40 Chapter 2. Getting Started

Keystone Documentation, Release 21.0.2.dev4

Table 1 – continued from previous page
Target API
identity:update_domain PATCH /v3/domains/{domain_id}
identity:delete_domain DELETE /v3/domains/{domain_id}
identity:get_project GET /v3/projects/{project_id}
identity:list_projects GET /v3/projects
identity:list_user_projects GET /v3/users/{user_id}/projects
identity:create_project POST /v3/projects
identity:update_project PATCH /v3/projects/{project_id}
identity:delete_project DELETE /v3/projects/{project_id}
identity:get_project_tag GET /v3/projects/{project_id}/tags/{tag_name} HEAD /v3/projects/{project_id}/tags/{tag_name}
identity:list_project_tags GET /v3/projects/{project_id}/tags HEAD /v3/projects/{project_id}/tags
identity:create_project_tag PUT /v3/projects/{project_id}/tags/{tag_name}
identity:update_project_tags PUT /v3/projects/{project_id}/tags
identity:delete_project_tag DELETE /v3/projects/{project_id}/tags/{tag_name}
identity:delete_project_tags DELETE /v3/projects/{project_id}/tags
identity:get_user GET /v3/users/{user_id}
identity:list_users GET /v3/users
identity:create_user POST /v3/users
identity:update_user PATCH /v3/users/{user_id}
identity:delete_user DELETE /v3/users/{user_id}
identity:get_group GET /v3/groups/{group_id}
identity:list_groups GET /v3/groups
identity:list_groups_for_user GET /v3/users/{user_id}/groups
identity:create_group POST /v3/groups
identity:update_group PATCH /v3/groups/{group_id}
identity:delete_group DELETE /v3/groups/{group_id}
identity:list_users_in_group GET /v3/groups/{group_id}/users
identity:remove_user_from_group DELETE /v3/groups/{group_id}/users/{user_id}
identity:check_user_in_group GET /v3/groups/{group_id}/users/{user_id}
identity:add_user_to_group PUT /v3/groups/{group_id}/users/{user_id}
identity:get_credential GET /v3/credentials/{credential_id}
identity:list_credentials GET /v3/credentials
identity:create_credential POST /v3/credentials
identity:update_credential PATCH /v3/credentials/{credential_id}
identity:delete_credential DELETE /v3/credentials/{credential_id}
identity:ec2_get_credential GET /v3/users/{user_id}/credentials/OS-EC2/{credential_id}
identity:ec2_list_credentials GET /v3/users/{user_id}/credentials/OS-EC2
identity:ec2_create_credential POST /v3/users/{user_id}/credentials/OS-EC2
identity:ec2_delete_credential DELETE /v3/users/{user_id}/credentials/OS-EC2/{credential_id}
identity:get_role GET /v3/roles/{role_id}
identity:list_roles GET /v3/roles
identity:create_role POST /v3/roles
identity:update_role PATCH /v3/roles/{role_id}
identity:delete_role DELETE /v3/roles/{role_id}
identity:get_domain_role GET /v3/roles/{role_id} where role.domain_id is not null
identity:list_domain_roles GET /v3/roles?domain_id where role.domain_id is not null
identity:create_domain_role POST /v3/roles where role.domain_id is not null
identity:update_domain_role PATCH /v3/roles/{role_id} where role.domain_id is not null

continues on next page

2.2. Mapping of policy target to API 41

Keystone Documentation, Release 21.0.2.dev4

Table 1 – continued from previous page
Target API
identity:delete_domain_role DELETE /v3/roles/{role_id} where role.domain_id is not null
identity:get_implied_role GET /v3/roles/{prior_role_id}/implies/{implied_role_id}
identity:list_implied_roles GET /v3/roles/{prior_role_id}/implies
identity:create_implied_role PUT /v3/roles/{prior_role_id}/implies/{implied_role_id}
identity:delete_implied_role DELETE /v3/roles/{prior_role_id}/implies/{implied_role_id}
identity:list_role_inference_rules GET /v3/role_inferences
identity:check_implied_role HEAD /v3/roles/{prior_role_id}/implies/{implied_role_id}
identity:check_grant GET grant_resources
identity:list_grants GET grant_collections
identity:create_grant PUT grant_resources
identity:revoke_grant DELETE grant_resources
identity:list_system_grants_for_user GET /v3/system/users/{user_id}/roles
identity:check_system_grant_for_user GET /v3/system/users/{user_id}/roles/{role_id}
identity:create_system_grant_for_user PUT /v3/system/users/{user_id}/roles/{role_id}
identity:revoke_system_grant_for_user DELETE /v3/system/users/{user_id}/roles/{role_id}
identity:list_system_grants_for_group GET /v3/system/groups/{group_id}/roles
identity:check_system_grant_for_group GET /v3/system/groups/{group_id}/roles/{role_id}
identity:create_system_grant_for_group PUT /v3/system/groups/{group_id}/roles/{role_id}
identity:revoke_system_grant_for_group DELETE /v3/system/groups/{group_id}/roles/{role_id}
identity:list_role_assignments GET /v3/role_assignments
identity:list_role_assignments_for_tree GET /v3/role_assignments?include_subtree
identity:get_policy GET /v3/policy/{policy_id}
identity:list_policies GET /v3/policy
identity:create_policy POST /v3/policy
identity:update_policy PATCH /v3/policy/{policy_id}
identity:delete_policy DELETE /v3/policy/{policy_id}
identity:check_token HEAD /v3/auth/tokens
identity:validate_token GET /v3/auth/tokens
identity:revocation_list GET /v3/auth/tokens/OS-PKI/revoked
identity:revoke_token DELETE /v3/auth/tokens
identity:create_trust POST /v3/OS-TRUST/trusts
identity:list_trusts GET /v3/OS-TRUST/trusts
identity:list_trusts_for_trustor GET /v3/OS-TRUST/trusts?trustor_user_id={trustor_user_id}
identity:list_trusts_for_trustee GET /v3/OS-TRUST/trusts?trustee_user_id={trustee_user_id}
identity:list_roles_for_trust GET /v3/OS-TRUST/trusts/{trust_id}/roles
identity:get_role_for_trust GET /v3/OS-TRUST/trusts/{trust_id}/roles/{role_id}
identity:delete_trust DELETE /v3/OS-TRUST/trusts/{trust_id}
identity:get_trust GET /v3/OS-TRUST/trusts/{trust_id}
identity:create_consumer POST /v3/OS-OAUTH1/consumers
identity:get_consumer GET /v3/OS-OAUTH1/consumers/{consumer_id}
identity:list_consumers GET /v3/OS-OAUTH1/consumers
identity:delete_consumer DELETE /v3/OS-OAUTH1/consumers/{consumer_id}
identity:update_consumer PATCH /v3/OS-OAUTH1/consumers/{consumer_id}
identity:authorize_request_token PUT /v3/OS-OAUTH1/authorize/{request_token_id}
identity:list_access_token_roles GET /v3/users/{user_id}/OS-OAUTH1/access_tokens/{access_token_id}/roles
identity:get_access_token_role GET /v3/users/{user_id}/OS-OAUTH1/access_tokens/{access_token_id}/roles/{role_id}
identity:list_access_tokens GET /v3/users/{user_id}/OS-OAUTH1/access_tokens

continues on next page

42 Chapter 2. Getting Started

Keystone Documentation, Release 21.0.2.dev4

Table 1 – continued from previous page
Target API
identity:get_access_token GET /v3/users/{user_id}/OS-OAUTH1/access_tokens/{access_token_id}
identity:delete_access_token DELETE /v3/users/{user_id}/OS-OAUTH1/access_tokens/{access_token_id}
identity:list_projects_for_endpoint GET /v3/OS-EP-FILTER/endpoints/{endpoint_id}/projects
identity:add_endpoint_to_project PUT /v3/OS-EP-FILTER/projects/{project_id}/endpoints/{endpoint_id}
identity:check_endpoint_in_project GET /v3/OS-EP-FILTER/projects/{project_id}/endpoints/{endpoint_id}
identity:list_endpoints_for_project GET /v3/OS-EP-FILTER/projects/{project_id}/endpoints
identity:remove_endpoint_from_project DELETE /v3/OS-EP-FILTER/projects/{project_id}/endpoints/{endpoint_id}
identity:create_endpoint_group POST /v3/OS-EP-FILTER/endpoint_groups
identity:list_endpoint_groups GET /v3/OS-EP-FILTER/endpoint_groups
identity:get_endpoint_group GET /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}
identity:update_endpoint_group PATCH /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}
identity:delete_endpoint_group DELETE /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}
identity:list_projects_associated_with_endpoint_group GET /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/projects
identity:list_endpoints_associated_with_endpoint_group GET /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/endpoints
identity:get_endpoint_group_in_project GET /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/projects/{project_id}
identity:list_endpoint_groups_for_project GET /v3/OS-EP-FILTER/projects/{project_id}/endpoint_groups
identity:add_endpoint_group_to_project PUT /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/projects/{project_id}
identity:remove_endpoint_group_from_project DELETE /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/projects/{project_id}
identity:create_identity_provider PUT /v3/OS-FEDERATION/identity_providers/{idp_id}
identity:list_identity_providers GET /v3/OS-FEDERATION/identity_providers
identity:get_identity_provider GET /v3/OS-FEDERATION/identity_providers/{idp_id}
identity:update_identity_provider PATCH /v3/OS-FEDERATION/identity_providers/{idp_id}
identity:delete_identity_provider DELETE /v3/OS-FEDERATION/identity_providers/{idp_id}
identity:create_protocol PUT /v3/OS-FEDERATION/identity_providers/{idp_id}/protocols/{protocol_id}
identity:update_protocol PATCH /v3/OS-FEDERATION/identity_providers/{idp_id}/protocols/{protocol_id}
identity:get_protocol GET /v3/OS-FEDERATION/identity_providers/{idp_id}/protocols/{protocol_id}
identity:list_protocols GET /v3/OS-FEDERATION/identity_providers/{idp_id}/protocols
identity:delete_protocol DELETE /v3/OS-FEDERATION/identity_providers/{idp_id}/protocols/{protocol_id}
identity:create_mapping PUT /v3/OS-FEDERATION/mappings/{mapping_id}
identity:get_mapping GET /v3/OS-FEDERATION/mappings/{mapping_id}
identity:list_mappings GET /v3/OS-FEDERATION/mappings
identity:delete_mapping DELETE /v3/OS-FEDERATION/mappings/{mapping_id}
identity:update_mapping PATCH /v3/OS-FEDERATION/mappings/{mapping_id}
identity:create_service_provider PUT /v3/OS-FEDERATION/service_providers/{sp_id}
identity:list_service_providers GET /v3/OS-FEDERATION/service_providers
identity:get_service_provider GET /v3/OS-FEDERATION/service_providers/{sp_id}
identity:update_service_provider PATCH /v3/OS-FEDERATION/service_providers/{sp_id}
identity:delete_service_provider DELETE /v3/OS-FEDERATION/service_providers/{sp_id}
identity:get_auth_catalog GET /v3/auth/catalog
identity:get_auth_projects GET /v3/auth/projects
identity:get_auth_domains GET /v3/auth/domains
identity:get_auth_system GET /v3/auth/system
identity:list_projects_for_user GET /v3/OS-FEDERATION/projects
identity:list_domains_for_user GET /v3/OS-FEDERATION/domains
identity:list_revoke_events GET /v3/OS-REVOKE/events
identity:create_policy_association_for_endpoint PUT /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/endpoints/{endpoint_id}
identity:check_policy_association_for_endpoint GET /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/endpoints/{endpoint_id}

continues on next page

2.2. Mapping of policy target to API 43

Keystone Documentation, Release 21.0.2.dev4

Table 1 – continued from previous page
Target API
identity:delete_policy_association_for_endpoint DELETE /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/endpoints/{endpoint_id}
identity:create_policy_association_for_service PUT /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/{service_id}
identity:check_policy_association_for_service GET /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/{service_id}
identity:delete_policy_association_for_service DELETE /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/{service_id}
identity:create_policy_association_for_region_and_service PUT /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/{service_id}/regions/{region_id}
identity:check_policy_association_for_region_and_service GET /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/{service_id}/regions/{region_id}
identity:delete_policy_association_for_region_and_service DELETE /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/{service_id}/regions/{region_id}
identity:get_policy_for_endpoint GET /v3/endpoints/{endpoint_id}/OS-ENDPOINT-POLICY/policy
identity:list_endpoints_for_policy GET /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/endpoints
identity:create_domain_config PUT /v3/domains/{domain_id}/config
identity:get_domain_config GET /v3/domains/{domain_id}/config GET /v3/domains/{domain_id}/config/{group} GET /v3/domains/{domain_id}/config/{group}/{option}
identity:get_security_compliance_domain_config GET /v3/domains/{domain_id}/config/security_compliance GET /v3/domains/{domain_id}/config/security_compliance/{option}
identity:update_domain_config PATCH /v3/domains/{domain_id}/config PATCH /v3/domains/{domain_id}/config/{group} PATCH /v3/domains/{domain_id}/config/{group}/{option}
identity:delete_domain_config DELETE /v3/domains/{domain_id}/config DELETE /v3/domains/{domain_id}/config/{group} DELETE /v3/domains/{domain_id}/config/{group}/{option}
identity:get_domain_config_default GET /v3/domains/config/default GET /v3/domains/config/{group}/default GET /v3/domains/config/{group}/{option}/default
identity:get_application_credential GET /v3/users/{user_id}/application_credentials/{application_credential_id}
identity:list_application_credentials GET /v3/users/{user_id}/application_credentials
identity:create_application_credential POST /v3/users/{user_id}/application_credential
identity:delete_application_credential DELETE /v3/users/{user_id}/application_credential/{application_credential_id}
identity:get_access_rule GET /v3/users/{user_id}/access_rules/{access_rule_id}
identity:list_access_rules GET /v3/users/{user_id}/access_rules
identity:delete_access_rule DELETE /v3/users/{user_id}/access_rules/{access_rule_id}

grant_resources are:

• /v3/projects/{project_id}/users/{user_id}/roles/{role_id}

• /v3/projects/{project_id}/groups/{group_id}/roles/{role_id}

• /v3/domains/{domain_id}/users/{user_id}/roles/{role_id}

• /v3/domains/{domain_id}/groups/{group_id}/roles/{role_id}

• /v3/OS-INHERIT/domains/{domain_id}/users/{user_id}/roles/{role_id}/inherited_to_projects

• /v3/OS-INHERIT/domains/{domain_id}/groups/{group_id}/roles/{role_id}/inherited_to_projects

• /v3/OS-INHERIT/projects/{project_id}/users/{user_id}/roles/{role_id}/inherited_to_projects

• /v3/OS-INHERIT/projects/{project_id}/groups/{group_id}/roles/{role_id}/inherited_to_projects

grant_collections are:

• /v3/projects/{project_id}/users/{user_id}/roles

• /v3/projects/{project_id}/groups/{group_id}/roles

• /v3/domains/{domain_id}/users/{user_id}/roles

• /v3/domains/{domain_id}/groups/{group_id}/roles

• /v3/OS-INHERIT/domains/{domain_id}/groups/{group_id}/roles/inherited_to_projects

• /v3/OS-INHERIT/domains/{domain_id}/users/{user_id}/roles/inherited_to_projects

44 Chapter 2. Getting Started

Keystone Documentation, Release 21.0.2.dev4

2.3 Getting Involved

The OpenStack community is a very friendly group and there are places online to join in with the com-
munity. Feel free to ask questions. This document points you to some of the places where you can
communicate with people.

2.3.1 How to Join the Community

Our community welcomes all people interested in open source cloud computing, and there are no formal
membership requirements. The best way to join the community is to talk with others online or at a meetup
and offer contributions through Launchpad, the wiki, or blogs. We welcome all types of contributions,
from feature designs to documentation to testing to deployment scripts.

#openstack-keystone on OFTC IRC Network

You can find Keystone folks in irc://oftc.net/#openstack-keystone. This is usually the best place to ask
questions and find your way around. IRC stands for Internet Relay Chat and it is a way to chat online in
real time. You can also ask a question and come back to the log files to read the answer later. Logs for
the #openstack IRC channels are stored at http://eavesdrop.openstack.org/irclogs/.

For more information regarding OpenStack IRC channels please visit the OpenStack IRC Wiki.

Keystone on Launchpad

Launchpad is a code hosting that OpenStack is using to track bugs, feature work, and releases of Open-
Stack. Like other OpenStack projects, Keystone source code is hosted on opendev.org

• Keystone Project Page on Launchpad

• Keystone Source Repository

Within launchpad, we use bugs to report issues as well as to track feature work. If you are looking for
a place to get started contributing to keystone, please look at any bugs for Keystone that are tagged as
low-hanging-fruit.

OpenStack Blog

The OpenStack blog includes a weekly newsletter that aggregates OpenStack news from around the inter-
net, as well as providing inside information on upcoming events and posts from OpenStack contributors.

OpenStack Blog

See also: Planet OpenStack, an aggregation of blogs about OpenStack from around the internet, combined
into a web site and RSS feed. If youd like to contribute with your blog posts, there are instructions for
adding your blog.

2.3. Getting Involved 45

https://launchpad.net/keystone
https://wiki.openstack.org/
irc://oftc.net/#openstack-keystone
http://eavesdrop.openstack.org/irclogs/
https://wiki.openstack.org/wiki/IRC
https://launchpad.net/keystone
https://opendev.org/openstack/keystone
https://bugs.launchpad.net/keystone
https://bugs.launchpad.net/keystone/+bugs?field.tag=low-hanging-fruit
https://openstack.org/blog
http://planet.openstack.org/
https://wiki.openstack.org/AddingYourBlog

Keystone Documentation, Release 21.0.2.dev4

Twitter

Because all the cool kids do it: @openstack. Also follow the #openstack tag for relevant tweets.

46 Chapter 2. Getting Started

http://twitter.com/openstack
https://twitter.com/search?q=%23openstack

CHAPTER

THREE

CODE DOCUMENTATION

3.1 keystone

3.1.1 keystone package

Subpackages

keystone.api package

Submodules

keystone.api.auth module

class keystone.api.auth.AuthAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’, decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

47

Keystone Documentation, Release 21.0.2.dev4

resource_mapping = [resource_map(resource=<class
'keystone.api.auth.AuthProjectsResource'>, url='/auth/projects',
alternate_urls=[{'url': '/OS-FEDERATION/projects', 'json_home':
json_home_data(rel='https://docs.openstack.org/api/openstack-identity/3/
ext/OS-FEDERATION/1.0/rel/projects', status='stable', path_vars={})}],
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/rel/auth_projects', status='stable',
path_vars={})), resource_map(resource=<class
'keystone.api.auth.AuthDomainsResource'>, url='/auth/domains',
alternate_urls=[{'url': '/OS-FEDERATION/domains', 'json_home':
json_home_data(rel='https://docs.openstack.org/api/openstack-identity/3/
ext/OS-FEDERATION/1.0/rel/domains', status='stable', path_vars={})}],
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/rel/auth_domains', status='stable',
path_vars={})), resource_map(resource=<class
'keystone.api.auth.AuthSystemResource'>, url='/auth/system',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/auth_system',
status='stable', path_vars={})), resource_map(resource=<class
'keystone.api.auth.AuthCatalogResource'>, url='/auth/catalog',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/auth_catalog',
status='stable', path_vars={})), resource_map(resource=<class
'keystone.api.auth.AuthTokenOSPKIResource'>,
url='/auth/tokens/OS-PKI/revoked', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-PKI/1.0/rel/revocations', status='stable',
path_vars={})), resource_map(resource=<class
'keystone.api.auth.AuthTokenResource'>, url='/auth/tokens',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/auth_tokens',
status='stable', path_vars={}))]

resources = []

class keystone.api.auth.AuthCatalogResource
Bases: keystone.api.auth._AuthFederationWebSSOBase

get()
Get service catalog for token.

GET/HEAD /v3/auth/catalog

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.auth.AuthDomainsResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'domains'

get()
Get possible domain scopes for token.

GET/HEAD /v3/auth/domains GET/HEAD /v3/OS-FEDERATION/domains

48 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

member_key = 'domain'

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.auth.AuthFederationAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.auth.AuthFederationSaml2Resource'>,
url='/auth/OS-FEDERATION/saml2', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-FEDERATION/1.0/rel/saml2', status='stable',
path_vars={})), resource_map(resource=<class
'keystone.api.auth.AuthFederationSaml2ECPResource'>,
url='/auth/OS-FEDERATION/saml2/ecp', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-FEDERATION/1.0/rel/ecp', status='stable',
path_vars={})), resource_map(resource=<class
'keystone.api.auth.AuthFederationWebSSOResource'>,
url='/auth/OS-FEDERATION/websso/<string:protocol_id>',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-FEDERATION/1.0/rel/websso', status='stable',
path_vars={'protocol_id': 'https://docs.openstack.org/api/
openstack-identity/3/ext/OS-FEDERATION/1.0/param/protocol_id'})),
resource_map(resource=<class
'keystone.api.auth.AuthFederationWebSSOIDPsResource'>,
url='/auth/OS-FEDERATION/identity_providers/<string:idp_id>/protocols/
<string:protocol_id>/websso', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-FEDERATION/1.0/rel/identity_providers_websso',
status='stable', path_vars={'idp_id': 'https://docs.openstack.org/api/
openstack-identity/3/ext/OS-FEDERATION/1.0/param/idp_id', 'protocol_id':
'https://docs.openstack.org/api/openstack-identity/3/ext/OS-FEDERATION/1.
0/param/protocol_id'}))]

resources = []

class keystone.api.auth.AuthFederationSaml2ECPResource
Bases: keystone.api.auth._AuthFederationWebSSOBase

get()

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post()
Exchange a scoped token for an ECP assertion.

POST /v3/auth/OS-FEDERATION/saml2/ecp

class keystone.api.auth.AuthFederationSaml2Resource
Bases: keystone.api.auth._AuthFederationWebSSOBase

3.1. keystone 49

Keystone Documentation, Release 21.0.2.dev4

get()

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post()
Exchange a scoped token for a SAML assertion.

POST /v3/auth/OS-FEDERATION/saml2

class keystone.api.auth.AuthFederationWebSSOIDPsResource
Bases: keystone.api.auth._AuthFederationWebSSOBase

get(idp_id, protocol_id)

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post(idp_id, protocol_id)

class keystone.api.auth.AuthFederationWebSSOResource
Bases: keystone.api.auth._AuthFederationWebSSOBase

get(protocol_id)

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post(protocol_id)

class keystone.api.auth.AuthProjectsResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'projects'

get()
Get possible project scopes for token.

GET/HEAD /v3/auth/projects GET/HEAD /v3/OS-FEDERATION/projects

member_key = 'project'

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.auth.AuthSystemResource
Bases: keystone.api.auth._AuthFederationWebSSOBase

get()
Get possible system scopes for token.

GET/HEAD /v3/auth/system

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.auth.AuthTokenOSPKIResource
Bases: flask_restful.Resource

get()
Deprecated; get revoked token list.

GET/HEAD /v3/auth/tokens/OS-PKI/revoked

50 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.auth.AuthTokenResource
Bases: keystone.api.auth._AuthFederationWebSSOBase

delete()
Revoke a token.

DELETE /v3/auth/tokens

get()
Validate a token.

HEAD/GET /v3/auth/tokens

methods: Optional[List[str]] = {'DELETE', 'GET', 'POST'}
A list of methods this view can handle.

post()
Issue a token.

POST /v3/auth/tokens

keystone.api.credentials module

class keystone.api.credentials.CredentialAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = []

resources = [<class 'keystone.api.credentials.CredentialResource'>]

class keystone.api.credentials.CredentialResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'credentials'

delete(credential_id)

get(credential_id=None)

member_key = 'credential'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(credential_id)

post()

3.1. keystone 51

Keystone Documentation, Release 21.0.2.dev4

keystone.api.discovery module

class keystone.api.discovery.DiscoveryAPI
Bases: object

static instantiate_and_register_to_app(flask_app)

class keystone.api.discovery.MimeTypes
Bases: object

JSON = 'application/json'

JSON_HOME = 'application/json-home'

keystone.api.discovery.get_version_v3()

keystone.api.discovery.get_versions()

keystone.api.discovery.v3_mime_type_best_match()

keystone.api.domains module

class keystone.api.domains.DefaultConfigGroupResource
Bases: flask_restful.Resource

get(group=None)
Get default domain group config.

GET/HEAD /v3/domains/config/{group}/default

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.domains.DefaultConfigOptionResource
Bases: flask_restful.Resource

get(group=None, option=None)
Get default domain group option config.

GET/HEAD /v3/domains/config/{group}/{option}/default

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.domains.DefaultConfigResource
Bases: flask_restful.Resource

get()
Get default domain config.

GET/HEAD /v3/domains/config/default

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.domains.DomainAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

52 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

CONFIG_GROUP =
'https://docs.openstack.org/api/openstack-identity/3/param/config_group'

CONFIG_OPTION =
'https://docs.openstack.org/api/openstack-identity/3/param/config_option'

3.1. keystone 53

Keystone Documentation, Release 21.0.2.dev4

resource_mapping = [resource_map(resource=<class
'keystone.api.domains.DomainConfigResource'>,
url='/domains/<string:domain_id>/config', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/domain_config', status='stable',
path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id'})),
resource_map(resource=<class
'keystone.api.domains.DomainConfigGroupResource'>,
url='/domains/<string:domain_id>/config/<string:group>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/domain_config_group',
status='stable', path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'group': 'https://docs.openstack.org/api/openstack-identity/3/param/
config_group'})), resource_map(resource=<class
'keystone.api.domains.DomainConfigOptionResource'>,
url='/domains/<string:domain_id>/config/<string:group>/<string:option>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/domain_config_option',
status='stable', path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'group':
'https://docs.openstack.org/api/openstack-identity/3/param/config_group',
'option': 'https://docs.openstack.org/api/openstack-identity/3/param/
config_option'})), resource_map(resource=<class
'keystone.api.domains.DefaultConfigResource'>,
url='/domains/config/default', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/domain_config_default', status='stable',
path_vars={})), resource_map(resource=<class
'keystone.api.domains.DefaultConfigGroupResource'>,
url='/domains/config/<string:group>/default', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/rel/domain_config_default_group',
status='stable', path_vars={'group': 'https://docs.openstack.org/api/
openstack-identity/3/param/config_group'})), resource_map(resource=<class
'keystone.api.domains.DefaultConfigOptionResource'>,
url='/domains/config/<string:group>/<string:option>/default',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/domain_config_default_option', status='stable',
path_vars={'group':
'https://docs.openstack.org/api/openstack-identity/3/param/config_group',
'option': 'https://docs.openstack.org/api/openstack-identity/3/param/
config_option'})), resource_map(resource=<class
'keystone.api.domains.DomainUserListResource'>,
url='/domains/<string:domain_id>/users/<string:user_id>/roles',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/domain_user_roles',
status='stable', path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class 'keystone.api.domains.DomainUserResource'>,
url='/domains/<string:domain_id>/users/<string:user_id>/roles/
<string:role_id>', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/domain_user_role', status='stable',
path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'})),
resource_map(resource=<class
'keystone.api.domains.DomainGroupListResource'>,
url='/domains/<string:domain_id>/groups/<string:group_id>/roles',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/domain_group_roles',
status='stable', path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id'})),
resource_map(resource=<class 'keystone.api.domains.DomainGroupResource'>,
url='/domains/<string:domain_id>/groups/<string:group_id>/roles/
<string:role_id>', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/domain_group_role', status='stable',
path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'}))]

54 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

resources = [<class 'keystone.api.domains.DomainResource'>]

class keystone.api.domains.DomainConfigBase
Bases: keystone.server.flask.common.ResourceBase

delete(domain_id=None, group=None, option=None)
Delete domain config.

DELETE /v3/domains/{domain_id}/config DELETE /v3/domains/{domain_id}/config/{group}
DELETE /v3/domains/{domain_id}/config/{group}/{option}

get(domain_id=None, group=None, option=None)
Check if config option exists.

GET/HEAD /v3/domains/{domain_id}/config GET/HEAD
/v3/domains/{domain_id}/config/{group} GET/HEAD /v3/domains/{domain_id}/config/{group}/{option}

member_key = 'config'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH'}
A list of methods this view can handle.

patch(domain_id=None, group=None, option=None)
Update domain config option.

PATCH /v3/domains/{domain_id}/config PATCH /v3/domains/{domain_id}/config/{group}
PATCH /v3/domains/{domain_id}/config/{group}/{option}

class keystone.api.domains.DomainConfigGroupResource
Bases: keystone.api.domains.DomainConfigBase

Provides config group routing functionality.

This class leans on DomainConfigBase to provide the following APIs:

GET/HEAD /v3/domains/{domain_id}/config/{group} PATCH
/v3/domains/{domain_id}/config/{group} DELETE /v3/domains/{domain_id}/config/{group}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH'}
A list of methods this view can handle.

class keystone.api.domains.DomainConfigOptionResource
Bases: keystone.api.domains.DomainConfigBase

Provides config option routing functionality.

This class leans on DomainConfigBase to provide the following APIs:

GET/HEAD /v3/domains/{domain_id}/config/{group}/{option}
PATCH /v3/domains/{domain_id}/config/{group}/{option} DELETE
/v3/domains/{domain_id}/config/{group}/{option}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH'}
A list of methods this view can handle.

class keystone.api.domains.DomainConfigResource
Bases: keystone.api.domains.DomainConfigBase

Provides config routing functionality.

This class leans on DomainConfigBase to provide the following APIs:

3.1. keystone 55

Keystone Documentation, Release 21.0.2.dev4

GET/HEAD /v3/domains/{domain_id}/config PATCH /v3/domains/{domain_id}/config
DELETE /v3/domains/{domain_id}/config

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'PUT'}
A list of methods this view can handle.

put(domain_id)
Create domain config.

PUT /v3/domains/{domain_id}/config

class keystone.api.domains.DomainGroupListResource
Bases: flask_restful.Resource

get(domain_id=None, group_id=None)
List all domain grats for a specific group.

GET/HEAD /v3/domains/{domain_id}/groups/{group_id}/roles

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.domains.DomainGroupResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'grants'

delete(domain_id=None, group_id=None, role_id=None)
Revoke a role from a group on a domain.

DELETE /v3/domains/{domain_id}/groups/{group_id}/roles/{role_id}

get(domain_id=None, group_id=None, role_id=None)
Check if a group has a specific role on a domain.

GET/HEAD /v3/domains/{domain_id}/groups/{group_id}/roles/{role_id}

member_key = 'grant'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(domain_id=None, group_id=None, role_id=None)
Grant a role to a group on a domain.

PUT /v3/domains/{domain_id}/groups/{group_id}/roles/{role_id}

class keystone.api.domains.DomainResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'domains'

delete(domain_id)
Delete domain.

DELETE /v3/domains/{domain_id}

get(domain_id=None)
Get domain or list domains.

GET/HEAD /v3/domains GET/HEAD /v3/domains/{domain_id}

get_member_from_driver

56 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

member_key = 'domain'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(domain_id)
Update domain.

PATCH /v3/domains/{domain_id}

post()
Create domain.

POST /v3/domains

class keystone.api.domains.DomainUserListResource
Bases: flask_restful.Resource

get(domain_id=None, user_id=None)
Get user grant.

GET/HEAD /v3/domains/{domain_id}/users/{user_id}/roles

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.domains.DomainUserResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'grants'

delete(domain_id=None, user_id=None, role_id=None)
Revoke a role from user on a domain.

DELETE /v3/domains/{domain_id}/users/{user_id}/roles/{role_id}

get(domain_id=None, user_id=None, role_id=None)
Check if a user has a specific role on the domain.

GET/HEAD /v3/domains/{domain_id}/users/{user_id}/roles/{role_id}

member_key = 'grant'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(domain_id=None, user_id=None, role_id=None)
Create a role to a user on a domain.

PUT /v3/domains/{domain_id}/users/{user_id}/roles/{role_id}

3.1. keystone 57

Keystone Documentation, Release 21.0.2.dev4

keystone.api.ec2tokens module

class keystone.api.ec2tokens.EC2TokensAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.ec2tokens.EC2TokensResource'>, url='/ec2tokens',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-EC2/1.0/rel/ec2tokens', status='stable',
path_vars={}))]

resources = []

class keystone.api.ec2tokens.EC2TokensResource
Bases: keystone.api._shared.EC2_S3_Resource.ResourceBase

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post()
Authenticate ec2 token.

POST /v3/ec2tokens

keystone.api.endpoints module

class keystone.api.endpoints.EndpointAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.endpoints.EndpointPolicyEndpointResource'>,
url='/endpoints/<string:endpoint_id>/OS-ENDPOINT-POLICY/policy',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-ENDPOINT-POLICY/1.0/rel/endpoint_policy',
status='stable', path_vars={'endpoint_id': 'https://docs.openstack.org/
api/openstack-identity/3/param/endpoint_id'}))]

resources = [<class 'keystone.api.endpoints.EndpointResource'>]

class keystone.api.endpoints.EndpointPolicyEndpointResource
Bases: flask_restful.Resource

get(endpoint_id)

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.endpoints.EndpointResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'endpoints'

58 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

delete(endpoint_id)

get(endpoint_id=None)

get_member_from_driver

member_key = 'endpoint'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(endpoint_id)

post()

keystone.api.groups module

class keystone.api.groups.GroupAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’, decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.groups.GroupUsersResource'>,
url='/groups/<string:group_id>/users', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/group_users', status='stable',
path_vars={'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id'})),
resource_map(resource=<class 'keystone.api.groups.UserGroupCRUDResource'>,
url='/groups/<string:group_id>/users/<string:user_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/group_user',
status='stable', path_vars={'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'}))]

resources = [<class 'keystone.api.groups.GroupsResource'>]

class keystone.api.groups.GroupUsersResource
Bases: keystone.server.flask.common.ResourceBase

get(group_id)
Get list of users in group.

GET/HEAD /groups/{group_id}/users

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.groups.GroupsResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'groups'

delete(group_id)
Delete group.

3.1. keystone 59

Keystone Documentation, Release 21.0.2.dev4

DELETE /groups/{group_id}

get(group_id=None)

get_member_from_driver

member_key = 'group'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(group_id)
Update group.

PATCH /groups/{group_id}

post()
Create group.

POST /groups

class keystone.api.groups.UserGroupCRUDResource
Bases: flask_restful.Resource

delete(group_id, user_id)
Remove user from group.

DELETE /groups/{group_id}/users/{user_id}

get(group_id, user_id)
Check if a user is in a group.

GET/HEAD /groups/{group_id}/users/{user_id}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(group_id, user_id)
Add user to group.

PUT /groups/{group_id}/users/{user_id}

keystone.api.limits module

class keystone.api.limits.LimitModelResource
Bases: flask_restful.Resource

get()

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.limits.LimitsAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

60 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

resource_mapping = [resource_map(resource=<class
'keystone.api.limits.LimitModelResource'>, url='/limits/model',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/limit_model',
status='experimental', path_vars={}))]

resources = [<class 'keystone.api.limits.LimitsResource'>]

class keystone.api.limits.LimitsResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'limits'

delete(limit_id)

get(limit_id=None)

get_member_from_driver

json_home_resource_status = 'experimental'

member_key = 'limit'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(limit_id)

post()

keystone.api.os_ep_filter module

class keystone.api.os_ep_filter.EPFilterAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

3.1. keystone 61

Keystone Documentation, Release 21.0.2.dev4

resource_mapping = [resource_map(resource=<class
'keystone.api.os_ep_filter.EPFilterEndpointProjectsResource'>,
url='/endpoints/<string:endpoint_id>/projects', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/ext/OS-EP-FILTER/1.0/rel/endpoint_projects',
status='stable', path_vars={'endpoint_id': 'https://docs.openstack.org/
api/openstack-identity/3/param/endpoint_id'})),
resource_map(resource=<class
'keystone.api.os_ep_filter.EPFilterProjectsEndpointsResource'>,
url='/projects/<string:project_id>/endpoints/<string:endpoint_id>',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-EP-FILTER/1.0/rel/project_endpoint',
status='stable', path_vars={'endpoint_id':
'https://docs.openstack.org/api/openstack-identity/3/param/endpoint_id',
'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id'})),
resource_map(resource=<class
'keystone.api.os_ep_filter.EPFilterProjectEndpointsListResource'>,
url='/projects/<string:project_id>/endpoints', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/ext/OS-EP-FILTER/1.0/rel/project_endpoints',
status='stable', path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id'})),
resource_map(resource=<class 'keystone.api.os_ep_filter.
EndpointFilterProjectEndpointGroupsListResource'>,
url='/projects/<string:project_id>/endpoint_groups', alternate_urls=None,
kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-EP-FILTER/1.0/rel/project_endpoint_groups',
status='stable', path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id'})),
resource_map(resource=<class
'keystone.api.os_ep_filter.EndpointFilterEPGroupsEndpoints'>,
url='/endpoint_groups/<string:endpoint_group_id>/endpoints',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/ext/OS-EP-FILTER/1.0/rel/
endpoints_in_endpoint_group', status='stable',
path_vars={'endpoint_group_id': 'https://docs.openstack.org/api/
openstack-identity/3/ext/OS-EP-FILTER/1.0/param/endpoint_group_id'})),
resource_map(resource=<class
'keystone.api.os_ep_filter.EndpointFilterEPGroupsProjects'>,
url='/endpoint_groups/<string:endpoint_group_id>/projects',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/ext/OS-EP-FILTER/1.0/rel/
projects_associated_with_endpoint_group', status='stable',
path_vars={'endpoint_group_id': 'https://docs.openstack.org/api/
openstack-identity/3/ext/OS-EP-FILTER/1.0/param/endpoint_group_id'})),
resource_map(resource=<class
'keystone.api.os_ep_filter.EPFilterGroupsProjectsResource'>, url='/
endpoint_groups/<string:endpoint_group_id>/projects/<string:project_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/ext/OS-EP-FILTER/1.0/rel/
endpoint_group_to_project_association', status='stable',
path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id',
'endpoint_group_id': 'https://docs.openstack.org/api/openstack-identity/
3/ext/OS-EP-FILTER/1.0/param/endpoint_group_id'}))]

62 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

resources = [<class 'keystone.api.os_ep_filter.EndpointGroupsResource'>]

class keystone.api.os_ep_filter.EPFilterEndpointProjectsResource
Bases: flask_restful.Resource

get(endpoint_id)
Return a list of projects associated with the endpoint.

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_ep_filter.EPFilterGroupsProjectsResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'project_endpoint_groups'

delete(endpoint_group_id, project_id)

get(endpoint_group_id, project_id)

member_key = 'project_endpoint_group'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(endpoint_group_id, project_id)

class keystone.api.os_ep_filter.EPFilterProjectEndpointsListResource
Bases: flask_restful.Resource

get(project_id)

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_ep_filter.EPFilterProjectsEndpointsResource
Bases: flask_restful.Resource

delete(project_id, endpoint_id)

get(project_id, endpoint_id)

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(project_id, endpoint_id)

class keystone.api.os_ep_filter.EndpointFilterEPGroupsEndpoints
Bases: flask_restful.Resource

get(endpoint_group_id)

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_ep_filter.EndpointFilterEPGroupsProjects
Bases: flask_restful.Resource

get(endpoint_group_id)

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

3.1. keystone 63

Keystone Documentation, Release 21.0.2.dev4

class
keystone.api.os_ep_filter.EndpointFilterProjectEndpointGroupsListResource

Bases: flask_restful.Resource

get(project_id)

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_ep_filter.EndpointGroupsResource
Bases: keystone.server.flask.common.ResourceBase

api_prefix = '/OS-EP-FILTER'

collection_key = 'endpoint_groups'

delete(endpoint_group_id)

get(endpoint_group_id=None)

json_home_parameter_rel_func(*, extension_version=’1.0’, parameter_name)

json_home_resource_rel_func(*, extension_version=’1.0’, resource_name)

member_key = 'endpoint_group'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(endpoint_group_id)

post()

keystone.api.os_federation module

class keystone.api.os_federation.IDPProtocolsCRUDResource
Bases: keystone.api.os_federation._IdentityProvidersProtocolsResourceBase

delete(idp_id, protocol_id)
Delete a protocol from an IDP.

DELETE /OS-FEDERATION/identity_providers/ {idp_id}/protocols/{protocol_id}

get(idp_id, protocol_id)
Get protocols for an IDP.

HEAD/GET /OS-FEDERATION/identity_providers/ {idp_id}/protocols/{protocol_id}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'PUT'}
A list of methods this view can handle.

patch(idp_id, protocol_id)
Update protocol for an IDP.

PATCH /OS-FEDERATION/identity_providers/ {idp_id}/protocols/{protocol_id}

put(idp_id, protocol_id)
Create protocol for an IDP.

PUT /OS-Federation/identity_providers/{idp_id}/protocols/{protocol_id}

64 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.api.os_federation.IDPProtocolsListResource
Bases: keystone.api.os_federation._IdentityProvidersProtocolsResourceBase

get(idp_id)
List protocols for an IDP.

HEAD/GET /OS-FEDERATION/identity_providers/{idp_id}/protocols

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_federation.IdentityProvidersResource
Bases: keystone.api.os_federation._ResourceBase

api_prefix = '/OS-FEDERATION'

collection_key = 'identity_providers'

delete(idp_id)

get(idp_id=None)

member_key = 'identity_provider'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'PUT'}
A list of methods this view can handle.

patch(idp_id)

put(idp_id)
Create an idp resource for federated authentication.

PUT /OS-FEDERATION/identity_providers/{idp_id}

class keystone.api.os_federation.MappingResource
Bases: keystone.api.os_federation._ResourceBase

api_prefix = '/OS-FEDERATION'

collection_key = 'mappings'

delete(mapping_id)
Delete a mapping.

DELETE /OS-FEDERATION/mappings/{mapping_id}

get(mapping_id=None)

member_key = 'mapping'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'PUT'}
A list of methods this view can handle.

patch(mapping_id)
Update a mapping.

PATCH /OS-FEDERATION/mappings/{mapping_id}

put(mapping_id)
Create a mapping.

PUT /OS-FEDERATION/mappings/{mapping_id}

3.1. keystone 65

Keystone Documentation, Release 21.0.2.dev4

class keystone.api.os_federation.OSFederationAPI(blueprint_url_prefix=”,
api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.os_federation.SAML2MetadataResource'>,
url='/saml2/metadata', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-FEDERATION/1.0/rel/metadata', status='stable',
path_vars={})), resource_map(resource=<class
'keystone.api.os_federation.OSFederationAuthResource'>, url='/
identity_providers/<string:idp_id>/protocols/<string:protocol_id>/auth',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/ext/OS-FEDERATION/1.0/rel/
identity_provider_protocol_auth', status='stable', path_vars={'idp_id':
'https://docs.openstack.org/api/openstack-identity/3/ext/OS-FEDERATION/1.
0/param/idp_id', 'protocol_id':
'https://docs.openstack.org/api/openstack-identity/3/ext/OS-FEDERATION/1.
0/param/protocol_id'}))]

resources = []

class keystone.api.os_federation.OSFederationAuthResource
Bases: flask_restful.Resource

get(idp_id, protocol_id)
Authenticate from dedicated uri endpoint.

GET/HEAD /OS-FEDERATION/identity_providers/ {idp_id}/protocols/{protocol_id}/auth

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post(idp_id, protocol_id)
Authenticate from dedicated uri endpoint.

POST /OS-FEDERATION/identity_providers/ {idp_id}/protocols/{protocol_id}/auth

class keystone.api.os_federation.OSFederationIdentityProvidersAPI(blueprint_url_prefix=”,
api_url_prefix=”,
de-
fault_mediatype=’application/json’,
decora-
tors=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = []

resources = [<class
'keystone.api.os_federation.IdentityProvidersResource'>]

66 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.api.os_federation.OSFederationIdentityProvidersProtocolsAPI(blueprint_url_prefix=”,
api_url_prefix=”,
de-
fault_mediatype=’application/json’,
dec-
ora-
tors=None,
er-
rors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.os_federation.IDPProtocolsCRUDResource'>,
url='/OS-FEDERATION/identity_providers/<string:idp_id>/protocols/
<string:protocol_id>', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-FEDERATION/1.0/rel/
identity_provider_protocol', status='stable', path_vars={'idp_id':
'https://docs.openstack.org/api/openstack-identity/3/ext/OS-FEDERATION/1.
0/param/idp_id', 'protocol_id':
'https://docs.openstack.org/api/openstack-identity/3/ext/OS-FEDERATION/1.
0/param/protocol_id'})), resource_map(resource=<class
'keystone.api.os_federation.IDPProtocolsListResource'>,
url='/OS-FEDERATION/identity_providers/<string:idp_id>/protocols',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/ext/OS-FEDERATION/1.0/rel/
identity_provider_protocols', status='stable', path_vars={'idp_id':
'https://docs.openstack.org/api/openstack-identity/3/ext/OS-FEDERATION/1.
0/param/idp_id'}))]

resources = []

class keystone.api.os_federation.OSFederationMappingsAPI(blueprint_url_prefix=”,
api_url_prefix=”, de-
fault_mediatype=’application/json’,
decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = []

resources = [<class 'keystone.api.os_federation.MappingResource'>]

class keystone.api.os_federation.OSFederationServiceProvidersAPI(blueprint_url_prefix=”,
api_url_prefix=”,
de-
fault_mediatype=’application/json’,
decora-
tors=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = []

3.1. keystone 67

Keystone Documentation, Release 21.0.2.dev4

resources = [<class
'keystone.api.os_federation.ServiceProvidersResource'>]

class keystone.api.os_federation.SAML2MetadataResource
Bases: flask_restful.Resource

get()
Get SAML2 metadata.

GET/HEAD /OS-FEDERATION/saml2/metadata

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_federation.ServiceProvidersResource
Bases: keystone.api.os_federation._ResourceBase

api_prefix = '/OS-FEDERATION'

collection_key = 'service_providers'

delete(sp_id)
Delete a service provider.

DELETE /OS-FEDERATION/service_providers/{sp_id}

get(sp_id=None)

member_key = 'service_provider'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'PUT'}
A list of methods this view can handle.

patch(sp_id)
Update a service provider.

PATCH /OS-FEDERATION/service_providers/{sp_id}

put(sp_id)
Create a service provider.

PUT /OS-FEDERATION/service_providers/{sp_id}

keystone.api.os_inherit module

class keystone.api.os_inherit.OSInheritAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

68 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

resource_mapping = [resource_map(resource=<class
'keystone.api.os_inherit.OSInheritDomainGroupRolesResource'>,
url='/domains/<string:domain_id>/groups/<string:group_id>/roles/
<string:role_id>/inherited_to_projects', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-INHERIT/1.0/rel/
domain_group_role_inherited_to_projects', status='stable',
path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'})),
resource_map(resource=<class
'keystone.api.os_inherit.OSInheritDomainGroupRolesListResource'>,
url='/domains/<string:domain_id>/groups/<string:group_id>/roles/
inherited_to_projects', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-INHERIT/1.0/rel/
domain_group_roles_inherited_to_projects', status='stable',
path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id'})),
resource_map(resource=<class
'keystone.api.os_inherit.OSInheritDomainUserRolesResource'>,
url='/domains/<string:domain_id>/users/<string:user_id>/roles/
<string:role_id>/inherited_to_projects', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-INHERIT/1.0/rel/
domain_user_role_inherited_to_projects', status='stable',
path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'})),
resource_map(resource=<class
'keystone.api.os_inherit.OSInheritDomainUserRolesListResource'>,
url='/domains/<string:domain_id>/users/<string:user_id>/roles/
inherited_to_projects', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-INHERIT/1.0/rel/
domain_user_roles_inherited_to_projects', status='stable',
path_vars={'domain_id':
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.os_inherit.OSInheritProjectUserResource'>,
url='/projects/<string:project_id>/users/<string:user_id>/roles/
<string:role_id>/inherited_to_projects', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-INHERIT/1.0/rel/
project_user_role_inherited_to_projects', status='stable',
path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'})),
resource_map(resource=<class
'keystone.api.os_inherit.OSInheritProjectGroupResource'>,
url='/projects/<string:project_id>/groups/<string:group_id>/roles/
<string:role_id>/inherited_to_projects', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-INHERIT/1.0/rel/
project_group_role_inherited_to_projects', status='stable',
path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id',
'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'}))]

3.1. keystone 69

Keystone Documentation, Release 21.0.2.dev4

resources = []

class keystone.api.os_inherit.OSInheritDomainGroupRolesListResource
Bases: flask_restful.Resource

get(domain_id, group_id)
List roles (inherited) for a group on a domain.

GET/HEAD /OS-INHERIT/domains/{domain_id}/groups/{group_id}
/roles/inherited_to_projects

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_inherit.OSInheritDomainGroupRolesResource
Bases: flask_restful.Resource

delete(domain_id, group_id, role_id)
Revoke an inherited grant for a group on a domain.

DELETE /OS-INHERIT/domains/{domain_id}/groups/{group_id}
/roles/{role_id}/inherited_to_projects

get(domain_id, group_id, role_id)
Check for an inherited grant for a group on a domain.

GET/HEAD /OS-INHERIT/domains/{domain_id}/groups/{group_id}
/roles/{role_id}/inherited_to_projects

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(domain_id, group_id, role_id)
Create an inherited grant for a group on a domain.

PUT /OS-INHERIT/domains/{domain_id}/groups/{group_id}
/roles/{role_id}/inherited_to_projects

class keystone.api.os_inherit.OSInheritDomainUserRolesListResource
Bases: flask_restful.Resource

get(domain_id, user_id)
List roles (inherited) for a user on a domain.

GET/HEAD /OS-INHERIT/domains/{domain_id}/users/{user_id}
/roles/inherited_to_projects

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_inherit.OSInheritDomainUserRolesResource
Bases: flask_restful.Resource

delete(domain_id, user_id, role_id)
Revoke a grant from a user on a domain.

DELETE /OS-INHERIT/domains/{domain_id}/users/{user_id}/roles
/{role_id}/inherited_to_projects

get(domain_id, user_id, role_id)
Check for an inherited grant for a user on a domain.

70 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

GET/HEAD /OS-INHERIT/domains/{domain_id}/users/{user_id}/roles
/{role_id}/inherited_to_projects

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(domain_id, user_id, role_id)
Create an inherited grant for a user on a domain.

PUT /OS-INHERIT/domains/{domain_id}/users/{user_id}/roles/{role_id} /inher-
ited_to_projects

class keystone.api.os_inherit.OSInheritProjectGroupResource
Bases: flask_restful.Resource

delete(project_id, group_id, role_id)
Revoke an inherited grant for a group on a project.

DELETE /OS-INHERIT/projects/{project_id}/groups/{group_id}
/roles/{role_id}/inherited_to_projects

get(project_id, group_id, role_id)
Check for an inherited grant for a group on a project.

GET/HEAD /OS-INHERIT/projects/{project_id}/groups/{group_id}
/roles/{role_id}/inherited_to_projects

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(project_id, group_id, role_id)
Create an inherited grant for a group on a project.

PUT /OS-INHERIT/projects/{project_id}/groups/{group_id}
/roles/{role_id}/inherited_to_projects

class keystone.api.os_inherit.OSInheritProjectUserResource
Bases: flask_restful.Resource

delete(project_id, user_id, role_id)
Revoke an inherited grant for a user on a project.

DELETE /OS-INHERIT/projects/{project_id}/users/{user_id}
/roles/{role_id}/inherited_to_projects

get(project_id, user_id, role_id)
Check for an inherited grant for a user on a project.

GET/HEAD /OS-INHERIT/projects/{project_id}/users/{user_id}
/roles/{role_id}/inherited_to_projects

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(project_id, user_id, role_id)
Create an inherited grant for a user on a project.

PUT /OS-INHERIT/projects/{project_id}/users/{user_id}
/roles/{role_id}/inherited_to_projects

3.1. keystone 71

Keystone Documentation, Release 21.0.2.dev4

keystone.api.os_oauth1 module

class keystone.api.os_oauth1.AccessTokenResource
Bases: keystone.api.os_oauth1._OAuth1ResourceBase

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post()

class keystone.api.os_oauth1.AuthorizeResource
Bases: keystone.api.os_oauth1._OAuth1ResourceBase

methods: Optional[List[str]] = {'GET', 'PUT'}
A list of methods this view can handle.

put(request_token_id)

class keystone.api.os_oauth1.ConsumerResource
Bases: keystone.server.flask.common.ResourceBase

api_prefix = '/OS-OAUTH1'

collection_key = 'consumers'

delete(consumer_id)

get(consumer_id=None)

json_home_parameter_rel_func(*, extension_version=’1.0’, parameter_name)

json_home_resource_rel_func(*, extension_version=’1.0’, resource_name)

member_key = 'consumer'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(consumer_id)

post()

class keystone.api.os_oauth1.OSAuth1API(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

72 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

resource_mapping = [resource_map(resource=<class
'keystone.api.os_oauth1.RequestTokenResource'>, url='/request_token',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-OAUTH1/1.0/rel/request_tokens',
status='stable', path_vars={})), resource_map(resource=<class
'keystone.api.os_oauth1.AccessTokenResource'>, url='/access_token',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-OAUTH1/1.0/rel/access_tokens',
status='stable', path_vars={})), resource_map(resource=<class
'keystone.api.os_oauth1.AuthorizeResource'>,
url='/authorize/<string:request_token_id>', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/ext/OS-OAUTH1/1.0/rel/authorize_request_token',
status='stable', path_vars={'request_token_id': 'https://docs.openstack.
org/api/openstack-identity/3/ext/OS-OAUTH1/1.0/param/request_token_id'}))]

resources = [<class 'keystone.api.os_oauth1.ConsumerResource'>]

class keystone.api.os_oauth1.RequestTokenResource
Bases: keystone.api.os_oauth1._OAuth1ResourceBase

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post()

keystone.api.os_revoke module

class keystone.api.os_revoke.OSRevokeAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.os_revoke.OSRevokeResource'>, url='/events',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-REVOKE/1.0/rel/events', status='stable',
path_vars={}))]

resources = []

class keystone.api.os_revoke.OSRevokeResource
Bases: flask_restful.Resource

get()

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

3.1. keystone 73

Keystone Documentation, Release 21.0.2.dev4

keystone.api.os_simple_cert module

class keystone.api.os_simple_cert.SimpleCertAPI(blueprint_url_prefix=”,
api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.os_simple_cert.SimpleCertCAResource'>,
url='/OS-SIMPLE-CERT/ca', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-SIMPLE-CERT/1.0/rel/ca_certificate',
status='stable', path_vars={})), resource_map(resource=<class
'keystone.api.os_simple_cert.SimpleCertListResource'>,
url='/OS-SIMPLE-CERT/certificates', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-SIMPLE-CERT/1.0/rel/certificates',
status='stable', path_vars={}))]

resources = []

class keystone.api.os_simple_cert.SimpleCertCAResource
Bases: flask_restful.Resource

get()

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.os_simple_cert.SimpleCertListResource
Bases: flask_restful.Resource

get()

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

keystone.api.policy module

class keystone.api.policy.EndpointPolicyAssociations
Bases: flask_restful.Resource

delete(policy_id, endpoint_id)

get(policy_id, endpoint_id)

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(policy_id, endpoint_id)

class keystone.api.policy.EndpointPolicyResource
Bases: flask_restful.Resource

get(policy_id)

74 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.policy.PolicyAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.policy.EndpointPolicyResource'>,
url='/policies/<string:policy_id>/OS-ENDPOINT-POLICY/endpoints',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-ENDPOINT-POLICY/1.0/rel/policy_endpoints',
status='stable', path_vars={'policy_id':
'https://docs.openstack.org/api/openstack-identity/3/param/policy_id'})),
resource_map(resource=<class
'keystone.api.policy.EndpointPolicyAssociations'>, url='/policies/
<string:policy_id>/OS-ENDPOINT-POLICY/endpoints/<string:endpoint_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/ext/OS-ENDPOINT-POLICY/1.0/
rel/endpoint_policy_association', status='stable', path_vars={'policy_id':
'https://docs.openstack.org/api/openstack-identity/3/param/policy_id',
'endpoint_id': 'https://docs.openstack.org/api/openstack-identity/3/
param/endpoint_id'})), resource_map(resource=<class
'keystone.api.policy.ServicePolicyAssociations'>, url='/policies/
<string:policy_id>/OS-ENDPOINT-POLICY/services/<string:service_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/ext/OS-ENDPOINT-POLICY/1.0/
rel/service_policy_association', status='stable', path_vars={'policy_id':
'https://docs.openstack.org/api/openstack-identity/3/param/policy_id',
'service_id':
'https://docs.openstack.org/api/openstack-identity/3/param/service_id'})),
resource_map(resource=<class
'keystone.api.policy.ServiceRegionPolicyAssociations'>,
url='/policies/<string:policy_id>/OS-ENDPOINT-POLICY/services/
<string:service_id>/regions/<string:region_id>', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/ext/OS-ENDPOINT-POLICY/1.0/rel/
region_and_service_policy_association', status='stable',
path_vars={'policy_id':
'https://docs.openstack.org/api/openstack-identity/3/param/policy_id',
'service_id':
'https://docs.openstack.org/api/openstack-identity/3/param/service_id',
'region_id':
'https://docs.openstack.org/api/openstack-identity/3/param/region_id'}))]

resources = [<class 'keystone.api.policy.PolicyResource'>]

class keystone.api.policy.PolicyResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'policies'

3.1. keystone 75

Keystone Documentation, Release 21.0.2.dev4

delete(policy_id)

get(policy_id=None)

member_key = 'policy'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(policy_id)

post()

class keystone.api.policy.ServicePolicyAssociations
Bases: flask_restful.Resource

delete(policy_id, service_id)

get(policy_id, service_id)

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(policy_id, service_id)

class keystone.api.policy.ServiceRegionPolicyAssociations
Bases: flask_restful.Resource

delete(policy_id, service_id, region_id)

get(policy_id, service_id, region_id)

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(policy_id, service_id, region_id)

keystone.api.projects module

class keystone.api.projects.ProjectAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

76 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

resource_mapping = [resource_map(resource=<class
'keystone.api.projects.ProjectTagsResource'>,
url='/projects/<string:project_id>/tags', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/project_tags', status='stable',
path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id'})),
resource_map(resource=<class 'keystone.api.projects.ProjectTagResource'>,
url='/projects/<string:project_id>/tags/<string:value>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/project_tags',
status='stable', path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id',
'value':
'https://docs.openstack.org/api/openstack-identity/3/param/tag_value'})),
resource_map(resource=<class
'keystone.api.projects.ProjectUserGrantResource'>, url='/projects/
<string:project_id>/users/<string:user_id>/roles/<string:role_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/project_user_role',
status='stable', path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'})),
resource_map(resource=<class
'keystone.api.projects.ProjectUserListGrantResource'>,
url='/projects/<string:project_id>/users/<string:user_id>/roles',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/project_user_roles',
status='stable', path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.projects.ProjectGroupGrantResource'>, url='/projects/
<string:project_id>/groups/<string:group_id>/roles/<string:role_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/project_group_role',
status='stable', path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id',
'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'})),
resource_map(resource=<class
'keystone.api.projects.ProjectGroupListGrantResource'>,
url='/projects/<string:project_id>/groups/<string:group_id>/roles',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/project_group_roles',
status='stable', path_vars={'project_id':
'https://docs.openstack.org/api/openstack-identity/3/param/project_id',
'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id'}))]

3.1. keystone 77

Keystone Documentation, Release 21.0.2.dev4

resources = [<class 'keystone.api.projects.ProjectResource'>]

class keystone.api.projects.ProjectGroupGrantResource
Bases: keystone.api.projects._ProjectGrantResourceBase

delete(project_id, group_id, role_id)
Delete grant of role for group on project.

DELETE /v3/projects/{project_id}/groups/{group_id}/roles/{role_id}

get(project_id, group_id, role_id)
Check grant for project, group, role.

GET/HEAD /v3/projects/{project_id/groups/{group_id}/roles/{role_id}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(project_id, group_id, role_id)
Grant role for group on project.

PUT /v3/projects/{project_id}/groups/{group_id}/roles/{role_id}

class keystone.api.projects.ProjectGroupListGrantResource
Bases: keystone.api.projects._ProjectGrantResourceBase

get(project_id, group_id)
List grants for group on project.

GET/HEAD /v3/projects/{project_id}/groups/{group_id}

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.projects.ProjectResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'projects'

delete(project_id)
Delete project.

DELETE /v3/projects/{project_id}

get(project_id=None)
Get project or list projects.

GET/HEAD /v3/projects GET/HEAD /v3/projects/{project_id}

get_member_from_driver

member_key = 'project'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(project_id)
Update project.

PATCH /v3/projects/{project_id}

post()
Create project.

78 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

POST /v3/projects

class keystone.api.projects.ProjectTagResource
Bases: keystone.api.projects._ProjectTagResourceBase

delete(project_id, value)
Delete a single tag from a project.

/v3/projects/{project_id}/tags/{value}

get(project_id, value)
Get information for a single tag associated with a given project.

GET /v3/projects/{project_id}/tags/{value}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(project_id, value)
Add a single tag to a project.

PUT /v3/projects/{project_id}/tags/{value}

class keystone.api.projects.ProjectTagsResource
Bases: keystone.api.projects._ProjectTagResourceBase

delete(project_id)
Delete all tags associated with a given project.

DELETE /v3/projects/{project_id}/tags

get(project_id)
List tags associated with a given project.

GET /v3/projects/{project_id}/tags

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(project_id)
Update all tags associated with a given project.

PUT /v3/projects/{project_id}/tags

class keystone.api.projects.ProjectUserGrantResource
Bases: keystone.api.projects._ProjectGrantResourceBase

delete(project_id, user_id, role_id)
Delete grant of role for user on project.

DELETE /v3/projects/{project_id}/users/{user_id}/roles/{role_id}

get(project_id, user_id, role_id)
Check grant for project, user, role.

GET/HEAD /v3/projects/{project_id/users/{user_id}/roles/{role_id}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(project_id, user_id, role_id)
Grant role for user on project.

3.1. keystone 79

Keystone Documentation, Release 21.0.2.dev4

PUT /v3/projects/{project_id}/users/{user_id}/roles/{role_id}

class keystone.api.projects.ProjectUserListGrantResource
Bases: keystone.api.projects._ProjectGrantResourceBase

get(project_id, user_id)
List grants for user on project.

GET/HEAD /v3/projects/{project_id}/users/{user_id}

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

keystone.api.regions module

class keystone.api.regions.RegionAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = []

resources = [<class 'keystone.api.regions.RegionResource'>]

class keystone.api.regions.RegionResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'regions'

delete(region_id)

get(region_id=None)

member_key = 'region'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST', 'PUT'}
A list of methods this view can handle.

patch(region_id)

post()

put(region_id)

keystone.api.registered_limits module

class keystone.api.registered_limits.RegisteredLimitResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'registered_limits'

delete(registered_limit_id)

get(registered_limit_id=None)

json_home_resource_status = 'experimental'

member_key = 'registered_limit'

80 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(registered_limit_id)

post()

class keystone.api.registered_limits.RegisteredLimitsAPI(blueprint_url_prefix=”,
api_url_prefix=”, de-
fault_mediatype=’application/json’,
decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = []

resources = [<class
'keystone.api.registered_limits.RegisteredLimitResource'>]

keystone.api.role_assignments module

class keystone.api.role_assignments.RoleAssignmentsAPI(blueprint_url_prefix=”,
api_url_prefix=”, de-
fault_mediatype=’application/json’,
decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.role_assignments.RoleAssignmentsResource'>,
url='/role_assignments', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/role_assignments', status='stable',
path_vars={}))]

resources = []

class keystone.api.role_assignments.RoleAssignmentsResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'role_assignments'

get()
List all role assignments.

GET/HEAD /v3/role_assignments

member_key = 'role_assignment'

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

3.1. keystone 81

Keystone Documentation, Release 21.0.2.dev4

keystone.api.role_inferences module

class keystone.api.role_inferences.RoleInferencesAPI(blueprint_url_prefix=”,
api_url_prefix=”, de-
fault_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.role_inferences.RoleInferencesResource'>,
url='/role_inferences', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/role_inferences', status='stable',
path_vars={}))]

resources = []

class keystone.api.role_inferences.RoleInferencesResource
Bases: flask_restful.Resource

get()
List role inference rules.

GET/HEAD /v3/role_inferences

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

keystone.api.roles module

class keystone.api.roles.RoleAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’, decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.roles.RoleImplicationListResource'>,
url='/roles/<string:prior_role_id>/implies', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/rel/implied_roles', status='stable',
path_vars={'prior_role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'})),
resource_map(resource=<class
'keystone.api.roles.RoleImplicationResource'>,
url='/roles/<string:prior_role_id>/implies/<string:implied_role_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/implied_role',
status='stable', path_vars={'prior_role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id',
'implied_role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'}))]

resources = [<class 'keystone.api.roles.RoleResource'>]

82 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.api.roles.RoleImplicationListResource
Bases: flask_restful.Resource

get(prior_role_id)
List Implied Roles.

GET/HEAD /v3/roles/{prior_role_id}/implies

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.roles.RoleImplicationResource
Bases: flask_restful.Resource

delete(prior_role_id, implied_role_id)
Delete implied role.

DELETE /v3/roles/{prior_role_id}/implies/{implied_role_id}

get(prior_role_id, implied_role_id)
Get implied role.

GET/HEAD /v3/roles/{prior_role_id}/implies/{implied_role_id}

head(prior_role_id, implied_role_id=None)

methods: Optional[List[str]] = {'DELETE', 'GET', 'HEAD', 'PUT'}
A list of methods this view can handle.

put(prior_role_id, implied_role_id)
Create implied role.

PUT /v3/roles/{prior_role_id}/implies/{implied_role_id}

class keystone.api.roles.RoleResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'roles'

delete(role_id)
Delete role.

DELETE /v3/roles/{role_id}

get(role_id=None)
Get role or list roles.

GET/HEAD /v3/roles GET/HEAD /v3/roles/{role_id}

get_member_from_driver

member_key = 'role'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(role_id)
Update role.

PATCH /v3/roles/{role_id}

post()
Create role.

3.1. keystone 83

Keystone Documentation, Release 21.0.2.dev4

POST /v3/roles

keystone.api.s3tokens module

class keystone.api.s3tokens.S3Api(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’, decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.s3tokens.S3Resource'>, url='/s3tokens', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/ext/s3tokens/1.0/rel/s3tokens', status='stable',
path_vars={}))]

resources = []

class keystone.api.s3tokens.S3Resource
Bases: keystone.api._shared.EC2_S3_Resource.ResourceBase

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post()
Authenticate s3token.

POST /v3/s3tokens

keystone.api.services module

class keystone.api.services.ServiceAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = []

resources = [<class 'keystone.api.services.ServicesResource'>]

class keystone.api.services.ServicesResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'services'

delete(service_id)

get(service_id=None)

member_key = 'service'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(service_id)

post()

84 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.api.system module

class keystone.api.system.SystemAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.system.SystemUsersListResource'>,
url='/system/users/<string:user_id>/roles', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/rel/system_user_roles', status='stable',
path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class 'keystone.api.system.SystemUsersResource'>,
url='/system/users/<string:user_id>/roles/<string:role_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/system_user_role',
status='stable', path_vars={'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.system.SystemGroupsRolesListResource'>,
url='/system/groups/<string:group_id>/roles', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/rel/system_group_roles', status='stable',
path_vars={'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id'})),
resource_map(resource=<class
'keystone.api.system.SystemGroupsRolestResource'>,
url='/system/groups/<string:group_id>/roles/<string:role_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/system_group_role',
status='stable', path_vars={'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id',
'group_id':
'https://docs.openstack.org/api/openstack-identity/3/param/group_id'}))]

resources = []

class keystone.api.system.SystemGroupsRolesListResource
Bases: flask_restful.Resource

get(group_id)
List all system grants for a specific group.

GET/HEAD /system/groups/{group_id}/roles

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.system.SystemGroupsRolestResource
Bases: flask_restful.Resource

3.1. keystone 85

Keystone Documentation, Release 21.0.2.dev4

delete(group_id, role_id)
Revoke a role from the group on the system.

DELETE /system/groups/{group_id}/roles/{role_id}

get(group_id, role_id)
Check if a group has a specific role on the system.

GET/HEAD /system/groups/{group_id}/roles/{role_id}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(group_id, role_id)
Grant a role to a group on the system.

PUT /system/groups/{group_id}/roles/{role_id}

class keystone.api.system.SystemUsersListResource
Bases: flask_restful.Resource

get(user_id)
List all system grants for a specific user.

GET/HEAD /system/users/{user_id}/roles

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.system.SystemUsersResource
Bases: flask_restful.Resource

delete(user_id, role_id)
Revoke a role from user on the system.

DELETE /system/users/{user_id}/roles/{role_id}

get(user_id, role_id)
Check if a user has a specific role on the system.

GET/HEAD /system/users/{user_id}/roles/{role_id}

methods: Optional[List[str]] = {'DELETE', 'GET', 'PUT'}
A list of methods this view can handle.

put(user_id, role_id)
Grant a role to a user on the system.

PUT /system/users/{user_id}/roles/{role_id}

keystone.api.trusts module

class keystone.api.trusts.RoleForTrustResource
Bases: flask_restful.Resource

get(trust_id, role_id)
Get a role that has been assigned to a trust.

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

86 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

property oslo_context

class keystone.api.trusts.RolesForTrustListResource
Bases: flask_restful.Resource

get(trust_id)

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

property oslo_context

class keystone.api.trusts.TrustAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’, decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

resource_mapping = [resource_map(resource=<class
'keystone.api.trusts.RolesForTrustListResource'>,
url='/trusts/<string:trust_id>/roles', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-TRUST/1.0/rel/trust_roles', status='stable',
path_vars={'trust_id': 'https://docs.openstack.org/api/
openstack-identity/3/ext/OS-TRUST/1.0/param/trust_id'})),
resource_map(resource=<class 'keystone.api.trusts.RoleForTrustResource'>,
url='/trusts/<string:trust_id>/roles/<string:role_id>',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-TRUST/1.0/rel/trust_role', status='stable',
path_vars={'trust_id': 'https://docs.openstack.org/api/
openstack-identity/3/ext/OS-TRUST/1.0/param/trust_id', 'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'}))]

resources = [<class 'keystone.api.trusts.TrustResource'>]

class keystone.api.trusts.TrustResource
Bases: keystone.server.flask.common.ResourceBase

api_prefix = '/OS-TRUST'

collection_key = 'trusts'

delete(trust_id)

get(trust_id=None)
Dispatch for GET/HEAD or LIST trusts.

json_home_parameter_rel_func(*, extension_version=’1.0’, parameter_name)

json_home_resource_rel_func(*, extension_version=’1.0’, resource_name)

member_key = 'trust'

methods: Optional[List[str]] = {'DELETE', 'GET', 'POST'}
A list of methods this view can handle.

post()
Create a new trust.

The User creating the trust must be the trustor.

3.1. keystone 87

Keystone Documentation, Release 21.0.2.dev4

keystone.api.users module

class keystone.api.users.OAuth1AccessTokenCRUDResource
Bases: keystone.api.users._OAuth1ResourceBase

delete(user_id, access_token_id)
Delete specific access token.

DELETE /v3/users/{user_id}/OS-OAUTH1/access_tokens/{access_token_id}

get(user_id, access_token_id)
Get specific access token.

GET/HEAD /v3/users/{user_id}/OS-OAUTH1/access_tokens/{access_token_id}

methods: Optional[List[str]] = {'DELETE', 'GET'}
A list of methods this view can handle.

class keystone.api.users.OAuth1AccessTokenRoleListResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'roles'

get(user_id, access_token_id)
List roles for a user access token.

GET/HEAD /v3/users/{user_id}/OS-OAUTH1/access_tokens/ {access_token_id}/roles

member_key = 'role'

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.users.OAuth1AccessTokenRoleResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'roles'

get(user_id, access_token_id, role_id)
Get role for access token.

GET/HEAD /v3/users/{user_id}/OS-OAUTH1/access_tokens/ {ac-
cess_token_id}/roles/{role_id}

member_key = 'role'

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.users.OAuth1ListAccessTokensResource
Bases: keystone.api.users._OAuth1ResourceBase

get(user_id)
List OAuth1 Access Tokens for user.

GET /v3/users/{user_id}/OS-OAUTH1/access_tokens

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

88 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.api.users.UserAPI(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’, decorators=None,
errors=None)

Bases: keystone.server.flask.common.APIBase

3.1. keystone 89

Keystone Documentation, Release 21.0.2.dev4

resource_mapping = [resource_map(resource=<class
'keystone.api.users.UserChangePasswordResource'>,
url='/users/<string:user_id>/password', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/user_change_password', status='stable',
path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class 'keystone.api.users.UserGroupsResource'>,
url='/users/<string:user_id>/groups', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/user_groups', status='stable',
path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class 'keystone.api.users.UserProjectsResource'>,
url='/users/<string:user_id>/projects', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/user_projects', status='stable',
path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.UserOSEC2CredentialsResourceListCreate'>,
url='/users/<string:user_id>/credentials/OS-EC2', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/ext/OS-EC2/1.0/rel/user_credentials',
status='stable', path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.UserOSEC2CredentialsResourceGetDelete'>,
url='/users/<string:user_id>/credentials/OS-EC2/<string:credential_id>',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-EC2/1.0/rel/user_credential', status='stable',
path_vars={'credential_id':
'https://docs.openstack.org/api/openstack-identity/3/param/credential_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.OAuth1ListAccessTokensResource'>,
url='/users/<string:user_id>/OS-OAUTH1/access_tokens',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-OAUTH1/1.0/rel/user_access_tokens',
status='stable', path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.OAuth1AccessTokenCRUDResource'>, url='/users/
<string:user_id>/OS-OAUTH1/access_tokens/<string:access_token_id>',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-OAUTH1/1.0/rel/user_access_token',
status='stable', path_vars={'access_token_id': 'https://docs.openstack.
org/api/openstack-identity/3/ext/OS-OAUTH1/1.0/param/access_token_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.OAuth1AccessTokenRoleListResource'>, url='/users/
<string:user_id>/OS-OAUTH1/access_tokens/<string:access_token_id>/roles',
alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/ext/OS-OAUTH1/1.0/rel/user_access_token_roles',
status='stable', path_vars={'access_token_id': 'https://docs.openstack.
org/api/openstack-identity/3/ext/OS-OAUTH1/1.0/param/access_token_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.OAuth1AccessTokenRoleResource'>,
url='/users/<string:user_id>/OS-OAUTH1/access_tokens/
<string:access_token_id>/roles/<string:role_id>', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/ext/OS-OAUTH1/1.0/rel/user_access_token_role',
status='stable', path_vars={'access_token_id': 'https://docs.openstack.
org/api/openstack-identity/3/ext/OS-OAUTH1/1.0/param/access_token_id',
'role_id':
'https://docs.openstack.org/api/openstack-identity/3/param/role_id',
'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.UserAppCredListCreateResource'>,
url='/users/<string:user_id>/application_credentials',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/application_credentials',
status='stable', path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.UserAppCredGetDeleteResource'>,
url='/users/<string:user_id>/application_credentials/
<string:application_credential_id>', alternate_urls=None, kwargs={},
json_home_data=json_home_data(rel='https://docs.openstack.org/api/
openstack-identity/3/rel/application_credential', status='stable',
path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id',
'application_credential_id': 'https://docs.openstack.org/api/
openstack-identity/3/param/application_credential_id'})),
resource_map(resource=<class
'keystone.api.users.UserAccessRuleListResource'>,
url='/users/<string:user_id>/access_rules', alternate_urls=None,
kwargs={}, json_home_data=json_home_data(rel='https://docs.openstack.org/
api/openstack-identity/3/rel/access_rules', status='stable',
path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'})),
resource_map(resource=<class
'keystone.api.users.UserAccessRuleGetDeleteResource'>,
url='/users/<string:user_id>/access_rules/<string:access_rule_id>',
alternate_urls=None, kwargs={}, json_home_data=json_home_data(rel='https:/
/docs.openstack.org/api/openstack-identity/3/rel/access_rule',
status='stable', path_vars={'user_id':
'https://docs.openstack.org/api/openstack-identity/3/param/user_id',
'access_rule_id': 'https://docs.openstack.org/api/openstack-identity/3/
param/access_rule_id'}))]

90 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

resources = [<class 'keystone.api.users.UserResource'>]

class keystone.api.users.UserAccessRuleGetDeleteResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'access_rules'

delete(user_id, access_rule_id)
Delete access rule resource.

DELETE /v3/users/{user_id}/access_rules/{access_rule_id}

get(user_id, access_rule_id)
Get access rule resource.

GET/HEAD /v3/users/{user_id}/access_rules/{access_rule_id}

member_key = 'access_rule'

methods: Optional[List[str]] = {'DELETE', 'GET'}
A list of methods this view can handle.

class keystone.api.users.UserAccessRuleListResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'access_rules'

get(user_id)
List access rules for user.

GET/HEAD /v3/users/{user_id}/access_rules

member_key = 'access_rule'

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.users.UserAppCredGetDeleteResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'application_credentials'

delete(user_id, application_credential_id)
Delete application credential resource.

DELETE /v3/users/{user_id}/application_credentials/ {application_credential_id}

get(user_id, application_credential_id)
Get application credential resource.

GET/HEAD /v3/users/{user_id}/application_credentials/ {application_credential_id}

member_key = 'application_credential'

methods: Optional[List[str]] = {'DELETE', 'GET'}
A list of methods this view can handle.

class keystone.api.users.UserAppCredListCreateResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'application_credentials'

3.1. keystone 91

Keystone Documentation, Release 21.0.2.dev4

get(user_id)
List application credentials for user.

GET/HEAD /v3/users/{user_id}/application_credentials

member_key = 'application_credential'

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post(user_id)
Create application credential.

POST /v3/users/{user_id}/application_credentials

class keystone.api.users.UserChangePasswordResource
Bases: keystone.server.flask.common.ResourceBase

get(user_id)

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post(user_id)

class keystone.api.users.UserGroupsResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'groups'

get(user_id)
Get groups for a user.

GET/HEAD /v3/users/{user_id}/groups

get_member_from_driver

member_key = 'group'

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.users.UserOSEC2CredentialsResourceGetDelete
Bases: keystone.api.users._UserOSEC2CredBaseResource

delete(user_id, credential_id)
Delete a specific EC2 credential.

DELETE /users/{user_id}/credentials/OS-EC2/{credential_id}

get(user_id, credential_id)
Get a specific EC2 credential.

GET/HEAD /users/{user_id}/credentials/OS-EC2/{credential_id}

methods: Optional[List[str]] = {'DELETE', 'GET'}
A list of methods this view can handle.

class keystone.api.users.UserOSEC2CredentialsResourceListCreate
Bases: keystone.api.users._UserOSEC2CredBaseResource

get(user_id)
List EC2 Credentials for user.

92 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

GET/HEAD /v3/users/{user_id}/credentials/OS-EC2

methods: Optional[List[str]] = {'GET', 'POST'}
A list of methods this view can handle.

post(user_id)
Create EC2 Credential for user.

POST /v3/users/{user_id}/credentials/OS-EC2

class keystone.api.users.UserProjectsResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'projects'

get(user_id)

get_member_from_driver

member_key = 'project'

methods: Optional[List[str]] = {'GET'}
A list of methods this view can handle.

class keystone.api.users.UserResource
Bases: keystone.server.flask.common.ResourceBase

collection_key = 'users'

delete(user_id)
Delete a user.

DELETE /v3/users/{user_id}

get(user_id=None)
Get a user resource or list users.

GET/HEAD /v3/users GET/HEAD /v3/users/{user_id}

get_member_from_driver

member_key = 'user'

methods: Optional[List[str]] = {'DELETE', 'GET', 'PATCH', 'POST'}
A list of methods this view can handle.

patch(user_id)
Update a user.

PATCH /v3/users/{user_id}

post()
Create a user.

POST /v3/users

3.1. keystone 93

Keystone Documentation, Release 21.0.2.dev4

Module contents

keystone.application_credential package

Subpackages

keystone.application_credential.backends package

Submodules

keystone.application_credential.backends.base module

class
keystone.application_credential.backends.base.ApplicationCredentialDriverBase

Bases: object

abstract authenticate(application_credential_id, secret)
Validate an application credential.

Parameters

• application_credential_id (str) Application Credential ID

• secret (str) Secret

Raises AssertionError If id or secret is invalid.

abstract create_application_credential(application_credential, roles)
Create a new application credential.

Parameters

• application_credential (dict) Application Credential data

• roles (list) A list of roles that apply to the application_credential.

Returns a new application credential

abstract delete_access_rule(access_rule_id)
Delete one access rule.

Parameters access_rule_id (str) Access Rule ID

abstract delete_access_rules_for_user(user_id)
Delete all access rules for user.

This is called when the user itself is deleted.

Parameters user_id (str) User ID

abstract delete_application_credential(application_credential_id)
Delete a single application credential.

Parameters application_credential_id (str) ID of the application creden-
tial to delete.

abstract delete_application_credentials_for_user(user_id)
Delete all application credentials for a user.

94 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters user_id ID of a user to whose application credentials should be
deleted.

abstract delete_application_credentials_for_user_on_project(user_id,
project_id)

Delete all application credentials for a user on a given project.

Parameters

• user_id (str) ID of a user to whose application credentials should be
deleted.

• project_id (str) ID of a project on which to filter application credentials.

abstract get_access_rule(access_rule_id)
Get an access rule by its ID.

Parameters access_rule_id (str) Access Rule ID

abstract get_application_credential(application_credential_id)
Get an application credential by the credential id.

Parameters application_credential_id (str) Application Credential ID

abstract list_access_rules_for_user(user_id)
List the access rules that a user has created.

Access rules are only created as attributes of application credentials, they cannot be created
independently.

Parameters user_id (str) User ID

abstract list_application_credentials_for_user(user_id, hints)
List application credentials for a user.

Parameters

• user_id (str) User ID

• hints contains the list of filters yet to be satisfied. Any filters satisfied here
will be removed so that the caller will know if any filters remain.

keystone.application_credential.backends.sql module

class keystone.application_credential.backends.sql.AccessRuleModel(*args,
**kwargs)

Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

application_credential

attributes = ['external_id', 'user_id', 'service', 'path', 'method']

external_id

id

method

path

service

3.1. keystone 95

Keystone Documentation, Release 21.0.2.dev4

user_id

class keystone.application_credential.backends.sql.ApplicationCredential
Bases: keystone.application_credential.backends.base.
ApplicationCredentialDriverBase

authenticate(application_credential_id, secret)
Validate an application credential.

Parameters

• application_credential_id (str) Application Credential ID

• secret (str) Secret

Raises AssertionError If id or secret is invalid.

create_application_credential(application_credential, roles, access_rules=None)
Create a new application credential.

Parameters

• application_credential (dict) Application Credential data

• roles (list) A list of roles that apply to the application_credential.

Returns a new application credential

delete_access_rule(access_rule_id)
Delete one access rule.

Parameters access_rule_id (str) Access Rule ID

delete_access_rules_for_user(user_id)
Delete all access rules for user.

This is called when the user itself is deleted.

Parameters user_id (str) User ID

delete_application_credential(application_credential_id)
Delete a single application credential.

Parameters application_credential_id (str) ID of the application creden-
tial to delete.

delete_application_credentials_for_user(user_id)
Delete all application credentials for a user.

Parameters user_id ID of a user to whose application credentials should be
deleted.

delete_application_credentials_for_user_on_project(user_id, project_id)
Delete all application credentials for a user on a given project.

Parameters

• user_id (str) ID of a user to whose application credentials should be
deleted.

• project_id (str) ID of a project on which to filter application credentials.

get_access_rule(access_rule_id)
Get an access rule by its ID.

96 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters access_rule_id (str) Access Rule ID

get_application_credential(application_credential_id)
Get an application credential by the credential id.

Parameters application_credential_id (str) Application Credential ID

list_access_rules_for_user(user_id, hints)
List the access rules that a user has created.

Access rules are only created as attributes of application credentials, they cannot be created
independently.

Parameters user_id (str) User ID

list_application_credentials_for_user(user_id, hints)
List application credentials for a user.

Parameters

• user_id (str) User ID

• hints contains the list of filters yet to be satisfied. Any filters satisfied here
will be removed so that the caller will know if any filters remain.

class keystone.application_credential.backends.sql.ApplicationCredentialAccessRuleModel(*args,
**kwargs)

Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

access_rule_id

application_credential_id

attributes = ['application_credential_id', 'access_rule_id']

class keystone.application_credential.backends.sql.ApplicationCredentialModel(*args,
**kwargs)

Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

access_rules

attributes = ['internal_id', 'id', 'name', 'secret_hash', 'description',
'user_id', 'project_id', 'system', 'expires_at', 'unrestricted']

description

expires_at

id

internal_id

name

project_id

roles

secret_hash

system

unrestricted

user_id

3.1. keystone 97

Keystone Documentation, Release 21.0.2.dev4

class keystone.application_credential.backends.sql.ApplicationCredentialRoleModel(*args,
**kwargs)

Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

application_credential_id

attributes = ['application_credential_id', 'role_id']

role_id

Module contents

Submodules

keystone.application_credential.core module

Main entry point into the Application Credential service.

class keystone.application_credential.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Application Credential backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

authenticate(application_credential_id, secret)
Authenticate with an application credential.

Parameters

• application_credential_id (str) Application Credential ID

• secret (str) Application Credential secret

create_application_credential(application_credential, initiator=None)
Create a new application credential.

Parameters

• application_credential (dict) Application Credential data

• initiator CADF initiator

Returns a new application credential

delete_access_rule(access_rule_id, initiator=None)
Delete an access rule.

Parameters

• str access_rule_id: Access Rule ID

• initiator CADF initiator

Raises keystone.exception.AccessRuleNotFound If the access rule doesnt
exist.

delete_application_credential(application_credential_id, initiator=None)
Delete an application credential.

98 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters

• application_credential_id (str) Application Credential ID

• initiator CADF initiator

Raises keystone.exception.ApplicationCredentialNotFound If the ap-
plication credential doesnt exist.

driver_namespace = 'keystone.application_credential'

get_access_rule(access_rule_id)
Get access rule details.

Parameters access_rule_id (str) Access Rule ID

Returns an access rule

get_application_credential(application_credential_id)
Get application credential details.

Parameters application_credential_id (str) Application Credential ID

Returns an application credential

list_access_rules_for_user(user_id, hints=None)
List access rules for user.

Parameters user_id (str) User ID

Returns a list of access rules

list_application_credentials(user_id, hints=None)
List application credentials for a user.

Parameters

• user_id (str) User ID

• hints (dict) Properties to filter on

Returns a list of application credentials

keystone.application_credential.schema module

Module contents

keystone.assignment package

Subpackages

keystone.assignment.backends package

Submodules

3.1. keystone 99

Keystone Documentation, Release 21.0.2.dev4

keystone.assignment.backends.base module

class keystone.assignment.backends.base.AssignmentDriverBase
Bases: object

abstract add_role_to_user_and_project(user_id, project_id, role_id)
Add a role to a user within given project.

Raises keystone.exception.Conflict If a duplicate role assignment exists.

abstract check_grant_role_id(role_id, user_id=None, group_id=None,
domain_id=None, project_id=None,
inherited_to_projects=False)

Check an assignment/grant role id.

Raises keystone.exception.RoleAssignmentNotFound If the role assign-
ment doesnt exist.

Returns None or raises an exception if grant not found

abstract check_system_grant(role_id, actor_id, target_id, inherited)
Check if a user or group has a specific role on the system.

Parameters

• role_id the unique ID of the role to grant to the user

• actor_id the unique ID of the user or group

• target_id the unique ID or string representing the target

• inherited a boolean denoting if the assignment is inherited or not

abstract create_grant(role_id, user_id=None, group_id=None, domain_id=None,
project_id=None, inherited_to_projects=False)

Create a new assignment/grant.

If the assignment is to a domain, then optionally it may be specified as inherited to owned
projects (this requires the OS-INHERIT extension to be enabled).

abstract create_system_grant(role_id, actor_id, target_id, assignment_type, inherited)
Grant a user or group a role on the system.

Parameters

• role_id the unique ID of the role to grant to the user

• actor_id the unique ID of the user or group

• target_id the unique ID or string representing the target

• assignment_type a string describing the relationship of the assignment

• inherited a boolean denoting if the assignment is inherited or not

abstract delete_domain_assignments(domain_id)
Delete all assignments for a domain.

abstract delete_grant(role_id, user_id=None, group_id=None, domain_id=None,
project_id=None, inherited_to_projects=False)

Delete assignments/grants.

100 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Raises keystone.exception.RoleAssignmentNotFound If the role assign-
ment doesnt exist.

abstract delete_group_assignments(group_id)
Delete all assignments for a group.

Raises keystone.exception.RoleNotFound If the role doesnt exist.

abstract delete_project_assignments(project_id)
Delete all assignments for a project.

Raises keystone.exception.ProjectNotFound If the project doesnt exist.

abstract delete_role_assignments(role_id)
Delete all assignments for a role.

abstract delete_system_grant(role_id, actor_id, target_id, inherited)
Remove a system assignment from a user or group.

Parameters

• role_id the unique ID of the role to grant to the user

• actor_id the unique ID of the user or group

• target_id the unique ID or string representing the target

• inherited a boolean denoting if the assignment is inherited or not

abstract delete_user_assignments(user_id)
Delete all assignments for a user.

Raises keystone.exception.RoleNotFound If the role doesnt exist.

abstract list_grant_role_ids(user_id=None, group_id=None, domain_id=None,
project_id=None, inherited_to_projects=False)

List role ids for assignments/grants.

abstract list_role_assignments(role_id=None, user_id=None, group_ids=None,
domain_id=None, project_ids=None,
inherited_to_projects=None)

Return a list of role assignments for actors on targets.

Available parameters represent values in which the returned role assignments attributes need
to be filtered on.

abstract list_system_grants(actor_id, target_id, assignment_type)
Return a list of all system assignments for a specific entity.

Parameters

• actor_id the unique ID of the actor

• target_id the unique ID of the target

• assignment_type the type of assignment to return

abstract list_system_grants_by_role(role_id)
Return a list of system assignments associated to a role.

Parameters role_id the unique ID of the role to grant to the user

3.1. keystone 101

Keystone Documentation, Release 21.0.2.dev4

abstract remove_role_from_user_and_project(user_id, project_id, role_id)
Remove a role from a user within given project.

Raises keystone.exception.RoleNotFound If the role doesnt exist.

keystone.assignment.backends.sql module

class keystone.assignment.backends.sql.Assignment
Bases: keystone.assignment.backends.base.AssignmentDriverBase

add_role_to_user_and_project(user_id, project_id, role_id)
Add a role to a user within given project.

Raises keystone.exception.Conflict If a duplicate role assignment exists.

check_grant_role_id(role_id, user_id=None, group_id=None, domain_id=None,
project_id=None, inherited_to_projects=False)

Check an assignment/grant role id.

Raises keystone.exception.RoleAssignmentNotFound If the role assign-
ment doesnt exist.

Returns None or raises an exception if grant not found

check_system_grant(role_id, actor_id, target_id, inherited)
Check if a user or group has a specific role on the system.

Parameters

• role_id the unique ID of the role to grant to the user

• actor_id the unique ID of the user or group

• target_id the unique ID or string representing the target

• inherited a boolean denoting if the assignment is inherited or not

create_grant(role_id, user_id=None, group_id=None, domain_id=None, project_id=None,
inherited_to_projects=False)

Create a new assignment/grant.

If the assignment is to a domain, then optionally it may be specified as inherited to owned
projects (this requires the OS-INHERIT extension to be enabled).

create_system_grant(role_id, actor_id, target_id, assignment_type, inherited)
Grant a user or group a role on the system.

Parameters

• role_id the unique ID of the role to grant to the user

• actor_id the unique ID of the user or group

• target_id the unique ID or string representing the target

• assignment_type a string describing the relationship of the assignment

• inherited a boolean denoting if the assignment is inherited or not

classmethod default_role_driver()

102 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

delete_domain_assignments(domain_id)
Delete all assignments for a domain.

delete_grant(role_id, user_id=None, group_id=None, domain_id=None, project_id=None,
inherited_to_projects=False)

Delete assignments/grants.

Raises keystone.exception.RoleAssignmentNotFound If the role assign-
ment doesnt exist.

delete_group_assignments(group_id)
Delete all assignments for a group.

Raises keystone.exception.RoleNotFound If the role doesnt exist.

delete_project_assignments(project_id)
Delete all assignments for a project.

Raises keystone.exception.ProjectNotFound If the project doesnt exist.

delete_role_assignments(role_id)
Delete all assignments for a role.

delete_system_grant(role_id, actor_id, target_id, inherited)
Remove a system assignment from a user or group.

Parameters

• role_id the unique ID of the role to grant to the user

• actor_id the unique ID of the user or group

• target_id the unique ID or string representing the target

• inherited a boolean denoting if the assignment is inherited or not

delete_user_assignments(user_id)
Delete all assignments for a user.

Raises keystone.exception.RoleNotFound If the role doesnt exist.

list_grant_role_ids(user_id=None, group_id=None, domain_id=None, project_id=None,
inherited_to_projects=False)

List role ids for assignments/grants.

list_role_assignments(role_id=None, user_id=None, group_ids=None, domain_id=None,
project_ids=None, inherited_to_projects=None)

Return a list of role assignments for actors on targets.

Available parameters represent values in which the returned role assignments attributes need
to be filtered on.

list_system_grants(actor_id, target_id, assignment_type)
Return a list of all system assignments for a specific entity.

Parameters

• actor_id the unique ID of the actor

• target_id the unique ID of the target

• assignment_type the type of assignment to return

3.1. keystone 103

Keystone Documentation, Release 21.0.2.dev4

list_system_grants_by_role(role_id)
Return a list of system assignments associated to a role.

Parameters role_id the unique ID of the role to grant to the user

remove_role_from_user_and_project(user_id, project_id, role_id)
Remove a role from a user within given project.

Raises keystone.exception.RoleNotFound If the role doesnt exist.

class keystone.assignment.backends.sql.AssignmentType
Bases: object

GROUP_DOMAIN = 'GroupDomain'

GROUP_PROJECT = 'GroupProject'

USER_DOMAIN = 'UserDomain'

USER_PROJECT = 'UserProject'

classmethod calculate_type(user_id, group_id, project_id, domain_id)

class keystone.assignment.backends.sql.RoleAssignment(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

actor_id

attributes = ['type', 'actor_id', 'target_id', 'role_id', 'inherited']

inherited

role_id

target_id

to_dict()
Override parent method with a simpler implementation.

RoleAssignment doesnt have non-indexed extra attributes, so the parent implementation is
not applicable.

type

class keystone.assignment.backends.sql.SystemRoleAssignment(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

actor_id

attributes = ['type', 'actor_id', 'target_id', 'role_id', 'inherited']

inherited

role_id

target_id

to_dict()
Override parent method with a simpler implementation.

RoleAssignment doesnt have non-indexed extra attributes, so the parent implementation is
not applicable.

type

104 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Module contents

keystone.assignment.role_backends package

Submodules

keystone.assignment.role_backends.base module

class keystone.assignment.role_backends.base.RoleDriverBase
Bases: object

abstract create_implied_role(prior_role_id, implied_role_id)
Create a role inference rule.

Raises keystone.exception.RoleNotFound: If the role doesnt exist.

abstract create_role(role_id, role)
Create a new role.

Raises keystone.exception.Conflict If a duplicate role exists.

abstract delete_implied_role(prior_role_id, implied_role_id)
Delete a role inference rule.

Raises keystone.exception.ImpliedRoleNotFound If the implied role
doesnt exist.

abstract delete_role(role_id)
Delete an existing role.

Raises keystone.exception.RoleNotFound If the role doesnt exist.

abstract get_implied_role(prior_role_id, implied_role_id)
Get a role inference rule.

Raises keystone.exception.ImpliedRoleNotFound If the implied role
doesnt exist.

abstract get_role(role_id)
Get a role by ID.

Returns role_ref

Raises keystone.exception.RoleNotFound If the role doesnt exist.

abstract list_implied_roles(prior_role_id)
List roles implied from the prior role ID.

abstract list_role_inference_rules()
List all the rules used to imply one role from another.

abstract list_roles(hints)
List roles in the system.

Parameters hints filter hints which the driver should implement if at all possible.

Returns a list of role_refs or an empty list.

3.1. keystone 105

Keystone Documentation, Release 21.0.2.dev4

abstract list_roles_from_ids(role_ids)
List roles for the provided list of ids.

Parameters role_ids list of ids

Returns a list of role_refs.

This method is used internally by the assignment manager to bulk read a set of roles given
their ids.

abstract update_role(role_id, role)
Update an existing role.

Raises

• keystone.exception.RoleNotFound If the role doesnt exist.

• keystone.exception.Conflict If a duplicate role exists.

keystone.assignment.role_backends.resource_options module

keystone.assignment.role_backends.resource_options.register_role_options()

keystone.assignment.role_backends.sql module

class keystone.assignment.role_backends.sql.Role
Bases: keystone.assignment.role_backends.base.RoleDriverBase

create_implied_role(prior_role_id, implied_role_id)
Create a role inference rule.

Raises keystone.exception.RoleNotFound: If the role doesnt exist.

create_role(role_id, role)
Create a new role.

Raises keystone.exception.Conflict If a duplicate role exists.

delete_implied_role(prior_role_id, implied_role_id)
Delete a role inference rule.

Raises keystone.exception.ImpliedRoleNotFound If the implied role
doesnt exist.

delete_role(role_id)
Delete an existing role.

Raises keystone.exception.RoleNotFound If the role doesnt exist.

get_implied_role(prior_role_id, implied_role_id)
Get a role inference rule.

Raises keystone.exception.ImpliedRoleNotFound If the implied role
doesnt exist.

get_role(role_id)
Get a role by ID.

Returns role_ref

106 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Raises keystone.exception.RoleNotFound If the role doesnt exist.

list_implied_roles(prior_role_id)
List roles implied from the prior role ID.

list_role_inference_rules()
List all the rules used to imply one role from another.

list_roles(hints)
List roles in the system.

Parameters hints filter hints which the driver should implement if at all possible.

Returns a list of role_refs or an empty list.

list_roles_from_ids(ids)
List roles for the provided list of ids.

Parameters role_ids list of ids

Returns a list of role_refs.

This method is used internally by the assignment manager to bulk read a set of roles given
their ids.

update_role(role_id, role)
Update an existing role.

Raises

• keystone.exception.RoleNotFound If the role doesnt exist.

• keystone.exception.Conflict If a duplicate role exists.

keystone.assignment.role_backends.sql_model module

class keystone.assignment.role_backends.sql_model.ImpliedRoleTable(*args,
**kwargs)

Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['prior_role_id', 'implied_role_id']

classmethod from_dict(dictionary)
Return a model instance from a dictionary.

implied_role_id

prior_role_id

to_dict()
Return a dictionary with models attributes.

overrides the to_dict function from the base class to avoid having an extra field.

class keystone.assignment.role_backends.sql_model.RoleOption(option_id,
option_value)

Bases: sqlalchemy.orm.decl_api.Base

option_id

option_value

3.1. keystone 107

Keystone Documentation, Release 21.0.2.dev4

role_id

class keystone.assignment.role_backends.sql_model.RoleTable(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'name', 'domain_id', 'description']

description

domain_id

extra

classmethod from_dict(role_dict)

id

name

resource_options_registry =
<keystone.common.resource_options.core.ResourceOptionRegistry object>

to_dict(include_extra_dict=False)
Return the models attributes as a dictionary.

If include_extra_dict is True, extra attributes are literally included in the resulting dictionary
twice, for backwards-compatibility with a broken implementation.

Module contents

Submodules

keystone.assignment.core module

Main entry point into the Assignment service.

class keystone.assignment.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Assignment backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

add_implied_roles(role_refs)
Expand out implied roles.

The role_refs passed in have had all inheritance and group assignments expanded out. We
now need to look at the role_id in each ref and see if it is a prior role for some implied roles.
If it is, then we need to duplicate that ref, one for each implied role. We store the prior role
in the indirect dict that is part of such a duplicated ref, so that a caller can determine where
the assignment came from.

add_role_to_user_and_project(user_id, project_id, role_id)

check_system_grant_for_group(group_id, role_id)
Check if a group has a specific role on the system.

108 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters

• group_id the ID of the group in the assignment

• role_id the ID of the system role in the assignment

Raises keystone.exception.RoleAssignmentNotFound if the group doesnt
have a role assignment matching the role_id on the system

check_system_grant_for_user(user_id, role_id)
Check if a user has a specific role on the system.

Parameters

• user_id the ID of the user in the assignment

• role_id the ID of the system role in the assignment

Raises keystone.exception.RoleAssignmentNotFound if the user doesnt
have a role assignment matching the role_id on the system

create_grant(role_id, user_id=None, group_id=None, domain_id=None, project_id=None,
inherited_to_projects=False, initiator=None)

create_system_grant_for_group(group_id, role_id)
Grant a group a role on the system.

Parameters

• group_id the ID of the group

• role_id the ID of the role to grant on the system

create_system_grant_for_user(user_id, role_id)
Grant a user a role on the system.

Parameters

• user_id the ID of the user

• role_id the ID of the role to grant on the system

delete_grant(role_id, user_id=None, group_id=None, domain_id=None, project_id=None,
inherited_to_projects=False, initiator=None)

delete_group_assignments(group_id)

delete_system_grant_for_group(group_id, role_id)
Remove a system grant from a group.

Parameters

• group_id the ID of the group

• role_id the ID of the role to remove from the group on the system

Raises keystone.exception.RoleAssignmentNotFound if the group doesnt
have a role assignment with role_id on the system

delete_system_grant_for_user(user_id, role_id)
Remove a system grant from a user.

Parameters

• user_id the ID of the user

3.1. keystone 109

Keystone Documentation, Release 21.0.2.dev4

• role_id the ID of the role to remove from the user on the system

Raises keystone.exception.RoleAssignmentNotFound if the user doesnt
have a role assignment with role_id on the system

delete_user_assignments(user_id)

driver_namespace = 'keystone.assignment'

get_grant(role_id, user_id=None, group_id=None, domain_id=None, project_id=None,
inherited_to_projects=False)

get_roles_for_groups(group_ids, project_id=None, domain_id=None)
Get a list of roles for this group on domain and/or project.

get_roles_for_trustor_and_project(trustor_id, project_id)
Get the roles associated with a trustor within given project.

This includes roles directly assigned to the trustor on the project, as well as those by virtue
of group membership or inheritance, but it doesnt include the domain roles.

Returns a list of role ids.

Raises keystone.exception.ProjectNotFound If the project doesnt exist.

get_roles_for_user_and_domain(user_id, domain_id)
Get the roles associated with a user within given domain.

Returns a list of role ids.

Raises keystone.exception.DomainNotFound If the domain doesnt exist.

get_roles_for_user_and_project(user_id, project_id)
Get the roles associated with a user within given project.

This includes roles directly assigned to the user on the project, as well as those by virtue of
group membership or inheritance.

Returns a list of role ids.

Raises keystone.exception.ProjectNotFound If the project doesnt exist.

list_all_system_grants()
Return a list of all system grants.

list_domains_for_groups(group_ids)

list_domains_for_user(user_id)

list_grants(user_id=None, group_id=None, domain_id=None, project_id=None,
inherited_to_projects=False)

list_projects_for_groups(group_ids)

list_projects_for_user(user_id)

list_role_assignments(role_id=None, user_id=None, group_id=None, system=None,
domain_id=None, project_id=None, include_subtree=False,
inherited=None, effective=None, include_names=False,
source_from_group_ids=None, strip_domain_roles=True)

List role assignments, honoring effective mode and provided filters.

110 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Returns a list of role assignments, where their attributes match the provided filters (role_id,
user_id, group_id, domain_id, project_id and inherited). If include_subtree is True, then as-
signments on all descendants of the project specified by project_id are also included. The
inherited filter defaults to None, meaning to get both non-inherited and inherited role assign-
ments.

If effective mode is specified, this means that rather than simply return the assignments that
match the filters, any group or inheritance assignments will be expanded. Group assignments
will become assignments for all the users in that group, and inherited assignments will be
shown on the projects below the assignment point. Think of effective mode as being the list
of assignments that actually affect a user, for example the roles that would be placed in a
token.

If include_names is set to true the entities names are returned in addition to their ids.

source_from_group_ids is a list of group IDs and, if specified, then only those assignments
that are derived from membership of these groups are considered, and any such assignments
will not be expanded into their user membership assignments. This is different to a group filter
of the resulting list, instead being a restriction on which assignments should be considered
before expansion of inheritance. This option is only used internally (i.e. it is not exposed
at the API level) and is only supported in effective mode (since in regular mode there is no
difference between this and a group filter, other than it is a list of groups).

In effective mode, any domain specific roles are usually stripped from the returned assign-
ments (since such roles are not placed in tokens). This stripping can be disabled by specifying
strip_domain_roles=False, which is useful for internal calls like trusts which need to examine
the full set of roles.

list_system_grants_for_group(group_id)
Return a list of roles the group has on the system.

Parameters group_id the ID of the group

Returns a list of role assignments the group has system-wide

list_system_grants_for_user(user_id)
Return a list of roles the user has on the system.

Parameters user_id the ID of the user

Returns a list of role assignments the user has system-wide

list_user_ids_for_project(project_id)

remove_role_from_user_and_project(user_id, project_id, role_id)

class keystone.assignment.core.RoleManager
Bases: keystone.common.manager.Manager

Default pivot point for the Role backend.

create_implied_role(prior_role_id, implied_role_id)

create_role(role_id, role, initiator=None)

delete_implied_role(prior_role_id, implied_role_id)

delete_role(role_id, initiator=None)

driver_namespace = 'keystone.role'

3.1. keystone 111

Keystone Documentation, Release 21.0.2.dev4

get_role(role_id)

get_unique_role_by_name(role_name, hints=None)

list_roles(hints=None)

update_role(role_id, role, initiator=None)

keystone.assignment.schema module

Module contents

keystone.auth package

Subpackages

keystone.auth.plugins package

Submodules

keystone.auth.plugins.application_credential module

class keystone.auth.plugins.application_credential.ApplicationCredential
Bases: keystone.auth.plugins.base.AuthMethodHandler

authenticate(auth_payload)
Authenticate an application.

keystone.auth.plugins.base module

class keystone.auth.plugins.base.AuthHandlerResponse(status, response_body,
response_data)

Bases: tuple

response_body
Alias for field number 1

response_data
Alias for field number 2

status
Alias for field number 0

class keystone.auth.plugins.base.AuthMethodHandler
Bases: keystone.common.provider_api.ProviderAPIMixin, object

Abstract base class for an authentication plugin.

abstract authenticate(auth_payload)
Authenticate user and return an authentication context.

Parameters auth_payload (dict) the payload content of the authentication re-
quest for a given method

112 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

If successful, plugin must set user_id in response_data. method_name is used to convey
any additional authentication methods in case authentication is for re-scoping. For example,
if the authentication is for re-scoping, plugin must append the previous method names into
method_names; NOTE: This behavior is exclusive to the re-scope type action. Heres an
example of response_data on successful authentication:

{
"methods": [

"password",
"token"

],
"user_id": "abc123"

}

Plugins are invoked in the order in which they are specified in the methods attribute of the
identity object. For example, custom-plugin is invoked before password, which is
invoked before token in the following authentication request:

{
"auth": {

"identity": {
"custom-plugin": {

"custom-data": "sdfdfsfsfsdfsf"
},
"methods": [

"custom-plugin",
"password",
"token"

],
"password": {

"user": {
"id": "s23sfad1",
"password": "secret"

}
},
"token": {

"id": "sdfafasdfsfasfasdfds"
}

}
}

}

Returns AuthHandlerResponse with status set to True if auth was successful. If
status is False and this is a multi-step auth, the response_body can be in a
form of a dict for the next step in authentication.

Raises keystone.exception.Unauthorized for authentication failure

3.1. keystone 113

Keystone Documentation, Release 21.0.2.dev4

keystone.auth.plugins.core module

class keystone.auth.plugins.core.AppCredInfo
Bases: keystone.auth.plugins.core.BaseUserInfo

class keystone.auth.plugins.core.BaseUserInfo
Bases: keystone.common.provider_api.ProviderAPIMixin, object

classmethod create(auth_payload, method_name)

class keystone.auth.plugins.core.TOTPUserInfo
Bases: keystone.auth.plugins.core.BaseUserInfo

class keystone.auth.plugins.core.UserAuthInfo
Bases: keystone.auth.plugins.core.BaseUserInfo

keystone.auth.plugins.core.construct_method_map_from_config()
Determine authentication method types for deployment.

Returns a dictionary containing the methods and their indexes

keystone.auth.plugins.core.convert_integer_to_method_list(method_int)
Convert an integer to a list of methods.

Parameters method_int an integer representing methods

Returns a corresponding list of methods

keystone.auth.plugins.core.convert_method_list_to_integer(methods)
Convert the method type(s) to an integer.

Parameters methods a list of method names

Returns an integer representing the methods

keystone.auth.plugins.external module

Keystone External Authentication Plugins.

class keystone.auth.plugins.external.Base
Bases: keystone.auth.plugins.base.AuthMethodHandler

authenticate(auth_payload)
Use REMOTE_USER to look up the user in the identity backend.

The user_id from the actual user from the REMOTE_USER env variable is placed in the
response_data.

class keystone.auth.plugins.external.DefaultDomain
Bases: keystone.auth.plugins.external.Base

class keystone.auth.plugins.external.Domain
Bases: keystone.auth.plugins.external.Base

class keystone.auth.plugins.external.KerberosDomain
Bases: keystone.auth.plugins.external.Domain

Allows kerberos as a method.

114 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.auth.plugins.mapped module

class keystone.auth.plugins.mapped.Mapped
Bases: keystone.auth.plugins.base.AuthMethodHandler

authenticate(auth_payload)
Authenticate mapped user and set an authentication context.

Parameters auth_payload the content of the authentication for a given method

In addition to user_id in response_data, this plugin sets group_ids,
OS-FEDERATION:identity_provider and OS-FEDERATION:protocol

keystone.auth.plugins.mapped.apply_mapping_filter(identity_provider, protocol,
assertion, resource_api,
federation_api, identity_api)

keystone.auth.plugins.mapped.extract_assertion_data()

keystone.auth.plugins.mapped.get_user_unique_id_and_display_name(mapped_properties)
Setup federated username.

Function covers all the cases for properly setting user id, a primary identifier for identity objects.
Initial version of the mapping engine assumed user is identified by name and his id is built from
the name. We, however need to be able to accept local rules that identify user by either id or
name/domain.

The following use-cases are covered:

1) If neither user_name nor user_id is set raise exception.Unauthorized

2) If user_id is set and user_name not, set user_name equal to user_id

3) If user_id is not set and user_name is, set user_id as url safe version of user_name.

Parameters mapped_properties Properties issued by a RuleProcessor.

Type dictionary

Raises keystone.exception.Unauthorized If neither user_name nor user_id is
set.

Returns tuple with user identification

Return type tuple

keystone.auth.plugins.mapped.handle_scoped_token(token, federation_api, identity_api)

keystone.auth.plugins.mapped.handle_unscoped_token(auth_payload, resource_api,
federation_api, identity_api,
assignment_api, role_api)

3.1. keystone 115

Keystone Documentation, Release 21.0.2.dev4

keystone.auth.plugins.oauth1 module

class keystone.auth.plugins.oauth1.OAuth
Bases: keystone.auth.plugins.base.AuthMethodHandler

authenticate(auth_payload)
Turn a signed request with an access key into a keystone token.

keystone.auth.plugins.password module

class keystone.auth.plugins.password.Password
Bases: keystone.auth.plugins.base.AuthMethodHandler

authenticate(auth_payload)
Try to authenticate against the identity backend.

keystone.auth.plugins.token module

class keystone.auth.plugins.token.Token
Bases: keystone.auth.plugins.base.AuthMethodHandler

authenticate(auth_payload)
Authenticate user and return an authentication context.

Parameters auth_payload (dict) the payload content of the authentication re-
quest for a given method

If successful, plugin must set user_id in response_data. method_name is used to convey
any additional authentication methods in case authentication is for re-scoping. For example,
if the authentication is for re-scoping, plugin must append the previous method names into
method_names; NOTE: This behavior is exclusive to the re-scope type action. Heres an
example of response_data on successful authentication:

{
"methods": [

"password",
"token"

],
"user_id": "abc123"

}

Plugins are invoked in the order in which they are specified in the methods attribute of the
identity object. For example, custom-plugin is invoked before password, which is
invoked before token in the following authentication request:

{
"auth": {

"identity": {
"custom-plugin": {

"custom-data": "sdfdfsfsfsdfsf"
},

(continues on next page)

116 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"methods": [
"custom-plugin",
"password",
"token"

],
"password": {

"user": {
"id": "s23sfad1",
"password": "secret"

}
},
"token": {

"id": "sdfafasdfsfasfasdfds"
}

}
}

}

Returns AuthHandlerResponse with status set to True if auth was successful. If
status is False and this is a multi-step auth, the response_body can be in a
form of a dict for the next step in authentication.

Raises keystone.exception.Unauthorized for authentication failure

keystone.auth.plugins.token.token_authenticate(token)

keystone.auth.plugins.totp module

Time-based One-time Password Algorithm (TOTP) auth plugin.

TOTP is an algorithm that computes a one-time password from a shared secret key and the current time.

TOTP is an implementation of a hash-based message authentication code (HMAC). It combines a secret
key with the current timestamp using a cryptographic hash function to generate a one-time password.
The timestamp typically increases in 30-second intervals, so passwords generated close together in time
from the same secret key will be equal.

class keystone.auth.plugins.totp.TOTP
Bases: keystone.auth.plugins.base.AuthMethodHandler

authenticate(auth_payload)
Try to authenticate using TOTP.

3.1. keystone 117

Keystone Documentation, Release 21.0.2.dev4

Module contents

Submodules

keystone.auth.core module

class keystone.auth.core.AuthContext
Bases: dict

Retrofitting auth_context to reconcile identity attributes.

The identity attributes must not have conflicting values among the auth plug-ins. The only excep-
tion is expires_at, which is set to its earliest value.

IDENTITY_ATTRIBUTES = frozenset({'access_token_id', 'domain_id',
'expires_at', 'project_id', 'user_id'})

update(E=None, **F)
Override update to prevent conflicting values.

class keystone.auth.core.AuthInfo(auth=None)
Bases: keystone.common.provider_api.ProviderAPIMixin, object

Encapsulation of auth request.

static create(auth=None, scope_only=False)

get_method_data(method)
Get the auth method payload.

Returns auth method payload

get_method_names()
Return the identity method names.

Returns list of auth method names

get_scope()
Get scope information.

Verify and return the scoping information.

Returns (domain_id, project_id, trust_ref, unscoped, system). If scope to a
project, (None, project_id, None, None, None) will be returned. If scoped to a
domain, (domain_id, None, None, None, None) will be returned. If scoped to
a trust, (None, project_id, trust_ref, None, None), Will be returned, where the
project_id comes from the trust definition. If unscoped, (None, None, None,
unscoped, None) will be returned. If system_scoped, (None, None, None,
None, all) will be returned.

set_scope(domain_id=None, project_id=None, trust=None, unscoped=None, system=None)
Set scope information.

class keystone.auth.core.UserMFARulesValidator
Bases: keystone.common.provider_api.ProviderAPIMixin, object

Helper object that can validate the MFA Rules.

118 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

classmethod check_auth_methods_against_rules(user_id, auth_methods)
Validate the MFA rules against the successful auth methods.

Parameters

• user_id (str) The users ID (uuid).

• auth_methods (set) List of methods that were used for auth

Returns Boolean, True means rules match and auth may proceed, False means
rules do not match.

keystone.auth.core.get_auth_method(method_name)

keystone.auth.core.load_auth_method(method)

keystone.auth.core.load_auth_methods()

keystone.auth.schema module

keystone.auth.schema.validate_issue_token_auth(auth=None)

Module contents

keystone.catalog package

Subpackages

keystone.catalog.backends package

Submodules

keystone.catalog.backends.base module

class keystone.catalog.backends.base.CatalogDriverBase
Bases: keystone.common.provider_api.ProviderAPIMixin, object

Interface description for the Catalog driver.

abstract add_endpoint_group_to_project(endpoint_group_id, project_id)
Add an endpoint group to project association.

Parameters

• endpoint_group_id (string) identity of endpoint to associate

• project_id (string) identity of project to associate

Raises keystone.exception.Conflict If the endpoint group was already
added to the project.

Returns None.

abstract add_endpoint_to_project(endpoint_id, project_id)
Create an endpoint to project association.

3.1. keystone 119

Keystone Documentation, Release 21.0.2.dev4

Parameters

• endpoint_id (string) identity of endpoint to associate

• project_id (string) identity of the project to be associated with

Raises keystone.exception.Conflict: If the endpoint was already added to project.

Returns None.

abstract check_endpoint_in_project(endpoint_id, project_id)
Check if an endpoint is associated with a project.

Parameters

• endpoint_id (string) identity of endpoint to check

• project_id (string) identity of the project associated with

Raises keystone.exception.NotFound If the endpoint was not found in the
project.

Returns None.

abstract create_endpoint(endpoint_id, endpoint_ref)
Create a new endpoint for a service.

Raises

• keystone.exception.Conflict If a duplicate endpoint exists.

• keystone.exception.ServiceNotFound If the service doesnt exist.

abstract create_endpoint_group(endpoint_group)
Create an endpoint group.

Parameters endpoint_group (dictionary) endpoint group to create

Raises keystone.exception.Conflict: If a duplicate endpoint group already exists.

Returns an endpoint group representation.

abstract create_region(region_ref)
Create a new region.

Raises

• keystone.exception.Conflict If the region already exists.

• keystone.exception.RegionNotFound If the parent region is invalid.

abstract create_service(service_id, service_ref)
Create a new service.

Raises keystone.exception.Conflict If a duplicate service exists.

abstract delete_association_by_endpoint(endpoint_id)
Remove all the endpoints to project association with endpoint.

Parameters endpoint_id (string) identity of endpoint to check

Returns None

abstract delete_association_by_project(project_id)
Remove all the endpoints to project association with project.

120 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters project_id (string) identity of the project to check

Returns None

abstract delete_endpoint(endpoint_id)
Delete an endpoint for a service.

Raises keystone.exception.EndpointNotFound If the endpoint doesnt exist.

abstract delete_endpoint_group(endpoint_group_id)
Delete an endpoint group.

Parameters endpoint_group_id (string) identity of endpoint group to delete

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns None.

abstract delete_endpoint_group_association_by_project(project_id)
Remove endpoint group to project associations.

Parameters project_id (string) identity of the project to check

Returns None

abstract delete_region(region_id)
Delete an existing region.

Raises keystone.exception.RegionNotFound If the region doesnt exist.

abstract delete_service(service_id)
Delete an existing service.

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

abstract get_catalog(user_id, project_id)
Retrieve and format the current service catalog.

Example:

{ 'RegionOne':
{'compute': {

'adminURL': u'http://host:8774/v1.1/project_id',
'internalURL': u'http://host:8774/v1.1/project_id',
'name': 'Compute Service',
'publicURL': u'http://host:8774/v1.1/project_id'},

'ec2': {
'adminURL': 'http://host:8773/services/Admin',
'internalURL': 'http://host:8773/services/Cloud',
'name': 'EC2 Service',
'publicURL': 'http://host:8773/services/Cloud'}}

Returns A nested dict representing the service catalog or an empty dict.

Raises keystone.exception.NotFound If the endpoint doesnt exist.

abstract get_endpoint(endpoint_id)
Get endpoint by id.

Returns endpoint_ref dict

3.1. keystone 121

Keystone Documentation, Release 21.0.2.dev4

Raises keystone.exception.EndpointNotFound If the endpoint doesnt exist.

abstract get_endpoint_group(endpoint_group_id)
Get an endpoint group.

Parameters endpoint_group_id (string) identity of endpoint group to re-
trieve

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns an endpoint group representation.

abstract get_endpoint_group_in_project(endpoint_group_id, project_id)
Get endpoint group to project association.

Parameters

• endpoint_group_id (string) identity of endpoint group to retrieve

• project_id (string) identity of project to associate

Raises keystone.exception.NotFound If the endpoint group to the project
association was not found.

Returns a project endpoint group representation.

abstract get_region(region_id)
Get region by id.

Returns region_ref dict

Raises keystone.exception.RegionNotFound If the region doesnt exist.

abstract get_service(service_id)
Get service by id.

Returns service_ref dict

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

get_v3_catalog(user_id, project_id)
Retrieve and format the current V3 service catalog.

Example:

[
{

"endpoints": [
{

"interface": "public",
"id": "--endpoint-id--",
"region": "RegionOne",
"url": "http://external:8776/v1/--project-id--"

},
{

"interface": "internal",
"id": "--endpoint-id--",
"region": "RegionOne",
"url": "http://internal:8776/v1/--project-id--"

}],
(continues on next page)

122 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"id": "--service-id--",
"type": "volume"

}]

Returns A list representing the service catalog or an empty list

Raises keystone.exception.NotFound If the endpoint doesnt exist.

abstract list_endpoint_groups(hints)
List all endpoint groups.

Returns None.

abstract list_endpoint_groups_for_project(project_id)
List all endpoint group to project associations for a project.

Parameters project_id (string) identity of project to associate

Returns None.

abstract list_endpoints(hints)
List all endpoints.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of endpoint_refs or an empty list.

abstract list_endpoints_for_project(project_id)
List all endpoints associated with a project.

Parameters project_id (string) identity of the project to check

Returns a list of identity endpoint ids or an empty list.

abstract list_projects_associated_with_endpoint_group(endpoint_group_id)
List all projects associated with endpoint group.

Parameters endpoint_group_id (string) identity of endpoint to associate

Returns None.

abstract list_projects_for_endpoint(endpoint_id)
List all projects associated with an endpoint.

Parameters endpoint_id (string) identity of endpoint to check

Returns a list of projects or an empty list.

abstract list_regions(hints)
List all regions.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of region_refs or an empty list.

abstract list_services(hints)
List all services.

3.1. keystone 123

Keystone Documentation, Release 21.0.2.dev4

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of service_refs or an empty list.

abstract remove_endpoint_from_project(endpoint_id, project_id)
Remove an endpoint to project association.

Parameters

• endpoint_id (string) identity of endpoint to remove

• project_id (string) identity of the project associated with

Raises keystone.exception.NotFound If the endpoint was not found in the
project.

Returns None.

abstract remove_endpoint_group_from_project(endpoint_group_id, project_id)
Remove an endpoint to project association.

Parameters

• endpoint_group_id (string) identity of endpoint to associate

• project_id (string) identity of project to associate

Raises keystone.exception.NotFound If endpoint group project association
was not found.

Returns None.

abstract update_endpoint(endpoint_id, endpoint_ref)
Get endpoint by id.

Returns endpoint_ref dict

Raises

• keystone.exception.EndpointNotFound If the endpoint doesnt exist.

• keystone.exception.ServiceNotFound If the service doesnt exist.

abstract update_endpoint_group(endpoint_group_id, endpoint_group)
Update an endpoint group.

Parameters

• endpoint_group_id (string) identity of endpoint group to retrieve

• endpoint_group (dictionary) A full or partial endpoint_group

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns an endpoint group representation.

abstract update_region(region_id, region_ref)
Update region by id.

Returns region_ref dict

Raises keystone.exception.RegionNotFound If the region doesnt exist.

124 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract update_service(service_id, service_ref)
Update service by id.

Returns service_ref dict

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

keystone.catalog.backends.sql module

class keystone.catalog.backends.sql.Catalog
Bases: keystone.catalog.backends.base.CatalogDriverBase

add_endpoint_group_to_project(endpoint_group_id, project_id)
Add an endpoint group to project association.

Parameters

• endpoint_group_id (string) identity of endpoint to associate

• project_id (string) identity of project to associate

Raises keystone.exception.Conflict If the endpoint group was already
added to the project.

Returns None.

add_endpoint_to_project(endpoint_id, project_id)
Create an endpoint to project association.

Parameters

• endpoint_id (string) identity of endpoint to associate

• project_id (string) identity of the project to be associated with

Raises keystone.exception.Conflict: If the endpoint was already added to project.

Returns None.

check_endpoint_in_project(endpoint_id, project_id)
Check if an endpoint is associated with a project.

Parameters

• endpoint_id (string) identity of endpoint to check

• project_id (string) identity of the project associated with

Raises keystone.exception.NotFound If the endpoint was not found in the
project.

Returns None.

create_endpoint(endpoint_id, endpoint)
Create a new endpoint for a service.

Raises

• keystone.exception.Conflict If a duplicate endpoint exists.

• keystone.exception.ServiceNotFound If the service doesnt exist.

3.1. keystone 125

Keystone Documentation, Release 21.0.2.dev4

create_endpoint_group(endpoint_group_id, endpoint_group)
Create an endpoint group.

Parameters endpoint_group (dictionary) endpoint group to create

Raises keystone.exception.Conflict: If a duplicate endpoint group already exists.

Returns an endpoint group representation.

create_region(region_ref)
Create a new region.

Raises

• keystone.exception.Conflict If the region already exists.

• keystone.exception.RegionNotFound If the parent region is invalid.

create_service(service_id, service_ref)
Create a new service.

Raises keystone.exception.Conflict If a duplicate service exists.

delete_association_by_endpoint(endpoint_id)
Remove all the endpoints to project association with endpoint.

Parameters endpoint_id (string) identity of endpoint to check

Returns None

delete_association_by_project(project_id)
Remove all the endpoints to project association with project.

Parameters project_id (string) identity of the project to check

Returns None

delete_endpoint(endpoint_id)
Delete an endpoint for a service.

Raises keystone.exception.EndpointNotFound If the endpoint doesnt exist.

delete_endpoint_group(endpoint_group_id)
Delete an endpoint group.

Parameters endpoint_group_id (string) identity of endpoint group to delete

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns None.

delete_endpoint_group_association_by_project(project_id)
Remove endpoint group to project associations.

Parameters project_id (string) identity of the project to check

Returns None

delete_region(region_id)
Delete an existing region.

Raises keystone.exception.RegionNotFound If the region doesnt exist.

delete_service(service_id)
Delete an existing service.

126 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

get_catalog(user_id, project_id)
Retrieve and format the V2 service catalog.

Parameters

• user_id The id of the user who has been authenticated for creating service
catalog.

• project_id The id of the project. project_id will be None in the case this
being called to create a catalog to go in a domain scoped token. In this case,
any endpoint that requires a project_id as part of their URL will be skipped
(as would a whole service if, as a consequence, it has no valid endpoints).

Returns A nested dict representing the service catalog or an empty dict.

get_endpoint(endpoint_id)
Get endpoint by id.

Returns endpoint_ref dict

Raises keystone.exception.EndpointNotFound If the endpoint doesnt exist.

get_endpoint_group(endpoint_group_id)
Get an endpoint group.

Parameters endpoint_group_id (string) identity of endpoint group to re-
trieve

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns an endpoint group representation.

get_endpoint_group_in_project(endpoint_group_id, project_id)
Get endpoint group to project association.

Parameters

• endpoint_group_id (string) identity of endpoint group to retrieve

• project_id (string) identity of project to associate

Raises keystone.exception.NotFound If the endpoint group to the project
association was not found.

Returns a project endpoint group representation.

get_region(region_id)
Get region by id.

Returns region_ref dict

Raises keystone.exception.RegionNotFound If the region doesnt exist.

get_service(service_id)
Get service by id.

Returns service_ref dict

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

get_v3_catalog(user_id, project_id)
Retrieve and format the current V3 service catalog.

3.1. keystone 127

Keystone Documentation, Release 21.0.2.dev4

Parameters

• user_id The id of the user who has been authenticated for creating service
catalog.

• project_id The id of the project. project_id will be None in the case this
being called to create a catalog to go in a domain scoped token. In this case,
any endpoint that requires a project_id as part of their URL will be skipped.

Returns A list representing the service catalog or an empty list

list_endpoint_groups(hints)
List all endpoint groups.

Returns None.

list_endpoint_groups_for_project(project_id)
List all endpoint group to project associations for a project.

Parameters project_id (string) identity of project to associate

Returns None.

list_endpoints(hints)
List all endpoints.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of endpoint_refs or an empty list.

list_endpoints_for_project(project_id)
List all endpoints associated with a project.

Parameters project_id (string) identity of the project to check

Returns a list of identity endpoint ids or an empty list.

list_projects_associated_with_endpoint_group(endpoint_group_id)
List all projects associated with endpoint group.

Parameters endpoint_group_id (string) identity of endpoint to associate

Returns None.

list_projects_for_endpoint(endpoint_id)
List all projects associated with an endpoint.

Parameters endpoint_id (string) identity of endpoint to check

Returns a list of projects or an empty list.

list_regions(hints)
List all regions.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of region_refs or an empty list.

list_services(hints)
List all services.

128 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of service_refs or an empty list.

remove_endpoint_from_project(endpoint_id, project_id)
Remove an endpoint to project association.

Parameters

• endpoint_id (string) identity of endpoint to remove

• project_id (string) identity of the project associated with

Raises keystone.exception.NotFound If the endpoint was not found in the
project.

Returns None.

remove_endpoint_group_from_project(endpoint_group_id, project_id)
Remove an endpoint to project association.

Parameters

• endpoint_group_id (string) identity of endpoint to associate

• project_id (string) identity of project to associate

Raises keystone.exception.NotFound If endpoint group project association
was not found.

Returns None.

update_endpoint(endpoint_id, endpoint_ref)
Get endpoint by id.

Returns endpoint_ref dict

Raises

• keystone.exception.EndpointNotFound If the endpoint doesnt exist.

• keystone.exception.ServiceNotFound If the service doesnt exist.

update_endpoint_group(endpoint_group_id, endpoint_group)
Update an endpoint group.

Parameters

• endpoint_group_id (string) identity of endpoint group to retrieve

• endpoint_group (dictionary) A full or partial endpoint_group

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns an endpoint group representation.

update_region(region_id, region_ref)
Update region by id.

Returns region_ref dict

Raises keystone.exception.RegionNotFound If the region doesnt exist.

3.1. keystone 129

Keystone Documentation, Release 21.0.2.dev4

update_service(service_id, service_ref)
Update service by id.

Returns service_ref dict

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

class keystone.catalog.backends.sql.Endpoint(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'interface', 'region_id', 'service_id', 'url',
'legacy_endpoint_id', 'enabled']

enabled

extra

classmethod from_dict(endpoint_dict)
Override from_dict to set enabled if missing.

id

interface

legacy_endpoint_id

region_id

service_id

url

class keystone.catalog.backends.sql.EndpointGroup(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

Endpoint Groups table.

attributes = ['id', 'name', 'description', 'filters']

description

filters

id

mutable_attributes = frozenset({'description', 'filters', 'name'})

name

class keystone.catalog.backends.sql.ProjectEndpoint(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

project-endpoint relationship table.

attributes = ['endpoint_id', 'project_id']

endpoint_id

project_id

class keystone.catalog.backends.sql.ProjectEndpointGroupMembership(*args,
**kwargs)

Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

130 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Project to Endpoint group relationship table.

attributes = ['endpoint_group_id', 'project_id']

endpoint_group_id

project_id

class keystone.catalog.backends.sql.Region(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'description', 'parent_region_id']

description

endpoints

extra

id

parent_region_id

class keystone.catalog.backends.sql.Service(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'type', 'enabled']

enabled

endpoints

extra

id

type

keystone.catalog.backends.templated module

class keystone.catalog.backends.templated.Catalog(templates=None)
Bases: keystone.catalog.backends.base.CatalogDriverBase

A backend that generates endpoints for the Catalog based on templates.

It is usually configured via config entries that look like:

catalog.$REGION.$SERVICE.$key = $value

and is stored in a similar looking hierarchy. Where a value can contain values to be interpolated
by standard python string interpolation that look like (the % is replaced by a $):

http://localhost:\protect\T1\textdollar(public_port)s/

When expanding the template it will pass in a dict made up of the conf instance plus a few additional
key-values, notably project_id and user_id.

It does not care what the keys and values are but it is worth noting that keystone_compat will expect
certain keys to be there so that it can munge them into the output format keystone expects. These
keys are:

3.1. keystone 131

http://localhost:\protect \T1\textdollar (public_port)s/

Keystone Documentation, Release 21.0.2.dev4

name - the name of the service, most likely repeated for all services of the same
type, across regions.

adminURL - the url of the admin endpoint

publicURL - the url of the public endpoint

internalURL - the url of the internal endpoint

add_endpoint_group_to_project(endpoint_group_id, project_id)
Add an endpoint group to project association.

Parameters

• endpoint_group_id (string) identity of endpoint to associate

• project_id (string) identity of project to associate

Raises keystone.exception.Conflict If the endpoint group was already
added to the project.

Returns None.

add_endpoint_to_project(endpoint_id, project_id)
Create an endpoint to project association.

Parameters

• endpoint_id (string) identity of endpoint to associate

• project_id (string) identity of the project to be associated with

Raises keystone.exception.Conflict: If the endpoint was already added to project.

Returns None.

check_endpoint_in_project(endpoint_id, project_id)
Check if an endpoint is associated with a project.

Parameters

• endpoint_id (string) identity of endpoint to check

• project_id (string) identity of the project associated with

Raises keystone.exception.NotFound If the endpoint was not found in the
project.

Returns None.

create_endpoint(endpoint_id, endpoint_ref)
Create a new endpoint for a service.

Raises

• keystone.exception.Conflict If a duplicate endpoint exists.

• keystone.exception.ServiceNotFound If the service doesnt exist.

create_endpoint_group(endpoint_group)
Create an endpoint group.

Parameters endpoint_group (dictionary) endpoint group to create

Raises keystone.exception.Conflict: If a duplicate endpoint group already exists.

132 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Returns an endpoint group representation.

create_region(region_ref)
Create a new region.

Raises

• keystone.exception.Conflict If the region already exists.

• keystone.exception.RegionNotFound If the parent region is invalid.

create_service(service_id, service_ref)
Create a new service.

Raises keystone.exception.Conflict If a duplicate service exists.

delete_association_by_endpoint(endpoint_id)
Remove all the endpoints to project association with endpoint.

Parameters endpoint_id (string) identity of endpoint to check

Returns None

delete_association_by_project(project_id)
Remove all the endpoints to project association with project.

Parameters project_id (string) identity of the project to check

Returns None

delete_endpoint(endpoint_id)
Delete an endpoint for a service.

Raises keystone.exception.EndpointNotFound If the endpoint doesnt exist.

delete_endpoint_group(endpoint_group_id)
Delete an endpoint group.

Parameters endpoint_group_id (string) identity of endpoint group to delete

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns None.

delete_endpoint_group_association_by_project(project_id)
Remove endpoint group to project associations.

Parameters project_id (string) identity of the project to check

Returns None

delete_region(region_id)
Delete an existing region.

Raises keystone.exception.RegionNotFound If the region doesnt exist.

delete_service(service_id)
Delete an existing service.

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

get_catalog(user_id, project_id)
Retrieve and format the V2 service catalog.

Parameters

3.1. keystone 133

Keystone Documentation, Release 21.0.2.dev4

• user_id The id of the user who has been authenticated for creating service
catalog.

• project_id The id of the project. project_id will be None in the case this
being called to create a catalog to go in a domain scoped token. In this case,
any endpoint that requires a project_id as part of their URL will be skipped.

Returns A nested dict representing the service catalog or an empty dict.

get_endpoint(endpoint_id)
Get endpoint by id.

Returns endpoint_ref dict

Raises keystone.exception.EndpointNotFound If the endpoint doesnt exist.

get_endpoint_group(endpoint_group_id)
Get an endpoint group.

Parameters endpoint_group_id (string) identity of endpoint group to re-
trieve

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns an endpoint group representation.

get_endpoint_group_in_project(endpoint_group_id, project_id)
Get endpoint group to project association.

Parameters

• endpoint_group_id (string) identity of endpoint group to retrieve

• project_id (string) identity of project to associate

Raises keystone.exception.NotFound If the endpoint group to the project
association was not found.

Returns a project endpoint group representation.

get_region(region_id)
Get region by id.

Returns region_ref dict

Raises keystone.exception.RegionNotFound If the region doesnt exist.

get_service(service_id)
Get service by id.

Returns service_ref dict

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

get_v3_catalog(user_id, project_id)
Retrieve and format the current V3 service catalog.

This implementation builds the V3 catalog from the V2 catalog.

Parameters

• user_id The id of the user who has been authenticated for creating service
catalog.

134 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• project_id The id of the project. project_id will be None in the case this
being called to create a catalog to go in a domain scoped token. In this case,
any endpoint that requires a project_id as part of their URL will be skipped.

Returns A list representing the service catalog or an empty list

list_endpoint_groups(hints)
List all endpoint groups.

Returns None.

list_endpoint_groups_for_project(project_id)
List all endpoint group to project associations for a project.

Parameters project_id (string) identity of project to associate

Returns None.

list_endpoints(hints)
List all endpoints.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of endpoint_refs or an empty list.

list_endpoints_for_project(project_id)
List all endpoints associated with a project.

Parameters project_id (string) identity of the project to check

Returns a list of identity endpoint ids or an empty list.

list_projects_associated_with_endpoint_group(endpoint_group_id)
List all projects associated with endpoint group.

Parameters endpoint_group_id (string) identity of endpoint to associate

Returns None.

list_projects_for_endpoint(endpoint_id)
List all projects associated with an endpoint.

Parameters endpoint_id (string) identity of endpoint to check

Returns a list of projects or an empty list.

list_regions(hints)
List all regions.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of region_refs or an empty list.

list_services(hints)
List all services.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list of service_refs or an empty list.

3.1. keystone 135

Keystone Documentation, Release 21.0.2.dev4

remove_endpoint_from_project(endpoint_id, project_id)
Remove an endpoint to project association.

Parameters

• endpoint_id (string) identity of endpoint to remove

• project_id (string) identity of the project associated with

Raises keystone.exception.NotFound If the endpoint was not found in the
project.

Returns None.

remove_endpoint_group_from_project(endpoint_group_id, project_id)
Remove an endpoint to project association.

Parameters

• endpoint_group_id (string) identity of endpoint to associate

• project_id (string) identity of project to associate

Raises keystone.exception.NotFound If endpoint group project association
was not found.

Returns None.

update_endpoint(endpoint_id, endpoint_ref)
Get endpoint by id.

Returns endpoint_ref dict

Raises

• keystone.exception.EndpointNotFound If the endpoint doesnt exist.

• keystone.exception.ServiceNotFound If the service doesnt exist.

update_endpoint_group(endpoint_group_id, endpoint_group)
Update an endpoint group.

Parameters

• endpoint_group_id (string) identity of endpoint group to retrieve

• endpoint_group (dictionary) A full or partial endpoint_group

Raises keystone.exception.NotFound If the endpoint group was not found.

Returns an endpoint group representation.

update_region(region_id, region_ref)
Update region by id.

Returns region_ref dict

Raises keystone.exception.RegionNotFound If the region doesnt exist.

update_service(service_id, service_ref)
Update service by id.

Returns service_ref dict

Raises keystone.exception.ServiceNotFound If the service doesnt exist.

136 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.catalog.backends.templated.parse_templates(template_lines)

Module contents

Submodules

keystone.catalog.core module

Main entry point into the Catalog service.

class keystone.catalog.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Catalog backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

add_endpoint_group_to_project(endpoint_group_id, project_id)

add_endpoint_to_project(endpoint_id, project_id)

create_endpoint(endpoint_id, endpoint_ref, initiator=None)

create_region(region_ref, initiator=None)

create_service(service_id, service_ref, initiator=None)

delete_association_by_endpoint(endpoint_id)

delete_association_by_project(project_id)

delete_endpoint(endpoint_id, initiator=None)

delete_endpoint_group_association_by_project(project_id)

delete_region(region_id, initiator=None)

delete_service(service_id, initiator=None)

driver_namespace = 'keystone.catalog'

get_endpoint(endpoint_id)

get_endpoint_groups_for_project(project_id)

get_endpoints_filtered_by_endpoint_group(endpoint_group_id)

get_region(region_id)

get_service(service_id)

get_v3_catalog(user_id, project_id)

list_endpoints(hints=None)

list_endpoints_for_project(project_id)
List all endpoints associated with a project.

Parameters project_id (string) project identifier to check

Returns a list of endpoint ids or an empty list.

3.1. keystone 137

Keystone Documentation, Release 21.0.2.dev4

list_regions(hints=None)

list_services(hints=None)

remove_endpoint_from_project(endpoint_id, project_id)

remove_endpoint_group_from_project(endpoint_group_id, project_id)

update_endpoint(endpoint_id, endpoint_ref, initiator=None)

update_region(region_id, region_ref, initiator=None)

update_service(service_id, service_ref, initiator=None)

keystone.catalog.schema module

Module contents

keystone.cmd package

Subpackages

keystone.cmd.doctor package

Submodules

keystone.cmd.doctor.caching module

keystone.cmd.doctor.caching.symptom_caching_disabled()
keystone.conf [cache] enabled is not enabled.

Caching greatly improves the performance of keystone, and it is highly recommended that you
enable it.

keystone.cmd.doctor.caching.symptom_caching_enabled_without_a_backend()
Caching is not completely configured.

Although caching is enabled in keystone.conf [cache] enabled, the default backend is still set to the
no-op backend. Instead, configure keystone to point to a real caching backend like memcached.

keystone.cmd.doctor.caching.symptom_connection_to_memcached()
Memcached isnt reachable.

Caching is enabled and the keystone.conf [cache] backend option is configured but one or more
Memcached servers are not reachable or marked as dead. Please ensure keystone.conf [cache]
memcache_servers is configured properly.

138 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.cmd.doctor.credential module

keystone.cmd.doctor.credential.symptom_keys_in_credential_fernet_key_repository()
Credential key repository is empty.

After configuring keystone to use the Fernet credential provider, you should use keystone-manage
credential_setup to initially populate your key repository with keys, and periodically rotate your
keys with keystone-manage credential_rotate.

keystone.cmd.doctor.credential.symptom_unique_key_repositories()
Key repositories for encryption should be unique.

Even though credentials are encrypted using the same mechanism as Fernet tokens, they should
have key repository locations that are independent of one another. Using the same repository to
encrypt credentials and tokens can be considered a security vulnerability because ciphertext from
the keys used to encrypt credentials is exposed as the token ID. Sharing a key repository can also
lead to premature key removal during key rotation. This could result in indecipherable credentials,
rendering them completely useless, or early token invalidation because the key that was used to
encrypt the entity has been deleted.

Ensure keystone.conf [credential] key_repository and keystone.conf [fernet_tokens]
key_repository are not pointing to the same location.

keystone.cmd.doctor.credential.symptom_usability_of_credential_fernet_key_repository()
Credential key repository is not setup correctly.

The credential Fernet key repository is expected to be readable by the user running keystone, but
not world-readable, because it contains security sensitive secrets.

keystone.cmd.doctor.database module

keystone.cmd.doctor.database.symptom_database_connection_is_not_SQLite()
SQLite is not recommended for production deployments.

SQLite does not enforce type checking and has limited support for migrations, making it unsuitable
for use in keystone. Please change your keystone.conf [database] connection value to point to a
supported database driver, such as MySQL.

keystone.cmd.doctor.debug module

keystone.cmd.doctor.debug.symptom_debug_mode_is_enabled()
Debug mode should be set to False.

Debug mode can be used to get more information back when trying to isolate a problem, but it is
not recommended to be enabled when running a production environment.

Ensure keystone.conf debug is set to False

3.1. keystone 139

Keystone Documentation, Release 21.0.2.dev4

keystone.cmd.doctor.federation module

keystone.cmd.doctor.federation.symptom_comma_in_SAML_private_key_file_path()
[saml] certfile should not contain a comma (,).

Because a comma is part of the API between keystone and the external xmlsec1 binary which
utilizes the key, keystone cannot include a comma in the path to the private key file.

keystone.cmd.doctor.federation.symptom_comma_in_SAML_public_certificate_path()
[saml] certfile should not contain a comma (,).

Because a comma is part of the API between keystone and the external xmlsec1 binary which
utilizes the certificate, keystone cannot include a comma in the path to the public certificate file.

keystone.cmd.doctor.ldap module

keystone.cmd.doctor.ldap.symptom_LDAP_file_based_domain_specific_configs()
Domain specific driver directory is invalid or contains invalid files.

If keystone.conf [identity] domain_specific_drivers_enabled is set to true, then support is en-
abled for individual domains to have their own identity drivers. The configurations for these
can either be stored in a config file or in the database. The case we handle in this symp-
tom is when they are stored in config files, which is indicated by keystone.conf [identity] do-
main_configurations_from_database being set to false.

keystone.cmd.doctor.ldap.symptom_LDAP_file_based_domain_specific_configs_formatted_correctly()
LDAP domain specific configuration files are not formatted correctly.

If keystone.conf [identity] domain_specific_drivers_enabled is set to true, then support is en-
abled for individual domains to have their own identity drivers. The configurations for these
can either be stored in a config file or in the database. The case we handle in this symp-
tom is when they are stored in config files, which is indicated by keystone.conf [identity] do-
main_configurations_from_database being set to false. The config files located in the direc-
tory specified by keystone.conf [identity] domain_config_dir should be in the form of key-
stone.<domain_name>.conf and their contents should look something like this:

[ldap] url = ldap://ldapservice.thecustomer.com query_scope = sub

user_tree_dn = ou=Users,dc=openstack,dc=org user_objectclass = MyOrgPerson
user_id_attribute = uid

keystone.cmd.doctor.ldap.symptom_LDAP_group_members_are_ids_disabled()
[ldap] group_members_are_ids is not enabled.

Because youve set keystone.conf [ldap] group_objectclass = posixGroup, we would have also ex-
pected you to enable set keystone.conf [ldap] group_members_are_ids because we suspect youre
using Open Directory, which would contain user IDs in a posixGroup rather than LDAP DNs, as
other object classes typically would.

keystone.cmd.doctor.ldap.symptom_LDAP_user_enabled_emulation_dn_ignored()
[ldap] user_enabled_emulation_dn is being ignored.

There is no reason to set this value unless keystone.conf [ldap] user_enabled_emulation is also
enabled.

keystone.cmd.doctor.ldap.symptom_LDAP_user_enabled_emulation_use_group_config_ignored()
[ldap] user_enabled_emulation_use_group_config is being ignored.

140 Chapter 3. Code Documentation

ldap://ldapservice.thecustomer.com

Keystone Documentation, Release 21.0.2.dev4

There is no reason to set this value unless keystone.conf [ldap] user_enabled_emulation is also
enabled.

keystone.cmd.doctor.security_compliance module

keystone.cmd.doctor.security_compliance.symptom_invalid_password_regular_expression()
Invalid password regular expression.

The password regular expression is invalid and users will not be able to make password changes
until this has been corrected.

Ensure [security_compliance] password_regex is a valid regular expression.

keystone.cmd.doctor.security_compliance.symptom_minimum_password_age_greater_than_expires_days()
Minimum password age should be less than the password expires days.

If the minimum password age is greater than or equal to the password expires days, then users
would not be able to change their passwords before they expire.

Ensure [security_compliance] minimum_password_age is less than the [security_compliance]
password_expires_days.

keystone.cmd.doctor.security_compliance.symptom_password_regular_expression_description_not_set()
Password regular expression description is not set.

The password regular expression is set, but the description is not. Thus, if a user fails the password
regular expression, they will not receive a message to explain why their requested password was
insufficient.

Ensure [security_compliance] password_regex_description is set with a description of your pass-
word regular expression in a language for humans.

keystone.cmd.doctor.tokens module

keystone.cmd.doctor.tokens.symptom_unreasonable_max_token_size()
keystone.conf [DEFAULT] max_token_size should be adjusted.

This option is intended to protect keystone from unreasonably sized tokens, where reasonable
is mostly dependent on the keystone.conf [token] provider that youre using. If youre using one
of the following token providers, then you should set keystone.conf [DEFAULT] max_token_size
accordingly:

• For Fernet, set keystone.conf [DEFAULT] max_token_size = 255, because Fernet tokens
should never exceed this length in most deployments. However, if you are also using key-
stone.conf [identity] driver = ldap, Fernet tokens may not be built using an efficient packing
method, depending on the IDs returned from LDAP, resulting in longer Fernet tokens (adjust
your max_token_size accordingly).

3.1. keystone 141

Keystone Documentation, Release 21.0.2.dev4

keystone.cmd.doctor.tokens_fernet module

keystone.cmd.doctor.tokens_fernet.symptom_keys_in_Fernet_key_repository()
Fernet key repository is empty.

After configuring keystone to use the Fernet token provider, you should use keystone-manage fer-
net_setup to initially populate your key repository with keys, and periodically rotate your keys with
keystone-manage fernet_rotate.

keystone.cmd.doctor.tokens_fernet.symptom_usability_of_Fernet_key_repository()
Fernet key repository is not setup correctly.

The Fernet key repository is expected to be readable by the user running keystone, but not world-
readable, because it contains security-sensitive secrets.

Module contents

keystone.cmd.doctor.diagnose()
Report diagnosis for any symptoms we find.

Returns true when any symptoms are found, false otherwise.

keystone.cmd.doctor.gather_symptoms()
Gather all of the objects in this module that are named symptom_*.

Submodules

keystone.cmd.bootstrap module

class keystone.cmd.bootstrap.Bootstrapper
Bases: object

bootstrap()

keystone.cmd.cli module

class keystone.cmd.cli.BaseApp
Bases: object

classmethod add_argument_parser(subparsers)

name = None

class keystone.cmd.cli.BasePermissionsSetup
Bases: keystone.cmd.cli.BaseApp

Common user/group setup for file permissions.

classmethod add_argument_parser(subparsers)

static get_user_group()

classmethod initialize_fernet_repository(keystone_user_id, keystone_group_id,
config_group=None)

142 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

classmethod rotate_fernet_repository(keystone_user_id, keystone_group_id,
config_group=None)

class keystone.cmd.cli.BootStrap
Bases: keystone.cmd.cli.BaseApp

Perform the basic bootstrap process.

classmethod add_argument_parser(subparsers)

do_bootstrap()
Perform the bootstrap actions.

Create bootstrap user, project, and role so that CMS, humans, or scripts can continue to
perform initial setup (domains, projects, services, endpoints, etc) of Keystone when standing
up a new deployment.

classmethod main()

name = 'bootstrap'

class keystone.cmd.cli.CreateJWSKeyPair
Bases: keystone.cmd.cli.BasePermissionsSetup

Create a key pair for signing and validating JWS tokens.

This command creates a public and private key pair to use for signing and validating JWS token
signatures. The key pair is written to the directory where the command is invoked.

classmethod add_argument_parser(subparsers)

classmethod main()

name = 'create_jws_keypair'

class keystone.cmd.cli.CredentialMigrate
Bases: keystone.cmd.cli.BasePermissionsSetup

Provides the ability to encrypt credentials using a new primary key.

This assumes that there is already a credential key repository in place and that the database backend
has been upgraded to at least the Newton schema. If the credential repository doesnt exist yet, you
can use keystone-manage credential_setup to create one.

classmethod main()

migrate_credentials()

name = 'credential_migrate'

class keystone.cmd.cli.CredentialRotate
Bases: keystone.cmd.cli.BasePermissionsSetup

Rotate Fernet encryption keys for credential encryption.

This assumes you have already run keystone-manage credential_setup.

A new primary key is placed into rotation only if all credentials are encrypted with the current
primary key. If any credentials are encrypted with a secondary key the rotation will abort. This
protects against removing a key that is still required to decrypt credentials. Once a key is removed
from the repository, it is impossible to recover the original data without restoring from a backup
external to keystone (more on backups below). To make sure all credentials are encrypted with
the latest primary key, please see the keystone-manage credential_migrate command. Since the

3.1. keystone 143

Keystone Documentation, Release 21.0.2.dev4

maximum number of keys in the credential repository is 3, once all credentials are encrypted with
the latest primary key we can safely introduce a new primary key. All credentials will still be
decryptable since they are all encrypted with the only secondary key in the repository.

It is imperitive to understand the importance of backing up keys used to encrypt credentials. In
the event keys are overrotated, applying a key repository from backup can help recover otherwise
useless credentials. Persisting snapshots of the key repository in secure and encrypted source
control, or a dedicated key management system are good examples of encryption key backups.

The keystone-manage credential_rotate and keystone-manage credential_migrate commands are
intended to be done in sequence. After performing a rotation, a migration must be done before
performing another rotation. This ensures we dont over-rotate encryption keys.

classmethod main()

name = 'credential_rotate'

validate_primary_key()

class keystone.cmd.cli.CredentialSetup
Bases: keystone.cmd.cli.BasePermissionsSetup

Setup a Fernet key repository for credential encryption.

The purpose of this command is very similar to keystone-manage fernet_setup only the keys in-
cluded in this repository are for encrypting and decrypting credential secrets instead of token pay-
loads. Keys can be rotated using keystone-manage credential_rotate.

classmethod main()

name = 'credential_setup'

class keystone.cmd.cli.DbSync
Bases: keystone.cmd.cli.BaseApp

Sync the database.

classmethod add_argument_parser(subparsers)

classmethod check_db_sync_status()

static main()

name = 'db_sync'

class keystone.cmd.cli.DbVersion
Bases: keystone.cmd.cli.BaseApp

Print the current migration version of the database.

static main()

name = 'db_version'

class keystone.cmd.cli.Doctor
Bases: keystone.cmd.cli.BaseApp

Diagnose common problems with keystone deployments.

classmethod add_argument_parser(subparsers)

static main()

name = 'doctor'

144 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.cmd.cli.DomainConfigUpload
Bases: keystone.cmd.cli.BaseApp

Upload the domain specific configuration files to the database.

classmethod add_argument_parser(subparsers)

static main()

name = 'domain_config_upload'

class keystone.cmd.cli.DomainConfigUploadFiles(domain_config_finder=<function
_domain_config_finder>)

Bases: object

load_backends()

read_domain_configs_from_files()
Read configs from file(s) and load into database.

The command line parameters have already been parsed and the CONF command option will
have been set. It is either set to the name of an explicit domain, or its None to indicate that
we want all domain config files.

run()

valid_options()
Validate the options, returning True if they are indeed valid.

It would be nice to use the argparse automated checking for this validation, but the only way
I can see doing that is to make the default (i.e. if no optional parameters are specified) to
upload all configuration files - and that sounds too dangerous as a default. So we use it in a
slightly unconventional way, where all parameters are optional, but you must specify at least
one.

class keystone.cmd.cli.FernetRotate
Bases: keystone.cmd.cli.BasePermissionsSetup

Rotate Fernet encryption keys.

This assumes you have already run keystone-manage fernet_setup.

A new primary key is placed into rotation, which is used for new tokens. The old primary key is
demoted to secondary, which can then still be used for validating tokens. Excess secondary keys
(beyond [fernet_tokens] max_active_keys) are revoked. Revoked keys are permanently deleted. A
new staged key will be created and used to validate tokens. The next time key rotation takes place,
the staged key will be put into rotation as the primary key.

Rotating keys too frequently, or with [fernet_tokens] max_active_keys set too low, will cause tokens
to become invalid prior to their expiration.

classmethod main()

name = 'fernet_rotate'

class keystone.cmd.cli.FernetSetup
Bases: keystone.cmd.cli.BasePermissionsSetup

Setup key repositories for Fernet tokens and auth receipts.

3.1. keystone 145

Keystone Documentation, Release 21.0.2.dev4

This also creates a primary key used for both creating and validating Fernet tokens and auth re-
ceipts. To improve security, you should rotate your keys (using keystone-manage fernet_rotate, for
example).

classmethod main()

name = 'fernet_setup'

class keystone.cmd.cli.MappingEngineTester
Bases: keystone.cmd.cli.BaseApp

Execute mapping engine locally.

classmethod add_argument_parser(subparsers)

classmethod main()

name = 'mapping_engine'

normalize_assertion()

normalize_rules()

read_assertion(path)

read_rules(path)

class keystone.cmd.cli.MappingPopulate
Bases: keystone.cmd.cli.BaseApp

Pre-populate entries from domain-specific backends.

Running this command is not required. It should only be run right after the LDAP was configured,
when many new users were added, or when mapping_purge is run.

This command will take a while to run. It is perfectly fine for it to run more than several minutes.

classmethod add_argument_parser(subparsers)

classmethod load_backends()

classmethod main()
Process entries for id_mapping_api.

name = 'mapping_populate'

class keystone.cmd.cli.MappingPurge
Bases: keystone.cmd.cli.BaseApp

Purge the mapping table.

classmethod add_argument_parser(subparsers)

static main()

name = 'mapping_purge'

class keystone.cmd.cli.ReceiptRotate
Bases: keystone.cmd.cli.BasePermissionsSetup

Rotate auth receipts encryption keys.

This assumes you have already run keystone-manage receipt_setup.

146 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

A new primary key is placed into rotation, which is used for new receipts. The old primary key is
demoted to secondary, which can then still be used for validating receipts. Excess secondary keys
(beyond [receipt] max_active_keys) are revoked. Revoked keys are permanently deleted. A new
staged key will be created and used to validate receipts. The next time key rotation takes place, the
staged key will be put into rotation as the primary key.

Rotating keys too frequently, or with [receipt] max_active_keys set too low, will cause receipts to
become invalid prior to their expiration.

classmethod main()

name = 'receipt_rotate'

class keystone.cmd.cli.ReceiptSetup
Bases: keystone.cmd.cli.BasePermissionsSetup

Setup a key repository for auth receipts.

This also creates a primary key used for both creating and validating receipts. To improve security,
you should rotate your keys (using keystone-manage receipt_rotate, for example).

classmethod main()

name = 'receipt_setup'

class keystone.cmd.cli.SamlIdentityProviderMetadata
Bases: keystone.cmd.cli.BaseApp

Generate Identity Provider metadata.

static main()

name = 'saml_idp_metadata'

class keystone.cmd.cli.TokenRotate
Bases: keystone.cmd.cli.BasePermissionsSetup

Rotate token encryption keys.

This assumes you have already run keystone-manage token_setup.

A new primary key is placed into rotation, which is used for new tokens. The old primary key is
demoted to secondary, which can then still be used for validating tokens. Excess secondary keys
(beyond [token] max_active_keys) are revoked. Revoked keys are permanently deleted. A new
staged key will be created and used to validate tokens. The next time key rotation takes place, the
staged key will be put into rotation as the primary key.

Rotating keys too frequently, or with [token] max_active_keys set too low, will cause tokens to
become invalid prior to their expiration.

classmethod main()

name = 'token_rotate'

class keystone.cmd.cli.TokenSetup
Bases: keystone.cmd.cli.BasePermissionsSetup

Setup a key repository for tokens.

This also creates a primary key used for both creating and validating tokens. To improve security,
you should rotate your keys (using keystone-manage token_rotate, for example).

classmethod main()

3.1. keystone 147

Keystone Documentation, Release 21.0.2.dev4

name = 'token_setup'

class keystone.cmd.cli.TrustFlush
Bases: keystone.cmd.cli.BaseApp

Flush expired and non-expired soft deleted trusts from the backend.

classmethod add_argument_parser(subparsers)

classmethod main()

name = 'trust_flush'

keystone.cmd.cli.add_command_parsers(subparsers)

keystone.cmd.cli.main(argv=None, developer_config_file=None)
Main entry point into the keystone-manage CLI utility.

Parameters

• argv (list) Arguments supplied via the command line using the sys stan-
dard library.

• developer_config_file (string) The location of a configuration file nor-
mally found in development environments.

keystone.cmd.manage module

keystone.cmd.manage.main()

keystone.cmd.status module

class keystone.cmd.status.Checks
Bases: oslo_upgradecheck.upgradecheck.UpgradeCommands

Programmable upgrade checks.

Each method here should be a programmable check that helps check for things that might cause
issues for deployers in the upgrade process. A good example of an upgrade check would be to
ensure all roles defined in policies actually exist within the roles backend.

check_default_roles_are_immutable()

check_trust_policies_are_not_empty()

keystone.cmd.status.main()

148 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Module contents

keystone.common package

Subpackages

keystone.common.cache package

Submodules

keystone.common.cache.core module

Keystone Caching Layer Implementation.

class keystone.common.cache.core.DistributedInvalidationStrategy(region_manager)
Bases: dogpile.cache.region.RegionInvalidationStrategy

invalidate(hard=None)
Region invalidation.

CacheRegion propagated call. The default invalidation system works by setting a current
timestamp (using time.time()) to consider all older timestamps effectively invalidated.

is_hard_invalidated(timestamp)
Check timestamp to determine if it was hard invalidated.

Returns Boolean. True if timestamp is older than the last region invalidation
time and region is invalidated in hard mode.

is_invalidated(timestamp)
Check timestamp to determine if it was invalidated.

Returns Boolean. True if timestamp is older than the last region invalidation
time.

is_soft_invalidated(timestamp)
Check timestamp to determine if it was soft invalidated.

Returns Boolean. True if timestamp is older than the last region invalidation
time and region is invalidated in soft mode.

was_hard_invalidated()
Indicate the region was invalidated in hard mode.

Returns Boolean. True if region was invalidated in hard mode.

was_soft_invalidated()
Indicate the region was invalidated in soft mode.

Returns Boolean. True if region was invalidated in soft mode.

class keystone.common.cache.core.RegionInvalidationManager(invalidation_region,
region_name)

Bases: object

REGION_KEY_PREFIX = '<<<region>>>:'

3.1. keystone 149

Keystone Documentation, Release 21.0.2.dev4

invalidate_region()

is_region_key(key)

property region_id

keystone.common.cache.core.configure_cache(region=None)

keystone.common.cache.core.configure_invalidation_region()

keystone.common.cache.core.create_region(name)
Create a dopile region.

Wraps oslo_cache.core.create_region. This is used to ensure that the Region is properly patched
and allows us to more easily specify a region name.

Parameters name (str) The region name

Returns The new region.

Return type dogpile.cache.region.CacheRegion

keystone.common.cache.core.get_memoization_decorator(group, expiration_group=None,
region=None)

keystone.common.cache.core.key_mangler_factory(invalidation_manager,
orig_key_mangler)

Module contents

keystone.common.policies package

Submodules

keystone.common.policies.access_rule module

keystone.common.policies.access_rule.list_rules()

keystone.common.policies.access_token module

keystone.common.policies.access_token.list_rules()

keystone.common.policies.application_credential module

keystone.common.policies.application_credential.list_rules()

150 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.common.policies.auth module

keystone.common.policies.auth.list_rules()

keystone.common.policies.base module

keystone.common.policies.base.list_rules()

keystone.common.policies.consumer module

keystone.common.policies.consumer.list_rules()

keystone.common.policies.credential module

keystone.common.policies.credential.list_rules()

keystone.common.policies.domain module

keystone.common.policies.domain.list_rules()

keystone.common.policies.domain_config module

keystone.common.policies.domain_config.list_rules()

keystone.common.policies.ec2_credential module

keystone.common.policies.ec2_credential.list_rules()

keystone.common.policies.endpoint module

keystone.common.policies.endpoint.list_rules()

keystone.common.policies.endpoint_group module

keystone.common.policies.endpoint_group.list_rules()

3.1. keystone 151

Keystone Documentation, Release 21.0.2.dev4

keystone.common.policies.grant module

keystone.common.policies.grant.list_operations(paths, methods)

keystone.common.policies.grant.list_rules()

keystone.common.policies.group module

keystone.common.policies.group.list_rules()

keystone.common.policies.identity_provider module

keystone.common.policies.identity_provider.list_rules()

keystone.common.policies.implied_role module

keystone.common.policies.implied_role.list_rules()

keystone.common.policies.limit module

keystone.common.policies.limit.list_rules()

keystone.common.policies.mapping module

keystone.common.policies.mapping.list_rules()

keystone.common.policies.policy module

keystone.common.policies.policy.list_rules()

keystone.common.policies.policy_association module

keystone.common.policies.policy_association.list_rules()

keystone.common.policies.project module

keystone.common.policies.project.list_rules()

152 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.common.policies.project_endpoint module

keystone.common.policies.project_endpoint.list_rules()

keystone.common.policies.protocol module

keystone.common.policies.protocol.list_rules()

keystone.common.policies.region module

keystone.common.policies.region.list_rules()

keystone.common.policies.registered_limit module

keystone.common.policies.registered_limit.list_rules()

keystone.common.policies.revoke_event module

keystone.common.policies.revoke_event.list_rules()

keystone.common.policies.role module

keystone.common.policies.role.list_rules()

keystone.common.policies.role_assignment module

keystone.common.policies.role_assignment.list_rules()

keystone.common.policies.service module

keystone.common.policies.service.list_rules()

keystone.common.policies.service_provider module

keystone.common.policies.service_provider.list_rules()

3.1. keystone 153

Keystone Documentation, Release 21.0.2.dev4

keystone.common.policies.token module

keystone.common.policies.token.list_rules()

keystone.common.policies.token_revocation module

keystone.common.policies.token_revocation.list_rules()

keystone.common.policies.trust module

keystone.common.policies.trust.list_rules()

keystone.common.policies.user module

keystone.common.policies.user.list_rules()

Module contents

keystone.common.policies.list_rules()

keystone.common.rbac_enforcer package

Submodules

keystone.common.rbac_enforcer.enforcer module

class keystone.common.rbac_enforcer.enforcer.RBACEnforcer
Bases: object

Enforce RBAC on API calls.

ACTION_STORE_ATTR = 'keystone:RBAC:action_name'

classmethod enforce_call(enforcer=None, action=None, target_attr=None,
member_target_type=None, member_target=None,
filters=None, build_target=None)

Enforce RBAC on the current request.

This will do some legwork and then instantiate the Enforcer if an enforcer is not passed in.

Parameters

• enforcer (RBACEnforcer) A pre-instantiated Enforcer object (optional)

• action (str) the name of the rule/policy enforcement to be checked
against, e.g. identity:get_user (optional may be replaced by decorating the
method/function with policy_enforcer_action.

154 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• target_attr (dict) complete override of the target data. This will re-
place all other generated target data meaning member_target_type and mem-
ber_target are ignored. This will also prevent extraction of data from the
X-Subject-Token. The target dict should contain a series of key-value pairs
such as {user: user_ref_dict}.

• member_target_type (str) the type of the target, e.g. user. Both this and
member_target must be passed if either is passed.

• member_target (dict) the (dict form) reference of the member object.
Both this and member_target_type must be passed if either is passed.

• filters (iterable) A variable number of optional string filters, these
are used to extract values from the query params. The filters are added to
the request data that is passed to the enforcer and may be used to determine
policy action. In practice these are mainly supplied in the various list APIs
and are un-used in the default supplied policies.

• build_target (function) A function to build the target for enforcement.
This is explicitly done after authentication in order to not leak existance data
before auth.

classmethod policy_enforcer_action(action)
Decorator to set policy enforcement action name.

static register_rules(enforcer)

suppress_deprecation_warnings = False

keystone.common.rbac_enforcer.policy module

keystone.common.rbac_enforcer.policy.get_enforcer()
Entrypoint that must return the raw oslo.policy enforcer obj.

This is utilized by the command-line policy tools.

Returns oslo_policy.policy.Enforcer

keystone.common.rbac_enforcer.policy.reset()

Module contents

class keystone.common.rbac_enforcer.RBACEnforcer
Bases: object

Enforce RBAC on API calls.

ACTION_STORE_ATTR = 'keystone:RBAC:action_name'

classmethod enforce_call(enforcer=None, action=None, target_attr=None,
member_target_type=None, member_target=None,
filters=None, build_target=None)

Enforce RBAC on the current request.

This will do some legwork and then instantiate the Enforcer if an enforcer is not passed in.

Parameters

3.1. keystone 155

Keystone Documentation, Release 21.0.2.dev4

• enforcer (RBACEnforcer) A pre-instantiated Enforcer object (optional)

• action (str) the name of the rule/policy enforcement to be checked
against, e.g. identity:get_user (optional may be replaced by decorating the
method/function with policy_enforcer_action.

• target_attr (dict) complete override of the target data. This will re-
place all other generated target data meaning member_target_type and mem-
ber_target are ignored. This will also prevent extraction of data from the
X-Subject-Token. The target dict should contain a series of key-value pairs
such as {user: user_ref_dict}.

• member_target_type (str) the type of the target, e.g. user. Both this and
member_target must be passed if either is passed.

• member_target (dict) the (dict form) reference of the member object.
Both this and member_target_type must be passed if either is passed.

• filters (iterable) A variable number of optional string filters, these
are used to extract values from the query params. The filters are added to
the request data that is passed to the enforcer and may be used to determine
policy action. In practice these are mainly supplied in the various list APIs
and are un-used in the default supplied policies.

• build_target (function) A function to build the target for enforcement.
This is explicitly done after authentication in order to not leak existance data
before auth.

classmethod policy_enforcer_action(action)
Decorator to set policy enforcement action name.

static register_rules(enforcer)

suppress_deprecation_warnings = False

keystone.common.resource_options package

Subpackages

keystone.common.resource_options.options package

Submodules

keystone.common.resource_options.options.immutable module

keystone.common.resource_options.options.immutable.check_immutable_delete(resource_ref,
re-
source_type,
re-
source_id)

Check if a delete is allowed on a resource.

Parameters

• resource_ref dict reference of the resource

156 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• resource_type resource type (str) e.g. project

• resource_id id of the resource (str) e.g. project[id]

Raises ResourceDeleteForbidden

keystone.common.resource_options.options.immutable.check_immutable_update(original_resource_ref,
new_resource_ref,
type,
re-
source_id)

Check if an update is allowed to an immutable resource.

Valid cases where an update is allowed:

• Resource is not immutable

• Resource is immutable, and update to set immutable to False or None

Parameters

• original_resource_ref a dict resource reference representing the current
resource

• new_resource_ref a dict reference of the updates to perform

• type the resource type, e.g. project

• resource_id the id of the resource (e.g. project[id]), usually a UUID

Raises ResourceUpdateForbidden

keystone.common.resource_options.options.immutable.check_resource_immutable(resource_ref)
Check to see if a resource is immutable.

Parameters resource_ref a dict reference of a resource to inspect

Module contents

keystone.common.resource_options.options.check_immutable_delete(resource_ref,
resource_type,
resource_id)

Check if a delete is allowed on a resource.

Parameters

• resource_ref dict reference of the resource

• resource_type resource type (str) e.g. project

• resource_id id of the resource (str) e.g. project[id]

Raises ResourceDeleteForbidden

keystone.common.resource_options.options.check_immutable_update(original_resource_ref,
new_resource_ref,
type, resource_id)

Check if an update is allowed to an immutable resource.

Valid cases where an update is allowed:

3.1. keystone 157

Keystone Documentation, Release 21.0.2.dev4

• Resource is not immutable

• Resource is immutable, and update to set immutable to False or None

Parameters

• original_resource_ref a dict resource reference representing the current
resource

• new_resource_ref a dict reference of the updates to perform

• type the resource type, e.g. project

• resource_id the id of the resource (e.g. project[id]), usually a UUID

Raises ResourceUpdateForbidden

keystone.common.resource_options.options.check_resource_immutable(resource_ref)
Check to see if a resource is immutable.

Parameters resource_ref a dict reference of a resource to inspect

Submodules

keystone.common.resource_options.core module

Options specific to resources managed by Keystone (Domain, User, etc).

class keystone.common.resource_options.core.ResourceOption(option_id, option_name,
validator=<function
_validator>,
json_schema_validation=None)

Bases: object

property json_schema

property option_id

property option_name

class keystone.common.resource_options.core.ResourceOptionRegistry(registry_name)
Bases: object

get_option_by_id(opt_id)

get_option_by_name(name)

property json_schema

property option_ids

property option_names

property options

property options_by_name

register_option(option)

keystone.common.resource_options.core.boolean_validator(value)

158 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.common.resource_options.core.get_resource_option(model, option_id)
Get the resource option information from the models mapper.

keystone.common.resource_options.core.ref_mapper_to_dict_options(ref)
Convert the values in _resource_option_mapper to options dict.

NOTE: this is to be called from the relevant to_dict methods or similar and must be called
from within the active session context.

Parameters ref the DB model ref to extract options from

Returns Dict of options as expected to be returned out of to_dict in the options key.

keystone.common.resource_options.core.resource_options_ref_to_mapper(ref, op-
tion_class)

Convert the _resource_options property-dict to options attr map.

The model must have the resource option mapper located in the _resource_option_mapper
attribute.

The model must have the resource option registry located in the resource_options_registry
attribute.

The option dict with key(opt_id), value(opt_value) will be pulled from ref.
_resource_options.

NOTE: This function MUST be called within the active writer session context!

Parameters

• ref The DB model reference that is actually stored to the backend.

• option_class Class that is used to store the resource option in the DB.

Module contents

keystone.common.sql package

Subpackages

keystone.common.sql.legacy_migrations package

Subpackages

keystone.common.sql.legacy_migrations.contract_repo package

Subpackages

keystone.common.sql.legacy_migrations.contract_repo.versions package

Submodules

3.1. keystone 159

Keystone Documentation, Release 21.0.2.dev4

keystone.common.sql.legacy_migrations.contract_repo.versions.073_contract_initial_migration
module

keystone.common.sql.legacy_migrations.contract_repo.versions.073_contract_initial_migration.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.contract_repo.versions.074_placeholder
module

keystone.common.sql.legacy_migrations.contract_repo.versions.074_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.contract_repo.versions.075_placeholder
module

keystone.common.sql.legacy_migrations.contract_repo.versions.075_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.contract_repo.versions.076_placeholder
module

keystone.common.sql.legacy_migrations.contract_repo.versions.076_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.contract_repo.versions.077_placeholder
module

keystone.common.sql.legacy_migrations.contract_repo.versions.077_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.contract_repo.versions.078_placeholder
module

keystone.common.sql.legacy_migrations.contract_repo.versions.078_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.contract_repo.versions.079_contract_update_local_id_limit
module

keystone.common.sql.legacy_migrations.contract_repo.versions.079_contract_update_local_id_limit.upgrade(migrate_engine)

Module contents

Submodules

keystone.common.sql.legacy_migrations.contract_repo.manage module

Module contents

160 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.common.sql.legacy_migrations.data_migration_repo package

Subpackages

keystone.common.sql.legacy_migrations.data_migration_repo.versions package

Submodules

keystone.common.sql.legacy_migrations.data_migration_repo.versions.073_migrate_initial_migration
module

keystone.common.sql.legacy_migrations.data_migration_repo.versions.073_migrate_initial_migration.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.data_migration_repo.versions.074_placeholder
module

keystone.common.sql.legacy_migrations.data_migration_repo.versions.074_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.data_migration_repo.versions.075_placeholder
module

keystone.common.sql.legacy_migrations.data_migration_repo.versions.075_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.data_migration_repo.versions.076_placeholder
module

keystone.common.sql.legacy_migrations.data_migration_repo.versions.076_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.data_migration_repo.versions.077_placeholder
module

keystone.common.sql.legacy_migrations.data_migration_repo.versions.077_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.data_migration_repo.versions.078_placeholder
module

keystone.common.sql.legacy_migrations.data_migration_repo.versions.078_placeholder.upgrade(migrate_engine)

3.1. keystone 161

Keystone Documentation, Release 21.0.2.dev4

keystone.common.sql.legacy_migrations.data_migration_repo.versions.079_migrate_update_local_id_limit
module

keystone.common.sql.legacy_migrations.data_migration_repo.versions.079_migrate_update_local_id_limit.upgrade(migrate_engine)

Module contents

Submodules

keystone.common.sql.legacy_migrations.data_migration_repo.manage module

Module contents

keystone.common.sql.legacy_migrations.expand_repo package

Subpackages

keystone.common.sql.legacy_migrations.expand_repo.versions package

Submodules

keystone.common.sql.legacy_migrations.expand_repo.versions.073_expand_initial_migration
module

keystone.common.sql.legacy_migrations.expand_repo.versions.073_expand_initial_migration.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.expand_repo.versions.074_placeholder mod-
ule

keystone.common.sql.legacy_migrations.expand_repo.versions.074_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.expand_repo.versions.075_placeholder mod-
ule

keystone.common.sql.legacy_migrations.expand_repo.versions.075_placeholder.upgrade(migrate_engine)

162 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.common.sql.legacy_migrations.expand_repo.versions.076_placeholder mod-
ule

keystone.common.sql.legacy_migrations.expand_repo.versions.076_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.expand_repo.versions.077_placeholder mod-
ule

keystone.common.sql.legacy_migrations.expand_repo.versions.077_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.expand_repo.versions.078_placeholder mod-
ule

keystone.common.sql.legacy_migrations.expand_repo.versions.078_placeholder.upgrade(migrate_engine)

keystone.common.sql.legacy_migrations.expand_repo.versions.079_expand_update_local_id_limit
module

keystone.common.sql.legacy_migrations.expand_repo.versions.079_expand_update_local_id_limit.upgrade(migrate_engine)

Module contents

Submodules

keystone.common.sql.legacy_migrations.expand_repo.manage module

Module contents

Module contents

Submodules

keystone.common.sql.upgrades module

keystone.common.sql.upgrades.contract_schema()
Contract the database.

This is run manually by the keystone-manage command once the keystone nodes have been up-
graded to the latest release and will remove any old tables/columns that are no longer required.

keystone.common.sql.upgrades.expand_schema()
Expand the database schema ahead of data migration.

This is run manually by the keystone-manage command before the first keystone node is migrated
to the latest release.

keystone.common.sql.upgrades.get_db_version(branch=’expand’)

3.1. keystone 163

Keystone Documentation, Release 21.0.2.dev4

keystone.common.sql.upgrades.migrate_data()
Migrate data to match the new schema.

This is run manually by the keystone-manage command once the keystone schema has been ex-
panded for the new release.

keystone.common.sql.upgrades.offline_sync_database_to_version(version=None)
Perform and off-line sync of the database.

Migrate the database up to the latest version, doing the equivalent of the cycle of expand, migrate
and contract, for when an offline upgrade is being performed.

If a version is specified then only migrate the database up to that version. Downgrading is not
supported. If version is specified, then only the main database migration is carried out - and the
expand, migration and contract phases will NOT be run.

Module contents

keystone.common.validation package

Submodules

keystone.common.validation.parameter_types module

Common parameter types for validating a request reference.

keystone.common.validation.validators module

Internal implementation of request body validating middleware.

class keystone.common.validation.validators.SchemaValidator(schema)
Bases: object

Resource reference validator class.

validate(*args, **kwargs)

validator_org
alias of jsonschema.validators.create.<locals>.Validator

keystone.common.validation.validators.validate_password(password)

Module contents

Request body validating middleware for OpenStack Identity resources.

keystone.common.validation.lazy_validate(request_body_schema, resource_to_validate)
A non-decorator way to validate a request, to be used inline.

Parameters

• request_body_schema a schema to validate the resource reference

• resource_to_validate dictionary to validate

164 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Raises

• keystone.exception.ValidationError if resource_to_validate is None.
(see wrapper method below).

• TypeError at decoration time when the expected resource to validate isnt
found in the decorated methods signature

keystone.common.validation.nullable(property_schema)
Clone a property schema into one that is nullable.

Parameters property_schema (dict) schema to clone into a nullable schema

Returns a new dict schema

Submodules

keystone.common.authorization module

keystone.common.context module

class keystone.common.context.RequestContext(**kwargs)
Bases: oslo_context.context.RequestContext

to_policy_values()
Add keystone-specific policy values to policy representation.

This method converts generic policy values to a dictionary form using the base implemen-
tation from oslo_context.context.RequestContext. Afterwards, it is going to pull keystone-
specific values off the context and represent them as items in the policy values dictionary.
This is because keystone uses default policies that rely on these values, so we need to guar-
antee they are present during policy enforcement if they are present on the context object.

This method is automatically called in oslo_policy.policy.Enforcer.enforce() if oslo.policy
knows its dealing with a context object.

keystone.common.driver_hints module

class keystone.common.driver_hints.Hints
Bases: object

Encapsulate driver hints for listing entities.

Hints are modifiers that affect the return of entities from a list_<entities> operation. They are
typically passed to a driver to give direction as to what filtering, pagination or list limiting actions
are being requested.

It is optional for a driver to action some or all of the list hints, but any filters that it does satisfy
must be marked as such by calling removing the filter from the list.

A Hint object contains filters, which is a list of dicts that can be accessed publicly. Also it contains
a dict called limit, which will indicate the amount of data we want to limit our listing to.

If the filter is discovered to never match, then cannot_match can be set to indicate that there will
not be any matches and the backend work can be short-circuited.

3.1. keystone 165

Keystone Documentation, Release 21.0.2.dev4

Each filter term consists of:

• name: the name of the attribute being matched

• value: the value against which it is being matched

• comparator: the operation, which can be one of equals, contains, startswith or
endswith

• case_sensitive: whether any comparison should take account of case

add_filter(name, value, comparator=’equals’, case_sensitive=False)
Add a filter to the filters list, which is publicly accessible.

get_exact_filter_by_name(name)
Return a filter key and value if exact filter exists for name.

set_limit(limit, truncated=False)
Set a limit to indicate the list should be truncated.

keystone.common.driver_hints.truncated(f)
Ensure list truncation is detected in Driver list entity methods.

This is designed to wrap Driver list_{entity} methods in order to calculate if the resultant list has
been truncated. Provided a limit dict is found in the hints list, we increment the limit by one so
as to ask the wrapped function for one more entity than the limit, and then once the list has been
generated, we check to see if the original limit has been exceeded, in which case we truncate back
to that limit and set the truncated boolean to true in the hints limit dict.

keystone.common.fernet_utils module

class keystone.common.fernet_utils.FernetUtils(key_repository, max_active_keys,
config_group)

Bases: object

create_key_directory(keystone_user_id=None, keystone_group_id=None)
Attempt to create the key directory if it doesnt exist.

initialize_key_repository(keystone_user_id=None, keystone_group_id=None)
Create a key repository and bootstrap it with a key.

Parameters

• keystone_user_id User ID of the Keystone user.

• keystone_group_id Group ID of the Keystone user.

load_keys(use_null_key=False)
Load keys from disk into a list.

The first key in the list is the primary key used for encryption. All other keys are active
secondary keys that can be used for decrypting tokens.

Parameters use_null_key If true, a known key containing null bytes will be
appended to the list of returned keys.

rotate_keys(keystone_user_id=None, keystone_group_id=None)
Create a new primary key and revoke excess active keys.

Parameters

166 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• keystone_user_id User ID of the Keystone user.

• keystone_group_id Group ID of the Keystone user.

Key rotation utilizes the following behaviors:

• The highest key number is used as the primary key (used for encryption).

• All keys can be used for decryption.

• New keys are always created as key 0, which serves as a placeholder before promoting
it to be the primary key.

This strategy allows you to safely perform rotation on one node in a cluster, before syncing
the results of the rotation to all other nodes (during both key rotation and synchronization,
all nodes must recognize all primary keys).

validate_key_repository(requires_write=False)
Validate permissions on the key repository directory.

keystone.common.json_home module

class keystone.common.json_home.JsonHomeResources
Bases: object

JSON Home resource data.

classmethod append_resource(rel, data)

classmethod resources()

class keystone.common.json_home.Parameters
Bases: object

Relationships for Common parameters.

ACCESS_RULE_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/access_rule_id'

APPLICATION_CRED_ID = 'https://docs.openstack.org/api/openstack-identity/
3/param/application_credential_id'

DOMAIN_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/domain_id'

ENDPOINT_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/endpoint_id'

GROUP_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/group_id'

LIMIT_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/limit_id'

POLICY_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/policy_id'

PROJECT_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/project_id'

3.1. keystone 167

Keystone Documentation, Release 21.0.2.dev4

REGION_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/region_id'

REGISTERED_LIMIT_ID = 'https://docs.openstack.org/api/openstack-identity/
3/param/registered_limit_id'

ROLE_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/role_id'

SERVICE_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/service_id'

TAG_VALUE =
'https://docs.openstack.org/api/openstack-identity/3/param/tag_value'

USER_ID =
'https://docs.openstack.org/api/openstack-identity/3/param/user_id'

class keystone.common.json_home.Status
Bases: object

Status values supported.

DEPRECATED = 'deprecated'

EXPERIMENTAL = 'experimental'

STABLE = 'stable'

classmethod update_resource_data(resource_data, status)

keystone.common.json_home.build_v3_extension_parameter_relation(extension_name,
extension_version,
parameter_name)

keystone.common.json_home.build_v3_extension_resource_relation(extension_name,
extension_version,
resource_name)

keystone.common.json_home.build_v3_parameter_relation(parameter_name)

keystone.common.json_home.build_v3_resource_relation(resource_name)

keystone.common.json_home.translate_urls(json_home, new_prefix)
Given a JSON Home document, sticks new_prefix on each of the urls.

keystone.common.jwt_utils module

keystone.common.jwt_utils.create_jws_keypair(private_key_path, public_key_path)
Create an ECDSA key pair using an secp256r1, or NIST P-256, curve.

Parameters

• private_key_path location to save the private key

• public_key_path location to save the public key

168 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.common.manager module

class keystone.common.manager.Manager(driver_name)
Bases: object

Base class for intermediary request layer.

The Manager layer exists to support additional logic that applies to all or some of the methods
exposed by a service that are not specific to the HTTP interface.

It also provides a stable entry point to dynamic backends.

An example of a probable use case is logging all the calls.

driver_namespace = None

keystone.common.manager.load_driver(namespace, driver_name, *args)

keystone.common.manager.response_truncated(f)
Truncate the list returned by the wrapped function.

This is designed to wrap Manager list_{entity} methods to ensure that any list limits that are defined
are passed to the driver layer. If a hints list is provided, the wrapper will insert the relevant limit
into the hints so that the underlying driver call can try and honor it. If the driver does truncate the
response, it will update the truncated attribute in the limit entry in the hints list, which enables the
caller of this function to know if truncation has taken place. If, however, the driver layer is unable
to perform truncation, the limit entry is simply left in the hints list for the caller to handle.

A _get_list_limit() method is required to be present in the object class hierarchy, which returns the
limit for this backend to which we will truncate.

If a hints list is not provided in the arguments of the wrapped call then any limits set in the config file
are ignored. This allows internal use of such wrapped methods where the entire data set is needed
as input for the calculations of some other API (e.g. get role assignments for a given project).

keystone.common.password_hashing module

keystone.common.password_hashing.check_password(password, hashed)
Check that a plaintext password matches hashed.

hashpw returns the salt value concatenated with the actual hash value. It extracts the actual salt if
this value is then passed as the salt.

keystone.common.password_hashing.hash_password(password)
Hash a password. Harder.

keystone.common.password_hashing.hash_user_password(user)
Hash a user dicts password without modifying the passed-in dict.

keystone.common.password_hashing.verify_length_and_trunc_password(password)
Verify and truncate the provided password to the max_password_length.

We also need to check that the configured password hashing algorithm does not silently truncate
the password. For example, passlib.hash.bcrypt does this: https://passlib.readthedocs.io/en/stable/
lib/passlib.hash.bcrypt.html#security-issues

3.1. keystone 169

https://passlib.readthedocs.io/en/stable/lib/passlib.hash.bcrypt.html#security-issues
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.bcrypt.html#security-issues

Keystone Documentation, Release 21.0.2.dev4

keystone.common.profiler module

keystone.common.profiler.setup(name, host=’0.0.0.0’)
Setup OSprofiler notifier and enable profiling.

Parameters

• name name of the service that will be profiled

• host hostname or host IP address that the service will be running on. By
default host will be set to 0.0.0.0, but more specified host name / address usage
is highly recommended.

keystone.common.provider_api module

exception keystone.common.provider_api.DuplicateProviderError
Bases: Exception

Attempting to register a duplicate API provider.

class keystone.common.provider_api.ProviderAPIMixin
Bases: object

Allow referencing provider apis on self via __getattr__.

Be sure this class is first in the class definition for inheritance.

class keystone.common.provider_api.ProviderAPIRegistry
Bases: object

deferred_provider_lookup(api, method)
Create descriptor that performs lookup of api and method on demand.

For specialized cases, such as the enforcer get_member_from_driver which needs to be ef-
fectively a classmethod, this method returns a smart descriptor object that does the lookup at
runtime instead of at import time.

Parameters

• api (str) The api to use, e.g. identity_api

• method (str) the method on the api to return

lock_provider_registry()

locked = False

keystone.common.render_token module

keystone.common.render_token.render_token_response_from_model(token, in-
clude_catalog=True)

170 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.common.tokenless_auth module

class keystone.common.tokenless_auth.TokenlessAuthHelper(env)
Bases: keystone.common.provider_api.ProviderAPIMixin, object

get_mapped_user(project_id=None, domain_id=None)
Map client certificate to an existing user.

If user is ephemeral, there is no validation on the user himself; however it will be mapped to a
corresponding group(s) and the scope of this ephemeral user is the same as what is assigned
to the group.

Parameters

• project_id Project scope of the mapped user.

• domain_id Domain scope of the mapped user.

Returns A dictionary that contains the keys, such as user_id, user_name, do-
main_id, domain_name

Return type dict

get_scope()

keystone.common.utils module

class keystone.common.utils.SmarterEncoder(*, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None,
separators=None, default=None)

Bases: json.encoder.JSONEncoder

Help for JSON encoding dict-like objects.

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls
the base implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

class keystone.common.utils.WhiteListedItemFilter(whitelist, data)
Bases: object

keystone.common.utils.attr_as_boolean(val_attr)
Return the boolean value, decoded from a string.

3.1. keystone 171

Keystone Documentation, Release 21.0.2.dev4

We test explicitly for a value meaning False, which can be one of several formats as specified in
oslo strutils.FALSE_STRINGS. All other string values (including an empty string) are treated as
meaning True.

keystone.common.utils.auth_str_equal(provided, known)
Constant-time string comparison.

Params provided the first string

Params known the second string

Returns True if the strings are equal.

This function takes two strings and compares them. It is intended to be used when doing a com-
parison for authentication purposes to help guard against timing attacks. When using the function
for this purpose, always provide the user-provided password as the first argument. The time this
function will take is always a factor of the length of this string.

keystone.common.utils.check_endpoint_url(url)
Check substitution of url.

The invalid urls are as follows: urls with substitutions that is not in the whitelist

Check the substitutions in the URL to make sure they are valid and on the whitelist.

Parameters url (str) the URL to validate

Return type None

Raises keystone.exception.URLValidationError if the URL is invalid

keystone.common.utils.create_directory(directory, keystone_user_id=None,
keystone_group_id=None)

Attempt to create a directory if it doesnt exist.

Parameters

• directory string containing the path of the directory to create.

• keystone_user_id the system ID of the process running keystone.

• keystone_group_id the system ID of the group running keystone.

keystone.common.utils.flatten_dict(d, parent_key=”)
Flatten a nested dictionary.

Converts a dictionary with nested values to a single level flat dictionary, with dotted notation for
each key.

keystone.common.utils.format_url(url, substitutions, silent_keyerror_failures=None)
Format a user-defined URL with the given substitutions.

Parameters

• url (string) the URL to be formatted

• substitutions (dict) the dictionary used for substitution

• silent_keyerror_failures (list) keys for which we should be silent if
there is a KeyError exception on substitution attempt

Returns a formatted URL

172 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.common.utils.get_unix_group(group=None)
Get the gid and group name.

This is a convenience utility which accepts a variety of input which might represent a unix group.
If successful it returns the gid and name. Valid input is:

string A string is first considered to be a group name and a lookup is attempted under that name.
If no name is found then an attempt is made to convert the string to an integer and perform a
lookup as a gid.

int An integer is interpreted as a gid.

None None is interpreted to mean use the current processs effective group.

If the input is a valid type but no group is found a KeyError is raised. If the input is not a valid
type a TypeError is raised.

Parameters group (object) string, int or None specifying the group to lookup.

Returns tuple of (gid, name)

keystone.common.utils.get_unix_user(user=None)
Get the uid and user name.

This is a convenience utility which accepts a variety of input which might represent a unix user. If
successful it returns the uid and name. Valid input is:

string A string is first considered to be a user name and a lookup is attempted under that name.
If no name is found then an attempt is made to convert the string to an integer and perform a
lookup as a uid.

int An integer is interpreted as a uid.

None None is interpreted to mean use the current processs effective user.

If the input is a valid type but no user is found a KeyError is raised. If the input is not a valid type
a TypeError is raised.

Parameters user (object) string, int or None specifying the user to lookup.

Returns tuple of (uid, name)

keystone.common.utils.hash_access_key(access)

keystone.common.utils.is_not_url_safe(name)
Check if a string contains any url reserved characters.

keystone.common.utils.isotime(at=None, subsecond=False)
Stringify time in ISO 8601 format.

Python provides a similar instance method for datetime.datetime objects called isoformat(). The
format of the strings generated by isoformat() has a couple of problems:

1) The strings generated by isotime() are used in tokens and other public APIs that we cant change
without a deprecation period. The strings generated by isoformat() are not the same format, so we
cant just change to it.

2) The strings generated by isoformat() do not include the microseconds if the value happens to
be 0. This will likely show up as random failures as parsers may be written to always expect
microseconds, and it will parse correctly most of the time.

Parameters

3.1. keystone 173

Keystone Documentation, Release 21.0.2.dev4

• at (datetime.datetime) Optional datetime object to return at a string. If
not provided, the time when the function was called will be used.

• subsecond (bool) If true, the returned string will represent microsecond pre-
cision, but only precise to the second. For example, a datetime.datetime(2016,
9, 14, 14, 1, 13, 970223) will be returned as 2016-09-14T14:01:13.000000Z.

Returns A time string represented in ISO 8601 format.

Return type str

keystone.common.utils.list_url_unsafe_chars(name)
Return a list of the reserved characters.

keystone.common.utils.lower_case_hostname(url)
Change the URLs hostname to lowercase.

keystone.common.utils.nested_contexts(*contexts)

keystone.common.utils.parse_expiration_date(expiration_date)

keystone.common.utils.remove_standard_port(url)

keystone.common.utils.resource_uuid(value)
Convert input to valid UUID hex digits.

keystone.common.utils.setup_remote_pydev_debug()

Module contents

keystone.conf package

Submodules

keystone.conf.application_credential module

keystone.conf.application_credential.list_opts()

keystone.conf.application_credential.register_opts(conf)

keystone.conf.assignment module

keystone.conf.assignment.list_opts()

keystone.conf.assignment.register_opts(conf)

174 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.conf.auth module

keystone.conf.auth.list_opts()

keystone.conf.auth.register_opts(conf)

keystone.conf.auth.setup_authentication(conf=None)
Register non-default auth methods (used by extensions, etc).

keystone.conf.catalog module

keystone.conf.catalog.list_opts()

keystone.conf.catalog.register_opts(conf)

keystone.conf.constants module

Constants for use in the keystone.conf package.

These constants are shared by more than one module in the keystone.conf package.

keystone.conf.credential module

keystone.conf.credential.list_opts()

keystone.conf.credential.register_opts(conf)

keystone.conf.default module

keystone.conf.default.list_opts()

keystone.conf.default.register_opts(conf)

keystone.conf.domain_config module

keystone.conf.domain_config.list_opts()

keystone.conf.domain_config.register_opts(conf)

keystone.conf.endpoint_filter module

keystone.conf.endpoint_filter.list_opts()

keystone.conf.endpoint_filter.register_opts(conf)

3.1. keystone 175

Keystone Documentation, Release 21.0.2.dev4

keystone.conf.endpoint_policy module

keystone.conf.endpoint_policy.list_opts()

keystone.conf.endpoint_policy.register_opts(conf)

keystone.conf.eventlet_server module

keystone.conf.eventlet_server.list_opts()

keystone.conf.eventlet_server.register_opts(conf)

keystone.conf.federation module

keystone.conf.federation.list_opts()

keystone.conf.federation.register_opts(conf)

keystone.conf.fernet_receipts module

keystone.conf.fernet_receipts.list_opts()

keystone.conf.fernet_receipts.register_opts(conf)

keystone.conf.fernet_tokens module

keystone.conf.fernet_tokens.list_opts()

keystone.conf.fernet_tokens.register_opts(conf)

keystone.conf.identity module

keystone.conf.identity.list_opts()

keystone.conf.identity.register_opts(conf)

keystone.conf.identity_mapping module

keystone.conf.identity_mapping.list_opts()

keystone.conf.identity_mapping.register_opts(conf)

176 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.conf.jwt_tokens module

keystone.conf.jwt_tokens.list_opts()

keystone.conf.jwt_tokens.register_opts(conf)

keystone.conf.ldap module

keystone.conf.ldap.list_opts()

keystone.conf.ldap.register_opts(conf)

keystone.conf.memcache module

keystone.conf.memcache.list_opts()

keystone.conf.memcache.register_opts(conf)

keystone.conf.oauth1 module

keystone.conf.oauth1.list_opts()

keystone.conf.oauth1.register_opts(conf)

keystone.conf.opts module

Single point of entry to generate the sample configuration file.

This module collects all the necessary info from the other modules in this package. It is assumed that:

• Every other module in this package has a list_opts function which returns a dict where:

– The keys are strings which are the group names.

– The value of each key is a list of config options for that group.

• The conf package doesnt have further packages with config options.

• This module is only used in the context of sample file generation.

keystone.conf.opts.list_opts()

keystone.conf.policy module

keystone.conf.policy.list_opts()

keystone.conf.policy.register_opts(conf)

3.1. keystone 177

Keystone Documentation, Release 21.0.2.dev4

keystone.conf.receipt module

keystone.conf.receipt.list_opts()

keystone.conf.receipt.register_opts(conf)

keystone.conf.resource module

keystone.conf.resource.list_opts()

keystone.conf.resource.register_opts(conf)

keystone.conf.revoke module

keystone.conf.revoke.list_opts()

keystone.conf.revoke.register_opts(conf)

keystone.conf.role module

keystone.conf.role.list_opts()

keystone.conf.role.register_opts(conf)

keystone.conf.saml module

keystone.conf.saml.list_opts()

keystone.conf.saml.register_opts(conf)

keystone.conf.security_compliance module

keystone.conf.security_compliance.list_opts()

keystone.conf.security_compliance.register_opts(conf)

keystone.conf.shadow_users module

keystone.conf.shadow_users.list_opts()

keystone.conf.shadow_users.register_opts(conf)

178 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.conf.token module

keystone.conf.token.list_opts()

keystone.conf.token.register_opts(conf)

keystone.conf.tokenless_auth module

keystone.conf.tokenless_auth.list_opts()

keystone.conf.tokenless_auth.register_opts(conf)

keystone.conf.totp module

keystone.conf.totp.list_opts()

keystone.conf.totp.register_opts(conf)

keystone.conf.trust module

keystone.conf.trust.list_opts()

keystone.conf.trust.register_opts(conf)

keystone.conf.unified_limit module

keystone.conf.unified_limit.list_opts()

keystone.conf.unified_limit.register_opts(conf)

keystone.conf.utils module

keystone.conf.utils.fmt(docstr)
Format a docstring for use as documentation in sample config.

keystone.conf.wsgi module

keystone.conf.wsgi.list_opts()

keystone.conf.wsgi.register_opts(conf)

3.1. keystone 179

Keystone Documentation, Release 21.0.2.dev4

Module contents

keystone.conf.configure(conf=None)

keystone.conf.set_config_defaults()
Override all configuration default values for keystone.

keystone.conf.set_default_for_default_log_levels()
Set the default for the default_log_levels option for keystone.

Keystone uses some packages that other OpenStack services dont use that do logging. This will
set the default_log_levels default level for those packages.

This function needs to be called before CONF().

keystone.conf.set_external_opts_defaults()
Update default configuration options for oslo.middleware.

keystone.conf.setup_logging()
Set up logging for the keystone package.

keystone.credential package

Subpackages

keystone.credential.backends package

Submodules

keystone.credential.backends.base module

class keystone.credential.backends.base.CredentialDriverBase
Bases: object

abstract create_credential(credential_id, credential)
Create a new credential.

Raises keystone.exception.Conflict If a duplicate credential exists.

abstract delete_credential(credential_id)
Delete an existing credential.

Raises keystone.exception.CredentialNotFound If credential doesnt exist.

abstract delete_credentials_for_project(project_id)
Delete all credentials for a project.

abstract delete_credentials_for_user(user_id)
Delete all credentials for a user.

abstract get_credential(credential_id)
Get a credential by ID.

Returns credential_ref

Raises keystone.exception.CredentialNotFound If credential doesnt exist.

180 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract list_credentials(hints)
List all credentials.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns a list of credential_refs or an empty list.

abstract list_credentials_for_user(user_id, type=None)
List credentials for a user.

Parameters

• user_id ID of a user to filter credentials by.

• type type of credentials to filter on.

Returns a list of credential_refs or an empty list.

abstract update_credential(credential_id, credential)
Update an existing credential.

Raises

• keystone.exception.CredentialNotFound If credential doesnt exist.

• keystone.exception.Conflict If a duplicate credential exists.

keystone.credential.backends.sql module

class keystone.credential.backends.sql.Credential
Bases: keystone.credential.backends.base.CredentialDriverBase

create_credential(credential_id, credential)
Create a new credential.

Raises keystone.exception.Conflict If a duplicate credential exists.

delete_credential(credential_id)
Delete an existing credential.

Raises keystone.exception.CredentialNotFound If credential doesnt exist.

delete_credentials_for_project(project_id)
Delete all credentials for a project.

delete_credentials_for_user(user_id)
Delete all credentials for a user.

get_credential(credential_id)
Get a credential by ID.

Returns credential_ref

Raises keystone.exception.CredentialNotFound If credential doesnt exist.

list_credentials(hints)
List all credentials.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

3.1. keystone 181

Keystone Documentation, Release 21.0.2.dev4

Returns a list of credential_refs or an empty list.

list_credentials_for_user(user_id, type=None)
List credentials for a user.

Parameters

• user_id ID of a user to filter credentials by.

• type type of credentials to filter on.

Returns a list of credential_refs or an empty list.

update_credential(credential_id, credential)
Update an existing credential.

Raises

• keystone.exception.CredentialNotFound If credential doesnt exist.

• keystone.exception.Conflict If a duplicate credential exists.

class keystone.credential.backends.sql.CredentialModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'user_id', 'project_id', 'encrypted_blob', 'type',
'key_hash']

encrypted_blob

extra

id

key_hash

project_id

type

user_id

Module contents

keystone.credential.providers package

Subpackages

keystone.credential.providers.fernet package

Submodules

keystone.credential.providers.fernet.core module

class keystone.credential.providers.fernet.core.Provider
Bases: keystone.credential.providers.core.Provider

182 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

decrypt(credential)
Attempt to decrypt a credential.

Parameters credential an encrypted credential string

Returns a decrypted credential

encrypt(credential)
Attempt to encrypt a plaintext credential.

Parameters credential a plaintext representation of a credential

Returns an encrypted credential

keystone.credential.providers.fernet.core.get_multi_fernet_keys()

keystone.credential.providers.fernet.core.primary_key_hash(keys)
Calculate a hash of the primary key used for encryption.

Module contents

Submodules

keystone.credential.providers.core module

class keystone.credential.providers.core.Provider
Bases: object

Interface for credential providers that support encryption.

abstract decrypt(credential)
Decrypt a credential.

Parameters credential (str) credential to decrypt

Returns credential str as plaintext

Raises keystone.exception.CredentialEncryptionError

abstract encrypt(credential)
Encrypt a credential.

Parameters credential (str) credential to encrypt

Returns encrypted credential str

Raises keystone.exception.CredentialEncryptionError

3.1. keystone 183

Keystone Documentation, Release 21.0.2.dev4

Module contents

Submodules

keystone.credential.core module

Main entry point into the Credential service.

class keystone.credential.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Credential backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

create_credential(credential_id, credential, initiator=None)
Create a credential.

delete_credential(credential_id, initiator=None)
Delete a credential.

delete_credentials_for_project(project_id)
Delete all credentials for a project.

delete_credentials_for_user(user_id)
Delete all credentials for a user.

driver_namespace = 'keystone.credential'

get_credential(credential_id)
Return a credential reference.

list_credentials(hints=None)

list_credentials_for_user(user_id, type=None)

update_credential(credential_id, credential)
Update an existing credential.

keystone.credential.provider module

class keystone.credential.provider.Manager
Bases: keystone.common.manager.Manager

driver_namespace = 'keystone.credential.provider'

184 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.credential.schema module

Module contents

keystone.endpoint_policy package

Subpackages

keystone.endpoint_policy.backends package

Submodules

keystone.endpoint_policy.backends.base module

class keystone.endpoint_policy.backends.base.EndpointPolicyDriverBase
Bases: object

Interface description for an Endpoint Policy driver.

abstract check_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

Check existence of a policy association.

Parameters

• policy_id (string) identity of policy that is being associated

• endpoint_id (string) identity of endpoint to associate

• service_id (string) identity of the service to associate

• region_id (string) identity of the region to associate

Raises keystone.exception.PolicyAssociationNotFound If there is no
match for the specified association.

Returns None

abstract create_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

Create a policy association.

Parameters

• policy_id (string) identity of policy that is being associated

• endpoint_id (string) identity of endpoint to associate

• service_id (string) identity of the service to associate

• region_id (string) identity of the region to associate

Returns None

There are three types of association permitted:

• Endpoint (in which case service and region must be None)

• Service and region (in which endpoint must be None)

3.1. keystone 185

Keystone Documentation, Release 21.0.2.dev4

• Service (in which case endpoint and region must be None)

abstract delete_association_by_endpoint(endpoint_id)
Remove all the policy associations with the specific endpoint.

Parameters endpoint_id (string) identity of endpoint to check

Returns None

abstract delete_association_by_policy(policy_id)
Remove all the policy associations with the specific policy.

Parameters policy_id (string) identity of endpoint to check

Returns None

abstract delete_association_by_region(region_id)
Remove all the policy associations with the specific region.

Parameters region_id (string) identity of endpoint to check

Returns None

abstract delete_association_by_service(service_id)
Remove all the policy associations with the specific service.

Parameters service_id (string) identity of endpoint to check

Returns None

abstract delete_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

Delete a policy association.

Parameters

• policy_id (string) identity of policy that is being associated

• endpoint_id (string) identity of endpoint to associate

• service_id (string) identity of the service to associate

• region_id (string) identity of the region to associate

Returns None

abstract get_policy_association(endpoint_id=None, service_id=None,
region_id=None)

Get the policy for an explicit association.

This method is not exposed as a public API, but is used by get_policy_for_endpoint().

Parameters

• endpoint_id (string) identity of endpoint

• service_id (string) identity of the service

• region_id (string) identity of the region

Raises keystone.exception.PolicyAssociationNotFound If there is no
match for the specified association.

Returns dict containing policy_id (value is a tuple containing only the policy_id)

186 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract list_associations_for_policy(policy_id)
List the associations for a policy.

This method is not exposed as a public API, but is used by list_endpoints_for_policy().

Parameters policy_id (string) identity of policy

Returns List of association dicts

keystone.endpoint_policy.backends.sql module

class keystone.endpoint_policy.backends.sql.EndpointPolicy
Bases: keystone.endpoint_policy.backends.base.EndpointPolicyDriverBase

check_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

Check existence of a policy association.

Parameters

• policy_id (string) identity of policy that is being associated

• endpoint_id (string) identity of endpoint to associate

• service_id (string) identity of the service to associate

• region_id (string) identity of the region to associate

Raises keystone.exception.PolicyAssociationNotFound If there is no
match for the specified association.

Returns None

create_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

Create a policy association.

Parameters

• policy_id (string) identity of policy that is being associated

• endpoint_id (string) identity of endpoint to associate

• service_id (string) identity of the service to associate

• region_id (string) identity of the region to associate

Returns None

There are three types of association permitted:

• Endpoint (in which case service and region must be None)

• Service and region (in which endpoint must be None)

• Service (in which case endpoint and region must be None)

delete_association_by_endpoint(endpoint_id)
Remove all the policy associations with the specific endpoint.

Parameters endpoint_id (string) identity of endpoint to check

Returns None

3.1. keystone 187

Keystone Documentation, Release 21.0.2.dev4

delete_association_by_policy(policy_id)
Remove all the policy associations with the specific policy.

Parameters policy_id (string) identity of endpoint to check

Returns None

delete_association_by_region(region_id)
Remove all the policy associations with the specific region.

Parameters region_id (string) identity of endpoint to check

Returns None

delete_association_by_service(service_id)
Remove all the policy associations with the specific service.

Parameters service_id (string) identity of endpoint to check

Returns None

delete_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

Delete a policy association.

Parameters

• policy_id (string) identity of policy that is being associated

• endpoint_id (string) identity of endpoint to associate

• service_id (string) identity of the service to associate

• region_id (string) identity of the region to associate

Returns None

get_policy_association(endpoint_id=None, service_id=None, region_id=None)
Get the policy for an explicit association.

This method is not exposed as a public API, but is used by get_policy_for_endpoint().

Parameters

• endpoint_id (string) identity of endpoint

• service_id (string) identity of the service

• region_id (string) identity of the region

Raises keystone.exception.PolicyAssociationNotFound If there is no
match for the specified association.

Returns dict containing policy_id (value is a tuple containing only the policy_id)

list_associations_for_policy(policy_id)
List the associations for a policy.

This method is not exposed as a public API, but is used by list_endpoints_for_policy().

Parameters policy_id (string) identity of policy

Returns List of association dicts

188 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.endpoint_policy.backends.sql.PolicyAssociation(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['policy_id', 'endpoint_id', 'region_id', 'service_id']

endpoint_id

id

policy_id

region_id

service_id

to_dict()
Return the models attributes as a dictionary.

We override the standard method in order to hide the id column, since this only exists to
provide the table with a primary key.

Module contents

Submodules

keystone.endpoint_policy.core module

class keystone.endpoint_policy.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Endpoint Policy backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

check_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

create_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

delete_policy_association(policy_id, endpoint_id=None, service_id=None,
region_id=None)

driver_namespace = 'keystone.endpoint_policy'

get_policy_for_endpoint(endpoint_id)

list_endpoints_for_policy(policy_id)

3.1. keystone 189

Keystone Documentation, Release 21.0.2.dev4

Module contents

keystone.federation package

Subpackages

keystone.federation.backends package

Submodules

keystone.federation.backends.base module

class keystone.federation.backends.base.FederationDriverBase
Bases: object

abstract create_idp(idp_id, idp)
Create an identity provider.

Parameters

• idp_id (string) ID of IdP object

• idp (dict) idp object

Returns idp ref

Return type dict

abstract create_mapping(mapping_id, mapping)
Create a mapping.

Parameters

• mapping_id (string) ID of mapping object

• mapping (dict) mapping ref with mapping name

Returns mapping ref

Return type dict

abstract create_protocol(idp_id, protocol_id, protocol)
Add an IdP-Protocol configuration.

Parameters

• idp_id (string) ID of IdP object

• protocol_id (string) ID of protocol object

• protocol (dict) protocol object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns protocol ref

Return type dict

190 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract create_sp(sp_id, sp)
Create a service provider.

Parameters

• sp_id (string) id of the service provider

• sp (dict) service provider object

Returns service provider ref

Return type dict

abstract delete_idp(idp_id)
Delete an identity provider.

Parameters idp_id (string) ID of IdP object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

abstract delete_mapping(mapping_id)
Delete a mapping.

Parameters mapping_id id of mapping to delete

Returns None

abstract delete_protocol(idp_id, protocol_id)
Delete an IdP-Protocol configuration.

Parameters

• idp_id (string) ID of IdP object

• protocol_id (string) ID of protocol object

Raises

• keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

• keystone.exception.FederatedProtocolNotFound If the federated
protocol cannot be found.

abstract delete_sp(sp_id)
Delete a service provider.

Parameters sp_id (string) id of the service provider

Raises keystone.exception.ServiceProviderNotFound If the service
provider doesnt exist.

abstract get_enabled_service_providers()
List enabled service providers for Service Catalog.

Service Provider in a catalog contains three attributes: id, auth_url, sp_url, where:

• id is a unique, user defined identifier for service provider object

• auth_url is an authentication URL of remote Keystone

• sp_url a URL accessible at the remote service provider where SAML assertion is trans-
mitted.

3.1. keystone 191

Keystone Documentation, Release 21.0.2.dev4

Returns list of dictionaries with enabled service providers

Return type list of dicts

abstract get_idp(idp_id)
Get an identity provider by ID.

Parameters idp_id (string) ID of IdP object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns idp ref

Return type dict

abstract get_idp_from_remote_id(remote_id)
Get an identity provider by remote ID.

Parameters remote_id ID of remote IdP

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns idp ref

Return type dict

abstract get_mapping(mapping_id)
Get a mapping, returns the mapping based on mapping_id.

Parameters mapping_id id of mapping to get

Raises keystone.exception.MappingNotFound If the mapping cannot be
found.

Returns mapping ref

Return type dict

abstract get_mapping_from_idp_and_protocol(idp_id, protocol_id)
Get mapping based on idp_id and protocol_id.

Parameters

• idp_id (string) id of the identity provider

• protocol_id (string) id of the protocol

Raises

• keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

• keystone.exception.FederatedProtocolNotFound If the federated
protocol cannot be found.

Returns mapping ref

Return type dict

abstract get_protocol(idp_id, protocol_id)
Get an IdP-Protocol configuration.

192 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters

• idp_id (string) ID of IdP object

• protocol_id (string) ID of protocol object

Raises

• keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

• keystone.exception.FederatedProtocolNotFound If the federated
protocol cannot be found.

Returns protocol ref

Return type dict

abstract get_sp(sp_id)
Get a service provider.

Parameters sp_id (string) id of the service provider

Returns service provider ref

Return type dict

Raises keystone.exception.ServiceProviderNotFound If the service
provider doesnt exist.

abstract list_idps(hints)
List all identity providers.

Parameters hints filter hints which the driver should implement if at all possible.

Returns list of idp refs

Return type list of dicts

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

abstract list_mappings()
List all mappings.

Returns list of mapping refs

Return type list of dicts

abstract list_protocols(idp_id)
List an IdPs supported protocols.

Parameters idp_id (string) ID of IdP object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns list of protocol ref

Return type list of dict

abstract list_sps(hints)
List all service providers.

Parameters hints filter hints which the driver should implement if at all possible.

3.1. keystone 193

Keystone Documentation, Release 21.0.2.dev4

Returns List of service provider ref objects

Return type list of dicts

Raises keystone.exception.ServiceProviderNotFound If the SP doesnt
exist.

abstract update_idp(idp_id, idp)
Update an identity provider by ID.

Parameters

• idp_id (string) ID of IdP object

• idp (dict) idp object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns idp ref

Return type dict

abstract update_mapping(mapping_id, mapping_ref)
Update a mapping.

Parameters

• mapping_id (string) id of mapping to update

• mapping_ref (dict) new mapping ref

Returns mapping ref

Return type dict

abstract update_protocol(idp_id, protocol_id, protocol)
Change an IdP-Protocol configuration.

Parameters

• idp_id (string) ID of IdP object

• protocol_id (string) ID of protocol object

• protocol (dict) protocol object

Raises

• keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

• keystone.exception.FederatedProtocolNotFound If the federated
protocol cannot be found.

Returns protocol ref

Return type dict

abstract update_sp(sp_id, sp)
Update a service provider.

Parameters

• sp_id (string) id of the service provider

194 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• sp (dict) service prvider object

Returns service provider ref

Return type dict

Raises keystone.exception.ServiceProviderNotFound If the service
provider doesnt exist.

keystone.federation.backends.sql module

class keystone.federation.backends.sql.Federation
Bases: keystone.federation.backends.base.FederationDriverBase

create_idp(idp_id, idp)
Create an identity provider.

Parameters

• idp_id (string) ID of IdP object

• idp (dict) idp object

Returns idp ref

Return type dict

create_mapping(mapping_id, mapping)
Create a mapping.

Parameters

• mapping_id (string) ID of mapping object

• mapping (dict) mapping ref with mapping name

Returns mapping ref

Return type dict

create_protocol(idp_id, protocol_id, protocol)
Add an IdP-Protocol configuration.

Parameters

• idp_id (string) ID of IdP object

• protocol_id (string) ID of protocol object

• protocol (dict) protocol object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns protocol ref

Return type dict

create_sp(sp_id, sp)
Create a service provider.

Parameters

3.1. keystone 195

Keystone Documentation, Release 21.0.2.dev4

• sp_id (string) id of the service provider

• sp (dict) service provider object

Returns service provider ref

Return type dict

delete_idp(idp_id)
Delete an identity provider.

Parameters idp_id (string) ID of IdP object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

delete_mapping(mapping_id)
Delete a mapping.

Parameters mapping_id id of mapping to delete

Returns None

delete_protocol(idp_id, protocol_id)
Delete an IdP-Protocol configuration.

Parameters

• idp_id (string) ID of IdP object

• protocol_id (string) ID of protocol object

Raises

• keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

• keystone.exception.FederatedProtocolNotFound If the federated
protocol cannot be found.

delete_sp(sp_id)
Delete a service provider.

Parameters sp_id (string) id of the service provider

Raises keystone.exception.ServiceProviderNotFound If the service
provider doesnt exist.

get_enabled_service_providers()
List enabled service providers for Service Catalog.

Service Provider in a catalog contains three attributes: id, auth_url, sp_url, where:

• id is a unique, user defined identifier for service provider object

• auth_url is an authentication URL of remote Keystone

• sp_url a URL accessible at the remote service provider where SAML assertion is trans-
mitted.

Returns list of dictionaries with enabled service providers

Return type list of dicts

196 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

get_idp(idp_id)
Get an identity provider by ID.

Parameters idp_id (string) ID of IdP object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns idp ref

Return type dict

get_idp_from_remote_id(remote_id)
Get an identity provider by remote ID.

Parameters remote_id ID of remote IdP

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns idp ref

Return type dict

get_mapping(mapping_id)
Get a mapping, returns the mapping based on mapping_id.

Parameters mapping_id id of mapping to get

Raises keystone.exception.MappingNotFound If the mapping cannot be
found.

Returns mapping ref

Return type dict

get_mapping_from_idp_and_protocol(idp_id, protocol_id)
Get mapping based on idp_id and protocol_id.

Parameters

• idp_id (string) id of the identity provider

• protocol_id (string) id of the protocol

Raises

• keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

• keystone.exception.FederatedProtocolNotFound If the federated
protocol cannot be found.

Returns mapping ref

Return type dict

get_protocol(idp_id, protocol_id)
Get an IdP-Protocol configuration.

Parameters

• idp_id (string) ID of IdP object

• protocol_id (string) ID of protocol object

3.1. keystone 197

Keystone Documentation, Release 21.0.2.dev4

Raises

• keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

• keystone.exception.FederatedProtocolNotFound If the federated
protocol cannot be found.

Returns protocol ref

Return type dict

get_sp(sp_id)
Get a service provider.

Parameters sp_id (string) id of the service provider

Returns service provider ref

Return type dict

Raises keystone.exception.ServiceProviderNotFound If the service
provider doesnt exist.

list_idps(hints=None)
List all identity providers.

Parameters hints filter hints which the driver should implement if at all possible.

Returns list of idp refs

Return type list of dicts

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

list_mappings()
List all mappings.

Returns list of mapping refs

Return type list of dicts

list_protocols(idp_id)
List an IdPs supported protocols.

Parameters idp_id (string) ID of IdP object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns list of protocol ref

Return type list of dict

list_sps(hints=None)
List all service providers.

Parameters hints filter hints which the driver should implement if at all possible.

Returns List of service provider ref objects

Return type list of dicts

198 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Raises keystone.exception.ServiceProviderNotFound If the SP doesnt
exist.

update_idp(idp_id, idp)
Update an identity provider by ID.

Parameters

• idp_id (string) ID of IdP object

• idp (dict) idp object

Raises keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

Returns idp ref

Return type dict

update_mapping(mapping_id, mapping)
Update a mapping.

Parameters

• mapping_id (string) id of mapping to update

• mapping_ref (dict) new mapping ref

Returns mapping ref

Return type dict

update_protocol(idp_id, protocol_id, protocol)
Change an IdP-Protocol configuration.

Parameters

• idp_id (string) ID of IdP object

• protocol_id (string) ID of protocol object

• protocol (dict) protocol object

Raises

• keystone.exception.IdentityProviderNotFound If the IdP doesnt
exist.

• keystone.exception.FederatedProtocolNotFound If the federated
protocol cannot be found.

Returns protocol ref

Return type dict

update_sp(sp_id, sp)
Update a service provider.

Parameters

• sp_id (string) id of the service provider

• sp (dict) service prvider object

Returns service provider ref

3.1. keystone 199

Keystone Documentation, Release 21.0.2.dev4

Return type dict

Raises keystone.exception.ServiceProviderNotFound If the service
provider doesnt exist.

class keystone.federation.backends.sql.FederationProtocolModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['id', 'idp_id', 'mapping_id', 'remote_id_attribute']

classmethod from_dict(dictionary)
Return a model instance from a dictionary.

id

idp_id

mapping_id

mutable_attributes = frozenset({'mapping_id', 'remote_id_attribute'})

remote_id_attribute

to_dict()
Return a dictionary with models attributes.

class keystone.federation.backends.sql.IdPRemoteIdsModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['idp_id', 'remote_id']

classmethod from_dict(dictionary)
Return a model instance from a dictionary.

idp_id

mutable_attributes = frozenset({'idp_id', 'remote_id'})

remote_id

to_dict()
Return a dictionary with models attributes.

class keystone.federation.backends.sql.IdentityProviderModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['id', 'domain_id', 'enabled', 'description', 'remote_ids',
'authorization_ttl']

authorization_ttl

description

domain_id

enabled

expiring_user_group_memberships

classmethod from_dict(dictionary)
Return a model instance from a dictionary.

id

200 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

mutable_attributes = frozenset({'authorization_ttl', 'description',
'enabled', 'remote_ids'})

remote_ids

to_dict()
Return a dictionary with models attributes.

class keystone.federation.backends.sql.MappingModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['id', 'rules']

classmethod from_dict(dictionary)
Return a model instance from a dictionary.

id

rules

to_dict()
Return a dictionary with models attributes.

class keystone.federation.backends.sql.ServiceProviderModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['auth_url', 'id', 'enabled', 'description',
'relay_state_prefix', 'sp_url']

auth_url

description

enabled

classmethod from_dict(dictionary)
Return a model instance from a dictionary.

id

mutable_attributes = frozenset({'auth_url', 'description', 'enabled',
'relay_state_prefix', 'sp_url'})

relay_state_prefix

sp_url

to_dict()
Return a dictionary with models attributes.

Module contents

Submodules

keystone.federation.constants module

keystone.federation.core module

Main entry point into the Federation service.

3.1. keystone 201

Keystone Documentation, Release 21.0.2.dev4

class keystone.federation.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Federation backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

create_idp(idp_id, idp)

create_protocol(idp_id, protocol_id, protocol)

create_sp(sp_id, service_provider)

delete_idp(idp_id)

delete_protocol(idp_id, protocol_id)

delete_sp(sp_id)

driver_namespace = 'keystone.federation'

evaluate(idp_id, protocol_id, assertion_data)

get_enabled_service_providers()
List enabled service providers for Service Catalog.

Service Provider in a catalog contains three attributes: id, auth_url, sp_url, where:

• id is a unique, user defined identifier for service provider object

• auth_url is an authentication URL of remote Keystone

• sp_url a URL accessible at the remote service provider where SAML assertion is trans-
mitted.

Returns list of dictionaries with enabled service providers

Return type list of dicts

update_protocol(idp_id, protocol_id, protocol)

update_sp(sp_id, service_provider)

keystone.federation.idp module

class keystone.federation.idp.ECPGenerator
Bases: object

A class for generating an ECP assertion.

static generate_ecp(saml_assertion, relay_state_prefix)

class keystone.federation.idp.MetadataGenerator
Bases: object

A class for generating SAML IdP Metadata.

generate_metadata()
Generate Identity Provider Metadata.

202 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Generate and format metadata into XML that can be exposed and consumed by a federated
Service Provider.

Returns XML <EntityDescriptor> object.

Raises keystone.exception.ValidationError If the required config options
arent set.

class keystone.federation.idp.SAMLGenerator
Bases: object

A class to generate SAML assertions.

samlize_token(issuer, recipient, user, user_domain_name, roles, project,
project_domain_name, groups, expires_in=None)

Convert Keystone attributes to a SAML assertion.

Parameters

• issuer (string) URL of the issuing party

• recipient (string) URL of the recipient

• user (string) User name

• user_domain_name (string) User Domain name

• roles (list) List of role names

• project (string) Project name

• project_domain_name (string) Project Domain name

• groups (list) List of strings of user groups and domain name, where
strings are serialized dictionaries.

• expires_in (int) Sets how long the assertion is valid for, in seconds

Returns XML <Response> object

keystone.federation.schema module

keystone.federation.utils module

Utilities for Federation Extension.

class keystone.federation.utils.DirectMaps
Bases: object

An abstraction around the remote matches.

Each match is treated internally as a list.

add(values)
Add a matched value to the list of matches.

Parameters value (list) the match to save

class keystone.federation.utils.RuleProcessor(mapping_id, rules)
Bases: object

A class to process assertions and mapping rules.

3.1. keystone 203

Keystone Documentation, Release 21.0.2.dev4

process(assertion_data)
Transform assertion to a dictionary.

The dictionary contains mapping of user name and group ids based on mapping rules.

This function will iterate through the mapping rules to find assertions that are valid.

Parameters assertion_data (dict) an assertion containing values from an IdP

Example assertion_data:

{
'Email': 'testacct@example.com',
'UserName': 'testacct',
'FirstName': 'Test',
'LastName': 'Account',
'orgPersonType': 'Tester'

}

Returns dictionary with user and group_ids

The expected return structure is:

{
'name': 'foobar',
'group_ids': ['abc123', 'def456'],
'group_names': [

{
'name': 'group_name_1',
'domain': {

'name': 'domain1'
}

},
{

'name': 'group_name_1_1',
'domain': {

'name': 'domain1'
}

},
{

'name': 'group_name_2',
'domain': {

'id': 'xyz132'
}

}
]

}

class keystone.federation.utils.UserType
Bases: object

User mapping type.

EPHEMERAL = 'ephemeral'

204 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

LOCAL = 'local'

keystone.federation.utils.assert_enabled_identity_provider(federation_api, idp_id)

keystone.federation.utils.assert_enabled_service_provider_object(service_provider)

keystone.federation.utils.get_assertion_params_from_env()

keystone.federation.utils.get_remote_id_parameter(idp, protocol)

keystone.federation.utils.transform_to_group_ids(group_names, mapping_id,
identity_api, resource_api)

Transform groups identified by name/domain to their ids.

Function accepts list of groups identified by a name and domain giving a list of group ids in return.
A message is logged if the group doesnt exist in the backend.

Example of group_names parameter:

[
{

"name": "group_name",
"domain": {

"id": "domain_id"
},

},
{

"name": "group_name_2",
"domain": {

"name": "domain_name"
}

}
]

Parameters

• group_names (list) list of group identified by name and its domain.

• mapping_id (str) id of the mapping used for mapping assertion into local
credentials

• identity_api identity_api object

• resource_api resource manager object

Returns generator object with group ids

keystone.federation.utils.validate_expiration(token)

keystone.federation.utils.validate_idp(idp, protocol, assertion)
The IdP providing the assertion should be registered for the mapping.

keystone.federation.utils.validate_mapped_group_ids(group_ids, mapping_id,
identity_api)

Iterate over group ids and make sure they are present in the backend.

This call is not transactional. :param group_ids: IDs of the groups to be checked :type group_ids:
list of str

3.1. keystone 205

Keystone Documentation, Release 21.0.2.dev4

Parameters

• mapping_id (str) id of the mapping used for this operation

• identity_api (identity.Manager) Identity Manager object used for com-
munication with backend

Raises keystone.exception.MappedGroupNotFound If the group returned by
mapping was not found in the backend.

keystone.federation.utils.validate_mapping_structure(ref)

Module contents

keystone.identity package

Subpackages

keystone.identity.backends package

Subpackages

keystone.identity.backends.ldap package

Submodules

keystone.identity.backends.ldap.common module

class keystone.identity.backends.ldap.common.AsynchronousMessage(message_id,
connection, con-
text_manager)

Bases: object

A container for handling asynchronous LDAP responses.

Some LDAP APIs, like search_ext, are asynchronous and return a message ID when the server
successfully initiates the operation. Clients can use this message ID and the original connection to
make the request to fetch the results using result3.

This object holds the message ID, the original connection, and a callable weak reference Finalizer
that cleans up context managers specific to the connection associated to the message ID.

Parameters

• message_id The message identifier (str).

• connection The connection associated with the message identifier (ldap-
pool.StateConnector).

The clean attribute is a callable that cleans up the context manager used to create or return the
connection object (weakref.finalize).

class keystone.identity.backends.ldap.common.BaseLdap(conf)
Bases: object

206 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

DEFAULT_EXTRA_ATTR_MAPPING = []

DEFAULT_FILTER = None

DEFAULT_ID_ATTR = 'cn'

DEFAULT_OBJECTCLASS = None

DEFAULT_OU = None

DEFAULT_STRUCTURAL_CLASSES = None

NotFound = None

add_member(member_dn, member_list_dn)
Add member to the member list.

Parameters

• member_dn DN of member to be added.

• member_list_dn DN of group to which the member will be added.

Raises

• keystone.exception.Conflict If the user was already a member.

• self.NotFound If the group entry didnt exist.

affirm_unique(values)

attribute_ignore = []

attribute_options_names = {}

create(values)

filter_query(hints, query=None)
Apply filtering to a query.

Parameters

• hints contains the list of filters, which may be None, indicating that there
are no filters to be applied. If its not None, then any filters satisfied here will
be removed so that the caller will know if any filters remain to be applied.

• query LDAP query into which to include filters

Returns query LDAP query, updated with any filters satisfied

get(object_id, ldap_filter=None)

get_all(ldap_filter=None, hints=None)

get_by_name(name, ldap_filter=None)

get_connection(user=None, password=None, end_user_auth=False)

immutable_attrs = []

model = None

notfound_arg = None

options_name = None

tree_dn = None

3.1. keystone 207

Keystone Documentation, Release 21.0.2.dev4

update(object_id, values, old_obj=None)

class keystone.identity.backends.ldap.common.EnabledEmuMixIn(conf)
Bases: keystone.identity.backends.ldap.common.BaseLdap

Emulates boolean enabled attribute if turned on.

Creates a group holding all enabled objects of this class, all missing objects are considered disabled.

Options:

• $name_enabled_emulation - boolean, on/off

• $name_enabled_emulation_dn - DN of that group, default is
cn=enabled_${name}s,${tree_dn}

• $name_enabled_emulation_use_group_config - boolean, on/off

Where ${name}s is the plural of self.options_name (users or tenants), ${tree_dn} is self.tree_dn.

DEFAULT_GROUP_MEMBERS_ARE_IDS = False

DEFAULT_GROUP_OBJECTCLASS = 'groupOfNames'

DEFAULT_MEMBER_ATTRIBUTE = 'member'

create(values)

get(object_id, ldap_filter=None)

get_all(ldap_filter=None, hints=None)

update(object_id, values, old_obj=None)

class keystone.identity.backends.ldap.common.KeystoneLDAPHandler(conn=None)
Bases: keystone.identity.backends.ldap.common.LDAPHandler

Convert data types and perform logging.

This LDAP interface wraps the python-ldap based interfaces. The python-ldap interfaces require
string values encoded in UTF-8 with the exception of [1]. The OpenStack logging framework at
the time of this writing is not capable of accepting strings encoded in UTF-8, the log functions
will throw decoding errors if a non-ascii character appears in a string.

[1] In python-ldap, some fields (DNs, RDNs, attribute names, queries) are represented as text (str
on Python 3, unicode on Python 2 when bytes_mode=False). For more details see: http://www.
python-ldap.org/en/latest/bytes_mode.html#bytes-mode

Prior to the call Python data types are converted to a string representation as required by the LDAP
APIs.

Then logging is performed so we can track what is being sent/received from LDAP. Also the log-
ging filters security sensitive items (i.e. passwords).

Then the string values are encoded into UTF-8.

Then the LDAP API entry point is invoked.

Data returned from the LDAP call is converted back from UTF-8 encoded strings into the Python
data type used internally in OpenStack.

add_s(dn, modlist)

208 Chapter 3. Code Documentation

http://www.python-ldap.org/en/latest/bytes_mode.html#bytes-mode
http://www.python-ldap.org/en/latest/bytes_mode.html#bytes-mode

Keystone Documentation, Release 21.0.2.dev4

connect(url, page_size=0, alias_dereferencing=None, use_tls=False, tls_cacertfile=None,
tls_cacertdir=None, tls_req_cert=2, chase_referrals=None, debug_level=None,
conn_timeout=None, use_pool=None, pool_size=None, pool_retry_max=None,
pool_retry_delay=None, pool_conn_timeout=None, pool_conn_lifetime=None)

get_option(option)

modify_s(dn, modlist)

result3(msgid=- 1, all=1, timeout=None, resp_ctrl_classes=None)

search_ext(base, scope, filterstr=’(objectClass=*)’, attrlist=None, attrsonly=0,
serverctrls=None, clientctrls=None, timeout=- 1, sizelimit=0)

search_s(base, scope, filterstr=’(objectClass=*)’, attrlist=None, attrsonly=0)

set_option(option, invalue)

simple_bind_s(who=”, cred=”, serverctrls=None, clientctrls=None)

unbind_s()

class keystone.identity.backends.ldap.common.LDAPHandler(conn=None)
Bases: object

Abstract class which defines methods for a LDAP API provider.

Native Keystone values cannot be passed directly into and from the python-ldap API. Type con-
version must occur at the LDAP API boundary, examples of type conversions are:

• booleans map to the strings TRUE and FALSE

• integer values map to their string representation.

• unicode strings are encoded in UTF-8

Note, in python-ldap some fields (DNs, RDNs, attribute names, queries) are represented as text (str
on Python 3, unicode on Python 2 when bytes_mode=False). For more details see: http://www.
python-ldap.org/en/latest/bytes_mode.html#bytes-mode

In addition to handling type conversions at the API boundary we have the requirement to support
more than one LDAP API provider. Currently we have:

• python-ldap, this is the standard LDAP API for Python, it requires access to a live LDAP
server.

• Fake LDAP which emulates python-ldap. This is used for testing without requiring a live
LDAP server.

To support these requirements we need a layer that performs type conversions and then calls another
LDAP API which is configurable (e.g. either python-ldap or the fake emulation).

We have an additional constraint at the time of this writing due to limitations in the logging module.
The logging module is not capable of accepting UTF-8 encoded strings, it will throw an encoding
exception. Therefore all logging MUST be performed prior to UTF-8 conversion. This means no
logging can be performed in the ldap APIs that implement the python-ldap API because those APIs
are defined to accept only UTF-8 strings. Thus the layer which performs type conversions must
also do the logging. We do the type conversions in two steps, once to convert all Python types to
unicode strings, then log, then convert the unicode strings to UTF-8.

There are a variety of ways one could accomplish this, we elect to use a chaining technique whereby
instances of this class simply call the next member in the chain via the conn attribute. The chain

3.1. keystone 209

http://www.python-ldap.org/en/latest/bytes_mode.html#bytes-mode
http://www.python-ldap.org/en/latest/bytes_mode.html#bytes-mode

Keystone Documentation, Release 21.0.2.dev4

is constructed by passing in an existing instance of this class as the conn attribute when the class
is instantiated.

Here is a brief explanation of why other possible approaches were not used:

subclassing

To perform the wrapping operations in the correct order the type conversion
class would have to subclass each of the API providers. This is awkward,
doubles the number of classes, and does not scale well. It requires the type
conversion class to be aware of all possible API providers.

decorators

Decorators provide an elegant solution to wrap methods and would be an ideal
way to perform type conversions before calling the wrapped function and then
converting the values returned from the wrapped function. However deco-
rators need to be aware of the method signature, it has to know what input
parameters need conversion and how to convert the result. For an API like
python-ldap which has a large number of different method signatures it would
require a large number of specialized decorators. Experience has shown its
very easy to apply the wrong decorator due to the inherent complexity and
tendency to cut-n-paste code. Another option is to parameterize the decora-
tor to make it smart. Experience has shown such decorators become insanely
complicated and difficult to understand and debug. Also decorators tend to
hide whats really going on when a method is called, the operations being per-
formed are not visible when looking at the implemation of a decorated method,
this too experience has shown leads to mistakes.

Chaining simplifies both wrapping to perform type conversion as well as the substitution of alter-
native API providers. One simply creates a new instance of the API interface and insert it at the
front of the chain. Type conversions are explicit and obvious.

If a new method needs to be added to the API interface one adds it to the abstract class definition.
Should one miss adding the new method to any derivations of the abstract class the code will fail
to load and run making it impossible to forget updating all the derived classes.

abstract add_s(dn, modlist)

abstract connect(url, page_size=0, alias_dereferencing=None, use_tls=False,
tls_cacertfile=None, tls_cacertdir=None, tls_req_cert=2,
chase_referrals=None, debug_level=None, conn_timeout=None,
use_pool=None, pool_size=None, pool_retry_max=None,
pool_retry_delay=None, pool_conn_timeout=None,
pool_conn_lifetime=None)

abstract get_option(option)

abstract modify_s(dn, modlist)

abstract result3(msgid=- 1, all=1, timeout=None, resp_ctrl_classes=None)

abstract search_ext(base, scope, filterstr=’(objectClass=*)’, attrlist=None, attrsonly=0,
serverctrls=None, clientctrls=None, timeout=- 1, sizelimit=0)

abstract search_s(base, scope, filterstr=’(objectClass=*)’, attrlist=None, attrsonly=0)

abstract set_option(option, invalue)

210 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract simple_bind_s(who=”, cred=”, serverctrls=None, clientctrls=None)

abstract unbind_s()

class keystone.identity.backends.ldap.common.PooledLDAPHandler(conn=None,
use_auth_pool=False)

Bases: keystone.identity.backends.ldap.common.LDAPHandler

LDAPHandler implementation which uses pooled connection manager.

Pool specific configuration is defined in [ldap] section. All other LDAP configuration is still used
from [ldap] section

Keystone LDAP authentication logic authenticates an end user using its DN and password via
LDAP bind to establish supplied password is correct. This can fill up the pool quickly (as pool re-
uses existing connection based on its bind data) and would not leave space in pool for connection
re-use for other LDAP operations. Now a separate pool can be established for those requests when
related flag use_auth_pool is enabled. That pool can have its own size and connection lifetime.
Other pool attributes are shared between those pools. If use_pool is disabled, then use_auth_pool
does not matter. If use_auth_pool is not enabled, then connection pooling is not used for those
LDAP operations.

Note, the python-ldap API requires all string attribute values to be UTF-8 encoded. The Key-
stoneLDAPHandler enforces this prior to invoking the methods in this class.

Note, in python-ldap some fields (DNs, RDNs, attribute names, queries) are represented as text (str
on Python 3, unicode on Python 2 when bytes_mode=False). For more details see: http://www.
python-ldap.org/en/latest/bytes_mode.html#bytes-mode

Connector
alias of ldappool.StateConnector

add_s(*args, **kwargs)

auth_pool_prefix = 'auth_pool_'

connect(url, page_size=0, alias_dereferencing=None, use_tls=False, tls_cacertfile=None,
tls_cacertdir=None, tls_req_cert=2, chase_referrals=None, debug_level=None,
conn_timeout=None, use_pool=None, pool_size=None, pool_retry_max=None,
pool_retry_delay=None, pool_conn_timeout=None, pool_conn_lifetime=None)

connection_pools = {}

get_option(option)

modify_s(*args, **kwargs)

result3(message, all=1, timeout=None, resp_ctrl_classes=None)
Wait for and return the result to an asynchronous message.

This method returns the result of an operation previously initiated by one of the LDAP asyn-
chronous operation routines (e.g., search_ext()). The search_ext() method in python-ldap
returns an invocation identifier, or a message ID, upon successful initiation of the operation
by the LDAP server.

The message is expected to be instance of class AsynchronousMessage, which contains the
message ID and the connection used to make the original request.

The connection and context manager associated with search_ext() are cleaned up when mes-
sage.clean() is called.

3.1. keystone 211

http://www.python-ldap.org/en/latest/bytes_mode.html#bytes-mode
http://www.python-ldap.org/en/latest/bytes_mode.html#bytes-mode

Keystone Documentation, Release 21.0.2.dev4

search_ext(base, scope, filterstr=’(objectClass=*)’, attrlist=None, attrsonly=0,
serverctrls=None, clientctrls=None, timeout=- 1, sizelimit=0)

Return an AsynchronousMessage instance, it asynchronous API.

The AsynchronousMessage instance can be safely used in a call to result3().

To work with result3() API in predictable manner, the same LDAP connection is needed
which originally provided the msgid. So, this method wraps the existing connection and
msgid in a new AsynchronousMessage instance. The connection associated with search_ext()
is released after result3() fetches the data associated with msgid.

search_s(*args, **kwargs)

set_option(option, invalue)

simple_bind_s(who=”, cred=”, serverctrls=None, clientctrls=None)

unbind_s()

class keystone.identity.backends.ldap.common.PythonLDAPHandler(conn=None)
Bases: keystone.identity.backends.ldap.common.LDAPHandler

LDAPHandler implementation which calls the python-ldap API.

Note, the python-ldap API requires all string attribute values to be UTF-8 encoded.

Note, in python-ldap some fields (DNs, RDNs, attribute names, queries) are represented as text (str
on Python 3, unicode on Python 2 when bytes_mode=False). For more details see: http://www.
python-ldap.org/en/latest/bytes_mode.html#bytes-mode

The KeystoneLDAPHandler enforces this prior to invoking the methods in this class.

add_s(dn, modlist)

connect(url, page_size=0, alias_dereferencing=None, use_tls=False, tls_cacertfile=None,
tls_cacertdir=None, tls_req_cert=2, chase_referrals=None, debug_level=None,
conn_timeout=None, use_pool=None, pool_size=None, pool_retry_max=None,
pool_retry_delay=None, pool_conn_timeout=None, pool_conn_lifetime=None)

get_option(option)

modify_s(dn, modlist)

result3(msgid=- 1, all=1, timeout=None, resp_ctrl_classes=None)

search_ext(base, scope, filterstr=’(objectClass=*)’, attrlist=None, attrsonly=0,
serverctrls=None, clientctrls=None, timeout=- 1, sizelimit=0)

search_s(base, scope, filterstr=’(objectClass=*)’, attrlist=None, attrsonly=0)

set_option(option, invalue)

simple_bind_s(who=”, cred=”, serverctrls=None, clientctrls=None)

unbind_s()

keystone.identity.backends.ldap.common.convert_ldap_result(ldap_result)
Convert LDAP search result to Python types used by OpenStack.

Each result tuple is of the form (dn, attrs), where dn is a string containing the DN (distinguished
name) of the entry, and attrs is a dictionary containing the attributes associated with the entry. The
keys of attrs are strings, and the associated values are lists of strings.

212 Chapter 3. Code Documentation

http://www.python-ldap.org/en/latest/bytes_mode.html#bytes-mode
http://www.python-ldap.org/en/latest/bytes_mode.html#bytes-mode

Keystone Documentation, Release 21.0.2.dev4

OpenStack wants to use Python types of its choosing. Strings will be unicode, truth values boolean,
whole numbers ints, etc. DNs are represented as text in python-ldap by default for Python 3 and
when bytes_mode=False for Python 2, and therefore do not require decoding.

Parameters ldap_result LDAP search result

Returns list of 2-tuples containing (dn, attrs) where dn is unicode and attrs is a dict
whose values are type converted to OpenStack preferred types.

keystone.identity.backends.ldap.common.dn_startswith(descendant_dn, dn)
Return True if and only if the descendant_dn is under the dn.

Parameters

• descendant_dn Either a string DN or a DN parsed by ldap.dn.str2dn.

• dn Either a string DN or a DN parsed by ldap.dn.str2dn.

keystone.identity.backends.ldap.common.enabled2py(val)
Similar to ldap2py, only useful for the enabled attribute.

keystone.identity.backends.ldap.common.filter_entity(entity_ref)
Filter out private items in an entity dict.

Parameters entity_ref the entity dictionary. The dn field will be removed. dn is
used in LDAP, but should not be returned to the user. This value may be modified.

Returns entity_ref

keystone.identity.backends.ldap.common.is_ava_value_equal(attribute_type, val1, val2)
Return True if and only if the AVAs are equal.

When comparing AVAs, the equality matching rule for the attribute type should be taken into
consideration. For simplicity, this implementation does a case-insensitive comparison.

Note that this function uses prep_case_insenstive so the limitations of that function apply here.

keystone.identity.backends.ldap.common.is_dn_equal(dn1, dn2)
Return True if and only if the DNs are equal.

Two DNs are equal if theyve got the same number of RDNs and if the RDNs are the same at each
position. See RFC4517.

Note that this function uses is_rdn_equal to compare RDNs so the limitations of that function apply
here.

Parameters

• dn1 Either a string DN or a DN parsed by ldap.dn.str2dn.

• dn2 Either a string DN or a DN parsed by ldap.dn.str2dn.

keystone.identity.backends.ldap.common.is_rdn_equal(rdn1, rdn2)
Return True if and only if the RDNs are equal.

• RDNs must have the same number of AVAs.

• Each AVA of the RDNs must be the equal for the same attribute type. The order isnt sig-
nificant. Note that an attribute type will only be in one AVA in an RDN, otherwise the DN
wouldnt be valid.

3.1. keystone 213

Keystone Documentation, Release 21.0.2.dev4

• Attribute types arent case sensitive. Note that attribute type comparison is more complicated
than implemented. This function only compares case-insentive. The code should handle
multiple names for an attribute type (e.g., cn, commonName, and 2.5.4.3 are the same).

Note that this function uses is_ava_value_equal to compare AVAs so the limitations of that function
apply here.

keystone.identity.backends.ldap.common.ldap2py(val)
Convert an LDAP formatted value to Python type used by OpenStack.

Virtually all LDAP values are stored as UTF-8 encoded strings. OpenStack prefers values which
are unicode friendly.

Parameters val LDAP formatted value

Returns val converted to preferred Python type

keystone.identity.backends.ldap.common.ldap_scope(scope)

keystone.identity.backends.ldap.common.parse_deref(opt)

keystone.identity.backends.ldap.common.parse_tls_cert(opt)

keystone.identity.backends.ldap.common.prep_case_insensitive(value)
Prepare a string for case-insensitive comparison.

This is defined in RFC4518. For simplicity, all this function does is lowercase all the characters,
strip leading and trailing whitespace, and compress sequences of spaces to a single space.

keystone.identity.backends.ldap.common.py2ldap(val)
Type convert a Python value to a type accepted by LDAP (unicode).

The LDAP API only accepts strings for values therefore convert the values type to a unicode string.
A subsequent type conversion will encode the unicode as UTF-8 as required by the python-ldap
API, but for now we just want a string representation of the value.

Parameters val The value to convert to a LDAP string representation

Returns unicode string representation of value.

keystone.identity.backends.ldap.common.register_handler(prefix, handler)

keystone.identity.backends.ldap.common.safe_iter(attrs)

keystone.identity.backends.ldap.common.use_conn_pool(func)
Use this only for connection pool specific ldap API.

This adds connection object to decorated API as next argument after self.

keystone.identity.backends.ldap.common.utf8_decode(value)
Decode a from UTF-8 into unicode.

If the value is a binary string assume its UTF-8 encoded and decode it into a unicode string. Oth-
erwise convert the value from its type into a unicode string.

Parameters value value to be returned as unicode

Returns value as unicode

Raises UnicodeDecodeError for invalid UTF-8 encoding

keystone.identity.backends.ldap.common.utf8_encode(value)
Encode a basestring to UTF-8.

214 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

If the string is unicode encode it to UTF-8, if the string is str then assume its already encoded.
Otherwise raise a TypeError.

Parameters value A basestring

Returns UTF-8 encoded version of value

Raises TypeError If value is not basestring

keystone.identity.backends.ldap.core module

class keystone.identity.backends.ldap.core.GroupApi(conf)
Bases: keystone.identity.backends.ldap.common.BaseLdap

DEFAULT_ID_ATTR = 'cn'

DEFAULT_MEMBER_ATTRIBUTE = 'member'

DEFAULT_OBJECTCLASS = 'groupOfNames'

DEFAULT_OU = 'ou=UserGroups'

DEFAULT_STRUCTURAL_CLASSES = []

NotFound
alias of keystone.exception.GroupNotFound

add_user(user_dn, group_id, user_id)

attribute_options_names = {'description': 'desc', 'name': 'name'}

create(values)

get_all_filtered(hints, query=None)

get_filtered(group_id)

get_filtered_by_name(group_name)

immutable_attrs = ['name']

list_group_users(group_id)
Return a list of user dns which are members of a group.

list_user_groups(user_dn)
Return a list of groups for which the user is a member.

list_user_groups_filtered(user_dn, hints)
Return a filtered list of groups for which the user is a member.

model
alias of keystone.identity.backends.ldap.models.Group

options_name = 'group'

update(group_id, values)

class keystone.identity.backends.ldap.core.Identity(conf=None)
Bases: keystone.identity.backends.base.IdentityDriverBase

add_user_to_group(user_id, group_id)
Add a user to a group.

3.1. keystone 215

Keystone Documentation, Release 21.0.2.dev4

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.GroupNotFound If the group doesnt exist.

authenticate(user_id, password)
Authenticate a given user and password.

Parameters

• user_id (str) User ID

• password (str) Password

Returns user. See user schema in IdentityDriverBase.

Return type dict

Raises AssertionError If user or password is invalid.

change_password(user_id, new_password)
Self-service password change.

Parameters

• user_id (str) User ID.

• new_password (str) New password.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.PasswordValidation If password fails valida-
tion

check_user_in_group(user_id, group_id)
Check if a user is a member of a group.

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

Raises

• keystone.exception.NotFound If the user is not a member of the group.

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.GroupNotFound If the group doesnt exist.

create_group(group_id, group)
Create a new group.

Parameters

• group_id (str) group ID. The driver can ignore this value.

216 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• group (dict) group info. See group schema in IdentityDriverBase.

Returns group, matching the group schema.

Return type dict

Raises keystone.exception.Conflict If a duplicate group exists.

create_user(user_id, user)
Create a new user.

Parameters

• user_id (str) user ID. The driver can ignore this value.

• user (dict) user info. See user schema in IdentityDriverBase.

Returns user, matching the user schema. The driver should not return the pass-
word.

Return type dict

Raises keystone.exception.Conflict If a duplicate user exists.

delete_group(group_id)
Delete an existing group.

Parameters group_id (str) Group ID.

Raises keystone.exception.GroupNotFound If the group doesnt exist.

delete_user(user_id)
Delete an existing user.

Raises keystone.exception.UserNotFound If the user doesnt exist.

generates_uuids()
Indicate if Driver generates UUIDs as the local entity ID.

get_group(group_id)
Get a group by ID.

Parameters group_id (str) group ID.

Returns group info. See group schema in IdentityDriverBase

Return type dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

get_group_by_name(group_name, domain_id)
Get a group by name.

Parameters

• group_name (str) group name.

• domain_id (str) domain ID.

Returns group info. See group schema in IdentityDriverBase.

Return type dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

3.1. keystone 217

Keystone Documentation, Release 21.0.2.dev4

get_user(user_id)
Get a user by ID.

Parameters user_id (str) User ID.

Returns user. See user schema in IdentityDriverBase.

Return type dict

Raises keystone.exception.UserNotFound If the user doesnt exist.

get_user_by_name(user_name, domain_id)
Get a user by name.

Returns user_ref

Raises keystone.exception.UserNotFound If the user doesnt exist.

is_domain_aware()
Indicate if the driver supports domains.

list_groups(hints)
List groups in the system.

Parameters hints (keystone.common.driver_hints.Hints) filter hints
which the driver should implement if at all possible.

Returns a list of group_refs or an empty list. See group schema in
IdentityDriverBase.

list_groups_for_user(user_id, hints)
List groups a user is in.

Parameters

• user_id (str) the user in question

• hints (keystone.common.driver_hints.Hints) filter hints which the
driver should implement if at all possible.

Returns a list of group_refs or an empty list. See group schema in
IdentityDriverBase.

Raises keystone.exception.UserNotFound If the user doesnt exist.

list_users(hints)
List users in the system.

Parameters hints (keystone.common.driver_hints.Hints) filter hints
which the driver should implement if at all possible.

Returns a list of users or an empty list. See user schema in IdentityDriverBase.

Return type list of dict

list_users_in_group(group_id, hints)
List users in a group.

Parameters

• group_id (str) the group in question

• hints (keystone.common.driver_hints.Hints) filter hints which the
driver should implement if at all possible.

218 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Returns a list of users or an empty list. See user schema in IdentityDriverBase.

Return type list of dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

remove_user_from_group(user_id, group_id)
Remove a user from a group.

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

Raises keystone.exception.NotFound If the user is not in the group.

unset_default_project_id(project_id)
Unset a users default project given a specific project ID.

Parameters project_id (str) project ID

update_group(group_id, group)
Update an existing group.

Parameters

• group_id (str) Group ID.

• group (dict) Group modification. See group schema in
IdentityDriverBase. Required properties cannot be removed.

Returns group, matching the group schema.

Return type dict

Raises

• keystone.exception.GroupNotFound If the group doesnt exist.

• keystone.exception.Conflict If a duplicate group exists.

update_user(user_id, user)
Update an existing user.

Parameters

• user_id (str) User ID.

• user (dict) User modification. See user schema in
IdentityDriverBase. Properties set to None will be removed. Re-
quired properties cannot be removed.

Returns user. See user schema in IdentityDriverBase.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.Conflict If a duplicate user exists in the same
domain.

class keystone.identity.backends.ldap.core.UserApi(conf)
Bases: keystone.identity.backends.ldap.common.EnabledEmuMixIn, keystone.
identity.backends.ldap.common.BaseLdap

3.1. keystone 219

Keystone Documentation, Release 21.0.2.dev4

DEFAULT_ID_ATTR = 'cn'

DEFAULT_OBJECTCLASS = 'inetOrgPerson'

DEFAULT_OU = 'ou=Users'

DEFAULT_STRUCTURAL_CLASSES = ['person']

NotFound
alias of keystone.exception.UserNotFound

attribute_options_names = {'default_project_id': 'default_project_id',
'description': 'description', 'email': 'mail', 'enabled': 'enabled',
'name': 'name', 'password': 'pass'}

create(values)

filter_attributes(user)

get(user_id, ldap_filter=None)

get_all(ldap_filter=None, hints=None)

get_all_filtered(hints)

get_filtered(user_id)

immutable_attrs = ['id']

is_user(dn)
Return True if the entry is a user.

mask_enabled_attribute(values)

model
alias of keystone.identity.backends.ldap.models.User

options_name = 'user'

update(user_id, values, old_obj=None)

keystone.identity.backends.ldap.models module

Base model for keystone internal services.

Unless marked otherwise, all fields are strings.

class keystone.identity.backends.ldap.models.Group
Bases: keystone.identity.backends.ldap.models.Model

Group object.

Required keys: id name domain_id

Optional keys:

description

optional_keys = ('description',)

required_keys = ('id', 'name', 'domain_id')

220 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.identity.backends.ldap.models.Model
Bases: dict

Base model class.

property known_keys

class keystone.identity.backends.ldap.models.User
Bases: keystone.identity.backends.ldap.models.Model

User object.

Required keys: id name domain_id

Optional keys: password description email enabled (bool, default True) default_project_id

optional_keys = ('password', 'description', 'email', 'enabled',
'default_project_id')

required_keys = ('id', 'name', 'domain_id')

Module contents

Submodules

keystone.identity.backends.base module

class keystone.identity.backends.base.IdentityDriverBase
Bases: object

Interface description for an Identity driver.

The schema for users and groups is different depending on whether the driver is domain aware or
not (as returned by self.is_domain_aware()).

If the driver is not domain aware:

• domain_id will be not be included in the user / group passed in to create_user / create_group

• the domain_id should not be returned in user / group refs. Theyll be overwritten.

The password_expires_at in the user schema is a read-only attribute, meaning that it is expected in
the response, but not in the request.

User schema (if driver is domain aware):

type: object
properties:

id:
type: string

name:
type: string

domain_id:
type: string

password:
type: string

password_expires_at:
(continues on next page)

3.1. keystone 221

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

type: datetime
enabled:

type: boolean
default_project_id:

type: string
required: [id, name, domain_id, enabled]
additionalProperties: True

User schema (if driver is not domain aware):

type: object
properties:

id:
type: string

name:
type: string

password:
type: string

password_expires_at:
type: datetime

enabled:
type: boolean

default_project_id:
type: string

required: [id, name, enabled]
additionalProperties: True
Note that domain_id is not allowed as a property

Group schema (if driver is domain aware):

type: object
properties:

id:
type: string

name:
type: string

domain_id:
type: string

description:
type: string

required: [id, name, domain_id]
additionalProperties: True

Group schema (if driver is not domain aware):

type: object
properties:

id:
type: string

name:
(continues on next page)

222 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

type: string
description:

type: string
required: [id, name]
additionalProperties: True
Note that domain_id is not allowed as a property

abstract add_user_to_group(user_id, group_id)
Add a user to a group.

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.GroupNotFound If the group doesnt exist.

abstract authenticate(user_id, password)
Authenticate a given user and password.

Parameters

• user_id (str) User ID

• password (str) Password

Returns user. See user schema in IdentityDriverBase.

Return type dict

Raises AssertionError If user or password is invalid.

abstract change_password(user_id, new_password)
Self-service password change.

Parameters

• user_id (str) User ID.

• new_password (str) New password.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.PasswordValidation If password fails valida-
tion

abstract check_user_in_group(user_id, group_id)
Check if a user is a member of a group.

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

3.1. keystone 223

Keystone Documentation, Release 21.0.2.dev4

Raises

• keystone.exception.NotFound If the user is not a member of the group.

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.GroupNotFound If the group doesnt exist.

abstract create_group(group_id, group)
Create a new group.

Parameters

• group_id (str) group ID. The driver can ignore this value.

• group (dict) group info. See group schema in IdentityDriverBase.

Returns group, matching the group schema.

Return type dict

Raises keystone.exception.Conflict If a duplicate group exists.

abstract create_user(user_id, user)
Create a new user.

Parameters

• user_id (str) user ID. The driver can ignore this value.

• user (dict) user info. See user schema in IdentityDriverBase.

Returns user, matching the user schema. The driver should not return the pass-
word.

Return type dict

Raises keystone.exception.Conflict If a duplicate user exists.

abstract delete_group(group_id)
Delete an existing group.

Parameters group_id (str) Group ID.

Raises keystone.exception.GroupNotFound If the group doesnt exist.

abstract delete_user(user_id)
Delete an existing user.

Raises keystone.exception.UserNotFound If the user doesnt exist.

generates_uuids()
Indicate if Driver generates UUIDs as the local entity ID.

abstract get_group(group_id)
Get a group by ID.

Parameters group_id (str) group ID.

Returns group info. See group schema in IdentityDriverBase

Return type dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

224 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract get_group_by_name(group_name, domain_id)
Get a group by name.

Parameters

• group_name (str) group name.

• domain_id (str) domain ID.

Returns group info. See group schema in IdentityDriverBase.

Return type dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

abstract get_user(user_id)
Get a user by ID.

Parameters user_id (str) User ID.

Returns user. See user schema in IdentityDriverBase.

Return type dict

Raises keystone.exception.UserNotFound If the user doesnt exist.

abstract get_user_by_name(user_name, domain_id)
Get a user by name.

Returns user_ref

Raises keystone.exception.UserNotFound If the user doesnt exist.

is_domain_aware()
Indicate if the driver supports domains.

property is_sql
Indicate if this Driver uses SQL.

abstract list_groups(hints)
List groups in the system.

Parameters hints (keystone.common.driver_hints.Hints) filter hints
which the driver should implement if at all possible.

Returns a list of group_refs or an empty list. See group schema in
IdentityDriverBase.

abstract list_groups_for_user(user_id, hints)
List groups a user is in.

Parameters

• user_id (str) the user in question

• hints (keystone.common.driver_hints.Hints) filter hints which the
driver should implement if at all possible.

Returns a list of group_refs or an empty list. See group schema in
IdentityDriverBase.

Raises keystone.exception.UserNotFound If the user doesnt exist.

3.1. keystone 225

Keystone Documentation, Release 21.0.2.dev4

abstract list_users(hints)
List users in the system.

Parameters hints (keystone.common.driver_hints.Hints) filter hints
which the driver should implement if at all possible.

Returns a list of users or an empty list. See user schema in IdentityDriverBase.

Return type list of dict

abstract list_users_in_group(group_id, hints)
List users in a group.

Parameters

• group_id (str) the group in question

• hints (keystone.common.driver_hints.Hints) filter hints which the
driver should implement if at all possible.

Returns a list of users or an empty list. See user schema in IdentityDriverBase.

Return type list of dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

property multiple_domains_supported

abstract remove_user_from_group(user_id, group_id)
Remove a user from a group.

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

Raises keystone.exception.NotFound If the user is not in the group.

abstract unset_default_project_id(project_id)
Unset a users default project given a specific project ID.

Parameters project_id (str) project ID

abstract update_group(group_id, group)
Update an existing group.

Parameters

• group_id (str) Group ID.

• group (dict) Group modification. See group schema in
IdentityDriverBase. Required properties cannot be removed.

Returns group, matching the group schema.

Return type dict

Raises

• keystone.exception.GroupNotFound If the group doesnt exist.

• keystone.exception.Conflict If a duplicate group exists.

226 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract update_user(user_id, user)
Update an existing user.

Parameters

• user_id (str) User ID.

• user (dict) User modification. See user schema in
IdentityDriverBase. Properties set to None will be removed. Re-
quired properties cannot be removed.

Returns user. See user schema in IdentityDriverBase.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.Conflict If a duplicate user exists in the same
domain.

keystone.identity.backends.base.filter_user(user_ref)
Filter out private items in a user dict.

password, tenants and groups are never returned.

Returns user_ref

keystone.identity.backends.resource_options module

keystone.identity.backends.resource_options.register_user_options()

keystone.identity.backends.sql module

class keystone.identity.backends.sql.Identity(conf=None)
Bases: keystone.identity.backends.base.IdentityDriverBase

add_user_to_group(user_id, group_id)
Add a user to a group.

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.GroupNotFound If the group doesnt exist.

authenticate(user_id, password)
Authenticate a given user and password.

Parameters

• user_id (str) User ID

• password (str) Password

3.1. keystone 227

Keystone Documentation, Release 21.0.2.dev4

Returns user. See user schema in IdentityDriverBase.

Return type dict

Raises AssertionError If user or password is invalid.

change_password(user_id, new_password)
Self-service password change.

Parameters

• user_id (str) User ID.

• new_password (str) New password.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.PasswordValidation If password fails valida-
tion

check_user_in_group(user_id, group_id)
Check if a user is a member of a group.

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

Raises

• keystone.exception.NotFound If the user is not a member of the group.

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.GroupNotFound If the group doesnt exist.

create_group(group_id, group)
Create a new group.

Parameters

• group_id (str) group ID. The driver can ignore this value.

• group (dict) group info. See group schema in IdentityDriverBase.

Returns group, matching the group schema.

Return type dict

Raises keystone.exception.Conflict If a duplicate group exists.

create_user(user_id, user)
Create a new user.

Parameters

• user_id (str) user ID. The driver can ignore this value.

• user (dict) user info. See user schema in IdentityDriverBase.

Returns user, matching the user schema. The driver should not return the pass-
word.

228 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Return type dict

Raises keystone.exception.Conflict If a duplicate user exists.

delete_group(group_id)
Delete an existing group.

Parameters group_id (str) Group ID.

Raises keystone.exception.GroupNotFound If the group doesnt exist.

delete_user(user_id)
Delete an existing user.

Raises keystone.exception.UserNotFound If the user doesnt exist.

get_group(group_id)
Get a group by ID.

Parameters group_id (str) group ID.

Returns group info. See group schema in IdentityDriverBase

Return type dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

get_group_by_name(group_name, domain_id)
Get a group by name.

Parameters

• group_name (str) group name.

• domain_id (str) domain ID.

Returns group info. See group schema in IdentityDriverBase.

Return type dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

get_user(user_id)
Get a user by ID.

Parameters user_id (str) User ID.

Returns user. See user schema in IdentityDriverBase.

Return type dict

Raises keystone.exception.UserNotFound If the user doesnt exist.

get_user_by_name(user_name, domain_id)
Get a user by name.

Returns user_ref

Raises keystone.exception.UserNotFound If the user doesnt exist.

property is_sql
Indicate if this Driver uses SQL.

list_groups(hints)
List groups in the system.

3.1. keystone 229

Keystone Documentation, Release 21.0.2.dev4

Parameters hints (keystone.common.driver_hints.Hints) filter hints
which the driver should implement if at all possible.

Returns a list of group_refs or an empty list. See group schema in
IdentityDriverBase.

list_groups_for_user(user_id, hints)
List groups a user is in.

Parameters

• user_id (str) the user in question

• hints (keystone.common.driver_hints.Hints) filter hints which the
driver should implement if at all possible.

Returns a list of group_refs or an empty list. See group schema in
IdentityDriverBase.

Raises keystone.exception.UserNotFound If the user doesnt exist.

list_users(hints)
List users in the system.

Parameters hints (keystone.common.driver_hints.Hints) filter hints
which the driver should implement if at all possible.

Returns a list of users or an empty list. See user schema in IdentityDriverBase.

Return type list of dict

list_users_in_group(group_id, hints)
List users in a group.

Parameters

• group_id (str) the group in question

• hints (keystone.common.driver_hints.Hints) filter hints which the
driver should implement if at all possible.

Returns a list of users or an empty list. See user schema in IdentityDriverBase.

Return type list of dict

Raises keystone.exception.GroupNotFound If the group doesnt exist.

remove_user_from_group(user_id, group_id)
Remove a user from a group.

Parameters

• user_id (str) User ID.

• group_id (str) Group ID.

Raises keystone.exception.NotFound If the user is not in the group.

unset_default_project_id(project_id)
Unset a users default project given a specific project ID.

Parameters project_id (str) project ID

230 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

update_group(group_id, group)
Update an existing group.

Parameters

• group_id (str) Group ID.

• group (dict) Group modification. See group schema in
IdentityDriverBase. Required properties cannot be removed.

Returns group, matching the group schema.

Return type dict

Raises

• keystone.exception.GroupNotFound If the group doesnt exist.

• keystone.exception.Conflict If a duplicate group exists.

update_user(user_id, user)
Update an existing user.

Parameters

• user_id (str) User ID.

• user (dict) User modification. See user schema in
IdentityDriverBase. Properties set to None will be removed. Re-
quired properties cannot be removed.

Returns user. See user schema in IdentityDriverBase.

Raises

• keystone.exception.UserNotFound If the user doesnt exist.

• keystone.exception.Conflict If a duplicate user exists in the same
domain.

keystone.identity.backends.sql_model module

class keystone.identity.backends.sql_model.ExpiringUserGroupMembership(*args,
**kwargs)

Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

Expiring group membership through federation mapping rules.

expired

expires

group_id

idp_id

last_verified

user_id

class keystone.identity.backends.sql_model.FederatedUser(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

3.1. keystone 231

Keystone Documentation, Release 21.0.2.dev4

attributes = ['id', 'user_id', 'idp_id', 'protocol_id', 'unique_id',
'display_name']

display_name

id

idp_id

protocol_id

unique_id

user_id

class keystone.identity.backends.sql_model.Group(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'name', 'domain_id', 'description']

description

domain_id

expiring_user_group_memberships

extra

id

name

class keystone.identity.backends.sql_model.LocalUser(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['id', 'user_id', 'domain_id', 'name']

domain_id

failed_auth_at

failed_auth_count

id

name

passwords

user_id

class keystone.identity.backends.sql_model.NonLocalUser(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

SQL data model for nonlocal users (LDAP and custom).

attributes = ['domain_id', 'name', 'user_id']

domain_id

name

user_id

232 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.identity.backends.sql_model.Password(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['id', 'local_user_id', 'password_hash', 'created_at',
'expires_at']

created_at

created_at_int

expires_at

expires_at_int

id

local_user_id

password_hash

self_service

class keystone.identity.backends.sql_model.User(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'name', 'domain_id', 'password', 'enabled',
'default_project_id', 'password_expires_at']

created_at

default_project_id

domain_id

enabled
Return whether user is enabled or not.

expiring_user_group_memberships

extra

federated_users

classmethod from_dict(user_dict)
Override from_dict to remove password_expires_at attribute.

Overriding this method to remove password_expires_at attribute to support update_user and
unit tests where password_expires_at inadvertently gets added by calling to_dict followed by
from_dict.

Parameters user_dict User entity dictionary

Returns User User object

get_resource_option(option_id)

id

last_active_at

local_user

name
Return the current user name.

3.1. keystone 233

Keystone Documentation, Release 21.0.2.dev4

nonlocal_user

password
Return the current password.

property password_created_at
Return when password was created at.

property password_expires_at
Return when password expires at.

property password_is_expired
Return whether password is expired or not.

property password_ref
Return the current password ref.

readonly_attributes = ['id', 'password_expires_at', 'password']

resource_options_registry =
<keystone.common.resource_options.core.ResourceOptionRegistry object>

to_dict(include_extra_dict=False)
Return the models attributes as a dictionary.

If include_extra_dict is True, extra attributes are literally included in the resulting dictionary
twice, for backwards-compatibility with a broken implementation.

class keystone.identity.backends.sql_model.UserGroupMembership(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

Group membership join table.

group_id

user_id

class keystone.identity.backends.sql_model.UserOption(option_id, option_value)
Bases: sqlalchemy.orm.decl_api.Base

option_id

option_value

user_id

Module contents

keystone.identity.id_generators package

Submodules

keystone.identity.id_generators.sha256 module

class keystone.identity.id_generators.sha256.Generator
Bases: keystone.identity.generator.IDGenerator

234 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

generate_public_ID(mapping)
Return a Public ID for the given mapping dict.

Parameters mapping (dict) The items to be hashed.

The ID must be reproducible and no more than 64 chars in length. The ID generated should
be independent of the order of the items in the mapping dict.

Module contents

keystone.identity.mapping_backends package

Submodules

keystone.identity.mapping_backends.base module

class keystone.identity.mapping_backends.base.MappingDriverBase
Bases: keystone.common.provider_api.ProviderAPIMixin, object

Interface description for an ID Mapping driver.

abstract create_id_mapping(local_entity, public_id=None)
Create and store a mapping to a public_id.

Parameters

• local_entity (dict) Containing the entity domain, local ID and type
(user or group).

• public_id If specified, this will be the public ID. If this is not specified, a
public ID will be generated.

Returns public ID

abstract delete_id_mapping(public_id)
Delete an entry for the given public_id.

Parameters public_id The public ID for the mapping to be deleted.

The method is silent if no mapping is found.

abstract get_domain_mapping_list(domain_id, entity_type=None)
Return mappings for the domain.

Parameters

• domain_id Domain ID to get mappings for.

• entity_type (String, one of mappings defined in keystone.
identity.mapping_backends.mapping.EntityType) Optional
entity_type to get mappings for.

Returns list of mappings.

abstract get_id_mapping(public_id)
Return the local mapping.

Parameters public_id The public ID for the mapping required.

3.1. keystone 235

Keystone Documentation, Release 21.0.2.dev4

Returns dict Containing the entity domain, local ID and type. If no mapping is
found, it returns None.

abstract get_public_id(local_entity)
Return the public ID for the given local entity.

Parameters local_entity (dict) Containing the entity domain, local ID and
type (user or group).

Returns public ID, or None if no mapping is found.

abstract purge_mappings(purge_filter)
Purge selected identity mappings.

Parameters purge_filter (dict) Containing the attributes of the filter that de-
fines which entries to purge. An empty filter means purge all mappings.

keystone.identity.mapping_backends.mapping module

class keystone.identity.mapping_backends.mapping.EntityType
Bases: object

GROUP = 'group'

USER = 'user'

keystone.identity.mapping_backends.sql module

class keystone.identity.mapping_backends.sql.IDMapping(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

domain_id

entity_type

local_id

public_id

class keystone.identity.mapping_backends.sql.Mapping
Bases: keystone.identity.mapping_backends.base.MappingDriverBase

create_id_mapping(local_entity, public_id=None)
Create and store a mapping to a public_id.

Parameters

• local_entity (dict) Containing the entity domain, local ID and type
(user or group).

• public_id If specified, this will be the public ID. If this is not specified, a
public ID will be generated.

Returns public ID

delete_id_mapping(public_id)
Delete an entry for the given public_id.

Parameters public_id The public ID for the mapping to be deleted.

236 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

The method is silent if no mapping is found.

get_domain_mapping_list(domain_id, entity_type=None)
Return mappings for the domain.

Parameters

• domain_id Domain ID to get mappings for.

• entity_type (String, one of mappings defined in keystone.
identity.mapping_backends.mapping.EntityType) Optional
entity_type to get mappings for.

Returns list of mappings.

get_id_mapping(public_id)
Return the local mapping.

Parameters public_id The public ID for the mapping required.

Returns dict Containing the entity domain, local ID and type. If no mapping is
found, it returns None.

get_public_id(local_entity)
Return the public ID for the given local entity.

Parameters local_entity (dict) Containing the entity domain, local ID and
type (user or group).

Returns public ID, or None if no mapping is found.

purge_mappings(purge_filter)
Purge selected identity mappings.

Parameters purge_filter (dict) Containing the attributes of the filter that de-
fines which entries to purge. An empty filter means purge all mappings.

Module contents

keystone.identity.shadow_backends package

Submodules

keystone.identity.shadow_backends.base module

class keystone.identity.shadow_backends.base.ShadowUsersDriverBase
Bases: object

Interface description for an Shadow Users driver.

abstract create_federated_object(fed_dict)
Create a new federated object.

Parameters federated_dict (dict) Reference to the federated user

abstract create_federated_user(domain_id, federated_dict, email=None)
Create a new user with the federated identity.

3.1. keystone 237

Keystone Documentation, Release 21.0.2.dev4

Parameters

• domain_id The domain ID of the IdP used for the federated user

• federated_dict (dict) Reference to the federated user

• email Federated users email

Returns dict Containing the user reference

abstract create_nonlocal_user(user_dict)
Create a new non-local user.

Parameters user_dict (dict) Reference to the non-local user

Returns dict Containing the user reference

delete_federated_object(user_id)
Delete a users federated objects.

Parameters user_id Unique identifier of the user

abstract get_federated_objects(user_id)
Get all federated objects for a user.

Parameters user_id Unique identifier of the user

Returns list Containing the users federated objects

abstract get_federated_user(idp_id, protocol_id, unique_id)
Return the found user for the federated identity.

Parameters

• idp_id The identity provider ID

• protocol_id The federation protocol ID

• unique_id The unique ID for the user

Returns dict Containing the user reference

abstract get_user(user_id)
Return the found user.

Parameters user_id Unique identifier of the user

Returns dict Containing the user reference

abstract list_federated_users_info(hints=None)
Get the shadow users info with the specified filters.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list A list of objects that containing the shadow users reference.

abstract set_last_active_at(user_id)
Set the last active at date for the user.

Parameters user_id Unique identifier of the user

abstract update_federated_user_display_name(idp_id, protocol_id, unique_id,
display_name)

Update federated users display name if changed.

238 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters

• idp_id The identity provider ID

• protocol_id The federation protocol ID

• unique_id The unique ID for the user

• display_name The users display name

keystone.identity.shadow_backends.base.federated_objects_to_list(fed_ref)
Create a new reformatted federated object list using the one passed in.

When returning federated objects with a user we only need the attributes idp_id, protocol_id, and
unique_id. Therefore, we pull these elements out of the fed_ref and create a newly formatted list
with the needed information. We simply group each federated objects protocol_ids and unique_ids
under the corresponding idp_id.

Returns list Containing the users federated objects

keystone.identity.shadow_backends.sql module

class keystone.identity.shadow_backends.sql.ShadowUsers
Bases: keystone.identity.shadow_backends.base.ShadowUsersDriverBase

add_user_to_group_expires(user_id, group_id)

create_federated_object(fed_dict)
Create a new federated object.

Parameters federated_dict (dict) Reference to the federated user

create_federated_user(domain_id, federated_dict, email=None)
Create a new user with the federated identity.

Parameters

• domain_id The domain ID of the IdP used for the federated user

• federated_dict (dict) Reference to the federated user

• email Federated users email

Returns dict Containing the user reference

create_nonlocal_user(user_dict)
Create a new non-local user.

Parameters user_dict (dict) Reference to the non-local user

Returns dict Containing the user reference

delete_federated_object(user_id)
Delete a users federated objects.

Parameters user_id Unique identifier of the user

delete_user(user_id)

get_federated_objects(user_id)
Get all federated objects for a user.

3.1. keystone 239

Keystone Documentation, Release 21.0.2.dev4

Parameters user_id Unique identifier of the user

Returns list Containing the users federated objects

get_federated_user(idp_id, protocol_id, unique_id)
Return the found user for the federated identity.

Parameters

• idp_id The identity provider ID

• protocol_id The federation protocol ID

• unique_id The unique ID for the user

Returns dict Containing the user reference

get_federated_users(hints)

get_user(user_id)
Return the found user.

Parameters user_id Unique identifier of the user

Returns dict Containing the user reference

list_federated_users_info(hints=None)
Get the shadow users info with the specified filters.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns list A list of objects that containing the shadow users reference.

set_last_active_at(user_id)
Set the last active at date for the user.

Parameters user_id Unique identifier of the user

update_federated_user_display_name(idp_id, protocol_id, unique_id, display_name)
Update federated users display name if changed.

Parameters

• idp_id The identity provider ID

• protocol_id The federation protocol ID

• unique_id The unique ID for the user

• display_name The users display name

Module contents

Submodules

keystone.identity.core module

Main entry point into the Identity service.

240 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

class keystone.identity.core.DomainConfigs
Bases: keystone.common.provider_api.ProviderAPIMixin, dict

Discover, store and provide access to domain specific configs.

The setup_domain_drivers() call will be made via the wrapper from the first call to any driver
function handled by this manager.

Domain specific configurations are only supported for the identity backend and the individual con-
figurations are either specified in the resource database or in individual domain configuration files,
depending on the setting of the domain_configurations_from_database config option.

The result will be that for each domain with a specific configuration, this class will hold a reference
to a ConfigOpts and driver object that the identity manager and driver can use.

check_config_and_reload_domain_driver_if_required(domain_id)
Check for, and load, any new domain specific config for this domain.

This is only supported for the database-stored domain specific configuration.

When the domain specific drivers were set up, we stored away the specific config for this
domain that was available at that time. So we now read the current version and compare.
While this might seem somewhat inefficient, the sensitive config call is cached, so should be
light weight. More importantly, when the cache timeout is reached, we will get any config
that has been updated from any other keystone process.

This cache-timeout approach works for both multi-process and multi-threaded keystone con-
figurations. In multi-threaded configurations, even though we might remove a driver object
(that could be in use by another thread), this wont actually be thrown away until all references
to it have been broken. When that other thread is released back and is restarted with another
command to process, next time it accesses the driver it will pickup the new one.

configured = False

driver = None

get_domain_conf(domain_id)

get_domain_driver(domain_id)

lock = <unlocked _thread.lock object>

reload_domain_driver(domain_id)

setup_domain_drivers(standard_driver, resource_api)

class keystone.identity.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Identity backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

This class also handles the support of domain specific backends, by using the DomainConfigs class.
The setup call for DomainConfigs is called from with the @domains_configured wrapper in a lazy
loading fashion to get around the fact that we cant satisfy the assignment api it needs from within
our __init__() function since the assignment driver is not itself yet initialized.

3.1. keystone 241

Keystone Documentation, Release 21.0.2.dev4

Each of the identity calls are pre-processed here to choose, based on domain, which of the drivers
should be called. The non-domain-specific driver is still in place, and is used if there is no specific
driver for the domain in question (or we are not using multiple domain drivers).

Starting with Juno, in order to be able to obtain the domain from just an ID being presented as
part of an API call, a public ID to domain and local ID mapping is maintained. This mapping
also allows for the local ID of drivers that do not provide simple UUIDs (such as LDAP) to be
referenced via a public facing ID. The mapping itself is automatically generated as entities are
accessed via the driver.

This mapping is only used when: - the entity is being handled by anything other than the default
driver, or - the entity is being handled by the default LDAP driver and backward compatible IDs
are not required.

This means that in the standard case of a single SQL backend or the default settings of a single
LDAP backend (since backward compatible IDs is set to True by default), no mapping is used. An
alternative approach would be to always use the mapping table, but in the cases where we dont
need it to make the public and local IDs the same. It is felt that not using the mapping by default
is a more prudent way to introduce this functionality.

add_user_to_group(user_id, group_id, initiator=None)

assert_user_enabled(user_id, user=None)
Assert the user and the users domain are enabled.

:raise AssertionError if the user or the users domain is disabled.

authenticate(user_id, password)

change_password(user_id, original_password, new_password, initiator=None)

check_user_in_group(user_id, group_id)

create_group(group_ref, initiator=None)

create_user(user_ref, initiator=None)

delete_group(group_id, initiator=None)

delete_user(user_id, initiator=None)

driver_namespace = 'keystone.identity'

get_group(group_id)

get_group_by_name(group_name, domain_id)

get_user(user_id)

get_user_by_name(user_name, domain_id)

list_groups(domain_scope=None, hints=None)

list_groups_for_user(user_id, hints=None)

list_users(domain_scope=None, hints=None)

list_users_in_group(group_id, hints=None)

remove_user_from_group(user_id, group_id, initiator=None)

242 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

shadow_federated_user(idp_id, protocol_id, unique_id, display_name, email=None,
group_ids=None)

Map a federated user to a user.

Parameters

• idp_id identity provider id

• protocol_id protocol id

• unique_id unique id for the user within the IdP

• display_name users display name

• email users email

• group_ids list of group ids to add the user to

Returns dictionary of the mapped User entity

update_group(group_id, group, initiator=None)

update_user(user_id, user_ref, initiator=None)

class keystone.identity.core.MappingManager
Bases: keystone.common.manager.Manager

Default pivot point for the ID Mapping backend.

create_id_mapping(local_entity, public_id=None)

delete_id_mapping(public_id)

driver_namespace = 'keystone.identity.id_mapping'

get_id_mapping(public_id)

get_public_id(local_entity)

purge_mappings(purge_filter)

class keystone.identity.core.ShadowUsersManager
Bases: keystone.common.manager.Manager

Default pivot point for the Shadow Users backend.

driver_namespace = 'keystone.identity.shadow_users'

keystone.identity.core.domains_configured(f)
Wrap API calls to lazy load domain configs after init.

This is required since the assignment manager needs to be initialized before this manager, and yet
this managers init wants to be able to make assignment calls (to build the domain configs). So
instead, we check if the domains have been initialized on entry to each call, and if requires load
them,

keystone.identity.core.exception_translated(exception_type)
Wrap API calls to map to correct exception.

3.1. keystone 243

Keystone Documentation, Release 21.0.2.dev4

keystone.identity.generator module

ID Generator provider interface.

class keystone.identity.generator.IDGenerator
Bases: object

Interface description for an ID Generator provider.

abstract generate_public_ID(mapping)
Return a Public ID for the given mapping dict.

Parameters mapping (dict) The items to be hashed.

The ID must be reproducible and no more than 64 chars in length. The ID generated should
be independent of the order of the items in the mapping dict.

class keystone.identity.generator.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the identifier generator backend.

driver_namespace = 'keystone.identity.id_generator'

keystone.identity.schema module

Module contents

keystone.limit package

Subpackages

keystone.limit.backends package

Submodules

keystone.limit.backends.base module

class keystone.limit.backends.base.UnifiedLimitDriverBase
Bases: object

abstract create_limits(limits)
Create new limits.

Parameters limits a list of dictionaries representing limits to create.

Returns all the newly created limits.

Raises

• keystone.exception.Conflict If a duplicate limit exists.

• keystone.exception.NoLimitReference If no reference registered
limit exists.

244 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract create_registered_limits(registered_limits)
Create new registered limits.

Parameters registered_limits a list of dictionaries representing limits to cre-
ate.

Returns all the newly created registered limits.

Raises keystone.exception.Conflict If a duplicate registered limit exists.

abstract delete_limit(limit_id)
Delete an existing limit.

Parameters limit_id the limit id to delete.

Raises keystone.exception.LimitNotFound If limit doesnt exist.

abstract delete_limits_for_project(project_id)
Delete the existing limits which belong to the specified project.

Parameters project_id the limits project id.

Returns a dictionary representing the deleted limits id. Used for cache invalidat-
ing.

abstract delete_registered_limit(registered_limit_id)
Delete an existing registered limit.

Parameters registered_limit_id the registered limit id to delete.

Raises keystone.exception.RegisteredLimitNotFound If registered limit
doesnt exist.

abstract get_limit(limit_id)
Get a limit.

Parameters limit_id the limit id to get.

Returns a dictionary representing a limit reference.

Raises keystone.exception.LimitNotFound If limit doesnt exist.

abstract get_registered_limit(registered_limit_id)
Get a registered limit.

Parameters registered_limit_id the registered limit id to get.

Returns a dictionary representing a registered limit reference.

Raises keystone.exception.RegisteredLimitNotFound If registered limit
doesnt exist.

abstract list_limits(hints)
List all limits.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns a list of dictionaries or an empty list.

abstract list_registered_limits(hints)
List all registered limits.

3.1. keystone 245

Keystone Documentation, Release 21.0.2.dev4

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns a list of dictionaries or an empty registered limit.

abstract update_limit(limit_id, limit)
Update existing limits.

Parameters

• limit_id the id of the limit.

• limit a dict containing the limit attributes to update.

Returns the updated limit.

Raises

• keystone.exception.LimitNotFound If limit doesnt exist.

• keystone.exception.Conflict If update to a duplicate limit.

abstract update_registered_limit(registered_limit_id, registered_limit)
Update existing registered limits.

Parameters

• registered_limit_id the id of the registered limit.

• registered_limit a dict containing the registered limit attributes to up-
date.

Returns the updated registered limit.

Raises

• keystone.exception.RegisteredLimitNotFound If registered limit
doesnt exist.

• keystone.exception.Conflict If update to a duplicate registered limit.

keystone.limit.backends.sql module

class keystone.limit.backends.sql.LimitModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['internal_id', 'id', 'project_id', 'domain_id',
'service_id', 'region_id', 'resource_name', 'resource_limit',
'description', 'registered_limit_id']

description

domain_id

id

internal_id

project_id

region_id

registered_limit

246 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

registered_limit_id

resource_limit

resource_name

service_id

to_dict()
Return the models attributes as a dictionary.

class keystone.limit.backends.sql.RegisteredLimitModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['internal_id', 'id', 'service_id', 'region_id',
'resource_name', 'default_limit', 'description']

default_limit

description

id

internal_id

region_id

resource_name

service_id

to_dict()
Return the models attributes as a dictionary.

class keystone.limit.backends.sql.UnifiedLimit
Bases: keystone.limit.backends.base.UnifiedLimitDriverBase

create_limits(limits)
Create new limits.

Parameters limits a list of dictionaries representing limits to create.

Returns all the newly created limits.

Raises

• keystone.exception.Conflict If a duplicate limit exists.

• keystone.exception.NoLimitReference If no reference registered
limit exists.

create_registered_limits(registered_limits)
Create new registered limits.

Parameters registered_limits a list of dictionaries representing limits to cre-
ate.

Returns all the newly created registered limits.

Raises keystone.exception.Conflict If a duplicate registered limit exists.

delete_limit(limit_id)
Delete an existing limit.

Parameters limit_id the limit id to delete.

3.1. keystone 247

Keystone Documentation, Release 21.0.2.dev4

Raises keystone.exception.LimitNotFound If limit doesnt exist.

delete_limits_for_project(project_id)
Delete the existing limits which belong to the specified project.

Parameters project_id the limits project id.

Returns a dictionary representing the deleted limits id. Used for cache invalidat-
ing.

delete_registered_limit(registered_limit_id)
Delete an existing registered limit.

Parameters registered_limit_id the registered limit id to delete.

Raises keystone.exception.RegisteredLimitNotFound If registered limit
doesnt exist.

get_limit(limit_id)
Get a limit.

Parameters limit_id the limit id to get.

Returns a dictionary representing a limit reference.

Raises keystone.exception.LimitNotFound If limit doesnt exist.

get_registered_limit(registered_limit_id)
Get a registered limit.

Parameters registered_limit_id the registered limit id to get.

Returns a dictionary representing a registered limit reference.

Raises keystone.exception.RegisteredLimitNotFound If registered limit
doesnt exist.

list_limits(hints)
List all limits.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns a list of dictionaries or an empty list.

list_registered_limits(hints)
List all registered limits.

Parameters hints contains the list of filters yet to be satisfied. Any filters satisfied
here will be removed so that the caller will know if any filters remain.

Returns a list of dictionaries or an empty registered limit.

update_limit(limit_id, limit)
Update existing limits.

Parameters

• limit_id the id of the limit.

• limit a dict containing the limit attributes to update.

Returns the updated limit.

248 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Raises

• keystone.exception.LimitNotFound If limit doesnt exist.

• keystone.exception.Conflict If update to a duplicate limit.

update_registered_limit(registered_limit_id, registered_limit)
Update existing registered limits.

Parameters

• registered_limit_id the id of the registered limit.

• registered_limit a dict containing the registered limit attributes to up-
date.

Returns the updated registered limit.

Raises

• keystone.exception.RegisteredLimitNotFound If registered limit
doesnt exist.

• keystone.exception.Conflict If update to a duplicate registered limit.

Module contents

keystone.limit.models package

Submodules

keystone.limit.models.base module

class keystone.limit.models.base.ModelBase
Bases: object

Interface for a limit model driver.

DESCRIPTION = None

MAX_PROJECT_TREE_DEPTH = None

NAME = None

check_limit(limits)
Check the new creating or updating limits if satisfy the model.

Parameters limits (A list of the limits. Each limit is a
dictionary reference containing all limit attributes.) A
list of the limit references to be checked.

Raises keystone.exception.InvalidLimit If any of the input limits doesnt
satisfy the limit model.

keystone.limit.models.base.load_driver(driver_name, *args)

3.1. keystone 249

Keystone Documentation, Release 21.0.2.dev4

keystone.limit.models.flat module

class keystone.limit.models.flat.FlatModel
Bases: keystone.limit.models.base.ModelBase

DESCRIPTION = 'Limit enforcement and validation does not take project
hierarchy into consideration.'

MAX_PROJECT_TREE_DEPTH = None

NAME = 'flat'

check_limit(limits)
Check the new creating or updating limits if satisfy the model.

Parameters limits (A list of the limits. Each limit is a
dictionary reference containing all limit attributes.) A
list of the limit references to be checked.

Raises keystone.exception.InvalidLimit If any of the input limits doesnt
satisfy the limit model.

keystone.limit.models.strict_two_level module

class keystone.limit.models.strict_two_level.StrictTwoLevelModel
Bases: keystone.limit.models.base.ModelBase

DESCRIPTION = 'This model requires project hierarchy never exceeds a depth
of two'

MAX_PROJECT_TREE_DEPTH = 2

NAME = 'strict_two_level'

check_limit(limits)
Check the input limits satisfy the related project tree or not.

1. Ensure the input is legal.

2. Ensure the input will not break the exist limit tree.

Module contents

Submodules

keystone.limit.core module

class keystone.limit.core.Manager
Bases: keystone.common.manager.Manager

check_project_depth()
Check if project depth satisfies current enforcement model.

create_limits(limits)

create_registered_limits(registered_limits)

250 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

delete_limit(limit_id)

delete_limits_for_project(project_id)

delete_registered_limit(registered_limit_id)

driver_namespace = 'keystone.unified_limit'

get_limit(limit_id)

get_model()
Return information of the configured enforcement model.

get_registered_limit(registered_limit_id)

list_limits(hints=None)

list_registered_limits(hints=None)

update_limit(limit_id, limit)

update_registered_limit(registered_limit_id, registered_limit)

keystone.limit.schema module

Module contents

keystone.models package

Submodules

keystone.models.receipt_model module

Unified in-memory receipt model.

class keystone.models.receipt_model.ReceiptModel
Bases: object

An object that represents a receipt emitted by keystone.

This is a queryable object that other parts of keystone can use to reason about a users receipt.

property expires_at

property issued_at

mint(receipt_id, issued_at)
Set the id and issued_at attributes of a receipt.

The process of building a Receipt requires setting attributes about the partial authentication
context, like user_id and methods for example. Once a Receipt object accurately represents
this information it should be minted. Receipt are minted when they get an id attribute and
their creation time is recorded.

property required_methods

property user

property user_domain

3.1. keystone 251

Keystone Documentation, Release 21.0.2.dev4

keystone.models.revoke_model module

class keystone.models.revoke_model.RevokeEvent(**kwargs)
Bases: object

to_dict()

keystone.models.revoke_model.blank_token_data(issued_at)

keystone.models.revoke_model.build_token_values(token)

keystone.models.revoke_model.is_revoked(events, token_data)
Check if a token matches a revocation event.

Compare a token against every revocation event. If the token matches an event in the events list,
the token is revoked. If the token is compared against every item in the list without a match, it is
not considered revoked from the revoke_api.

Parameters

• events a list of RevokeEvent instances

• token_data map based on a flattened view of the token. The re-
quired fields are expires_at,‘user_id‘, project_id, identity_domain_id, as-
signment_domain_id, trust_id, trustor_id, trustee_id consumer_id and ac-
cess_token_id

Returns True if the token matches an existing revocation event, meaning the token
is revoked. False is returned if the token does not match any revocation events,
meaning the token is considered valid by the revocation API.

keystone.models.revoke_model.matches(event, token_values)
See if the token matches the revocation event.

A brute force approach to checking. Compare each attribute from the event with the corresponding
value from the token. If the event does not have a value for the attribute, a match is still possible.
If the event has a value for the attribute, and it does not match the token, no match is possible, so
skip the remaining checks.

Parameters

• event a RevokeEvent instance

• token_values dictionary with set of values taken from the token

Returns True if the token matches the revocation event, indicating the token has been
revoked

keystone.models.token_model module

Unified in-memory token model.

class keystone.models.token_model.TokenModel
Bases: object

An object that represents a token emitted by keystone.

This is a queryable object that other parts of keystone can use to reason about a users authentication
or authorization.

252 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

property access_token

property application_credential

property audit_ids

property domain

property domain_scoped

property expires_at

property issued_at

mint(token_id, issued_at)
Set the id and issued_at attributes of a token.

The process of building a token requires setting attributes about the authentication and au-
thorization context, like user_id and project_id for example. Once a Token object accu-
rately represents this information it should be minted. Tokens are minted when they get an
id attribute and their creation time is recorded.

property oauth_scoped

property project

property project_domain

property project_scoped

property roles

property system_scoped

property trust

property trust_project

property trust_project_domain

property trust_scoped

property trustee

property trustor

property unscoped

property user

property user_domain

Module contents

keystone.oauth1 package

Subpackages

keystone.oauth1.backends package

3.1. keystone 253

Keystone Documentation, Release 21.0.2.dev4

Submodules

keystone.oauth1.backends.base module

class keystone.oauth1.backends.base.Oauth1DriverBase
Bases: object

Interface description for an OAuth1 driver.

abstract authorize_request_token(request_token_id, user_id, role_ids)
Authorize request token.

Parameters

• request_token_id (string) the id of the request token, to be authorized

• user_id (string) the id of the authorizing user

• role_ids (list) list of role ids to authorize

Returns verifier

abstract create_access_token(request_id, access_token_duration)
Create access token.

Parameters

• request_id (string) the id of the request token, to be deleted

• access_token_duration (string) duration of an access token

Returns access_token_ref

abstract create_consumer(consumer_ref)
Create consumer.

Parameters consumer_ref (dict) consumer ref with consumer name

Returns consumer_ref

abstract create_request_token(consumer_id, requested_project,
request_token_duration)

Create request token.

Parameters

• consumer_id (string) the id of the consumer

• requested_project_id (string) requested project id

• request_token_duration (string) duration of request token

Returns request_token_ref

abstract delete_access_token(user_id, access_token_id)
Delete access token.

Parameters

• user_id (string) authorizing user id

• access_token_id (string) access token to delete

Returns None

254 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

abstract delete_consumer(consumer_id)
Delete consumer.

Parameters consumer_id (string) id of consumer to get

Returns None.

abstract get_access_token(access_token_id)
Get access token.

Parameters access_token_id (string) the id of the access token

Returns access_token_ref

abstract get_consumer(consumer_id)
Get consumer, returns the consumer id (key) and description.

Parameters consumer_id (string) id of consumer to get

Returns consumer_ref

abstract get_consumer_with_secret(consumer_id)
Like get_consumer(), but also returns consumer secret.

Returned dictionary consumer_ref includes consumer secret. Secrets should only be shared
upon consumer creation; the consumer secret is required to verify incoming OAuth requests.

Parameters consumer_id (string) id of consumer to get

Returns consumer_ref containing consumer secret

abstract get_request_token(request_token_id)
Get request token.

Parameters request_token_id (string) the id of the request token

Returns request_token_ref

abstract list_access_tokens(user_id)
List access tokens.

Parameters user_id (string) search for access tokens authorized by given user
id

Returns list of access tokens the user has authorized

abstract list_consumers()
List consumers.

Returns list of consumers

abstract update_consumer(consumer_id, consumer_ref)
Update consumer.

Parameters

• consumer_id (string) id of consumer to update

• consumer_ref (dict) new consumer ref with consumer name

Returns consumer_ref

keystone.oauth1.backends.base.filter_consumer(consumer_ref)
Filter out private items in a consumer dict.

3.1. keystone 255

Keystone Documentation, Release 21.0.2.dev4

secret is never returned.

Returns consumer_ref

keystone.oauth1.backends.base.filter_token(access_token_ref)
Filter out private items in an access token dict.

access_secret is never returned.

Returns access_token_ref

keystone.oauth1.backends.sql module

class keystone.oauth1.backends.sql.AccessToken(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

access_secret

attributes = ['id', 'access_secret', 'authorizing_user_id', 'project_id',
'role_ids', 'consumer_id', 'expires_at']

authorizing_user_id

consumer_id

expires_at

classmethod from_dict(user_dict)
Return a model instance from a dictionary.

id

project_id

role_ids

to_dict()
Return the models attributes as a dictionary.

class keystone.oauth1.backends.sql.Consumer(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'description', 'secret']

description

extra

id

secret

class keystone.oauth1.backends.sql.OAuth1
Bases: keystone.oauth1.backends.base.Oauth1DriverBase

authorize_request_token(request_token_id, user_id, role_ids)
Authorize request token.

Parameters

• request_token_id (string) the id of the request token, to be authorized

256 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• user_id (string) the id of the authorizing user

• role_ids (list) list of role ids to authorize

Returns verifier

create_access_token(request_id, access_token_duration)
Create access token.

Parameters

• request_id (string) the id of the request token, to be deleted

• access_token_duration (string) duration of an access token

Returns access_token_ref

create_consumer(consumer_ref)
Create consumer.

Parameters consumer_ref (dict) consumer ref with consumer name

Returns consumer_ref

create_request_token(consumer_id, requested_project, request_token_duration)
Create request token.

Parameters

• consumer_id (string) the id of the consumer

• requested_project_id (string) requested project id

• request_token_duration (string) duration of request token

Returns request_token_ref

delete_access_token(user_id, access_token_id)
Delete access token.

Parameters

• user_id (string) authorizing user id

• access_token_id (string) access token to delete

Returns None

delete_consumer(consumer_id)
Delete consumer.

Parameters consumer_id (string) id of consumer to get

Returns None.

get_access_token(access_token_id)
Get access token.

Parameters access_token_id (string) the id of the access token

Returns access_token_ref

get_consumer(consumer_id)
Get consumer, returns the consumer id (key) and description.

Parameters consumer_id (string) id of consumer to get

3.1. keystone 257

Keystone Documentation, Release 21.0.2.dev4

Returns consumer_ref

get_consumer_with_secret(consumer_id)
Like get_consumer(), but also returns consumer secret.

Returned dictionary consumer_ref includes consumer secret. Secrets should only be shared
upon consumer creation; the consumer secret is required to verify incoming OAuth requests.

Parameters consumer_id (string) id of consumer to get

Returns consumer_ref containing consumer secret

get_request_token(request_token_id)
Get request token.

Parameters request_token_id (string) the id of the request token

Returns request_token_ref

list_access_tokens(user_id)
List access tokens.

Parameters user_id (string) search for access tokens authorized by given user
id

Returns list of access tokens the user has authorized

list_consumers()
List consumers.

Returns list of consumers

update_consumer(consumer_id, consumer_ref)
Update consumer.

Parameters

• consumer_id (string) id of consumer to update

• consumer_ref (dict) new consumer ref with consumer name

Returns consumer_ref

class keystone.oauth1.backends.sql.RequestToken(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['id', 'request_secret', 'verifier', 'authorizing_user_id',
'requested_project_id', 'role_ids', 'consumer_id', 'expires_at']

authorizing_user_id

consumer_id

expires_at

classmethod from_dict(user_dict)
Return a model instance from a dictionary.

id

request_secret

requested_project_id

role_ids

258 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

to_dict()
Return the models attributes as a dictionary.

verifier

Module contents

Submodules

keystone.oauth1.core module

Main entry point into the OAuth1 service.

class keystone.oauth1.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the OAuth1 backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

create_access_token(request_id, access_token_duration, initiator=None)

create_consumer(consumer_ref, initiator=None)

create_request_token(consumer_id, requested_project, request_token_duration,
initiator=None)

delete_access_token(user_id, access_token_id, initiator=None)

delete_consumer(consumer_id, initiator=None)

driver_namespace = 'keystone.oauth1'

update_consumer(consumer_id, consumer_ref, initiator=None)

class keystone.oauth1.core.Token(key, secret)
Bases: object

set_verifier(verifier)

keystone.oauth1.core.get_oauth_headers(headers)

keystone.oauth1.core.token_generator(*args, **kwargs)

keystone.oauth1.core.validate_oauth_params(query_string)

keystone.oauth1.schema module

keystone.oauth1.validator module

oAuthlib request validator.

class keystone.oauth1.validator.OAuthValidator
Bases: keystone.common.provider_api.ProviderAPIMixin, oauthlib.oauth1.
rfc5849.request_validator.RequestValidator

3.1. keystone 259

Keystone Documentation, Release 21.0.2.dev4

check_access_token(access_token)
Checks that the token contains only safe characters and is no shorter than lower and no longer
than upper.

check_client_key(client_key)
Check that the client key only contains safe characters and is no shorter than lower and no
longer than upper.

check_nonce(nonce)
Checks that the nonce only contains only safe characters and is no shorter than lower and no
longer than upper.

check_request_token(request_token)
Checks that the request token contains only safe characters and is no shorter than lower and
no longer than upper.

check_verifier(verifier)
Checks that the verifier contains only safe characters and is no shorter than lower and no
longer than upper.

property enforce_ssl

get_access_token_secret(client_key, token, request)
Retrieves the shared secret associated with the access token.

Parameters

• client_key The client/consumer key.

• token The access token string.

• request (oauthlib.common.Request) OAuthlib request.

Returns The token secret as a string.

This method must allow the use of a dummy values and the running time must be roughly
equivalent to that of the running time of valid values:

Unlikely to be near constant time as it uses two database
lookups for a valid client, and only one for an invalid.
from your_datastore import AccessTokenSecret
if AccessTokenSecret.has(client_key):

return AccessTokenSecret.get((client_key, request_token))
else:

return 'dummy'

Aim to mimic number of latency inducing operations no matter
whether the client is valid or not.
from your_datastore import AccessTokenSecret
return ClientSecret.get((client_key, request_token), 'dummy')

Note that the returned key must be in plaintext.

This method is used by

• ResourceEndpoint

get_client_secret(client_key, request)
Retrieves the client secret associated with the client key.

260 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters

• client_key The client/consumer key.

• request (oauthlib.common.Request) OAuthlib request.

Returns The client secret as a string.

This method must allow the use of a dummy client_key value. Fetching the secret using the
dummy key must take the same amount of time as fetching a secret for a valid client:

Unlikely to be near constant time as it uses two database
lookups for a valid client, and only one for an invalid.
from your_datastore import ClientSecret
if ClientSecret.has(client_key):

return ClientSecret.get(client_key)
else:

return 'dummy'

Aim to mimic number of latency inducing operations no matter
whether the client is valid or not.
from your_datastore import ClientSecret
return ClientSecret.get(client_key, 'dummy')

Note that the returned key must be in plaintext.

This method is used by

• AccessTokenEndpoint

• RequestTokenEndpoint

• ResourceEndpoint

• SignatureOnlyEndpoint

get_default_realms(client_key, request)
Get the default realms for a client.

Parameters

• client_key The client/consumer key.

• request (oauthlib.common.Request) OAuthlib request.

Returns The list of default realms associated with the client.

The list of default realms will be set during client registration and is outside the scope of
OAuthLib.

This method is used by

• RequestTokenEndpoint

get_realms(token, request)
Get realms associated with a request token.

Parameters

• token The request token string.

• request (oauthlib.common.Request) OAuthlib request.

3.1. keystone 261

Keystone Documentation, Release 21.0.2.dev4

Returns The list of realms associated with the request token.

This method is used by

• AuthorizationEndpoint

• AccessTokenEndpoint

get_redirect_uri(token, request)
Get the redirect URI associated with a request token.

Parameters

• token The request token string.

• request (oauthlib.common.Request) OAuthlib request.

Returns The redirect URI associated with the request token.

It may be desirable to return a custom URI if the redirect is set to oob. In this case, the user
will be redirected to the returned URI and at that endpoint the verifier can be displayed.

This method is used by

• AuthorizationEndpoint

get_request_token_secret(client_key, token, request)
Retrieves the shared secret associated with the request token.

Parameters

• client_key The client/consumer key.

• token The request token string.

• request (oauthlib.common.Request) OAuthlib request.

Returns The token secret as a string.

This method must allow the use of a dummy values and the running time must be roughly
equivalent to that of the running time of valid values:

Unlikely to be near constant time as it uses two database
lookups for a valid client, and only one for an invalid.
from your_datastore import RequestTokenSecret
if RequestTokenSecret.has(client_key):

return RequestTokenSecret.get((client_key, request_token))
else:

return 'dummy'

Aim to mimic number of latency inducing operations no matter
whether the client is valid or not.
from your_datastore import RequestTokenSecret
return ClientSecret.get((client_key, request_token), 'dummy')

Note that the returned key must be in plaintext.

This method is used by

• AccessTokenEndpoint

262 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

get_rsa_key(client_key, request)
Retrieves a previously stored client provided RSA key.

Parameters

• client_key The client/consumer key.

• request (oauthlib.common.Request) OAuthlib request.

Returns The rsa public key as a string.

This method must allow the use of a dummy client_key value. Fetching the rsa key using
the dummy key must take the same amount of time as fetching a key for a valid client. The
dummy key must also be of the same bit length as client keys.

Note that the key must be returned in plaintext.

This method is used by

• AccessTokenEndpoint

• RequestTokenEndpoint

• ResourceEndpoint

• SignatureOnlyEndpoint

invalidate_request_token(client_key, request_token, request)
Invalidate a used request token.

Parameters

• client_key The client/consumer key.

• request_token The request token string.

• request An oauthlib.common.Request object.

Returns None

Per Section 2.3 of the spec:

The server MUST () ensure that the temporary credentials have not expired or been used
before.

This method should ensure that provided token wont validate anymore. It can be simply
removing RequestToken from storage or setting specific flag that makes it invalid (note that
such flag should be also validated during request token validation).

This method is used by

• AccessTokenEndpoint

property safe_characters

save_access_token(token, request)
Save an OAuth1 access token.

Parameters

• token A dict with token credentials.

• request (oauthlib.common.Request) OAuthlib request.

The token dictionary will at minimum include

3.1. keystone 263

https://tools.ietf.org/html/rfc5849#section-2.3

Keystone Documentation, Release 21.0.2.dev4

• oauth_token the access token string.

• oauth_token_secret the token specific secret used in signing.

• oauth_authorized_realms a space separated list of realms.

Client key can be obtained from request.client_key.

The list of realms (not joined string) can be obtained from request.realm.

This method is used by

• AccessTokenEndpoint

save_request_token(token, request)
Save an OAuth1 request token.

Parameters

• token A dict with token credentials.

• request (oauthlib.common.Request) OAuthlib request.

The token dictionary will at minimum include

• oauth_token the request token string.

• oauth_token_secret the token specific secret used in signing.

• oauth_callback_confirmed the string true.

Client key can be obtained from request.client_key.

This method is used by

• RequestTokenEndpoint

save_verifier(token, verifier, request)
Associate an authorization verifier with a request token.

Parameters

• token A request token string.

• verifier A dictionary containing the oauth_verifier and oauth_token

• request An oauthlib.common.Request object.

We need to associate verifiers with tokens for validation during the access token request.

Note that unlike save_x_token token here is the oauth_token token string from the request
token saved previously.

This method is used by

• AuthorizationEndpoint

validate_access_token(client_key, token, request)
Validates that supplied access token is registered and valid.

Parameters

• client_key The client/consumer key.

• token The access token string.

• request (oauthlib.common.Request) OAuthlib request.

264 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Returns True or False

Note that if the dummy access token is supplied it should validate in the same or nearly the
same amount of time as a valid one.

Ensure latency inducing tasks are mimiced even for dummy clients. For example, use:

from your_datastore import AccessToken
try:

return AccessToken.exists(client_key, access_token)
except DoesNotExist:

return False

Rather than:

from your_datastore import AccessToken
if access_token == self.dummy_access_token:

return False
else:

return AccessToken.exists(client_key, access_token)

This method is used by

• ResourceEndpoint

validate_client_key(client_key, request)
Validates that supplied client key is a registered and valid client.

Parameters

• client_key The client/consumer key.

• request (oauthlib.common.Request) OAuthlib request.

Returns True or False

Note that if the dummy client is supplied it should validate in same or nearly the same amount
of time as a valid one.

Ensure latency inducing tasks are mimiced even for dummy clients. For example, use:

from your_datastore import Client
try:

return Client.exists(client_key, access_token)
except DoesNotExist:

return False

Rather than:

from your_datastore import Client
if access_token == self.dummy_access_token:

return False
else:

return Client.exists(client_key, access_token)

This method is used by

• AccessTokenEndpoint

3.1. keystone 265

Keystone Documentation, Release 21.0.2.dev4

• RequestTokenEndpoint

• ResourceEndpoint

• SignatureOnlyEndpoint

validate_realms(client_key, token, request, uri=None, realms=None)
Validates access to the request realm.

Parameters

• client_key The client/consumer key.

• token A request token string.

• request (oauthlib.common.Request) OAuthlib request.

• uri The URI the realms is protecting.

• realms A list of realms that must have been granted to the access token.

Returns True or False

How providers choose to use the realm parameter is outside the OAuth specification but it is
commonly used to restrict access to a subset of protected resources such as photos.

realms is a convenience parameter which can be used to provide a per view method pre-
defined list of allowed realms.

Can be as simple as:

from your_datastore import RequestToken
request_token = RequestToken.get(token, None)

if not request_token:
return False

return set(request_token.realms).issuperset(set(realms))

This method is used by

• ResourceEndpoint

validate_redirect_uri(client_key, redirect_uri, request)
Validates the client supplied redirection URI.

Parameters

• client_key The client/consumer key.

• redirect_uri The URI the client which to redirect back to after authoriza-
tion is successful.

• request (oauthlib.common.Request) OAuthlib request.

Returns True or False

It is highly recommended that OAuth providers require their clients to register all redirection
URIs prior to using them in requests and register them as absolute URIs. See CWE-601 for
more information about open redirection attacks.

By requiring registration of all redirection URIs it should be straightforward for the provider
to verify whether the supplied redirect_uri is valid or not.

266 Chapter 3. Code Documentation

http://cwe.mitre.org/top25/index.html#CWE-601

Keystone Documentation, Release 21.0.2.dev4

Alternatively per Section 2.1 of the spec:

If the client is unable to receive callbacks or a callback URI has been established via other
means, the parameter value MUST be set to oob (case sensitive), to indicate an out-of-band
configuration.

This method is used by

• RequestTokenEndpoint

validate_request_token(client_key, token, request)
Validates that supplied request token is registered and valid.

Parameters

• client_key The client/consumer key.

• token The request token string.

• request (oauthlib.common.Request) OAuthlib request.

Returns True or False

Note that if the dummy request_token is supplied it should validate in the same nearly the
same amount of time as a valid one.

Ensure latency inducing tasks are mimiced even for dummy clients. For example, use:

from your_datastore import RequestToken
try:

return RequestToken.exists(client_key, access_token)
except DoesNotExist:

return False

Rather than:

from your_datastore import RequestToken
if access_token == self.dummy_access_token:

return False
else:

return RequestToken.exists(client_key, access_token)

This method is used by

• AccessTokenEndpoint

validate_requested_realms(client_key, realms, request)
Validates that the client may request access to the realm.

Parameters

• client_key The client/consumer key.

• realms The list of realms that client is requesting access to.

• request (oauthlib.common.Request) OAuthlib request.

Returns True or False

This method is invoked when obtaining a request token and should tie a realm to the request
token and after user authorization this realm restriction should transfer to the access token.

3.1. keystone 267

https://tools.ietf.org/html/rfc5849#section-2.1

Keystone Documentation, Release 21.0.2.dev4

This method is used by

• RequestTokenEndpoint

validate_timestamp_and_nonce(client_key, timestamp, nonce, request,
request_token=None, access_token=None)

Validates that the nonce has not been used before.

Parameters

• client_key The client/consumer key.

• timestamp The oauth_timestamp parameter.

• nonce The oauth_nonce parameter.

• request_token Request token string, if any.

• access_token Access token string, if any.

• request (oauthlib.common.Request) OAuthlib request.

Returns True or False

Per Section 3.3 of the spec.

A nonce is a random string, uniquely generated by the client to allow the server to verify
that a request has never been made before and helps prevent replay attacks when requests are
made over a non-secure channel. The nonce value MUST be unique across all requests with
the same timestamp, client credentials, and token combinations.

One of the first validation checks that will be made is for the validity of the nonce and times-
tamp, which are associated with a client key and possibly a token. If invalid then immediately
fail the request by returning False. If the nonce/timestamp pair has been used before and you
may just have detected a replay attack. Therefore it is an essential part of OAuth security that
you not allow nonce/timestamp reuse. Note that this validation check is done before checking
the validity of the client and token.:

nonces_and_timestamps_database = [
(u'foo', 1234567890, u'rannoMstrInghere', u'bar')

]

def validate_timestamp_and_nonce(self, client_key, timestamp, nonce,
request_token=None, access_token=None):

return ((client_key, timestamp, nonce, request_token or access_
↪→token)

not in self.nonces_and_timestamps_database)

This method is used by

• AccessTokenEndpoint

• RequestTokenEndpoint

• ResourceEndpoint

• SignatureOnlyEndpoint

268 Chapter 3. Code Documentation

https://tools.ietf.org/html/rfc5849#section-3.3

Keystone Documentation, Release 21.0.2.dev4

validate_verifier(client_key, token, verifier, request)
Validates a verification code.

Parameters

• client_key The client/consumer key.

• token A request token string.

• verifier The authorization verifier string.

• request (oauthlib.common.Request) OAuthlib request.

Returns True or False

OAuth providers issue a verification code to clients after the resource owner authorizes access.
This code is used by the client to obtain token credentials and the provider must verify that
the verifier is valid and associated with the client as well as the resource owner.

Verifier validation should be done in near constant time (to avoid verifier enumeration). To
achieve this we need a constant time string comparison which is provided by OAuthLib in
oauthlib.common.safe_string_equals:

from your_datastore import Verifier
correct_verifier = Verifier.get(client_key, request_token)
from oauthlib.common import safe_string_equals
return safe_string_equals(verifier, correct_verifier)

This method is used by

• AccessTokenEndpoint

verify_realms(token, realms, request)
Verify authorized realms to see if they match those given to token.

Parameters

• token An access token string.

• realms A list of realms the client attempts to access.

• request (oauthlib.common.Request) OAuthlib request.

Returns True or False

This prevents the list of authorized realms sent by the client during the authorization step to
be altered to include realms outside what was bound with the request token.

Can be as simple as:

valid_realms = self.get_realms(token)
return all((r in valid_realms for r in realms))

This method is used by

• AuthorizationEndpoint

verify_request_token(token, request)
Verify that the given OAuth1 request token is valid.

Parameters

3.1. keystone 269

Keystone Documentation, Release 21.0.2.dev4

• token A request token string.

• request (oauthlib.common.Request) OAuthlib request.

Returns True or False

This method is used only in AuthorizationEndpoint to check whether the oauth_token given
in the authorization URL is valid or not. This request is not signed and thus similar
validate_request_token method can not be used.

This method is used by

• AuthorizationEndpoint

Module contents

keystone.policy package

Subpackages

keystone.policy.backends package

Submodules

keystone.policy.backends.base module

class keystone.policy.backends.base.PolicyDriverBase
Bases: object

abstract create_policy(policy_id, policy)
Store a policy blob.

Raises keystone.exception.Conflict If a duplicate policy exists.

abstract delete_policy(policy_id)
Remove a policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

abstract enforce(context, credentials, action, target)
Verify that a user is authorized to perform action.

For more information on a full implementation of this see: key-
stone.policy.backends.rules.Policy.enforce

abstract get_policy(policy_id)
Retrieve a specific policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

abstract list_policies()
List all policies.

abstract update_policy(policy_id, policy)
Update a policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

270 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.policy.backends.rules module

Policy engine for keystone.

class keystone.policy.backends.rules.Policy
Bases: keystone.policy.backends.base.PolicyDriverBase

create_policy(policy_id, policy)
Store a policy blob.

Raises keystone.exception.Conflict If a duplicate policy exists.

delete_policy(policy_id)
Remove a policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

enforce(credentials, action, target)
Verify that a user is authorized to perform action.

For more information on a full implementation of this see: key-
stone.policy.backends.rules.Policy.enforce

get_policy(policy_id)
Retrieve a specific policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

list_policies()
List all policies.

update_policy(policy_id, policy)
Update a policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

keystone.policy.backends.sql module

class keystone.policy.backends.sql.Policy
Bases: keystone.policy.backends.rules.Policy

create_policy(policy_id, policy)
Store a policy blob.

Raises keystone.exception.Conflict If a duplicate policy exists.

delete_policy(policy_id)
Remove a policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

get_policy(policy_id)
Retrieve a specific policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

list_policies()
List all policies.

3.1. keystone 271

Keystone Documentation, Release 21.0.2.dev4

update_policy(policy_id, policy)
Update a policy blob.

Raises keystone.exception.PolicyNotFound If the policy doesnt exist.

class keystone.policy.backends.sql.PolicyModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'blob', 'type']

blob

extra

id

type

Module contents

Submodules

keystone.policy.core module

Main entry point into the Policy service.

class keystone.policy.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Policy backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

create_policy(policy_id, policy, initiator=None)

delete_policy(policy_id, initiator=None)

driver_namespace = 'keystone.policy'

get_policy(policy_id)

list_policies(hints=None)

update_policy(policy_id, policy, initiator=None)

keystone.policy.schema module

Module contents

keystone.receipt package

Subpackages

272 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.receipt.providers package

Subpackages

keystone.receipt.providers.fernet package

Submodules

keystone.receipt.providers.fernet.core module

class keystone.receipt.providers.fernet.core.Provider(*args, **kwargs)
Bases: keystone.receipt.providers.base.Provider

generate_id_and_issued_at(receipt)
Generate a receipt based on the information provided.

Parameters receipt (keystone.models.receipt.ReceiptModel) A receipt object
containing information about the authorization context of the request.

Returns tuple containing an ID for the receipt and the issued at time of the receipt
(receipt_id, issued_at).

validate_receipt(receipt_id)
Validate a given receipt by its ID and return the receipt_data.

Parameters receipt_id (str) the unique ID of the receipt

Returns receipt data as a tuple in the form of:

(user_id, methods, issued_at, expires_at)

user_id is the unique ID of the user as a string methods a list of authentication meth-
ods used to obtain the receipt issued_at a datetime object of when the receipt was minted
expires_at a datetime object of when the receipt expires

Raises keystone.exception.ReceiptNotFound when receipt doesnt exist.

Module contents

class keystone.receipt.providers.fernet.Provider(*args, **kwargs)
Bases: keystone.receipt.providers.base.Provider

generate_id_and_issued_at(receipt)
Generate a receipt based on the information provided.

Parameters receipt (keystone.models.receipt.ReceiptModel) A receipt object
containing information about the authorization context of the request.

Returns tuple containing an ID for the receipt and the issued at time of the receipt
(receipt_id, issued_at).

validate_receipt(receipt_id)
Validate a given receipt by its ID and return the receipt_data.

Parameters receipt_id (str) the unique ID of the receipt

3.1. keystone 273

Keystone Documentation, Release 21.0.2.dev4

Returns receipt data as a tuple in the form of:

(user_id, methods, issued_at, expires_at)

user_id is the unique ID of the user as a string methods a list of authentication meth-
ods used to obtain the receipt issued_at a datetime object of when the receipt was minted
expires_at a datetime object of when the receipt expires

Raises keystone.exception.ReceiptNotFound when receipt doesnt exist.

Submodules

keystone.receipt.providers.base module

class keystone.receipt.providers.base.Provider
Bases: object

Interface description for a Receipt provider.

abstract generate_id_and_issued_at(receipt)
Generate a receipt based on the information provided.

Parameters receipt (keystone.models.receipt.ReceiptModel) A receipt object
containing information about the authorization context of the request.

Returns tuple containing an ID for the receipt and the issued at time of the receipt
(receipt_id, issued_at).

abstract validate_receipt(receipt_id)
Validate a given receipt by its ID and return the receipt_data.

Parameters receipt_id (str) the unique ID of the receipt

Returns receipt data as a tuple in the form of:

(user_id, methods, issued_at, expires_at)

user_id is the unique ID of the user as a string methods a list of authentication meth-
ods used to obtain the receipt issued_at a datetime object of when the receipt was minted
expires_at a datetime object of when the receipt expires

Raises keystone.exception.ReceiptNotFound when receipt doesnt exist.

Module contents

Submodules

keystone.receipt.handlers module

keystone.receipt.handlers.build_receipt(mfa_error)

keystone.receipt.handlers.extract_receipt(auth_context)

274 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.receipt.provider module

Receipt provider interface.

class keystone.receipt.provider.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the receipt provider backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

driver_namespace = 'keystone.receipt.provider'

issue_receipt(user_id, method_names, expires_at=None)

validate_receipt(receipt_id, window_seconds=0)

keystone.receipt.provider.default_expire_time()
Determine when a fresh receipt should expire.

Expiration time varies based on configuration (see [receipt] expiration).

Returns a naive UTC datetime.datetime object

keystone.receipt.receipt_formatters module

class keystone.receipt.receipt_formatters.ReceiptFormatter
Bases: object

Packs and unpacks payloads into receipts for transport.

create_receipt(user_id, methods, expires_at)
Given a set of payload attributes, generate a Fernet receipt.

classmethod creation_time(fernet_receipt)
Return the creation time of a valid Fernet receipt.

property crypto
Return a cryptography instance.

You can extend this class with a custom crypto @property to provide your own receipt encod-
ing / decoding. For example, using a different cryptography library (e.g. python-keyczar)
or to meet arbitrary security requirements.

This @property just needs to return an object that implements encrypt(plaintext) and
decrypt(ciphertext).

pack(payload)
Pack a payload for transport as a receipt.

Return type str

classmethod restore_padding(receipt)
Restore padding based on receipt size.

Parameters receipt (str) receipt to restore padding on

3.1. keystone 275

Keystone Documentation, Release 21.0.2.dev4

Returns receipt with correct padding

unpack(receipt)
Unpack a receipt, and validate the payload.

Return type bytes

validate_receipt(receipt)
Validate a Fernet receipt and returns the payload attributes.

class keystone.receipt.receipt_formatters.ReceiptPayload
Bases: object

classmethod assemble(user_id, methods, expires_at)
Assemble the payload of a receipt.

Parameters

• user_id identifier of the user in the receipt request

• methods list of authentication methods used

• expires_at datetime of the receipts expiration

Returns the payload of a receipt

classmethod attempt_convert_uuid_hex_to_bytes(value)
Attempt to convert value to bytes or return value.

Parameters value value to attempt to convert to bytes

Returns tuple containing boolean indicating whether user_id was stored as bytes
and uuid value as bytes or the original value

classmethod base64_encode(s)
Encode a URL-safe string.

Return type str

classmethod convert_uuid_bytes_to_hex(uuid_byte_string)
Generate uuid.hex format based on byte string.

Parameters uuid_byte_string uuid string to generate from

Returns uuid hex formatted string

classmethod convert_uuid_hex_to_bytes(uuid_string)
Compress UUID formatted strings to bytes.

Parameters uuid_string uuid string to compress to bytes

Returns a byte representation of the uuid

classmethod disassemble(payload)
Disassemble a payload into the component data.

The tuple consists of:

(user_id, methods, expires_at_str)

• methods are the auth methods.

276 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters payload this variant of payload

Returns a tuple of the payloads component data

classmethod random_urlsafe_str_to_bytes(s)
Convert string from random_urlsafe_str() to bytes.

Return type bytes

Module contents

keystone.resource package

Subpackages

keystone.resource.backends package

Submodules

keystone.resource.backends.base module

class keystone.resource.backends.base.ResourceDriverBase
Bases: object

check_project_depth(max_depth)
Check the projects depth in the backend whether exceed the limit.

Parameters max_depth (integer) the limit depth that project depth should not
exceed.

Returns the exceeded projects id or None if no exceeding.

abstract create_project(project_id, project)
Create a new project.

Parameters

• project_id This parameter can be ignored.

• project (dict) The new project

Project schema:

type: object
properties:

id:
type: string

name:
type: string

domain_id:
type: [string, null]

description:
type: string

(continues on next page)

3.1. keystone 277

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

enabled:
type: boolean

parent_id:
type: string

is_domain:
type: boolean

required: [id, name, domain_id]
additionalProperties: true

If the project doesnt match the schema the behavior is undefined.

The driver can impose requirements such as the maximum length of a field. If these require-
ments are not met the behavior is undefined.

Raises keystone.exception.Conflict if the project id already exists or the
name already exists for the domain_id.

abstract delete_project(project_id)
Delete an existing project.

Raises keystone.exception.ProjectNotFound if project_id does not exist

abstract delete_projects_from_ids(project_ids)
Delete a given list of projects.

Deletes a list of projects. Ensures no project on the list exists after it is successfully called.
If an empty list is provided, the it is silently ignored. In addition, if a project ID in the list of
project_ids is not found in the backend, no exception is raised, but a message is logged.

abstract get_project(project_id)
Get a project by ID.

Returns project_ref

Raises keystone.exception.ProjectNotFound if project_id does not exist

abstract get_project_by_name(project_name, domain_id)
Get a project by name.

Returns project_ref

Raises keystone.exception.ProjectNotFound if a project with the
project_name does not exist within the domain

abstract is_leaf_project(project_id)
Check if a project is a leaf in the hierarchy.

Parameters project_id the driver will check if this project is a leaf in the hier-
archy.

Raises keystone.exception.ProjectNotFound if project_id does not exist

abstract list_project_ids_from_domain_ids(domain_ids)
List project ids for the provided list of domain ids.

Parameters domain_ids list of domain ids

Returns a list of project ids owned by the specified domain ids.

278 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

This method is used internally by the assignment manager to bulk read a set of project ids
given a list of domain ids.

abstract list_project_parents(project_id)
List all parents from a project by its ID.

Parameters project_id the driver will list the parents of this project.

Returns a list of project_refs or an empty list.

Raises keystone.exception.ProjectNotFound if project_id does not exist

abstract list_projects(hints)
List projects in the system.

Parameters hints filter hints which the driver should implement if at all possible.

Returns a list of project_refs or an empty list.

abstract list_projects_acting_as_domain(hints)
List all projects acting as domains.

Parameters hints filter hints which the driver should implement if at all possible.

Returns a list of project_refs or an empty list.

abstract list_projects_from_ids(project_ids)
List projects for the provided list of ids.

Parameters project_ids list of ids

Returns a list of project_refs.

This method is used internally by the assignment manager to bulk read a set of projects given
their ids.

abstract list_projects_in_domain(domain_id)
List projects in the domain.

Parameters domain_id the driver MUST only return projects within this domain.

Returns a list of project_refs or an empty list.

abstract list_projects_in_subtree(project_id)
List all projects in the subtree of a given project.

Parameters project_id the driver will get the subtree under this project.

Returns a list of project_refs or an empty list

Raises keystone.exception.ProjectNotFound if project_id does not exist

abstract update_project(project_id, project)
Update an existing project.

Raises

• keystone.exception.ProjectNotFound if project_id does not exist

• keystone.exception.Conflict if project name already exists

keystone.resource.backends.base.get_project_from_domain(domain_ref)
Create a project ref from the provided domain ref.

3.1. keystone 279

Keystone Documentation, Release 21.0.2.dev4

keystone.resource.backends.resource_options module

keystone.resource.backends.resource_options.register_role_options()

keystone.resource.backends.sql module

class keystone.resource.backends.sql.Resource
Bases: keystone.resource.backends.base.ResourceDriverBase

check_project_depth(max_depth)
Check the projects depth in the backend whether exceed the limit.

Parameters max_depth (integer) the limit depth that project depth should not
exceed.

Returns the exceeded projects id or None if no exceeding.

create_project(project_id, project)
Create a new project.

Parameters

• project_id This parameter can be ignored.

• project (dict) The new project

Project schema:

type: object
properties:

id:
type: string

name:
type: string

domain_id:
type: [string, null]

description:
type: string

enabled:
type: boolean

parent_id:
type: string

is_domain:
type: boolean

required: [id, name, domain_id]
additionalProperties: true

If the project doesnt match the schema the behavior is undefined.

The driver can impose requirements such as the maximum length of a field. If these require-
ments are not met the behavior is undefined.

Raises keystone.exception.Conflict if the project id already exists or the
name already exists for the domain_id.

280 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

delete_project(project_id)
Delete an existing project.

Raises keystone.exception.ProjectNotFound if project_id does not exist

delete_projects_from_ids(project_ids)
Delete a given list of projects.

Deletes a list of projects. Ensures no project on the list exists after it is successfully called.
If an empty list is provided, the it is silently ignored. In addition, if a project ID in the list of
project_ids is not found in the backend, no exception is raised, but a message is logged.

get_project(project_id)
Get a project by ID.

Returns project_ref

Raises keystone.exception.ProjectNotFound if project_id does not exist

get_project_by_name(project_name, domain_id)
Get a project by name.

Returns project_ref

Raises keystone.exception.ProjectNotFound if a project with the
project_name does not exist within the domain

is_leaf_project(project_id)
Check if a project is a leaf in the hierarchy.

Parameters project_id the driver will check if this project is a leaf in the hier-
archy.

Raises keystone.exception.ProjectNotFound if project_id does not exist

list_project_ids_from_domain_ids(domain_ids)
List project ids for the provided list of domain ids.

Parameters domain_ids list of domain ids

Returns a list of project ids owned by the specified domain ids.

This method is used internally by the assignment manager to bulk read a set of project ids
given a list of domain ids.

list_project_parents(project_id)
List all parents from a project by its ID.

Parameters project_id the driver will list the parents of this project.

Returns a list of project_refs or an empty list.

Raises keystone.exception.ProjectNotFound if project_id does not exist

list_projects(hints)
List projects in the system.

Parameters hints filter hints which the driver should implement if at all possible.

Returns a list of project_refs or an empty list.

list_projects_acting_as_domain(hints)
List all projects acting as domains.

3.1. keystone 281

Keystone Documentation, Release 21.0.2.dev4

Parameters hints filter hints which the driver should implement if at all possible.

Returns a list of project_refs or an empty list.

list_projects_by_tags(filters)

list_projects_from_ids(ids)
List projects for the provided list of ids.

Parameters project_ids list of ids

Returns a list of project_refs.

This method is used internally by the assignment manager to bulk read a set of projects given
their ids.

list_projects_in_domain(domain_id)
List projects in the domain.

Parameters domain_id the driver MUST only return projects within this domain.

Returns a list of project_refs or an empty list.

list_projects_in_subtree(project_id)
List all projects in the subtree of a given project.

Parameters project_id the driver will get the subtree under this project.

Returns a list of project_refs or an empty list

Raises keystone.exception.ProjectNotFound if project_id does not exist

update_project(project_id, project)
Update an existing project.

Raises

• keystone.exception.ProjectNotFound if project_id does not exist

• keystone.exception.Conflict if project name already exists

keystone.resource.backends.sql_model module

class keystone.resource.backends.sql_model.Project(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

attributes = ['id', 'name', 'domain_id', 'description', 'enabled',
'parent_id', 'is_domain', 'tags']

description

domain_id

enabled

extra

classmethod from_dict(project_dict)

id

is_domain

282 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

name

parent_id

resource_options_registry =
<keystone.common.resource_options.core.ResourceOptionRegistry object>

property tags

to_dict(include_extra_dict=False)
Return the models attributes as a dictionary.

If include_extra_dict is True, extra attributes are literally included in the resulting dictionary
twice, for backwards-compatibility with a broken implementation.

class keystone.resource.backends.sql_model.ProjectOption(option_id, option_value)
Bases: sqlalchemy.orm.decl_api.Base

option_id

option_value

project_id

class keystone.resource.backends.sql_model.ProjectTag(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

attributes = ['project_id', 'name']

name

project_id

to_dict()
Return the models attributes as a dictionary.

Module contents

keystone.resource.config_backends package

Submodules

keystone.resource.config_backends.base module

class keystone.resource.config_backends.base.DomainConfigDriverBase
Bases: object

Interface description for a Domain Config driver.

abstract create_config_options(domain_id, option_list)
Create config options for a domain.

Any existing config options will first be deleted.

Parameters

• domain_id the domain for this option

• option_list a list of dicts, each one specifying an option

3.1. keystone 283

Keystone Documentation, Release 21.0.2.dev4

Option schema:

type: dict
properties:

group:
type: string

option:
type: string

value:
type: depends on the option

sensitive:
type: boolean

required: [group, option, value, sensitive]
additionalProperties: false

abstract delete_config_options(domain_id, group=None, option=None)
Delete config options for a domain.

Allows deletion of all options for a domain, all options in a group or a specific option. The
driver is silent if there are no options to delete.

Parameters

• domain_id the domain for this option

• group optional group option name

• option optional option name. If group is None, then this parameter is ig-
nored

The option is uniquely defined by domain_id, group and option, irrespective of whether it is
sensitive ot not.

abstract get_config_option(domain_id, group, option, sensitive=False)
Get the config option for a domain.

Parameters

• domain_id the domain for this option

• group the group name

• option the option name

• sensitive whether the option is sensitive

Returns dict containing group, option and value

Raises keystone.exception.DomainConfigNotFound the option doesnt ex-
ist.

abstract list_config_options(domain_id, group=None, option=False, sensitive=False)
Get a config options for a domain.

Parameters

• domain_id the domain for this option

• group optional group option name

284 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• option optional option name. If group is None, then this parameter is ig-
nored

• sensitive whether the option is sensitive

Returns list of dicts containing group, option and value

abstract obtain_registration(domain_id, type)
Try and register this domain to use the type specified.

Parameters

• domain_id the domain required

• type type of registration

Returns True if the domain was registered, False otherwise. Failing to register
means that someone already has it (which could even be the domain being re-
quested).

abstract read_registration(type)
Get the domain ID of who is registered to use this type.

Parameters type type of registration

Returns domain_id of who is registered.

Raises keystone.exception.ConfigRegistrationNotFound If nobody is
registered.

abstract release_registration(domain_id, type=None)
Release registration if it is held by the domain specified.

If the specified domain is registered for this domain then free it, if it is not then do nothing -
no exception is raised.

Parameters

• domain_id the domain in question

• type type of registration, if None then all registrations for this domain will
be freed

abstract update_config_options(domain_id, option_list)
Update config options for a domain.

Parameters

• domain_id the domain for this option

• option_list a list of dicts, each one specifying an option

3.1. keystone 285

Keystone Documentation, Release 21.0.2.dev4

keystone.resource.config_backends.sql module

class keystone.resource.config_backends.sql.ConfigRegister(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

domain_id

type

class keystone.resource.config_backends.sql.DomainConfig
Bases: keystone.resource.config_backends.base.DomainConfigDriverBase

choose_table(sensitive)

create_config_options(domain_id, option_list)
Create config options for a domain.

Any existing config options will first be deleted.

Parameters

• domain_id the domain for this option

• option_list a list of dicts, each one specifying an option

Option schema:

type: dict
properties:

group:
type: string

option:
type: string

value:
type: depends on the option

sensitive:
type: boolean

required: [group, option, value, sensitive]
additionalProperties: false

delete_config_options(domain_id, group=None, option=None)
Delete config options for a domain.

Allows deletion of all options for a domain, all options in a group or a specific option. The
driver is silent if there are no options to delete.

Parameters

• domain_id the domain for this option

• group optional group option name

• option optional option name. If group is None, then this parameter is ig-
nored

The option is uniquely defined by domain_id, group and option, irrespective of whether it is
sensitive ot not.

get_config_option(domain_id, group, option, sensitive=False)
Get the config option for a domain.

286 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters

• domain_id the domain for this option

• group the group name

• option the option name

• sensitive whether the option is sensitive

Returns dict containing group, option and value

Raises keystone.exception.DomainConfigNotFound the option doesnt ex-
ist.

list_config_options(domain_id, group=None, option=None, sensitive=False)
Get a config options for a domain.

Parameters

• domain_id the domain for this option

• group optional group option name

• option optional option name. If group is None, then this parameter is ig-
nored

• sensitive whether the option is sensitive

Returns list of dicts containing group, option and value

obtain_registration(domain_id, type)
Try and register this domain to use the type specified.

Parameters

• domain_id the domain required

• type type of registration

Returns True if the domain was registered, False otherwise. Failing to register
means that someone already has it (which could even be the domain being re-
quested).

read_registration(type)
Get the domain ID of who is registered to use this type.

Parameters type type of registration

Returns domain_id of who is registered.

Raises keystone.exception.ConfigRegistrationNotFound If nobody is
registered.

release_registration(domain_id, type=None)
Silently delete anything registered for the domain specified.

update_config_options(domain_id, option_list)
Update config options for a domain.

Parameters

• domain_id the domain for this option

• option_list a list of dicts, each one specifying an option

3.1. keystone 287

Keystone Documentation, Release 21.0.2.dev4

class keystone.resource.config_backends.sql.SensitiveConfig(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

domain_id

group

option

to_dict()
Return the models attributes as a dictionary.

value

class keystone.resource.config_backends.sql.WhiteListedConfig(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

domain_id

group

option

to_dict()
Return the models attributes as a dictionary.

value

Module contents

Submodules

keystone.resource.core module

Main entry point into the Resource service.

class keystone.resource.core.DomainConfigManager
Bases: keystone.common.manager.Manager

Default pivot point for the Domain Config backend.

create_config(domain_id, config)
Create config for a domain.

Parameters

• domain_id the domain in question

• config the dict of config groups/options to assign to the domain

Creates a new config, overwriting any previous config (no Conflict error will be generated).

Returns a dict of group dicts containing the options, with any that are sensitive
removed

Raises keystone.exception.InvalidDomainConfig when the config con-
tains options we do not support

delete_config(domain_id, group=None, option=None)
Delete config, or partial config, for the domain.

288 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters

• domain_id the domain in question

• group an optional specific group of options

• option an optional specific option within the group

If group and option are None, then the entire config for the domain is deleted. If group is not
None, then just that group of options will be deleted. If group and option are both specified,
then just that option is deleted.

Raises keystone.exception.InvalidDomainConfig when group/option pa-
rameters specify an option we do not support or one that does not exist in the
original config.

driver_namespace = 'keystone.resource.domain_config'

get_config(domain_id, group=None, option=None)
Get config, or partial config, for a domain.

Parameters

• domain_id the domain in question

• group an optional specific group of options

• option an optional specific option within the group

Returns a dict of group dicts containing the whitelisted options, filtered by group
and option specified

Raises

• keystone.exception.DomainConfigNotFound when no config found
that matches domain_id, group and option specified

• keystone.exception.InvalidDomainConfig when the config and
group/option parameters specify an option we do not support

An example response:

{
'ldap': {

'url': 'myurl'
'user_tree_dn': 'OU=myou'},

'identity': {
'driver': 'ldap'}

}

get_config_default(group=None, option=None)
Get default config, or partial default config.

Parameters

• group an optional specific group of options

• option an optional specific option within the group

3.1. keystone 289

Keystone Documentation, Release 21.0.2.dev4

Returns a dict of group dicts containing the default options, filtered by group and
option if specified

Raises keystone.exception.InvalidDomainConfig when the config and
group/option parameters specify an option we do not support (or one that is
not whitelisted).

An example response:

{
'ldap': {

'url': 'myurl',
'user_tree_dn': 'OU=myou',
....},

'identity': {
'driver': 'ldap'}

}

get_config_with_sensitive_info(domain_id)
Get config for a domain with sensitive info included.

This method is not exposed via the public API, but is used by the identity manager to initialize
a domain with the fully formed config options.

get_security_compliance_config(domain_id, group, option=None)
Get full or partial security compliance config from configuration.

Parameters

• domain_id the domain in question

• group a specific group of options

• option an optional specific option within the group

Returns a dict of group dicts containing the whitelisted options, filtered by group
and option specified

Raises keystone.exception.InvalidDomainConfig when the config and
group/option parameters specify an option we do not support

An example response:

{
'security_compliance': {

'password_regex': '^(?=.*\d)(?=.*[a-zA-Z]).{7,}$'
'password_regex_description':

'A password must consist of at least 1 letter, '
'1 digit, and have a minimum length of 7 characters'

}
}

sensitive_options = {'identity': [], 'ldap': ['password']}

update_config(domain_id, config, group=None, option=None)
Update config, or partial config, for a domain.

290 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Parameters

• domain_id the domain in question

• config the config dict containing and groups/options being updated

• group an optional specific group of options, which if specified must appear
in config, with no other groups

• option an optional specific option within the group, which if specified must
appear in config, with no other options

The contents of the supplied config will be merged with the existing config for this domain,
updating or creating new options if these did not previously exist. If group or option is speci-
fied, then the update will be limited to those specified items and the inclusion of other options
in the supplied config will raise an exception, as will the situation when those options do not
already exist in the current config.

Returns a dict of groups containing all whitelisted options

Raises keystone.exception.InvalidDomainConfig when the config and
group/option parameters specify an option we do not support or one that does
not exist in the original config

whitelisted_options = {'identity': ['driver', 'list_limit'], 'ldap':
['url', 'user', 'suffix', 'query_scope', 'page_size',
'alias_dereferencing', 'debug_level', 'chase_referrals', 'user_tree_dn',
'user_filter', 'user_objectclass', 'user_id_attribute',
'user_name_attribute', 'user_mail_attribute',
'user_description_attribute', 'user_pass_attribute',
'user_enabled_attribute', 'user_enabled_invert', 'user_enabled_mask',
'user_enabled_default', 'user_attribute_ignore',
'user_default_project_id_attribute', 'user_enabled_emulation',
'user_enabled_emulation_dn', 'user_enabled_emulation_use_group_config',
'user_additional_attribute_mapping', 'group_tree_dn', 'group_filter',
'group_objectclass', 'group_id_attribute', 'group_name_attribute',
'group_members_are_ids', 'group_member_attribute', 'group_desc_attribute',
'group_attribute_ignore', 'group_additional_attribute_mapping',
'tls_cacertfile', 'tls_cacertdir', 'use_tls', 'tls_req_cert', 'use_pool',
'pool_size', 'pool_retry_max', 'pool_retry_delay',
'pool_connection_timeout', 'pool_connection_lifetime', 'use_auth_pool',
'auth_pool_size', 'auth_pool_connection_lifetime']}

class keystone.resource.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Resource backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

assert_domain_enabled(domain_id, domain=None)
Assert the Domain is enabled.

Raises AssertionError if domain is disabled.

assert_domain_not_federated(domain_id, domain)
Assert the Domains name and id do not match the reserved keyword.

3.1. keystone 291

Keystone Documentation, Release 21.0.2.dev4

Note that the reserved keyword is defined in the configuration file, by default, it is Federated,
it is also case insensitive. If configs option is empty the default hardcoded value Federated
will be used.

Raises AssertionError if domain named match the value in the config.

assert_project_enabled(project_id, project=None)
Assert the project is enabled and its associated domain is enabled.

Raises AssertionError if the project or domain is disabled.

check_project_depth(max_depth=None)
Check project depth whether greater than input or not.

create_domain(domain_id, domain, initiator=None)

create_project(project_id, project, initiator=None)

create_project_tag(project_id, tag, initiator=None)
Create a new tag on project.

Parameters

• project_id ID of a project to create a tag for

• tag The string value of a tag to add

Returns The value of the created tag

delete_domain(domain_id, initiator=None)

delete_project(project_id, initiator=None, cascade=False)
Delete one project or a subtree.

Parameters cascade (boolean) If true, the specified project and all its sub-
projects are deleted. Otherwise, only the specified project is deleted.

Raises

• keystone.exception.ValidationError if project is a domain

• keystone.exception.Forbidden if project is not a leaf

delete_project_tag(project_id, tag)
Delete single tag from project.

Parameters

• project_id The ID of the project

• tag The tag value to delete

Raises keystone.exception.ProjectTagNotFound If the tag name does not
exist on the project

driver_namespace = 'keystone.resource'

get_domain(domain_id)

get_domain_by_name(domain_name)

get_project(project_id)

get_project_by_name(project_name, domain_id)

292 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

get_project_parents_as_ids(project)
Get the IDs from the parents from a given project.

The project IDs are returned as a structured dictionary traversing up the hierarchy to the top
level project. For example, considering the following project hierarchy:

A
|

+-B-+
| |
C D

If we query for project C parents, the expected return is the following dictionary:

'parents': {
B['id']: {

A['id']: None
}

}

get_project_tag(project_id, tag_name)
Return information for a single tag on a project.

Parameters

• project_id ID of a project to retrive a tag from

• tag_name Name of a tag to return

Raises keystone.exception.ProjectTagNotFound If the tag name does not
exist on the project

Returns The tag value

get_projects_in_subtree_as_ids(project_id)
Get the IDs from the projects in the subtree from a given project.

The project IDs are returned as a structured dictionary representing their hierarchy. For ex-
ample, considering the following project hierarchy:

A
|

+-B-+
| |
C D

If we query for project A subtree, the expected return is the following dictionary:

'subtree': {
B['id']: {

C['id']: None,
D['id']: None

}
}

list_domains(hints=None)

3.1. keystone 293

Keystone Documentation, Release 21.0.2.dev4

list_domains_from_ids(domain_ids)
List domains for the provided list of ids.

Parameters domain_ids list of ids

Returns a list of domain_refs.

This method is used internally by the assignment manager to bulk read a set of domains given
their ids.

list_project_parents(project_id, user_id=None, include_limits=False)

list_project_tags(project_id)
List all tags on project.

Parameters project_id The ID of a project

Returns A list of tags from a project

list_projects(hints=None)

list_projects_acting_as_domain(hints=None)

list_projects_in_domain(domain_id)

list_projects_in_subtree(project_id, user_id=None, include_limits=False)

update_domain(domain_id, domain, initiator=None)

update_project(project_id, project, initiator=None, cascade=False)

update_project_tags(project_id, tags, initiator=None)
Update all tags on a project.

Parameters

• project_id The ID of the project to update

• tags A list of tags to update on the project

Returns A list of tags

keystone.resource.schema module

Module contents

keystone.revoke package

Subpackages

keystone.revoke.backends package

Submodules

keystone.revoke.backends.base module

class keystone.revoke.backends.base.RevokeDriverBase
Bases: object

294 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Interface for recording and reporting revocation events.

abstract list_events(last_fetch=None, token=None)
return the revocation events, as a list of objects.

Parameters

• last_fetch Time of last fetch. Return all events newer.

• token dictionary of values from a token, normalized for differences be-
tween v2 and v3. The checked values are a subset of the attributes of
model.TokenEvent

Returns A list of keystone.revoke.model.RevokeEvent newer than last_fetch. If no
last_fetch is specified, returns all events for tokens issued after the expiration
cutoff.

abstract revoke(event)
register a revocation event.

Parameters event An instance of keystone.revoke.model.RevocationEvent

keystone.revoke.backends.base.revoked_before_cutoff_time()

keystone.revoke.backends.sql module

class keystone.revoke.backends.sql.RevocationEvent(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.ModelDictMixin

access_token_id

attributes = ['trust_id', 'consumer_id', 'access_token_id', 'audit_id',
'audit_chain_id', 'expires_at', 'domain_id', 'project_id', 'user_id',
'role_id', 'issued_before', 'revoked_at']

audit_chain_id

audit_id

consumer_id

domain_id

expires_at

id

issued_before

project_id

revoked_at

role_id

trust_id

user_id

class keystone.revoke.backends.sql.Revoke
Bases: keystone.revoke.backends.base.RevokeDriverBase

3.1. keystone 295

Keystone Documentation, Release 21.0.2.dev4

list_events(last_fetch=None, token=None)
return the revocation events, as a list of objects.

Parameters

• last_fetch Time of last fetch. Return all events newer.

• token dictionary of values from a token, normalized for differences be-
tween v2 and v3. The checked values are a subset of the attributes of
model.TokenEvent

Returns A list of keystone.revoke.model.RevokeEvent newer than last_fetch. If no
last_fetch is specified, returns all events for tokens issued after the expiration
cutoff.

revoke(event)
register a revocation event.

Parameters event An instance of keystone.revoke.model.RevocationEvent

Module contents

Submodules

keystone.revoke.core module

Main entry point into the Revoke service.

class keystone.revoke.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Revoke backend.

Performs common logic for recording revocations.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

check_token(token)
Check the values from a token against the revocation list.

Parameters token dictionary of values from a token, normalized for differences
between v2 and v3. The checked values are a subset of the attributes of
model.TokenEvent

Raises keystone.exception.TokenNotFound If the token is invalid.

driver_namespace = 'keystone.revoke'

list_events(last_fetch=None)

revoke(event)

revoke_by_audit_chain_id(audit_chain_id, project_id=None, domain_id=None)

revoke_by_audit_id(audit_id)

revoke_by_user(user_id)

296 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.revoke.model module

Module contents

keystone.server package

Subpackages

keystone.server.flask package

Subpackages

keystone.server.flask.request_processing package

Subpackages

keystone.server.flask.request_processing.middleware package

Submodules

keystone.server.flask.request_processing.middleware.auth_context module

class keystone.server.flask.request_processing.middleware.auth_context.AuthContextMiddleware(app)
Bases: keystone.common.provider_api.ProviderAPIMixin, keystonemiddleware.
auth_token.BaseAuthProtocol

Build the authentication context from the request auth token.

classmethod factory(global_config, **local_config)
Used for loading in middleware (holdover from paste.deploy).

fetch_token(token, **kwargs)
Fetch the token data based on the value in the header.

Retrieve the data associated with the token value that was in the header. This can be from
PKI, contacting the identity server or whatever is required.

Parameters

• token (str) The token present in the request header.

• kwargs (dict) Additional keyword arguments may be passed through here
to support new features. If an implementation is not aware of how to use
these arguments it should ignore them.

Raises exc.InvalidToken if token is invalid.

Returns The token data

Return type dict

fill_context(request)

kwargs_to_fetch_token = True

3.1. keystone 297

Keystone Documentation, Release 21.0.2.dev4

process_request(request)
Process request.

If this method returns a value then that value will be used as the response. The next application
down the stack will not be executed and process_response will not be called.

Otherwise, the next application down the stack will be executed and process_response will
be called with the generated response.

By default this method does not return a value.

Parameters request (_request.AuthTokenRequest) Incoming request

keystone.server.flask.request_processing.middleware.url_normalize module

class keystone.server.flask.request_processing.middleware.url_normalize.URLNormalizingMiddleware(app)
Bases: object

Middleware filter to handle URL normalization.

Module contents

Submodules

keystone.server.flask.request_processing.json_body module

keystone.server.flask.request_processing.json_body.json_body_before_request()
Enforce JSON Request Body.

keystone.server.flask.request_processing.req_logging module

keystone.server.flask.request_processing.req_logging.log_request_info()

Module contents

Submodules

keystone.server.flask.application module

keystone.server.flask.application.application_factory(name=’public’)

keystone.server.flask.application.fail_gracefully(f)
Log exceptions and aborts.

298 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.server.flask.common module

class keystone.server.flask.common.APIBase(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: object

property api

property blueprint

classmethod instantiate_and_register_to_app(flask_app)
Build the API object and register to the passed in flask_app.

This is a simplistic loader that makes assumptions about how the blueprint is loaded. Any-
thing beyond defaults should be done explicitly via normal instantiation where more values
may be passed via __init__().

Returns keystone.server.flask.common.APIBase

abstract property resource_mapping
An attr containing of an iterable of ResourceMap.

Each ResourceMap is a NamedTuple with the following elements:

• resource: a flask_restful.Resource class or subclass

• url: a url route to match for the resource, standard flask routing rules apply. Any
url variables will be passed to the resource method as args. (str)

• alternate_urls: an iterable of url routes to match for the resource, standard flask
routing rules apply. These rules are in addition (for API compat) to the primary
url. Any url variables will be passed to the resource method as args. (iterable)

• json_home_data: JsonHomeData populated with relevant info for populated JSON
Home Documents or None.

• kwargs: a dict of optional value(s) that can further modify the handling of the
routing.

– endpoint: endpoint name (defaults to Resource.__name__.lower() Can
be used to reference this route in fields.Url fields (str)

– resource_class_args: args to be forwarded to the constructor of the resource.
(tuple)

– resource_class_kwargs: kwargs to be forwarded to the constructor of the re-
source. (dict)

Additional keyword arguments not specified above will be passed as-is to flask.
Flask.add_url_rule().

property resources

keystone.server.flask.common.JsonHomeData
alias of keystone.server.flask.common.json_home_data

class keystone.server.flask.common.ResourceBase
Bases: flask_restful.Resource

api_prefix = ''

3.1. keystone 299

Keystone Documentation, Release 21.0.2.dev4

property audit_initiator
A pyCADF initiator describing the current authenticated context.

As a property.

property auth_context

static build_driver_hints(supported_filters)
Build list hints based on the context query string.

Parameters supported_filters list of filters supported, so ignore any keys in
query_dict that are not in this list.

collection_key

classmethod filter_by_attributes(refs, hints)
Filter a list of references by filter values.

classmethod filter_params(ref)
Remove unspecified parameters from the dictionary.

This function removes unspecified parameters from the dictionary. This method checks only
root-level keys from a ref dictionary.

Parameters ref a dictionary representing deserialized response to be serialized

classmethod get_token_ref()
Retrieve KeystoneToken object from the auth context and returns it.

Raises keystone.exception.Unauthorized If auth context cannot be found.

Returns The KeystoneToken object.

classmethod limit(refs, hints)
Limit a list of entities.

The underlying driver layer may have already truncated the collection for us, but in case it
was unable to handle truncation we check here.

Parameters

• refs the list of members of the collection

• hints hints, containing, among other things, the limit requested

Returns boolean indicating whether the list was truncated, as well as the list of
(truncated if necessary) entities.

member_key

method_decorators = []

property oslo_context

static query_filter_is_true(filter_name)
Determine if bool query param is True.

We treat this the same way as we do for policy enforcement:

{bool_param}=0 is treated as False

Any other value is considered to be equivalent to True, including the absence of a value (but
existence as a parameter).

300 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

False Examples for param named p:

• http://host/url

• http://host/url?p=0

All other forms of the param p would be result in a True value including:
http://host/url?param.

property request_body_json

classmethod wrap_collection(refs, hints=None, collection_name=None)
Wrap a collection, checking for filtering and pagination.

Returns the wrapped collection, which includes: - Executing any filtering not already carried
out - Truncate to a set limit if necessary - Adds self links in every member - Adds next, self
and prev links for the whole collection.

Parameters

• refs the list of members of the collection

• hints list hints, containing any relevant filters and limit. Any filters already
satisfied by managers will have been removed

• collection_name optional override for the collection key class attribute.
This is to be used when wrapping a collection for a different api, e.g. roles
from the trust api.

classmethod wrap_member(ref, collection_name=None, member_name=None)

keystone.server.flask.common.ResourceMap
alias of keystone.server.flask.common.resource_map

keystone.server.flask.common.base_url(path=”)

keystone.server.flask.common.construct_json_home_data(rel, status=’stable’,
path_vars=None, re-
source_relation_func=<function
build_v3_resource_relation>)

keystone.server.flask.common.construct_resource_map(resource, url, resource_kwargs,
alternate_urls=None, rel=None,
status=’stable’, path_vars=None,
resource_relation_func=<function
build_v3_resource_relation>)

Construct the ResourceMap Named Tuple.

Parameters

• resource (ResourceMap) The flask-RESTful resource class implementing
the methods for the API.

• url (str) Flask-standard url route, all flask url routing rules apply. url vari-
ables will be passed to the Resource methods as arguments.

• resource_kwargs a dict of optional value(s) that can further modify the
handling of the routing.

– endpoint: endpoint name (defaults to Resource.__name__.lower()
Can be used to reference this route in fields.Url fields (str)

3.1. keystone 301

http://host/url
http://host/url?p=0

Keystone Documentation, Release 21.0.2.dev4

– resource_class_args: args to be forwarded to the constructor of the re-
source. (tuple)

– resource_class_kwargs: kwargs to be forwarded to the constructor of
the resource. (dict)

Additional keyword arguments not specified above will be passed as-is to
flask.Flask.add_url_rule().

• alternate_urls An iterable (list) of dictionaries containing urls and as-
sociated json home REL data. Each element is expected to be a dictionary
with a url key and an optional json_home key for a JsonHomeData named
tuple These urls will also map to the resource. These are used to ensure
API compatibility when a new path is more correct for the API but old paths
must continue to work. Example: /auth/domains being the new path for /OS-
FEDERATION/domains. The OS-FEDERATION part would be listed as an
alternate url. If a json_home key is provided, the original path with the new
json_home data will be added to the JSON Home Document.

• rel (str or None)

• status (str) JSON Home API Status, e.g. STABLE

• path_vars (dict or None) JSON Home Path Var Data (arguments)

• resource_relation_func (callable) function to build expected resource
rel data

Type iterable or None

Returns

keystone.server.flask.common.full_url(path=”)

keystone.server.flask.common.set_unenforced_ok()

keystone.server.flask.common.unenforced_api(f)
Decorate a resource method to mark is as an unenforced API.

Explicitly exempts an API from receiving the enforced API check, specifically for cases such as
user self-service password changes (or other APIs that must work without already having a token).

This decorator may also be used if the API has extended enforcement logic/varying enforcement
logic (such as some of the AUTH paths) where the full enforcement will be implemented directly
within the methods.

keystone.server.flask.core module

keystone.server.flask.core.initialize_application(name,
post_log_configured_function=<function
<lambda», config_files=None)

keystone.server.flask.core.setup_app_middleware(app)

302 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Module contents

class keystone.server.flask.APIBase(blueprint_url_prefix=”, api_url_prefix=”,
default_mediatype=’application/json’,
decorators=None, errors=None)

Bases: object

property api

property blueprint

classmethod instantiate_and_register_to_app(flask_app)
Build the API object and register to the passed in flask_app.

This is a simplistic loader that makes assumptions about how the blueprint is loaded. Any-
thing beyond defaults should be done explicitly via normal instantiation where more values
may be passed via __init__().

Returns keystone.server.flask.common.APIBase

abstract property resource_mapping
An attr containing of an iterable of ResourceMap.

Each ResourceMap is a NamedTuple with the following elements:

• resource: a flask_restful.Resource class or subclass

• url: a url route to match for the resource, standard flask routing rules apply. Any
url variables will be passed to the resource method as args. (str)

• alternate_urls: an iterable of url routes to match for the resource, standard flask
routing rules apply. These rules are in addition (for API compat) to the primary
url. Any url variables will be passed to the resource method as args. (iterable)

• json_home_data: JsonHomeData populated with relevant info for populated JSON
Home Documents or None.

• kwargs: a dict of optional value(s) that can further modify the handling of the
routing.

– endpoint: endpoint name (defaults to Resource.__name__.lower() Can
be used to reference this route in fields.Url fields (str)

– resource_class_args: args to be forwarded to the constructor of the resource.
(tuple)

– resource_class_kwargs: kwargs to be forwarded to the constructor of the re-
source. (dict)

Additional keyword arguments not specified above will be passed as-is to flask.
Flask.add_url_rule().

property resources

keystone.server.flask.JsonHomeData
alias of keystone.server.flask.common.json_home_data

class keystone.server.flask.ResourceBase
Bases: flask_restful.Resource

api_prefix = ''

3.1. keystone 303

Keystone Documentation, Release 21.0.2.dev4

property audit_initiator
A pyCADF initiator describing the current authenticated context.

As a property.

property auth_context

static build_driver_hints(supported_filters)
Build list hints based on the context query string.

Parameters supported_filters list of filters supported, so ignore any keys in
query_dict that are not in this list.

collection_key

classmethod filter_by_attributes(refs, hints)
Filter a list of references by filter values.

classmethod filter_params(ref)
Remove unspecified parameters from the dictionary.

This function removes unspecified parameters from the dictionary. This method checks only
root-level keys from a ref dictionary.

Parameters ref a dictionary representing deserialized response to be serialized

classmethod get_token_ref()
Retrieve KeystoneToken object from the auth context and returns it.

Raises keystone.exception.Unauthorized If auth context cannot be found.

Returns The KeystoneToken object.

classmethod limit(refs, hints)
Limit a list of entities.

The underlying driver layer may have already truncated the collection for us, but in case it
was unable to handle truncation we check here.

Parameters

• refs the list of members of the collection

• hints hints, containing, among other things, the limit requested

Returns boolean indicating whether the list was truncated, as well as the list of
(truncated if necessary) entities.

member_key

method_decorators = []

property oslo_context

static query_filter_is_true(filter_name)
Determine if bool query param is True.

We treat this the same way as we do for policy enforcement:

{bool_param}=0 is treated as False

Any other value is considered to be equivalent to True, including the absence of a value (but
existence as a parameter).

304 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

False Examples for param named p:

• http://host/url

• http://host/url?p=0

All other forms of the param p would be result in a True value including:
http://host/url?param.

property request_body_json

classmethod wrap_collection(refs, hints=None, collection_name=None)
Wrap a collection, checking for filtering and pagination.

Returns the wrapped collection, which includes: - Executing any filtering not already carried
out - Truncate to a set limit if necessary - Adds self links in every member - Adds next, self
and prev links for the whole collection.

Parameters

• refs the list of members of the collection

• hints list hints, containing any relevant filters and limit. Any filters already
satisfied by managers will have been removed

• collection_name optional override for the collection key class attribute.
This is to be used when wrapping a collection for a different api, e.g. roles
from the trust api.

classmethod wrap_member(ref, collection_name=None, member_name=None)

keystone.server.flask.ResourceMap
alias of keystone.server.flask.common.resource_map

keystone.server.flask.base_url(path=”)

keystone.server.flask.construct_json_home_data(rel, status=’stable’, path_vars=None,
resource_relation_func=<function
build_v3_resource_relation>)

keystone.server.flask.construct_resource_map(resource, url, resource_kwargs,
alternate_urls=None, rel=None,
status=’stable’, path_vars=None,
resource_relation_func=<function
build_v3_resource_relation>)

Construct the ResourceMap Named Tuple.

Parameters

• resource (ResourceMap) The flask-RESTful resource class implementing
the methods for the API.

• url (str) Flask-standard url route, all flask url routing rules apply. url vari-
ables will be passed to the Resource methods as arguments.

• resource_kwargs a dict of optional value(s) that can further modify the
handling of the routing.

– endpoint: endpoint name (defaults to Resource.__name__.lower()
Can be used to reference this route in fields.Url fields (str)

3.1. keystone 305

http://host/url
http://host/url?p=0

Keystone Documentation, Release 21.0.2.dev4

– resource_class_args: args to be forwarded to the constructor of the re-
source. (tuple)

– resource_class_kwargs: kwargs to be forwarded to the constructor of
the resource. (dict)

Additional keyword arguments not specified above will be passed as-is to
flask.Flask.add_url_rule().

• alternate_urls An iterable (list) of dictionaries containing urls and as-
sociated json home REL data. Each element is expected to be a dictionary
with a url key and an optional json_home key for a JsonHomeData named
tuple These urls will also map to the resource. These are used to ensure
API compatibility when a new path is more correct for the API but old paths
must continue to work. Example: /auth/domains being the new path for /OS-
FEDERATION/domains. The OS-FEDERATION part would be listed as an
alternate url. If a json_home key is provided, the original path with the new
json_home data will be added to the JSON Home Document.

• rel (str or None)

• status (str) JSON Home API Status, e.g. STABLE

• path_vars (dict or None) JSON Home Path Var Data (arguments)

• resource_relation_func (callable) function to build expected resource
rel data

Type iterable or None

Returns

keystone.server.flask.full_url(path=”)

keystone.server.flask.unenforced_api(f)
Decorate a resource method to mark is as an unenforced API.

Explicitly exempts an API from receiving the enforced API check, specifically for cases such as
user self-service password changes (or other APIs that must work without already having a token).

This decorator may also be used if the API has extended enforcement logic/varying enforcement
logic (such as some of the AUTH paths) where the full enforcement will be implemented directly
within the methods.

Submodules

keystone.server.backends module

keystone.server.backends.load_backends()

306 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.server.wsgi module

keystone.server.wsgi.initialize_admin_application()

keystone.server.wsgi.initialize_public_application()

Module contents

keystone.server.configure(version=None, config_files=None, pre_setup_logging_fn=<function
<lambda»)

keystone.server.setup_backends(load_extra_backends_fn=<function <lambda»,
startup_application_fn=<function <lambda»)

keystone.token package

Subpackages

keystone.token.providers package

Subpackages

keystone.token.providers.fernet package

Submodules

keystone.token.providers.fernet.core module

class keystone.token.providers.fernet.core.Provider(*args, **kwargs)
Bases: keystone.token.providers.base.Provider

generate_id_and_issued_at(token)
Generate a token based on the information provided.

Parameters token (keystone.models.token.TokenModel) A token object contain-
ing information about the authorization context of the request.

Returns tuple containing an ID for the token and the issued at time of the token
(token_id, issued_at).

validate_token(token_id)
Validate a given token by its ID and return the token_data.

Parameters token_id (str) the unique ID of the token

Returns token data as a tuple in the form of:

(user_id, methods, audit_ids, system, domain_id, project_id, trust_id, feder-
ated_group_ids, identity_provider_id, protocol_id, access_token_id, app_cred_id,
issued_at, expires_at)

3.1. keystone 307

Keystone Documentation, Release 21.0.2.dev4

user_id is the unique ID of the user as a string methods a list of authentication methods
used to obtain the token audit_ids a list of audit IDs for the token system a dictionary con-
taining system scope if system-scoped domain_id the unique ID of the domain if domain-
scoped project_id the unique ID of the project if project-scoped trust_id the unique
identifier of the trust if trust-scoped federated_group_ids list of federated group IDs
identity_provider_id unique ID of the users identity provider protocol_id unique ID
of the protocol used to obtain the token access_token_id the unique ID of the access_token
for OAuth1 tokens app_cred_id the unique ID of the application credential issued_at a
datetime object of when the token was minted expires_at a datetime object of when the
token expires

Raises keystone.exception.TokenNotFound If the token doesnt exist.

Module contents

keystone.token.providers.jws package

Submodules

keystone.token.providers.jws.core module

class keystone.token.providers.jws.core.JWSFormatter
Bases: object

algorithm = 'ES256'

create_token(user_id, expires_at, audit_ids, methods, system=None, domain_id=None,
project_id=None, trust_id=None, federated_group_ids=None,
identity_provider_id=None, protocol_id=None, access_token_id=None,
app_cred_id=None)

property private_key

property public_keys

validate_token(token_id)

class keystone.token.providers.jws.core.Provider(*args, **kwargs)
Bases: keystone.token.providers.base.Provider

generate_id_and_issued_at(token)
Generate a token based on the information provided.

Parameters token (keystone.models.token.TokenModel) A token object contain-
ing information about the authorization context of the request.

Returns tuple containing an ID for the token and the issued at time of the token
(token_id, issued_at).

validate_token(token_id)
Validate a given token by its ID and return the token_data.

Parameters token_id (str) the unique ID of the token

Returns token data as a tuple in the form of:

308 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

(user_id, methods, audit_ids, system, domain_id, project_id, trust_id, feder-
ated_group_ids, identity_provider_id, protocol_id, access_token_id, app_cred_id,
issued_at, expires_at)

user_id is the unique ID of the user as a string methods a list of authentication methods
used to obtain the token audit_ids a list of audit IDs for the token system a dictionary con-
taining system scope if system-scoped domain_id the unique ID of the domain if domain-
scoped project_id the unique ID of the project if project-scoped trust_id the unique
identifier of the trust if trust-scoped federated_group_ids list of federated group IDs
identity_provider_id unique ID of the users identity provider protocol_id unique ID
of the protocol used to obtain the token access_token_id the unique ID of the access_token
for OAuth1 tokens app_cred_id the unique ID of the application credential issued_at a
datetime object of when the token was minted expires_at a datetime object of when the
token expires

Raises keystone.exception.TokenNotFound If the token doesnt exist.

Module contents

Submodules

keystone.token.providers.base module

class keystone.token.providers.base.Provider
Bases: object

Interface description for a Token provider.

abstract generate_id_and_issued_at(token)
Generate a token based on the information provided.

Parameters token (keystone.models.token.TokenModel) A token object contain-
ing information about the authorization context of the request.

Returns tuple containing an ID for the token and the issued at time of the token
(token_id, issued_at).

abstract validate_token(token_id)
Validate a given token by its ID and return the token_data.

Parameters token_id (str) the unique ID of the token

Returns token data as a tuple in the form of:

(user_id, methods, audit_ids, system, domain_id, project_id, trust_id, feder-
ated_group_ids, identity_provider_id, protocol_id, access_token_id, app_cred_id,
issued_at, expires_at)

user_id is the unique ID of the user as a string methods a list of authentication methods
used to obtain the token audit_ids a list of audit IDs for the token system a dictionary con-
taining system scope if system-scoped domain_id the unique ID of the domain if domain-
scoped project_id the unique ID of the project if project-scoped trust_id the unique
identifier of the trust if trust-scoped federated_group_ids list of federated group IDs
identity_provider_id unique ID of the users identity provider protocol_id unique ID

3.1. keystone 309

Keystone Documentation, Release 21.0.2.dev4

of the protocol used to obtain the token access_token_id the unique ID of the access_token
for OAuth1 tokens app_cred_id the unique ID of the application credential issued_at a
datetime object of when the token was minted expires_at a datetime object of when the
token expires

Raises keystone.exception.TokenNotFound If the token doesnt exist.

Module contents

Submodules

keystone.token.provider module

Token provider interface.

class keystone.token.provider.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the token provider backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

V3 = 'v3.0'

VERSIONS = frozenset({'v3.0'})

check_revocation(token)

check_revocation_v3(token)

driver_namespace = 'keystone.token.provider'

invalidate_individual_token_cache(token_id)

issue_token(user_id, method_names, expires_at=None, system=None, project_id=None,
domain_id=None, auth_context=None, trust_id=None, app_cred_id=None,
parent_audit_id=None)

revoke_token(token_id, revoke_chain=False)

validate_token(token_id, window_seconds=0, access_rules_support=None)

keystone.token.provider.default_expire_time()
Determine when a fresh token should expire.

Expiration time varies based on configuration (see [token] expiration).

Returns a naive UTC datetime.datetime object

keystone.token.provider.random_urlsafe_str()
Generate a random URL-safe string.

Return type str

310 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.token.token_formatters module

class keystone.token.token_formatters.ApplicationCredentialScopedPayload
Bases: keystone.token.token_formatters.BasePayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

version = 9

class keystone.token.token_formatters.BasePayload
Bases: object

3.1. keystone 311

Keystone Documentation, Release 21.0.2.dev4

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod attempt_convert_uuid_hex_to_bytes(value)
Attempt to convert value to bytes or return value.

Parameters value value to attempt to convert to bytes

Returns tuple containing boolean indicating whether user_id was stored as bytes
and uuid value as bytes or the original value

classmethod base64_encode(s)
Encode a URL-safe string.

Return type str

classmethod convert_uuid_bytes_to_hex(uuid_byte_string)
Generate uuid.hex format based on byte string.

Parameters uuid_byte_string uuid string to generate from

Returns uuid hex formatted string

classmethod convert_uuid_hex_to_bytes(uuid_string)
Compress UUID formatted strings to bytes.

Parameters uuid_string uuid string to compress to bytes

Returns a byte representation of the uuid

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

312 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

The tuple consists of:

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

classmethod random_urlsafe_str_to_bytes(s)
Convert string from random_urlsafe_str() to bytes.

Return type bytes

version = None

class keystone.token.token_formatters.DomainScopedPayload
Bases: keystone.token.token_formatters.BasePayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

3.1. keystone 313

Keystone Documentation, Release 21.0.2.dev4

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

version = 1

class keystone.token.token_formatters.FederatedDomainScopedPayload
Bases: keystone.token.token_formatters.FederatedScopedPayload

version = 6

class keystone.token.token_formatters.FederatedProjectScopedPayload
Bases: keystone.token.token_formatters.FederatedScopedPayload

version = 5

class keystone.token.token_formatters.FederatedScopedPayload
Bases: keystone.token.token_formatters.FederatedUnscopedPayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

314 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

version = None

class keystone.token.token_formatters.FederatedUnscopedPayload
Bases: keystone.token.token_formatters.BasePayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

3.1. keystone 315

Keystone Documentation, Release 21.0.2.dev4

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

classmethod pack_group_id(group_dict)

classmethod unpack_group_id(group_id_in_bytes)

version = 4

class keystone.token.token_formatters.OauthScopedPayload
Bases: keystone.token.token_formatters.BasePayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

316 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

version = 7

class keystone.token.token_formatters.ProjectScopedPayload
Bases: keystone.token.token_formatters.BasePayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

3.1. keystone 317

Keystone Documentation, Release 21.0.2.dev4

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

version = 2

class keystone.token.token_formatters.SystemScopedPayload
Bases: keystone.token.token_formatters.BasePayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

318 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Returns a tuple of the payloads component data

version = 8

class keystone.token.token_formatters.TokenFormatter
Bases: object

Packs and unpacks payloads into tokens for transport.

create_token(user_id, expires_at, audit_ids, payload_class, methods=None, system=None,
domain_id=None, project_id=None, trust_id=None,
federated_group_ids=None, identity_provider_id=None, protocol_id=None,
access_token_id=None, app_cred_id=None)

Given a set of payload attributes, generate a Fernet token.

classmethod creation_time(fernet_token)
Return the creation time of a valid Fernet token.

property crypto
Return a cryptography instance.

You can extend this class with a custom crypto @property to provide your own token encod-
ing / decoding. For example, using a different cryptography library (e.g. python-keyczar)
or to meet arbitrary security requirements.

This @property just needs to return an object that implements encrypt(plaintext) and
decrypt(ciphertext).

pack(payload)
Pack a payload for transport as a token.

Return type str

classmethod restore_padding(token)
Restore padding based on token size.

Parameters token (str) token to restore padding on

Returns token with correct padding

unpack(token)
Unpack a token, and validate the payload.

Return type bytes

validate_token(token)
Validate a Fernet token and returns the payload attributes.

class keystone.token.token_formatters.TrustScopedPayload
Bases: keystone.token.token_formatters.BasePayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

3.1. keystone 319

Keystone Documentation, Release 21.0.2.dev4

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

version = 3

class keystone.token.token_formatters.UnscopedPayload
Bases: keystone.token.token_formatters.BasePayload

classmethod assemble(user_id, methods, system, project_id, domain_id, expires_at,
audit_ids, trust_id, federated_group_ids, identity_provider_id,
protocol_id, access_token_id, app_cred_id)

Assemble the payload of a token.

Parameters

• user_id identifier of the user in the token request

• methods list of authentication methods used

• system a string including system scope information

320 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

• project_id ID of the project to scope to

• domain_id ID of the domain to scope to

• expires_at datetime of the tokens expiration

• audit_ids list of the tokens audit IDs

• trust_id ID of the trust in effect

• federated_group_ids list of group IDs from SAML assertion

• identity_provider_id ID of the users identity provider

• protocol_id federated protocol used for authentication

• access_token_id ID of the secret in OAuth1 authentication

• app_cred_id ID of the application credential in effect

Returns the payload of a token

classmethod disassemble(payload)
Disassemble an unscoped payload into the component data.

The tuple consists of:

(user_id, methods, system, project_id, domain_id,
expires_at_str, audit_ids, trust_id, federated_group_ids,
identity_provider_id, protocol_id,` access_token_id, app_cred_id)

• methods are the auth methods.

Fields will be set to None if they didnt apply to this payload type.

Parameters payload this variant of payload

Returns a tuple of the payloads component data

version = 0

Module contents

keystone.trust package

Subpackages

keystone.trust.backends package

Submodules

keystone.trust.backends.base module

class keystone.trust.backends.base.TrustDriverBase
Bases: object

3.1. keystone 321

Keystone Documentation, Release 21.0.2.dev4

abstract consume_use(trust_id)
Consume one use of a trust.

One use of a trust is consumed when the trust was created with a limitation on its uses,
provided there are still uses available.

Raises

• keystone.exception.TrustUseLimitReached If no remaining uses for
trust.

• keystone.exception.TrustNotFound If the trust doesnt exist.

abstract create_trust(trust_id, trust, roles)
Create a new trust.

Returns a new trust

abstract delete_trust(trust_id)

abstract delete_trusts_for_project(project_id)
Delete all trusts for a project.

Parameters project_id ID of a project to filter trusts by.

abstract flush_expired_and_soft_deleted_trusts(project_id=None,
trustor_user_id=None,
trustee_user_id=None,
date=None)

Flush expired and non-expired soft deleted trusts from the backend.

Parameters

• project_id ID of a project to filter trusts by.

• trustor_user_id ID of a trustor_user_id to filter trusts by.

• trustee_user_id ID of a trustee_user_id to filter trusts by.

• date (datetime) date to filter trusts by.

abstract get_trust(trust_id, deleted=False)
Get a trust by the trust id.

Parameters

• trust_id (string) the trust identifier

• deleted (bool) return the trust even if it is deleted, expired, or has no
consumptions left

abstract list_trusts()

abstract list_trusts_for_trustee(trustee)

abstract list_trusts_for_trustor(trustor, redelegated_trust_id=None)

322 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.trust.backends.sql module

class keystone.trust.backends.sql.Trust
Bases: keystone.trust.backends.base.TrustDriverBase

consume_use(trust_id)
Consume one use of a trust.

One use of a trust is consumed when the trust was created with a limitation on its uses,
provided there are still uses available.

Raises

• keystone.exception.TrustUseLimitReached If no remaining uses for
trust.

• keystone.exception.TrustNotFound If the trust doesnt exist.

create_trust(trust_id, trust, roles)
Create a new trust.

Returns a new trust

delete_trust(trust_id)

delete_trusts_for_project(project_id)
Delete all trusts for a project.

Parameters project_id ID of a project to filter trusts by.

flush_expired_and_soft_deleted_trusts(project_id=None, trustor_user_id=None,
trustee_user_id=None, date=None)

Flush expired and non-expired soft deleted trusts from the backend.

Parameters

• project_id ID of a project to filter trusts by.

• trustor_user_id ID of a trustor_user_id to filter trusts by.

• trustee_user_id ID of a trustee_user_id to filter trusts by.

• date (datetime) date to filter trusts by.

get_trust(trust_id, deleted=False)
Get a trust by the trust id.

Parameters

• trust_id (string) the trust identifier

• deleted (bool) return the trust even if it is deleted, expired, or has no
consumptions left

list_trusts()

list_trusts_for_trustee(trustee_user_id)

list_trusts_for_trustor(trustor_user_id, redelegated_trust_id=None)

class keystone.trust.backends.sql.TrustModel(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base, keystone.common.sql.core.
ModelDictMixinWithExtras

3.1. keystone 323

Keystone Documentation, Release 21.0.2.dev4

attributes = ['id', 'trustor_user_id', 'trustee_user_id', 'project_id',
'impersonation', 'expires_at', 'remaining_uses', 'deleted_at',
'redelegated_trust_id', 'redelegation_count']

deleted_at

expires_at

expires_at_int

extra

id

impersonation

project_id

redelegated_trust_id

redelegation_count

remaining_uses

trustee_user_id

trustor_user_id

class keystone.trust.backends.sql.TrustRole(*args, **kwargs)
Bases: sqlalchemy.orm.decl_api.Base

attributes = ['trust_id', 'role_id']

role_id

trust_id

Module contents

Submodules

keystone.trust.core module

Main entry point into the Trust service.

class keystone.trust.core.Manager
Bases: keystone.common.manager.Manager

Default pivot point for the Trust backend.

See keystone.common.manager.Manager for more details on how this dynamically calls the
backend.

create_trust(trust_id, trust, roles, redelegated_trust=None, initiator=None)
Create a new trust.

Returns a new trust

delete_trust(trust_id, initiator=None)
Remove a trust.

324 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

Raises keystone.exception.TrustNotFound If the trust doesnt exist.

Recursively remove given and redelegated trusts

driver_namespace = 'keystone.trust'

get_trust(trust_id, deleted=False)

get_trust_pedigree(trust_id)

keystone.trust.schema module

Module contents

Submodules

keystone.exception module

exception keystone.exception.AccessRuleNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find Access Rule: %(access_rule_id)s.'

exception keystone.exception.AccountLocked(message=None, **kwargs)
Bases: keystone.exception.Unauthorized

message_format = 'The account is locked for user: %(user_id)s.'

exception keystone.exception.AdditionalAuthRequired(auth_response=None, **kwargs)
Bases: keystone.exception.AuthPluginException

message_format = 'Additional authentications steps required.'

exception keystone.exception.AmbiguityError(message=None, **kwargs)
Bases: keystone.exception.ValidationError

message_format = "There are multiple %(resource)s entities named
'%(name)s'. Please use ID instead of names to resolve the ambiguity."

exception keystone.exception.ApplicationCredentialAuthError(*args, **kwargs)
Bases: keystone.exception.AuthPluginException

message_format = 'Error authenticating with application credential:
%(detail)s'

exception keystone.exception.ApplicationCredentialLimitExceeded(message=None,
**kwargs)

Bases: keystone.exception.ForbiddenNotSecurity

message_format = 'Unable to create additional application credentials,
maximum of %(limit)d already exceeded for user.'

exception keystone.exception.ApplicationCredentialNotFound(message=None,
**kwargs)

Bases: keystone.exception.NotFound

message_format = 'Could not find Application Credential:
%(application_credential_id)s.'

3.1. keystone 325

Keystone Documentation, Release 21.0.2.dev4

exception keystone.exception.ApplicationCredentialValidationError(message=None,
**kwargs)

Bases: keystone.exception.ValidationError

message_format = 'Invalid application credential: %(detail)s'

exception keystone.exception.AssignmentTypeCalculationError(message=None,
**kwargs)

Bases: keystone.exception.UnexpectedError

debug_message_format = 'Unexpected combination of grant attributes - User:
%(user_id)s, Group: %(group_id)s, Project: %(project_id)s, Domain:
%(domain_id)s.'

exception keystone.exception.AuthMethodNotSupported(*args, **kwargs)
Bases: keystone.exception.AuthPluginException

message_format = 'Attempted to authenticate with an unsupported method.'

exception keystone.exception.AuthPluginException(*args, **kwargs)
Bases: keystone.exception.Unauthorized

message_format = 'Authentication plugin error.'

exception keystone.exception.CacheDeserializationError(obj, data)
Bases: Exception

exception keystone.exception.CircularRegionHierarchyError(message=None,
**kwargs)

Bases: keystone.exception.Error

code = 400

message_format = 'The specified parent region %(parent_region_id)s would
create a circular region hierarchy.'

title = 'Bad Request'

exception keystone.exception.ConfigFileNotFound(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'The Keystone configuration file %(config_file)s
could not be found.'

exception keystone.exception.ConfigRegistrationNotFound
Bases: Exception

exception keystone.exception.Conflict(message=None, **kwargs)
Bases: keystone.exception.Error

code = 409

message_format = 'Conflict occurred attempting to store %(type)s -
%(details)s.'

title = 'Conflict'

exception keystone.exception.CredentialEncryptionError
Bases: Exception

message_format = 'An unexpected error prevented the server from accessing
encrypted credentials.'

326 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

exception keystone.exception.CredentialLimitExceeded(message=None, **kwargs)
Bases: keystone.exception.ForbiddenNotSecurity

message_format = 'Unable to create additional credentials, maximum of
%(limit)d already exceeded for user.'

exception keystone.exception.CredentialNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find credential: %(credential_id)s.'

exception keystone.exception.CrossBackendNotAllowed(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = 'Group membership across backend boundaries is not
allowed. Group in question is %(group_id)s, user is %(user_id)s.'

exception keystone.exception.DirectMappingError(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = "Local section in mapping %(mapping_id)s refers to
a remote match that doesn't exist (e.g. {0} in a local section)."

exception keystone.exception.DomainConfigNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find %(group_or_option)s in domain
configuration for domain %(domain_id)s.'

exception keystone.exception.DomainIdInvalid(message=None, **kwargs)
Bases: keystone.exception.ValidationError

message_format = 'Domain ID does not conform to required UUID format.'

exception keystone.exception.DomainNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find domain: %(domain_id)s.'

exception keystone.exception.DomainSpecificRoleMismatch(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = 'Project %(project_id)s must be in the same domain as the
role %(role_id)s being assigned.'

exception keystone.exception.DomainSpecificRoleNotWithinIdPDomain(message=None,
**kwargs)

Bases: keystone.exception.Forbidden

message_format = 'role: %(role_name)s must be within the same domain as
the identity provider: %(identity_provider)s.'

exception keystone.exception.EndpointGroupNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find Endpoint Group: %(endpoint_group_id)s.'

exception keystone.exception.EndpointNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find endpoint: %(endpoint_id)s.'

3.1. keystone 327

Keystone Documentation, Release 21.0.2.dev4

exception keystone.exception.Error(message=None, **kwargs)
Bases: Exception

Base error class.

Child classes should define an HTTP status code, title, and a message_format.

code = None

message_format = None

title = None

exception keystone.exception.FederatedProtocolNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find federated protocol %(protocol_id)s for
Identity Provider: %(idp_id)s.'

exception keystone.exception.Forbidden(message=None, **kwargs)
Bases: keystone.exception.SecurityError

code = 403

message_format = 'You are not authorized to perform the requested action.'

title = 'Forbidden'

exception keystone.exception.ForbiddenAction(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = 'You are not authorized to perform the requested action:
%(action)s.'

exception keystone.exception.ForbiddenNotSecurity(message=None, **kwargs)
Bases: keystone.exception.Error

When you want to return a 403 Forbidden response but not security.

Use this for errors where the message is always safe to present to the user and wont give away extra
information.

code = 403

title = 'Forbidden'

exception keystone.exception.Gone(message=None, **kwargs)
Bases: keystone.exception.Error

code = 410

message_format = 'The service you have requested is no longer available on
this server.'

title = 'Gone'

exception keystone.exception.GroupNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find group: %(group_id)s.'

exception keystone.exception.IdentityProviderNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

328 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

message_format = 'Could not find Identity Provider: %(idp_id)s.'

exception keystone.exception.ImpliedRoleNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = '%(prior_role_id)s does not imply %(implied_role_id)s.'

exception keystone.exception.InsufficientAuthMethods(message=None, user_id=None,
methods=None)

Bases: keystone.exception.Error

code = 401

message_format = 'Insufficient auth methods received for %(user_id)s. Auth
Methods Provided: %(methods)s.'

title = 'Unauthorized'

exception keystone.exception.InvalidDomainConfig(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = 'Invalid domain specific configuration: %(reason)s.'

exception keystone.exception.InvalidImpliedRole(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = '%(role_id)s cannot be an implied roles.'

exception keystone.exception.InvalidLimit(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = 'Invalid resource limit: %(reason)s.'

exception keystone.exception.InvalidOperatorError(message=None, **kwargs)
Bases: keystone.exception.ValidationError

message_format = "The given operator %(_op)s is not valid. It must be one
of the following: 'eq', 'neq', 'lt', 'lte', 'gt', or 'gte'."

exception keystone.exception.InvalidPolicyAssociation(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = 'Invalid mix of entities for policy association: only
Endpoint, Service, or Region+Service allowed. Request was - Endpoint:
%(endpoint_id)s, Service: %(service_id)s, Region: %(region_id)s.'

exception keystone.exception.KeysNotFound(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'No encryption keys found; run keystone-manage
fernet_setup to bootstrap one.'

exception keystone.exception.LDAPInvalidCredentialsError(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

message_format = 'Unable to authenticate against Identity backend -
Invalid username or password'

exception keystone.exception.LDAPServerConnectionError(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

3.1. keystone 329

Keystone Documentation, Release 21.0.2.dev4

debug_message_format = 'Unable to establish a connection to LDAP Server
(%(url)s).'

exception keystone.exception.LDAPSizeLimitExceeded(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

message_format = 'Number of User/Group entities returned by LDAP exceeded
size limit. Contact your LDAP administrator.'

exception keystone.exception.LimitNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find limit for %(id)s.'

exception keystone.exception.LimitTreeExceedError(project_id, max_limit_depth)
Bases: Exception

exception keystone.exception.MalformedEndpoint(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'Malformed endpoint URL (%(endpoint)s), see ERROR
log for details.'

exception keystone.exception.MappedGroupNotFound(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'Group %(group_id)s returned by mapping
%(mapping_id)s was not found in the backend.'

exception keystone.exception.MappingNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find mapping: %(mapping_id)s.'

exception keystone.exception.MetadataFileError(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'Error while reading metadata file: %(reason)s.'

exception keystone.exception.MigrationNotProvided(mod_name, path)
Bases: Exception

exception keystone.exception.MultipleSQLDriversInConfig(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'The Keystone domain-specific configuration has
specified more than one SQL driver (only one is permitted): %(source)s.'

exception keystone.exception.NoLimitReference(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = 'Unable to create a limit that has no corresponding
registered limit.'

exception keystone.exception.NotFound(message=None, **kwargs)
Bases: keystone.exception.Error

code = 404

message_format = 'Could not find: %(target)s.'

title = 'Not Found'

330 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

exception keystone.exception.NotImplemented(message=None, **kwargs)
Bases: keystone.exception.Error

code = 501

message_format = 'The action you have requested has not been implemented.'

title = 'Not Implemented'

exception keystone.exception.OAuthHeadersMissingError(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'No Authorization headers found, cannot proceed
with OAuth related calls. If running under HTTPd or Apache, ensure
WSGIPassAuthorization is set to On.'

exception keystone.exception.PasswordAgeValidationError(message=None, **kwargs)
Bases: keystone.exception.PasswordValidationError

message_format = 'You cannot change your password at this time due to the
minimum password age. Once you change your password, it must be used for
%(min_age_days)d day(s) before it can be changed. Please try again in
%(days_left)d day(s) or contact your administrator to reset your
password.'

exception keystone.exception.PasswordExpired(message=None, **kwargs)
Bases: keystone.exception.Unauthorized

message_format = 'The password is expired and needs to be changed for
user: %(user_id)s.'

exception keystone.exception.PasswordHistoryValidationError(message=None,
**kwargs)

Bases: keystone.exception.PasswordValidationError

message_format = 'The new password cannot be identical to a previous
password. The total number which includes the new password must be unique
is %(unique_count)s.'

exception keystone.exception.PasswordRequirementsValidationError(message=None,
**kwargs)

Bases: keystone.exception.PasswordValidationError

message_format = 'The password does not match the requirements:
%(detail)s.'

exception keystone.exception.PasswordSelfServiceDisabled(message=None, **kwargs)
Bases: keystone.exception.PasswordValidationError

message_format = 'You cannot change your password at this time due to
password policy disallowing password changes. Please contact your
administrator to reset your password.'

exception keystone.exception.PasswordValidationError(message=None, **kwargs)
Bases: keystone.exception.ValidationError

message_format = 'Password validation error: %(detail)s.'

exception keystone.exception.PasswordVerificationError(message=None, **kwargs)
Bases: keystone.exception.ForbiddenNotSecurity

3.1. keystone 331

Keystone Documentation, Release 21.0.2.dev4

message_format = 'The password length must be less than or equal to
%(size)i. The server could not comply with the request because the
password is invalid.'

exception keystone.exception.PolicyAssociationNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find policy association.'

exception keystone.exception.PolicyNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find policy: %(policy_id)s.'

exception keystone.exception.ProjectNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find project: %(project_id)s.'

exception keystone.exception.ProjectTagNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find project tag: %(project_tag)s.'

exception keystone.exception.PublicIDNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = '%(id)s'

exception keystone.exception.ReceiptNotFound(message=None, **kwargs)
Bases: keystone.exception.Unauthorized

message_format = 'Could not find auth receipt: %(receipt_id)s.'

exception keystone.exception.RegionDeletionError(message=None, **kwargs)
Bases: keystone.exception.ForbiddenNotSecurity

message_format = 'Unable to delete region %(region_id)s because it or its
child regions have associated endpoints.'

exception keystone.exception.RegionNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find region: %(region_id)s.'

exception keystone.exception.RegisteredLimitError(message=None, **kwargs)
Bases: keystone.exception.ForbiddenNotSecurity

message_format = 'Unable to update or delete registered limit %(id)s
because there are project limits associated with it.'

exception keystone.exception.RegisteredLimitNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find registered limit for %(id)s.'

exception keystone.exception.ResourceDeleteForbidden(message=None, **kwargs)
Bases: keystone.exception.ForbiddenNotSecurity

message_format = 'Unable to delete immutable %(type)s resource:
`%(resource_id)s. Set resource option "immutable" to false first.'

332 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

exception keystone.exception.ResourceUpdateForbidden(message=None, **kwargs)
Bases: keystone.exception.ForbiddenNotSecurity

message_format = 'Unable to update immutable %(type)s resource:
`%(resource_id)s. Set resource option "immutable" to false first.'

exception keystone.exception.RoleAssignmentNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find role assignment with role: %(role_id)s,
user or group: %(actor_id)s, project, domain, or system: %(target_id)s.'

exception keystone.exception.RoleNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find role: %(role_id)s.'

exception keystone.exception.SAMLSigningError(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'Unable to sign SAML assertion. It is likely that
this server does not have xmlsec1 installed or this is the result of
misconfiguration. Reason %(reason)s.'

exception keystone.exception.SchemaValidationError(message=None, **kwargs)
Bases: keystone.exception.ValidationError

message_format = '%(detail)s'

exception keystone.exception.SecurityError(message=None, **kwargs)
Bases: keystone.exception.Error

Security error exception.

Avoids exposing details of security errors, unless in insecure_debug mode.

amendment = '(Disable insecure_debug mode to suppress these details.)'

exception keystone.exception.ServiceNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find service: %(service_id)s.'

exception keystone.exception.ServiceProviderNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find Service Provider: %(sp_id)s.'

exception keystone.exception.StringLengthExceeded(message=None, **kwargs)
Bases: keystone.exception.ValidationError

message_format = "String length exceeded. The length of string
'%(string)s' exceeds the limit of column %(type)s(CHAR(%(length)d))."

exception keystone.exception.TokenNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find token: %(token_id)s.'

exception keystone.exception.TokenlessAuthConfigError(message=None, **kwargs)
Bases: keystone.exception.ValidationError

3.1. keystone 333

Keystone Documentation, Release 21.0.2.dev4

message_format = 'Could not determine Identity Provider ID. The
configuration option %(issuer_attribute)s was not found in the request
environment.'

exception keystone.exception.TrustConsumeMaximumAttempt(message=None, **kwargs)
Bases: keystone.exception.UnexpectedError

debug_message_format = 'Unable to consume trust %(trust_id)s. Unable to
acquire lock.'

exception keystone.exception.TrustNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find trust: %(trust_id)s.'

exception keystone.exception.TrustUseLimitReached(message=None, **kwargs)
Bases: keystone.exception.Forbidden

message_format = 'No remaining uses for trust: %(trust_id)s.'

exception keystone.exception.URLValidationError(message=None, **kwargs)
Bases: keystone.exception.ValidationError

message_format = 'Cannot create an endpoint with an invalid URL: %(url)s.'

exception keystone.exception.Unauthorized(message=None, **kwargs)
Bases: keystone.exception.SecurityError

code = 401

message_format = 'The request you have made requires authentication.'

title = 'Unauthorized'

exception keystone.exception.UnexpectedError(message=None, **kwargs)
Bases: keystone.exception.SecurityError

Avoids exposing details of failures, unless in insecure_debug mode.

code = 500

debug_message_format = 'An unexpected error prevented the server from
fulfilling your request: %(exception)s.'

message_format = 'An unexpected error prevented the server from fulfilling
your request.'

title = 'Internal Server Error'

exception keystone.exception.UnsupportedTokenVersionException(message=None,
**kwargs)

Bases: keystone.exception.UnexpectedError

debug_message_format = 'Token version is unrecognizable or unsupported.'

exception keystone.exception.UserDisabled(message=None, **kwargs)
Bases: keystone.exception.Unauthorized

message_format = 'The account is disabled for user: %(user_id)s.'

exception keystone.exception.UserNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

334 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

message_format = 'Could not find user: %(user_id)s.'

exception keystone.exception.ValidationError(message=None, **kwargs)
Bases: keystone.exception.Error

code = 400

message_format = 'Expecting to find %(attribute)s in %(target)s. The
server could not comply with the request since it is either malformed or
otherwise incorrect. The client is assumed to be in error.'

title = 'Bad Request'

exception keystone.exception.ValidationExpirationError(message=None, **kwargs)
Bases: keystone.exception.Error

code = 400

message_format = "The 'expires_at' must not be before now. The server
could not comply with the request since it is either malformed or
otherwise incorrect. The client is assumed to be in error."

title = 'Bad Request'

exception keystone.exception.ValidationTimeStampError(message=None, **kwargs)
Bases: keystone.exception.Error

code = 400

message_format = 'Timestamp not in expected format. The server could not
comply with the request since it is either malformed or otherwise
incorrect. The client is assumed to be in error.'

title = 'Bad Request'

exception keystone.exception.VersionNotFound(message=None, **kwargs)
Bases: keystone.exception.NotFound

message_format = 'Could not find version: %(version)s.'

keystone.i18n module

oslo.i18n integration module.

See https://docs.openstack.org/oslo.i18n/latest/user/usage.html .

keystone.notifications module

Notifications module for OpenStack Identity Service resources.

keystone.notifications.ACTIONS = NotificationActions(created='created',
deleted='deleted', disabled='disabled', updated='updated',
internal='internal')

The actions on resources.

class keystone.notifications.Audit
Bases: object

3.1. keystone 335

https://docs.openstack.org/oslo.i18n/latest/user/usage.html

Keystone Documentation, Release 21.0.2.dev4

Namespace for audit notification functions.

This is a namespace object to contain all of the direct notification functions utilized for Manager
methods.

classmethod added_to(target_type, target_id, actor_type, actor_id, initiator=None,
public=True, reason=None)

classmethod created(resource_type, resource_id, initiator=None, public=True,
reason=None)

classmethod deleted(resource_type, resource_id, initiator=None, public=True,
reason=None)

classmethod disabled(resource_type, resource_id, initiator=None, public=True,
reason=None)

classmethod internal(resource_type, resource_id, reason=None)

classmethod removed_from(target_type, target_id, actor_type, actor_id, initiator=None,
public=True, reason=None)

classmethod updated(resource_type, resource_id, initiator=None, public=True,
reason=None)

class keystone.notifications.CadfNotificationWrapper(operation)
Bases: object

Send CADF event notifications for various methods.

This function is only used for Authentication events. Its action and event_type are dictated
below.

• action: authenticate

• event_type: identity.authenticate

Sends CADF notifications for events such as whether an authentication was successful or not.

Parameters operation The authentication related action being performed

class keystone.notifications.CadfRoleAssignmentNotificationWrapper(operation)
Bases: object

Send CADF notifications for role_assignment methods.

This function is only used for role assignment events. Its action and event_type are dictated
below.

• action: created.role_assignment or deleted.role_assignment

• event_type: identity.role_assignment.created or identity.
role_assignment.deleted

Sends a CADF notification if the wrapped method does not raise an Exception (such as
keystone.exception.NotFound).

Parameters operation one of the values from ACTIONS (created or deleted)

ROLE_ASSIGNMENT = 'role_assignment'

keystone.notifications.build_audit_initiator()
A pyCADF initiator describing the current authenticated context.

336 Chapter 3. Code Documentation

Keystone Documentation, Release 21.0.2.dev4

keystone.notifications.clear_subscribers()
Empty subscribers dictionary.

This effectively stops notifications since there will be no subscribers to publish to.

keystone.notifications.emit_event
alias of keystone.notifications.CadfNotificationWrapper

keystone.notifications.invalidate_token_cache_notification(reason)
A specific notification for invalidating the token cache.

Parameters reason (string) The specific reason why the token cache is being in-
validated.

keystone.notifications.listener(cls)
A class decorator to declare a class to be a notification listener.

A notification listener must specify the event(s) it is interested in by defining a event_callbacks
attribute or property. event_callbacks is a dictionary where the key is the type of event and the
value is a dictionary containing a mapping of resource types to callback(s).

ACTIONS contains constants for the currently supported events. There is currently no single place
to find constants for the resource types.

Example:

@listener
class Something(object):

def __init__(self):
self.event_callbacks = {

notifications.ACTIONS.created: {
'user': self._user_created_callback,

},
notifications.ACTIONS.deleted: {

'project': [
self._project_deleted_callback,
self._do_cleanup,

]
},

}

keystone.notifications.notify_event_callbacks(service, resource_type, operation,
payload)

Send a notification to registered extensions.

keystone.notifications.register_event_callback(event, resource_type, callbacks)
Register each callback with the event.

Parameters

• event (keystone.notifications.ACTIONS) Action being registered

• resource_type (str) Type of resource being operated on

• callbacks (list) Callback items to be registered with event

Raises

3.1. keystone 337

Keystone Documentation, Release 21.0.2.dev4

• ValueError If event is not a valid ACTION

• TypeError If callback is not callable

keystone.notifications.reset_notifier()
Reset the notifications internal state.

This is used only for testing purposes.

keystone.notifications.role_assignment
alias of keystone.notifications.CadfRoleAssignmentNotificationWrapper

keystone.notifications.send_saml_audit_notification(action, user_id, group_ids,
identity_provider, protocol,
token_id, outcome)

Send notification to inform observers about SAML events.

Parameters

• action (str) Action being audited

• user_id (str) User ID from Keystone token

• group_ids (list) List of Group IDs from Keystone token

• identity_provider (str or None) ID of the IdP from the Keystone token

• protocol (str) Protocol ID for IdP from the Keystone token

• token_id (str or None) audit_id from Keystone token

• outcome (str) One of pycadf.cadftaxonomy

keystone.version module

keystone.version.release_string()

Module contents

338 Chapter 3. Code Documentation

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

339

Keystone Documentation, Release 21.0.2.dev4

340 Chapter 4. Indices and tables

CHAPTER

FIVE

CONTRIBUTOR DOCUMENTATION

5.1 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Keystone.

5.1.1 Communication

For communicating with Keystone Team, you can reach out to us through mailing lists and IRC channels.

5.1.2 Contacting the Core Team

For any help contact keystone maintainers , the core team of keystone.

5.1.3 New Feature Planning

If you are planning to propose a feature in keystone , check out Proposing Features

5.1.4 Task Tracking

We track our tasks in keystone bug tracker. You can also track the tasks of other keystone repositories
also.

• keystonemiddleware

• keystoneauth

• python-keystoneclient

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag in bugs launchpad.

341

https://docs.openstack.org/contributors/
https://docs.openstack.org/keystone/latest/getting-started/community.html
https://review.opendev.org/#/admin/groups/9,members
https://docs.openstack.org/keystone/latest/contributor/proposing-features.html
https://bugs.launchpad.net/keystone/+bugs?field.status=New
https://bugs.launchpad.net/keystonemiddleware/+bugs?field.status=New
https://bugs.launchpad.net/keystoneauth/+bugs?field.status=New
https://bugs.launchpad.net/python-keystoneclient/+bugs?field.status=New
https://docs.openstack.org/keystone/train/contributor/how-can-i-help.html#the-meaning-of-low-hanging-fruit
https://docs.openstack.org/keystone/train/contributor/how-can-i-help.html#the-meaning-of-low-hanging-fruit
https://bugs.launchpad.net/keystone/+bugs?field.tag=low-hanging-fruit

Keystone Documentation, Release 21.0.2.dev4

5.1.5 Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so in keystone bug tracker by
following the bug triage procedure.

5.1.6 Getting Your Patch Merged

After submitting a Patch, anyone can cooperate by reviewing the patch on gerrit. Finally, the patch will
be merged by the keystone maintainers.

Project Team Lead Duties

All common PTL duties are enumerated here in the PTL guide.

5.2 How Can I Help?

Are you interested in contributing to the keystone project? Whether youre a software developer, a tech-
nical writer, an OpenStack operator or an OpenStack user, there are many reasons to get involved with
the keystone project:

• You can help shape the direction of the project, ensuring it meets your organizations needs in the
future

• You can help maintain the projects health and get your bugs fixed faster

• You can collaborate with other people to find common solutions that will help you and your orga-
nization

• You can hack on a fun, security-related Python project with interesting challenges

Here are some easy ways to make a big difference to the keystone project and become part of the team:

• Read the documentation, starting with the rest of this contributor guide, and try to follow it to
set up keystone and try out different features. Does it make sense? Is something out of date? Is
something misleading or incorrect? Submit a patch or bug report to fix it.

• Monitor incoming bug reports, try to reproduce the bug in a test environment, ask the bug reporter
for more information, answer support questions and close invalid bugs. Follow the bug triage
guide. New bugs can be found with the New status:

– keystone

– keystonemiddleware

– keystoneauth

– python-keystoneclient

You can also subscribe to email notifications for new bugs.

• Subscribe to the openstack-discuss@lists.openstack.org mailing list (filter on subject tag
[keystone]) and join the #openstack-keystone IRC channel on OFTC. Help answer user sup-
port questions if you or your organization has faced and solved a similar problem, or chime in on
design discussions that will affect you and your organization.

• Check out the low hanging fruit bugs, submit patches to fix them:

342 Chapter 5. Contributor Documentation

https://bugs.launchpad.net/keystone/+bugs?field.status=New
https://wiki.openstack.org/wiki/BugTriage
https://docs.opendev.org/opendev/infra-manual/latest/developers.html#peer-review
https://review.opendev.org/
https://docs.opendev.org/opendev/infra-manual/latest/developers.html#merging
https://review.opendev.org/#/admin/groups/9,members
https://docs.openstack.org/project-team-guide/ptl.html
https://wiki.openstack.org/wiki/BugTriage
https://wiki.openstack.org/wiki/BugTriage
https://bugs.launchpad.net/keystone/+bugs?field.status=New
https://bugs.launchpad.net/keystonemiddleware/+bugs?field.status=New
https://bugs.launchpad.net/keystoneauth/+bugs?field.status=New
https://bugs.launchpad.net/python-keystoneclient/+bugs?field.status=New
mailto:openstack-discuss@lists.openstack.org

Keystone Documentation, Release 21.0.2.dev4

– keystone

– keystonemiddleware

– keystoneauth

– python-keystoneclient

• Look for deprecation warnings in the unit tests and in the keystone logs of a running keystone
installation and submit patches to make them go away.

• Look at other projects, especially devstack, and submit patches to correct usage of options that
keystone has deprecated. Make sure to let the keystone maintainers know youre looking at these
so that its on their radar and they can help review.

• Check the test coverage report (tox -ecover) and try to add unit test coverage.

• Review new changes. Keep OpenStacks review guidelines in mind. Ask questions when you dont
understand a change.

Need any help? Reach out to the keystone team.

5.2.1 The Meaning of Low Hanging Fruit

This section describes the intent behind bugs tagged as low hanging fruit. Current maintainers should
apply the tag consistently while triaging bugs, using this document as a guide. This practice ensures
newcomers to the project can expect each low hanging fruit bug to be of similar complexity.

Bugs fit for the low hanging fruit tag:

• Should require minimal python experience, someone new to OpenStack might also be new to
python

• Should only require a basic understanding of the review workflow, complicated changesets with
dependencies between repositories coupled with CI testing only raises the cognitive bar for new
contributors

• Can include documentation fixes so long it doesnt require an in-depth understanding of complicated
subsystems and features (e.g., overhauling the federated identity guide)

• Should be something a newcomer can progress through in a week or less, long wait times due to
the discussion of complicated topics can deter new contributors from participating

• Shouldnt require a new contributor to understand copious amounts of historical context, newcomers
should eventually understand this information but consuming that information is outside the scope
of low hanging fruit

5.3 Setting up Keystone

5.3.1 Prerequisites

This document assumes you are using an Ubuntu, Fedora, or openSUSE platform and that you have the
following tools pre-installed on your system:

• python 3.6, as the programming language;

• git, as the version control tool;

5.3. Setting up Keystone 343

https://bugs.launchpad.net/keystone/+bugs?field.tag=low-hanging-fruit
https://bugs.launchpad.net/keystonemiddleware/+bugs?field.tag=low-hanging-fruit
https://bugs.launchpad.net/keystoneauth/+bugs?field.tag=low-hanging-fruit
https://bugs.launchpad.net/python-keystoneclient/+bugs?field.tag=low-hanging-fruit
https://docs.openstack.org/devstack/latest/
https://review.opendev.org/#/admin/groups/9,members
https://review.opendev.org/#/q/is:open+project:openstack/keystone+OR+project:openstack/keystonemiddleware+OR+project:openstack/keystoneauth+OR+project:openstack/python-keystoneclient
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
http://www.python.org
http://git-scm.com/

Keystone Documentation, Release 21.0.2.dev4

Note: Keystone dropped the support of python 2.7 in the Ussuri release of Openstack.

Reminder: If you are successfully using a different platform, or a different version of the above, please
document your configuration here!

5.3.2 Installing from source

The source install instructions specifically avoid using platform specific packages. Instead, we recom-
mend using the source for the code and the Python Package Index (PyPi) for development environment
installations..

Its expected that your system already has python, pip, and git available.

Clone the keystone repository:

$ git clone https://opendev.org/openstack/keystone.git
$ cd keystone

Install the keystone web service:

$ pip install -e .

Note: This step is guaranteed to fail if you do not have the proper binary dependencies already installed
on your development system. Maintaining a list of platform-specific dependencies is outside the scope
of this documentation, but is within scope of DEVSTACK.

5.3.3 Development environment

For setting up the Python development environment and running tox testing environments, please refer to
the Project Team Guide: Python Project Guide, the OpenStack guide on wide standard practices around
the use of Python.

That documentation will help you configure your development environment and run keystone tests using
tox, which uses virtualenv to isolate the Python environment. After running it, notice the existence of a
.tox directory.

5.3.4 Deploying configuration files

You should be able to run keystone after installing via pip. Additional configuration files are required.
The following file is required in order to run keystone:

• keystone.conf

344 Chapter 5. Contributor Documentation

http://www.python.org
https://pypi.org/project/pypi
http://www.python.org
http://www.pip-installer.org/en/latest/installing.html
http://git-scm.com/
https://docs.openstack.org/devstack/latest
https://docs.openstack.org/project-team-guide/project-setup/python.html
http://www.virtualenv.org/

Keystone Documentation, Release 21.0.2.dev4

Configuring Keystone with a sample file

Keystone requires a configuration file. Keystones sample configuration file etc/keystone.conf.
sample is automatically generated based upon all of the options available within Keystone. These options
are sourced from the many files around Keystone as well as some external libraries.

The sample configuration file will be updated as the end of the development cycle approaches. Developers
should NOT generate the config file and propose it as part of their patches, this will cause unnecessary
conflicts. You can generate one locally using the following command:

$ tox -e genconfig

The tox command will place an updated sample config in etc/keystone.conf.sample. The defaults
are enough to get you going, but you can make any changes if needed.

If there is a new external library (e.g. oslo.messaging) that utilizes the oslo.config package for
configuration, it can be added to the list of libraries found in config-generator/keystone.conf.

You can also generate sample policy files using tox -e genpolicy. Please refer to API Configuration
options for guidance on specific configuration options or to view a sample paste file.

5.3.5 Bootstrapping a test deployment

You can use the keystone-manage bootstrap command to pre-populate the database with necessary
data.

5.3.6 Verifying keystone is set up

Once set up, you should be able to invoke Python and import the libraries:

$.tox/py36/bin/python -c "import keystone"

If you can import keystone without a traceback, you should be ready to move on to the next sections.

You can run keystone using a host of wsgi implementations or web servers. The following uses uwsgi:

$ uwsgi --http 127.0.0.1:5000 --wsgi-file $(which keystone-wsgi-public)

This runs Keystone with the configuration the etc/ directory of the project. See API Configuration options
for details on how Keystone is configured. By default, Keystone is configured with SQL backends.

5.3.7 Database setup

The script tools/test-setup.sh sets up databases as used by the unit tests.

5.3. Setting up Keystone 345

Keystone Documentation, Release 21.0.2.dev4

5.3.8 Initializing Keystone

Before using keystone, it is necessary to create the database tables and ensures the database schemas are
up to date, perform the following:

$ keystone-manage db_sync

If the above commands result in a KeyError, or they fail on a .pyc file with the message, You can
only have one Python script per version, then it is possible that there are out-of-date compiled
Python bytecode files in the Keystone directory tree that are causing problems. This can occur if you have
previously installed and ran older versions of Keystone. These out-of-date files can be easily removed by
running a command like the following from the Keystone root project directory:

$ find . -name "*.pyc" -delete

Initial Sample Data

There is an included script which is helpful in setting up some initial sample data for use with keystone:

$ ADMIN_PASSWORD=s3cr3t tools/sample_data.sh

Once run, you can see the sample data that has been created by using the python-openstackclient
command-line interface:

$ export OS_USERNAME=admin
$ export OS_PASSWORD=s3cr3t
$ export OS_PROJECT_NAME=admin
$ export OS_USER_DOMAIN_ID=default
$ export OS_PROJECT_DOMAIN_ID=default
$ export OS_IDENTITY_API_VERSION=3
$ export OS_AUTH_URL=http://localhost:5000/v3
$ openstack user list

The python-openstackclient can be installed using the following:

$ pip install python-openstackclient

5.3.9 Interacting with Keystone

You can also interact with keystone through its REST API. There is a Python keystone client library
python-keystoneclient which interacts exclusively through the REST API, and a command-line interface
python-openstackclient command-line interface.

346 Chapter 5. Contributor Documentation

https://opendev.org/openstack/python-openstackclient
https://opendev.org/openstack/python-openstackclient
https://opendev.org/openstack/python-keystoneclient
https://opendev.org/openstack/python-openstackclient

Keystone Documentation, Release 21.0.2.dev4

5.4 Identity API v2.0 and v3 History

5.4.1 Specifications

As of the Queens release, Keystone solely implements the Identity API v3. Support for Identity API v2.0
has been removed in Queens in favor of the Identity API v3.

Identity API v3 is a superset of all the functionality available in the Identity API v2.0 and several of its
extensions, and provides a much more consistent developer experience.

5.4.2 History

Youre probably wondering why Keystone does not implement a v1 API. As a matter of fact, one exists, but
it actually predates OpenStack. The v1.x API was an extremely small API documented and implemented
by Rackspace for their early public cloud products.

With the advent of OpenStack, Keystone served to provide a superset of the authentication and multi-
tenant authorization models already implemented by Rackspaces public cloud, Nova, and Swift. Thus,
Identity API v2.0 was introduced.

Identity API v3 was established to introduce namespacing for users and projects by using domains as a
higher-level container for more flexible identity management and fixed a security issue in the v2.0 API
(bearer tokens appearing in URLs).

5.4.3 How do I migrate from v2.0 to v3?

I am a deployer

You need to ensure that youve configured your service catalog in Keystone correctly. The simplest, and
most ideal, configuration would expose one identity with unversioned endpoints (note the lack of /v2.0/
or /v3/ in these URLs):

• Service (type: identity)

– Endpoint (interface: public, URL: http://identity:5000/)

– Endpoint (interface: admin, URL: http://identity:35357/)

If you were to perform a GET against either of these endpoints, you would be greeted by an HTTP/1.1 300
Multiple Choices response, which newer Keystone clients can use to automatically detect available
API versions.

Note: Deploying v3 only requires a single application since administrator and end-user operations are
handled by the same process, and not separated into two different applications. Depending on how v2.0
was configured, you might be able to decommission one endpoint. Until users are educated about which
endpoint to use, the former admin API (e.g. using port 35357) and the public API (e.g. using port 5000)
can run the v3 API simulateously and serve both sets of users.

$ curl -i http://identity:35357/
HTTP/1.1 300 Multiple Choices
Vary: X-Auth-Token

(continues on next page)

5.4. Identity API v2.0 and v3 History 347

https://docs.openstack.org/api-ref/identity/v3/
https://docs.openstack.org/api-ref/identity/v3/

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

Content-Type: application/json
Content-Length: 755
Date: Tue, 10 Jun 2014 14:22:26 GMT

{"versions": {"values": [...]}}

With unversioned identity endpoints in the service catalog, you should be able to authenticate with
keystoneclient successfully.

I have a Python client

The Keystone community provides first-class support for Python API consumers via our client library,
python-keystoneclient. If youre not currently using this library, you should, as it is intended to expose all
of our HTTP API functionality. If were missing something youre looking for, please contribute!

Adopting python-keystoneclient should be the easiest way to migrate to Identity API v3.

I have a non-Python client

Youll likely need to heavily reference our API documentation to port your application to Identity API v3.

The most common operation would be password-based authentication including a tenant name (i.e.
project name) to specify an authorization scope. In Identity API v2.0, this would be a request to POST
/v2.0/tokens:

{
"auth": {

"passwordCredentials": {
"password": "my-password",
"username": "my-username"

},
"tenantName": "project-x"

}
}

And you would get back a JSON blob with an access -> token -> id that you could pass to another
web service as your X-Auth-Token header value.

In Identity API v3, an equivalent request would be to POST /v3/auth/tokens:

{
"auth": {

"identity": {
"methods": [

"password"
],
"password": {

"user": {
"domain": {

"id": "default"
(continues on next page)

348 Chapter 5. Contributor Documentation

https://docs.openstack.org/python-keystoneclient/latest/using-api-v3.html#authenticating-using-sessions
https://docs.openstack.org/python-keystoneclient/latest/using-api-v3.html#authenticating-using-sessions
https://pypi.org/project/python-keystoneclient/
https://pypi.org/project/python-keystoneclient/
https://docs.openstack.org/api-ref/identity/v3/

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

},
"name": "my-username",
"password": "my-password"

}
}

},
"scope": {

"project": {
"domain": {

"id": "default"
},
"name": "project-x"

}
}

}
}

Note a few key differences when compared to the v2.0 API:

• A tenant in v2.0 became a project in v3.

• The authentication method (password) is explicitly identified.

• Both the user name (my-username) and project name (project-x) are namespaced by an owning
domain (where id = default). The default domain exists by default in Keystone, and automat-
ically owns the namespace exposed by Identity API v2.0. Alternatively, you may reference users
and projects that exist outside the namespace of the default domain, which are thus inaccessible to
the v2.0 API.

• In v3, your token is returned to you in an X-Subject-Token header, instead of as part of the
request body. You should still authenticate yourself to other services using the X-Auth-Token
header.

5.4.4 Why do I see deployments with Keystone running on two ports?

During development of the v2.0 API, operational functionality was isolated into different applications
within the project. One application was dedicated to end-user functionality and its sole purpose was to
authenticate and validate user identities. The second application consisted of more features and allowed
operators the ability to manage their deployment by adding or deleting users, creating projects, etc. These
applications were referred to as the public and admin APIs, respectively. This deployment model was
required by the architecture of the v2.0 API. In a way, authorization was limited to the application you
had access to.

Once development began on the v3 API, the code paths for both applications were merged into one.
Instead of isolating functionality into separate applications, all functionality was consolidated into a
single application. Each v3 endpoint or API is protected by policy instead. This makes deployment
and management of Keystones infrastructure easier for operators to deploy and for users to consume.
As a result, Keystone deployments are not required to deploy separate admin and public endpoints,
especially now that the v2.0 API implementation has been removed.

5.4. Identity API v2.0 and v3 History 349

Keystone Documentation, Release 21.0.2.dev4

5.4.5 HTTP/1.1 Chunked Encoding

Warning: Running Keystone under HTTPD in the recommended (and tested) configuration does
not support the use of Transfer-Encoding: chunked. This is due to a limitation with the WSGI
spec and the implementation used by mod_wsgi. It is recommended that all clients assume Keystone
will not support Transfer-Encoding: chunked.

5.5 Proposing Features

Requests for enhancements or new features must follow a process that requires using bug reports and
specifications. We publish the contents of the keystone-specs repository at specs.openstack.org.

5.5.1 RFE Bug Reports

All code, documentation, and tests implementing a feature should be tracked. To do this, we use Launch-
pad bug reports. We use bug reports because the OpenStack review infrastructure has existing tooling that
groups patches based on commit message syntax. When you propose a patch that is related to a bug or a
feature, the OpenStack Infrastructure bot automatically links the patch as a comment in the bug report.
Comments are also immutable, allowing us to track long-running initiatives without losing context.

To create an RFE bug report, file a bug against the appropriate project. For example, if we were to create
an RFE bug report for supporting a new Foobar API within keystone, wed open that RFE against the
keystone project. The title should start with RFE: , followed by a snippet of the feature or enhancement.
For example, RFE: Implement a Foobar API. The description should be short. Since we use specifications
for details, we dont need to duplicate information in the body of the bug report. After you create the bug,
you can tag it with the rfe tag, which helps people filter feature work from other bug reports. Finally,
if your specification has already merged, be sure to include a link to it as a comment. If it hasnt, you
can propose, or re-propose, your specification with Partial-Bug: followed by the bug number, at the
bottom of your commit message. The OpenStack Infrastructure bot automatically updates the RFE bug
report you just created with a link to the proposed specification. The specification template explains how
to link to RFE bug reports, which should prompt you to open your RFE bug prior to proposing your
specification.

If your feature is broken up into multiple commits, make sure to include Partial-Bug in your commit
messages. Additionally, use Closes-Bug in the last commit implementing the feature. This process
ensures all patches written for a feature are tracked in the bug report, making it easier to audit. If you
miss the opportunity to use the Closes-Bug tag and your feature work is complete, set the bug status to
Fix Committed.

5.5.2 Specifications

We use specifications as a way to describe, in detail, the change that were making and why.

To write a specification, you can follow the template provided in the repository. To start writing a new
specification, copy the template to the directory that fits the project and release you plan to target. For
example, if you want to propose a feature to keystone for the Stein release, you should do the following:

$ cp specs/template.rst specs/keystone/stein/feature-foobar.rst

350 Chapter 5. Contributor Documentation

https://opendev.org/openstack/keystone-specs
https://specs.openstack.org/openstack/keystone-specs/
https://bugs.launchpad.net/keystone/+filebug

Keystone Documentation, Release 21.0.2.dev4

Once you have a template in place, work through each section. Specifications should be descriptive
and include use cases that justify the work. There are sections dedicated to the problem statement, the
proposed solution, alternative solutions, security concerns, among other things. These sections are meant
to prompt you to think about how your feature impacts users, operators, developers, related projects, and
the existing code base. The template acts as a guide, so if you need to inject an ad-hoc section to describe
additional details of your feature, dont hesitate to add one. Do not remove sections from the template
that do not apply to your specification. Instead, simply explain why your proposed change doesnt have
an impact on that aspect of the template. Propose your specification for review when youre ready for
feedback:

$ git review

The process for reviewing specifications is handled using Gerrit. We dont restrict the specification selec-
tion process to a particular group of individuals, which allows for open and collaborative feedback. We
encourage everyone to be a part of the review process. Applying a code-review methodology to speci-
fications allows different people to think through the problem youre trying to solve. Everyone wants to
ensure the best design possible, given various resource constraints. This process takes time. Dont be
discouraged if it takes longer than you anticipated for your specification to get feedback. A specifica-
tion must have support (+2) from at least two keystone-spec core reviewers and it is typically approved
(+Workflow) by the PTL, in order to be formally accepted.

5.6 Working with Release Notes

The Keystone team uses reno to generate release notes. These are important user-facing documents that
must be included when a user or operator facing change is performed, like a bug-fix or a new feature. A
release note should be included in the same patch the work is being performed. Release notes should be
short, easy to read, and easy to maintain. They also must link back to any appropriate documentation if
it exists. The following conventions help ensure all release notes achieve those goals.

Most release notes either describe bug fixes or announce support for new features, both of which are
tracked using Launchpad. The conventions below rely on links in Launchpad to provide readers with
more context.

Warning: We highly recommend taking careful thought when writing and reviewing release notes.
Once a release note has been published with a formal release, updating it across releases will cause
it to be published in a subsequent release. Reviews that update, or modify, a release note from a
previous release outside of the branch it was added in should be rejected unless its required for a very
specific case.

Please refer to renos documentation for more information.

5.6. Working with Release Notes 351

https://docs.openstack.org/reno/latest/user/usage.html
https://docs.openstack.org/reno/latest/user/usage.html

Keystone Documentation, Release 21.0.2.dev4

5.6.1 Release Notes for Bugs

When creating a release note that communicates a bug fix, use the bug number in the name of the release
note:

$ reno new bug-1652012
Created new notes file in releasenotes/notes/bug-1652012-7c53b9702b10084d.yaml

The body of the release note should clearly explain how the impact will affect users and operators. It
should also include why the change was necessary but not be overspecific about implementation details,
as that can be found in the commit and the bug report. It should contain a properly formatted link in
reStructuredText that points back to the original bug report used to track the fix. This ensures the release
note is kept short and to-the-point while providing readers with additional resources:

fixes:

- |
[`bug 1652012 <https://bugs.launchpad.net/keystone/+bug/1652012>`_]
Changes the token_model to return is_admin_project False if the
attribute is not defined. Returning True for this has the potential to
be dangerous and the given reason for keeping it True was strictly for
backwards compatibility.

5.6.2 Release Notes for Features

Release notes detailing feature work follow the same basic format, since features are also tracked as bugs.

$ reno new bug-1652012
Created new notes file in releasenotes/notes/bug-1652012-7c53b9702b10084d.yaml

Just like release notes communicating bug fixes, release notes detailing feature work must contain a link
back to the RFE bug report. Readers should be able to easily discover all patches that implement the
feature, as well as find links to the full specification and documentation. The release notes can be added
to the last patch of the feature. All of this is typically found in the RFE bug report registered in Launchpad:

features:

- >
[`bug 1652012 <https://bugs.launchpad.net/keystone/+bug/1652012>`_]
Keystone now fully supports the usage of fizzbangs.

In the rare case there is a release note that does not pertain to a bug or feature work, use a sensible slug
and include any documentation relating to the note. We can iterate on the content and application of the
release note during the review process.

For more information on how and when to create release notes, see the project-team-guide.

352 Chapter 5. Contributor Documentation

https://docs.openstack.org/project-team-guide/release-management.html#how-to-add-new-release-notes

Keystone Documentation, Release 21.0.2.dev4

5.7 Testing Keystone

5.7.1 Running Tests

Before running tests, you should have tox installed and available in your environment (in addition to the
other external dependencies in Setting up Keystone):

$ pip install tox

Note: You may need to perform both the above operation and the next inside a python virtualenv, or
prefix the above command with sudo, depending on your preference.

To execute the full suite of tests maintained within keystone, simply run:

$ tox

This iterates over multiple configuration variations, and uses external projects to do light integration
testing to verify the Identity API against other projects.

Note: The first time you run tox, it will take additional time to build virtualenvs. You can later use the
-r option with tox to rebuild your virtualenv in a similar manner.

To run tests for one or more specific test environments (for example, the most common configuration of
Python 3.6 and PEP-8), list the environments with the -e option, separated by spaces:

$ tox -e py36,pep8

Note: Keystone dropped the support of python 2.7 in the Ussuri release of Openstack.

Use tox --listenvs to list all testing environments specified in keystones tox.ini file.

Interactive debugging

Using pdb breakpoints with tox and testr normally doesnt work since the tests just fail with a BdbQuit
exception rather than stopping at the breakpoint.

To capture breakpoints while running tests, use the debug environment. The following example uses the
environment while invoking a specific test run.

$ tox -e debug keystone.tests.unit.test_module.TestClass.test_case

For reference, the debug environment implements the instructions here: https://wiki.openstack.org/wiki/
Testr#Debugging_.28pdb.29_Tests

5.7. Testing Keystone 353

http://www.python.org
https://wiki.openstack.org/wiki/Testr#Debugging_.28pdb.29_Tests
https://wiki.openstack.org/wiki/Testr#Debugging_.28pdb.29_Tests

Keystone Documentation, Release 21.0.2.dev4

5.7.2 Building the Documentation

The docs and api-ref environments will automatically generate documentation and the API reference
respectively. The results are written to doc/ and api-ref/.

For example, use the following command to render all documentation and manual pages:

$ tox -e docs

5.7.3 Tests Structure

Not all of the tests in the keystone/tests/unit directory are strictly unit tests. Keystone intentionally
includes tests that run the service locally and drives the entire configuration to achieve basic functional
testing.

For the functional tests, an in-memory key-value store or in-memory SQLite database is used to keep the
tests fast.

Within the tests directory, the general structure of the backend tests is a basic set of tests represented
under a test class, and then subclasses of those tests under other classes with different configurations to
drive different backends through the APIs. To add tests covering all drivers, update the base test class in
test_backend.py.

Note: The structure of backend testing is in transition, migrating from having all classes in a single file
(test_backend.py) to one where there is a directory structure to reduce the size of the test files. See:

• keystone.tests.unit.backend.role

• keystone.tests.unit.backend.domain_config

To add new drivers, subclass the base class at test_backend.py (look at test_backend_sql.py for
examples) and update the configuration of the test class in setUp().

For example, test_backend.py has a sequence of tests under the class keystone.tests.unit.
test_backend.IdentityTests that will work with the default drivers. The test_backend_sql.py
module subclasses those tests, changing the configuration by overriding with configuration files stored in
the tests/unit/config_files directory aimed at enabling the SQL backend for the Identity module.

5.7.4 Testing Schema Migrations

Note: The framework being used is currently being migrated from SQLAlchemy-Migrate to Alembic,
meaning this information will change in the near-term.

The application of schema migrations can be tested using SQLAlchemy Migrates built-in test runner,
one migration at a time.

Warning: This may leave your database in an inconsistent state; attempt this in non-production
environments only!

354 Chapter 5. Contributor Documentation

Keystone Documentation, Release 21.0.2.dev4

This is useful for testing the next migration in sequence in a database under version control:

$ python keystone/common/sql/legacy_migrations/expand_repo/manage.py test \
--url=sqlite:///test.db \
--repository=keystone/common/sql/legacy_migrations/expand_repo/

This command references to a SQLite database (test.db) to be used. Depending on the migration, this
command alone does not make assertions as to the integrity of your data during migration.

5.7.5 LDAP Tests

LDAP has a fake backend that performs rudimentary operations. If you are building more significant
LDAP functionality, you should test against a live LDAP server. Devstack has an option to set up a
directory server for Keystone to use. Add ldap to the ENABLED_SERVICES environment variable, and
set environment variables KEYSTONE_IDENTITY_BACKEND=ldap and KEYSTONE_CLEAR_LDAP=yes in
your localrc file.

The unit tests can be run against a live server with keystone/tests/unit/test_ldap_livetest.
py and keystone/tests/unit/test_ldap_pool_livetest.py. The default password is
test but if you have installed devstack with a different LDAP password, modify the file
keystone/tests/unit/config_files/backend_liveldap.conf and keystone/tests/unit/
config_files/backend_pool_liveldap.conf to reflect your password.

Note: To run the live tests you need to set the environment variable ENABLE_LDAP_LIVE_TEST to a
non-negative value.

5.7.6 Work in progress Tests

Work in progress (WIP) tests are very useful in a variety of situations including:

• While doing test-driven-development they can be used to add tests to a review while they are not
yet working and will not cause test failures. They can be removed when the functionality is fixed
in a later patch set.

• A common practice is to recreate bugs by exposing the broken behavior in a functional or unit test.
To encapsulate the correct behavior in the test, the test will usually assert the correct outcome,
which will break without a fix. Marking the test as WIP gives us the ability to capture the broken
behavior in code if a fix isnt ready yet.

The keystone.tests.unit.utils.wip() decorator can be used to mark a test as WIP. A WIP test
will always be run. If the test fails then a TestSkipped exception is raised because we expect the test to
fail. We do not pass the test in this case so that it doesnt count toward the number of successfully run
tests. If the test passes an AssertionError exception is raised so that the developer knows they made the
test pass. This is a reminder to remove the decorator.

The keystone.tests.unit.utils.wip() decorator requires that the author provides a message. This
message is important because it will tell other developers why this test is marked as a work in progress.
Reviewers will require that these messages are descriptive and accurate.

Note: The keystone.tests.unit.utils.wip() decorator is not a replacement for skipping tests.

5.7. Testing Keystone 355

Keystone Documentation, Release 21.0.2.dev4

@wip('waiting on bug #000000')
def test():

pass

Note: Another strategy is to not use the wip decorator and instead show how the code currently incor-
rectly works. Which strategy is chosen is up to the developer.

5.7.7 API & Scenario Tests

Keystone provides API and scenario tests via a tempest plugin which is located in a separate repository.
This tempest plugin is mainly intended for specific scenarios that require a special deployment, such as
the tests for the Federated Identity feature or live testing against LDAP. For the deployment of these
scenarios, keystone also provides a devstack plugin.

For example, to setup a working federated environment, add the following lines in your devstack lo-
cal.conf‘ file:

[[local|localrc]]
enable_plugin keystone https://opendev.org/openstack/keystone
enable_service keystone-saml2-federation

Clone and install keystone-tempest-plugin.

git clone https://opendev.org/openstack/keystone-tempest-plugin
sudo pip install ./keystone-tempest-plugin

Finally, to run keystones API and scenario tests, deploy tempest with devstack (using the configuration
above) and then run the following command from the tempest directory:

tox -e all -- keystone_tempest_plugin

Note: Most of keystones API tests are implemented in tempest and it is usually the correct place to add
new tests.

Writing new API & Scenario Tests

When writing tests for the keystone tempest plugin, we should follow the official tempest guidelines,
details about the guidelines can be found at the tempest coding guide. There are also specific guides for
the API and scenario tests: Tempest Field Guide to API tests and Tempest Field Guide to Scenario tests.

The keystone tempest plugin also provides a base class. For most cases, the tests should inherit
from it: keystone_tempest_plugin.tests.base.BaseIdentityTest. This class already setups
the identity API version and is the container of all API services clients. New API services clients
keystone_tempest_plugin.services (which are used to communicate with the REST API from
the services) should also be added to this class. For example, below we have a snippet from the tests at
keystone_tempest_plugin.tests.api.identity.v3.test_identity_providers.py.

356 Chapter 5. Contributor Documentation

https://docs.openstack.org/tempest/latest/plugin.html
http://opendev.org/openstack/keystone-tempest-plugin
https://docs.openstack.org/devstack/latest/plugins.html
https://opendev.org/openstack/tempest
https://opendev.org/openstack/devstack
https://opendev.org/openstack/tempest
https://docs.openstack.org/tempest/latest/HACKING.html
https://docs.openstack.org/tempest/latest/field_guide/api.html
https://docs.openstack.org/tempest/latest/field_guide/scenario.html

Keystone Documentation, Release 21.0.2.dev4

class IdentityProvidersTest(base.BaseIdentityTest):

...

def _create_idp(self, idp_id, idp_ref):
idp = self.idps_client.create_identity_provider(

idp_id, **idp_ref)['identity_provider']
self.addCleanup(

self.idps_client.delete_identity_provider, idp_id)
return idp

@decorators.idempotent_id('09450910-b816-4150-8513-a2fd4628a0c3')
def test_identity_provider_create(self):

idp_id = data_utils.rand_uuid_hex()
idp_ref = fixtures.idp_ref()
idp = self._create_idp(idp_id, idp_ref)

The identity provider is disabled by default
idp_ref['enabled'] = False

The remote_ids attribute should be set to an empty list by default
idp_ref['remote_ids'] = []

self._assert_identity_provider_attributes(idp, idp_id, idp_ref)

The test class extends keystone_tempest_plugin.tests.base.BaseIdentityTest. Also, the
_create_idp method calls keystones API using the idps_client, which is an instance from.
keystone_tempest_plugin.tests.services.identity.v3.identity_providers_client.
IdentityProvidersClient.

Additionally, to illustrate the construction of a new test class, below we have a snippet from the scenario
test that checks the complete federated authentication workflow (keystone_tempest_plugin.tests.
scenario.test_federated_authentication.py). In the test setup, all of the needed resources are
created using the API service clients. Since it is a scenario test, it is common to need some customized
settings that will come from the environment (in this case, from the devstack plugin) - these settings are
collected in the _setup_settings method.

class TestSaml2EcpFederatedAuthentication(base.BaseIdentityTest):

...

def _setup_settings(self):
self.idp_id = CONF.fed_scenario.idp_id
self.idp_url = CONF.fed_scenario.idp_ecp_url
self.keystone_v3_endpoint = CONF.identity.uri_v3
self.password = CONF.fed_scenario.idp_password
self.protocol_id = CONF.fed_scenario.protocol_id
self.username = CONF.fed_scenario.idp_username

...

(continues on next page)

5.7. Testing Keystone 357

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

def setUp(self):
super(TestSaml2EcpFederatedAuthentication, self).setUp()
self._setup_settings()

Reset client's session to avoid getting garbage from another runs
self.saml2_client.reset_session()

Setup identity provider, mapping and protocol
self._setup_idp()
self._setup_mapping()
self._setup_protocol()

Finally, the tests perform the complete workflow of the feature, asserting correctness in each step:

def _request_unscoped_token(self):
resp = self.saml2_client.send_service_provider_request(

self.keystone_v3_endpoint, self.idp_id, self.protocol_id)
self.assertEqual(http_client.OK, resp.status_code)
saml2_authn_request = etree.XML(resp.content)

relay_state = self._str_from_xml(
saml2_authn_request, self.ECP_RELAY_STATE)

sp_consumer_url = self._str_from_xml(
saml2_authn_request, self.ECP_SERVICE_PROVIDER_CONSUMER_URL)

Perform the authn request to the identity provider
resp = self.saml2_client.send_identity_provider_authn_request(

saml2_authn_request, self.idp_url, self.username, self.password)
self.assertEqual(http_client.OK, resp.status_code)
saml2_idp_authn_response = etree.XML(resp.content)

idp_consumer_url = self._str_from_xml(
saml2_idp_authn_response, self.ECP_IDP_CONSUMER_URL)

Assert that both saml2_authn_request and saml2_idp_authn_response
have the same consumer URL.
self.assertEqual(sp_consumer_url, idp_consumer_url)

...

@testtools.skipUnless(CONF.identity_feature_enabled.federation,
"Federated Identity feature not enabled")

def test_request_unscoped_token(self):
self._request_unscoped_token()

Notice that the test_request_unscoped_token test only executes if the federation feature flag is
enabled.

Note: For each patch submitted upstream, all of the tests from the keystone tempest plugin are executed

358 Chapter 5. Contributor Documentation

Keystone Documentation, Release 21.0.2.dev4

in the gate-keystone-dsvm-functional-v3-only-* job.

5.8 Developing doctor checks

As noted in the section above, keystones management CLI provides various tools for administrating
OpenStack Identity. One of those tools is called keystone-manage doctor and it is responsible for
performing health checks about the deployment. If keystone-manage doctor detects a symptom, it
will provide the operator with suggestions to improve the overall health of the deployment. This section
is dedicated to documenting how to write symptoms for doctor.

The doctor tool consists of a list of symptoms. Each symptom is something that we can check against,
and provide a warning for if we detect a misconfiguration. The doctor module is located in keystone.
cmd.doctor. The current checks are based heavily on inspecting configuration values. As a result, many
of the submodules within the doctor module are named after the configuration section for the symptoms
they check. For example, if we want to ensure the keystone.conf [DEFAULT] max_token_size op-
tion is properly configured for whatever keystone.conf [token] provider is set to, we can place
that symptom in a module called keystone.cmd.doctor.tokens. The symptom will be loaded by
importing the doctor module, which is done when keystone-manage doctor is invoked from the
command line. When adding new symptoms, its important to remember to add new modules to the
SYMPTOM_MODULES list in keystone.cmd.doctor.__init__. Doing that will ensure doctor discov-
ers properly named symptoms when executed.

Now that we know symptoms are organized according to configuration sections, and how to add them,
how exactly do we write a new symptom? doctor will automatically discover new symptoms by in-
specting the methods of each symptom module (i.e. SYMPTOM_MODULES). If a method declaration starts
with def symptom_ it is considered a symptom that doctor should check for, and it should be run. The
naming of the symptom, or method name, is extremely important since doctor will use it to describe
what its doing to whoever runs doctor. In addition to a well named method, we also need to provide
a complete documentation string for the method. If doctor detects a symptom, it will use the meth-
ods documentation string as feedback to the operator. It should describe why the check is being done,
why it was triggered, and possible solutions to cure the symptom. For examples of this, see the existing
symptoms in any of doctors symptom modules.

The last step is evaluating the logic within the symptom. As previously stated, doctor will check for
a symptom if methods within specific symptom modules make a specific naming convention. In order
for doctor to suggest feedback, it needs to know whether or not the symptom is actually present. We
accomplish this by making all symptoms return True when a symptom is present. When a symptom
evaluates to False, doctor will move along to the next symptom in the list since. If the deployment isnt
suffering for a specific symptom, doctor should not suggest any actions related to that symptom (i.e.
if you have your cholesterol under control, why would a physician recommend cholesterol medication if
you dont need it).

To summarize:

• Symptoms should live in modules named according to the most relevant configuration section they
apply to. This ensure we keep our symptoms organized, grouped, and easy to find.

• When writing symptoms for a new section, remember to add the module name to the
SYMPTOM_MODULES list in keystone.cmd.doctor.__init__.

• Remember to use a good name for the symptom method signature and to prepend it with symptom_
in order for it to be discovered automatically by doctor.

5.8. Developing doctor checks 359

Keystone Documentation, Release 21.0.2.dev4

• Symptoms have to evaluate to True in order to provide feedback to operators.

• Symptoms should have very thorough documentation strings that describe the symptom, side-
effects of the symptom, and ways to remedy it.

For examples, feel free to run doctor locally using keystone-manage and inspect the existing symp-
toms.

5.9 Making an API Change

This document will guide you through the process of proposing and submitting an API change to keystone.

5.9.1 Prerequisites

In order to follow this tutorial, it is assumed that you have read our Contributor Documentation and
Keystone Architecture documents.

5.9.2 Proposing a change

You need to create a RFE bug report, submit a specification against the keystone-specs repository and
bring it up to discussion with the keystone core team for agreement. Please refer to the guide for proposing
features to learn more about the process.

Create

1. Create a RFE bug report in launchpad;

2. git clone https://opendev.org/openstack/keystone-specs;

3. cp specs/template.rst specs/backlog/<feature>.rst;

4. Write the spec based on the template. Ensure the bug link points to the one created in step 1;

5. Also update the documentation at api/v3/identity-api-v3.rst to reflect the proposed API changes;

6. Push to gerrit for review;

7. Propose agenda items to the keystone meeting, and make sure someone who understands the subject
can attend the meeting to answer questions.

Agreement

The keystone core team will evaluate the specification and vote on accepting it or not. If accepted, the
proposal will be targeted to a release; otherwise, the specification will be abandoned.

As soon as there is an agreement on the specification, the change may start rolling out.

360 Chapter 5. Contributor Documentation

https://opendev.org/openstack/keystone-specs/
https://review.opendev.org/#/admin/groups/9,members
https://bugs.launchpad.net/keystone/+filebug
https://opendev.org/openstack/keystone-specs
https://wiki.openstack.org/wiki/Meetings/KeystoneMeeting
https://review.opendev.org/#/admin/groups/9,members

Keystone Documentation, Release 21.0.2.dev4

5.9.3 Implementing a change

In this section, lets assume that a specification proposing the addition of a description field to the roles
API was accepted. In the next subsections, you will find a detailed explanation on the needed code
changes to the keystone code to implement such change.

Architectural Recapitulation

As you saw in the Keystone Architecture document, there are three logical levels of code at which a
request passes: the API routing and request handling layer, the resource manager, and the driver.

For the role backend, the API resource can be found under the keystone/api directory in the roles.py
file, and the manager and driver can be found in the keystone/assignment directory in the core.py and
role_backends/sql.py files, respectively (currently only the SQL driver is supported).

Changing the SQL Model and Driver

Note: The below guidance is out-of-date and refers to the legacy migrate_repo migration repository,
which was removed in 21.0.0 (Yoga). Nowadays, for a change like this, you would create an additive or
expand migration in the expand_repo repository along with null migrations in the contract_repo and
data_migration_repo repositories. For more information, refer to Database Migrations.

Todo: Update this section to reflect the new migration model.

First, you need to change the role model to include the description attribute. Go to key-
stone/assignment/role_backends/sql.py and update it like:

class RoleTable(sql.ModelBase, sql.ModelDictMixin):

attributes = ['id', 'name', 'domain_id', 'description']
description = sql.Column(sql.String(255), nullable=True)
...

Now, when keystone runs, the table will be created with the new attribute. However, what about existing
deployments which already have the role table created? You need to migrate their database schema!

The directory keystone/common/sql/migrate_repo/versions owns all the migrations since keystone day 1.
Create a new file there with the next migration number. For example, if the latest migration number there
is 101, create yours as 102_add_role_description.py, which will look like:

def upgrade(migrate_engine):
meta = sql.MetaData()
meta.bind = migrate_engine

role_table = sql.Table('role', meta, autoload=True)
description = sql.Column('description', sql.String(255),

nullable=True)
role_table.create_column(description)

5.9. Making an API Change 361

Keystone Documentation, Release 21.0.2.dev4

Do not forget to add tests for your migration at keystone/tests/unit/test_sql_upgrade.py, you may take
other tests as example and learn how to develop yours. In this case, you would need to upgrade to 102
check the migration has added the description column to the role table.

Changing the role driver itself in keystone/assignment/role_backends/sql.py will not be necessary, be-
cause the driver handles the role entities as Python dictionaries, thus the new attribute will be handled
automatically.

Changing the Manager

Managers handle the business logic. Keystone provides the basic CRUD for role entities, that means that
the role manager simply calls the driver with the arguments received from the API resource, and then
returns the drivers result back to API resource. Additionally, it handles the cache management.

Thus, there is no manager change needed to make it able to operate role entities with the new description
attribute.

However, you should add tests for the role CRUD operations with the new attribute to key-
stone/tests/unit/assignment/test_core.py.

When trying to determine whether a change goes in the driver or in the manager, the test is whether the
code is business logic and/or needs to be executed for each driver. Both common and business logics go
in the manager, while backend specific logic goes in the drivers.

Changing the API Interface

Business logic should not go in the API resource. The API resource should be viewed as a binding
between the business logic and the HTTP protocol. Thus, it is in charge of calling the appropriate manager
call and wrapping responses into HTTP format.

API resource use JSON schemas do determine whether a provided role is a valid representation or not.
Role create and role update schemas are available at keystone/assignment/schema.py. You will need to
update their properties to include a description attribute:

_role_properties = {
'name': parameter_types.name,
'description': parameter_types.description

}

Besides doing the entity validation using such schemas, API resource pass and accept all the attributes
to and from the manager. Thus, there is no further change needed at the API resource level.

You should add tests for API unit test to keystone/tests/unit/test_v3_role.py and document about the new
parameter in the api-ref.

Furthermore, as role entities are passed in the request body to keystone calls, the role routes do not need
to be changed; i.e the routes still are:

POST /v3/roles
GET /v3/roles/{id}
HEAD /v3/roles/{id}
PATCH /v3/roles/{id}
DELETE /v3/roles/{id}

362 Chapter 5. Contributor Documentation

https://docs.openstack.org/api-ref/identity/

Keystone Documentation, Release 21.0.2.dev4

5.9.4 Conclusion

At this point, keystone role entities contain a description attribute. In order to make it happen, you have
learned how the keystone architecture is, what is the responsibility of each layer, how database migrations
occur and the way entities are represented into tables.

The pattern of the change made in this tutorial applies to other keystone subsystems as well, such as
resource and identity.

5.10 Authentication Plugins

Note: This feature is only supported by keystone for the Identity API v3 clients.

Keystone supports authentication plugins and they are specified in the [auth] section of the configuration
file. However, an authentication plugin may also have its own section in the configuration file. It is up to
the plugin to register its own configuration options.

• methods - comma-delimited list of authentication plugin names

• <plugin name> - specify the class which handles to authentication method, in the same manner
as one would specify a backend driver.

Keystone provides three authentication methods by default. password handles password authentication
and token handles token authentication. external is used in conjunction with authentication performed
by a container web server that sets the REMOTE_USER environment variable. For more details, refer to
External Authentication.

5.10.1 How to Implement an Authentication Plugin

All authentication plugins must extend the keystone.auth.plugins.base.AuthMethodHandler
class and implement the authenticate() method. The authenticate() method expects the fol-
lowing parameters.

• context - keystones request context

• auth_payload - the content of the authentication for a given method

• auth_context - user authentication context, a dictionary shared by all plugins. It contains
method_names and bind by default. method_names is a list and bind is a dictionary.

If successful, the authenticate() method must provide a valid user_id in auth_context and return
None. method_name is used to convey any additional authentication methods in case authentication is
for re-scoping. For example, if the authentication is for re-scoping, a plugin must append the previous
method names into method_names.

If authentication requires multiple steps, the authenticate() method must return the payload in the
form of a dictionary for the next authentication step.

If authentication is unsuccessful, the authenticate() method must raise a keystone.exception.
Unauthorized exception.

Simply add the new plugin name to the methods list along with your plugin class configuration in the
[auth] sections of the configuration file to deploy it.

5.10. Authentication Plugins 363

Keystone Documentation, Release 21.0.2.dev4

If the plugin requires additional configurations, it may register its own section in the configuration file.

Plugins are invoked in the order in which they are specified in the methods attribute of the
authentication request body. If multiple plugins are invoked, all plugins must succeed in order to
for the entire authentication to be successful. Furthermore, all the plugins invoked must agree on the
user_id in the auth_context.

The REMOTE_USER environment variable is only set from a containing webserver. However, to ensure that
a user must go through other authentication mechanisms, even if this variable is set, remove external
from the list of plugins specified in methods. This effectively disables external authentication. For more
details, refer to External Authentication.

5.11 Database Migrations

Note: The framework being used is currently being migrated from SQLAlchemy-Migrate to Alembic,
meaning this information will change in the near-term.

Starting with Newton, keystone supports upgrading both with and without downtime. In order
to support this, there are three separate migration repositories (all under keystone/common/sql/
legacy_migrations) that match the three phases of an upgrade (schema expansion, data migration,
and schema contraction):

expand_repo For additive schema modifications and triggers to ensure data is kept in sync between the
old and new schema until the point when there are no keystone instances running old code.

data_migration_repo To ensure new tables/columns are fully populated with data from the old
schema.

contract_repo Run after all old code versions have been upgraded to running the new code, so remove
any old schema columns/tables that are not used by the new version of the code. Drop any triggers
added in the expand phase.

All migrations are required to have a migration script in each of these repos, each with the same version
number (which is indicated by the first three digits of the name of the script, e.g. 003_add_X_table.
py). If there is no work to do in a specific phase, then include a no-op migration to simply pass (in fact
the 001 migration in each of these repositories is a no-op migration, so that can be used as a template).

In order to support rolling upgrades, where two releases of keystone briefly operate side-by-side using
the same database without downtime, each phase of the migration must adhere to following constraints:

These triggers should be removed in the contract phase. There are further restrictions as to what can and
cannot be included in migration scripts in each phase:

Expand phase: Only additive schema changes are allowed, such as new columns, tables, indices, and
triggers.

Data insertion, modification, and removal is not allowed.

Triggers must be created to keep data in sync between the previous release and the next release.
Data written by the previous release must be readable by both the previous release and the next
release. Data written by the next release must be readable by both the next release and the previous
release.

364 Chapter 5. Contributor Documentation

Keystone Documentation, Release 21.0.2.dev4

In cases it is not possible for triggers to maintain data integrity across multiple schemas, writing
data should be forbidden using triggers.

Data Migration phase: Data is allowed to be inserted, updated, and deleted.

No schema changes are allowed.

Contract phase: Only destructive schema changes are allowed, such as dropping or altering columns,
tables, indices, and triggers.

Data insertion, modification, and removal is not allowed.

Triggers created during the expand phase must be dropped.

For more information on writing individual migration scripts refer to SQLAlchemy-migrate.

5.12 Identity entity ID management for domain-specific backends

Keystone supports the option of having domain-specific backends for the identity driver (i.e. for user
and group storage), allowing, for example, a different LDAP server for each domain. To ensure that
Keystone can determine to which backend it should route an API call, starting with Juno, the identity
manager will, provided that domain-specific backends are enabled, build on-the-fly a persistent mapping
table between Keystone Public IDs that are presented to the API and the domain that holds the entity,
along with whatever local ID is understood by the driver. This hides, for instance, the LDAP specifics of
whatever ID is being used.

To ensure backward compatibility, the default configuration of either a single SQL or LDAP backend
for Identity will not use the mapping table, meaning that public facing IDs will be the unchanged. If
keeping these IDs the same for the default LDAP backend is not required, then setting the configuration
variable backward_compatible_ids to False will enable the mapping for the default LDAP driver,
hence hiding the LDAP specifics of the IDs being used.

5.13 Translated responses

The Keystone server can provide error responses translated into the language in the Accept-Language
header of the request. In order to test this in your development environment, theres a couple of things
you need to do.

1. Build the message files. Run the following command in your keystone directory:

$ python setup.py compile_catalog

This will generate .mo files like keystone/locale/[lang]/LC_MESSAGES/[lang].mo

2. When running Keystone, set the KEYSTONE_LOCALEDIR environment variable to the key-
stone/locale directory. For example:

$ KEYSTONE_LOCALEDIR=/opt/stack/keystone/keystone/locale uwsgi --http 127.0.0.
↪→1:5000 --wsgi-file $(which keystone-wsgi-public)

Now you can get a translated error response:

5.12. Identity entity ID management for domain-specific backends 365

https://opendev.org/openstack/sqlalchemy-migrate

Keystone Documentation, Release 21.0.2.dev4

$ curl -s -H "Accept-Language: zh" http://localhost:5000/notapath | python -
↪→mjson.tool
{

"error": {
"code": 404,
"message": "\u627e\u4e0d\u5230\u8cc7\u6e90\u3002",
"title": "Not Found"

}
}

5.14 Learning Architecture Internals

5.14.1 Caching Layer

The caching layer is designed to be applied to any manager object within Keystone via the use of
keystone.common.cache module. This leverages oslo.cache caching system to provide a flexible
caching backend.

The caching can be setup for all or some subsystems. It is recommended that each of the managers have
an independent toggle within the config file to enable caching. The easiest method to utilize the toggle
within the configuration file is to define a caching boolean option within that managers configuration
section (e.g. identity). Enable the global cache enabled option as well as the specific managers
caching enable toggle in order to cache that subsystem.

The oslo.cache is simple and easy to adopt by any system. See the usage guide of it. There are various
cache backends supported by it. Example use of oslo.cache in keystone (in this example, token is the
manager):

from keystone.common import cache

TOKENS_REGION = cache.create_region(name='tokens')
MEMOIZE_TOKENS = cache.get_memoization_decorator(

group='token',
region=TOKENS_REGION)

@MEMOIZE_TOKENS
def _validate_token(self, token_id):

...
return token

With the above example, each call to the cacheable_function would check to see if the arguments
passed to it matched a currently valid cached item. If the return value was cached, the caching layer would
return the cached value; if the return value was not cached, the caching layer would call the function, pass
the value to the MEMOIZE_TOKEN decorator, which would then determine if caching was globally enabled
and enabled for the token manager. If either caching toggle is disabled, the value is returned but not
cached.

It is recommended that each of the managers have an independent configurable time-to-live (TTL).
The option cache_time is to be set for every manager under its section in keystone.conf file. If the

366 Chapter 5. Contributor Documentation

https://opendev.org/openstack/oslo.cache
https://opendev.org/openstack/oslo.cache
https://docs.openstack.org/oslo.cache/latest/user/usage.html
https://opendev.org/openstack/oslo.cache

Keystone Documentation, Release 21.0.2.dev4

cache_time is set to None, the expiration time will be set to the global default expiration_time
option in the [cache] configuration section. These options are passed to and handled by oslo.cache.

Cache invalidation can be done if specific cache entries are changed. Example of invalidating a cache
(in this example, token is the manager):

def invalidate_individual_token_cache(self, token_id):
...
self._validate_token.invalidate(self, token_id)

For cache invalidation, there is an invalidate method (attribute) on the decorated function. To invali-
date the cache, pass the same arguments to the invalidate method as you would the normal function.
This means you need to pass self as the first argument.

5.14.2 Filtering responsibilities between API resources and drivers

Keystone supports the specification of filtering on list queries as part of the v3 identity API. By default
these queries are satisfied in the API resource when it calls the wrap_collection method at the end of
a get method. However, to enable optimum performance, any driver can implement some or all of the
specified filters (for example, by adding filtering to the generated SQL statements to generate the list).

The communication of the filter details between the API resource and its drivers is handled by the passing
of a reference to a Hints object, which is a list of dicts describing the filters. A driver that satisfies a filter
must delete the filter from the Hints object so that when it is returned to the API, it knows to only execute
any unsatisfied filters.

The contract for a driver for list_{entity} methods is therefore:

• It MUST return a list of entities of the specified type

• It MAY either just return all such entities, or alternatively reduce the list by filtering for one or more
of the specified filters in the passed Hints reference, and removing any such satisfied filters. An
exception to this is that for identity drivers that support domains, then they should at least support
filtering by domain_id.

5.14.3 Entity list truncation by drivers

Keystone supports the ability for a deployment to restrict the number of entries returned from list op-
erations, typically to prevent poorly formed searches (e.g. without sufficient filters) from becoming a
performance issue.

These limits are set in the configuration file, either for a specific driver or across all drivers. A global
list_limit set in [DEFAULT] section of keystone is considered in case no limit is set for specific driver.
These limits are read at the Manager level and passed into individual drivers as part of the Hints list object.
A driver should try and honor any such limit if possible, but if it is unable to do so then it may ignore
it (and the truncation of the returned list of entities will happen at the API level by wrap_collection
method).

5.14. Learning Architecture Internals 367

Keystone Documentation, Release 21.0.2.dev4

5.15 Keystone for Other Services

This document provides a summary of some things that other services need to know about how keystone
works, and specifically about how they can take advantage of the v3 API. The v3 API was introduced as
a stable API in the Grizzly release.

5.15.1 Glossary

Authentication The process of determining if a user is who they claim to be (authN).

Authorization The process of determining if a user can do what they are requesting (authZ).

Scope A specific operating context. This is commonly used when describing the authorization a user
may have. For example, a user with a role assignment on a project can get a token scoped to that
project, ultimately operating within that projects scope.

System An assignment target that refers to a collection of API services as a whole. Users and groups
can be granted authorization on the deployment system.

Service OpenStack services like identity, compute, image, etc.

Domain A container for users, projects, and groups. A domain is also an assignment target for users and
groups. Its possible for users and groups to have authorization on domains outside of the domain
associated to their reference.

Project A container and a namespace for resources isolated within OpenStack. A user, or group of users,
must have a role assignment on a project in order to interact with it.

Token A self-service resource that proves a users identity and authentication. It can optionally carry a
users authorization, allowing them to interact with OpenStack services.

Role A string that represents one or more permissions or capabilities.

Role Assignment An association between an actor and a target that results in authorization. Actors can
be users or groups of users. Targets can be projects, domains, or the deployment system itself.

User A entity modeling an end-user of the system.

Group A container for users. Users indirectly inherit any authorization the group has on projects, do-
mains, or the system.

5.15.2 Domains

A major new feature in v3 is domains. Every project, user, and user group is owned by a domain (reflected
by their domain_id value) which provides them their own namespace. For example, unlike in v2.0,
usernames are no longer unique across the deployment. You can have two users with the same name, but
they must be in different domains. However, user IDs are assigned to users by keystone and are expected
to be unique across the deployment. All of this logic applies to projects, user groups and roles.

One of the great things about domains is that you can have one domain backed by SQL (for service users)
and another backed by LDAP (the cloud is deployed into existing infrastructure).

368 Chapter 5. Contributor Documentation

Keystone Documentation, Release 21.0.2.dev4

5.15.3 The default domain

Note: The v2.0 API has been removed as of the Queens release. While this section references the v2.0
API, it is purely for historical reasons that clarify the existance of the default domain.

Domains were introduced as a v3-only feature. As a result, the v2.0 API didnt understand the concept of
domains. To allow for both versions of the Identity API to run side-by-side, the idea of a default domain
was established.

The default domain was a domain that was guaranteed to exist and was created during the
keystone-manage db_sync process. By default, the domain ID is default and the name is Default,
but it is possible to change these values through keystones configuration file. The v2.0 API would consider
users and projects existing within that domain as valid, but it would never expose domain information
through the API. This allowed the v2.0 API to operate under the assumption that everything within the
default domain was accessible. This was crucial in avoiding namespace conflicts between v2.0 and v3
where multiple domains existed. Using v3 allowed deployers the ability to experiment with domains,
while isolating them from the v2.0 API.

As far as the v3 API is concerned, the default domain is simply a domain and doesnt carry any special
connotation like it did with v2.0.

5.15.4 Authorization Scopes

End users use the Identity API as a way to express their authoritative power to other OpenStack services.
This is done using tokens, which can be scoped to one of several targets depending on the users role as-
signments. This is typically referred to as a tokens scope. This happens when a user presents credentials,
in some form or fashion, to keystone in addition to a desired scope. If keystone can prove the user is who
they say they are (authN), it will then validate that the user has access to the scope they are requesting
(authZ). If successful, the token response will contain a token ID and data about the transaction, such
as the scope target and role assignments. Users can use this token ID in requests to other OpenStack
services, which consume the authorization information associated to that token to make decisions about
what that user can or cannot do within that service.

This section describes the various scopes available, and what they mean for services consuming tokens.

System Scope

A system-scoped token implies the user has authorization to act on the deployment system. These tokens
are useful for interacting with resources that affect the deployment as a whole, or exposes resources that
may otherwise violate project or domain isolation.

Good examples of system-scoped resources include:

• Services: Service entities within keystone that describe the services deployed in a cloud.

• Endpoints: Endpoints that tell users where to find services deployed in a cloud.

• Hypervisors: Physical compute infrastructure that hosts instances where the instances may, or may
not, be owned by the same project.

5.15. Keystone for Other Services 369

Keystone Documentation, Release 21.0.2.dev4

Domain Scope

A domain-scoped token carries a users authorization on a specific domain. Ideally, these tokens would
be useful for listing resources aggregated across all projects with that domain. They can also be useful
for creating entities that must belong to a domain. Users and groups are good examples of this. The
following is an example of how a domain-scoped token could be used against a service.

Assume a domain exists called Foo, and it contains projects called bar and baz. Lets also assume both
projects contain instances running a workload. If Alice is a domain administrator for Foo, she should be
able to pass her domain-scoped token to nova and ask for a list of instances. If nova supports domain-
scoped tokens, the response would contain all instances in projects bar and baz.

Another example of using a domain-scoped token would be if Alice wanted to create a new project in
domain Foo. When Alice sends a request to create a new project (POST /v3/projects), keystone should
ensure the new project is created within the Foo domain, since thats the authorization associated to Alices
token.

Warning: This behavior isnt completely implemented, and is still in progress. This example de-
scribes the ideal behavior, specifically for developers looking to implement scope into their APIs.

Project Scope

A project-scoped token carries the role assignments a user has on a project. This type of scope is great for
managing resources that fit nicely within project boundaries. Good examples of project-level resources
that can be managed with project-scoped tokens are:

• Instances: Virtual compute servers that require a project association in order to be created.

• Volumes: Storage devices that can be attached to instances.

Unscoped

An unscoped token is a token that proves authentication, but doesnt carry any authorization. Users
can obtain unscoped tokens by simply proving their identity with credentials. Unscoped tokens can be
exchanged for any of the various scoped tokens if a user has authorization on the requested scope.

An example of where unscoped tokens are specifically useful is when users perform federated authenti-
cation. First, a user will receive an unscoped token pending successful federated authentication, which
they can use to query keystone for a list of projects theyre allowed to access. Then they can exchange their
unscoped token for a project-scoped token allowing them to perform actions within a particular project.

5.15.5 Why are authorization scopes important?

Flexibility for exposing your work

OpenStack provides a rich set of APIs and functionality. We wrote some APIs with the intent of managing
the deployment hardware, otherwise referred to as the deployment system. We wrote others to orchestrate
resources in a project or a domain. Some APIs even operate on multiple levels. Since we use tokens to
authorize a users actions against a given service, they needed to handle different scope targets. For
example, when a user asks for a new instance, we expect that instance to belong to a project; thus we

370 Chapter 5. Contributor Documentation

Keystone Documentation, Release 21.0.2.dev4

expect a project relayed through the tokens scope. This idea is fundamental in providing isolation, or
tenancy, between projects in OpenStack.

Initially, keystone only supported the ability to generate project-scoped tokens as a product of a user
having a role assignment on a project. Consequently, services had no other choice but to require project-
scoped tokens to protect almost all of their APIs, even if that wasnt an ideal option. Using project-scoped
tokens to protect APIs they werent designed to protect required operators to write custom policy checks
to secure those APIs. An example showcases this more clearly.

Lets assume an operator wanted to create a read-only role. Users with the reader role would be able
to list things owned by the project, like instances, volumes, or snapshots. The operator also wants to
have a read-only role for fellow operators or auditors, allowing them to view hypervisor information or
endpoints and services. Reusing the existing reader role is difficult because users with that role on a
project shouldnt see data about hypervisors, which would violate tenancy. Operators could create a new
role called operator or system-reader, but then those users would still need to have that role assigned
on a project to access deployment-level APIs. The concept of getting project-scoped tokens to access
deployment-level resources makes no sense for abstractions like hypervisors that cannot belong to a
single project. Furthermore, this requires deployers to maintain all of this in policy files. You can quickly
see how only using project-scope limits our ability to protect APIs without convoluted or expensive-to-
maintain solutions.

Each scope offered by keystone helps operators and users avoid these problems by giving you, the devel-
oper, multiple options for protecting APIs you write, instead of the one-size-fits-all approach we outgrew.
You no longer have to hope an operator configures policy correctly so their users can consume the feature
you wrote. The more options you have for protecting an API, the easier it is to provide default policies
that expose more of your work to users safely.

Less custom code

Another crucial benefit of authorization scopes offered by keystone is less custom code. For exam-
ple, if you were writing an API to manage a deployment-level resource but only allowed to consume
project-scoped tokens, how would you determine an operator from an end user? Would you attempt to
standardize a role name? Would you look for a unique project in the tokens scope? Would these checks
be configurable in policy or hardcoded in your service?

Chances are, different services will come up with different, inconsistent solution for the same problem.
These inconsistencies make it harder for developers to context switch between services that process things
differently. Users also suffer from inconsistencies by having to maintain a mental mapping of different
behavior between services. Having different scopes at your disposal, through keystone tokens, lets you
build on a standard solution that other projects also consume, reducing the likelihood of accidentally
developing inconsistencies between services. This commonality also gives us a similar set of terms we
can use when we communicate with each other and users, allowing us to know what someone means by
a system-admin and how that is different from a project-admin.

5.15. Keystone for Other Services 371

Keystone Documentation, Release 21.0.2.dev4

Reusable default roles

When OpenStack services originally started developing a policy enforcement engine to protect APIs, the
only real concrete role we assumed to be present in the deployment was a role called admin. Because
we assumed this, we were able to write policies with admin as the default. Keystone also took steps to
ensure it had a role with that name during installation. While making this assumption is beneficial for
some APIs, having only one option is underwhelming and leaves many common policy use cases for
operators to implement through policy overrides. For example, a typical ask from operators is to have a
read-only role, that only allows users with that role on a target to view its contents, restricting them from
making writable changes. Another example is a membership role that isnt the administrator. To put it
clearly, a user with a member role assignment on a project may create new storage volumes, but theyre
unable to perform backups. Users with the admin role on a project can access the backups functionality.

Keep in mind, the examples above are only meant to describe the need for other roles besides admin
in a deployment. Service developers should be able to reuse these definitions for similar APIs and as-
sume those roles exist. As a result, keystone implemented support for ensuring the admin, member, and
reader roles are present during the installation process, specifically when running keystone-manage
bootstrap. Additionally, keystone creates a relationship among these roles that make them easier for
service developers to use. During creation, keystone implies that the admin role is a superset of the
member role, and the member role is a superset of the reader role. The benefit may not be obvious,
but what this means is that users with the admin role on a target also have the member and reader roles
generated in their token. Similarly, users with the member role also have the reader role relayed in their
token, even though they dont have a direct role assignment using the reader role. This subtle relationship
allows developers to use a short-hand notation for writing policies. The following assumes foobar is a
project-level resource available over a service API and is protected by policies using generic roles:

"service:foobar:get": "role:admin OR role:member OR role:reader"
"service:foobar:list": "role:admin OR role:member OR role:reader"
"service:foobar:create": "role:admin OR role:member"
"service:foobar:update": "role:admin OR role:member"
"service:foobar:delete": "role:admin"

The following policies are functionally equivalent to the policies above, but rely on the implied relation-
ship between the three roles, resulting in a simplified check string expression:

"service:foobar:get": "role:reader"
"service:foobar:list": "role:reader"
"service:foobar:create": "role:member"
"service:foobar:update": "role:member"
"service:foobar:delete": "role:admin"

372 Chapter 5. Contributor Documentation

Keystone Documentation, Release 21.0.2.dev4

5.15.6 How do I incorporate authorization scopes into a service?

Now that you understand the advantages of a shared approach to policy enforcement, the following section
details the order of operations you can use to implement it in your service.

Ruthless Testing

Policy enforcement implementations vary greatly across OpenStack services. Some enforce authoriza-
tion near the top of the API while others push the logic deeper into the service. Differences and intricacies
between services make testing imperative to adopt a uniform, consistent approach. Positive and negative
protection testing helps us assert users with specific roles can, or cannot, access APIs. A protection test
is similar to an API, or functional test, but purely focused on the authoritative outcome. In other words,
protection testing is sufficient when we can assert that a user is or isnt allowed to do or see something. For
example, a user with a role assignment on project foo shouldnt be able to list volumes in project bar. A
user with a role on a project shouldnt be able to modify entries in the service catalog. Users with a reader
role on the system, a domain, or a project shouldnt be able to make writable changes. You commonly
see protection tests conclude with an assertion checking for a successful response code or an HTTP 403
Forbidden.

If your service has minimal or non-existent protection coverage, you should start by introducing tests that
exercise the current default policies, whatever those are. This step serves three significant benefits.

First, it puts us in the shoes of our users from an authorization perspective, allowing us to see the surface
of the API a user has access to with a given assignment. This information helps audit the API to make
sure the user has all the authorization to do what they need, but nothing more. We should note incon-
sistencies here as feedback that we should fix, especially since operators are probably attempting to fix
these inconsistencies through customized policy today.

Second, a collection of protection tests make sure we dont have unwanted security-related regressions.
Imagine making a policy change that introduced a regression and allowed a user to access an API and
data they arent supposed to see. Conversely, imagine a patch that accidentally tightened restriction on an
API that resulted in a broken workflow for users. Testing makes sure we catch cases like this early and
handle them accordingly.

Finally, protection tests help us use test-driven development to evolve policy enforcement. We can make
a change and assert the behavior using tests locally, allowing us to be proactive and not reactive in our
authoritative business logic.

To get started, refer to the oslo.policy documentation that describes techniques for writing useful pro-
tection tests. This document also describes some historical context you might recognize in your service
and how you should deal with it. You can also look at protection tests examples in other services, like
keystone or cinder. Note that these examples test the three default roles provided from keystone (reader,
member, and admin) against the three scopes keystone offers, allowing for nine different personas with-
out operators creating roles specific to their deployment. We recommend testing these personas where
applicable in your service:

• project reader

• project member

• project admin

• system reader

• system member

5.15. Keystone for Other Services 373

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://docs.openstack.org/oslo.policy/latest/user/usage.html#testing-default-policies
https://opendev.org/openstack/keystone/src/commit/77e50e49c5af37780b8b4cfe8721ba28e8a58183/keystone/tests/unit/protection/v3
https://review.opendev.org/#/c/602489/

Keystone Documentation, Release 21.0.2.dev4

• system admin

• domain reader

• domain member

• domain admin

Auditing the API

After going through the API and adding protection tests, you should have a good idea of how each API
is or isnt exposed to end users with different role assignments. You might also have a list of areas where
policies could be improved. For example, maybe you noticed an API in your service that consumes
project-scoped tokens to protect a system-level resource. If your service has a bug tracker, you can use
it to document these gaps. The keystone team went through this exercise and used bugs. Feel free to use
these bug reports as a template for describing gaps in policy enforcement. For example, if your service
has APIs for listing or getting resources, you could implement the reader role on that API.

Setting scope types

With testing in place and gaps documented, you can start refactoring. The first step is to start using
oslo.policy for scope checking, which reduces complexity in your service by having a library do some
lifting for you. For example, if you have an API that requires a project-scoped token, you can set the scope
of the policy protecting that API accordingly. If an instance of RuleDefault has scope associated to
it, oslo.policy checks that it matches the scope of the token used to make the request. This behavior is
configurable, allowing operators to turn it on once all policies have a scope type and once operators have
audited their assignments and educated their users on how to get the scope necessary to access an API.
Once that happens, an operator can configure oslo.policy to reject requests made with the wrong scope.
Otherwise, oslo.policy logs a warning for operators that describes the mismatched scope.

The oslo.policy library provides documentation for setting scope. You can also see keystone examples
or placement examples of setting scope types on policies.

If you have difficulty deciding which scope an API or resource requires, try thinking about the intended
user. Are they an operator managing the deployment? Then you might choose system. Are they an end
user meant to operate only within a given project? Then project scope is likely what you need. Scopes
arent mutually exclusive.

You may have APIs that require more than one scope. Keystones user and project APIs are good examples
of resources that need different scopes. For example, a system administrator should be able to list all users
in the system, but domain administrators should only be able to list users within their domain. If you have
an API that falls into this category, you may be required to implicitly filter responses based on the scope
type. If your service uses oslo.context and keystonemiddleware, you can query a RequestContext object
about the tokens scope. There are keystone patches that show how to filter responses according to scope
using oslo.context, in case you need inspiration.

If you still cant seem to find a solution, dont hesitate to send a note to the OpenStack Discuss mailing list
tagged with [keystone] or ask in #openstack-keystone on IRC.

374 Chapter 5. Contributor Documentation

http://tinyurl.com/y5kj6fn9
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/user/usage.html#setting-scope
https://review.opendev.org/#/q/status:merged+project:openstack/keystone+branch:master+topic:add-scope-types
https://review.opendev.org/#/c/571201/
https://review.opendev.org/#/c/623319/
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://wiki.openstack.org/wiki/IRC

Keystone Documentation, Release 21.0.2.dev4

Rewriting check string

With oslo.policy able to check scope, you can start refactoring check strings where-ever necessary. For
example, adding support for default roles or removing hard-coded is_admin: True checks. Remem-
ber that oslo.policy provides deprecation tooling that makes upgrades easier for operators. Specifically,
upgrades are made easier by combining old defaults or overrides with the new defaults using a logical
OR. We encourage you to use the available deprecation tooling when you change policy names or check
strings. You can refer to examples that show you how to build descriptive rule objects using all the default
roles from keystone and consuming scopes.

Communication

Communicating early and often is never a bad thing, especially when a change is going to impact op-
erators. At this point, its crucial to emphasize the changes youve made to policy enforcement in your
service. Release notes are an excellent way to signal changes to operators. You can find examples when
keystone implemented support for default roles. Additionally, you might have operators or users ask
questions about the various scopes or what they mean. Dont hesitate to refer them to keystones scope
documentation.

5.15.7 Auth Token middleware

The auth_token middleware handles token validation for the different services. Conceptually, what
happens is that auth_token pulls the token out of the X-Auth-Token request header, validates the token
using keystone, produces information about the identity (the API user) and authorization context (the
project, roles, etc) of the token, and sets environment variables with that data. The services typically take
the environment variables, put them in the services context, and use the context for policy enforcement
via oslo.policy.

Service tokens

Service tokens are a feature where the auth_token middleware will also accept a service token in the
X-Service-Token header. It does the same thing with the service token as the user token, but the
results of the token are passed separately in environment variables for the service token (the service
user, project, and roles). If the service knows about these then it can put this info in its context and
use it for policy checks. For example, assuming theres a special policy rule called service_role
that works like the role rule except checks the service roles, you could have an oslo.policy rule
like service_role:service and user_id:%(user_id)s such that a service token is required along
with the user owning the object.

5.15.8 Picking the version

Use version discovery to figure out what version the identity server supports rather than configuring the
version. This will make it easier to adopt new API versions as they are implemented.

For information about how to accomplish service discovery with the keystoneauth library, please see the
documentation.

5.15. Keystone for Other Services 375

https://review.opendev.org/#/q/(status:open+OR+status:merged)+project:openstack/keystone+branch:master+topic:implement-default-roles
https://docs.openstack.org/keystoneauth/latest/using-sessions.html#service-discovery

Keystone Documentation, Release 21.0.2.dev4

5.15.9 Hierarchical Multitenancy

This feature is specific to v3 and allows projects to have parents, siblings, and children relationships with
other projects.

Tokens scoped to projects in a hierarchical structure wont contain information about the hierarchy in the
token response. If the service needs to know the hierarchy it should use the v3 API to fetch the hierarchy.

5.16 Developing Keystone Drivers

A driver, also known as a backend, is an important architectural component of Keystone. It is an abstrac-
tion around the data access needed by a particular subsystem. This pluggable implementation is not only
how Keystone implements its own data access, but how you can implement your own!

Each major subsystem (that has data access needs) implements the data access by using drivers. Some
examples of Keystones drivers:

• keystone.identity.backends.ldap.Identity

• keystone.token.providers.fernet.core.Provider

• keystone.contrib.federation.backends.sql.Federation

5.16.1 In/Out of Tree

Its best to start developing your custom driver outside of the Keystone development process. This means
developing it in your own public or private git repository and not worrying about getting it upstream (for
now).

This is better for you because it gives you more freedom and you are not bound to the strict OpenStack
development rules or schedule. You can iterate faster and take whatever shortcuts you need to get your
product out of the door.

This is also good for Keystone because it will limit the amount of drivers that must be maintained by the
team. If the team had to maintain a driver for each NoSQL DB that deployers want to use in production
there would be less time to make Keystone itself better. Not to mention that the team would have to start
gaining expertise in potentially dozens of new technologies.

As youll see below there is no penalty for open sourcing your driver, on GitHub for example, or even
keeping your implementation private. We use Setuptools entry points to load your driver from anywhere
in the Python path.

5.16.2 How To Make a Driver

The TLDR; steps (and too long didnt write yet):

1. Determine which subsystem you would like write a driver for

2. Subclass the most current version of the driver interface

3. Implement each of the abstract methods for that driver

a. We are currently not documenting the exact input/outputs of the driver methods. The best
approach right now is to use an existing driver as an example of what data your driver will
receive and what data your driver will be required to return.

376 Chapter 5. Contributor Documentation

https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

Keystone Documentation, Release 21.0.2.dev4

b. There is a plan in place to document these APIs in more detail.

4. Register your new driver as an entry point

5. Configure your new driver in keystone.conf

6. Sit back and enjoy!

5.16.3 Driver Interface Changes

We no longer support driver versioning. Thus, if a driver interface changes, you will need to upgrade
your custom driver to meet the new driver contract.

Removing Methods

Newer driver interfaces may remove methods that are currently required. Methods are removed when
they are no longer required or invoked by Keystone. There is no reason why methods removed from the
Keystone interface need to be removed from custom drivers.

Adding Methods

The most common API changes will be adding methods to support new features. The new method must
be implemented by custom driver implementations.

Updating Methods

We will do our best not to update existing methods in ways that will break custom driver implementations.
However, if that is not possible, again you will need to upgrade your custom driver implementation to
meet the new driver contract.

5.17 Service Catalog Overview

The OpenStack keystone service catalog allows API clients to dynamically discover and navigate to cloud
services. The service catalog may differ from deployment-to-deployment, user-to-user, and project-to-
project.

The service catalog is the first hurdle that API consumers will need to understand after successfully
authenticating with Keystone, making it a critical focal point for the overall user experience of OpenStack.

If youre integrating your OpenStack service with Keystone, then please follow the guidelines provided
below.

If youre writing an OpenStack client, hopefully this helps you navigate the service catalog that youre
being presented so that you can quickly move on to the business of consuming cloud services.

5.17. Service Catalog Overview 377

Keystone Documentation, Release 21.0.2.dev4

5.17.1 An example service catalog

The following is an example service catalog. It actually excludes several common attributes such as
id, which are of no concern to end users, region_id, which are a bit out of scope for this topic, and
enabled, which is always true for end users.

This service catalog contains just one service, Keystone, which is accessible via a single endpoint URL:

{
"catalog": [

{
"name": "Keystone",
"type": "identity",
"endpoints": [

{
"interface": "public",
"url": "https://identity.example.com:5000/"

}
]

}
]

}

The service catalog itself may appear in a token creation response (POST /v3/auth/tokens), a token
validation response (GET /v3/auth/tokens), or as a standalone resource (GET /v3/auth/catalog).

5.17.2 Services

The service catalog itself is composed of a list of services.

Service entities represent web services in the OpenStack deployment. A service may have zero or more
endpoints associated with it, although a service with zero endpoints is essentially useless in an OpenStack
configuration.

In addition to the related endpoints, there are two attributes of services that important to end users:

• name (string): user-facing name of the service

This attribute is not intended to be machine-parseable or otherwise meaningful beyond branding or name-
recognition for end users. Logical values might include Keystone or maybe Brand X Public Cloud Iden-
tity Service. Deployers should be free to rename, and therefore rebrand, a service at will.

• type (string): describes the API implemented by the service. To support future projects, the value
should not be validated against a list.

An OpenStack-wide effort to standardize service types has been done outside of Keystone and is known
as the service-types authority.

This should not convey the version of the API implemented by the service (as in Cinders volumev2
service type) because both the volume service and volumev2 service provide block storage as a service
which is what the service type is meant to convey. The underlying implementation is completely irrelevant
here.

In the general case, there should only be one service in a deployment per service type, although Keystone
does not enforce this today.

378 Chapter 5. Contributor Documentation

https://service-types.openstack.org/

Keystone Documentation, Release 21.0.2.dev4

5.17.3 Endpoints

Each service should have one or more related endpoints. An endpoint is essentially a base URL for
an API, along with some metadata about the endpoint itself and represents a set of URL endpoints for
OpenStack web services.

• interface (string): describes the visibility of the endpoint according to one of three values
(public, internal, and admin)

public endpoints are intended for consumption by end users or other service users, generally on a pub-
licly available network interface.

internal endpoints are intended for consumption by end users, generally on an unmetered internal
network interface.

admin endpoints are intended only for consumption by those needing administrative access to the service,
generally on a secure network interface.

You might also think of each interface value as the result of a matrix of use cases:

• Public API on a public network: use a public interface.

• Public API on an internal network: use an internal interface.

• Privileged API on a public network: unsupported! Use access controls on your public endpoint
instead.

• Privileged API on an internal network: admin interface, but use access controls on your public
endpoint instead. The notion of a privileged API endpoint makes security-conscious developers
instantly lazy (security becomes someone elses problem), and is an obvious attack vector if some-
one were to infiltrate your internal network. It also adds more complexity to your API architecture
which makes documentation, testing, and API evolution that much more difficult.

• url (string): fully qualified URL of the service endpoint

This should be unversioned base URL for an API. Good examples include https://identity.
example.com:5000/ and https://keystone.example.com/.

Conversely, https://identity.example.com:5000/v3/ is an unfortunate example because it directs
all clients to connect to a versioned endpoint, regardless of which API versions they understand. This
makes it hard for services to do any sort of API versioning, and for clients to dynamically discover
additional available versions.

For a period of time, keystone was stuck in a position where it implements a /v3/ API, but for backwards
compatibility with existing v2 clients, was forced to continue advertising the /v2.0/ endpoint in the
service catalog until it was reasonable to assume that all clients in the ecosystem are capable of handling
an unversioned URL. As a side effect, this has had a tremendous impact on the awareness of, and thus
adoption of, Keystones Identity API v3 (which has been enabled by default and stable since the 2013.1
Grizzly release). Dont put your project in that position!

Similarly, https://object-store.example.com/v1/KEY_\$(project_id)s (which would ulti-
mately be rendered to clients as a project-specific URL, such as https://object-store.example.
com/v1/KEY_d12af07f4e2c4390a21acc31517ebec9) is an unfortunate example because not only
does it hardcode an API version as in the above example, but it also exposes the clients project ID directly
to the client. Instead, the operational scope or a request can be determined by inspecting the users token
or consuming values populated by keystonemiddleware.auth_token. Its also far less cacheable than
a URL that is neither project nor user specific, which is important given that every client needs access to
consume the service catalog prior to nearly every API request.

5.17. Service Catalog Overview 379

Keystone Documentation, Release 21.0.2.dev4

5.18 Technical Vision for Keystone

This document is a self-evaluation of keystone with regard to the Technical Committees technical vision
and serves as a basis for guiding the mission of the keystone project. The objectives captured here are
what the keystone team strives to build. New features and design changes should be compared with this
document before being embarked upon. When such proposals are not in alignment, propose a change
to this document or to the overall technical vision to initiate a discussion on the renewed vision for the
project.

5.18.1 Mission Statement

Keystones mission is to provide secure, resilient, and user-friendly discovery, authentication, and autho-
rization for multitenant services.

5.18.2 Vision for OpenStack

Self-service

Keystone needs to strive to provide a flexible and simple mechanism to expose OpenStack functionality
safely and securely in a multi-tenant environment, to enable a true self-service experience for end users
in a shared-resource system.

Application Control

Keystone provides the ability for applications to have their own identity through application credentials,
in service of developers building applications that need to access cloud APIs and cloud-native applica-
tions.

Interoperability

Keystone strives for a completely seamless experience for end users and applications running on multiple
clouds. Initiatives in service of providing such a consistent user experience include providing a discovery
mechanism for available functionality, eliminating optional API extensions, and providing useful default
roles which eliminate the need for inconsistently-named, operator-defined roles for similar access levels
between clouds. Keystone is also capable of itself acting as a bridge between separate clouds through its
Keystone-to-Keystone federated authentication functionality.

Bidirectional Compatibility

To support clients operating across multiple clouds of potentially different versions, changes in keystones
major API are additive-only, and updates to the API are signaled by the minor version number, which
allows clients to discover, to a reasonable degree, what capabilities are available in the keystone version
they are connecting to. Keystone also provides a JSON-home document to aid clients in discovering the
availability and status of features. Enhancements to the discoverability of keystones APIs are a priority.

380 Chapter 5. Contributor Documentation

https://governance.openstack.org/tc/reference/technical-vision.html
https://governance.openstack.org/tc/reference/technical-vision.html

Keystone Documentation, Release 21.0.2.dev4

Partitioning

Keystones service catalog mechanism makes it possible for users to have authorization for resources
in geographically distributed regions, and keystones various mechanisms for distributed authentication,
such as using a distributed database or LDAP identity backend, using an external authentication source,
or federating keystone itself to provide distributed identity providers, support geographically distributed
computing. Keystone hopes to create a consistent user story and reference architecture for large-scale
distributed deployments, including edge-computing use cases.

Basic Physical Data Center Management

In support of OpenStack being primarily a data center management tool, keystone should always work
out of the box and not rely on the pre-existence of another identity management system in the data center.
In practice this means always continuing to support a SQL storage backend for user data.

Plays Well With Others

Keystone encourages its use outside of an OpenStack environment. In support of this, keystone supports
a standard authentication token format (JWT) that can be understood by many applications, and seeks to
support full Single-Sign-On functionality that can be used in front of any web application.

Customizable Integration

In service of supporting customizable integration both between OpenStack services and from client ap-
plications, keystone has an ongoing mission to fulfill the Principle of Least Privilege and permit the
cloud consumer to delegate only the minimum permissions needed to an application. Keystone works
to provide this both through reforming OpenStack policy to make it easier to manage across services,
and by providing new mechanisms such as application credential access rules to allow users to restrict
capabilities of applications to a subset of service APIs.

Graphical User Interface

Keystone does not provide a graphical user interface, but must always be mindful of how its APIs will be
presented in dashboards. For some features, such as Single-Sign-On authentication, keystone may pro-
vide its own graphical user interface in order to provide a smooth web-login experience without requiring
a dependency on another dashboard.

Secure by Design

Keystone strives to be secure by design, by making opinionated choices about the default security con-
figuration. Making it easier to administer fine-grained access control in support of the Principle of Least
Privilege is an ongoing effort.

5.18. Technical Vision for Keystone 381

https://tools.ietf.org/html/rfc7519
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Keystone Documentation, Release 21.0.2.dev4

5.19 Programming Exercises for Interns and New Contributors

The keystone team participates in open source internship programs such as Outreachy and Google Sum-
mer of Code and welcomes contributions from students and developers of all skill levels. To help with
formal applications for work programs or to give casual contributors a taste of what working on keystone
is like, weve created a few exercises to showcase what we think are valuable development skills.

These exercises are samples, and code produced to solve them should most likely not be merged into
keystone. However, you should still propose them to Gerrit to get practice with the code review system
and to get feedback from the team. This is a good way to get used to the development workflow and get
acquainted with the benefits of working in a collaborative development environment. Also feel free to
talk to the keystone team to get help with these exercises, and refer to the contributor documentation for
more context on the architecture and contributing guidelines for keystone.

The exercises provide some ideas of what you can do in keystone, but feel free to get creative.

5.19.1 Add a Parameter to an API

Add a string parameter named nickname to the Project API. The end result will be that you can
use the new parameter when you create a new project using the POST /v3/projects API, update the
parameter using the PATCH /v3/projects/{project_id} API, and the value displayed using the GET
/v3/projects/{project_id}.

Refer to the API Change tutorial. In short, you will need to follow these steps:

1. Create a SQL migration to add the parameter to the database table (keystone.
common.sql.legacy_migration.expand_repo.versions, keystone.common.sql.
legacy_migration.data_migration_repo.versions, keystone.common.sql.
legacy_migration.contract_repo.versions)

2. Add a SQL migration unit test (keystone/tests/unit/test_sql_upgrade.py)

3. Add the parameter to the SQL model for projects (keystone.resource.backends.sql)

4. Add unit tests (keystone/tests/unit/resource/test_backend.py) for the manager (keystone.
resource.core) to show that the project can be created and updated with the new parameter
using the provider mechanism

5. Add the parameter to the API schema (keystone.resource.schema)

6. Add an API unit test (keystone/tests/unit/test_v3_resource.py)

7. Document the new parameter in the api-ref

5.19.2 Write an External Driver

Write an external driver named file that implements the Project API. The end result will be that you can
set [resource]/driver = file in keystone.conf to have keystone load a list of project names from a
text file, and querying keystone for projects will return projects with those names in the default domain.

Refer to the Developing Keystone Drivers tutorial. Your driver can start as an in-tree driver: create a
class named Resource in keystone/resource/backends/file.py that implements keystone.resource.
backends.base.Resource. Once you have that working, break it out into a separate repository and
create a Setuptools entrypoint to allow you to register it with keystone.

382 Chapter 5. Contributor Documentation

https://www.outreachy.org/
https://summerofcode.withgoogle.com/
https://summerofcode.withgoogle.com/
https://docs.openstack.org/contributors/common/setup-gerrit.html
https://docs.openstack.org/api-ref/identity/v3/#create-project
https://docs.openstack.org/api-ref/identity/v3/#update-project
https://docs.openstack.org/api-ref/identity/v3/#show-project-details
https://docs.openstack.org/api-ref/identity/v3/#show-project-details
https://docs.openstack.org/api-ref/identity/
https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

Keystone Documentation, Release 21.0.2.dev4

5.19.3 Write an Auth Plugin

Write an auth plugin named hacker that allows any existing user to authenticate if they provide a valid
username and the password "hax0r". The end result will be that you can add hacker as an auth method
in [auth]/methods in keystone.conf, and users will be able to get an unscoped token using POST
/v3/auth/tokens and providing "hacker" as the auth method, a valid username as the username, and
"hax0r" as the password.

Refer to the Authentication Plugins documentation. You should create a class Hacker
in keystone/auth/plugins/hacker.py that implements keystone.auth.plugins.base.
AuthMethodHandler. For bonus points, also add the plugin to keystoneauth so that Python
clients can also use this auth method.

5.19. Programming Exercises for Interns and New Contributors 383

https://docs.openstack.org/api-ref/identity/v3/#password-authentication-with-unscoped-authorization
https://docs.openstack.org/api-ref/identity/v3/#password-authentication-with-unscoped-authorization
https://docs.openstack.org/keystoneauth/latest/

Keystone Documentation, Release 21.0.2.dev4

384 Chapter 5. Contributor Documentation

CHAPTER

SIX

USER DOCUMENTATION

An end user can find the specific API documentation here, OpenStacks Identity API.

6.1 Supported clients

There are two supported clients, python-keystoneclient project provides python bindings and python-
openstackclient provides a command line interface.

6.1.1 Authenticating with a Password via CLI

To authenticate with keystone using a password and python-openstackclient, set the following flags,
note that the following user referenced below should be granted the admin role.

• --os-username OS_USERNAME: Name of your user

• --os-user-domain-name OS_USER_DOMAIN_NAME: Name of the users domain

• --os-password OS_PASSWORD: Password for your user

• --os-project-name OS_PROJECT_NAME: Name of your project

• --os-project-domain-name OS_PROJECT_DOMAIN_NAME: Name of the projects domain

• --os-auth-url OS_AUTH_URL: URL of the keystone authentication server

• --os-identity-api-version OS_IDENTITY_API_VERSION: This should always be set to 3

You can also set these variables in your environment so that they do not need to be passed as arguments
each time:

$ export OS_USERNAME=my_username
$ export OS_USER_DOMAIN_NAME=my_user_domain
$ export OS_PASSWORD=my_password
$ export OS_PROJECT_NAME=my_project
$ export OS_PROJECT_DOMAIN_NAME=my_project_domain
$ export OS_AUTH_URL=http://localhost:5000/v3
$ export OS_IDENTITY_API_VERSION=3

For example, the commands user list, token issue and project create can be invoked as fol-
lows:

385

https://docs.openstack.org/api-ref/identity/v3
https://docs.openstack.org/python-keystoneclient/latest
https://docs.openstack.org/python-openstackclient/latest
https://docs.openstack.org/python-openstackclient/latest

Keystone Documentation, Release 21.0.2.dev4

Using password authentication, with environment variables
$ export OS_USERNAME=admin
$ export OS_USER_DOMAIN_NAME=Default
$ export OS_PASSWORD=secret
$ export OS_PROJECT_NAME=admin
$ export OS_PROJECT_DOMAIN_NAME=Default
$ export OS_AUTH_URL=http://localhost:5000/v3
$ export OS_IDENTITY_API_VERSION=3
$ openstack user list
$ openstack project create demo
$ openstack token issue

Using password authentication, with flags
$ openstack --os-username=admin --os-user-domain-name=Default \

--os-password=secret \
--os-project-name=admin --os-project-domain-name=Default \
--os-auth-url=http://localhost:5000/v3 --os-identity-api-

↪→version=3 \
user list

$ openstack --os-username=admin --os-user-domain-name=Default \
--os-password=secret \
--os-project-name=admin --os-project-domain-name=Default \
--os-auth-url=http://localhost:5000/v3 --os-identity-api-

↪→version=3 \
project create demo

6.2 Application Credentials

Users can create application credentials to allow their applications to authenticate to keystone. Users
can delegate a subset of their role assignments on a project to an application credential, granting the
application the same or restricted authorization to a project. With application credentials, applications
authenticate with the application credential ID and a secret string which is not the users password. This
way, the users password is not embedded in the applications configuration, which is especially important
for users whose identities are managed by an external system such as LDAP or a single-signon system.

See the Identity API reference for more information on authenticating with and managing application
credentials.

6.2.1 Managing Application Credentials

Create an application credential using python-openstackclient:

$ openstack application credential create monitoring
+--------------+--
↪→--------------------------+
| Field | Value ␣
↪→ |
+--------------+--
↪→--------------------------+ (continues on next page)

386 Chapter 6. User Documentation

https://docs.openstack.org/api-ref/identity/v3/index.html#application-credentials

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

| description | None ␣
↪→ |
| expires_at | None ␣
↪→ |
| id | 26bb287fd56a41f8a577c47f79221187 ␣
↪→ |
| name | monitoring ␣
↪→ |
| project_id | e99b6f4b9bf84a9da27e20c9cbfe887a ␣
↪→ |
| roles | Member anotherrole ␣
↪→ |
| secret | PJXxBFGPOLwdl3PA6tSivJT9S4RpWhLcNZH2gXzCoxX1C2cnZsj2_Xmfw-
↪→LE7Wc-NwuJEYoHcG0gQ5bjWwe-bg |
| unrestricted | False ␣
↪→ |
+--------------+--
↪→--------------------------+

The only required parameter is a name. The application credential is created for the project to which
the user is currently scoped with the same role assignments the user has on that project. Keystone will
automatically generate a secret string that will be revealed once at creation time. You can also provide
your own secret, if desired:

$ openstack application credential create monitoring --secret securesecret
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
description	None
expires_at	None
id	bc257241e21747768c83fb9806af392d
name	monitoring
project_id	e99b6f4b9bf84a9da27e20c9cbfe887a
roles	Member anotherrole
secret	securesecret
unrestricted	False
+--------------+----------------------------------+

The secret is hashed before it is stored, so the original secret is not retrievable after creation. If the secret
is lost, a new application credential must be created.

If none are provided, the application credential is created with the same role assignments on the project
that the user has. You can find out what role assignments you have on a project by examining your token
or your keystoneauth session:

>>> mysession.auth.auth_ref.role_names
[u'anotherrole', u'Member']

If you have more than one role assignment on a project, you can grant your application credential only a
subset of your role assignments if desired. This is useful if you have administrator privileges on a project
but only want the application to have basic membership privileges, or if you have basic membership

6.2. Application Credentials 387

Keystone Documentation, Release 21.0.2.dev4

privileges but want the application to only have read-only privileges. You cannot grant the application
a role assignment that your user does not already have; for instance, if you are an admin on a project,
and you want your application to have read-only access to the project, you must acquire a read-only role
assignment on that project yourself before you can delegate it to the application credential. Removing a
users role assignment on a project will invalidate the users application credentials for that project.

$ openstack application credential create monitoring --role Member
+--------------+--
↪→--------------------------+
| Field | Value ␣
↪→ |
+--------------+--
↪→--------------------------+
| description | None ␣
↪→ |
| expires_at | None ␣
↪→ |
| id | 5d04e42491a54e83b313aa2625709411 ␣
↪→ |
| name | monitoring ␣
↪→ |
| project_id | e99b6f4b9bf84a9da27e20c9cbfe887a ␣
↪→ |
| roles | Member ␣
↪→ |
| secret | vALEOMENxB_QaKFZOA2XOd7stwrhTlqPKrOdrXXM5BORss9u3O6GT-w_
↪→HYCPaZbtg96sDPCdtzVARZLpgUOY_g |
| unrestricted | False ␣
↪→ |
+--------------+--
↪→--------------------------+

An alternative way to limit the application credentials privileges is to use Access Rules.

You can provide an expiration date for application credentials:

$ openstack application credential create monitoring --expiration '2019-02-
↪→12T20:52:43'
+--------------+--
↪→--------------------------+
| Field | Value ␣
↪→ |
+--------------+--
↪→--------------------------+
| description | None ␣
↪→ |
| expires_at | 2019-02-12T20:52:43.000000 ␣
↪→ |
| id | 4ea8c4a84f7b4c65a3d84460be9cd1f7 ␣
↪→ |
| name | monitoring ␣
↪→ |

(continues on next page)

388 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

| project_id | e99b6f4b9bf84a9da27e20c9cbfe887a ␣
↪→ |
| roles | Member anotherrole ␣
↪→ |
| secret | _My16dlySn6jr7pGvBxjcMrmPA0MCpYlkKWs3gpY3-
↪→Ybk05yt2Hh83uMdTLPWlFeh8lOXajIAVHrQaBQ06iz5Q |
| unrestricted | False ␣
↪→ |
+--------------+--
↪→--------------------------+

By default, application credentials are restricted from creating or deleting other application credentials
and from creating or deleting trusts. If your application needs to be able to perform these actions and
you accept the risks involved, you can disable this protection:

Warning: Restrictions on these Identity operations are deliberately imposed as a safeguard to pre-
vent a compromised application credential from regenerating itself. Disabling this restriction poses
an inherent added risk.

$ openstack application credential create monitoring --unrestricted
+--------------+--
↪→--------------------------+
| Field | Value ␣
↪→ |
+--------------+--
↪→--------------------------+
| description | None ␣
↪→ |
| expires_at | None ␣
↪→ |
| id | 0a0372dbedfb4e82ab66449c3316ef1e ␣
↪→ |
| name | monitoring ␣
↪→ |
| project_id | e99b6f4b9bf84a9da27e20c9cbfe887a ␣
↪→ |
| roles | Member anotherrole ␣
↪→ |
| secret |␣
↪→ArOy6DYcLeLTRlTmfvF1TH1QmRzYbmD91cbVPOHL3ckyRaLXlaq5pTGJqvCvqg6leEvTI1SQeX3QK-
↪→3iwmdPxg |
| unrestricted | True ␣
↪→ |
+--------------+--
↪→--------------------------+

6.2. Application Credentials 389

Keystone Documentation, Release 21.0.2.dev4

6.2.2 Access Rules

In addition to delegating a subset of roles to an application credential, you may also delegate more fine-
grained access control by using access rules. For example, to create an application credential that is
constricted to creating servers in nova, the user can add the following access rules:

openstack application credential create scaler-upper --access-rules '[
{

"path": "/v2.1/servers",
"method": "POST",
"service": "compute"

}
]'

The "path" attribute of application credential access rules uses a wildcard syntax to make it more flexi-
ble. For example, to create an application credential that is constricted to listing server IP addresses, you
could use either of the following access rules:

[
{

"path": "/v2.1/servers/*/ips",
"method": "GET",
"service": "compute"

}
]

or equivalently:

[
{

"path": "/v2.1/servers/{server_id}/ips",
"method": "GET",
"service": "compute"

}
]

In both cases, a request path containing any server ID will match the access rule. For even more flexibility,
the recursive wildcard ** indicates that request paths containing any number of / will be matched. For
example:

[
{

"path": "/v2.1/**",
"method": "GET",
"service": "compute"

}
]

will match any nova API for version 2.1.

An access rule created for one application credential can be re-used by providing its ID to another appli-
cation credential. You can list existing access rules:

390 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

$ openstack access rule list
+--------+---------+--------+---------------+
| ID | Service | Method | Path |
+--------+---------+--------+---------------+
| abcdef | compute | POST | /v2.1/servers |
+--------+---------+--------+---------------+

and create an application credential using that rule:

$ openstack application credential create scaler-upper-02 \
--access-rules '[{"id": "abcdef"}]'

6.2.3 Using Application Credentials

Applications can authenticate using the application_credential auth method. For a service using key-
stonemiddleware to authenticate with keystone, the auth section would look like this:

[keystone_authtoken]
auth_url = https://keystone.server/identity/v3
auth_type = v3applicationcredential
application_credential_id = 6cb5fa6a13184e6fab65ba2108adf50c
application_credential_secret= glance_secret

You can also identify your application credential with its name and the name or ID of its owner. For
example:

[keystone_authtoken]
auth_url = https://keystone.server/identity/v3
auth_type = v3applicationcredential
username = glance
user_domain_name = Default
application_credential_name = glance_cred
application_credential_secret = glance_secret

6.2.4 Rotating Application Credentials

A user can create multiple application credentials with the same role assignments on the same project.
This allows the application credential to be gracefully rotated with minimal or no downtime for your
application. In contrast, changing a service users password results in immediate downtime for any appli-
cation using that password until the application can be updated with the new password.

Note: Rotating application credentials is essential if a team member who has knowledge of the appli-
cation credential identifier and secret leaves the team for any reason. Rotating application credentials is
also recommended as part of regular application maintenance.

Rotating an application credential is a simple process:

6.2. Application Credentials 391

Keystone Documentation, Release 21.0.2.dev4

1. Create a new application credential. Application credential names must be unique within the users
set of application credentials, so this new application credential must not have the same name as
the old one.

2. Update your applications configuration to use the new ID (or name and user identifier) and the new
secret. For a distributed application, this can be done one node at a time.

3. When your application is fully set up with the new application credential, delete the old one.

6.2.5 Frequently Asked Questions

Why is the application credential owned by the user rather than the project?

Having application credentials be owned by a project rather than by an individual user would be con-
venient for cases where teams want applications to continue running after the creating user has left the
team. However, this would open up a security hole by which the creating user could still gain access to
the resources accessible by the application credential even after the user is disabled. Rather than relying
on the application credential persisting after users are disabled, it is recommended to proactively rotate
the application credential to another user prior to the original creating user being disabled.

6.3 Trusts

OpenStack Identity manages authentication and authorization. A trust is an OpenStack Identity extension
that enables delegation and, optionally, impersonation through keystone. A trust extension defines a
relationship between:

Trustor The user delegating a limited set of their own rights to another user.

Trustee The user trust is being delegated to, for a limited time.

The trust can eventually allow the trustee to impersonate the trustor. For security reasons, some
safeties are added. For example, if a trustor loses a given role, any trusts the user issued with that
role, and the related tokens, are automatically revoked.

The delegation parameters are:

User ID The user IDs for the trustor and trustee.

Privileges The delegated privileges are a combination of a project ID and a number of roles that must
be a subset of the roles assigned to the trustor.

If you omit all privileges, nothing is delegated. You cannot delegate everything.

Delegation depth Defines whether or not the delegation is recursive. If it is recursive, defines the dele-
gation chain length.

Specify one of the following values:

• 0. The delegate cannot delegate these permissions further.

• 1. The delegate can delegate the permissions to any set of delegates but the latter cannot
delegate further.

• inf. The delegation is infinitely recursive.

392 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

Endpoints A list of endpoints associated with the delegation.

This parameter further restricts the delegation to the specified endpoints only. If you omit the
endpoints, the delegation is useless. A special value of all_endpoints allows the trust to be
used by all endpoints associated with the delegated project.

Duration (Optional) Comprised of the start time and end time for the trust.

Note: See the administrator guide on removing expired trusts for recommended maintenance procedures.

6.4 API Discovery with JSON Home

6.4.1 What is JSON Home?

JSON Home describes a method of API discovery for non-browser HTTP clients. The draft is still in
review, but keystone supplies an implementation accessible to end-users. The result of calling keystones
JSON Home API is a JSON document that informs the user about API endpoints, where to find them,
and even information about the APIs status (e.g. experimental, supported, deprecated). More information
keystones implementation of JSON Home can be found in the specification.

6.4.2 Requesting JSON Home Documents

Requesting keystones JSON Home document is easy. The API does not require a token, but future im-
plementations might expand in its protection with token validation and enforcement. To get a JSON
Home document, just query a keystone endpoint with application/json-home specified in the Accept
header:

curl -X GET -H "Accept: application/json-home" http://example.com/identity/

The result will be a JSON document containing a list of resources:

{
"resources": [

"https://docs.openstack.org/api/openstack-identity/3/ext/OS-TRUST/1.0/
↪→rel/trusts": {

"href": "/v3/OS-TRUST/trusts"
},
"https://docs.openstack.org/api/openstack-identity/3/ext/s3tokens/1.0/

↪→rel/s3tokens": {
"href": "/v3/s3tokens"

},
"https://docs.openstack.org/api/openstack-identity/3/rel/application_

↪→credential": {
"href-template": "/v3/users/{user_id}/application_credentials/

↪→{application_credential_id}",
"href-vars": {

"application_credential_id": "https://docs.openstack.org/api/
↪→openstack-identity/3/param/application_credential_id",

(continues on next page)

6.4. API Discovery with JSON Home 393

https://mnot.github.io/I-D/json-home/
http://specs.openstack.org/openstack/keystone-specs/specs/keystone/juno/json-home.html

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"user_id": "https://docs.openstack.org/api/openstack-identity/
↪→3/param/user_id"

}
},
"https://docs.openstack.org/api/openstack-identity/3/rel/auth_catalog

↪→": {
"href": "/v3/auth/catalog"

},
"https://docs.openstack.org/api/openstack-identity/3/rel/auth_domains

↪→": {
"href": "/v3/auth/domains"

},
"https://docs.openstack.org/api/openstack-identity/3/rel/auth_projects

↪→": {
"href": "/v3/auth/projects"

},
"https://docs.openstack.org/api/openstack-identity/3/rel/auth_system

↪→": {
"href": "/v3/auth/system"

},
...

]
}

The list of resources can then be parsed based on the relationship key for a dictionary of data about that
endpoint. This includes a path where users can find interact with the endpoint for that specific resources.
API status information will also be present.

6.5 API Examples using Curl

6.5.1 v3 API Examples Using Curl

Note: Following are some API examples using curl. Note that these examples are not automatically
generated. They can be outdated as things change and are subject to regular updates and changes.

GET /

Discover API version information, links to documentation (PDF, HTML, WADL), and supported media
types:

Warning: The v2.0 portion of this response will be removed in the T release. It is only advertised
here because the v2.0 API supports the ec2tokens API until the T release. All other functionality of
the v2.0 has been removed as of the Queens release. Use v3 for all functionality as it is more complete
and secure.

394 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

$ curl "http://localhost:5000"

{
"versions": {

"values": [
{

"id": "v3.10",
"links": [

{
"href": "http://127.0.0.1:5000/v3/",
"rel": "self"

}
],
"media-types": [

{
"base": "application/json",
"type": "application/vnd.openstack.identity-v3+json"

}
],
"status": "stable",
"updated": "2018-02-28T00:00:00Z"

},
{

"id": "v2.0",
"links": [

{
"href": "http://127.0.0.1:5000/v2.0/",
"rel": "self"

},
{

"href": "https://docs.openstack.org/",
"rel": "describedby",
"type": "text/html"

}
],
"media-types": [

{
"base": "application/json",
"type": "application/vnd.openstack.identity-v2.0+json"

}
],
"status": "deprecated",
"updated": "2016-08-04T00:00:00Z"

}
]

}
}

6.5. API Examples using Curl 395

Keystone Documentation, Release 21.0.2.dev4

Tokens

Unscoped

Get an unscoped token:

curl -i \
-H "Content-Type: application/json" \
-d '

{ "auth": {
"identity": {

"methods": ["password"],
"password": {
"user": {
"name": "admin",
"domain": { "id": "default" },
"password": "adminpwd"

}
}

}
}

}' \
"http://localhost:5000/v3/auth/tokens" ; echo

Example response:

HTTP/1.1 201 Created
X-Subject-Token: MIIFvgY...
Vary: X-Auth-Token
Content-Type: application/json
Content-Length: 312
Date: Fri, 11 May 2018 03:15:01 GMT

{
"token": {

"issued_at": "2018-05-11T03:15:01.000000Z",
"audit_ids": [

"0PKh_BDKTWqqaFONE-Sxbg"
],
"methods": [

"password"
],
"expires_at": "2018-05-11T04:15:01.000000Z",
"user": {

"password_expires_at": null,
"domain": {

"id": "default",
"name": "Default"

},
"id": "9a7e43333cc44ef4b988f05fc3d3a49d",
"name": "admin"

(continues on next page)

396 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

}
}

}

Project-scoped

Get a project-scoped token:

curl -i \
-H "Content-Type: application/json" \
-d '

{ "auth": {
"identity": {

"methods": ["password"],
"password": {
"user": {
"name": "admin",
"domain": { "id": "default" },
"password": "adminpwd"

}
}

},
"scope": {

"project": {
"name": "admin",
"domain": { "id": "default" }

}
}

}
}' \

"http://localhost:5000/v3/auth/tokens" ; echo

Example response:

HTTP/1.1 201 Created
X-Subject-Token: MIIFfQ...
Vary: X-Auth-Token
Content-Type: application/json
Content-Length: 3518
Date: Fri, 11 May 2018 03:38:39 GMT

{
"token": {

"is_domain": false,
"methods": [

"password"
],
"roles": [

(continues on next page)

6.5. API Examples using Curl 397

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

{
"id": "b57680c826b44b5ca6122d0f792c3184",
"name": "Member"

},
{

"id": "3a7bd258345f47479a26aea11a6cc2bb",
"name": "admin"

}
],
"expires_at": "2018-05-11T04:38:39.000000Z",
"project": {

"domain": {
"id": "default",
"name": "Default"

},
"id": "3a705b9f56bb439381b43c4fe59dccce",
"name": "admin"

},
"catalog": [

{
"endpoints": [

{
"url": "http://localhost/identity",
"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "30a91932e4e94a8ca4dc145bb1bb6b4b"

},
{

"url": "http://localhost/identity",
"interface": "admin",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "94d4768735104c9091f0468e7d31c189"

}
],
"type": "identity",
"id": "09af9253500b41ef976a07322b2fa388",
"name": "keystone"

},
{

"endpoints": [
{

"url": "http://localhost/volume/v2/
↪→3a705b9f56bb439381b43c4fe59dccce",

"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "1c4ffe935e7643d99b55938cb12bc38d"

(continues on next page)

398 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

}
],
"type": "volumev2",
"id": "413a44234e1a4c3781d4a3c7a7e4c895",
"name": "cinderv2"

},
{

"endpoints": [
{

"url": "http://localhost/image",
"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "33237fdd1a744d0fb40f9127f21ddad4"

}
],
"type": "image",
"id": "4d473252145546d2aa589605f1e177c7",
"name": "glance"

},
{

"endpoints": [
{

"url": "http://localhost/placement",
"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "1a421e2f97684d3f86ab4d2cc9c86362"

}
],
"type": "placement",
"id": "5dcecbdd4a1d44d0855c560301b27bb5",
"name": "placement"

},
{

"endpoints": [
{

"url": "http://localhost/compute/v2.1",
"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "8e7ea663cc41477c9629cc710bbb1c7d"

}
],
"type": "compute",
"id": "87d49efa8fb64006bdb123d223ddcae2",
"name": "nova"

},
{

(continues on next page)

6.5. API Examples using Curl 399

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"endpoints": [
{

"url": "http://localhost/volume/v1/
↪→3a705b9f56bb439381b43c4fe59dccce",

"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "97a2c0ac7e304316a1eb58a3757e6ef8"

}
],
"type": "volume",
"id": "9408080f1970482aa0e38bc2d4ea34b7",
"name": "cinder"

},
{

"endpoints": [
{

"url": "http://localhost:8080/v1/AUTH_
↪→3a705b9f56bb439381b43c4fe59dccce",

"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "d0d823615b0747a9aeca8b83fba105f0"

},
{

"url": "http://localhost:8080",
"interface": "admin",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "e4cb86d9232349f091e0a02390deeb79"

}
],
"type": "object-store",
"id": "957ba1fe8b0443f0afe64bfd0858ba5e",
"name": "swift"

},
{

"endpoints": [
{

"url": "http://localhost:9696/",
"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "aa4a0e61cdc54372967ee9e2298f1d53"

}
],
"type": "network",
"id": "960fbc66bfcb4fa7900023f647fdc3a5",
"name": "neutron"

(continues on next page)

400 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

},
{

"endpoints": [
{

"url": "http://localhost/volume/v3/
↪→3a705b9f56bb439381b43c4fe59dccce",

"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "0c38045a91c34d798e0d2008fee7521d"

}
],
"type": "volumev3",
"id": "98adb083914f423d9cb74ad5527e37cb",
"name": "cinderv3"

},
{

"endpoints": [
{

"url": "http://localhost/compute/v2/
↪→3a705b9f56bb439381b43c4fe59dccce",

"interface": "public",
"region": "RegionOne",
"region_id": "RegionOne",
"id": "562e12b9ee9549e8b857218ccf2ae321"

}
],
"type": "compute_legacy",
"id": "a31e688016614430b28cddddf12d7b88",
"name": "nova_legacy"

}
],
"user": {

"password_expires_at": null,
"domain": {

"id": "default",
"name": "Default"

},
"id": "9a7e43333cc44ef4b988f05fc3d3a49d",
"name": "admin"

},
"audit_ids": [

"TbdrnW4MQDq_GPAVN9-JOQ"
],
"issued_at": "2018-05-11T03:38:39.000000Z"

}
}

6.5. API Examples using Curl 401

Keystone Documentation, Release 21.0.2.dev4

Domain-Scoped

Get a domain-scoped token (Note that youre going to need a role-assignment on the domain first!):

curl -i \
-H "Content-Type: application/json" \
-d '

{ "auth": {
"identity": {

"methods": ["password"],
"password": {
"user": {
"name": "admin",
"domain": { "id": "default" },
"password": "adminpwd"

}
}

},
"scope": {

"domain": {
"id": "default"

}
}

}
}' \

"http://localhost:5000/v3/auth/tokens" ; echo

Example response:

HTTP/1.1 201 Created
X-Subject-Token: MIIFNg...
Vary: X-Auth-Token
Content-Type: application/json
Content-Length: 2590
Date: Fri, 11 May 2018 03:37:09 GMT

{
"token": {

"domain": {
"id": "default",
"name": "Default"

},
"methods": [

"password"
],
"roles": [

{
"id": "b57680c826b44b5ca6122d0f792c3184",
"name": "Member"

},
{

(continues on next page)

402 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"id": "3a7bd258345f47479a26aea11a6cc2bb",
"name": "admin"

}
],
"expires_at": "2018-05-11T04:37:09.000000Z",
"catalog": [

{
"endpoints": [

{
"region_id": "RegionOne",
"url": "http://localhost/identity",
"region": "RegionOne",
"interface": "public",
"id": "30a91932e4e94a8ca4dc145bb1bb6b4b"

},
{

"region_id": "RegionOne",
"url": "http://localhost/identity",
"region": "RegionOne",
"interface": "admin",
"id": "94d4768735104c9091f0468e7d31c189"

}
],
"type": "identity",
"id": "09af9253500b41ef976a07322b2fa388",
"name": "keystone"

},
{

"endpoints": [],
"type": "volumev2",
"id": "413a44234e1a4c3781d4a3c7a7e4c895",
"name": "cinderv2"

},
{

"endpoints": [
{

"region_id": "RegionOne",
"url": "http://localhost/image",
"region": "RegionOne",
"interface": "public",
"id": "33237fdd1a744d0fb40f9127f21ddad4"

}
],
"type": "image",
"id": "4d473252145546d2aa589605f1e177c7",
"name": "glance"

},
{

"endpoints": [

(continues on next page)

6.5. API Examples using Curl 403

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

{
"region_id": "RegionOne",
"url": "http://localhost/placement",
"region": "RegionOne",
"interface": "public",
"id": "1a421e2f97684d3f86ab4d2cc9c86362"

}
],
"type": "placement",
"id": "5dcecbdd4a1d44d0855c560301b27bb5",
"name": "placement"

},
{

"endpoints": [
{

"region_id": "RegionOne",
"url": "http://localhost/compute/v2.1",
"region": "RegionOne",
"interface": "public",
"id": "8e7ea663cc41477c9629cc710bbb1c7d"

}
],
"type": "compute",
"id": "87d49efa8fb64006bdb123d223ddcae2",
"name": "nova"

},
{

"endpoints": [],
"type": "volume",
"id": "9408080f1970482aa0e38bc2d4ea34b7",
"name": "cinder"

},
{

"endpoints": [
{

"region_id": "RegionOne",
"url": "http://localhost:8080",
"region": "RegionOne",
"interface": "admin",
"id": "e4cb86d9232349f091e0a02390deeb79"

}
],
"type": "object-store",
"id": "957ba1fe8b0443f0afe64bfd0858ba5e",
"name": "swift"

},
{

"endpoints": [
{

(continues on next page)

404 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"region_id": "RegionOne",
"url": "http://localhost:9696/",
"region": "RegionOne",
"interface": "public",
"id": "aa4a0e61cdc54372967ee9e2298f1d53"

}
],
"type": "network",
"id": "960fbc66bfcb4fa7900023f647fdc3a5",
"name": "neutron"

},
{

"endpoints": [],
"type": "volumev3",
"id": "98adb083914f423d9cb74ad5527e37cb",
"name": "cinderv3"

},
{

"endpoints": [],
"type": "compute_legacy",
"id": "a31e688016614430b28cddddf12d7b88",
"name": "nova_legacy"

}
],
"user": {

"password_expires_at": null,
"domain": {

"id": "default",
"name": "Default"

},
"id": "9a7e43333cc44ef4b988f05fc3d3a49d",
"name": "admin"

},
"audit_ids": [

"Sfc8_kywQx-tWNkEVqA1Iw"
],
"issued_at": "2018-05-11T03:37:09.000000Z"

}
}

6.5. API Examples using Curl 405

Keystone Documentation, Release 21.0.2.dev4

Getting a token from a token

Get a token from a token:

curl -i \
-H "Content-Type: application/json" \
-d '

{ "auth": {
"identity": {

"methods": ["token"],
"token": {
"id": "'$OS_TOKEN'"

}
}

}
}' \

"http://localhost:5000/v3/auth/tokens" ; echo

Example response:

HTTP/1.1 201 Created
X-Subject-Token: MIIFxw...
Vary: X-Auth-Token
Content-Type: application/json
Content-Length: 347
Date: Fri, 11 May 2018 03:41:29 GMT

{
"token": {

"issued_at": "2018-05-11T03:41:29.000000Z",
"audit_ids": [

"zS_C_KROTFeZm-VlG1LjbA",
"RAjE82q8Rz-Cd50ogCpx3Q"

],
"methods": [

"token",
"password"

],
"expires_at": "2018-05-11T04:40:00.000000Z",
"user": {

"password_expires_at": null,
"domain": {

"id": "default",
"name": "Default"

},
"id": "9a7e43333cc44ef4b988f05fc3d3a49d",
"name": "admin"

}
}

}

406 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

Note: If a scope was included in the request body then this would get a token with the new scope.

DELETE /v3/auth/tokens

Revoke a token:

curl -i -X DELETE \
-H "X-Auth-Token: $OS_TOKEN" \
-H "X-Subject-Token: $OS_TOKEN" \
"http://localhost:5000/v3/auth/tokens"

If theres no error then the response is empty.

Domains

GET /v3/domains

List domains:

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
"http://localhost:5000/v3/domains" | python -mjson.tool

Example response:

{
"domains": [

{
"description": "Owns users and tenants (i.e. projects) available␣

↪→on Identity API v2.",
"enabled": true,
"id": "default",
"links": {

"self": "http://identity-server:5000/v3/domains/default"
},
"name": "Default"

}
],
"links": {

"next": null,
"previous": null,
"self": "http://identity-server:5000/v3/domains"

}
}

6.5. API Examples using Curl 407

Keystone Documentation, Release 21.0.2.dev4

POST /v3/domains

Create a domain:

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
-H "Content-Type: application/json" \
-d '{ "domain": { "name": "newdomain"}}' \
"http://localhost:5000/v3/domains" | python -mjson.tool

Example response:

{
"domain": {

"enabled": true,
"id": "3a5140aecd974bf08041328b53a62458",
"links": {

"self": "http://identity-server:5000/v3/domains/
↪→3a5140aecd974bf08041328b53a62458"

},
"name": "newdomain"

}
}

Projects

GET /v3/projects

List projects:

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
"http://localhost:5000/v3/projects" | python -mjson.tool

Example response:

{
"links": {

"next": null,
"previous": null,
"self": "http://localhost:5000/v3/projects"

},
"projects": [

{
"description": null,
"domain_id": "default",
"enabled": true,
"id": "3d4c2c82bd5948f0bcab0cf3a7c9b48c",
"links": {

"self": "http://localhost:5000/v3/projects/
↪→3d4c2c82bd5948f0bcab0cf3a7c9b48c" (continues on next page)

408 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

},
"name": "demo"

}
]

}

PATCH /v3/projects/{id}

Disable a project:

curl -s -X PATCH \
-H "X-Auth-Token: $OS_TOKEN" \
-H "Content-Type: application/json" \
-d '

{
"project": {

"enabled": false
}

}'\
"http://localhost:5000/v3/projects/$PROJECT_ID" | python -mjson.tool

Example response:

{
"project": {

"description": null,
"domain_id": "default",
"enabled": false,
"extra": {},
"id": "3d4c2c82bd5948f0bcab0cf3a7c9b48c",
"links": {

"self": "http://localhost:5000/v3/projects/
↪→3d4c2c82bd5948f0bcab0cf3a7c9b48c"

},
"name": "demo"

}
}

GET /v3/services

List the services:

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
"http://localhost:5000/v3/services" | python -mjson.tool

Example response:

6.5. API Examples using Curl 409

Keystone Documentation, Release 21.0.2.dev4

{
"links": {

"next": null,
"previous": null,
"self": "http://localhost:5000/v3/services"

},
"services": [

{
"description": "Keystone Identity Service",
"enabled": true,
"id": "bd7397d2c0e14fb69bae8ff76e112a90",
"links": {

"self": "http://localhost:5000/v3/services/
↪→bd7397d2c0e14fb69bae8ff76e112a90"

},
"name": "keystone",
"type": "identity"

}
]

}

GET /v3/endpoints

List the endpoints:

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
"http://localhost:5000/v3/endpoints" | python -mjson.tool

Example response:

{
"endpoints": [

{
"enabled": true,
"id": "29beb2f1567642eb810b042b6719ea88",
"interface": "admin",
"links": {

"self": "http://localhost:5000/v3/endpoints/
↪→29beb2f1567642eb810b042b6719ea88"

},
"region": "RegionOne",
"service_id": "bd7397d2c0e14fb69bae8ff76e112a90",
"url": "http://localhost:5000/v3"

}
],
"links": {

"next": null,
"previous": null,

(continues on next page)

410 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"self": "http://localhost:5000/v3/endpoints"
}

}

Users

GET /v3/users

List users:

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
"http://localhost:5000/v3/users" | python -mjson.tool

POST /v3/users

Create a user:

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
-H "Content-Type: application/json" \
-d '{"user": {"name": "newuser", "password": "changeme"}}' \
"http://localhost:5000/v3/users" | python -mjson.tool

Example response:

{
"user": {

"domain_id": "default",
"enabled": true,
"id": "ec8fc20605354edd91873f2d66bf4fc4",
"links": {

"self": "http://identity-server:5000/v3/users/
↪→ec8fc20605354edd91873f2d66bf4fc4"

},
"name": "newuser"

}
}

6.5. API Examples using Curl 411

Keystone Documentation, Release 21.0.2.dev4

GET /v3/users/{user_id}

Show details for a user:

USER_ID=ec8fc20605354edd91873f2d66bf4fc4

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
"http://localhost:5000/v3/users/$USER_ID" | python -mjson.tool

Example response:

{
"user": {

"domain_id": "default",
"enabled": true,
"id": "ec8fc20605354edd91873f2d66bf4fc4",
"links": {

"self": "http://localhost:5000/v3/users/
↪→ec8fc20605354edd91873f2d66bf4fc4"

},
"name": "newuser"

}
}

POST /v3/users/{user_id}/password

Change password (using the default policy, this can be done as the user):

USER_ID=b7793000f8d84c79af4e215e9da78654
ORIG_PASS=userpwd
NEW_PASS=newuserpwd

curl \
-H "X-Auth-Token: $OS_TOKEN" \
-H "Content-Type: application/json" \
-d '{ "user": {"password": "'$NEW_PASS'", "original_password": "'$ORIG_PASS'
↪→"} }' \
"http://localhost:5000/v3/users/$USER_ID/password"

Note: This command doesnt print anything if the request was successful.

412 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

PATCH /v3/users/{user_id}

Reset password (using the default policy, this requires admin):

USER_ID=b7793000f8d84c79af4e215e9da78654
NEW_PASS=newuserpwd

curl -s -X PATCH \
-H "X-Auth-Token: $OS_TOKEN" \
-H "Content-Type: application/json" \
-d '{ "user": {"password": "'$NEW_PASS'"} }' \
"http://localhost:5000/v3/users/$USER_ID" | python -mjson.tool

Example response:

{
"user": {

"default_project_id": "3d4c2c82bd5948f0bcab0cf3a7c9b48c",
"domain_id": "default",
"email": "demo@example.com",
"enabled": true,
"extra": {

"email": "demo@example.com"
},
"id": "269348fdd9374b8885da1418e0730af1",
"links": {

"self": "http://localhost:5000/v3/users/
↪→269348fdd9374b8885da1418e0730af1"

},
"name": "demo"

}
}

PUT /v3/projects/{project_id}/groups/{group_id}/roles/{role_id}

Create group role assignment on project:

curl -s -X PUT \
-H "X-Auth-Token: $OS_TOKEN" \
"http://localhost:5000/v3/projects/$PROJECT_ID/groups/$GROUP_ID/roles/$ROLE_
↪→ID" |

python -mjson.tool

Theres no data in the response if the operation is successful.

6.5. API Examples using Curl 413

Keystone Documentation, Release 21.0.2.dev4

POST /v3/OS-TRUST/trusts

Create a trust:

curl -s \
-H "X-Auth-Token: $OS_TOKEN" \
-H "Content-Type: application/json" \
-d '
{ "trust": {

"expires_at": "2014-12-30T23:59:59.999999Z",
"impersonation": false,
"project_id": "'$PROJECT_ID'",
"roles": [

{ "name": "admin" }
],

"trustee_user_id": "'$DEMO_USER_ID'",
"trustor_user_id": "'$ADMIN_USER_ID'"

}}'\
"http://localhost:5000/v3/OS-TRUST/trusts" | python -mjson.tool

Example response:

{
"trust": {

"expires_at": "2014-12-30T23:59:59.999999Z",
"id": "394998fa61f14736b1f0c1f322882949",
"impersonation": false,
"links": {

"self": "http://localhost:5000/v3/OS-TRUST/trusts/
↪→394998fa61f14736b1f0c1f322882949"

},
"project_id": "3d4c2c82bd5948f0bcab0cf3a7c9b48c",
"remaining_uses": null,
"roles": [

{
"id": "c703057be878458588961ce9a0ce686b",
"links": {

"self": "http://localhost:5000/v3/roles/
↪→c703057be878458588961ce9a0ce686b"

},
"name": "admin"

}
],
"roles_links": {

"next": null,
"previous": null,
"self": "http://localhost:5000/v3/OS-TRUST/trusts/

↪→394998fa61f14736b1f0c1f322882949/roles"
},
"trustee_user_id": "269348fdd9374b8885da1418e0730af1",
"trustor_user_id": "3ec3164f750146be97f21559ee4d9c51"

(continues on next page)

414 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

}
}

6.6 Multi-Factor Authentication

6.6.1 Configuring MFA

Configuring MFA right now has to be done entirely by an admin, for how to do that, see Multi-Factor
Authentication.

6.6.2 Using MFA

Multi-Factor Authentication with Keystone can be used in two ways, either you treat it like current single
method authentication and provide all the details upfront, or you doing it as a multi-step process with
auth receipts.

Single step

In the single step approach you would supply all the required authentication methods in your request for
a token.

Here is an example using 2 factors (password and totp):

{ "auth": {
"identity": {

"methods": [
"password",
"totp"

],
"totp": {

"user": {
"id": "2ed179c6af12496cafa1d279cb51a78f",
"passcode": "012345"

}
},
"password": {

"user": {
"id": "2ed179c6af12496cafa1d279cb51a78f",
"password": "super sekret pa55word"

}
}

}
}

}

If all the supplied auth methods are valid, Keystone will return a token.

6.6. Multi-Factor Authentication 415

Keystone Documentation, Release 21.0.2.dev4

Multi-Step

In the multi-step approach you can supply any one method from the auth rules:

Again we do a 2 factor example, starting with password:

{ "auth": {
"identity": {

"methods": [
"password"

],
"password": {

"user": {
"id": "2ed179c6af12496cafa1d279cb51a78f",
"password": "super sekret pa55word"

}
}

}
}

}

Provided the method is valid, Keystone will still return a 401, but will in the response header
Openstack-Auth-Receipt return a receipt of valid auth method for reuse later.

The response body will also contain information about the auth receipt, and what auth methods may be
missing:

{
"receipt":{

"expires_at":"2018-07-05T08:39:23.000000Z",
"issued_at":"2018-07-05T08:34:23.000000Z",
"methods": [

"password"
],
"user": {

"domain": {
"id": "default",
"name": "Default"

},
"id": "ee4dfb6e5540447cb3741905149d9b6e",
"name": "admin"

}
},
"required_auth_methods": [

["totp", "password"]
]

}

Now you can continue authenticating by supplying the missing auth methods, and supplying the header
Openstack-Auth-Receipt as gotten from the previous response:

416 Chapter 6. User Documentation

Keystone Documentation, Release 21.0.2.dev4

{ "auth": {
"identity": {

"methods": [
"totp"

],
"totp": {

"user": {
"id": "2ed179c6af12496cafa1d279cb51a78f",
"passcode": "012345"

}
}

}
}

}

Provided the auth methods are valid, Keystone will now supply a token. If not you can try again until the
auth receipt expires (e.g in case of TOTP timeout).

6.6. Multi-Factor Authentication 417

Keystone Documentation, Release 21.0.2.dev4

418 Chapter 6. User Documentation

CHAPTER

SEVEN

CLI DOCUMENTATION

7.1 keystone-manage

7.1.1 Keystone Management Utility

Author openstack@lists.openstack.org

Date 2017-02-23

Copyright OpenStack Foundation

Version 11.0.0

Manual section 1

Manual group cloud computing

SYNOPSIS

keystone-manage [options]

DESCRIPTION

keystone-manage is the command line tool which interacts with the Keystone service to initialize and
update data within Keystone. Generally, keystone-manage is only used for operations that cannot be
accomplished with the HTTP API, such data import/export and database migrations.

USAGE

keystone-manage [options] action [additional args]

419

mailto:openstack@lists.openstack.org

Keystone Documentation, Release 21.0.2.dev4

General keystone-manage options:

• --help : display verbose help output.

Invoking keystone-manage by itself will give you some usage information.

Available commands:

• bootstrap: Perform the basic bootstrap process.

• create_jws_keypair: Create an ECDSA key pair for JWS token signing.

• credential_migrate: Encrypt credentials using a new primary key.

• credential_rotate: Rotate Fernet keys for credential encryption.

• credential_setup: Setup a Fernet key repository for credential encryption.

• db_sync: Sync the database.

• db_version: Print the current migration version of the database.

• doctor: Diagnose common problems with keystone deployments.

• domain_config_upload: Upload domain configuration file.

• fernet_rotate: Rotate keys in the Fernet key repository.

• fernet_setup: Setup a Fernet key repository for token encryption.

• mapping_populate: Prepare domain-specific LDAP backend.

• mapping_purge: Purge the identity mapping table.

• mapping_engine: Test your federation mapping rules.

• receipt_rotate: Rotate auth receipts encryption keys.

• receipt_setup: Setup a key repository for auth receipts.

• saml_idp_metadata: Generate identity provider metadata.

• token_rotate: Rotate token keys in the key repository.

• token_setup: Setup a token key repository for token encryption.

• trust_flush: Purge expired trusts.

OPTIONS

-h, --help show this help message and exit

--config-dir DIR Path to a config directory to pull *.conf files from. This
file set is sorted, so as to provide a predictable parse
order if individual options are over-ridden. The set is
parsed after the file(s) specified via previous config-file,
arguments hence over-ridden options in the directory take
precedence.

--config-file PATH Path to a config file to use. Multiple config files can be
specified, with values in later files taking precedence. De-
faults to None.

420 Chapter 7. CLI Documentation

Keystone Documentation, Release 21.0.2.dev4

--debug, -d If set to true, the logging level will be set to DEBUG in-
stead of the default INFO level.

--log-config-append PATH, --log_config PATH The name of a logging con-
figuration file. This file is appended to any existing log-
ging configuration files. For details about logging config-
uration files, see the Python logging module documenta-
tion. Note that when logging configuration files are used
then all logging configuration is set in the configuration
file and other logging configuration options are ignored
(for example, logging_context_format_string).

--log-date-format DATE_FORMAT Defines the format string for %(asc-
time)s in log records. Default: None . This option is ig-
nored if log_config_append is set.

--log-dir LOG_DIR, --logdir LOG_DIR (Optional) The base directory
used for relative log_file paths. This option is ignored if
log_config_append is set.

--log-file PATH, --logfile PATH (Optional) Name of log file to send log-
ging output to. If no default is set, logging will go to
stderr as defined by use_stderr. This option is ignored if
log_config_append is set.

--nodebug The inverse of debug

--nostandard-threads The inverse of standard-threads

--nouse-syslog The inverse of use-syslog

--noverbose The inverse of verbose

--nowatch-log-file The inverse of watch-log-file

--pydev-debug-host PYDEV_DEBUG_HOST Host to connect to for re-
mote debugger.

--pydev-debug-port PYDEV_DEBUG_PORT Port to connect to for remote
debugger.

--standard-threads Do not monkey-patch threading system modules.

--syslog-log-facility SYSLOG_LOG_FACILITY Syslog facility to receive
log lines. This option is ignored if log_config_append is
set.

--use-syslog Use syslog for logging. Existing syslog format is DEP-
RECATED and will be changed later to honor RFC5424.
This option is ignored if log_config_append is set.

--verbose, -v If set to false, the logging level will be set to WARNING
instead of the default INFO level.

--version show programs version number and exit

--watch-log-file Uses logging handler designed to watch file system. When
log file is moved or removed this handler will open a new
log file with specified path instantaneously. It makes sense

7.1. keystone-manage 421

Keystone Documentation, Release 21.0.2.dev4

only if log_file option is specified and Linux platform is
used. This option is ignored if log_config_append is set.

FILES

None

SEE ALSO

• OpenStack Keystone

SOURCE

• Keystone is sourced in Gerrit git Keystone

• Keystone bugs are managed at Launchpad Keystone

7.2 keystone-status

7.2.1 Keystone Status Utility

Author openstack@lists.openstack.org

Date 2018-10-15

Copyright OpenStack Foundation

Version 15.0.0

Manual section 1

Manual group cloud computing

SYNOPSIS

keystone-status [options]

DESCRIPTION

keystone-status is a command line tool that helps operators upgrade their deployment.

422 Chapter 7. CLI Documentation

https://docs.openstack.org/keystone/latest
https://opendev.org/openstack/keystone
https://bugs.launchpad.net/keystone
mailto:openstack@lists.openstack.org

Keystone Documentation, Release 21.0.2.dev4

USAGE

keystone-status [options] action [additional args]

Categories are:

• upgrade

Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

keystone-status upgrade

These sections describe the available categories and arguments for keystone-status.

Categories and commands

keystone-status upgrade check Performs a release-specific readiness check before restarting ser-
vices with new code, or upgrading. This command expects to have complete configuration and
access to the database.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

15.0.0 (Stein)

• Placeholder to be filled in with checks as they are added in Stein.

OPTIONS

-h, --help show this help message and exit
--config-dir DIR Path to a config directory to pull *.conf files from.

This file set is sorted, so as to provide a
predictable parse order if individual options are
over-ridden. The set is parsed after the file(s)
specified via previous --config-file, arguments hence
over-ridden options in the directory take precedence.

--config-file PATH Path to a config file to use. Multiple config files
can be specified, with values in later files taking
precedence. Defaults to None.

7.2. keystone-status 423

Keystone Documentation, Release 21.0.2.dev4

FILES

None

SEE ALSO

• OpenStack Keystone

SOURCE

• Keystone is sourced on opendev.org

• Keystone bugs are managed at Launchpad Keystone

424 Chapter 7. CLI Documentation

https://docs.openstack.org/keystone/latest
https://opendev.org/openstack/keystone
https://bugs.launchpad.net/keystone

CHAPTER

EIGHT

ADMINISTRATOR GUIDES

OpenStack Identity, code-named keystone, is the default Identity management system for OpenStack.
This section contains guides for keystone operators to help with administering a keystone deployment.

8.1 Getting Started

Everything you need to get started administering a keystone deployment.

8.1.1 Identity concepts

Authentication The process of confirming the identity of a user. To confirm an incoming request, Open-
Stack Identity validates a set of credentials users supply. Initially, these credentials are a user name
and password, or a user name and API key. When OpenStack Identity validates user credentials,
it issues an authentication token. Users provide the token in subsequent requests.

Credentials Data that confirms the identity of the user. For example, user name and password, user
name and API key, or an authentication token that the Identity service provides.

Domain An Identity service API v3 entity. Domains are a collection of projects and users that define
administrative boundaries for managing Identity entities. Domains can represent an individual,
company, or operator-owned space. They expose administrative activities directly to system users.
Users can be granted the administrator role for a domain. A domain administrator can create
projects, users, and groups in a domain and assign roles to users and groups in a domain.

Endpoint A network-accessible address, usually a URL, through which you can access a service. If
you are using an extension for templates, you can create an endpoint template that represents the
templates of all consumable services that are available across the regions.

Group An Identity service API v3 entity. Groups are a collection of users owned by a domain. A group
role, granted to a domain or project, applies to all users in the group. Adding or removing users to
or from a group grants or revokes their role and authentication to the associated domain or project.

OpenStackClient A command-line interface for several OpenStack services including the Identity
API. For example, a user can run the openstack service create and openstack endpoint
create commands to register services in their OpenStack installation.

Project A container that groups or isolates resources or identity objects. Depending on the service
operator, a project might map to a customer, account, organization, or tenant.

Region An Identity service API v3 entity. Represents a general division in an OpenStack deployment.
You can associate zero or more sub-regions with a region to make a tree-like structured hierarchy.

425

Keystone Documentation, Release 21.0.2.dev4

Although a region does not have a geographical connotation, a deployment can use a geographical
name for a region, such as us-east.

Role A personality with a defined set of user rights and privileges to perform a specific set of operations.
The Identity service issues a token to a user that includes a list of roles. When a user calls a service,
that service interprets the user role set, and determines to which operations or resources each role
grants access.

Service An OpenStack service, such as Compute (nova), Object Storage (swift), or Image service
(glance), that provides one or more endpoints through which users can access resources and per-
form operations.

Token An alpha-numeric text string that enables access to OpenStack APIs and resources. A token
may be revoked at any time and is valid for a finite duration. While OpenStack Identity supports
token-based authentication in this release, it intends to support additional protocols in the future.
OpenStack Identity is an integration service that does not aspire to be a full-fledged identity store
and management solution.

User A digital representation of a person, system, or service that uses OpenStack cloud services. The
Identity service validates that incoming requests are made by the user who claims to be making the
call. Users have a login and can access resources by using assigned tokens. Users can be directly
assigned to a particular project and behave as if they are contained in that project.

User management

Identity user management examples:

• Create a user named alice:

$ openstack user create --password-prompt --email alice@example.com alice

• Create a project named acme:

$ openstack project create acme --domain default

• Create a domain named emea:

$ openstack --os-identity-api-version=3 domain create emea

• Create a role named compute-user:

$ openstack role create compute-user

Note: Individual services assign meaning to roles, typically through limiting or granting access to
users with the role to the operations that the service supports. Role access is typically configured
in the services policy.yaml file. For example, to limit Compute access to the compute-user
role, edit the Compute services policy.yaml file to require this role for Compute operations.

The Identity service assigns a project and a role to a user. You might assign the compute-user role to
the alice user in the acme project:

$ openstack role add --project acme --user alice compute-user

426 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

A user can have different roles in different projects. For example, Alice might also have the admin role
in the Cyberdyne project. A user can also have multiple roles in the same project.

The /etc/[SERVICE_CODENAME]/policy.yaml file controls the tasks that users can perform for a
given service. For example, the /etc/nova/policy.yaml file specifies the access policy for the Com-
pute service, the /etc/glance/policy.yaml file specifies the access policy for the Image service, and
the /etc/keystone/policy.yaml file specifies the access policy for the Identity service.

The default policy.yaml files in the Compute, Identity, and Image services recognize only the admin
role. Any user with any role in a project can access all operations that do not require the admin role.

To restrict users from performing operations in, for example, the Compute service, you must create a role
in the Identity service and then modify the /etc/nova/policy.yaml file so that this role is required
for Compute operations.

For example, the following line in the /etc/cinder/policy.yaml file does not restrict which users
can create volumes:

"volume:create": "",

If the user has any role in a project, he can create volumes in that project.

To restrict the creation of volumes to users who have the compute-user role in a particular project, you
add "role:compute-user":

"volume:create": "role:compute-user",

To restrict all Compute service requests to require this role, the resulting file looks like:

{
"admin_or_owner": "role:admin or project_id:%(project_id)s",
"default": "rule:admin_or_owner",
"compute:create": "role:compute-user",
"compute:create:attach_network": "role:compute-user",
"compute:create:attach_volume": "role:compute-user",
"compute:get_all": "role:compute-user",
"compute:unlock_override": "rule:admin_api",
"admin_api": "role:admin",
"compute_extension:accounts": "rule:admin_api",
"compute_extension:admin_actions": "rule:admin_api",
"compute_extension:admin_actions:pause": "rule:admin_or_owner",
"compute_extension:admin_actions:unpause": "rule:admin_or_owner",
"compute_extension:admin_actions:suspend": "rule:admin_or_owner",
"compute_extension:admin_actions:resume": "rule:admin_or_owner",
"compute_extension:admin_actions:lock": "rule:admin_or_owner",
"compute_extension:admin_actions:unlock": "rule:admin_or_owner",
"compute_extension:admin_actions:resetNetwork": "rule:admin_api",
"compute_extension:admin_actions:injectNetworkInfo": "rule:admin_api",
"compute_extension:admin_actions:createBackup": "rule:admin_or_owner",
"compute_extension:admin_actions:migrateLive": "rule:admin_api",
"compute_extension:admin_actions:migrate": "rule:admin_api",
"compute_extension:aggregates": "rule:admin_api",
"compute_extension:certificates": "role:compute-user",
"compute_extension:cloudpipe": "rule:admin_api",

(continues on next page)

8.1. Getting Started 427

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"compute_extension:console_output": "role:compute-user",
"compute_extension:consoles": "role:compute-user",
"compute_extension:createserverext": "role:compute-user",
"compute_extension:deferred_delete": "role:compute-user",
"compute_extension:disk_config": "role:compute-user",
"compute_extension:evacuate": "rule:admin_api",
"compute_extension:extended_server_attributes": "rule:admin_api",
"compute_extension:extended_status": "role:compute-user",
"compute_extension:flavorextradata": "role:compute-user",
"compute_extension:flavorextraspecs": "role:compute-user",
"compute_extension:flavormanage": "rule:admin_api",
"compute_extension:floating_ip_dns": "role:compute-user",
"compute_extension:floating_ip_pools": "role:compute-user",
"compute_extension:floating_ips": "role:compute-user",
"compute_extension:hosts": "rule:admin_api",
"compute_extension:keypairs": "role:compute-user",
"compute_extension:multinic": "role:compute-user",
"compute_extension:networks": "rule:admin_api",
"compute_extension:quotas": "role:compute-user",
"compute_extension:rescue": "role:compute-user",
"compute_extension:security_groups": "role:compute-user",
"compute_extension:server_action_list": "rule:admin_api",
"compute_extension:server_diagnostics": "rule:admin_api",
"compute_extension:simple_tenant_usage:show": "rule:admin_or_owner",
"compute_extension:simple_tenant_usage:list": "rule:admin_api",
"compute_extension:users": "rule:admin_api",
"compute_extension:virtual_interfaces": "role:compute-user",
"compute_extension:virtual_storage_arrays": "role:compute-user",
"compute_extension:volumes": "role:compute-user",
"compute_extension:volume_attachments:index": "role:compute-user",
"compute_extension:volume_attachments:show": "role:compute-user",
"compute_extension:volume_attachments:create": "role:compute-user",
"compute_extension:volume_attachments:delete": "role:compute-user",
"compute_extension:volumetypes": "role:compute-user",
"volume:create": "role:compute-user",
"volume:get_all": "role:compute-user",
"volume:get_volume_metadata": "role:compute-user",
"volume:get_snapshot": "role:compute-user",
"volume:get_all_snapshots": "role:compute-user",
"network:get_all_networks": "role:compute-user",
"network:get_network": "role:compute-user",
"network:delete_network": "role:compute-user",
"network:disassociate_network": "role:compute-user",
"network:get_vifs_by_instance": "role:compute-user",
"network:allocate_for_instance": "role:compute-user",
"network:deallocate_for_instance": "role:compute-user",
"network:validate_networks": "role:compute-user",
"network:get_instance_uuids_by_ip_filter": "role:compute-user",
"network:get_floating_ip": "role:compute-user",

(continues on next page)

428 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"network:get_floating_ip_pools": "role:compute-user",
"network:get_floating_ip_by_address": "role:compute-user",
"network:get_floating_ips_by_project": "role:compute-user",
"network:get_floating_ips_by_fixed_address": "role:compute-user",
"network:allocate_floating_ip": "role:compute-user",
"network:deallocate_floating_ip": "role:compute-user",
"network:associate_floating_ip": "role:compute-user",
"network:disassociate_floating_ip": "role:compute-user",
"network:get_fixed_ip": "role:compute-user",
"network:add_fixed_ip_to_instance": "role:compute-user",
"network:remove_fixed_ip_from_instance": "role:compute-user",
"network:add_network_to_project": "role:compute-user",
"network:get_instance_nw_info": "role:compute-user",
"network:get_dns_domains": "role:compute-user",
"network:add_dns_entry": "role:compute-user",
"network:modify_dns_entry": "role:compute-user",
"network:delete_dns_entry": "role:compute-user",
"network:get_dns_entries_by_address": "role:compute-user",
"network:get_dns_entries_by_name": "role:compute-user",
"network:create_private_dns_domain": "role:compute-user",
"network:create_public_dns_domain": "role:compute-user",
"network:delete_dns_domain": "role:compute-user"

}

Service management

The Identity service provides identity, token, catalog, and policy services. It consists of:

• keystone Web Server Gateway Interface (WSGI) service Can be run in a WSGI-capable web
server such as Apache httpd to provide the Identity service. The service and administrative
APIs are run as separate instances of the WSGI service.

• Identity service functions Each has a pluggable back end that allow different ways to use the
particular service. Most support standard back ends like LDAP or SQL.

The Identity service also maintains a user that corresponds to each service, such as, a user named nova
for the Compute service, and a special service project called service.

For information about how to create services and endpoints, see the Administrator Guide.

Groups

A group is a collection of users in a domain. Administrators can create groups and add users to them.
A role can then be assigned to the group, rather than individual users. Groups were introduced with the
Identity API v3.

Identity API V3 provides the following group-related operations:

• Create a group

• Delete a group

8.1. Getting Started 429

Keystone Documentation, Release 21.0.2.dev4

• Update a group (change its name or description)

• Add a user to a group

• Remove a user from a group

• List group members

• List groups for a user

• Assign a role on a project to a group

• Assign a role on a domain to a group

• Query role assignments to groups

Note: The Identity service server might not allow all operations. For example, if you use the Identity
server with the LDAP Identity back end and group updates are disabled, a request to create, delete, or
update a group fails.

Here are a couple of examples:

• Group A is granted Role A on Project A. If User A is a member of Group A, when User A gets a
token scoped to Project A, the token also includes Role A.

• Group B is granted Role B on Domain B. If User B is a member of Group B, when User B gets a
token scoped to Domain B, the token also includes Role B.

8.1.2 Configuring Keystone

Identity sources

One of the most impactful decisions youll have to make when configuring keystone is deciding how
you want keystone to source your identity data. Keystone supports several different choices that will
substantially impact how youll configure, deploy, and interact with keystone.

You can also mix-and-match various sources of identity (see Domain-specific Configuration for an exam-
ple). For example, you can store OpenStack service users and their passwords in SQL, manage customers
in LDAP, and authenticate employees via SAML federation. Summary

Feature Sta-
tus

LDAP OAuth
v1.0a

OpenID
Connect

RE-
MOTE_USER

SAML
v2

SQL

Local authentica-
tion

op-
tional

✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓

External authen-
tication

op-
tional

××× ××× ✓✓✓ ✓✓✓ ✓✓✓ ×××

Identity manage-
ment

op-
tional

✓✓✓ ✓✓✓ ××× ××× ××× ✓✓✓

PCI-DSS controls op-
tional

✓✓✓ ××× ××× ✓✓✓ ××× ✓✓✓

Auditing op-
tional

✓✓✓ ××× ✓✓✓ ××× ✓✓✓ ✓✓✓

Details

430 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

• Local authentication Status: optional.

Notes: Authenticate with keystone by providing credentials directly to keystone.

Driver Support:

– LDAP: complete

– OAuth v1.0a: complete

– OpenID Connect: missing

– REMOTE_USER: missing

– SAML v2: missing

– SQL: complete

• External authentication Status: optional.

Notes: Authenticate with keystone by providing credentials to an external system that keystone
trusts (as with federation).

Driver Support:

– LDAP: missing

– OAuth v1.0a: missing

– OpenID Connect: complete

– REMOTE_USER: complete

– SAML v2: complete

– SQL: missing

• Identity management Status: optional.

Notes: Create, update, enable/disable, and delete users via Keystones HTTP API.

Driver Support:

– LDAP: partial

– OAuth v1.0a: complete

– OpenID Connect: missing

– REMOTE_USER: missing

– SAML v2: missing

– SQL: complete

• PCI-DSS controls Status: optional.

Notes: Configure keystone to enforce PCI-DSS compliant security controls.

Driver Support:

– LDAP: partial

– OAuth v1.0a: missing

– OpenID Connect: missing

– REMOTE_USER: partial

8.1. Getting Started 431

Keystone Documentation, Release 21.0.2.dev4

– SAML v2: missing

– SQL: complete

• Auditing Status: optional.

Notes: Audit authentication flows using PyCADF.

Driver Support:

– LDAP: complete

– OAuth v1.0a: missing

– OpenID Connect: complete

– REMOTE_USER: missing

– SAML v2: complete

– SQL: complete

Notes:

• This document is a continuous work in progress

8.1.3 Bootstrapping Identity

After keystone is deployed and configured, it must be pre-populated with some initial data before it can
be used. This process is known as bootstrapping and it typically involves creating the systems first user,
project, domain, service, and endpoint, among other things. The goal of bootstrapping is to put enough
information into the system such that it can function solely through the API using normal authentication
flows. After the first user is created, which must be an administrator, you can use that account to interact
with keystone via the API.

Keystone provides two separate ways to bootstrap a deployment. The first is with the keystone-manage
bootstrap command. This is the preferred and recommended way to bootstrap new installations. The
second, and original way of bootstrapping involves configuring a secret and deploying special middleware
in front of the identity service. The secret is known as the ADMIN_TOKEN. Any requests made to the
identity API with the ADMIN_TOKEN will completely bypass authentication allowing access to the entire
API.

Using the CLI

The process requires access to an environment with keystone binaries installed, typically on the service
host.

The keystone-manage bootstrap command will create a user, project and role, and will assign the
newly created role to the newly created user on the newly created project. By default, the names of these
new resources will be called admin.

The defaults may be overridden by calling --bootstrap-username, --bootstrap-project-name
and --bootstrap-role-name. Each of these have an environment variable equivalent:
OS_BOOTSTRAP_USERNAME, OS_BOOTSTRAP_PROJECT_NAME and OS_BOOTSTRAP_ROLE_NAME.

A user password must also be supplied. This can be passed in as either --bootstrap-password, or set
as an environment variable using OS_BOOTSTRAP_PASSWORD.

432 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Optionally, if specified by --bootstrap-public-url, --bootstrap-admin-url and/or
--bootstrap-internal-url or the equivalent environment variables, the command will cre-
ate an identity service with the specified endpoint information. You may also configure the
--bootstrap-region-id and --bootstrap-service-name for the endpoints to your deploy-
ments requirements.

Note: We strongly recommend that you configure the identity service and its endpoints while bootstrap-
ping keystone.

Minimally, keystone can be bootstrapped with:

$ keystone-manage bootstrap --bootstrap-password s3cr3t

Verbosely, keystone can be bootstrapped with:

$ keystone-manage bootstrap \
--bootstrap-password s3cr3t \
--bootstrap-username admin \
--bootstrap-project-name admin \
--bootstrap-role-name admin \
--bootstrap-service-name keystone \
--bootstrap-region-id RegionOne \
--bootstrap-admin-url http://localhost:5000 \
--bootstrap-public-url http://localhost:5000 \
--bootstrap-internal-url http://localhost:5000

This will create an admin user with the admin role on the admin project and the system. This allows the
user to generate project-scoped and system-scoped tokens which ensures they have full RBAC authoriza-
tion. The user will have the password specified in the command. Note that both the user and the project
will be created in the default domain. By not creating an endpoint in the catalog users will need to
provide endpoint overrides to perform additional identity operations.

This command will also create member and reader roles. The admin role implies the member role
and member role implies the reader role. By default, these three roles are immutable, meaning they
are created with the immutable resource option and cannot be modified or deleted unless the option is
removed. To disable this behavior, add the --no-immutable-roles flag.

By creating an admin user and an identity endpoint you may authenticate to keystone and perform identity
operations like creating additional services and endpoints using the admin user. This will preclude the
need to ever use or configure the admin_token (described below). It is also, by design, more secure.

To test a proper configuration, a user can use OpenStackClient CLI:

$ openstack project list --os-username admin --os-project-name admin \
--os-user-domain-id default --os-project-domain-id default \
--os-identity-api-version 3 --os-auth-url http://localhost:5000 \
--os-password s3cr3t

8.1. Getting Started 433

Keystone Documentation, Release 21.0.2.dev4

Using a shared secret

Note: We strongly recommended that you configure the identity service with the keystone-manage
bootstrap command and not the ADMIN_TOKEN. The ADMIN_TOKEN can leave your deployment vulnera-
ble by exposing administrator functionality through the API based solely on a single secret. You shouldnt
have to use ADMIN_TOKEN at all, unless you have some special case bootstrapping requirements.

Before you can use the identity API, you need to configure keystone with a shared secret. Requests
made with this secret will bypass authentication and grant administrative access to the identity API. The
following configuration snippet shows the shared secret as being ADMIN:

[DEFAULT]
admin_token = ADMIN

You can use the shared secret, or admin_token, to make API request to keystone that bootstrap the rest
of the deployment. You must create a project, user, and role in order to use normal user authentication
through the API.

The admin_token does not represent a user or explicit authorization of any kind. After bootstrapping,
failure to remove this functionality exposes an additional attack vector and security risk.

8.1.4 Manage projects, users, and roles

As an administrator, you manage projects, users, and roles. Projects are organizational units in the cloud
to which you can assign users. Projects are also known as tenants or accounts. Users can be members
of one or more projects. Roles define which actions users can perform. You assign roles to user-project
pairs.

You can define actions for OpenStack service roles in the /etc/PROJECT/policy.yaml files. For ex-
ample, define actions for Compute service roles in the /etc/nova/policy.yaml file.

You can manage projects, users, and roles independently from each other.

During cloud set up, the operator defines at least one project, user, and role.

You can add, update, and delete projects and users, assign users to one or more projects, and change or
remove the assignment. To enable or temporarily disable a project or user, update that project or user.
You can also change quotas at the project level.

Before you can delete a user account, you must remove the user account from its primary project.

Before you can run client commands, you need to have a cloud config file or you can download and source
an OpenStack RC file. See the Configuration documentation from the python-openstackclient project for
more details.

434 Chapter 8. Administrator Guides

https://docs.openstack.org/python-openstackclient/yoga/configuration/index.html

Keystone Documentation, Release 21.0.2.dev4

Projects

A project is a group of zero or more users. In Compute, a project owns virtual machines. In Object
Storage, a project owns containers. Users can be associated with more than one project. Each project
and user pairing can have a role associated with it.

List projects

List all projects with their ID, name, and whether they are enabled or disabled:

$ openstack project list
+----------------------------------+--------------------+
| ID | Name |
+----------------------------------+--------------------+
f7ac731cc11f40efbc03a9f9e1d1d21f	admin
c150ab41f0d9443f8874e32e725a4cc8	alt_demo
a9debfe41a6d4d09a677da737b907d5e	demo
9208739195a34c628c58c95d157917d7	invisible_to_admin
3943a53dc92a49b2827fae94363851e1	service
80cab5e1f02045abad92a2864cfd76cb	test_project
+----------------------------------+--------------------+

Create a project

Create a project named new-project:

$ openstack project create --description 'my new project' new-project \
--domain default

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	my new project
domain_id	e601210181f54843b51b3edff41d4980
enabled	True
id	1a4a0618b306462c9830f876b0bd6af2
is_domain	False
name	new-project
parent_id	e601210181f54843b51b3edff41d4980
tags	[]
+-------------+----------------------------------+

• Creating a project without using a domain scoped token, i.e. using a project scoped token or a
system scoped token, and also without specifying a domain or domain_id, the project will auto-
matically be created on the default domain.

8.1. Getting Started 435

Keystone Documentation, Release 21.0.2.dev4

Update a project

Specify the project ID to update a project. You can update the name, description, and enabled status of
a project.

• To temporarily disable a project:

$ openstack project set PROJECT_ID --disable

• To enable a disabled project:

$ openstack project set PROJECT_ID --enable

• To update the name of a project:

$ openstack project set PROJECT_ID --name project-new

• To verify your changes, show information for the updated project:

$ openstack project show PROJECT_ID
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	my new project
domain_id	e601210181f54843b51b3edff41d4980
enabled	True
id	0b0b995694234521bf93c792ed44247f
is_domain	False
name	new-project
parent_id	e601210181f54843b51b3edff41d4980
tags	[]
+-------------+----------------------------------+

Delete a project

Specify the project ID to delete a project:

$ openstack project delete PROJECT_ID

Users

List users

List all users:

$ openstack user list
+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+

(continues on next page)

436 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

352b37f5c89144d4ad0534139266d51f	admin
86c0de739bcb4802b8dc786921355813	demo
32ec34aae8ea432e8af560a1cec0e881	glance
7047fcb7908e420cb36e13bbd72c972c	nova
+----------------------------------+----------+

Create a user

To create a user, you must specify a name. Optionally, you can specify a project ID, password, and email
address. It is recommended that you include the project ID and password because the user cannot log in
to the dashboard without this information.

Create the new-user user:

$ openstack user create --project new-project --password PASSWORD new-user
+------------+----------------------------------+
| Field | Value |
+------------+----------------------------------+
email	None
enabled	True
id	6322872d9c7e445dbbb49c1f9ca28adc
name	new-user
project_id	0b0b995694234521bf93c792ed44247f
username	new-user
+------------+----------------------------------+

Update a user

You can update the name, email address, and enabled status for a user.

• To temporarily disable a user account:

$ openstack user set USER_NAME --disable

If you disable a user account, the user cannot log in to the dashboard. However, data for the user
account is maintained, so you can enable the user at any time.

• To enable a disabled user account:

$ openstack user set USER_NAME --enable

• To change the name and description for a user account:

$ openstack user set USER_NAME --name user-new --email new-user@example.
↪→com
User has been updated.

8.1. Getting Started 437

Keystone Documentation, Release 21.0.2.dev4

Delete a user

Delete a specified user account:

$ openstack user delete USER_NAME

Roles and role assignments

List available roles

List the available roles:

$ openstack role list
+----------------------------------+---------------+
| ID | Name |
+----------------------------------+---------------+
71ccc37d41c8491c975ae72676db687f	member
149f50a1fe684bfa88dae76a48d26ef7	ResellerAdmin
9fe2ff9ee4384b1894a90878d3e92bab	reader
6ecf391421604da985db2f141e46a7c8	admin
deb4fffd123c4d02a907c2c74559dccf	anotherrole
+----------------------------------+---------------+

Create a role

Users can be members of multiple projects. To assign users to multiple projects, define a role and assign
that role to a user-project pair.

Create the new-role role:

$ openstack role create new-role
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	None
domain_id	None
id	a34425c884c74c8881496dc2c2e84ffc
name	new-role
+-------------+----------------------------------+

Note: If you are using identity v3, you may need to use the --domain option with a specific domain
name.

438 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Assign a role

To assign a user to a project, you must assign the role to a user-project pair.

1. Assign a role to a user-project pair:

$ openstack role add --user USER_NAME --project PROJECT_NAME ROLE_NAME

For example, assign the new-role role to the demo user and test-project project pair:

$ openstack role add --user demo --project test-project new-role

2. Verify the role assignment:

$ openstack role assignment list --user USER_NAME \
--project PROJECT_NAME --names

+-------------+--------------+-------+--------------+--------+--------+---
↪→--------+
| Role | User | Group | Project | Domain | System |␣
↪→Inherited |
+-------------+--------------+-------+--------------+--------+--------+---
↪→--------+
| new-role | demo@Default | | demo@Default | | |␣
↪→False |
| member | demo@Default | | demo@Default | | |␣
↪→False |
| anotherrole | demo@Default | | demo@Default | | |␣
↪→False |
+-------------+--------------+-------+--------------+--------+--------+---
↪→--------+

Note: Before the Newton release, users would run the openstack role list --user USER_NAME
--project TENANT_ID command to verify the role assignment.

View role details

View details for a specified role:

$ openstack role show ROLE_NAME
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	None
domain_id	None
id	a34425c884c74c8881496dc2c2e84ffc
name	new-role
+-------------+----------------------------------+

8.1. Getting Started 439

Keystone Documentation, Release 21.0.2.dev4

Remove a role

Remove a role from a user-project pair:

1. Run the openstack role remove command:

$ openstack role remove --user USER_NAME --project PROJECT_NAME ROLE_NAME

2. Verify the role removal:

$ openstack role assignment list --user USER_NAME --project PROJECT_NAME -
↪→-names

If the role was removed, the command output omits the removed role.

Creating implied roles

It is possible to build role hierarchies by having roles imply other roles. These are called implied roles,
or role inference rules.

To illustrate the capability, lets have the admin role imply the member role. In this example, if a user was
assigned the prior role, which in this case is the admin role, they would also get the member role that it
implies.

$ openstack implied role create admin --implied-role member
+------------+----------------------------------+
| Field | Value |
+------------+----------------------------------+
| implies | 71ccc37d41c8491c975ae72676db687f |
| prior_role | 29c09e68e6f741afa952a837e29c700b |
+------------+----------------------------------+

Note: Role implications only go one way, from a prior role to an implied role. Therefore assigning a
user the member will not grant them the admin role.

This makes it easy to break up large roles into smaller pieces, allowing for fine grained permissions,
while still having an easy way to assign all the pieces as if they were a single one. For example, you can
have a member role imply compute_member, network_member, and volume_member, and then assign
either the full-blown member role to users or any one of the subsets.

Listing implied roles

To list implied roles:

$ openstack implied role list
+----------------------------------+-----------------+------------------------
↪→----------+-------------------+
| Prior Role ID | Prior Role Name | Implied Role ID ␣
↪→ | Implied Role Name |

(continues on next page)

440 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

+----------------------------------+-----------------+------------------------
↪→----------+-------------------+
| 29c09e68e6f741afa952a837e29c700b | admin |␣
↪→71ccc37d41c8491c975ae72676db687f | member |
+----------------------------------+-----------------+------------------------
↪→----------+-------------------+

Deleting implied roles

To delete a role inference rule:

$ openstack implied role delete admin --implied-role member

Note: Deleting an implied role removes the role inference rule. It does not delete the prior or implied
role. Therefore if a user was assigned the prior role, they will no longer have the roles that it implied.

8.1.5 Create and manage services and service users

Service Catalog

OpenStack services can be discovered when registered in keystones service catalog. The service catalog
can be managed as either a static file template or as a dynamic database table.

File-based Service Catalog (templated.Catalog)

The templated catalog is an in-memory backend initialized from a read-only template_file. Choose
this option only if you know that your service catalog will not change very much over time.

Note: Attempting to change your service catalog against this driver will result in HTTP 501 Not
Implemented errors. This is the expected behavior. If you want to use these commands, you must
instead use the SQL-based Service Catalog driver.

keystone.conf example:

[catalog]
driver = templated
template_file = /opt/stack/keystone/etc/default_catalog.templates

The value of template_file is expected to be an absolute path to your service catalog configuration.
An example template_file is included in keystone, however you should create your own to reflect your
deployment.

8.1. Getting Started 441

Keystone Documentation, Release 21.0.2.dev4

SQL-based Service Catalog (sql.Catalog)

A dynamic database-backed driver fully supporting persistent configuration.

keystone.conf example:

[catalog]
driver = sql

Note: A template_file does not need to be defined for the sql based catalog.

To build your service catalog using this driver, see the built-in help:

$ openstack --help
$ openstack service create --help
$ openstack endpoint create --help

Create a service

1. List the available services:

$ openstack service list
+----------------------------------+----------+------------+
| ID | Name | Type |
+----------------------------------+----------+------------+
9816f1faaa7c4842b90fb4821cd09223	cinder	volume
1250f64f31e34dcd9a93d35a075ddbe1	cinderv2	volumev2
da8cf9f8546b4a428c43d5e032fe4afc	ec2	ec2
5f105eeb55924b7290c8675ad7e294ae	glance	image
dcaa566e912e4c0e900dc86804e3dde0	keystone	identity
4a715cfbc3664e9ebf388534ff2be76a	nova	compute
1aed4a6cf7274297ba4026cf5d5e96c5	novav21	computev21
bed063c790634c979778551f66c8ede9	neutron	network
6feb2e0b98874d88bee221974770e372	s3	s3
+----------------------------------+----------+------------+

2. To create a service, run this command:

$ openstack service create --name SERVICE_NAME --description SERVICE_
↪→DESCRIPTION SERVICE_TYPE

The arguments are:

• service_name: the unique name of the new service.

• service_type: the service type, such as identity, compute, network, image,
object-store or any other service identifier string.

• service_description: the description of the service.

For example, to create a swift service of type object-store, run this command:

442 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

$ openstack service create --name swift --description "object store␣
↪→service" object-store
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	object store service
enabled	True
id	84c23f4b942c44c38b9c42c5e517cd9a
name	swift
type	object-store
+-------------+----------------------------------+

3. To get details for a service, run this command:

$ openstack service show SERVICE_TYPE|SERVICE_NAME|SERVICE_ID

For example:

$ openstack service show object-store
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	object store service
enabled	True
id	84c23f4b942c44c38b9c42c5e517cd9a
name	swift
type	object-store
+-------------+----------------------------------+

Create an endpoint

1. Once a service is created, register it at an endpoint:

$ openstack endpoint create nova public http://example.com/compute/v2.1
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	c219aa779e90403eb4a78cf0aa7d38b1
interface	public
region	None
region_id	None
service_id	0f5da035b8e94629bf35e7ec1703a8eb
service_name	nova
service_type	compute
url	http://example.com/compute/v2.1
+--------------+----------------------------------+

8.1. Getting Started 443

Keystone Documentation, Release 21.0.2.dev4

Delete a service

To delete a specified service, specify its ID.

$ openstack service delete SERVICE_TYPE|SERVICE_NAME|SERVICE_ID

For example:

$ openstack service delete object-store

Service users

To authenticate users against the Identity service, you must create a service user for each OpenStack
service. For example, create a service user for the Compute, Block Storage, and Networking services.

To configure the OpenStack services with service users, create a project for all services and create users
for each service. Assign the admin role to each service user and project pair. This role enables users to
validate tokens and authenticate and authorize other user requests.

Create service users

1. Create a project for the service users. Typically, this project is named service, but choose any
name you like:

$ openstack project create service --domain default
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	None
domain_id	e601210181f54843b51b3edff41d4980
enabled	True
id	3e9f3f5399624b2db548d7f871bd5322
is_domain	False
name	service
parent_id	e601210181f54843b51b3edff41d4980
+-------------+----------------------------------+

2. Create service users for the relevant services for your deployment. For example:

$ openstack user create nova --password Sekr3tPass
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	95ec3e1d5dd747f5a512d261731d29c7
name	nova
options	{}
password_expires_at	None
+---------------------+----------------------------------+

444 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

3. Assign the admin role to the user-project pair.

$ openstack role add --project service --user nova admin
+-------+----------------------------------+
| Field | Value |
+-------+----------------------------------+
| id | 233109e756c1465292f31e7662b429b1 |
| name | admin |
+-------+----------------------------------+

Configuring service tokens

A lot of operations in OpenStack require communication between multiple services on behalf of the user.
For example, the Image service storing the users images in the Object Storage service. If the image is
significantly large, the operation might fail due to the users token having expired during upload.

In the above scenarios, the Image service will attach both the users token and its own token (called the
service token), as per the diagram below.

+----------------+
| User |
+-------+--------+

| Access Image Data Request
| X-AUTH-TOKEN: <end user token>
|

+-------v---------+
| Glance |
+-------+---------+

| Access Image Data Request
| X-AUTH-TOKEN: <original end user token>
| X-SERVICE-TOKEN: <glance service user token>
|

+-------v---------+
| Swift |
+-----------------+

When a service receives a call from another service, it validates that the token has the appropriate
roles for a service user. This is configured in each individual service configuration, under the section
[keystone_authtoken].

If the service token is valid, the operation will be allowed even if the users token has expired.

The service_token_roles option is the list of roles that the service token must contain to be a valid
service token. In the previous steps, we have assigned the admin role to service users, so set the option
to that and set service_token_roles_required to true.

[keystone_authtoken]
service_token_roles = admin
service_token_roles_required = true

For more information regarding service tokens, please see the keystonemiddleware release notes.

8.1. Getting Started 445

https://docs.openstack.org/releasenotes/keystonemiddleware/ocata.html

Keystone Documentation, Release 21.0.2.dev4

8.2 Keystone Configuration

Information and recommendations for general configuration of keystone for keystone administrators. See
the main Configuration section for complete keystone configuration documentation and sample config
files.

8.2.1 Troubleshoot the Identity service

To troubleshoot the Identity service, review the logs in the /var/log/keystone/keystone.log file.

Use the /etc/keystone/logging.conf file to configure the location of log files.

Note: The insecure_debug flag is unique to the Identity service. If you enable insecure_debug,
error messages from the API change to return security-sensitive information. For example, the error
message on failed authentication includes information on why your authentication failed.

The logs show the components that have come in to the WSGI request, and ideally show an error that
explains why an authorization request failed. If you do not see the request in the logs, run keystone with
the --debug parameter. Pass the --debug parameter before the command parameters.

8.2.2 Logging

You configure logging externally to the rest of Identity. The name of the file specifying the logging config-
uration is set using the log_config_append option in the [DEFAULT] section of the /etc/keystone/
keystone.conf file. To route logging through syslog, set use_syslog=true in the [DEFAULT] sec-
tion.

A sample logging configuration file is available with the project in etc/logging.conf.sample. Like
other OpenStack projects, Identity uses the Python logging module, which provides extensive configura-
tion options that let you define the output levels and formats.

8.2.3 Domain-specific configuration

The Identity service supports domain-specific Identity drivers. The drivers allow a domain to have its
own LDAP or SQL back end. By default, domain-specific drivers are disabled.

Domain-specific Identity configuration options can be stored in domain-specific configuration files, or in
the Identity SQL database using API REST calls.

Note: Storing and managing configuration options in an SQL database is experimental in Kilo, and
added to the Identity service in the Liberty release.

446 Chapter 8. Administrator Guides

https://docs.python.org/library/logging.html

Keystone Documentation, Release 21.0.2.dev4

Enable drivers for domain-specific configuration files

To enable domain-specific drivers, set these options in the /etc/keystone/keystone.conf file:

[identity]
domain_specific_drivers_enabled = True
domain_config_dir = /etc/keystone/domains

When you enable domain-specific drivers, Identity looks in the domain_config_dir directory for con-
figuration files that are named as keystone.DOMAIN_NAME.conf. A domain without a domain-specific
configuration file uses options in the primary configuration file.

Enable drivers for storing configuration options in SQL database

To enable domain-specific drivers, set these options in the /etc/keystone/keystone.conf file:

[identity]
domain_specific_drivers_enabled = True
domain_configurations_from_database = True

Any domain-specific configuration options specified through the Identity v3 API will override domain-
specific configuration files in the /etc/keystone/domains directory.

Unlike the file-based method of specifying domain-specific configurations, options specified via the Iden-
tity API will become active without needing to restart the keystone server. For performance reasons, the
current state of configuration options for a domain are cached in the keystone server, and in multi-process
and multi-threaded keystone configurations, the new configuration options may not become active until
the cache has timed out. The cache settings for domain config options can be adjusted in the general
keystone configuration file (option cache_time in the domain_config group).

Note: It is important to notice that when using either of these methods of specifying domain-specific
configuration options, the main keystone configuration file is still maintained. Only those options that
relate to the Identity driver for users and groups (i.e. specifying whether the driver for this domain is
SQL or LDAP, and, if LDAP, the options that define that connection) are supported in a domain-specific
manner. Further, when using the configuration options via the Identity API, the driver option must be set
to an LDAP driver (attempting to set it to an SQL driver will generate an error when it is subsequently
used).

For existing installations that already use file-based domain-specific configurations who wish to migrate
to the SQL-based approach, the keystone-manage command can be used to upload all configuration
files to the SQL database:

$ keystone-manage domain_config_upload --all

Once uploaded, these domain-configuration options will be visible via the Identity API as well as applied
to the domain-specific drivers. It is also possible to upload individual domain-specific configuration files
by specifying the domain name:

$ keystone-manage domain_config_upload --domain-name DOMAINA

8.2. Keystone Configuration 447

Keystone Documentation, Release 21.0.2.dev4

Note: It is important to notice that by enabling either of the domain-specific configuration methods,
the operations of listing all users and listing all groups are not supported, those calls will need either a
domain filter to be specified or usage of a domain scoped token.

Note: Keystone does not support moving the contents of a domain (i.e. its users and groups) from one
backend to another, nor group membership across backend boundaries.

Note: When using the file-based domain-specific configuration method, to delete a domain that uses
a domain specific backend, its necessary to first disable it, remove its specific configuration file (i.e.
its corresponding keystone.<domain_name>.conf) and then restart the Identity server. When managing
configuration options via the Identity API, the domain can simply be disabled and deleted via the Identity
API; since any domain-specific configuration options will automatically be removed.

Note: Although keystone supports multiple LDAP backends via the above domain-specific configuration
methods, it currently only supports one SQL backend. This could be either the default driver or a single
domain-specific backend, perhaps for storing service users in a predominantly LDAP installation.

Note: Keystone has deprecated the keystone-manage domain_config_upload option. The key-
stone team recommends setting domain config options via the API instead.

Due to the need for user and group IDs to be unique across an OpenStack installation and for keystone to
be able to deduce which domain and backend to use from just a user or group ID, it dynamically builds
a persistent identity mapping table from a public ID to the actual domain, local ID (within that backend)
and entity type. The public ID is automatically generated by keystone when it first encounters the entity.
If the local ID of the entity is from a backend that does not guarantee to generate UUIDs, a hash algorithm
will generate a public ID for that entity, which is what will be exposed by keystone.

The use of a hash will ensure that if the public ID needs to be regenerated then the same public ID will
be created. This is useful if you are running multiple keystones and want to ensure the same ID would
be generated whichever server you hit.

Note: In case of the LDAP backend, the names of users and groups are not hashed. As a result, these
are length limited to 255 characters. Longer names will result in an error.

While keystone will dynamically maintain the identity mapping, including removing entries when entities
are deleted via the keystone, for those entities in backends that are managed outside of keystone (e.g. a
read-only LDAP), keystone will not know if entities have been deleted and hence will continue to carry
stale identity mappings in its table. While benign, keystone provides an ability for operators to purge the
mapping table of such stale entries using the keystone-manage command, for example:

$ keystone-manage mapping_purge --domain-name DOMAINA --local-id abc@de.com

A typical usage would be for an operator to obtain a list of those entries in an external backend that had

448 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

been deleted out-of-band to keystone, and then call keystone-manage to purge those entries by specifying
the domain and local-id. The type of the entity (i.e. user or group) may also be specified if this is needed
to uniquely identify the mapping.

Since public IDs can be regenerated with the correct generator implementation, if the details of those
entries that have been deleted are not available, then it is safe to simply bulk purge identity mappings
periodically, for example:

$ keystone-manage mapping_purge --domain-name DOMAINA

will purge all the mappings for DOMAINA. The entire mapping table can be purged with the following
command:

$ keystone-manage mapping_purge --all

Generating public IDs in the first run may take a while, and most probably first API requests to fetch user
list will fail by timeout. To prevent this, mapping_populate command should be executed. It should
be executed right after LDAP has been configured or after mapping_purge.

$ keystone-manage mapping_populate --domain DOMAINA

Public ID Generators

Keystone supports a customizable public ID generator and it is specified in the [identity_mapping]
section of the configuration file. Keystone provides a sha256 generator as default, which produces regen-
erable public IDs. The generator algorithm for public IDs is a balance between key size (i.e. the length of
the public ID), the probability of collision and, in some circumstances, the security of the public ID. The
maximum length of public ID supported by keystone is 64 characters, and the default generator (sha256)
uses this full capability. Since the public ID is what is exposed externally by keystone and potentially
stored in external systems, some installations may wish to make use of other generator algorithms that
have a different trade-off of attributes. A different generator can be installed by configuring the following
property:

• generator - identity mapping generator. Defaults to sha256 (implemented by keystone.
identity.id_generators.sha256.Generator)

Warning: Changing the generator may cause all existing public IDs to be become invalid, so typi-
cally the generator selection should be considered immutable for a given installation.

Migrate domain-specific configuration files to the SQL database

You can use the keystone-manage command to migrate configuration options in domain-specific con-
figuration files to the SQL database:

keystone-manage domain_config_upload --all

To upload options from a specific domain-configuration file, specify the domain name:

keystone-manage domain_config_upload --domain-name DOMAIN_NAME

8.2. Keystone Configuration 449

Keystone Documentation, Release 21.0.2.dev4

8.2.4 Integrate Identity with LDAP

The OpenStack Identity service supports integration with existing LDAP directories for authentication
and authorization services. LDAP back ends require initialization before configuring the OpenStack
Identity service to work with it. For more information, see Setting up LDAP for use with Keystone.

When the OpenStack Identity service is configured to use LDAP back ends, you can split authentication
(using the identity feature) and authorization (using the assignment feature). OpenStack Identity only
supports read-only LDAP integration.

The identity feature enables administrators to manage users and groups by each domain or the OpenStack
Identity service entirely.

The assignment feature enables administrators to manage project role authorization using the OpenStack
Identity service SQL database, while providing user authentication through the LDAP directory.

Note: It is possible to isolate identity related information to LDAP in a deployment and keep resource
information in a separate datastore. It is not possible to do the opposite, where resource information is
stored in LDAP and identity information is stored in SQL. If the resource or assignment back ends are
integrated with LDAP, the identity back end must also be integrated with LDAP.

Identity LDAP server set up

Important: If you are using SELinux (enabled by default on RHEL derivatives), then
in order for the OpenStack Identity service to access LDAP servers, you must enable the
authlogin_nsswitch_use_ldap boolean value for SELinux on the server running the OpenStack
Identity service. To enable and make the option persistent across reboots, set the following boolean
value as the root user:

setsebool -P authlogin_nsswitch_use_ldap on

The Identity configuration is split into two separate back ends; identity (back end for users and groups),
and assignments (back end for domains, projects, roles, role assignments). To configure Identity, set
options in the /etc/keystone/keystone.conf file. See Integrate Identity back end with LDAP for
Identity back end configuration examples. Modify these examples as needed.

To define the destination LDAP server

Define the destination LDAP server in the /etc/keystone/keystone.conf file:

[ldap]
url = ldap://localhost
user = dc=Manager,dc=example,dc=org
password = samplepassword
suffix = dc=example,dc=org

Although its not recommended (see note below), multiple LDAP servers can be supplied to url to provide
high-availability support for a single LDAP backend. By default, these will be tried in order of apperance,
but an additional option, randomize_urls can be set to true, to randomize the list in each process (when

450 Chapter 8. Administrator Guides

https://wiki.openstack.org/wiki/OpenLDAP

Keystone Documentation, Release 21.0.2.dev4

it starts). To specify multiple LDAP servers, simply change the url option in the [ldap] section to be
a list, separated by commas:

url = "ldap://localhost,ldap://backup.localhost"
randomize_urls = true

Note: Failover mechanisms in the LDAP backend can cause delays when switching over to the next
working LDAP server. Randomizing the order in which the servers are tried only makes the failure
behavior not dependent on which of the ordered servers fail. Individual processes can still be delayed
or time out, so this doesnt fix the issue at hand, but only makes the failure mode more gradual. This
behavior cannot be easily fixed inside the service, because keystone would have to monitor the status of
each LDAP server, which is in fact a task for a load balancer. Because of this, it is recommended to use
a load balancer in front of the LDAP servers, which can monitor the state of the cluster and instantly
redirect connections to the working LDAP server.

Additional LDAP integration settings

Set these options in the /etc/keystone/keystone.conf file for a single LDAP server, or /etc/
keystone/domains/keystone.DOMAIN_NAME.conf files for multiple back ends. Example config-
urations appear below each setting summary:

Query option

• Use query_scope to control the scope level
of data presented (search only the first level
or search an entire sub-tree) through LDAP.

• Use page_size to control the maximum

results per page. A value of zero disables
paging.

• Use alias_dereferencing to control the
LDAP dereferencing option for queries.

[ldap]
query_scope = sub
page_size = 0
alias_dereferencing = default
chase_referrals =

Debug

Use debug_level to set the LDAP debugging level for LDAP calls. A value of zero means that debug-
ging is not enabled.

[ldap]
debug_level = 4095

This setting sets OPT_DEBUG_LEVEL in the underlying python library. This field is a bit mask (integer),
and the possible flags are documented in the OpenLDAP manpages. Commonly used values include
255 and 4095, with 4095 being more verbose and 0 being disabled. We recommend consulting the
documentation for your LDAP back end when using this option.

Warning: Enabling debug_level will negatively impact performance.

Connection pooling

8.2. Keystone Configuration 451

Keystone Documentation, Release 21.0.2.dev4

Various LDAP back ends use a common LDAP module to interact with LDAP data. By default, a new
connection is established for each LDAP operation. This is expensive when TLS support is enabled,
which is a likely configuration in an enterprise setup. Reusing connections from a connection pool dras-
tically reduces overhead of initiating a new connection for every LDAP operation.

Use use_pool to enable LDAP connection pooling. Configure the connection pool size, maximum retry,
reconnect trials, timeout (-1 indicates indefinite wait) and lifetime in seconds.

[ldap]
use_pool = true
pool_size = 10
pool_retry_max = 3
pool_retry_delay = 0.1
pool_connection_timeout = -1
pool_connection_lifetime = 600

Connection pooling for end user authentication

LDAP user authentication is performed via an LDAP bind operation. In large deployments, user authen-
tication can use up all available connections in a connection pool. OpenStack Identity provides a separate
connection pool specifically for user authentication.

Use use_auth_pool to enable LDAP connection pooling for end user authentication. Configure the
connection pool size and lifetime in seconds. Both use_pool and use_auth_pool must be enabled to
pool connections for user authentication.

[ldap]
use_auth_pool = false
auth_pool_size = 100
auth_pool_connection_lifetime = 60

When you have finished the configuration, restart the OpenStack Identity service.

Warning: During the service restart, authentication and authorization are unavailable.

Integrate Identity back end with LDAP

The Identity back end contains information for users, groups, and group member lists. Integrating the
Identity back end with LDAP allows administrators to use users and groups in LDAP.

Important: For OpenStack Identity service to access LDAP servers, you must define the destination
LDAP server in the /etc/keystone/keystone.conf file. For more information, see Identity LDAP
server set up.

To integrate one Identity back end with LDAP

1. Enable the LDAP Identity driver in the /etc/keystone/keystone.conf file. This allows LDAP
as an identity back end:

452 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

[identity]
#driver = sql
driver = ldap

2. Create the organizational units (OU) in the LDAP directory, and define the corresponding location
in the /etc/keystone/keystone.conf file:

[ldap]
user_tree_dn = ou=Users,dc=example,dc=org
user_objectclass = inetOrgPerson

group_tree_dn = ou=Groups,dc=example,dc=org
group_objectclass = groupOfNames

Note: These schema attributes are extensible for compatibility with various schemas. For exam-
ple, this entry maps to the person attribute in Active Directory:

user_objectclass = person

Restart the OpenStack Identity service.

Warning: During service restart, authentication and authorization are unavailable.

To integrate multiple Identity back ends with LDAP

1. Set the following options in the /etc/keystone/keystone.conf file:

1. Enable the LDAP driver:

[identity]
#driver = sql
driver = ldap

2. Enable domain-specific drivers:

[identity]
domain_specific_drivers_enabled = True
domain_config_dir = /etc/keystone/domains

2. Restart the OpenStack Identity service.

Warning: During service restart, authentication and authorization are unavailable.

3. List the domains using the dashboard, or the OpenStackClient CLI. Refer to the Command List for
a list of OpenStackClient commands.

4. Create domains using OpenStack dashboard, or the OpenStackClient CLI.

8.2. Keystone Configuration 453

https://docs.openstack.org/python-openstackclient/latest/cli/command-list.html

Keystone Documentation, Release 21.0.2.dev4

5. For each domain, create a domain-specific configuration file in the /etc/keystone/domains
directory. Use the file naming convention keystone.DOMAIN_NAME.conf, where DO-
MAIN_NAME is the domain name assigned in the previous step.

Note: The options set in the /etc/keystone/domains/keystone.DOMAIN_NAME.conf file
will override options in the /etc/keystone/keystone.conf file.

6. Define the destination LDAP server in the /etc/keystone/domains/keystone.
DOMAIN_NAME.conf file. For example:

[ldap]
url = ldap://localhost
user = dc=Manager,dc=example,dc=org
password = samplepassword
suffix = dc=example,dc=org

7. Create the organizational units (OU) in the LDAP directories, and define their corresponding lo-
cations in the /etc/keystone/domains/keystone.DOMAIN_NAME.conf file. For example:

[ldap]
user_tree_dn = ou=Users,dc=example,dc=org
user_objectclass = inetOrgPerson

group_tree_dn = ou=Groups,dc=example,dc=org
group_objectclass = groupOfNames

Note: These schema attributes are extensible for compatibility with various schemas. For exam-
ple, this entry maps to the person attribute in Active Directory:

user_objectclass = person

8. Restart the OpenStack Identity service.

Warning: During service restart, authentication and authorization are unavailable.

Additional LDAP integration settings

Set these options in the /etc/keystone/keystone.conf file for a single LDAP server, or /etc/
keystone/domains/keystone.DOMAIN_NAME.conf files for multiple back ends. Example config-
urations appear below each setting summary:

Filters Use filters to control the scope of data presented through LDAP.

[ldap]
user_filter = (memberof=cn=openstack-users,ou=workgroups,dc=example,
↪→dc=org)
group_filter =

454 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Identity attribute mapping Mask account status values (include any additional attribute mappings)
for compatibility with various directory services. Superfluous accounts are filtered with
user_filter.

Setting attribute ignore to list of attributes stripped off on update.

For example, you can mask Active Directory account status attributes in the /etc/keystone/
keystone.conf file:

[ldap]
user_id_attribute = cn
user_name_attribute = sn
user_mail_attribute = mail
user_pass_attribute = userPassword
user_enabled_attribute = userAccountControl
user_enabled_mask = 2
user_enabled_invert = false
user_enabled_default = 512
user_default_project_id_attribute =
user_additional_attribute_mapping =

group_id_attribute = cn
group_name_attribute = ou
group_member_attribute = member
group_desc_attribute = description
group_additional_attribute_mapping =

It is possible to model more complex LDAP schemas. For example, in the user object, the object-
Class posixAccount from RFC2307 is very common. If this is the underlying objectClass, then the
uid field should probably be uidNumber and the username field should be either uid or cn. The
following illustrates the configuration:

[ldap]
user_id_attribute = uidNumber
user_name_attribute = cn

Enabled emulation OpenStack Identity supports emulation for integrating with LDAP servers that do
not provide an enabled attribute for users. This allows OpenStack Identity to advertise enabled
attributes when the user entity in LDAP does not. The user_enabled_emulation option must
be enabled and the user_enabled_emulation_dn option must be a valid LDAP group. Users in
the group specified by user_enabled_emulation_dn will be marked as enabled. For example,
the following will mark any user who is a member of the enabled_users group as enabled:

[ldap]
user_enabled_emulation = True
user_enabled_emulation_dn = cn=enabled_users,cn=groups,dc=openstack,dc=org

If the directory server has an enabled attribute, but it is not a boolean type, a mask can be used to
convert it. This is useful when the enabled attribute is an integer value. The following configuration
highlights the usage:

[ldap]
user_enabled_attribute = userAccountControl

(continues on next page)

8.2. Keystone Configuration 455

https://tools.ietf.org/html/rfc2307

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

user_enabled_mask = 2
user_enabled_default = 512

In this case, the attribute is an integer and the enabled attribute is listed in bit 1. If
the mask configured user_enabled_mask is different from 0, it retrieves the attribute from
user_enabled_attribute and performs an add operation with the user_enabled_mask. If
the sum of the operation matches the mask, then the account is disabled.

The value of user_enabled_attribute is also saved before applying the add operation in
enabled_nomask. This is done in case the user needs to be enabled or disabled. Lastly, set-
ting user_enabled_default is needed in order to create a default value on the integer attribute
(512 = NORMAL ACCOUNT in Active Directory).

When you have finished configuration, restart the OpenStack Identity service.

Warning: During service restart, authentication and authorization are unavailable.

Secure the OpenStack Identity service connection to an LDAP back end

We recommend securing all connections between OpenStack Identity and LDAP. The Identity service
supports the use of TLS to encrypt LDAP traffic. Before configuring this, you must first verify where
your certificate authority file is located. For more information, see the OpenStack Security Guide SSL
introduction.

Once you verify the location of your certificate authority file:

To configure TLS encryption on LDAP traffic

1. Open the /etc/keystone/keystone.conf configuration file.

2. Find the [ldap] section.

3. In the [ldap] section, set the use_tls configuration key to True. Doing so will enable TLS.

4. Configure the Identity service to use your certificate authorities file. To do so, set the
tls_cacertfile configuration key in the ldap section to the certificate authorities files path.

Note: You can also set the tls_cacertdir (also in the ldap section) to the directory where all
certificate authorities files are kept. If both tls_cacertfile and tls_cacertdir are set, then
the latter will be ignored.

5. Specify what client certificate checks to perform on incoming TLS sessions from the LDAP server.
To do so, set the tls_req_cert configuration key in the [ldap] section to demand, allow, or
never:

• demand - The LDAP server always
receives certificate requests. The session
terminates if no certificate is provided, or
if the certificate provided cannot be
verified against the existing certificate
authorities file.

• allow - The LDAP server always
receives certificate requests. The session
will proceed as normal even if a
certificate is not provided. If a certificate
is provided but it cannot be verified
against the existing certificate authorities

456 Chapter 8. Administrator Guides

https://docs.openstack.org/security-guide/secure-communication/introduction-to-ssl-and-tls.html
https://docs.openstack.org/security-guide/secure-communication/introduction-to-ssl-and-tls.html

Keystone Documentation, Release 21.0.2.dev4

file, the certificate will be ignored and the
session will proceed as normal.

• never - A certificate will never be
requested.

When you have finished configuration, restart the OpenStack Identity service.

Note: If you are unable to connect to LDAP via OpenStack Identity, or observe a SERVER DOWN
error, set the TLS_CACERT in /etc/ldap/ldap.conf to the same value specified in the [ldap]
tls_certificate section of keystone.conf.

On distributions that include openstack-config, you can configure TLS encryption on LDAP traffic by
running the following commands instead.

openstack-config --set /etc/keystone/keystone.conf \
ldap use_tls True

openstack-config --set /etc/keystone/keystone.conf \
ldap tls_cacertfile ``CA_FILE``

openstack-config --set /etc/keystone/keystone.conf \
ldap tls_req_cert ``CERT_BEHAVIOR``

Where:

• CA_FILE is the absolute path to the certificate authorities file that should be used to encrypt LDAP
traffic.

• CERT_BEHAVIOR specifies what client certificate checks to perform on an incoming TLS session
from the LDAP server (demand, allow, or never).

8.2.5 Caching layer

OpenStack Identity supports a caching layer that is above the configurable subsystems (for example,
token). This gives you the flexibility to setup caching for all or some subsystems. OpenStack Identity uses
the oslo.cache library which allows flexible cache back ends. The majority of the caching configuration
options are set in the [cache] section of the /etc/keystone/keystone.conf file. The enabled
option of the [cache] section must be set to True in order for any subsystem to cache responses. Each
section that has the capability to be cached will have a caching boolean value that toggles caching
behavior of that particular subsystem.

So to enable only the token back end caching, set the values as follows:

[cache]
enabled=true

[catalog]
caching=false

[domain_config]
caching=false

[federation]
caching=false

(continues on next page)

8.2. Keystone Configuration 457

https://docs.openstack.org/oslo.cache/latest/

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

[resource]
caching=false

[revoke]
caching=false

[role]
caching=false

[token]
caching=true

Note: Each subsystem is configured to cache by default. However, the global toggle for caching defaults
to False. A subsystem is only able to cache responses if the global toggle is enabled.

Current functional back ends are:

dogpile.cache.null A null backend that effectively disables all cache operations.(Default)

dogpile.cache.memcached Memcached back end using the standard python-memcached library.

dogpile.cache.pylibmc Memcached back end using the pylibmc library.

dogpile.cache.bmemcached Memcached using the python-binary-memcached library.

dogpile.cache.redis Redis back end.

dogpile.cache.dbm Local DBM file back end.

dogpile.cache.memory In-memory cache, not suitable for use outside of testing as it does not cleanup
its internal cache on cache expiration and does not share cache between processes. This means that
caching and cache invalidation will not be consistent or reliable.

dogpile.cache.memory_pickle In-memory cache, but serializes objects with pickle lib. Its not suit-
able for use outside of testing. The reason is the same with dogpile.cache.memory

oslo_cache.mongo MongoDB as caching back end.

oslo_cache.memcache_pool Memcached backend that does connection pooling.

oslo_cache.etcd3gw Uses etcd 3.x for storage.

oslo_cache.dict A DictCacheBackend based on dictionary, not suitable for use outside of testing as
it does not share cache between processes.This means that caching and cache invalidation will not
be consistent or reliable.

458 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Caching for tokens and tokens validation

The token subsystem is OpenStack Identitys most heavily used API. As a result, all types of tokens benefit
from caching, including Fernet tokens. Although Fernet tokens do not need to be persisted, they should
still be cached for optimal token validation performance.

The token system has a separate cache_time configuration option, that can be set to a value above
or below the global expiration_time default, allowing for different caching behavior from the other
systems in OpenStack Identity. This option is set in the [token] section of the configuration file.

The token revocation list cache time is handled by the configuration option revocation_cache_time
in the [token] section. The revocation list is refreshed whenever a token is revoked. It typically sees
significantly more requests than specific token retrievals or token validation calls.

Here is a list of actions that are affected by the cached time:

• getting a new token

• revoking tokens

• validating tokens

• checking v3 tokens

The delete token API calls invalidate the cache for the tokens being acted upon, as well as invalidating
the cache for the revoked token list and the validate/check token calls.

Token caching is configurable independently of the revocation_list caching. Lifted expiration
checks from the token drivers to the token manager. This ensures that cached tokens will still raise a
TokenNotFound flag when expired.

For cache consistency, all token IDs are transformed into the short token hash at the provider and token
driver level. Some methods have access to the full ID (PKI Tokens), and some methods do not. Cache
invalidation is inconsistent without token ID normalization.

Caching for non-token resources

Various other keystone components have a separate cache_time configuration option, that can be set to a
value above or below the global expiration_time default, allowing for different caching behavior from
the other systems in Identity service. This option can be set in various sections (for example, [role]
and [resource]) of the configuration file. The create, update, and delete actions for domains, projects
and roles will perform proper invalidations of the cached methods listed above.

For more information about the different back ends (and configuration options), see:

• dogpile.cache.memory

• dogpile.cache.memcached

Note: The memory back end is not suitable for use in a production environment.

• dogpile.cache.redis

• dogpile.cache.dbm

8.2. Keystone Configuration 459

https://dogpilecache.sqlalchemy.org/en/latest/api.html#memory-backends
https://dogpilecache.sqlalchemy.org/en/latest/api.html#memcached-backends
https://dogpilecache.sqlalchemy.org/en/latest/api.html#redis-backends
https://dogpilecache.sqlalchemy.org/en/latest/api.html#file-backends

Keystone Documentation, Release 21.0.2.dev4

Cache invalidation

A common concern with caching is relaying inaccurate information after updating or deleting a resource.
Most subsystems within OpenStack Identity invalidate specific cache entries once they have changed.
In cases where a specific cache entry cannot be invalidated from the cache, the cache region will be
invalidated instead. This invalidates all entries within the cache to prevent returning stale or misleading
data. A subsequent request for the resource will be fully processed and cached.

Warning: Be aware that if a read-only back end is in use for a particular subsystem, the cache will not
immediately reflect changes performed through the back end. Any given change may take up to the
cache_time (if set in the subsystem section of the configuration) or the global expiration_time
(set in the [cache] section of the configuration) before it is reflected. If this type of delay is an issue,
we recommend disabling caching for that particular subsystem.

Configure the Memcached back end example

The following example shows how to configure the memcached back end:

[cache]

enabled = true
backend = dogpile.cache.memcached
backend_argument = url:127.0.0.1:11211

You need to specify the URL to reach the memcached instance with the backend_argument parameter.

Verbose cache logging

We do not recommend using verbose cache logging by default in production systems since its extremely
noisy. However, you may need to debug cache issues. One way to see how keystone is interacting with a
cache backend is to enhance logging. The following configuration will aggregate oslo and dogpile logs
into keystones log file with increased verbosity:

[DEFAULT]
default_log_levels = oslo.cache=DEBUG,dogpile.core.dogpile=DEBUG

[cache]
debug_cache_backend = True

These logs will include cache hits and misses, making it easier to diagnose cache configuration and
connectivity issues.

460 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

8.2.6 Security compliance and PCI-DSS

As of the Newton release, the Identity service contains additional security compliance features, specif-
ically to satisfy Payment Card Industry - Data Security Standard (PCI-DSS) v3.1 requirements. See
Security Hardening PCI-DSS for more information on PCI-DSS.

Security compliance features are disabled by default and most of the features only apply to the SQL
backend for the identity driver. Other identity backends, such as LDAP, should implement their own
security controls.

Enable these features by changing the configuration settings under the [security_compliance] sec-
tion in keystone.conf.

Setting an account lockout threshold

The account lockout feature limits the number of incorrect password attempts. If a user fails to authen-
ticate after the maximum number of attempts, the service disables the user. Users can be re-enabled by
explicitly setting the enable user attribute with the update user v3 API call.

You set the maximum number of failed authentication attempts by setting the
lockout_failure_attempts:

[security_compliance]
lockout_failure_attempts = 6

You set the number of minutes a user would be locked out by setting the lockout_duration in seconds:

[security_compliance]
lockout_duration = 1800

If you do not set the lockout_duration, users will be locked out indefinitely until the user is explicitly
enabled via the API.

You can ensure specific users are never locked out. This can be useful for service accounts or adminis-
trative users. You can do this by setting the user option for ignore_lockout_failure_attempts.

Disabling inactive users

PCI-DSS 8.1.4 requires that inactive user accounts be removed or disabled within 90 days. You can
achieve this by setting the disable_user_account_days_inactive:

[security_compliance]
disable_user_account_days_inactive = 90

This above example means that users that have not authenticated (inactive) for the past 90 days are auto-
matically disabled. Users can be re-enabled by explicitly setting the enable user attribute via the API.

8.2. Keystone Configuration 461

https://specs.openstack.org/openstack/keystone-specs/specs/keystone/newton/pci-dss.html
https://docs.openstack.org/api-ref/identity/v3/index.html#update-user

Keystone Documentation, Release 21.0.2.dev4

Force users to change password upon first use

PCI-DSS 8.2.6 requires users to change their password for first time use and upon an administrative
password reset. Within the identity user API, create user and update user are considered administrative
password changes. Whereas, change password for user is a self-service password change. Once this
feature is enabled, new users, and users that have had their password reset, will be required to change
their password upon next authentication (first use), before being able to access any services.

Prior to enabling this feature, you may want to exempt some users that you do not wish to be required
to change their password. You can mark a user as exempt by setting the user options attribute ig-
nore_change_password_upon_first_use.

Warning: Failure to mark service users as exempt from this requirement will result in your service
account passwords becoming expired after being reset.

When ready, you can configure it so that users are forced to change their password upon first use by
setting change_password_upon_first_use:

[security_compliance]
change_password_upon_first_use = True

Configuring password expiration

Passwords can be configured to expire within a certain number of days by setting the
password_expires_days:

[security_compliance]
password_expires_days = 90

Once set, any new password changes have an expiration date based on the date/time of the password
change plus the number of days defined here. Existing passwords will not be impacted. If you want
existing passwords to have an expiration date, you would need to run a SQL script against the password
table in the database to update the expires_at column.

If there exists a user whose password you do not want to expire, keystone supports setting that via the
user option ignore_password_expiry.

Configuring password strength requirements

You can set password strength requirements, such as requiring numbers in passwords or setting a mini-
mum password length, by adding a regular expression to the password_regex setting:

[security_compliance]
password_regex = ^(?=.*\d)(?=.*[a-zA-Z]).{7,}$

The above example is a regular expression that requires a password to have:

• One (1) letter

• One (1) digit

462 Chapter 8. Administrator Guides

https://docs.openstack.org/api-ref/identity/v3/index.html#users

Keystone Documentation, Release 21.0.2.dev4

• Minimum length of seven (7) characters

If you do set the password_regex, you should provide text that describes your password strength re-
quirements. You can do this by setting the password_regex_description:

[security_compliance]
password_regex_description = Passwords must contain at least 1 letter, 1

digit, and be a minimum length of 7
characters.

It is imperative that the password_regex_description matches the actual regex. If the
password_regex and the password_regex_description do not match, it will cause user experi-
ence to suffer since this description will be returned to users to explain why their requested password was
insufficient.

Note: You must ensure the password_regex_description accurately and completely describes the
password_regex. If the two options are out of sync, the help text could inaccurately describe the
password requirements being applied to the password. This would lead to a poor user experience.

Requiring a unique password history

The password history requirements controls the number of passwords for a user that must be unique before
an old password can be reused. You can enforce this by setting the unique_last_password_count:

[security_compliance]
unique_last_password_count= 5

The above example does not allow a user to create a new password that is the same as any of their last
four previous passwords.

Similarly, you can set the number of days that a password must be used before the user can change it by
setting the minimum_password_age:

[security_compliance]
minimum_password_age = 1

In the above example, once a user changes their password, they would not be able to change it again
for one day. This prevents users from changing their passwords immediately in order to wipe out their
password history and reuse an old password.

Note: When you set password_expires_days, the value for the minimum_password_age should be
less than the password_expires_days. Otherwise, users would not be able to change their passwords
before they expire.

8.2. Keystone Configuration 463

Keystone Documentation, Release 21.0.2.dev4

Prevent Self-Service Password Changes

If there exists a user who should not be able to change her own password via the keystone password
change API, keystone supports setting that via the user option lock_password.

This is typically used in the case where passwords are managed externally to keystone.

8.2.7 Performance and scaling

Before you begin tuning Keystone for performance and scalability, you should first know that Keystone
is just a two tier horizontally-scalable web application, and the most effective methods for scaling it are
going to be the same as for any other similarly designed web application: give it more processes, more
memory, scale horizontally, and load balance the result.

With that said, there are many opportunities for tuning the performance of Keystone, many of which
are actually trade-offs between performance and security that you need to judge for yourself, and tune
accordingly.

Keystone configuration options that affect performance

These are all of the options in keystone.conf that have a direct impact on performance. See the help
descriptions for these options for more specific details on how and why you might want to tune these
options for yourself.

• [DEFAULT] max_project_tree_depth: Reduce this number to increase performance, increase
this number to cater to more complicated hierarchical multitenancy use cases.

• [DEFAULT] max_password_length: Reduce this number to increase performance, increase this
number to allow for more secure passwords.

• [cache] enable: Enable this option to increase performance, but you also need to configure
other options in the [cache] section to actually utilize caching.

• [token] provider: All supported token providers have been primarily driven by performance
considerations. UUID and Fernet both require online validation (cacheable HTTP calls back to
keystone to validate tokens). Fernet has the highest scalability characteristics overall, but requires
more work to validate, and therefore enabling caching ([cache] enable) is absolutely critical.

• [fernet] max_active_keys: If youre using Fernet tokens, decrease this option to improve per-
formance, increase this option to support more advanced key rotation strategies.

Keystonemiddleware configuration options that affect performance

This configuration actually lives in the Paste pipelines of services consuming token validation from key-
stone (i.e.: nova, cinder, swift, etc.).

• cache: When keystones auth_token middleware is deployed with a swift cache, use this op-
tion to have auth_token middleware share a caching backend with swift. Otherwise, use the
memcached_servers option instead.

• memcached_servers: Set this option to share a cache across keystonemiddleware.
auth_token processes.

464 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

• token_cache_time: Increase this option to improve performance, decrease this option to respond
to token revocation events more quickly (thereby increasing security).

• revocation_cache_time: Increase this option to improve performance, decrease this option to
respond to token revocation events more quickly (thereby increasing security).

• memcache_security_strategy: Do not set this option to improve performance, but set it to
improve security where youre sharing memcached with other processes.

• include_service_catalog: Disable this option to improve performance, if the protected ser-
vice does not require a service catalog.

8.2.8 URL safe naming of projects and domains

In the future, keystone may offer the ability to identify a project in a hierarchy via a URL style of naming
from the root of the hierarchy (for example specifying projectA/projectB/projectC as the project name in
an authentication request). In order to prepare for this, keystone supports the optional ability to ensure
both projects and domains are named without including any of the reserved characters specified in section
2.2 of rfc3986.

The safety of the names of projects and domains can be controlled via two configuration options:

[resource]
project_name_url_safe = off
domain_name_url_safe = off

When set to off (which is the default), no checking is done on the URL safeness of names. When set
to new, an attempt to create a new project or domain with an unsafe name (or update the name of a
project or domain to be unsafe) will cause a status code of 400 (Bad Request) to be returned. Setting the
configuration option to strict will, in addition to preventing the creation and updating of entities with
unsafe names, cause an authentication attempt which specifies a project or domain name that is unsafe
to return a status code of 401 (Unauthorized).

It is recommended that installations take the steps necessary to where they can run with both options set
to strict as soon as is practical.

8.2.9 Limiting list return size

Keystone provides a method of setting a limit to the number of entities returned in a collection, which is
useful to prevent overly long response times for list queries that have not specified a sufficiently narrow
filter. This limit can be set globally by setting list_limit in the default section of keystone.conf,
with no limit set by default. Individual driver sections may override this global value with a specific
limit, for example:

[resource]
list_limit = 100

If a response to list_{entity} call has been truncated, then the response status code will still be 200
(OK), but the truncated attribute in the collection will be set to true.

8.2. Keystone Configuration 465

http://tools.ietf.org/html/rfc3986

Keystone Documentation, Release 21.0.2.dev4

8.2.10 Endpoint Filtering

Endpoint Filtering enables creation of ad-hoc catalogs for each project-scoped token request.

Configure the endpoint filter catalog driver in the [catalog] section. For example:

[catalog]
driver = catalog_sql

In the [endpoint_filter] section, set return_all_endpoints_if_no_filter to False to return
an empty catalog if no associations are made. For example:

[endpoint_filter]
return_all_endpoints_if_no_filter = False

See API Specification for Endpoint Filtering for the details of API definition.

8.2.11 Endpoint Policy

The Endpoint Policy feature provides associations between service endpoints and policies that are already
stored in the Identity server and referenced by a policy ID.

Configure the endpoint policy backend driver in the [endpoint_policy] section. For example:

[endpoint_policy]
driver = sql

See API Specification for Endpoint Policy for the details of API definition.

8.3 Keystone Operations

Guides for managing day-to-day operations of keystone and understanding your deployment.

8.3.1 Upgrading Keystone

As of the Newton release, keystone supports two different approaches to upgrading across releases. The
traditional approach requires a significant outage to be scheduled for the entire duration of the upgrade
process. The more modern approach results in zero downtime, but is more complicated due to a longer
upgrade procedure.

Note: The details of these steps are entirely dependent on the details of your specific deployment,
such as your chosen application server and database management system. Use it only as a guide when
implementing your own upgrade process.

466 Chapter 8. Administrator Guides

https://docs.openstack.org/api-ref/identity/v3-ext/#os-ep-filter-api
https://docs.openstack.org/api-ref/identity/v3-ext/index.html#os-endpoint-policy-api

Keystone Documentation, Release 21.0.2.dev4

Before you begin

Plan your upgrade:

• Read and ensure you understand the release notes for the next release.

• Resolve any outstanding deprecation warnings in your logs. Some deprecation cycles are as short
as a single release, so its possible to break a deployment if you leave any outstanding warnings. It
might be a good idea to re-read the release notes for the previous release (or two!).

• Prepare your new configuration files, including keystone.conf, logging.conf, policy.yaml,
keystone-paste.ini, and anything else in /etc/keystone/, by customizing the correspond-
ing files from the next release.

Upgrading with downtime

This is a high-level description of our upgrade strategy built around keystone-manage db_sync. It
assumes that you are willing to have downtime of your control plane during the upgrade process and
presents minimal risk. With keystone unavailable, no other OpenStack services will be able to authenti-
cate requests, effectively preventing the rest of the control plane from functioning normally.

1. Stop all keystone processes. Otherwise, youll risk multiple releases of keystone trying to write to
the database at the same time, which may result in data being inconsistently written and read.

2. Make a backup of your database. Keystone does not support downgrading the database, so restoring
from a full backup is your only option for recovery in the event of an upgrade failure.

3. Upgrade all keystone nodes to the next release.

4. Update your configuration files (/etc/keystone/) with those corresponding from the latest re-
lease.

5. Run keystone-manage db_sync from any single node to upgrade both the database schema and
run any corresponding database migrations.

6. (New in Newton) Run keystone-manage doctor to diagnose symptoms of common deployment
issues and receive instructions for resolving them.

7. Start all keystone processes.

Upgrading with minimal downtime

If you run a multi-node keystone cluster that uses a replicated database, like a Galera cluster, it is possible
to upgrade with minimal downtime. This method also optimizes recovery time from a failed upgrade.
This section assumes familiarity with the base case (Upgrading with downtime) outlined above. In these
steps the nodes will be divided into first and other nodes.

1. Backup your database. There is no way to rollback the upgrade of keystone and this is your worst-
case fallback option.

2. Disable keystone on all nodes but the first node. This can be done via a variety of mechanisms
that will depend on the deployment. If you are unable to disable a service or place a service into
maintenance mode in your load balancer, you can stop the keystone processes.

3. Stop the database service on one of the other nodes in the cluster. This will isolate the old dataset
on a single node in the cluster. In the event of a failed update this data can be used to rebuild the
cluster without having to restore from backup.

8.3. Keystone Operations 467

https://docs.openstack.org/releasenotes/keystone/

Keystone Documentation, Release 21.0.2.dev4

4. Update the configuration files on the first node.

5. Upgrade keystone on the first node. keystone is now down for your cloud.

6. Run keystone-manage db_sync on the first node. As soon as this finishes, keystone is now
working again on a single node in the cluster.

7. keystone is now upgraded on a single node. Your load balancers will be sending all traffic to this
single node. This is your chance to run ensure keystone up and running, and not broken. If keystone
is broken, see the Rollback after a failed upgrade section below.

8. Once you have verified that keystone is up and running, begin the upgrade on the other nodes.
This entails updating configuration files and upgrading the code. The db_sync does not need to
be run again.

9. On the node where you stopped the database service, be sure to restart it and ensure that it properly
rejoins the cluster.

Using this model, the outage window is minimized because the only time when your cluster is totally
offline is between loading the newer version of keystone and running the db_sync command. Typically
the outage with this method can be measured in tens of seconds especially if automation is used.

Rollback after a failed upgrade

If the upgrade fails, only a single node has been affected. This makes the recovery simpler and quicker. If
issues are not discovered until the entire cluster is upgraded, a full shutdown and restore from backup will
be required. That will take much longer than just fixing a single node with an old copy of the database
still available. This process will be dependent on your architecture and it is highly recommended that
youve practiced this in a development environment before trying to use it for the first time.

1. Isolate the bad node. Shutdown keystone and the database services on the upgraded bad node.

2. Bootstrap the database cluster from the node holding the old data. This may require wiping the
data first on any nodes who are not holding old data.

3. Enable keystone on the old nodes in your load balancer or if the processes were stopped, restart
them.

4. Validate that keystone is working.

5. Downgrade the code and config files on the bad node.

This process should be doable in a matter of minutes and will minimize cloud downtime if it is required.

Upgrading without downtime

This is a high-level description of our upgrade strategy built around additional options in
keystone-manage db_sync. Although it is much more complex than the upgrade process described
above, it assumes that you are not willing to have downtime of your control plane during the upgrade pro-
cess. With this upgrade process, end users will still be able to authenticate to receive tokens normally,
and other OpenStack services will still be able to authenticate requests normally.

1. Make a backup of your database. keystone does not support downgrading the database, so restoring
from a full backup is your only option for recovery in the event of an upgrade failure.

2. Stop the keystone processes on the first node (or really, any arbitrary node). This node will serve
to orchestrate database upgrades.

468 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

3. Upgrade your first node to the next release, but do not start any keystone processes.

4. Update your configuration files on the first node (/etc/keystone/) with those corresponding to
the latest release.

5. (New in Newton) Run keystone-manage doctor on the first node to diagnose symptoms of
common deployment issues and receive instructions for resolving them.

6. (New in Newton) Run keystone-manage db_sync --expand on the first node to expand the
database schema to a superset of what both the previous and next release can utilize, and create
triggers to facilitate the live migration process.

Warning: For MySQL, using the keystone-manage db_sync --expand command
requires that you either grant your keystone user SUPER privileges, or run set global
log_bin_trust_function_creators=1; in mysql beforehand.

At this point, new columns and tables may exist in the database, but will not all be populated in
such a way that the next release will be able to function normally.

As the previous release continues to write to the old schema, database triggers will live migrate
the data to the new schema so it can be read by the next release.

7. (New in Newton) Run keystone-manage db_sync --migrate on the first node to forcefully
perform data migrations. This process will migrate all data from the old schema to the new schema
while the previous release continues to operate normally.

When this process completes, all data will be available in both the new schema and the old schema,
so both the previous release and the next release will be capable of operating normally.

8. Update your configuration files (/etc/keystone/) on all nodes (except the first node, which youve
already done) with those corresponding to the latest release.

9. Upgrade all keystone nodes to the next release, and restart them one at a time. During this step,
youll have a mix of releases operating side by side, both writing to the database.

As the next release begins writing to the new schema, database triggers will also migrate the data
to the old schema, keeping both data schemas in sync.

10. (New in Newton) Run keystone-manage db_sync --contract to remove the old schema and
all data migration triggers.

When this process completes, the database will no longer be able to support the previous release.

Using db_sync check

(New in Pike) In order to check the current state of your rolling upgrades, you may run the command
keystone-manage db_sync --check. This will inform you of any outstanding actions you have left
to take as well as any possible upgrades you can make from your current version. Here are a list of
possible return codes.

• A return code of 0 means you are currently up to date with the latest migration script version and
all db_sync commands are complete.

• A return code of 1 generally means something serious is wrong with your database and operator
intervention will be required.

8.3. Keystone Operations 469

Keystone Documentation, Release 21.0.2.dev4

• A return code of 2 means that an upgrade from your current database version is available, your
database is not currently under version control, or the database is already under control. Your first
step is to run keystone-manage db_sync --expand.

• A return code of 3 means that the expansion stage is complete, and the next step is to run
keystone-manage db_sync --migrate.

• A return code of 4 means that the expansion and data migration stages are complete, and the next
step is to run keystone-manage db_sync --contract.

8.3.2 Case-Insensitivity in keystone

Keystone currently handles the case-sensitivity for the naming of each resource a bit differently, depend-
ing on the resource itself, and the backend used. For example, depending on whether a user is backed by
local SQL or LDAP, the case-sensitivity can be different. When it is case-insensitive, the casing will be
preserved. For instance, a project with the name myProject will not end up changing to either all lower
or upper case.

Resources in keystone

Below are examples of case-insensitivity in keystone for users, projects, and roles.

Users

If a user with the name MyUser already exists, then the following call which creates a new user by the
name of myuser will return a 409 Conflict:

POST /v3/users

{
"user": {

"name": "myuser"
}

}

Projects

If a project with the name Foobar already exists, then the following call which creates a new project by
the name of foobar will return a 409 Conflict:

POST /v3/projects

{
"project": {

"name": "foobar"
}

}

470 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Project Tags

While project names are case-insensitive, project tags are case-sensitive. A tag with the value of mytag
is different than MyTag, and both values can be stored in the same project.

Roles

Role names are case-insensitive. for example, when keystone bootstraps default roles, it creates admin,
member, and reader. If another role, Member (note the upper case M) is created, keystone will return a
409 Conflict since it considers the name Member equivalent to member. Note that case is preserved
in this event.

Note: As of the Rocky release, keystone will create three default roles when keystone-manage bootstrap
is run: (admin, member, reader). For existing deployments, this can cause issues if an existing role
matches one of these roles. Even if the casing is not an exact match (member vs Member), it will report
an error since roles are considered case-insensitive.

Backends

For each of these examples, we will refer to an existing project with the name mYpRoJeCt and user
with the name mYuSeR. The examples here are exaggerated to help display the case handling for each
backend.

MySQL & SQLite

By default, MySQL/SQLite are case-insensitive but case-preserving for varchar. This means that setting
a project name of mYpRoJeCt will cause attempting to create a new project named myproject to fail with
keystone returning a 409 Conflict. However, the original value of mYpRoJeCt will still be returned
since case is preserved.

Users will be treated the same, if another user is added with the name myuser, keystone will respond with
409 Conflict since another user with the (same) name exists (mYuSeR).

PostgreSQL

PostgreSQL is case-sensitive by default, so if a project by the name of myproject is created with the
existing mYpRoJeCt, it will be created successfully.

8.3. Keystone Operations 471

Keystone Documentation, Release 21.0.2.dev4

LDAP

By default, LDAP DNs are case-insensitive, so the example with users under MySQL will apply here as
well.

8.3.3 Managing trusts

A trust is an OpenStack Identity extension that enables delegation and, optionally, impersonation through
keystone. See the user guide on using trusts.

Removing Expired Trusts

In the SQL trust stores expired and soft deleted trusts, that are not automatically removed. These trusts
can be removed with:

$ keystone-manage trust_flush [options]

OPTIONS (optional):

--project-id <string>:
To purge trusts of given project-id.

--trustor-user-id <string>:
To purge trusts of given trustor-id.

--trustee-user-id <string>:
To purge trusts of given trustee-id.

--date <string>:
To purge trusts older than date. If no date is supplied
keystone-manage will use the system clock time at runtime.

8.4 All about keystone tokens

Everything you need to know about keystone tokens.

8.4.1 Keystone tokens

Tokens are used to authenticate and authorize your interactions with OpenStack APIs. Tokens come in
many scopes, representing various authorization and sources of identity.

472 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Authorization scopes

Tokens are used to relay information about your role assignments. Its not uncommon for a user to have
multiple role assignments, sometimes spanning projects, domains, or the entire system. These are re-
ferred to as authorization scopes, where a token has a single scope of operation (e.g., a project, domain,
or the system). For example, a token scoped to a project cant be reused to do something else in a different
project.

Each level of authorization scope is useful for certain types of operations in certain OpenStack services,
and are not interchangeable.

Unscoped tokens

An unscoped token does not contain a service catalog, roles, or authorization scope (e.g., project, domain,
or system attributes within the token). Their primary use case is simply to prove your identity to keystone
at a later time (usually to generate scoped tokens), without repeatedly presenting your original credentials.

The following conditions must be met to receive an unscoped token:

• You must not specify an authorization scope in your authentication request (for example, on the
command line with arguments such as --os-project-name or --os-domain-id),

• Your identity must not have a default project associated with it that you also have role assignments,
and thus authorization, upon.

Project-scoped tokens

Projects are containers for resources, like volumes or instances. Project-scoped tokens express your au-
thorization to operate in a specific tenancy of the cloud and are useful for things like spinning up compute
resources or carving off block storage. They contain a service catalog, a set of roles, and information
about the project.

Most end-users need role assignments on projects to consume resources in a deployment.

Domain-scoped tokens

Domains are namespaces for projects, users, and groups. A domain-scoped token expresses your autho-
rization to operate on the contents of a domain or the domain itself.

While some OpenStack services are still adopting the domain concept, domains are fully supported in
keystone. This means users with authorization on a domain have the ability to manage things within the
domain. For example, a domain administrator can create new users and projects within that domain.

Domain-scoped tokens contain a service catalog, roles, and information about the domain.

People who need to manage users and projects typically need domain-level access.

8.4. All about keystone tokens 473

Keystone Documentation, Release 21.0.2.dev4

System-scoped tokens

Some OpenStack APIs fit nicely within the concept of projects (e.g., creating an instance) or domains
(e.g., creating a new user), but there are also APIs that affect the entire deployment system (e.g. modifying
endpoints, service management, or listing information about hypervisors). These operations are typically
reserved for operators and require system-scoped tokens, which represents the role assignments a user
has to operate on the deployment as a whole. The term system refers to the deployment system, which
is a collection of hardware (e.g., compute nodes) and services (e.g., nova, cinder, neutron, barbican,
keystone) that provide Infrastructure-as-a-Service.

System-scoped tokens contain a service catalog, roles, and information about the system. System role
assignments and system-scoped tokens are typically reserved for operators and cloud administrators.

Token providers

The token type issued by keystone is configurable through the /etc/keystone/keystone.conf file.
Currently, there are two supported token providers, fernet and jws.

Fernet tokens

The fernet token format was introduced in the OpenStack Kilo release and now is the default token
provider in Keystone. Unlike the other token types mentioned in this document, fernet tokens do not
need to be persisted in a back end. AES256 encryption is used to protect the information stored in the
token and integrity is verified with a SHA256 HMAC signature. Only the Identity service should have
access to the keys used to encrypt and decrypt fernet tokens. Like UUID tokens, fernet tokens must be
passed back to the Identity service in order to validate them. For more information on the fernet token
type, see the Fernet - Frequently Asked Questions.

A deployment might consider using the fernet provider as opposed to JWS tokens if they are concerned
about public expose of the payload used to build tokens.

JWS tokens

The JSON Web Signature (JWS) token format is a type of JSON Web Token (JWT) and it was imple-
mented in the Stein release. JWS tokens are signed, meaning the information used to build the token ID is
not opaque to users and can it can be decoded by anyone. JWS tokens are ephemeral, or non-persistent,
which means they wont bloat the database or require replication across nodes. Since the JWS token
provider uses asymmetric keys, the tokens are signed with private keys and validated with public keys.
The JWS token provider implementation only supports the ES256 JSON Web Algorithm (JWA), which
is an Elliptic Curve Digital Signature Algorithm (ECDSA) using the P-256 curve and a SHA-256 hash
algorithm.

A deployment might consider using JWS tokens as opposed to fernet tokens if there are security con-
cerns about sharing symmetric encryption keys across hosts. Note that a major difference between the
two providers is that JWS tokens are not opaque and can be decoded by anyone with the token ID. Fernet
tokens are opaque in that the token ID is ciphertext. Despite the JWS token payload being readable by
anyone, keystone reserves the right to make backwards incompatible changes to the token payload itself,
which is not an API contract. We only recommend validating the token against keystones authentica-
tion API to inspect its associated metadata. We strongly discourage relying on decoded payloads for
information about tokens.

474 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

More information about JWTs can be found in the specification. Summary

Feature Status Fernet tokens JWS tokens
Create unscoped token mandatory ✓✓✓ ✓✓✓
Create system-scoped token mandatory ✓✓✓ ✓✓✓
Create project-scoped token mandatory ✓✓✓ ✓✓✓
Create domain-scoped token optional ✓✓✓ ✓✓✓
Create trust-scoped token optional ✓✓✓ ✓✓✓
Create a token given an OAuth access token optional ✓✓✓ ✓✓✓
Revoke a token optional ✓✓✓ ✓✓✓

Details

• Create unscoped token Status: mandatory.

CLI commands:

– openstack --os-username=<username> --os-user-domain-name=<domain>
--os-password=<password> token issue

Notes: All token providers must be capable of issuing tokens without an explicit scope of autho-
rization.

Driver Support:

– Fernet tokens: complete

– JWS tokens: complete

• Create system-scoped token Status: mandatory.

CLI commands:

– openstack --os-username=<username> --os-user-domain-name=<domain>
--os-system-scope all token issue

Notes: All token providers must be capable of issuing system-scoped tokens.

Driver Support:

– Fernet tokens: complete

– JWS tokens: complete

• Create project-scoped token Status: mandatory.

CLI commands:

– openstack --os-username=<username> --os-user-domain-name=<domain>
--os-password=<password> --os-project-name=<project>
--os-project-domain-name=<domain> token issue

Notes: All token providers must be capable of issuing project-scoped tokens.

Driver Support:

– Fernet tokens: complete

– JWS tokens: complete

8.4. All about keystone tokens 475

https://tools.ietf.org/html/rfc7519

Keystone Documentation, Release 21.0.2.dev4

• Create domain-scoped token Status: optional.

CLI commands:

– openstack --os-username=<username> --os-user-domain-name=<domain>
--os-password=<password> --os-domain-name=<domain> token issue

Notes: Domain-scoped tokens are not required for all use cases, and for some use cases, projects
can be used instead.

Driver Support:

– Fernet tokens: complete

– JWS tokens: complete

• Create trust-scoped token Status: optional.

CLI commands:

– openstack --os-username=<username> --os-user-domain-name=<domain>
--os-password=<password> --os-trust-id=<trust> token issue

Notes: Tokens scoped to a trust convey only the user impersonation and project-based authoriza-
tion attributes included in the delegation.

Driver Support:

– Fernet tokens: complete

– JWS tokens: complete

• Create a token given an OAuth access token Status: optional.

Notes: OAuth access tokens can be exchanged for keystone tokens.

Driver Support:

– Fernet tokens: complete

– JWS tokens: complete

• Revoke a token Status: optional.

CLI commands:

– openstack token revoke

Notes: Tokens may be individually revoked, such as when a user logs out of Horizon. Under
certain circumstances, its acceptable for more than just a single token may be revoked as a result
of this operation (such as when the revoked token was previously used to create additional tokens).

Driver Support:

– Fernet tokens: complete

– JWS tokens: complete

Notes:

• This document is a continuous work in progress

476 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

8.4.2 Fernet - Frequently Asked Questions

The following questions have been asked periodically since the initial release of the fernet token format
in Kilo.

What is a fernet token?

A fernet token is a bearer token that represents user authentication. Fernet tokens contain a limited
amount of identity and authorization data in a MessagePacked payload. The payload is then wrapped
as a Fernet message for transport, where Fernet provides the required web safe characteristics for use in
URLs and headers. The data inside a fernet token is protected using symmetric encryption keys, or fernet
keys.

What is a fernet key?

A fernet key is used to encrypt and decrypt fernet tokens. Each key is actually composed of two smaller
keys: a 128-bit AES encryption key and a 128-bit SHA256 HMAC signing key. The keys are held in a
key repository that keystone passes to a library that handles the encryption and decryption of tokens.

What are the different types of keys?

A key repository is required by keystone in order to create fernet tokens. These keys are used to encrypt
and decrypt the information that makes up the payload of the token. Each key in the repository can have
one of three states. The state of the key determines how keystone uses a key with fernet tokens. The
different types are as follows:

Primary key: There is only ever one primary key in a key repository. The primary key is allowed to
encrypt and decrypt tokens. This key is always named as the highest index in the repository.

Secondary key: A secondary key was at one point a primary key, but has been demoted in place of
another primary key. It is only allowed to decrypt tokens. Since it was the primary at some point
in time, its existence in the key repository is justified. Keystone needs to be able to decrypt tokens
that were created with old primary keys.

Staged key: The staged key is a special key that shares some similarities with secondary keys. There can
only ever be one staged key in a repository and it must exist. Just like secondary keys, staged keys
have the ability to decrypt tokens. Unlike secondary keys, staged keys have never been a primary
key. In fact, they are opposites since the staged key will always be the next primary key. This helps
clarify the name because they are the next key staged to be the primary key. This key is always
named as 0 in the key repository.

8.4. All about keystone tokens 477

https://msgpack.org/
https://github.com/fernet/spec

Keystone Documentation, Release 21.0.2.dev4

So, how does a staged key help me and why do I care about it?

The fernet keys have a natural lifecycle. Each key starts as a staged key, is promoted to be the primary
key, and then demoted to be a secondary key. New tokens can only be encrypted with a primary key.
Secondary and staged keys are never used to encrypt token. The staged key is a special key given the
order of events and the attributes of each type of key. The staged key is the only key in the repository that
has not had a chance to encrypt any tokens yet, but it is still allowed to decrypt tokens. As an operator,
this gives you the chance to perform a key rotation on one keystone node, and distribute the new key set
over a span of time. This does not require the distribution to take place in an ultra short period of time.
Tokens encrypted with a primary key can be decrypted, and validated, on other nodes where that key is
still staged.

Where do I put my key repository?

The key repository is specified using the key_repository option in the keystone configuration file. The
keystone process should be able to read and write to this location but it should be kept secret otherwise.
Currently, keystone only supports file-backed key repositories.

[fernet_tokens]
key_repository = /etc/keystone/fernet-keys/

What is the recommended way to rotate and distribute keys?

The keystone-manage command line utility includes a key rotation mechanism. This mechanism will
initialize and rotate keys but does not make an effort to distribute keys across keystone nodes. The distri-
bution of keys across a keystone deployment is best handled through configuration management tooling,
however ensure that the new primary key is distributed first. Use keystone-manage fernet_rotate
to rotate the key repository.

Do fernet tokens still expire?

Yes, fernet tokens can expire just like any other keystone token formats.

Why should I choose fernet tokens over UUID tokens?

Even though fernet tokens operate very similarly to UUID tokens, they do not require persistence or
leverage the configured token persistence driver in any way. The keystone token database no longer
suffers bloat as a side effect of authentication. Pruning expired tokens from the token database is no
longer required when using fernet tokens. Because fernet tokens do not require persistence, they do not
have to be replicated. As long as each keystone node shares the same key repository, fernet tokens can
be created and validated instantly across nodes.

478 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Why should I choose fernet tokens over PKI or PKIZ tokens?

The arguments for using fernet over PKI and PKIZ remain the same as UUID, in addition to the fact that
fernet tokens are much smaller than PKI and PKIZ tokens. PKI and PKIZ tokens still require persistent
storage and can sometimes cause issues due to their size. This issue is mitigated when switching to fernet
because fernet tokens are kept under a 250 byte limit. PKI and PKIZ tokens typically exceed 1600 bytes
in length. The length of a PKI or PKIZ token is dependent on the size of the deployment. Bigger service
catalogs will result in longer token lengths. This pattern does not exist with fernet tokens because the
contents of the encrypted payload is kept to a minimum.

Should I rotate and distribute keys from the same keystone node every rotation?

No, but the relationship between rotation and distribution should be lock-step. Once you rotate keys on
one keystone node, the key repository from that node should be distributed to the rest of the cluster. Once
you confirm that each node has the same key repository state, you could rotate and distribute from any
other node in the cluster.

If the rotation and distribution are not lock-step, a single keystone node in the deployment will create
tokens with a primary key that no other node has as a staged key. This will cause tokens generated from
one keystone node to fail validation on other keystone nodes.

How do I add new keystone nodes to a deployment?

The keys used to create fernet tokens should be treated like super secret configuration files, similar to
an SSL secret key. Before a node is allowed to join an existing cluster, issuing and validating tokens, it
should have the same key repository as the rest of the nodes in the cluster.

How should I approach key distribution?

Remember that key distribution is only required in multi-node keystone deployments. If you only have
one keystone node serving requests in your deployment, key distribution is unnecessary.

Key distribution is a problem best approached from the deployments current configuration management
system. Since not all deployments use the same configuration management systems, it makes sense to
explore options around what is already available for managing keys, while keeping the secrecy of the
keys in mind. Many configuration management tools can leverage something like rsync to manage key
distribution.

Key rotation is a single operation that promotes the current staged key to primary, creates a new staged
key, and prunes old secondary keys. It is easiest to do this on a single node and verify the rotation took
place properly before distributing the key repository to the rest of the cluster. The concept behind the
staged key breaks the expectation that key rotation and key distribution have to be done in a single step.
With the staged key, we have time to inspect the new key repository before syncing state with the rest
of the cluster. Key distribution should be an operation that can run in succession until it succeeds. The
following might help illustrate the isolation between key rotation and key distribution.

1. Ensure all keystone nodes in the deployment have the same key repository.

2. Pick a keystone node in the cluster to rotate from.

3. Rotate keys.

1. Was it successful?

8.4. All about keystone tokens 479

Keystone Documentation, Release 21.0.2.dev4

1. If no, investigate issues with the particular keystone node you rotated keys on. Fernet
keys are small and the operation for rotation is trivial. There should not be much room
for error in key rotation. It is possible that the user does not have the ability to write
new keys to the key repository. Log output from keystone-manage fernet_rotate
should give more information into specific failures.

2. If yes, you should see a new staged key. The old staged key should be the new primary.
Depending on the max_active_keys limit you might have secondary keys that were
pruned. At this point, the node that you rotated on will be creating fernet tokens with a
primary key that all other nodes should have as the staged key. This is why we checked
the state of all key repositories in Step one. All other nodes in the cluster should be
able to decrypt tokens created with the new primary key. At this point, we are ready to
distribute the new key set.

4. Distribute the new key repository.

1. Was it successful?

1. If yes, you should be able to confirm that all nodes in the cluster have the same key
repository that was introduced in Step 3. All nodes in the cluster will be creating tokens
with the primary key that was promoted in Step 3. No further action is required until the
next schedule key rotation.

2. If no, try distributing again. Remember that we already rotated the repository and per-
forming another rotation at this point will result in tokens that cannot be validated across
certain hosts. Specifically, the hosts that did not get the latest key set. You should be able
to distribute keys until it is successful. If certain nodes have issues syncing, it could be
permission or network issues and those should be resolved before subsequent rotations.

How long should I keep my keys around?

The fernet tokens that keystone creates are only secure as the keys creating them. With staged keys the
penalty of key rotation is low, allowing you to err on the side of security and rotate weekly, daily, or even
hourly. Ultimately, this should be less time than it takes an attacker to break a AES256 key and a SHA256
HMAC.

Is a fernet token still a bearer token?

Yes, and they follow exactly the same validation path as UUID tokens, with the exception of being written
to, and read from, a back end. If someone compromises your fernet token, they have the power to do all
the operations you are allowed to do.

What if I need to revoke all my tokens?

To invalidate every token issued from keystone and start fresh, remove the current key repository, create
a new key set, and redistribute it to all nodes in the cluster. This will render every token issued from
keystone as invalid regardless if the token has actually expired. When a client goes to re-authenticate,
the new token will have been created with a new fernet key.

480 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

What can an attacker do if they compromise a fernet key in my deployment?

If any key used in the key repository is compromised, an attacker will be able to build their own tokens.
If they know the ID of an administrator on a project, they could generate administrator tokens for the
project. They will be able to generate their own tokens until the compromised key has been removed
from the repository.

I rotated keys and now tokens are invalidating early, what did I do?

Using fernet tokens requires some awareness around token expiration and the key lifecycle. You do not
want to rotate so often that secondary keys are removed that might still be needed to decrypt unexpired
tokens. If this happens, you will not be able to decrypt the token because the key the was used to encrypt
it is now gone. Only remove keys that you know are not being used to encrypt or decrypt tokens.

For example, your token is valid for 24 hours and we want to rotate keys every six hours. We will need
to make sure tokens that were created at 08:00 AM on Monday are still valid at 07:00 AM on Tuesday,
assuming they were not prematurely revoked. To accomplish this, we will want to make sure we set
max_active_keys=6 in our keystone configuration file. This will allow us to hold all keys that might
still be required to validate a previous token, but keeps the key repository limited to only the keys that
are needed.

The number of max_active_keys for a deployment can be determined by dividing the token lifetime,
in hours, by the frequency of rotation in hours and adding two. Better illustrated as:

token_expiration = 24
rotation_frequency = 6
max_active_keys = (token_expiration / rotation_frequency) + 2

The reason for adding two additional keys to the count is to include the staged key and a buffer key.

Note: If validating expired tokens is needed (for example when services are configured to use Service-
Token auth), the value of allow_expired_window option from the [token] config section should also
be taken into account, so that the formula to calculate the max_active_keys is

max_active_keys = ((token_expiration + allow_expired_window) / rotation_frequency) + 2

This can be shown based on the previous example. We initially setup the key repository at 6:00 AM on
Monday, and the initial state looks like:

$ ls -la /etc/keystone/fernet-keys/
drwx------ 2 keystone keystone 4096 .
drwxr-xr-x 3 keystone keystone 4096 ..
-rw------- 1 keystone keystone 44 0 (staged key)
-rw------- 1 keystone keystone 44 1 (primary key)

All tokens created after 6:00 AM are encrypted with key 1. At 12:00 PM we will rotate keys again,
resulting in,

$ ls -la /etc/keystone/fernet-keys/
drwx------ 2 keystone keystone 4096 .
drwxr-xr-x 3 keystone keystone 4096 ..

(continues on next page)

8.4. All about keystone tokens 481

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

-rw------- 1 keystone keystone 44 0 (staged key)
-rw------- 1 keystone keystone 44 1 (secondary key)
-rw------- 1 keystone keystone 44 2 (primary key)

We are still able to validate tokens created between 6:00 - 11:59 AM because the 1 key still exists as a
secondary key. All tokens issued after 12:00 PM will be encrypted with key 2. At 6:00 PM we do our
next rotation, resulting in:

$ ls -la /etc/keystone/fernet-keys/
drwx------ 2 keystone keystone 4096 .
drwxr-xr-x 3 keystone keystone 4096 ..
-rw------- 1 keystone keystone 44 0 (staged key)
-rw------- 1 keystone keystone 44 1 (secondary key)
-rw------- 1 keystone keystone 44 2 (secondary key)
-rw------- 1 keystone keystone 44 3 (primary key)

It is still possible to validate tokens issued from 6:00 AM - 5:59 PM because keys 1 and 2 exist as
secondary keys. Every token issued until 11:59 PM will be encrypted with key 3, and at 12:00 AM we
do our next rotation:

$ ls -la /etc/keystone/fernet-keys/
drwx------ 2 keystone keystone 4096 .
drwxr-xr-x 3 keystone keystone 4096 ..
-rw------- 1 keystone keystone 44 0 (staged key)
-rw------- 1 keystone keystone 44 1 (secondary key)
-rw------- 1 keystone keystone 44 2 (secondary key)
-rw------- 1 keystone keystone 44 3 (secondary key)
-rw------- 1 keystone keystone 44 4 (primary key)

Just like before, we can still validate tokens issued from 6:00 AM the previous day until 5:59 AM today
because keys 1 - 4 are present. At 6:00 AM, tokens issued from the previous day will start to expire and
we do our next scheduled rotation:

$ ls -la /etc/keystone/fernet-keys/
drwx------ 2 keystone keystone 4096 .
drwxr-xr-x 3 keystone keystone 4096 ..
-rw------- 1 keystone keystone 44 0 (staged key)
-rw------- 1 keystone keystone 44 1 (secondary key)
-rw------- 1 keystone keystone 44 2 (secondary key)
-rw------- 1 keystone keystone 44 3 (secondary key)
-rw------- 1 keystone keystone 44 4 (secondary key)
-rw------- 1 keystone keystone 44 5 (primary key)

Tokens will naturally expire after 6:00 AM, but we will not be able to remove key 1 until the next rotation
because it encrypted all tokens from 6:00 AM to 12:00 PM the day before. Once we do our next rotation,
which is at 12:00 PM, the 1 key will be pruned from the repository:

$ ls -la /etc/keystone/fernet-keys/
drwx------ 2 keystone keystone 4096 .
drwxr-xr-x 3 keystone keystone 4096 ..

(continues on next page)

482 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

-rw------- 1 keystone keystone 44 0 (staged key)
-rw------- 1 keystone keystone 44 2 (secondary key)
-rw------- 1 keystone keystone 44 3 (secondary key)
-rw------- 1 keystone keystone 44 4 (secondary key)
-rw------- 1 keystone keystone 44 5 (secondary key)
-rw------- 1 keystone keystone 44 6 (primary key)

If keystone were to receive a token that was created between 6:00 AM and 12:00 PM the day before,
encrypted with the 1 key, it would not be valid because it was already expired. This makes it possible for
us to remove the 1 key from the repository without negative validation side-effects.

8.4.3 JWS key rotation

The JWS token provider issues tokens using asymmetric signing. This document attempts to describe
how to manage key pairs in a deployment of keystone nodes that need to validate tokens issued by one
another.

The inherent benefit of using asymmetric keys is that each keystone server generates its own key pair.
The private key is used to sign tokens. Anyone with access to the public key has the ability to verify the
token signature. This is a critical step in validating tokens across a cluster of keystone nodes.

It is necessary for operators to sync public keys across all keystone nodes in the deployment. Each
keystone server will need a corresponding public key for every node. This only applies to public keys.
Private keys should never leave the server they are generated from.

Initial setup

Before a deployment of keystone servers can issue JWT tokens, each server must set keystone.conf
[token] provider = jws. Additionally, each API server must have its own asymmetric key pair either
generated manually or using keystone-manage create_jws_keypair. If youre generating the key
pairs manually, they must be usable with the ES256 JSON Web Algorithm (JWA). It is worth noting
that the keystone-manage create_jws_keypair command line utility will create an appropriate key
pair, but it will not automatically deploy it to the key repository locations defined in keystone.conf
[jwt_tokens]. It is up to operators to move these files accordingly and resolve possible file name
conflicts.

After generating a key pair, the public key from each API server must be shared with every other API
server in the deployment. Ensure the private key used to sign JWS tokens is readable by the process run-
ning keystone and available in the keystone.conf [jwt_tokens] jws_private_key_repository
location. Keystone will automatically use a key named private.pem to sign tokens and ignore all other
keys in the repository. To validate tokens, keystone will iterate all available public keys in keystone.
conf [jwt_tokens] jws_public_key_repository. At a minimum, this repository needs to have
the corresponding public key to the private.pem key found in keystone.conf [jwt_tokens]
jws_private_key_repository.

8.4. All about keystone tokens 483

https://tools.ietf.org/html/rfc7518

Keystone Documentation, Release 21.0.2.dev4

Continued operations

Depending on the security requirements for your deployment, you might need to rotate out an existing
key pair. To do so without prematurely invalidating tokens, follow these steps:

1. Generate a new asymmetric key pair for a given keystone API server (see keystone-manage
create_jws_keypair for more details)

2. Copy or sync the newly generated public key to the public key repositories of all other
keystone API servers, the public key should be placed in keystone.conf [jwt_tokens]
jws_public_key_repository

3. Copy the new private key to the private key repository on the API server youre performing the
rotation on and make sure its named private.pem, at this point the server will start signing tokens
with the new private key and all other keystone API servers will be able to validate those tokens
since they already have a copy of the public key from step #2

4. At this point, you must wait until the last tokens signed with the old private key have expired before
you can remove the old corresponding public keys from each keystone API server, note this should
be a minimum of keystone.conf [token] expiration

5. Once youre confident all tokens signed with the old private key are expired, it is safe to remove
the old corresponding public key from each API server in the deployment, which is important in
case the original private key was compromised and prevents attackers from using it craft their own
tokens

8.4.4 Token provider

OpenStack Identity supports customizable token providers. This is specified in the [token] section of
the configuration file. The token provider controls the token construction, validation, and revocation
operations.

You can register your own token provider by configuring the following property:

Note: More commonly, you can use this option to change the token provider to one of the ones built in.
Alternatively, you can use it to configure your own token provider.

• provider - token provider driver. Defaults to fernet. Implemented by keystone.token.
providers.fernet.Provider. This is the entry point for the token provider in the keystone.
token.provider namespace.

Below is the detailed list of the token formats supported by keystone.:

Fernet fernet tokens do not need to be persisted at all, but require that you run keystone-manage
fernet_setup (also see the keystone-manage fernet_rotate command).

Warning: Fernet tokens are bearer tokens. They must be protected from unnecessary disclosure to
prevent unauthorized access.

JWS jws tokens do not need to be persisted at all, but require that you configure an asymmetric
key pair to sign and validate tokens. The key pair can be generated using keystone-manage
create_jws_keypair or it can be generated out-of-band manually so long as it is compatible

484 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

with the JWT ES256 Elliptic Curve Digital Signature Algorithm (ECDSA) using a P-256 curve
and a SHA-256 hash algorithm.

Warning: JWS tokens are bearer tokens. They must be protected from unnecessary disclosure to
prevent unauthorized access.

8.5 Default Roles

8.5.1 Primer

Like most OpenStack services, keystone protects its API using role-based access control (RBAC).

Users can access different APIs depending on the roles they have on a project, domain, or system, which
we refer to as scope.

As of the Rocky release, keystone provides three roles called admin, member, and reader by default.
Operators can grant these roles to any actor (e.g., group or user) on any scope (e.g., system, domain, or
project). If you need a refresher on authorization scopes and token types, please refer to the token guide.
The following sections describe how each default role behaves with keystones API across different scopes.
Additionally, other service developers can use this document as a guide for implementing similar patterns
in their services.

Default roles and behaviors across scopes allow operators to delegate more functionality to their team,
auditors, customers, and users without maintaining custom policies.

8.5.2 Roles Definitions

The default roles provided by keystone, via keystone-manage boostrap, are related through role im-
plications. The admin role implies the member role, and the member role implies the reader role.
These implications mean users with the admin role automatically have the member and reader roles.
Additionally, users with the member role automatically have the reader role. Implying roles reduces
role assignments and forms a natural hierarchy between the default roles. It also reduces the complexity
of default policies by making check strings short. For example, a policy that requires reader can be
expressed as:

"identity:list_foo": "role:reader"

Instead of:

"identity:list_foo": "role:admin or role:member or role:reader"

8.5. Default Roles 485

https://docs.openstack.org/keystone/latest/admin/tokens-overview.html#authorization-scopes

Keystone Documentation, Release 21.0.2.dev4

Reader

Warning: While its possible to use the reader role to perform audits, we highly recommend
assessing the viability of using reader for auditing from the perspective of the compliance target
youre pursuing.

The reader role is the least-privileged role within the role hierarchy described here. As such, Open-
Stack development teams, by default, do not advocate exposing sensitive information to users with
the reader role, regardless of the scope. We have noted the need for a formal, read-only, role that
is useful for inspecting all applicable resources within a particular scope, but it shouldnt be imple-
mented as the lowest level of authorization. This work will come in a subsequent release where
we support an elevated read-only role, that implies reader, but also exposes sensitive information,
where applicable.

This will allow operators to grant third-party auditors a permissive role for viewing sensitive infor-
mation, specifically for compliance targets that require it.

The reader role provides read-only access to resources within the system, a domain, or a project. De-
pending on the assignment scope, two users with the reader role can expect different API behaviors.
For example, a user with the reader role on the system can list all projects within the deployment. A
user with the reader role on a domain can only list projects within their domain.

By analyzing the scope of a role assignment, we increase the re-usability of the reader role and provide
greater functionality without introducing more roles. For example, to accomplish this without analyzing
assignment scope, you would need system-reader, domain-reader, and project-reader roles in
addition to custom policies for each service.

Its imperative to note that reader is the least authoritative role in the hierarchy because assignments using
admin or member ultimately include the reader role. We document this explicitly so that reader roles
are not overloaded with read-only access to sensitive information. For example, a deployment pursuing a
specific compliance target may want to leverage the reader role to perform the audit. If the audit requires
the auditor to evaluate sensitive information, like license keys or administrative metadata, within a given
scope, auditors shouldnt expect to perform these operations with the reader role. We justify this design
decision because sensitive information should be explicitly protected, and not implicitly exposed.

The reader role should be implemented and used from the perspective of least-privilege, which may or
may not fulfill your auditing use case.

Member

Within keystone, there isnt a distinct advantage to having the member role instead of the reader role.
The member role is more applicable to other services. The member role works nicely for introducing
granularity between admin and reader roles. Other services might write default policies that require
the member role to create resources, but the admin role to delete them. For example, users with reader
on a project could list instance, users with member on a project can list and create instances, and users
with admin on a project can list, create, and delete instances. Service developers can use the member
role to provide more flexibility between admin and reader on different scopes.

486 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Admin

We reserve the admin role for the most privileged operations within a given scope. It is important to note
that having admin on a project, domain, or the system carries separate authorization and are not transitive.
For example, users with admin on the system should be able to manage every aspect of the deployment
because theyre operators. Users with admin on a project shouldnt be able to manage things outside the
project because it would violate the tenancy of their role assignment (this doesnt apply consistently since
services are addressing this individually at their own pace).

Note: As of the Train release, keystone applies the following personas consistently across its API.

8.5.3 System Personas

This section describes authorization personas typically used for operators and deployers. You can find
all users with system role assignments using the following query:

$ openstack role assignment list --names --system all
+--------+------------------------+------------------------+---------+--------
↪→+--------+-----------+
| Role | User | Group | Project | Domain␣
↪→| System | Inherited |
+--------+------------------------+------------------------+---------+--------
↪→+--------+-----------+
| admin | | system-admins@Default | | ␣
↪→| all | False |
| admin | admin@Default | | | ␣
↪→| all | False |
| admin | operator@Default | | | ␣
↪→| all | False |
| reader | | system-support@Default | | ␣
↪→| all | False |
| admin | operator@Default | | | ␣
↪→| all | False |
| member | system-support@Default | | | ␣
↪→| all | False |
+--------+------------------------+------------------------+---------+--------
↪→+--------+-----------+

System Administrators

System administrators are allowed to manage every resource in keystone. System administrators are typ-
ically operators and cloud administrators. They can control resources that ultimately affect the behavior
of the deployment. For example, they can add or remove services and endpoints in the catalog, create
new domains, add federated mappings, and clean up stale resources, like a users application credentials
or trusts.

You can find system administrators in your deployment with the following assignments:

8.5. Default Roles 487

Keystone Documentation, Release 21.0.2.dev4

$ openstack role assignment list --names --system all --role admin
+-------+------------------+-----------------------+---------+--------+-------
↪→-+-----------+
| Role | User | Group | Project | Domain |␣
↪→System | Inherited |
+-------+------------------+-----------------------+---------+--------+-------
↪→-+-----------+
| admin | | system-admins@Default | | | all ␣
↪→ | False |
| admin | admin@Default | | | | all ␣
↪→ | False |
| admin | operator@Default | | | | all ␣
↪→ | False |
+-------+------------------+-----------------------+---------+--------+-------
↪→-+-----------+

System Members & System Readers

In keystone, system members and system readers are very similar and have the same authorization. Users
with these roles on the system can view all resources within keystone. They can list role assignments,
users, projects, and group memberships, among other resources.

The system reader persona is useful for members of a support team or auditors if the audit doesnt require
access to sensitive information. You can find system members and system readers in your deployment
with the following assignments:

$ openstack role assignment list --names --system all --role member --role␣
↪→reader
+--------+------------------------+------------------------+---------+--------
↪→+--------+-----------+
| Role | User | Group | Project | Domain␣
↪→| System | Inherited |
+--------+------------------------+------------------------+---------+--------
↪→+--------+-----------+
| reader | | system-support@Default | | ␣
↪→| all | False |
| admin | operator@Default | | | ␣
↪→| all | False |
| member | system-support@Default | | | ␣
↪→| all | False |
+--------+------------------------+------------------------+---------+--------
↪→+--------+-----------+

488 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Warning: Filtering system role assignments is currently broken and is being tracked as a bug.

8.5.4 Domain Personas

This section describes authorization personas for people who manage their own domains, which contain
projects, users, and groups. You can find all users with role assignments on a specific domain using the
following query:

$ openstack role assignment list --names --domain foobar
+--------+-----------------+----------------------+---------+--------+--------
↪→+-----------+
| Role | User | Group | Project | Domain | System␣
↪→| Inherited |
+--------+-----------------+----------------------+---------+--------+--------
↪→+-----------+
| reader | support@Default | | | foobar | ␣
↪→| False |
| admin | jsmith@Default | | | foobar | ␣
↪→| False |
| admin | | foobar-admins@foobar | | foobar | ␣
↪→| False |
| member | jdoe@foobar | | | foobar | ␣
↪→| False |
+--------+-----------------+----------------------+---------+--------+--------
↪→+-----------+

Domain Administrators

Domain administrators can manage most aspects of the domain or its contents. These users can create
new projects and users within their domain. They can inspect the role assignments users have on projects
within their domain.

Domain administrators arent allowed to access system-specific resources or resources outside their do-
main. Users that need control over project, group, and user creation are a great fit for domain adminis-
trators.

You can find domain administrators in your deployment with the following role assignment:

$ openstack role assignment list --names --domain foobar --role admin
+-------+----------------+----------------------+---------+--------+--------+-
↪→----------+
| Role | User | Group | Project | Domain | System |␣
↪→Inherited |
+-------+----------------+----------------------+---------+--------+--------+-
↪→----------+
| admin | jsmith@Default | | | foobar | |␣
↪→False |
| admin | | foobar-admins@foobar | | foobar | |␣
↪→False |

(continues on next page)

8.5. Default Roles 489

https://bugs.launchpad.net/keystone/+bug/1846817

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

+-------+----------------+----------------------+---------+--------+--------+-
↪→----------+

Domain Members & Domain Readers

Domain members and domain readers have the same relationship as system members and system readers.
Theyre allowed to view resources and information about their domain. They arent allowed to access
system-specific information or information about projects, groups, and users outside their domain.

The domain member and domain reader use-cases are great for support teams, monitoring the details of an
account, or auditing resources within a domain assuming the audit doesnt validate sensitive information.
You can find domain members and domain readers with the following role assignments:

$ openstack role assignment list --names --role member --domain foobar
+--------+-------------+-------+---------+--------+--------+-----------+
| Role | User | Group | Project | Domain | System | Inherited |
+--------+-------------+-------+---------+--------+--------+-----------+
| member | jdoe@foobar | | | foobar | | False |
+--------+-------------+-------+---------+--------+--------+-----------+
$ openstack role assignment list --names --role reader --domain foobar
+--------+-----------------+-------+---------+--------+--------+-----------+
| Role | User | Group | Project | Domain | System | Inherited |
+--------+-----------------+-------+---------+--------+--------+-----------+
| reader | support@Default | | | foobar | | False |
+--------+-----------------+-------+---------+--------+--------+-----------+

8.5.5 Project Personas

This section describes authorization personas for users operating within a project. These personas are
commonly used by end users. You can find all users with role assignments on a specific project using the
following query:

$ openstack role assignment list --names --project production
+--------+----------------+----------------------------+-------------------+--
↪→------+--------+-----------+
| Role | User | Group | Project |␣
↪→Domain | System | Inherited |
+--------+----------------+----------------------------+-------------------+--
↪→------+--------+-----------+
| admin | jsmith@Default | | production@foobar | ␣
↪→ | | False |
| admin | | production-admins@foobar | production@foobar | ␣
↪→ | | False |
| member | | foobar-operators@Default | production@foobar | ␣
↪→ | | False |
| reader | alice@Default | | production@foobar | ␣
↪→ | | False |
| reader | | production-support@Default | production@foobar | ␣
↪→ | | False | (continues on next page)

490 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

+--------+----------------+----------------------------+-------------------+--
↪→------+--------+-----------+

Project Administrators

Project administrators can only view and modify data within the project they have authorization on.
Theyre able to view information about their projects and set tags on their projects. Theyre not allowed to
view system or domain resources, as that would violate the tenancy of their role assignment. Since the
majority of the resources in keystones API are system and domain-specific, project administrators dont
have much authorization.

You can find project administrators in your deployment with the following role assignment:

$ openstack role assignment list --names --project production --role admin
+-------+----------------+--------------------------+-------------------+-----
↪→---+--------+-----------+
| Role | User | Group | Project |␣
↪→Domain | System | Inherited |
+-------+----------------+--------------------------+-------------------+-----
↪→---+--------+-----------+
| admin | jsmith@Default | | production@foobar | ␣
↪→ | | False |
| admin | | production-admins@foobar | production@foobar | ␣
↪→ | | False |
+-------+----------------+--------------------------+-------------------+-----
↪→---+--------+-----------+

Project Members & Project Readers

Project members and project readers can discover information about their projects. They can access
important information like resource limits for their project, but theyre not allowed to view information
outside their project or view system-specific information.

You can find project members and project readers in your deployment with the following role assign-
ments:

$ openstack role assignment list --names --project production --role member
+--------+------+--------------------------+-------------------+--------+-----
↪→---+-----------+
| Role | User | Group | Project | Domain |␣
↪→System | Inherited |
+--------+------+--------------------------+-------------------+--------+-----
↪→---+-----------+
| member | | foobar-operators@Default | production@foobar | | ␣
↪→ | False |
+--------+------+--------------------------+-------------------+--------+-----
↪→---+-----------+
$ openstack role assignment list --names --project production --role reader

(continues on next page)

8.5. Default Roles 491

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

+--------+---------------+----------------------------+-------------------+---
↪→-----+--------+-----------+
| Role | User | Group | Project |␣
↪→Domain | System | Inherited |
+--------+---------------+----------------------------+-------------------+---
↪→-----+--------+-----------+
| reader | alice@Default | | production@foobar | ␣
↪→ | | False |
| reader | | production-support@Default | production@foobar | ␣
↪→ | | False |
+--------+---------------+----------------------------+-------------------+---
↪→-----+--------+-----------+

8.5.6 Writing Policies

If the granularity provided above doesnt meet your specific use-case, you can still override policies and
maintain them manually. You can read more about how to do that in oslo.policy usage documentation.

8.6 Advanced Keystone Features

Guides to lesser-known features of keystone.

8.6.1 Unified Limits

Warning: The unified limits API is currently labeled as experimental and can change in backwards
incompatible ways. After we get feedback on the intricacies of the API and no longer expect to make
API breaking changes, the API will be marked as stable.

As of the Queens release, keystone has the ability to store and relay information known as a limit. Limits
can be used by services to enforce quota on resources across OpenStack. This section describes the basic
concepts of limits, how the information can be consumed by services, and how operators can manage
resource quota across OpenStack using limits.

What is a limit?

A limit is a threshold for resource management and helps control resource utilization. A process for
managing limits allows for reallocation of resources to different users or projects as needs change. Some
information needed to establish a limit may include:

• project_id

• domain_id

• API service type (e.g. compute, network, object-storage)

• a resource type (e.g. ram_mb, vcpus, security-groups)

492 Chapter 8. Administrator Guides

https://docs.openstack.org/oslo.policy/latest/admin/index.html

Keystone Documentation, Release 21.0.2.dev4

• a default limit

• a project specific limit i.e resource limit

• user_id (optional)

• a region (optional depending on the service)

Note: The default limit of registered limit and the resource limit of project limit now are limited from
-1 to 2147483647 (integer). -1 means no limit and 2147483647 is the max value for user to define limits.
The length of unified limits resource type now is limited from 1 to 255 (string).

Since keystone is the source of truth for nearly everything in the above list, limits are a natural fit as a
keystone resource. Two different limit resources exist in this design. The first is a registered limit and the
second is a project limit.

Registered limits

A registered limit accomplishes two important things in order to enforce quota across multi-tenant, dis-
tributed systems. First, it establishes resource types and associates them to services. Second, it sets a
default resource limit for all projects. The first part maps specific resource types to the services that pro-
vide them. For example, a registered limit can map vcpus, to the compute service. The second part sets
a default of 20 vcpus per project. This provides all the information needed for basic quota enforcement
for any resource provided by a service.

Domain limits

A domain limit is a limit associated to a specific domain and it acts as an override for a registered limit.
Similar to registered limits, domain limits require a resource type and a service. Additionally, a registered
limit must exist before you can create a domain-specific override. For example, lets assume a registered
limit exists for vcpus provided by the compute service. It wouldnt be possible to create a domain limit for
cores on the compute service. Domain limits can only override limits that have already been registered. In
a general sense, registered limits are likely established when a new service or cloud is deployed. Domain
limits are used continuously to manage the flow of resource allocation.

Domain limits may affect the limits of projects within the domain. This is particularly important to keep
in mind when choosing an enforcement model, documented below.

Project limits

Project limits have the same properties as domain limits, but are specific to projects instead of domains.
You must register a limit before creating a project-specific override. Just like with domain limits, the
flow of resources between related projects may vary depending on the configured enforcement model.
The support enforcement models below describe how limit validation and enforcement behave between
related projects and domains.

Together, registered limits, domain limits, and project limits give deployments the ability to restrict re-
sources across the deployment by default, while being flexible enough to freely marshal resources across
projects.

8.6. Advanced Keystone Features 493

Keystone Documentation, Release 21.0.2.dev4

Limits and usage

When we talk about a quota system, were really talking about two systems. A system for setting and
maintaining limits, the theoretical maximum usage, and a system for enforcing that usage does not exceed
limits. While they are coupled, they are distinct.

Up to this point, weve established that keystone is the system for maintaining limit information. Keystones
responsibility is to ensure that any changes to limits are consistent with related limits currently stored in
keystone.

Individual services maintain and enforce usage. Services check enforcement against the current limits at
the time a user requests a resource. Usage reflects the actual resource allocation in units to a consumer.

Given the above, the following is a possible and legal flow:

• User Jane is in project Foo

• Project Foo has a default CPU limit of 20

• User Jane allocated 18 CPUs in project Foo

• Administrator Kelly sets project Foo CPU limit to 10

• User Jane can no longer allocate instance resources in project Foo, until she (or others in the project)
have deleted at least 9 CPUs to get under the new limit

The following would be another permutation:

• User Jane is in project Foo

• Project Foo has a default CPU limit of 20

• User Jane allocated 20 CPUs in project Foo

• User Jane attempts to create another instance, which results in a failed resource request since the
request would violate usage based on the current limit of CPUs

• User Jane requests more resources

• Administrator Kelly adjust the project limit for Foo to be 30 CPUs

• User Jane resends her request for an instance, which succeeds since the usage for project Foo is
under the project limit of 30 CPUs

This behavior lets administrators set the policy of what the future should be when convenient, and prevent
those projects from creating any more resources that would exceed the limits in question. Members of a
project can fix this for themselves by bringing down the project usage to where there is now headroom.
If they dont, at some point the administrators can more aggressively delete things themselves.

Enforcement models

Project resources in keystone can be organized in hierarchical structures, where projects can be nested.
As a result, resource limits and usage should respect that hierarchy if present. Its possible to think of
different cases where limits or usage assume different characteristics, regardless of the project structure.
For example, if a projects usage for a particular resource hasnt been met, should the projects underneath
that project assume those limits? Should they not assume those limits? These opinionated models are
referred to as enforcement models. This section is dedicated to describing different enforcement models
that are implemented.

494 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

It is important to note that enforcement must be consistent across the entire deployment. Grouping certain
characteristics into a model makes referring to behaviors consistent across services. Operators should
be aware that switching between enforcement models may result in backwards incompatible changes.
We recommend extremely careful planning and understanding of various enforcement models if youre
planning on switching from one model to another in a deployment.

Keystone exposes a GET /limits/model endpoint that returns the enforcement model selected by the
deployment. This allows limit information to be discoverable and preserves interoperability between
OpenStack deployments with different enforcement models.

Flat

Flat enforcement ignores all aspects of a project hierarchy. Each project is considered a peer to all other
projects. The limits associated to the parents, siblings, or children have no affect on a particular project.
This model exercises the most isolation between projects because there are no assumptions between
limits, regardless of the hierarchy. Validation of limits via the API will allow operations that might not
be considered accepted in other models.

For example, assume project Charlie is a child of project Beta, which is a child of project Alpha. All
projects assume a default limit of 10 cores via a registered limit. The labels in the diagrams below use
shorthand notation for limit and usage as l and u, respectively:

Each project may use up to 10 cores because of the registered limit and none of the projects have an
override. Using flat enforcement, youre allowed to UPDATE LIMIT on Alpha to 20:

Youre also allowed to UPDATE LIMIT on Charlie to 30, even though Charlie is a sub-project of
both Beta and Alpha.

This is allowed with flat enforcement because the hierarchy is not taken into consideration during limit
validation. Child projects may have a higher limit than a parent project.

8.6. Advanced Keystone Features 495

Keystone Documentation, Release 21.0.2.dev4

Conversely, you can simulate hierarchical enforcement by adjusting limits through the project tree man-
ually. For example, lets still assume 10 is the default limit imposed by an existing registered limit:

You may set a project-specific override to UPDATE LIMIT on Alpha to 30:

Next you can UPDATE LIMIT on Beta to 20:

Theoretically, the entire project tree consisting of Alpha, Beta, and Charlie is limited to 60 cores. If youd
like to ensure only 30 cores are used within the entire hierarchy, you can UPDATE LIMIT on Alpha to
0:

You should use this model if you:

• Have project hierarchies greater than two levels

• Want extremely strict control of project usage and dont want resource usage to bleed across projects
or domains

496 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Advantages

• Allows you to model specific and strict limits

• Works with any project hierarchy or depth

• Usage is only calculated for the project in question

Disadvantages

• Resources arent allowed to flow gracefully between projects in a hierarchy

• Requires intervention and verification to move resources across projects

• Project limit validation isnt performed with respect to other projects or domains

Strict Two Level

The strict_two_level enforcement model assumes the project hierarchy does not exceed two levels.
The top layer can consist of projects or domains. For example, project Alpha can have a sub-project called
Beta within this model. Project Beta cannot have a sub-project. The hierarchy is restrained to two layers.
Alpha can also be a domain that contains project Beta, but Beta cannot have a sub-project. Regardless of
the top layer consisting of projects or domains, the hierarchical depth is limited to two layers.

Resource utilization is allowed to flow between projects in the hierarchy, depending on the limits. This
property allows for more flexibility than the flat enforcement model. The model is strict in that operators
can set limits on parent projects or domains and the limits of the children may never exceed the parent.

For example, assume domain Alpha contains two projects, Beta and Charlie. Projects Beta and Charlie
are siblings so the hierarchy maintains a depth of two. A system administrator sets the limit of a resource
on Alpha to 20. Both projects Beta and Charlie can consume resources until the total usage of Alpha,
Beta, and Charlie reach 20. At that point, no more resources should be allocated to the tree. System
administrators can also reserve portions of domain Alphas resource in sub-projects directly. Using the
previous example, project Beta could have a limit of 12 resources, implicitly leaving 8 resources for
Charlie to consume.

The following diagrams illustrate the behaviors described above, using projects named Alpha, Beta, Char-
lie, and Delta. Assume the resource in question is cores and the default registered limit for cores is 10.
Also assume we have the following project hierarchy where Alpha has a limit of 20 cores and its usage
is currently 4:

8.6. Advanced Keystone Features 497

Keystone Documentation, Release 21.0.2.dev4

Technically, both Beta and Charlie can use up to 8 cores each:

If Alpha attempts to claim two cores the usage check will fail because the service will fetch the hierarchy
from keystone using oslo.limit and check the usage of each project in the hierarchy to see that the
total usage of Alpha, Beta, and Charlie is equal to the limit of the tree, set by Alpha.limit:

498 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Despite the usage of the tree being equal to the limit, we can still add children to the tree:

Even though the project can be created, the current usage of cores across the tree prevents Delta from
claiming any cores:

Creating a grandchild of project Alpha is forbidden because it violates the two-level hierarchical con-
straint:

This is a fundamental constraint of this design because it provides a very clear escalation path. When a

8.6. Advanced Keystone Features 499

Keystone Documentation, Release 21.0.2.dev4

request fails because the tree limit has been exceeded, a user has all the information they need to provide
meaningful context in a support ticket (e.g., their project ID and the parent project ID). An administrator
should be able to reshuffle usage accordingly. Providing this information in tree structures with more
than a depth of two is much harder, but may be implemented with a separate model.

Granting Beta the ability to claim more cores can be done by giving Beta a project-specific override for
cores

Note that regardless of this update, any subsequent requests to claim more cores in the tree will be rejected
since the usage is equal to the limit of the Alpha. Beta can claim cores if they are released from Alpha or
Charlie:

500 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

While Charlie is still under its default allocation of 10 cores, it wont be able to claim any more cores
because the total usage of the tree is equal to the limit of Alpha, thus preventing Charlie from reclaiming
the cores it had:

Creating or updating a project with a limit that exceeds the limit of Alpha is forbidden. Even though it
is possible for the sum of all limits under Alpha to exceed the limit of Alpha, the total usage is capped at
Alpha.limit. Allowing children to have explicit overrides greater than the limit of the parent would result
in strange user experience and be misleading since the total usage of the tree would be capped at the limit
of the parent:

8.6. Advanced Keystone Features 501

Keystone Documentation, Release 21.0.2.dev4

Finally, lets still assume the default registered limit for cores is 10, but were going to create project Alpha
with a limit of 6 cores.

When we create project Beta, which is a child of project Alpha, the limit API ensures that project Beta
doesnt assume the default of 10, despite the registered limit of 10 cores. Instead, the child assumes the
parents limit since no single child limit should exceed the limit of the parent:

502 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

This behavior is consistent regardless of the number of children added under project Alpha.

Creating limit overrides while creating projects seems counter-productive given the whole purpose of a
registered default, but it also seems unlikely to throttle a parent project by specifying its default to be less
than a registered default. This behavior maintains consistency with the requirement that the sum of all
child limits may exceed the parent limit, but the limit of any one child may not.

You should use this model if you:

• Want resources to flow between projects and domains within a hierarchy

• Dont have a project depth greater than two levels

• Are not concerned about usage calculation performance or dont have project trees that are wide

Advantages

• Allows resources to flow between projects and domains within a strict two-level hierarchy

• Limits are validated when they are created and updated

8.6. Advanced Keystone Features 503

Keystone Documentation, Release 21.0.2.dev4

Disadvantages

• Project depth cannot exceed two levels

• Performance may suffer in wide and flat project hierarchies during usage calculation

8.6.2 Resource Options

A resource option is an attribute that can be optionally set on an entity in keystone. These options are used
to control specific features or behaviors within keystone. This allows flexibility on a per-resource basis as
opposed to settings a configuration file value that controls a behavior for all resources in a deployment.

This flexibility can be useful for deployments is setting different authentication requirements for users.
For example, operators can use resource options to set the number of failed authentication attempts on a
per-user basis as opposed to setting a global value that is applied to all users.

The purpose of this document is to formally document the supported resource options used in keystone,
their intended behavior, and how to use them.

User Options

The following options are available on user resources. If left undefined, they are assumed to be false or
disabled.

These can be set either in the initial user creation (POST /v3/users) or by updating an existing user to
include new options (PATCH /v3/users/{user_id}):

{
"user": {

"options": {
"ignore_lockout_failure_attempts": true

}
}

}

Note: User options of the Boolean type can be set to True, False, or None; if the option is set to None,
it is removed from the users data structure.

ignore_user_inactivity

Type: Boolean

Opt into ignoring global inactivity lock settings defined in keystone.conf [security_compliance]
on a per-user basis. Setting this option to True will make users not set as disabled even after the globally
configured inactivity period is reached.

{
"user": {

"options": {
(continues on next page)

504 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"ignore_user_inactivity": true
}

}
}

Note: Setting this option for users which are already disabled will not make them automatically enabled.
Such users must be enabled manually after setting this option to True for them.

See the security compliance documentation for more details.

ignore_change_password_upon_first_use

Type: Boolean

Control if a user should be forced to change their password immediately after they log into keystone for
the first time. This can be useful for deployments that auto-generate passwords but want to ensure a user
picks a new password when they start using the deployment.

{
"user": {

"options": {
"ignore_change_password_upon_first_use": true

}
}

}

See the security compliance documentation for more details.

ignore_password_expiry

Type: Boolean

Opt into ignoring global password expiration settings defined in keystone.conf
[security_compliance] on a per-user basis. Setting this option to True will allow users to
continue using passwords that may be expired according to global configuration values.

{
"user": {

"options": {
"ignore_password_expiry": true

}
}

}

See the security compliance documentation for more details.

8.6. Advanced Keystone Features 505

security-compliance.html

Keystone Documentation, Release 21.0.2.dev4

ignore_lockout_failure_attempts

Type: Boolean

If True, opt into ignoring the number of times a user has authenticated and locking out the user as a
result.

{
"user": {

"options": {
"ignore_lockout_failure_attempts": true

}
}

}

See the security compliance documentation for more details.

lock_password

Type: Boolean

If set to True, this option disables the ability for users to change their password through self-service
APIs.

{
"user": {

"options": {
"lock_password": true

}
}

}

See the security compliance documentation for more details.

multi_factor_auth_enabled

Type: Boolean

Specify if a user has multi-factor authentication enabled on their account. This will result in different
behavior at authentication time and the user may be presented with different authentication requirements
based on multi-factor configuration.

{
"user": {

"options": {
"multi_factor_auth_enabled": true

}
}

}

See Multi-Factor Authentication for further details.

506 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

multi_factor_auth_rules

Type: List of Lists of Strings

Define a list of strings that represent the methods required for a user to authenticate.

{
"user": {

"options": {
"multi_factor_auth_rules": [

["password", "totp"],
["password", "u2f"]

]
}

}
}

See Multi-Factor Authentication for further details.

Role Options

The following options are available on role resources. If left undefined, they are assumed to be false or
disabled.

immutable

Type: Boolean

Specify whether a role is immutable. An immutable role may not be deleted or modified except to remove
the immutable option.

{
"role": {

"options": {
"immutable": true

}
}

}

Project Options

The following options are available on project resources. If left undefined, they are assumed to be false
or disabled.

8.6. Advanced Keystone Features 507

Keystone Documentation, Release 21.0.2.dev4

immutable

Type: Boolean

Specify whether a project is immutable. An immutable project may not be deleted or modified except to
remove the immutable option.

{
"project": {

"options": {
"immutable": true

}
}

}

Domain Options

The following options are available on domain resources. If left undefined, they are assumed to be false
or disabled.

immutable

Type: Boolean

Specify whether a domain is immutable. An immutable domain may not be deleted or modified except
to remove the immutable option.

{
"domain": {

"options": {
"immutable": true

}
}

}

8.6.3 Credential Encryption

As of the Newton release, keystone encrypts all credentials stored in the default sql backend. Credentials
are encrypted with the same mechanism used to encrypt Fernet tokens, fernet. Keystone provides only
one type of credential encryption but the encryption provider is pluggable in the event you wish to supply
a custom implementation.

This document details how credential encryption works, how to migrate existing credentials in a deploy-
ment, and how to manage encryption keys for credentials.

508 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Configuring credential encryption

The configuration for credential encryption is straightforward. There are only two configuration options
needed:

[credential]
provider = fernet
key_repository = /etc/keystone/credential-keys/

[credential] provider defaults to the only option supplied by keystone, fernet. There is no
reason to change this option unless you wish to provide a custom credential encryption implementa-
tion. The [credential] key_repository location is a requirement of using fernet but will default
to the /etc/keystone/credential-keys/ directory. Both [credential] key_repository and
[fernet_tokens] key_repository define locations for keys used to encrypt things. One holds the
keys to encrypt and decrypt credentials and the other holds keys to encrypt and decrypt tokens. It is
imperative that these repositories are managed separately and they must not share keys. Meaning they
cannot share the same directory path. The [credential] key_repository is only allowed to have
three keys. This is not configurable and allows for credentials to be re-encrypted periodically with a new
encryption key for the sake of security.

How credential encryption works

The implementation of this feature did not change any existing credential API contracts. All changes are
transparent to the user unless youre inspecting the credential backend directly.

When creating a credential, keystone will encrypt the blob attribute before persisting it to the backend.
Keystone will also store a hash of the key that was used to encrypt the information in that credential.
Since Fernet is used to encrypt credentials, a key repository consists of multiple keys. Keeping track of
which key was used to encrypt each credential is an important part of encryption key management. Why
this is important is detailed later in the Encryption key management section.

When updating an existing credentials blob attribute, keystone will encrypt the new blob and update
the key hash.

When listing or showing credentials, all blob attributes are decrypted in the response. Neither the cipher
text, nor the hash of the key used to encrypt the blob are exposed through the API. Furthermore, the key
is only used internally to keystone.

Encrypting existing credentials

When upgrading a Mitaka deployment to Newton, three database migrations will ensure all credentials
are encrypted. The process is as follows:

1. An additive schema change is made to create the new encrypted_blob and key_hash columns
in the existing credential table using keystone-manage db_sync --expand.

2. A data migration will loop through all existing credentials, encrypt each blob and store the
result in the new encrypted_blob column. The hash of the key used is also written to the
key_hash column for that specific credential. This step is done using keystone-manage
db_sync --migrate.

3. A contractive schema will remove the blob column that held the plain text representations of the
credential using keystone-manage db_sync --contract. This should only be done after all

8.6. Advanced Keystone Features 509

Keystone Documentation, Release 21.0.2.dev4

nodes in the deployment are running Newton. If any Mitaka nodes are running after the database
is contracted, they wont be able to read credentials since they are looking for the blob column that
no longer exists.

Note: You may also use keystone-manage db_sync --check in order to check the current status of
your rolling upgrades.

If performing a rolling upgrade, please note that a limited service outage will take affect during this migra-
tion. When the migration is in place, credentials will become read-only until the database is contracted.
After the contract phase is complete, credentials will be writeable to the backend. A [credential]
key_repository location must be specified through configuration and bootstrapped with keys using
keystone-manage credential_setup prior to migrating any existing credentials. If a new key repos-
itory isnt setup using keystone-manage credential_setup keystone will assume a null key to en-
crypt and decrypt credentials until a proper key repository is present. The null key is a key consisting of all
null bytes and its only purpose is to ease the upgrade process from Mitaka to Newton. It is highly recom-
mended that the null key isnt used. It is no more secure than storing credentials in plain text. If the null key
is used, you should migrate to a proper key repository using keystone-manage credential_setup
and keystone-manage credential_migrate.

Encryption key management

Key management of [credential] key_repository is handled with three keystone-manage com-
mands:

1. keystone-manage credential_setup

2. keystone-manage credential_rotate

3. keystone-manage credential_migrate

keystone-manage credential_setup will populate [credential] key_repository with new
encryption keys. This must be done in order for proper credential encryption to work, with the exception
of the null key. This step should only be done once.

keystone-manage credential_rotate will create and rotate a new encryption key in the
[credential] key_repository. This will only be done if all credential key hashes match the hash of
the current primary key. If any credential has been encrypted with an older key, or secondary key, the rota-
tion will fail. Failing the rotation is necessary to prevent overrotation, which would leave some credentials
indecipherable since the key used to encrypt it no longer exists. If this step fails, it is possible to forcibly
re-key all credentials using the same primary key with keystone-manage credential_migrate.

keystone-manage credential_migrate will check the backend for credentials whose key hash
doesnt match the hash of the current primary key. Any credentials with a key hash mismatching the
current primary key will be re-encrypted with the current primary key. The new cipher text and key hash
will be updated in the backend.

510 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

8.6.4 Health Check

Health check mechanism allows an operator to configure the endpoint URL that will provide information
to a load balancer if the given API endpoint at the node should be available or not.

Its enabled by default in Keystone using the functions from oslo.middleware. And the URL is /
healthcheck.

For more information and configuration options for the middleware see oslo.middleware.

8.6.5 Keystone Event Notifications

Keystone provides notifications about usage data so that 3rd party applications can use the data for billing,
monitoring, or quota purposes. This document describes the current inclusions and exclusions for Key-
stone notifications.

Keystone currently supports two notification formats: a Basic Notification, and a Cloud Auditing Data
Federation (CADF) Notification. The supported operations between the two types of notification formats
are documented below.

Common Notification Structure

Notifications generated by Keystone are generated in JSON format. An external application can format
them into ATOM format and publish them as a feed. Currently, all notifications are immediate, meaning
they are generated when a specific event happens. Notifications all adhere to a specific top level format:

{
"event_type": "identity.<resource_type>.<operation>",
"message_id": "<message_id>",
"payload": {},
"priority": "INFO",
"publisher_id": "identity.<hostname>",
"timestamp": "<timestamp>"

}

Where <resource_type> is a Keystone resource, such as user or project, and <operation> is a Key-
stone operation, such as created, deleted.

The key differences between the two notification formats (Basic and CADF), lie within the payload
portion of the notification.

The priority of the notification being sent is not configurable through the Keystone configuration file.
This value is defaulted to INFO for all notifications sent in Keystones case.

8.6. Advanced Keystone Features 511

https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html
http://www.dmtf.org/standards/cadf

Keystone Documentation, Release 21.0.2.dev4

Auditing with CADF

Keystone uses the PyCADF library to emit CADF notifications, these events adhere to the DMTF CADF
specification. This standard provides auditing capabilities for compliance with security, operational, and
business processes and supports normalized and categorized event data for federation and aggregation.

CADF notifications include additional context data around the resource, the action and the
initiator.

CADF notifications may be emitted by changing the notification_format to cadf in the configura-
tion file.

The payload portion of a CADF Notification is a CADF event, which is represented as a JSON dictio-
nary. For example:

{
"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event",
"initiator": {

"typeURI": "service/security/account/user",
"host": {

"agent": "curl/7.22.0(x86_64-pc-linux-gnu)",
"address": "127.0.0.1"

},
"id": "<initiator_id>"

},
"target": {

"typeURI": "<target_uri>",
"id": "openstack:1c2fc591-facb-4479-a327-520dade1ea15"

},
"observer": {

"typeURI": "service/security",
"id": "openstack:3d4a50a9-2b59-438b-bf19-c231f9c7625a"

},
"eventType": "activity",
"eventTime": "2014-02-14T01:20:47.932842+00:00",
"action": "<action>",
"outcome": "success",
"id": "openstack:f5352d7b-bee6-4c22-8213-450e7b646e9f",

}

Where the following are defined:

• <initiator_id>: ID of the user that performed the operation

• <target_uri>: CADF specific target URI, (i.e.: data/security/project)

• <action>: The action being performed, typically: <operation>. <resource_type>

Note: The eventType property of the CADF payload is different from the event_type property of a
notifications. The former (eventType) is a CADF keyword which designates the type of event that is
being measured, this can be: activity, monitor or control. Whereas the latter (event_type) is described
in previous sections as: identity.<resource_type>.<operation>

512 Chapter 8. Administrator Guides

https://docs.openstack.org/pycadf/latest
http://www.dmtf.org/standards/cadf

Keystone Documentation, Release 21.0.2.dev4

Additionally there may be extra keys present depending on the operation being performed, these will be
discussed below.

Reason

There is a specific reason object that will be present for the following PCI-DSS related events:

PCI-DSS Section rea-
son-
Code

reasonType

8.1.6 Limit repeated access attempts by
locking out the user after more than X failed
attempts.

401 Maximum number of <number> login at-
tempts exceeded.

8.2.3 Passwords must meet the established
criteria.

400 Password does not meet expected require-
ments: <regex_description>

8.2.4 Password must be changed every X
days.

401 Password for <user> expired and must be
changed

8.2.5 Do not let users reuse the last X pass-
words.

400 Changed password cannot be identical to the
last <number> passwords.

Other - Prevent passwords from being
changed for a minimum of X days.

401 Cannot change password before minimum
age <number> days is met

The reason object will contain the following keys:

• reasonType: Description of the PCI-DSS event

• reasonCode: HTTP response code for the event

For more information, see Security compliance and PCI-DSS for configuring PCI-DSS in keystone.

Supported Events

The following table displays the compatibility between resource types and operations.

Resource Type Supported Operations typeURI
group create,update,delete data/security/group
project create,update,delete data/security/project
role create,update,delete data/security/role
domain create,update,delete data/security/domain
user create,update,delete data/security/account/user
trust create,delete data/security/trust
region create,update,delete data/security/region
endpoint create,update,delete data/security/endpoint
service create,update,delete data/security/service
policy create,update,delete data/security/policy
role assignment add,remove data/security/account/user
None authenticate data/security/account/user

8.6. Advanced Keystone Features 513

Keystone Documentation, Release 21.0.2.dev4

Example Notification - Project Create

The following is an example of a notification that is sent when a project is created. This example can
be applied for any create, update or delete event that is seen in the table above. The <action> and
typeURI fields will be change.

The difference to note is the inclusion of the resource_info field which contains the <resource_id>
that is undergoing the operation. Thus creating a common element between the CADF and Basic notifi-
cation formats.

{
"event_type": "identity.project.created",
"message_id": "0156ee79-b35f-4cef-ac37-d4a85f231c69",
"payload": {

"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event",
"initiator": {

"typeURI": "service/security/account/user",
"host": {

"agent": "curl/7.22.0(x86_64-pc-linux-gnu)",
"address": "127.0.0.1"

},
"id": "c9f76d3c31e142af9291de2935bde98a"

},
"target": {

"typeURI": "data/security/project",
"id": "openstack:1c2fc591-facb-4479-a327-520dade1ea15"

},
"observer": {

"typeURI": "service/security",
"id": "openstack:3d4a50a9-2b59-438b-bf19-c231f9c7625a"

},
"eventType": "activity",
"eventTime": "2014-02-14T01:20:47.932842+00:00",
"action": "created.project",
"outcome": "success",
"id": "openstack:f5352d7b-bee6-4c22-8213-450e7b646e9f",
"resource_info": "671da331c47d4e29bb6ea1d270154ec3"

},
"priority": "INFO",
"publisher_id": "identity.host1234",
"timestamp": "2013-08-29 19:03:45.960280"

}

514 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Example Notification - Authentication

The following is an example of a notification that is sent when a user authenticates with Keystone.

Note that this notification will be emitted if a user successfully authenticates, and when a user fails to
authenticate.

{
"event_type": "identity.authenticate",
"message_id": "1371a590-d5fd-448f-b3bb-a14dead6f4cb",
"payload": {

"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event",
"initiator": {

"typeURI": "service/security/account/user",
"host": {

"agent": "curl/7.22.0(x86_64-pc-linux-gnu)",
"address": "127.0.0.1"

},
"id": "c9f76d3c31e142af9291de2935bde98a"

},
"target": {

"typeURI": "service/security/account/user",
"id": "openstack:1c2fc591-facb-4479-a327-520dade1ea15"

},
"observer": {

"typeURI": "service/security",
"id": "openstack:3d4a50a9-2b59-438b-bf19-c231f9c7625a"

},
"eventType": "activity",
"eventTime": "2014-02-14T01:20:47.932842+00:00",
"action": "authenticate",
"outcome": "success",
"id": "openstack:f5352d7b-bee6-4c22-8213-450e7b646e9f"

},
"priority": "INFO",
"publisher_id": "identity.host1234",
"timestamp": "2014-02-14T01:20:47.932842"

}

Example Notification - Federated Authentication

The following is an example of a notification that is sent when a user authenticates with Keystone via
Federation.

This example is similar to the one seen above, however the initiator portion of the payload contains
a new credential section.

{
"event_type": "identity.authenticate",
"message_id": "1371a590-d5fd-448f-b3bb-a14dead6f4cb",

(continues on next page)

8.6. Advanced Keystone Features 515

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"payload": {
"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event",
"initiator": {

"credential": {
"type": "http://docs.oasis-open.org/security/saml/v2.0",
"token": "671da331c47d4e29bb6ea1d270154ec3",
"identity_provider": "ACME",
"user": "c9f76d3c31e142af9291de2935bde98a",
"groups": [

"developers"
]

},
"typeURI": "service/security/account/user",
"host": {

"agent": "curl/7.22.0(x86_64-pc-linux-gnu)",
"address": "127.0.0.1"

},
"id": "c9f76d3c31e142af9291de2935bde98a"

},
"target": {

"typeURI": "service/security/account/user",
"id": "openstack:1c2fc591-facb-4479-a327-520dade1ea15"

},
"observer": {

"typeURI": "service/security",
"id": "openstack:3d4a50a9-2b59-438b-bf19-c231f9c7625a"

},
"eventType": "activity",
"eventTime": "2014-02-14T01:20:47.932842+00:00",
"action": "authenticate",
"outcome": "success",
"id": "openstack:f5352d7b-bee6-4c22-8213-450e7b646e9f"

},
"priority": "INFO",
"publisher_id": "identity.host1234",
"timestamp": "2014-02-14T01:20:47.932842"

}

Example Notification - Role Assignment

The following is an example of a notification that is sent when a role is granted or revoked to a project
or domain, for a user or group.

It is important to note that this type of notification has many new keys that convey the necessary informa-
tion. Expect the following in the payload: role, inherited_to_project, project or domain, user
or group. With the exception of inherited_to_project, each will represent the unique identifier of
the resource type.

516 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

{
"event_type": "identity.role_assignment.created",
"message_id": "a5901371-d5fd-b3bb-448f-a14dead6f4cb",
"payload": {

"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event",
"initiator": {

"typeURI": "service/security/account/user",
"host": {

"agent": "curl/7.22.0(x86_64-pc-linux-gnu)",
"address": "127.0.0.1"

},
"id": "c9f76d3c31e142af9291de2935bde98a"

},
"target": {

"typeURI": "service/security/account/user",
"id": "openstack:1c2fc591-facb-4479-a327-520dade1ea15"

},
"observer": {

"typeURI": "service/security",
"id": "openstack:3d4a50a9-2b59-438b-bf19-c231f9c7625a"

},
"eventType": "activity",
"eventTime": "2014-08-20T01:20:47.932842+00:00",
"role": "0e6b990380154a2599ce6b6e91548a68",
"project": "24bdcff1aab8474895dbaac509793de1",
"inherited_to_projects": false,
"group": "c1e22dc67cbd469ea0e33bf428fe597a",
"action": "created.role_assignment",
"outcome": "success",
"id": "openstack:f5352d7b-bee6-4c22-8213-450e7b646e9f"

},
"priority": "INFO",
"publisher_id": "identity.host1234",
"timestamp": "2014-08-20T01:20:47.932842"

}

Example Notification - Expired Password

The following is an example of a notification that is sent when a user attempts to authenticate but their
password has expired.

In this example, the payload contains a reason portion which contains both a reasonCode and
reasonType.

{
"priority": "INFO",
"_unique_id": "222441bdc958423d8af6f28f9c558614",
"event_type": "identity.authenticate",
"timestamp": "2016-11-11 18:31:11.290821",

(continues on next page)

8.6. Advanced Keystone Features 517

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

"publisher_id": "identity.host1234",
"payload": {

"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event",
"initiator": {

"typeURI": "service/security/account/user",
"host": {

"address": "127.0.0.1"
},
"id": "73a19db6-e26b-5313-a6df-58d297fa652e"

},
"target": {

"typeURI": "service/security/account/user",
"id": "c23e6cb7-abe0-5e42-b7f7-4c4104ea77b0"

},
"observer": {

"typeURI": "service/security",
"id": "9bdddeda6a0b451e9e0439646e532afd"

},
"eventType": "activity",
"eventTime": "2016-11-11T18:31:11.156356+0000",
"reason": {

"reasonCode": 401,
"reasonType": "The password is expired and needs to be reset for␣

↪→user: ed1ab0b40f284fb48fea9e25d0d157fc"
},
"action": "authenticate",
"outcome": "failure",
"id": "78cd795f-5850-532f-9ab1-5adb04e30c0f"

},
"message_id": "9a97e9d0-fef1-4852-8e82-bb693358bc46"

}

Basic Notifications

All basic notifications contain a limited amount of information, specifically, just the resource type, oper-
ation, and resource id.

The payload portion of a Basic Notification is a single key-value pair.

{
"resource_info": <resource_id>

}

Where <resource_id> is the unique identifier assigned to the resource_type that is undergoing the
<operation>.

518 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Supported Events

The following table displays the compatibility between resource types and operations.

Resource Type Supported Operations
group create,update,delete
project create,update,delete
role create,update,delete
domain create,update,delete
user create,update,delete
trust create,delete
region create,update,delete
endpoint create,update,delete
service create,update,delete
policy create,update,delete

Note, trusts are an immutable resource, they do not support update operations.

Example Notification

This is an example of a notification sent for a newly created user:

{
"event_type": "identity.user.created",
"message_id": "0156ee79-b35f-4cef-ac37-d4a85f231c69",
"payload": {

"resource_info": "671da331c47d4e29bb6ea1d270154ec3"
},
"priority": "INFO",
"publisher_id": "identity.host1234",
"timestamp": "2013-08-29 19:03:45.960280"

}

If the operation fails, the notification wont be sent, and no special error notification will be sent. Infor-
mation about the error is handled through normal exception paths.

Recommendations for consumers

One of the most important notifications that Keystone emits is for project deletions (event_type =
identity.project.deleted). This event should indicate to the rest of OpenStack that all resources
(such as virtual machines) associated with the project should be deleted.

Projects can also have update events (event_type = identity.project.updated), wherein the
project has been disabled. Keystone ensures this has an immediate impact on the accessibility of the
projects resources by revoking tokens with authorization on the project, but should not have a direct
impact on the projects resources (in other words, virtual machines should not be deleted).

8.6. Advanced Keystone Features 519

Keystone Documentation, Release 21.0.2.dev4

Opting out of certain notifications

There are many notifications that Keystone emits and some deployers may only care about certain events.
In Keystone there is a way to opt-out of certain notifications. In /etc/keystone/keystone.conf you
can set opt_out to the event you wish to opt-out of. It is possible to opt-out of multiple events.

Example:

[DEFAULT]
notification_opt_out = identity.user.created
notification_opt_out = identity.role_assignment.created
notification_opt_out = identity.authenticate.pending

This will opt-out notifications for user creation, role assignment creation and successful authentications.
For a list of event types that can be used, refer to: Telemetry Measurements.

By default, messages for the following authentication events are suppressed since they are too
noisy: identity.authenticate.success, identity.authenticate.pending and identity.
authenticate.failed.

8.7 Authentication Mechanisms

Keystone supports various methods of authentication beyond the standard local user and password
method.

8.7.1 Multi-Factor Authentication

Configuring MFA

MFA is configured on a per user basis via the user options multi_factor_auth_rules and
multi_factor_auth_enabled. Until these are set the user can authenticate with any one of the enabled
auth methods.

MFA rules

The MFA rules allow an admin to force a user to use specific forms of authentication or combinations of
forms of authentication to get a token.

The rules are specified as follows via the user option multi_factor_auth_rules:

[["password", "totp"], ["password", "custom-auth-method"]]

They are a list of lists. The elements of the sub-lists must be strings and are intended to mirror the required
authentication method names (e.g. password, totp, etc) as defined in the keystone.conf file in the
[auth] methods option. Each list of methods specifies a rule.

If the auth methods provided by a user match (or exceed) the auth methods in the list, that rule is used.
The first rule found (rules will not be processed in a specific order) that matches will be used. If a user
has the ruleset defined as [["password", "totp"]] the user must provide both password and totp auth
methods (and both methods must succeed) to receive a token. However, if a user has a ruleset defined as

520 Chapter 8. Administrator Guides

https://docs.openstack.org/ceilometer/latest/admin/telemetry-measurements.html#openstack-identity

Keystone Documentation, Release 21.0.2.dev4

[["password"], ["password", "totp"]] the user may use the password method on its own but
would be required to use both password and totp if totp is specified at all.

Any auth methods that are not defined in keystone.conf in the [auth] methods option are ignored
when the rules are processed. Empty rules are not allowed. If a rule is empty due to no-valid auth methods
existing within it, the rule is discarded at authentication time. If there are no rules or no valid rules for
the user, authentication occurs in the default manner: any single configured auth method is sufficient to
receive a token.

Note: The token auth method typically should not be specified in any MFA Rules. The token auth
method will include all previous auth methods for the original auth request and will match the appropriate
ruleset. This is intentional, as the token method is used for rescoping/changing active projects.

Enabling MFA

Before the MFA rules take effect on a user, MFA has to be enabled for that user via the user option
multi_factor_auth_enabled. By default this is unset, and the rules will not take effect until configured.

In the case a user should be exempt from MFA Rules, regardless if they are set, the User-Option may be
set to False.

Using MFA

See Multi-Factor Authentication in the user guide for some examples.

Supported multi-factor authentication methods

TOTP is the only suggested second factor along with password for now, but there are plans to include
more in future.

TOTP

This is a simple 6 digit passcode generated by both the server and client from a known shared secret.

This used in a multi-step fashion is the most common 2-factor method used these days.

See: Time-based One-time Password (TOTP)

8.7.2 Time-based One-time Password (TOTP)

Configuring TOTP

TOTP is not enabled in Keystone by default. To enable it add the totp authentication method to the
[auth] section in keystone.conf:

[auth]
methods = external,password,token,oauth1,totp

8.7. Authentication Mechanisms 521

Keystone Documentation, Release 21.0.2.dev4

For a user to have access to TOTP, he must have configured TOTP credentials in Keystone and a TOTP
device (i.e. Google Authenticator).

TOTP uses a base32 encoded string for the secret. The secret must be at least 128 bits (16 bytes). The
following python code can be used to generate a TOTP secret:

import base64
message = '1234567890123456'
print base64.b32encode(message).rstrip('=')

Example output:

GEZDGNBVGY3TQOJQGEZDGNBVGY

This generated secret can then be used to add new totp credentials to a specific user.

Create a TOTP credential

Create totp credentials for user:

USER_ID=b7793000f8d84c79af4e215e9da78654
SECRET=GEZDGNBVGY3TQOJQGEZDGNBVGY

curl -i \
-H "Content-Type: application/json" \
-d '

{
"credential": {

"blob": "'$SECRET'",
"type": "totp",
"user_id": "'$USER_ID'"

}
}' \

http://localhost:5000/v3/credentials ; echo

522 Chapter 8. Administrator Guides

http://www.google.com/2step

Keystone Documentation, Release 21.0.2.dev4

Google Authenticator

On a device install Google Authenticator and inside the app click on Set up account and then click on
Enter provided key. In the input fields enter account name and secret. Optionally a QR code can be
generated programmatically to avoid having to type the information.

QR code

Create TOTP QR code for device:

import qrcode

secret='GEZDGNBVGY3TQOJQGEZDGNBVGY'
uri = 'otpauth://totp/{name}?secret={secret}&issuer={issuer}'.format(

name='name',
secret=secret,
issuer='Keystone')

img = qrcode.make(uri)
img.save('totp.png')

In Google Authenticator app click on Set up account and then click on Scan a barcode, and then scan the
totp.png image. This should create a new TOTP entry in the application.

Authenticate with TOTP

Google Authenticator will generate a 6 digit PIN (passcode) every few seconds. Use the passcode and
your user ID to authenticate using the totp method.

Tokens

Get a token with default scope (may be unscoped) using totp:

USER_ID=b7793000f8d84c79af4e215e9da78654
PASSCODE=012345

curl -i \
-H "Content-Type: application/json" \
-d '

{ "auth": {
"identity": {

"methods": [
"totp"

],
"totp": {

"user": {
"id": "'$USER_ID'",
"passcode": "'$PASSCODE'"

(continues on next page)

8.7. Authentication Mechanisms 523

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

}
}

}
}

}' \
http://localhost:5000/v3/auth/tokens ; echo

8.7.3 Federated Identity

Introduction to Keystone Federation

What is keystone federation?

Identity federation is the ability to share identity information across multiple identity management sys-
tems. In keystone, this is implemented as an authentication method that allows users to authenticate
directly with another identity source and then provides keystone with a set of user attributes. This is use-
ful if your organization already has a primary identity source since it means users dont need a separate
set of credentials for the cloud. It is also useful for connecting multiple clouds together, as we can use
a keystone in another cloud as an identity source. Using LDAP as an identity backend is another way
for keystone to obtain identity information from an external source, but it requires keystone to handle
passwords directly rather than offloading authentication to the external source.

Keystone supports two configuration models for federated identity. The most common configuration is
with keystone as a Service Provider (SP), using an external Identity Provider, such as a Keycloak or
Google, as the identity source and authentication method. The second type of configuration is Keystone
to Keystone, where two keystones are linked with one acting as the identity source.

This document discusses identity federation involving a secondary identity management that acts as the
source of truth concerning the users it contains, specifically covering the SAML2.0 and OpenID Connect
protocols, although keystone can work with other protocols. A similar concept is external authentication
whereby keystone is still the source of truth about its users but authentication is handled externally.
Yet another closely related topic is tokenless authentication which uses some of the same constructs
as described here but allows services to validate users without using keystone tokens.

Glossary

Service Provider (SP) A Service Provider is the service providing the resource an end-user is request-
ing. In our case, this is keystone, which provides keystone tokens that we use on other OpenStack
services. We do NOT call the other OpenStack services service providers. The specific service we
care about in this context is the token service, so that is our Service Provider.

Identity Provider (IdP) An Identity Provider is the service that accepts credentials, validates them, and
generates a yay/nay response. It returns this response along with some other attributes about the
user, such as their username, their display name, and whatever other details it stores and youve
configured your Service Provider to accept.

Entity ID or Remote ID An Entity ID or a Remote ID are both names for a unique identifier string for
either a Service Provider or an Identity Provider. It usually takes the form of a URN, but the URN
does not need to be a resolvable URL. Remote IDs are globally unique. Two Identity Providers
cannot be associated with the same remote ID. Keystone uses the remote ID retrieved from the

524 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

HTTPD environment variables to match the incoming request with a trusted Identity Provider and
render the appropriate authorization mapping.

SAML2.0 SAML2.0 is an XML-based federation protocol. It is commonly used in internal-facing or-
ganizations, such as a university or business in which IT services are provided to members of the
organization.

OpenID Connect (OpenIDC) OpenID Connect is a JSON-based federation protocol built on OAuth
2.0. Its used more often by public-facing services like Google.

Assertion An assertion is a formatted statement from the Identity Provider that asserts that a user is
authenticated and provides some attributes about the user. The Identity Provider always signs the
assertion and typically encrypts it as well.

Single Sign-On (SSO) Single Sign-On is a mechanism related to identity federation whereby a user may
log in to their identity management system and be granted a token or ticket that allows them access
to multiple Service Providers.

Authentication Flows

Understanding the flow of information as a user moves through the authentication process is key to being
able to debug later on.

Normal keystone

8.7. Authentication Mechanisms 525

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://openid.net/connect/
https://en.wikipedia.org/wiki/Single_sign-on

Keystone Documentation, Release 21.0.2.dev4

In a normal keystone flow, the user requests a scoped token directly from keystone. Keystone accepts
their credentials and checks them against its local storage or against its LDAP backend. Then it checks
the scope that the user is requesting, ensuring they have the correct role assignments, and produces a
scoped token. The user can use the scoped token to do something else in OpenStack, like request servers,
but everything that happens after the token is produced is irrelevant to this discussion.

SAML2.0

SAML2.0 WebSSO

This diagram shows a standard WebSSO authentication flow, not one involving keystone. WebSSO is one
of a few SAML2.0 profiles. It is based on the idea that a web browser will be acting as an intermediary
and so the flow involves concepts that a browser can understand and act on, like HTTP redirects and
HTML forms.

First, the user uses their web browser to request some secure resource from the Service Provider. The
Service Provider detects that the user isnt authenticated yet, so it generates a SAML Request which it
base64 encodes, and then issues an HTTP redirect to the Identity Provider.

The browser follows the redirect and presents the SAML Request to the Identity Provider. The user is

526 Chapter 8. Administrator Guides

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html#5.1.Web%20Browser%20SSO%20Profile|outline
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html#5.Major%20Profiles%20and%20Federation%20Use%20Cases|outline

Keystone Documentation, Release 21.0.2.dev4

prompted to authenticate, probably by filling out a username and password in a login page. The Identity
Provider responds with an HTTP success and generates a SAML Response with an HTML form.

The browser automatically POSTs the form back to the Service Provider, which validates the SAML
Response. The Service Provider finally issues another redirect back to the original resource the user had
requested.

SAML2.0 ECP

ECP is another SAML profile. Generally the flow is similar to the WebSSO flow, but it is designed
for a client that natively understands SAML, for example the keystoneauth library (and therefore also

8.7. Authentication Mechanisms 527

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html#5.2.ECP%20Profile|outline
https://docs.openstack.org/keystoneauth/latest/

Keystone Documentation, Release 21.0.2.dev4

the python-openstackclient CLI tool). ECP is slightly different from the browser-based flow and is not
supported by all SAML2.0 IdPs, and so getting WebSSO working does not necessarily mean ECP is
working correctly, or vice versa. ECP support must often be turned on explicitly in the Identity Provider.

WebSSO with keystone and horizon

Keystone is not a web front-end, which means horizon needs to handle some parts of being a Service

528 Chapter 8. Administrator Guides

https://docs.openstack.org/python-openstackclient/latest/

Keystone Documentation, Release 21.0.2.dev4

Provider to implement WebSSO.

In the diagram above, horizon is added, and keystone and HTTPD are split out from each other to distin-
guish which parts each are responsible for, though typically both together are referred to as the Service
Provider.

In this model, the user requests to log in to horizon by selecting a federated authentication method from
a dropdown menu. Horizon automatically generates a keystone URL based on the Identity Provider
and protocol selected and redirects the browser to keystone. That location is equivalent to the /secure
resource in the SAML2.0 WebSSO diagram. The browser follows the redirect, and the HTTPD module
detects that the user isnt logged in yet and issues another redirect to the Identity Provider with a SAML
Request. At this point, the flow is the same as in the normal WebSSO model. The user logs into the
Identity Provider, a SAML Response is POSTed back to the Service Provider, where the HTTPD module
validates the response and issues a redirect back to the location that horizon had originally requested,
which is a special federation auth endpoint. At this point keystone is able to grant an unscoped token,
which it hands off as another HTML form. The browser will POST that back to horizon, which triggers
the normal login process, picking a project to scope to and getting a scoped token from keystone.

Note that horizon is acting as a middleman, since it knows the endpoint of the secure resource it requests
from keystone.

8.7. Authentication Mechanisms 529

Keystone Documentation, Release 21.0.2.dev4

Keystone to Keystone

When keystone is used as an Identity Provider in a Keystone to Keystone configuration, the auth flow is
nonstandard. It is similar to an IdP-initiated auth flow. In this case, the user goes directly to the Identity
Provider first before requesting any resource from the Service Provider. The user will get a token from

530 Chapter 8. Administrator Guides

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html#5.1.4.IdP-Initiated%20SSO:%20%20POST%20Binding|outline

Keystone Documentation, Release 21.0.2.dev4

keystone, then use that to request a SAML Response via ECP. When it gets that response back, it POSTs
that to the Service Provider, which will grant a token for it.

Notice that the Service Provider has to accept data from the Identity Provider and therefore needs to have
a way of trusting it. The Identity Provider, on the other hand, never has to accept data from the Service
Provider. There is no back and forth, the user simply completes the auth process on one side and presents
the result to the other side.

OpenID Connect

OpenID Connect Authentication Flow

OpenID Connect is different from any SAML2.0 flow because the negotiation is not handled entirely
through the client. The Service Provider must make a request directly to the Identity Provider, which
means this flow would not be appropriate if the Service Provider and Identity Provider are in segregated
networks.

8.7. Authentication Mechanisms 531

Keystone Documentation, Release 21.0.2.dev4

When the user requests a secure resource from the Service Provider, they are redirected to the Identity
Provider to log in. The Identity Provider then redirects the user back to the Service Provider using a
known redirect URI and providing an authorization code. The Service Provider must then make a back-
channel request directly to the Identity Provider using the provided code, and exchange it for an ID token.

532 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

OpenID Connect with keystone and horizon

From horizon and keystones point of view, the authentication flow is the same for OpenID Connect as it

8.7. Authentication Mechanisms 533

Keystone Documentation, Release 21.0.2.dev4

is for SAML2.0. It is only the HTTPD OpenIDC module that must handle the flow in accordance with
the spec.

Configuring Keystone for Federation

Keystone as a Service Provider (SP)

Prerequisites

If you are not familiar with the idea of federated identity, see the Introduction to Keystone Federation
first.

In this section, we will configure keystone as a Service Provider, consuming identity properties issued by
an external Identity Provider, such as SAML assertions or OpenID Connect claims. For testing purposes,
we recommend using samltest.id as a SAML Identity Provider, or Google as an OpenID Connect Identity
Provider, and the examples here will references those providers. If you plan to set up Keystone as an
Identity Provider (IdP), it is easiest to set up keystone with a dummy SAML provider first and then
reconfigure it to point to the keystone Identity Provider later.

The following configuration steps were performed on a machine running Ubuntu 16.04 and Apache
2.4.18.

To enable federation, youll need to run keystone behind a web server such as Apache rather than running
the WSGI application directly with uWSGI or Gunicorn. See the installation guide for SUSE, RedHat or
Ubuntu to configure the Apache web server for keystone.

Throughout the rest of the guide, you will need to decide on three pieces of information and use them
consistently throughout your configuration:

1. The protocol name. This must be a valid keystone auth method and must match one of: saml2,
openid, mapped or a custom auth method for which you must register as an external driver.

2. The identity provider name. This can be arbitrary.

3. The entity ID of the service provider. This should be a URN but need not resolve to anything.

You will also need to decide what HTTPD module to use as a Service Provider. This guide provides
examples for mod_shib and mod_auth_mellon as SAML service providers, and mod_auth_openidc
as an OpenID Connect Service Provider.

Note: In this guide, the keystone Service Provider is configured on a host called sp.keystone.example.org
listening on the standard HTTPS port. All keystone paths will start with the keystone version prefix, /
v3. If you have configured keystone to listen on port 5000, or to respond on the path /identity (for
example), take this into account in your own configuration.

534 Chapter 8. Administrator Guides

https://samltest.id

Keystone Documentation, Release 21.0.2.dev4

Creating federation resources in keystone

You need to create three resources via the keystone API to identify the Identity Provider to keystone and
align remote user attributes with keystone objects:

• Create an Identity Provider

• Create a Mapping

• Create a Protocol

See also the keystone federation API reference.

Create an Identity Provider

Create an Identity Provider object in keystone, which represents the Identity Provider we will use to
authenticate end users:

$ openstack identity provider create --remote-id https://samltest.id/saml/idp␣
↪→samltest

The value for the remote-id option is the unique identifier provided by the Identity Provider, called the
entity ID or the remote ID. For a SAML Identity Provider, it can found by querying its metadata endpoint:

$ curl -s https://samltest.id/saml/idp | grep -o 'entityID=".*"'
entityID="https://samltest.id/saml/idp"

For an OpenID Connect IdP, it is the Identity Providers Issuer Identifier. A remote ID must be globally
unique: two identity providers cannot be associated with the same remote ID. The remote ID will usually
appear as a URN but need not be a resolvable URL.

The local name, called samltest in our example, is decided by you and will be used by the mapping
and protocol, and later for authentication.

Note: An identity provider keystone object may have multiple remote-ids specified, this allows
the same keystone identity provider resource to be used with multiple external identity providers.
For example, an identity provider resource university-idp, may have the following remote_ids:
['university-x', 'university-y', 'university-z']. This removes the need to configure N
identity providers in keystone.

See also the API reference on identity providers.

Create a Mapping

Next, create a mapping. A mapping is a set of rules that link the attributes of a remote user to user proper-
ties that keystone understands. It is especially useful for granting remote users authorization to keystone
resources, either by associating them with a local keystone group and inheriting its role assignments, or
dynamically provisioning projects within keystone based on these rules.

Note: By default, group memberships that a user gets from a mapping are only valid for the duration
of the token. It is possible to persist these groups memberships for a limited period of time. To en-

8.7. Authentication Mechanisms 535

https://docs.openstack.org/api-ref/identity/v3-ext/#os-federation-api
https://docs.openstack.org/api-ref/identity/v3-ext/#identity-providers

Keystone Documentation, Release 21.0.2.dev4

able this, either set the authorization_ttl` attribute of the identity provider, or the
``[federation] default_authorization_ttl in the keystone.conf file. This value is in minutes,
and will result in a lag from when a user is removed from a group in the identity provider, and when that
will happen in keystone. Please consider your security requirements carefully.

An Identity Provider has exactly one mapping specified per protocol. Mapping objects can be used
multiple times by different combinations of Identity Provider and Protocol.

As a simple example, create a mapping with a single rule to map all remote users to a local user in a
single group in keystone:

$ cat > rules.json <<EOF
[

{
"local": [

{
"user": {

"name": "{0}"
},
"group": {

"domain": {
"name": "Default"

},
"name": "federated_users"

}
}

],
"remote": [

{
"type": "REMOTE_USER"

}
]

}
]
EOF
$ openstack mapping create --rules rules.json samltest_mapping

This mapping rule evaluates the REMOTE_USER variable set by the HTTPD auth module and uses it to fill
in the name of the local user in keystone. It also ensures all remote users become effective members of
the federated_users group, thereby inheriting the groups role assignments.

In this example, the federated_users group must exist in the keystone Identity backend and must have
a role assignment on some project, domain, or system in order for federated users to have an authorization
in keystone. For example, to create the group:

$ openstack group create federated_users

Create a project these users should be assigned to:

$ openstack project create federated_project

Assign the group a member role in the project:

536 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

$ openstack role add --group federated_users --project federated_project␣
↪→member

Mappings can be quite complex. A detailed guide can be found on the Mapping Combinations page.

See also the API reference on mapping rules.

Create a Protocol

Now create a federation protocol. A federation protocol object links the Identity Provider to a mapping.

You can create a protocol like this:

$ openstack federation protocol create saml2 \
--mapping samltest_mapping --identity-provider samltest

As mentioned in Prerequisites, the name you give the protocol is not arbitrary, it must be a valid auth
method.

See also the API reference for federation protocols.

Configuring an HTTPD auth module

This guide currently only includes examples for the Apache web server, but it possible to use SAML,
OpenIDC, and other auth modules in other web servers. See the installation guides for running keystone
behind Apache for SUSE, RedHat or Ubuntu.

Configure protected endpoints

There is a minimum of one endpoint that must be protected in the VirtualHost configuration for the
keystone service:

<Location /v3/OS-FEDERATION/identity_providers/IDENTITYPROVIDER/protocols/
↪→PROTOCOL/auth>
Require valid-user
AuthType [...]
...

</Location>

This is the endpoint for federated users to request an unscoped token.

If configuring WebSSO, you should also protect one or both of the following endpoints:

<Location /v3/auth/OS-FEDERATION/websso/PROTOCOL>
Require valid-user
AuthType [...]
...

</Location>
<Location /v3/auth/OS-FEDERATION/identity_providers/IDENTITYPROVIDER/
↪→protocols/PROTOCOL/websso>

(continues on next page)

8.7. Authentication Mechanisms 537

https://docs.openstack.org/api-ref/identity/v3-ext/#mappings
https://docs.openstack.org/api-ref/identity/v3-ext/#protocols

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

Require valid-user
AuthType [...]
...

</Location>

The first example only specifies a protocol, and keystone will use the incoming remote ID to determine
the Identity Provider. The second specifies the Identity Provider directly, which must then be supplied to
horizon when configuring horizon for WebSSO.

The path must exactly match the path that will be used to access the keystone service. For example, if the
identity provider you created in Create an Identity Provider is samltest and the protocol you created
in Create a Protocol is saml2, then the Locations will be:

<Location /v3/OS-FEDERATION/identity_providers/samltest/protocols/saml2/auth>
Require valid-user
AuthType [...]
...

</Location>
<Location /v3/auth/OS-FEDERATION/websso/saml2>

Require valid-user
AuthType [...]
...

</Location>
<Location /v3/auth/OS-FEDERATION/identity_providers/samltest/protocols/saml2/
↪→websso>
Require valid-user
AuthType [...]
...

</Location>

However, if you have configured the keystone service to use a virtual path such as /identity, that part
of the path should be included:

<Location /identity/v3/OS-FEDERATION/identity_providers/samltest/protocols/
↪→saml2/auth>
Require valid-user
AuthType [...]
...

</Location>
...

538 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Configure the auth module

If your Identity Provider is a SAML IdP, there are two main Apache modules that can be used as a
SAML Service Provider: mod_shib and mod_auth_mellon. For an OpenID Connect Identity Provider,
mod_auth_openidc is used. You can also use other auth modules such as kerberos, X.509, or others.
Check the documentation for the provider you choose for detailed installation and configuration guidance.

Depending on the Service Provider module youve chosen, you will need to install the applicable Apache
module package and follow additional configuration steps. This guide contains examples for two major
federation protocols:

• SAML2.0 - see guides for the following implementations:

– Set up mod_shib.

– Set up mod_auth_mellon.

• OpenID Connect: Set up mod_auth_openidc.

Configuring Keystone

While the Apache module does the majority of the heavy lifting, minor changes are needed to allow
keystone to allow and understand federated authentication.

Add the Auth Method

Add the authentication methods to the [auth] section in keystone.conf. The auth method here must
have the same name as the protocol you created in Create a Protocol. You should also remove external
as an allowable method.

[auth]
methods = password,token,saml2,openid

Configure the Remote ID Attribute

Keystone is mostly apathetic about what HTTPD auth module you choose to configure for your Service
Provider, but must know what header key to look for from the auth module to determine the Identity
Providers remote ID so it can associate the incoming request with the Identity Provider resource. The
key name is decided by the auth module choice:

• For mod_shib: use Shib-Identity-Provider

• For mod_auth_mellon: the attribute name is configured with the MellonIdP parameter in the
VirtualHost configuration, if set to e.g. IDP then use MELLON_IDP

• For mod_auth_openidc: the attribute name is related to the OIDCClaimPrefix parameter in the
Apache configuration, if set to e.g. OIDC- use HTTP_OIDC_ISS

It is recommended that this option be set on a per-protocol basis by creating a new section named after
the protocol:

8.7. Authentication Mechanisms 539

Keystone Documentation, Release 21.0.2.dev4

[saml2]
remote_id_attribute = Shib-Identity-Provider
[openid]
remote_id_attribute = HTTP_OIDC_ISS

Alternatively, a generic option may be set at the [federation] level.

[federation]
remote_id_attribute = HTTP_OIDC_ISS

Add a Trusted Dashboard (WebSSO)

If you intend to configure horizon as a WebSSO frontend, you must specify the URLs of trusted horizon
servers. This value may be repeated multiple times. This setting ensures that keystone only sends token
data back to trusted servers. This is performed as a precaution, specifically to prevent man-in-the-middle
(MITM) attacks. The value must exactly match the origin address sent by the horizon server, including
any trailing slashes.

[federation]
trusted_dashboard = https://horizon1.example.org/auth/websso/
trusted_dashboard = https://horizon2.example.org/auth/websso/

Add the Callback Template (WebSSO)

If you intend to configure horizon as a WebSSO frontend, and if not already done for you by your dis-
tributions keystone package, copy the sso_callback_template.html template into the location specified
by the [federation]/sso_callback_template option in keystone.conf. You can also use this
template as an example to create your own custom HTML redirect page.

Restart the keystone WSGI service or the Apache frontend service after making changes to your keystone
configuration.

systemctl restart apache2

Configuring Horizon as a WebSSO Frontend

Note: Consult horizons official documentation for details on configuring horizon.

Keystone on its own is not capable of supporting a browser-based Single Sign-on authentication flow
such as the SAML2.0 WebSSO profile, therefore we must enlist horizons assistance. Horizon can be
configured to support SSO by enabling it in horizons local_settings.py configuration file and adding
the possible authentication choices that will be presented to the user on the login screen.

Ensure the WEBSSO_ENABLED option is set to True in horizons local_settings.py file, this will provide
users with an updated login screen for horizon.

540 Chapter 8. Administrator Guides

https://opendev.org/openstack/keystone/raw/branch/master/etc/sso_callback_template.html
https://docs.openstack.org/horizon/latest/configuration/settings.html

Keystone Documentation, Release 21.0.2.dev4

WEBSSO_ENABLED = True

Configure the options for authenticating that a user may choose from at the login screen. The pairs
configured in this list map a user-friendly string to an authentication option, which may be one of:

• The string credentials which forces horizon to present its own username and password fields
that the user will use to authenticate as a local keystone user

• The name of a protocol that you created in Create a Protocol, such as saml2 or openid, which
will cause horizon to call keystones WebSSO API without an Identity Provider to authenticate the
user

• A string that maps to an Identity Provider and Protocol combination configured in
WEBSSO_IDP_MAPPING which will cause horizon to call keystones WebSSO API specific to the
given Identity Provider.

WEBSSO_CHOICES = (
("credentials", _("Keystone Credentials")),
("openid", _("OpenID Connect")),
("saml2", _("Security Assertion Markup Language")),
("myidp_openid", "Acme Corporation - OpenID Connect"),
("myidp_saml2", "Acme Corporation - SAML2")

)

WEBSSO_IDP_MAPPING = {
"myidp_openid": ("myidp", "openid"),
"myidp_saml2": ("myidp", "saml2")

}

The initial selection of the dropdown menu can also be configured:

WEBSSO_INITIAL_CHOICE = "credentials"

Remember to restart the web server when finished configuring horizon:

systemctl restart apache2

Authenticating

Use the CLI to authenticate with a SAML2.0 Identity Provider

The python-openstackclient can be used to authenticate a federated user in a SAML Identity
Provider to keystone.

Note: The SAML Identity Provider must be configured to support the ECP authentication profile.

To use the CLI tool, you must have the name of the Identity Provider resource in keystone, the name of
the federation protocol configured in keystone, and the ECP endpoint for the Identity Provider. If you
are the cloud administrator, the name of the Identity Provider and protocol was configured in Create an

8.7. Authentication Mechanisms 541

https://docs.openstack.org/api-ref/identity/v3-ext/index.html#web-single-sign-on-authentication-new-in-version-1-2
https://docs.openstack.org/api-ref/identity/v3-ext/index.html#web-single-sign-on-authentication-new-in-version-1-3
https://docs.openstack.org/api-ref/identity/v3-ext/index.html#web-single-sign-on-authentication-new-in-version-1-3

Keystone Documentation, Release 21.0.2.dev4

Identity Provider and Create a Protocol respectively. If you are not the administrator, you must obtain
this information from the administrator.

The ECP endpoint for the Identity Provider can be obtained from its metadata without involving an
administrator. This endpoint is the urn:oasis:names:tc:SAML:2.0:bindings:SOAP binding in the
metadata document:

$ curl -s https://samltest.id/saml/idp | grep urn:oasis:names:tc:SAML:2.
↪→0:bindings:SOAP

<SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"␣
↪→Location="https://samltest.id/idp/profile/SAML2/SOAP/ECP"/>

Find available scopes

If you are a new user and are not aware of what resources you have access to, you can use an unscoped
query to list the projects or domains you have been granted a role assignment on:

export OS_AUTH_TYPE=v3samlpassword
export OS_IDENTITY_PROVIDER=samltest
export OS_IDENTITY_PROVIDER_URL=https://samltest.id/idp/profile/SAML2/SOAP/ECP
export OS_PROTOCOL=saml2
export OS_USERNAME=morty
export OS_PASSWORD=panic
export OS_AUTH_URL=https://sp.keystone.example.org/v3
export OS_IDENTITY_API_VERSION=3
openstack federation project list
openstack federation domain list

Get a scoped token

If you already know the project, domain or system you wish to scope to, you can directly request a scoped
token:

export OS_AUTH_TYPE=v3samlpassword
export OS_IDENTITY_PROVIDER=samltest
export OS_IDENTITY_PROVIDER_URL=https://samltest.id/idp/profile/SAML2/SOAP/ECP
export OS_PROTOCOL=saml2
export OS_USERNAME=morty
export OS_PASSWORD=panic
export OS_AUTH_URL=https://sp.keystone.example.org/v3
export OS_IDENTITY_API_VERSION=3
export OS_PROJECT_NAME=federated_project
export OS_PROJECT_DOMAIN_NAME=Default
openstack token issue

542 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Use horizon to authenticate with an external Identity Provider

When horizon is configured to enable WebSSO, a dropdown menu will appear on the login screen before
the user has authenticated. Select an authentication method from the menu to be redirected to your
Identity Provider for authentication.

Keystone as an Identity Provider (IdP)

Prerequisites

When keystone is configured as an Identity Provider, it is often referred to as Keystone to Keystone,
because it enables federation between multiple OpenStack clouds using the SAML2.0 protocol.

If you are not familiar with the idea of federated identity, see the introduction first.

When setting up Keystone to Keystone, it is easiest to configure a keystone Service Provider first with a
sandbox Identity Provider such as samltest.id.

This feature requires installation of the xmlsec1 tool via your distribution packaging system (for instance
apt or yum)

apt-get install xmlsec1

Note: In this guide, the keystone Identity Provider is configured on a host called
idp.keystone.example.org listening on the standard HTTPS port. All keystone paths will start
with the keystone version prefix, /v3. If you have configured keystone to listen on port 5000, or to
respond on the path /identity (for example), take this into account in your own configuration.

8.7. Authentication Mechanisms 543

https://samltest.id

Keystone Documentation, Release 21.0.2.dev4

Configuring Metadata

Since keystone is acting as a SAML Identity Provider, its metadata must be configured in the [saml]
section (not to be confused with an optional [saml2] section which you may have configured in Config-
ure the Remote Id Attribute while setting up keystone as Service Provider) of keystone.conf so that it
can served by the metadata API.

The two parameters that must be set in order for keystone to generate metadata are idp_entity_id and
idp_sso_endpoint:

[saml]
idp_entity_id=https://idp.keystone.example.org/v3/OS-FEDERATION/saml2/idp
idp_sso_endpoint=https://idp.keystone.example.org/v3/OS-FEDERATION/saml2/sso

idp_entity_id sets the Identity Provider entity ID, which is a string of your choosing that uniquely
identifies the Identity Provider to any Service Provider.

idp_sso_endpoint is required to generate valid metadata, but its value is currently not used because
keystone as an Identity Provider does not support the SAML2.0 WebSSO auth profile. This may change
in the future which is why there is no default value provided and must be set by the operator.

For completeness, the following Organization and Contact configuration options should also be updated
to reflect your organization and administrator contact details.

idp_organization_name=example_company
idp_organization_display_name=Example Corp.
idp_organization_url=example.com
idp_contact_company=example_company
idp_contact_name=John
idp_contact_surname=Smith
idp_contact_email=jsmith@example.com
idp_contact_telephone=555-555-5555
idp_contact_type=technical

It is important to take note of the default certfile and keyfile options, and adjust them if necessary:

certfile=/etc/keystone/ssl/certs/signing_cert.pem
keyfile=/etc/keystone/ssl/private/signing_key.pem

You must generate a PKI key pair and copy the files to these paths. You can use the openssl tool to do
so. Keystone does not provide a utility for this.

Check the idp_metadata_path setting and adjust it if necessary:

idp_metadata_path=/etc/keystone/saml2_idp_metadata.xml

To create metadata for your keystone IdP, run the keystone-manage command and redirect the output
to a file. For example:

keystone-manage saml_idp_metadata > /etc/keystone/saml2_idp_metadata.xml

Finally, restart the keystone WSGI service or the web server frontend:

544 Chapter 8. Administrator Guides

https://docs.openstack.org/api-ref/identity/v3-ext/index.html#retrieve-metadata-properties

Keystone Documentation, Release 21.0.2.dev4

systemctl restart apache2

Creating a Service Provider Resource

Create a Service Provider resource to represent your Service Provider as an object in keystone:

$ openstack service provider create keystonesp \
--service-provider-url https://sp.keystone.example.org/Shibboleth.sso/SAML2/
↪→ECP
--auth-url https://sp.keystone.example.org/v3/OS-FEDERATION/identity_
↪→providers/keystoneidp/protocols/saml2/auth

The --auth-url is the federated auth endpoint for a specific Identity Provider and protocol name, here
named keystoneidp and saml2.

The --service-provider-url is the urn:oasis:names:tc:SAML:2.0:bindings:PAOS binding
for the Assertion Consumer Service of the Service Provider. It can be obtained from the Service Provider
metadata:

$ curl -s https://sp.keystone.example.org/Shibboleth.sso/Metadata | grep␣
↪→urn:oasis:names:tc:SAML:2.0:bindings:PAOS
<md:AssertionConsumerService Binding="urn:oasis:names:tc:SAML:2.
↪→0:bindings:PAOS" Location="https://sp.keystone.example.org/Shibboleth.sso/
↪→SAML2/ECP" index="4"/>

Authenticating

Use the CLI to authenticate with Keystone-to-Keystone

Use python-openstackclient to authenticate with the IdP and then get a scoped token from the SP.

export OS_USERNAME=demo
export OS_PASSWORD=nomoresecret
export OS_AUTH_URL=https://idp.keystone.example.org/v3
export OS_IDENTITY_API_VERSION=3
export OS_PROJECT_NAME=federated_project
export OS_PROJECT_DOMAIN_NAME=Default
export OS_SERVICE_PROVIDER=keystonesp
export OS_REMOTE_PROJECT_NAME=federated_project
export OS_REMOTE_PROJECT_DOMAIN_NAME=Default
openstack token issue

8.7. Authentication Mechanisms 545

https://docs.openstack.org/api-ref/identity/v3-ext/index.html#request-an-unscoped-os-federation-token

Keystone Documentation, Release 21.0.2.dev4

Use Horizon to switch clouds

No additional configuration is necessary to enable horizon for Keystone to Keystone. Log into the horizon
instance for the Identity Provider using your regular local keystone credentials. Once logged in, you will
see a Service Provider dropdown menu which you can use to switch your dashboard view to another
cloud.

Setting Up OpenID Connect

See Keystone as a Service Provider (SP) before proceeding with these OpenIDC-specific instructions.

These examples use Google as an OpenID Connect Identity Provider. The Service Provider must be
added to the Identity Provider in the Google API console.

Configuring Apache HTTPD for mod_auth_openidc

Note: You are advised to carefully examine the mod_auth_openidc documentation.

Install the Module

Install the Apache module package. For example, on Ubuntu:

apt-get install libapache2-mod-auth-openidc

The package and module name will differ between distributions.

Configure mod_auth_openidc

In the Apache configuration for the keystone VirtualHost, set the following OIDC options:

OIDCClaimPrefix "OIDC-"
OIDCResponseType "id_token"
OIDCScope "openid email profile"
OIDCProviderMetadataURL https://accounts.google.com/.well-known/openid-
↪→configuration

(continues on next page)

546 Chapter 8. Administrator Guides

https://console.developers.google.com/
https://github.com/zmartzone/mod_auth_openidc#how-to-use-it

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

OIDCOAuthVerifyJwksUri https://www.googleapis.com/oauth2/v3/certs
OIDCClientID <openid_client_id>
OIDCClientSecret <openid_client_secret>
OIDCCryptoPassphrase <random string>
OIDCRedirectURI https://sp.keystone.example.org/v3/OS-FEDERATION/identity_
↪→providers/google/protocols/openid/auth

OIDCScope is the list of attributes that the user will authorize the Identity Provider to send to the Service
Provider. OIDCClientID and OIDCClientSecret must be generated and obtained from the Identity
Provider. OIDCProviderMetadataURL is a URL from which the Service Provider will fetch the Iden-
tity Providers metadata. OIDCOAuthVerifyJwksUri is a URL from which the Service Provider will
download the public key from the Identity Provider to check if the users access token is valid or not,
this configuration must be used while using the AuthType auth-openidc, when using the AuthType
openid-connect and the OIDCProviderMetadataURL is configured, this property will not be neces-
sary. OIDCRedirectURI is a vanity URL that must point to a protected path that does not have any
content, such as an extension of the protected federated auth path.

Note: If using a mod_wsgi version less than 4.3.0, then the OIDCClaimPrefix must be specified to have
only alphanumerics or a dash (-). This is because mod_wsgi blocks headers that do not fit this criteria.

Configure Protected Endpoints

Configure each protected path to use the openid-connect AuthType:

<Location /v3/OS-FEDERATION/identity_providers/google/protocols/openid/auth>
Require valid-user
AuthType openid-connect

</Location>

Note: To add support to Bearer Access Token authentication flow that is used by applications that
do not adopt the browser flow, such the OpenStack CLI, you will need to change the AuthType from
openid-connect to auth-openidc.

Do the same for the WebSSO auth paths if using horizon:

<Location /v3/auth/OS-FEDERATION/websso/openid>
Require valid-user
AuthType openid-connect

</Location>
<Location /v3/auth/OS-FEDERATION/identity_providers/google/protocols/openid/
↪→websso>

Require valid-user
AuthType openid-connect

</Location>

Remember to reload Apache after altering the VirtualHost:

8.7. Authentication Mechanisms 547

http://modwsgi.readthedocs.org/en/latest/release-notes/version-4.3.0.html#bugs-fixed

Keystone Documentation, Release 21.0.2.dev4

systemctl reload apache2

Note: When creating mapping rules, in keystone, note that the remote attributes will be prefixed, with
HTTP_, so for instance, if you set OIDCClaimPrefix to OIDC-, then a typical remote value to check for
is: HTTP_OIDC_ISS.

Configuring Multiple Identity Providers

To configure multiples Identity Providers in your environment you will need to set your OIDC options
like the following options:

OIDCClaimPrefix "OIDC-"
OIDCResponseType "id_token"
OIDCScope "openid email profile"
OIDCMetadataDir <IDP metadata directory>
OIDCCryptoPassphrase <random string>
OIDCRedirectURI https://sp.keystone.example.org/redirect_uri
OIDCOAuthVerifyCertFiles <kid>#</path/to-cert.pem> <kid2>#</path/to-cert2.pem>
↪→ <kidN>#</path/to-certN.pem>

The OIDCOAuthVerifyCertFiles is a tuple separated with space containing the key-id (kid) of the
Issuers public key and a path to the Issuer certificate. The separator # is used to split the (kid) and the
public certificate address

The metadata folder configured in the option OIDCMetadataDir must have all your Identity Providers
configurations, the name of the files will be the name (with path) of the Issuers like:

- <IDP metadata directory>
|
- accounts.google.com.client
|
- accounts.google.com.conf
|
- accounts.google.com.provider
|
- keycloak.example.org%2Fauth%2Frealms%2Fidp.client
|
- keycloak.example.org%2Fauth%2Frealms%2Fidp.conf
|
- keycloak.example.org%2Fauth%2Frealms%2Fidp.provider

Note: The name of the file must be url-encoded if needed, as the Apache2 mod_auth_openidc will get
the raw value from the query parameter iss from the http request and check if there is a metadata with
this name, as the query parameter is url-encoded, so the metadata file name need to be encoded too. For
example, if you have an Issuer with / in the URL, then you need to escape it to %2F by applying a URL
escape in the file name.

548 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

The content of these files must be a JSON like

accounts.google.com.client:

{
"client_id":"<openid_client_id>",
"client_secret":"<openid_client_secret>"

}

The .client file handles the SP credentials in the Issuer.

accounts.google.com.conf:

This file will be a JSON that overrides some of OIDC options. The options that are able to be overridden
are listed in the OpenID Connect Apache2 plugin documentation.

If you do not want to override the config values, you can leave this file as an empty JSON like {}.

accounts.google.com.provider:

This file will contain all specifications about the IdentityProvider. To simplify, you can just use the JSON
returned in the .well-known endpoint:

{
"issuer": "https://accounts.google.com",
"authorization_endpoint": "https://accounts.google.com/o/oauth2/v2/auth",
"token_endpoint": "https://oauth2.googleapis.com/token",
"userinfo_endpoint": "https://openidconnect.googleapis.com/v1/userinfo",
"revocation_endpoint": "https://oauth2.googleapis.com/revoke",
"jwks_uri": "https://www.googleapis.com/oauth2/v3/certs",
"response_types_supported": [
"code",
"token",
"id_token",
"code token",
"code id_token",
"token id_token",
"code token id_token",
"none"
],
"subject_types_supported": [
"public"
],
"id_token_signing_alg_values_supported": [
"RS256"
],
"scopes_supported": [
"openid",
"email",
"profile"
],
"token_endpoint_auth_methods_supported": [
"client_secret_post",
"client_secret_basic"

(continues on next page)

8.7. Authentication Mechanisms 549

https://github.com/zmartzone/mod_auth_openidc/wiki/Multiple-Providers#opclient-configuration

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

],
"claims_supported": [
"aud",
"email",
"email_verified",
"exp",
"family_name",
"given_name",
"iat",
"iss",
"locale",
"name",
"picture",
"sub"
],
"code_challenge_methods_supported": [
"plain",
"S256"
]

}

Continue configuring keystone

Continue configuring keystone

Setting Up Mellon

See Keystone as a Service Provider (SP) before proceeding with these Mellon-specific instructions.

Configuring Apache HTTPD for mod_auth_mellon

Note: You are advised to carefully examine the mod_auth_mellon documentation.

Follow the steps outlined at: Keystone install guide for SUSE, RedHat or Ubuntu.

Install the Module

Install the Apache module package. For example, on Ubuntu:

apt-get install libapache2-mod-auth-mellon

The package and module name will differ between distributions.

550 Chapter 8. Administrator Guides

https://github.com/Uninett/mod_auth_mellon/blob/master/doc/user_guide/mellon_user_guide.adoc#installing-configuring-mellon
../../install/keystone-install-obs.html#configure-the-apache-http-server
../../install/keystone-install-rdo.html#configure-the-apache-http-server
../../install/keystone-install-ubuntu.html#configure-the-apache-http-server

Keystone Documentation, Release 21.0.2.dev4

Configure mod_auth_mellon

Unlike mod_shib, all of mod_auth_mellons configuration is done in Apache, not in a separate config
file. Set up the shared settings in a single <Location> directive near the top in your keystone VirtualHost
file, before your protected endpoints:

<Location /v3>
MellonEnable "info"
MellonSPPrivateKeyFile /etc/apache2/mellon/sp.keystone.example.org.key
MellonSPCertFile /etc/apache2/mellon/sp.keystone.example.org.cert
MellonSPMetadataFile /etc/apache2/mellon/sp-metadata.xml
MellonIdPMetadataFile /etc/apache2/mellon/idp-metadata.xml
MellonEndpointPath /v3/mellon
MellonIdP "IDP"

</Location>

Configure Protected Endpoints

Configure each protected path to use the Mellon AuthType:

<Location /v3/OS-FEDERATION/identity_providers/samltest/protocols/saml2/auth>
Require valid-user
AuthType Mellon
MellonEnable auth

</Location>

Do the same for the WebSSO auth paths if using horizon as a single sign-on frontend:

<Location /v3/auth/OS-FEDERATION/websso/saml2>
Require valid-user
AuthType Mellon
MellonEnable auth

</Location>
<Location /v3/auth/OS-FEDERATION/identity_providers/samltest/protocols/saml2/
↪→websso>

Require valid-user
AuthType Mellon
MellonEnable auth

</Location>

Configure the Mellon Service Provider Metadata

Mellon provides a script called mellon_create_metadata.sh``_ which generates the
values for the config directives ``MellonSPPrivateKeyFile, MellonSPCertFile, and
MellonSPMetadataFile. Run the script:

$./mellon_create_metadata.sh \
https://sp.keystone.example.org/mellon \

(continues on next page)

8.7. Authentication Mechanisms 551

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

http://sp.keystone.example.org/v3/OS-FEDERATION/identity_providers/samltest/
↪→protocols/saml2/auth/mellon

The first parameter is used as the entity ID, a URN of your choosing that must uniquely identify the
Service Provider to the Identity Provider. The second parameter is the full URL for the endpoint path
corresponding to the parameter MellonEndpointPath.

After generating the keypair and metadata, copy the files to the locations given by the
MellonSPPrivateKeyFile and MellonSPCertFile settings in your Apache configuration.

Upload the Service Providers Metadata file which you just generated to your Identity Provider. This is
the file used as the value of the MellonSPMetadataFile in the config. The IdP may provide a webpage
where you can upload the file, or you may be required to submit the file using wget or curl. Please check
your IdP documentation for details.

Exchange Metadata

Fetch your Identity Providers Metadata file and copy it to the path specified by the
MellonIdPMetadataFile setting in your Apache configuration.

$ wget -O /etc/apache2/mellon/idp-metadata.xml https://samltest.id/saml/idp

Remember to reload Apache after finishing configuring Mellon:

systemctl reload apache2

Continue configuring keystone

Continue configuring keystone

Setting up Shibboleth

See Keystone as a Service Provider (SP) before proceeding with these Shibboleth-specific instructions.

Note: The examples below are for Ubuntu 16.04, for which only version 2 of the Shibboleth Service
Provider is available. Version 3 is available for other distributions and the configuration should be iden-
tical to version 2.

552 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Configuring Apache HTTPD for mod_shib

Note: You are advised to carefully examine the mod_shib Apache configuration documentation.

Configure keystone under Apache, following the steps in the install guide for SUSE, RedHat or Ubuntu.

Install the Module

Install the Apache module package. For example, on Ubuntu:

apt-get install libapache2-mod-shib2

The package and module name will differ between distributions.

Configure Protected Endpoints

In the Apache configuration for the keystone VirtualHost, set an additional <Location> which is not
part of keystones API:

<Location /Shibboleth.sso>
SetHandler shib

</Location>

If you are using mod_proxy, for example to proxy requests to the /identity path to keystones UWSGI
service, you must exempt this Shibboleth endpoint from it:

Proxypass Shibboleth.sso !

Configure each protected path to use the shibboleth AuthType:

<Location /v3/OS-FEDERATION/identity_providers/samltest/protocols/saml2/auth>
Require valid-user
AuthType shibboleth
ShibRequestSetting requireSession 1
ShibExportAssertion off
<IfVersion < 2.4>

ShibRequireSession On
ShibRequireAll On

</IfVersion>
</Location>

Do the same for the WebSSO auth paths if using horizon as a single sign-on frontend:

<Location /v3/auth/OS-FEDERATION/websso/saml2>
Require valid-user
AuthType shibboleth
ShibRequestSetting requireSession 1
ShibExportAssertion off

(continues on next page)

8.7. Authentication Mechanisms 553

https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPApacheConfig
../../install/keystone-install-obs.html#configure-the-apache-http-server
../../install/keystone-install-rdo.html#configure-the-apache-http-server
../../install/keystone-install-ubuntu.html#configure-the-apache-http-server

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

<IfVersion < 2.4>
ShibRequireSession On
ShibRequireAll On

</IfVersion>
</Location>
<Location /v3/auth/OS-FEDERATION/identity_providers/samltest/protocols/saml2/
↪→websso>

Require valid-user
AuthType shibboleth
ShibRequestSetting requireSession 1
ShibExportAssertion off
<IfVersion < 2.4>

ShibRequireSession On
ShibRequireAll On

</IfVersion>
</Location>

Remember to reload Apache after altering the VirtualHost:

systemctl reload apache2

Configuring mod_shib

Note: You are advised to examine Shibboleth Service Provider Configuration documentation

Generate a keypair

For all SAML Service Providers, a PKI key pair must be generated and exchanged with the Identity
Provider. The mod_shib package on the Ubuntu distribution provides a utility to generate the key pair:

shib-keygen -y <number of years>

which will generate a key pair under /etc/shibboleth. In other cases, the package might generate the
key pair automatically upon installation.

Configure metadata

mod_shib also has its own configuration file at /etc/shibboleth/shibboleth2.xml that must be
altered, as well as its own daemon. First, give the Service Provider an entity ID. This is a URN that you
choose that must be globally unique to the Identity Provider:

<ApplicationDefaults entityID="https://sp.keystone.example.org/shibboleth"
REMOTE_USER="eppn persistent-id targeted-id">

Depending on your Identity Provider, you may also want to change the REMOTE_USER setting, more
on that in a moment.

554 Chapter 8. Administrator Guides

https://wiki.shibboleth.net/confluence/display/SHIB2/Configuration

Keystone Documentation, Release 21.0.2.dev4

Set the entity ID of the Identity Provider (this is the same as the value you provided for --remote-id in
Identity Provider):

<SSO entityID="https://samltest.id/saml/idp">

Additionally, if you want to enable ECP (required for Keystone-to-Keystone), the SSO tag for this entity
must also have the ECP flag set:

<SSO entityID="https://samltest.id/saml/idp" ECP="true">

Tell Shibboleth where to find the metadata of the Identity Provider. You could either tell it to fetch it
from a URI or point it to a local file. For example, pointing to a local file:

<MetadataProvider type="XML" file="/etc/shibboleth/samltest-metadata.xml" />

or pointing to a remote location:

<MetadataProvider type="XML" url="https://samltest.id/saml/idp"
backingFile="samltest-metadata.xml" />

When you are finished configuring shibboleth2.xml, restart the shibd daemon:

systemctl restart shibd

Check the shibd logs in /var/log/shibboleth/shibd.log and /var/log/shibboleth/
shibd_warn.log for errors or warnings.

Configure allowed attributes

Note: For more information see the attributes documentation

By default, mod_shib does not pass all attributes received from the Identity Provider to keystone. If
your Identity Provider does not use attributes known to shibd, you must configure them. For example,
samltest.id uses a custom UID attribute. It is not discoverable in the Identity Provider metadata, but the
attribute name and type is logged in the mod_shib logs when an authentication attempt is made. To
allow the attribute, add it to /etc/shibboleth/attribute-map.xml:

<Attribute name="urn:oid:0.9.2342.19200300.100.1.1" id="uid" />

You may also want to use that attribute as a value for the REMOTE_USER variable, which will make
the REMOTE_USER variable usable as a parameter to your mapping rules. To do so, add it to /etc/
shibboleth/shibboleth2.xml:

<ApplicationDefaults entityID="https://sp.keystone.example.org/shibboleth"
REMOTE_USER="uid">

Similarly, if using keystone as your Identity Provider, several custom attributes will be needed in /etc/
shibboleth/attribute-map.xml:

8.7. Authentication Mechanisms 555

https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPAddAttribute

Keystone Documentation, Release 21.0.2.dev4

<Attribute name="openstack_user" id="openstack_user"/>
<Attribute name="openstack_roles" id="openstack_roles"/>
<Attribute name="openstack_project" id="openstack_project"/>
<Attribute name="openstack_user_domain" id="openstack_user_domain"/>
<Attribute name="openstack_project_domain" id="openstack_project_domain"/>
<Attribute name="openstack_groups" id="openstack_groups"/>

And update the REMOTE_USER variable in /etc/shibboleth/shibboleth2.xml if desired:

<ApplicationDefaults entityID="https://sp.keystone.example.org/shibboleth"
REMOTE_USER="openstack_user">

Restart the shibd daemon after making these changes:

systemctl restart shibd

Exchange Metadata

Once configured, the Service Provider metadata is available to download:

wget https://sp.keystone.example.org/Shibboleth.sso/Metadata

Upload your Service Providers metadata to your Identity Provider. This step depends on your Identity
Provider choice and is not covered here. If keystone is your Identity Provider you do not need to upload
this file.

Continue configuring keystone

Continue configuring keystone

Mapping Combinations

Description

During the authentication process an identity provider (IdP) will present keystone with a set of user
attributes about the user that is authenticating. For example, in the SAML2 flow this comes to keystone
in the form of a SAML document.

The attributes are typically processed by third-party software and are presented to keystone as environ-
ment variables. The original document from the IdP is generally not available to keystone. This is how
the Shibboleth and Mellon implementations work.

The mapping format described in this document maps these environment variables to a local keystone
user. The mapping may also define group membership for that user and projects the user can access.

An IdP has exactly one mapping specified per protocol. Mappings themselves can be used multiple times
by different combinations of IdP and protocol.

556 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Definitions

A mapping looks as follows:

{
"rules": [

{
"local": [

{
<user>
[<group>]
[<project>]

}
],
"remote": [

{
<match>
[<condition>]

}
]

}
]

}

• mapping: a JSON object containing a list of rules.

• rules: a property in the mapping that contains the list of rules.

• rule: a JSON object containing local and remote properties to define the rule. There is no explicit
rule property.

• local: a JSON object containing information on what local attributes will be mapped. The mapping
engine processes this using the context (defined below) and the result is a representation of the user
from keystones perspective.

– <user>: the local user that will be mapped to the federated user.

– <group>: (optional) the local groups the federated user will be placed in.

– <projects>: (optional) the local projects mapped to the federated user.

• remote: a JSON object containing information on what remote attributes will be mapped.

– <match>: a JSON object that tells the mapping engine what federated attribute to make
available for substitution in the local object. There can be one or more of these objects in the
remote list.

– <condition>: a JSON object containing conditions that allow a rule. There can be zero or
more of these objects in the remote list.

• direct mapping: the mapping engine keeps track of each match and makes them available to the
local rule for substitution.

• assertion: data provided to keystone by the IdP to assert facts (name, groups, etc) about the au-
thenticating user. This is an XML document when using the SAML2 protocol.

8.7. Authentication Mechanisms 557

Keystone Documentation, Release 21.0.2.dev4

• mapping context: the data, represented as key-value pairs, that is used by the mapping engine to
turn the local object into a representation of the user from keystones perspective. The mapping
context contains the environment of the keystone process and any direct mapping values calculated
when processing the remote list.

How Mappings Are Processed

A mapping is selected by IdP and protocol. Then keystone takes the mapping and processes each rule
sequentially stopping after the first matched rule. A rule is matched when all of its conditions are met.

First keystone evaluates each condition from the rules remote property to see if the rule is a match. If it
is a match, keystone saves the data captured by each of the matches from the rules remote property in an
ordered list. We call these matches direct mappings since they can be used in the next step.

After the rule is found using the rules conditions and a list of direct mappings is stored, keystone begins
processing the rules local property. Each object in the local property is collapsed into a single JSON
object. For example:

{
"local": [

{
"user": {...}

},
{

"projects": [...]
},

]
}

becomes:

{
"local": {

"user": {...}
"projects": [...]

},
}

when the same property exists in the local multiple times the first occurrence wins:

{
"local": [

{
"user": {#first#}

},
{

"projects": [...]
},
{

"user": {#second#}
},

(continues on next page)

558 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

]
}

becomes:

{
"local": {

"user": {#first#}
"projects": [...]

},
}

We take this JSON object and then recursively process it in order to apply the direct mappings. This is
simply looking for the pattern {#} and substituting it with values from the direct mappings list. The index
of the direct mapping starts at zero.

Mapping Rules

Mapping Engine

The mapping engine can be tested before creating a federated setup. It can be tested with the
keystone-manage mapping_engine command:

$ keystone-manage mapping_engine --rules <file> --input <file>

Note: Although the rules file is formatted as JSON, the input file of assertion data is formatted as
individual lines of key: value pairs, see keystone-manage mapping_engine help for details.

Mapping Conditions

Mappings support 5 different types of conditions:

empty: The rule is matched to all claims containing the remote attribute type. This condition does not
need to be specified.

any_one_of: The rule is matched only if any of the specified strings appear in the remote attribute type.
Condition result is boolean, not the argument that is passed as input.

not_any_of: The rule is not matched if any of the specified strings appear in the remote attribute type.
Condition result is boolean, not the argument that is passed as input.

blacklist: This rule removes all groups matched from the assertion. It is not intended to be used as a
way to prevent users, or groups of users, from accessing the service provider. The output from filtering
through a blacklist will be all groups from the assertion that were not listed in the blacklist.

whitelist: This rule explicitly states which groups should be carried over from the assertion. The
result is the groups present in the assertion and in the whitelist.

8.7. Authentication Mechanisms 559

Keystone Documentation, Release 21.0.2.dev4

Note: empty, blacklist and whitelist are the only conditions that can be used in direct mapping
({0}, {1}, etc.)

Multiple conditions can be combined to create a single rule.

Mappings Examples

The following are all examples of mapping rule types.

empty condition

{
"rules": [

{
"local": [

{
"user": {

"name": "{0} {1}",
"email": "{2}"

},
"group": {

"name": "{3}",
"domain": {

"id": "0cd5e9"
}

}
}

],
"remote": [

{
"type": "FirstName"

},
{

"type": "LastName"
},
{

"type": "Email"
},
{

"type": "OIDC_GROUPS"
}

]
}

]
}

Note: The numbers in braces {} are indices, they map in order. For example:

560 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

- Mapping to user with the name matching the value in remote attribute␣
↪→FirstName
- Mapping to user with the name matching the value in remote attribute␣
↪→LastName
- Mapping to user with the email matching value in remote attribute Email
- Mapping to a group(s) with the name matching the value(s) in remote␣
↪→attribute OIDC_GROUPS

Note: If the user id and name are not specified in the mapping, the server tries to directly map
REMOTE_USER environment variable. If this variable is also unavailable the server returns an HTTP
401 Unauthorized error.

Groups can have multiple values. Each value must be separated by a ; Example:
OIDC_GROUPS=developers;testers

other conditions

In <other_condition> shown below, please supply one of the following: any_one_of, or
not_any_of.

{
"rules": [

{
"local": [

{
"user": {

"name": "{0}"
},
"group": {

"id": "0cd5e9"
}

}
],
"remote": [

{
"type": "UserName"

},
{

"type": "HTTP_OIDC_GROUPIDS",
"<other_condition>": [

"HTTP_OIDC_EMAIL"
]

}
]

}
]

}

8.7. Authentication Mechanisms 561

Keystone Documentation, Release 21.0.2.dev4

In <other_condition> shown below, please supply one of the following: blacklist, or whitelist.

{
"rules": [

{
"local": [

{
"user": {

"name": "{0}"
}

},
{

"groups": "{1}",
"domain": {

"id": "0cd5e9"
}

}
],
"remote": [

{
"type": "UserName"

},
{

"type": "HTTP_OIDC_GROUPIDS",
"<other_condition>": [

"me@example.com"
]

}
]

}
]

}

In the above example, a whitelist can be used to only map the user into a few of the groups in their
HTTP_OIDC_GROUPIDS remote attribute:

{
"type": "HTTP_OIDC_GROUPIDS",
"whitelist": [

"Developers",
"OpsTeam"

]
}

A blacklist can map the user into all groups except those matched:

{
"type": "HTTP_OIDC_GROUPIDS",
"blacklist": [

"Finance"
]

}

562 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Regular expressions can be used in any condition for more flexible matches:

{
"type": "HTTP_OIDC_GROUPIDS",
"whitelist": [

".*Team$"
]

}

When mapping into groups, either ids or names can be provided in the local section:

{
"local": [

{
"group": {

"id":"0cd5e9"
}

}
]

}

{
"local": [

{
"group": {

"name": "developer_group",
"domain": {

"id": "abc1234"
}

}
}

]
}

{
"local": [

{
"group": {

"name": "developer_group",
"domain": {

"name": "private_cloud"
}

}
}

]
}

Users can be mapped to local users that already exist in keystones identity backend by setting the type
attribute of the user to local and providing the domain to which the local user belongs:

8.7. Authentication Mechanisms 563

Keystone Documentation, Release 21.0.2.dev4

{
"local": [

{
"user": {

"name": "local_user",
"type": "local",
"domain": {

"name": "local_domain"
}

}
}

]
}

The user is then treated as existing in the local identity backend, and the server will attempt to fetch user
details (id, name, roles, groups) from the identity backend. The local user and domain are not generated
dynamically, so if they do not exist in the local identity backend, authentication attempts will result in a
401 Unauthorized error.

If you omit the type attribute or set it to ephemeral or do not provide a domain, the user is deemed
ephemeral and becomes a member of the identity providers domain. It will not be looked up in the local
keystone backend, so all of its attributes must come from the IdP and the mapping rules.

Note: Domain Federated is a service domain - it cannot be listed, displayed, added or deleted. There
is no need to perform any operation on it prior to federation configuration.

Output

If a mapping is valid you will receive the following output:

{
"group_ids": "[<group-ids>]",
"user":

{
"domain":

{
"id": "Federated" or "<local-domain-id>"

},
"type": "ephemeral" or "local",
"name": "<local-user-name>",
"id": "<local-user-id>"

},
"group_names":

[
{

"domain":
{

"name": "<domain-name>"
(continues on next page)

564 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

},
"name":

{
"name": "[<groups-names>]"

}
},
{

"domain":
{

"name": "<domain-name>"
},

"name":
{

"name": "[<groups-names>]"
}

}
]

}

If the mapped user is local, mapping engine will discard further group assigning and return set of roles
configured for the user.

Regular Expressions

Regular expressions can be used in a mapping by specifying the regex key, and setting it to true.

{
"rules": [

{
"local": [

{
"user": {

"name": "{0}"
},
"group": {

"name": "{1}",
"domain": {

"id": "abc1234"
}

}
},

],
"remote": [

{
"type": "UserName"

},
{

"type": "HTTP_OIDC_GROUPIDS",
"any_one_of": [

(continues on next page)

8.7. Authentication Mechanisms 565

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

".*@yeah.com$"
]
"regex": true

},
{

"type": "HTTP_OIDC_GROUPIDS",
"whitelist": [

"Project.*$"
],
"regex": true

}
]

}
]

}

This allows any user with a claim containing a key with any value in HTTP_OIDC_GROUPIDS to be mapped
to group with id 0cd5e9. Additionally, for every value in the HTTP_OIDC_GROUPIDS claim matching
the string Project.*, the user will be assigned to the project with that name.

Condition Combinations

Combinations of mappings conditions can also be done.

empty, any_one_of, and not_any_of can all be used in the same rule, but cannot be repeated within
the same condition. any_one_of and not_any_of are mutually exclusive within a conditions scope.
So are whitelist and blacklist.

{
"rules": [

{
"local": [

{
"user": {

"name": "{0}"
},
"group": {

"id": "0cd5e9"
}

},
],
"remote": [

{
"type": "UserName"

},
{

"type": "cn=IBM_Canada_Lab",
"not_any_of": [

".*@naww.com$"
(continues on next page)

566 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

],
"regex": true

},
{

"type": "cn=IBM_USA_Lab",
"any_one_of": [

".*@yeah.com$"
]
"regex": true

}
]

}
]

}

As before group names and users can also be provided in the local section.

This allows any user with the following claim information to be mapped to group with id 0cd5e9.

{"UserName":"<any_name>@yeah.com"}
{"cn=IBM_USA_Lab":"<any_name>@yeah.com"}
{"cn=IBM_Canada_Lab":"<any_name>@yeah.com"}

The following claims will be mapped:

• any claim containing the key UserName.

• any claim containing key cn=IBM_Canada_Lab that doesnt have the value
<any_name>@naww.com.

• any claim containing key cn=IBM_USA_Lab that has value <any_name>@yeah.com.

Multiple Rules

Multiple rules can also be utilized in a mapping.

{
"rules": [

{
"local": [

{
"user": {

"name": "{0}"
},
"group": {

"name": "non-contractors",
"domain": {

"id": "abc1234"
}

}
}

(continues on next page)

8.7. Authentication Mechanisms 567

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

],
"remote": [

{
"type": "UserName"

},
{

"type": "orgPersonType",
"not_any_of": [

"Contractor",
"SubContractor"

]
}

]
},
{

"local": [
{

"user": {
"name": "{0}"

},
"group": {

"name": "contractors",
"domain": {

"id": "abc1234"
}

}
}

],
"remote": [

{
"type": "UserName"

},
{

"type": "orgPersonType",
"any_one_of": [

"Contractor",
"SubContractor"

]
}

]
}

]
}

The above assigns groups membership basing on orgPersonType values:

• neither Contractor nor SubContractor will belong to the non-contractors group.

• either Contractor or ``SubContractor will belong to the contractors group.

Rules are additive, so permissions will only be granted for the rules that succeed. All the remote condi-

568 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

tions of a rule must be valid.

When using multiple rules you can specify more than one effective user identification, but only the first
match will be considered and the others ignored ordered from top to bottom.

Since rules are additive one can specify one user identification and this will also work. The best practice
for multiple rules is to create a rule for just user and another rule for just groups. Below is rules example
repeated but with global username mapping.

{
"rules": [{

"local": [{
"user": {

"id": "{0}"
}

}],
"remote": [{

"type": "UserType"
}]

},
{

"local": [{
"group": {

"name": "non-contractors",
"domain": {

"id": "abc1234"
}

}
}],
"remote": [{

"type": "orgPersonType",
"not_any_of": [

"Contractor",
"SubContractor"

]
}]

},
{

"local": [{
"group": {

"name": "contractors",
"domain": {

"id": "abc1234"
}

}
}],
"remote": [{

"type": "orgPersonType",
"any_one_of": [

"Contractor",
"SubContractor"

]
(continues on next page)

8.7. Authentication Mechanisms 569

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

}]
}]

}

Auto-Provisioning

The mapping engine has the ability to aid in the auto-provisioning of resources when a federated user
authenticates for the first time. This can be achieved using a specific mapping syntax that the mapping
engine can parse and ultimately make decisions on.

For example, consider the following mapping:

{
"rules": [

{
"local": [

{
"user": {

"name": "{0}"
}

},
{

"projects": [
{

"name": "Production",
"roles": [

{
"name": "reader"

}
]

},
{

"name": "Staging",
"roles": [

{
"name": "member"

}
]

},
{

"name": "Project for {0}",
"roles": [

{
"name": "admin"

}
]

}
]

}
(continues on next page)

570 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

],
"remote": [

{
"type": "UserName"

}
]

}
]

}

The semantics of the remote section have not changed. The difference between this mapping and the
other examples is the addition of a projects section within the local rules. The projects list sup-
plies a list of projects that the federated user will be given access to. The projects will be automatically
created if they dont exist when the user authenticated and the mapping engine has applied values from
the assertion and mapped them into the local rules.

In the above example, an authenticated federated user will be granted the reader role on the Production
project, member role on the Staging project, and they will have admin role on the Project for
jsmith.

It is important to note the following constraints apply when auto-provisioning:

• Projects are the only resource that will be created dynamically.

• Projects will be created within the domain associated with the Identity Provider.

• The projects section of the mapping must also contain a roles section.

– Roles within the project must already exist in the deployment or domain.

• Assignments are actually created for the user which is unlike the ephemeral group memberships.

Since the creation of roles typically requires policy changes across other services in the deployment,
it is expected that roles are created ahead of time. Federated authentication should also be considered
idempotent if the attributes from the SAML assertion have not changed. In the example from above, if
the users name is still jsmith, then no new projects will be created as a result of authentication.

Mappings can be created that mix groups and projects within the local section. The mapping shown
in the example above does not contain a groups section in the local rules. This will result in the
federated user having direct role assignments on the projects in the projects list. The following example
contains local rules comprised of both projects and groups, which allow for direct role assignments
and group memberships.

{
"rules": [

{
"local": [

{
"user": {

"name": "{0}"
}

},
{

"projects": [
(continues on next page)

8.7. Authentication Mechanisms 571

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

{
"name": "Marketing",
"roles": [

{
"name": "member"

}
]

},
{

"name": "Development project for {0}",
"roles": [

{
"name": "admin"

}
]

}
]

},
{

"group": {
"name": "Finance",
"domain": {

"id": "6fe767"
}

}
}

],
"remote": [

{
"type": "UserName"

}
]

}
]

}

In the above example, a federated user will receive direct role assignments on the Marketing project,
as well as a dedicated project specific to the federated users name. In addition to that, they will also be
placed in the Finance group and receive all role assignments that group has on projects and domains.

572 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

keystone-to-keystone

keystone-to-keystone federation also utilizes mappings, but has some differences.

An attribute file (e.g. /etc/shibboleth/attribute-map.xml in a Shibboleth implementation) is
used to add attributes to the mapping context. Attributes look as follows:

<!-- example 1 from a K2k Shibboleth implementation -->
<Attribute name="openstack_user" id="openstack_user"/>
<Attribute name="openstack_user_domain" id="openstack_user_domain"/>

The service provider must contain a mapping as shown below. openstack_user, and
openstack_user_domain match to the attribute names we have in the Identity Provider. It will map
any user with the name user1 or admin in the openstack_user attribute and openstack_domain
attribute default to a group with id abc1234.

{
"rules": [

{
"local": [

{
"group": {

"id": "abc1234"
}

}
],
"remote": [

{
"type": "openstack_user",
"any_one_of": [

"user1",
"admin"

]
},
{

"type":"openstack_user_domain",
"any_one_of": [

"Default"
]

}
]

}
]

}

A keystone users groups can also be mapped to groups in the service provider. For example, with the
following attributes declared in Shibboleths attributes file:

<!-- example 2 from a K2k Shibboleth implementation -->
<Attribute name="openstack_user" id="openstack_user"/>
<Attribute name="openstack_groups" id="openstack_groups"/>

8.7. Authentication Mechanisms 573

Keystone Documentation, Release 21.0.2.dev4

Then the following mapping can be used to map the users group membership from the keystone IdP to
groups in the keystone SP:

{
"rules": [

{
"local":
[

{
"user":

{
"name": "{0}"

}
},
{

"groups": "{1}"
}

],
"remote":
[

{
"type": "openstack_user"

},
{

"type": "openstack_groups"
}

]
}

]
}

openstack_user, and openstack_groups will be matched by service provider to the attribute names
we have in the Identity Provider. It will take the openstack_user attribute and finds in the assertion
then inserts it directly in the mapping. The identity provider will set the value of openstack_groups by
group name and domain name to which the user belongs in the Idp. Suppose the user belongs to group1
in domain Default in the IdP then it will map to a group with the same name and same domains name in
the SP.

The possible attributes that can be used in a mapping are openstack_user, openstack_user_domain, open-
stack_roles, openstack_project, openstack_project_domain and openstack_groups.

8.7.4 Using external authentication with Keystone

When Keystone is executed in a web server like Apache HTTPD, it is possible to have the web server
also handle authentication. This enables support for additional methods of authentication that are not
provided by the identity store backend and the authentication plugins that Keystone supports.

Having the web server handle authentication is not exclusive, and both Keystone and the web server can
provide different methods of authentication at the same time. For example, the web server can provide
support for X.509 or Kerberos authentication, while Keystone provides support for password authentica-
tion (with SQL or an identity store as the backend).

574 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

When the web server authenticates a user, it sets environment variables, usually REMOTE_USER, which
can be used in the underlying application. Keystone can be configured to use these environment variables
to determine the identity of the user.

Configuration

In order to activate the external authentication mechanism for Identity API v3, the external method
must be in the list of enabled authentication methods. By default it is enabled, so if you dont want to use
external authentication, remove it from the methods option in the auth section.

To configure the plugin that should be used set the external option again in the auth section. There
are two external authentication method plugins provided by Keystone:

• DefaultDomain: This plugin wont take into account the domain information that the external
authentication method may pass down to Keystone and will always use the configured default
domain. The REMOTE_USER variable is the username. This is the default if no plugin is given.

• Domain: This plugin expects that the REMOTE_DOMAIN variable contains the domain for the user.
If this variable is not present, the configured default domain will be used. The REMOTE_USER
variable is the username.

Caution: You should disable the external auth method if you are currently using federation. External
auth and federation both use the REMOTE_USER variable. Since both the mapped and external plugin
are being invoked to validate attributes in the request environment, it can cause conflicts.

For example, imagine there are two distinct users with the same username foo, one in the Default
domain while the other is in the BAR domain. The external Federation modules (i.e. mod_shib)
sets the REMOTE_USER attribute to foo. The external auth module also tries to set the REMOTE_USER
attribute to foo for the Default domain. The federated mapping engine maps the incoming identity to
foo in the BAR domain. This results in user_id conflict since both are using different user_ids to set
foo in the Default domain and the BAR domain.

To disable this, simply remove external from the methods option in keystone.conf :

methods = external,password,token,oauth1

Using HTTPD authentication

Web servers like Apache HTTP support many methods of authentication. Keystone can profit from this
feature and let the authentication be done in the web server, that will pass down the authenticated user to
Keystone using the REMOTE_USER environment variable. This user must exist in advance in the identity
backend to get a token from the controller.

To use this method, Keystone should be running on HTTPD.

8.7. Authentication Mechanisms 575

Keystone Documentation, Release 21.0.2.dev4

X.509 example

The following snippet for the Apache conf will authenticate the user based on a valid X.509 certificate
from a known CA:

<VirtualHost _default_:5000>
SSLEngine on
SSLCertificateFile /etc/ssl/certs/ssl.cert
SSLCertificateKeyFile /etc/ssl/private/ssl.key

SSLCACertificatePath /etc/ssl/allowed_cas
SSLCARevocationPath /etc/ssl/allowed_cas
SSLUserName SSL_CLIENT_S_DN_CN
SSLVerifyClient require
SSLVerifyDepth 10

(...)
</VirtualHost>

8.7.5 Configuring Keystone for Tokenless Authorization

Definitions

• X.509 Tokenless Authorization: Provides a means to authorize client operations within Keystone
by using an X.509 SSL client certificate without having to issue a token.

This feature is designed to reduce the complexity of user token validation in Keystone auth_token
middleware by eliminating the need for service user token for authentication and authorization.
Therefore, theres no need to having to create and maintain a service user account for the sole
purpose of user token validation. Furthermore, this feature improves efficiency by avoiding service
user token handling (i.e. request, cache, and renewal). By not having to deal with service user
credentials in the configuration files, deployers are relieved of the burden of having to protect the
server user passwords throughout the deployment lifecycle. This feature also improve security by
using X.509 certificate instead of password for authentication.

For details, please refer to the specs Tokenless Authorization with X.509 Client SSL Certificate

• Public Key Infrastructure or PKI: a system which utilize public key cryptography to achieve au-
thentication, authorization, confidentiality, integrity, non-repudiation. In this system, the identities
are represented by public key certificates. Public key certificate handling is governed by the X.509
standard.

See Public Key Infrastructure and X.509 for more information.

• X.509 Certificate: a time bound digital identity, which is certified or digitally signed by its issuer
using cryptographic means as defined by the X.509 standard. It contains information which can
be used to uniquely identify its owner. For example, the owner of the certificate is identified by the
Subject attribute while the issuer is identified by Issuer attribute.

In operation, certificates are usually stored in Privacy-Enhanced Mail (PEM) format.

Heres an example of what a certificate typically contains:

576 Chapter 8. Administrator Guides

https://specs.openstack.org/openstack/keystone-specs/specs/liberty/keystone-tokenless-authz-with-x509-ssl-client-cert.html
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Public_key_certificate

Keystone Documentation, Release 21.0.2.dev4

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 4098 (0x1002)

Signature Algorithm: sha256WithRSAEncryption
Issuer: DC = com, DC = somedemo, O = openstack, OU = keystone, CN␣

↪→= Intermediate CA
Validity

Not Before: Jul 5 18:42:01 2019 GMT
Not After : Jul 2 18:42:01 2029 GMT

Subject: DC = com, DC = somedemo, O = Default, OU = keystone, CN␣
↪→= glance

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)
Modulus:

00:cf:35:8b:cd:4f:17:28:38:25:f7:e2:ac:ce:4e:
d7:05:74:2f:99:04:f8:c2:13:14:50:18:70:d6:b0:
53:62:15:60:59:99:90:47:e2:7e:bf:ca:30:4a:18:
f5:b8:29:1e:cc:d4:b8:49:9c:4a:aa:d9:10:b9:d7:
9f:55:85:cf:e3:44:d2:3c:95:42:5a:b0:53:3e:49:
9d:6b:b2:a0:9f:72:9d:76:96:55:8b:ee:c4:71:46:
ab:bd:12:71:42:a0:60:29:7a:66:16:e1:fd:03:17:
af:a3:c7:26:c3:c3:8b:a7:f9:c0:22:08:2d:e4:5c:
07:e1:44:58:c1:b1:88:ae:45:5e:03:10:bb:b4:c2:
42:52:da:4e:b5:1b:d6:6f:49:db:a4:5f:8f:e5:79:
9f:73:c2:37:de:99:a7:4d:6f:cb:b5:f9:7e:97:e0:
77:c8:40:21:40:ef:ab:d3:55:72:37:6c:28:0f:bd:
37:8c:3a:9c:e9:a0:21:6b:63:3f:7a:dd:1b:2c:90:
07:37:66:86:66:36:ef:21:bb:43:df:d5:37:a9:fa:
4b:74:9a:7c:4b:cd:8b:9d:3b:af:6d:50:fe:c9:0a:
25:35:c5:1d:40:35:1d:1f:f9:10:fd:b6:5c:45:11:
bb:67:11:81:3f:ed:d6:27:04:98:8f:9e:99:a1:c8:
c1:2d

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

Netscape Cert Type:
SSL Client, S/MIME

Netscape Comment:
OpenSSL Generated Client Certificate

X509v3 Subject Key Identifier:
␣

↪→EE:38:FB:60:65:CD:81:CE:B2:01:E3:A5:99:1B:34:6C:1A:74:97:BB
X509v3 Authority Key Identifier:

␣
↪→keyid:64:17:77:31:00:F2:ED:90:9A:A8:1D:B5:7D:75:06:03:B5:FD:B9:C0

X509v3 Key Usage: critical

(continues on next page)

8.7. Authentication Mechanisms 577

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

Digital Signature, Non Repudiation, Key Encipherment
X509v3 Extended Key Usage:

TLS Web Client Authentication, E-mail Protection
Signature Algorithm: sha256WithRSAEncryption

82:8b:17:c6:f4:63:eb:8d:69:03:7a:bf:54:7f:37:02:eb:94:
ef:57:fd:27:8f:f8:67:e9:0e:3b:0a:40:66:11:68:e6:04:1a:
8a:da:47:ed:83:eb:54:34:3b:5b:70:18:cf:62:e2:6d:7c:74:
4c:cf:14:b3:a9:70:b2:68:ed:19:19:71:6f:7d:87:22:38:8d:
83:c6:59:15:74:19:5b:a2:64:6f:b9:9a:81:3d:0a:67:58:d1:
e2:b2:9b:9b:8f:60:7a:8c:0e:61:d9:d7:04:63:cc:58:af:36:
a4:61:86:44:1c:64:e2:9b:bd:f3:21:87:dd:18:81:80:af:0f:
d6:4c:9f:ae:0f:01:e0:0e:38:4d:5d:71:da:0b:11:39:bd:c3:
5d:0c:db:14:ca:bf:7f:07:37:c9:36:bd:22:a5:73:c6:e1:13:
53:15:de:ac:4a:4b:dc:48:90:47:06:fa:d4:d2:5d:c6:d2:d4:
3f:0f:49:0f:27:de:21:b0:bd:a3:92:c3:cb:69:b6:8d:94:e1:
e3:40:b4:80:c7:e6:e2:df:0a:94:52:d1:16:41:0f:bc:29:a8:
93:40:1b:77:28:a3:f2:cb:3c:7f:bb:ae:a6:0e:b3:01:78:09:
d3:2b:cf:2f:47:83:91:36:37:43:34:6e:80:2b:81:10:27:95:
95:ae:1e:93:42:94:a6:23:b8:07:c0:0f:38:23:70:b0:8e:79:
14:cd:72:8a:90:bf:77:ad:74:3c:23:9e:67:5d:0e:26:15:6e:
20:95:6d:d0:89:be:a3:6c:4a:13:1d:39:fb:21:e3:9c:9f:f3:
ff:15:da:0a:28:29:4e:f4:7f:5e:0f:70:84:80:7c:09:5a:1c:
f4:ac:c9:1b:9d:38:43:dd:27:00:95:ef:14:a0:57:3e:26:0b:
d8:bb:40:d6:1f:91:92:f0:4e:5d:93:1c:b7:3d:bd:83:ef:79:
ee:47:ca:61:04:00:e6:39:05:ab:f0:cd:47:e9:25:c8:3a:4c:
e5:62:9f:aa:8a:ba:ea:46:10:ef:bd:1e:24:5f:0c:89:8a:21:
bb:9d:c7:73:0f:b9:b5:72:1f:1f:1b:5b:ff:3a:cb:d8:51:bc:
bb:9a:40:91:a9:d5:fe:95:ac:73:a5:12:6a:b2:e3:b1:b2:7d:
bf:e7:db:cd:9f:24:63:6e:27:cf:d8:82:d9:ac:d8:c9:88:ea:
4f:1c:ae:7d:b7:c7:81:b2:1c:f8:6b:6b:85:3b:f2:14:cb:c7:
61:81:ad:64:e7:d9:90:a3:ea:69:7e:26:7a:0a:29:7b:1b:2a:
e0:38:f7:58:d1:90:82:44:01:ab:05:fd:68:0c:ab:9e:c6:94:
76:34:46:8b:66:bb:02:07

See public key certificate for more information.

• Issuer: the issuer of a X.509 certificate. It is also known as Certificate Authority (CA) or Certifi-
cation Authority. Issuer is typically represented in RFC 2253 format. Throughout this document,
issuer, issuer DN, CA, and trusted issuer are used interchangeably.

Prerequisites

This feature requires Keystone API proxy SSL terminator to validate the incoming X.509 SSL client cer-
tificate and pass the certificate information (i.e. subject DN, issuer DN, etc) to the Keystone application
as part of the request environment. At the time of this writing the feature has been tested with either
HAProxy or Apache as Keystone API proxy SSL terminator only.

The rest of this document required readers to familiar with:

• Public Key Infrastructure (PKI) and certificate management

578 Chapter 8. Administrator Guides

https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Certificate_authority
https://tools.ietf.org/html/rfc2253
https://en.wikipedia.org/wiki/Public_key_infrastructure

Keystone Documentation, Release 21.0.2.dev4

• SSL with client authentication, or commonly known as two-way SSL

• Public Key Infrastructure (PKI) and certificate management

• Apache SSL configuration

• HAProxy SSL configuration

Configuring this feature requires OpenSSL Command Line Tool (CLI). Please refer to the respective OS
installation guide on how to install it.

Keystone Configuration

This feature utilizes Keystone federation capability to determine the authorization associated with the
incoming X.509 SSL client certificate by mapping the certificate attributes to a Keystone identity. There-
fore, the direct issuer or trusted Certification Authority (CA) of the client certificate is the remote Identity
Provider (IDP), and the hexadecimal output of the SHA256 hash of the issuer distinguished name (DN)
is used as the IDP ID.

Note: Client certificate issuer DN may be formatted differently depending on the SSL terminator. For
example, Apache mod_ssl may use RFC 2253 while HAProxy may use the old format. The old format is
used by applications that linked with an older version of OpenSSL where the string representation of the
distinguished name has not yet become a de facto standard. For more information on the old formation,
please see the nameopt in the OpenSSL CLI manual. Therefore, it is critically important to keep the
format consistent throughout the configuration as Keystone does exact string match when comparing
certificate attributes.

How to obtain trusted issuer DN

If SSL terminates at either HAProxy or Apache, the client certificate issuer DN can be obtained by using
the OpenSSL CLI.

Since version 2.3.11, Apache mod_ssl by default uses RFC 2253 when handling certificate distinguished
names. However, deployer have the option to use the old format by configuring the LegacyDNStringFor-
mat option.

HAProxy, on the other hand, only supports the old format.

To obtain issuer DN in RFC 2253 format:

$ openssl x509 -issuer -noout -in client_cert.pem -nameopt rfc2253 | sed 's/^\
↪→s*issuer=//'

To obtain issuer DN in old format:

$ openssl x509 -issuer -noout -in client_cert.pem -nameopt compat | sed 's/^\
↪→s*issuer=//'

8.7. Authentication Mechanisms 579

https://tools.ietf.org/html/rfc5246#section-7.4.6
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://httpd.apache.org/docs/trunk/mod/mod_ssl.html#ssloptions
http://cbonte.github.io/haproxy-dconv/1.7/configuration.html#7.3.4
https://www.openssl.org/docs/manmaster/man1/openssl.html
https://tools.ietf.org/html/rfc2253
https://www.openssl.org/docs/manmaster/man1/x509.html
https://tools.ietf.org/html/rfc2253
https://httpd.apache.org/docs/trunk/mod/mod_ssl.html#ssloptions
https://httpd.apache.org/docs/trunk/mod/mod_ssl.html#ssloptions

Keystone Documentation, Release 21.0.2.dev4

How to calculate the IDP ID from trusted issuer DN

The hexadecimal output of the SHA256 hash of the trusted issuer DN is being used as the Identity
Provider ID in Keystone. It can be obtained using OpenSSL CLI.

To calculate the IDP ID for issuer DN in RFC 2253 format:

$ openssl x509 -issuer -noout -in client_cert.pem -nameopt rfc2253 | tr -d '\n
↪→' | sed 's/^\s*issuer=//' | openssl dgst -sha256 -hex | awk '{print $2}'

To calculate the IDP ID for issuer DN in old format:

$ openssl x509 -issuer -noout -in client_cert.pem -nameopt compat | tr -d '\n
↪→' | sed 's/^\s*issuer=//' | openssl dgst -sha256 -hex | awk '{print $2}'

Keystone Configuration File Changes

The following options in the tokenless_auth section of the Keystone configuration file keystone.conf
are used to enable the X.509 tokenless authorization feature:

• trusted_issuer - A list of trusted issuers for the X.509 SSL client certificates. More specifically
the list of trusted issuer DNs mentioned in the How to obtain trusted issuer DN section above. The
format of the trusted issuer DNs must match exactly with what the SSL terminator passed into
the request environment. For example, if SSL terminates in Apache mod_ssl, then the issuer DN
should be in RFC 2253 format. Whereas if SSL terminates in HAProxy, then the issuer DN is
expected to be in the old format. This is a multi-string list option. The absence of any trusted
issuers means the X.509 tokenless authorization feature is effectively disabled.

• protocol - The protocol name for the X.509 tokenless authorization along with the option is-
suer_attribute below can look up its corresponding mapping. It defaults to x509.

• issuer_attribute - The issuer attribute that is served as an IdP ID for the X.509 tokenless
authorization along with the protocol to look up its corresponding mapping. It is the environment
variable in the WSGI environment that references to the Issuer of the client certificate. It defaults
to SSL_CLIENT_I_DN.

This is a sample configuration for two trusted_issuer and a protocol set to x509.

[tokenless_auth]
trusted_issuer = emailAddress=admin@foosigner.com,CN=Foo Signer,OU=eng,O=abc,
↪→L=San Jose,ST=California,C=US
trusted_issuer = emailAddress=admin@openstack.com,CN=OpenStack Cert Signer,
↪→OU=keystone,O=openstack,L=Sunnyvale,ST=California,C=US
protocol = x509

580 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Setup Mapping

Like federation, X.509 tokenless authorization also utilizes the mapping mechanism to formulate an
identity. The identity provider must correspond to the issuer of the X.509 SSL client certificate. The
protocol for the given identity is x509 by default, but can be configurable.

Create an Identity Provider (IDP)

As mentioned, the Identity Provider ID is the hexadecimal output of the SHA256 hash of the issuer
distinguished name (DN).

Note: If there are multiple trusted issuers, there must be multiple IDP created, one for each trusted
issuer.

To create an IDP for a given trusted issuer, follow the instructions in the How to calculate the IDP ID
from trusted issuer DN section to calculate the IDP ID. Then use OpenStack CLI to create the IDP. i.e.

$ openstack identity provider create --description 'IDP foo' <IDP ID>

Create a Map

A mapping needs to be created to map the Subject DN in the client certificate as a user to yield a
valid local user if the users type defined as local in the mapping. For example, the client certificate
has Subject DN as CN=alex,OU=eng,O=nice-network,L=Sunnyvale, ST=California,C=US, in
the following examples, user_name will be mapped to“alex“ and domain_name will be mapped to
nice-network. And it has users type set to local. If users type is not defined, it defaults to
ephemeral.

Please refer to mod_ssl for the detailed mapping attributes.

[
{

"local": [
{

"user": {
"name": "{0}",
"domain": {

"name": "{1}"
},
"type": "local"

}
}

],
"remote": [

{
"type": "SSL_CLIENT_S_DN_CN",
"whitelist": ["glance", "nova", "swift", "neutron"]

},
(continues on next page)

8.7. Authentication Mechanisms 581

http://httpd.apache.org/docs/current/mod/mod_ssl.html

Keystone Documentation, Release 21.0.2.dev4

(continued from previous page)

{
"type": "SSL_CLIENT_S_DN_O",
"whitelist": ["Default"]

}
]

}
]

When users type is not defined or set to ephemeral, the mapped user does not have to be a valid local
user but the mapping must yield at least one valid local group. For example:

[
{

"local": [
{

"user": {
"name": "{0}",
"type": "ephemeral"

},
"group": {

"domain": {
"name": "{1}"

},
"name": "openstack_services"

}
}

],
"remote": [

{
"type": "SSL_CLIENT_S_DN_CN",
"whitelist": ["glance", "nova", "swift", "neutron"]

},
{

"type": "SSL_CLIENT_S_DN_O",
"whitelist": ["Default"]

}
]

}
]

Note: The above mapping assume openstack_services group already exist and have the proper role
assignments (i.e. allow token validation) If not, it will need to be created.

To create a mapping using OpenStack CLI, assuming the mapping is saved into a file
x509_tokenless_mapping.json:

$ openstack mapping create --rules x509_tokenless_mapping.json x509_tokenless

582 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Note: The mapping ID is arbitrary and it can be any string as opposed to IDP ID.

Create a Protocol

The name of the protocol must be the same as the one specified by the protocol option in
tokenless_auth section of the Keystone configuration file. The protocol name is user designed and it
can be any name as opposed to IDP ID.

A protocol name and an IDP ID will uniquely identify a mapping.

To create a protocol using OpenStack CLI:

$ openstack federation protocol create --identity-provider <IDP ID>
--mapping x509_tokenless x509

Note: If there are multiple trusted issuers, there must be multiple protocol created, one for each IDP.
All IDP can share a same mapping but the combination of IDP ID and protocol must be unique.

SSL Terminator Configuration

Apache Configuration

If SSL terminates at Apache mod_ssl, Apache must be configured to handle two-way SSL and pass the
SSL certificate information to the Keystone application as part of the request environment.

The Client authentication attribute SSLVerifyClient should be set as optional to allow other to-
ken authentication methods and attribute SSLOptions needs to set as +StdEnvVars to allow certificate
attributes to be passed. For example,

<VirtualHost *:443>
WSGIScriptAlias / /var/www/cgi-bin/keystone/main
ErrorLog /var/log/apache2/keystone.log
CustomLog /var/log/apache2/access.log combined
SSLEngine on
SSLCertificateFile /etc/apache2/ssl/apache.cer
SSLCertificateKeyFile /etc/apache2/ssl/apache.key
SSLCACertificatePath /etc/apache2/capath
SSLOptions +StdEnvVars
SSLVerifyClient optional

</VirtualHost>

8.7. Authentication Mechanisms 583

Keystone Documentation, Release 21.0.2.dev4

HAProxy and Apache Configuration

If SSL terminates at HAProxy and Apache is the API proxy for the Keystone application, HAProxy must
configured to handle two-way SSL and convey the SSL certificate information via the request headers.
Apache in turn will need to bring those request headers into the request environment.

Heres an example on how to configure HAProxy to handle two-way SSL and pass the SSL certificate
information via the request headers.

frontend http-frontend
mode http
option forwardfor
bind 10.1.1.1:5000 ssl crt /etc/keystone/ssl/keystone.pem ca-file /etc/

↪→keystone/ssl/ca.pem verify optional

reqadd X-Forwarded-Proto:\ https if { ssl_fc }
http-request set-header X-SSL %[ssl_fc]
http-request set-header X-SSL-Client-Verify %[ssl_c_verify]
http-request set-header X-SSL-Client-SHA1 %{+Q}[ssl_c_sha1]
http-request set-header X-SSL-Client-DN %{+Q}[ssl_c_s_dn]
http-request set-header X-SSL-Client-CN %{+Q}[ssl_c_s_dn(cn)]
http-request set-header X-SSL-Client-O %{+Q}[ssl_c_s_dn(o)]
http-request set-header X-SSL-Issuer %{+Q}[ssl_c_i_dn]
http-request set-header X-SSL-Issuer-CN %{+Q}[ssl_c_i_dn(cn)]

When the request gets to the Apache Keystone API Proxy, Apache will need to bring those SSL headers
into the request environment. Heres an example on how to configure Apache to achieve that.

<VirtualHost 192.168.0.10:5000>
WSGIScriptAlias / /var/www/cgi-bin/keystone/main

Bring the needed SSL certificate attributes from HAProxy into the
request environment
SetEnvIf X-SSL-Issuer "^(.*)$" SSL_CLIENT_I_DN=$0
SetEnvIf X-SSL-Issuer-CN "^(.*)$" SSL_CLIENT_I_DN_CN=$0
SetEnvIf X-SSL-Client-CN "^(.*)$" SSL_CLIENT_S_DN_CN=$0
SetEnvIf X-SSL-Client-O "^(.*)$" SSL_CLIENT_S_DN_O=$0

</VirtualHost>

584 Chapter 8. Administrator Guides

Keystone Documentation, Release 21.0.2.dev4

Setup auth_token middleware

In order to use auth_token middleware as the service client for X.509 tokenless authorization, both
configurable options and scope information will need to be setup.

Configurable Options

The following configurable options in auth_token middleware should set to the correct values:

• auth_type - Must set to v3tokenlessauth.

• certfile - Set to the full path of the certificate file.

• keyfile - Set to the full path of the private key file.

• cafile - Set to the full path of the trusted CA certificate file.

• project_name or project_id - set to the scoped project.

• project_domain_name or project_domain_id - if project_name is specified.

Heres an example of auth_token middleware configuration using X.509 tokenless authorization for
user token validation.

[keystone_authtoken]
memcached_servers = localhost:11211
cafile = /etc/keystone/ca.pem
project_domain_name = Default
project_name = service
auth_url = https://192.168.0.10/identity/v3
auth_type = v3tokenlessauth
certfile = /etc/glance/certs/glance.pem
keyfile = /etc/glance/private/glance_private_key.pem

8.7.6 OAuth1 1.0a

The OAuth 1.0a feature provides the ability for Identity users to delegate roles to third party consumers
via the OAuth 1.0a specification.

To enable OAuth1:

1. Add the oauth1 driver to the [oauth1] section in keystone.conf. For example:

[oauth1]
driver = sql

2. Add the oauth1 authentication method to the [auth] section in keystone.conf:

[auth]
methods = external,password,token,oauth1

3. If deploying under Apache httpd with mod_wsgi, set the WSGIPassAuthorization to allow the
OAuth Authorization headers to pass through mod_wsgi. For example, add the following to the
keystone virtual host file:

8.7. Authentication Mechanisms 585

Keystone Documentation, Release 21.0.2.dev4

WSGIPassAuthorization On

See API Specification for OAuth 1.0a for the details of API definition.

586 Chapter 8. Administrator Guides

https://docs.openstack.org/api-ref/identity/v3-ext/index.html#os-oauth1-api

CHAPTER

NINE

KEYSTONE CONFIGURATION OPTIONS

This section provides a list of all possible options and sample files for keystone configuration.

9.1 API Configuration options

9.1.1 Configuration

The Identity service is configured in the /etc/keystone/keystone.conf file.

The following tables provide a comprehensive list of the Identity service options.

DEFAULT

rpc_conn_pool_size

Type integer

Default 30

Minimum Value 1

Size of RPC connection pool.

Table 1: Deprecated Variations
Group Name
DEFAULT rpc_conn_pool_size

conn_pool_min_size

Type integer

Default 2

The pool size limit for connections expiration policy

conn_pool_ttl

Type integer

Default 1200

587

Keystone Documentation, Release 21.0.2.dev4

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size

Type integer

Default 64

Size of executor thread pool when executor is threading or eventlet.

Table 2: Deprecated Variations
Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout

Type integer

Default 60

Seconds to wait for a response from a call.

transport_url

Type string

Default rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass@]host:port[,[userN:passN@]hostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type string

Default keystone

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type boolean

Default False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

debug

588 Chapter 9. Keystone Configuration Options

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Keystone Documentation, Release 21.0.2.dev4

Type boolean

Default False

Mutable This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.

log_config_append

Type string

Default <None>

Mutable This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 3: Deprecated Variations
Group Name
DEFAULT log-config
DEFAULT log_config

log_date_format

Type string

Default %Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type string

Default <None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 4: Deprecated Variations
Group Name
DEFAULT logfile

log_dir

Type string

Default <None>

9.1. API Configuration options 589

Keystone Documentation, Release 21.0.2.dev4

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 5: Deprecated Variations
Group Name
DEFAULT logdir

watch_log_file

Type boolean

Default False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

use_syslog

Type boolean

Default False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type boolean

Default False

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type string

Default LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type boolean

Default False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type boolean

590 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default False

Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type boolean

Default False

Log output to Windows Event Log.

log_rotate_interval

Type integer

Default 1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to interval.

log_rotate_interval_type

Type string

Default days

Valid Values Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type integer

Default 30

Maximum number of rotated log files.

max_logfile_size_mb

Type integer

Default 200

Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type string

Default none

Valid Values interval, size, none

Log rotation type.

9.1. API Configuration options 591

Keystone Documentation, Release 21.0.2.dev4

Possible values

interval Rotate logs at predefined time intervals.

size Rotate logs once they reach a predefined size.

none Do not rotate log files.

logging_context_format_string

Type string

Default %(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s
[%(request_id)s %(user_identity)s] %(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string

Type string

Default %(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s
[-] %(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type string

Default %(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type string

Default %(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type string

Default %(user)s %(project)s %(domain)s %(user_domain)s
%(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

592 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Type list

Default ['amqp=WARN', 'amqplib=WARN', 'boto=WARN', 'qpid=WARN',
'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO',
'oslo_messaging=INFO', 'iso8601=WARN', 'requests.packages.
urllib3.connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.urllib3.util.retry=WARN',
'urllib3.util.retry=WARN', 'keystonemiddleware=WARN',
'routes.middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO', 'oslo_policy=INFO',
'dogpile.core.dogpile=INFO']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

Type boolean

Default False

Enables or disables publication of error events.

instance_format

Type string

Default "[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type string

Default "[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type integer

Default 0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type integer

Default 0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

9.1. API Configuration options 593

Keystone Documentation, Release 21.0.2.dev4

Type string

Default CRITICAL

Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG or empty
string. Logs with level greater or equal to rate_limit_except_level are not filtered. An empty string
means that all levels are filtered.

fatal_deprecations

Type boolean

Default False

Enables or disables fatal status of deprecations.

admin_token

Type string

Default <None>

Using this feature is NOT recommended. Instead, use the keystone-manage bootstrap command.
The value of this option is treated as a shared secret that can be used to bootstrap Keystone through
the API. This token does not represent a user (it has no identity), and carries no explicit authoriza-
tion (it effectively bypasses most authorization checks). If set to None, the value is ignored and the
admin_token middleware is effectively disabled.

public_endpoint

Type URI

Default <None>

The base public endpoint URL for Keystone that is advertised to clients (NOTE: this does NOT
affect how Keystone listens for connections). Defaults to the base host URL of the request. For
example, if keystone receives a request to http://server:5000/v3/users, then this will option will be
automatically treated as http://server:5000. You should only need to set option if either the value
of the base URL contains a path that keystone does not automatically infer (/prefix/v3), or if the
endpoint should be found on a different host.

max_project_tree_depth

Type integer

Default 5

Maximum depth of the project hierarchy, excluding the project acting as a domain at the top of the
hierarchy. WARNING: Setting it to a large value may adversely impact performance.

max_param_size

Type integer

Default 64

Limit the sizes of user & project ID/names.

594 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

max_token_size

Type integer

Default 255

Similar to [DEFAULT] max_param_size, but provides an exception for token values. With Fernet
tokens, this can be set as low as 255.

list_limit

Type integer

Default <None>

The maximum number of entities that will be returned in a collection. This global limit may be then
overridden for a specific driver, by specifying a list_limit in the appropriate section (for example,
[assignment]). No limit is set by default. In larger deployments, it is recommended that you set
this to a reasonable number to prevent operations like listing all users and projects from placing an
unnecessary load on the system.

strict_password_check

Type boolean

Default False

If set to true, strict password length checking is performed for password manipulation. If a pass-
word exceeds the maximum length, the operation will fail with an HTTP 403 Forbidden error. If
set to false, passwords are automatically truncated to the maximum length.

insecure_debug

Type boolean

Default False

If set to true, then the server will return information in HTTP responses that may allow an unau-
thenticated or authenticated user to get more information than normal, such as additional details
about why authentication failed. This may be useful for debugging but is insecure.

default_publisher_id

Type string

Default <None>

Default publisher_id for outgoing notifications. If left undefined, Keystone will default to using
the servers host name.

notification_format

Type string

Default cadf

Valid Values basic, cadf

9.1. API Configuration options 595

Keystone Documentation, Release 21.0.2.dev4

Define the notification format for identity service events. A basic notification only has information
about the resource being operated on. A cadf notification has the same information, as well as
information about the initiator of the event. The cadf option is entirely backwards compatible
with the basic option, but is fully CADF-compliant, and is recommended for auditing use cases.

notification_opt_out

Type multi-valued

Default identity.authenticate.success

Default identity.authenticate.pending

Default identity.authenticate.failed

You can reduce the number of notifications keystone emits by explicitly opting out. Keystone
will not emit notifications that match the patterns expressed in this list. Values are expected to
be in the form of identity.<resource_type>.<operation>. By default, all notifications related to
authentication are automatically suppressed. This field can be set multiple times in order to opt-
out of multiple notification topics. For example, the following suppresses notifications describing
user creation or successful authentication events: notification_opt_out=identity.user.create notifi-
cation_opt_out=identity.authenticate.success

application_credential

driver

Type string

Default sql

Entry point for the application credential backend driver in the keystone.application_credential
namespace. Keystone only provides a sql driver, so there is no reason to change this unless you are
providing a custom entry point.

caching

Type boolean

Default True

Toggle for application credential caching. This has no effect unless global caching is enabled.

cache_time

Type integer

Default <None>

Time to cache application credential data in seconds. This has no effect unless global caching is
enabled.

user_limit

Type integer

596 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default -1

Maximum number of application credentials a user is permitted to create. A value of -1 means
unlimited. If a limit is not set, users are permitted to create application credentials at will, which
could lead to bloat in the keystone database or open keystone to a DoS attack.

assignment

driver

Type string

Default sql

Entry point for the assignment backend driver (where role assignments are stored) in the key-
stone.assignment namespace. Only a SQL driver is supplied by keystone itself. Unless you are
writing proprietary drivers for keystone, you do not need to set this option.

prohibited_implied_role

Type list

Default ['admin']

A list of role names which are prohibited from being an implied role.

auth

methods

Type list

Default ['external', 'password', 'token', 'oauth1', 'mapped',
'application_credential']

Allowed authentication methods. Note: You should disable the external auth method if you are
currently using federation. External auth and federation both use the REMOTE_USER variable.
Since both the mapped and external plugin are being invoked to validate attributes in the request
environment, it can cause conflicts.

password

Type string

Default <None>

Entry point for the password auth plugin module in the keystone.auth.password namespace. You
do not need to set this unless you are overriding keystones own password authentication plugin.

token

Type string

Default <None>

9.1. API Configuration options 597

Keystone Documentation, Release 21.0.2.dev4

Entry point for the token auth plugin module in the keystone.auth.token namespace. You do not
need to set this unless you are overriding keystones own token authentication plugin.

external

Type string

Default <None>

Entry point for the external (REMOTE_USER) auth plugin module in the keystone.auth.external
namespace. Supplied drivers are DefaultDomain and Domain. The default driver is DefaultDo-
main, which assumes that all users identified by the username specified to keystone in the RE-
MOTE_USER variable exist within the context of the default domain. The Domain option expects
an additional environment variable be presented to keystone, REMOTE_DOMAIN, containing the
domain name of the REMOTE_USER (if REMOTE_DOMAIN is not set, then the default domain
will be used instead). You do not need to set this unless you are taking advantage of external au-
thentication, where the application server (such as Apache) is handling authentication instead of
keystone.

oauth1

Type string

Default <None>

Entry point for the OAuth 1.0a auth plugin module in the keystone.auth.oauth1 namespace. You
do not need to set this unless you are overriding keystones own oauth1 authentication plugin.

mapped

Type string

Default <None>

Entry point for the mapped auth plugin module in the keystone.auth.mapped namespace. You do
not need to set this unless you are overriding keystones own mapped authentication plugin.

application_credential

Type string

Default <None>

Entry point for the application_credential auth plugin module in the key-
stone.auth.application_credential namespace. You do not need to set this unless you are
overriding keystones own application_credential authentication plugin.

598 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

cache

config_prefix

Type string

Default cache.oslo

Prefix for building the configuration dictionary for the cache region. This should not need to be
changed unless there is another dogpile.cache region with the same configuration name.

expiration_time

Type integer

Default 600

Default TTL, in seconds, for any cached item in the dogpile.cache region. This applies to any
cached method that doesnt have an explicit cache expiration time defined for it.

backend

Type string

Default dogpile.cache.null

Valid Values oslo_cache.memcache_pool, oslo_cache.dict, oslo_cache.mongo,
oslo_cache.etcd3gw, dogpile.cache.pymemcache, dogpile.cache.memcached,
dogpile.cache.pylibmc, dogpile.cache.bmemcached, dogpile.cache.dbm, dog-
pile.cache.redis, dogpile.cache.memory, dogpile.cache.memory_pickle, dog-
pile.cache.null

Cache backend module. For eventlet-based or environments with hundreds of threaded servers,
Memcache with pooling (oslo_cache.memcache_pool) is recommended. For environments
with less than 100 threaded servers, Memcached (dogpile.cache.memcached) or Redis (dog-
pile.cache.redis) is recommended. Test environments with a single instance of the server can use
the dogpile.cache.memory backend.

backend_argument

Type multi-valued

Default ''

Arguments supplied to the backend module. Specify this option once per argument to be passed
to the dogpile.cache backend. Example format: <argname>:<value>.

proxies

Type list

Default []

Proxy classes to import that will affect the way the dogpile.cache backend functions. See the
dogpile.cache documentation on changing-backend-behavior.

enabled

9.1. API Configuration options 599

Keystone Documentation, Release 21.0.2.dev4

Type boolean

Default True

Global toggle for caching.

debug_cache_backend

Type boolean

Default False

Extra debugging from the cache backend (cache keys, get/set/delete/etc calls). This is only re-
ally useful if you need to see the specific cache-backend get/set/delete calls with the keys/values.
Typically this should be left set to false.

memcache_servers

Type list

Default ['localhost:11211']

Memcache servers in the format of host:port. (dogpile.cache.memcached and
oslo_cache.memcache_pool backends only). If a given host refer to an IPv6 or a given do-
main refer to IPv6 then you should prefix the given address with the address family (inet6) (e.g
inet6[::1]:11211, inet6:[fd12:3456:789a:1::1]:11211, inet6:[controller-0.
internalapi]:11211). If the address family is not given then default address family used will
be inet which correspond to IPv4

memcache_dead_retry

Type integer

Default 300

Number of seconds memcached server is considered dead before it is tried again. (dog-
pile.cache.memcache and oslo_cache.memcache_pool backends only).

memcache_socket_timeout

Type floating point

Default 1.0

Timeout in seconds for every call to a server. (dogpile.cache.memcache and
oslo_cache.memcache_pool backends only).

memcache_pool_maxsize

Type integer

Default 10

Max total number of open connections to every memcached server. (oslo_cache.memcache_pool
backend only).

memcache_pool_unused_timeout

600 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Type integer

Default 60

Number of seconds a connection to memcached is held unused in the pool before it is closed.
(oslo_cache.memcache_pool backend only).

memcache_pool_connection_get_timeout

Type integer

Default 10

Number of seconds that an operation will wait to get a memcache client connection.

memcache_pool_flush_on_reconnect

Type boolean

Default False

Global toggle if memcache will be flushed on reconnect. (oslo_cache.memcache_pool backend
only).

tls_enabled

Type boolean

Default False

Global toggle for TLS usage when comunicating with the caching servers.

tls_cafile

Type string

Default <None>

Path to a file of concatenated CA certificates in PEM format necessary to establish the caching
servers authenticity. If tls_enabled is False, this option is ignored.

tls_certfile

Type string

Default <None>

Path to a single file in PEM format containing the clients certificate as well as any number of CA
certificates needed to establish the certificates authenticity. This file is only required when client
side authentication is necessary. If tls_enabled is False, this option is ignored.

tls_keyfile

Type string

Default <None>

9.1. API Configuration options 601

Keystone Documentation, Release 21.0.2.dev4

Path to a single file containing the clients private key in. Otherwise the private key will be taken
from the file specified in tls_certfile. If tls_enabled is False, this option is ignored.

tls_allowed_ciphers

Type string

Default <None>

Set the available ciphers for sockets created with the TLS context. It should be a string in the
OpenSSL cipher list format. If not specified, all OpenSSL enabled ciphers will be available.

enable_socket_keepalive

Type boolean

Default False

Global toggle for the socket keepalive of dogpiles pymemcache backend

socket_keepalive_idle

Type integer

Default 1

Minimum Value 0

The time (in seconds) the connection needs to remain idle before TCP starts sending keepalive
probes. Should be a positive integer most greater than zero.

socket_keepalive_interval

Type integer

Default 1

Minimum Value 0

The time (in seconds) between individual keepalive probes. Should be a positive integer greater
than zero.

socket_keepalive_count

Type integer

Default 1

Minimum Value 0

The maximum number of keepalive probes TCP should send before dropping the connection.
Should be a positive integer greater than zero.

enable_retry_client

Type boolean

Default False

602 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Enable retry client mechanisms to handle failure. Those mechanisms can be used to wrap all kind
of pymemcache clients. The wrapper allows you to define how many attempts to make and how
long to wait between attemots.

retry_attempts

Type integer

Default 2

Minimum Value 1

Number of times to attempt an action before failing.

retry_delay

Type floating point

Default 0

Number of seconds to sleep between each attempt.

hashclient_retry_attempts

Type integer

Default 2

Minimum Value 1

Amount of times a client should be tried before it is marked dead and removed from the pool in
the HashClients internal mechanisms.

hashclient_retry_delay

Type floating point

Default 1

Time in seconds that should pass between retry attempts in the HashClients internal mechanisms.

dead_timeout

Type floating point

Default 60

Time in seconds before attempting to add a node back in the pool in the HashClients internal
mechanisms.

9.1. API Configuration options 603

Keystone Documentation, Release 21.0.2.dev4

catalog

template_file

Type string

Default default_catalog.templates

Absolute path to the file used for the templated catalog backend. This option is only used if the
[catalog] driver is set to templated.

driver

Type string

Default sql

Entry point for the catalog driver in the keystone.catalog namespace. Keystone provides a sql
option (which supports basic CRUD operations through SQL), a templated option (which loads
the catalog from a templated catalog file on disk), and a endpoint_filter.sql option (which supports
arbitrary service catalogs per project).

caching

Type boolean

Default True

Toggle for catalog caching. This has no effect unless global caching is enabled. In a typical de-
ployment, there is no reason to disable this.

cache_time

Type integer

Default <None>

Time to cache catalog data (in seconds). This has no effect unless global and catalog caching are
both enabled. Catalog data (services, endpoints, etc.) typically does not change frequently, and so
a longer duration than the global default may be desirable.

list_limit

Type integer

Default <None>

Maximum number of entities that will be returned in a catalog collection. There is typically no
reason to set this, as it would be unusual for a deployment to have enough services or endpoints to
exceed a reasonable limit.

604 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

cors

allowed_origin

Type list

Default <None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials

Type boolean

Default True

Indicate that the actual request can include user credentials

expose_headers

Type list

Default ['X-Auth-Token', 'X-Openstack-Request-Id',
'X-Subject-Token', 'Openstack-Auth-Receipt']

Indicate which headers are safe to expose to the API. Defaults to HTTP Simple Headers.

max_age

Type integer

Default 3600

Maximum cache age of CORS preflight requests.

allow_methods

Type list

Default ['GET', 'PUT', 'POST', 'DELETE', 'PATCH']

Indicate which methods can be used during the actual request.

allow_headers

Type list

Default ['X-Auth-Token', 'X-Openstack-Request-Id',
'X-Subject-Token', 'X-Project-Id', 'X-Project-Name',
'X-Project-Domain-Id', 'X-Project-Domain-Name', 'X-Domain-Id',
'X-Domain-Name', 'Openstack-Auth-Receipt']

Indicate which header field names may be used during the actual request.

9.1. API Configuration options 605

https://horizon.example.com
https://horizon.example.com

Keystone Documentation, Release 21.0.2.dev4

credential

driver

Type string

Default sql

Entry point for the credential backend driver in the keystone.credential namespace. Keystone only
provides a sql driver, so theres no reason to change this unless you are providing a custom entry
point.

provider

Type string

Default fernet

Entry point for credential encryption and decryption operations in the keystone.credential.provider
namespace. Keystone only provides a fernet driver, so theres no reason to change this unless you
are providing a custom entry point to encrypt and decrypt credentials.

key_repository

Type string

Default /etc/keystone/credential-keys/

Directory containing Fernet keys used to encrypt and decrypt credentials stored in the credential
backend. Fernet keys used to encrypt credentials have no relationship to Fernet keys used to en-
crypt Fernet tokens. Both sets of keys should be managed separately and require different rotation
policies. Do not share this repository with the repository used to manage keys for Fernet tokens.

caching

Type boolean

Default True

Toggle for caching only on retrieval of user credentials. This has no effect unless global caching
is enabled.

cache_time

Type integer

Default <None>

Time to cache credential data in seconds. This has no effect unless global caching is enabled.

auth_ttl

Type integer

Default 15

606 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

The length of time in minutes for which a signed EC2 or S3 token request is valid from the times-
tamp contained in the token request.

user_limit

Type integer

Default -1

Maximum number of credentials a user is permitted to create. A value of -1 means unlimited. If
a limit is not set, users are permitted to create credentials at will, which could lead to bloat in the
keystone database or open keystone to a DoS attack.

database

sqlite_synchronous

Type boolean

Default True

If True, SQLite uses synchronous mode.

Table 6: Deprecated Variations
Group Name
DEFAULT sqlite_synchronous

backend

Type string

Default sqlalchemy

The back end to use for the database.

Table 7: Deprecated Variations
Group Name
DEFAULT db_backend

connection

Type string

Default <None>

The SQLAlchemy connection string to use to connect to the database.

Table 8: Deprecated Variations
Group Name
DEFAULT sql_connection
DATABASE sql_connection
sql connection

9.1. API Configuration options 607

Keystone Documentation, Release 21.0.2.dev4

slave_connection

Type string

Default <None>

The SQLAlchemy connection string to use to connect to the slave database.

mysql_sql_mode

Type string

Default TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_enable_ndb

Type boolean

Default False

If True, transparently enables support for handling MySQL Cluster (NDB).

connection_recycle_time

Type integer

Default 3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

max_pool_size

Type integer

Default 5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries

Type integer

Default 10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

608 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Table 9: Deprecated Variations
Group Name
DEFAULT sql_max_retries
DATABASE sql_max_retries

retry_interval

Type integer

Default 10

Interval between retries of opening a SQL connection.

Table 10: Deprecated Variations
Group Name
DEFAULT sql_retry_interval
DATABASE reconnect_interval

max_overflow

Type integer

Default 50

If set, use this value for max_overflow with SQLAlchemy.

Table 11: Deprecated Variations
Group Name
DEFAULT sql_max_overflow
DATABASE sqlalchemy_max_overflow

connection_debug

Type integer

Default 0

Minimum Value 0

Maximum Value 100

Verbosity of SQL debugging information: 0=None, 100=Everything.

Table 12: Deprecated Variations
Group Name
DEFAULT sql_connection_debug

connection_trace

Type boolean

9.1. API Configuration options 609

Keystone Documentation, Release 21.0.2.dev4

Default False

Add Python stack traces to SQL as comment strings.

Table 13: Deprecated Variations
Group Name
DEFAULT sql_connection_trace

pool_timeout

Type integer

Default <None>

If set, use this value for pool_timeout with SQLAlchemy.

Table 14: Deprecated Variations
Group Name
DATABASE sqlalchemy_pool_timeout

use_db_reconnect

Type boolean

Default False

Enable the experimental use of database reconnect on connection lost.

db_retry_interval

Type integer

Default 1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type boolean

Default True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

Type integer

Default 10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

610 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Type integer

Default 20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters

Type string

Default ''

Optional URL parameters to append onto the connection URL at connect time; specify as
param1=value1¶m2=value2&

domain_config

driver

Type string

Default sql

Entry point for the domain-specific configuration driver in the keystone.resource.domain_config
namespace. Only a sql option is provided by keystone, so there is no reason to set this unless you
are providing a custom entry point.

caching

Type boolean

Default True

Toggle for caching of the domain-specific configuration backend. This has no effect unless global
caching is enabled. There is normally no reason to disable this.

cache_time

Type integer

Default 300

Time-to-live (TTL, in seconds) to cache domain-specific configuration data. This has no effect
unless [domain_config] caching is enabled.

9.1. API Configuration options 611

Keystone Documentation, Release 21.0.2.dev4

endpoint_filter

driver

Type string

Default sql

Entry point for the endpoint filter driver in the keystone.endpoint_filter namespace. Only a sql
option is provided by keystone, so there is no reason to set this unless you are providing a custom
entry point.

return_all_endpoints_if_no_filter

Type boolean

Default True

This controls keystones behavior if the configured endpoint filters do not result in any endpoints
for a user + project pair (and therefore a potentially empty service catalog). If set to true, keystone
will return the entire service catalog. If set to false, keystone will return an empty service catalog.

endpoint_policy

driver

Type string

Default sql

Entry point for the endpoint policy driver in the keystone.endpoint_policy namespace. Only a sql
driver is provided by keystone, so there is no reason to set this unless you are providing a custom
entry point.

eventlet_server

public_bind_host

Type host address

Default 0.0.0.0

The IP address of the network interface for the public service to listen on.

Table 15: Deprecated Variations
Group Name
DEFAULT bind_host
DEFAULT public_bind_host

612 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Warning: This option is deprecated for removal since K. Its value may be silently ignored in
the future.

Reason Support for running keystone under eventlet has been removed in the
Newton release. These options remain for backwards compatibility because
they are used for URL substitutions.

public_port

Type port number

Default 5000

Minimum Value 0

Maximum Value 65535

The port number for the public service to listen on.

Table 16: Deprecated Variations
Group Name
DEFAULT public_port

Warning: This option is deprecated for removal since K. Its value may be silently ignored in
the future.

Reason Support for running keystone under eventlet has been removed in the
Newton release. These options remain for backwards compatibility because
they are used for URL substitutions.

admin_bind_host

Type host address

Default 0.0.0.0

The IP address of the network interface for the admin service to listen on.

Table 17: Deprecated Variations
Group Name
DEFAULT bind_host
DEFAULT admin_bind_host

Warning: This option is deprecated for removal since K. Its value may be silently ignored in
the future.

Reason Support for running keystone under eventlet has been removed in the
Newton release. These options remain for backwards compatibility because
they are used for URL substitutions.

9.1. API Configuration options 613

Keystone Documentation, Release 21.0.2.dev4

admin_port

Type port number

Default 35357

Minimum Value 0

Maximum Value 65535

The port number for the admin service to listen on.

Table 18: Deprecated Variations
Group Name
DEFAULT admin_port

Warning: This option is deprecated for removal since K. Its value may be silently ignored in
the future.

Reason Support for running keystone under eventlet has been removed in the
Newton release. These options remain for backwards compatibility because
they are used for URL substitutions.

federation

driver

Type string

Default sql

Entry point for the federation backend driver in the keystone.federation namespace. Keystone only
provides a sql driver, so there is no reason to set this option unless you are providing a custom
entry point.

assertion_prefix

Type string

Default ''

Prefix to use when filtering environment variable names for federated assertions. Matched vari-
ables are passed into the federated mapping engine.

remote_id_attribute

Type string

Default <None>

614 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default value for all protocols to be used to obtain the entity ID of the Identity Provider from
the environment. For mod_shib, this would be Shib-Identity-Provider. For mod_auth_openidc,
this could be HTTP_OIDC_ISS. For mod_auth_mellon, this could be MELLON_IDP. This can be
overridden on a per-protocol basis by providing a remote_id_attribute to the federation protocol
using the API.

federated_domain_name

Type string

Default Federated

An arbitrary domain name that is reserved to allow federated ephemeral users to have a domain
concept. Note that an admin will not be able to create a domain with this name or update an existing
domain to this name. You are not advised to change this value unless you really have to.

Warning: This option is deprecated for removal since T. Its value may be silently ignored in
the future.

Reason This option has been superseded by ephemeral users existing in the do-
main of their identity provider.

trusted_dashboard

Type multi-valued

Default ''

A list of trusted dashboard hosts. Before accepting a Single Sign-On request to re-
turn a token, the origin host must be a member of this list. This configuration op-
tion may be repeated for multiple values. You must set this in order to use web-
based SSO flows. For example: trusted_dashboard=https://acme.example.com/auth/websso
trusted_dashboard=https://beta.example.com/auth/websso

sso_callback_template

Type string

Default /etc/keystone/sso_callback_template.html

Absolute path to an HTML file used as a Single Sign-On callback handler. This page is expected
to redirect the user from keystone back to a trusted dashboard host, by form encoding a token in a
POST request. Keystones default value should be sufficient for most deployments.

caching

Type boolean

Default True

Toggle for federation caching. This has no effect unless global caching is enabled. There is typi-
cally no reason to disable this.

default_authorization_ttl

9.1. API Configuration options 615

Keystone Documentation, Release 21.0.2.dev4

Type integer

Default 0

Default time in minutes for the validity of group memberships carried over from a mapping. De-
fault is 0, which means disabled.

fernet_receipts

key_repository

Type string

Default /etc/keystone/fernet-keys/

Directory containing Fernet receipt keys. This directory must exist before using keystone-manage
fernet_setup for the first time, must be writable by the user running keystone-manage fernet_setup
or keystone-manage fernet_rotate, and of course must be readable by keystones server process.
The repository may contain keys in one of three states: a single staged key (always index 0) used
for receipt validation, a single primary key (always the highest index) used for receipt creation and
validation, and any number of secondary keys (all other index values) used for receipt validation.
With multiple keystone nodes, each node must share the same key repository contents, with the
exception of the staged key (index 0). It is safe to run keystone-manage fernet_rotate once on any
one node to promote a staged key (index 0) to be the new primary (incremented from the previous
highest index), and produce a new staged key (a new key with index 0); the resulting repository can
then be atomically replicated to other nodes without any risk of race conditions (for example, it is
safe to run keystone-manage fernet_rotate on host A, wait any amount of time, create a tarball of
the directory on host A, unpack it on host B to a temporary location, and atomically move (mv) the
directory into place on host B). Running keystone-manage fernet_rotate twice on a key repository
without syncing other nodes will result in receipts that can not be validated by all nodes.

max_active_keys

Type integer

Default 3

Minimum Value 1

This controls how many keys are held in rotation by keystone-manage fernet_rotate before they are
discarded. The default value of 3 means that keystone will maintain one staged key (always index
0), one primary key (the highest numerical index), and one secondary key (every other index).
Increasing this value means that additional secondary keys will be kept in the rotation.

616 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

fernet_tokens

key_repository

Type string

Default /etc/keystone/fernet-keys/

Directory containing Fernet token keys. This directory must exist before using keystone-manage
fernet_setup for the first time, must be writable by the user running keystone-manage fernet_setup
or keystone-manage fernet_rotate, and of course must be readable by keystones server process.
The repository may contain keys in one of three states: a single staged key (always index 0) used
for token validation, a single primary key (always the highest index) used for token creation and
validation, and any number of secondary keys (all other index values) used for token validation.
With multiple keystone nodes, each node must share the same key repository contents, with the
exception of the staged key (index 0). It is safe to run keystone-manage fernet_rotate once on any
one node to promote a staged key (index 0) to be the new primary (incremented from the previous
highest index), and produce a new staged key (a new key with index 0); the resulting repository can
then be atomically replicated to other nodes without any risk of race conditions (for example, it is
safe to run keystone-manage fernet_rotate on host A, wait any amount of time, create a tarball of
the directory on host A, unpack it on host B to a temporary location, and atomically move (mv) the
directory into place on host B). Running keystone-manage fernet_rotate twice on a key repository
without syncing other nodes will result in tokens that can not be validated by all nodes.

max_active_keys

Type integer

Default 3

Minimum Value 1

This controls how many keys are held in rotation by keystone-manage fernet_rotate before they are
discarded. The default value of 3 means that keystone will maintain one staged key (always index
0), one primary key (the highest numerical index), and one secondary key (every other index).
Increasing this value means that additional secondary keys will be kept in the rotation.

healthcheck

path

Type string

Default /healthcheck

The path to respond to healtcheck requests on.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

detailed

9.1. API Configuration options 617

Keystone Documentation, Release 21.0.2.dev4

Type boolean

Default False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

backends

Type list

Default []

Additional backends that can perform health checks and report that information back as part of a
request.

disable_by_file_path

Type string

Default <None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

disable_by_file_paths

Type list

Default []

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

identity

default_domain_id

Type string

Default default

This references the domain to use for all Identity API v2 requests (which are not aware of domains).
A domain with this ID can optionally be created for you by keystone-manage bootstrap. The do-
main referenced by this ID cannot be deleted on the v3 API, to prevent accidentally breaking the
v2 API. There is nothing special about this domain, other than the fact that it must exist to order to
maintain support for your v2 clients. There is typically no reason to change this value.

domain_specific_drivers_enabled

Type boolean

Default False

618 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

A subset (or all) of domains can have their own identity driver, each with their own partial configu-
ration options, stored in either the resource backend or in a file in a domain configuration directory
(depending on the setting of [identity] domain_configurations_from_database). Only values spe-
cific to the domain need to be specified in this manner. This feature is disabled by default, but may
be enabled by default in a future release; set to true to enable.

domain_configurations_from_database

Type boolean

Default False

By default, domain-specific configuration data is read from files in the directory identified by [iden-
tity] domain_config_dir. Enabling this configuration option allows you to instead manage domain-
specific configurations through the API, which are then persisted in the backend (typically, a SQL
database), rather than using configuration files on disk.

domain_config_dir

Type string

Default /etc/keystone/domains

Absolute path where keystone should locate domain-specific [identity] configuration files. This
option has no effect unless [identity] domain_specific_drivers_enabled is set to true. There is
typically no reason to change this value.

driver

Type string

Default sql

Entry point for the identity backend driver in the keystone.identity namespace. Keystone provides
a sql and ldap driver. This option is also used as the default driver selection (along with the other
configuration variables in this section) in the event that [identity] domain_specific_drivers_enabled
is enabled, but no applicable domain-specific configuration is defined for the domain in question.
Unless your deployment primarily relies on ldap AND is not using domain-specific configuration,
you should typically leave this set to sql.

caching

Type boolean

Default True

Toggle for identity caching. This has no effect unless global caching is enabled. There is typically
no reason to disable this.

cache_time

Type integer

Default 600

9.1. API Configuration options 619

Keystone Documentation, Release 21.0.2.dev4

Time to cache identity data (in seconds). This has no effect unless global and identity caching are
enabled.

max_password_length

Type integer

Default 4096

Maximum Value 4096

Maximum allowed length for user passwords. Decrease this value to improve performance. Chang-
ing this value does not effect existing passwords. This value can also be overridden by certain
hashing algorithms maximum allowed length which takes precedence over the configured value.
The bcrypt max_password_length is 72 bytes.

list_limit

Type integer

Default <None>

Maximum number of entities that will be returned in an identity collection.

password_hash_algorithm

Type string

Default bcrypt

Valid Values bcrypt, scrypt, pbkdf2_sha512

The password hashing algorithm to use for passwords stored within keystone.

password_hash_rounds

Type integer

Default <None>

This option represents a trade off between security and performance. Higher values lead to slower
performance, but higher security. Changing this option will only affect newly created passwords
as existing password hashes already have a fixed number of rounds applied, so it is safe to tune this
option in a running cluster. The default for bcrypt is 12, must be between 4 and 31, inclusive. The
default for scrypt is 16, must be within range(1,32). The default for pbkdf_sha512 is 60000, must
be within range(1,1«32) WARNING: If using scrypt, increasing this value increases BOTH time
AND memory requirements to hash a password.

scrypt_block_size

Type integer

Default <None>

Optional block size to pass to scrypt hash function (the r parameter). Useful for tuning scrypt
to optimal performance for your CPU architecture. This option is only used when the pass-
word_hash_algorithm option is set to scrypt. Defaults to 8.

620 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

scrypt_parallelism

Type integer

Default <None>

Optional parallelism to pass to scrypt hash function (the p parameter). This option is only used
when the password_hash_algorithm option is set to scrypt. Defaults to 1.

salt_bytesize

Type integer

Default <None>

Minimum Value 0

Maximum Value 96

Number of bytes to use in scrypt and pbkfd2_sha512 hashing salt. Default for scrypt is 16 bytes.
Default for pbkfd2_sha512 is 16 bytes. Limited to a maximum of 96 bytes due to the size of the
column used to store password hashes.

identity_mapping

driver

Type string

Default sql

Entry point for the identity mapping backend driver in the keystone.identity.id_mapping names-
pace. Keystone only provides a sql driver, so there is no reason to change this unless you are
providing a custom entry point.

generator

Type string

Default sha256

Entry point for the public ID generator for user and group entities in the key-
stone.identity.id_generator namespace. The Keystone identity mapper only supports generators
that produce 64 bytes or less. Keystone only provides a sha256 entry point, so there is no reason
to change this value unless youre providing a custom entry point.

backward_compatible_ids

Type boolean

Default True

The format of user and group IDs changed in Juno for backends that do not generate UUIDs (for ex-
ample, LDAP), with keystone providing a hash mapping to the underlying attribute in LDAP. By de-
fault this mapping is disabled, which ensures that existing IDs will not change. Even when the map-
ping is enabled by using domain-specific drivers ([identity] domain_specific_drivers_enabled),

9.1. API Configuration options 621

Keystone Documentation, Release 21.0.2.dev4

any users and groups from the default domain being handled by LDAP will still not be mapped
to ensure their IDs remain backward compatible. Setting this value to false will enable the new
mapping for all backends, including the default LDAP driver. It is only guaranteed to be safe to
enable this option if you do not already have assignments for users and groups from the default
LDAP domain, and you consider it to be acceptable for Keystone to provide the different IDs to
clients than it did previously (existing IDs in the API will suddenly change). Typically this means
that the only time you can set this value to false is when configuring a fresh installation, although
that is the recommended value.

jwt_tokens

jws_public_key_repository

Type string

Default /etc/keystone/jws-keys/public

Directory containing public keys for validating JWS token signatures. This directory must exist in
order for keystones server process to start. It must also be readable by keystones server process. It
must contain at least one public key that corresponds to a private key in keystone.conf [jwt_tokens]
jws_private_key_repository. This option is only applicable in deployments issuing JWS tokens
and setting keystone.conf [token] provider = jws.

jws_private_key_repository

Type string

Default /etc/keystone/jws-keys/private

Directory containing private keys for signing JWS tokens. This directory must exist in order for
keystones server process to start. It must also be readable by keystones server process. It must
contain at least one private key that corresponds to a public key in keystone.conf [jwt_tokens]
jws_public_key_repository. In the event there are multiple private keys in this directory, keystone
will use a key named private.pem to sign tokens. In the future, keystone may support the ability to
sign tokens with multiple private keys. For now, only a key named private.pem within this directory
is required to issue JWS tokens. This option is only applicable in deployments issuing JWS tokens
and setting keystone.conf [token] provider = jws.

ldap

url

Type string

Default ldap://localhost

URL(s) for connecting to the LDAP server. Multiple LDAP URLs may be specified as a comma
separated string. The first URL to successfully bind is used for the connection.

randomize_urls

Type boolean

622 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default False

Randomize the order of URLs in each keystone process. This makes the failure behavior more
gradual, since if the first server is down, a process/thread will wait for the specified timeout before
attempting a connection to a server further down the list. This defaults to False, for backward
compatibility.

user

Type string

Default <None>

The user name of the administrator bind DN to use when querying the LDAP server, if your LDAP
server requires it.

password

Type string

Default <None>

The password of the administrator bind DN to use when querying the LDAP server, if your LDAP
server requires it.

suffix

Type string

Default cn=example,cn=com

The default LDAP server suffix to use, if a DN is not defined via either [ldap] user_tree_dn or
[ldap] group_tree_dn.

query_scope

Type string

Default one

Valid Values one, sub

The search scope which defines how deep to search within the search base. A value of one (repre-
senting oneLevel or singleLevel) indicates a search of objects immediately below to the base object,
but does not include the base object itself. A value of sub (representing subtree or wholeSubtree)
indicates a search of both the base object itself and the entire subtree below it.

page_size

Type integer

Default 0

Minimum Value 0

Defines the maximum number of results per page that keystone should request from the LDAP
server when listing objects. A value of zero (0) disables paging.

9.1. API Configuration options 623

Keystone Documentation, Release 21.0.2.dev4

alias_dereferencing

Type string

Default default

Valid Values never, searching, always, finding, default

The LDAP dereferencing option to use for queries involving aliases. A value of default falls back
to using default dereferencing behavior configured by your ldap.conf. A value of never prevents
aliases from being dereferenced at all. A value of searching dereferences aliases only after name
resolution. A value of finding dereferences aliases only during name resolution. A value of always
dereferences aliases in all cases.

debug_level

Type integer

Default <None>

Minimum Value -1

Sets the LDAP debugging level for LDAP calls. A value of 0 means that debugging is not enabled.
This value is a bitmask, consult your LDAP documentation for possible values.

chase_referrals

Type boolean

Default <None>

Sets keystones referral chasing behavior across directory partitions. If left unset, the systems de-
fault behavior will be used.

user_tree_dn

Type string

Default <None>

The search base to use for users. Defaults to ou=Users with the [ldap] suffix appended to it.

user_filter

Type string

Default <None>

The LDAP search filter to use for users.

user_objectclass

Type string

Default inetOrgPerson

The LDAP object class to use for users.

624 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

user_id_attribute

Type string

Default cn

The LDAP attribute mapped to user IDs in keystone. This must NOT be a multivalued attribute.
User IDs are expected to be globally unique across keystone domains and URL-safe.

user_name_attribute

Type string

Default sn

The LDAP attribute mapped to user names in keystone. User names are expected to be unique only
within a keystone domain and are not expected to be URL-safe.

user_description_attribute

Type string

Default description

The LDAP attribute mapped to user descriptions in keystone.

user_mail_attribute

Type string

Default mail

The LDAP attribute mapped to user emails in keystone.

user_pass_attribute

Type string

Default userPassword

The LDAP attribute mapped to user passwords in keystone.

user_enabled_attribute

Type string

Default enabled

The LDAP attribute mapped to the user enabled attribute in keystone. If setting this option to
userAccountControl, then you may be interested in setting [ldap] user_enabled_mask and [ldap]
user_enabled_default as well.

user_enabled_invert

Type boolean

Default False

9.1. API Configuration options 625

Keystone Documentation, Release 21.0.2.dev4

Logically negate the boolean value of the enabled attribute obtained from the LDAP server. Some
LDAP servers use a boolean lock attribute where true means an account is disabled. Setting [ldap]
user_enabled_invert = true will allow these lock attributes to be used. This option will have no
effect if either the [ldap] user_enabled_mask or [ldap] user_enabled_emulation options are in
use.

user_enabled_mask

Type integer

Default 0

Minimum Value 0

Bitmask integer to select which bit indicates the enabled value if the LDAP server represents en-
abled as a bit on an integer rather than as a discrete boolean. A value of 0 indicates that the
mask is not used. If this is not set to 0 the typical value is 2. This is typically used when [ldap]
user_enabled_attribute = userAccountControl. Setting this option causes keystone to ignore the
value of [ldap] user_enabled_invert.

user_enabled_default

Type string

Default True

The default value to enable users. This should match an appropriate integer value if the LDAP
server uses non-boolean (bitmask) values to indicate if a user is enabled or disabled. If this is not
set to True, then the typical value is 512. This is typically used when [ldap] user_enabled_attribute
= userAccountControl.

user_attribute_ignore

Type list

Default ['default_project_id']

List of user attributes to ignore on create and update, or whether a specific user attribute should be
filtered for list or show user.

user_default_project_id_attribute

Type string

Default <None>

The LDAP attribute mapped to a users default_project_id in keystone. This is most commonly
used when keystone has write access to LDAP.

user_enabled_emulation

Type boolean

Default False

626 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

If enabled, keystone uses an alternative method to determine if a user is enabled or not by check-
ing if they are a member of the group defined by the [ldap] user_enabled_emulation_dn option.
Enabling this option causes keystone to ignore the value of [ldap] user_enabled_invert.

user_enabled_emulation_dn

Type string

Default <None>

DN of the group entry to hold enabled users when using enabled emulation. Setting this option
has no effect unless [ldap] user_enabled_emulation is also enabled.

user_enabled_emulation_use_group_config

Type boolean

Default False

Use the [ldap] group_member_attribute and [ldap] group_objectclass settings to determine
membership in the emulated enabled group. Enabling this option has no effect unless [ldap]
user_enabled_emulation is also enabled.

user_additional_attribute_mapping

Type list

Default []

A list of LDAP attribute to keystone user attribute pairs used for mapping additional attributes
to users in keystone. The expected format is <ldap_attr>:<user_attr>, where ldap_attr is the
attribute in the LDAP object and user_attr is the attribute which should appear in the identity API.

group_tree_dn

Type string

Default <None>

The search base to use for groups. Defaults to ou=UserGroups with the [ldap] suffix appended to
it.

group_filter

Type string

Default <None>

The LDAP search filter to use for groups.

group_objectclass

Type string

Default groupOfNames

9.1. API Configuration options 627

Keystone Documentation, Release 21.0.2.dev4

The LDAP object class to use for groups. If setting this option to posixGroup, you may also be
interested in enabling the [ldap] group_members_are_ids option.

group_id_attribute

Type string

Default cn

The LDAP attribute mapped to group IDs in keystone. This must NOT be a multivalued attribute.
Group IDs are expected to be globally unique across keystone domains and URL-safe.

group_name_attribute

Type string

Default ou

The LDAP attribute mapped to group names in keystone. Group names are expected to be unique
only within a keystone domain and are not expected to be URL-safe.

group_member_attribute

Type string

Default member

The LDAP attribute used to indicate that a user is a member of the group.

group_members_are_ids

Type boolean

Default False

Enable this option if the members of the group object class are keystone user IDs rather than LDAP
DNs. This is the case when using posixGroup as the group object class in Open Directory.

group_desc_attribute

Type string

Default description

The LDAP attribute mapped to group descriptions in keystone.

group_attribute_ignore

Type list

Default []

List of group attributes to ignore on create and update. or whether a specific group attribute should
be filtered for list or show group.

group_additional_attribute_mapping

Type list

628 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default []

A list of LDAP attribute to keystone group attribute pairs used for mapping additional attributes
to groups in keystone. The expected format is <ldap_attr>:<group_attr>, where ldap_attr is the
attribute in the LDAP object and group_attr is the attribute which should appear in the identity
API.

group_ad_nesting

Type boolean

Default False

If enabled, group queries will use Active Directory specific filters for nested groups.

tls_cacertfile

Type string

Default <None>

An absolute path to a CA certificate file to use when communicating with LDAP servers. This
option will take precedence over [ldap] tls_cacertdir, so there is no reason to set both.

tls_cacertdir

Type string

Default <None>

An absolute path to a CA certificate directory to use when communicating with LDAP servers.
There is no reason to set this option if youve also set [ldap] tls_cacertfile.

use_tls

Type boolean

Default False

Enable TLS when communicating with LDAP servers. You should also set the [ldap] tls_cacertfile
and [ldap] tls_cacertdir options when using this option. Do not set this option if you are using
LDAP over SSL (LDAPS) instead of TLS.

tls_req_cert

Type string

Default demand

Valid Values demand, never, allow

Specifies which checks to perform against client certificates on incoming TLS sessions. If set to
demand, then a certificate will always be requested and required from the LDAP server. If set to
allow, then a certificate will always be requested but not required from the LDAP server. If set to
never, then a certificate will never be requested.

connection_timeout

9.1. API Configuration options 629

Keystone Documentation, Release 21.0.2.dev4

Type integer

Default -1

Minimum Value -1

The connection timeout to use with the LDAP server. A value of -1 means that connections will
never timeout.

use_pool

Type boolean

Default True

Enable LDAP connection pooling for queries to the LDAP server. There is typically no reason to
disable this.

pool_size

Type integer

Default 10

Minimum Value 1

The size of the LDAP connection pool. This option has no effect unless [ldap] use_pool is also
enabled.

pool_retry_max

Type integer

Default 3

Minimum Value 1

The maximum number of times to attempt connecting to the LDAP server before aborting. A value
of one makes only one connection attempt. This option has no effect unless [ldap] use_pool is also
enabled.

pool_retry_delay

Type floating point

Default 0.1

The number of seconds to wait before attempting to reconnect to the LDAP server. This option has
no effect unless [ldap] use_pool is also enabled.

pool_connection_timeout

Type integer

Default -1

Minimum Value -1

630 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

The connection timeout to use when pooling LDAP connections. A value of -1 means that con-
nections will never timeout. This option has no effect unless [ldap] use_pool is also enabled.

pool_connection_lifetime

Type integer

Default 600

Minimum Value 1

The maximum connection lifetime to the LDAP server in seconds. When this lifetime is exceeded,
the connection will be unbound and removed from the connection pool. This option has no effect
unless [ldap] use_pool is also enabled.

use_auth_pool

Type boolean

Default True

Enable LDAP connection pooling for end user authentication. There is typically no reason to
disable this.

auth_pool_size

Type integer

Default 100

Minimum Value 1

The size of the connection pool to use for end user authentication. This option has no effect unless
[ldap] use_auth_pool is also enabled.

auth_pool_connection_lifetime

Type integer

Default 60

Minimum Value 1

The maximum end user authentication connection lifetime to the LDAP server in seconds. When
this lifetime is exceeded, the connection will be unbound and removed from the connection pool.
This option has no effect unless [ldap] use_auth_pool is also enabled.

9.1. API Configuration options 631

Keystone Documentation, Release 21.0.2.dev4

memcache

dead_retry

Type integer

Default 300

Number of seconds memcached server is considered dead before it is tried again. This is used by
the key value store system.

Warning: This option is deprecated for removal since Y. Its value may be silently ignored in
the future.

Reason This option has no effect. Configure keystone.conf [cache]
memcache_dead_retry option to set the dead_retry of memcached instead.

socket_timeout

Type integer

Default 3

Timeout in seconds for every call to a server. This is used by the key value store system.

Warning: This option is deprecated for removal since T. Its value may be silently ignored in
the future.

Reason This option has no effect. Configure keystone.conf [cache]
memcache_socket_timeout option to set the socket_timeout of mem-
cached instead.

pool_maxsize

Type integer

Default 10

Max total number of open connections to every memcached server. This is used by the key value
store system.

Warning: This option is deprecated for removal since Y. Its value may be silently ignored in
the future.

Reason This option has no effect. Configure keystone.conf [cache]
memcache_pool_maxsize option to set the pool_maxsize of memcached
instead.

pool_unused_timeout

Type integer

632 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default 60

Number of seconds a connection to memcached is held unused in the pool before it is closed. This
is used by the key value store system.

Warning: This option is deprecated for removal since Y. Its value may be silently ignored in
the future.

Reason This option has no effect. Configure keystone.conf [cache]
memcache_pool_unused_timeout option to set the pool_unused_timeout
of memcached instead.

pool_connection_get_timeout

Type integer

Default 10

Number of seconds that an operation will wait to get a memcache client connection. This is used
by the key value store system.

Warning: This option is deprecated for removal since Y. Its value may be silently ignored in
the future.

Reason This option has no effect. Configure keystone.conf [cache]
memcache_pool_connection_get_timeout option to set the connec-
tion_get_timeout of memcached instead.

oauth1

driver

Type string

Default sql

Entry point for the OAuth backend driver in the keystone.oauth1 namespace. Typically, there is no
reason to set this option unless you are providing a custom entry point.

request_token_duration

Type integer

Default 28800

Minimum Value 0

Number of seconds for the OAuth Request Token to remain valid after being created. This is the
amount of time the user has to authorize the token. Setting this option to zero means that request
tokens will last forever.

access_token_duration

9.1. API Configuration options 633

Keystone Documentation, Release 21.0.2.dev4

Type integer

Default 86400

Minimum Value 0

Number of seconds for the OAuth Access Token to remain valid after being created. This is the
amount of time the consumer has to interact with the service provider (which is typically keystone).
Setting this option to zero means that access tokens will last forever.

oslo_messaging_amqp

container_name

Type string

Default <None>

Name for the AMQP container. must be globally unique. Defaults to a generated UUID

Table 19: Deprecated Variations
Group Name
amqp1 container_name

idle_timeout

Type integer

Default 0

Timeout for inactive connections (in seconds)

Table 20: Deprecated Variations
Group Name
amqp1 idle_timeout

trace

Type boolean

Default False

Debug: dump AMQP frames to stdout

Table 21: Deprecated Variations
Group Name
amqp1 trace

ssl

Type boolean

634 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default False

Attempt to connect via SSL. If no other ssl-related parameters are given, it will use the systems
CA-bundle to verify the servers certificate.

ssl_ca_file

Type string

Default ''

CA certificate PEM file used to verify the servers certificate

Table 22: Deprecated Variations
Group Name
amqp1 ssl_ca_file

ssl_cert_file

Type string

Default ''

Self-identifying certificate PEM file for client authentication

Table 23: Deprecated Variations
Group Name
amqp1 ssl_cert_file

ssl_key_file

Type string

Default ''

Private key PEM file used to sign ssl_cert_file certificate (optional)

Table 24: Deprecated Variations
Group Name
amqp1 ssl_key_file

ssl_key_password

Type string

Default <None>

Password for decrypting ssl_key_file (if encrypted)

Table 25: Deprecated Variations
Group Name
amqp1 ssl_key_password

9.1. API Configuration options 635

Keystone Documentation, Release 21.0.2.dev4

ssl_verify_vhost

Type boolean

Default False

By default SSL checks that the name in the servers certificate matches the hostname in the trans-
port_url. In some configurations it may be preferable to use the virtual hostname instead, for
example if the server uses the Server Name Indication TLS extension (rfc6066) to provide a cer-
tificate per virtual host. Set ssl_verify_vhost to True if the servers SSL certificate uses the virtual
host name instead of the DNS name.

sasl_mechanisms

Type string

Default ''

Space separated list of acceptable SASL mechanisms

Table 26: Deprecated Variations
Group Name
amqp1 sasl_mechanisms

sasl_config_dir

Type string

Default ''

Path to directory that contains the SASL configuration

Table 27: Deprecated Variations
Group Name
amqp1 sasl_config_dir

sasl_config_name

Type string

Default ''

Name of configuration file (without .conf suffix)

Table 28: Deprecated Variations
Group Name
amqp1 sasl_config_name

sasl_default_realm

Type string

636 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default ''

SASL realm to use if no realm present in username

connection_retry_interval

Type integer

Default 1

Minimum Value 1

Seconds to pause before attempting to re-connect.

connection_retry_backoff

Type integer

Default 2

Minimum Value 0

Increase the connection_retry_interval by this many seconds after each unsuccessful failover at-
tempt.

connection_retry_interval_max

Type integer

Default 30

Minimum Value 1

Maximum limit for connection_retry_interval + connection_retry_backoff

link_retry_delay

Type integer

Default 10

Minimum Value 1

Time to pause between re-connecting an AMQP 1.0 link that failed due to a recoverable error.

default_reply_retry

Type integer

Default 0

Minimum Value -1

The maximum number of attempts to re-send a reply message which failed due to a recoverable
error.

default_reply_timeout

Type integer

9.1. API Configuration options 637

Keystone Documentation, Release 21.0.2.dev4

Default 30

Minimum Value 5

The deadline for an rpc reply message delivery.

default_send_timeout

Type integer

Default 30

Minimum Value 5

The deadline for an rpc cast or call message delivery. Only used when caller does not provide a
timeout expiry.

default_notify_timeout

Type integer

Default 30

Minimum Value 5

The deadline for a sent notification message delivery. Only used when caller does not provide a
timeout expiry.

default_sender_link_timeout

Type integer

Default 600

Minimum Value 1

The duration to schedule a purge of idle sender links. Detach link after expiry.

addressing_mode

Type string

Default dynamic

Indicates the addressing mode used by the driver. Permitted values: legacy - use legacy non-
routable addressing routable - use routable addresses dynamic - use legacy addresses if the message
bus does not support routing otherwise use routable addressing

pseudo_vhost

Type boolean

Default True

Enable virtual host support for those message buses that do not natively support virtual hosting
(such as qpidd). When set to true the virtual host name will be added to all message bus addresses,
effectively creating a private subnet per virtual host. Set to False if the message bus supports virtual

638 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

hosting using the hostname field in the AMQP 1.0 Open performative as the name of the virtual
host.

server_request_prefix

Type string

Default exclusive

address prefix used when sending to a specific server

Table 29: Deprecated Variations
Group Name
amqp1 server_request_prefix

broadcast_prefix

Type string

Default broadcast

address prefix used when broadcasting to all servers

Table 30: Deprecated Variations
Group Name
amqp1 broadcast_prefix

group_request_prefix

Type string

Default unicast

address prefix when sending to any server in group

Table 31: Deprecated Variations
Group Name
amqp1 group_request_prefix

rpc_address_prefix

Type string

Default openstack.org/om/rpc

Address prefix for all generated RPC addresses

notify_address_prefix

Type string

Default openstack.org/om/notify

9.1. API Configuration options 639

Keystone Documentation, Release 21.0.2.dev4

Address prefix for all generated Notification addresses

multicast_address

Type string

Default multicast

Appended to the address prefix when sending a fanout message. Used by the message bus to
identify fanout messages.

unicast_address

Type string

Default unicast

Appended to the address prefix when sending to a particular RPC/Notification server. Used by the
message bus to identify messages sent to a single destination.

anycast_address

Type string

Default anycast

Appended to the address prefix when sending to a group of consumers. Used by the message bus
to identify messages that should be delivered in a round-robin fashion across consumers.

default_notification_exchange

Type string

Default <None>

Exchange name used in notification addresses. Exchange name resolution precedence: Tar-
get.exchange if set else default_notification_exchange if set else control_exchange if set else notify

default_rpc_exchange

Type string

Default <None>

Exchange name used in RPC addresses. Exchange name resolution precedence: Target.exchange
if set else default_rpc_exchange if set else control_exchange if set else rpc

reply_link_credit

Type integer

Default 200

Minimum Value 1

Window size for incoming RPC Reply messages.

rpc_server_credit

640 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Type integer

Default 100

Minimum Value 1

Window size for incoming RPC Request messages

notify_server_credit

Type integer

Default 100

Minimum Value 1

Window size for incoming Notification messages

pre_settled

Type multi-valued

Default rpc-cast

Default rpc-reply

Send messages of this type pre-settled. Pre-settled messages will not receive acknowledgement
from the peer. Note well: pre-settled messages may be silently discarded if the delivery fails.
Permitted values: rpc-call - send RPC Calls pre-settled rpc-reply- send RPC Replies pre-settled
rpc-cast - Send RPC Casts pre-settled notify - Send Notifications pre-settled

oslo_messaging_kafka

kafka_max_fetch_bytes

Type integer

Default 1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type floating point

Default 1.0

Default timeout(s) for Kafka consumers

pool_size

Type integer

Default 10

Pool Size for Kafka Consumers

9.1. API Configuration options 641

Keystone Documentation, Release 21.0.2.dev4

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_min_size

Type integer

Default 2

The pool size limit for connections expiration policy

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_ttl

Type integer

Default 1200

The time-to-live in sec of idle connections in the pool

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

consumer_group

Type string

Default oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type floating point

Default 0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

Type integer

Default 16384

642 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Size of batch for the producer async send

compression_codec

Type string

Default none

Valid Values none, gzip, snappy, lz4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit

Type boolean

Default False

Enable asynchronous consumer commits

max_poll_records

Type integer

Default 500

The maximum number of records returned in a poll call

security_protocol

Type string

Default PLAINTEXT

Valid Values PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type string

Default PLAIN

Mechanism when security protocol is SASL

ssl_cafile

Type string

Default ''

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type string

9.1. API Configuration options 643

Keystone Documentation, Release 21.0.2.dev4

Default ''

Client certificate PEM file used for authentication.

ssl_client_key_file

Type string

Default ''

Client key PEM file used for authentication.

ssl_client_key_password

Type string

Default ''

Client key password file used for authentication.

oslo_messaging_notifications

driver

Type multi-valued

Default ''

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

Table 32: Deprecated Variations
Group Name
DEFAULT notification_driver

transport_url

Type string

Default <None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 33: Deprecated Variations
Group Name
DEFAULT notification_transport_url

topics

Type list

Default ['notifications']

644 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

AMQP topic used for OpenStack notifications.

Table 34: Deprecated Variations
Group Name
rpc_notifier2 topics
DEFAULT notification_topics

retry

Type integer

Default -1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

oslo_messaging_rabbit

amqp_durable_queues

Type boolean

Default False

Use durable queues in AMQP. If rabbit_quorum_queue is enabled, queues will be durable and this
value will be ignored.

amqp_auto_delete

Type boolean

Default False

Auto-delete queues in AMQP.

Table 35: Deprecated Variations
Group Name
DEFAULT amqp_auto_delete

ssl

Type boolean

Default False

Connect over SSL.

Table 36: Deprecated Variations
Group Name
oslo_messaging_rabbit rabbit_use_ssl

9.1. API Configuration options 645

Keystone Documentation, Release 21.0.2.dev4

ssl_version

Type string

Default ''

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 37: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_version

ssl_key_file

Type string

Default ''

SSL key file (valid only if SSL enabled).

Table 38: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_keyfile

ssl_cert_file

Type string

Default ''

SSL cert file (valid only if SSL enabled).

Table 39: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_certfile

ssl_ca_file

Type string

Default ''

SSL certification authority file (valid only if SSL enabled).

Table 40: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_ca_certs

heartbeat_in_pthread

646 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Type boolean

Default True

Run the health check heartbeat thread through a native python thread by default. If this option
is equal to False then the health check heartbeat will inherit the execution model from the parent
process. For example if the parent process has monkey patched the stdlib by using eventlet/greenlet
then the heartbeat will be run through a green thread.

kombu_reconnect_delay

Type floating point

Default 1.0

Minimum Value 0.0

Maximum Value 4.5

How long to wait (in seconds) before reconnecting in response to an AMQP consumer cancel
notification.

Table 41: Deprecated Variations
Group Name
DEFAULT kombu_reconnect_delay

kombu_compression

Type string

Default <None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type integer

Default 60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 42: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_reconnect_timeout

kombu_failover_strategy

Type string

Default round-robin

Valid Values round-robin, shuffle

9.1. API Configuration options 647

Keystone Documentation, Release 21.0.2.dev4

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type string

Default AMQPLAIN

Valid Values PLAIN, AMQPLAIN, RABBIT-CR-DEMO

The RabbitMQ login method.

Table 43: Deprecated Variations
Group Name
DEFAULT rabbit_login_method

rabbit_retry_interval

Type integer

Default 1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type integer

Default 2

How long to backoff for between retries when connecting to RabbitMQ.

Table 44: Deprecated Variations
Group Name
DEFAULT rabbit_retry_backoff

rabbit_interval_max

Type integer

Default 30

Maximum interval of RabbitMQ connection retries. Default is 30 seconds.

rabbit_ha_queues

Type boolean

Default False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe the
RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-policy
argument when declaring a queue. If you just want to make sure that all queues (except those with

648 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA ^(?!amq.).*
{ha-mode: all}

Table 45: Deprecated Variations
Group Name
DEFAULT rabbit_ha_queues

rabbit_quorum_queue

Type boolean

Default False

Use quorum queues in RabbitMQ (x-queue-type: quorum). The quorum queue is a modern queue
type for RabbitMQ implementing a durable, replicated FIFO queue based on the Raft consensus
algorithm. It is available as of RabbitMQ 3.8.0. If set this option will conflict with the HA queues
(rabbit_ha_queues) aka mirrored queues, in other words the HA queues should be disabled,
quorum queues durable by default so the amqp_durable_queues opion is ignored when this option
enabled.

rabbit_transient_queues_ttl

Type integer

Default 1800

Minimum Value 1

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply and
fanout queues.

rabbit_qos_prefetch_count

Type integer

Default 0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

Type integer

Default 60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate

Type integer

Default 2

How often times during the heartbeat_timeout_threshold we check the heartbeat.

9.1. API Configuration options 649

Keystone Documentation, Release 21.0.2.dev4

direct_mandatory_flag

Type boolean

Default True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Mandatory flag no longer deactivable.

enable_cancel_on_failover

Type boolean

Default False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

oslo_middleware

max_request_body_size

Type integer

Default 114688

The maximum body size for each request, in bytes.

Table 46: Deprecated Variations
Group Name
DEFAULT osapi_max_request_body_size
DEFAULT max_request_body_size

secure_proxy_ssl_header

Type string

Default X-Forwarded-Proto

The HTTP Header that will be used to determine what the original request protocol scheme was,
even if it was hidden by a SSL termination proxy.

650 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

enable_proxy_headers_parsing

Type boolean

Default False

Whether the application is behind a proxy or not. This determines if the middleware should parse
the headers or not.

http_basic_auth_user_file

Type string

Default /etc/htpasswd

HTTP basic auth password file.

oslo_policy

enforce_scope

Type boolean

Default False

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced. If
the scopes do not match, an InvalidScope exception will be raised. If False, a message will be
logged informing operators that policies are being invoked with mismatching scope.

enforce_new_defaults

Type boolean

Default False

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token is
allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged to
enable this flag along with the enforce_scope flag so that you can get the benefits of new defaults
and scope_type together. If False, the deprecated policy check string is logically ORd with the
new policy check string, allowing for a graceful upgrade experience between releases with new
policies, which is the default behavior.

policy_file

Type string

Default policy.yaml

9.1. API Configuration options 651

Keystone Documentation, Release 21.0.2.dev4

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

Table 47: Deprecated Variations
Group Name
DEFAULT policy_file

policy_default_rule

Type string

Default default

Default rule. Enforced when a requested rule is not found.

Table 48: Deprecated Variations
Group Name
DEFAULT policy_default_rule

policy_dirs

Type multi-valued

Default policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

Table 49: Deprecated Variations
Group Name
DEFAULT policy_dirs

remote_content_type

Type string

Default application/x-www-form-urlencoded

Valid Values application/x-www-form-urlencoded, application/json

Content Type to send and receive data for REST based policy check

remote_ssl_verify_server_crt

Type boolean

Default False

server identity verification for REST based policy check

remote_ssl_ca_crt_file

652 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Type string

Default <None>

Absolute path to ca cert file for REST based policy check

remote_ssl_client_crt_file

Type string

Default <None>

Absolute path to client cert for REST based policy check

remote_ssl_client_key_file

Type string

Default <None>

Absolute path client key file REST based policy check

policy

driver

Type string

Default sql

Entry point for the policy backend driver in the keystone.policy namespace. Supplied drivers are
rules (which does not support any CRUD operations for the v3 policy API) and sql. Typically,
there is no reason to set this option unless you are providing a custom entry point.

list_limit

Type integer

Default <None>

Maximum number of entities that will be returned in a policy collection.

profiler

enabled

Type boolean

Default False

Enable the profiling for all services on this node.

Default value is False (fully disable the profiling feature).

Possible values:

9.1. API Configuration options 653

Keystone Documentation, Release 21.0.2.dev4

• True: Enables the feature

• False: Disables the feature. The profiling cannot be started via this project operations. If the
profiling is triggered by another project, this project part will be empty.

Table 50: Deprecated Variations
Group Name
profiler profiler_enabled

trace_sqlalchemy

Type boolean

Default False

Enable SQL requests profiling in services.

Default value is False (SQL requests wont be traced).

Possible values:

• True: Enables SQL requests profiling. Each SQL query will be part of the trace and can the
be analyzed by how much time was spent for that.

• False: Disables SQL requests profiling. The spent time is only shown on a higher level of
operations. Single SQL queries cannot be analyzed this way.

hmac_keys

Type string

Default SECRET_KEY

Secret key(s) to use for encrypting context data for performance profiling.

This string value should have the following format: <key1>[,<key2>,<keyn>], where each key is
some random string. A user who triggers the profiling via the REST API has to set one of these
keys in the headers of the REST API call to include profiling results of this node for this particular
project.

Both enabled flag and hmac_keys config options should be set to enable profiling. Also, to generate
correct profiling information across all services at least one key needs to be consistent between
OpenStack projects. This ensures it can be used from client side to generate the trace, containing
information from all possible resources.

connection_string

Type string

Default messaging://

Connection string for a notifier backend.

Default value is messaging:// which sets the notifier to oslo_messaging.

Examples of possible values:

• messaging:// - use oslo_messaging driver for sending spans.

654 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• redis://127.0.0.1:6379 - use redis driver for sending spans.

• mongodb://127.0.0.1:27017 - use mongodb driver for sending spans.

• elasticsearch://127.0.0.1:9200 - use elasticsearch driver for sending spans.

• jaeger://127.0.0.1:6831 - use jaeger tracing as driver for sending spans.

es_doc_type

Type string

Default notification

Document type for notification indexing in elasticsearch.

es_scroll_time

Type string

Default 2m

This parameter is a time value parameter (for example: es_scroll_time=2m), indicating for how
long the nodes that participate in the search will maintain relevant resources in order to continue
and support it.

es_scroll_size

Type integer

Default 10000

Elasticsearch splits large requests in batches. This parameter defines maximum size of each batch
(for example: es_scroll_size=10000).

socket_timeout

Type floating point

Default 0.1

Redissentinel provides a timeout option on the connections. This parameter defines that timeout
(for example: socket_timeout=0.1).

sentinel_service_name

Type string

Default mymaster

Redissentinel uses a service name to identify a master redis service. This parameter defines the
name (for example: sentinal_service_name=mymaster).

filter_error_trace

Type boolean

Default False

9.1. API Configuration options 655

Keystone Documentation, Release 21.0.2.dev4

Enable filter traces that contain error/exception to a separated place.

Default value is set to False.

Possible values:

• True: Enable filter traces that contain error/exception.

• False: Disable the filter.

receipt

expiration

Type integer

Default 300

Minimum Value 0

Maximum Value 86400

The amount of time that a receipt should remain valid (in seconds). This value should always be
very short, as it represents how long a user has to reattempt auth with the missing auth methods.

provider

Type string

Default fernet

Entry point for the receipt provider in the keystone.receipt.provider namespace. The receipt
provider controls the receipt construction and validation operations. Keystone includes just the
fernet receipt provider for now. fernet receipts do not need to be persisted at all, but require that
you run keystone-manage fernet_setup (also see the keystone-manage fernet_rotate command).

caching

Type boolean

Default True

Toggle for caching receipt creation and validation data. This has no effect unless global caching is
enabled, or if cache_on_issue is disabled as we only cache receipts on issue.

cache_time

Type integer

Default 300

Minimum Value 0

The number of seconds to cache receipt creation and validation data. This has no effect unless both
global and [receipt] caching are enabled.

cache_on_issue

656 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Type boolean

Default True

Enable storing issued receipt data to receipt validation cache so that first receipt validation doesnt
actually cause full validation cycle. This option has no effect unless global caching and receipt
caching are enabled.

resource

driver

Type string

Default sql

Entry point for the resource driver in the keystone.resource namespace. Only a sql driver is supplied
by keystone. Unless you are writing proprietary drivers for keystone, you do not need to set this
option.

caching

Type boolean

Default True

Toggle for resource caching. This has no effect unless global caching is enabled.

Table 51: Deprecated Variations
Group Name
assignment caching

cache_time

Type integer

Default <None>

Time to cache resource data in seconds. This has no effect unless global caching is enabled.

Table 52: Deprecated Variations
Group Name
assignment cache_time

list_limit

Type integer

Default <None>

9.1. API Configuration options 657

Keystone Documentation, Release 21.0.2.dev4

Maximum number of entities that will be returned in a resource collection.

Table 53: Deprecated Variations
Group Name
assignment list_limit

admin_project_domain_name

Type string

Default <None>

Name of the domain that owns the admin_project_name. If left unset, then there is no admin
project. [resource] admin_project_name must also be set to use this option.

admin_project_name

Type string

Default <None>

This is a special project which represents cloud-level administrator privileges across services. To-
kens scoped to this project will contain a true is_admin_project attribute to indicate to policy sys-
tems that the role assignments on that specific project should apply equally across every project. If
left unset, then there is no admin project, and thus no explicit means of cross-project role assign-
ments. [resource] admin_project_domain_name must also be set to use this option.

project_name_url_safe

Type string

Default off

Valid Values off, new, strict

This controls whether the names of projects are restricted from containing URL-reserved charac-
ters. If set to new, attempts to create or update a project with a URL-unsafe name will fail. If set
to strict, attempts to scope a token with a URL-unsafe project name will fail, thereby forcing all
project names to be updated to be URL-safe.

domain_name_url_safe

Type string

Default off

Valid Values off, new, strict

This controls whether the names of domains are restricted from containing URL-reserved charac-
ters. If set to new, attempts to create or update a domain with a URL-unsafe name will fail. If set
to strict, attempts to scope a token with a URL-unsafe domain name will fail, thereby forcing all
domain names to be updated to be URL-safe.

658 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

revoke

driver

Type string

Default sql

Entry point for the token revocation backend driver in the keystone.revoke namespace. Keystone
only provides a sql driver, so there is no reason to set this option unless you are providing a custom
entry point.

expiration_buffer

Type integer

Default 1800

Minimum Value 0

The number of seconds after a token has expired before a corresponding revocation event may be
purged from the backend.

caching

Type boolean

Default True

Toggle for revocation event caching. This has no effect unless global caching is enabled.

cache_time

Type integer

Default 3600

Time to cache the revocation list and the revocation events (in seconds). This has no effect unless
global and [revoke] caching are both enabled.

Table 54: Deprecated Variations
Group Name
token revocation_cache_time

role

driver

Type string

Default <None>

Entry point for the role backend driver in the keystone.role namespace. Keystone only provides a
sql driver, so theres no reason to change this unless you are providing a custom entry point.

9.1. API Configuration options 659

Keystone Documentation, Release 21.0.2.dev4

caching

Type boolean

Default True

Toggle for role caching. This has no effect unless global caching is enabled. In a typical deploy-
ment, there is no reason to disable this.

cache_time

Type integer

Default <None>

Time to cache role data, in seconds. This has no effect unless both global caching and [role]
caching are enabled.

list_limit

Type integer

Default <None>

Maximum number of entities that will be returned in a role collection. This may be useful to tune
if you have a large number of discrete roles in your deployment.

saml

assertion_expiration_time

Type integer

Default 3600

Determines the lifetime for any SAML assertions generated by keystone, using NotOnOrAfter at-
tributes.

xmlsec1_binary

Type string

Default xmlsec1

Name of, or absolute path to, the binary to be used for XML signing. Although only the XML
Security Library (xmlsec1) is supported, it may have a non-standard name or path on your system.
If keystone cannot find the binary itself, you may need to install the appropriate package, use this
option to specify an absolute path, or adjust keystones PATH environment variable.

certfile

Type string

Default /etc/keystone/ssl/certs/signing_cert.pem

660 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Absolute path to the public certificate file to use for SAML signing. The value cannot contain a
comma (,).

keyfile

Type string

Default /etc/keystone/ssl/private/signing_key.pem

Absolute path to the private key file to use for SAML signing. The value cannot contain a comma
(,).

idp_entity_id

Type URI

Default <None>

This is the unique entity identifier of the identity provider (keystone) to use when generating SAML
assertions. This value is required to generate identity provider metadata and must be a URI (a URL
is recommended). For example: https://keystone.example.com/v3/OS-FEDERATION/saml2/idp.

idp_sso_endpoint

Type URI

Default <None>

This is the single sign-on (SSO) service location of the identity provider which accepts HTTP
POST requests. A value is required to generate identity provider metadata. For example:
https://keystone.example.com/v3/OS-FEDERATION/saml2/sso.

idp_lang

Type string

Default en

This is the language used by the identity providers organization.

idp_organization_name

Type string

Default SAML Identity Provider

This is the name of the identity providers organization.

idp_organization_display_name

Type string

Default OpenStack SAML Identity Provider

This is the name of the identity providers organization to be displayed.

idp_organization_url

9.1. API Configuration options 661

Keystone Documentation, Release 21.0.2.dev4

Type URI

Default https://example.com/

This is the URL of the identity providers organization. The URL referenced here should be useful
to humans.

idp_contact_company

Type string

Default Example, Inc.

This is the company name of the identity providers contact person.

idp_contact_name

Type string

Default SAML Identity Provider Support

This is the given name of the identity providers contact person.

idp_contact_surname

Type string

Default Support

This is the surname of the identity providers contact person.

idp_contact_email

Type string

Default support@example.com

This is the email address of the identity providers contact person.

idp_contact_telephone

Type string

Default +1 800 555 0100

This is the telephone number of the identity providers contact person.

idp_contact_type

Type string

Default other

Valid Values technical, support, administrative, billing, other

This is the type of contact that best describes the identity providers contact person.

idp_metadata_path

662 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Type string

Default /etc/keystone/saml2_idp_metadata.xml

Absolute path to the identity provider metadata file. This file should be generated with the keystone-
manage saml_idp_metadata command. There is typically no reason to change this value.

relay_state_prefix

Type string

Default ss:mem:

The prefix of the RelayState SAML attribute to use when generating enhanced client and proxy
(ECP) assertions. In a typical deployment, there is no reason to change this value.

security_compliance

disable_user_account_days_inactive

Type integer

Default <None>

Minimum Value 1

The maximum number of days a user can go without authenticating before being considered in-
active and automatically disabled (locked). This feature is disabled by default; set any value to
enable it. This feature depends on the sql backend for the [identity] driver. When a user exceeds
this threshold and is considered inactive, the users enabled attribute in the HTTP API may not
match the value of the users enabled column in the user table.

lockout_failure_attempts

Type integer

Default <None>

Minimum Value 1

The maximum number of times that a user can fail to authenticate before the user account is locked
for the number of seconds specified by [security_compliance] lockout_duration. This feature is
disabled by default. If this feature is enabled and [security_compliance] lockout_duration is not
set, then users may be locked out indefinitely until the user is explicitly enabled via the API. This
feature depends on the sql backend for the [identity] driver.

lockout_duration

Type integer

Default 1800

Minimum Value 1

9.1. API Configuration options 663

Keystone Documentation, Release 21.0.2.dev4

The number of seconds a user account will be locked when the maximum number of failed
authentication attempts (as specified by [security_compliance] lockout_failure_attempts) is ex-
ceeded. Setting this option will have no effect unless you also set [security_compliance] lock-
out_failure_attempts to a non-zero value. This feature depends on the sql backend for the [identity]
driver.

password_expires_days

Type integer

Default <None>

Minimum Value 1

The number of days for which a password will be considered valid before requiring it to be changed.
This feature is disabled by default. If enabled, new password changes will have an expiration date,
however existing passwords would not be impacted. This feature depends on the sql backend for
the [identity] driver.

unique_last_password_count

Type integer

Default 0

Minimum Value 0

This controls the number of previous user password iterations to keep in history, in order to enforce
that newly created passwords are unique. The total number which includes the new password
should not be greater or equal to this value. Setting the value to zero (the default) disables this
feature. Thus, to enable this feature, values must be greater than 0. This feature depends on the sql
backend for the [identity] driver.

minimum_password_age

Type integer

Default 0

Minimum Value 0

The number of days that a password must be used before the user can change it. This prevents users
from changing their passwords immediately in order to wipe out their password history and reuse
an old password. This feature does not prevent administrators from manually resetting passwords.
It is disabled by default and allows for immediate password changes. This feature depends on the
sql backend for the [identity] driver. Note: If [security_compliance] password_expires_days is
set, then the value for this option should be less than the password_expires_days.

password_regex

Type string

Default <None>

The regular expression used to validate password strength requirements. By default, the regular
expression will match any password. The following is an example of a pattern which requires at

664 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

least 1 letter, 1 digit, and have a minimum length of 7 characters: ^(?=.*\d)(?=.*[a-zA-Z]).{7,}$
This feature depends on the sql backend for the [identity] driver.

password_regex_description

Type string

Default <None>

Describe your password regular expression here in language for humans. If a password fails to
match the regular expression, the contents of this configuration variable will be returned to users
to explain why their requested password was insufficient.

change_password_upon_first_use

Type boolean

Default False

Enabling this option requires users to change their password when the user is created, or upon
administrative reset. Before accessing any services, affected users will have to change their pass-
word. To ignore this requirement for specific users, such as service users, set the options attribute
ignore_change_password_upon_first_use to True for the desired user via the update user API. This
feature is disabled by default. This feature is only applicable with the sql backend for the [identity]
driver.

shadow_users

driver

Type string

Default sql

Entry point for the shadow users backend driver in the keystone.identity.shadow_users namespace.
This driver is used for persisting local user references to externally-managed identities (via feder-
ation, LDAP, etc). Keystone only provides a sql driver, so there is no reason to change this option
unless you are providing a custom entry point.

token

expiration

Type integer

Default 3600

Minimum Value 0

Maximum Value 9223372036854775807

The amount of time that a token should remain valid (in seconds). Drastically reducing this value
may break long-running operations that involve multiple services to coordinate together, and will
force users to authenticate with keystone more frequently. Drastically increasing this value will

9.1. API Configuration options 665

Keystone Documentation, Release 21.0.2.dev4

increase the number of tokens that will be simultaneously valid. Keystone tokens are also bearer
tokens, so a shorter duration will also reduce the potential security impact of a compromised token.

provider

Type string

Default fernet

Entry point for the token provider in the keystone.token.provider namespace. The token provider
controls the token construction, validation, and revocation operations. Supported upstream
providers are fernet and jws. Neither fernet or jws tokens require persistence and both require
additional setup. If using fernet, youre required to run keystone-manage fernet_setup, which cre-
ates symmetric keys used to encrypt tokens. If using jws, youre required to generate an ECDSA
keypair using a SHA-256 hash algorithm for signing and validating token, which can be done with
keystone-manage create_jws_keypair. Note that fernet tokens are encrypted and jws tokens are
only signed. Please be sure to consider this if your deployment has security requirements regard-
ing payload contents used to generate token IDs.

caching

Type boolean

Default True

Toggle for caching token creation and validation data. This has no effect unless global caching is
enabled.

cache_time

Type integer

Default <None>

Minimum Value 0

Maximum Value 9223372036854775807

The number of seconds to cache token creation and validation data. This has no effect unless both
global and [token] caching are enabled.

revoke_by_id

Type boolean

Default True

This toggles support for revoking individual tokens by the token identifier and thus various token
enumeration operations (such as listing all tokens issued to a specific user). These operations are
used to determine the list of tokens to consider revoked. Do not disable this option if youre using
the kvs [revoke] driver.

allow_rescope_scoped_token

Type boolean

Default True

666 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

This toggles whether scoped tokens may be re-scoped to a new project or domain, thereby pre-
venting users from exchanging a scoped token (including those with a default project scope) for
any other token. This forces users to either authenticate for unscoped tokens (and later exchange
that unscoped token for tokens with a more specific scope) or to provide their credentials in every
request for a scoped token to avoid re-scoping altogether.

cache_on_issue

Type boolean

Default True

Enable storing issued token data to token validation cache so that first token validation doesnt
actually cause full validation cycle. This option has no effect unless global caching is enabled and
will still cache tokens even if [token] caching = False.

Warning: This option is deprecated for removal since S. Its value may be silently ignored in
the future.

Reason Keystone already exposes a configuration option for caching tokens. Hav-
ing a separate configuration option to cache tokens when they are issued is
redundant, unnecessarily complicated, and is misleading if token caching is
disabled because tokens will still be pre-cached by default when they are
issued. The ability to pre-cache tokens when they are issued is going to
rely exclusively on the keystone.conf [token] caching option in the
future.

allow_expired_window

Type integer

Default 172800

This controls the number of seconds that a token can be retrieved for beyond the built-in expiry
time. This allows long running operations to succeed. Defaults to two days.

tokenless_auth

trusted_issuer

Type multi-valued

Default ''

The list of distinguished names which identify trusted issuers of client certificates allowed to use
X.509 tokenless authorization. If the option is absent then no certificates will be allowed. The
format for the values of a distinguished name (DN) must be separated by a comma and contain
no spaces. Furthermore, because an individual DN may contain commas, this configuration op-
tion may be repeated multiple times to represent multiple values. For example, keystone.conf
would include two consecutive lines in order to trust two different DNs, such as trusted_issuer =
CN=john,OU=keystone,O=openstack and trusted_issuer = CN=mary,OU=eng,O=abc.

9.1. API Configuration options 667

Keystone Documentation, Release 21.0.2.dev4

protocol

Type string

Default x509

The federated protocol ID used to represent X.509 tokenless authorization. This is used in combi-
nation with the value of [tokenless_auth] issuer_attribute to find a corresponding federated map-
ping. In a typical deployment, there is no reason to change this value.

issuer_attribute

Type string

Default SSL_CLIENT_I_DN

The name of the WSGI environment variable used to pass the issuer of the client certificate to
keystone. This attribute is used as an identity provider ID for the X.509 tokenless authorization
along with the protocol to look up its corresponding mapping. In a typical deployment, there is no
reason to change this value.

totp

included_previous_windows

Type integer

Default 1

Minimum Value 0

Maximum Value 10

The number of previous windows to check when processing TOTP passcodes.

trust

allow_redelegation

Type boolean

Default False

Allows authorization to be redelegated from one user to another, effectively chaining trusts to-
gether. When disabled, the remaining_uses attribute of a trust is constrained to be zero.

max_redelegation_count

Type integer

Default 3

Maximum number of times that authorization can be redelegated from one user to another in a
chain of trusts. This number may be reduced further for a specific trust.

668 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

driver

Type string

Default sql

Entry point for the trust backend driver in the keystone.trust namespace. Keystone only provides a
sql driver, so there is no reason to change this unless you are providing a custom entry point.

unified_limit

driver

Type string

Default sql

Entry point for the unified limit backend driver in the keystone.unified_limit namespace. Keystone
only provides a sql driver, so theres no reason to change this unless you are providing a custom
entry point.

caching

Type boolean

Default True

Toggle for unified limit caching. This has no effect unless global caching is enabled. In a typical
deployment, there is no reason to disable this.

cache_time

Type integer

Default <None>

Time to cache unified limit data, in seconds. This has no effect unless both global caching and
[unified_limit] caching are enabled.

list_limit

Type integer

Default <None>

Maximum number of entities that will be returned in a unified limit collection. This may be useful
to tune if you have a large number of unified limits in your deployment.

enforcement_model

Type string

Default flat

Valid Values flat, strict_two_level

9.1. API Configuration options 669

Keystone Documentation, Release 21.0.2.dev4

The enforcement model to use when validating limits associated to projects. Enforcement models
will behave differently depending on the existing limits, which may result in backwards incompat-
ible changes if a model is switched in a running deployment.

wsgi

debug_middleware

Type boolean

Default False

If set to true, this enables the oslo debug middleware in Keystone. This Middleware prints a lot
of information about the request and the response. It is useful for getting information about the
data on the wire (decoded) and passed to the WSGI application pipeline. This middleware has
no effect on the debug setting in the [DEFAULT] section of the config file or setting Keystones
log-level to DEBUG; it is specific to debugging the WSGI data as it enters and leaves Keystone
(specific request-related data). This option is used for introspection on the request and response
data between the web server (apache, nginx, etc) and Keystone. This middleware is inserted as
the first element in the middleware chain and will show the data closest to the wire. WARNING:
NOT INTENDED FOR USE IN PRODUCTION. THIS MIDDLEWARE CAN AND WILL EMIT
SENSITIVE/PRIVILEGED DATA.

9.1.2 Domain-specific Identity drivers

The Identity service supports domain-specific Identity drivers installed on an SQL or LDAP back end,
and supports domain-specific Identity configuration options, which are stored in domain-specific config-
uration files. See Domain-specific configuration for more information.

9.2 Policy configuration

Warning: JSON formatted policy file is deprecated since Keystone 19.0.0 (Wallaby). This
oslopolicy-convert-json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML
in a backward-compatible way.

9.2.1 Configuration

The following is an overview of all available policies in Keystone.

670 Chapter 9. Keystone Configuration Options

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Keystone Documentation, Release 21.0.2.dev4

keystone

admin_required

Default role:admin or is_admin:1

(no description provided)

service_role

Default role:service

(no description provided)

service_or_admin

Default rule:admin_required or rule:service_role

(no description provided)

owner

Default user_id:%(user_id)s

(no description provided)

admin_or_owner

Default rule:admin_required or rule:owner

(no description provided)

token_subject

Default user_id:%(target.token.user_id)s

(no description provided)

admin_or_token_subject

Default rule:admin_required or rule:token_subject

(no description provided)

service_admin_or_token_subject

Default rule:service_or_admin or rule:token_subject

(no description provided)

identity:get_access_rule

Default (role:reader and system_scope:all) or user_id:%(target.
user.id)s

Operations

• GET /v3/users/{user_id}/access_rules/{access_rule_id}

• HEAD /v3/users/{user_id}/access_rules/{access_rule_id}

Scope Types

• system

• project

9.2. Policy configuration 671

Keystone Documentation, Release 21.0.2.dev4

Show access rule details.

identity:list_access_rules

Default (role:reader and system_scope:all) or user_id:%(target.
user.id)s

Operations

• GET /v3/users/{user_id}/access_rules

• HEAD /v3/users/{user_id}/access_rules

Scope Types

• system

• project

List access rules for a user.

identity:delete_access_rule

Default (role:admin and system_scope:all) or user_id:%(target.
user.id)s

Operations

• DELETE /v3/users/{user_id}/access_rules/{access_rule_id}

Scope Types

• system

• project

Delete an access_rule.

identity:authorize_request_token

Default rule:admin_required

Operations

• PUT /v3/OS-OAUTH1/authorize/{request_token_id}

Scope Types

• project

Authorize OAUTH1 request token.

identity:get_access_token

Default rule:admin_required

Operations

• GET /v3/users/{user_id}/OS-OAUTH1/access_tokens/
{access_token_id}

Scope Types

• project

Get OAUTH1 access token for user by access token ID.

672 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

identity:get_access_token_role

Default rule:admin_required

Operations

• GET /v3/users/{user_id}/OS-OAUTH1/access_tokens/
{access_token_id}/roles/{role_id}

Scope Types

• project

Get role for user OAUTH1 access token.

identity:list_access_tokens

Default rule:admin_required

Operations

• GET /v3/users/{user_id}/OS-OAUTH1/access_tokens

Scope Types

• project

List OAUTH1 access tokens for user.

identity:list_access_token_roles

Default rule:admin_required

Operations

• GET /v3/users/{user_id}/OS-OAUTH1/access_tokens/
{access_token_id}/roles

Scope Types

• project

List OAUTH1 access token roles.

identity:delete_access_token

Default rule:admin_required

Operations

• DELETE /v3/users/{user_id}/OS-OAUTH1/access_tokens/
{access_token_id}

Scope Types

• project

Delete OAUTH1 access token.

identity:get_application_credential

Default (role:reader and system_scope:all) or rule:owner

Operations

• GET /v3/users/{user_id}/application_credentials/
{application_credential_id}

9.2. Policy configuration 673

Keystone Documentation, Release 21.0.2.dev4

• HEAD /v3/users/{user_id}/application_credentials/
{application_credential_id}

Scope Types

• system

• project

Show application credential details.

identity:list_application_credentials

Default (role:reader and system_scope:all) or rule:owner

Operations

• GET /v3/users/{user_id}/application_credentials

• HEAD /v3/users/{user_id}/application_credentials

Scope Types

• system

• project

List application credentials for a user.

identity:create_application_credential

Default user_id:%(user_id)s

Operations

• POST /v3/users/{user_id}/application_credentials

Scope Types

• project

Create an application credential.

identity:delete_application_credential

Default (role:admin and system_scope:all) or rule:owner

Operations

• DELETE /v3/users/{user_id}/application_credentials/
{application_credential_id}

Scope Types

• system

• project

Delete an application credential.

identity:get_auth_catalog

Default <empty string>

Operations

• GET /v3/auth/catalog

674 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• HEAD /v3/auth/catalog

Get service catalog.

identity:get_auth_projects

Default <empty string>

Operations

• GET /v3/auth/projects

• HEAD /v3/auth/projects

List all projects a user has access to via role assignments.

identity:get_auth_domains

Default <empty string>

Operations

• GET /v3/auth/domains

• HEAD /v3/auth/domains

List all domains a user has access to via role assignments.

identity:get_auth_system

Default <empty string>

Operations

• GET /v3/auth/system

• HEAD /v3/auth/system

List systems a user has access to via role assignments.

identity:get_consumer

Default role:reader and system_scope:all

Operations

• GET /v3/OS-OAUTH1/consumers/{consumer_id}

Scope Types

• system

Show OAUTH1 consumer details.

identity:list_consumers

Default role:reader and system_scope:all

Operations

• GET /v3/OS-OAUTH1/consumers

Scope Types

• system

List OAUTH1 consumers.

9.2. Policy configuration 675

Keystone Documentation, Release 21.0.2.dev4

identity:create_consumer

Default role:admin and system_scope:all

Operations

• POST /v3/OS-OAUTH1/consumers

Scope Types

• system

Create OAUTH1 consumer.

identity:update_consumer

Default role:admin and system_scope:all

Operations

• PATCH /v3/OS-OAUTH1/consumers/{consumer_id}

Scope Types

• system

Update OAUTH1 consumer.

identity:delete_consumer

Default role:admin and system_scope:all

Operations

• DELETE /v3/OS-OAUTH1/consumers/{consumer_id}

Scope Types

• system

Delete OAUTH1 consumer.

identity:get_credential

Default (role:reader and system_scope:all) or user_id:%(target.
credential.user_id)s

Operations

• GET /v3/credentials/{credential_id}

Scope Types

• system

• project

Show credentials details.

identity:list_credentials

Default (role:reader and system_scope:all) or user_id:%(target.
credential.user_id)s

Operations

• GET /v3/credentials

676 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Scope Types

• system

• project

List credentials.

identity:create_credential

Default (role:admin and system_scope:all) or user_id:%(target.
credential.user_id)s

Operations

• POST /v3/credentials

Scope Types

• system

• project

Create credential.

identity:update_credential

Default (role:admin and system_scope:all) or user_id:%(target.
credential.user_id)s

Operations

• PATCH /v3/credentials/{credential_id}

Scope Types

• system

• project

Update credential.

identity:delete_credential

Default (role:admin and system_scope:all) or user_id:%(target.
credential.user_id)s

Operations

• DELETE /v3/credentials/{credential_id}

Scope Types

• system

• project

Delete credential.

identity:get_domain

Default (role:reader and system_scope:all) or token.domain.
id:%(target.domain.id)s or token.project.domain.id:%(target.
domain.id)s

Operations

9.2. Policy configuration 677

Keystone Documentation, Release 21.0.2.dev4

• GET /v3/domains/{domain_id}

Scope Types

• system

• domain

• project

Show domain details.

identity:list_domains

Default role:reader and system_scope:all

Operations

• GET /v3/domains

Scope Types

• system

List domains.

identity:create_domain

Default role:admin and system_scope:all

Operations

• POST /v3/domains

Scope Types

• system

Create domain.

identity:update_domain

Default role:admin and system_scope:all

Operations

• PATCH /v3/domains/{domain_id}

Scope Types

• system

Update domain.

identity:delete_domain

Default role:admin and system_scope:all

Operations

• DELETE /v3/domains/{domain_id}

Scope Types

• system

Delete domain.

678 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

identity:create_domain_config

Default role:admin and system_scope:all

Operations

• PUT /v3/domains/{domain_id}/config

Scope Types

• system

Create domain configuration.

identity:get_domain_config

Default role:reader and system_scope:all

Operations

• GET /v3/domains/{domain_id}/config

• HEAD /v3/domains/{domain_id}/config

• GET /v3/domains/{domain_id}/config/{group}

• HEAD /v3/domains/{domain_id}/config/{group}

• GET /v3/domains/{domain_id}/config/{group}/{option}

• HEAD /v3/domains/{domain_id}/config/{group}/{option}

Scope Types

• system

Get the entire domain configuration for a domain, an option group within a domain, or a specific
configuration option within a group for a domain.

identity:get_security_compliance_domain_config

Default <empty string>

Operations

• GET /v3/domains/{domain_id}/config/security_compliance

• HEAD /v3/domains/{domain_id}/config/security_compliance

• GET /v3/domains/{domain_id}/config/security_compliance/
{option}

• HEAD /v3/domains/{domain_id}/config/security_compliance/
{option}

Scope Types

• system

• domain

• project

Get security compliance domain configuration for either a domain or a specific option in a domain.

identity:update_domain_config

9.2. Policy configuration 679

Keystone Documentation, Release 21.0.2.dev4

Default role:admin and system_scope:all

Operations

• PATCH /v3/domains/{domain_id}/config

• PATCH /v3/domains/{domain_id}/config/{group}

• PATCH /v3/domains/{domain_id}/config/{group}/{option}

Scope Types

• system

Update domain configuration for either a domain, specific group or a specific option in a group.

identity:delete_domain_config

Default role:admin and system_scope:all

Operations

• DELETE /v3/domains/{domain_id}/config

• DELETE /v3/domains/{domain_id}/config/{group}

• DELETE /v3/domains/{domain_id}/config/{group}/{option}

Scope Types

• system

Delete domain configuration for either a domain, specific group or a specific option in a group.

identity:get_domain_config_default

Default role:reader and system_scope:all

Operations

• GET /v3/domains/config/default

• HEAD /v3/domains/config/default

• GET /v3/domains/config/{group}/default

• HEAD /v3/domains/config/{group}/default

• GET /v3/domains/config/{group}/{option}/default

• HEAD /v3/domains/config/{group}/{option}/default

Scope Types

• system

Get domain configuration default for either a domain, specific group or a specific option in a group.

identity:ec2_get_credential

Default (role:reader and system_scope:all) or user_id:%(target.
credential.user_id)s

Operations

• GET /v3/users/{user_id}/credentials/OS-EC2/{credential_id}

Scope Types

680 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• system

• project

Show ec2 credential details.

identity:ec2_list_credentials

Default (role:reader and system_scope:all) or rule:owner

Operations

• GET /v3/users/{user_id}/credentials/OS-EC2

Scope Types

• system

• project

List ec2 credentials.

identity:ec2_create_credential

Default (role:admin and system_scope:all) or rule:owner

Operations

• POST /v3/users/{user_id}/credentials/OS-EC2

Scope Types

• system

• project

Create ec2 credential.

identity:ec2_delete_credential

Default (role:admin and system_scope:all) or user_id:%(target.
credential.user_id)s

Operations

• DELETE /v3/users/{user_id}/credentials/OS-EC2/
{credential_id}

Scope Types

• system

• project

Delete ec2 credential.

identity:get_endpoint

Default role:reader and system_scope:all

Operations

• GET /v3/endpoints/{endpoint_id}

Scope Types

• system

9.2. Policy configuration 681

Keystone Documentation, Release 21.0.2.dev4

Show endpoint details.

identity:list_endpoints

Default role:reader and system_scope:all

Operations

• GET /v3/endpoints

Scope Types

• system

List endpoints.

identity:create_endpoint

Default role:admin and system_scope:all

Operations

• POST /v3/endpoints

Scope Types

• system

Create endpoint.

identity:update_endpoint

Default role:admin and system_scope:all

Operations

• PATCH /v3/endpoints/{endpoint_id}

Scope Types

• system

Update endpoint.

identity:delete_endpoint

Default role:admin and system_scope:all

Operations

• DELETE /v3/endpoints/{endpoint_id}

Scope Types

• system

Delete endpoint.

identity:create_endpoint_group

Default role:admin and system_scope:all

Operations

• POST /v3/OS-EP-FILTER/endpoint_groups

Scope Types

682 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• system

Create endpoint group.

identity:list_endpoint_groups

Default role:reader and system_scope:all

Operations

• GET /v3/OS-EP-FILTER/endpoint_groups

Scope Types

• system

List endpoint groups.

identity:get_endpoint_group

Default role:reader and system_scope:all

Operations

• GET /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}

• HEAD /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}

Scope Types

• system

Get endpoint group.

identity:update_endpoint_group

Default role:admin and system_scope:all

Operations

• PATCH /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}

Scope Types

• system

Update endpoint group.

identity:delete_endpoint_group

Default role:admin and system_scope:all

Operations

• DELETE /v3/OS-EP-FILTER/endpoint_groups/
{endpoint_group_id}

Scope Types

• system

Delete endpoint group.

identity:list_projects_associated_with_endpoint_group

Default role:reader and system_scope:all

Operations

9.2. Policy configuration 683

Keystone Documentation, Release 21.0.2.dev4

• GET /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/
projects

Scope Types

• system

List all projects associated with a specific endpoint group.

identity:list_endpoints_associated_with_endpoint_group

Default role:reader and system_scope:all

Operations

• GET /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/
endpoints

Scope Types

• system

List all endpoints associated with an endpoint group.

identity:get_endpoint_group_in_project

Default role:reader and system_scope:all

Operations

• GET /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/
projects/{project_id}

• HEAD /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/
projects/{project_id}

Scope Types

• system

Check if an endpoint group is associated with a project.

identity:list_endpoint_groups_for_project

Default role:reader and system_scope:all

Operations

• GET /v3/OS-EP-FILTER/projects/{project_id}/endpoint_groups

Scope Types

• system

List endpoint groups associated with a specific project.

identity:add_endpoint_group_to_project

Default role:admin and system_scope:all

Operations

• PUT /v3/OS-EP-FILTER/endpoint_groups/{endpoint_group_id}/
projects/{project_id}

Scope Types

684 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• system

Allow a project to access an endpoint group.

identity:remove_endpoint_group_from_project

Default role:admin and system_scope:all

Operations

• DELETE /v3/OS-EP-FILTER/endpoint_groups/
{endpoint_group_id}/projects/{project_id}

Scope Types

• system

Remove endpoint group from project.

identity:check_grant

Default (role:reader and system_scope:all) or ((role:reader and
domain_id:%(target.user.domain_id)s and domain_id:%(target.
project.domain_id)s) or (role:reader and domain_id:%(target.
user.domain_id)s and domain_id:%(target.domain.id)s) or
(role:reader and domain_id:%(target.group.domain_id)s and
domain_id:%(target.project.domain_id)s) or (role:reader and
domain_id:%(target.group.domain_id)s and domain_id:%(target.
domain.id)s)) and (domain_id:%(target.role.domain_id)s or
None:%(target.role.domain_id)s)

Operations

• HEAD /v3/projects/{project_id}/users/{user_id}/roles/
{role_id}

• GET /v3/projects/{project_id}/users/{user_id}/roles/
{role_id}

• HEAD /v3/projects/{project_id}/groups/{group_id}/roles/
{role_id}

• GET /v3/projects/{project_id}/groups/{group_id}/roles/
{role_id}

• HEAD /v3/domains/{domain_id}/users/{user_id}/roles/
{role_id}

• GET /v3/domains/{domain_id}/users/{user_id}/roles/
{role_id}

• HEAD /v3/domains/{domain_id}/groups/{group_id}/roles/
{role_id}

• GET /v3/domains/{domain_id}/groups/{group_id}/roles/
{role_id}

• HEAD /v3/OS-INHERIT/projects/{project_id}/users/{user_id}/
roles/{role_id}/inherited_to_projects

• GET /v3/OS-INHERIT/projects/{project_id}/users/{user_id}/
roles/{role_id}/inherited_to_projects

9.2. Policy configuration 685

Keystone Documentation, Release 21.0.2.dev4

• HEAD /v3/OS-INHERIT/projects/{project_id}/groups/
{group_id}/roles/{role_id}/inherited_to_projects

• GET /v3/OS-INHERIT/projects/{project_id}/groups/
{group_id}/roles/{role_id}/inherited_to_projects

• HEAD /v3/OS-INHERIT/domains/{domain_id}/users/{user_id}/
roles/{role_id}/inherited_to_projects

• GET /v3/OS-INHERIT/domains/{domain_id}/users/{user_id}/
roles/{role_id}/inherited_to_projects

• HEAD /v3/OS-INHERIT/domains/{domain_id}/groups/{group_id}/
roles/{role_id}/inherited_to_projects

• GET /v3/OS-INHERIT/domains/{domain_id}/groups/{group_id}/
roles/{role_id}/inherited_to_projects

Scope Types

• system

• domain

Check a role grant between a target and an actor. A target can be either a domain or a project. An
actor can be either a user or a group. These terms also apply to the OS-INHERIT APIs, where
grants on the target are inherited to all projects in the subtree, if applicable.

identity:list_grants

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.user.domain_id)s and domain_id:%(target.
project.domain_id)s) or (role:reader and domain_id:%(target.
user.domain_id)s and domain_id:%(target.domain.id)s) or
(role:reader and domain_id:%(target.group.domain_id)s and
domain_id:%(target.project.domain_id)s) or (role:reader and
domain_id:%(target.group.domain_id)s and domain_id:%(target.
domain.id)s)

Operations

• GET /v3/projects/{project_id}/users/{user_id}/roles

• HEAD /v3/projects/{project_id}/users/{user_id}/roles

• GET /v3/projects/{project_id}/groups/{group_id}/roles

• HEAD /v3/projects/{project_id}/groups/{group_id}/roles

• GET /v3/domains/{domain_id}/users/{user_id}/roles

• HEAD /v3/domains/{domain_id}/users/{user_id}/roles

• GET /v3/domains/{domain_id}/groups/{group_id}/roles

• HEAD /v3/domains/{domain_id}/groups/{group_id}/roles

• GET /v3/OS-INHERIT/domains/{domain_id}/groups/{group_id}/
roles/inherited_to_projects

• GET /v3/OS-INHERIT/domains/{domain_id}/users/{user_id}/
roles/inherited_to_projects

686 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Scope Types

• system

• domain

List roles granted to an actor on a target. A target can be either a domain or a project. An actor can
be either a user or a group. For the OS-INHERIT APIs, it is possible to list inherited role grants
for actors on domains, where grants are inherited to all projects in the specified domain.

identity:create_grant

Default (role:admin and system_scope:all) or ((role:admin and
domain_id:%(target.user.domain_id)s and domain_id:%(target.
project.domain_id)s) or (role:admin and domain_id:%(target.
user.domain_id)s and domain_id:%(target.domain.id)s) or
(role:admin and domain_id:%(target.group.domain_id)s and
domain_id:%(target.project.domain_id)s) or (role:admin and
domain_id:%(target.group.domain_id)s and domain_id:%(target.
domain.id)s)) and (domain_id:%(target.role.domain_id)s or
None:%(target.role.domain_id)s)

Operations

• PUT /v3/projects/{project_id}/users/{user_id}/roles/
{role_id}

• PUT /v3/projects/{project_id}/groups/{group_id}/roles/
{role_id}

• PUT /v3/domains/{domain_id}/users/{user_id}/roles/
{role_id}

• PUT /v3/domains/{domain_id}/groups/{group_id}/roles/
{role_id}

• PUT /v3/OS-INHERIT/projects/{project_id}/users/{user_id}/
roles/{role_id}/inherited_to_projects

• PUT /v3/OS-INHERIT/projects/{project_id}/groups/
{group_id}/roles/{role_id}/inherited_to_projects

• PUT /v3/OS-INHERIT/domains/{domain_id}/users/{user_id}/
roles/{role_id}/inherited_to_projects

• PUT /v3/OS-INHERIT/domains/{domain_id}/groups/{group_id}/
roles/{role_id}/inherited_to_projects

Scope Types

• system

• domain

Create a role grant between a target and an actor. A target can be either a domain or a project. An
actor can be either a user or a group. These terms also apply to the OS-INHERIT APIs, where
grants on the target are inherited to all projects in the subtree, if applicable.

identity:revoke_grant

9.2. Policy configuration 687

Keystone Documentation, Release 21.0.2.dev4

Default (role:admin and system_scope:all) or ((role:admin and
domain_id:%(target.user.domain_id)s and domain_id:%(target.
project.domain_id)s) or (role:admin and domain_id:%(target.
user.domain_id)s and domain_id:%(target.domain.id)s) or
(role:admin and domain_id:%(target.group.domain_id)s and
domain_id:%(target.project.domain_id)s) or (role:admin and
domain_id:%(target.group.domain_id)s and domain_id:%(target.
domain.id)s)) and (domain_id:%(target.role.domain_id)s or
None:%(target.role.domain_id)s)

Operations

• DELETE /v3/projects/{project_id}/users/{user_id}/roles/
{role_id}

• DELETE /v3/projects/{project_id}/groups/{group_id}/roles/
{role_id}

• DELETE /v3/domains/{domain_id}/users/{user_id}/roles/
{role_id}

• DELETE /v3/domains/{domain_id}/groups/{group_id}/roles/
{role_id}

• DELETE /v3/OS-INHERIT/projects/{project_id}/users/
{user_id}/roles/{role_id}/inherited_to_projects

• DELETE /v3/OS-INHERIT/projects/{project_id}/groups/
{group_id}/roles/{role_id}/inherited_to_projects

• DELETE /v3/OS-INHERIT/domains/{domain_id}/users/
{user_id}/roles/{role_id}/inherited_to_projects

• DELETE /v3/OS-INHERIT/domains/{domain_id}/groups/
{group_id}/roles/{role_id}/inherited_to_projects

Scope Types

• system

• domain

Revoke a role grant between a target and an actor. A target can be either a domain or a project.
An actor can be either a user or a group. These terms also apply to the OS-INHERIT APIs, where
grants on the target are inherited to all projects in the subtree, if applicable. In that case, revoking
the role grant in the target would remove the logical effect of inheriting it to the targets projects
subtree.

identity:list_system_grants_for_user

Default role:reader and system_scope:all

Operations

• [HEAD, GET] /v3/system/users/{user_id}/roles

Scope Types

• system

List all grants a specific user has on the system.

688 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

identity:check_system_grant_for_user

Default role:reader and system_scope:all

Operations

• [HEAD, GET] /v3/system/users/{user_id}/roles/{role_id}

Scope Types

• system

Check if a user has a role on the system.

identity:create_system_grant_for_user

Default role:admin and system_scope:all

Operations

• [PUT] /v3/system/users/{user_id}/roles/{role_id}

Scope Types

• system

Grant a user a role on the system.

identity:revoke_system_grant_for_user

Default role:admin and system_scope:all

Operations

• [DELETE] /v3/system/users/{user_id}/roles/{role_id}

Scope Types

• system

Remove a role from a user on the system.

identity:list_system_grants_for_group

Default role:reader and system_scope:all

Operations

• [HEAD, GET] /v3/system/groups/{group_id}/roles

Scope Types

• system

List all grants a specific group has on the system.

identity:check_system_grant_for_group

Default role:reader and system_scope:all

Operations

• [HEAD, GET] /v3/system/groups/{group_id}/roles/{role_id}

Scope Types

• system

9.2. Policy configuration 689

Keystone Documentation, Release 21.0.2.dev4

Check if a group has a role on the system.

identity:create_system_grant_for_group

Default role:admin and system_scope:all

Operations

• [PUT] /v3/system/groups/{group_id}/roles/{role_id}

Scope Types

• system

Grant a group a role on the system.

identity:revoke_system_grant_for_group

Default role:admin and system_scope:all

Operations

• [DELETE] /v3/system/groups/{group_id}/roles/{role_id}

Scope Types

• system

Remove a role from a group on the system.

identity:get_group

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.group.domain_id)s)

Operations

• GET /v3/groups/{group_id}

• HEAD /v3/groups/{group_id}

Scope Types

• system

• domain

Show group details.

identity:list_groups

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.group.domain_id)s)

Operations

• GET /v3/groups

• HEAD /v3/groups

Scope Types

• system

• domain

List groups.

690 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

identity:list_groups_for_user

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.user.domain_id)s) or user_id:%(user_id)s

Operations

• GET /v3/users/{user_id}/groups

• HEAD /v3/users/{user_id}/groups

Scope Types

• system

• domain

• project

List groups to which a user belongs.

identity:create_group

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.group.domain_id)s)

Operations

• POST /v3/groups

Scope Types

• system

• domain

Create group.

identity:update_group

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.group.domain_id)s)

Operations

• PATCH /v3/groups/{group_id}

Scope Types

• system

• domain

Update group.

identity:delete_group

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.group.domain_id)s)

Operations

• DELETE /v3/groups/{group_id}

Scope Types

• system

9.2. Policy configuration 691

Keystone Documentation, Release 21.0.2.dev4

• domain

Delete group.

identity:list_users_in_group

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.group.domain_id)s)

Operations

• GET /v3/groups/{group_id}/users

• HEAD /v3/groups/{group_id}/users

Scope Types

• system

• domain

List members of a specific group.

identity:remove_user_from_group

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.group.domain_id)s and domain_id:%(target.
user.domain_id)s)

Operations

• DELETE /v3/groups/{group_id}/users/{user_id}

Scope Types

• system

• domain

Remove user from group.

identity:check_user_in_group

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.group.domain_id)s and domain_id:%(target.
user.domain_id)s)

Operations

• HEAD /v3/groups/{group_id}/users/{user_id}

• GET /v3/groups/{group_id}/users/{user_id}

Scope Types

• system

• domain

Check whether a user is a member of a group.

identity:add_user_to_group

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.group.domain_id)s and domain_id:%(target.
user.domain_id)s)

692 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Operations

• PUT /v3/groups/{group_id}/users/{user_id}

Scope Types

• system

• domain

Add user to group.

identity:create_identity_provider

Default role:admin and system_scope:all

Operations

• PUT /v3/OS-FEDERATION/identity_providers/{idp_id}

Scope Types

• system

Create identity provider.

identity:list_identity_providers

Default role:reader and system_scope:all

Operations

• GET /v3/OS-FEDERATION/identity_providers

• HEAD /v3/OS-FEDERATION/identity_providers

Scope Types

• system

List identity providers.

identity:get_identity_provider

Default role:reader and system_scope:all

Operations

• GET /v3/OS-FEDERATION/identity_providers/{idp_id}

• HEAD /v3/OS-FEDERATION/identity_providers/{idp_id}

Scope Types

• system

Get identity provider.

identity:update_identity_provider

Default role:admin and system_scope:all

Operations

• PATCH /v3/OS-FEDERATION/identity_providers/{idp_id}

Scope Types

9.2. Policy configuration 693

Keystone Documentation, Release 21.0.2.dev4

• system

Update identity provider.

identity:delete_identity_provider

Default role:admin and system_scope:all

Operations

• DELETE /v3/OS-FEDERATION/identity_providers/{idp_id}

Scope Types

• system

Delete identity provider.

identity:get_implied_role

Default role:reader and system_scope:all

Operations

• GET /v3/roles/{prior_role_id}/implies/{implied_role_id}

Scope Types

• system

Get information about an association between two roles. When a relationship exists between a
prior role and an implied role and the prior role is assigned to a user, the user also assumes the
implied role.

identity:list_implied_roles

Default role:reader and system_scope:all

Operations

• GET /v3/roles/{prior_role_id}/implies

• HEAD /v3/roles/{prior_role_id}/implies

Scope Types

• system

List associations between two roles. When a relationship exists between a prior role and an implied
role and the prior role is assigned to a user, the user also assumes the implied role. This will return
all the implied roles that would be assumed by the user who gets the specified prior role.

identity:create_implied_role

Default role:admin and system_scope:all

Operations

• PUT /v3/roles/{prior_role_id}/implies/{implied_role_id}

Scope Types

• system

Create an association between two roles. When a relationship exists between a prior role and an
implied role and the prior role is assigned to a user, the user also assumes the implied role.

694 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

identity:delete_implied_role

Default role:admin and system_scope:all

Operations

• DELETE /v3/roles/{prior_role_id}/implies/
{implied_role_id}

Scope Types

• system

Delete the association between two roles. When a relationship exists between a prior role and
an implied role and the prior role is assigned to a user, the user also assumes the implied role.
Removing the association will cause that effect to be eliminated.

identity:list_role_inference_rules

Default role:reader and system_scope:all

Operations

• GET /v3/role_inferences

• HEAD /v3/role_inferences

Scope Types

• system

List all associations between two roles in the system. When a relationship exists between a prior
role and an implied role and the prior role is assigned to a user, the user also assumes the implied
role.

identity:check_implied_role

Default role:reader and system_scope:all

Operations

• HEAD /v3/roles/{prior_role_id}/implies/{implied_role_id}

Scope Types

• system

Check an association between two roles. When a relationship exists between a prior role and an
implied role and the prior role is assigned to a user, the user also assumes the implied role.

identity:get_limit_model

Default <empty string>

Operations

• GET /v3/limits/model

• HEAD /v3/limits/model

Scope Types

• system

• domain

9.2. Policy configuration 695

Keystone Documentation, Release 21.0.2.dev4

• project

Get limit enforcement model.

identity:get_limit

Default (role:reader and system_scope:all) or (domain_id:%(target.
limit.domain.id)s or domain_id:%(target.limit.project.
domain_id)s) or (project_id:%(target.limit.project_id)s and
not None:%(target.limit.project_id)s)

Operations

• GET /v3/limits/{limit_id}

• HEAD /v3/limits/{limit_id}

Scope Types

• system

• domain

• project

Show limit details.

identity:list_limits

Default <empty string>

Operations

• GET /v3/limits

• HEAD /v3/limits

Scope Types

• system

• domain

• project

List limits.

identity:create_limits

Default role:admin and system_scope:all

Operations

• POST /v3/limits

Scope Types

• system

Create limits.

identity:update_limit

Default role:admin and system_scope:all

Operations

696 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• PATCH /v3/limits/{limit_id}

Scope Types

• system

Update limit.

identity:delete_limit

Default role:admin and system_scope:all

Operations

• DELETE /v3/limits/{limit_id}

Scope Types

• system

Delete limit.

identity:create_mapping

Default role:admin and system_scope:all

Operations

• PUT /v3/OS-FEDERATION/mappings/{mapping_id}

Scope Types

• system

Create a new federated mapping containing one or more sets of rules.

identity:get_mapping

Default role:reader and system_scope:all

Operations

• GET /v3/OS-FEDERATION/mappings/{mapping_id}

• HEAD /v3/OS-FEDERATION/mappings/{mapping_id}

Scope Types

• system

Get a federated mapping.

identity:list_mappings

Default role:reader and system_scope:all

Operations

• GET /v3/OS-FEDERATION/mappings

• HEAD /v3/OS-FEDERATION/mappings

Scope Types

• system

List federated mappings.

9.2. Policy configuration 697

Keystone Documentation, Release 21.0.2.dev4

identity:delete_mapping

Default role:admin and system_scope:all

Operations

• DELETE /v3/OS-FEDERATION/mappings/{mapping_id}

Scope Types

• system

Delete a federated mapping.

identity:update_mapping

Default role:admin and system_scope:all

Operations

• PATCH /v3/OS-FEDERATION/mappings/{mapping_id}

Scope Types

• system

Update a federated mapping.

identity:get_policy

Default role:reader and system_scope:all

Operations

• GET /v3/policies/{policy_id}

Scope Types

• system

Show policy details.

identity:list_policies

Default role:reader and system_scope:all

Operations

• GET /v3/policies

Scope Types

• system

List policies.

identity:create_policy

Default role:admin and system_scope:all

Operations

• POST /v3/policies

Scope Types

• system

698 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Create policy.

identity:update_policy

Default role:admin and system_scope:all

Operations

• PATCH /v3/policies/{policy_id}

Scope Types

• system

Update policy.

identity:delete_policy

Default role:admin and system_scope:all

Operations

• DELETE /v3/policies/{policy_id}

Scope Types

• system

Delete policy.

identity:create_policy_association_for_endpoint

Default role:admin and system_scope:all

Operations

• PUT /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/endpoints/
{endpoint_id}

Scope Types

• system

Associate a policy to a specific endpoint.

identity:check_policy_association_for_endpoint

Default role:reader and system_scope:all

Operations

• GET /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/endpoints/
{endpoint_id}

• HEAD /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/
endpoints/{endpoint_id}

Scope Types

• system

Check policy association for endpoint.

identity:delete_policy_association_for_endpoint

Default role:admin and system_scope:all

9.2. Policy configuration 699

Keystone Documentation, Release 21.0.2.dev4

Operations

• DELETE /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/
endpoints/{endpoint_id}

Scope Types

• system

Delete policy association for endpoint.

identity:create_policy_association_for_service

Default role:admin and system_scope:all

Operations

• PUT /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/
{service_id}

Scope Types

• system

Associate a policy to a specific service.

identity:check_policy_association_for_service

Default role:reader and system_scope:all

Operations

• GET /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/
{service_id}

• HEAD /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/
{service_id}

Scope Types

• system

Check policy association for service.

identity:delete_policy_association_for_service

Default role:admin and system_scope:all

Operations

• DELETE /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/
services/{service_id}

Scope Types

• system

Delete policy association for service.

identity:create_policy_association_for_region_and_service

Default role:admin and system_scope:all

Operations

700 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• PUT /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/
{service_id}/regions/{region_id}

Scope Types

• system

Associate a policy to a specific region and service combination.

identity:check_policy_association_for_region_and_service

Default role:reader and system_scope:all

Operations

• GET /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/
{service_id}/regions/{region_id}

• HEAD /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/services/
{service_id}/regions/{region_id}

Scope Types

• system

Check policy association for region and service.

identity:delete_policy_association_for_region_and_service

Default role:admin and system_scope:all

Operations

• DELETE /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/
services/{service_id}/regions/{region_id}

Scope Types

• system

Delete policy association for region and service.

identity:get_policy_for_endpoint

Default role:reader and system_scope:all

Operations

• GET /v3/endpoints/{endpoint_id}/OS-ENDPOINT-POLICY/policy

• HEAD /v3/endpoints/{endpoint_id}/OS-ENDPOINT-POLICY/policy

Scope Types

• system

Get policy for endpoint.

identity:list_endpoints_for_policy

Default role:reader and system_scope:all

Operations

• GET /v3/policies/{policy_id}/OS-ENDPOINT-POLICY/endpoints

Scope Types

9.2. Policy configuration 701

Keystone Documentation, Release 21.0.2.dev4

• system

List endpoints for policy.

identity:get_project

Default (role:reader and system_scope:all) or (role:reader
and domain_id:%(target.project.domain_id)s) or
project_id:%(target.project.id)s

Operations

• GET /v3/projects/{project_id}

Scope Types

• system

• domain

• project

Show project details.

identity:list_projects

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.domain_id)s)

Operations

• GET /v3/projects

Scope Types

• system

• domain

List projects.

identity:list_user_projects

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.user.domain_id)s) or user_id:%(target.user.
id)s

Operations

• GET /v3/users/{user_id}/projects

Scope Types

• system

• domain

• project

List projects for user.

identity:create_project

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.project.domain_id)s)

702 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Operations

• POST /v3/projects

Scope Types

• system

• domain

Create project.

identity:update_project

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.project.domain_id)s)

Operations

• PATCH /v3/projects/{project_id}

Scope Types

• system

• domain

Update project.

identity:delete_project

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.project.domain_id)s)

Operations

• DELETE /v3/projects/{project_id}

Scope Types

• system

• domain

Delete project.

identity:list_project_tags

Default (role:reader and system_scope:all) or (role:reader
and domain_id:%(target.project.domain_id)s) or
project_id:%(target.project.id)s

Operations

• GET /v3/projects/{project_id}/tags

• HEAD /v3/projects/{project_id}/tags

Scope Types

• system

• domain

• project

List tags for a project.

9.2. Policy configuration 703

Keystone Documentation, Release 21.0.2.dev4

identity:get_project_tag

Default (role:reader and system_scope:all) or (role:reader
and domain_id:%(target.project.domain_id)s) or
project_id:%(target.project.id)s

Operations

• GET /v3/projects/{project_id}/tags/{value}

• HEAD /v3/projects/{project_id}/tags/{value}

Scope Types

• system

• domain

• project

Check if project contains a tag.

identity:update_project_tags

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.project.domain_id)s) or (role:admin and
project_id:%(target.project.id)s)

Operations

• PUT /v3/projects/{project_id}/tags

Scope Types

• system

• domain

• project

Replace all tags on a project with the new set of tags.

identity:create_project_tag

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.project.domain_id)s) or (role:admin and
project_id:%(target.project.id)s)

Operations

• PUT /v3/projects/{project_id}/tags/{value}

Scope Types

• system

• domain

• project

Add a single tag to a project.

identity:delete_project_tags

704 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.project.domain_id)s) or (role:admin and
project_id:%(target.project.id)s)

Operations

• DELETE /v3/projects/{project_id}/tags

Scope Types

• system

• domain

• project

Remove all tags from a project.

identity:delete_project_tag

Default (role:admin and system_scope:all) or (role:admin and
domain_id:%(target.project.domain_id)s) or (role:admin and
project_id:%(target.project.id)s)

Operations

• DELETE /v3/projects/{project_id}/tags/{value}

Scope Types

• system

• domain

• project

Delete a specified tag from project.

identity:list_projects_for_endpoint

Default role:reader and system_scope:all

Operations

• GET /v3/OS-EP-FILTER/endpoints/{endpoint_id}/projects

Scope Types

• system

List projects allowed to access an endpoint.

identity:add_endpoint_to_project

Default role:admin and system_scope:all

Operations

• PUT /v3/OS-EP-FILTER/projects/{project_id}/endpoints/
{endpoint_id}

Scope Types

• system

Allow project to access an endpoint.

9.2. Policy configuration 705

Keystone Documentation, Release 21.0.2.dev4

identity:check_endpoint_in_project

Default role:reader and system_scope:all

Operations

• GET /v3/OS-EP-FILTER/projects/{project_id}/endpoints/
{endpoint_id}

• HEAD /v3/OS-EP-FILTER/projects/{project_id}/endpoints/
{endpoint_id}

Scope Types

• system

Check if a project is allowed to access an endpoint.

identity:list_endpoints_for_project

Default role:reader and system_scope:all

Operations

• GET /v3/OS-EP-FILTER/projects/{project_id}/endpoints

Scope Types

• system

List the endpoints a project is allowed to access.

identity:remove_endpoint_from_project

Default role:admin and system_scope:all

Operations

• DELETE /v3/OS-EP-FILTER/projects/{project_id}/endpoints/
{endpoint_id}

Scope Types

• system

Remove access to an endpoint from a project that has previously been given explicit access.

identity:create_protocol

Default role:admin and system_scope:all

Operations

• PUT /v3/OS-FEDERATION/identity_providers/{idp_id}/
protocols/{protocol_id}

Scope Types

• system

Create federated protocol.

identity:update_protocol

Default role:admin and system_scope:all

Operations

706 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• PATCH /v3/OS-FEDERATION/identity_providers/{idp_id}/
protocols/{protocol_id}

Scope Types

• system

Update federated protocol.

identity:get_protocol

Default role:reader and system_scope:all

Operations

• GET /v3/OS-FEDERATION/identity_providers/{idp_id}/
protocols/{protocol_id}

Scope Types

• system

Get federated protocol.

identity:list_protocols

Default role:reader and system_scope:all

Operations

• GET /v3/OS-FEDERATION/identity_providers/{idp_id}/
protocols

Scope Types

• system

List federated protocols.

identity:delete_protocol

Default role:admin and system_scope:all

Operations

• DELETE /v3/OS-FEDERATION/identity_providers/{idp_id}/
protocols/{protocol_id}

Scope Types

• system

Delete federated protocol.

identity:get_region

Default <empty string>

Operations

• GET /v3/regions/{region_id}

• HEAD /v3/regions/{region_id}

Scope Types

• system

9.2. Policy configuration 707

Keystone Documentation, Release 21.0.2.dev4

• domain

• project

Show region details.

identity:list_regions

Default <empty string>

Operations

• GET /v3/regions

• HEAD /v3/regions

Scope Types

• system

• domain

• project

List regions.

identity:create_region

Default role:admin and system_scope:all

Operations

• POST /v3/regions

• PUT /v3/regions/{region_id}

Scope Types

• system

Create region.

identity:update_region

Default role:admin and system_scope:all

Operations

• PATCH /v3/regions/{region_id}

Scope Types

• system

Update region.

identity:delete_region

Default role:admin and system_scope:all

Operations

• DELETE /v3/regions/{region_id}

Scope Types

• system

708 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Delete region.

identity:get_registered_limit

Default <empty string>

Operations

• GET /v3/registered_limits/{registered_limit_id}

• HEAD /v3/registered_limits/{registered_limit_id}

Scope Types

• system

• domain

• project

Show registered limit details.

identity:list_registered_limits

Default <empty string>

Operations

• GET /v3/registered_limits

• HEAD /v3/registered_limits

Scope Types

• system

• domain

• project

List registered limits.

identity:create_registered_limits

Default role:admin and system_scope:all

Operations

• POST /v3/registered_limits

Scope Types

• system

Create registered limits.

identity:update_registered_limit

Default role:admin and system_scope:all

Operations

• PATCH /v3/registered_limits/{registered_limit_id}

Scope Types

• system

9.2. Policy configuration 709

Keystone Documentation, Release 21.0.2.dev4

Update registered limit.

identity:delete_registered_limit

Default role:admin and system_scope:all

Operations

• DELETE /v3/registered_limits/{registered_limit_id}

Scope Types

• system

Delete registered limit.

identity:list_revoke_events

Default rule:service_or_admin

Operations

• GET /v3/OS-REVOKE/events

Scope Types

• system

List revocation events.

identity:get_role

Default role:reader and system_scope:all

Operations

• GET /v3/roles/{role_id}

• HEAD /v3/roles/{role_id}

Scope Types

• system

Show role details.

identity:list_roles

Default role:reader and system_scope:all

Operations

• GET /v3/roles

• HEAD /v3/roles

Scope Types

• system

List roles.

identity:create_role

Default role:admin and system_scope:all

Operations

710 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

• POST /v3/roles

Scope Types

• system

Create role.

identity:update_role

Default role:admin and system_scope:all

Operations

• PATCH /v3/roles/{role_id}

Scope Types

• system

Update role.

identity:delete_role

Default role:admin and system_scope:all

Operations

• DELETE /v3/roles/{role_id}

Scope Types

• system

Delete role.

identity:get_domain_role

Default role:reader and system_scope:all

Operations

• GET /v3/roles/{role_id}

• HEAD /v3/roles/{role_id}

Scope Types

• system

Show domain role.

identity:list_domain_roles

Default role:reader and system_scope:all

Operations

• GET /v3/roles?domain_id={domain_id}

• HEAD /v3/roles?domain_id={domain_id}

Scope Types

• system

List domain roles.

9.2. Policy configuration 711

Keystone Documentation, Release 21.0.2.dev4

identity:create_domain_role

Default role:admin and system_scope:all

Operations

• POST /v3/roles

Scope Types

• system

Create domain role.

identity:update_domain_role

Default role:admin and system_scope:all

Operations

• PATCH /v3/roles/{role_id}

Scope Types

• system

Update domain role.

identity:delete_domain_role

Default role:admin and system_scope:all

Operations

• DELETE /v3/roles/{role_id}

Scope Types

• system

Delete domain role.

identity:list_role_assignments

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.domain_id)s)

Operations

• GET /v3/role_assignments

• HEAD /v3/role_assignments

Scope Types

• system

• domain

List role assignments.

identity:list_role_assignments_for_tree

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.project.domain_id)s) or (role:admin and
project_id:%(target.project.id)s)

712 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Operations

• GET /v3/role_assignments?include_subtree

• HEAD /v3/role_assignments?include_subtree

Scope Types

• system

• domain

• project

List all role assignments for a given tree of hierarchical projects.

identity:get_service

Default role:reader and system_scope:all

Operations

• GET /v3/services/{service_id}

Scope Types

• system

Show service details.

identity:list_services

Default role:reader and system_scope:all

Operations

• GET /v3/services

Scope Types

• system

List services.

identity:create_service

Default role:admin and system_scope:all

Operations

• POST /v3/services

Scope Types

• system

Create service.

identity:update_service

Default role:admin and system_scope:all

Operations

• PATCH /v3/services/{service_id}

Scope Types

9.2. Policy configuration 713

Keystone Documentation, Release 21.0.2.dev4

• system

Update service.

identity:delete_service

Default role:admin and system_scope:all

Operations

• DELETE /v3/services/{service_id}

Scope Types

• system

Delete service.

identity:create_service_provider

Default role:admin and system_scope:all

Operations

• PUT /v3/OS-FEDERATION/service_providers/
{service_provider_id}

Scope Types

• system

Create federated service provider.

identity:list_service_providers

Default role:reader and system_scope:all

Operations

• GET /v3/OS-FEDERATION/service_providers

• HEAD /v3/OS-FEDERATION/service_providers

Scope Types

• system

List federated service providers.

identity:get_service_provider

Default role:reader and system_scope:all

Operations

• GET /v3/OS-FEDERATION/service_providers/
{service_provider_id}

• HEAD /v3/OS-FEDERATION/service_providers/
{service_provider_id}

Scope Types

• system

Get federated service provider.

714 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

identity:update_service_provider

Default role:admin and system_scope:all

Operations

• PATCH /v3/OS-FEDERATION/service_providers/
{service_provider_id}

Scope Types

• system

Update federated service provider.

identity:delete_service_provider

Default role:admin and system_scope:all

Operations

• DELETE /v3/OS-FEDERATION/service_providers/
{service_provider_id}

Scope Types

• system

Delete federated service provider.

identity:revocation_list

Default rule:service_or_admin

Operations

• GET /v3/auth/tokens/OS-PKI/revoked

Scope Types

• system

• project

List revoked PKI tokens.

identity:check_token

Default (role:reader and system_scope:all) or rule:token_subject

Operations

• HEAD /v3/auth/tokens

Scope Types

• system

• domain

• project

Check a token.

identity:validate_token

9.2. Policy configuration 715

Keystone Documentation, Release 21.0.2.dev4

Default (role:reader and system_scope:all) or rule:service_role or
rule:token_subject

Operations

• GET /v3/auth/tokens

Scope Types

• system

• domain

• project

Validate a token.

identity:revoke_token

Default (role:admin and system_scope:all) or rule:token_subject

Operations

• DELETE /v3/auth/tokens

Scope Types

• system

• domain

• project

Revoke a token.

identity:create_trust

Default user_id:%(trust.trustor_user_id)s

Operations

• POST /v3/OS-TRUST/trusts

Scope Types

• project

Create trust.

identity:list_trusts

Default role:reader and system_scope:all

Operations

• GET /v3/OS-TRUST/trusts

• HEAD /v3/OS-TRUST/trusts

Scope Types

• system

List trusts.

identity:list_trusts_for_trustor

716 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Default role:reader and system_scope:all or user_id:%(target.
trust.trustor_user_id)s

Operations

• GET /v3/OS-TRUST/trusts?trustor_user_id={trustor_user_id}

• HEAD /v3/OS-TRUST/trusts?trustor_user_id={trustor_user_id}

Scope Types

• system

• project

List trusts for trustor.

identity:list_trusts_for_trustee

Default role:reader and system_scope:all or user_id:%(target.
trust.trustee_user_id)s

Operations

• GET /v3/OS-TRUST/trusts?trustee_user_id={trustee_user_id}

• HEAD /v3/OS-TRUST/trusts?trustee_user_id={trustee_user_id}

Scope Types

• system

• project

List trusts for trustee.

identity:list_roles_for_trust

Default role:reader and system_scope:all or user_id:%(target.
trust.trustor_user_id)s or user_id:%(target.trust.
trustee_user_id)s

Operations

• GET /v3/OS-TRUST/trusts/{trust_id}/roles

• HEAD /v3/OS-TRUST/trusts/{trust_id}/roles

Scope Types

• system

• project

List roles delegated by a trust.

identity:get_role_for_trust

Default role:reader and system_scope:all or user_id:%(target.
trust.trustor_user_id)s or user_id:%(target.trust.
trustee_user_id)s

Operations

• GET /v3/OS-TRUST/trusts/{trust_id}/roles/{role_id}

9.2. Policy configuration 717

Keystone Documentation, Release 21.0.2.dev4

• HEAD /v3/OS-TRUST/trusts/{trust_id}/roles/{role_id}

Scope Types

• system

• project

Check if trust delegates a particular role.

identity:delete_trust

Default role:admin and system_scope:all or user_id:%(target.trust.
trustor_user_id)s

Operations

• DELETE /v3/OS-TRUST/trusts/{trust_id}

Scope Types

• system

• project

Revoke trust.

identity:get_trust

Default role:reader and system_scope:all or user_id:%(target.
trust.trustor_user_id)s or user_id:%(target.trust.
trustee_user_id)s

Operations

• GET /v3/OS-TRUST/trusts/{trust_id}

• HEAD /v3/OS-TRUST/trusts/{trust_id}

Scope Types

• system

• project

Get trust.

identity:get_user

Default (role:reader and system_scope:all) or (role:reader
and token.domain.id:%(target.user.domain_id)s) or
user_id:%(target.user.id)s

Operations

• GET /v3/users/{user_id}

• HEAD /v3/users/{user_id}

Scope Types

• system

• domain

• project

718 Chapter 9. Keystone Configuration Options

Keystone Documentation, Release 21.0.2.dev4

Show user details.

identity:list_users

Default (role:reader and system_scope:all) or (role:reader and
domain_id:%(target.domain_id)s)

Operations

• GET /v3/users

• HEAD /v3/users

Scope Types

• system

• domain

List users.

identity:list_projects_for_user

Default <empty string>

Operations

• GET “ /v3/auth/projects“

List all projects a user has access to via role assignments.

identity:list_domains_for_user

Default <empty string>

Operations

• GET /v3/auth/domains

List all domains a user has access to via role assignments.

identity:create_user

Default (role:admin and system_scope:all) or (role:admin and
token.domain.id:%(target.user.domain_id)s)

Operations

• POST /v3/users

Scope Types

• system

• domain

Create a user.

identity:update_user

Default (role:admin and system_scope:all) or (role:admin and
token.domain.id:%(target.user.domain_id)s)

Operations

• PATCH /v3/users/{user_id}

9.2. Policy configuration 719

Keystone Documentation, Release 21.0.2.dev4

Scope Types

• system

• domain

Update a user, including administrative password resets.

identity:delete_user

Default (role:admin and system_scope:all) or (role:admin and
token.domain.id:%(target.user.domain_id)s)

Operations

• DELETE /v3/users/{user_id}

Scope Types

• system

• domain

Delete a user.

720 Chapter 9. Keystone Configuration Options

	Keystone Installation Tutorial
	Keystone Installation Tutorial for openSUSE and SUSE Linux Enterprise
	Abstract
	Contents
	Identity service overview
	Install and configure
	Prerequisites
	Install and configure components
	Configure the Apache HTTP server
	SSL

	Finalize the installation

	Create a domain, projects, users, and roles
	Verify operation
	Create OpenStack client environment scripts
	Creating the scripts
	Using the scripts

	Keystone Installation Tutorial for Red Hat Enterprise Linux and CentOS
	Abstract
	Contents
	Identity service overview
	Install and configure
	Prerequisites
	Install and configure components
	Configure the Apache HTTP server
	SSL

	Finalize the installation

	Create a domain, projects, users, and roles
	Verify operation
	Create OpenStack client environment scripts
	Creating the scripts
	Using the scripts

	Keystone Installation Tutorial for Ubuntu
	Abstract
	Contents
	Identity service overview
	Install and configure
	Prerequisites
	Install and configure components
	Configure the Apache HTTP server
	SSL

	Finalize the installation

	Create a domain, projects, users, and roles
	Verify operation
	Create OpenStack client environment scripts
	Creating the scripts
	Using the scripts

	Getting Started
	Keystone Architecture
	Services
	Identity
	Users
	Groups

	Resource
	Projects
	Domains

	Assignment
	Roles
	Role Assignments

	Token
	Catalog

	Application Construction
	Service Backends
	Templated Backend

	Data Model
	Approach to CRUD
	Approach to Authorization (Policy)
	Rules
	Capability RBAC

	Approach to Authentication
	What is Scope?

	Mapping of policy target to API
	Getting Involved
	How to Join the Community
	#openstack-keystone on OFTC IRC Network
	Keystone on Launchpad
	OpenStack Blog
	Twitter

	Code Documentation
	keystone
	keystone package
	Subpackages
	keystone.api package
	Submodules
	keystone.api.auth module
	keystone.api.credentials module
	keystone.api.discovery module
	keystone.api.domains module
	keystone.api.ec2tokens module
	keystone.api.endpoints module
	keystone.api.groups module
	keystone.api.limits module
	keystone.api.os_ep_filter module
	keystone.api.os_federation module
	keystone.api.os_inherit module
	keystone.api.os_oauth1 module
	keystone.api.os_revoke module
	keystone.api.os_simple_cert module
	keystone.api.policy module
	keystone.api.projects module
	keystone.api.regions module
	keystone.api.registered_limits module
	keystone.api.role_assignments module
	keystone.api.role_inferences module
	keystone.api.roles module
	keystone.api.s3tokens module
	keystone.api.services module
	keystone.api.system module
	keystone.api.trusts module
	keystone.api.users module
	Module contents

	keystone.application_credential package
	Subpackages
	keystone.application_credential.backends package
	Submodules
	keystone.application_credential.backends.base module
	keystone.application_credential.backends.sql module
	Module contents
	Submodules
	keystone.application_credential.core module
	keystone.application_credential.schema module
	Module contents

	keystone.assignment package
	Subpackages
	keystone.assignment.backends package
	Submodules
	keystone.assignment.backends.base module
	keystone.assignment.backends.sql module
	Module contents
	keystone.assignment.role_backends package
	Submodules
	keystone.assignment.role_backends.base module
	keystone.assignment.role_backends.resource_options module
	keystone.assignment.role_backends.sql module
	keystone.assignment.role_backends.sql_model module
	Module contents
	Submodules
	keystone.assignment.core module
	keystone.assignment.schema module
	Module contents

	keystone.auth package
	Subpackages
	keystone.auth.plugins package
	Submodules
	keystone.auth.plugins.application_credential module
	keystone.auth.plugins.base module
	keystone.auth.plugins.core module
	keystone.auth.plugins.external module
	keystone.auth.plugins.mapped module
	keystone.auth.plugins.oauth1 module
	keystone.auth.plugins.password module
	keystone.auth.plugins.token module
	keystone.auth.plugins.totp module
	Module contents
	Submodules
	keystone.auth.core module
	keystone.auth.schema module
	Module contents

	keystone.catalog package
	Subpackages
	keystone.catalog.backends package
	Submodules
	keystone.catalog.backends.base module
	keystone.catalog.backends.sql module
	keystone.catalog.backends.templated module
	Module contents
	Submodules
	keystone.catalog.core module
	keystone.catalog.schema module
	Module contents

	keystone.cmd package
	Subpackages
	keystone.cmd.doctor package
	Submodules
	keystone.cmd.doctor.caching module
	keystone.cmd.doctor.credential module
	keystone.cmd.doctor.database module
	keystone.cmd.doctor.debug module
	keystone.cmd.doctor.federation module
	keystone.cmd.doctor.ldap module
	keystone.cmd.doctor.security_compliance module
	keystone.cmd.doctor.tokens module
	keystone.cmd.doctor.tokens_fernet module
	Module contents
	Submodules
	keystone.cmd.bootstrap module
	keystone.cmd.cli module
	keystone.cmd.manage module
	keystone.cmd.status module
	Module contents

	keystone.common package
	Subpackages
	keystone.common.cache package
	Submodules
	keystone.common.cache.core module
	Module contents
	keystone.common.policies package
	Submodules
	keystone.common.policies.access_rule module
	keystone.common.policies.access_token module
	keystone.common.policies.application_credential module
	keystone.common.policies.auth module
	keystone.common.policies.base module
	keystone.common.policies.consumer module
	keystone.common.policies.credential module
	keystone.common.policies.domain module
	keystone.common.policies.domain_config module
	keystone.common.policies.ec2_credential module
	keystone.common.policies.endpoint module
	keystone.common.policies.endpoint_group module
	keystone.common.policies.grant module
	keystone.common.policies.group module
	keystone.common.policies.identity_provider module
	keystone.common.policies.implied_role module
	keystone.common.policies.limit module
	keystone.common.policies.mapping module
	keystone.common.policies.policy module
	keystone.common.policies.policy_association module
	keystone.common.policies.project module
	keystone.common.policies.project_endpoint module
	keystone.common.policies.protocol module
	keystone.common.policies.region module
	keystone.common.policies.registered_limit module
	keystone.common.policies.revoke_event module
	keystone.common.policies.role module
	keystone.common.policies.role_assignment module
	keystone.common.policies.service module
	keystone.common.policies.service_provider module
	keystone.common.policies.token module
	keystone.common.policies.token_revocation module
	keystone.common.policies.trust module
	keystone.common.policies.user module
	Module contents
	keystone.common.rbac_enforcer package
	Submodules
	keystone.common.rbac_enforcer.enforcer module
	keystone.common.rbac_enforcer.policy module
	Module contents
	keystone.common.resource_options package
	Subpackages
	keystone.common.resource_options.options package
	Submodules
	keystone.common.resource_options.options.immutable module
	Module contents
	Submodules
	keystone.common.resource_options.core module
	Module contents
	keystone.common.sql package
	Subpackages
	keystone.common.sql.legacy_migrations package
	Subpackages
	keystone.common.sql.legacy_migrations.contract_repo package
	Subpackages
	keystone.common.sql.legacy_migrations.contract_repo.versions package
	Submodules
	keystone.common.sql.legacy_migrations.contract_repo.versions.073_contract_initial_migration module
	keystone.common.sql.legacy_migrations.contract_repo.versions.074_placeholder module
	keystone.common.sql.legacy_migrations.contract_repo.versions.075_placeholder module
	keystone.common.sql.legacy_migrations.contract_repo.versions.076_placeholder module
	keystone.common.sql.legacy_migrations.contract_repo.versions.077_placeholder module
	keystone.common.sql.legacy_migrations.contract_repo.versions.078_placeholder module
	keystone.common.sql.legacy_migrations.contract_repo.versions.079_contract_update_local_id_limit module
	Module contents
	Submodules
	keystone.common.sql.legacy_migrations.contract_repo.manage module
	Module contents
	keystone.common.sql.legacy_migrations.data_migration_repo package
	Subpackages
	keystone.common.sql.legacy_migrations.data_migration_repo.versions package
	Submodules
	keystone.common.sql.legacy_migrations.data_migration_repo.versions.073_migrate_initial_migration module
	keystone.common.sql.legacy_migrations.data_migration_repo.versions.074_placeholder module
	keystone.common.sql.legacy_migrations.data_migration_repo.versions.075_placeholder module
	keystone.common.sql.legacy_migrations.data_migration_repo.versions.076_placeholder module
	keystone.common.sql.legacy_migrations.data_migration_repo.versions.077_placeholder module
	keystone.common.sql.legacy_migrations.data_migration_repo.versions.078_placeholder module
	keystone.common.sql.legacy_migrations.data_migration_repo.versions.079_migrate_update_local_id_limit module
	Module contents
	Submodules
	keystone.common.sql.legacy_migrations.data_migration_repo.manage module
	Module contents
	keystone.common.sql.legacy_migrations.expand_repo package
	Subpackages
	keystone.common.sql.legacy_migrations.expand_repo.versions package
	Submodules
	keystone.common.sql.legacy_migrations.expand_repo.versions.073_expand_initial_migration module
	keystone.common.sql.legacy_migrations.expand_repo.versions.074_placeholder module
	keystone.common.sql.legacy_migrations.expand_repo.versions.075_placeholder module
	keystone.common.sql.legacy_migrations.expand_repo.versions.076_placeholder module
	keystone.common.sql.legacy_migrations.expand_repo.versions.077_placeholder module
	keystone.common.sql.legacy_migrations.expand_repo.versions.078_placeholder module
	keystone.common.sql.legacy_migrations.expand_repo.versions.079_expand_update_local_id_limit module
	Module contents
	Submodules
	keystone.common.sql.legacy_migrations.expand_repo.manage module
	Module contents
	Module contents
	Submodules
	keystone.common.sql.upgrades module
	Module contents
	keystone.common.validation package
	Submodules
	keystone.common.validation.parameter_types module
	keystone.common.validation.validators module
	Module contents
	Submodules
	keystone.common.authorization module
	keystone.common.context module
	keystone.common.driver_hints module
	keystone.common.fernet_utils module
	keystone.common.json_home module
	keystone.common.jwt_utils module
	keystone.common.manager module
	keystone.common.password_hashing module
	keystone.common.profiler module
	keystone.common.provider_api module
	keystone.common.render_token module
	keystone.common.tokenless_auth module
	keystone.common.utils module
	Module contents

	keystone.conf package
	Submodules
	keystone.conf.application_credential module
	keystone.conf.assignment module
	keystone.conf.auth module
	keystone.conf.catalog module
	keystone.conf.constants module
	keystone.conf.credential module
	keystone.conf.default module
	keystone.conf.domain_config module
	keystone.conf.endpoint_filter module
	keystone.conf.endpoint_policy module
	keystone.conf.eventlet_server module
	keystone.conf.federation module
	keystone.conf.fernet_receipts module
	keystone.conf.fernet_tokens module
	keystone.conf.identity module
	keystone.conf.identity_mapping module
	keystone.conf.jwt_tokens module
	keystone.conf.ldap module
	keystone.conf.memcache module
	keystone.conf.oauth1 module
	keystone.conf.opts module
	keystone.conf.policy module
	keystone.conf.receipt module
	keystone.conf.resource module
	keystone.conf.revoke module
	keystone.conf.role module
	keystone.conf.saml module
	keystone.conf.security_compliance module
	keystone.conf.shadow_users module
	keystone.conf.token module
	keystone.conf.tokenless_auth module
	keystone.conf.totp module
	keystone.conf.trust module
	keystone.conf.unified_limit module
	keystone.conf.utils module
	keystone.conf.wsgi module
	Module contents

	keystone.credential package
	Subpackages
	keystone.credential.backends package
	Submodules
	keystone.credential.backends.base module
	keystone.credential.backends.sql module
	Module contents
	keystone.credential.providers package
	Subpackages
	keystone.credential.providers.fernet package
	Submodules
	keystone.credential.providers.fernet.core module
	Module contents
	Submodules
	keystone.credential.providers.core module
	Module contents
	Submodules
	keystone.credential.core module
	keystone.credential.provider module
	keystone.credential.schema module
	Module contents

	keystone.endpoint_policy package
	Subpackages
	keystone.endpoint_policy.backends package
	Submodules
	keystone.endpoint_policy.backends.base module
	keystone.endpoint_policy.backends.sql module
	Module contents
	Submodules
	keystone.endpoint_policy.core module
	Module contents

	keystone.federation package
	Subpackages
	keystone.federation.backends package
	Submodules
	keystone.federation.backends.base module
	keystone.federation.backends.sql module
	Module contents
	Submodules
	keystone.federation.constants module
	keystone.federation.core module
	keystone.federation.idp module
	keystone.federation.schema module
	keystone.federation.utils module
	Module contents

	keystone.identity package
	Subpackages
	keystone.identity.backends package
	Subpackages
	keystone.identity.backends.ldap package
	Submodules
	keystone.identity.backends.ldap.common module
	keystone.identity.backends.ldap.core module
	keystone.identity.backends.ldap.models module
	Module contents
	Submodules
	keystone.identity.backends.base module
	keystone.identity.backends.resource_options module
	keystone.identity.backends.sql module
	keystone.identity.backends.sql_model module
	Module contents
	keystone.identity.id_generators package
	Submodules
	keystone.identity.id_generators.sha256 module
	Module contents
	keystone.identity.mapping_backends package
	Submodules
	keystone.identity.mapping_backends.base module
	keystone.identity.mapping_backends.mapping module
	keystone.identity.mapping_backends.sql module
	Module contents
	keystone.identity.shadow_backends package
	Submodules
	keystone.identity.shadow_backends.base module
	keystone.identity.shadow_backends.sql module
	Module contents
	Submodules
	keystone.identity.core module
	keystone.identity.generator module
	keystone.identity.schema module
	Module contents

	keystone.limit package
	Subpackages
	keystone.limit.backends package
	Submodules
	keystone.limit.backends.base module
	keystone.limit.backends.sql module
	Module contents
	keystone.limit.models package
	Submodules
	keystone.limit.models.base module
	keystone.limit.models.flat module
	keystone.limit.models.strict_two_level module
	Module contents
	Submodules
	keystone.limit.core module
	keystone.limit.schema module
	Module contents

	keystone.models package
	Submodules
	keystone.models.receipt_model module
	keystone.models.revoke_model module
	keystone.models.token_model module
	Module contents

	keystone.oauth1 package
	Subpackages
	keystone.oauth1.backends package
	Submodules
	keystone.oauth1.backends.base module
	keystone.oauth1.backends.sql module
	Module contents
	Submodules
	keystone.oauth1.core module
	keystone.oauth1.schema module
	keystone.oauth1.validator module
	Module contents

	keystone.policy package
	Subpackages
	keystone.policy.backends package
	Submodules
	keystone.policy.backends.base module
	keystone.policy.backends.rules module
	keystone.policy.backends.sql module
	Module contents
	Submodules
	keystone.policy.core module
	keystone.policy.schema module
	Module contents

	keystone.receipt package
	Subpackages
	keystone.receipt.providers package
	Subpackages
	keystone.receipt.providers.fernet package
	Submodules
	keystone.receipt.providers.fernet.core module
	Module contents
	Submodules
	keystone.receipt.providers.base module
	Module contents
	Submodules
	keystone.receipt.handlers module
	keystone.receipt.provider module
	keystone.receipt.receipt_formatters module
	Module contents

	keystone.resource package
	Subpackages
	keystone.resource.backends package
	Submodules
	keystone.resource.backends.base module
	keystone.resource.backends.resource_options module
	keystone.resource.backends.sql module
	keystone.resource.backends.sql_model module
	Module contents
	keystone.resource.config_backends package
	Submodules
	keystone.resource.config_backends.base module
	keystone.resource.config_backends.sql module
	Module contents
	Submodules
	keystone.resource.core module
	keystone.resource.schema module
	Module contents

	keystone.revoke package
	Subpackages
	keystone.revoke.backends package
	Submodules
	keystone.revoke.backends.base module
	keystone.revoke.backends.sql module
	Module contents
	Submodules
	keystone.revoke.core module
	keystone.revoke.model module
	Module contents

	keystone.server package
	Subpackages
	keystone.server.flask package
	Subpackages
	keystone.server.flask.request_processing package
	Subpackages
	keystone.server.flask.request_processing.middleware package
	Submodules
	keystone.server.flask.request_processing.middleware.auth_context module
	keystone.server.flask.request_processing.middleware.url_normalize module
	Module contents
	Submodules
	keystone.server.flask.request_processing.json_body module
	keystone.server.flask.request_processing.req_logging module
	Module contents
	Submodules
	keystone.server.flask.application module
	keystone.server.flask.common module
	keystone.server.flask.core module
	Module contents
	Submodules
	keystone.server.backends module
	keystone.server.wsgi module
	Module contents

	keystone.token package
	Subpackages
	keystone.token.providers package
	Subpackages
	keystone.token.providers.fernet package
	Submodules
	keystone.token.providers.fernet.core module
	Module contents
	keystone.token.providers.jws package
	Submodules
	keystone.token.providers.jws.core module
	Module contents
	Submodules
	keystone.token.providers.base module
	Module contents
	Submodules
	keystone.token.provider module
	keystone.token.token_formatters module
	Module contents

	keystone.trust package
	Subpackages
	keystone.trust.backends package
	Submodules
	keystone.trust.backends.base module
	keystone.trust.backends.sql module
	Module contents
	Submodules
	keystone.trust.core module
	keystone.trust.schema module
	Module contents

	Submodules
	keystone.exception module
	keystone.i18n module
	keystone.notifications module
	keystone.version module

	Module contents

	Indices and tables
	Contributor Documentation
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	How Can I Help?
	The Meaning of Low Hanging Fruit

	Setting up Keystone
	Prerequisites
	Installing from source
	Development environment
	Deploying configuration files
	Configuring Keystone with a sample file

	Bootstrapping a test deployment
	Verifying keystone is set up
	Database setup
	Initializing Keystone
	Initial Sample Data

	Interacting with Keystone

	Identity API v2.0 and v3 History
	Specifications
	History
	How do I migrate from v2.0 to v3?
	I am a deployer
	I have a Python client
	I have a non-Python client

	Why do I see deployments with Keystone running on two ports?
	HTTP/1.1 Chunked Encoding

	Proposing Features
	RFE Bug Reports
	Specifications

	Working with Release Notes
	Release Notes for Bugs
	Release Notes for Features

	Testing Keystone
	Running Tests
	Interactive debugging

	Building the Documentation
	Tests Structure
	Testing Schema Migrations
	LDAP Tests
	“Work in progress” Tests
	API & Scenario Tests
	Writing new API & Scenario Tests

	Developing doctor checks
	Making an API Change
	Prerequisites
	Proposing a change
	Create
	Agreement

	Implementing a change
	Architectural Recapitulation
	Changing the SQL Model and Driver
	Changing the Manager
	Changing the API Interface

	Conclusion

	Authentication Plugins
	How to Implement an Authentication Plugin

	Database Migrations
	Identity entity ID management for domain-specific backends
	Translated responses
	Learning Architecture Internals
	Caching Layer
	Filtering responsibilities between API resources and drivers
	Entity list truncation by drivers

	Keystone for Other Services
	Glossary
	Domains
	The “default” domain
	Authorization Scopes
	System Scope
	Domain Scope
	Project Scope
	Unscoped

	Why are authorization scopes important?
	Flexibility for exposing your work
	Less custom code
	Reusable default roles

	How do I incorporate authorization scopes into a service?
	Ruthless Testing
	Auditing the API
	Setting scope types
	Rewriting check string
	Communication

	Auth Token middleware
	Service tokens

	Picking the version
	Hierarchical Multitenancy

	Developing Keystone Drivers
	In/Out of Tree
	How To Make a Driver
	Driver Interface Changes
	Removing Methods
	Adding Methods
	Updating Methods

	Service Catalog Overview
	An example service catalog
	Services
	Endpoints

	Technical Vision for Keystone
	Mission Statement
	Vision for OpenStack
	Self-service
	Application Control
	Interoperability
	Bidirectional Compatibility
	Partitioning
	Basic Physical Data Center Management
	Plays Well With Others
	Customizable Integration
	Graphical User Interface
	Secure by Design

	Programming Exercises for Interns and New Contributors
	Add a Parameter to an API
	Write an External Driver
	Write an Auth Plugin

	User Documentation
	Supported clients
	Authenticating with a Password via CLI

	Application Credentials
	Managing Application Credentials
	Access Rules
	Using Application Credentials
	Rotating Application Credentials
	Frequently Asked Questions
	Why is the application credential owned by the user rather than the project?

	Trusts
	API Discovery with JSON Home
	What is JSON Home?
	Requesting JSON Home Documents

	API Examples using Curl
	v3 API Examples Using Curl
	GET /
	Tokens
	Unscoped
	Project-scoped
	Domain-Scoped
	Getting a token from a token
	DELETE /v3/auth/tokens

	Domains
	GET /v3/domains
	POST /v3/domains

	Projects
	GET /v3/projects
	PATCH /v3/projects/{id}

	GET /v3/services
	GET /v3/endpoints
	Users
	GET /v3/users
	POST /v3/users
	GET /v3/users/{user_id}
	POST /v3/users/{user_id}/password
	PATCH /v3/users/{user_id}

	PUT /v3/projects/{project_id}/groups/{group_id}/roles/{role_id}
	POST /v3/OS-TRUST/trusts

	Multi-Factor Authentication
	Configuring MFA
	Using MFA
	Single step
	Multi-Step

	CLI Documentation
	keystone-manage
	Keystone Management Utility
	SYNOPSIS
	DESCRIPTION
	USAGE
	General keystone-manage options:

	OPTIONS
	FILES
	SEE ALSO
	SOURCE

	keystone-status
	Keystone Status Utility
	SYNOPSIS
	DESCRIPTION
	USAGE
	Categories and commands

	OPTIONS
	FILES
	SEE ALSO
	SOURCE

	Administrator Guides
	Getting Started
	Identity concepts
	User management
	Service management
	Groups

	Configuring Keystone
	Identity sources

	Bootstrapping Identity
	Using the CLI
	Using a shared secret

	Manage projects, users, and roles
	Projects
	List projects
	Create a project
	Update a project
	Delete a project

	Users
	List users
	Create a user
	Update a user
	Delete a user

	Roles and role assignments
	List available roles
	Create a role
	Assign a role
	View role details
	Remove a role
	Creating implied roles
	Listing implied roles
	Deleting implied roles

	Create and manage services and service users
	Service Catalog
	File-based Service Catalog (templated.Catalog)
	SQL-based Service Catalog (sql.Catalog)
	Create a service
	Create an endpoint
	Delete a service

	Service users
	Create service users
	Configuring service tokens

	Keystone Configuration
	Troubleshoot the Identity service
	Logging
	Domain-specific configuration
	Enable drivers for domain-specific configuration files
	Enable drivers for storing configuration options in SQL database
	Public ID Generators
	Migrate domain-specific configuration files to the SQL database

	Integrate Identity with LDAP
	Identity LDAP server set up
	Integrate Identity back end with LDAP
	Secure the OpenStack Identity service connection to an LDAP back end

	Caching layer
	Caching for tokens and tokens validation
	Caching for non-token resources
	Cache invalidation
	Configure the Memcached back end example
	Verbose cache logging

	Security compliance and PCI-DSS
	Setting an account lockout threshold
	Disabling inactive users
	Force users to change password upon first use
	Configuring password expiration
	Configuring password strength requirements
	Requiring a unique password history
	Prevent Self-Service Password Changes

	Performance and scaling
	Keystone configuration options that affect performance
	Keystonemiddleware configuration options that affect performance

	URL safe naming of projects and domains
	Limiting list return size
	Endpoint Filtering
	Endpoint Policy

	Keystone Operations
	Upgrading Keystone
	Before you begin
	Upgrading with downtime
	Upgrading with minimal downtime
	Rollback after a failed upgrade

	Upgrading without downtime
	Using db_sync check

	Case-Insensitivity in keystone
	Resources in keystone
	Users
	Projects
	Project Tags

	Roles

	Backends
	MySQL & SQLite
	PostgreSQL
	LDAP

	Managing trusts
	Removing Expired Trusts

	All about keystone tokens
	Keystone tokens
	Authorization scopes
	Unscoped tokens
	Project-scoped tokens
	Domain-scoped tokens
	System-scoped tokens

	Token providers
	Fernet tokens
	JWS tokens

	Fernet - Frequently Asked Questions
	What is a fernet token?
	What is a fernet key?
	What are the different types of keys?
	So, how does a staged key help me and why do I care about it?
	Where do I put my key repository?
	What is the recommended way to rotate and distribute keys?
	Do fernet tokens still expire?
	Why should I choose fernet tokens over UUID tokens?
	Why should I choose fernet tokens over PKI or PKIZ tokens?
	Should I rotate and distribute keys from the same keystone node every rotation?
	How do I add new keystone nodes to a deployment?
	How should I approach key distribution?
	How long should I keep my keys around?
	Is a fernet token still a bearer token?
	What if I need to revoke all my tokens?
	What can an attacker do if they compromise a fernet key in my deployment?
	I rotated keys and now tokens are invalidating early, what did I do?

	JWS key rotation
	Initial setup
	Continued operations

	Token provider

	Default Roles
	Primer
	Roles Definitions
	Reader
	Member
	Admin

	System Personas
	System Administrators
	System Members & System Readers

	Domain Personas
	Domain Administrators
	Domain Members & Domain Readers

	Project Personas
	Project Administrators
	Project Members & Project Readers

	Writing Policies

	Advanced Keystone Features
	Unified Limits
	What is a limit?
	Registered limits
	Domain limits
	Project limits

	Limits and usage
	Enforcement models
	Flat
	Advantages
	Disadvantages

	Strict Two Level
	Advantages
	Disadvantages

	Resource Options
	User Options
	ignore_user_inactivity
	ignore_change_password_upon_first_use
	ignore_password_expiry
	ignore_lockout_failure_attempts
	lock_password
	multi_factor_auth_enabled
	multi_factor_auth_rules

	Role Options
	immutable

	Project Options
	immutable

	Domain Options
	immutable

	Credential Encryption
	Configuring credential encryption
	How credential encryption works
	Encrypting existing credentials
	Encryption key management

	Health Check
	Keystone Event Notifications
	Common Notification Structure
	Auditing with CADF
	Reason
	Supported Events
	Example Notification - Project Create
	Example Notification - Authentication
	Example Notification - Federated Authentication
	Example Notification - Role Assignment
	Example Notification - Expired Password

	Basic Notifications
	Supported Events
	Example Notification

	Recommendations for consumers
	Opting out of certain notifications

	Authentication Mechanisms
	Multi-Factor Authentication
	Configuring MFA
	MFA rules
	Enabling MFA

	Using MFA
	Supported multi-factor authentication methods
	TOTP

	Time-based One-time Password (TOTP)
	Configuring TOTP
	Create a TOTP credential
	Google Authenticator
	QR code

	Authenticate with TOTP
	Tokens

	Federated Identity
	Introduction to Keystone Federation
	What is keystone federation?
	Glossary
	Authentication Flows
	Normal keystone
	SAML2.0
	SAML2.0 WebSSO
	SAML2.0 ECP
	WebSSO with keystone and horizon
	Keystone to Keystone
	OpenID Connect
	OpenID Connect Authentication Flow
	OpenID Connect with keystone and horizon

	Configuring Keystone for Federation
	Keystone as a Service Provider (SP)
	Prerequisites
	Creating federation resources in keystone
	Create an Identity Provider
	Create a Mapping
	Create a Protocol
	Configuring an HTTPD auth module
	Configure protected endpoints
	Configure the auth module
	Configuring Keystone
	Add the Auth Method
	Configure the Remote ID Attribute
	Add a Trusted Dashboard (WebSSO)
	Add the Callback Template (WebSSO)
	Configuring Horizon as a WebSSO Frontend
	Authenticating
	Use the CLI to authenticate with a SAML2.0 Identity Provider
	Find available scopes
	Get a scoped token
	Use horizon to authenticate with an external Identity Provider

	Keystone as an Identity Provider (IdP)
	Prerequisites
	Configuring Metadata
	Creating a Service Provider Resource
	Authenticating
	Use the CLI to authenticate with Keystone-to-Keystone
	Use Horizon to switch clouds

	Setting Up OpenID Connect
	Configuring Apache HTTPD for mod_auth_openidc
	Install the Module
	Configure mod_auth_openidc
	Configure Protected Endpoints
	Configuring Multiple Identity Providers
	Continue configuring keystone

	Setting Up Mellon
	Configuring Apache HTTPD for mod_auth_mellon
	Install the Module
	Configure mod_auth_mellon
	Configure Protected Endpoints
	Configure the Mellon Service Provider Metadata
	Exchange Metadata
	Continue configuring keystone

	Setting up Shibboleth
	Configuring Apache HTTPD for mod_shib
	Install the Module
	Configure Protected Endpoints
	Configuring mod_shib
	Generate a keypair
	Configure metadata
	Configure allowed attributes
	Exchange Metadata
	Continue configuring keystone

	Mapping Combinations
	Description
	Definitions
	How Mappings Are Processed
	Mapping Rules
	Mapping Engine
	Mapping Conditions
	Mappings Examples
	empty condition
	other conditions
	Output
	Regular Expressions
	Condition Combinations
	Multiple Rules
	Auto-Provisioning
	keystone-to-keystone

	Using external authentication with Keystone
	Configuration
	Using HTTPD authentication
	X.509 example

	Configuring Keystone for Tokenless Authorization
	Definitions
	Prerequisites

	Keystone Configuration
	How to obtain trusted issuer DN
	How to calculate the IDP ID from trusted issuer DN
	Keystone Configuration File Changes

	Setup Mapping
	Create an Identity Provider (IDP)
	Create a Map
	Create a Protocol

	SSL Terminator Configuration
	Apache Configuration
	HAProxy and Apache Configuration

	Setup auth_token middleware
	Configurable Options

	OAuth1 1.0a

	Keystone Configuration Options
	API Configuration options
	Configuration
	DEFAULT
	application_credential
	assignment
	auth
	cache
	catalog
	cors
	credential
	database
	domain_config
	endpoint_filter
	endpoint_policy
	eventlet_server
	federation
	fernet_receipts
	fernet_tokens
	healthcheck
	identity
	identity_mapping
	jwt_tokens
	ldap
	memcache
	oauth1
	oslo_messaging_amqp
	oslo_messaging_kafka
	oslo_messaging_notifications
	oslo_messaging_rabbit
	oslo_middleware
	oslo_policy
	policy
	profiler
	receipt
	resource
	revoke
	role
	saml
	security_compliance
	shadow_users
	token
	tokenless_auth
	totp
	trust
	unified_limit
	wsgi

	Domain-specific Identity drivers

	Policy configuration
	Configuration
	keystone

