Manila Developer Documentation
Release 15.4.2.dev5

Manila contributors

Sep 13, 2024

CONTENTS

1 What is Manila? 1
2 For end users 3
2.1 ToolsforusingManila 3
2010 USer . . oo e e e e 3
Create and manage shares 3

Create and manage share networks L. 34

Create and manage share network subnets 47
Troubleshooting asynchronous failures 51

2.2 Usingthe Manila APL 61
3 For operators 63
3.1 InstallingManila e 63
3.1.1 Inmstallation Tutorial 63
Service Overview e 63

Install and configure controllernode 64

Install and configure a sharenode 87

Verify operation 123

Creating and using shared file systems 124

NeXtStEPS .« v v v e e e e e e e e e e e e e e e e e e e 134

3.2 Administrating Manila oL o 135
32,1 AdminGuide 135
Keyconcepts e 136

Share management L e e e e e e 138

Share types« . . e e 167

Share group types v v v v i e e e e e e e e e 173

Share groups L. 176

Share snapshots 183

Share servers e e e e 186

Share server managementt e e e e e e 186

Share server limits (Since Wallaby release) 189

Security SEIVICeso e e e e 189

Share migration e e 193

Share replication L 198
Multi-storage configuration 209

Networking o . e 211
Troubleshoot Shared File Systems service 220

Profiling the Shared File Systems service 222

Upgrading the Shared File System service 226

Sharereverttosnapshot 228

Share server migration 228
Manila share features support mapping 234
Capabilities and Extra-Specso oL 238

Group Capabilities and group-specs o oo 242
Export Location Metadata, 242
Supported share backends o o 243

33 Reference L 387
3.3.1 Configuration e e e e e 387
Introduction to the Shared File Systems service 387
Shared File Systems API configuration 389

Share drivers L 391

Log files used by Shared File Systems 483
Additional options L L e e e e e 483
Shared File Systems service sample configuration files 489

3.3.2 Command Line Interface, 493
Shared File Systems service (manila) command-line client 493
manila-manage e 539
manila-status 542

3.4 Additional resourcesol e e 543
4 For contributors 545
4.1 Contributor/Developer Guide e 545
4.1.1 BasicInformation L 545
So You Want to Contribute oL 545

4.1.2 Programming HowTos and Tutorials 549
Setting Up a Development Environment 549
Setting up a development environment with devstack 552
Running manila APl withawebserver 556
UnitTests 0 e e 558
Tempest Tests o e e e 559
Adding a Method to the OpenStack Manila APT 562
Documenting your work L. 563
Release Notes o o o o e 566

Using Commit Message Tagsin Manila 570

Guru Meditation Reports 570

UsSer MeSSAaZeS . . v v v v v v e e e e e e e e e e e e e e e 572
GaneshaLibrary e 578

4.1.3 Background Concepts formanila 584
Manila System Architecture 584
Threadingmodel 585
Internationalization oL 586
AMQPandmanila e 587
Manila minimum requirements and features oL, 592
Manila optional requirements and features since Mitaka 596
Manila experimental features since Mitaka 597
Pool-Aware Scheduler Support oL 598

4.1.4 OtherResourceso v v it e 602
Project hosting with Launchpad 602

Code Reviews with Gerrit 603
Manila team code review policy oo e 603

Manila Project Team Lead guide 605

4.1.5 APIReference. L 608
API Microversions e 608

REST API Version History 614
Experimental APIs 624

4.1.6 ModuleReference 625
Introduction to the Shared File Systems service 625
Services, Managers and Drivers L 0oL 626

The Database Layer. 0 i ittt e e 629
Shared Filesystems L 667
Manila share driver hooks L oL 722
Authentication and Authorization 724
Scheduler 736
Scheduler Filters 743
Scheduler Weighers L L 746

Fake Drivers e 748
Common and Misc Libraries 754

Share Replication 786
Configure and use driver filter and weighing for scheduler 805

Share Migration e 810

Share Server Migration 819

4.2 Additional reference 828
42.1 Reference e 828
Glossary e e e e e 828

CHAPTER
ONE

WHAT IS MANILA?

Manila is the OpenStack Shared Filesystems service for providing Shared Filesystems as a service. Some
of the goals of Manila are to be/have:

* Component based architecture: Quickly add new behaviors

* Highly available: Scale to very serious workloads
 Fault-Tolerant: Isolated processes avoid cascading failures

* Recoverable: Failures should be easy to diagnose, debug, and rectify

* Open Standards: Be a reference implementation for a community-driven api

Manila Developer Documentation, Release 15.4.2.dev5

2 Chapter 1. What is Manila?

CHAPTER
TWO

FOR END USERS

As an end user of Manila, youll use Manila to create a remote file system with either tools or the API
directly: python-manilaclient, or by directly using the REST API.

2.1 Tools for using Manila

Contents:

2.1.1 User

Create and manage shares

* General Concepts

* Usage and Limits

» Share types

» Share networks

* Create a share

* Allow read-write access

» Allow read-only access

* Update access rules metadata
* Deny access

* Create snapshot

* Create share from snapshot
* Delete share

* Delete snapshot

» Extend share

» Shrink share

e Share metadata

e Share revert to snapshot

https://docs.openstack.org/python-manilaclient/latest/
https://docs.openstack.org/api-ref/shared-file-system/

Manila Developer Documentation, Release 15.4.2.dev5

.

General Concepts

A share is filesystem storage that you can create with manila. You can pick a network protocol for
the underlying storage, manage access and perform lifecycle operations on the share via the manila
command line tool.

Before we review the operations possible, lets take a look at certain important terms:

* share network: This is a network that your shares can be exported to. Exporting shares to
your own self-service isolated networks allows manila to provide hard network path data iso-
lation guarantees in a multi-tenant cloud. To do so, under the hood, manila creates isolated
share servers, and plugs them into your network. These share servers manage exports of your
shares, and can connect to authentication domains that you determine. Manila performs all the
lifecycle operations necessary on share servers, and you neednt worry about them. The impor-
tant thing to note is that your cloud administrator must have made a share type with extra-spec
driver_handles_share_servers=True for you to be able to use share networks and create
shares on them. See Create and manage share networks and Create and manage share network
subnets for more details.

* share type: A share type is a template made available by your administrator. You must always
specify a share type when creating a share, unless you would like to use the default share type. Its
possible that your cloud administrator has not made a default share type accessible to you. Share
types specify some capabilities for your use:

Capability Possible values Consequence
driver_handles_share_settvaesor false you can or cannot use share networks to create
shares
snapshot_support true or false you can or cannot create snapshots of shares
cre- true or false you can or cannot create clones of share snapshots
ate_share_from_snapshot_support
re- true or false you can or cannot revert your shares in-place to the
vert_to_snapshot_support most recent snapshot
mount_snapshot_supporttrue or false you can or cannot export your snapshots and mount
them
replication_type dr you can create replicas for disaster recovery, only
one active export allowed at a time
readable you can create read-only replicas, only one
writable active export allowed at a time
writable you can create read/write replicas, any number of
active exports per share
availability_zones a list of one or more | shares are limited to these availability zones
availability zones

Note:

* When replication_type extra specification is not present in the share type, you cannot create
share replicas

4 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

* When the availability_zones extra specification is not present in the share type, the share type
can be used in all availability zones of the cloud.

* status of resources: Resources that you create or modify with manila may not be available im-
mediately. The API service is designed to respond immediately and the resource being created or
modified is worked upon by the rest of the service stack. To indicate the readiness of resources,
there are several attributes on the resources themselves and the user can watch these fields to know
the state of the resource. For example, the status attribute in shares can convey some busy states
such as creating, extending, shrinking, migrating. These -ing states end in a available state if ev-
erything goes well. They may end up in an error state in case there is an issue. See Troubleshooting
asynchronous failures to determine if you can rectify these errors by yourself. If you cannot, con-
sulting a more privileged user, usually a cloud administrator, might be useful.

* snapshot: This is a point-in-time copy of a share. In manila, snapshots are meant to be crash
consistent, however, you may need to quiesce any applications using the share to ensure that the
snapshots are application consistent. Cloud administrators can enable or disable snapshots via
share type extra specifications.

* security service: This is an authentication domain that you define and associate with your
share networks. It could be an Active Directory server, a Lightweight Directory Access Proto-
col server, or Kerberos. When used, access to shares can be controlled via these authentication
domains. You may even combine multiple authentication domains.

Usage and Limits

* List the resource limits and usages that apply to your project

manila absolute-limits

2.1. Tools for using Manila 5

Manila Developer Documentation, Release 15.4.2.dev5

Share types

* List share types

manila type-list

[

(continues on next page)

6 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

)

!

Share networks

e Create a share network.

manila share-network-create
--name mysharenetwork
--description
--neutron-net-id 23da40b4-0d5e-468c-8ac9-3766e9ceaacd
--neutron-subnet-id 4568bc9b-42fe-45ac-a49b-469e8276223c
(continues on next page€)

2.1. Tools for using Manila 7

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

i
L

{
C

C

A R i A el
L r L r

Pl

Note: This Manila API does not validate the subnet information you supply right away. The
validation is performed when creating a share with the share network. This is why, you do not see
some subnet information populated on the share network resource until at least one share is created
with it.

8 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

e List share networks.

manila share-network-list

Create a share

¢ Create a share

Note: If you wuse a share type that has the extra specification
driver_handles_share_servers=False, you cannot use a share network to create your
shares.

manila create NFS
--name myshare
--description
--share-network mysharenetwork
--share-type dhss_true

(continues on next page)

2.1. Tools for using Manila 9

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

Show a share.

manila show myshare

(continues on next page)

10

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

— i
s

=

— -
[N

—

— =
>

-

—r —
[N

=

— =
[N

o

— =
[N

=

> —
[N

._.

— -
[N

-

— =
[N

— =
[N

—

— —
[N

-

— [}
[N

— -
[N

o

— =
>

=

—r —
[N

—

— =
[N

o

(continues on next page)
—

2.1. Tools for using Manila 11

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

_

(continues on next page)

12 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

e List shares.

manila list

List share export locations.

manila share-export-location-list myshare

2.1. Tools for using Manila 13

Manila Developer Documentation, Release 15.4.2.dev5

Allow read-write access

¢ Allow access.

manila access-allow myshare ip .0.0.0/24 --metadata valuel

Note: Since API version 2.38, access rules of type IP supports IPv6 addresses and subnets in
CIDR notation.

Note: Since API version 2.45, metadata can be added, removed and updated for share access rules
in a form of key=value pairs. Metadata can help you identify and filter access rules.

e List access.

manila access-list myshare

An access rule is created.

14 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

Allow read-only access

¢ Allow access.

manila access-allow myshare ip fd31:7ee0:3de4:a41b::/64 --access-level.,
—Xo0

e List access.

manila access-list myshare

Another access rule is created.

2.1. Tools for using Manila 15

Manila Developer Documentation, Release 15.4.2.dev5

Update access rules metadata

1. Add a new metadata.

manila access-metadata 0c8470ca-0d77-490c-9e71-29e1£f453b£f97 o
< value?2
manila access-show 0c8470ca-0d77-490c-9e71-29e1£453bf97

2. Remove a metadata key value.

manila access-metadata 0c8470ca-0d77-490c-9e71-29e1£f453bf97 key
manila access-show 0c8470ca-0d77-490c-9e71-29e1£453b£97

Deny access

* Deny access.

manila access-deny myshare 45b0a030-306a-4305-9e2a-36aeffb2d5b7
manila access-deny myshare e30bde96-9217-4£f90-afdc-27c092aflc77

e List access.

16 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

manila access-list myshare

The access rules are removed.

Create snapshot

* Create a snapshot.

Note: To create a snapshot, the share type of the share must contain the capability extra-spec
snapshot_support=True.

manila snapshot-create --name mysnapshot --description o
o myshare

List snapshots.

manila snapshot-list

(continues on next page)

2.1. Tools for using Manila 17

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Create share from snapshot

* Create a share from a snapshot.

Note: To create a share from a snapshot, the share type of the parent share must contain the
capability extra-spec create_share_from_snapshot_support=True

manila create NFS
--snapshot-id 8al8aa77-7500-4e56-be8f-6081146f47f1
--share-network mysharenetwork
--name mysharefromsnap

—

(continues on next page)

18 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

e List shares.

manila list

2.1. Tools for using Manila 19

Manila Developer Documentation, Release 15.4.2.dev5

* Show the share created from snapshot.

manila show mysharefromsnap

(continues on next page)

20

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

-

— i
<

_

— -
[EN

-

— i
>

-

— -
<

—

— -
[N

-

— i
<

_

> w
[N

o

— -
<

u

— —
<

s

— u
[N

-

— u
<

-

— [}
<

—

— —
[EN

-

— i
>

_

—r —
<

— u
[EN

(continues on next page)
—

2.1. Tools for using Manila 21

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Delete share

¢ Delete a share.

manila delete mysharefromsnap

e List shares.

manila list

The share is being deleted.

22

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

Delete shapshot

* Delete a snapshot.

manila snapshot-delete mysnapshot

List snapshots after deleting.

manila snapshot-list

The snapshot is deleted.

Extend share

¢ Extend share.

manila extend myshare

» Show the share while it is being extended.

manila show myshare
N
o
o o
.
o
.
. o
o
o o
.
— |_.
o
o o
o
o o
N

(continues on next page)

2.1. Tools for using Manila 23

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

o

— o
PN

o

— -
AN

o

— o
>

o

—r —
[N

— o
3N

o

— o
N

o

> —
SN

— o
N

o

— o
PN

o

— u
3N

o

— o
AN

o

— o
PN

o

— —
3N

o

— o
>

o

—r —
[N

o

— o
3N

o

(continues on next page)

24 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

¢ Show the share after it is extended.

manila show myshare

(continues on next page)

2.1. Tools for using Manila 25

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[N
s

— o
[N

—

— =
>

-

— —
[N

=

— =
[N

o

— =
[N

=

> —
[N

—

— -
[N

=

— =
[N

=

— o
[N

— =
[N

-

— [}
[N

=

— -
[N

— =
>

=

— —
[N

—

— =
[N

o

(continues on next page)

26 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

-

— i
s

=

— -
[N

—

— =
>

-

—r —
[N

.

— -
[N

o

— =
[N

=

> —
[N

—

— -
[N

-

— =
[N

=

— u
[N

—

— —
[N

-

— [}
[N

— -
[N
[N
N

=

—r —
[N

— -
[N

(continues on next page)
—

2.1. Tools for using Manila 27

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Shrink share

e Shrink a share.

manila shrink myshare

Show the share while it is being shrunk.

manila show myshare

[

(continues on next page)

28

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

o

— o
PN

— -
AN

o

— o
>

o

— -
[N

— o
3N

o

— o
N

o

> —
SN

o

— o
N

o

— o
PN

o

— u
3N

o

— o
AN

o

— o
PN

o

— _
3N

o

— o
>

o

—r —
[N

o

— o
3N

o

(continues on next page)
—

2.1. Tools for using Manila 29

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

* Show the share after it is being shrunk.

manila show myshare

(continues on next page)

30 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

-

— i
<

_

— -
[EN

-

— i
>

-

— -
<

—

— -
[N

o

— s
<

_

> w
[N

— -
<

u

— —
<

s

— u
[N

— _
<

-

— [}
<

—

— —
[EN

-

— i
>

_

—r —
<

-

— -
[EN

-

(continues on next page)
—

2.1. Tools for using Manila 31

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

32 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

Share metadata

* Set metadata items on your share

manila metadata myshare

—

¢ Show share metadata

manila metadata-show myshare

Query share list with metadata

manila list --metadata

¢ Unset share metadata

manila metadata myshare year_started

Share revert to snapshot

* Share revert to snapshot

Note:

— To revert a share to its snapshot, the share type of the share must contain the capability extra-
spec revert_to_snapshot_support=True.

— The revert operation can only be performed to the most recent available snapshot of the share
known to manila. If revert to an earlier snapshot is desired, later snapshots must explicitly be
deleted.

manila revert-to-snapshot mysnapshot

2.1. Tools for using Manila 33

Manila Developer Documentation, Release 15.4.2.dev5

Create and manage share networks

e Create share networks

* List share networks

* Update share networks

* Share network show

* Add security service/s

* List share network security services

* Remove a security service from a share network

* Delete share networks

* Update share network security service check (Since API version 2.63)

* Update share network security services (Since API version 2.63)

* Add share network security service check (Since API version 2.63)

A share network stores network information to create and manage shares. A share network provides a
way to designate a network to export shares upon. In the most common use case, you can create a share
network with a private OpenStack (neutron) network that you own. If the share network is an isolated
network, manila can provide hard guarantees of network and data isolation for your shared file systems
in a multi-tenant cloud. In some clouds, however, shares cannot be exported directly upon private project
networks; and the cloud may have provider networks that are designated for use with share networks.

In either case, as long as the underlying network is connected to the clients (virtual machines, containers
or bare metals), there will exist a direct path to communicate with shares exported on the share networks.

Important: In order to use share networks, the share type you choose must have the extra specification
driver_handles_share_servers set to True.

Create share networks

1. Create a share network.

manila share-network-create
--name sharenetworkl
--description
--neutron-net-id c297b020-025a-4f3e-8120-57ea90404afb
--neutron-subnet-id 29ecfbd5-a%be-467e-8b4a-3415d1£82888

(continues on next page)

34 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

2. Show the created share network.

manila share-network-show sharenetworkl

Note: Since API version 2.51, a share network is able to span multiple subnets in different avail-
ability zones and the network information will be stored on each subnet. To accommodate adding
multiple subnets, the share network create command was updated to accept an availability zone as
parameter. This parameter will be used in the share network creation process which also creates a
new subnet. If you do not specify an availability zone, the created subnet will be considered default
by the Shared File Systems service. A default subnet is expected to be available in all availability
zones of the cloud. So when you are creating a share network, the output will be similar to:

manila share-network-create
--name sharenetworkl
--description
--availability-zone manila-zone-0

O R

(continues on next page)

—

2.1.

Tools for using Manila 35

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

ol

!

el !

el

! ol el bl i

Pl

!

!

(continues on next page)

36

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

|

List share networks

1. List share networks.

manila share-network-list

Update share networks

1. Update the share network data.

manila share-network-update sharenetworkl
--neutron-net-id a27160ca-5595-4c62-bf54-a04fb7b14316
--neutron-subnet-id f043f4b0-c0®5e-493f-bbe9-99689e2187d2

2. Show details of the updated share network.

manila share-network-show sharenetworkl

(continues on next page)

2.1. Tools for using Manila 37

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Note: You cannot update the neutron_net_id and neutron_subnet_id of a share network
that has shares exported onto it.

Note: From API version 2.51, updating the neutron_net_id and neutron_subnet_id is pos-
sible only for a default subnet. Non default subnets cannot be updated after they are created. You
may delete the subnet in question, and re-create it. The output will look as shown below:

manila share-network-update sharenetworkl
--neutron-net-id a27160ca-5595-4c62-bf54-a04fb7b14316
--neutron-subnet-id f043f4b0®-c05e-493f-bbe9-99689e2187d2

!

i !
¥

!

el

)
L

(continues on next page)

38 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

i
L

{
C

A R A R Ll b d
L L L L C L

!

2.1. Tools for using Manila 39

Manila Developer Documentation, Release 15.4.2.dev5

Share network show

1. Show details of a share network.

manila share-network-show sharenetworkl

Note: Since API version 2.51, the share-network-show command also shows a list of subnets
contained in the share network as show below.

ol

N

i !

!

—

—

—

()

N)

(continues on next page)

40

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

o
— i
— o
— i
— —
AN
i
— i
d —
— o
—r ()
[N
i
— o
— i
— —
— i
PN
i
> —
— |_.
—r ()
— o
N
o
— i
— —
[i
— —
3N
SN
AN
[N
— o
PN
PN
<
PN
AN
N

Note: Since API version 2.63, the share-network-show command also shows the status and
security_service_update_support fields.

(continues on next page)

2.1. Tools for using Manila 41

—

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

i
L

!

A R i A el
L L r L

Pl

P id
L

(continues on next page)

42 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

i
L

{
C

C

R el
r

A

Add security service/s

1. Add a pre existent security service in a given share network.

manila share-network-security-service-add
sharenetworkl
my_sec_service
manila share-network-security-service-list sharenetworkl

Note: Since API version 2.63, manila supports adding security services to share networks that already
are in use, depending on the share networks support. The share network entity now contains a field called
security_service_update_support which holds information whether all resources built within it
can hold such operation. Before starting the operation to actually add the security service to a share
network that is being used, a check operation must be triggered. See subsection.

2.1. Tools for using Manila 43

Manila Developer Documentation, Release 15.4.2.dev5

List share network security services

1. List all the security services existent in a share network.

manila share-network-security-service-list sharenetworkl

Remove a security service from a share network

1. Remove a security service from a given share network.

manila share-network-security-service-remove
sharenetworkl

my_sec_service
manila share-network-security-service-list sharenetworkl

Delete share networks

1. Delete a share network.

manila share-network-delete sharenetworkl

2. List all share networks

manila share-network-list

Update share network security service check (Since API version 2.63)

1. Check if the update for security services of the same type can be performed:

manila share-network-security-service-update-check
sharenetworkl

my_sec_service

my_sec_service_updated

(continues on next page)

44 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

2. Check the result of the operation:

manila share-network-security-service-update-check
sharenetworkl

my_sec_service

my_sec_service_updated

Now, the request to update a share network security service should be accepted.

2.1. Tools for using Manila 45

Manila Developer Documentation, Release 15.4.2.dev5

Update share network security services (Since API version 2.63)

1. Replaces one security service for another of the same type.

manila share-network-security-service-update
sharenetworkl
my_sec_service
my_sec_service_updated

manila share-network-security-service-list sharenetworkl

Note: The share network entity now contains a field called security_service_update_support
which holds information whether all resources built within it can hold such operation. In order to update
security services in share networks that currently contain shares, an operation to check if the operation
can be completed must be performed. See subsection.

Add share network security service check (Since API version 2.63)

1. Check if it is possible to add a security service to a share network:

manila share-network-security-service-add-check
sharenetworkl
my_sec_service

— (continues on next page)

46 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

l |

2. Check if the result of the operation:

manila share-network-security-service-add-check
sharenetworkl
my_sec_service

Create and manage share network subnets

* Create a subnet in an existing share network

e Show a share network subnet

¢ Delete a share network subnet

A share network subnet stores network information to create and manage shares. To create and manage
your share network subnets, you can use manila client commands. You can create multiple subnets
in a share network, and if you do not specify an availability zone, the subnet you are creating will be
considered default by the Shared File Systems service. The default subnet spans all availability zones.
You cannot have more than one default subnet per share network.

Important: In order to use share networks, the share type you choose must have the extra specification
driver_handles_share_servers set to True.

2.1. Tools for using Manila 47

Manila Developer Documentation, Release 15.4.2.dev5

Create a subnet in an existing share network

1. Create a subnet related to the given share network

manila share-network-subnet-create
sharenetworkl
--availability-zone manila-zone-0

--neutron-net-id a27160ca-5595-4c62-b£f54-a04fb7b14316
--neutron-subnet-id £f043f4b0®-c05e-493f-bbe9-99689e2187d2

2. Show the share network to verify if the created subnet is attached

manila share-network-show sharenetworkl

il

el

R

—

)

(continues on next page)

()

48

D

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

i
L

{
C

A R A R Ll b d
L L L L C L

!

2.1. Tools for using Manila 49

Manila Developer Documentation, Release 15.4.2.dev5

Show a share network subnet

1. Show an existent subnet in a given share network

manila share-network-subnet-show
sharenetworkl
be3ae5ad-a22c-494f-840e-5e3526e34e0f

Delete a share network subnet

1. Delete a specific share network subnet

manila share-network-subnet-delete
sharenetworkl
be3ae5ad-a22c-494f-840e-5e3526e34e0f

2. Verify that it has been deleted

manila share-network-show sharenetworkl

50 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

Troubleshooting asynchronous failures

The Shared File Systems service performs many user actions asynchronously. For example, when a new
share is created, the request is immediately acknowledged with a response containing the metadata of
the share. Users can then query the resource and check the status attribute of the share. Usually an
. . . ing status indicates that actions are performed asynchronously. For example, a new shares status
attribute is set to creating by the service. If these asynchronous operations fail, the resources status
will be set to error. More information about the error can be obtained with the help of the CLI client.

Scenario

In this example, the user wants to create a share to host software libraries on several virtual machines.
The example deliberately introduces two share creation failures to illustrate how to use the command line
to retrieve user support messages.

1. In order to create a share, you need to specify the share type that meets your requirements. Cloud
administrators create share types; see these available share types:

manila type-list

—

(continues on next page)

2.1. Tools for using Manila 51

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

In this example, two share types are available.

2. To use a share type that specifies driver_handles_share_servers=True capability, you must create
a share network on which to export the share.

openstack subnet list

3. Create a share network from a private tenant network:

manila share-network-create --name mynet --neutron-
—net-id 74d5cfb3-5dd0-43f7-b1b2-5b544cb16212 --neutron-subnet-id.
—78c6ac57-bba7-4922-ab81-16cde31c2d06

manila share-network-list

(continues on next page)

52 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

4. Create the share:

manila create nfs --name software_share --share-
—network mynet --share-type dhss_true

(continues on next page)

2.1. Tools for using Manila 53

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

5. View the status of the share:

manila list

In this example, an error occurred during the share creation.

6. To view the generated user message, use the message-1ist command. Use --resource-id to

filter messages for a specific share resource.

manila message-list

—

—

(continues on next page)

54

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

In User Message column, you can see that the Shared File System service failed to create the share
because of a capabilities mismatch.

7. To view more information, use the message-show command, followed by the ID of the message
from the message-list command:

manila message-show 7d411c3c-46d9-433f-9e21-
—c04ca30b209c

As the cloud user, you know the related specs your share type has, so you can review the share types

2.1. Tools for using Manila 55

Manila Developer Documentation, Release 15.4.2.dev5

available. The difference between the two share types is the value of driver_handles_share_servers:

manila type-list

8. Create a share with the other available share type:

manila create nfs --name software_share --share-
—network mynet --share-type dhss_false

—

= (continues on next page)

56 Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

_

(continues on next page)

2.1. Tools for using Manila 57

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

In this example, the second share creation attempt fails.

9. View the user support message:

manila list

manila message-list

You can see that the service does not expect a share network for the share type used. Without con-
sulting the administrator, you can discover that the administrator has not made available a storage
back end that supports exporting shares directly on to your private neutron network.

58

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

10. Create the share without the --share-network parameter:

manila create nfs --name software_share --share-
—type dhss_false

—

N (continues on next page)

2.1. Tools for using Manila 59

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

11. To ensure that the share was created successfully, use the manila list command:

manila list

12. Delete shares that failed to be created and corresponding support messages:

manila delete 2d03d480-7cba-4122-ac9d-edc59c8df698,.
—243f3a51-0624-4bdd-950e-7ed190b53b67
manila message-list

!

<y .

— (continues on next page)

60

Chapter 2. For end users

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

!

manila message-delete ed7e02a2-0cdb-4£f£f9-b64f-
—edd2eclef069 7d411c3c-46d9-433f-9e21-c04ca30b209c

manila message-list

2.2 Using the Manila API

All features of Manila are exposed via a REST API that can be used to build more complicated logic or
automation with Manila. This can be consumed directly or via various SDKs. The following resources
can help you get started consuming the API directly:

e Manila API

* Manila microversion history

2.2. Using the Manila API 61

https://docs.openstack.org/api-ref/shared-file-system/

Manila Developer Documentation, Release 15.4.2.dev5

62

Chapter 2. For end users

CHAPTER
THREE

FOR OPERATORS

This section has details for deploying and maintaining Manila services.

3.1 Installing Manila

Manila can be configured standalone using the configuration setting auth_strategy = noauth, but
in most cases you will want to at least have the Keystone Identity service and other OpenStack services
installed.

3.1.1 Installation Tutorial

Service Overview

The OpenStack Shared File Systems service (manila) provides file storage to a virtual machine. The
Shared File Systems service provides an abstraction for managing and provisioning of file shares. The
service also enables management of share types as well as share snapshots if a driver supports them.

The Shared File Systems service consists of the following components:
manila-api A WSGI app that authenticates and routes requests to the Shared File Systems service.

manila-data A standalone service whose purpose is to process data operations such as copying, share
migration or backup.

manila-scheduler Schedules and routes requests to the appropriate share service. The scheduler uses
configurable filters and weighers to route requests. The Filter Scheduler is the default and enables
filters on various attributes of back ends, such as, Capacity, Availability Zone and other capabilities.

manila-share Manages back-end devices that provide shared file systems. A manila-share service talks
to back-end devices by using share back-end drivers as interfaces. A share driver may operate in
one of two modes, with or without handling of share servers. Share servers export file shares via
share networks. When share servers are not managed by a driver within the shared file systems
service, networking requirements should be handled out of band of the shared file systems service.

Messaging queue Routes information between the Shared File Systems processes.

For more information, see Configuration Reference Guide.

63

https://docs.openstack.org/keystone/latest/install/
https://docs.openstack.org/latest/install/
https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 15.4.2.dev5

Install and configure controller node

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node. This service requires at least one additional share node that manages file storage
back ends.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.

Install and configure controller node on openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node that runs openSUSE and SUSE Linux Enterprise. This service requires at least
one additional share node that manages file storage back ends.

Prerequisites

Before you install and configure the Shared File Systems service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysql -u root -p

Create the manila database:

Grant proper access to the manila database:

Replace MANILA_DBPASS with a suitable password.
 Exit the database access client.

2. Source the admin credentials to gain access to admin CLI commands:

admin-openrc.sh

3. To create the service credentials, complete these steps:

e Create a manila user:

64 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

openstack user create --domain default --password-prompt manila

¢ Add the admin role to the manila user:

openstack role add --project service --user manila admin

Note: This command provides no output.

¢ Create the manila and manilav?2 service entities:

openstack service create --name manila
--description share

openstack service create --name manilav2
--description sharev?2

Note: The Shared File Systems services require two service entities.

3.1. Installing Manila 65

Manila Developer Documentation, Release 15.4.2.dev5

4. Create the Shared File Systems service API endpoints:

openstack endpoint create --region RegionOne

openstack endpoint create --region RegionOne
share internal http://controller:8786/v1/%

openstack endpoint create --region RegionOne

share public http://controller:8786/v1/%\ (tenant_id\)s

tenant_id\)s

share admin http://controller:8786/v1/%\ (tenant_id\)s

66

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

openstack endpoint create --region RegionOne
sharev2 public http://controller:8786/v2

openstack endpoint create --region RegionOne
sharev2 internal http://controller:8786/v2

openstack endpoint create --region RegionOne
sharev2 admin http://controller:8786/v2

Note: The Shared File Systems services require endpoints for each service entity.

3.1.

Installing Manila 67

Manila Developer Documentation, Release 15.4.2.dev5

Install and configure components

1. Install the packages:

zypper install openstack-manila-api openstack-manila-scheduler python-
—manilaclient

2. Edit the /etc/manila/manila. conf file and complete the following actions:

* In the [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems database.
3. Complete the rest of the configuration in manila.conf:

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be used
when shares are created without specifying the share type in the request. The default share
type that is specified in the configuration file has to be created with the necessary required
extra-specs (such as driver_handles_share_servers) set appropriately with reference
to the driver mode used. This is further explained in the section discussing the setup and
configuration of the share node.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

(continues on next page)

68 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Replace MANILA_PASS with the password you chose for the manila user in the Identity ser-
vice.

* In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

In the [oslo_concurrency] section, configure the lock path:

Finalize installation

1. Start the Shared File Systems services and configure them to start when the system boots:

systemctl openstack-manila-api.service openstack-manila-
—scheduler.service

systemctl start openstack-manila-api.service openstack-manila-scheduler.
—,service

3.1. Installing Manila 69

Manila Developer Documentation, Release 15.4.2.dev5

Install and configure controller node on Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node that runs Red Hat Enterprise Linux or CentOS. This service requires at least one
additional share node that manages file storage back ends.

Prerequisites

Before you install and configure the Shared File Systems service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysql -u root -p

Create the manila database:

Grant proper access to the manila database:

Replace MANILA_DBPASS with a suitable password.
» Exit the database access client.

2. Source the admin credentials to gain access to admin CLI commands:

admin-openrc.sh

3. To create the service credentials, complete these steps:

e Create a manila user:

openstack user create --domain default --password-prompt manila

70 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

¢ Add the admin role to the manila user:

openstack role add --project service --user manila admin

Note: This command provides no output.

¢ Create the manila and manilav?2 service entities:

openstack service create --name manila
--description share

openstack service create --name manilav?2
--description sharev?2

Note: The Shared File Systems services require two service entities.

4. Create the Shared File Systems service API endpoints:

openstack endpoint create --region RegionOne
share public http://controller:8786/v1/%\ (tenant_id\)s

(continues on next page)

3.1. Installing Manila 71

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

openstack endpoint create --region RegionOne
share internal http://controller:8786/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
share admin http://controller:8786/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
sharev2 public http://controller:8786/v2

(continues on next page)

72

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

openstack endpoint create --region RegionOne
sharev2 internal http://controller:8786/v2

openstack endpoint create --region RegionOne
sharev2 admin http://controller:8786/v2

Note: The Shared File Systems services require endpoints for each service entity.

Install and configure components

1. Install the packages:

yum install openstack-manila python3-manilaclient

2. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [database] section, configure database access:

3.1. Installing Manila 73

Manila Developer Documentation, Release 15.4.2.dev5

Replace MANTILA_DBPASS with the password you chose for the Shared File Systems database.
3. Complete the rest of the configuration in manila. conf:

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be used
when shares are created without specifying the share type in the request. The default share
type that is specified in the configuration file has to be created with the necessary required
extra-specs (such as driver_handles_share_servers) set appropriately with reference
to the driver mode used. This is further explained in the section discussing the setup and
configuration of the share node.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

74 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Replace MANILA_PASS with the password you chose for the manila user in the Identity ser-
vice.

* In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

* In the [oslo_concurrency] section, configure the lock path:

4. Populate the Shared File Systems database:

su -s /bin/sh -c manila

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Start the Shared File Systems services and configure them to start when the system boots:

systemctl openstack-manila-api.service openstack-manila-
—»scheduler.service

systemctl start openstack-manila-api.service openstack-manila-scheduler.
—service

Install and configure controller node on Ubuntu

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node that runs Ubuntu. This service requires at least one additional share node that
manages file storage back ends.

Prerequisites

Before you install and configure the Shared File Systems service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysql -u root -p

¢ Create the manila database:

3.1. Installing Manila 75

Manila Developer Documentation, Release 15.4.2.dev5

Grant proper access to the manila database:

Replace MANILA_DBPASS with a suitable password.

» EXxit the database access client.

2. Source the admin credentials to gain access to admin CLI commands:

admin-openrc.sh

3. To create the service credentials, complete these steps:

e Create a manila user:

openstack user create --domain default --password-prompt manila

¢ Add the admin role to the manila user:

openstack role add --project service --user manila admin

Note: This command provides no output.

¢ Create the manila and manilav?2 service entities:

openstack service create --name manila
--description

share

(continues on next page)

76

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

openstack service create --name manilav2
--description sharev?2

Note: The Shared File Systems services require two service entities.

4. Create the Shared File Systems service API endpoints:

openstack endpoint create --region RegionOne
share public http://controller:8786/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
share internal http://controller:8786/v1/%\ (tenant_id\)s

(continues on next page)

3.1. Installing Manila 77

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

openstack endpoint create --region RegionOne
share admin http://controller:8786/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
sharev2 public http://controller:8786/v2

openstack endpoint create --region RegionOne
sharev2 internal http://controller:8786/v2

(continues on next page)

78

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

openstack endpoint create --region RegionOne
sharev2 admin http://controller:8786/v2

Note: The Shared File Systems services require endpoints for each service entity.

Install and configure components

1. Install the packages:

apt-get install manila-api manila-scheduler python3-manilaclient

2. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems database.
3. Complete the rest of the configuration in manila. conf:

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [DEFAULT] section, set the following config values:

3.1. Installing Manila 79

Manila Developer Documentation, Release 15.4.2.dev5

Important: The default_share_type option specifies the default share type to be used
when shares are created without specifying the share type in the request. The default share
type that is specified in the configuration file has to be created with the necessary required
extra-specs (such as driver_handles_share_servers) set appropriately with reference
to the driver mode used. This is further explained in the section discussing the setup and
configuration of the share node.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity ser-
vice.

* In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

* In the [oslo_concurrency] section, configure the lock path:

4. Populate the Shared File Systems database:

80 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

su -s /bin/sh -c manila

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Shared File Systems services:

service manila-scheduler restart
service manila-api restart

2. By default, the Ubuntu packages create an SQLite database. Because this configuration uses an
SQL database server, you can remove the SQLite database file:

rm -f /var/lib/manila/manila.sqlite

Install and configure controller node on Debian

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node that runs a Debian distribution. This service requires at least one additional share
node that manages file storage back ends.

Prerequisites

Before you install and configure the Shared File Systems service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl -u root -p

e Create the manila database:

» Grant proper access to the manila database:

Replace MANILA_DBPASS with a suitable password.
¢ Exit the database access client.

2. Source the admin credentials to gain access to admin CLI commands:

3.1. Installing Manila 81

Manila Developer Documentation, Release 15.4.2.dev5

admin-openrc.sh

3. To create the service credentials, complete these steps:

e Create a manila user:

openstack user create --domain default --password-prompt manila

¢ Add the admin role to the manila user:

openstack role add --project service --user manila admin

Note: This command provides no output.

¢ Create the manila and manilav?2 service entities:

openstack service create --name manila

--description share
openstack service create --name manilav2
--description sharev?2

(continues on next page)

82

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Note: The Shared File Systems services require two service entities.

4. Create the Shared File Systems service API endpoints:

openstack endpoint create --region RegionOne
share public http://controller:8786/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
share internal http://controller:8786/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
share admin http://controller:8786/v1/%\ (tenant_id\)s

(continues on next page)

3.1. Installing Manila 83

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

openstack endpoint create --region RegionOne
sharev2 public http://controller:8786/v2

openstack endpoint create --region RegionOne
sharev2 internal http://controller:8786/v2

openstack endpoint create --region RegionOne
sharev2 admin http://controller:8786/v2

(continues on next page)

84

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Note: The Shared File Systems services require endpoints for each service entity.

Install and configure components

1. Install the packages:

apt-get install manila-api manila-scheduler python3-manilaclient

2. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems database.
3. Complete the rest of the configuration in manila.conf:

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be used
when shares are created without specifying the share type in the request. The default share
type that is specified in the configuration file has to be created with the necessary required
extra-specs (such as driver_handles_share_servers) set appropriately with reference

3.1. Installing Manila 85

Manila Developer Documentation, Release 15.4.2.dev5

to the driver mode used. This is further explained in the section discussing the setup and
configuration of the share node.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity ser-
vice.

* In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

* Inthe [oslo_concurrency] section, configure the lock path:

4. Populate the Shared File Systems database:

su -s /bin/sh -c manila

Note: Ignore any deprecation messages in this output.

86 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Finalize installation

1. Restart the Shared File Systems services:

service manila-scheduler restart
service manila-api restart

Install and configure a share node

This section describes how to install and configure a share node for the Shared File Systems service.

Note: The manila-share process can run in two modes, with and without handling of share servers.
Some drivers may support either modes; while some may only support one of the two modes. See the
Configuration Reference to determine if the driver you choose supports the driver mode desired. This
tutorial describes setting up each driver mode using an example driver for the mode.

Note that installation and configuration vary by distribution.

Install and configure a share node running openSUSE and SUSE Linux Enterprise

This section describes how to install and configure a share node for the Shared File Systems service.

Note that installation and configuration vary by distribution. This section describes the instructions for a
share node running openSUSE and SUSE Linux Enterprise.

Install and configure components

1. Install the packages:

zypper install openstack-manila-share python-PyMySQL

2. Edit the /etc/manila/manila. conf file and complete the following actions:

* In the [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems database.
4. Complete the rest of the configuration in manila. conf.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

3.1. Installing Manila 87

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 15.4.2.dev5

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be used
when shares are created without specifying the share type in the request. The default share
type that is specified in the configuration file has to be created with the necessary required
extra-specs (such as driver_handles_share_servers) set appropriately with reference
to the driver mode used. This is explained in further steps.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity ser-
vice.

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your share node, typically 10.0.0.41 for the first node in the example archi-
tecture shown below:

* In the [oslo_concurrency] section, configure the lock path:

88 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

[

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

T T T T T N4 T T ~
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
1 1 ! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1 storage NIC :
1 1
1 : ! :
1 ! 1
1 ! 1
1 ! 1
i PR #

T e mm mm mm mm e e

Fig. 1: Hardware requirements

o

i —— -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

3.1.

Installing Manila

89

Manila Developer Documentation, Release 15.4.2.dev5

Two driver modes

The share node can support two modes, with and without the handling of share servers. The mode
depends on driver support.

Option 1

Deploying the service without driver support for share server management. In this mode, the service does
not do anything related to networking. The operator must ensure network connectivity between instances
and the NAS protocol based server.

This tutorial demonstrates setting up the LVM driver which creates LVM volumes on the share node and
exports them with the help of an NFS server that is installed locally on the share node. It therefore requires
LVM and NFS packages as well as an additional disk for the manila-share LVM volume group.

This driver mode may be referred to as driver_handles_share_servers = False mode, or simply
DHSS=False mode.

Option 2

Deploying the service with driver support for share server management. In this mode, the service runs
with a back end driver that creates and manages share servers. This tutorial demonstrates setting up the
Generic driver. This driver requires Compute service (nova), Image service (glance) and Networking
service (neutron) for creating and managing share servers; and Block storage service (cinder) for creating
shares.

The information used for creating share servers is configured with the help of share networks.

This driver mode may be referred to as driver_handles_share_servers = True mode, or simply
DHSS=True mode.

Warning: When running the generic driver in DHSS=True driver mode, the share service should be
run on the same node as the networking service. However, such a service may not be able to run the
LVM driver that runs in DHSS=False driver mode effectively, due to a bug in some distributions of
Linux. For more information, see LVM Driver section in the Configuration Reference Guide.

Choose one of the following options to configure the share driver:

Shared File Systems Option 1: No driver support for share servers management

For simplicity, this configuration references the same storage node configuration for the Block Storage
service. However, the LVM driver requires a separate empty local block storage device to avoid conflict
with the Block Storage service. The instructions use /dev/sdc, but you can substitute a different value
for your particular node.

90 Chapter 3. For operators

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install LVM and NFS server packages:

zypper install lvm2 nfs-kernel-server

2. Create the LVM physical volume /dev/sdc:

pvcreate /dev/sdc

3. Create the LVM volume group manila-volumes:

vgcreate manila-volumes /dev/sdc

The Shared File Systems service creates logical volumes in this volume group.

4. Only instances can access Shared File Systems service volumes. However, the underlying op-
erating system manages the devices associated with the volumes. By default, the LVM volume
scanning tool scans the /dev directory for block storage devices that contain volumes. If projects
use LVM on their volumes, the scanning tool detects these volumes and attempts to cache them
which can cause a variety of problems with both the underlying operating system and project vol-
umes. You must reconfigure LVM to scan only the devices that contain the cinder-volume and
manila-volumes volume groups. Edit the /etc/1vm/1lvm. conf file and complete the following
actions:

* In the devices section, add a filter that accepts the /dev/sdb and /dev/sdc devices and
rejects all other devices:

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1vm/lvm. conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

3.1. Installing Manila 91

Manila Developer Documentation, Release 15.4.2.dev5

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [DEFAULT] section, enable the LVM driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* In the [1vm] section, configure the LVM driver:

Replace MANAGEMENT_INTERFACE_TP_ADDRESS with the IP address of the management net-
work interface on your storage node. The value of this option can be a comma separated string

of one or more IP addresses. In the example architecture shown below, the address would be
10.0.0.41:

Shared File Systems Option 2: Driver support for share servers management

For simplicity, this configuration references the same storage node as the one used for the Block Storage
service.

Note: This guide describes how to configure the Shared File Systems service to use the generic
driver with the driver handles share server mode (DHSS) enabled. This driver requires Compute service
(nova), Image service (glance) and Networking service (neutron) for creating and managing share servers;
and Block storage service (cinder) for creating shares. The information used for creating share servers
is configured as share networks. Generic driver with DHSS enabled also requires the tenants private
network (where the compute instances are running) to be attached to a public router.

92 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

[

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

T T T T T N4 T T ~
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
1 1 ! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1 storage NIC :
1 1
1 : ! :
1 ! 1
1 ! 1
1 ! 1
i PR #

T e mm mm mm mm e e

Fig. 2: Hardware requirements.

o

i —— -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

3.1.

Installing Manila

93

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

Before you proceed, verify operation of the Compute, Networking, and Block Storage services. This
options requires implementation of Networking option 2 and requires installation of some Networking
service components on the storage node.

* Install the Networking service components:

zypper install --no-recommends openstack-neutron-linuxbridge-agent

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [DEFAULT] section, enable the generic driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* In the [neutron], [nova], [cinder] and [glance] sections, enable authentication for
those services:

(continues on next page)

94 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

In the [generic] section, configure the generic driver:

Note: You can also use SSH keys instead of password authentication for service instance
credentials.

Important: The service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_password are with reference to

3.1. Installing Manila 95

Manila Developer Documentation, Release 15.4.2.dev5

the service image that is used by the driver to create share servers. A sample service image
for use with the generic driver is available in the manila-image-elements project.
Its creation is explained in the post installation steps (See: Creating and using shared file
systems).

Finalize installation

1. Prepare manila-share as start/stop service. Start the Shared File Systems service including its
dependencies and configure them to start when the system boots:

systemctl openstack-manila-share.service tgtd.service
systemctl start openstack-manila-share.service tgtd.service

Install and configure a share node running Red Hat Enterprise Linux and CentOS

This section describes how to install and configure a share node for the Shared File Systems service.
For simplicity, this configuration references one storage node with the generic driver managing the share
servers. The generic backend manages share servers using compute, networking and block services for
provisioning shares.

Note that installation and configuration vary by distribution. This section describes the instructions for a
share node running Red Hat Enterprise Linux or CentOS.

Install and configure components

1. Install the packages:

yum install openstack-manila-share python3-PyMySQL

2. Edit the /etc/manila/manila. conf file and complete the following actions:

* In the [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems database.
4. Complete the rest of the configuration in manila.conf.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [DEFAULT] section, set the following config values:

96 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Important: The default_share_type option specifies the default share type to be used
when shares are created without specifying the share type in the request. The default share
type that is specified in the configuration file has to be created with the necessary required
extra-specs (such as driver_handles_share_servers) set appropriately with reference
to the driver mode used. This is explained in further steps.

e Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity ser-
vice.

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your share node, typically 10.0.0.41 for the first node in the example archi-
tecture shown below:

* In the [oslo_concurrency] section, configure the lock path:

3.1. Installing Manila 97

Manila Developer Documentation, Release 15.4.2.dev5

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

ge

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
1 1 ! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1 storage NIC :
1 1
| : 1 :
1 1 ! 1
1 1 : 1
1
1Y).I 1 |

Jdev/sdb
Idevisdc

Fig. 3: Hardware requirements

o

i —— -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

98

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Two driver modes

The share node can support two modes, with and without the handling of share servers. The mode
depends on driver support.

Option 1

Deploying the service without driver support for share server management. In this mode, the service does
not do anything related to networking. The operator must ensure network connectivity between instances
and the NAS protocol based server.

This tutorial demonstrates setting up the LVM driver which creates LVM volumes on the share node and
exports them with the help of an NFS server that is installed locally on the share node. It therefore requires
LVM and NFS packages as well as an additional disk for the manila-share LVM volume group.

This driver mode may be referred to as driver_handles_share_servers = False mode, or simply
DHSS=False mode.

Option 2

Deploying the service with driver support for share server management. In this mode, the service runs
with a back end driver that creates and manages share servers. This tutorial demonstrates setting up the
Generic driver. This driver requires Compute service (nova), Image service (glance) and Networking
service (neutron) for creating and managing share servers; and Block storage service (cinder) for creating
shares.

The information used for creating share servers is configured with the help of share networks.

This driver mode may be referred to as driver_handles_share_servers = True mode, or simply
DHSS=True mode.

Warning: When running the generic driver in DHSS=True driver mode, the share service should be
run on the same node as the networking service. However, such a service may not be able to run the
LVM driver that runs in DHSS=False driver mode effectively, due to a bug in some distributions of
Linux. For more information, see LVM Driver section in the Configuration Reference Guide.

Choose one of the following options to configure the share driver:

Shared File Systems Option 1: No driver support for share servers management

For simplicity, this configuration references the same storage node configuration for the Block Storage
service. However, the LVM driver requires a separate empty local block storage device to avoid conflict
with the Block Storage service. The instructions use /dev/sdc, but you can substitute a different value
for your particular node.

3.1. Installing Manila 929

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install LVM and NFS server packages:

yum install lvm2 nfs-utils nfs4-acl-tools portmap targetcli

 Start the LVM metadata service and configure it to start when the system boots:

systemctl lvm2-1lvmetad.service target.service
systemctl start lvm2-lvmetad.service target.service

2. Create the LVM physical volume /dev/sdc:

pvcreate /dev/sdc

3. Create the LVM volume group manila-volumes:

vgcreate manila-volumes /dev/sdc

The Shared File Systems service creates logical volumes in this volume group.

4. Only instances can access Shared File Systems service volumes. However, the underlying op-
erating system manages the devices associated with the volumes. By default, the LVM volume
scanning tool scans the /dev directory for block storage devices that contain volumes. If projects
use LVM on their volumes, the scanning tool detects these volumes and attempts to cache them
which can cause a variety of problems with both the underlying operating system and project vol-
umes. You must reconfigure LVM to scan only the devices that contain the cinder-volume and
manila-volumes volume groups. Edit the /etc/1vm/lvm. conf file and complete the following
actions:

* In the devices section, add a filter that accepts the /dev/sdb and /dev/sdc devices and
rejects all other devices:

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1vm/1lvm. conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

100 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [DEFAULT] section, enable the LVM driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* In the [1vm] section, configure the LVM driver:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your storage node. The value of this option can be a comma separated string

of one or more IP addresses. In the example architecture shown below, the address would be
10.0.0.41:

Shared File Systems Option 2: Driver support for share servers management

For simplicity, this configuration references the same storage node as the one used for the Block Storage
service.

Note: This guide describes how to configure the Shared File Systems service to use the generic
driver with the driver handles share server mode (DHSS) enabled. This driver requires Compute service
(nova), Image service (glance) and Networking service (neutron) for creating and managing share servers;
and Block storage service (cinder) for creating shares. The information used for creating share servers
is configured as share networks. Generic driver with DHSS enabled also requires the tenants private
network (where the compute instances are running) to be attached to a public router.

3.1. Installing Manila 101

Manila Developer Documentation, Release 15.4.2.dev5

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

ge

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
1 1 ! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1 storage NIC :
1 1
| : 1 :
1 1 ! 1
1 1 : 1
1
1Y).I 1 |

Jdev/sdb
Idevisdc

o

i —— -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

Fig. 4: Hardware requirements.

102 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

Before you proceed, verify operation of the Compute, Networking, and Block Storage services. This
options requires implementation of Networking option 2 and requires installation of some Networking

service components on the storage node.

* Install the Networking service components:

yum install openstack-neutron openstack-neutron-linuxbridge ebtables

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [DEFAULT] section, enable the generic driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* In the [neutron], [nova], [cinder] and [glance] sections, enable authentication for
those services:

(continues on next page)

3.1. Installing Manila 103

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

In the [generic] section, configure the generic driver:

Note: You can also use SSH keys instead of password authentication for service instance
credentials.

Important: The service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_password are with reference to

104 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

the service image that is used by the driver to create share servers. A sample service image
for use with the generic driver is available in the manila-image-elements project.
Its creation is explained in the post installation steps (See: Creating and using shared file
systems).

Finalize installation

1. Prepare manila-share as start/stop service. Start the Shared File Systems service including its
dependencies and configure them to start when the system boots:

systemctl openstack-manila-share.service
systemctl start openstack-manila-share.service

Install and configure a share node running Ubuntu

This section describes how to install and configure a share node for the Shared File Systems service.
For simplicity, this configuration references one storage node with the generic driver managing the share
servers. The generic backend manages share servers using compute, networking and block services for
provisioning shares.

Note that installation and configuration vary by distribution. This section describes the instructions for a
share node running Ubuntu.

Install and configure components

1. Install the packages:

apt-get install manila-share python3-pymysqgl

2. Edit the /etc/manila/manila. conf file and complete the following actions:

* In the [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems database.
4. Complete the rest of the configuration in manila.conf.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [DEFAULT] section, set the following config values:

3.1. Installing Manila 105

Manila Developer Documentation, Release 15.4.2.dev5

Important: The default_share_type option specifies the default share type to be used
when shares are created without specifying the share type in the request. The default share
type that is specified in the configuration file has to be created with the necessary required
extra-specs (such as driver_handles_share_servers) set appropriately with reference
to the driver mode used. This is explained in further steps.

e Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity ser-
vice.

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your share node, typically 10.0.0.41 for the first node in the example archi-
tecture shown below:

* In the [oslo_concurrency] section, configure the lock path:

106 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1 8 GB
CPU RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

[
ge

2
NIC
A

100+ GB
Storage

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
1 1 ! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1 storage NIC :
1 1
| : 1 :
1 1 ! 1
1 1 : 1
1
1Y).I 1 |

Jdev/sdb
Idevisdc

Fig. 5: Hardware requirements

i —— -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

o

3.1.

Installing Manila

107

Manila Developer Documentation, Release 15.4.2.dev5

Two driver modes

The share node can support two modes, with and without the handling of share servers. The mode
depends on driver support.

Option 1

Deploying the service without driver support for share server management. In this mode, the service does
not do anything related to networking. The operator must ensure network connectivity between instances
and the NAS protocol based server.

This tutorial demonstrates setting up the LVM driver which creates LVM volumes on the share node and
exports them with the help of an NFS server that is installed locally on the share node. It therefore requires
LVM and NFS packages as well as an additional disk for the manila-share LVM volume group.

This driver mode may be referred to as driver_handles_share_servers = False mode, or simply
DHSS=False mode.

Option 2

Deploying the service with driver support for share server management. In this mode, the service runs
with a back end driver that creates and manages share servers. This tutorial demonstrates setting up the
Generic driver. This driver requires Compute service (nova), Image service (glance) and Networking
service (neutron) for creating and managing share servers; and Block storage service (cinder) for creating
shares.

The information used for creating share servers is configured with the help of share networks.

This driver mode may be referred to as driver_handles_share_servers = True mode, or simply
DHSS=True mode.

Warning: When running the generic driver in DHSS=True driver mode, the share service should be
run on the same node as the networking service. However, such a service may not be able to run the
LVM driver that runs in DHSS=False driver mode effectively, due to a bug in some distributions of
Linux. For more information, see LVM Driver section in the Configuration Reference Guide.

Choose one of the following options to configure the share driver:

Shared File Systems Option 1: No driver support for share servers management

For simplicity, this configuration references the same storage node configuration for the Block Storage
service. However, the LVM driver requires a separate empty local block storage device to avoid conflict
with the Block Storage service. The instructions use /dev/sdc, but you can substitute a different value
for your particular node.

108 Chapter 3. For operators

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install LVM and NFS server packages:

apt-get install 1lvm2 nfs-kernel-server

2. Create the LVM physical volume /dev/sdc:

pvcreate /dev/sdc

3. Create the LVM volume group manila-volumes:

vgcreate manila-volumes /dev/sdc

The Shared File Systems service creates logical volumes in this volume group.

4. Only instances can access Shared File Systems service volumes. However, the underlying op-
erating system manages the devices associated with the volumes. By default, the LVM volume
scanning tool scans the /dev directory for block storage devices that contain volumes. If projects
use LVM on their volumes, the scanning tool detects these volumes and attempts to cache them
which can cause a variety of problems with both the underlying operating system and project vol-
umes. You must reconfigure LVM to scan only the devices that contain the cinder-volume and
manila-volumes volume groups. Edit the /etc/1vm/1lvm. conf file and complete the following
actions:

* In the devices section, add a filter that accepts the /dev/sdb and /dev/sdc devices and
rejects all other devices:

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1vm/lvm. conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

3.1. Installing Manila 109

Manila Developer Documentation, Release 15.4.2.dev5

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [DEFAULT] section, enable the LVM driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* In the [1vm] section, configure the LVM driver:

Replace MANAGEMENT_INTERFACE_TP_ADDRESS with the IP address of the management net-
work interface on your storage node. The value of this option can be a comma separated string

of one or more IP addresses. In the example architecture shown below, the address would be
10.0.0.41:

Shared File Systems Option 2: Driver support for share servers management

For simplicity, this configuration references the same storage node as the one used for the Block Storage
service.

Note: This guide describes how to configure the Shared File Systems service to use the generic
driver with the driver handles share server mode (DHSS) enabled. This driver requires Compute service
(nova), Image service (glance) and Networking service (neutron) for creating and managing share servers;
and Block storage service (cinder) for creating shares. The information used for creating share servers
is configured as share networks. Generic driver with DHSS enabled also requires the tenants private
network (where the compute instances are running) to be attached to a public router.

110 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Hardware Requirements
r ™ ' ™ - - - - - - - ---~ -

Controller Node Compute Node 1 Block Storage Node 1

1 8 GB 2-4+ 8+ GB 1-2 4GB
CPU RAM CPU RAM CPU RAM
100 GB 2 100+ GB 2 100+ GB 1
Storage NIC Storage MNIC
J J

Storage NIC

fdev/sdb

[
ge

o

Object Storage Node 1 Object Storage Node 2 e __Ne— y
1-2 4+ GB 1-2 4+ GB
CPU RAM CPU RAM

100+ GB
Storage

100+ GB
Storage

Jdev/sdb
Idevisdc

1
NIC

o
e e T a

Fig. 6: Hardware requirements.

3.1. Installing Manila 111

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

Before you proceed, verify operation of the Compute, Networking, and Block Storage services. This
options requires implementation of Networking option 2 and requires installation of some Networking
service components on the storage node.

* Install the Networking service components:

apt-get install neutron-plugin-linuxbridge-agent

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [DEFAULT] section, enable the generic driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* In the [neutron], [nova], [cinder] and [glance] sections, enable authentication for
those services:

(continues on next page)

112 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

In the [generic] section, configure the generic driver:

Note: You can also use SSH keys instead of password authentication for service instance
credentials.

Important: The service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_password are with reference to

3.1. Installing Manila 113

Manila Developer Documentation, Release 15.4.2.dev5

the service image that is used by the driver to create share servers. A sample service image
for use with the generic driver is available in the manila-image-elements project.
Its creation is explained in the post installation steps (See: Creating and using shared file
systems).

Finalize installation

1. Prepare manila-share as start/stop service. Start the Shared File Systems service including its
dependencies:

service manila-share restart

2. By default, the Ubuntu packages create an SQLite database. Because this configuration uses an
SQL database server, remove the SQLite database file:

rm -f /var/lib/manila/manila.sqlite

Install and configure a share node running Debian

This section describes how to install and configure a share node for the Shared File Systems service.
For simplicity, this configuration references one storage node with the generic driver managing the share
servers. The generic backend manages share servers using compute, networking and block services for
provisioning shares.

Note that installation and configuration vary by distribution. This section describes the instructions for a
share node running a Debian distribution.

Install and configure components

1. Install the packages:

apt-get install manila-share python3-pymysqgl

2. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems database.
4. Complete the rest of the configuration in manila. conf.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

114 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be used
when shares are created without specifying the share type in the request. The default share
type that is specified in the configuration file has to be created with the necessary required
extra-specs (such as driver_handles_share_servers) set appropriately with reference
to the driver mode used. This is explained in further steps.

* Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity ser-
vice.

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your share node, typically 10.0.0.41 for the first node in the example archi-
tecture shown below:

* In the [oslo_concurrency] section, configure the lock path:

3.1. Installing Manila 115

Manila Developer Documentation, Release 15.4.2.dev5

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

ge

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
1 1 ! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1 storage NIC :
1 1
| : 1 :
1 1 ! 1
1 1 : 1
1
1Y).I 1 |

Jdev/sdb
Idevisdc

Fig. 7: Hardware requirements

o

i —— -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

116

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Two driver modes

The share node can support two modes, with and without the handling of share servers. The mode
depends on driver support.

Option 1

Deploying the service without driver support for share server management. In this mode, the service does
not do anything related to networking. The operator must ensure network connectivity between instances
and the NAS protocol based server.

This tutorial demonstrates setting up the LVM driver which creates LVM volumes on the share node and
exports them with the help of an NFS server that is installed locally on the share node. It therefore requires
LVM and NFS packages as well as an additional disk for the manila-share LVM volume group.

This driver mode may be referred to as driver_handles_share_servers = False mode, or simply
DHSS=False mode.

Option 2

Deploying the service with driver support for share server management. In this mode, the service runs
with a back end driver that creates and manages share servers. This tutorial demonstrates setting up the
Generic driver. This driver requires Compute service (nova), Image service (glance) and Networking
service (neutron) for creating and managing share servers; and Block storage service (cinder) for creating
shares.

The information used for creating share servers is configured with the help of share networks.

This driver mode may be referred to as driver_handles_share_servers = True mode, or simply
DHSS=True mode.

Warning: When running the generic driver in DHSS=True driver mode, the share service should be
run on the same node as the networking service. However, such a service may not be able to run the
LVM driver that runs in DHSS=False driver mode effectively, due to a bug in some distributions of
Linux. For more information, see LVM Driver section in the Configuration Reference Guide.

Choose one of the following options to configure the share driver:

Shared File Systems Option 1: No driver support for share servers management

For simplicity, this configuration references the same storage node configuration for the Block Storage
service. However, the LVM driver requires a separate empty local block storage device to avoid conflict
with the Block Storage service. The instructions use /dev/sdc, but you can substitute a different value
for your particular node.

3.1. Installing Manila 117

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install LVM and NFS server packages:

apt-get install 1lvm2 nfs-kernel-server

2. Create the LVM physical volume /dev/sdc:

pvcreate /dev/sdc

3. Create the LVM volume group manila-volumes:

vgcreate manila-volumes /dev/sdc

The Shared File Systems service creates logical volumes in this volume group.

4. Only instances can access Shared File Systems service volumes. However, the underlying op-
erating system manages the devices associated with the volumes. By default, the LVM volume
scanning tool scans the /dev directory for block storage devices that contain volumes. If projects
use LVM on their volumes, the scanning tool detects these volumes and attempts to cache them
which can cause a variety of problems with both the underlying operating system and project vol-
umes. You must reconfigure LVM to scan only the devices that contain the cinder-volume and
manila-volumes volume groups. Edit the /etc/1vm/1lvm. conf file and complete the following
actions:

* In the devices section, add a filter that accepts the /dev/sdb and /dev/sdc devices and
rejects all other devices:

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains the
operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1vm/lvm. conf file on those nodes to include only the op-
erating system disk. For example, if the /dev/sda device contains the operating system:

118 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [DEFAULT] section, enable the LVM driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* In the [1vm] section, configure the LVM driver:

Replace MANAGEMENT_INTERFACE_TP_ADDRESS with the IP address of the management net-
work interface on your storage node. The value of this option can be a comma separated string

of one or more IP addresses. In the example architecture shown below, the address would be
10.0.0.41:

Shared File Systems Option 2: Driver support for share servers management

For simplicity, this configuration references the same storage node as the one used for the Block Storage
service.

Note: This guide describes how to configure the Shared File Systems service to use the generic
driver with the driver handles share server mode (DHSS) enabled. This driver requires Compute service
(nova), Image service (glance) and Networking service (neutron) for creating and managing share servers;
and Block storage service (cinder) for creating shares. The information used for creating share servers
is configured as share networks. Generic driver with DHSS enabled also requires the tenants private
network (where the compute instances are running) to be attached to a public router.

3.1. Installing Manila 119

Manila Developer Documentation, Release 15.4.2.dev5

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

ge

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
1 1 ! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1 storage NIC :
1 1
| : 1 :
1 1 ! 1
1 1 : 1
1
1Y).I 1 |

Jdev/sdb
Idevisdc

o

i —— -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

Fig. 8: Hardware requirements.

120 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

Before you proceed, verify operation of the Compute, Networking, and Block Storage services. This
options requires implementation of Networking option 2 and requires installation of some Networking

service components on the storage node.

* Install the Networking service components:

apt-get install neutron-plugin-linuxbridge-agent

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* In the [DEFAULT] section, enable the generic driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* In the [neutron], [nova], [cinder] and [glance] sections, enable authentication for
those services:

(continues on next page)

3.1. Installing Manila 121

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

In the [generic] section, configure the generic driver:

Note: You can also use SSH keys instead of password authentication for service instance
credentials.

Important: The service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_password are with reference to

122 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

the service image that is used by the driver to create share servers. A sample service image
for use with the generic driver is available in the manila-image-elements project.
Its creation is explained in the post installation steps (See: Creating and using shared file
systems).

Finalize installation

1. Prepare manila-share as start/stop service. Start the Shared File Systems service including its
dependencies:

service manila-share restart

Verify operation

Verify operation of the Shared File Systems service.

Note: Perform these commands on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc.sh

2. List service components to verify successful launch of each process:

manila service-list

3.1. Installing Manila 123

Manila Developer Documentation, Release 15.4.2.dev5

Creating and using shared file systems

Depending on the option chosen while installing the share node (Option with share server management
and one without); the steps to create and use your shared file systems will vary. When the Shared File
Systems service handles the creation and management of share servers, you would need to specify the
share network with the request to create a share. Either modes will vary in their respective share type
definition. When using the driver mode with automatic handling of share servers, a service image is
needed as specified in your configuration. The instructions below enumerate the steps for both driver
modes. Follow what is appropriate for your installation.

Creating shares with Shared File Systems Option 1 (DHSS = False)
Create a share type

Disable DHSS (driver_handles_share_servers) before creating a share using the LVM driver.

1. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

2. Create a default share type with DHSS disabled. A default share type will allow you to create
shares with this driver, without having to specify the share type explicitly during share creation.

manila type-create default_share_type False

Set this default share type in manila.conf under the [DEFAULT] section and restart the
manila-api service before proceeding. Unless you do so, the default share type will not be effec-
tive.

Note: Creating and configuring a default share type is optional. If you wish to use the shared
file system service with a variety of share types, where each share creation request could specify a
type, please refer to the Share types usage documentation here.

124 Chapter 3. For operators

https://docs.openstack.org/manila/latest/admin/shared-file-systems-share-types.html

Manila Developer Documentation, Release 15.4.2.dev5

Create a share

1. Source the demo credentials to perform the following steps as a non-administrative project:

demo-openrc

2. Create an NFS share. Since a default share type has been created and configured, it need not be
specified in the request.

manila create NFS --name sharel

3. After some time, the share status should change from creating to available:

manila list

= (continues on next page)

3.1. Installing Manila 125

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

4. Determine export IP address of the share:

manila show sharel

(continues on next page)

126 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

Allow access to the share

1. Configure access to the new share before attempting to mount it via the network. The compute
instance (whose IP address is referenced by the INSTANCE_IP below) must have network con-
nectivity to the network specified in the share network.

manila access-allow sharel ip INSTANCE_IP

Mount the share on a compute instance

1. Log into your compute instance and create a folder where the mount will be placed:

mkdir ~/test_folder

2. Mount the NFS share in the compute instance using the export location of the share:

mount -vt nfs .0.0.41:/var/lib/manila/mnt/share-8e13a98f-c310-41df-
—ac90-fc8bce4910b8 ~/test_folder

3.1. Installing Manila 127

Manila Developer Documentation, Release 15.4.2.dev5

Creating shares with Shared File Systems Option 2 (DHSS = True)

Before being able to create a share, manila with the generic driver and the DHSS
(driver_handles_share_servers) mode enabled requires the definition of at least an image, a
network and a share-network for being used to create a share server. For that back end configuration,
the share server is an instance where NFS shares are served.

Note: This configuration automatically creates a cinder volume for every share. The cinder volumes are
attached to share servers according to the definition of a share network.

1.

2.

Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc.sh

Create a default share type with DHSS enabled. A default share type will allow you to create shares
with this driver, without having to specify the share type explicitly during share creation.

manila type-create default_share_type True

Set this default share type in manila.conf under the [DEFAULT] section and restart the
manila-api service before proceeding. Unless you do so, the default share type will not be effec-
tive.

Note: Creating and configuring a default share type is optional. If you wish to use the shared
file system service with a variety of share types, where each share creation request could specify a
type, please refer to the Share types usage documentation here.

Create a manila share server image in the Image service. You may skip this step and use any
existing image. However, for mounting a share, the service image must contain the NFS packages
as appropriate for the operating system. Whatever image you choose to be the service image,
be sure to set the configuration values service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_passwordin manila.conf.

Note: Any changes made to manila.conf while the manila-share service is running will
require a restart of the service to be effective.

Note: As an alternative to specifying a plain-text service_instance_password in

128

Chapter 3. For operators

https://docs.openstack.org/manila/latest/admin/shared-file-systems-share-types.html

Manila Developer Documentation, Release 15.4.2.dev5

your configuration, a key-pair may be specified with options path_to_public_key and
path_to_private_key to configure and allow password-less SSH access between the share node
and the share server/s created.

curl -L
https://tarballs.opendev.org/openstack/manila-image-elements/images/
—manila-service-image-master.qcow2
glance image-create
--name
--disk-format gcow2
--container-format bare
--visibility public --progress

Total % Received % Xferd Average Speed Time Time o
—Time Current

(continues on next page)

3.1. Installing Manila 129

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

4. List available networks in order to get id and subnets of the private network:

neutron net-list

5. Source the demo credentials to perform the following steps as a non-administrative project:

. demo-openrc.sh

manila share-network-create --name demo-share-networkl
--neutron-net-id PRIVATE_NETWORK_ID
--neutron-subnet-id PRIVATE_NETWORK_SUBNET_ID

(continues on next page)

130 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Create a share

1. Create an NFS share using the share network. Since a default share type has been created and
configured, it need not be specified in the request.

manila create NFS --name demo-sharel --share-network demo-share-
—networkl

2. After some time, the share status should change from creating to available:

manila list

(continues on next page)

3.1. Installing Manila 131

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

3. Determine export IP address of the share:

manila show demo-sharel

(continues on next page)

132 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

Allow access to the share

1. Configure access to the new share before attempting to mount it via the network. The compute
instance (whose IP address is referenced by the INSTANCE_IP below) must have network con-
nectivity to the network specified in the share network.

manila access-allow demo-sharel ip INSTANCE_IP

3.1. Installing Manila 133

Manila Developer Documentation, Release 15.4.2.dev5

Mount the share on a compute instance

1. Log into your compute instance and create a folder where the mount will be placed:

mkdir ~/test_folder

2. Mount the NFS share in the compute instance using the export location of the share:

mount -vt nfs .254.0.6:/shares/share-0bfd69al-27f0-4ef5-afl17-
—.7cd50bce6550 ~/test_folder

For more information about how to manage shares, see the OpenStack End User Guide

Next steps

Your OpenStack environment now includes the Shared File Systems service.
To add more services, see the additional documentation on installing OpenStack services

Continue to evaluate the Shared File Systems service by creating the service image and running the
service with the correct driver mode that you chose while configuring the share node.

The OpenStack Shared File Systems service (manila) provides coordinated access to shared or distributed
file systems. The method in which the share is provisioned and consumed is determined by the Shared
File Systems driver, or drivers in the case of a multi-backend configuration. There are a variety of drivers
that support NFS, CIFS, HDFS, GlusterFS, CEPHFS, MAPRFS and other protocols as well.

The Shared File Systems API and scheduler services typically run on the controller nodes. Depending
upon the drivers used, the share service can run on controllers, compute nodes, or storage nodes.

Important: For simplicity, this guide describes configuring the Shared File Systems service to use one
of either:

* the generic back end with the driver_handles_share_servers mode (DHSS) enabled that
uses the Compute service (nova), Image service (glance), Networking service (neutron) and Block
storage service (cinder); or,

e the LVM back end with driver_handles_share_servers mode (DHSS) disabled.

The storage protocol used and referenced in this guide is NFS. As stated above, the Shared File System
service supports different storage protocols depending on the back end chosen.

For the generic back end, networking service configuration requires the capability of networks being
attached to a public router in order to create share networks. If using this back end, ensure that Compute,
Networking and Block storage services are properly working before you proceed. For networking service,
ensure that option 2 (deploying the networking service with support for self-service networks) is properly
configured.

This installation tutorial also assumes that installation and configuration of OpenStack packages, Network
Time Protocol, database engine and message queue has been completed as per the instructions in the
OpenStack Installation Guide.. The Identity Service (keystone) has to be pre-configured with suggested
client environment scripts.

134 Chapter 3. For operators

https://docs.openstack.org/manila/latest/user/
https://docs.openstack.org/latest/install/
https://docs.openstack.org/latest/install/

Manila Developer Documentation, Release 15.4.2.dev5

For more information on various Shared File Systems storage back ends, see the Shared File Systems
Configuration Reference..

To learn more about installation dependencies noted above, see the OpenStack Installation Guide.

3.2 Administrating Manila

Contents:

3.2.1 Admin Guide

Shared File Systems service provides a set of services for management of shared file systems in a multi-
project cloud environment. The service resembles OpenStack block-based storage management from the
OpenStack Block Storage service project. With the Shared File Systems service, you can create a remote
file system, mount the file system on your instances, and then read and write data from your instances to
and from your file system.

The Shared File Systems service serves same purpose as the Amazon Elastic File System (EFS) does.

The Shared File Systems service can run in a single-node or multiple node configuration. The Shared
File Systems service can be configured to provision shares from one or more back ends, so it is required
to declare at least one back end. Shared File System service contains several configurable components.

It is important to understand these components:
 Share networks
» Shares
* Multi-tenancy
* Back ends

The Shared File Systems service consists of four types of services, most of which are similar to those of
the Block Storage service:

e manila-api

* manila-data

e manila-scheduler
e manila-share

Installation of first three - manila-api, manila-data, and manila-scheduler is common for almost
all deployments. But configuration of manila-share is backend-specific and can differ from deploy-
ment to deployment.

3.2. Administrating Manila 135

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html
https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html
https://docs.openstack.org/latest/install/

Manila Developer Documentation, Release 15.4.2.dev5

Key concepts

Share

In the Shared File Systems service share is the fundamental resource unit allocated by the Shared File
System service. It represents an allocation of a persistent, readable, and writable filesystems. Com-
pute instances access these filesystems. Depending on the deployment configuration, clients outside of
OpenStack can also access the filesystem.

Note: A share is an abstract storage object that may or may not directly map to a share concept from
the underlying storage provider. See the description of share instance for more details.

Share instance

This concept is tied with share and represents created resource on specific back end, when share rep-
resents abstraction between end user and back-end storages. In common cases, it is one-to-one relation.
One single share has more than one share instance in two cases:

* When share migration is being applied
* When share replication is enabled

Therefore, each share instance stores information specific to real allocated resource on storage. And
share represents the information that is common for share instances. A user with member role will
not be able to work with it directly. Only a user with admin role has rights to perform actions against
specific share instances.

Snapshot

A snapshot is a point-in-time, read-only copy of a share. You can create Snapshots from an existing,
operational share regardless of whether a client has mounted the file system. A snapshot can serve
as the content source for a new share. Specify the Create from snapshot option when creating a new
share on the dashboard.

Storage Pools

With the Kilo release of OpenStack, Shared File Systems can use storage pools. The storage may
present one or more logical storage resource pools that the Shared File Systems service will select as a
storage location when provisioning shares.

136 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Share Type

Share type is an abstract collection of criteria used to characterize shares. They are most commonly
used to create a hierarchy of functional capabilities. This hierarchy represents tiered storage services
levels. For example, an administrator might define a premium share type that indicates a greater level
of performance than a basic share type. Premium represents the best performance level.

Share Access Rules

Share access rules define which users can access a particular share. For example, administrators
can declare rules for NFS shares by listing the valid IP networks which will access the share. List the
IP networks in CIDR notation.

Security Services

Security services allow granular client access rules for administrators. They can declare rules for
authentication or authorization to access share content. External services including LDAP, Active Di-
rectory, and Kerberos can be declared as resources. Examine and consult these resources when making
an access decision for a particular share. You can associate Shares with multiple security services, but
only one service per one type.

Share Networks

A share network is an object that defines a relationship between a project network and subnet, as
defined in an OpenStack Networking service or Compute service. The share network is also defined
in shares created by the same project. A project may find it desirable to provision shares such that
only instances connected to a particular OpenStack-defined network have access to the share. Also,
security servicescanbe attachedto share networks, because most of auth protocols require some
interaction with network services.

The Shared File Systems service has the ability to work outside of OpenStack. That is due to the
StandaloneNetworkPlugin. The plugin is compatible with any network platform, and does not re-
quire specific network services in OpenStack like Compute or Networking service. You can set the
network parameters in the manila. conf file.

Share Servers

A share server is alogical entity that hosts the shares created on a specific share network. A share
server may be a configuration object within the storage controller, or it may represent logical resources
provisioned within an OpenStack deployment used to support the data path used to access shares.

Share servers interact with network services to determine the appropriate IP addresses on which to ex-
port shares according to the related share network. The Shared File Systems service has a pluggable
network model that allows share servers to work with different implementations of the Networking
service.

3.2. Administrating Manila 137

Manila Developer Documentation, Release 15.4.2.dev5

Share management
A share is a remote, mountable file system. You can mount a share to and access a share from several
hosts by several users at a time.

You can create a share and associate it with a network, list shares, and show information for, update, and
delete a specified share. You can also create snapshots of shares. To create a snapshot, you specify the
ID of the share that you want to snapshot.

The shares are based on of the supported Shared File Systems protocols:
* NFS. Network File System (NFS).
e CIFS. Common Internet File System (CIFS).

GLUSTERFS. Gluster file system (GlusterFS).

HDFS. Hadoop Distributed File System (HDFS).

CEPHFS. Ceph File System (CephFS).
* MAPRFS. MapR File System (MAPRES).

The Shared File Systems service provides set of drivers that enable you to use various network file storage
devices, instead of the base implementation. That is the real purpose of the Shared File Systems service
in production.

Share basic operations
General concepts

To create a file share, and access it, the following general concepts are prerequisite knowledge:

1. To create a share, use manila create command and specify the required arguments: the size of
the share and the shared file system protocol. NFS, CIFS, GlusterFS, HDFS, CephFS or MAPRFS
share file system protocols are supported.

2. You can also optionally specify the share network and the share type.

3. After the share becomes available, use the manila show command to get the share export loca-
tions.

4. After getting the share export locations, you can create an access rule for the share, mount it and
work with files on the remote file system.

There are big number of the share drivers created by different vendors in the Shared File Systems service.
As a Python class, each share driver can be set for the back end and run in the back end to manage the
share operations.

Initially there are two driver modes for the back ends:
¢ no share servers mode
¢ share servers mode

Each share driver supports one or two of possible back end modes that can be configured in the manila.
conf file. The configuration option driver_handles_share_servers in the manila. conf file sets
the share servers mode or no share servers mode, and defines the driver mode for share storage lifecycle
management:

138 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Mode | Config option Description

no driver_handles_shareAsemvhrinistrator rather than a share driver manages the bare metal
share = False storage with some net interface instead of the presence of the share
servers servers.

share driver_handles_sharel'kerskease driver creates the share server and manages, or handles, the
servers | = True share server life cycle.

It is the share types which have the extra specifications that help scheduler to filter back ends and choose
the appropriate back end for the user that requested to create a share. The required extra boolean specifi-
cation for each share type is driver_handles_share_servers. Asan administrator, you can create the
share types with the specifications you need. For details of managing the share types and configuration
the back ends, see Share types and Multi-storage configuration documentation.

You can create a share in two described above modes:

* in a no share servers mode without specifying the share network and specifying the share type
with driver_handles_share_servers = False parameter. See subsection Create a share in
no share servers mode.

* in a share servers mode with specifying the share network and the share type with
driver_handles_share_servers = True parameter. See subsection Create a share in share
servers mode.

Create a share in no share servers mode

To create a file share in no share servers mode, you need to:

1. To create a share, use manila create command and specify the required arguments: the size of
the share and the shared file system protocol. NFS, CIFS, GlusterFS, HDFS, CephFS or MAPRFS
share file system protocols are supported.

2. You should specify the share type with driver_handles_share_servers = False extra spec-
ification.

3. You must not specify the share network because no share servers are created. In this mode the
Shared File Systems service expects that administrator has some bare metal storage with some net
interface.

4. Themanila create command creates a share. This command does the following things:

* The manila-scheduler service will find the back end with
driver_handles_share_servers = False mode due to filtering the extra specifi-
cations of the share type.

* The share is created using the storage that is specified in the found back end.

5. After the share becomes available, use the manila show command to get the share export loca-
tions.

In the example to create a share, the created already share type named my_type with
driver_handles_share_servers = False extra specification is used.

Check share types that exist, run:

3.2. Administrating Manila 139

Manila Developer Documentation, Release 15.4.2.dev5

manila type-list

Create a private share with my_type share type, NFS shared file system protocol, and size 1 GB:

manila create nfs --name Sharel --description --share-type my_
—type

New share Share?2 should have a status available:

manila show Share2

[}

(continues on next page)

140 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

(continues on next page)

3.2. Administrating Manila 141

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

Create a share in share servers mode

To create a file share in share servers mode, you need to:

1. To create a share, use manila create command and specify the required arguments: the size of
the share and the shared file system protocol. NFS, CIFS, GlusterFS, HDFS, CephFS or MAPRFS
share file system protocols are supported.

2. You should specify the share type with driver_handles_share_servers = True extra spec-
ification.

3. You should specify the share network.
4. Themanila create command creates a share. This command does the following things:

* The manila-scheduler service will find the back end with
driver_handles_share_servers = True mode due to filtering the extra specifi-
cations of the share type.

* The share driver will create a share server with the share network. For details of creating the
resources, see the documentation of the specific share driver.

5. After the share becomes available, use themanila show command to get the share export location.

In the example to create a share, the default share type and the already existing share network are used.

Note: There is no default share type just after you started manila as the administrator. See Share types
to create the default share type. To create a share network, use Share networks.

142 Chapter 3. For operators

http://docs.openstack.org/manila/latest/admin/shared-file-systems-multi-backend.html

Manila Developer Documentation, Release 15.4.2.dev5

Check share types that exist, run:

manila type-list

Check share networks that exist, run:

manila share-network-list

Create a public share with my_share_net network, default share type, NFS shared file system proto-
col, and size 1 GB:

manila create nfs
--name
--description
--share-type default
--share-network my_share_net
--metadata testing
--public

(continues on next page)

3.2. Administrating Manila 143

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

The share also can be created from a share snapshot. For details, see Share snapshots.

See the share in a share list:

manila list

Check the share status and see the share export locations. After creating status share should have status
available:

manila show Share?2

(continues on next page)

144 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

[}

(continues on next page)

3.2. Administrating Manila 145

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

is_public defines the level of visibility for the share: whether other projects can or cannot see the share.
By default, the share is private.

Update share

Update the name, or description, or level of visibility for all projects for the share if you need:

manila update Share2 --description --is-public.
—False

manila show Share2

[}

(continues on next page)

146 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

[}

(continues on next page)

3.2. Administrating Manila 147

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

A share can have one of these status values:

Status Description

creating The share is being created.

deleting The share is being deleted.

error An error occurred during share creation.

error_deleting An error occurred during share deletion.

available The share is ready to use.

manage_starting Share manage started.

manage_error Share manage failed.

unmanage_starting Share unmanage started.

unmanage_error Share cannot be unmanaged.

unmanaged Share was unmanaged.

extending The extend, or increase, share size request was issued success-
fully.

extending_error Extend share failed.

shrinking Share is being shrunk.

shrinking_error Failed to update quota on share shrinking.

shrink- Shrink share failed due to possible data loss.

ing_possible_data_loss_error

migrating Share migration is in progress.

Share metadata

If you want to set the metadata key-value pairs on the share, run:

manila metadata Share2 my_abc /20/16

Get all metadata key-value pairs of the share:

manila metadata-show Share2

You can update the metadata:

manila metadata-update-all Share2 /30/16

(continues on next page)

148 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

You also can unset the metadata using manila metadata <share_name> unset <metadata_key(s)>.

Reset share state

As administrator, you can reset the state of a share.

Use manila reset-state [state <state>] <share> command to reset share state, where state indi-
cates which state to assign the share. Options include available, error, creating, deleting,
error_deleting states.

manila reset-state Share2 --state deleting

manila show Share2

[}

(continues on next page)

3.2. Administrating Manila 149

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

150 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Delete and force-delete share

You also can force-delete a share. The shares cannot be deleted in transitional states. The transitional
states are creating, deleting, managing, unmanaging, migrating, extending, and shrinking
statuses for the shares. Force-deletion deletes an object in any state. Use the policy.yaml file to grant
permissions for this action to other roles.

Tip: The configuration file policy.yaml may be used from different places. The path /etc/manila/
policy.yaml is one of expected paths by default.

Use manila delete <share_name_or_ID> command to delete a specified share:

manila delete %share_name_or_id%

manila delete %share_name_or_id% --consistency-group %consistency-group-id%

If you try to delete the share in one of the transitional state using soft-deletion youll get an error:

manila delete Share2

A share cannot be deleted in a transitional status, that it why an error from python-manilaclient
appeared.

Print the list of all shares for all projects:

manila list --all-tenants

Force-delete Share2 and check that it is absent in the list of shares, run:

3.2. Administrating Manila 151

Manila Developer Documentation, Release 15.4.2.dev5

manila force-delete Share2

manila list

Manage access to share

The Shared File Systems service allows to grant or deny access to a specified share, and list the permis-
sions for a specified share.

To grant or deny access to a share, specify one of these supported share access levels:
e rw. Read and write (RW) access. This is the default value.
* ro. Read-only (RO) access.

You must also specify one of these supported authentication methods:

* ip. Authenticates an instance through its IP address. A valid format is XX.XX.XX.XX or XX.XX.
XX.XX/XX. For example 0.0.0.0/0.

» user. Authenticates by a specified user or group name. A valid value is an alphanumeric string
that can contain some special characters and is from 4 to 32 characters long.

» cert. Authenticates an instance through a TLS certificate. Specify the TLS identity as the IDEN-
TKEY. A valid value is any string up to 64 characters long in the common name (CN) of the
certificate. The meaning of a string depends on its interpretation.

* cephx. Ceph authentication system. Specify the Ceph auth ID that needs to be authenticated and
authorized for share access by the Ceph back end. A valid value must be non-empty, consist of
ASCII printable characters, and not contain periods.

Try to mount NFS share with export path 10.0.0.4:/shares/
manila_share_a5fblab7_0bbd_465b_acl14_05706294b6e9 on the node with IP address 10.
0.0.13:

sudo mount -v -t nfs .0.0.4:/shares/manila_share_a5fblab7_0bbd_465b_acl4_
—05706294b6e9 /mnt/

(continues on next page)

152 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

An error message Permission denied appeared, so you are not allowed to mount a share without an access
rule. Allow access to the share with ip access type and 10.0.0.13 IP address:

manila access-allow Sharel ip .0.0.13 --access-level rw

Try to mount a share again. This time it is mounted successfully:

sudo mount -v -t nfs .0.0.4:/shares/manila_share_a5fblab7_0bbd_465b_acl4_
—05706294b6e9 /mnt/

Since it is allowed node on 10.0.0.13 read and write access, try to create a file on a mounted share:

/mnt
1s

touch my_file.txt

Connect via SSH to the 10.0.0.4 node and check new file my_file.txt in the /shares/
manila_share_a5fblab7_0bbd_465b_ac14_05706294b6e9 directory:

ssh .0.0.4
/shares
1s

manila_share_a5fblab7_0bbd_465b_acl4_05706294b6e9
1s

You have successfully created a file from instance that was given access by its IP address.

Allow access to the share with user access type:

manila access-allow Sharel user demo --access-level rw

(continues on next page)

3.2. Administrating Manila 153

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Note: Different share features are supported by different share drivers. For the example, the Generic
driver with the Block Storage service as a back-end doesnt support user and cert authentications meth-
ods. For details of supporting of features by different drivers, see Manila share features support mapping.

To verify that the access rules (ACL) were configured correctly for a share, you list permissions for a
share:

manila access-1list Sharel

Deny access to the share and check that deleted access rule is absent in the access rule list:

manila access-deny Sharel de715226-da®0-4cfc-blab-c11£3393745e

manila access-1list Sharel

154 Chapter 3. For operators

https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html

Manila Developer Documentation, Release 15.4.2.dev5

Manage and unmanage share

To manage a share means that an administrator, rather than a share driver, manages the storage lifecycle.
This approach is appropriate when an administrator already has the custom non-manila share with its
size, shared file system protocol, and export path, and an administrator wants to register it in the Shared
File System service.

To unmanage a share means to unregister a specified share from the Shared File Systems service. Ad-
ministrators can revert an unmanaged share to managed status if needed.

Unmanage a share

Note: The unmanage operation is not supported for shares that were created on top of share servers and
created with share networks until Shared File Systems API version 2 .49 (Stein/Manila 8.0.0 release).

Important: Shares that have dependent snapshots or share replicas cannot be removed from the Shared
File Systems service unless the snapshots have been removed or unmanaged and the share replicas have
been removed.

Unmanaging a share removes it from the management of the Shared File Systems service without deleting
the share. It is a non-disruptive operation and existing clients are not disconnected, and the functionality
is aimed at aiding infrastructure operations and maintenance workflows. To unmanage a share, run the
manila unmanage <share>command. Then try to print the information about the share. The returned
result should indicate that Shared File Systems service wont find the share:

manila unmanage share_for_docs
manila show share_for_docs

Manage a share

Note: The manage operation is not supported for shares that are exported on share servers via share
networks until Shared File Systems API version 2 .49 (Stein/Manila 8.0.0 release).

Note: From API version 2.53, if the requester specifies a share type containing a replication_type
extra spec while managing a share, manila quota system will reserve and consume resources for two
additional quotas: share_replicas and replica_gigabytes. From API version 2.62, manila quota
system will validate size of the share against per_share_gigabytes quota.

To register the non-managed share in the File System service, run the manila manage command:

(continues on next page)

3.2. Administrating Manila 155

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

The positional arguments are:

* service_host. The manage-share service host in host@backend#POOL format, which consists of
the host name for the back end, the name of the back end, and the pool name for the back end.

* protocol. The Shared File Systems protocol of the share to manage. Valid values are NFS, CIFS,
GlusterFS, HDFS or MAPREFS.

 export_path. The share export path in the format appropriate for the protocol:
NFS protocol. 10.0.0.1:/foo_path.
CIFS protocol. \10.0.0.1\foo_name_of_cifs_share.

HDEFS protocol. hdfs://10.0.0.1:foo_port/foo_share_name.
GlusterFS. 10.0.0.1:/foo_volume.
MAPREFS. maprfs:///share-0 -C -Z -N foo.

The optional arguments are:
* name. The name of the share that is being managed.

* share_type. The share type of the share that is being managed. If not specified, the service will try
to manage the share with the configured default share type.

* share_server_id. must be provided to manage shares within share networks. This argument can
only be used with File Systems API version 2.49 (Stein/Manila 8.0.0 release) and beyond.

* driver_options. An optional set of one or more key and value pairs that describe driver options.
As aresult, a special share type named for_managing was used in example.

To manage share, run:

manila manage
manila@paris#shares
nfs
.0.0.4:/shares/manila_share_6d2142d8_2b9b_4405_867f_8a48094c893f
--name share_for_docs
--description
--share_type for_managing

(continues on next page)

156 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Check that the share is available:

manila show share_for_docs

(continues on next page)

3.2. Administrating Manila 157

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

158 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Manage and unmanage share snapshot

To manage a share snapshot means that an administrator, rather than a share driver, manages the storage
lifecycle. This approach is appropriate when an administrator manages share snapshots outside of the
Shared File Systems service and wants to register it with the service.

To unmanage a share snapshot means to unregister a specified share snapshot from the Shared File Sys-
tems service. Administrators can revert an unmanaged share snapshot to managed status if needed.

Unmanage a share snapshot

The unmanage operation is not supported for shares that were created on top of share servers and created
with share networks. The Share service should have the option driver_handles_share_servers =
False set in the manila. conf file.

To unmanage managed share snapshot, run the manila snapshot-unmanage <share_snapshot>
command. Then try to print the information about the share snapshot. The returned result should in-
dicate that Shared File Systems service wont find the share snapshot:

manila snapshot-unmanage my_test_share_snapshot
manila snapshot-show my_test_share_snapshot

Manage a share snapshot

To register the non-managed share snapshot in the File System service, run the manila
snapshot-manage command:

The positional arguments are:
* share. Name or ID of the share.
* provider_location. Provider location of the share snapshot on the backend.
The driver_options is an optional set of one or more key and value pairs that describe driver options.

To manage share snapshot, run:

manila snapshot-manage
9ba52cc6-c97e-4b40-8653-4bcbaaf9628d
4d1e2863-33dd-4243-b£39-£7354752097d
--name my_test_share_snapshot
--description
e - +

(continues on next page)

3.2. Administrating Manila 159

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Check that the share snapshot is available:

manila snapshot-show my_test_share_snapshot

Resize share

To change file share size, use the manila extend command and the manila shrink command. For
most drivers it is safe operation. If you want to be sure that your data is safe, you can make a share back
up by creating a snapshot of it.

You can extend and shrink the share with the manila extend and manila shrink commands respec-
tively, and specify the share with the new size that does not exceed the quota. For details, see Quotas and
Limits. You also cannot shrink share size to 0 or to a greater value than the current share size.

Note: From API version 2.53, extending a replicated share, manila quota system will reserve and con-
sume resources for two additional quotas: share_replicas and replica_gigabytes. This request
will fail if there is no available quotas to extend the share and all of its share replicas.

While extending, the share has an extending status. This means that the increase share size request was

160 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

issued successfully.

To extend the share and check the result, run:

manila extend docs_resize
manila show docs_resize

[}

(continues on next page)

3.2. Administrating Manila 161

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

While shrinking, the share has a shrinking status. This means that the decrease share size request was
issued successfully. To shrink the share and check the result, run:

manila shrink docs_resize
manila show docs_resize

(continues on next page)

162 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

[}

(continues on next page)

3.2. Administrating Manila 163

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

Quotas and limits

Limits

Limits are the resource limitations that are allowed for each project. An administrator can configure
limits in the manila. conf file.

Users can query their rate and absolute limits.

To see the absolute limits, run:

manila absolute-limits

Rate limits control the frequency at which users can issue specific API requests. Administrators use rate
limiting to configure limits on the type and number of API calls that can be made in a specific time
interval. For example, a rate limit can control the number of GET requests processed during a one-minute
period.

To set the API rate limits, modify the etc/manila/api-paste.ini file, which is a part of the WSGI

164 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

pipeline and defines the actual limits. You need to restart manila-api service after you edit the etc/
manila/api-paste.ini file.

Also, add the ratelimit to noauth and keystone parameters in the
[composite:openstack_share_api] and [composite:openstack_share_api_v2] groups.

Finally, set the [DEFAULT] api_rate_limit parameter to True.

To see the rate limits, run:

manila rate-limits

Quotas

Quota sets provide quota management support.

To list the quotas for a project or user, use themanila quota-showcommand. If you specify the optional

--user parameter, you get the quotas for this user in the specified project. If you omit this parameter,
you get the quotas for the specified project.

Note: The Shared File Systems service does not perform mapping of usernames and project names

3.2. Administrating Manila 165

Manila Developer Documentation, Release 15.4.2.dev5

to IDs. Provide only ID values to get correct setup of quotas. Setting it by names you set quota for
nonexistent project/user. In case quota is not set explicitly by project/user ID, The Shared File Systems
service just applies default quotas.

manila quota-show --tenant %project_id% --user %user_id%

There are default quotas for a project that are set from the manila. conf file. To list the default quotas
for a project, use the manila quota-defaults command:

manila quota-defaults --tenant %project_id%

The administrator can update the quotas for a specific project, or for a specific user by providing both
the --tenant and --user optional arguments. It is possible to update the shares, snapshots,
gigabytes, snapshot-gigabytes, share-networks, share_groups, share_group_snapshots
and share-type quotas.

Note: Since API version 2.53, the administrator is also able to update quotas for share replicas and replica
gigabytes by specifying share_replicas and/or replica_gigabytes. Since API version 2.62, the
administrator is also able to update quotas for per share gigabytes by specifying per_share_gigabytes

166 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila quota-update %project_id% --user %user_id% --shares --snapshots

As administrator, you can also permit or deny the force-update of a quota that is already used, or if the
requested value exceeds the configured quota limit. To force-update a quota, use force optional key.

manila quota-update %project_id% --shares --snapshots --force

The administrator can also update the quotas for a specific share type. Share Type quotas cannot be set
for individual users within a project. They can only be applied across all users of a particular project.

manila quota-update %project_id% --share-type %share_type_id%

To revert quotas to default for a project or for a user, delete quotas:

manila quota-delete --tenant %project_id% --user-id %user_id%

To revert quotas to default, use the specific project or share type. Share Type quotas can not be reverted
for individual users within a project. They can only be reverted across all users of a particular project.

manila quota-delete --tenant %project_id% --share-type %share_type_id%

Share types

The Shared File System service back-end storage drivers offer a wide range of capabilities. The vari-
ation in these capabilities allows cloud administrators to provide a storage service catalog to their end
users. Share types can be used to create this storage service catalog. Cloud administrators can influence
provisioning of users shares with the help of Share types. All shares are associated with a share type.
Share types are akin to flavors in the OpenStack Compute service (nova), or volume types in the
OpenStack Block Storage service (cinder), or storage classes in Kubernetes. You can allow a share
type to be accessible to all users in your cloud if you wish. You can also create private share types that
allow only users belonging to certain OpenStack projects to access them. You can have an unlimited
number of share types in your cloud, but for practical purposes, you may want to create only a handful
of publicly accessible share types.

Each share type is an object that encompasses extra-specs (extra specifications). These extra-specs
can map to storage back-end capabilities, or can be directives to the service.

Consider for example, offering three share types in your cloud to map to service levels:

Type Capabilities/Instructions

Gold Allow creating snapshots, reverting to snapshots and share replication, thick provision
shares

Silver | Allow creating snapshots, thin provision shares

Bronze | Dont allow creating snapshots, thin provision shares

Capabilities or instructions such as the ones above are coded as extra-specs that your users and the Shared
File System service understand. Users in OpenStack projects can see all public share types along with
private share types that are made accessible to them. Not all extra-specs that you configure in a share
type are visible to your users. This design helps preserve the cloud abstraction. Along with the share
type names, they can see the share type descriptions and tenant-visible extra-specs.

For more details on extra-specs, see Capabilities and Extra-Specs.

3.2. Administrating Manila 167

Manila Developer Documentation, Release 15.4.2.dev5

The Shared File Systems service also allows using quota controls with share types. Quotas can help you
maintain your SLAs by limiting the number of consumable resources or aid in billing. See Quotas and
limits for more details.

Driver Handles Share Servers (DHSS)

To provide secure and hard multi-tenancy on the network data path, the Shared File Systems service
allows users to use their own share networks. When shares are created on a share network, users
can be sure they have their own isolated share servers that export their shares on the share network
that have the ability plug into user-determined authentication domains (security services). Not all
Shared File System service storage drivers support share networks. Those that do assert the capabil-
ity driver_handles_share_servers=True.

When creating a share type, you are required to set an extra-spec that matches this capability. It is visible
to end users.

Default Share Type

When you are operating a cloud where all your tenants are trusted, you may want to create a default share
type that applies to all of them. It simplifies share creation for your end users since they dont need to
worry about share types.

Use of a default share type is not recommended in a multi-tenant cloud where you may want to separate
your user workloads, or offer different service capabilities. In such instances, you must always encourage
your users to specify a share type at share creation time, and not rely on the default share type.

Important: If you do not create and configure a default share type, users must specify a valid share type
during share creation, or share creation requests will fail.

To configure the default share type, edit the manila.conf file, and set the configuration option [DE-
FAULT]/default_share_type.

You must then create a share type, using manila type-create:

where:
* name is the share type name
* is_public defines the visibility for the share type (true/false)

* descriptionis a free form text field to describe the characteristics of the share type for your users
benefit

* extra-specs defines a comma separated set of key=value pairs of optional extra specifications

* spec_driver_handles_share_servers is the mandatory extra-spec (true/false)

168 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Share type operations

To create a new share type you need to specify the name of the new share type. You also require an extra
spec driver_handles_share_servers. The new share type can be public or private.

manila manila type-create default-shares False
--description

manila type-list

)

manila type-show default-shares

[}

(continues on next page)

3.2. Administrating Manila 169

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

You did not provide optional capabilities, so they are all assumed to be off by default. So, Non-privileged
users see some tenant-visible capabilities explicitly.

demorc
manila type-list

manila type-show default-shares

[}

(continues on next page)

170 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

You can set or unset extra specifications for a share type using manila type-key <share_type> set
<key=value> command.

manila type-key default-shares True

manila type-show default-shares

Usemanila type-key <share_type> unset <key> to unset an extra specification.

A share type can be deleted with the manila type-delete <share_type> command. However, a
share type can only be deleted if there are no shares, share groups or share group types associated with
the share type.

3.2. Administrating Manila 171

Manila Developer Documentation, Release 15.4.2.dev5

Share type access control

You can provide access, revoke access, and retrieve list of allowed projects for a specified private share.

Create a private type:

manila type-create my_typel True
--is_public False
--extra-specs

True

Note: If you run manila type-1list only public share types appear. To see private share types, run

manila type-list --all".

Grant access to created private type for a demo and alt_demo projects by providing their IDs:

manila type-access-add my_typel d8f9af6915404114ae4f30668a4f5ba7
manila type-access-add my_typel e4970f57f1824faab2701db6lee7efdf

To view information about access for a private share, type my_typel:

manila type-access-list my_typel

After granting access to the share, the users in the allowed projects can see the share type and use it to

create shares.

To deny access for a specified project,
<project_id> command.

use manila type-access-remove <share_type>

172

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Share group types

Share group types are types for share groups just like share types for shares. A group type is associated
with group specs similar to the way extra specs are associated with a share type.

A share group type aids the scheduler to filter or choose back ends when you create a share group and to
set any backend specific parameters on the share group. Any driver that can perform a group operation
in an advantaged way may report that as a group capability, such as:

* Ordered writes

* Consistent snapshots
* Group replication

* Group backup

Share group types may contain group specs corresponding to the group capabilities reported by the back-
ends. A group capability applies across all the shares inside the share group, for example, a backend
may support consistent_snapshot_support, and using this group type extra spec in the group type will
allow scheduling share groups onto that backend. Any time a snapshot of the group is initiated, a crash
consistent simultaneous snapshot of all the constituent shares is taken. Shares in a share group may each
have different share types because they can each be on separate pools, have different capabilities and
perhaps end users can even be billed differently for using each of them. To allow for this possibility, one
or more share types can be associated with a group type. The admin also specifies which share type(s)
a given group type may contain. At least one share type must be provided to create a share group type.
When an user creates a share group, the scheduler creates the group on one of the backends that match
the specified share type(s) and share group type.

In the Shared File Systems configuration file manila.conf, the administrator can set the share group
type used by default for the share group creation.

To create a share group type, use manila share-group-type-create command as:

Where the name is the share group type name and --is_public defines the level of the visibility for the
share group type. One share group can include multiple share_types. --group-specs are the extra
specifications used to filter back ends.

Note: The extra specifications set in the share group types are explained further in Scheduling.

Administrators can create share group types with these extra specifications for the back ends filtering.
An administrator can use the policy.yaml file to grant permissions for share group type creation with
extra specifications to other roles.

You set a share group type to private or public and manage the access to the private share group types.
By default a share group type is created as publicly accessible. Set --is_public to False to make the
share group type private.

3.2. Administrating Manila 173

Manila Developer Documentation, Release 15.4.2.dev5

Share group type operations

To create a new share group type you need to specify the name of the new share group type and existing
share types. The new share group type can also be public. One share group can include multiple share

types.

manila share-group-type-create group_type_for_cg default_share_type --is_
—public True

manila share-group-type-list

You can set or unset extra specifications for a share group type using manila share-group-type-key
<share_group_type> set <key=value> command.

manila share-group-type-key group_type_for_cg
< host

It is also possible to view a list of current share group types and extra specifications:

manila share-group-type-specs-list

Usemanila share-group-type-key <share_group_type> unset <key> to unset an extra spec-
ification.

174 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

A public or private share group type can be deleted with the manila share-group-type-delete
<share_group_type> command.

Share group type access

You can manage access to a private share group type for different projects. Administrators can provide
access, revoke access, and retrieve information about access for a specified private share group.

Create a private group type:

manila share-group-type-create my_typel default_share_type --is_public False

Note: If you run manila share-group-type-1list only public share group types appear. To see
private share group types, run manila share-group-type-list with --all optional argument.

Grant access to created private type for a demo and alt_demo projects by providing their IDs:

manila share-group-type-access-add my_typel d8f9af6915404114ae4f30668a4f5ba7
manila share-group-type-access-add my_typel e4970f57f1824faab2701db6lee7efdf

To view information about access for a private share, manila type-access-list my_typel:

manila type-access-list my_typel

After granting access to the share group type, the target project can see the share group type in the list,
and create private share groups.

To deny access for a specified project, use manila share-group-type-access-remove
<share_group_type> <project_id> command.

manila share-group-type-access-remove my_typel.
—,e4970£f57f1824faab2701db61lee7efdf

3.2. Administrating Manila 175

Manila Developer Documentation, Release 15.4.2.dev5

Share groups

Share group support is available in Manila since the Ocata release. A share group is a group of shares
upon which users can perform group based operations, such as taking a snapshot together. This frame-
work is meant to allow migrating or replicating a group of shares in unison in future releases of manila.
Support currently exists for creating group types and group specs, creating groups of shares, and creating
snapshots of groups. These group operations can be performed using the command line client.

To create a share group, and access it, the following general concepts are prerequisite knowledge:
1. To create a share group, use manila share-group-create command.

2. You can specify the share-network, share group type, source-share-group-snapshot,
availability-zone, share type.

3. After the share group becomes available, use the manila create command to create a share
within the share group.

Note: A share group is limited to a single backend, i.e. all shares created within a particular share group
end up on the same backend. If the backend supports pools, the shares may be created within separate
pools. So this feature is apt for those that would like co-locality of different shares.

Actions on a share group

A few actions, such as extend & shrink, are inherently applicable only to individual shares. One could
theoretically apply extend to a group, increasing the size of each member, but this would not be a use-case
covered initially. Any actions in this category must remain available to group members, and other actions
such as taking snapshots of group members can be allowed, but actions such as migration or replication
would be available only at the group level and not on its members.

Share Action Share Group Action

Create (share type) Create (share types, group type)

Delete Delete (group)

Snapshot Snapshot (may or may not be a consistent group snapshot)
Create from snapshot | Create from group snapshot

Clone Clone group (and all members) (planned)

Replicate Replicate (planned)

Migrate Migrate (planned)

Extend/shrink N/A

Creating a share with share group
Creating a share group type

In this example, we will create a new share group type and specify the consistent_snapshot_support as
an group-spec within the share-group-type-create being used.

Use the manila type-list command to get a share type. Then use the share type to create a share
group type.

176 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila type-list

Use themanila share-group-type-create command to create a new share group type. Specify the
name and share types.

manila share-group-type-create group_type_for_cg default_share_type

Use the manila share-group-type-key command to set a group-spec to the share group type.

manila share-group-type-key group_type_for_cg
. host

Note: This command has no output. To verify the group-spec, use the manila
share-group-type-specs-list command and specify the share group types name or ID as a
parameter.

Creating a share group

Usethemanila share-group-create command to create a share group. Specify the share group type
that we created.

manila share-group-create --share-group-type group_type_for_cg

(continues on next page)

3.2. Administrating Manila 177

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Note: One share group can include multiple share types. The share types are going to be inherited
directly from the share group type.

Use the manila share-group-show command to retrieve details of the share. Specify the share ID or
name as a parameter.

manila share-group-show ecf78d45-546a-48df-a969-c153e68f0376

Create a share with the share group

Use the manila create command to create a share. Specify the share protocol, size, share group type
and the share name.

manila create NFS 1 --share-group ecf78d45-546a-48df-a969-c153e68f0376 --
—name test_group_share_1

(continues on next page)

178 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

[}

(continues on next page)

3.2. Administrating Manila 179

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

Create another share with a same share group, and named test_group_share_2.

manila create NFS 1 --share-group ecf78d45-546a-48df-a969-c153e68f0376 --
—name test_group_share_2

(continues on next page)

180 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

Creating a share group snapshot

Create a share group sanpshot of the share group

Usethemanila share-group-snapshot-create command to create a share group snapshot. Specify
the share group ID or name.

manila share-group-snapshot-create ecf78d45-546a-48df-a969-c153e68f0376

(continues on next page)

3.2. Administrating Manila 181

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Show the members of the share group snapshot

Use the manila share-group-snapshot-create command to see all share members of share group
snapshot. Specify the share group snapshot ID or name.

manila share-group-snapshot-list-members ac387240-08dc-4b23-80£f6-
—ffc481e6c87a

Show the details of the share group snapshot

manila share-group-snapshot-show ac387240-08dc-4b23-80f6-ffc481e6c87a

Deleting share groups

Use the manila share-group-delete <group_id> to delete share groups.

Deleting share group snapshots

Use the manila share-group-snapshot-delete <group_snapshot_id> to delete share a share
group snapshot.

Important: Before attempting to delete a share group or a share group snapshot, make sure that all its
constituent shares and snapshots were deleted. Users will need to delete share group snapshots before
attempting to delete shares within ashare group or the group itself.

182 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Share snapshots
The Shared File Systems service provides a snapshot mechanism to help users restore data by running
the manila snapshot-create command.

To export a snapshot, create a share from it, then mount the new share to an instance. Copy files from
the attached share into the archive.

To import a snapshot, create a new share with appropriate size, attach it to instance, and then copy a file
from the archive to the attached file system.

Note: You cannot delete a share while it has saved dependent snapshots.

Create a snapshot from the share:

manila snapshot-create Sharel --name Snapshotl --description o

—

Update snapshot name or description if needed:

manila snapshot-rename Snapshotl Snapshot_1 --description o

—

Check that status of a snapshot is available:

manila snapshot-show Snapshotl

(continues on next page)

3.2. Administrating Manila 183

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

To create a copy of your data from a snapshot, use manila create with key --snapshot-id. This
creates a new share from an existing snapshot. Create a share from a snapshot and check whether it is
available:

manila create nfs --name Share2 --metadata snapshot --description
. --snapshot-id 962e8126-35c3-47bb-8c00-f0ee37f42ddd

manila show Share2

(continues on next page)

184 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

By default, the Shared File Systems service will place the new share in the source shares pool, unless a
different destination availability zone is provided by the user, using the key --availability-zone.

Starting from Ussuri release, a new filter and weigher were added to the scheduler to enhance the se-
lection of a destination pool when creating shares from snapshot. Drivers that support creating shares
from snapshots across back ends also need the back end configuration option replication_domain
to be specified. This option can be an arbitrary string. As an administrator, you are expected to deter-
mine which back ends are compatible to copy data between each other. Once you have identified these
back ends, configure replication_domain in their respective configuration sections to the same string.
Refer to the feature support mapping for identifying which back ends support this feature. The use of
scheduler when creating share from a snapshot must be enabled using the configuration flag [DEFAULT] /
use_scheduler_creating_share_from_snapshot. This option is disabled by default.

Note: When combining both --snapshot-id and --availability-zone keys, youll need to make
sure that the configuration flag [DEFAULT]/use_scheduler_creating_share_from_snapshot is
enabled, or the operation will be denied when source and destination availability zones are different.

You can soft-delete a snapshot using manila snapshot-delete <snapshot_name_or_ID>. If a
snapshot is in busy state, and during the delete an error_deleting status appeared, administrator can
force-delete it or explicitly reset the state.

Use snapshot-reset-state [--state <state>] <snapshot> to update the state of a snapshot
explicitly. A valid value of a status are available, error, creating, deleting, error_deleting.
If no state is provided, the available state will be used.

Usemanila snapshot-force-delete <snapshot> to force-delete a specified share snapshot in any
state.

3.2. Administrating Manila 185

Manila Developer Documentation, Release 15.4.2.dev5

Share servers

A share server is a resource created by the Shared File Systems service when the driver is operating in the
driver_handles_share_servers = True mode. A share server exports users shares, manages their exports
and access rules.

Share servers are abstracted away from end users. Drivers operating in driver_handles_share_servers
= True mode manage the lifecycle of these share servers automatically. Administrators can however
remove the share servers from the management of the Shared File Systems service without destroying
them. They can also bring in existing share servers under the Shared File Systems service. They can list
all available share servers and update their status attribute. They can delete an specific share server if it
has no dependent shares.

Share server management

To manage a share server means that when the driver 1is operating in the
driver_handles_share_servers = True mode, the administrator can bring a pre-existing
share server under the management of the Shared File Systems service.

To unmanage means that the administrator is able to unregister an existing share server from the Shared
File Systems service without deleting it from the storage back end. To be unmanaged, the referred share
server cannot have any shares known to the Shared File Systems service.

Manage a share server

To bring a share server under the Shared File System service, use the manila share-server-manage
command:

The positional arguments are:

* host. The manage-share service host in host@backend format, which consists of the host name
for the back end and the name of the back end.

¢ share_network. The share network where the share server is contained.
* identifier. The identifier of the share server on the back end storage.

The driver_options is an optional set of one or more driver-specific metadata items as key and value
pairs. The specific key-value pairs necessary vary from driver to driver. Consult the driver-specific
documentation to determine if any specific parameters must be supplied. Ensure that the share type has
the driver_handles_share_servers = True extra-spec.

The share_network_subnet is an optional parameter which was introduced in Train release. Due
to a change in the share networks structure, a share network no longer contains the following at-
tributes: neutron_net_id, neutron_subnet_id, gateway, mtu, network_type, ip_version,
segmentation_id. These attributes now pertain to the share network subnet entity, and a share net-
work can span multiple share network subnets in different availability zones. If you do not specify a

186 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

share network subnet, the Shared File Systems Service will choose the default one (which does not per-
tain to any availability zone).

If using an OpenStack Networking (Neutron) based plugin, ensure that:
* There are some ports created, which correspond to the share server interfaces.
* The correct IP addresses are allocated to these ports.
* manila:share is set as the owner of these ports.

To manage a share server, run:

manila share-server-manage
manila@paris
share_net_test
backend_server_1
e et e R et +

Note: The is_auto_deletable property is used by the Shared File Systems service to identify a share
server that can be deleted by internal routines.

The service can automatically delete share servers if there are no shares associated with them. To delete a
share server when the last share is deleted, set the option: delete_share_server_with_last_share.
If a scheduled cleanup is desired instead, automatic_share_server_cleanup and
unused_share_server_cleanup_interval options can be set. Only one of the cleanup meth-
ods can be used at one time.

Any share server that has a share unmanaged from it cannot be automatically deleted by the Shared File
Systems service. The same is true for share servers that have been managed into the service. Cloud
administrators can delete such share servers manually if desired.

3.2. Administrating Manila 187

Manila Developer Documentation, Release 15.4.2.dev5

Unmanage a share server

To unmanage a share server, run manila share-server-unmanage <share-server>.

manila share-server-unmanage 441d806f-f0e0-4c90-b7e2-a553c6aa76b2
manila share-server-show 441d806f-f0e0-4c90-b7e2-a553c6aa76b2

Reset the share server state

As administrator you are able to reset a share server state. To reset the state of a share server, run manila
share-server-reset-state <share-server> --state <state>.

The positional arguments are:

* share-server. The share server name or id.

« state. The state to be assigned to the share server. The options are:
— active
— error
— deleting
— creating
— managing
— unmanaging
— unmanage_error

— manage_error

List share servers

To list share servers, run manila share-server-list command:

All the arguments above are optional. They can ben used to filter share servers. The options to filter:
* host. Shows all the share servers pertaining to the specified host.
* status. Shows all the share servers that are in the specified status.
* share_network. Shows all the share servers that pertain in the same share network.
* project_id. Shows all the share servers pertaining to the same project.

* columns. The administrator specifies which columns to display in the result of the list operation.

188 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila share-server-list

Share server limits (Since Wallaby release)

Since Wallaby release, it is possible to specify limits for share servers size and amount of instances. It
helps administrators to provision their resources in the cloud system and balance the share servers size.
If a value is not configured, there is no behavioral change and manila will consider it as unlimited. Then,
will reuse share servers regardless their size and amount of built instances.

* max_share_server_size: Maximum sum of gigabytes a share server can have considering all
its share instances and snapshots.

e max_shares_per_share_server: Maximum number of share instances created in a share
server.

Note: If one of these limits is reached during a request that requires a share server to be provided, manila
will create a new share server to place such request.

Note: The limits can be ignored when placing a new share created from parent snapshot in the same
host as the parent. For this scenario, the share server must be the same, so it does not take the limit in
account, reusing the share server anyway.

Security services

A security service stores client configuration information used for authentication and authorization (Au-
thN/AuthZ). For example, a share server will be the client for an existing service such as LDAP, Kerberos,
or Microsoft Active Directory.

You can associate a share with one to three security service types:
e ldap: LDAP.
» kerberos: Kerberos.
* active_directory: Microsoft Active Directory.

You can configure a security service with these options:

e A DNS IP address.

3.2. Administrating Manila 189

Manila Developer Documentation, Release 15.4.2.dev5

An IP address or host name.

* A domain.

* A user or group name.

* The password for the user, if you specify a user name.
You can add the security service to the share network.

To create a security service, specify the security service type, a description of a security service, DNS IP
address used inside projects network, security service IP address or host name, domain, security service
user or group used by project, and a password for the user. The share name is optional.

Create a ldap security service:

manila security-service-create ldap --dns-ip £.8.8.8 --server .254.0.3 --
—name my_ldap_security_service

To create kerberos security service, run:

manila security-service-create kerberos --server .254.0.3 --user demo --
—password secret --name my_kerberos_security_service --description o

—

(continues on next page)

190 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

To see the list of created security service use manila security-service-list:

manila security-service-list

You can add a security service to the existing share network, which is not yet used (a share network
not associated with a share).

Add a security service to the share network with share-network-security-service-add specifying
share network and security service. The command returns information about the security service. You
can see view new attributes and share_networks using the associated share network ID.

manila share-network-security-service-add share_net2 my_ldap_security_
—service

manila security-service-show my_ldap_security_service

3.2. Administrating Manila 191

Manila Developer Documentation, Release 15.4.2.dev5

It is possible to see the list of security services associated with a given share network. List security
services for share_net2 share network with:

manila share-network-security-service-list share_net2

You also can dissociate a security service from the share network and confirm that the security service
now has an empty list of share networks:

manila share-network-security-service-remove share_net2 my_ldap_security_
—,service

manila security-service-show my_ldap_security_service

The Shared File Systems service allows you to update a security service field using manila
security-service-update command with optional arguments such as --dns-ip, --server,
--domain, --user, --password, --name, or --description.

To remove a security service not associated with any share networks run:

manila security-service-delete my_ldap_security_service

192 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Share migration

Share migration is the feature that migrates a share between different storage pools.

Use cases

As an administrator, you may want to migrate your share from one storage pool to another for several
reasons. Examples include:

* Maintenance or evacuation
— Evacuate a back end for hardware or software upgrades
— Evacuate a back end experiencing failures
— Evacuate a back end which is tagged end-of-life
* Optimization
— Defragment back ends to empty and be taken offline to conserve power
— Rebalance back ends to maximize available performance

— Move data and compute closer together to reduce network utilization and decrease latency or
increase bandwidth

* Moving shares
— Migrate from old hardware generation to a newer generation

— Migrate from one vendor to another

Migration workflows

Moving shares across different storage pools is generally expected to be a disruptive operation that dis-
connects existing clients when the source ceases to exist. For this reason, share migration is implemented
in a 2-phase approach that allows the administrator to control the timing of the disruption. The first phase
performs data copy while users retain access to the share. When copying is complete, the second phase
may be triggered to perform a switchover that may include a last sync and deleting the source, generally
requiring users to reconnect to continue accessing the share.

In order to migrate a share, one of two possible mechanisms may be employed, which provide different
capabilities and affect how the disruption occurs with regards to user access during data copy phase and
disconnection during switchover phase. Those two mechanisms are:

* Driver-assisted migration: This mechanism is intended to make use of driver optimizations to mi-
grate shares between pools of the same storage vendor. This mechanism allows migrating shares
nondisruptively while the source remains writable, preserving all filesystem metadata and snap-
shots. The migration workload is performed in the storage back end.

* Host-assisted migration: This mechanism is intended to migrate shares in an agnostic manner
between two different pools, regardless of storage vendor. The implementation for this mechanism
does not offer the same properties found in driver-assisted migration. In host-assisted migration,
the source remains readable, snapshots must be deleted prior to starting the migration, filesystem
metadata may be lost, and the clients will get disconnected by the end of migration. The migration

3.2. Administrating Manila 193

Manila Developer Documentation, Release 15.4.2.dev5

workload is performed by the Data Service, which is a dedicated manila service for intensive data
operations.

When starting a migration, driver-assisted migration is attempted first. If the shared file system service
detects it is not possible to perform the driver-assisted migration, it proceeds to attempt host-assisted
migration.

Using the migration APIs

The commands to interact with the share migration API are:

* migration_start: starts a migration while retaining access to the share. Migration is paused
and waits for migration_complete invocation when it has copied all data and is ready to take
down the source share.

manila migration-start share_1 ubuntu@generic2#GENERIC2 --writable.
—False --preserve-snapshots False --preserve-metadata False --
—nondisruptive False

Note: This command has no output.

* migration_complete: completes a migration, removing the source share and setting the desti-
nation share instance to available.

manila migration-complete share_1

Note: This command has no output.

* migration_get_progress: obtains migration progress information of a share.

manila migration-get-progress share_1

* migration_cancel: cancels an in-progress migration of a share.

manila migration-cancel share_1

Note: This command has no output.

194 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

The parameters

To start a migration, an administrator should specify several parameters. Among those, two of them are
key for the migration.

* share: The share that will be migrated.

* destination_pool: The destination pool to which the share should be migrated to, in format
host@backend#pool.

Several other parameters, referred to here as driver-assisted parameters, must be specified in the
migration_start APIL They are:

* preserve_metadata: whether preservation of filesystem metadata should be enforced for this
migration.

* preserve_snapshots: whether preservation of snapshots should be enforced for this migration.
* writable: whether the source share remaining writable should be enforced for this migration.

* nondisruptive: whether it should be enforced to keep clients connected throughout the migra-
tion.

Specifying any of the boolean parameters above as True will disallow a host-assisted migration.

In order to appropriately move a share to a different storage pool, it may be required to change one or
more share properties, such as the share type, share network, or availability zone. To accomplish this,
use the optional parameters:

* new_share_type_id: Specify the ID of the share type that should be set in the migrated share.

* new_share_network_id: Specify the ID of the share network that should be set in the migrated
share.

If driver-assisted migration should not be attempted, you may provide the optional parameter:

* force_host_assisted_migration: whether driver-assisted migration attempt should be
skipped. If this option is set to True, all driver-assisted options must be set to False.

Configuration

For share migration to work in the cloud, there are several configuration requirements that need to be
met:

For driver-assisted migration: it is necessary that the configuration of all back end stanzas is present in
the file manila.conf of all manila-share nodes. Also, network connectivity between the nodes running
manila-share service and their respective storage back ends is required.

For host-assisted migration: it is necessary that the Data Service (manila-data) is installed and configured
in a node connected to the clouds administrator network. The drivers pertaining to the source back end
and destination back end involved in the migration should be able to provide shares that can be accessed
from the administrator network. This can easily be accomplished if the driver supports admin_only
export locations, else it is up to the administrator to set up means of connectivity.

In order for the Data Service to mount the source and destination instances, it must use manila share
access APIs to grant access to mount the instances. The access rule type varies according to the share
protocol, so there are a few config options to set the access value for each type:

3.2. Administrating Manila 195

mailto:host@backend#pool

Manila Developer Documentation, Release 15.4.2.dev5

data_node_access_ips: For IP-based access type, provide one or more administrator network
IP addresses of the host running the Data Service. For NFS shares, drivers should always add rules
with the no_root_squash property.

data_node_access_cert: For certificate-based access type, provide the value of the certificate
name that grants access to the Data Service.

data_node_access_admin_user: For user-based access type, provide the value of a username
that grants access and administrator privileges to the files in the share.

data_node_mount_options: Provide the value of a mapping of protocol name to respective
mount options. The Data Service makes use of mount command templates that by default have
a dedicated field to inserting mount options parameter. The default value for this config option
already includes the username and password parameters for CIFS shares and NFS v3 enforcing
parameter for NFS shares.

mount_tmp_location: Provide the value of a string representing the path where the share in-
stances used in migration should be temporarily mounted. The default value is /tmp/.

check_hash: This boolean config option value determines whether the hash of all files copied in
migration should be validated. Setting this option increases the time it takes to migrate files, and
is recommended for ultra-dependable systems. It defaults to disabled.

The configuration options above are respective to the Data Service only and should be defined the
DEFAULT group of the manila.conf configuration file. Also, the Data Service node must have all the
protocol-related libraries pre-installed to be able to run the mount commands for each protocol.

You may need to change some driver-specific configuration options from their default value to work with
specific drivers. If so, they must be set under the driver configuration stanza in manila.conf. See a
detailed description for each one below:

* migration_ignore_files: Provide value as a list containing the names of files or folders to

be ignored during migration for a specific driver. The default value is a list containing only
lost+found folder.

share_mount_template: Provide a string that defines the template for the mount command for
a specific driver. The template should contain the following entries to be formatted by the code:

— proto: The share protocol. Automatically formatted by the Data Service.

— options: The mount options to be formatted by the Data Service according to the
data_node_mount_options config option.

— export: The export path of the share. Automatically formatted by the Data Service with the
shares admin_only export location.

— path: The path to mount the share. Automatically formatted by the Data Service according
to the mount_tmp_location config option.

The default value for this config option is:

share_unmount_template: Provide the value of a string that defines the template for the un-
mount command for a specific driver. The template should contain the path of where the shares
are mounted, according to the mount_tmp_location config option, to be formatted automatically
by the Data Service. The default value for this config option is:

196

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* protocol_access_mapping: Provide the value of a mapping of access rule type to protocols
supported. The default value specifies IP and user based access types mapped to NFS and CIFS
respectively, which are the combinations supported by manila. If a certain driver uses a different
protocol for IP or user access types, or is not included in the default mapping, it should be specified
in this configuration option.

Other remarks

* There is no need to manually add any of the previously existing access rules after a migration is
complete, they will be persisted on the destination after the migration.

* Once migration of a share has started, the user will see the status migrating and it will block other
share actions, such as adding or removing access rules, creating or deleting snapshots, resizing,
among others.

* The destination share instance export locations, although it may exist from the beginning of a
host-assisted migration, are not visible nor accessible as access rules cannot be added.

* During a host-assisted migration, an access rule granting access to the Data Service will be added
and displayed by querying the access-1ist API. This access rule should not be tampered with,
it will otherwise cause migration to fail.

* Resources allocated are cleaned up automatically when a migration fails, except if this failure oc-
curs during the 2nd phase of a driver-assisted migration. Each step in migration is saved to the field
task_state present in the Share model. If for any reason the state is not set tomigration_error
during a failure, it will need to be reset using the reset-task-state APL

* Itis advised that the node running the Data Service is well secured, since it will be mounting shares
with highest privileges, temporarily exposing user data to whoever has access to this node.

* The two mechanisms of migration are affected differently by service restarts:

— If performing a host-assisted migration, all services may be restarted except for the
manila-data service when performing the copy (the task_state field value starts with
data_copying_). In other steps of the host-assisted migration, both the source and des-
tination manila-share services should not be restarted.

— If performing a driver-assisted migration, the migration is affected minimally by driver
restarts if the task_state ismigration_driver_in_progress, while the copy is being
done in the back end. Otherwise, the source and destination manila-share services should
not be restarted.

3.2. Administrating Manila 197

Manila Developer Documentation, Release 15.4.2.dev5

Share replication

Replication of data has a number of use cases in the cloud. One use case is High Availability of the data
in a shared file system, used for example, to support a production database. Another use case is ensuring
Data Protection; i.e being prepared for a disaster by having a replication location that will be ready to
back up your primary data source.

The Shared File System service supports user facing APIs that allow users to create shares that support
replication, add and remove share replicas and manage their snapshots and access rules. Three replication
types are currently supported and they vary in the semantics associated with the primary share and the
secondary copies.

Important: Share replication is an experimental Shared File Systems API in the Mitaka re-
lease. Contributors can change or remove the experimental part of the Shared File Systems
API in further releases without maintaining backward compatibility. Experimental APIs have an
X-OpenStack-Manila-API-Experimental: true header in their HTTP requests.

Replication types supported

Before using share replication, make sure the Shared File System driver that you are running supports
this feature. You can check it in the manila-scheduler service reports. The replication_type
capability reported can have one of the following values:

writable The driver supports creating writable share replicas. All share replicas can be accorded
read/write access and would be synchronously mirrored.

readable The driver supports creating read-only share replicas. All secondary share replicas can be
accorded read access. Only the primary (or active share replica) can be written into.

dr The driver supports creating dr (abbreviated from Disaster Recovery) share replicas. A secondary
share replica is inaccessible until after a promotion.

None The driver does not support Share Replication.

Note: The term active share replica refers to the primary share. In writable style of replication, all
share replicas are active, and there could be no distinction of a primary share. In readable and dr
styles of replication, a secondary share replica may be referred to as passive, non-active or simply,
replica.

Configuration

Two new configuration options have been introduced to support Share Replication.

replica_state_update_interval Specify this option in the DEFAULT section of your manila.conf. The
Shared File Systems service requests periodic update of the replica_state of all non-active share
replicas. The update occurs with respect to an interval corresponding to this option. If it is not
specified, it defaults to 300 seconds.

replication_domain Specify this option in the backend stanza when using a multi-backend style config-
uration. The value can be any ASCII string. Two backends that can replicate between each other

198 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

would have the same replication_domain. This comes from the premise that the Shared File
Systems service expects Share Replication to be performed between symmetric backends. This
option is required for using the Share Replication feature.

Health of a share replica

Apart from the status attribute, share replicas have the replica_state attribute to denote the state of
data replication on the storage backend. The primary share replica will have its replica_state attribute
set to active. The secondary share replicas may have one of the following as their replica_state:

in_sync The share replica is up to date with the active share replica (possibly within a backend-specific
recovery point objective).

out_of_sync The share replica is out of date (all new share replicas start out in this replica_state).

error When the scheduler fails to schedule this share replica or some potentially irrecoverable error
occurred with regard to updating data for this replica.

Promotion or failover

For readable and dr types of replication, we refer to the task of switching a non-active share replica
with the active replica as promotion. For the writable style of replication, promotion does not make
sense since all share replicas are active (or writable) at all times.

The status attribute of the non-active replica being promoted will be set to replication_change during
its promotion. This has been classified as a busy state and thus API interactions with the share are
restricted while one of its share replicas is in this state.

Share replication workflows

The following examples have been implemented with the ZFSonLinux driver that is a reference imple-
mentation in the Shared File Systems service. It operates in driver_handles_share_servers=False
mode and supports the readable type of replication. In the example, we assume a configuration of two
Availability Zones', called availability_zone_1 and availability_zone_2.

Since the Train release, some drivers operating in driver_handles_share_server=True mode sup-
port share replication.

Multiple availability zones are not necessary to use the replication feature. However, the use of an avail-
ability zone as a failure domain is encouraged.

Pay attention to the network configuration for the ZFS driver. Here, we assume a configuration of
zfs_service_ip and zfs_share_export_ip from two separate networks. The service network is
reachable from the host where the manila-share service is running. The share export IP is from a
network that allows user access.

See Configuring the ZFSonLinux driver for information on how to set up the ZFSonLinux driver.

! When running in a multi-backend configuration, until the Stein release, deployers could only configure one Availabil-
ity Zone per manila configuration file. This is achieved with the option storage_availability_zone defined under the
[DEFAULT] section.

Beyond the Stein release, the option backend_availability_zone can be specified in each back end stanza. The value of
this configuration option will override any configuration of the storage_availability_zone from the [DEFAULT] section.

3.2. Administrating Manila 199

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/drivers/zfs-on-linux-driver.html

Manila Developer Documentation, Release 15.4.2.dev5

Creating a share that supports replication

Create a new share type and specify the replication_type as an extra-spec within the share-type being
used.

Use the manila type-create command to create a new share type. Specify the name and the value
for the extra-spec driver_handles_share_servers.

manila type-create readable_type_replication False

Use the manila type-key command to set an extra-spec to the share type.

manila type-key readable_type_replication readable

Note: This command has no output. To verify the extra-spec, use the manila extra-specs-list
command and specify the share types name or ID as a parameter.

Create a share with the share type

Usethemanila create command to create a share. Specify the share protocol, size and the availability
zone.

manila create NFS 1 --share_type readable_type_replication --name my_share -
—-description --az availability_zone_1

(continues on next page)

200 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Note: If you are creating a share with the share type specification
driver_handles_share_servers=True, the share network parameter is required for the opera-
tion to be performed.

Use the manila show command to retrieve details of the share. Specify the share ID or name as a
parameter.

manila show my_share

(continues on next page)

3.2. Administrating Manila 201

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[}

(continues on next page)

202 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Note: When you create a share that supports replication, an active replica is created for you. You can
verify this with the manila share-replica-list command.

From API version 2.53, when creating a replicated share, the manila quota system will reserve and con-
sume resources for two additional quotas: share_replicas and replica_gigabytes.

Creating and promoting share replicas

Create a share replica

Use the manila share-replica-create command to create a share replica. Specify the share ID or
name as a parameter. You may optionally provide the availability_zone.

manila share-replica-create my_share --az availability_zone_2

See details of the newly created share replica

Note: Since API version 2.51 (Train release), a share network is able to span multi-
ple subnets in different availability zones. So, when using a share type with specification
driver_handles_share_servers=True, users must ensure that the share network has a subnet in
the availability zone that they desire the share replica to be created in.

Use the manila share-replica-show command to see details of the newly created share replica.
Specify the share replicas ID as a parameter.

manila share-replica-show 78a5ef96-6c36-42e0-b50b-44efe7c1807e

(continues on next page)

3.2. Administrating Manila 203

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

See all replicas of the share

Use themanila share-replica-list command to see all the replicas of the share. Specify the share
ID or name as an optional parameter.

manila share-replica-list --share-id my_share

Promote the secondary share replica to be the new active replica

Use themanila share-replica-promote command to promote a non-active share replica to become
the active replica. Specify the non-active replicas ID as a parameter.

manila share-replica-promote 78a5ef96-6c36-42e0-b50b-44efe7c1807e

Note: This command has no output.

The promotion may take time. During the promotion, the replica_state attribute of the share replica
being promoted will be set to replication_change.

manila share-replica-list --share-id my_share

(continues on next page)

204 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[

— —

Once the promotion is complete, the replica_state will be set to active.

manila share-replica-list --share-id my_share

Access rules

Create an IP access rule for the share

Usethemanila access-allowcommand to add an access rule. Specify the share ID or name, protocol
and the target as parameters.

manila access-allow my_share ip 0.0.0.0/0 --access-level rw

(continues on next page)

3.2. Administrating Manila 205

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Note: Access rules are not meant to be different across the replicas of the share. However, as per the
type of replication, drivers may choose to modify the access level prescribed. In the above example,
even though read/write access was requested for the share, the driver will provide read-only access to
the non-active replica to the same target, because of the semantics of the replication type: readable.
However, the target will have read/write access to the (currently) non-active replica when it is promoted
to become the active replica.

The manila access-deny command can be used to remove a previously applied access rule.
List the export locations of the share

Use themanila share-export-locations-list command to list the export locations of a share.

manila share-export-location-list my_share

Identify the export location corresponding to the share replica on the user accessible network and you
may mount it on the target node.

Note: As an administrator, you can list the export locations for a particular share replica by using the
manila share-instance-export-location-list command and specitying the share replicas ID
as a parameter.

206 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Snapshots

Create a snapshot of the share

Use the manila snapshot-create command to create a snapshot of the share. Specify the share ID

Oor name as a parameter.

manila snapshot-create my_share --name

Show the details of the snapshot

Use the manila snapshot-show to view details of a snapshot. Specify the snapshot ID or name as a

parameter.

manila snapshot-show my_snapshot

Note: The status attribute of a snapshot will transition from creating to available only when it is
present on all the share replicas that have their replica_state attribute set to active or in_sync.

Likewise, the replica_state attribute of a share replica will transition from out_of_sync to in_sync

3.2. Administrating Manila

207

Manila Developer Documentation, Release 15.4.2.dev5

only when all available snapshots are present on it.

Planned failovers

As an administrator, you can use the manila share-replica-resync command to attempt to sync
data between active and non-active share replicas of a share before promotion. This will ensure that
share replicas have the most up-to-date data and their relationships can be safely switched.

manila share-replica-resync 38efc042-50c2-4825-a6d8-cha2a8277b28

Note: This command has no output.

Updating attributes

If an error occurs while updating data or replication relationships (during a promotion), the Shared File
Systems service may not be able to determine the consistency or health of a share replica. It may require
administrator intervention to make any fixes on the storage backend as necessary. In such a situation,
state correction within the Shared File Systems service is possible.

As an administrator, you can:
Reset the status attribute of a share replica

Use the manila share-replica-reset-state command to reset the status attribute. Specify the
share replicas ID as a parameter and use the --state option to specify the state intended.

manila share-replica-reset-state 38efc042-50c2-4825-a6d8-cbha2a8277b28 --
—state available

Note: This command has no output.

Reset the replica_state attribute

Use the manila share-replica-reset-replica-state command to reset the replica_state at-
tribute. Specify the share replicas ID and use the --state option to specify the state intended.

manila share-replica-reset-replica-state 38efc042-50c2-4825-a6d8-
—-cba2a8277b28 --state out_of_sync

Note: This command has no output.

Force delete a specified share replica in any state

Use the manila share-replica-delete command with the force key to remove the share replica,
regardless of the state it is in.

208 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila share-replica-show 9513de5d-0384-4528-89fb-957dd9b57680

manila share-replica-delete --force 38efc042-50c2-4825-a6d8-chba2a8277b28

Note: This command has no output.

Use the policy.yaml file to grant permissions for these actions to other roles.

Deleting share replicas

Usethemanila share-replica-delete command with the share replicas ID to delete a share replica.

manila share-replica-delete 38efc042-50c2-4825-a6d8-cbha2a8277b28

Note: This command has no output.

Note: You cannot delete the last active replica with this command. You should use the manila
delete command to remove the share.

Multi-storage configuration

The Shared File Systems service can provide access to one or more file storage back ends. In general,
the workflow with multiple back ends looks similar to the Block Storage service one.

Using manila.conf, you can spawn multiple share services. To do it, you should set the en-
abled_share_backends flag in the manila. conf file. This flag defines the comma-separated names of
the configuration stanzas for the different back ends. One name is associated to one configuration group
for a back end.

The following example runs three configured share services:

3.2. Administrating Manila 209

Manila Developer Documentation, Release 15.4.2.dev5

To spawn separate groups of share services, you can use separate configuration files. If it is necessary
to control each back end in a separate way, you should provide a single configuration file per each back
end.

Scheduling

The Shared File Systems service uses a scheduler to provide unified access for a variety of different types
of shared file systems. The scheduler collects information from the active shared services, and makes
decisions such as what shared services will be used to create a new share. To manage this process, the
Shared File Systems service provides Share types API.

A share type is a list from key-value pairs called extra-specs. The scheduler uses required and un-scoped
extra-specs to look up the shared service most suitable for a new share with the specified share type. For
more information about extra-specs and their type, see Capabilities and Extra-Specs section in developer
documentation.

The general scheduler workflow:

1. Share services report information about their existing pool number, their capacities, and their ca-
pabilities.

210 Chapter 3. For operators

https://docs.openstack.org/manila/latest/admin/capabilities_and_extra_specs.html

Manila Developer Documentation, Release 15.4.2.dev5

2. When a request on share creation arrives, the scheduler picks a service and pool that best serves the
request, using share type filters and back end capabilities. If back end capabilities pass through,
all filters request the selected back end where the target pool resides.

3. The share driver receives a reply on the request status, and lets the target pool serve the request as
the scheduler instructs. The scoped and un-scoped share types are available for the driver imple-
mentation to use as needed.

Manage shares services

The Shared File Systems service provides API that allows to manage running share services (Share
services API). Using the manila service-list command, it is possible to get a list of all kinds of
running services. To select only share services, you can pick items that have field binary equal to
manila-share. Also, you can enable or disable share services using raw API requests. Disabling
means that share services are excluded from the scheduler cycle and new shares will not be placed on the
disabled back end. However, shares from this service stay available.

Networking

Unlike the OpenStack Block Storage service, the Shared File Systems service must connect to the Net-
working service. The share service requires the option to self-manage share servers. For client authen-
tication and authorization, you can configure the Shared File Systems service to work with different
network authentication services, like LDAP, Kerberos protocols, or Microsoft Active Directory.

Share networks

Share networks are essential to allow end users a path to hard multi-tenancy. When backed by isolated
networks, the Shared File Systems service can guarantee hard network path isolation for the users shares.
Users can be allowed to designate their project networks as share networks. When a share network is
provided during share creation, the share driver sets up a virtual share server (NAS server) on the share
network and exports shares using this NAS server. The share server itself is abstracted away from the
user. You must ensure that the storage system can connect the share servers it provisions to the networks
users can use as their share networks.

Note: Not all shared file systems storage backends support share networks. Share networks can only be
used when using a share type that has the specification driver_handles_share_servers=True. To
see what storage back ends support this specification, refer to the Manila share features support mapping.

How to create share network

To list networks in a project, run:

openstack network list

(continues on next page)

3.2. Administrating Manila 211

https://docs.openstack.org/api-ref/shared-file-system/
https://docs.openstack.org/api-ref/shared-file-system/

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

A share network stores network information that share servers can use where shares are hosted.
You can associate a share with a single share network. You must always specify a share net-
work when creating a share with a share type that requests hard multi-tenancy, i.e., has extra-spec
driver_handles_share servers=True.

For more information about supported plug-ins for share networks, see Network plug-ins.
A share network has these attributes:

* The IP block in Classless Inter-Domain Routing (CIDR) notation from which to allocate the net-
work.

e The IP version of the network.
* The network type, which is vian, vxlan, gre, or flat.

If the network uses segmentation, a segmentation identifier. For example, VLAN, VXLAN, and GRE
networks use segmentation.

To create a share network with private network and subnetwork, run:

manila share-network-create --neutron-net-id 5ed5a854-21dc-4ed3-870a-
—117b7064eb21
--neutron-subnet-id 74dcfb5a-b4d7-4855-86f5-a669729428dc --name my_share_net
--description --availability-zone manila-zone-0

The segmentation_id, cidr, ip_version, and network_type share network attributes are automat-
ically set to the values determined by the network provider.

Note: You are able to specify the parameter availability_zone only with API versions >=
2.51. From the version 2.51, a share network is able to span multiple subnets in different availability

212 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

zones. The network parameters neutron_net_id, neutron_subnet_id, segmentation_id, cidr,
ip_version, network_type, gateway and mtu were moved to the share network subnet and no longer
pertain to the share network. If you do not specify an availability zone during the share network creation,
the created subnet will be considered default by the Shared File Systems Service. A default subnet is
expected to be reachable from all availability zones in the cloud.

Note: Since API version 2.63, the share network will have two additional fields: status and
security_service_update_support. The former indicates the current status of a share network,
and the latter informs if all the share networks resources can hold updating or adding security services
after they are already deployed.

To check the network list, run:

manila share-network-list

If you configured the generic driver with driver_handles_share_servers = True (with the
share servers) and already had previous operations in the Shared File Systems service, you can see
manila_service_network in the neutron list of networks. This network was created by the generic
driver for internal use.

openstack network list

You also can see detailed information about the share network including network_type, and
segmentation_id fields:

openstack network show manila_service_network

(continues on next page)

3.2. Administrating Manila 213

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

You also can add and remove the security services from the share network. For more detail, see Security
services.

How to reset the state of a share network (Since API version 2.63)

To reset the state of a given share network, run:

manila share-network-reset-state manila_service_network --state active

Share network subnets (Since API version 2.51)

Share network subnet is an entity that stores network data from the OpenStack Networking service. A
share network can span multiple share network subnets in different availability zones.

How to create share network subnet

When you create a share network, a primary share network subnet is automatically created. The share
network subnet stores network information that share servers can use where shares are hosted. If a share
network subnet is not assigned to a specific availability zone, it is considered to be available across all
availability zones. Such a subnet is referred to as default subnet. A share network can have only one
default subnet. However, having a default subnet is not necessary. A share can be associated with only
one share network. To list share networks in a project, run:

manila share-network-list

(continues on next page)

214 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

You can attach any number of share network subnets into a share network. However, only one share
network subnet is allowed per availability zone in a given share network. If you try to create another
subnet in a share network that already contains a subnet in a specific availability zone, the operation will
be denied.

To create a share network subnet in a specific share network, run:

manila share-network-subnet-create sharenetworkl
--availability-zone manila-zone-0
--neutron-net-id 5ed5a854-21dc-4ed3-870a-117b7064eb21
--neutron-subnet-id 74dcfb5a-b4d7-4855-86£5-a669729428dc

To list all the share network subnets of a given share network, you need to show the share network, and
then all subnets will be displayed, as shown below:

manila share-network-show sharenetworkl

.
o
o
.
.
N
<
<
o
— o
— -
(continues on next page)
— (]
3.2. Administrating Manila 215
— (]

— —

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

e A A
¥

e
¥

L
C

C

A
r

[}

(continues on next page)

216 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

e A e
¥ r C

R A

e

To show a specific share network subnet, run:

manila share-network-subnet-show sharenetworkl 20f3cd2c-0faa-4b4b-a00a-
—4f188eb1lcf38

(continues on next page)

3.2. Administrating Manila 217

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

To delete a share network subnet, run:

manila share-network-subnet-delete sharenetworkl 20f3cd2c-0faa-4b4b-a00a-
—4f188ebl1lcf38

If you want to remove a share network subnet, make sure that no other resource is using the subnet,
otherwise the Shared File Systems Service will deny the operation.

Network plug-ins

The Shared File Systems service architecture defines an abstraction layer for network resource provi-
sioning and allowing administrators to choose from a different options for how network resources are
assigned to their projects networked storage. There are a set of network plug-ins that provide a variety
of integration approaches with the network services that are available with OpenStack.

What is a network plugin in Manila?

A network plugin is a python class that uses a specific facility (e.g. Neutron network) to provide network
resources to the manila-share service.

When to use a network plugin?

A Manila share driver may be configured in one of two modes, where it is managing the lifecycle of share
servers on its own or where it is merely providing storage resources on a pre-configured share server. This
mode is defined using the boolean option driver_handles_share_servers in the Manila configuration file.
A network plugin is only useful when a driver is handling its own share servers.

Note: Not all share drivers support both modes. Each driver must report which mode(s) it supports to
the manila-share service.

When driver_handles_share_servers is set to True, a share driver will be called to create share servers
for shares using information provided within a share network. This information will be provided to one

218 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

of the enabled network plugins that will handle reservation, creation and deletion of network resources
including IP addresses and network interfaces.

The Shared File Systems service may need a network resource provisioning if share service with spec-
ified driver works in mode, when a share driver manages lifecycle of share servers on its own. This
behavior is defined by a flag driver_handles_share_servers in share service configuration. When
driver_handles_share_servers is set to True, a share driver will be called to create share servers
for shares using information provided within a share network. This information will be provided to one
of the enabled network plug-ins that will handle reservation, creation and deletion of network resources
including IP addresses and network interfaces.

What network plug-ins are available?

There are three network plug-ins and three python classes in the Shared File Systems service:

1. Network plug-in for using the OpenStack Networking service. It allows to use any network seg-
mentation that the Networking service supports. It is up to each share driver to support at least one
network segmentation type.

a) manila.network.neutron.neutron_network_plugin.NeutronNetworkPlugin.
This is a default network plug-in. It requires the neutron_net_id and the
neutron_subnet_id to be provided when defining the share network that will be
used for the creation of share servers. The user may define any number of share networks
corresponding to the various physical network segments in a project environment.

b) manila.network.neutron.neutron_network_plugin.
NeutronSingleNetworkPlugin. This is a simplification of the previous case. It
accepts values for neutron_net_id and neutron_subnet_id from the manila.conf
configuration file and uses one network for all shares.

c) manila.network.neutron.neutron_network_plugin.
NeutronBindNetworkPlugin. This driver waits for active binding and fails if a
Neutron port cant be bound or an error occurs. This plugin is useful for agent based binding
(like OVS with docker driver) and fabric binding where real hardware reconfiguration is
taking place. The existing NeutronBindSingleNetworkPlugin is a combination of /b
and /c.

When only a single network is needed, the NeutronSingleNetworkPlugin (1.b) is a simple solution.
Otherwise NeutronNetworkPlugin (1.a) should be chosen.

2. Network plug-in for specifying networks independently from OpenStack networking services.

a) manila.network.standalone_network_plugin.StandaloneNetworkPlugin. This
plug-in uses a pre-existing network that is available to the manila-share host. This network
may be handled either by OpenStack or be created independently by any other means. The
plug-in supports any type of network - flat and segmented. As above, it is completely up to
the share driver to support the network type for which the network plug-in is configured.

Note: The ip version of the share network is defined by the flags of network_plugin_ipv4_enabled
and network_plugin_ipv6_enabled in the manila.conf configuration since Pike. The
network_plugin_ipv4_enabled default value is set to True. The network_plugin_ipv6_enabled
default value is set to False. If network_plugin_ipv6_enabled option is True, the value of

3.2. Administrating Manila 219

Manila Developer Documentation, Release 15.4.2.dev5

network_plugin_ipv4_enabled will be ignored, it means to support both IPv4 and IPv6 share net-
work.

Troubleshoot Shared File Systems service

Failures in Share File Systems service during a share creation

Problem

New shares can enter error state during the creation process.

Solution

1. Make sure, that share services are running in debug mode. If the debug mode is not set, you will
not get any tips from logs how to fix your issue.

2. Find what share service holds a specified share. To do that, run command manila show
<share_id_or_name> and find a share host in the output. Host uniquely identifies what share
service holds the broken share.

3. Look thought logs of this share service. Usually, it can be found at /etc/var/log/
manila-share.log. This log should contain kind of traceback with extra information to help
you to find the origin of issues.

No valid host was found

Problem

If a share type contains invalid extra specs, the scheduler will not be able to locate a valid host for the
shares.

Solution

To diagnose this issue, make sure that scheduler service is running in debug mode. Try to create a new
share and look for message Failed to schedule create_share: No valid host was found.
in /etc/var/log/manila-scheduler.log.

To solve this issue look carefully through the list of extra specs in the share type, and the list of share
services reported capabilities. Make sure that extra specs are pointed in the right way.

220 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Created share is unreachable

Problem

By default, a new share does not have any active access rules.

Solution

To provide access to new share, you need to create appropriate access rule with the right value. The value
must defines access.

Service becomes unavailable after upgrade

Problem

After upgrading the Shared File Systems service from version v1 to version v2.x, you must update the
service endpoint in the OpenStack Identity service. Otherwise, the service may become unavailable.

Solution

1. To get the service type related to the Shared File Systems service, run:

openstack endpoint list

openstack endpoint show <share-service-type>

You will get the endpoints expected from running the Shared File Systems service.

2. Make sure that these endpoints are updated. Otherwise, delete the outdated endpoints and create
new ones.

Failures during management of internal resources
Problem

The Shared File System service manages internal resources effectively. Administrators may need to
manually adjust internal resources to handle failures.

3.2. Administrating Manila 221

Manila Developer Documentation, Release 15.4.2.dev5

Solution

Some drivers in the Shared File Systems service can create service entities, like servers and networks. If
it is necessary, you can log in to project service and take manual control over it.

Profiling the Shared File Systems service

Profiler

The detailed description of the profiler and its config options is available at Profiler docs.

Using Profiler

To start profiling Manila code, the following steps have to be taken:

1. Add the following lines to the /etc/manila/manila.conf file (the profiling is disabled by de-
fault).

Examples of possible values for connection_string option:
* messaging:// - use oslo_messaging driver for sending spans.
* redis://127.0.0.1:6379 - use redis driver for sending spans.
* mongodb://127.0.0.1:27017 - use mongodb driver for sending spans.
* elasticsearch://127.0.0.1:9200 - use elasticsearch driver for sending spans.
* jaeger://127.0.0.1:6831 - use jaeger tracing as driver for sending spans.
2. Restart all manila services and keystone service.

3. To verify profiler with manilaclient, run any command with --profile <key>. The key (e.g.
SECRET_KEY) should be one of the hmac_keys mentioned in manila.conf. To generate correct
profiling information across all services at least one key needs to be consistent between OpenStack
projects.

manila --profile SECRET_KEY create NFS | --name Sharel --share-network..
—testNetwork --share-type dhss_true

(continues on next page)

222 Chapter 3. For operators

https://docs.openstack.org/osprofiler/latest/user/index.html

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

_

(continues on next page)

3.2. Administrating Manila 223

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

. To verify profiler with openstackclient, run any command with --os-profile <key>.

openstack --os-profile SECRET_KEY share create NFS --name Share2 --
—.share-network testNetwork --share-type dhss_true

(continues on next page)

224

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

—

5. To display the trace date in HTML format, run below command.

osprofiler trace show --html Oca7ce01-36a9-481c-8b3d-263a3b5caa35 --
—connection-string redis://localhost:6379 --out /opt/stack/output.html

3.2. Administrating Manila 225

Manila Developer Documentation, Release 15.4.2.dev5

Upgrading the Shared File System service

This document outlines steps and notes for operators for reference when upgrading their Shared File
System service (manila) from previous versions of OpenStack. The service aims to provide a minimal
downtime upgrade experience. Since the service does not operate in the data plane, the accessibility of
any provisioned resources such as shares, share snapshots, share groups, share replicas, share servers,
security services and share networks will not be affected during an upgrade. Clients can continue to
actively use these resources while the service control plane is being upgraded.

Plan the upgrade

It is highly recommended that you:

update the Shared File System service to the latest code from the release you are currently using.

read the Shared File System service release notes for the release that you intended to upgrade to.
Pay special attention to the deprecations and upgrade notes.

consider the impact of the service control plane upgrade to your clouds users. The upgrade pro-
cess interrupts provisioning of new shared file systems and associated resources. It also prevents
management operations on existing shared file systems and associated resources. Data path access
to shared file systems will remain uninterrupted.

take a backup of the shared file system service database so you can rollback any failed upgrades
to a previous version of the software. Although the manila-manage command offers a database
downgrade command, it is not supported for production use. The only way to recover from a failed
update is to restore the database from a backup.

identify your Shared File System service back end storage systems/solutions and their drivers.
Ensure that the version of each storage system is supported by the respective driver in the target
release. If youre using a storage solution from a third party vendor, consult their product pages to
determine if the solution is supported by the release of OpenStack that you are upgrading to. Many
vendors publish a support matrix either within this service administration guide, or on their own
websites. If you find an incompatibility, stop, and determine if you have to upgrade the storage
solution first.

develop an upgrade procedure and assess it thoroughly by using a test environment similar to your
production environment.

Graceful service shutdown

Shared File System service components (scheduler, share-manager, data-manager) are python processes
listening for messages on a AMQP queue. When the operator sends SIGTERM signal to the process,
they stop getting new work from the queue, complete any outstanding work and then terminate.

226

Chapter 3. For operators

https://docs.openstack.org/releasenotes/manila/

Manila Developer Documentation, Release 15.4.2.dev5

Database Migration

The Shared File System service only supports cold upgrades, meaning that the service plane is expected
to be down during the database upgrade. Database upgrades include schema changes as well as data
migrations to accommodate newer versions of the schema. Once upgraded, downgrading the database
is not supported. When the database has been upgraded, older services may misbehave when accessing
database objects, so ensure all manila-* services are down before you upgrade the database.

Prune deleted database rows

Shared File System service resources are soft deleted in the database, so users are able to track instances
in the DB that are created and destroyed in production. Soft-deletion also helps cloud operators adhere
to data retention policies. Not purging soft-deleted entries affects DB performance as indices grow very
large and data migrations take longer as there is more data to migrate. It is recommended that you prune
the service database before upgrading to prevent unnecessary data migrations. Pruning permanently
deletes soft deleted database records.

Upgrade procedure

1. Ensure youre running the latest Shared File System service packages for the OpenStack release
that you currently use.

2. Run the manila-status upgrade check command to validate that the service is ready for up-
grade.

3. Backup the manila database

4. Gracefully stop all Shared File System service processes. We recommend in this order: manila-api,
manila-scheduler, manila-share and manila-data.

Note: The manila-data service may be processing time consuming data migrations. Shutting it down
will interrupt any ongoing migrations, and these will not be automatically started when the service comes
back up. You can check the status on ongoing migrations with manila migration-get-progress
command; issue manila migration-complete for any ongoing migrations that have completed their
data copy phase.

1. Upgrade all the service packages. If upgrading from distribution packages, your system package
manager is expected to handle this automatically.

. Fix any deprecated configuration options used.
. Fix any deprecated api policies used.
. Run manila-manage db sync from any node with the latest manila packages.

. Start all the Shared File System service processes.

AN kAW

. Inspect the services by running manila service-1list. If there are any orphaned records, run
manila-manage service cleanup to delete them.

3.2. Administrating Manila 227

Manila Developer Documentation, Release 15.4.2.dev5

Upgrade testing

The Shared File System service code is continually tested for upgrade from a previous release to the
current release using Grenade. Grenade is an OpenStack test harness project that validates upgrade
scenarios between releases. It uses DevStack to initially perform a base OpenStack install and then
upgrade to a target version. Tests include the creation of a variety of Shared File System service resources
on the prior release, and verification for their existence and functionality after the upgrade.

Share revert to snapshot

To revert a share to the latest available snapshot, use the manila revert-to-snapshot.

Note:

* In order to use this feature, the available backend in your deployment must have support for it. The
list of backends that support this feature in the manila can be found in the Manila share features
support mapping.

* This feature is only available in API version 2.27 and beyond. To create shares that are revertible,
the share type used must contain the extra-spec revert_to_snapshot_support setto True. The
default value for this is False.

* The revert operation can only be performed to the most recent available snapshot of the share known
to manila. If revert to an earlier snapshot is desired, later snapshots must explicitly be deleted. In
order to determine the most recent snapshot, the created_at field on the snapshot object is used.

While reverting, the share is in reverting status and the snapshot is in restoring status. After a
successful restoration, the share and snapshot states will again be set to available. If the restoration
fails the share will be set to reverting_error state and the snapshot will be set to available.

When a replicated share is reverted, the share becomes ready to be used only when all active replicas
have been reverted. All secondary replicas will remain in out-of-sync state until they are consistent
with the active replicas.

To revert a share to a snapshot, run:

manila revert-to-snapshot 14ee8575-aac2-44af-8392-d9c9d344£392

Share server migration

Share server migration is a functionality that lets administrators migrate a share server, and all its shares
and snapshots, to a new destination.

As with share migration, a 2-phase approach was implemented for share server migration, which allows
to control the right time to complete the operation, that usually ends on clients disruption.

The process of migrating a share server involves different operations over the share server, but can be
achieved by invoking two main operations: start and complete. Youll need to begin with the start op-
eration and wait until the service has completed the first phase of the migration to call the complete
operation. When a share server is undergoing the first phase, its possible to choose to cancel it, or get a
report of the progress.

228 Chapter 3. For operators

https://docs.openstack.org/grenade/latest/

Manila Developer Documentation, Release 15.4.2.dev5

A new operation called migration check is available to assist on a pre-migration phase, by validating
within the destination host if the migration can or not be completed, providing an output with the com-
patible capabilities supported by the driver.

Share server migration is driven by share drivers, which means that both source and destination backends
must support this functionality, and the driver must provide such operation in an efficient way.

Server migration workflows

Before actually starting the migration, you can use the operation migration_check to verify if the destina-
tion host and the requested capabilities are supported by the driver. If the answer is compatible equal
to True, you can proceed with the migration process, otherwise youll need to identify the conflicting
parameters or, in more complex scenarios, search for messages directly in the manila logs. The available
capabilities are: writable, nondisruptive, preserve_snapshots and new_share_network_id,
which are detailed in Migration check and migration start parameters.

The migration process starts by invoking the migration_start operation for a given share server. This op-
eration will start the first phase of the migration that copies all data, from source to destination, including
all shares, their access rules and even snapshots if supported by the driver controlling the destination
host.

For all ongoing migrations, you can optionally request the current status of a share server migration using
migration_get_progress operation to retrieve the total progress of the data copy and its current task state.
If supported by the driver, you can also cancel this operation by issuing migration_cancel and wait until
all status become active and available again.

After completing the data copy, the first phase is completed and the next operation, migration_complete,
can be initiated to finish the migration. The migration_complete operation usually disrupts clients access,
since the export locations of the shares will change. The new export locations will be derived from the new
share server that is provisioned at the destination, which is instantiated with distinct network allocations.

A new field task_state is available in the share server model to help track which operation is being
executed during this process. The following tables show, for each phase, the expected task_state,
along with their order of execution and a brief description of the actions that are being executed in the
back end.

Table 1: Share server migration states - 1st phase

Se- task_state Description

guence

1 migra- All initial validations passed, all shares and snapshots cant be modified
tion_starting until the end of the migration.

2 migra- The destination host started the process of migration. If the driver doesnt
tion_in_progress| support remain writable, all access rules are modified to read only.

3 migra- The driver was called to initiate the process of migrating the share server.
tion_driver_startindanila will wait for drivers answer.

4 migra- The driver accepted the request and started copying the data to the new
tion_driver_in_proghass server. It will remain in this state until the end of the data copy.

5 migra- Driver finished copying the data and its ready to complete the migration.
tion_driver_phasel_done

Along with the share server migration progress (in percentage) and the the current task state, the API
also provides the destination share server ID. Alternatively, you may check the destination share server

3.2. Administrating Manila 229

Manila Developer Documentation, Release 15.4.2.dev5

ID by querying the share server for a source_share_server_id set to the ID of the share server
being migrated. During the entire migration process, the source source share server will remain with
server_migrating status while the destination share server will remain with server_migrating_to
status.

If an error occurs during the 1st phase of the migration, the source share server has its status reverted to
active again, while the destination server has its status set to error. Both share servers will have their
task_state updated to migration_error. All shares and snapshots are updated to available and
any read-only rules are reset to allow writing into the shares.

Table 2: Share server migration states - 2nd phase

Se- task_state Description

guence

1 migra- The destination host started processing the operation and the driver is
tion_completing called to complete the share server migration.

2 migra- The migration was completed with success. All shares and snapshots are
tion_success available again.

After finishing the share server migration, all shares and snapshots have their status updated to
available. The source share server status is set to inactive and the destination share server to active.

If an error occurs during the 2nd phase of the migration, both source and destination share servers will
have their status updated to error, along with their shares and snapshots, since its not possible to infer
if they are working properly and the current status of the migration. In this scenario, you will need to
manually verify the health of all share servers resources and manually fix their statuses. Both share
servers will have their task_state set tomigration_error.

Table 3: Share server migration states - migration cancel

Se- task_state Description

guence

1 migra- The destination host started the cancel process. It will remain in this
tion_cancel_in_progtass until the driver finishes all tasks that are in progress.

2 migra- The migration was successfully cancelled.
tion_cancelled

If an error occurs during the migration cancel operation, the source share server has its status reverted
to active again, while the destination server has its status updated to error. Both share servers will
have their task_state set tomigration_error. All shares and snapshots have their statuses updated
to available.

Using share server migration CLI

The available commands to interact with the share server migration API are the following:

* migration_check: call a migration check operation to validate if the provided destination host
is compatible with the requested operation and its parameters. The output shows if the destination
host is compatible or not and the migration capabilities supported by the back end.

230 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila share-server-migration-check £3089d4f-89e8-4730-b6e6-
—»7cab553df071 stack@dummy2 --nondisruptive False --writable True --
—.preserve_snapshots True

The share_network_id attribute in the supported_capabilities will correspond to the value
--new_share_network option if provided, otherwise it will be the same as the source share net-
work. In the output it is possible to identify if the destination host supports themigration_cancel
andmigration_get_progress operations before starting the migration. The request parameters
are the same for both migration_check and migration_start operations and are detailed in
the following section.

Note: Back ends might use this operation to do many other validations with regards of storage
compatibility, free space checks, share-type extra-specs validations, and so on. A compatible
equal to False answer may not carry the actual conflict. You must check the manila-share logs
for more details.

* migration_start: starts a share server migration to the provided destination host. This com-
mand starts the 1st phase of the migration that is an asynchronous operation and can take long to
finish, depending on the size of the share server and the efficiency of the storage on copying all the
data.

manila share-server-migration-start £3089d4f-89e8-4730-b6e6-
—7cab553df071 stack@dummy2 --nondisruptive False --writable True --
—preserve_snapshots True

The parameters description is detailed in the following section.

3.2. Administrating Manila 231

Manila Developer Documentation, Release 15.4.2.dev5

Note: This operation doesnt support migrating share servers with shares that have replicas or that
belong to share groups.

Note: The current migration state and progress can be retrieve using the
migration-get-progress command.

Note: This command has no output.

* migration_complete: completes a migration that already finished the 1st phase. This operation
cant be cancelled and might end up on disrupting clients access after all shares migrate to the new
share server.

manila share-server-migration-complete £3089d4f-89e8-4730-b6e6-
—7cab553d£f071

* migration_cancel: cancels an in-progress share server migration. This operation can only be
started while the migration is still on the 1st phase of the migration.

manila share-server-migration-cancel £3089d4f-89e8-4730-b6e6-
—7cab553d£f071

Note: This command has no output.

* migration_get_progress: obtains the current progress information of a share server migration.

manila share-server-migration-get-progress f3089d4f-89e8-4730-b6e6-
—7cab553d£f071

232 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Migration check and migration start parameters

Share server migration_check and migration_start operations have specific parameters that have the se-
mantic detailed below. From these, only new_share_network stands as an optional parameter.

* share_server_id: The ID of the share server that will be migrated.

* destination_host: The destination host to which the share server should be migrated to, in
format host@backend.

* preserve_snapshots: enforces when the preservation of snapshots is mandatory for the re-
quested migration. If the destination host doesnt support it, the operation will be denied. If this
parameter is set to False, it will be the drivers supported capability that will define if the snapshots
will be preserved or not.

Note: If the driver doesnt support preserving snapshots but at least one share has a snapshot,
the operation will fail and the you will need to manually remove the remaining snapshots before
proceeding.

* writable: enforces whether the source share server should remain writable for the requested
migration. If the destination host doesnt support it, the operation will be denied. If this parameter
is set to False, it will be the drivers supported capability that will define if all shares will remain
writable or not.

* nondisruptive: enforces whether the migration should keep clients connected throughout the
migration process. If the destination host doesnt support it, the operation will be denied. If this
parameter is set to False, it will be the drivers supported capability that will define if all clients
will remain connected or not.

In order to appropriately move a share server to a different host, it may be required to change the destina-
tion share network to be used by the new share server. In this case, a new share network can be provided
using the following optional parameter:

* new_share_network_id: specifies the ID of the share network that should be used when setting
up the new share server.

Note: Itisnotpossible to choose the destination share network subnet since it will be automatically
selected according to the destination hosts availability zone. If the new share network doesnt have
a share network subnet in the destination hosts availability zone or doesnt have a default subnet,
the operation will fail.

Configuration

For share server migration to work it is necessary to have compatible back end stanzas present in the
manila configuration of all manila-share nodes.

Some drivers may provide some driver-specific configuration options that can be changed to adapt to
specific workload. Check Share drivers documentation for more details.

3.2. Administrating Manila 233

Manila Developer Documentation, Release 15.4.2.dev5

Important notes

Once the migration of a share server has started, the user will see that the status of all associated
resources change to server_migrating and this will block any other share actions, such as adding
or removing access rules, creating or deleting snapshots, resizing, among others.

Since this is a driver-assisted migration, there is no guarantee that the destination share server will
be cleaned up after a migration failure. For this reason, the destination share server will be always
updated to error if any failure occurs. The same assumption is made for a source share server
after a successful migration, where manila updates its status to inactive to avoid being reused
for new shares.

If a failure occurs during the 2nd phase of the migration, you will need to manually identify the
current status of the source share server in order to revert it back to active again. If the share
server and all its resources remain healthy, you will need to reset the status using reset_status
API for each affected resource.

Each step in the migration process is saved to the field task_state present in the share server
model. If for any reason the state is not set to migration_error after a failure, it will need to be
reset using the reset_task_state API, to unlock new share actions.

After a failure occurs, the destination share server will have its status updated to error and will
continue pointing to the original source share server. This can help you to identify the failed share
servers when running multiple migrations in parallel.

Manila share features support mapping

Here we provide information on support of different share features by different share drivers.

Column values contain the OpenStack release letter when a feature was added to the driver. Column
value ? means that this field requires an update with current information. Column value - means that this

feature is not currently supported.

Mapping of share drivers and share features support

Driver name create delete share | manage unmanage share | extend share shrin
ZFSonLinux M N M M
Container N - N -
Generic (Cinder as back-end) J K L L
NetApp Clustered Data ONTAP | J L L L
EMC VMAX (@) - O -
EMC VNX J - - -
EMC Unity N U N S
EMC Isilon K - M -
GlusterFS J - directory layout (T) | direct
GlusterFS-Native J - - -
HDFS K - M -
Hitachi HNAS L L L M
Hitachi HSP N N N N
HPE 3PAR K - - -
234 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Driver name

create delete share

manage unmanage share

extend share

shrin

Huawei

L

IBM GPFS

INFINIDAT

INSPUR AS13000

INSPUR InStorage

Infortrend

Macrosan

N|—

LVM

Quobyte

Windows SMB

Oracle ZFSSA

CephFS

Tegile

L2 TR

NexentaStor4

NexentaStor5

MapRFS

olz|!

QNAP

o|o|H|!

Pure Storage FlashBlade

x| olo|z|z| 2| z|=| | =| 2| N[2| =| =| 0| =| =

xlo|o|lz|z|z|z|z|c|z|z|N|[=8| 8| =|o| | &

o

Mapping of share drivers and share access rules support

Driver Read & Write

name IPv4 IPv6 USER Cert
ZFSonLinux NFS (M) - - -
Container - - CIFS (N) -
Generic (Cinder as back-end) NFES,CIFS (J) - - -
NetApp Clustered Data ONTAP | NFS (J) NES (Q) CIFS (J) -
EMC VMAX NEFS (O) NFS (R) CIFS (0) -
EMC VNX NEFES (J) NFS (Q) CIFS (J) -
EMC Unity NFS (N) NFS (Q) CIFS (N) -
EMC Isilon NFS,CIFS (K) - CIFS (M) -
GlusterFS NES (J) - - -
GlusterFS-Native - - - J
HDFS - - HDFS(K) -
Hitachi HNAS NFS (L) - CIFS (N) -
Hitachi HSP NFS (N) - - -
HPE 3PAR NFS,CIFS (K) - CIFS (K) -
Huawei NFS (K) - NFS M),CIFS (K) | -
LVM NFS (M) NFS (P) CIFS (M) -
Quobyte NEFES (K) - - -
Windows SMB - - CIFS (L) -
IBM GPFS NFS (K) - - -
INFINIDAT NFS (Q) - - -
INSPUR AS13000 NFS (R) - CIFS (R) -
INSPUR InStorage NES (T) - CIFS (T) -

3.2. Administrating Manila 235

Manila Developer Documentation, Release 15.4.2.dev5

Table 5 — continued f

Driver Read & Write

name

IPv4

IPv6

USER

Cert

Infortrend

NES (T)

CIFS (T)

Macrosan

NES (Z)

CIFS (2)

Oracle ZFSSA

NFS,CIFS(K)

CephFS

NFS (P)

NFS (T)

Tegile

NFS (M)

NFS (M),CIFS (M)

NexentaStor4

NFS (N)

NexentaStor5

NFS (N)

MapRFS

MapRFS(O)

QNAP

NES (O)

Pure Storage FlashBlade

NES (X)

Mapping of share drivers and security services support

Driver name

Active Directory

Kerberos

ZFSonLinux

Container

Generic (Cinder as back-end)

NetApp Clustered Data ONTAP

EMC VMAX

EMC VNX

EMC Unity

z|=|o| ="

EMC Isilon

GlusterFS

GlusterFS-Native

HDEFES

Hitachi HNAS

Hitachi HSP

HPE 3PAR

Huawei

LVM

Quobyte

Windows SMB

IBM GPFS

INFINIDAT

INSPUR AS13000

INSPUR InStorage

Infortrend

Macrosan

Oracle ZFSSA

CephFS

Tegile

NexentaStor4

NexentaStor5

MapRFS

continues on next page

236

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Table 6 — continued from previous page

Driver name

Active Directory

LDAP

Kerberos

QNAP

Pure Storage FlashBlade

Mapping of share drivers and common capabilities

More information: Capabilities and Extra-Specs

Driver name

DHSS=True

DHSS=False

compression

thin_provisioning

ZFSonLinux

M

Container

Generic (Cinder as back-end)

NetApp Clustered Data ONTAP

~ A

EMC VMAX

EMC VNX

EMC Unity

ZHOHHZI

EMC Isilon

GlusterFS

GlusterFS-Native

HDFS

Hitachi HNAS

Z

Hitachi HSP

HPE 3PAR

Huawei

ol Nenl I

INFINIDAT

Infortrend

LVM

Macrosan

Quobyte

Windows SMB

IBM GPFS

Oracle ZFSSA

CephFS

Tegile

NexentaStor4

NexentaStor5

z|z|z|

MapRFS

QNAP

INSPUR AS13000

e

Aol

INSPUR InStorage

Pure Storage FlashBlade

X3ROzl z ZZ 2R ACIRINZHBO|IR IR Z ORI = =]

=

Note: The common capability reported by back ends differs from some names seen in the above table:

* DHSS is reported as driver_handles_share_servers (See details for DHSYS)

* create share from snapshot is reported as create_share_from_snapshot_support

3.2. Administrating Manila

237

Manila Developer Documentation, Release 15.4.2.dev5

* multiple subnets per AZ is reported as multiple_subnets_per_availability_zone

Capabilities and Extra-Specs

Cloud Administrators create Share types with extra-specs to:
* influence the schedulers decision to place new shares, and

* instruct the Shared File System service or its storage driver/s to perform certain special actions
with respect to the users shares.

As an administrator, you can choose a descriptive name or provide good descriptions for your share types
to convey the share type capabilities to end users. End users can view standard tenant-visible extra-
specs that can let them seek required behavior and automate their applications accordingly. By design,
however, all other extra-specs of a share type are not exposed to non-privileged users.

Types of Extra-Specs

The Shared File Systems service back-end storage drivers offer a wide range of capabilities. The variation
in these capabilities allows cloud administrators to provide a storage service catalog to their end users.
Share type extra-specs tie-in with these capabilities.

Some back-end capabilities are very specific to a storage system, and are opaque to the Shared File
System service or the end users. These capabilities are invoked with the help of scoped extra-specs.
Using scoped extra-specs is a way to provide programmatic directives to the concerned storage driver to
do something during share creation or share manipulation. You can learn about the opaque capabilities
through driver documentation and configure these capabilities within share types as scoped extra-specs
(e.g.: hpe3par:nfs_options). The Shared File System service scheduler ignores scoped extra-specs during
its quest to find the right back end to provision shares.

There are some back-end capabilities in manila that do matter to the scheduler. For our understanding,
lets call these non-scoped or non-opaque capabilities. All non-scoped capabilities can be directly used as
share types extra-specs. They are considered by the schedulers capabilities filter (and any custom filter
defined by deployers).

You can get a list of non-scoped capabilities from the scheduler by using:

manila pool-list --detail

The non-scoped capabilities can be of three types:

* Capabilities pertaining to a specific back end storage system driver: For example,
huawei_smartcache. No Shared File System service API relies on non-opaque back end specific
capabilities.

* Common capabilities that are not visible to end users: The manila community has standardized
some cross-platform capabilities like thin_provisioning, dedupe, compression, qos, ipv6_support
and ipv4_support. Values of these options do not matter to any Shared File System service APIs;
however, they can signify something to the manila services themselves. For example when a back
end supports thin_provisioning, the scheduler service performs over-provisioning, and if a back end
does not report ipv6_support as True, the share-manager service drops IPv6 access rules before
invoking the storage driver to update access rules.

238 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Common capabilities that are visible to end users: Some capabilities affect functionality ex-
posed via the Shared File System service API. For example, not all back ends support snapshots,
and even if they do, they may not support all of the snapshot operations. For example, cloning
snapshots into new shares, reverting shares in-place to snapshots, etc.

The support for these capabilities determines whether users would be able to perform cer-
tain control-plane operations with manila. For example, a back end driver may report snap-
shot_support=True allowing end users to create share snapshots, however, the driver can report
create_share_from_snapshot_support=False. This reporting allows cloud administrators to cre-
ate share types that support snapshots but not creating shares from snapshots. When a user uses
such a share type, they will not be able to clone snapshots into new shares. Tenant-visible capa-
bilities aid manila in validating requests and failing fast on requests it cannot accommodate. They
also help level set the user expectations on some failures. For example, if snapshot_support is set
to False on the share type, since users can see this, they will not invoke the create snapshot API,
and even if they do, they will understand the HTTP 400 (and error message) in better context.

Important: All extra-specs are optional, except one: driver_handles_share_servers.

Schedulers treatment of hon-scoped extra specs

The CapabilitiesFilter in the Shared File System scheduler uses the following for matching operators:

No operator This defaults to doing a python ==. Additionally it will match boolean values.
<=, >=, ==, 1=

This does a float conversion and then uses the python operators as expected.

<in>

This either chooses a host that has partially matching string in the capability or chooses a host if
it matches any value in a list. For example, if <in> sse4 is used, it will match a host that reports
capability of sse4_1 or ssed_2.

<or>

This chooses a host that has one of the items specified. If the first word in the string is <or>, another
<or> and value pair can be concatenated. Examples are <or> 3, <or> 3 <or> 5, and <or> 1 <or> 3
<or> 7. This is for string values only.

<is>

This chooses a host that matches a boolean capability. An example extra-spec value would be <is>
True.

This does a float conversion and chooses a host that has equal to or greater than the resource
specified. This operator behaves this way for historical reasons.

s==, sl=, s>=, s>, s<=, s<

The s indicates it is a string comparison. These choose a host that satisfies the comparison of
strings in capability and specification. For example, if capabilities:replication_type s== dr, a host
that reports replication_type of dr will be chosen. If share_backend_name s!= cephfs is used, any
host not named cephfs can be chosen.

3.2

Administrating Manila 239

Manila Developer Documentation, Release 15.4.2.dev5

For vendor-specific non-scoped capabilities (which need to be visible to the scheduler), drivers are rec-
ommended to use the vendor prefix followed by an underscore. This is not a strict requirement, but
can provide a consistent look along-side the scoped extra-specs and will be a clear indicator of vendor
capabilities vs. common capabilities.

Common Capabilities

Common capabilities apply to multiple backends. Like all other backend reported capabilities, these
capabilities can be used verbatim as extra_specs in share types used to create shares.

Share type common capability extra-specs that are visible to end users:

driver_handles_share_servers is a special, required common capability. When set to True, the
scheduler matches requests with back ends that can isolate user workloads with dedicated share
servers exporting shares on user provided share networks.

snapshot_support indicates whether snapshots are supported for shares created on the
pool/backend. When administrators do not set this capability as an extra-spec in a share type,
the scheduler can place new shares of that type in pools without regard for whether snapshots are
supported, and those shares will not support snapshots.

create_share_from_snapshot_support indicates whether a backend can create a new share from
a snapshot. When administrators do not set this capability as an extra-spec in a share type, the
scheduler can place new shares of that type in pools without regard for whether creating shares
from snapshots is supported, and those shares will not support creating shares from snapshots.

revert_to_snapshot_support indicates that a driver is capable of reverting a share in place to its
most recent snapshot. When administrators do not set this capability as an extra-spec in a share
type, the scheduler can place new shares of that type in pools without regard for whether reverting
shares to snapshots is supported, and those shares will not support reverting shares to snapshots.

mount_snapshot_support indicates that a driver is capable of exporting share snapshots for
mounting. Users can provide and revoke access to mountable snapshots just like they can with
their shares.

replication_type indicates the style of replication supported for the backend/pool. This extra_spec
will have a string value and could be one of writable, readable or dr. writable replication type in-
volves synchronously replicated shares where all replicas are writable. Promotion is not supported
and not needed. readable and dr replication types involve a single active or primary replica and
one or more non-active or secondary replicas per share. In readable type of replication, non-active
replicas have one or more export_locations and can thus be mounted and read while the active
replica is the only one that can be written into. In dr style of replication, only the active replica
can be mounted, read from and written into.

availability_zones indicates a comma separated list of availability zones that can be used for pro-
visioning. Users can always provide a specific availability zone during share creation, and they
will receive a synchronous failure message if they attempt to create a share in an availability zone
that the share type does not permit. If you do not set this extra-spec, the share type is assumed to
be serviceable in all availability zones known to the Shared File Systems service.

240

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Share type common capability extra-specs that are not visible to end users:

dedupe indicates that a backend/pool can provide shares using some deduplication technology.
The default value of the dedupe capability (if a driver doesnt report it) is False. Drivers can sup-
port both dedupe and non-deduped shares in a single storage pool by reporting dedupe=[True,
False]. You can make a share type use deduplication by setting this extra-spec to <is> True, or
prevent it by setting this extra-spec to <is> False.

compression indicates that a backend/pool can provide shares using some compression tech-
nology. The default value of the compression capability (if a driver doesnt report it) is False.
Drivers can support compressed and non-compressed shares in a single storage pool by report-
ing compression=[True, False]. You can make a share type use compression by setting this
extra-spec to <is> True, or prevent it by setting this extra-spec to <is> False.

thin_provisioning can be enabled where shares will not be guaranteed space allocations and over-
provisioning will be enabled. This capability defaults to False. Back ends/pools that support thin
provisioning report True for this capability. Administrators can make a share type use thin provi-
sioned shares by setting this extra-spec to <is> True. If a driver reports thin_provisioning=False
(the default) then its assumed that the driver is doing thick provisioning and overprovisioning is
turned off. A driver can support thin provisioned and thick provisioned shares in the same pool by
reporting thin_provisioning=[True, False].

To provision a thick share on a back end that supports both thin and thick provisioning, set one of
the following in extra specs:

qos indicates that a backend/pool can provide shares using some QoS (Quality of Service) specifi-
cation. The default value of the qos capability (if a driver doesnt report it) is False. You can make a
share type use QoS by setting this extra-spec to <is> True and also setting the relevant QoS-related
extra specs for the drivers being used. Administrators can prevent a share type from using QoS by
setting this extra-spec to <is> False. Different drivers have different ways of specifying QoS limits
(or guarantees) and this extra spec merely allows the scheduler to filter by pools that either have or
dont have QoS support enabled.

ipv4_support indicates whether a back end can create a share that can be accessed via IPv4 pro-
tocol. If administrators do not set this capability as an extra-spec in a share type, the scheduler can
place new shares of that type in pools without regard for whether IPv4 is supported.

ipv6_support - indicates whether a back end can create a share that can be accessed via IPv6
protocol. If administrators do not set this capability as an extra-spec in a share type, the scheduler
can place new shares of that type in pools without regard for whether IPv6 is supported.

provisioning:max_share_size can set the max size of share, the value must be an integer and
greater than 0. If administrators set this capability as an extra-spec in a share type, the size of
share created with the share type can not be greater than the specified value.

provisioning:min_share_size can set the min size of share, the value must be an integer and
greater than 0. If administrators set this capability as an extra-spec in a share type, the size of
share created with the share type can not be less than the specified value.

3.2

Administrating Manila 241

Manila Developer Documentation, Release 15.4.2.dev5

Group Capabilities and group-specs

Manila Administrators create share group types with Share types and group-specs to allow users to request
a group type of share group to create. The Administrator chooses a name for the share group type and
decides how to communicate the significance of the different share group types in terms that the users
should understand or need to know. By design, most of the details of a share group type (the extra- specs)
are not exposed to users only Administrators.

Share group Types

Refer to the manila client command-line help for information on how to create a share group type and
set share types, group-spec key/value pairs for a share group type.

Group-Specs

The group specs contains the group capabilities, similar to snapshot_support in share types. Users know
what a group can do from group specs.

The group specs is an exact match requirement in share group filter (such as ConsistentSnapshotFilter).
When the ConsistentSnapshotFilter is enabled (it is enabled by default), the scheduler will only create a
share group on a backend that reports capabilities that match the share group types group-spec keys.

Common Group Capabilities

For group capabilities that apply to multiple backends a common capability can be created. Like all
other backend reported group capabilities, these group capabilities can be used verbatim as group_specs
in share group types used to create share groups.

* consistent_snapshot_support - indicates that a backend can enable you to create snapshots at the ex-
act same point in time from multiple shares. The default value of the consistent_snapshot_support
capability (if a driver doesnt report it) is None. Administrators can make a share group type use
consistent snapshot support by setting this group-spec to host.

Export Location Metadata

Manila shares can have one or more export locations. The exact number depends on the driver and the
storage controller, and there is no preference for more or fewer export locations. Usually drivers create
an export location for each physical network interface through which the share can be accessed.

Because not all export locations have the same qualities, Manila allows drivers to add additional keys to
the dict returned for each export location when a share is created. The share manager stores these extra
keys and values in the database and they are available to the API service, which may expose them through
the REST API or use them for filtering.

242 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Metadata Keys

Only keys defined in this document are valid. Arbitrary driver-defined keys are not allowed. The follow-
ing keys are defined:

* is_admin_only - May be True or False. Defaults to False. Indicates that the export location ex-
ists for administrative purposes. If is_admin_only=True, then the export location is hidden from
non-admin users calling the REST API. Also, these export locations are assumed to be reachable
directly from the admin network, which is important for drivers that support share servers and
which have some export locations only accessible to tenants.

* preferred - May be True or False. Defaults to False. Indicates that clients should prefer to mount
this export location over other export locations that are not preferred. This may be used by drivers
which have fast/slow paths to indicate to clients which paths are faster. It could be used to indicate
a path is preferred for another reason, as long as the reason isnt one that changes over the life of
the manila-share service. This key is always visible through the REST API.

Supported share back ends

The manila share service must be configured to use drivers for one or more storage back ends, as described
in general terms below. See the drivers section in the Configuration Reference for detailed configuration
options for each back end.

Container Driver

The Container driver provides a lightweight solution for share servers management. It allows to use
Docker containers for hosting userspace shared file systems services.

Supported operations

¢ Create CIFS share;

Delete CIFS share;
¢ Allow user access to CIFS share;

* Deny user access to CIFS share;

Extend CIFS share.

Restrictions

* Current implementation has been tested only on Ubuntu. Devstack plugin wont work on other
distributions however it should be possible to install prerequisites and set the driver up manually;

* The only supported protocol is CIFS;

* The following features are not implemented: * Manage/unmanage share; * Shrink share; * Cre-
ate/delete snapshots; * Create a share from a snapshot; * Manage/unmanage snapshots.

3.2. Administrating Manila 243

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/drivers.html

Manila Developer Documentation, Release 15.4.2.dev5

Known problems

* May demonstrate unstable behaviour when running concurrently. It is strongly suggested that the
driver should be used with extreme care in cases other than building lightweight development and
testing environments.

Setting up container driver with devstack

The driver could be set up via devstack. This requires the following update to local.conf:

where <ref> is change reference, which could be copied from gerrit web-interface, <hostname> is the
name of the host with running neutron

Setting Container Driver Up Manually

This section describes steps needed to be performed to set the driver up manually. The driver has been
tested on Ubuntu 14.04, thus in case of any other distribution package names might differ. The following
packages must be installed:

e docker.io

One can verify if the package is installed by issuing sudo docker info command. In case of normal
operation it should return docker usage statistics. In case it fails complaining on inaccessible socket try
installing apparmor. Please note that docker usage requires superuser privileges.

After docker is successfully installed a docker image containing necessary packages must be
provided. Currently such image could be downloaded from https://github.com/a-ovchinnikov/
manila-image-elements-1xd-images/releases/download/0.1.0/manila-docker-container.tar.gz The image
has to be unpacked but not untarred. This could be achieved by running gzip -d <imagename> command.
Resulting tar-archive of the image could be uploaded to docker via

If the previous command finished successfully you will be able to see the image in the image list:

The driver expects to find a folder /tmp/shares on the host where it is running as well as a logical volume
group manila_docker_volumes.

When installing the driver manually one must make sure that brctl and docker commands are present in
the /etc/manila/rootwrap.d/share.filters and could be executed as root.

Finally to use the driver one must add a backend to the config file containing the following settings:

244 Chapter 3. For operators

https://github.com/a-ovchinnikov/manila-image-elements-lxd-images/releases/download/0.1.0/manila-docker-container.tar.gz
https://github.com/a-ovchinnikov/manila-image-elements-lxd-images/releases/download/0.1.0/manila-docker-container.tar.gz

Manila Developer Documentation, Release 15.4.2.dev5

where <hostname> is the name of the host running neutron. (In case of single VM devstack it is VMs
name).

After restarting manila services you should be able to use the driver.

ZFS (on Linux) Driver

Manila ZFSonLinux share driver uses ZFS filesystem for exporting NFS shares. Written and tested using
Linux version of ZFS.

Requirements

* NFS daemon that can be handled via exportfs app.

ZFS filesystem packages, either Kernel or FUSE versions.

* ZFS zpools that are going to be used by Manila should exist and be configured as desired. Manila
will not change zpool configuration.

* For remote ZFS hosts according to manila-share service host SSH should be installed.

For ZFS hosts that support replication:
— SSH access for each other should be passwordless.

— Service IP addresses should be available by ZFS hosts for each other.

Supported Operations

The following operations are supported:
* Create NFS Share
* Delete NFS Share
* Manage NFS Share
* Unmanage NFS Share
Allow NFS Share access

— Only IP access type is supported for NFS
— Both access levels are supported - RW and RO

Deny NFES Share access
* Create snapshot
* Delete snapshot

* Manage snapshot

3.2. Administrating Manila 245

Manila Developer Documentation, Release 15.4.2.dev5

Unmanage snapshot
Create share from snapshot
Extend share
Shrink share
Replication (experimental):
— Create/update/delete/promote replica operations are supported

Share migration (experimental)

Possibilities

Any amount of ZFS zpools can be used by share driver.

Allowed to configure default options for ZFS datasets that are used for share creation.
Any amount of nested datasets is allowed to be used.

All share replicas are read-only, only active one is RW.

All share replicas are synchronized periodically, not continuously. So, status in_sync means
latest sync was successful. Time range between syncs equals to value of config global opt
replica_state_update_interval.

Driver is able to use qualified extra spec zfsonlinux:compression. It can contain any value that is
supported by used ZFS app. But if it is disabled via config option with value compression=off,
then it will not be used.

Restrictions

The ZFSonLinux share driver has the following restrictions:

Only IP access type is supported for NFS.
Only FLAT network is supported.

Promote share replica operation will switch roles of current secondary replica and active. It does
not make more than one active replica available.

SaMBa based sharing is not yet implemented.

Thick provisioning is not yet implemented.

Known problems

Promote share replica operation will make ZFS filesystem that became secondary as RO only on
NFS level. On ZFS level system will stay mounted as was - RW.

246

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Backend Configuration

The following parameters need to be configured in the manila configuration file for the ZFSonLinux
driver:

share_driver = manila.share.drivers.zfsonlinux.driver.ZFSonLinuxShareDriver
driver_handles_share_servers = False
replication_domain = custom_str_value_as_domain_name

— if empty, then replication will be disabled

— if set then will be able to be used as replication peer for other backend with same value.
zfs_share_export_ip = <user_facing IP address of ZFS host>
zfs_service_ip = <IP address of service network interface of ZFS host>
zfs_zpool_list = zpoolnamel,zpoolname2/nested_dataset_for_zpool2

— can be one or more zpools

— can contain nested datasets
zfs_dataset_creation_options = <list of ZFS dataset options>

— readonly,quota,sharenfs and sharesmb options will be ignored
zfs_dataset_name_prefix = <prefix>

— Prefix to be used in each dataset name.
zfs_dataset_snapshot_name_prefix = <prefix>

— Prefix to be used in each dataset snapshot name.
zfs_use_ssh = <boolean_value>

— set False if ZFS located on the same host as manila-share service

— set True if manila-share service should use SSH for ZFS configuration
zfs_ssh_username = <ssh_username>

— required for replication operations

— required for SSHing to ZFS host if zfs_use_ssh is set to True
zfs_ssh_user_password = <ssh_user_password>

— password for zfs_ssh_username of ZFS host.

— used only if zfs_use_ssh is set to True
zfs_ssh_private_key_path = <path_to_private_ssh_key>

— used only if zfs_use_ssh is set to True
zfs_share_helpers = NFS=manila.share.drivers.zfsonlinux.utils. NFSviaZFSHelper

— Approach for setting up helpers is similar to various other share driver

— At least one helper should be used.

zfs_replica_snapshot_prefix = <prefix>

3.2

Administrating Manila 247

Manila Developer Documentation, Release 15.4.2.dev5

— Prefix to be used in dataset snapshot names that are created by update replica operation.

 zfs_migration_snapshot_prefix = <prefix>

— Prefix to be used in dataset snapshot names that are created for migration operation.

Restart of manila-share service is needed for the configuration changes to take effect.

The manila.share.drivers.zfsonlinux.driver Module

Module with ZFSonLinux share driver that utilizes ZFS filesystem resources and exports them as shares.

class ZFSonLinuxShareDriver (*args, **kwargs)

Bases: manila.share.drivers.zfsonlinux.utils.ExecuteMixin, manila.share.
driver.ShareDriver

create_replica(context, *args, **kwargs)

Replicate the active replica to a new replica on this backend.

Note: This call is made on the host that the new replica is being created upon.

Parameters
e context Current context

» replica_list List of all replicas for a particular share. This list also con-
tains the replica to be created. The active replica will have its replica_state
attr set to active.

Example:

(continues on next page)

248

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Parameters new_replica The share replica dictionary.

Example:

Parameters access_rules A list of access rules. These are rules that other in-
stances of the share already obey. Drivers are expected to apply access rules to
the new replica or disregard access rules that dont apply.

Example:

3.2. Administrating Manila 249

Manila Developer Documentation, Release 15.4.2.dev5

Parameters replica_snapshots List of dictionaries of snapshot instances.
This includes snapshot instances of every snapshot of the share whose ag-
gregate_status property was reported to be available when the share manager
initiated this request. Each list member will have two sub dictionaries: ac-
tive_replica_snapshot and share_replica_snapshot. The active replica snapshot
corresponds to the instance of the snapshot on any of the active replicas of the
share while share_replica_snapshot corresponds to the snapshot instance for
the specific replica that will need to exist on the new share replica that is being
created. The driver needs to ensure that this snapshot instance is truly avail-
able before transitioning the replica from out_of_sync to in_sync. Snapshots
instances for snapshots that have an aggregate_status of creating or deleting will
be polled for in the update_replicated_snapshot method.

Example:

Parameters share_server <models.ShareServer> or None Share server of the
replica being created.

Returns None or a dictionary. The dictionary can contain export_locations
replica_state and access_rules_status. export_locations is a list of paths and
replica_state is one of active, in_sync, out_of_sync or error.

Important: A backend supporting writable type replication should return active as the
replica_state.

Export locations should be in the same format as returned during the create_share call.

Example:

(continues on next page)

250 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

create_replicated_snapshot (context, *args, **kwargs)

Create a snapshot on active instance and update across the replicas.

Note: This call is made on the active replicas host. Drivers are expected to transfer the
snapshot created to the respective replicas.

The driver is expected to return model updates to the share manager. If it was able to confirm
the creation of any number of the snapshot instances passed in this interface, it can set their
status to available as a cue for the share manager to set the progress attr to 100%.

Parameters
e context Current context

» replica_list List of all replicas for a particular share The active replica
will have its replica_state attr set to active.

Example:

Parameters replica_snapshots List of dictionaries of snapshot instances.

3.2. Administrating Manila 251

Manila Developer Documentation, Release 15.4.2.dev5

These snapshot instances track the snapshot across the replicas. All the in-
stances will have their status attribute set to creating.

Example:

Parameters share_server <models.ShareServer> or None

Returns List of dictionaries of snapshot instances. The dictionaries can contain
values that need to be updated on the database for the snapshot instances being
created.

Raises Exception. Any exception in this method will set all instances to error.

create_share (context, *args, **kwargs)

Is called to create share.

create_share_from_snapshot (context, *args, **kwargs)

Is called to create share from snapshot.

Creating a share from snapshot can take longer than a simple clone operation if data copy is
required from one host to another. For this reason driver will be able complete this creation
asynchronously, by providing a creating_from_snapshot status in the model update.

When answering asynchronously, drivers must implement the call get_share_status in order
to provide updates for shares with creating_from_snapshot status.

It is expected that the driver returns a model update to the share manager that contains: share
status and a list of export_locations. A list of export_locations is mandatory only for share
in available status. The current supported status are available and creating_from_snapshot.

Parameters
* context Current context
» share Share instance model with share data.
» snapshot Snapshot instance model .

* share_server Share server model or None.

252 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

» parent_share Share model from parent snapshot with share data and share
server model.

Returns

a dictionary of updates containing current share status and its export_location
(if available).

Example:

Raises ShareBackendException. A ShareBackendException in this method will
set the instance to error and the operation will end.

create_snapshot (context, *args, **kwargs)

Is called to create snapshot.
Parameters
* context Current context

» snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

e share_server Share server model or None.

Returns None or a dictionary with key export_locations containing a list of export
locations, if snapshots can be mounted.

delete_replica(context, *args, **kwargs)

Delete a replica.

Note: This call is made on the host that hosts the replica being deleted.

Parameters
e context Current context

» replica_list List of all replicas for a particular share This list also con-
tains the replica to be deleted. The active replica will have its replica_state
attr set to active.

Example:

(continues on next page)

3.2. Administrating Manila 253

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Parameters replica Dictionary of the share replica being deleted.

Example:

Parameters replica_snapshots List of dictionaries of snapshot instances. The
dict contains snapshot instances that are associated with the share replica being
deleted. No model updates to snapshot instances are possible in this method.
The driver should return when the cleanup is completed on the backend for

254 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

both, the snapshots and the replica itself. Drivers must handle situations where
the snapshot may not yet have finished creating on this replica.

Example:

Parameters share_server <models.ShareServer> or None Share server of the
replica to be deleted.

Returns None.

Raises Exception. Any exception raised will set the share replicas status and
replica_state attributes to error_deleting. It will not affect snapshots belong-
ing to this replica.

delete_replicated_snapshot (context, *args, **kwargs)
Delete a snapshot by deleting its instances across the replicas.

Note: This call is made on the active replicas host, since drivers may not be able to delete
the snapshot from an individual replica.

The driver is expected to return model updates to the share manager. If it was able to confirm
the removal of any number of the snapshot instances passed in this interface, it can set their
status to deleted as a cue for the share manager to clean up that instance from the database.

Parameters
e context Current context

» replica_list List of all replicas for a particular share The active replica
will have its replica_state attr set to active.

Example:

(continues on next page)

3.2. Administrating Manila 255

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Parameters replica_snapshots List of dictionaries of snapshot instances.
These snapshot instances track the snapshot across the replicas. All the in-
stances will have their status attribute set to deleting.

Example:

Parameters share_server <models.ShareServer> or None

Returns List of dictionaries of snapshot instances. The dictionaries can contain
values that need to be updated on the database for the snapshot instances being
deleted. To confirm the deletion of the snapshot instance, set the status attribute
of the instance to deleted (constants. STATUS_DELETED)

Raises Exception. Any exception in this method will set the status attribute of all

256 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

snapshot instances to error_deleting.

delete_share(context, *args, **kwargs)

Is called to remove share.

delete_snapshot (context, *args, **kwargs)

Is called to remove snapshot.
Parameters
e context Current context

» snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

» share_server Share server model or None.

do_setup (context)

Perform basic setup and checks.

ensure_share (context, *args, **kwargs)

Invoked to ensure that share is exported.

Driver can use this method to update the list of export locations of the share if it changes. To
do that, you should return list with export locations.

Returns None or list with export locations

extend_share (context, *args, **kwargs)

Extends size of existing share.
Parameters
» share Share model
» new_size New size of share (new_size > share[size])
» share_server Optional Share server model

get_network_allocations_number()
ZFS does not handle networking. Return 0.

get_pool (share)

Return pool name where the share resides on.
Parameters share The share hosted by the driver.

manage_existing(share, driver_options)

Manage existing ZFS dataset as manila share.

ZFSonLinux driver accepts only one driver_option size. If an administrator provides this op-
tion, then such quota will be set to dataset and used as share size. Otherwise, driver will set
quota equal to nearest bigger rounded integer of usage size. Driver does not expect mount-
point to be changed (should be equal to default that is /%(dataset_name)s).

Parameters
 share share data
» driver_options Empty dict or dict with size option.

Returns dict with share size and its export locations.

3.2. Administrating Manila 257

Manila Developer Documentation, Release 15.4.2.dev5

manage_existing_snapshot (snapshot_instance, driver_options)
Manage existing share snapshot with manila.

Parameters

» snapshot_instance Snapshotlnstance data

» driver_options expects only one optional key size.
Returns

dict with share snapshot instance fields for update, example:

size: 1, provider_location: path/to/some/dataset@some_snapshot_tag,

}

migration_cancel (context, *args, **kwargs)

Cancels migration of a given share to another host.

Note: Is called in source shares backend to cancel migration.

If possible, driver can implement a way to cancel an in-progress migration.
Parameters
» context The context.RequestContext object for the request.
» source_share Reference to the original share model.

» destination_share Reference to the share model to be used by migrated
share.

» source_snapshots List of snapshots owned by the source share.

* snapshot_mappings Mapping of source snapshot IDs to destination snap-
shot models.

e share_server Share server model or None.
* destination_share_server Destination Share server model or None.

migration_check_compatibility (context, *args, **kwargs)

Checks destination compatibility for migration of a given share.

Note: Is called to test compatibility with destination backend.

Driver should check if it is compatible with destination backend so driver-assisted migration
can proceed.

Parameters
» context The context.RequestContext object for the request.

» source_share Reference to the share to be migrated.

258 Chapter 3. For operators

mailto:'path/to/some/dataset@some_snapshot_tag

Manila Developer Documentation, Release 15.4.2.dev5

» destination_share Reference to the share model to be used by migrated

share.

» share_server Share server model or None.

destination_share_server Destination Share server model or None.

Returns

A dictionary containing values indicating if destination backend is compatible,
if share can remain writable during migration, if it can preserve all file metadata
and if it can perform migration of given share non-disruptively.

Example:

migration_complete (context, *args, **kwargs)

Completes migration of a given share to another host.

Note: Is called in source shares backend to complete migration.

If driver is implementing 2-phase migration, this method should perform the disruptive tasks
related to the 2nd phase of migration, thus completing it. Driver should also delete all original
share data from source backend.

Parameters

context The context.RequestContext object for the request.
source_share Reference to the original share model.

destination_share Reference to the share model to be used by migrated
share.

source_snapshots List of snapshots owned by the source share.

snapshot_mappings Mapping of source snapshot IDs to destination snap-
shot models.

share_server Share server model or None.

destination_share_server Destination Share server model or None.

Returns

If the migration changes the share export locations, snapshot provider locations
or snapshot export locations, this method should return a dictionary with the
relevant info. In such case, a dictionary containing a list of export locations and
a list of model updates for each snapshot indexed by their IDs.

Example:

3.2. Administrating Manila

259

Manila Developer Documentation, Release 15.4.2.dev5

'export_locations'

'path': '1.2.3.4:/foo'
'metadata’
'is_admin_only': False

'path': '5.6.7.8:/foo'
'metadata’
'is_admin_only': True

'snapshot_updates'
'bc4e3b28-0832-4168-b688-67£fdc3e9d408"
'provider_location': '/snapshots/foo/bar_1"

"export_locations'

'path': '1.2.3.4:/snapshots/foo/bar_1"
'is_admin_only': False

'path': '5.6.7.8:/snapshots/foo/bar_1"
'is_admin_only': True

'2e62b7ea-4e30-445f-bc05-£d523ca62941"'

'provider_location': '/snapshots/foo/bar_2'
"export_locations'

'path': '1.2.3.4:/snapshots/foo/bar_2'
'is_admin_only': False

'path': '5.6.7.8:/snapshots/foo/bar_2'
'is_admin_only': True

migration_continue (context, *args, **kwargs)

260 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Continues migration of a given share to another host.

Note: Is called in source shares backend to continue migration.

Driver should implement this method to continue monitor the migration progress in storage
and perform following steps until 1st phase is completed.

Parameters

context The context.RequestContext object for the request.
source_share Reference to the original share model.

destination_share Reference to the share model to be used by migrated
share.

source_snapshots List of snapshots owned by the source share.

snapshot_mappings Mapping of source snapshot IDs to destination snap-
shot models.

share_server Share server model or None.

destination_share_server Destination Share server model or None.

Returns Boolean value to indicate if 1st phase is finished.

migration_start (context, *args, **kwargs)

Starts migration of a given share to another host.

Note: Is called in source shares backend to start migration.

Driver should implement this method if willing to perform migration in a driver-assisted way,
useful for when source shares backend driver is compatible with destination backend driver.
This method should start the migration procedure in the backend and end. Following steps
should be done in migration_continue.

Parameters

context The context.RequestContext object for the request.
source_share Reference to the original share model.

destination_share Reference to the share model to be used by migrated
share.

source_snapshots List of snapshots owned by the source share.

snapshot_mappings Mapping of source snapshot IDs to destination snap-
shot models.

share_server Share server model or None.

destination_share_server Destination Share server model or None.

promote_replica(context, *args, **kwargs)

Promote a replica to active replica state.

3.2. Administrating Manila 261

Manila Developer Documentation, Release 15.4.2.dev5

Note: This call is made on the host that hosts the replica being promoted.

Parameters
e context Current context

» replica_list List of all replicas for a particular share This list also con-
tains the replica to be promoted. The active replica will have its replica_state
attr set to active.

Example:

Parameters replica Dictionary of the replica to be promoted.

Example:

(continues on next page)

262 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Parameters access_rules A list of access rules These access rules are obeyed
by other instances of the share

Example:

Parameters share_server <models.ShareServer> or None Share server of the
replica to be promoted.

Returns updated_replica_list or None. The driver can return the updated list as
in the request parameter. Changes that will be updated to the Database are:
export_locations, access_rules_status and replica_state.

Raises Exception. This can be any exception derived from BaseException. This is
re-raised by the manager after some necessary cleanup. If the driver raises an
exception during promotion, it is assumed that all of the replicas of the share
are in an inconsistent state. Recovery is only possible through the periodic
update call and/or administrator intervention to correct the status of the affected
replicas if they become healthy again.

shrink_share (context, *args, **kwargs)

Shrinks size of existing share.

If consumed space on share larger than new_size driver should raise ShareShrinkingPossi-
bleDatalLoss exception: raise ShareShrinkingPossibleDatal.oss(share_id=share[id])

Parameters

3.2. Administrating Manila 263

Manila Developer Documentation, Release 15.4.2.dev5

» share Share model
e new_size New size of share (new_size < share[size])
» share_server Optional Share server model

:raises ShareShrinkingPossibleDatal.oss, NotImplementedError

unmanage (share)

Removes the specified share from Manila management.

unmanage_snapshot (snapshot_instance)

Unmanage dataset snapshot.

update_access (context, *args, **kwargs)

Update access rules for given share.

access_rules contains all access_rules that need to be on the share. If the driver can make
bulk access rule updates, it can safely ignore the add_rules and delete_rules parameters.

If the driver cannot make bulk access rule changes, it can rely on new rules to be present in
add_rules and rules that need to be removed to be present in delete_rules.

When a rule in delete_rules was never applied, drivers must not raise an exception, or
attempt to set the rule to error state.

add_rules and delete_rules can be empty lists, in this situation, drivers should ensure
that the rules present in access_rules are the same as those on the back end. One scenario
where this situation is forced is when the access_level is changed for all existing rules (share
migration and for readable replicas).

Drivers must be mindful of this call for share replicas. When update_access is called on one
of the replicas, the call is likely propagated to all replicas belonging to the share, especially
when individual rules are added or removed. If a particular access rule does not make sense
to the driver in the context of a given replica, the driver should be careful to report a correct
behavior, and take meaningful action. For example, if R/W access is requested on a replica
that is part of a readable type replication; R/O access may be added by the driver instead
of R/W. Note that raising an exception will result in the access_rules_status on the replica,
and the share itself being out_of_sync. Drivers can sync on the valid access rules that are
provided on the create_replica and promote_replica calls.

Parameters
* context Current context
» share Share model with share data.
» access_rules A list of access rules for given share

* add_rules Empty List or List of access rules which should be added. ac-
cess_rules already contains these rules.

* delete_rules Empty List or List of access rules which should be removed.
access_rules doesnt contain these rules.

» share_server None or Share server model
Returns

None, or a dictionary of updates in the format:

264

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

09960614-8574-4e03-89cf-7cf267b0bd08: {

access_key: alice31493e5441b8171d2310d80e37e, state: error,
5,
28f6eabb-4342-486a-a7f4-45688f0c0295: {

access_key: bob0078aa042d5a7325480£fd13228b, state: active,

b
}

The top level keys are access_id fields of the access rules that need to be updated.
access_key “s are credentials (str) of the entities granted access.
Any rule in the " “access_rules parameter can be updated.

Important: Raising an exception in this method will force all rules in applying and denying
states to error.

An access rule can be set to error state, either explicitly via this return parameter or because
of an exception raised in this method. Such an access rule will no longer be sent to the driver
on subsequent access rule updates. When users deny that rule however, the driver will be
asked to deny access to the client/s represented by the rule. We expect that a rule that was
error-ed at the driver should never exist on the back end. So, do not fail the deletion request.

Also, it is possible that the driver may receive a request to add a rule that is already present
on the back end. This can happen if the share manager service goes down while the driver is
committing access rule changes. Since we cannot determine if the rule was applied success-
fully by the driver before the disruption, we will treat all applying transitional rules as new
rules and repeat the request.

update_replica_state(context, *args, **kwargs)

Update the replica_state of a replica.

Note: This call is made on the host which hosts the replica being updated.

Drivers should fix replication relationships that were broken if possible inside this method.

This method is called periodically by the share manager; and whenever requested by the
administrator through the resync APL

Parameters
e context Current context

» replica_list List of all replicas for a particular share This list also con-
tains the replica to be updated. The active replica will have its replica_state
attr set to active.

Example:

3.2. Administrating Manila 265

Manila Developer Documentation, Release 15.4.2.dev5

'id': 'd487b88d-e428-4230-a465-a800c2cce5£8’'
'share_id': 'f0e4bb5e-65f0-11e5-9d70-feff819cdc9f’
'replica_state': 'in_sync'

'share_server_id': '4ce78e7b-0ef6-4730-ac2a-fd2defefbd®5"'
'share_server' or None

'id': '10e49c3e-aca9-483b-8c2d-1c337b38d6af’
'share_id': 'fOe4bb5e-65f0-11e5-9d70-feff819cdc9f’
'replica_state': 'active'

'share_server_id': '£63629b3-e126-4448-bec2-03f788f76094"'
'share_server' or None

'id': 'e82ff8h6-65f0-11e5-9d70-feff819cdcof’
'share_id': 'f0e4bb5e-65f0-11e5-9d70-feff819cdc9f’
'replica_state': 'in_sync'

'share_server_id': '07574742-67ea-4dfd-9844-9fbd8ada3d87"'
'share_server' or None

Parameters replica Dictionary of the replica being updated Replica state will
always be in_sync, out_of_sync, or error. Replicas in active state will not be
passed via this parameter.

Example:

'id': 'd487b88d-e428-4230-a465-a800c2cce5£8"
'share_id': 'f0e4bb5e-65f0-11e5-9d70-feff819cdc9f’
'deleted': False

'host': 'openstack2@cmodeSSVMNFS1'

'status': 'available'

'scheduled_at' 2015, 8, 10, 0, 5, 58
'launched_at' 2015, 8, 10, O, 5, 58
"terminated_at': None

'replica_state': 'in_sync'

'availability_zone_id': 'e2c2db5c-cb2f-4697-9966-c061fb200ch80’
'export_locations'

'access_rules_status': 'in_sync'
'share_network_id': '4ccd5318-65f1-11e5-9d70-feff819cdcof’

(continues on next page)

266 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Parameters access_rules A list of access rules These access rules are obeyed
by other instances of the share. The driver could attempt to sync on any un-
applied access_rules.

Example:

Parameters replica_snapshots List of dictionaries of snapshot instances.
This includes snapshot instances of every snapshot of the share whose ag-
gregate_status property was reported to be available when the share manager
initiated this request. Each list member will have two sub dictionaries: ac-
tive_replica_snapshot and share_replica_snapshot. The active replica snapshot
corresponds to the instance of the snapshot on any of the active replicas of the
share while share_replica_snapshot corresponds to the snapshot instance for the
specific replica being updated. The driver needs to ensure that this snapshot
instance is truly available before transitioning from out_of_sync to in_sync.
Snapshots instances for snapshots that have an aggregate_status of creating or
deleting will be polled for in the update_replicated_snapshot method.

Example:

(continues on next page)

3.2. Administrating Manila 267

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Parameters share_server <models.ShareServer> or None

Returns replica_state: a str value denoting the replica_state. Valid values are
in_sync and out_of_sync or None (to leave the current replica_state un-
changed).

update_replicated_snapshot (context, *args, **kwargs)

Update the status of a snapshot instance that lives on a replica.

Note: For DR and Readable styles of replication, this call is made on the replicas host and
not the active replicas host.

This method is called periodically by the share manager. It will query for snapshot instances
that track the parent snapshot across non-active replicas. Drivers can expect the status of the
instance to be creating or deleting. If the driver sees that a snapshot instance has been removed
from the replicas backend and the instance status was set to deleting, it is expected to raise
a SnapshotResourceNotFound exception. All other exceptions will set the snapshot instance
status to error. If the instance was not in deleting state, raising a SnapshotResourceNotFound
will set the instance status to error.

Parameters
e context Current context

» replica_list List of all replicas for a particular share The active replica
will have its replica_state attr set to active.

Example:

(continues on next page)

268 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Parameters share_replica Share replica dictionary. This replica is associated
with the snapshot instance whose status is being updated. Replicas in active
replica_state will not be passed via this parameter.

Example:

Parameters replica_snapshots List of dictionaries of snapshot instances.
These snapshot instances track the snapshot across the replicas. This will in-
clude the snapshot instance being updated as well.

Example:

Parameters replica_snapshot Dictionary of the snapshot instance. This is the

3.2. Administrating Manila 269

Manila Developer Documentation, Release 15.4.2.dev5

instance to be updated. It will be in creating or deleting state when sent via this

parameter.

Example:

Parameters share_server <models.ShareServer> or None

Returns replica_snapshot_model_update: a dictionary. The dictionary must con-
tain values that need to be updated on the database for the snapshot instance
that represents the snapshot on the replica.

Raises exception.SnapshotResourceNotFound Raise this exception for snapshots

that are not found on the backend and their status was deleting.

ensure_share_server_not_provided(f)

get_backend_configuration(backend_name)

The manila.share.drivers.zfsonlinux.utils Module

Module for storing ZFSonLinux driver utility stuff such as:
* Common ZFS code
 Share helpers

class ExecuteMixin

Bases: manila.share.driver.ExecuteMixin

execute (*cmd, **kwargs)

Common interface for running shell commands.

execute_with_retry(*cmd, **kwargs)

Retry wrapper over common shell interface.

270 Chapter 3.

For operators

Manila Developer Documentation, Release 15.4.2.dev5

get_zfs_option(dataset_name, option_name, **kwargs)

Returns value of requested zfs dataset option.

get_zpool_option(zpool_name, option_name, **kwargs)
Returns value of requested zpool option.
init_execute_mixin(*args, **kwargs)
Init method for mixin called in the end of drivers __init__ ().

parse_zfs_answer (string)
Returns list of dicts with data returned by ZFS shell commands.

zfs (*cmd, **kwargs)
ZFS shell commands executor.
zfs_with_retry(¥cmd, **kwargs)

ZFS shell commands executor.

class NASHelperBase (configuration)

Bases: object
Base class for share helpers of ZFS on Linux driver.

abstract create_exports(dataset_name, executor)
Creates share exports.

abstract get_exports(dataset_name, service, executor)

Gets/reads share exports.

abstract remove_exports (dataset_name, executor)

Removes share exports.

abstract update_access (dataset_name, access_rules, add_rules, delete_rules, executor)

Update access rules for specified ZFS dataset.

abstract verify_setup()

Performs checks for required stuff.

class NFSviaZFSHelper (configuration)

Bases: manila.share.drivers.zfsonlinux.utils.ExecuteMixin, manila.share.
drivers.zfsonlinux.utils.NASHelperBase

Helper class for handling ZFS datasets as NFS shares.

Kernel and Fuse versions of ZFS have different syntax for setting up access rules, and this Helper
designed to satisfy both making autodetection.

create_exports (dataset_name, executor=None)

Creates NFS share exports for given ZFS dataset.

get_exports (dataset_name, executor=None)

Gets/reads NFS share export for given ZFS dataset.

property is_kernel_version

Says whether Kernel version of ZFS is used or not.

3.2. Administrating Manila 271

Manila Developer Documentation, Release 15.4.2.dev5

remove_exports (*args, **kwargs)

Removes share exports.

update_access(*args, **kwargs)
Update access rules for specified ZFS dataset.

verify_setup()
Performs checks for required stuff.

get_remote_shell_executor (ip, port, conn_timeout, login=None, password=None,
privatekey=None, max_size=10)

zfs_dataset_synchronized(f)

NetApp Clustered Data ONTAP

The Shared File Systems service can be configured to use NetApp Clustered Data ONTAP (cDOT) ver-
sion 8.2 and later.

The driver can work with two types of pools: FlexGroup and FlexVol. By default, it only works with
FlexVol, if desired, the FlexGroup pool can be enabled together or standalone.

FlexGroup pool requires ONTAP version 9.8 or later.

Supported Operations

The following operations are supported on Clustered Data ONTAP:
* Create CIFS/NFS Share
* Delete CIFS/NFS Share
* Allow NFS Share access
— IP access type is supported for NFS.
— Read/write and read-only access are supported for NFS.
* Allow CIFS Share access
— User access type is supported for CIFS.
— Read/write access is supported for CIFS.
* Deny CIFS/NFS Share access
* Create snapshot
* Delete snapshot
* Create share from snapshot
* Extend share
* Shrink share
* Manage share

* Unmanage share

272 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* Create consistency group

* Delete consistency group

* Create consistency group from CG snapshot
* Create CG snapshot

* Delete CG snapshot

* Create a replica (DHSS=False)

* Promote a replica (DHSS=False)

* Delete a replica (DHSS=False)

* Update a replica (DHSS=False)

* Create a replicated snapshot (DHSS=False)

* Delete a replicated snapshot (DHSS=False)

» Update a replicated snapshot (DHSS=False)
* Migrate share

* Migrate share server

Note: The operations are not fully supported configuring FlexGroup pool:

» Consistency group operations are only supported configuring the driver without any FlexGroup
pool.

* For FlexGroup share, create more than one replica is only allowed with ONTAP 9.9.1 and newer.
* Migration of FlexGroup shares is not allowed.

* Migration of share servers containing FlexGroup share is not allowed.

Note: DHSS is abbreviated from driver_handles_share_servers.

Supported Operating Modes

The cDOT driver supports both driver_handles_share_servers (DHSS) modes.

If driver_handles_share_servers is True, the driver will create a storage virtual machine (SVM, previously
known as vServers) for each unique tenant network and provision each of a tenants shares into that SVM.
This requires the user to specify both a share network as well as a share type with the DHSS extra spec
set to True when creating shares.

If driver_handles_share_servers is False, the manila admin must configure a single SVM, along with
associated LIFs and protocol services, that will be used for provisioning shares. The SVM is specified
in the manila config file.

3.2. Administrating Manila 273

Manila Developer Documentation, Release 15.4.2.dev5

Network approach

L3 connectivity between the storage cluster and manila host must exist, and VLAN segmentation may be
configured. All of manilas network plug-ins are supported with the cDOT driver.

Supported shared filesystems

* NFS (access by IP address or subnet)

* CIFS (authentication by user)

Required licenses

 NFS
e CIFS
¢ FlexClone

Known restrictions

* For CIFS shares an external Active Directory (AD) service is required. The AD details should be
provided via a manila security service that is attached to the specified share network.

* Share access rules for CIFS shares may be created only for existing users in Active Directory.

* The time on external security services and storage must be synchronized. The maximum allowed
clock skew is 5 minutes.

* c¢DOT supports only flat and VLAN network segmentation types.

The manila.share.drivers.netapp.common.py Module

Unified driver for NetApp storage systems.
Supports multiple storage systems of different families and driver modes.

class NetAppDriver (*args, **kwargs)

Bases: object
NetApp unified share storage driver.

Acts as a factory to create NetApp storage drivers based on the storage family and driver mode
configured.

REQUIRED_FLAGS = ['netapp_storage_family', 'driver_handles_share_servers']

274 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Isilon Driver

The EMC manila driver framework (EMCShareDriver) utilizes EMC storage products to provide shared
filesystems to OpenStack. The EMC manila driver is a plugin based driver which is designed to use
different plugins to manage different EMC storage products.

The Isilon manila driver is a plugin for the EMC manila driver framework which allows manila to interface
with an Isilon backend to provide a shared filesystem. The EMC driver framework with the Isilon plugin
is referred to as the Isilon Driver in this document.

This Isilon Driver interfaces with an Isilon cluster via the REST Isilon Platform API (PAPI) and the
RESTful Access to Namespace API (RAN).

Requirements

Isilon cluster running OneFS 7.2 or higher

Supported Operations

The following operations are supported on an Isilon cluster:

Create CIFS/NFS Share

Delete CIFS/NFS Share

Allow CIFS/NFS Share access
— Only IP access type is supported for NFS and CIFS
— Only RW access supported

Deny CIFS/NFS Share access

Create snapshot

Delete snapshot

Create share from snapshot

Extend share

Backend Configuration

The following parameters need to be configured in the manila configuration file for the Isilon driver:

share_driver = manila.share.drivers.dell_emc.driver EMCShareDriver
driver_handles_share_servers = False

emc_share_backend = isilon

emc_nas_server = <IP address of Isilon cluster>
emc_nas_server_port = <port to use for Isilon cluster (optional)>
emc_nas_login = <username>

emc_nas_password = <password>

3.2. Administrating Manila 275

Manila Developer Documentation, Release 15.4.2.dev5

* emc_nas_root_dir = <root directory path to create shares (e.g./ifs/manila)>

Restart of manila-share service is needed for the configuration changes to take effect.

Restrictions

The Isilon driver has the following restrictions:

* Only IP access type is supported for NFS and CIFS.

* Only FLAT network is supported.

The manila.share.drivers.dell_emc.driver Module

EMC specific NAS storage driver. This driver is a pluggable driver that allows specific EMC NAS devices
to be plugged-in as the underlying backend. Use the Manila configuration variable share_backend_name
to specify, which backend plugins to use.

class EMCShareDriver (*args, **kwargs)

Bases: manila.share.driver.ShareDriver

EMC specific NAS driver. Allows for NFS and CIFS NAS storage usage.

allow_access (context, share, access, share_server=None)

Allow access to the share.

check_for_setup_error()

Check for setup error.

create_share (context, share, share_server=None)

Is called to create share.

create_share_from_snapshot (context, share, snapshot, share_server=None,

parent_share=None)
Is called to create share from snapshot.

create_snapshot (context, snapshot, share_server=None)

Is called to create snapshot.

delete_share (context, share, share_server=None)

Is called to remove share.

delete_snapshot (context, snapshot, share_server=None)

Is called to remove snapshot.

deny_access (context, share, access, share_server=None)

Deny access to the share.

do_setup (context)

Any initialization the share driver does while starting.

ensure_share (context, share, share_server=None)

Invoked to sure that share is exported.

276

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

extend_share (share, new_size, share_server=None)

Is called to extend share.

get_configured_ip_versions()

Get allowed IP versions.
The supported versions are returned with list, possible values are: [4], [6], or [4, 6]

Drivers that assert ipv6_implemented = True must override this method. If the returned list
includes 4, then shares created by this driver must have an IPv4 export location. If the list
includes 6, then shares created by the driver must have an IPv6 export location.

Drivers should check that their storage controller actually has IPv4/IPv6 enabled and config-
ured properly.

get_default_filter_function()
Get the default filter_function string.

Each driver could overwrite the method to return a well-known default string if it is available.
Parameters pool pool name to get the filter or None
Returns None

get_network_allocations_number()

Returns number of network allocations for creating VIFs.

get_share_server_network_info (context, share_server, identifier, driver_options)

Obtain network allocations used by share server.
Parameters
» context Current context.
» share_server Share server model.
o identifier A driver-specific share server identifier

* driver_options Dictionary of driver options to assist managing the share
server

Returns A list containing IP addresses allocated in the backend.

Example:

manage_existing(share, driver_options)
manage an existing share

manage_existing_snapshot (snapshot, driver_options)
manage an existing share snapshot

manage_existing_snapshot_with_server (snapshot, driver_options, share_server=None)

manage an existing share snapshot

manage_existing_with_server (share, driver_options, share_server=None)

manage an existing share

3.2. Administrating Manila 277

Manila Developer Documentation, Release 15.4.2.dev5

manage_server (context, share_server, identifier, driver_options)

Manage the share server and return compiled back end details.
Parameters
» context Current context.
» share_server Share server model.
» identifier A driver-specific share server identifier

» driver_options Dictionary of driver options to assist managing the share
server

Returns Identifier and dictionary with back end details to be saved in the database.

Example:

revert_to_snapshot (context, snapshot, share_access_rules, snapshot_access_rules,

share_server=None)

Reverts a share (in place) to the specified snapshot.

Does not delete the share snapshot. The share and snapshot must both be available for the
restore to be attempted. The snapshot must be the most recent one taken by Manila; the API
layer performs this check so the driver doesnt have to.

The share must be reverted in place to the contents of the snapshot. Application admins
should quiesce or otherwise prepare the application for the shared file system contents to
change suddenly.

Parameters
* context Current context
» snapshot The snapshot to be restored
» share_access_rules List of all access rules for the affected share
» snapshot_access_rules List of all access rules for the affected snapshot

» share_server Optional Share server model or None

shrink_share (share, new_size, share_server=None)

Is called to shrink share.

unmanage (share)

Removes the specified share from Manila management.
Does not delete the underlying backend share.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share.

If provided share cannot be unmanaged, then raise an UnmanagelnvalidShare exception,
specifying a reason for the failure.

This method is invoked when the share is being unmanaged with a share type that has
driver_handles_share_servers extra-spec set to False.

278

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

unmanage_server (server_details, security_services=None)

Unmanages the share server.

If a driver supports unmanaging of share servers, the driver must override this method and
return successfully.

Parameters
» server_details share server backend details.

» security_services list of security services configured with this share
Server.

unmanage_snapshot (snapshot)

Removes the specified snapshot from Manila management.
Does not delete the underlying backend share snapshot.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share snapshot.

If provided share snapshot cannot be unmanaged, then raise an UnmanagelnvalidShareSnap-
shot exception, specifying a reason for the failure.

This method is invoked when the snapshot that is being unmanaged belongs to a share that
has its share type with driver_handles_share_servers extra-spec set to False.

unmanage_snapshot_with_server (snapshot, share_server=None)

Removes the specified snapshot from Manila management.
Does not delete the underlying backend share snapshot.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share snapshot.

If provided share snapshot cannot be unmanaged, then raise an UnmanagelnvalidShareSnap-
shot exception, specifying a reason for the failure.

This method is invoked when the snapshot that is being unmanaged belongs to a share that
has its share type with driver_handles_share_servers extra-spec set to True.

unmanage_with_server (share, share_server=None)

Removes the specified share from Manila management.
Does not delete the underlying backend share.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share.

If provided share cannot be unmanaged, then raise an UnmanagelnvalidShare exception,
specifying a reason for the failure.

This method is invoked when the share is being unmanaged with a share type that has
driver_handles_share_servers extra-spec set to True.

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access to the share.

3.2. Administrating Manila 279

Manila Developer Documentation, Release 15.4.2.dev5

The manila.share.drivers.dell_emc.plugins.isilon.isilon Module

Isilon specific NAS backend plugin.

class IsilonStorageConnection(*args, **kwargs)

Bases: manila.share.drivers.dell_emc.plugins.base.StorageConnection
Implements Isilon specific functionality for EMC Manila driver.

allow_access (context, share, access, share_server)

Allow access to the share.

check_for_setup_error()

Check for setup error.

connect (emc_share_driver, context)
Connect to an Isilon cluster.

create_share (context, share, share_server)

Is called to create share.

create_share_from_snapshot (context, share, snapshot, share_server)
Creates a share from the snapshot.

create_snapshot (context, snapshot, share_server)

Is called to create snapshot.

delete_share (context, share, share_server)

Is called to remove share.

delete_snapshot (context, snapshot, share_server)
Is called to remove snapshot.

deny_access (context, share, access, share_server)

Deny access to the share.

ensure_share (context, share, share_server)

Invoked to ensure that share is exported.

extend_share (share, new_size, share_server=None)

Extends a share.

get_network_allocations_number()

Returns number of network allocations for creating VIFs.

setup_server (network_info, metadata=None)
Set up and configures share server with given network parameters.

teardown_server (server_details, security_services=None)

Teardown share server.

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update share access.

update_share_stats(stats_dict)
TODO.

280

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

VNX Driver

EMC manila driver framework (EMCShareDriver) utilizes the EMC storage products to provide the
shared filesystems to OpenStack. The EMC manila driver is a plugin based driver which is designed to
use different plugins to manage different EMC storage products.

VNX plugin is the plugin which manages the VNX to provide shared filesystems. EMC driver framework
with VNX plugin is referred to as VNX driver in this document.

This driver performs the operations on VNX by XMLAPI and the File command line. Each backend
manages one Data Mover of VNX. Multiple manila backends need to be configured to manage multiple
Data Movers.

Requirements

* VNX OE for File version 7.1 or higher.
* VNX Unified, File only, or Gateway system with single storage backend.

* The following licenses should be activated on VNX for File: * CIFS * NFS * SnapSure (for snap-
shot) * ReplicationV2 (for create share from snapshot)

Supported Operations

The following operations will be supported on VNX array:
* Create CIFS/NFS Share
* Delete CIFS/NFS Share

* Allow CIFS/NFS Share access * Only IP access type is supported for NFS. * Only user access type
is supported for CIFS.

* Deny CIFS/NFS Share access
* Create snapshot

* Delete snapshot

* Create share from snapshot

While the generic driver creates shared filesystems based on Cinder volumes attached to Nova VMs, the
VNX driver performs similar operations using the Data Movers on the array.

Pre-Configurations on VNX

1. Enable Unicode on Data mover
VNX driver requires that the Unicode is enabled on Data Mover.

CAUTION: After enabling Unicode, you cannot disable it. If there are some filesystems created before
Unicode is enabled on the VNX, consult the storage administrator before enabling Unicode.

To check the Unicode status on Data Mover, use the following VNX File command on VNX control
station:

3.2. Administrating Manila 281

Manila Developer Documentation, Release 15.4.2.dev5

server_cifs <mover_name> | head where: mover_name = <name of the Data Mover>
Check the value of 118N mode field. UNICODE mode is shown as 118N mode = UNICODE
To enable the Unicode for Data Mover:

uc_config -on -mover <mover_name> where: mover_name = <name of the Data Mover>

Refer to the document Using International Character Sets on VNX for File on [EMC support site](https:
//support.emc.com) for more information.

2. Enable CIFS service on Data Mover
Ensure the CIFS service is enabled on the Data Mover which is going to be managed by VNX driver.
To start the CIFS service, use the following command:

server_setup <mover_name> -Protocol cifs -option start [=<n>] where: <mover_name> =
<name of the Data Mover> [=<n>] = <number of threads for CIFS users>

Note: If there is 1 GB of memory on the Data Mover, the default is 96 threads; however, if there is over
1 GB of memory, the default number of threads is 256.

To check the CIFS service status, use this command:
server_cifs <mover_name> | head where: <mover_name> = <name of the Data Mover>
The command output will show the number of CIFS threads started.
3. NTP settings on Data Mover

VNX driver only supports CIFS share creation with share network which has an Active Directory
security-service associated.

Creating CIFS share requires that the time on the Data Mover is in sync with the Active Directory domain
so that the CIFS server can join the domain. Otherwise, the domain join will fail when creating share
with this security service. There is a limitation that the time of the domains used by security-services
even for different tenants and different share networks should be in sync. Time difference should be less
than 10 minutes.

It is recommended to set the NTP server to the same public NTP server on both the Data Mover and
domains used in security services to ensure the time is in sync everywhere.

Check the date and time on Data Mover:
server_date <mover_name> where: mover_name = <name of the Data Mover>
Set the NTP server for Data Mover:

server_date <mover_name> timesvc start ntp <host> [<host> | where: mover_name = <name
of the Data Mover> host = <IP address of the time server host>

Note: The host must be running the NTP protocol. Only 4 host entries are allowed.
4. Configure User Mapping on the Data Mover

Before creating CIFS share using VNX driver, you must select a method of mapping Windows SIDs to
UIDs and GIDs. EMC recommends using usermapper in single protocol (CIFS) environment which is
enabled on VNX by default.

To check usermapper status, use this command syntax:

server_usermapper <movername> where: <movername> = <name of the Data Mover>

282 Chapter 3. For operators

https://support.emc.com
https://support.emc.com

Manila Developer Documentation, Release 15.4.2.dev5

If usermapper is not started, the following command can be used to start the usermapper:

server_usermapper <movername> -enable where: <movername> = <name of the Data
Mover>

For multiple protocol environment, refer to Configuring VNX User Mapping on [EMC support site](https:
//support.emc.com) for additional information.

5. Network Connection

In the current release, the share created by VNX driver uses the first network device (physical port on
NIC) of Data Mover to access the network.

Go to Unisphere to check the device list: Settings -> Network -> Settings for File (Unified system only)
-> Device.

Backend Configuration

The following parameters need to be configured in /etc/manila/manila.conf for the VNX driver:

emc_share_backend = vnx emc_nas_server = <IP address> emc_nas_password =
<password> emc_nas_login = <user> emc_nas_server_container = <Data Mover
name> emc_nas_pool_name = <pool name> emc_interface_ports = <Comma sepa-
rated ports list> share_driver = manila.share.drivers.dell_emc.driver EMCShareDriver
driver_handles_share_servers = True

» emc_share_backend is the plugin name. Set it to vix for the VNX driver.
* emc_nas_server is the control station IP address of the VNX system to be managed.

* emc_nas_password and emc_nas_login fields are used to provide credentials to the VNX system.
Only local users of VNX File is supported.

e emc_nas_server_container field is the name of the Data Mover to serve the share service.

* emc_nas_pool_name is the pool name user wants to create volume from. The pools can be created
using Unisphere for VNX.

* emc_interface_ports is comma separated list specifying the ports(devices) of Data Mover that can
be used for share server interface. Members of the list can be Unix-style glob expressions (supports
Unix shell-style wildcards). This list is optional. In the absence of this option, any of the ports on
the Data Mover can be used.

* driver_handles_share_servers must be True, the driver will choose a port from port list which
configured in emc_interface_ports.

Restart of manila-share service is needed for the configuration changes to take effect.

3.2. Administrating Manila 283

https://support.emc.com
https://support.emc.com

Manila Developer Documentation, Release 15.4.2.dev5

IPv6 support

IPv6 support for VNX driver is introduced in Queens release. The feature is divided into two parts:
1. The driver is able to manage share or snapshot in the Neutron IPv6 network.

2. The driver is able to connect VNX management interface using its IPv6 address.

Pre-Configurations for IPv6 support

The following parameters need to be configured in /etc/manila/manila.conf for the VNX driver:
network_plugin_ipv6_enabled = True
* network_plugin_ipv6_enabled indicates IPv6 is enabled.

If you want to connect VNX using IPv6 address, you should configure IPv6 address by nas_cs command
for VNX and specify the address in /etc/manila/manila.conf:

emc_nas_server = <IPv6 address>

Snapshot support

In the Mitaka and Newton release of OpenStack, Snapshot support is enabled by default for a newly
created share type. Starting with the Ocata release, the snapshot_support extra spec must be set to True
in order to allow snapshots for a share type. If the snapshot_support extra_spec is omitted or if it is set
to False, users would not be able to create snapshots on shares of this share type. The feature is divided
into two parts:

1. The driver is able to create/delete snapshot of share.

2. The driver is able to create share from snapshot.

Pre-Configurations for Snapshot support

The following extra specifications need to be configured with share type.
* snapshot_support = True
* create_share_from_snapshot_support = True

For new share type, these extra specifications can be set directly when creating share type:

Or you can update already existing share type with command:

284 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

To snapshot a share and create share from the snapshot

Firstly, you need create a share from share type that has extra specifications(snapshot_support=True,
create_share_from_snapshot_support=True). Then snapshot the share with command:

After creating the snapshot from previous step, you can create share from that snapshot. Use command:

Restrictions

The VNX driver has the following restrictions:

Only IP access type is supported for NFS.
Only user access type is supported for CIFS.
Only FLAT network and VLAN network are supported.

VLAN network is supported with limitations. The Neutron subnets in different VLANs that are
used to create share networks cannot have overlapped address spaces. Otherwise, VNX may have
a problem to communicate with the hosts in the VLANs. To create shares for different VLANs
with same subnet address, use different Data Movers.

The Active Directory security service is the only supported security service type and it is required
to create CIFS shares.

Only one security service can be configured for each share network.

Active Directory domain name of the active_directory security service should be unique even for
different tenants.

The time on Data Mover and the Active Directory domains used in security services should be in
sync (time difference should be less than 10 minutes). It is recommended to use same NTP server
on both the Data Mover and Active Directory domains.

On VNX the snapshot is stored in the SavVols. VNX system allows the space used by SavVol to
be created and extended until the sum of the space consumed by all SavVols on the system exceeds
the default 20% of the total space available on the system. If the 20% threshold value is reached,
an alert will be generated on VNX. Continuing to create snapshot will cause the old snapshot to be
inactivated (and the snapshot data to be abandoned). The limit percentage value can be changed
manually by storage administrator based on the storage needs. Administrator is recommended to
configure the notification on the SavVol usage. Refer to Using VNX SnapSure document on [EMC
support site](https://support.emc.com) for more information.

VNX has limitations on the overall numbers of Virtual Data Movers, filesystems, shares, check-
points, and etc. Virtual Data Mover(VDM) is created by the VNX driver on the VNX to serve
as the manila share server. Similarly, filesystem is created, mounted, and exported from the
VDM over CIFS or NFS protocol to serve as the manila share. The VNX checkpoint serves
as the manila share snapshot. Refer to the NAS Support Matrix document on [EMC support
site](https://support.emc.com) for the limitations and configure the quotas accordingly.

3.2

Administrating Manila 285

https://support.emc.com
https://support.emc.com

Manila Developer Documentation, Release 15.4.2.dev5

The manila.share.drivers.dell_emc.driver Module

EMC specific NAS storage driver. This driver is a pluggable driver that allows specific EMC NAS devices
to be plugged-in as the underlying backend. Use the Manila configuration variable share_backend_name
to specify, which backend plugins to use.

class EMCShareDriver (*args, **kwargs)

Bases: manila.share.driver.ShareDriver
EMC specific NAS driver. Allows for NFS and CIFS NAS storage usage.

allow_access (context, share, access, share_server=None)

Allow access to the share.

check_for_setup_error()

Check for setup error.

create_share (context, share, share_server=None)
Is called to create share.
create_share_from_snapshot (context, share, snapshot, share_server=None,
parent_share=None)

Is called to create share from snapshot.

create_snapshot (context, snapshot, share_server=None)

Is called to create snapshot.

delete_share (context, share, share_server=None)

Is called to remove share.

delete_snapshot (context, snapshot, share_server=None)

Is called to remove snapshot.

deny_access (context, share, access, share_server=None)

Deny access to the share.

do_setup (context)
Any initialization the share driver does while starting.

ensure_share (context, share, share_server=None)

Invoked to sure that share is exported.

extend_share (share, new_size, share_server=None)

Is called to extend share.

get_configured_ip_versions()

Get allowed IP versions.
The supported versions are returned with list, possible values are: [4], [6], or [4, 6]

Drivers that assert ipv6_implemented = True must override this method. If the returned list
includes 4, then shares created by this driver must have an IPv4 export location. If the list
includes 6, then shares created by the driver must have an IPv6 export location.

Drivers should check that their storage controller actually has IPv4/IPv6 enabled and config-
ured properly.

286 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

get_default_filter_function()
Get the default filter_function string.

Each driver could overwrite the method to return a well-known default string if it is available.
Parameters pool pool name to get the filter or None
Returns None

get_network_allocations_number()

Returns number of network allocations for creating VIFs.

get_share_server_network_info (context, share_server, identifier, driver_options)

Obtain network allocations used by share server.
Parameters
* context Current context.
» share_server Share server model.
» identifier A driver-specific share server identifier

» driver_options Dictionary of driver options to assist managing the share
server

Returns A list containing IP addresses allocated in the backend.

Example:

manage_existing(share, driver_options)

manage an existing share

manage_existing_snapshot (snapshot, driver_options)

manage an existing share snapshot

manage_existing_snapshot_with_server (snapshot, driver_options, share_server=None)
manage an existing share snapshot

manage_existing_with_server (share, driver_options, share_server=None)

manage an existing share

manage_server (context, share_server, identifier, driver_options)

Manage the share server and return compiled back end details.
Parameters
* context Current context.
» share_server Share server model.
» identifier A driver-specific share server identifier

» driver_options Dictionary of driver options to assist managing the share
server

Returns Identifier and dictionary with back end details to be saved in the database.

Example:

3.2. Administrating Manila 287

Manila Developer Documentation, Release 15.4.2.dev5

revert_to_snapshot (context, snapshot, share_access_rules, snapshot_access_rules,

share_server=None)

Reverts a share (in place) to the specified snapshot.

Does not delete the share snapshot. The share and snapshot must both be available for the
restore to be attempted. The snapshot must be the most recent one taken by Manila; the API
layer performs this check so the driver doesnt have to.

The share must be reverted in place to the contents of the snapshot. Application admins
should quiesce or otherwise prepare the application for the shared file system contents to
change suddenly.

Parameters
* context Current context
» snapshot The snapshot to be restored
» share_access_rules List of all access rules for the affected share
» snapshot_access_rules List of all access rules for the affected snapshot

» share_server Optional Share server model or None

shrink_share (share, new_size, share_server=None)

Is called to shrink share.

unmanage (share)

Removes the specified share from Manila management.
Does not delete the underlying backend share.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share.

If provided share cannot be unmanaged, then raise an UnmanagelnvalidShare exception,
specifying a reason for the failure.

This method is invoked when the share is being unmanaged with a share type that has
driver_handles_share_servers extra-spec set to False.

unmanage_server (server_details, security_services=None)

Unmanages the share server.

If a driver supports unmanaging of share servers, the driver must override this method and
return successfully.

Parameters
e server_details share server backend details.

* security_services list of security services configured with this share
server.

288

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

unmanage_snapshot (snapshot)
Removes the specified snapshot from Manila management.

Does not delete the underlying backend share snapshot.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share snapshot.

If provided share snapshot cannot be unmanaged, then raise an UnmanagelnvalidShareSnap-
shot exception, specifying a reason for the failure.

This method is invoked when the snapshot that is being unmanaged belongs to a share that
has its share type with driver_handles_share_servers extra-spec set to False.

unmanage_snapshot_with_server (snapshot, share_server=None)
Removes the specified snapshot from Manila management.

Does not delete the underlying backend share snapshot.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share snapshot.

If provided share snapshot cannot be unmanaged, then raise an UnmanagelnvalidShareSnap-
shot exception, specifying a reason for the failure.

This method is invoked when the snapshot that is being unmanaged belongs to a share that
has its share type with driver_handles_share_servers extra-spec set to True.

unmanage_with_server (share, share_server=None)

Removes the specified share from Manila management.
Does not delete the underlying backend share.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share.

If provided share cannot be unmanaged, then raise an UnmanagelnvalidShare exception,
specifying a reason for the failure.

This method is invoked when the share is being unmanaged with a share type that has
driver_handles_share_servers extra-spec set to True.

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access to the share.

The manila.share.drivers.dell_emc.plugins.vnx.connection Module

VNX backend for the EMC Manila driver.

class VNXStorageConnection(*args, **kwargs)
Bases: manila.share.drivers.dell_emc.plugins.base.StorageConnection

Implements VNX specific functionality for EMC Manila driver.

3.2. Administrating Manila 289

Manila Developer Documentation, Release 15.4.2.dev5

allow_access (context, share, access, share_server=None)

Allow access to a share.

check_for_setup_error()

Check for setup error.
clear_access (share, share_server, white_list)
connect (emc_share_driver, context)

Connect to VNX NAS server.

create_share (context, share, share_server=None)

Create a share and export it based on protocol used.

create_share_from_snapshot (context, share, snapshot, share_server=None,
parent_share=None)

Create a share from a snapshot - clone a snapshot.

create_snapshot (context, snapshot, share_server=None)

Create snapshot from share.

delete_share (context, share, share_server=None)

Delete a share.

delete_snapshot (context, snapshot, share_server=None)

Delete a snapshot.

deny_access (context, share, access, share_server=None)

Deny access to a share.

ensure_share (context, share, share_server=None)

Ensure that the share is exported.

extend_share (share, new_size, share_server=None)

Invoked to extend share.
get_managed_ports()
get_network_allocations_number()

Returns number of network allocations for creating VIFs.

get_pool (share)
Get the pool name of the share.

setup_server (network_info, metadata=None)

Set up and configures share server with given network parameters.

teardown_server (server_details, security_services=None)

Teardown share server.

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access rules for given share.

update_share_stats(stats_dict)
Communicate with EMCNASClient to get the stats.

290 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Dell EMC Unity driver

The EMC Shared File Systems service driver framework (EMCShareDriver) utilizes the EMC storage
products to provide the shared file systems to OpenStack. The EMC driver is a plug-in based driver which
is designed to use different plug-ins to manage different EMC storage products.

The Unity plug-in manages the Unity system to provide shared filesystems. The EMC driver framework
with the Unity plug-in is referred to as the Unity driver in this document.

This driver performs the operations on Unity through RESTful APIs. Each backend manages one Storage
Processor of Unity. Configure multiple Shared File Systems service backends to manage multiple Unity
systems.

Requirements

* Unity OE 4.1.x or higher.
* StorOps 1.1.0 or higher is installed on Manila node.
* Following licenses are activated on Unity:

CIFS/SMB Support

Network File System (NFS)

Thin Provisioning

Fiber Channel (FC)

Internet Small Computer System Interface (iSCSI)

Supported shared filesystems and operations

In detail, users are allowed to do following operation with EMC Unity Storage Systems.
* Create/delete a NFS share.
* Create/delete a CIFS share.

¢ Extend the size of a share.

Shrink the size of a share.

Modify the host access privilege of a NFS share.

Modify the user access privilege of a CIFS share.

Create/Delete snapshot of a share.

* Create a new share from snapshot.

Revert a share to a snapshot.

Manage/Unmanage a share server.

Manage/Unmanage a share.

* Manage/Unmanage a snapshot.

3.2. Administrating Manila 291

Manila Developer Documentation, Release 15.4.2.dev5

Supported Network Topologies

¢ Flat

This type is fully supported by Unity share driver, however flat networks are restricted due to the
limited number of tenant networks that can be created from them.

VLAN

We recommend this type of network topology in Manila. In most use cases, VLAN is used to isolate
the different tenants and provide an isolated network for each tenant. To support this function,
an administrator needs to set a slot connected with Unity Ethernet port in Trunk mode or allow
multiple VLANs from the slot.

VXLAN

Unity native VXLAN is still unavailable. However, with the HPB (Hierarchical Port Binding)
in Networking and Shared file system services, it is possible that Unity co-exists with VXLAN
enabled network environment.

Pre-Configurations

On Manila Node

Python library storops is required to run Unity driver. Install it with the pip command. You may need
root privilege to install python libraries.

pip install storops

On Unity System

1. Configure system level NTP server.
Open Unisphere of your Unity system and navigate to:
Select Enable NTP synchronization and add your NTP server(s).
The time on the Unity system and the Active Directory domains used in security services should be
in sync. We recommend using the same N'TP server on both the Unity system and Active Directory
domains.

2. Configure system level DNS server.
Open Unisphere of your Unity system and navigate to:
Select Configure DNS server address manually and add your DNS server(s).

292 Chapter 3. For operators

http://specs.openstack.org/openstack/neutron-specs/specs/kilo/ml2-hierarchical-port-binding.html

Manila Developer Documentation, Release 15.4.2.dev5

Backend configurations

Following configurations need to be configured in /etc/manila/manila.conf for the Unity driver.

» emc_share_backend The plugin name. Set it to unity for the Unity driver.
* emc_nas_server The management IP for Unity.

* unity_server_meta_pool The name of the pool to persist the meta-data of NAS server. This option
is required.

* unity_share_data_pools Comma separated list specifying the name of the pools to be used by
this backend. Do not set this option if all storage pools on the system can be used. Wild card
character is supported.

Examples:

* unity_ethernet_ports Comma separated list specifying the ethernet ports of Unity system that can
be used for share. Do not set this option if all ethernet ports can be used. Wild card character
is supported. Both the normal ethernet port and link aggregation port can be used by Unity
share driver.

Examples:

* driver_handles_share_servers Unity driver requires this option to be as True or False. Need to
set unity_share_server when the value is False.

3.2. Administrating Manila 293

Manila Developer Documentation, Release 15.4.2.dev5

* unity_share_server One of NAS server names in Unity, it is used for share creation when the
driver is in DHSS=False mode.

* report_default filter_function Whether or not report default filter function. Default value is
False. However, this value will be changed to True in a future release to ensure compli-
ance with design expectations in Manila. So we recommend always setting this option in
your deployment to True or False per your desired behavior.

Restart of manila-share service is needed for the configuration changes to take effect.

Supported MTU size

Unity currently only supports 1500 and 9000 as the mtu size, the user can change the above mtu size
from Unity Unisphere:

1. In the Unisphere, go to Settings, Access, and then Ethernet.
2. Double click the ethernet port.
3. Select the MTU size from the drop down list.

The Unity driver will select the port where mtu is equal to the mtu of share network during share server
creation.

IPv6 support

IPv6 support for Unity driver is introduced in Queens release. The feature is divided into two parts:
1. The driver is able to manage share or snapshot in the Neutron IPv6 network.

2. The driver is able to connect Unity management interface using its IPv6 address.

Pre-Configurations for IPv6 support

The following parameters need to be configured in /etc/manila/manila.conf for the Unity driver:
network_plugin_ipv6_enabled = True
* network_plugin_ipv6_enabled indicates IPv6 is enabled.

If you want to connect Unity using IPv6 address, you should configure IPv6 address by /net/if/mgmt
uemcli command, mgmtInterfaceSettings RESTful api or the system settings of Unity GUI for Unity and
specify the address in /etc/manila/manila.conf:

emc_nas_server = <IPv6 address>

294 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Supported share creation in mode that driver does not create and destroy share servers
(DHSS=False)

To create a file share in this mode, you need to:
1. Create NAS server with network interface in Unity system.

2. Setdriver_handles_share_servers=False and unity_share_serverin /etc/manila/manila.conf:

3. Specify the share type with driver_handles_share_servers = False extra specification:

manila type-create False

4. Create share.

manila create --name --
—share-type

Note: Do not specify the share network in share creation command because no share servers will be
created. Driver will use the unity_share_server specified for share creation.

Snapshot support

In the Mitaka and Newton release of OpenStack, Snapshot support is enabled by default for a newly
created share type. Starting with the Ocata release, the snapshot_support extra spec must be set to True
in order to allow snapshots for a share type. If the snapshot_support extra_spec is omitted or if it is set
to False, users would not be able to create snapshots on shares of this share type. The feature is divided
into two parts:

1. The driver is able to create/delete snapshot of share.

2. The driver is able to create share from snapshot.

Pre-Configurations for Snapshot support

The following extra specifications need to be configured with share type.
* snapshot_support = True
* create_share_from_snapshot_support = True

For new share type, these extra specifications can be set directly when creating share type:

manila type-create --snapshot_support True --create_share_from_snapshot_
—support True True

Or you can update already existing share type with command:

3.2. Administrating Manila 295

Manila Developer Documentation, Release 15.4.2.dev5

manila type-key True
manila type-key
- True

To snapshot a share and create share from the snapshot

Firstly, you need create a share from share type that has extra specifications (snapshot_support=True,
create_share_from_snapshot_support=True). Then snapshot the share with command:

manila snapshot-create --name -
—-description

After creating the snapshot from previous step, you can create share from that snapshot. Use command:

manila create nfs --name --metadata snapshot -
—-description --snapshot-id

To manage an existing share server

To manage a share server existing in Unity System, you need to:

1. Create network, subnet, port (ip address of nas server in Unity system) and share network in Open-

Stack.

openstack network create --provider-network-
thpe

openstack subnet create --network
- --subnet-range

openstack port create --network --fixed-ip.
o ,ip-address

port_name --device-owner manila:share

manila share-network-create --name --
—neutron-net-id

--neutron-subnet-id

2. Manage the share server in OpenStack:

manila share-server-manage

—

Note: ${identifier} is the nas server name in Unity system.

296 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

To un-manage a Manila share server

To unmanage a share server existing in OpenStack:

manila share-server-unmanage

To manage an existing share

To manage a share existing in Unity System:
* In DHSS=True mode

Need make sure the related share server is existing in OpenStack, otherwise need to manage share
server first (check the step of Supported Manage share server).

manila manage --
—name --driver_options
--share_type --share_server_id

Note: ${share_server_id} is the id of share server in OpenStack. ${share_type} should
have the property driver_handles_share_servers=True.

¢ In DHSS=False mode

manila manage --
—name --driver_options
--share_type

Note: ${share_type} should have the property driver_handles_share_servers=False.

To un-manage a Manila share

To unmanage a share existing in OpenStack:

manila unmanage

To manage an existing share snapshot

To manage a snapshot existing in Unity System, you need make sure the related share instance is existing
in OpenStack, otherwise need to manage share first (check the step of Supported Manage share).

manila snapshot-manage --name
- --driver_options

3.2. Administrating Manila 297

Manila Developer Documentation, Release 15.4.2.dev5

Note: ${provider_location} is the snapshot name in Unity system. ${share_name} is the
share name or id in OpenStack.

To un-manage a Manila share snapshot

To unmanage a snapshot existing in OpenStack:

manila snapshot-unmanage

Supported security services

Unity share driver provides IP based authentication method support for NFS shares and user based
authentication method for CIFS shares respectively. For CIFS share, Microsoft Active Directory is the
only supported security service.

10 Load balance

The Unity driver automatically distributes the file interfaces per storage processor based on the
option unity_ethernet_ports. This balances 1O traffic. The recommended configuration for
unity_ethernet_ports specifies balanced ports per storage processor. For example:

Default filter function

Unity does not support the file system creation with size smaller than 3GB, if the size of share user create
is smaller than 3GB, Unity driver will supplement the size to 3GB in Unity.

Unity driver implemented the get_default_filter_function API to report the default filter function, if the
share size is smaller than 3GB, Manila will not schedule the share creation to Unity backend.

Unity driver provides an option report_default_filter_function to disable or enable the filter
function reporting, the default value is disabled.

Restrictions

The Unity driver has following restrictions.
¢ EMC Unity does not support the same IP in different VLANS.
* Only IP access type is supported for NFS.
* Only user access type is supported for CIFS.

298 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

API Implementations

Following driver features

are implemented in the plugin.

* create_share: Create a share and export it based on the protocol used (NFS or CIFS).

* create_share_from_snapshot: Create a share from a snapshot - clone a snapshot.

¢ delete_share: Delete a share.

e extend_share: Extend the maximum size of a share.

e shrink share: Shrink the minimum size of a share.

* create_snapshot: Create a snapshot for the specified share.

¢ delete_snapshot: Delete the snapshot of the share.

* update_access: rec

over, add or delete user/host access to a share.

* allow_access: Allow access (read write/read only) of a user to a CIFS share. Allow access (read

write/read only) of

a host to a NFS share.

* deny_access: Remove access (read write/read only) of a user from a CIFS share. Remove access
(read write/read only) of a host from a NFS share.

e ensure_share: Check whether share exists or not.

* update_share_stats

: Retrieve share related statistics from Unity.

* get_network_allocations_number: Returns number of network allocations for creating VIFs.

* setup_server: Set up and configures share server with given network parameters.

e teardown_server: Tear down the share server.

* revert_to_snapshot: Revert a share to a snapshot.

» get_default_filter_function: Report a default filter function.

Driver options

Configuration options specific to this driver:

Table 8: Description of Dell EMC Unity share driver configuration

option

S

Configuration op-
tion = Default value

Description

[DEFAULT]

unity_ethernet_por
= None

t&list) Comma separated list of ports that can be used for share server inter-
faces. Members of the list can be Unix-style glob expressions.

unity_server_meta_|
= None

pStting) Pool to persist the meta-data of NAS server.

unity_share_data_p
= None

odlist) Comma separated list of pools that can be used to persist share data.

unity_share_server
= None

One of NAS server names in Unity, it is used for share creation when the
driver is in DHSS=False mode..

3.2. Administrating Manila 299

Manila Developer Documentation, Release 15.4.2.dev5

Generic approach for share provisioning

The Shared File Systems service can be configured to use Nova VMs and Cinder volumes. Using this
driver, Manila will use SSH to configure the shares on the service virtual machine instance.

The following options may be specified in the manila.conf configuration file:

Additionally, this driver supports both DHSS=False and DHSS=True. Depending on which one you use,
you need to specify different configuration options in your manila.conf configuration file.

e With DHSS=False:

* With DHSS=True:

(continues on next page)

300 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Name of service instance. Only used if
driver_handles_share_servers=True. (string value)
#service_instance_name_template = manila_service_instance_%s

Keypair name that will be created and used for service instances.
Only used if driver_handles_share_servers=True. (string value)
#manila_service_keypair_name = manila-service

Path to hosts public key. Only used if
driver_handles_share_servers=True. (string value)
#path_to_public_key = ~/.ssh/id_rsa.pub

Security group name, that will be used for service instance

creation. Only used if driver_handles_share_servers=True. (string
value)

#service_instance_security_group = manila-service

ID of flavor, that will be used for service instance creation. Only
used if driver_handles_share_servers=True. (string value)
#service_instance_flavor_id = 100

Name of manila service network. Used only with Neutron. Only used if
driver_handles_share_servers=True. (string value)
#service_network_name = manila_service_network

CIDR of manila service network. Used only with Neutron and if
driver_handles_share_servers=True. (string value)
#service_network_cidr = 10.254.0.0/16

This mask is used for dividing service network into subnets, IP

capacity of subnet with this mask directly defines possible amount
of created service VMs per tenant's subnet. Used only with Neutron
and if driver_handles_share_servers=True. (integer value)
#service_network_division_mask = 28

Module path to the Virtual Interface (VIF) driver class. This option
is used only by drivers operating in
‘driver_handles_share_servers=True' mode that provision OpenStack
compute instances as share servers. This option is only supported
with Neutron networking. Drivers provided in tree work with Linux
Bridge (manila.network.linux.interface.BridgeInterfaceDriver) and
OVS (manila.network.linux.interface.OVSInterfaceDriver). If the

manila-share service is running on a host that is connected to the

administrator network, a no-op driver

(manila.network.linux.interface.NoopInterfaceDriver) may be used.

(string value)

#interface_driver = manila.network.linux.interface.OVSInterfaceDriver

(continues on next page)

3.2. Administrating Manila 301

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Configuring the right options depends on the network layout of your setup, see next section for more
details.

Network configurations

If using DHSS=True, there are two possible network configurations that can be chosen for share provi-
sioning using this driver:

» Service VM has one NIC connected to a network that connects to a public router. This is, the
service VM will be connected to a static administrative network created beforehand by an ad-
ministrator. This approach is valid in flat network topologies, where a single Neutron network is
defined for all projects (no tenant networks).

» Service VM has two NICs, first one connected to service network, second one connected directly
to users network. This is, in a tenant-networks-enabled Neutron deployment, manila will create a
dedicated network for the share.

Depending on the setup, specific configuration options are required in the manila.conf file.

In particular, if you are using only a static administrative network, you need the following:

302 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Requirements for service image

Linux based distro

NFS server

Samba server >=3.2.0, that can be configured by data stored in registry

SSH server

Two net interfaces configured to DHCP (see network approaches)

exportfs and net conf libraries used for share actions

Following files will be used, so if their paths differ one needs to create at least symlinks for them:
— /etc/exports (permanent file with NFS exports)
— /var/lib/nfs/etab (temporary file with NFS exports used by exportfs)
— /etc/fstab (permanent file with mounted filesystems)

— /etc/mtab (temporary file with mounted filesystems used by mount)

Supported shared filesystems

NFS (access by IP)
CIFS (access by IP)

Known restrictions

One of Novas configurations only allows 26 shares per server. This limit comes from the maximum
number of virtual PCI interfaces that are used for block device attaching. There are 28 virtual PCI
interfaces, in this configuration, two of them are used for server needs and other 26 are used for
attaching block devices that are used for shares.

Juno version works only with Neutron. Each share should be created with neutron-net and neutron-
subnet IDs provided via share-network entity.

Juno version handles security group, flavor, image, keypair for Nova VM and also creates service
networks, but does not use availability zones for Nova VMs and volume types for Cinder block
devices.

Juno version does not use security services data provided with share-network. These data will be
just ignored.

Liberty version adds a share extend capability. Share access will be briefly interrupted during an
extend operation.

Liberty version adds a share shrink capability, but this capability is not effective because generic
driver shrinks only filesystem size and doesnt shrink the size of Cinder volume.

Modifying network-related configuration options, such as service_network_cidr or
service_network_division_mask, after manila has already created some shares using
those options is not supported.

3.2

Administrating Manila 303

Manila Developer Documentation, Release 15.4.2.dev5

Using Windows instances

While the generic driver only supports Linux instances, you may use the Windows SMB driver when
Windows VMs are preferred.

For more details, please check out the following page: Windows SMB driver.

The manila.share.drivers.generic Module

Generic Driver for shares.

class GenericShareDriver (*args, **kwargs)

Bases: manila.share.driver.ExecuteMixin, manila.share.driver.ShareDriver
Executes commands relating to Shares.

check_for_setup_error()

Returns an error if prerequisites arent met.

create_share (context, *args, **kwargs)

Is called to create share.

create_share_from_snapshot (context, *args, **kwargs)

Is called to create share from snapshot.

Creating a share from snapshot can take longer than a simple clone operation if data copy is
required from one host to another. For this reason driver will be able complete this creation
asynchronously, by providing a creating_from_snapshot status in the model update.

When answering asynchronously, drivers must implement the call get_share_status in order
to provide updates for shares with creating_from_snapshot status.

It is expected that the driver returns a model update to the share manager that contains: share
status and a list of export_locations. A list of export_locations is mandatory only for share
in available status. The current supported status are available and creating_from_snapshot.

Parameters
e context Current context

e share Share instance model with share data.

snapshot Snapshot instance model .
e share_server Share server model or None.

» parent_share Share model from parent snapshot with share data and share
server model.

Returns

a dictionary of updates containing current share status and its export_location
(if available).

Example:

304 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Raises ShareBackendException. A ShareBackendException in this method will
set the instance to error and the operation will end.

create_snapshot (context, snapshot, share_server=None)

Creates a snapshot.

delete_share(context, share, share_server=None)

Deletes share.

delete_snapshot (context, snapshot, share_server=None)

Deletes a snapshot.

do_setup (context)

Any initialization the generic driver does while starting.

ensure_share (context, *args, **kwargs)

Invoked to ensure that share is exported.

Driver can use this method to update the list of export locations of the share if it changes. To
do that, you should return list with export locations.

Returns None or list with export locations

extend_share (context, *args, **kwargs)

Extends size of existing share.
Parameters
» share Share model
* new_size New size of share (new_size > share[size])
» share_server Optional Share server model

get_network_allocations_number()

Get number of network interfaces to be created.

manage_existing(share, driver_options)

Manage existing share to manila.

Generic driver accepts only one driver_option volume_id. If an administrator provides this
option, then appropriate Cinder volume will be managed by Manila as well.

Parameters

» share share data

» driver_options Empty dict or dict with volume_id option.
Returns dict with share size, example: {size: 1}

manage_existing_snapshot (snapshot, driver_options)
Manage existing share snapshot with manila.

3.2. Administrating Manila 305

Manila Developer Documentation, Release 15.4.2.dev5

Parameters

* snapshot Snapshot data

» driver_options Not used by the Generic driver currently
Returns dict with share snapshot size, example: {size: 1}

shrink_share (context, *args, **kwargs)

Shrinks size of existing share.

If consumed space on share larger than new_size driver should raise ShareShrinkingPossi-
bleDatalLoss exception: raise ShareShrinkingPossibleDatalLoss(share_id=share[id])

Parameters
» share Share model
* new_size New size of share (new_size < share[size])
» share_server Optional Share server model
:raises ShareShrinkingPossibleDatal.oss, NotImplementedError

unmanage_snapshot (snapshot)
Unmanage share snapshot with manila.

update_access (context, *args, **kwargs)

Update access rules for given share.

access_rules contains all access_rules that need to be on the share. If the driver can make
bulk access rule updates, it can safely ignore the add_rules and delete_rules parameters.

If the driver cannot make bulk access rule changes, it can rely on new rules to be present in
add_rules and rules that need to be removed to be present in delete_rules.

When a rule in delete_rules was never applied, drivers must not raise an exception, or
attempt to set the rule to error state.

add_rules and delete_rules can be empty lists, in this situation, drivers should ensure
that the rules present in access_rules are the same as those on the back end. One scenario
where this situation is forced is when the access_level is changed for all existing rules (share
migration and for readable replicas).

Drivers must be mindful of this call for share replicas. When update_access is called on one
of the replicas, the call is likely propagated to all replicas belonging to the share, especially
when individual rules are added or removed. If a particular access rule does not make sense
to the driver in the context of a given replica, the driver should be careful to report a correct
behavior, and take meaningful action. For example, if R/W access is requested on a replica
that is part of a readable type replication; R/O access may be added by the driver instead
of R/W. Note that raising an exception will result in the access_rules_status on the replica,
and the share itself being out_of_sync. Drivers can sync on the valid access rules that are
provided on the create_replica and promote_replica calls.

Parameters
e context Current context
e share Share model with share data.

* access_rules A list of access rules for given share

306 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* add_rules Empty List or List of access rules which should be added. ac-
cess_rules already contains these rules.

* delete_rules Empty List or List of access rules which should be removed.
access_rules doesnt contain these rules.

» share_server None or Share server model
Returns

None, or a dictionary of updates in the format:

09960614-8574-4¢03-89cf-7cf267b0bd08: {

access_key: alice31493e5441b8171d2310d80e37e, state: error,
5,
28f6eabb-4342-486a-a7f4-45688f0c0295: {

access_key: bob0078aa042d5a7325480fd13228b, state: active,

b
}

The top level keys are access_id fields of the access rules that need to be updated.
access_key ‘s are credentials (str) of the entities granted access.
Any rule in the " “access_rules parameter can be updated.

Important: Raising an exception in this method will force all rules in applying and denying
states to error.

An access rule can be set to error state, either explicitly via this return parameter or because
of an exception raised in this method. Such an access rule will no longer be sent to the driver
on subsequent access rule updates. When users deny that rule however, the driver will be
asked to deny access to the client/s represented by the rule. We expect that a rule that was
error-ed at the driver should never exist on the back end. So, do not fail the deletion request.

Also, it is possible that the driver may receive a request to add a rule that is already present
on the back end. This can happen if the share manager service goes down while the driver is
committing access rule changes. Since we cannot determine if the rule was applied success-
fully by the driver before the disruption, we will treat all applying transitional rules as new
rules and repeat the request.

ensure_server(f)

3.2. Administrating Manila 307

Manila Developer Documentation, Release 15.4.2.dev5

The manila.share.drivers.service_instance Module

Module for managing nova instances for share drivers.

class BaseNetworkhelper (service_instance_manager)

Bases: object

abstract property NAME
Returns code name of network helper.

abstract get_network_name (network_info)

Returns name of network for service instance.

abstract setup_connectivity_with_service_instances()

Sets up connectivity between Manila host and service instances.

abstract setup_network (nerwork_info)

Sets up network for service instance.

abstract teardown_network(server_details)

Teardowns network resources provided for service instance.

class NeutronNetworkHelper (service_instance_manager)

Bases: manila.share.drivers.service_instance.BaseNetworkhelper

property NAME

Returns code name of network helper.
property admin_project_id
get_network_name (network_info)
Returns name of network for service instance.
property neutron_api
property service_network_id
setup_connectivity_with_service_instances()
Sets up connectivity with service instances.

Creates host port in service network and/or admin network, creating and setting up required
network devices.

setup_network (network_info)

Sets up network for service instance.

teardown_network (server_details)

Teardowns network resources provided for service instance.

class ServicelInstanceManager (driver_config=None)
Bases: object

Manages nova instances for various share drivers.
This class provides following external methods:

1. set_up_service_instance: creates instance and sets up share infrastructure.

308 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

2. ensure_service_instance: ensure service instance is available.
3. delete_service_instance: removes service instance and network infrastructure.

delete_service_instance(context, server_details)

Removes share infrastructure.
Deletes service v and subnet, associated to share network.

ensure_service_instance (context, server)

Ensures that server exists and active.
get_common_server ()
get_config_option(key)

Returns value of config option.

Parameters key key of config option.

Returns str value of configs option. first priority is drivers config, second priority
is global config.

property network_helper
reboot_server (server, soft_reboot=False)

set_up_service_instance (context, network_info)
Finds or creates and sets up service vm.
Parameters
e context defines context, that should be used
» network_info network info for getting allocations
Returns dict with service instance details
Raises exception.ServicelnstanceException

wait_for_instance_to_be_active (instance_id, timeout)

GlusterFS driver

GlusterFS driver uses GlusterFS, an open source distributed file system, as the storage backend for serving
file shares to manila clients.

Supported shared filesystems

* NFS (access by IP)

3.2. Administrating Manila 309

Manila Developer Documentation, Release 15.4.2.dev5

Supported Operations

* Create share
* Delete share
¢ Allow share access (rw)
* Deny share access
* With volume layout:
— Create snapshot
— Delete snapshot

— Create share from snapshot

Requirements

* Install glusterfs-server package, version >= 3.5.x, on the storage backend.

* Install NFS-Ganesha, version >=2.1, if using NFS-Ganesha as the NFS server for the GlusterFS
backend.

* Install glusterfs and glusterfs-fuse package, version >=3.5.x, on the manila host.

* Establish network connection between the manila host and the storage backend.

Manila driver configuration setting

The following parameters in the manilas configuration file need to be set:
* share_driver = manila.share.drivers.glusterfs.GlusterfsShareDriver
The following configuration parameters are optional:

* glusterfs_nfs_server_type = <NFS server type used by the GlusterFS backend, Gluster or
Ganesha. Gluster is the default type>

* glusterfs_share_layout = <share layout used>; cf. Layouts
* glusterfs_path_to_private_key = <path to manila hosts private key file>
* glusterfs_server_password = <password of remote GlusterFS server machine>

If Ganesha NFS serveris used (glusterfs_nfs_server_type = Ganesha), then by default the Gane-
sha server is supposed to run on the manila host and is managed by local commands. If its deployed
somewhere else, then its managed via ssh, which can be configured by the following parameters:

* glusterfs_ganesha_server_ip
* glusterfs_ganesha_server_username
* glusterfs_ganesha_server_password

In lack of glusterfs_ganesha_server_password ssh access will fall back to key based authentica-
tion, using the key specified by glusterfs_path_to_private_key, or, in lack of that, a key at one of
the OpenSSH-style default key locations (~/.ssh/id_{r,d,ecd}sa).

310 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Layouts have also their set of parameters, see Layouts about that.

Layouts

New in Liberty, multiple share layouts can be used with glusterfs driver. A layout is a strategy of allocating
storage from GlusterFS backends for shares. Currently there are two layouts implemented:

* directory mapped layout (or directory layout, or dir layout for short): a share is backed by top-level
subdirectories of a given GlusterFS volume.

Directory mapped layout is the default and backward compatible with Kilo. The follow-
ing setting explicitly specifies its usage: glusterfs_share_layout = layout_directory.
GlusterfsDirectoryMappedLayout.

Options:

— glusterfs_target: address of the volume that hosts the directories. If its of the format <gluster-
volserver>:/<glustervolid>, then the manila host is expected to be part of the GlusterFS clus-
ter of the volume and GlusterFS management happens through locally calling the gluster
utility. If its of the format <username> @ <glustervolserver>:/<glustervolid>, then we ssh
to <username> @ <glustervolserver> to execute gluster (<username> is supposed to have
administrative privileges on <glustervolserver=).

— glusterfs_mount_point_base = <base path of GlusterFS volume mounted on manila
host> (optional; defaults to $state_path/mnt, where $state_path defaults to /var/1ib/
manila)

Limitations:
— directory layout does not support snapshot operations.

* volume mapped layout (or volume layout, or vol layout for short): a share is backed by a whole
GlusterFS volume.

Volume mapped layout is new in Liberty. It can be chosen by setting glusterfs_share_layout
= layout_volume.GlusterfsVolumeMappedLayout.

Options (required):
— glusterfs_servers
— glusterfs_volume_pattern

Volume mapped layout is implemented as a common backend of the glusterfs and glusterfs-native
drivers; see the description of these options in GlusterFS Native driver: Manila driver configura-
tion setting.

3.2. Administrating Manila 311

Manila Developer Documentation, Release 15.4.2.dev5

Gluster NFS with volume mapped layout

A special configuration choice is

that is, Gluster NFS used to export whole volumes.

All other GlusterFS backend configurations (including GlusterFS set up with glusterfs-native) require
the nfs.export-volumes = off GlusterFS setting. Gluster NFS with volume layout requires nfs.
export-volumes = on. nfs.export-volumes is a cluster-wide setting, so a given GlusterFS cluster
cannot host a share backend with Gluster NFS + volume layout and other share backend configurations
at the same time.

There is another caveat with nfs.export-volumes: setting it to on without enough care is a secu-
rity risk, as the default access control for the volume exports is allow all. For this reason, while the
nfs.export-volumes = off setting is automatically set by manila for all other share backend config-
urations, nfs.export-volumes = on is not set by manila in case of a Gluster NFS with volume layout
setup. Its left to the GlusterFS admin to make this setting in conjunction with the associated safeguards
(that is, for those volumes of the cluster which are not used by manila, access restrictions have to be
manually configured through the nfs.rpc-auth-{allow,reject} options).

Known Restrictions

* The driver does not support network segmented multi-tenancy model, but instead works over a flat
network, where the tenants share a network.

* If NFS Ganesha is the NFS server used by the GlusterFS backend, then the shares can be accessed
by NFSv3 and v4 protocols. However, if Gluster NFS is used by the GlusterFS backend, then the
shares can only be accessed by NFSv3 protocol.

* All manila shares, which map to subdirectories within a GlusterFS volume, are currently created
within a single GlusterFS volume of a GlusterFS storage pool.

* The driver does not provide read-only access level for shares.

* Assume that share S is exported through Gluster NFS, and tenant machine T has mounted S. If
at this point access of T to S is revoked through access-deny, the pre-existing mount will be still
usable and T will still be able to access the data in S as long as that mount is in place. (This
violates the principle Access deny should always result in immediate loss of access to the share,
see http://lists.openstack.org/pipermail/openstack-dev/2015-July/069109.html.)

The manila.share.drivers.glusterfs Module

Flat network GlusterFS Driver.

Manila shares are subdirectories within a GlusterFS volume. The backend, a GlusterFS cluster, uses
one of the two NFS servers, Gluster-NFS or NFS-Ganesha, based on a configuration option, to mediate
access to the shares. NFS-Ganesha server supports NFSv3 and v4 protocols, while Gluster-NFS server
supports only NFSv3 protocol.

TODO(rraja): support SMB protocol.

312 Chapter 3. For operators

http://lists.openstack.org/pipermail/openstack-dev/2015-July/069109.html

Manila Developer Documentation, Release 15.4.2.dev5

class GaneshaNFSHelper (execute, config_object, **kwargs)

Bases: manila.share.drivers.ganesha.GaneshaNASHelper
get_export (share)
init_helper()
Initializes protocol-specific NAS drivers.
shared_data = {}
update_access (base_path, share, add_rules, delete_rules, recovery=False)
Update access rules.

class GlusterNFSHelper (execute, config_object, **kwargs)

Bases: manila.share.drivers.ganesha.NASHelperBase

Manage shares with Gluster-NFS server.

get_export (share)

supported_access_levels = ('rw',)

supported_access_types = ('ip',)

update_access (base_path, share, add_rules, delete_rules, recovery=False)
Update access rules.

class GlusterNFSVolHelper (execute, config_object, **kwargs)

Bases: manila.share.drivers.glusterfs.GlusterNFSHelper
Manage shares with Gluster-NFS server, volume mapped variant.

update_access (base_path, share, add_rules, delete_rules, recovery=False)

Update access rules.

class GlusterfsShareDriver (*args, **kwargs)

Bases: manila.share.driver.ExecuteMixin, manila.share.driver.GaneshaMixin,
manila.share.drivers.glusterfs.layout.GlusterfsShareDriverBase

Execute commands relating to Shares.

GLUSTERFS_VERSION_MIN = (3, 5)

check_for_setup_error()

Check for setup error.

do_setup (context)

Any initialization the share driver does while starting.

get_network_allocations_number()

Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

3.2. Administrating Manila 313

Manila Developer Documentation, Release 15.4.2.dev5

property supported_access_levels
property supported_access_types

supported_layouts = ('layout_directory.GlusterfsDirectoryMappedLayout’,
'layout_volume.GlusterfsVolumeMappedLayout')

supported_protocols = ('NFS',)

GlusterFS Native driver

GlusterFS Native driver uses GlusterFS, an open source distributed file system, as the storage backend
for serving file shares to manila clients.

A manila share is a GlusterFS volume. This driver uses flat-network (share-server-less) model. Instances
directly talk with the GlusterFS backend storage pool. The instances use glusterfs protocol to mount the
GlusterFS shares. Access to each share is allowed via TLS Certificates. Only the instance which has the
TLS trust established with the GlusterFS backend can mount and hence use the share. Currently only rw
access is supported.

Network Approach

L3 connectivity between the storage backend and the host running the manila share service should exist.

Supported shared filesystems

* GlusterFS (share protocol: glusterfs, access by TLS certificates (cert access type))

Multi-tenancy model

The driver does not support network segmented multi-tenancy model. Instead multi-tenancy is supported
using tenant specific TLS certificates.

Supported Operations

* Create share

* Delete share

¢ Allow share access (rw)
* Deny share access

* Create snapshot

* Delete snapshot

* Create share from snapshot

314 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

* Install glusterfs-server package, version >= 3.6.x, on the storage backend.
* Install glusterfs and glusterfs-fuse package, version >=3.6.x, on the manila host.

» Establish network connection between the manila host and the storage backend.

Manila driver configuration setting

The following parameters in manilas configuration file need to be set:
* share_driver = manila.share.drivers.glusterfs.glusterfs_native.GlusterfsNativeShareDriver

* glusterfs_servers = List of GlusterFS servers which provide volumes that can be used to create
shares. The servers are expected to be of distinct Gluster clusters (ie. should not be gluster
peers). Each server should be of the form [<remoteuser>@]<glustervolserver>.

The optional <remoteuser>@ part of the server URI indicates SSH access for cluster man-
agement (see related optional parameters below). If it is not given, direct command line
management is performed (ie. manila host is assumed to be part of the GlusterFS cluster the
server belongs to).

o glusterfs_volume_pattern = Regular expression template used to filter GlusterFS volumes for
share creation. The regex template can contain the #{size} parameter which matches a num-
ber (sequence of digits) and the value shall be interpreted as size of the volume in GB. Ex-
amples: manila-share-volume-\d+$, manila-share-volume-#{size}G-\d+$; with
matching volume names, respectively: manila-share-volume-12, manila-share-volume-3G-
13. In latter example, the number that matches #{size}, that is, 3, is an indication that the
size of volume is 3G.

The following configuration parameters are optional:
* glusterfs_mount_point_base = <base path of GlusterFS volume mounted on manila host>
o glusterfs_path_to_private_key = <path to manila hosts private key file>

* glusterfs_server_password = <password of remote GlusterFS server machine>

Host and backend configuration

* SSL/TLS should be enabled on the I/O path for GlusterFS servers and volumes involved
(ie. omes specified in glusterfs_servers), as described in https://docs.gluster.org/en/latest/
Administrator%20Guide/SSL/. (Enabling SSL/TLS for the management path is also possible but
not recommended currently.)

e The manila host should be also configured for GlusterFS SSL/TLS (ie.
/etc/ssl/glusterfs.{pem, key,ca} files has to be deployed as the above document specifies).

* There is a further requirement for the CA-s used: the set of CA-s involved should be consensual,
ie. Jetc/ssl/glusterfs.ca should be identical across all the servers and the manila host.

* There is a further requirement for the common names (CN-s) of the certificates used: the certifi-
cates of the servers should have a common name starting with glusterfs-server, and the certificate
of the host should have common name starting with manila-host.

3.2. Administrating Manila 315

https://docs.gluster.org/en/latest/Administrator%20Guide/SSL/
https://docs.gluster.org/en/latest/Administrator%20Guide/SSL/

Manila Developer Documentation, Release 15.4.2.dev5

* To support snapshots, bricks that consist the GlusterFS volumes used by manila should be thinly

provisioned LVM ones (cf. https://gluster.readthedocs.org/en/latest/ Administrator%20Guide/
Managing%?20Snapshots/).

Known Restrictions

* GlusterFS volumes are not created on demand. A pre-existing set of GlusterFS volumes should

be supplied by the GlusterFS cluster(s), conforming to the naming convention encoded by
glusterfs_volume_pattern. However, the GlusterFS endpoint is allowed to extend this set any
time (so manila and GlusterFS endpoints are expected to communicate volume supply/demand out-
of-band). glusterfs_volume_pattern can include a size hint (with #{size} syntax), which,
if present, requires the GlusterFS end to indicate the size of the shares in GB in the name. (On
share creation, manila picks volumes at least as big as the requested one.)

Certificate setup (aka trust setup) between instance and storage backend is out of band of manila.

For manila to use GlusterFS volumes, the name of the trashcan directory in GlusterFS volumes
must not be changed from the default.

The manila.share.drivers.glusterfs.glusterfs_native.GlusterfsNativeShareDriver
Module

GlusterFS native protocol (glusterfs) driver for shares.

Manila share is a GlusterFS volume. Unlike the generic driver, this does not use service VM approach.
Instances directly talk with the GlusterFS backend storage pool. Instance use the glusterfs protocol to
mount the GlusterFS share. Access to the share is allowed via SSL Certificates. Only the instance which
has the SSL trust established with the GlusterFS backend can mount and hence use the share.

Supports working with multiple glusterfs volumes.

class GlusterfsNativeShareDriver (*args, **kwargs)

Bases: manila.share.driver.ExecuteMixin, manila.share.drivers.glusterfs.
layout.GlusterfsShareDriverBase

GlusterFS native protocol (glusterfs) share driver.
Executes commands relating to Shares. Supports working with multiple glusterfs volumes.
API version history:

1.0 - Initial version. 1.1 - Support for working with multiple gluster volumes.
GLUSTERFS_VERSION_MIN = (3, 6)
get_network_allocations_number()

Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

supported_layouts = ('layout_volume.GlusterfsVolumeMappedLayout',)

316

Chapter 3. For operators

https://gluster.readthedocs.org/en/latest/Administrator%20Guide/Managing%20Snapshots/
https://gluster.readthedocs.org/en/latest/Administrator%20Guide/Managing%20Snapshots/

Manila Developer Documentation, Release 15.4.2.dev5

supported_protocols = ('GLUSTERFS',)

CephFS driver

The CephFS driver enables manila to export shared filesystems backed by Cephs File System (CephFS)
using either the Ceph network protocol or NFS protocol. Guests require a native Ceph client or an NFS
client in order to mount the filesystem.

When guests access CephFS using the native Ceph protocol, access is controlled via Cephs cephx au-
thentication system. If a user requests share access for an ID, Ceph creates a corresponding Ceph auth
ID and a secret key if they do not already exist, and authorizes the ID to access the share. The client can
then mount the share using the ID and the secret key. To learn more about configuring Ceph clients to
access the shares created using this driver, please see the Ceph documentation

And when guests access CephFS through NFS, an NFS-Ganesha server mediates access to CephFS. The
driver enables access control by managing the NFS-Ganesha servers exports.

Supported Operations

The following operations are supported with CephFS backend:

* Create, delete, update and list share

* Allow/deny access to share
— Only cephx access type is supported for CephFS native protocol.
— Only ip access type is supported for NFS protocol.
— read-only and read-write access levels are supported.

* Extend/shrink share

* Create, delete, update and list snapshot

* Create, delete, update and list share groups

Delete and list share group snapshots

Important: Share group snapshot creation is no longer supported in mainline CephFS. This feature has
been removed from manila W release.

Prerequisites

Important: A manila share backed by CephFS is only as good as the underlying filesystem. Take care
when configuring your Ceph cluster, and consult the latest guidance on the use of CephFS in the Ceph
documentation.

3.2. Administrating Manila 317

https://docs.ceph.com/docs/nautilus/cephfs/
https://docs.ceph.com/docs/nautilus/cephfs/
https://docs.ceph.com/docs/nautilus/cephfs/

Manila Developer Documentation, Release 15.4.2.dev5

Ceph testing matrix

As Ceph and Manila continue to grow, it is essential to test and support combinations of releases sup-
ported by both projects. However, there is little community bandwidth to cover all of them. For simplicity
sake, we are focused on testing (and therefore supporting) the current Ceph active releases. Check out
the list of Ceph active releases here.

Below is the current state of testing for Ceph releases with this project. Adjacent components such
as devstack-plugin-ceph and tripleo are added to the table below. Contributors to those projects can
determine what versions of ceph are tested and supported with manila by those components; however,
their state is presented here for ease of access.

Important: From the Victoria cycle, the Manila CephFS driver is not tested or supported with Ceph
clusters older than Nautilus. Future releases of Manila may be incompatible with Nautilus too! We
suggest always running the latest version of Manila with the latest release of Ceph.

OpenStack release | manila devstack-plugin-ceph | tripleo
Queens Luminous | Luminous Luminous
Rocky Luminous | Luminous Luminous
Stein Nautilus Luminous, Nautilus Nautilus
Train Nautilus Luminous, Nautilus Nautilus
Ussuri Nautilus Luminous, Nautilus Nautilus
Victoria Nautilus Nautilus, Octopus Nautilus
Wallaby Octopus Nautilus, Octopus Pacific

Additionally, it is expected that the version of the Ceph client available to manila is aligned with the Ceph
server version. Mixing server and client versions is strongly unadvised.

In case of using the NFS Ganesha driver, its also a good practice to use the versions that align with the
Ceph version of choice.

Important: Its recommended to install the latest stable version of Ceph Nautilus/Octopus/Pacific re-
lease. See, Ceph releases

Prior to upgrading to Wallaby, please ensure that youre running at least the following versions of Ceph:

Release | Minimum version
Nautilus | 14.2.20

Octopus | 15.2.11

Pacific 16.2.1

318 Chapter 3. For operators

https://docs.ceph.com/en/latest/releases/general/
https://opendev.org/openstack/devstack-plugin-ceph
https://opendev.org/openstack/tripleo-heat-templates
https://docs.ceph.com/en/latest/releases/index.html

Manila Developer Documentation, Release 15.4.2.dev5

Common Prerequisites

* A Ceph cluster with a filesystem configured (See Create ceph filesystem on how to create a filesys-
tem.)

* python3-rados and python3-ceph-argparse packages installed in the servers running the
manila-share service.

* Network connectivity between your Ceph clusters public network and the servers running the
manila-share service.

For CephFS native shares

* Ceph client installed in the guest

» Network connectivity between your Ceph clusters public network and guests. See Security with
CephFS native share backend.

For CephFS NFS shares

* 3.0 or later versions of NFS-Ganesha.
* NFS client installed in the guest.
» Network connectivity between your Ceph clusters public network and NFS-Ganesha server.

* Network connectivity between your NFS-Ganesha server and the manila guest.

Authorizing the driver to communicate with Ceph

Capabilities required for the Ceph manila identity have changed from the Wallaby release. The Ceph
manila identity configured no longer needs any MDS capability. The MON and OSD capabilities can be
reduced as well. However new MGR capabilities are now required. If not accorded, the driver cannot
communicate to the Ceph Cluster.

Important: The driver in the Wallaby (or later) release requires a Ceph identity with a different set of
Ceph capabilities when compared to the driver in a pre-Wallaby release.

When upgrading to Wallaby youll also have to update the capabilities of the Ceph identity used by the
driver (refer to Ceph user capabilities docs) E.g. a native driver that already uses client.manila Ceph
identity, issue command ceph auth caps client.manila mon allow r mgr allow rw

For the CephFS Native driver, the auth ID should be set as follows:

For the CephFS NFS driver, we use a specific pool to store exports (configurable with the config option
ganesha_rados_store_pool_name). We also need to specify osd caps for it. So, the auth ID should be set
as follows:

3.2. Administrating Manila 319

https://docs.ceph.com/docs/nautilus/cephfs/createfs/
https://docs.ceph.com/en/octopus/rados/operations/user-management/#modify-user-capabilities

Manila Developer Documentation, Release 15.4.2.dev5

manila.keyring, along with your ceph.conf file, will then need to be placed on the server running
the manila-share service.

Important: To communicate with the Ceph backend, a CephFS driver instance (represented as a back-
end driver section in manila.conf) requires its own Ceph auth ID that is not used by other CephFS driver
instances running in the same controller node.

In the server running the manila-share service, you can place the ceph. conf and manila.keyring files
in the /etc/ceph directory. Set the same owner for the manila-share process and the manila.keyring
file. Add the following section to the ceph. conf file.

Itis advisable to modify the Ceph clients admin socket file and log file locations so that they are co-located
with manila servicess pid files and log files respectively.

Enabling snapshot support in Ceph backend

CephFS Snapshots were experimental prior to the Nautilus release of Ceph. There may be some limita-
tions on snapshots based on the Ceph version you use.

From Ceph Nautilus, all new filesystems created on Ceph have snapshots enabled by default. If youve
upgraded your ceph cluster and want to enable snapshots on a pre-existing filesystem, you can do so:

Configuring CephFS backend in manila.conf
Configure CephFS native share backend in manila.conf

Add CephFS to enabled_share_protocols (enforced at manila api layer). In this example we leave
NFS and CIFS enabled, although you can remove these if you will only use a CephFS backend:

Create a section like this to define a CephFS native backend:

320 Chapter 3. For operators

https://docs.ceph.com/docs/nautilus/cephfs/experimental-features/#snapshots
https://docs.ceph.com/docs/nautilus/cephfs/experimental-features/#snapshots

Manila Developer Documentation, Release 15.4.2.dev5

Set driver-handles-share-servers to False as the driver does not manage the lifecycle of
share-servers. For the driver backend to expose shares via the native Ceph protocol, set
cephfs_protocol_helper_type to CEPHFS.

Then edit enabled_share_backends to point to the drivers backend section using the section name.
In this example we are also including another backend (genericl), you would include whatever other
backends you have configured.

Finally, edit cephfs_filesystem_name with the name of the Ceph filesystem (also referred to as a
CephFS volume) you want to use. If you have more than one Ceph filesystem in the cluster, you need to
set this option.

Configure CephFS NFS share backend in manila.conf

Note: Prior to configuring the Manila CephFS driver to use NFS, you must have installed and configured
NFS-Ganesha. For guidance on configuration, refer to the NFS-Ganesha setup guide.

Add NFS to enabled_share_protocols if its not already there:

Create a section to define a CephFS NFS share backend:

The following options are set in the driver backend section above:

3.2. Administrating Manila 321

../contributor/ganesha.html#nfs-ganesha-configuration

Manila Developer Documentation, Release 15.4.2.dev5

* driver-handles-share-servers to False as the driver does not manage the lifecycle of
share-servers.

* cephfs_protocol_helper_type to NFS to allow NFS protocol access to the CephFS backed
shares.

* ceph_auth_id to the ceph auth ID created in Authorizing the driver to communicate with Ceph.

* cephfs_ganesha_server_is_remote to False if the NFS-ganesha server is co-located with the
manila-share service. If the NFS-Ganesha server is remote, then set the options to True, and
set other options such as cephfs_ganesha_server_ip, cephfs_ganesha_server_username,
and cephfs_ganesha_server_password (or cephfs_ganesha_path_to_private_key) to
allow the driver to manage the NFS-Ganesha export entries over SSH.

* cephfs_ganesha_server_ip to the ganesha server IP address. It is recommended to set this
option even if the ganesha server is co-located with the manila-share service.

* ganesha_rados_store_enable to True or False. Setting this option to True allows NFS Gane-
sha to store exports and its export counter in Ceph RADOS objects. We recommend setting this to
True and using a RADOS object since it is useful for highly available NFS-Ganesha deployments
to store their configuration efficiently in an already available distributed storage system.

* ganesha_rados_store_pool_name to the name of the RADOS pool you have created for use
with NFS-Ganesha. Set this option only if also setting the ganesha_rados_store_enable op-
tion to True. If you want to use one of the backend CephFSs RADOS pools, then using CephFSs
data pool is preferred over using its metadata pool.

Edit enabled_share_backends to point to the drivers backend section using the section name,
cephfsnfsl.

Finally, edit cephfs_filesystem_name with the name of the Ceph filesystem (also referred to as a
CephFS volume) you want to use. If you have more than one Ceph filesystem in the cluster, you need to
set this option.

Space considerations

The CephFS driver reports total and free capacity available across the Ceph cluster to manila to allow
provisioning. All CephFS shares are thinly provisioned, i.e., empty shares do not consume any significant
space on the cluster. The CephFS driver does not allow controlling oversubscription via manila. So, as
long as there is free space, provisioning will continue, and eventually this may cause your Ceph cluster
to be over provisioned and you may run out of space if shares are being filled to capacity. It is advised
that you use Cephs monitoring tools to monitor space usage and add more storage when required in order
to honor space requirements for provisioned manila shares. You may use the driver configuration option
reserved_share_percentage to prevent manila from filling up your Ceph cluster, and allow existing
shares to grow.

322 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Creating shares
Create CephFS native share

The default share type may have driver_handles_share_servers set to True. Configure a share type
suitable for CephFS native share:

Then create a share,

Note the export location of the share:

The export location of the share contains the Ceph monitor (mon) addresses and ports, and the path
to be mounted. It is of the form, {mon ip addr:port}[,{mon ip addr:port}]:{path to be
mounted}

Create CephFS NFS share

Configure a share type suitable for CephFS NFS share:

Then create a share:

Note the export location of the share:

The export location of the share contains the IP address of the NFS-Ganesha server and the path to be
mounted. It is of the form, {NFS-Ganesha server address}:{path to be mounted}

Allowing access to shares
Allow access to CephFS native share

Allow Ceph auth ID alice access to the share using cephx access type.

Note the access status, and the access/secret key of alice.

3.2. Administrating Manila 323

Manila Developer Documentation, Release 15.4.2.dev5

Allow access to CephFS NFS share

Allow a guest access to the share using ip access type.

Mounting CephFS shares
Mounting CephFS native share using FUSE client

Using the secret key of the authorized ID alice create a keyring file, alice.keyring like:

Using the mon IP addresses from the shares export location, create a configuration file, ceph. conf like:

Finally, mount the filesystem, substituting the filenames of the keyring and configuration files you just
created, and substituting the path to be mounted from the shares export location:

Mounting CephFS native share using Kernel client

If you have the ceph-common package installed in the client host, you can use the kernel client to mount
CephFS shares.

Important: If you choose to use the kernel client rather than the FUSE client the share size limits set
in manila may not be obeyed in versions of kernel older than 4.17 and Ceph versions older than mimic.
See the quota limitations documentation to understand CephFS quotas.

The mount command is as follows:

324 Chapter 3. For operators

https://docs.ceph.com/docs/nautilus/cephfs/quota/#limitations

Manila Developer Documentation, Release 15.4.2.dev5

With our earlier examples, this would be:

Mount CephFS NFS share using NFS client

In the guest, mount the share using the NFS client and knowing the shares export location.

Known restrictions

* A CephFS driver instance, represented as a backend driver section in manila.conf, requires a Ceph
auth ID unique to the backend Ceph Filesystem. Using a non-unique Ceph auth ID will result in
the driver unintentionally evicting other CephFS clients using the same Ceph auth ID to connect
to the backend.

* Snapshots are read-only. A user can read a snapshots contents from the .snap/
{manila-snapshot-id}_{unknown-id} folder within the mounted share.

Security

* Each shares data is mapped to a distinct Ceph RADOS namespace. A guest is restricted to access
only that particular RADOS namespace. https://docs.ceph.com/docs/nautilus/cephfs/file-layouts/

* An additional level of resource isolation can be provided by mapping a shares contents to a separate
RADOS pool. This layout would be preferred only for cloud deployments with a limited number
of shares needing strong resource separation. You can do this by setting a share type specification,
cephfs:data_isolated for the share type used by the cephfs driver.

Security with CephFS native share backend

As the guests need direct access to Cephs public network, CephFS native share backend is suitable only
in private clouds where guests can be trusted.

3.2. Administrating Manila 325

https://docs.ceph.com/docs/nautilus/cephfs/file-layouts/

Manila Developer Documentation, Release 15.4.2.dev5

The manila.share.drivers.cephfs.driver Module

class CephFSDriver (*args, **kwargs)

Bases: manila.share.driver.ExecuteMixin, manila.share.driver.GaneshaMixin,
manila.share.driver.ShareDriver

Driver for the Ceph Filesystem.
property ceph_mon_version
check_for_setup_error()

Returns an error if prerequisites arent met.

create_share (context, share, share_server=None)

Create a CephFS volume.
Parameters
» context A RequestContext.
» share A Share.
» share_server Always None for CephFS native.
Returns The export locations dictionary.

create_share_from_snapshot (context, share, snapshot, share_server=None,
parent_share=None)

Create a CephFS subvolume from a snapshot

create_share_group (context, sg_dict, share_server=None)

Create a share group.
Parameters
e context

» share_group_dict The share group details EXAMPLE: { sta-
tus: creating, project_id: 13c0be6290934bd98596cfa004650049, user_id:
a0314a441ca842019b0952224aa39192, description: None, deleted: False,
created_at: datetime.datetime(2015, 8, 10, 15, 14, 6), updated_at: None,
source_share_group_snapshot_id: some_fake uuid, share_group_type_id:
some_fake uuid, host: hostname@backend_name, share_network_id:
None, share_server_id: None, deleted_at: None, share_types: [<mod-
els.ShareGroupShareTypeMapping>], id: some_fake_uuid, name: None }

Returns (share_group_model_update, share_update_list)
share_group_model_update - a dict containing any values to be updated
for the SG in the database. This value may be None.

create_share_group_snapshot (context, snap_dict, share_server=None)

Create a share group snapshot.
Parameters
* context

* snap_dict The share group snapshot details EXAMPLE: .. code:

326 Chapter 3. For operators

mailto:'hostname@backend_name

Manila Developer Documentation, Release 15.4.2.dev5

Returns

(share_group_snapshot_update, member_update_list)
share_group_snapshot_update - a dict containing any values to be updated for
the CGSnapshot in the database. This value may be None.

member_update_list - a list of dictionaries containing for every member of the
share group snapshot. Each dict should contains values to be updated for the
ShareGroupSnapshotMember in the database. This list may be empty or None.

create_snapshot (context, snapshot, share_server=None)

Is called to create snapshot.
Parameters

e context Current context

3.2. Administrating Manila 327

Manila Developer Documentation, Release 15.4.2.dev5

» snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

» share_server Share server model or None.

Returns None or a dictionary with key export_locations containing a list of export
locations, if snapshots can be mounted.

delete_share (context, share, share_server=None)

Is called to remove share.

delete_share_group (context, sg_dict, share_server=None)
Delete a share group

Parameters
* context The request context

» share_group_dict The share group details EXAMPLE: .. code:

Returns share_group_model_update share_group_model_update - a dict contain-
ing any values to be updated for the group in the database. This value may be
None.

delete_share_group_snapshot (context, snap_dict, share_server=None)
Delete a share group snapshot

Parameters
e context

* snap_dict The share group snapshot details EXAMPLE: .. code:

(continues on next page)

328 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Returns (share_group_snapshot_update, member_update_list)
share_group_snapshot_update - a dict containing any values to be up-
dated for the ShareGroupSnapshot in the database. This value may be
None.

delete_snapshot (context, snapshot, share_server=None)

Is called to remove snapshot.
Parameters
e context Current context

» snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

* share_server Share server model or None.

do_setup (context)

Any initialization the share driver does while starting.

3.2. Administrating Manila 329

Manila Developer Documentation, Release 15.4.2.dev5

ensure_share (context, share, share_server=None)

Invoked to ensure that share is exported.

Driver can use this method to update the list of export locations of the share if it changes. To
do that, you should return list with export locations.

Returns None or list with export locations

extend_share (share, new_size, share_server=None)

Extends size of existing share.
Parameters
e share Share model
* new_size New size of share (new_size > share[size])
» share_server Optional Share server model

get_configured_ip_versions()

Get allowed IP versions.
The supported versions are returned with list, possible values are: [4], [6], or [4, 6]

Drivers that assert ipv6_implemented = True must override this method. If the returned list
includes 4, then shares created by this driver must have an IPv4 export location. If the list
includes 6, then shares created by the driver must have an IPv6 export location.

Drivers should check that their storage controller actually has IPv4/IPv6 enabled and config-
ured properly.

get_share_status(share, share_server=None)

Returns the current status for a share.
Parameters
» share a manila share.
» share_server a manila share server (not currently supported).
Returns manila share status.
property rados_client
setup_default_ceph_cmd_target()
shrink_share(share, new_size, share_server=None)
Shrinks size of existing share.

If consumed space on share larger than new_size driver should raise ShareShrinkingPossi-
bleDatal.oss exception: raise ShareShrinkingPossibleDatalLoss(share_id=share[id])

Parameters
» share Share model
* new_size New size of share (new_size < share[size])
» share_server Optional Share server model

:raises ShareShrinkingPossibleDatal.oss, NotImplementedError

330 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access rules for given share.

access_rules contains all access_rules that need to be on the share. If the driver can make
bulk access rule updates, it can safely ignore the add_rules and delete_rules parameters.

If the driver cannot make bulk access rule changes, it can rely on new rules to be present in
add_rules and rules that need to be removed to be present in delete_rules.

When a rule in delete_rules was never applied, drivers must not raise an exception, or
attempt to set the rule to error state.

add_rules and delete_rules can be empty lists, in this situation, drivers should ensure
that the rules present in access_rules are the same as those on the back end. One scenario
where this situation is forced is when the access_level is changed for all existing rules (share
migration and for readable replicas).

Drivers must be mindful of this call for share replicas. When update_access is called on one
of the replicas, the call is likely propagated to all replicas belonging to the share, especially
when individual rules are added or removed. If a particular access rule does not make sense
to the driver in the context of a given replica, the driver should be careful to report a correct
behavior, and take meaningful action. For example, if R/W access is requested on a replica
that is part of a readable type replication; R/O access may be added by the driver instead
of R/W. Note that raising an exception will result in the access_rules_status on the replica,
and the share itself being out_of_sync. Drivers can sync on the valid access rules that are
provided on the create_replica and promote_replica calls.

Parameters
* context Current context
» share Share model with share data.
» access_rules A list of access rules for given share

* add_rules Empty List or List of access rules which should be added. ac-
cess_rules already contains these rules.

* delete_rules Empty List or List of access rules which should be removed.
access_rules doesnt contain these rules.

» share_server None or Share server model
Returns

None, or a dictionary of updates in the format:

09960614-8574-4e03-89cf-7cf267b0bd08: {

access_key: alice31493e5441b8171d2310d80e37e, state: error,
5,
28t6eabb-4342-486a-a7f4-45688f0c0295: {

access_key: bob0078aa042d5a7325480fd13228b, state: active,

)

3.2. Administrating Manila 331

Manila Developer Documentation, Release 15.4.2.dev5

}

The top level keys are access_id fields of the access rules that need to be updated.
access_key "s are credentials (str) of the entities granted access.
Any rule in the " “access_rules parameter can be updated.

Important: Raising an exception in this method will force all rules in applying and denying
states to error.

An access rule can be set to error state, either explicitly via this return parameter or because
of an exception raised in this method. Such an access rule will no longer be sent to the driver
on subsequent access rule updates. When users deny that rule however, the driver will be
asked to deny access to the client/s represented by the rule. We expect that a rule that was
error-ed at the driver should never exist on the back end. So, do not fail the deletion request.

Also, it is possible that the driver may receive a request to add a rule that is already present
on the back end. This can happen if the share manager service goes down while the driver is
committing access rule changes. Since we cannot determine if the rule was applied success-
fully by the driver before the disruption, we will treat all applying transitional rules as new
rules and repeat the request.

property volname

class NFSClusterProtocolHelper (execute, config_object, **kwargs)

Bases: manila.share.drivers.cephfs.driver.NFSProtocolHelperMixin, manila.
share.drivers.ganesha.NASHelperBase

check_for_setup_error()

Returns an error if prerequisites arent met.

property nfs_clusterid

supported_access_levels = ('rw', 'ro')

supported_access_types = ('ip"',)

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)
Update access rules of share.

Creates an export per share. Modifies access rules of shares by dynamically updating exports
via ceph nfs.

class NFSProtocolHelper (execute, config_object, **kwargs)

Bases: manila.share.drivers.cephfs.driver.NFSProtocolHelperMixin, manila.
share.drivers.ganesha.GaneshaNASHelper?2

check_for_setup_error()

Returns an error if prerequisites arent met.

shared_data = {}
supported_protocols = ('NFS',)

class NFSProtocolHelperMixin
Bases: object

332 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

get_configured_ip_versions()
get_export_locations (share, subvolume_path)

class NativeProtocolHelper (execute, config, **kwargs)
Bases: manila.share.drivers.ganesha.NASHelperBase
Helper class for native CephFS protocol

check_for_setup_error()

Returns an error if prerequisites arent met.

get_configured_ip_versions()
get_export_locations (share, subvolume_path)
get_mon_addrs()

supported_access_levels = ('rw', 'ro')
supported_access_types = ('cephx',)

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access rules of share.

exception RadosError

Bases: Exception
Something went wrong talking to Ceph with librados

rados_command (rados_client, prefix=None, args=None, json_obj=False, target=None, inbuf=None)

Safer wrapper for ceph_argparse.json_command
Raises error exception instead of relying on caller to check return codes.
Error exception can result from: * Timeout * Actual legitimate errors * Malformed JSON output

return: If json_obj is True, return the decoded JSON object from ceph, or None if empty
string returned. If json is False, return a decoded string (the data returned by ceph command)

setup_json_command ()

setup_rados()

GPFS Driver

GPFS driver uses IBM General Parallel File System (GPFS), a high-performance, clustered file system,
developed by IBM, as the storage backend for serving file shares to the manila clients.

3.2. Administrating Manila 333

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems

* NFS (access by IP)

Supported Operations

¢ Create NFS Share

Delete NFS Share

* Create Share Snapshot

Delete Share Snapshot

* Create Share from a Share Snapshot

Allow NFS Share access

— Currently only rw access level is supported

Deny NFS Share access

Requirements

* Install GPFS with server license, version >= 2.0, on the storage backend.
* Install Kernel NFS or Ganesha NFS server on the storage backend servers.
* If using Ganesha NFS, currently NFS Ganesha v1.5 and v2.0 are supported.

* Create a GPFS cluster and create a filesystem on the cluster, that will be used to create the manila
shares.

* Enable quotas for the GPFS file system (mmchfs -Q yes).

* Establish network connection between the manila host and the storage backend.

Manila driver configuration setting

The following parameters in the manila configuration file need to be set:
* share_driver = manila.share.drivers.ibm.gpfs.GPFSShareDriver
* gpfs_share_export_ip = <IP to be added to GPFS export string>

* If the backend GPFS server is not running on the manila host machine, the following options are
required to SSH to the remote GPFS backend server:

— gpfs_ssh_login = <GPFS server SSH login name>
and one of the following settings is required to execute commands over SSH:
— gpfs_ssh_private_key = <path to GPFS server SSH private key for login>
— gpfs_ssh_password = <GPFS server SSH login password>
The following configuration parameters are optional:

* gpfs_mount_point_base = <base folder where exported shares are located>

334 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* gpfs_nfs_server_type = <KNFS|GNFS>
* gpfs_nfs_server_list = <list of the fully qualified NFS server names>
* gpfs_ssh_port = <ssh port number>

Restart of manila-share service is needed for the configuration changes to take effect.

Known Restrictions

* The driver does not support a segmented-network multi-tenancy model but instead works over a
flat network where the tenants share a network.

* While using remote GPFS node, with Ganesha NFS, gpfs_ssh_private_key for remote login to
the GPFS node must be specified and there must be a passwordless authentication already setup
between the manila share service and the remote GPFS node.

The manila.share.drivers.ibm.gpfs Module

GPFS Diriver for shares.

Config Requirements: GPFS file system must have quotas enabled (mmchfs -Q yes).
Notes: GPFS independent fileset is used for each share.

TODO(nileshb): add support for share server creation/deletion/handling.

Limitation: While using remote GPFS node, with Ganesha NFS, gpfs_ssh_private_key for remote login
to the GPFS node must be specified and there must be a passwordless authentication already setup
between the Manila share service and the remote GPFS node.

class CESHelper (execute, config_object)
Bases: manila.share.drivers.ibm.gpfs.NASHelperBase

Wrapper for NFS by Spectrum Scale CES

allow_access (local_path, share, access)
Allow access to the host.

deny_access (local_path, share, access, force=False)

Deny access to the host.

get_access_option(access)
Get access option string based on access level.
remove_export (local_path, share)
Remove export.
resync_access (local_path, share, access_rules)
Re-sync all access rules for given share.

class GPFSShareDriver (*args, **kwargs)

Bases: manila.share.driver.ExecuteMixin, manila.share.driver.GaneshaMixin,
manila.share.driver.ShareDriver

GPEFS Share Driver.

3.2. Administrating Manila 335

Manila Developer Documentation, Release 15.4.2.dev5

Executes commands relating to Shares. Supports creation of shares on a GPFS cluster.
API version history:

1.0 - Initial version. 1.1 - Added extend_share functionality 2.0 - Added CES support
for NFS Ganesha
check_for_setup_error()

Returns an error if prerequisites arent met.

create_share (ctx, share, share_server=None)
Create GPFS directory that will be represented as share.
create_share_from_snapshot (ctx, share, snapshot, share_server=None,
parent_share=None)

Is called to create share from a snapshot.

create_snapshot (context, snapshot, share_server=None)
Creates a snapshot.

delete_share(ctx, share, share_server=None)

Remove and cleanup share storage.

delete_snapshot (context, snapshot, share_server=None)
Deletes a snapshot.

do_setup (context)

Any initialization the share driver does while starting.

ensure_share (ctx, share, share_server=None)

Ensure that storage are mounted and exported.

extend_share (share, new_size, share_server=None)

Extends the quota on the share fileset.

get_network_allocations_number()

Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

manage_existing(share, driver_options)

Brings an existing share under Manila management.

If the provided share is not valid, then raise a ManagelnvalidShare exception, specifying a
reason for the failure.

If the provided share is not in a state that can be managed, such as being replicated on the
backend, the driver MUST raise ManagelnvalidShare exception with an appropriate message.

The share has a share_type, and the driver can inspect that and compare against the proper-
ties of the referenced backend share. If they are incompatible, raise a ManageExistingShare-
TypeMismatch, specifying a reason for the failure.

This method is invoked when the share is being managed with a share type that has
driver_handles_share_servers extra-spec set to False.

336

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Parameters
» share Share model
» driver_options Driver-specific options provided by admin.

Returns share_update dictionary with required key size, which should contain size
of the share.

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access rules for given share.

class KNFSHelper (execute, config_object)

Bases: manila.share.drivers.ibm.gpfs.NASHelperBase
Wrapper for Kernel NFS Commands.

allow_access(local_path, share, access, error_on_exists=True)

Allow access to one or more vm instances.

deny_access (local_path, share, access)

Remove access for one or more vm instances.

get_access_option(access)

Get access option string based on access level.

remove_export (local_path, share)
Remove export.

resync_access (local_path, share, access_rules)

Re-sync all access rules for given share.

class NASHelperBase (execute, config_object)
Bases: object

Interface to work with share.

abstract allow_access(local_path, share, access)

Allow access to the host.

create_export (local_path)

Construct location of new export.

abstract deny_access(local_path, share, access)

Deny access to the host.

abstract get_access_option(access)

Get access option string based on access level.

get_export_options(share, access, helper)
Get the export options.

abstract remove_export (local_path, share)

Remove export.

abstract resync_access(local_path, share, access_rules)

Re-sync all access rules for given share.

3.2. Administrating Manila 337

Manila Developer Documentation, Release 15.4.2.dev5

Huawei Driver

Huawei NAS Driver is a plugin based the OpenStack manila service. The Huawei NAS Driver can be
used to provide functions such as the share and snapshot for virtual machines(instances) in OpenStack.
Huawei NAS Driver enables the OceanStor V3 series V300R002 storage system to provide only network
filesystems for OpenStack.

Requirements

* The OceanStor V3 series V300R002 storage system.

* The following licenses should be activated on V3 for File:
- CIFS
- NFS

— HyperSnap License (for snapshot)

Supported Operations

The following operations is supported on V3 storage:

* Create CIFS/NFS Share

* Delete CIFS/NFS Share

* Allow CIFS/NFS Share access
— IP and USER access types are supported for NFS(ro/rw).
— Only USER access type is supported for CIFS(ro/rw).

* Deny CIFS/NFS Share access

* Create snapshot

* Delete snapshot

* Manage CIFS/NFS share

 Support pools in one backend

» Extend share

* Shrink share

* Support multi RestURLs(<RestURL>)

* Support multi-tenancy

* Ensure share

* Create share from snapshot

* Support QoS

338 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Pre-Configurations on Huawei

1. Create a driver configuration file. The driver configuration file name must be the same as the
manila_huawei_conf_file item in the manila_conf configuration file.

2. Configure Product. Product indicates the storage system type. For the OceanStor V3 series V300R002
storage systems, the driver configuration file is as follows:

<?xml version='1].0' encoding='UTF-8'?>
<Config>
<Storage>
<Product>V3</Product>
<LogicalPortIP>x.x.x.x</LogicalPortIP>
<Port>abc;CTE®.A.H1</Port>
<RestURL>https://x.x.x.x:8088/deviceManager/rest/;
https://x.x.x.x:8088/deviceManager/rest/</RestURL>
<UserName>xxxxxxxxx</UserName>
<UserPassword>xxxxxxxxx</UserPassword>
</Storage>
<Filesystem>
<StoragePool>xxxxxxxxx</StoragePool>
<SectorSize>64</SectorSize>
<WaitInterval>3</WaitInterval>
<Timeout>60</Timeout>
<NFSClient>
<IP>x.x.x.x</IP>
</NFSClient>
<CIFSClient>
<UserName>xxxxxxxxx</UserName>
<UserPassword>xxxxxxxxx</UserPassword>
</CIFSClient>
</Filesystem>
</Config>

* Product is a type of a storage product. Set it to V3.

LogicalPortIP is an IP address of the logical port.

Port is a port name list of bond port or ETH port, used to create vlan and logical port. Multi Ports
can be configured in <Port>(separated by ;). If <Port> is not configured, then will choose an online
port on the array.

* RestURL is an access address of the REST interface. Multi RestURLs can be configured in
<RestURL>(separated by ;). When one of the RestURL failed to connect, driver will retry an-
other automatically.

e UserName is a user name of an administrator.

» UserPassword is a password of an administrator.

StoragePool is a name of a storage pool to be used.

SectorSize is the size of the disk blocks, optional value can be 4, 8, 16, 32 or 64, and the units is KB.
If sectorsize is configured in both share_type and xml file, the value of sectorsize in the share_type

3.2. Administrating Manila 339

Manila Developer Documentation, Release 15.4.2.dev5

will be used. If sectorsize is configured in neither share_type nor xml file, huawei storage backends
will provide a default value(64) when creating a new share.

* Waitinterval is the interval time of querying the file system status.

* Timeout is the timeout period for waiting command execution of a device to complete.

* NFSClientIP is the backend IP in admin network to use for mounting NFS share.

* CIFSClientUserName is the backend user name in admin network to use for mounting CIFS share.

* CIFSClientUserPassword is the backend password in admin network to use for mounting CIFS
share.

Backend Configuration

Modify the manila.conf manila configuration file and add share_driver and manila_huawei_conf_file
items. Example for configuring a storage system:

e share_driver = manila.share.drivers.huawei.huawei_nas.HuaweiNasDriver
* manila_huawei_conf _file = /etc/manila/manila_huawei_conf.xml

e driver_handles_share_servers = True or False

Note:

» If driver_handles_share_servers is True, the driver will choose a port in <Port> to create vlan and
logical port for each tenant network. And the share type with the DHSS extra spec should be set
to True when creating shares.

* If driver_handles_share_servers is False, then will use the IP in <LogicalPortIP>. Also the share
type with the DHSS extra spec should be set to False when creating shares.

Restart of manila-share service is needed for the configuration changes to take effect.

Share Types

When creating a share, a share type can be specified to determine where and how the share will be created.
If a share type is not specified, the default_share_type set in the manila configuration file is used.

Manila requires that the share type includes the driver_handles_share_servers extra-spec. This ensures
that the share will be created on a backend that supports the requested driver_handles_share_servers
(share networks) capability. For the Huawei driver, this must be set to False.

To create a share on a backend with a specific type of disks, include the huawei_disk_type extra-spec in
the share type. Valid values for this extra-spec are ssd, sas, nl_sas or mix. This share will be created on
a backend with a matching disk type.

Another common manila extra-spec used to determine where a share is created is share_backend_name.
When this extra-spec is defined in the share type, the share will be created on a backend with a matching
share backend_name.

340 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Manila share types may contain qualified extra-specs, -extra-specs that have significance for the backend
driver and the CapabilityFilter. This commit makes the Huawei driver report the following boolean
capabilities:

* capabilities:dedupe
* capabilities:compression
* capabilities:thin_provisioning
* capabilities:huawei_smartcache
— huawei_smartcache:cachename
* capabilities:huawei_smartpartition
— huawei_smartpartition:partitionname

* capabilities:qos

gos:maxIOPS

gos:minlOPS

gos:minbandwidth

gos:maxbandwidth

gos:latency

gos:iotype
* capabilities:huawei_sectorsize

The scheduler will choose a host that supports the needed capability when the CapabilityFilter is used
and a share type uses one or more of the following extra-specs:

* capabilities:dedupe=<is> True or <is> False
* capabilities:compression=<is> True or <is> False
* capabilities:thin_provisioning=<is> True or <is> False
* capabilities:huawei_smartcache=<is> True or <is> False
— huawei_smartcache:cachename=test_cache_name
* capabilities:huawei_smartpartition=<is> True or <is> False
— huawei_smartpartition:partitionname=test_partition_name
* capabilities:qos=<is> True or <is> False
gos:maxIOPS=100
gos:minlOPS=10

gos:maxbandwidth=100

gos:minbandwidth=10

gos:latency=10

qos:iotype=0

* capabilities:huawei_sectorsize=<is> True or <is> False

3.2. Administrating Manila 341

Manila Developer Documentation, Release 15.4.2.dev5

— huawei_sectorsize:sectorsize=4
* huawei_disk_type=ssd or sas or nl_sas or mix
thin_provisioning will be reported as [True, False] for Huawei backends.
dedupe will be reported as [True, False] for Huawei backends.
compression will be reported as [True, False] for Huawei backends.

huawei_smartcache will be reported as [True, False] for Huawei backends. Adds SSDs into a high-speed
cache pool and divides the pool into multiple cache partitions to cache hotspot data in random and small
read I/Os.

huawei_smartpartition will be reported as [True, False] for Huawei backends. Add share to the smartpar-
tition named test_partition_name. Allocates cache resources based on service characteristics, ensuring
the quality of critical services.

qos will be reported as True for backends that use QoS (Quality of Service) specification.
huawei_sectorsize will be reported as [True, False] for Huawei backends.

huawei_disk_type will be reported as ssd, sas, nl_sas or mix for Huawei backends.

Restrictions

The Huawei driver has the following restrictions:
* [P and USER access types are supported for NFS.
* Only LDAP domain is supported for NFS.
* Only USER access type is supported for CIFS.
* Only AD domain is supported for CIFS.

The manila.share.drivers.huawei.huawei_nas Module

Huawei Nas Driver for Huawei storage arrays.

class HuaweiNasDriver (*args, **kwargs)
Bases: manila.share.driver.ShareDriver

Huawei Share Driver.

Executes commands relating to Shares. Driver version history:

(continues on next page)

342 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

allow_access (context, share, access, share_server=None)

Allow access to the share.

check_for_setup_error()

Returns an error if prerequisites arent met.

create_replica(context, replica_list, new_replica, access_rules, replica_snapshots,
share_server=None)

Replicate the active replica to a new replica on this backend.

create_share (context, share, share_server=None)

Create a share.

create_share_from_snapshot (context, share, snapshot, share_server=None,
parent_share=None)

Create a share from snapshot.

create_snapshot (context, snapshot, share_server=None)

Create a snapshot.

delete_replica(context, replica_list, replica_snapshots, replica, share_server=None)

Delete a replica.

delete_share (context, share, share_server=None)

Delete a share.

delete_snapshot (context, snapshot, share_server=None)

Delete a snapshot.

deny_access (context, share, access, share_server=None)

Deny access to the share.

do_setup (context)

Any initialization the huawei nas driver does while starting.

ensure_share (context, share, share_server=None)

Ensure that share is exported.

extend_share (share, new_size, share_server=None)

Extends size of existing share.
Parameters
» share Share model
e new_size New size of share (new_size > share[size])
» share_server Optional Share server model

get_backend_driver()

3.2. Administrating Manila 343

Manila Developer Documentation, Release 15.4.2.dev5

get_network_allocations_number()

Get number of network interfaces to be created.

get_pool (share)

Return pool name where the share resides on.

manage_existing(share, driver_options)
Manage existing share.

manage_existing_snapshot (snapshot, driver_options)

Manage existing snapshot.

promote_replica (context, replica_list, replica, access_rules, share_server=None)

Promote a replica to active replica state..

revert_to_snapshot (context, snapshot, share_access_rules, snapshot_access_rules,
share_server=None)

Reverts a share (in place) to the specified snapshot.

Does not delete the share snapshot. The share and snapshot must both be available for the
restore to be attempted. The snapshot must be the most recent one taken by Manila; the API
layer performs this check so the driver doesnt have to.

The share must be reverted in place to the contents of the snapshot. Application admins
should quiesce or otherwise prepare the application for the shared file system contents to
change suddenly.

Parameters
* context Current context
* snapshot The snapshot to be restored
» share_access_rules List of all access rules for the affected share
» snapshot_access_rules List of all access rules for the affected snapshot
» share_server Optional Share server model or None

shrink_share (share, new_size, share_server=None)

Shrinks size of existing share.
update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access rules list.

update_replica_state(context, replica_list, replica, access_rules, replica_snapshots,
share_server=None)

Update the replica_state of a replica.

344 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

HDFS native driver

HDEFS native driver is a plugin based on the OpenStack manila service, which uses Hadoop distributed
file system (HDFS), a distributed file system designed to hold very large amounts of data, and provide
high-throughput access to the data.

A manila share in this driver is a subdirectory in hdfs root directory. Instances talk directly to the HDFS
storage backend with hdfs protocol. And access to each share is allowed by user based access type, which
is aligned with HDFS ACLs to support access control of multiple users and groups.

Network configuration

The storage backend and manila hosts should be in a flat network, otherwise, the L3 connectivity between
them should exist.

Supported shared filesystems

* HDFS (authentication by user)

Supported Operations

* Create HDFS share

* Delete HDFS share

* Allow HDFS Share access * Only support user access type * Support level of access (ro/rw)
* Deny HDFS Share access

* Create snapshot

* Delete snapshot

* Create share from snapshot

¢ Extend share

Requirements

* Install HDFS package, version >= 2.4.x, on the storage backend
* To enable access control, the HDFS file system must have ACLs enabled

* Establish network connection between the manila host and storage backend

3.2. Administrating Manila 345

Manila Developer Documentation, Release 15.4.2.dev5

Manila driver configuration

e share_driver = manila.share.drivers.hdfs.hdfs_native. HDFSNativeShareDriver

* hdfs_namenode_ip = the IP address of the HDFS namenode, and only single namenode is
supported now

* hdfs_namenode_port = the port of the HDFS namenode service
* hdfs_ssh_port = HDFS namenode SSH port
* hdfs_ssh_name = HDFS namenode SSH login name

* hdfs_ssh_pw = HDFS namenode SSH login password, this parameter is not necessary, if the
following hdfs_ssh_private_key is configured

* hdfs_ssh_private_key = Path to the HDFS namenode private key to ssh login

Known Restrictions

* This driver does not support network segmented multi-tenancy model. Instead multi-tenancy is
supported by the tenant specific user authentication

* Only support for single HDFS namenode in Kilo release

The manila.share.drivers.hdfs.hdfs_native Module

HDFS native protocol (hdfs) driver for manila shares.

Manila share is a directory in HDFS. And this share does not use service VM instance (share server).
The instance directly talks to the HDFS cluster.

The initial version only supports single namenode and flat network.
Configuration Requirements: To enable access control, HDFS file system must have ACLs enabled.

class HDFSNativeShareDriver (*args, **kwargs)
Bases: manila.share.driver.ExecuteMixin, manila.share.driver.ShareDriver

HDEFS Share Driver.
Executes commands relating to shares. API version history:
1.0 - Initial Version

allow_access (context, share, access, share_server=None)

Allows access to the share for a given user.

check_for_setup_error()

Return an error if the prerequisites are met.

create_share (context, share, share_server=None)
Create a HDFS directory which acted as a share.
create_share_from_snapshot (context, share, snapshot, share_server=None,
parent_share=None)

Creates a snapshot.

346 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

create_snapshot (context, snapshot, share_server=None)

Creates a snapshot.

delete_share(context, share, share_server=None)

Deletes share storage.

delete_snapshot (context, snapshot, share_server=None)

Deletes a snapshot.

deny_access (context, share, access, share_server=None)

Denies the access to the share for a given user.

do_setup (context)

Do initialization while the share driver starts.

ensure_share (context, share, share_server=None)

Ensure the storage are exported.

extend_share (share, new_size, share_server=None)

Extend share storage.

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network

interfaces.

Hitachi NAS Platform File Services Driver for OpenStack

Driver Version 3.0

Hitachi NAS Platform Storage Requirements

This Hitachi NAS Platform File Services Driver for OpenStack provides support for Hitachi NAS Plat-
form (HNAS) models 3080, 3090, 4040, 4060, 4080 and 4100 with NAS OS 12.2 or higher. Before
configuring the driver, ensure the HNAS has at least:

1 storage pool (span) configured.

1 EVS configured.

1 file system in this EVS, created without replication target option and should be in mounted state.
It is recommended to disable auto-expansion, because the scheduler uses the current free space

reported by the file system when creating shares.

1 Management User configured with supervisor permission level.

Hitachi NAS Management interface should be reachable from manila-share node.

Also, if the driver is going to create CIFS shares, either LDAP servers or domains must be configured
previously in HNAS to provide the users and groups.

3.2

Administrating Manila

347

Manila Developer Documentation, Release 15.4.2.dev5

Supported Operations

The following operations are supported in this version of Hitachi NAS Platform File Services Driver for
OpenStack:

* Create and delete CIFS and NFS shares;
¢ Extend and shrink shares;
* Manage rules to shares (allow/deny access);
* Allow and deny share access;
— IP access type supported for NFS shares;
— User access type supported for CIFS shares;
— Both RW and RO access level are supported for NFS and CIFS shares;
* Manage and unmanage shares;
* Create and delete snapshots;

* Create shares from snapshots.

Driver Configuration

This document contains the installation and user guide of the Hitachi NAS Platform File Services Driver
for OpenStack. Although mentioning some Shared File Systems service operations and HNAS com-
mands, both are not in the scope of this document. Please refer to their own guides for details.

Before configuring the driver, make sure that the nodes running the manila-share service have access to
the HNAS management port, and compute and network nodes have access to the data ports (EVS IPs or
aggregations).

The driver configuration can be summarized in the following steps:
1. Configure HNAS parameters on manila.conf;
2. Prepare the network ensuring all OpenStack-HNAS connections mentioned above;
3. Configure/create share type;
4. Restart the services;
5

. Configure OpenStack networks.

Step 1 - HNAS Parameters Configuration

The following parameters need to be configured in the [DEFAULT] section of /etc/manila/manila.
conf:

Option Description

en- Name of the section on manila.conf used to specify a backend. For example:
abled_share_backendsabled share _backends = hnasl

en- Specify a list of protocols to be allowed for share creation. This driver version
abled_share_proto¢adapports NFS and/or CIFS.

348 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

The following
conf:

parameters need to be configured in the [backend] section of /etc/manila/manila.

Option Description
share_backendAnaame for the backend.
share_driver | Python =~ module path. For this driver this must be:

manila.share.drivers. hitachi.hnas.driver. HitachiHNASDriver

driver_handlg¢

esDutiwee workémg mode. For this driver this must be: False.

hi-
tachi_hnas_if

HNAS management interface IP for communication between manila-share node and
» HNAS.

hi-
tachi_hnas_u

This field is used to provide user credential to HNAS. Provided management user must
sdrave supervisor level.

hi-
tachi_hnas_p

This field is used to provide password credential to HNAS. Either hi-
agselvirchnas_password or hitachi_hnas_ssh_private_key must be set.

hi-
tachi_hnas_s

Set this parameter with RSA/DSA private key path to allow the driver to connect into
shHpiASte_key

hi- ID from EVS which this backend is assigned to (ID can be listed by CLI evs list or EVS
tachi_hnas_eyMadnagement in HNAS Interface).

hi- EVS IP for mounting shares (this can be listed by CLI evs list or EVS Management in
tachi_hnas_eysHI¥AS interface).

hi- Name of the file system in HNAS, located in the specified EVS.
tachi_hnas_file_system_name

hi- If HNAS is in a multi-farm (one SMU managing multiple HNAS) configuration, set
tachi_hnas_cluthés padametépOith the IP of the clusters admin node.

hi- Tree-clone-job commands are used to create snapshots and create shares from snap-

tachi_hnas_sf

alledtsjobhtsnpecamiieter sets a timeout (in seconds) to wait for jobs to complete. Default
value is 30 seconds.

hi- Python module path for the driver helper. For this driver, it should use (default value):
tachi_hnas_driverntelpkafe.drivers. hitachi.hnas.ssh. HNASSSHBackend
hi- By default, CIFS snapshots are not allowed to be taken while the share has clients con-

tachi_hnas_a

lloecteifbacapsh pointite timeuwemdda cannot be guaranteed for all files. This parameter
can be set to True to allow snapshots to be taken while the share has clients connected.
WARNING: Setting this parameter to True might cause inconsistent snapshots on CIFS
shares. Default value is False.

* Non mandatory parameters.

Below is an ex

ample of a valid configuration of HNAS driver:

(continues on next page)

3.2. Administrating Manila

349

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Step 2 - Prepare the Network

In the driver mode used by Hitachi NAS Platform File Services Driver for OpenStack,
driver_handles_share_servers (DHSS) as False, the driver does not handle network configuration, it is
up to the administrator to configure it. It is mandatory that HNAS management interface is reachable
from a manila-share node through admin network, while the selected EVS data interface is reachable
from OpenStack Cloud, such as through neutron flat networking. Here is a step-by-step of an example
configuration:

Manila-Share Node:
ethQ: Admin Network, can ping HNAS management interface.

ethl: Data Network, can ping HNAS EVS IP (data interface). This interface is only required if you plan
to use Share Migration.

Network Node and Compute Nodes:
eth(Q: Admin Network, can ping HNAS management interface.
ethl: Data Network, can ping HNAS EVS IP (data interface).

The following image represents the described scenario:

Management
EVS Interface

[Data Network]

[Admin Network |

ETHO ETHO |(ETH1 ETHO | ETH1 | ETHO

060500
Compute Neutron Controller

Manila-Share

i
o

1

350 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Run in Network Node:

sudo ifconfig ethl

sudo ovs-vsctl add-br br-ethl

sudo ovs-vsctl add-port br-ethl ethl
sudo ifconfig ethl up

Edit /etc/neutron/plugins/mi2/mi2_conf.ini (default directory), change the following settings as follows
in their respective tags:

You may have to repeat the last line above in another file in the Compute Node, if it exists is located in:
/etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini.

Create a route in HNAS to the tenant network. Please make sure multi-tenancy is enabled and routes are
configured per EVS. Use the command route-net-add in HNAS console, where the network parameter
should be the tenants private network, while the gateway parameter should be the flat network gateway
and the console-context evs parameter should be the ID of EVS in use, such as in the following example:

console-context --evs 3 route-net-add --gateway .168.1.1 .0.0.0/24

Step 3 - Share Type Configuration

Shared File Systems service requires that the share type includes the driver_handles_share_servers
extra-spec. This ensures that the share will be created on a backend that supports the requested
driver_handles_share_servers capability. For the Hitachi NAS Platform File Services Driver for Open-
Stack this must be set to False.

manila type-create hitachi False

Additionally, the driver also reports the following common capabilities that can be specified in the share
type:

3.2. Administrating Manila 351

Manila Developer Documentation, Release 15.4.2.dev5

Capabil- | Description
ity
thin_provisipiitlgshares created on HNAS are always thin provisioned. So, if you set it, the value
=True must be: True.

dedupe = | HNAS supports deduplication on its file systems and the driver will report dedupe=True
True/False | ifitis enabled on the file system being used. To use it, go to HNAS and enable the feature
on the file system used.

To specify a common capability on the share type, use the fype-key command, for example:

manila type-key hitachi True

Step 4 - Restart the Services

Restart all Shared File Systems services (manila-share, manila-scheduler and manila-api) and neutron
services (neutron-*). This step is specific to your environment. If you are running in devstack for example,
you have to log into screen (screen -r), stop the process (Ctrl+C) and run it again. If you are running
it in a distro like RHEL or SUSE, a service command (for example service manila-api restart) is used to
restart the service.

Step 5 - Configure OpenStack Networks

In Neutron Controller it is necessary to create a network, a subnet and to add this subnet interface to a
router:

Create a network to the given tenant (demo), providing the DEMO_ID (this can be fetched using keystone
tenant-list), a name for the network, the name of the physical network over which the virtual network is
implemented and the type of the physical mechanism by which the virtual network is implemented:

neutron net-create --tenant-id <DEMO_ID> hnas_network

Create a subnet to same tenant (demo), providing the DEMO_ID (this can be fetched using keystone
tenant-list), the gateway IP of this subnet, a name for the subnet, the network ID created on previously
step (this can be fetched using neutron net-list) and CIDR of subnet:

neutron subnet-create --tenant-id <DEMO_ID> --gateway <GATEWAY>

Finally, add the subnet interface to a router, providing the router ID and subnet ID created on previously
step (can be fetched using neutron subnet-list):

neutron router-interface-add <ROUTER_ID> <SUBNET_ID>

352 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Manage and Unmanage Shares

Manila has the ability to manage and unmanage shares. If there is a share in the storage and it is not in
OpenStack, you can manage that share and use it as a manila share. Hitachi NAS Platform File Services
Driver for OpenStack use virtual-volumes (V-VOLs) to create shares. Only V-VOLs with a quota limit
can be used by the driver, also, they must be created or moved inside the directory /shares/ and exported
(as NFS or CIFS shares). The unmanage operation only unlinks the share from OpenStack, preserving
all data in the share.

To manage shares use:

manila manage --name <name> | --description <description>
Where:
Pa- Description
rame-
ter
ser- Manila host, backend and share name. For example ubuntu @hitachi I#HITACHI1. The

vice_hostavailable hosts can be listed with the command: manila pool-list (admin only).

proto- | NFS or CIFS protocols are currently supported.

col
ex- The export path of the share. For example: 172.24.44.31:/shares/some_share_id
port_path

To unmanage a share use:

manila unmanage <share_id>

Where:

Parameter | Description

share_id Manila ID of the share to be unmanaged. This list can be fetched with: manila list.

Additional Notes

HNAS has some restrictions about the number of EVSs, file systems, virtual-volumes and simul-
taneous SSC connections. Check the manual specification for your system.

Shares and snapshots are thin provisioned. It is reported to manila only the real used space in
HNAS. Also, a snapshot does not initially take any space in HNAS, it only stores the difference
between the share and the snapshot, so it grows when share data is changed.

Admins should manage the tenants quota (imanila quota-update) to control the backend usage.

By default, CIFS snapshots are disabled when the share is mounted, since it uses tree-clone to
create snapshots and does not guarantee point-in-time replicas when the source directory tree is
changing, also, changing permissions to read-only does not affect already mounted shares. So,
enable it if your source directory can be static while taking snapshots. Currently, it affects only
CIFS protocol. For more information check the tree-clone feature in HNAS with man tree-clone.

3.2

Administrating Manila 353

Manila Developer Documentation, Release 15.4.2.dev5

The manila.share.drivers.hitachi.hnas.driver Module

class HitachiHNASDriver (*args, **kwargs)

Bases: manila.share.driver.ShareDriver
Manila HNAS Driver implementation.

Driver versions:

create_share (context, share, share_server=None)

Creates share.
Parameters
» context The context.RequestContext object for the request
» share Share that will be created.

» share_server Data structure with share server information. Not used by
this driver.

Returns

Returns a list of dicts containing the EVS IP concatenated with the path of share
in the filesystem.

Example for NFS:

path: 172.24.44.10:/shares/id, metadata: {}, is_admin_only: False
5,
{

path: 192.168.0.10:/shares/id, metadata: {}, is_admin_only: True

]
Example for CIFS:

354 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

path: \172.24.44.10id, metadata: {}, is_admin_only: False
5,

{
path: \192.168.0.10id, metadata: {}, is_admin_only: True

]

create_share_from_snapshot (context, share, snapshot, share_server=None,
parent_share=None)

Creates a new share from snapshot.
Parameters
» context The context.RequestContext object for the request
» share Information about the new share.
» snapshot Information about the snapshot that will be copied to new share.

» share_server Data structure with share server information. Not used by
this driver.

Returns

Returns a list of dicts containing the EVS IP concatenated with the path of share
in the filesystem.

Example for NFS:

path: 172.24.44.10:/shares/id, metadata: {}, is_admin_only: False

1
{
path: 192.168.0.10:/shares/id, metadata: {}, is_admin_only: True

]
Example for CIFS:

path: \172.24.44.10id, metadata: {}, is_admin_only: False
},
{

3.2. Administrating Manila 355

Manila Developer Documentation, Release 15.4.2.dev5

path: \192.168.0.10id, metadata: {}, is_admin_only: True

]

create_snapshot (context, snapshot, share_server=None)

Creates snapshot.
Parameters
» context The context.RequestContext object for the request
» snapshot Snapshot that will be created.

» share_server Data structure with share server information. Not used by
this driver.

delete_share (context, share, share_server=None)

Deletes share.
Parameters
» context The context.RequestContext object for the request
» share Share that will be deleted.

» share_server Data structure with share server information. Not used by
this driver.

delete_snapshot (context, snapshot, share_server=None)

Deletes snapshot.
Parameters
» context The context.RequestContext object for the request
» snapshot Snapshot that will be deleted.

» share_server Data structure with share server information. Not used by
this driver.

ensure_share (context, share, share_server=None)

Ensure that share is exported.
Parameters
» context The context.RequestContext object for the request
» share Share that will be checked.

» share_server Data structure with share server information. Not used by
this driver.

Returns

Returns a list of dicts containing the EVS IP concatenated with the path of share
in the filesystem.

Example for NFS:

356 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

path: 172.24.44.10:/shares/id, metadata: {}, is_admin_only: False
5,
{

path: 192.168.0.10:/shares/id, metadata: {}, is_admin_only: True

]
Example for CIFS:

path: \172.24.44.10id, metadata: {}, is_admin_only: False
),
{

path: \192.168.0.10id, metadata: {}, is_admin_only: True

]

ensure_snapshot (context, snapshot, share_server=None)

Ensure that snapshot is exported.
Parameters
» context The context.RequestContext object for the request.
» snapshot Snapshot that will be checked.

» share_server Data structure with share server information. Not used by
this driver.

Returns

Returns a list of dicts containing the EVS IP concatenated with the path of
snapshot in the filesystem or None if mount_snapshot_support is False.

Example for NFS:
{
path: 172.24.44.10:/snapshots/id, metadata: {}, is_admin_only:
False

b
{

3.2. Administrating Manila 357

Manila Developer Documentation, Release 15.4.2.dev5

path: 192.168.0.10:/snapshots/id, metadata: {}, is_admin_only:
True

]
Example for CIFS:

path: \172.24.44.10id, metadata: {}, is_admin_only: False
5,
{

path: \192.168.0.10id, metadata: {}, is_admin_only: True

]

extend_share (share, new_size, share_server=None)

Extends a share to new size.
Parameters
» share Share that will be extended.
* new_size New size of share.

» share_server Data structure with share server information. Not used by
this driver.

get_network_allocations_number()

Track allocations_number in DHSS = true.

When using the setting driver_handles_share_server = false does not require to track alloca-
tions_number because we do not handle network stuff.

manage_existing(share, driver_options)

Manages a share that exists on backend.
Parameters
» share Share that will be managed.
» driver_options Empty dict or dict with volume_id option.
Returns

Returns a dict with size of the share managed and a list of dicts containing its
export locations.

Example for NFS:

358 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

size: 10, export_locations: [

{
path: 172.24.44.10:/shares/id, metadata: {}, is_admin_only:

False
1,
{
path: 192.168.0.10:/shares/id, metadata: {}, is_admin_only:
True
}
]
}
Example for CIFS:

size: 10, export_locations: [
{
path: \172.24.44.10id, metadata: {}, is_admin_only: False
1,
{
path: \192.168.0.10id, metadata: {}, is_admin_only: True

}
manage_existing_snapshot (snapshot, driver_options)

Manages a snapshot that exists only in HNAS.

The snapshot to be managed should be in the path /snapshots/SHARE_ID/SNAPSHOT_ID.
Also, the size of snapshot should be provided as driver_options size=<size>. :param snap-
shot: snapshot that will be managed. :param driver_options: expects only one key size. It
must be provided in order to manage a snapshot.

Returns Returns a dict with size of snapshot managed

revert_to_snapshot (context, snapshot, share_access_rules, snapshot_access_rules,
share_server=None)

Reverts a share to a given snapshot.
Parameters
» context The context.RequestContext object for the request

» snapshot The snapshot to which the share is to be reverted to.

3.2. Administrating Manila 359

Manila Developer Documentation, Release 15.4.2.dev5

» share_access_rules List of all access rules for the affected share. Not
used by this driver.

» snapshot_access_rules List of all access rules for the affected snapshot.
Not used by this driver.

» share_server Data structure with share server information. Not used by
this driver.

shrink_share(share, new_size, share_server=None)

Shrinks a share to new size.
Parameters
» share Share that will be shrunk.
* new_size New size of share.

» share_server Data structure with share server information. Not used by
this driver.

snapshot_update_access (context, snapshot, access_rules, add_rules, delete_rules,
share_server=None)

Update access rules for given snapshot.

Drivers should support 2 different cases in this method: 1. Recovery after error - access_rules
contains all access rules, add_rules and delete_rules shall be empty. Driver should clear any
existent access rules and apply all access rules for given snapshot. This recovery is made at
driver start up.

2. Adding/Deleting of several access rules - access_rules contains all access rules, add_rules
and delete_rules contain rules which should be added/deleted. Driver can ignore rules in ac-
cess_rules and apply only rules from add_rules and delete_rules. All snapshots rules should
be read only.

Parameters
* context Current context
* snapshot Snapshot model with snapshot data.
* access_rules All access rules for given snapshot

* add_rules Empty List or List of access rules which should be added. ac-
cess_rules already contains these rules.

* delete_rules Empty List or List of access rules which should be removed.
access_rules doesnt contain these rules.

» share_server None or Share server model

unmanage (share)

Unmanages a share.
Parameters share Share that will be unmanaged.

unmanage_snapshot (snapshot)

Unmanage a share snapshot

Parameters snapshot Snapshot that will be unmanaged.

360 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access rules for given share.

Parameters

context The context.RequestContext object for the request
share Share that will have its access rules updated.
access_rules All access rules for given share.

add_rules Empty List or List of access rules which should be added. ac-
cess_rules already contains these rules.

delete_rules Empty List or List of access rules which should be removed.
access_rules doesnt contain these rules.

share_server Data structure with share server information. Not used by
this driver.

HPE 3PAR Driver for OpenStack Manila

The HPE 3PAR manila driver provides NFS and CIFS shared file systems to OpenStack using HPE
3PARs File Persona capabilities.

Note: In OpenStack releases prior to Mitaka this driver was called the HP 3PAR driver. The Lib-
erty configuration reference can be found at: http://docs.openstack.org/liberty/config-reference/content/
hp-3par-share-driver.html

For information on HPE 3PAR Driver for OpenStack Manila, refer to content kit page.

Supported Operations

The following operations are supported with HPE 3PAR File Persona:

¢ Create/delete NFS and CIFS shares

— Shares are not accessible until access rules allow access

* Allow/deny NFS share access

— IP access rules are required for NFS share access

* Allow/deny CIFS share access

— CIFS shares require user access rules.

— User access requires a 3PAR local or AD user (LDAP is not yet supported)

* Create/delete snapshots

* Create shares from snapshots

Share networks are not supported. Shares are created directly on the 3PAR without the use of a share
server or service VM. Network connectivity is setup outside of manila.

3.2. Administrating Manila 361

http://docs.openstack.org/liberty/config-reference/content/hp-3par-share-driver.html
http://docs.openstack.org/liberty/config-reference/content/hp-3par-share-driver.html
https://www.hpe.com/us/en/product-catalog/storage/storage-software/pip.openstack-device-management-software.1008537377.html

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

On the system running the manila share service:
* python-3parclient 4.2.0 or newer from PyPI.
On the HPE 3PAR array:
* HPE 3PAR Operating System software version 3.2.1 MU3 or higher

* The array class and hardware configuration must support File Persona

Pre-Configuration on the HPE 3PAR

HPE 3PAR File Persona must be initialized and started (startfs)
* A File Provisioning Group (FPG) must be created for use with manila

¢ A Virtual File Server (VFES) must be created for the FPG

The VFS must be configured with an appropriate share export IP address

* A local user in the Administrators group is needed for CIFS shares

Backend Configuration

The following parameters need to be configured in the manila configuration file for the HPE 3PAR driver:
e share_backend name = <backend name to enable>
* share_driver = manila.share.drivers.hpe.hpe_3par_driver. HPE3ParShareDriver
e driver_handles_share_servers = False
* hpe3par_fpg = <FPG to use for share creation>
* hpe3par_share_ip_address = <IP address to use for share export location>
* hpe3par_san_ip = <IP address for SSH access to the SAN controller>
* hpe3par_api_url = <3PAR WS API Server URL>
* hpe3par_username = <3PAR username with the edit role>
* hpe3par_password = <3PAR password for the user specified in hpe3par_username>
* hpe3par_san_login = <Username for SSH access to the SAN controller>
* hpe3par_san_password = <Password for SSH access to the SAN controller>
* hpe3par_debug = <False or True for extra debug logging>
* hpe3par_cifs_admin_access_username = <CIFS admin user name>
* hpe3par_cifs_admin_access_password = <CIFS admin password>
* hpe3par_cifs_admin_access_domain = <CIFS admin domain>

* hpe3par_share_mount_path = <Full path to mount shares>

362 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

The hpe3par_share_ip_address must be a valid IP address for the configured FPGs VFES. This IP ad-
dress is used in export locations for shares that are created. Networking must be configured to allow
connectivity from clients to shares.

hpe3par_cifs_admin_access_username and hpe3par_cifs_admin_access_password must be provided
to delete nested CIFS shares. If they are not, the share contents will not be deleted.
hpe3par_cifs_admin_access_domain and hpe3par_share_mount_path can be provided for additional
configuration.

Restart of manila-share service is needed for the configuration changes to take effect.

Backend Configuration for AD user

The following parameters need to be configured through HPE 3PAR CLI to access file share using AD.

Set authentication parameters:

setauthparam ldap-server IP_ADDRESS_OF_AD_SERVER

setauthparam binding simple

setauthparam user-attr AD_DOMAIN_NAME\\

setauthparam accounts-dn CN=Users,DC=AD,DC=DOMAIN,DC=NAME
setauthparam account-obj user

setauthparam account-name-attr sAMAccountName

setauthparam memberof-attr memberOf

setauthparam super-map CN=AD_USER_GROUP,DC=AD,DC=DOMAIN,DC=NAME

L R R iR R - AR

Verify new authentication parameters set as expected:

$ showauthparam

Verify AD users set as expected:

$ checkpassword AD_USER

Command result should show user AD_USER is authenticated and authorized message on
successful configuration.

Add ActiveDirectory in authentication providers list:

$ setfs auth ActiveDirectory Local

Verify authentication provider list shows ActiveDirectory:

$ showfs -auth

Set/Add AD user on FS:

$ setfs ad passwd PASSWORD AD_USER AD_DOMAIN_NAME

Verify FS user details:

$ showfs -ad

3.2. Administrating Manila 363

Manila Developer Documentation, Release 15.4.2.dev5

Example of using AD user to access CIFS share

Pre-requisite:
* Share type should be configured for 3PAR backend
Create a CIFS file share with 2GB of size:

$ manila create --name FILE_SHARE_NAME --share-type SHARE_TYPE CIFS 2

Check file share created as expected:

$ manila show FILE_SHARE_NAME

Configuration to provide share access to AD user:

$ manila access-allow FILE_SHARE_NAME user AD_DOMAIN_NAME\\\\AD_USER
--access-level rw

Check users permission set as expected:

$ manila access-list FILE_SHARE_NAME

The AD_DOMAIN_NAME\AD_USER must be listed in access_to column and should show active in
its state column as result of this command.

Network Approach

Connectivity between the storage array (SSH/CLI and WSAPI) and the manila host is required for share
management.

Connectivity between the clients and the VFS is required for mounting and using the shares. This in-
cludes:

* Routing from the client to the external network
* Assigning the client an external IP address (e.g., a floating IP)
* Configuring the manila host networking properly for IP forwarding

* Configuring the VFS networking properly for client subnets

Share Types

When creating a share, a share type can be specified to determine where and how the share will be created.
If a share type is not specified, the default_share_type set in the manila configuration file is used.

Manila requires that the share type includes the driver_handles_share_servers extra-spec. This ensures
that the share will be created on a backend that supports the requested driver_handles_share_servers
(share networks) capability. For the HPE 3PAR driver, this must be set to False.

Another common manila extra-spec used to determine where a share is created is share_backend_name.
When this extra-spec is defined in the share type, the share will be created on a backend with a matching
share_backend_name.

364 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

The HPE 3PAR driver automatically reports capabilities based on the FPG used for each backend. Share
types with extra specs can be created by an administrator to control which share types are allowed to use
FPGs with or without specific capabilities. The following extra-specs are used with the capabilities filter
and the HPE 3PAR driver:

* hpe3par_flash_cache = <is> True or <is> False
* thin_provisioning = <is> True or <is> False
* dedupe = <is> True or <is> False

hpe3par_flash_cache will be reported as True for backends that have 3PARs Adaptive Flash Cache en-
abled.

thin_provisioning will be reported as True for backends that use thin provisioned volumes. FPGs that use
fully provisioned volumes will report False. Backends that use thin provisioning also support manilas
over-subscription feature.

dedupe will be reported as True for backends that use deduplication technology.

Scoped extra-specs are used to influence vendor-specific implementation details. Scoped extra-specs use
a prefix followed by a colon. For HPE 3PAR these extra-specs have a prefix of hpe3par. For HP 3PAR
these extra-specs have a prefix of hp3par.

The following HPE 3PAR extra-specs are used when creating CIFS (SMB) shares:
* hpe3par:smb_access_based_enum = true or false
* hpe3par:smb_continuous_avail = true or false
* hpe3par:smb_cache = off, manual, optimized or auto

smb_access_based_enum (Access Based Enumeration) specifies if users can see only the files and direc-
tories to which they have been allowed access on the shares. The default is false.

smb_continuous_avail (Continuous Availability) specifies if SMB3 continuous availability features
should be enabled for this share. If not specified, the default is true. This setting will be ignored with
hp3parclient 3.2.1 or earlier.

smb_cache specifies client-side caching for offline files. Valid values are:
* off : The client must not cache any files from this share. The share is configured to disallow caching.
* manual: The client must allow only manual caching for the files open from this share.

* optimized: The client may cache every file that it opens from this share. Also, the client may
satisfy the file requests from its local cache. The share is configured to allow automatic caching of
programs and documents.

* auto: The client may cache every file that it opens from this share. The share is configured to allow
automatic caching of documents.

* If this is not specified, the default is manual.
The following HPE 3PAR extra-specs are used when creating NFS shares:

* hpe3par:nfs_options = Comma separated list of NFS export options
The NFS export options have the following limitations:

* ro and rw are not allowed (manila will determine the read-only option)

* no_subtree_check and fsid are not allowed per HPE 3PAR CLI support

3.2. Administrating Manila 365

Manila Developer Documentation, Release 15.4.2.dev5

* (in)secure and (no_)root_squash are not allowed because the HPE 3PAR driver controls those
settings

All other NFS options are forwarded to the HPE 3PAR as part of share creation. The HPE 3PAR will do
additional validation at share creation time. Refer to HPE 3PAR CLI help for more details.

Delete Nested Shares

When a nested share is deleted (nested shares will be created when hpe_3par_fstore_per_share is
set to False), the file tree also attempts to be deleted.

With NFS shares, there is no additional configuration that needs to be done.

For CIFS shares, hpe3par_cifs_admin_access_username and
hpe3par_cifs_admin_access_password must be provided. If they are omitted, the original
functionality is honored and the file tree remains untouched. hpe3par_cifs_admin_access_domain
and hpe3par_share_mount_path can also be specified to create further customization.

The manila.share.drivers.hpe.hpe_3par_driver Module

HPE 3PAR Driver for OpenStack Manila.

class FPG(min_ip=0, max_ip=4, type_name="FPG")
Bases: oslo_config.types.String, oslo_config.types.IPAddress
FPG type.

Used to represent multiple pools per backend values. Converts configuration value to an FPGs
value. FPGs value format:

where FPG name is a string value, IP address is of type types.IPAddress
Optionally doing range checking. If value is whitespace or empty string will raise error
Parameters

* min_ip Optional check that number of min IP address of VFS.
* max_ip Optional check that number of max IP address of VFS.
* type_name Type name to be used in the sample config file.

MAX_SUPPORTED_IP_PER_VFS = 4

class HPE3ParShareDriver (*args, **kwargs)

Bases: manila.share.driver.ShareDriver

HPE 3PAR driver for Manila.

Supports NFS and CIFS protocols on arrays with File Persona.

Version history:

366 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

VERSION = '2.0.8'
static build_share_comment (share)
Create an informational only comment to help admins and testers.

check_for_setup_error()

Check for setup error.

choose_share_server_compatible_with_share(context, share_servers, share,
snapshot=None, share_group=None)

Method that allows driver to choose share server for provided share.
If compatible share-server is not found, method should return None.
Parameters
* context Current context
» share_servers list with share-server models
» share share model
* snapshot snapshot model
» share_group ShareGroup model with shares
Returns share-server or None

create_share (context, share, share_server=None)
Is called to create share.
create_share_from_snapshot (context, share, snapshot, share_server=None,
parent_share=None)

Is called to create share from snapshot.

create_snapshot (context, snapshot, share_server=None)

Creates a snapshot of a share.

delete_share (context, share, share_server=None)

Deletes share and its fstore.

3.2. Administrating Manila 367

Manila Developer Documentation, Release 15.4.2.dev5

delete_snapshot (context, snapshot, share_server=None)
Deletes a snapshot of a share.

do_setup (context)

Any initialization the share driver does while starting.

ensure_share (context, share, share_server=None)

Invoked to ensure that share is exported.

Driver can use this method to update the list of export locations of the share if it changes. To
do that, you should return list with export locations.

Returns None or list with export locations

extend_share (share, new_size, share_server=None)

Extends size of existing share.

get_network_allocations_number()
Returns number of network allocations for creating VIFs.
Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

static shal_hash(clazz)
Get the SHA1 hash for the source of a class.

shrink_share (share, new_size, share_server=None)

Shrinks size of existing share.

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access to the share.

to_list(var)

Convert var to list type if not

Infortrend Driver for OpenStack Manila

The Infortrend Manila driver provides NFS and CIFS shared file systems to Openstack.

Requirements

¢ The EonStor GS/GSe series Fireware version 139A23

368

Chapter 3. For operators

http://www.infortrend.com/global

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems and operations

This driver supports NFS and CIFS shares.

The following operations are supported:

Create CIFS/NFS Share
Delete CIFS/NFS Share
Allow CIFS/NFS Share access
— Only IP access type is supported for NES (ro/rw).
— Only USER access type is supported for CIFS (ro/rw).
Deny CIFS/NFS Share access
Manage a share.
Unmanage a share.
Extend a share.

Shrink a share.

Backend Configuration

The following parameters need to be configured in the manila configuration file for the Infortrend driver:

share_backend _name = <backend name to enable>

share_driver = manila.share.drivers.infortrend.driver.InfortrendNASDriver
driver_handles_share_servers = False

infortrend_nas_ip = <IP address for SSH access to the SAN controller>
infortrend_nas_user = <username with the edit role>

infortrend_nas_password = <password for the user specified in infortrend_nas_user>
infortrend_share_pools = <Poolname of the SAN controller>

infortrend_share_channels = <Data channel for file service in SAN controller>

Share Types

When creating a share, a share type can be specified to determine where and how the share will be created.
If a share type is not specified, the default_share_type set in the manila configuration file is used.

Manila requires that the share type includes the driver_handles_share_servers extra-spec. This ensures
that the share will be created on a backend that supports the requested driver_handles_share_servers
(share networks) capability. For the Infortrend driver, this must be set to False.

3.2. Administrating Manila 369

Manila Developer Documentation, Release 15.4.2.dev5

Back-end configuration example

Macrosan Driver for OpenStack Manila

The Macrosan driver provides NFS and CIFS shared file systems to Openstack.

Requirements

* The following service should be enabled on NAS system:
- CIFS
- NFS

Supported Operations

The following operations are supported:
* Create CIFS/NFS Share

Delete CIFS/NFS Share

Allow CIFS/NFS Share access

— Only IP access type is supported for NFS (ro/rw).
— Only USER access type is supported for CIFS (ro/rw).

Deny CIFS/NFS Share access
» Extend a share.

e Shrink a share.

370 Chapter 3.

For operators

http://www.macrosan.com

Manila Developer Documentation, Release 15.4.2.dev5

Backend Configuration

The following parameters need to be configured in the [DEFAULT] section of manila configuration
(/etc/manila/manila.conf):

* enabled_share_backends - Name of the section on manila.conf used to specify a backend i.e. en-
abled_share_backends = macrosan

* enabled_share_protocols - Specify a list of protocols to be allowed for share creation. The VPSA
driver support the following options: NFS or CIFS or NFS, CIFS

The following parameters need to be configured in the [backend] section of manila configuration
(/etc/manila/manila.conf):

e share_backend name = <backend name to enable>

* share_driver = manila.share.drivers.macrosan.macrosan_nas.MacrosanNasDriver

e driver_handles_share_servers = False

* macrosan_nas_ip = <IP address for access to the NAS controller>

* macrosan_nas_port = <Port number for access to the NAS controller>

* macrosan_nas_user = <username for access>

* macrosan_nas_password = <password for the user specified in macrosan_nas_user>

* macrosan_share_pools = <Poolname of the NAS controller>

Share Types

When creating a share, a share type can be specified to determine where and how the share will be created.
If a share type is not specified, the default_share_type set in the manila configuration file is used.

Manila requires that the share type includes the driver_handles_share_servers extra-spec. This ensures
that the share will be created on a backend that supports the requested driver_handles_share_servers
(share networks) capability. For the Macrosan driver, this must be set to False.

Back-end configuration example

3.2. Administrating Manila 371

Manila Developer Documentation, Release 15.4.2.dev5

Pure Storage FlashBlade Driver for OpenStack Manila

The Pure Storage FlashBlade Manila driver provides NFS shared file systems to OpenStack using Pure
Storages FlashBlade native filesystem capabilities.

Supported Operations

The following operations are supported with Pure Storage FlashBlade:
* Create/delete NFS shares

— Shares are not accessible until access rules allow access

Allow/deny NFS share access
— IP access rules are required for NFS share access
* Create/delete snapshots
* Expand and Shrink shares
* Revert to Snapshot

Share networks are not supported. Shares are created directly on the FlashBlade without the use of a
share server or service VM. Network connectivity is setup outside of Manila.

General Requirements

On the system running the Manila share service:
e purity_fb 1.12.1 or newer from PyPI.
On the Pure Storage FlashBlade:

* Purity//FB Operating System software version 2.3.0 or higher

Network Requirements

Connectivity between the FlashBlade (REST) and the manila host is required for share management.

Connectivity between the clients and the FlashBlade is required for mounting and using the shares. This
includes:

* Routing from the client to the external network
* Assigning the client an external IP address (e.g., a floating IP)
* Configuring the manila host networking properly for IP forwarding

* Configuring the FlashBlade networking properly for client subnets

372 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Driver Configuration

Before configuring the driver, make sure the following networking requirements have been met:
* A management subnet must be accessible from the system running the Manila share services
* A data subnet must be accessible from the system running the Nova compute services
* An API token must be available for a user with administrative privileges
Perform the following steps:
1. Configure the Pure Storage FlashBlade parameters in manila.conf
2. Configure/create a share type
3. Restart the services

It is also assumed that the OpenStack networking has been confiured correctly.

Step 1 - FlashBlade Parameters configuration

The following parameters need to be configured in the [DEFAULT] section of /efc/manila/manila.conf

Option Description

en- Name of the section on manila.conf used to specify a backend. For example:
abled_share_backendsabled_share_backends = flashblade

en- Specify a list of protocols to be allowed for share creation. This driver version
abled_share_protocolsly supports NFS

The following parameters need to be configured in the [backend] section of /etc/manila/manila.
conf:

Option | Description

share_backeAdnmamdor the backend.

share_drivelPython =~ module path. For this driver this must be:
manila.share.drivers.purestorage.flashblade. FlashBladeShareDriver

driver_handIdsiwtraveodengmode. For this driver this must be: False.

flash- The name (or IP address) for the Pure Storage FlashBlade storage system management

blade_mgmtVikp

flash- The name (or IP address) for the Pure Storage FlashBlade storage system data VIP.

blade_data_vip

flash- API token for an administrative user account

blade_api

flash- When enabled, all FlashBlade file systems and snapshots will be eradicated at the time

blade_eradiadteleletion in Manila. Data will NOT be recoverable after a delete with this set to True!

(Op- When disabled, file systems and snapshots will go into pending eradication state and can

tional) be recovered. Default value is True.

Below is an example of a valid configuration of the FlashBlade driver:

3.2. Administrating Manila 373

Manila Developer Documentation, Release 15.4.2.dev5

Restart of manila-share service is needed for the configuration changes to take effect.

Step 2 - Share Type Configuration

Shared File Systems service requires that the share type includes the driver_handles_share_servers
extra-spec. This ensures that the share will be created on a backend that supports the requested
driver_handles_share_servers capability. For the Pure Storage FlashBlade Driver for OpenStack this
must be set to False.

manila type-create flashblade False

Additionally, the driver also reports the following common capabilities that can be specified in the share
type:

Capability Description

thin_provisioning All shares created on FlashBlade are always thin provisioned. If you set it
True this, the value must be: True.

snapshot_support FlashBlade supports share snapshots. If you set this, the value must be:

True/False True.
revert_to_snapshot = | FlashBlade supports reverting a share to the latest available snapshot. If you
True/False set this, the value must be: True.

To specify a common capability on the share type, use the type-key command, for example:

manila type-key flashblade True
manila type-key flashblade True

374 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Step 3 - Restart the Services

Restart all Shared File Systems services (manila-share, manila-scheduler and manila-api). This step is
specific to your environment. for example, systemctl restart <controller>@manila-shr is used to restart
the share service.

The manila.share.drivers.purestorage.flashblade Module

Pure Storage FlashBlade Share Driver

class FlashBladeShareDriver (*args, **kwargs)

Bases: manila.share.driver.ShareDriver

Version hisotry:

1.0.0 - Initial version 2.0.0 - Xena release 3.0.0 - Yoga release 4.0.0 - Zed release
USER_AGENT_BASE = 'OpenStack Manila'

VERSION = '4.0'

create_share (context, share, share_server=None)

Create a share and export it based on protocol used.
create_snapshot (context, snapshot, share_server=None)
Called to create a snapshot
delete_share (context, share, share_server=None)
Called to delete a share
delete_snapshot (context, snapshot, share_server=None)
Called to delete a snapshot

do_setup (context)

Driver initialization

ensure_share (context, share, share_server=None)

Dummy - called to ensure share is exported.
All shares created on a FlashBlade are guaranteed to be exported so this check is redundant

extend_share(share, new_size, share_server=None)
uses resize_share to extend a share
revert_to_snapshot (context, snapshot, share_access_rules, snapshot_access_rules,
share_server=None)
Reverts a share (in place) to the specified snapshot.
Does not delete the share snapshot. The share and snapshot must both be available for the

restore to be attempted. The snapshot must be the most recent one taken by Manila; the API
layer performs this check so the driver doesnt have to.

The share must be reverted in place to the contents of the snapshot. Application admins
should quiesce or otherwise prepare the application for the shared file system contents to
change suddenly.

3.2. Administrating Manila 375

Manila Developer Documentation, Release 15.4.2.dev5

Parameters
* context Current context
» snapshot The snapshot to be restored
» share_access_rules List of all access rules for the affected share
» snapshot_access_rules List of all access rules for the affected snapshot
» share_server Optional Share server model or None

shrink_share (share, new_size, share_server=None)

uses resize_share to shrink a share

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access of share

purity_£fb_to_manila_exceptions (func)

Tegile Driver

The Tegile Manila driver uses Tegile IntelliFlash Arrays to provide shared filesystems to OpenStack.
The Tegile Driver interfaces with a Tegile Array via the REST API.

Requirements

* Tegile IntelliFlash version 3.5.1

* For using CIFS, Active Directory must be configured in the Tegile Array.

Supported Operations

The following operations are supported on a Tegile Array:
* Create CIFS/NFS Share

Delete CIFS/NFS Share

Allow CIFS/NFS Share access

— Only IP access type is supported for NFS
— USER access type is supported for NFS and CIFS
— RW and RO access supported

Deny CIFS/NFS Share access

— IP access type is supported for NFS

— USER access type is supported for NFS and CIFS
* Create snapshot
* Delete snapshot

¢ Extend share

376 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

¢ Shrink share

* Create share from snapshot

Backend Configuration

The following parameters need to be configured in the [DEFAULT] section of /etc/manila/manila.conf

[DEFAULT]

Option Description

en- Name of the section on manila.conf used to specify a backend. E.g. en-
abled_share_backend¥ed_share_backends = tegileNAS

en- Specify a list of protocols to be allowed for share creation. For Tegile driver this
abled_share_protacodn be: NFS or CIFS or NFS, CIFS.

The following parameters need to be configured in the [backend] section of /etc/manila/manila.conf:

[tegileNAS]

Option Description

share_backend name| A name for the backend.

share_driver Python module path. For Tegile driver this must be:

manila.share.drivers.tegile.tegile. TegileShareDriver.
driver_handles_share| M8, Driver working mode. For Tegile driver this must be: False.

tegile_nas_server Tegile array IP to connect from the Manila node.

tegile_nas_login This field is used to provide username credential to Tegile array.

te- This field is used to provide password credential to Tegile array.
gile_nas_password

te- This field can be used to specify the default project in Tegile array where shares

gile_default_project | are created. This field is optional.

Below is an example of a valid configuration of Tegile driver:

[DEFAULT]
enabled_share_backends = tegileNAS
enabled_share_protocols = NFS,CIFS

[tegileNAS]

driver_handles_share_servers = False

share_backend_name = tegileNAS

share_driver = manila.share.drivers.tegile.tegile.TegileShareDriver
tegile_nas_server = 10.12.14.16

tegile_nas_login = admin

tegile_nas_password = password

tegile_default_project = financeshares

Restart of manila-share service is needed for the configuration changes to take effect.

3.2. Administrating Manila 377

Manila Developer Documentation, Release 15.4.2.dev5

Restrictions

The Tegile driver has the following restrictions:
* [P access type is supported only for NFS.
* Only FLAT network is supported.

The manila.share.drivers.tegile.tegile Module

Share driver for Tegile storage.

class TegileShareDriver (*args, **kwargs)

Bases: manila.share.driver.ShareDriver
Tegile NAS driver. Allows for NFS and CIFS NAS storage usage.

create_share (**kwds)

Is called to create share.

create_share_from_snapshot (**kwds)
Is called to create share from snapshot.

Creating a share from snapshot can take longer than a simple clone operation if data copy is
required from one host to another. For this reason driver will be able complete this creation
asynchronously, by providing a creating_from_snapshot status in the model update.

When answering asynchronously, drivers must implement the call get_share_status in order
to provide updates for shares with creating_from_snapshot status.

It is expected that the driver returns a model update to the share manager that contains: share
status and a list of export_locations. A list of export_locations is mandatory only for share
in available status. The current supported status are available and creating_from_snapshot.

Parameters
* context Current context
» share Share instance model with share data.
» snapshot Snapshot instance model .
» share_server Share server model or None.

» parent_share Share model from parent snapshot with share data and share
server model.

Returns

a dictionary of updates containing current share status and its export_location
(if available).

Example:

378 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Raises ShareBackendException. A ShareBackendException in this method will
set the instance to error and the operation will end.

create_snapshot (**kwds)

Is called to create snapshot.
Parameters
e context Current context

» snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

* share_server Share server model or None.

Returns None or a dictionary with key export_locations containing a list of export
locations, if snapshots can be mounted.

delete_share (**kwds)

Is called to remove share.

delete_snapshot (**kwds)

Is called to remove snapshot.
Parameters
» context Current context

* snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

* share_server Share server model or None.
ensure_share (**kwds)

Invoked to ensure that share is exported.

Driver can use this method to update the list of export locations of the share if it changes. To
do that, you should return list with export locations.

Returns None or list with export locations

extend_share (**kwds)

Extends size of existing share.
Parameters
e share Share model
* new_size New size of share (new_size > share[size])
» share_server Optional Share server model

get_network_allocations_number (**kwds)

Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-

ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

3.2. Administrating Manila 379

Manila Developer Documentation, Release 15.4.2.dev5

get_pool (**kwds)

Return pool name where the share resides on.

Parameters share The share hosted by the driver.

shrink_share (***kwds)

Shrinks size of existing share.

If consumed space on share larger than new_size driver should raise ShareShrinkingPossi-
bleDatal.oss exception: raise ShareShrinkingPossibleDatal.oss(share_id=share[id])

Parameters
e share Share model
* new_size New size of share (new_size < share[size])
» share_server Optional Share server model

:raises ShareShrinkingPossibleDatal.oss, NotImplementedError

update_access (**kwds)

Update access rules for given share.

access_rules contains all access_rules that need to be on the share. If the driver can make
bulk access rule updates, it can safely ignore the add_rules and delete_rules parameters.

If the driver cannot make bulk access rule changes, it can rely on new rules to be present in
add_rules and rules that need to be removed to be present in delete_rules.

When a rule in delete_rules was never applied, drivers must not raise an exception, or
attempt to set the rule to error state.

add_rules and delete_rules can be empty lists, in this situation, drivers should ensure
that the rules present in access_rules are the same as those on the back end. One scenario
where this situation is forced is when the access_level is changed for all existing rules (share
migration and for readable replicas).

Drivers must be mindful of this call for share replicas. When update_access is called on one
of the replicas, the call is likely propagated to all replicas belonging to the share, especially
when individual rules are added or removed. If a particular access rule does not make sense
to the driver in the context of a given replica, the driver should be careful to report a correct
behavior, and take meaningful action. For example, if R/W access is requested on a replica
that is part of a readable type replication; R/O access may be added by the driver instead
of R/W. Note that raising an exception will result in the access_rules_status on the replica,
and the share itself being out_of_sync. Drivers can sync on the valid access rules that are
provided on the create_replica and promote_replica calls.

Parameters
* context Current context
» share Share model with share data.
» access_rules A list of access rules for given share

* add_rules Empty List or List of access rules which should be added. ac-
cess_rules already contains these rules.

* delete_rules Empty List or List of access rules which should be removed.
access_rules doesnt contain these rules.

380

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

e share_server None or Share server model
Returns

None, or a dictionary of updates in the format:

09960614-8574-4e03-89cf-7cf267b0bd08: {

access_key: alice31493e5441b8171d2310d80e37e, state: error,
1,
28f6eabb-4342-486a-a7f4-45688f0c0295: {

access_key: bob0078aa042d5a7325480fd13228b, state: active,

b
}

The top level keys are access_id fields of the access rules that need to be updated.
access_key s are credentials (str) of the entities granted access.
Any rule in the " “access_rules parameter can be updated.

Important: Raising an exception in this method will force a/l rules in applying and denying
states to error.

An access rule can be set to error state, either explicitly via this return parameter or because
of an exception raised in this method. Such an access rule will no longer be sent to the driver
on subsequent access rule updates. When users deny that rule however, the driver will be
asked to deny access to the client/s represented by the rule. We expect that a rule that was
error-ed at the driver should never exist on the back end. So, do not fail the deletion request.

Also, it is possible that the driver may receive a request to add a rule that is already present
on the back end. This can happen if the share manager service goes down while the driver is
committing access rule changes. Since we cannot determine if the rule was applied success-
fully by the driver before the disruption, we will treat all applying transitional rules as new
rules and repeat the request.

NexentaStor5 Driver for OpenStack Manila

The NexentaStor5 Manila driver provides NFS shared file systems to OpenStack.

3.2. Administrating Manila 381

http://www.nexenta.com

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

The NexentaStor 5.1 or newer

Supported shared filesystems and operations

This driver supports NFS shares.

The following operations are supported:

Create NFS Share

Delete NFS Share

Allow NFES Share access
— Only IP access type is supported for NFS (ro/rw).

Deny NFS Share access

Manage a share.

Unmanage a share.

Extend a share.

Shrink a share.

Create snapshot

Revert to snapshot

Delete snapshot

Create share from snapshot

Backend Configuration

The following parameters need to be configured in the manila configuration file for the NexentaStor5
driver:

share_backend_name = <backend name to enable>

share_driver = manila.share.drivers.nexenta.ns5.nexenta_nas.NexentaNasDriver
driver_handles_share_servers = False

nexenta_nas_host = <Data address to NAS shares>

nexenta_user = <username for management operations>

nexenta_password = <password for management operations>

nexenta_pool = <Pool name where NAS shares are created>
nexenta_rest_addresses = <Management address for Rest API access>
nexenta_folder = <Parent filesystem where all Manila shares are kept>

nexenta_nfs = True

382

Chapter 3.

For operators

Manila Developer Documentation, Release 15.4.2.dev5

Share Types

When creating a share, a share type can be specified to determine where and how the share will be created.
If a share type is not specified, the default_share_type set in the manila configuration file is used.

Manila requires that the share type includes the driver_handles_share_servers extra-spec. This ensures
that the share will be created on a backend that supports the requested driver_handles_share_servers
(share networks) capability. For the NexentaStor driver, this extra-specs value must be set to False.

Restrictions

* Only IP share access control is allowed for NFS shares.

Back-end configuration example

Windows SMB driver

While the generic driver only supports Linux instances, you may use the Windows SMB driver when
Windows VMs are preferred.

This driver extends the generic one in order to provide Windows instance support. It can integrate with
Active Directory domains through the Manila security service feature, which can ease access control.

Although Samba is a great SMB share server, Windows instances may provide improved SMB 3 support.

3.2. Administrating Manila 383

Manila Developer Documentation, Release 15.4.2.dev5

Limitations

* ip access rules are not supported at the moment, only user based ACLs may be used
* SMB (also known as CIFS) is the only supported share protocol

* although it can handle Windows VMs, Manila cannot run on Windows at the moment. The VMs
on the other hand may very well run on Hyper-V, KVM or any other hypervisor supported by Nova.

Prerequisites

This driver requires a Windows Server image having cloudbase-init installed. Cloudbase-init is the de-
facto standard tool for initializing Windows VMs running on OpenStack. The driver relies on it to do
tasks such as:

» configuring WinRM access using password or certificate based authentication
* network configuration

* setting the host name

Note: This driver was initially developed with Windows Nano Server in mind. Unfortunately, Microsoft
no longer supports running Nano Servers on bare metal or virtual machines, for which reason you may
want to use Windows Server Core images.

Configuring

Below is a config sample that enables the Windows SMB driver.

(continues on next page)

384 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Zadara VPSA Driver for OpenStack Manila

Zadaras Virtual Private Storage Array (VPSA) is the first software defined, Enterprise-Storage-as-a-
Service. It is an elastic and private block and file storage system which provides enterprise-grade data
protection and data management storage services.

Manila VPSA driver provides a seamless management capabilities for VPSA volumes, in this case, NFS
& SMB volumes without losing the added value provided by the VPSA Storage Array/Flash-Array.

Requirements

* VPSA Storage Array/Flash-Array running version 20.12 or higher.

* Networking preparation - the Zadara VPSA driver for Manila support DHSS=False
(driver_handles_share_servers), the driver does not handle the network configuration, it is
up to the administrator to ensure connectivity from a manila-share node and the Openstack cloud
to the VPSA Front-End network (such as neutron flat/VLAN network).

Supported shared filesystems and operations
Share file system supported

* SMB (CIFS)
* NFS

Supported operations

The following operations are supported:
* Create a share.
* Delete a share.
» Extend a share.
* Create a snapshot.

* Delete a snapshot.

3.2. Administrating Manila 385

https://www.zadara.com

Manila Developer Documentation, Release 15.4.2.dev5

* Create a share from snapshot.
* Allow share access.

* Manage a share.

Note:

* Only IP access type is supported
* Both RW and RO access levels supported

Backend Configuration

The following parameters need to be configured in the [DEFAULT] section of manila configuration
(/etc/manila/manila.conf):

* enabled_share_backends = Name of the section on manila.conf used to specify a backend i.e.

enabled_share_backends = zadaravpsa

* enabled_share_protocols - Specify a list of protocols to be allowed for share creation. The VPSA

driver support the following options: NF'S or CIFS or NFS, CIFS

The following parameters need to be configured in the [backend] section of manila configuration
(/etc/manila/manila.conf):

Driver options

zadara_vpsa_host = <VPSA - Management Host name or IP address>
zadara_vpsa_port = <VPSA - Port number>
zadara_vpsa_use_ssl = <VPSA - Use SSL connection (default=False)

zadara_ssl_cert_verify = <If set to True the http client will validate the SSL certificate of the VPSA
endpoint (default=True)>

zadara_driver_ssl_cert_path = <Can be used to specify a non default path to a CA_BUNDLE file
or directory with certificates of trusted CAs (default=None)

zadara_access_key - <VPSA access key>

zadara_vpsa_poolname - <VPSA - Storage Pool assigned for volumes>

zadara_vol_encrypt = <VPSA - Default encryption policy for volumes (default = True)
zadara_gen3_vol_dedupe = <VPSA - Default encryption policy for volumes (default = True)>
zadara_gen3_vol_compress = <VPSA - Enable compression for volumes (default=False)>

zadara_share_name_template = <VPSA - Default template for VPSA share names
(default=0S_share-%s>

zadara_share_snap_name_template = <VPSA - Default template for VPSA share snapshot names
(default=0S_share-snapshot-%os)

zadara_default_snap_policy = <VPSA - Attach snapshot policy for volumes (default=False)>

386

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* driver_handles_share_servers = <DHSS, driver working mode (must be set to False)>

e share_driver = manila.share.drivers.zadara.zadara.ZadaraVPSAShareDriver

Back-end configuration example

3.3 Reference

Contents

3.3.1 Configuration
Introduction to the Shared File Systems service

The Shared File Systems service provides shared file systems that Compute instances can consume.
The overall Shared File Systems service is implemented via the following specific services:

manila-api A WSGI app that authenticates and routes requests throughout the Shared File Systems
service. It supports the OpenStack APIs.

manila-data A standalone service whose purpose is to receive requests, process data operations with
potentially long running time such as copying, share migration or backup.

manila-scheduler Schedules and routes requests to the appropriate share service. The scheduler uses
configurable filters and weighers to route requests. The Filter Scheduler is the default and enables
filters on things like Capacity, Availability Zone, Share Types, and Capabilities as well as custom
filters.

manila-share Manages back-end devices that provide shared file systems. A manila-share service can
run in one of two modes, with or without handling of share servers. Share servers export file shares
via share networks. When share servers are not used, the networking requirements are handled
outside of Manila.

The Shared File Systems service contains the following components:

3.3. Reference 387

Manila Developer Documentation, Release 15.4.2.dev5

Back-end storage devices The Shared File Services service requires some form of back-end shared file
system provider that the service is built on. The reference implementation uses the Block Storage
service (Cinder) and a service VM to provide shares. Additional drivers are used to access shared
file systems from a variety of vendor solutions.

Users and tenants (projects) The Shared File Systems service can be used by many different cloud
computing consumers or customers (tenants on a shared system), using role-based access assign-
ments. Roles control the actions that a user is allowed to perform. In the default configuration,
most actions do not require a particular role unless they are restricted to administrators, but this can
be configured by the system administrator in the appropriate policy.yaml file that maintains the
rules. A users access to manage particular shares is limited by tenant. Guest access to mount and
use shares is secured by IP and/or user access rules. Quotas used to control resource consumption
across available hardware resources are per tenant.

For tenants, quota controls are available to limit:
* The number of shares that can be created.
* The number of gigabytes that can be provisioned for shares.
* The number of share snapshots that can be created.
* The number of gigabytes that can be provisioned for share snapshots.
* The number of share networks that can be created.
* The number of share groups that can be created.
* The number of share group snapshots that can be created.
* The number of share replicas that can be created.
* The number of gigabytes that can be provisioned for share replicas.
* The number of gigabytes that can be provisioned for each share.

You can revise the default quota values with the Shared File Systems CLI, so the limits placed by
quotas are editable by admin users.

Shares, snapshots, and share networks The basic resources offered by the Shared File Systems service
are shares, snapshots and share networks:

Shares A share is a unit of storage with a protocol, a size, and an access list. Shares are the basic
primitive provided by Manila. All shares exist on a backend. Some shares are associated
with share networks and share servers. The main protocols supported are NFS and CIFS, but
other protocols are supported as well.

Snapshots A snapshot is a point in time copy of a share. Snapshots can only be used to create
new shares (containing the snapshotted data). Shares cannot be deleted until all associated
snapshots are deleted.

Share networks A share network is a tenant-defined object that informs Manila about the secu-
rity and network configuration for a group of shares. Share networks are only relevant for
backends that manage share servers. A share network contains a security service and net-
work/subnet.

388 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Shared File Systems API configuration

Configuration options

The following options allow configuration of the APIs that Shared File Systems service supports.

3.3. Reference 389

Manila Developer Documentation, Release 15.4.2.dev5

Table 9: Description of API configuration options

Configuration option =
Default value

Description

[DEFAULT]

admin_network_config
= None

| ¢$oine) If share driver requires to setup admin network for share,

then define network plugin config options in some separate con-
fig group and set its name here. Used only with another option
driver_handles_share_servers set to True.

admin_network_id
None

(String) ID of neutron network used to communicate with admin network,
to create additional admin export locations on.

admin_subnet_id
None

(String) ID of neutron subnet used to communicate with admin net-
work, to create additional admin export locations on. Related to ad-
min_network_id.

api_paste_config
api-paste.ini

(String) File name for the paste.deploy config for manila-api.

api_rate_limit

(Boolean) Whether to rate limit the API.

True

db_backend = | (String) The backend to use for database.

sqlalchemy

max_header_line = | (Integer) Maximum line size of message headers to be accepted. Option
16384 max_header_line may need to be increased when using large tokens (typ-

ically those generated by the Keystone v3 API with big service catalogs).

osapi_max_limit
1000

(Integer) The maximum number of items returned in a single response
from a collection resource.

osapi_share_base_URL
= None

(String) Base URL to be presented to users in links to the Share API

osapi_share_ext_list

(List) Specify list of extensions to load when using osapi_share_extension
option with manila.api.contrib.select_extensions.

osapi_share_extensio
manila.

api.contrib.
standard_extensions

n(List) The osapi share extensions to load.

osapi_share_listen

(String) IP address for OpenStack Share API to listen on.

osapi_share_listen_p
= 8786

ofRort number) Port for OpenStack Share API to listen on.

osapi_share_workers
=1

(Integer) Number of workers for OpenStack Share API service.

share_api_class
manila.share.api.
API

(String) The full class name of the share API class to use.

volume_api_class
manila.volume.
cinder.API

(String) The full class name of the Volume API class to use.

volume_name_template
=manila-share-%s

(String) Volume name template.

volume_snapshot_name

manila-snapshot-%s

|_t®mplgt¥olume snapshot name template.

[oslo_middleware]

enable_proxy_headers

| pBosliaag) Whether the application is behind a proxy or not. This deter-

3§€alse

mines if the middleware should parse the hegde

max_request_body_siz
=114688

e (Integer) The maximum body size for each request, in bytes.

secure_proxy_ssl_hea

déString) DEPRECATED: The HTTP Header that will be used to determine

Manila Developer Documentation, Release 15.4.2.dev5

Share drivers

Generic approach for share provisioning

The Shared File Systems service can be configured to use Compute VMs and Block Storage service
volumes. There are two modules that handle them in the Shared File Systems service:

* The service_instance module creates VMs in Compute with a predefined image called
service image. This module can be used by any driver for provisioning of service VMs to
be able to separate share resources among tenants.

* The generic module operates with Block Storage service volumes and VMs created by the
service_instance module, then creates shared filesystems based on volumes attached to VMs.

Network configurations

Each driver can handle networking in its own way, see: https://wiki.openstack.org/wiki/manila/
Networking.

One of the two possible configurations can be chosen for share provisioning using the
service_instance module:

» Service VM has one network interface from a network that is connected to a public router. For
successful creation of a share, the user network should be connected to a public router, too.

¢ Service VM has two network interfaces, the first one is connected to the service network, the second
one is connected directly to the users network.

Requirements for service image

* Linux based distro

* NFS server

* Samba server >= 3.2.0, that can be configured by data stored in registry
* SSH server

* Two network interfaces configured to DHCP (see network approaches)
e exportfs and net conf libraries used for share actions

* The following files will be used, so if their paths differ one needs to create at least symlinks for
them:

— /etc/exports: permanent file with NFS exports.
— /var/lib/nfs/etab: temporary file with NFS exports used by exportfs.
— /etc/fstab: permanent file with mounted filesystems.

— /etc/mtab: temporary file with mounted filesystems used by mount.

3.3. Reference 391

https://wiki.openstack.org/wiki/manila/Networking
https://wiki.openstack.org/wiki/manila/Networking

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems and operations

The driver supports CIFS and NFS shares.

The following operations are supported:

Create a share.
Delete a share.
Allow share access.
Note the following limitations:
— Only IP access type is supported for NFS and CIFS.
Deny share access.
Create a snapshot.
Delete a snapshot.
Create a share from a snapshot.
Extend a share.

Shrink a share.

Known restrictions

* One of novas configurations only allows 26 shares per server. This limit comes from the maximum
number of virtual PCI interfaces that are used for block device attaching. There are 28 virtual PCI
interfaces, in this configuration, two of them are used for server needs and the other 26 are used

for attaching block devices that are used for shares.

Using Windows instances

While the generic driver only supports Linux instances, you may use the Windows SMB driver when
Windows instances are preferred.

For more details, please check out the following page: Windows SMB driver.

Driver options

The following table contains the configuration options specific to this driver.

Configuration option = Default value

[DEFAULT]

connect_share_server_to_tenant_network = False

container_volume_group =manila_docker_volumes

driver_handles_share_servers = None

392

Chapter 3.

For operators

Manila Developer Documentation, Release 15.4.2.dev5

Configuration option = Default value

goodness_function = None

interface_driver =manila.network.linux.interface.0OVSInterfaceDriver
manila_service_keypair_name =manila-service
max_time_to_attach =120

max_time_to_build_instance = 300

max_time_to_create_volume = 180

max_time_to_extend_volume = 180

ovs_integration_bridge =br-int

path_to_private_key = None

path_to_public_key =~/.ssh/id_rsa.pub
protocol_access_mapping={'ip': ['nfs'], 'user': ['cifs']}
service_image_name = manila-service-image
service_instance_flavor_id = 100

service_instance_name_or_id = None
service_instance_name_template = %s
service_instance_network_helper_type = neutron
service_instance_password = None
service_instance_security_group =manila-service
service_instance_smb_config_path = $share_mount_path/smb.conf
service_instance_user = None

service_net_name_or_ip = None

service_network_cidr =10.254.0.0/16
service_network_division_mask =28

service_network_name = manila_service_network

share_helpers = CIFS=manila.share.drivers.helpers.CIFSHelperIPAccess, NFS=manila.share.driv
share_mount_path = /shares

share_mount_template =mount -vt %(proto)s %(options)s %(export)s %(path)s
share_unmount_template = umount -v %(path)s
share_volume_fstype = ext4

tenant_net_name_or_ip = None

volume_name_template =manila-share-%s
volume_snapshot_name_template =manila-snapshot-%s

[glance]

api_microversion =2

region_name = RegionOne

auth_url = None

auth_type = None

cafile = None

certfile = None

collect_timing = false

default_domain_id = None

default_domain_name = None

domain_id = None

domain_name = None

insecure = false

keyfile = None

password = None

3.3. Reference 393

Manila Developer Documentation, Release 15.4.2.dev5

Configuration option = Default value

project_domain_id = None

project_domain_name = None

project_id = None

project_name = None

split_loggers = false

system_scope = None

timeout = None

trust_id = None

user_domain_id = None

user_domain_name = None

user_id = None

username = None

[cinder]

cross_az_attach = True

http_retries =3

endpoint_type = publicURL

region_name = RegionOne

auth_url = None

auth_type = None

cafile = None

certfile = None

collect_timing = false

default_domain_id = None

default_domain_name = None

domain_id = None

domain_name = None

insecure = false

keyfile = None

password = None

project_domain_id = None

project_domain_name = None

project_id = None

project_name = None

split_loggers = false

system_scope = None

timeout = None

trust_id = None

user_domain_id = None

user_domain_name = None

user_id = None

username = None

[neutron]

url =http://127.0.0.1:9696

url_timeout = 30

auth_strategy = keystone

endpoint_type = publicURL

region_name = None

394 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Configuration option = Default value

auth_url = None

auth_type = None

cafile = None

certfile = None

collect_timing = false

default_domain_id = None

default_domain_name = None

domain_id = None

domain_name = None

insecure = false

keyfile = None

password = None

project_domain_id = None

project_domain_name = None

project_id = None

project_name = None

split_loggers = false

system_scope = None

timeout = None

trust_id = None

user_domain_id = None

user_domain_name = None

user_id = None

username = None

[nova]

api_microversion=12.10

endpoint_type = publicURL

region_name = None

auth_url = None

auth_type = None

cafile = None

certfile = None

collect_timing = false

default_domain_id = None

default_domain_name = None

domain_id = None

domain_name = None

insecure = false

keyfile = None

password = None

project_domain_id = None

project_domain_name = None

project_id = None

project_name = None

split_loggers = false

system_scope = None

timeout = None

3.3. Reference 395

Manila Developer Documentation, Release 15.4.2.dev5

Configuration option = Default value

trust_id = None

user_domain_id = None

user_domain_name = None

user_id = None

username = None

CephFS Native driver

The CephFS Native driver enables the Shared File Systems service to export shared file systems to guests
using the Ceph network protocol. Guests require a Ceph client in order to mount the file system.

Access is controlled via Cephs cephx authentication system. When a user requests share access for an ID,
Ceph creates a corresponding Ceph auth ID and a secret key, if they do not already exist, and authorizes
the ID to access the share. The client can then mount the share using the ID and the secret key.

To learn more about configuring Ceph clients to access the shares created using this driver, please see
the Ceph documentation (http://docs.ceph.com/docs/master/cephfs/). If you choose to use the kernel
client rather than the FUSE client, the share size limits set in the Shared File Systems service may not be
obeyed.

Supported shared file systems and operations

The driver supports CephFS shares.

The following operations are supported with CephFS back end:

Create a share.

Delete a share.

Allow share access.
— read-only access level is supported.
— read-write access level is supported.

Note the following limitation for CephFS shares:
— Only cephx access type is supported.

Deny share access.

Create a snapshot.

Delete a snapshot.

Create a consistency group (CG).

Delete a CG.

Create a CG snapshot.

Delete a CG snapshot.

396

Chapter 3.

For operators

http://docs.ceph.com/docs/master/cephfs/

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

» Mitaka or later versions of manila.

*» Jewel or later versions of Ceph.

* A Ceph cluster with a file system configured (http://docs.ceph.com/docs/master/cephfs/createfs/)
* ceph-common package installed in the servers running the manila-share service.

* Ceph client installed in the guest, preferably the FUSE based client, ceph-fuse.

» Network connectivity between your Ceph clusters public network and the servers running the
manila-share service.

* Network connectivity between your Ceph clusters public network and guests.

Important: A manila share backed onto CephFS is only as good as the underlying file system. Take
care when configuring your Ceph cluster, and consult the latest guidance on the use of CephFS in the
Ceph documentation (http://docs.ceph.com/docs/master/cephfs/).

Authorize the driver to communicate with Ceph

Run the following commands to create a Ceph identity for the Shared File Systems service to use:

manila.keyring, along with your ceph. conf file, then needs to be placed on the server running the
manila-share service.

Enable snapshots in Ceph if you want to use them in the Shared File Systems service:

In the server running the manila-share service, you can place the ceph.conf and manila.keyring
files in the /etc/ceph directory. Set the same owner for the manila-share process and the manila.
keyring file. Add the following section to the ceph. conf file.

(continues on next page)

3.3. Reference 397

http://docs.ceph.com/docs/master/cephfs/createfs/
http://docs.ceph.com/docs/master/cephfs/

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Itis advisable to modify the Ceph clients admin socket file and log file locations so that they are co-located
with the Shared File Systems services pid files and log files respectively.

Configure CephFS back end in manila.conf

1. Add CephFS to enabled_share_protocols (enforced at the Shared File Systems services API
layer). In this example we leave NFS and CIFS enabled, although you can remove these if you only
use CephFS:

2. Refer to the following table for the list of all the cephfs_native driver-specific configuration

options.
Table 11: Description of CephFS share driver configuration op-
tions
Configuration option = Default | Description
value
[DEFAULT]
cephfs_auth_id =manila (String) The name of the ceph auth identity to use.
cephfs_cluster_name = None | (String) The name of the cluster in use, if it is not the de-
fault (ceph).
cephfs_conf_path = (String) Fully qualified path to the ceph.conf file.

Create a section to define a CephFS back end:

Also set the driver-handles-share-servers to False as the driver does not manage the life-
cycle of share-servers.

3. Edit enabled_share_backends to point to the drivers back-end section using the section name.
In this example we are also including another back end (genericl), you would include whatever
other back ends you have configured.

398 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Creating shares

The default share type may have driver_handles_share_servers set to True. Configure a share
type suitable for CephFS:

Then create a share:

Note the export location of the share:

The export location of the share contains the Ceph monitor (mon) addresses and ports, and the path
to be mounted. It is of the form, {mon ip addr:port}[,{mon ip addr:port}]:{path to be
mounted}

Allowing access to shares

Allow Ceph auth ID alice access to the share using cephx access type.

Note the access status and the secret access key of alice.

Mounting shares using FUSE client

Using the secret key of the authorized ID alice, create a keyring file alice.keyring.

Using the monitor IP addresses from the shares export location, create a configuration file, ceph. conf:

Finally, mount the file system, substituting the file names of the keyring and configuration files you just
created, and substituting the path to be mounted from the shares export location:

(continues on next page)

3.3. Reference 399

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Known restrictions

Consider the driver as a building block for supporting multi-tenant workloads in the future. However, it
can be used in private cloud deployments.

* The guests have direct access to Cephs public network.

* Snapshots are read-only. A wuser can read a snapshots contents from the .snap/
{manila-snapshot-id}_{unknown-id} folder within the mounted share.

* To restrict share sizes, CephFS uses quotas that are enforced in the client side. The CephFS clients
are relied on to respect quotas.

Security

* Each shares data is mapped to a distinct Ceph RADOS namespace. A guest is restricted to access
only that particular RADOS namespace.

* An additional level of resource isolation can be provided by mapping a shares contents to a separate
RADOS pool. This layout would be preferred only for cloud deployments with a limited number
of shares needing strong resource separation. You can do this by setting a share type specification,
cephfs:data_isolated for the share type used by the cephfs driver.

* Untrusted manila guests pose security risks to the Ceph storage cluster as they would have direct
access to the clusters public network.

Dell EMC PowerMax Plugin

The Dell EMC Shared File Systems service driver framework (EMCShareDriver) utilizes the Dell EMC
storage products to provide the shared file systems to OpenStack. The Dell EMC driver is a plug-in based
driver which is designed to use different plug-ins to manage different Dell EMC storage products.

The PowerMax plug-in manages the PowerMax to provide shared file systems. The Dell EMC driver
framework with the PowerMax plug-in is referred to as the PowerMax driver in this document.

This driver performs the operations on PowerMax eNAS by XMLAPI and the file command line. Each
back end manages one Data Mover of PowerMax. Multiple Shared File Systems service back ends need
to be configured to manage multiple Data Movers.

400 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

* PowerMax eNAS OE for File version 8.1 or higher

* PowerMax Unified or File only

* The following licenses should be activated on PowerMax for File:
- CIFS
- NFS

SnapSure (for snapshot)

ReplicationV2 (for create share from snapshot)

Supported shared file systems and operations

The driver supports CIFS and NFS shares.
The following operations are supported:
* Create a share.
* Delete a share.
* Allow share access.
Note the following limitations:
— Only IP access type is supported for NFS.
— Only user access type is supported for CIFS.
* Deny share access.
* Create a snapshot.
* Delete a snapshot.
* Create a share from a snapshot.

While the generic driver creates shared file systems based on cinder volumes attached to nova VMs, the
PowerMax driver performs similar operations using the Data Movers on the array.

Pre-configurations on PowerMax

1. Configure a storage pool

There is a one to one relationship between a storage pool in embedded NAS to a storage group
on the PowerMax. The best way to provision storage for file is from the Unisphere for PowerMax
UI rather than eNAS UI. Go to {array} > SYSTEM > Flle and under Actions click PROVISION
STORAGE FOR FILE

Note: When creating a new storage group you have the ability to assign a service level e.g.
Diamond and disable compression/deduplication which is enabled by default.

3.3. Reference 401

Manila Developer Documentation, Release 15.4.2.dev5

To pick up the newly created storage pool in the eNAS UI, go to {Control Station} > Storage >
Storage Configuration > Storage Pools and under File Storage click Rescan Storage Systems

or on the command line:

nas_diskmark -mark -all -discovery y -monitor y

The new storage pool should now appear in the eNAS Ul

2. Make sure you have the appropriate licenses
nas_license -1
3. Enable CIFS service on Data Mover.
Ensure the CIFS service is enabled on the Data Mover which is going to be managed by PowerMax
driver.
To start the CIFS service, use the following command:
server_setup <movername> -Protocol cifs -option start <n>
name of the Data Mover
number of threads CIFS users
Note: If there is 1 GB of memory on the Data Mover, the default is 96 threads. However, if there
is over 1 GB of memory, the default number of threads is 256.
To check the CIFS service status, use the following command:
server_cifs <movername> @ head
name of the Data Mover
The command output will show the number of CIFS threads started.
4. NTP settings on Data Mover.
PowerMax driver only supports CIFS share creation with share network which has an Active Di-
rectory security-service associated.
Creating CIFS share requires that the time on the Data Mover is in sync with the Active Directory
domain so that the CIFS server can join the domain. Otherwise, the domain join will fail when
creating a share with this security service. There is a limitation that the time of the domains used
by security-services, even for different tenants and different share networks, should be in sync.
Time difference should be less than 5 minutes.
Note: If there is a clock skew then you may see the following error The local machine and
the remote machine are not synchronized. Kerberos protocol requires a synchronization of both
402 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

participants within the same 5 minutes. To fix this error you must make sure the times of the eNas
controller host and the Domain Controller or within 5 minutes of each other. You must be root to
change the date of the eNas control station. Check also that your time zones coincide.

We recommend setting the NTP server to the same public NTP server on both the Data Mover and
domains used in security services to ensure the time is in sync everywhere.

Check the date and time on Data Mover with the following command:

server_date <movername>
name of the Data Mover

Set the NTP server for Data Mover with the following command:

server_date <movername> timesvc start ntp <host> <host>
name of the Data Mover
IP address of the server host

Note: The host must be running the NTP protocol. Only 4 host entries are allowed.

5. Configure User Mapping on the Data Mover.

Before creating CIFS share using PowerMax driver, you must select a method of mapping Windows
SIDs to UIDs and GIDs. DELL EMC recommends using usermapper in single protocol (CIFS)
environment which is enabled on PowerMax eNAS by default.

To check usermapper status, use the following command syntax:

server_usermapper <movername>
name of the Data Mover

If usermapper does not start, use the following command to start the usermapper:

server_usermapper <movername> -enable
name of the Data Mover

For a multiple protocol environment, refer to Configuring PowerMax eNAS User Mapping on
EMC support site for additional information.

6. Configure network connection.

Find the network devices (physical port on NIC) of the Data Mover that has access to the share
network.

To check the device list on the eNAS UI go to {Control Station} > Settings > Network > Devices.

or on the command line:

server_sysconfig server_2 -pci

(continues on next page)

3.3. Reference 403

http://support.emc.com

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Back-end configurations

Note: The following deprecated tags will be removed in the T release:
* emc_nas_server_container
* emc_nas_pool_names

* emc_interface_ports

The following parameters need to be configured in the /etc/manila/manila. conf file for the Power-
Max driver:

* emc_share_backend The plug-in name. Set it to powermax for the PowerMax driver. Other val-
ues are isilon, vnx and unity.

* emc_nas_server The control station IP address of the PowerMax system to be managed.

» emc_nas_password and emc_nas_login The fields that are used to provide credentials to the
PowerMax system. Only local users of PowerMax File is supported.

404 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* driver_handles_share_servers PowerMax only supports True, where the share driver handles the
provisioning and management of the share servers.

* powermax_server_container Name of the Data Mover to serve the share service.

* powermax_share_data_pools Comma separated list specifying the name of the pools to be used
by this back end. Do not set this option if all storage pools on the system can be used. Wild
card character is supported.

Examples: pool_1, pool_*, *

* powermax_ethernet_ports (optional) Comma-separated list specifying the ports (devices) of
Data Mover that can be used for share server interface. Do not set this option if all ports
on the Data Mover can be used. Wild card character is supported.

Examples: fxg-9-0, fxg-_*, *
» emc_ssl_cert_verify (optional) By default this is True, setting it to False is not recommended

» emc_ssl_cert_path (optional) The path to the This must be set if emc_ssl_cert_verify is True
which is the recommended configuration. See SSL Support section for more details.

* share_backend_name The backend name for a given driver implementation.

Restart of the manila-share service is needed for the configuration changes to take effect.

SSL Support

1. Run the following on eNas Control Station, to display the CA certification for the active CS.

/nas/sbin/nas_ca_certificate -display

Warning: This cert will be different for the secondary CS so if there is a failover a different
certificate must be used.

2. Copy the contents and create a file with a .pem extention on your manila host.

3. To verify the cert by running the following and examining the output:

openssl x509 -in test.pem -text -noout

(continues on next page)

3.3. Reference 405

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

4. As it is the capath and not the cafile that is expected, copy the file to either new directory or an
existing directory (where other .pem files exist).

5. Run the following on the directory

c_rehash

6. Update manila.conf with the directory where the .pem exists.

7. Restart manila services.

Snapshot Support

Snapshot support is disabled by default, so in order to allow shapshots for a share type, the
snapshot_support extra spec must be set to True. Creating a share from a snapshot is also disabled
by default so create_share_from_snapshot_support must also be set to True if this functionality
is required.

For a new share type:

manila type-create --snapshot_support True
--create_share_from_snapshot_support True
share_type_name True

For an existing share type:

406 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila type-key
True
manila type-key
True

To create a snapshot from a share where snapshot_support=True:

manila snapshot-create --name

To create a target share from a shapshot where create_share_from_snapshot_support=True:

manila create cifs --name
--share-network
--share-type
--metadata snapshot
--snapshot-id

IPv6 support

IPv6 support for PowerMax Manila driver was introduced in Rocky release. The feature is divided into
two parts:

1. The driver is able to manage share or snapshot in the Neutron IPv6 network.

2. The driver is able to connect PowerMax management interface using its IPv6 address.

Pre-Configurations for IPv6 support

The following parameters need to be configured in /etc/manila/manila.conf for the PowerMax
driver:

If you want to connect to the eNAS controller using IPv6 address specify the address in /etc/manila/
manila.conf:

Restrictions

The PowerMax driver has the following restrictions:
* Only driver_handles_share_servers equals True is supported.
* Only IP access type is supported for NFS.
* Only user access type is supported for CIFS.
* Only FLAT network and VLAN network are supported.

3.3. Reference 407

Manila Developer Documentation, Release 15.4.2.dev5

VLAN network is supported with limitations. The neutron subnets in different VLANs that are
used to create share networks cannot have overlapped address spaces. Otherwise, PowerMax may
have a problem to communicate with the hosts in the VLANS. To create shares for different VLANs
with same subnet address, use different Data Movers.

The Active Directory security service is the only supported security service type and it is required
to create CIFS shares.

Only one security service can be configured for each share network.

The domain name of the active_directory security service should be unique even for different
tenants.

The time on the Data Mover and the Active Directory domains used in security services should
be in sync (time difference should be less than 10 minutes). We recommended using same NTP
server on both the Data Mover and Active Directory domains.

On eNAS, the snapshot is stored in the SavVols. eNAS system allows the space used by SavVol to
be created and extended until the sum of the space consumed by all SavVols on the system exceeds
the default 20% of the total space available on the system. If the 20% threshold value is reached,
an alert will be generated on eNAS. Continuing to create snapshot will cause the old snapshot to
be inactivated (and the snapshot data to be abandoned). The limit percentage value can be changed
manually by storage administrator based on the storage needs. We recommend the administrator
configures the notification on the SavVol usage. Refer to Using eNAS SnapSure document on
EMC support site for more information.

eNAS has limitations on the overall numbers of Virtual Data Movers, filesystems, shares, and
checkpoints. Virtual Data Mover(VDM) is created by the eNAS driver on the eNAS to serve as
the Shared File Systems service share server. Similarly, the filesystem is created, mounted, and
exported from the VDM over CIFS or NFS protocol to serve as the Shared File Systems service
share. The eNAS checkpoint serves as the Shared File Systems service share snapshot. Refer to the
NAS Support Matrix document on EMC support site for the limitations and configure the quotas
accordingly.

Other Remarks

* eNAS nas_quotas should not be confused with OpenStack manila quotas. The former edits quo-

tas for mounted file systems, and displays a listing of quotas and disk usage at the file system level
(by the user, group, or tree), or at the quota-tree level (by the user or group). nas_quotas also
turns quotas on and off, and clears quotas records for a file system, quota tree, or a Data Mover.
Refer to PowerMax eNAS CLI Reference guide on EMC support site for additional information.
OpenStack manila quotas delimit the number of shares, snapshots etc. a user can create.

manila quota-show --tenant <project_id> --user <user_id>

(continues on next page)

408

Chapter 3. For operators

http://support.emc.com
http://support.emc.com
http://support.emc.com

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Driver options

Configuration options specific to this driver:

Table 12: Description of Dell EMC PowerMax share driver con-
figuration options

Configuration option | Description
= Default value
[DEFAULT]
powermax_ethernet_pdgkis) Comma separated list of ports that can be used for share server inter-
= None faces. Members of the list can be Unix-style glob expressions.
powermax_server_contStimeg) Data mover to host the NAS server.

= None
powermax_share_data (hist)l €omma separated list of pools that can be used to persist share data.
= None

Dell EMC VNX driver

The EMC Shared File Systems service driver framework (EMCShareDriver) utilizes the EMC storage
products to provide the shared file systems to OpenStack. The EMC driver is a plug-in based driver which
is designed to use different plug-ins to manage different EMC storage products.

The VNX plug-in is the plug-in which manages the VNX to provide shared filesystems. The EMC driver
framework with the VNX plug-in is referred to as the VNX driver in this document.

This driver performs the operations on VNX by XMLAPI and the file command line. Each back end
manages one Data Mover of VNX. Multiple Shared File Systems service back ends need to be configured
to manage multiple Data Movers.

Requirements

* VNX OE for File version 7.1 or higher
* VNX Unified, File only, or Gateway system with a single storage back end
* The following licenses should be activated on VNX for File:

- CIFS

- NFS

SnapSure (for snapshot)

ReplicationV?2 (for create share from snapshot)

3.3. Reference 409

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems and operations

The driver supports CIFS and NFS shares.

The following operations are supported:

Create a share.
Delete a share.
Allow share access.
Note the following limitations:
— Only IP access type is supported for NFS.
— Only user access type is supported for CIFS.
Deny share access.
Create a snapshot.
Delete a snapshot.

Create a share from a snapshot.

While the generic driver creates shared filesystems based on cinder volumes attached to nova VMs, the
VNX driver performs similar operations using the Data Movers on the array.

Pre-configurations on VNX

1.

Enable unicode on Data Mover.

The VNX driver requires that the unicode is enabled on Data Mover.

Warning: After enabling Unicode, you cannot disable it. If there are some filesystems cre-
ated before Unicode is enabled on the VNX, consult the storage administrator before enabling
Unicode.

To check the Unicode status on Data Mover, use the following VNX File command on the VNX
control station:

Check the value of 118N mode field. UNICODE mode is shown as 118N mode = UNICODE.

To enable the Unicode for Data Mover:

Refer to the document Using International Character Sets on VNX for File on EMC support site
for more information.

410

Chapter 3. For operators

http://support.emc.com

Manila Developer Documentation, Release 15.4.2.dev5

2. Enable CIFS service on Data Mover.

Ensure the CIFS service is enabled on the Data Mover which is going to be managed by VNX
driver.

To start the CIFS service, use the following command:

Note: If there is 1 GB of memory on the Data Mover, the default is 96 threads; however, if there
is over 1 GB of memory, the default number of threads is 256.

To check the CIFS service status, use this command:

The command output will show the number of CIFS threads started.
3. NTP settings on Data Mover.

VNX driver only supports CIFS share creation with share network which has an Active Directory
security-service associated.

Creating CIFS share requires that the time on the Data Mover is in sync with the Active Directory
domain so that the CIFS server can join the domain. Otherwise, the domain join will fail when
creating share with this security service. There is a limitation that the time of the domains used by
security-services even for different tenants and different share networks should be in sync. Time
difference should be less than 10 minutes.

It is recommended to set the NTP server to the same public NTP server on both the Data Mover
and domains used in security services to ensure the time is in sync everywhere.

Check the date and time on Data Mover:

Set the NTP server for Data Mover:

Note: The host must be running the NTP protocol. Only 4 host entries are allowed.

4. Configure User Mapping on the Data Mover.

Before creating CIFS share using VNX driver, you must select a method of mapping Windows SIDs
to UIDs and GIDs. EMC recommends using usermapper in single protocol (CIFS) environment
which is enabled on VNX by default.

3.3. Reference 411

Manila Developer Documentation, Release 15.4.2.dev5

To check usermapper status, use this command syntax:

If usermapper is not started, the following command can be used to start the usermapper:

For a multiple protocol environment, refer to Configuring VNX User Mapping on EMC support
site for additional information.

5. Network Connection.
Find the network devices (physical port on NIC) of Data Mover that has access to the share network.

Go to Unisphere to check the device list: Settings > Network > Settings for File (Unified system
only) > Device.

Back-end configurations

The following parameters need to be configured in the /etc/manila/manila. conf file for the VNX
driver:

» emc_share_backend The plug-in name. Set it to vnx for the VNX driver.
* emc_nas_server The control station IP address of the VNX system to be managed.

* emc_nas_password and emc_nas_login The fields that are used to provide credentials to the
VNX system. Only local users of VNX File is supported.

e vnx_server_container Name of the Data Mover to serve the share service.

* vnx_share_data_pools Comma separated list specifying the name of the pools to be used by this
back end. Do not set this option if all storage pools on the system can be used. Wild card
character is supported.

Examples: pool_1, pool_*, *

* vnx_ethernet_ports Comma separated list specifying the ports (devices) of Data Mover that can
be used for share server interface. Do not set this option if all ports on the Data Mover can

be used. Wild card character is supported.
Examples: spa_ethl, spa_%*, *

—

Restart of the manila-share service is needed for the configuration changes to take effect.

412 Chapter 3. For operators

http://support.emc.com
http://support.emc.com

Manila Developer Documentation, Release 15.4.2.dev5

Restrictions

The VNX driver has the following restrictions:

Only IP access type is supported for NFS.
Only user access type is supported for CIFS.
Only FLAT network and VLAN network are supported.

VLAN network is supported with limitations. The neutron subnets in different VLANs that are
used to create share networks cannot have overlapped address spaces. Otherwise, VNX may have
a problem to communicate with the hosts in the VLANs. To create shares for different VLANs
with same subnet address, use different Data Movers.

The Active Directory security service is the only supported security service type and it is
required to create CIFS shares.

Only one security service can be configured for each share network.

Active Directory domain name of the active_directory security service should be unique even for
different tenants.

The time on Data Mover and the Active Directory domains used in security services should be in
sync (time difference should be less than 10 minutes). It is recommended to use same NTP server
on both the Data Mover and Active Directory domains.

On VNX the snapshot is stored in the SavVols. VNX system allows the space used by SavVol to
be created and extended until the sum of the space consumed by all SavVols on the system exceeds
the default 20% of the total space available on the system. If the 20% threshold value is reached,
an alert will be generated on VNX. Continuing to create snapshot will cause the old snapshot to be
inactivated (and the snapshot data to be abandoned). The limit percentage value can be changed
manually by storage administrator based on the storage needs. Administrator is recommended to
configure the notification on the SavVol usage. Refer to Using VNX SnapSure document on EMC
support site for more information.

VNX has limitations on the overall numbers of Virtual Data Movers, filesystems, shares, check-
points, etc. Virtual Data Mover(VDM) is created by the VNX driver on the VNX to serve as
the Shared File Systems service share server. Similarly, filesystem is created, mounted, and ex-
ported from the VDM over CIFS or NFS protocol to serve as the Shared File Systems service
share. The VNX checkpoint serves as the Shared File Systems service share snapshot. Refer to the
NAS Support Matrix document on EMC support site for the limitations and configure the quotas
accordingly.

Driver options

Configuration options specific to this driver:

3.3. Reference 413

http://support.emc.com
http://support.emc.com
http://support.emc.com

Manila Developer Documentation, Release 15.4.2.dev5

Table 13: Description of Dell EMC VNX share driver configura-
tion options
Configuration op- | Description
tion = Default value
[DEFAULT]
vnx_ethernet_ports (List) Comma separated list of ports that can be used for share server inter-
= None faces. Members of the list can be Unix-style glob expressions.
vnx_server_containefString) Data mover to host the NAS server.
= None
vnx_share_data_pool@d.ist) Comma separated list of pools that can be used to persist share data.
= None

GlusterFS driver

GlusterFS driver uses GlusterFS, an open source distributed file system, as the storage back end for
serving file shares to the Shared File Systems clients.

Supported shared filesystems and operations

The driver supports NFS shares.
The following operations are supported:
* Create a share.
* Delete a share.
* Allow share access.
Note the following limitations:
— Only IP access type is supported
— Only read-write access is supported.

* Deny share access.

Requirements

* Install glusterfs-server package, version >= 3.5.x, on the storage back end.

* Install NFS-Ganesha, version >=2.1, if using NFS-Ganesha as the NFS server for the GlusterFS
back end.

* Install glusterfs and glusterfs-fuse package, version >=3.5.x, on the Shared File Systems service
host.

* Establish network connection between the Shared File Systems service host and the storage back
end.

414 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Shared File Systems service driver configuration setting

The following parameters in the Shared File Systems services configuration file manila. conf need to
be set:

If the back-end GlusterFS server runs on the Shared File Systems service host machine:

If the back-end GlusterFS server runs remotely:

Known restrictions

* The driver does not support network segmented multi-tenancy model, but instead works over a flat
network, where the tenants share a network.

* If NFS Ganesha is the NFS server used by the GlusterFS back end, then the shares can be accessed
by NFSv3 and v4 protocols. However, if Gluster NFS is used by the GlusterFS back end, then the
shares can only be accessed by NFSv3 protocol.

* All Shared File Systems service shares, which map to subdirectories within a GlusterFS volume,
are currently created within a single GlusterFS volume of a GlusterFS storage pool.

* The driver does not provide read-only access level for shares.

Driver options

The following table contains the configuration options specific to the share driver.

3.3. Reference 415

Manila Developer Documentation, Release 15.4.2.dev5

Table 14: Description of GlusterFS share driver configuration op-

tions

Config- | Description

uration

option

= De-

fault

value

[DE-

FAULT]

glusterfqSgdangsRanssr€eanckha server nodes IP address.

= None

glusterfqSgdngshkemsetevemnpsisswordr nodes login password. This is not required if glus-

=None | terfs_path_to_private_key is configured.

glusterfqSgdngsRanseremashe snewer nodes username.

=root

glusterfSnhangxBped direbasyg containing mount points for Gluster volumes.

$state_path/

mnt

glusterfqStrfisg s&ypenf Nife server that mediate access to the Gluster volumes (Gluster or Gane-

= sha).

Gluster

glusterfqSpanp) Pathpeti Veindlakieysts private SSH key file.

= None

glusterfqSserygeRemasswoiasterFS server nodes login password. This is not required if glus-

=None | terfs_path_to_private_key is configured.

glusterfqlseytdastsof GlusterFS servers that can be used to create shares. Each GlusterFS server

= should be of the form [remoteuser @ [<volserver>, and they are assumed to belong to dis-
tinct Gluster clusters.

glusterfqSstingkSpegifiat GlusterFS share layout, that is, the method of associating backing Glus-

= None | terFS resources to shares.

glusterfgStdmge$pecifies the GlusterFS volume to be mounted on the Manila host. It is of the form

= None [remoteuser @ |<volserver>:<volid>.

glusterfiqSuaignRepalarempression template used to filter GlusterFS volumes for share creation.

=None | The regex template can optionally (ie. with support of the GlusterFS backend) contain the
#{size} parameter which matches an integer (sequence of digits) in which case the value
shall be interpreted as size of the volume in GB. Examples: manila-share-volume-d+$,
manila-share-volume-#{size } G-d+$; with matching volume names, respectively: manila-
share-volume-12, manila-share-volume-3G-13. In latter example, the number that matches
#{size}, that is, 3, is an indication that the size of volume is 3G.

416 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

GlusterFS Native driver

GlusterFS Native driver uses GlusterFS, an open source distributed file system, as the storage back end
for serving file shares to Shared File Systems service clients.

A Shared File Systems service share is a GlusterFS volume. This driver uses flat-network (share-
server-less) model. Instances directly talk with the GlusterFS back end storage pool. The instances
use glusterfs protocol to mount the GlusterFS shares. Access to each share is allowed via TLS Cer-
tificates. Only the instance which has the TLS trust established with the GlusterFS back end can mount
and hence use the share. Currently only read-write (rw) access is supported.

Network approach

L3 connectivity between the storage back end and the host running the Shared File Systems share service
should exist.

Multi-tenancy model

The driver does not support network segmented multi-tenancy model. Instead multi-tenancy is supported
using tenant specific TLS certificates.

Supported shared filesystems and operations

The driver supports GlusterFS shares.
The following operations are supported:
* Create a share.
* Delete a share.
* Allow share access.
Note the following limitations:
— Only access by TLS Certificates (cert access type) is supported.
— Only read-write access is supported.
* Deny share access.
* Create a snapshot.

* Delete a snapshot.

3.3. Reference 417

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

* Install glusterfs-server package, version >= 3.6.x, on the storage back end.

* Install glusterfs and glusterfs-fuse package, version >= 3.6.x, on the Shared File Systems service

host.

* Establish network connection between the Shared File Systems service host and the storage back

end.

Shared File Systems service driver configuration setting

The following parameters in the Shared File Systems services configuration file need to be set:

The parameters are:

glusterfs_servers Listof GlusterFS servers which provide volumes that can be used to create shares.

The servers are expected to be of distinct Gluster clusters, so they should not be Gluster peers. Each
server should be of the form [<remoteuser>@]<glustervolserver>.

The optional <remoteuser>@ part of the server URI indicates SSH access for cluster management
(see related optional parameters below). If it is not given, direct command line management is
performed (the Shared File Systems service host is assumed to be part of the GlusterFS cluster the
server belongs to).

glusterfs_volume_pattern Regular expression template used to filter GlusterFS volumes for

share creation. The regular expression template can contain the #{size} parameter which
matches a number and the value will be interpreted as size of the volume in GB. Examples:
manila-share-volume-\d+$, manila-share-volume-#{size}G-\d+$; with matching vol-
ume names, respectively: manila-share-volume-12, manila-share-volume-3G-13. In the
latter example, the number that matches #{size}, which is 3, is an indication that the size of vol-
ume is 3 GB. On share creation, the Shared File Systems service picks volumes at least as large as
the requested one.

When setting up GlusterFS shares, note the following:

* GlusterFS volumes are not created on demand. A pre-existing set of GlusterFS volumes should

be supplied by the GlusterFS cluster(s), conforming to the naming convention encoded by
glusterfs_volume_pattern. However, the GlusterFS endpoint is allowed to extend this set
any time, so the Shared File Systems service and GlusterFS endpoints are expected to communi-
cate volume supply and demand out-of-band.

Certificate setup, also known as trust setup, between instance and storage back end is out of band
of the Shared File Systems service.

For the Shared File Systems service to use GlusterFS volumes, the name of the trashcan directory
in GlusterFS volumes must not be changed from the default.

418

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

HDFS native driver

The HDFS native driver is a plug-in for the Shared File Systems service. It uses Hadoop distributed
file system (HDFS), a distributed file system designed to hold very large amounts of data, and provide
high-throughput access to the data.

A Shared File Systems service share in this driver is a subdirectory in the hdfs root directory. Instances
talk directly to the HDFS storage back end using the hdfs protocol. Access to each share is allowed by
user based access type, which is aligned with HDFS ACLs to support access control of multiple users
and groups.

Network configuration

The storage back end and Shared File Systems service hosts should be in a flat network, otherwise L3
connectivity between them should exist.

Supported shared filesystems and operations

The driver supports HDFS shares.

The following operations are supported:

Create a share.
Delete a share.
Allow share access.

Note the following limitations:

— Only user access type is supported.

Deny share access.
Create a snapshot.
Delete a snapshot.

Create a share from a snapshot.

Requirements

* Install HDFS package, version >= 2.4.x, on the storage back end.

* To enable access control, the HDFS file system must have ACLs enabled.

* Establish network connection between the Shared File Systems service host and storage back end.

3.3. Reference

419

Manila Developer Documentation, Release 15.4.2.dev5

Shared File Systems service driver configuration

To enable the driver, set the share_driver option in file manila. conf and add other options as appro-
priate.

Known restrictions

* This driver does not support network segmented multi-tenancy model. Instead multi-tenancy is
supported by the tenant specific user authentication.

* Only support for single HDFS namenode in Kilo release.

Driver options
The following table contains the configuration options specific to the share driver.

Table 15: Description of HDFS share driver configuration options

Configuration option = | Description
Default value
[DEFAULT]
hdfs_namenode_ip = | (String) The IP of the HDFS namenode.
None
hdfs_namenode_port | (Port number) The port of HDFS namenode service.
= 9000
hdfs_ssh_name = | (String) HDFS namenode ssh login name.
None
hdfs_ssh_port =22 (Port number) HDFS namenode SSH port.
hdfs_ssh_private_key (String) Path to HDFS namenode SSH private key for login.
= None
hdfs_ssh_pw = None (String) HDFS namenode SSH login password, This parameter is not nec-
essary, if hdfs_ssh_private_key is configured.

LVM share driver

The Shared File Systems service can be configured to use LVM share driver. LVM share driver relies
solely on LVM running on the same host with manila-share service. It does not require any services not
related to the Shared File Systems service to be present to work.

420 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Prerequisites

The following packages must be installed on the same host with manila-share service:
* NFS server
* Samba server >= 3.2.0
* LVM2 >=2.02.66

Services must be up and running, ports used by the services must not be blocked. A node with manila-
share service should be accessible to share service users.

LVM should be preconfigured. By default, LVM driver expects to find a volume group named
lvm-shares. This volume group will be used by the driver for share provisioning. It should be managed
by node administrator separately.

Shared File Systems service driver configuration setting

To use the driver, one should set up a corresponding back end. A driver must be explicitly specified
as well as export IP address. A minimal back-end specification that will enable LVM share driver is
presented below:

In the example above, 1vm_share_export_ips is the address to be used by clients for accessing shares.
In the simplest case, it should be the same as hosts address. The option allows configuring more than
one IP address as a comma separated string.

Supported shared file systems and operations

The driver supports CIFS and NFS shares.
The following operations are supported:

* Create a share.

* Delete a share.

* Allow share access.

Note the following limitations:
— Only IP access type is supported for NFS.

* Deny share access.

* Create a snapshot.

* Delete a snapshot.

* Create a share from a snapshot.

¢ Extend a share.

3.3. Reference 421

Manila Developer Documentation, Release 15.4.2.dev5

Known restrictions

* LVM driver should not be used on a host running Neutron agents, simultaneous usage might cause
issues with share deletion (shares will not get deleted from volume groups).

Driver options
The following table contains the configuration options specific to this driver.

Table 16: Description of LVM share driver configuration options

Configuration option = Default value Description

[DEFAULT]

lvm_share_export_ips = None (String) List of IPs to export shares belong-
ing to the LVM storage driver.

lvm_share_export_root = $state_path/mnt (String) Base folder where exported shares
are located.

lvm_share_helpers = CIFS=manila.share. | (List) Specify list of share export helpers.

drivers.helpers.CIFSHelperUserAccess,
NFS=manila.share.drivers.helpers.NFSHelper
lvm_share_mirrors =0 (Integer) If set, create LVMs with mul-
tiple mirrors. Note that this requires
Ivm_mirrors + 2 PVs with available space.
lvm_share_volume_group = lvm-shares (String) Name for the VG that will contain
exported shares.

ZFS (on Linux) driver

Manila ZFSonLinux share driver uses ZFS file system for exporting NFS shares. Written and tested using
Linux version of ZFS.

Requirements

* NFS daemon that can be handled through exportf£s app.

ZFS file system packages, either Kernel or FUSE versions.

* ZFS zpools that are going to be used by Manila should exist and be configured as desired. Manila
will not change zpool configuration.

* For remote ZFS hosts according to manila-share service host SSH should be installed.

For ZFS hosts that support replication:
— SSH access for each other should be passwordless.

— Service IP addresses should be available by ZFS hosts for each other.

422 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems and operations

The driver supports NFS shares.

The following operations are supported:

Create a share.
Delete a share.
Allow share access.
— Only IP access type is supported.
— Both access levels are supported - RW and RO.
Deny share access.
Bring an existing ZFSOnLinux share under the shared file system service (Managing a share)

Remove a ZFSOnLinux share from the shared file system service without deleting it (Unmanaging
a share)

Create a snapshot.
Delete a snapshot.

Bring an existing ZFSOnLinux snapshot under the shared file system service (Managing a snap-
shot)

Remove a ZFSOnLinux snapshot from the shared file system service without deleting it (Unmanag-
ing a snapshot)

Create a share from snapshot.
Extend a share.

Shrink a share.

Share replication (experimental):

— Create, update, delete, and promote replica operations are supported.

Possibilities

Any amount of ZFS zpools can be used by share driver.

Allowed to configure default options for ZFS datasets that are used for share creation.
Any amount of nested datasets is allowed to be used.

All share replicas are read-only, only active one is read-write.

All share replicas are synchronized periodically, not continuously. Status in_sync means
latest sync was successful. Time range between syncs equals to the value of the
replica_state_update_interval configuration global option.

Driver can use qualified extra spec zfsonlinux:compression. It can contain any value
that ZFS app supports. But if it is disabled through the configuration option with the value
compression=off, then it will not be used.

3.3.

Reference 423

Manila Developer Documentation, Release 15.4.2.dev5

Restrictions

The ZFSonLinux share driver has the following restrictions:
* Only IP access type is supported for NFS.
* Only FLAT network is supported.

* Promote share replica operation will switch roles of current secondary replica and active.
It does not make more than one active replica available.

* The below items are not yet implemented:
— SalBa based sharing.

— Thick provisioning capability.

Known problems

* Promote share replica operation will make ZFS file system that became secondary as RO
only on NFS level. On ZFS level system will stay mounted as was - RW.

Back-end configuration

The following parameters need to be configured in the manila configuration file for back-ends that use
the ZFSonLinux driver:

* share_driver = manila.share.drivers.zfsonlinux.driver.ZFSonLinuxShareDriver
* driver_handles_share_servers = False
e replication_domain = custom_str_value_as_domain_name
— If empty, then replication will be disabled.
— If set, then will be able to be used as replication peer for other back ends with the same value.
* zfs_share_export_ip = <user_facing IP address of ZFS host>
e zfs_service_ip = <IP address of service network interface of ZFS host>
* zfs_zpool_list = zpoolnamel,zpoolname2/nested_dataset_for_zpool2
— Can be one or more zpools.
— Can contain nested datasets.
* zfs_dataset_creation_options = <list of ZFS dataset options>
— readonly, quota, sharenfs and sharesmb options will be ignored.
* zfs_dataset_name_prefix = <prefix>
— Prefix to be used in each dataset name.
* zfs_dataset_snapshot_name_prefix = <prefix>
— Prefix to be used in each dataset snapshot name.

e zfs_use_ssh = <boolean_value>

424 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

— Set False if ZFS located on the same host as manila-share service.
— Set True if manila-share service should use SSH for ZFS configuration.
» zfs_ssh_username = <ssh_username>
— Required for replication operations.
— Required for SSH*ing to ZFS host if zfs_use_ssh is set to True.
» zfs_ssh_user_password = <ssh_user_password>
— Password for zfs_ssh_username of ZFS host.
— Used only if zfs_use_ssh is set to True.
* zfs_ssh_private_key_path = <path_to_private_ssh_key>
— Used only if zfs_use_ssh is set to True.
* zfs_share_helpers = NFS=manila.share.drivers.zfsonlinux.utils. NFSviaZFSHelper
— Approach for setting up helpers is similar to various other share drivers.
— At least one helper should be used.
* zfs_replica_snapshot_prefix = <prefix>

— Prefix to be used in dataset snapshot names that are created by update replica operation.

3.3. Reference 425

Manila Developer Doc

umentation, Release 15.4.2.dev5

Driver options

Table

17: Description of ZFS share driver configuration options

Configuration option
= Default value

Description

[DEFAULT]

zfs_dataset_creatig
= None

nIdpthilonne here list of options that should be applied for each dataset
creation if needed. Example: compression=gzip,dedup=off. Note that, for
secondary replicas option readonly will be set to on and for active replicas
to off in any way. Also, quota will be equal to share size. Optional.

zfs_dataset_name_pr
=manila_share_

relSiring) Prefix to be used in each dataset name. Optional.

zfs_dataset_snapshg

manila_share_snapsh

t(Steing) Preffx o be used in each dataset snapshot name. Optional.

10t_

zfs_migration_snaps

tmp_snapshot_for_sh

shiStringe Bk snapshot prefix for usage in ZFS migration. Required.

lare_migration_

zfs_replica_snapshd

tmp_snapshot_for_re

t(Srieg) Set snapshot prefix for usage in ZFS replication. Required.

plication_

zfs_service_ip
None

(String) IP to be added to admin-facing export location. Required.

zfs_share_export_iy
= None

(String) IP to be added to user-facing export location. Required.

zfs_share_helpers
NFS=manila.
share.drivers.
zfsonlinux.utils.
NFSviaZFSHelper

(List) Specify list of share export helpers for ZFS storage. It should look
like following: FOO_protocol=foo.FooClass,BAR_protocol=bar.BarClass.
Required.

zfs_ssh_private_key
= None

r_sating) Path to SSH private key that should be used for SSHing ZFS storage
host. Not used for replication operations. Optional.

zfs_ssh_user_passwd
= None

rtring) Password for user that is used for SSHing ZFS storage host. Not
used for replication operations. They require passwordless SSH access. Op-
tional.

zfs_ssh_username
None

(String) SSH user that will be used in 2 cases: 1) By manila-share service in
case it is located on different host than its ZFS storage. 2) By manila-share
services with other ZFS backends that perform replication. It is expected
that SSHing will be key-based, passwordless. This user should be pass-
wordless sudoer. Optional.

zfs_use_ssh

(Boolean) Remote ZFS storage hostname that should be used for SSHing.

False Optional.
zfs_zpool_list = | (List) Specify list of zpools that are allowed to be used by backend. Can
None contain nested datasets. Examples: Without nested dataset: zpool_name.
With nested dataset: zpool_name/nested_dataset_name. Required.
426 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Oracle ZFS Storage Appliance driver

The Oracle ZFS Storage Appliance driver, version 1.0.0, enables the Oracle ZFS Storage Appliance (ZF-
SSA) to be used seamlessly as a shared storage resource for the OpenStack File System service (manila).
The driver provides the ability to create and manage NFS and CIFS shares on the appliance, allowing
virtual machines to access the shares simultaneously and securely.

Requirements

Oracle ZFS Storage Appliance Software version 2013.1.2.0 or later.

Supported operations

* Create NFS and CIFS shares.

* Delete NFS and CIFS shares.

* Allow or deny IP access to NFS shares.
* Create snapshots of a share.

* Delete snapshots of a share.

* Create share from snapshot.

Restrictions

* Access to CIFS shares are open and cannot be changed from manila.

* Version 1.0.0 of the driver only supports Single SVM networking mode.

Appliance configuration

1. Enable RESTful service on the ZFSSA Storage Appliance.

2. Create a new user on the appliance with the following authorizations:

You can create a role with authorizations as follows:

(continues on next page)

3.3. Reference 427

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

You can create a user with a specific role as follows:

3. Create a storage pool.

An existing pool can also be used if required. You can create a pool as follows:

4. Create a new project.

You can create a project as follows:

5. Create a new or use an existing data IP address.

You can create an interface as follows:

It is required that both interfaces used for data and management are configured properly. The data
interface must be different from the management interface.

6. Configure the cluster.

428 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

If a cluster is used as the manila storage resource, the following verifications are required:

* Verify that both the newly created pool and the network interface are of type singleton and are
not locked to the current controller. This approach ensures that the pool and the interface used
for data always belong to the active controller, regardless of the current state of the cluster.

* Verify that the management IP, data IP and storage pool belong to the same head.

Note: A short service interruption occurs during failback or takeover, but once the process is
complete, manila should be able to access the pool through the data IP.

Driver options

The Oracle ZFSSA driver supports these options:

3.3. Reference 429

Manila Developer Documentation, Release 15.4.2.dev5

Table 18: Description of ZFSSA share driver configuration options

Configuration Description

option = Default

value

[DEFAULT]

zfssa_auth_passwdndng) ZFSSA management authorized userpassword.

= None

zfssa_auth_user (String) ZFSSA management authorized username.

= None

zfssa_data_ip | (String) IP address for data.

= None

zfssa_host = | (String) ZFSSA management IP address.

None

zfssa_manage_polBeging) Driver policy for share manage. A strict policy checks for a schema
=loose named manila_managed, and makes sure its value is true. A loose policy does

not check for the schema.

zfssa_nas_checks@tring) Controls checksum used for data blocks.
= fletcher4
zfssa_nas_compreaSsning) Data compression-off, 1zjb, gzip-2, gzip, gzip-9.
=off
zfssa_nas_logbiaString) Controls behavior when servicing synchronous writes.
= latency
zfssa_nas_mountp®iring) Location of project in ZFS/SA.

zfssa_nas_quota_(Stdpg) Controls whether a share quota includes snapshot.
= true
zfssa_nas_rstcha@ring) Controls whether file ownership can be changed.
= true
zfssa_nas_vscan (String) Controls whether the share is scanned for viruses.
= false

zfssa_pool = | (String) ZFSSA storage pool name.

None

zfssa_project | (String) ZFSSA project name.

= None

zfssa_rest_timed®tring) REST connection timeout (in seconds).
= None

EMC Isilon driver

The EMC Shared File Systems driver framework (EMCShareDriver) utilizes EMC storage products to
provide shared file systems to OpenStack. The EMC driver is a plug-in based driver which is designed
to use different plug-ins to manage different EMC storage products.

The Isilon driver is a plug-in for the EMC framework which allows the Shared File Systems service to
interface with an Isilon back end to provide a shared filesystem. The EMC driver framework with the
Isilon plug-in is referred to as the Isilon Driver in this document.

This Isilon Driver interfaces with an Isilon cluster via the REST Isilon Platform API (PAPI) and the
RESTful Access to Namespace API (RAN).

430 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

* Isilon cluster running OneFS 7.2 or higher

Supported shared filesystems and operations

The drivers supports CIFS and NFS shares.
The following operations are supported:
* Create a share.
* Delete a share.
* Allow share access.
Note the following limitations:
— Only IP access type is supported.
— Only read-write access is supported.
* Deny share access.
* Create a snapshot.
* Delete a snapshot.

* Create a share from a snapshot.

Back end configuration

The following parameters need to be configured in the Shared File Systems service configuration file for
the Isilon driver:

Restrictions

The Isilon driver has the following restrictions:
* Only IP access type is supported for NFS and CIFS.
* Only FLAT network is supported.

* Quotas are not yet supported.

3.3. Reference 431

Manila Developer Documentation, Release 15.4.2.dev5

Driver options
The following table contains the configuration options specific to the share driver.

Table 19: Description of EMC share driver configuration options

Configuration option | Description

= Default value

[DEFAULT]

emc_nas_login = | (String) User name for the EMC server.

None

emc_nas_password = | (String) Password for the EMC server.

None

emc_nas_root_dir = | (String) The root directory where shares will be located.
None

emc_nas_server = | (String) EMC server hostname or IP address.

None

emc_nas_server_contafteng) DEPRECATED: Storage processor to host the NAS server. Obso-
= None lete. Unity driver supports nas server auto load balance.
emc_nas_server_port (Port number) Port number for the EMC server.

= 8080

emc_nas_server_secur@oolean) Use secure connection to server.

=True

emc_share_backend | (String) Share backend.

= None

Hitachi NAS (HNAS) driver

The HNAS driver provides NFS Shared File Systems to OpenStack.

Requirements

 Hitachi NAS Platform Models 3080, 3090, 4040, 4060, 4080, and 4100.

* HNAS/SMU software version is 12.2 or higher.

* HNAS configuration and management utilities to create a storage pool (span) and an EVS.
- GUI (SMU).
- SSC CLI

432 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems and operations

The driver supports NFS and CIFS shares.

The following operations are supported:

Create a share.
Delete a share.
Allow share access.
Deny share access.
Create a snapshot.

Delete a snapshot.

Create a share from a snapshot.

Revert a share to a snapshot.
Extend a share.

Manage a share.

Unmanage a share.

Shrink a share.

Mount snapshots.

Allow snapshot access.
Deny snapshot access.
Manage a snapshot.

Unmanage a snapshot.

3.3. Reference

433

Manila Developer Documen

tation, Release 15.4.2.dev5

Driver options

This table contains the configuration options specific to the share driver.

Table 20: Description of HDS NAS share driver configuration op-

tions

Configuration option = De-
fault value

Description

[DEFAULT]

hitachi_hnas_admin_netwg
= None

vr(Striipg) Specify IP for mounting shares in the Admin network.

hitachi_hnas_allow_cifs]
=False

| siBapdhat) Blyidefamtuié® snapshots are not allowed to be taken
when the share has clients connected because consistent point-in-time
replica cannot be guaranteed for all files. Enabling this might cause
inconsistent snapshots on CIFS shares.

hitachi_hnas_cluster_adn
= None

ni@etriip®) The IP of the clusters admin node. Only set in HNAS multin-
ode clusters.

hitachi_hnas_driver_helg
=manila.share.drivers.
hitachi.hnas.ssh.
HNASSSHBackend

eBtring) Python class to be used for driver helper.

hitachi_hnas_evs_id
None

(Integer) Specify which EVS this backend is assigned to.

hitachi_hnas_evs_ip
None

(String) Specify IP for mounting shares.

hitachi_hnas_file_systen
= None

n_@anrg) Specify file-system name for creating shares.

hitachi_hnas_ip = None

(String) HNAS management interface IP for communication between
Manila controller and HNAS.

hitachi_hnas_password=
None

(String) HNAS user password. Required only if private key is not
provided.

hitachi_hnas_ssh_privatse
= None

2_(8esing) RSA/DSA private key value used to connect into HNAS. Re-
quired only if password is not provided.

hitachi_hnas_stalled_jok
=30

y_(tategen)tThe time (in seconds) to wait for stalled HNAS jobs before
aborting.

hitachi_hnas_user
None

(String) HNAS username Base64 String in order to perform tasks
such as create file-systems and network interfaces.

[hnas1]

share_backend_name
None

(String) The backend name for a given driver implementation.

share_driver = manila.
share.drivers.generic.
GenericShareDriver

(String) Driver to use for share creation.

434

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Pre-configuration on OpenStack deployment

1. Install the OpenStack environment with manila. See the OpenStack installation guide.

2. Configure the OpenStack networking so it can reach HNAS Management interface and HNAS EVS
Data interface.

Note: In the driver mode used by HNAS Driver (DHSS = False), the driver does not handle
network configuration, it is up to the administrator to configure it.

* Configure the network of the manila-share node network to reach HNAS management inter-
face through the admin network.

* Configure the network of the Compute and Networking nodes to reach HNAS EVS data
interface through the data network.

» Example of networking architecture:

nuunmdg'E

Management
EVS Interface

Data Network]

Admin Network |

[ETHO |[ETH1 [ETHO | ETHL
050000 050500 5500 |l o000 4

Manila-Share Compute Neutron Controller

* Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and update the following set-

tings in their respective tags. In case you use linuxbridge, update bridge mappings at lin-
uxbridge section:

Important: It is mandatory that HNAS management interface is reachable from the Shared File
System node through the admin network, while the selected EVS data interface is reachable from
OpenStack Cloud, such as through Neutron flat networking.

[ml2]

[ml2_type_flat]

(continues on next page)

3.3. Reference 435

https://docs.openstack.org/

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

You may have to repeat the last line above in another file on the Compute node, if it exists it is
located in: /etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini.

* In case openvswitch for neutron agent, run in network node:

ifconfig ethl

ovs-vsctl add-br br-ethl
ovs-vsctl add-port br-ethl ethl
ifconfig ethl up

* Restart all neutron processes.

3. Create the data HNAS network in OpenStack:

* List the available projects:

openstack project list

Create a network to the given project (DEMO), providing the project name, a name for the
network, the name of the physical network over which the virtual network is implemented,
and the type of the physical mechanism by which the virtual network is implemented:

openstack network create --project DEMO
--provider-network-type flat
--provider-physical-network physnet2 hnas_network

Optional: List available networks:

openstack network list

Create a subnet to the same project (DEMO), the gateway IP of this subnet, a name for the
subnet, the network name created before, and the CIDR of subnet:

openstack subnet create --project DEMO --gateway GATEWAY
--subnet-range SUBNET_CIDR --network NETWORK HNAS_SUBNET

Optional: List available subnets:

openstack subnet list

Add the subnet interface to a router, providing the router name and subnet name created
before:

openstack router add subnet SUBNET ROUTER

436

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Pre-configuration on HNAS

1. Create a file system on HNAS. See the Hitachi HNAS reference.

Important: Make sure that the filesystem is not created as a replication target. For more infor-
mation, refer to the official HNAS administration guide.

2. Prepare the HNAS EVS network.

* Create a route in HNAS to the project network:

console-context --evs <EVS_ID_IN_USE> route-net-add
--gateway <FLAT_NETWORK_GATEWAY> <TENANT_PRIVATE_NETWORK>

Important: Make sure multi-tenancy is enabled and routes are configured per EVS.

console-context --evs 3 route-net-add --gateway .168.1.1
.0.0.0/24

3. Configure the CIFS security.

* Before using CIFS shares with the HNAS driver, make sure to configure a security service
in the back end. For details, refer to the Hitachi HNAS reference.

Back end configuration

1. Configure HNAS driver.

* Configure HNAS driver according to your environment. This example shows a minimal
HNAS driver configuration:

3.3. Reference 437

http://www.hds.com/assets/pdf/hus-file-module-file-services-administration-guide.pdf
http://www.hds.com/assets/pdf/hus-file-module-file-services-administration-guide.pdf

Manila Developer Documentation, Release 15.4.2.dev5

Note: The hds_hnas_cifs_snapshot_while_mounted parameter allows snapshots to
be taken while CIFS shares are mounted. This parameter is set to False by default, which
prevents a snapshot from being taken if the share is mounted or in use.

2. Optional. HNAS multi-backend configuration.

* Update the enabled_share_backends flag with the names of the back ends separated by
commas.

* Add a section for every back end according to the example bellow:

3. Disable DHSS for HNAS share type configuration:

Note: Shared File Systems requires that the share type includes the
driver_handles_share_servers extra-spec. This ensures that the share will be created
on a back end that supports the requested driver_handles_share_servers capability.

manila type-create hitachi False

4. Optional: Add extra-specs for enabling HNAS-supported features:

438

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* These commands will enable various snapshot-related features that are supported in HNAS.

manila type-key hitachi True

manila type-key hitachi True

manila type-key hitachi True

manila type-key hitachi True

* To specify which HNAS back end will be created by the share, in case of multiple back end
setups, add an extra-spec for each share-type to match a specific back end. Therefore, it is
possible to specify which back end the Shared File System service will use when creating a

share.
manila type-key hitachi hnasl
manila type-key hitachi?2 hnas2

5. Restart all Shared File Systems services (manila-share,manila-scheduler and manila-api).

Share migration

Extra configuration is needed for allowing shares to be migrated from or to HNAS. In the OpenStack
deployment, the manila-share node needs an additional connection to the EVS data interface. Further-
more, make sure to add hitachi_hnas_admin_network_ip to the configuration. This should match
the value of data_node_access_ips. For more in-depth documentation, refer to the share migration
documents

Manage and unmanage shares

Shared File Systems has the ability to manage and unmanage shares. If there is a share in the storage and it
is not in OpenStack, you can manage that share and use it as a Shared File Systems share. Administrators
have to make sure the exports are under the /shares folder beforehand. HNAS drivers use virtual-
volumes (V-VOL) to create shares. Only V-VOL shares can be used by the driver, and V-VOLs must
have a quota limit. If the NFS export is an ordinary FS export, it is not possible to use it in Shared File
Systems. The unmanage operation only unlinks the share from Shared File Systems, all data is preserved.
Both manage and unmanage operations are non-disruptive by default, until access rules are modified.

To manage a share, use:

manila manage --name <name> --description <description>

Where:

3.3. Reference 439

https://docs.openstack.org/manila/latest/admin/shared-file-systems-share-migration.html
https://docs.openstack.org/manila/latest/admin/shared-file-systems-share-migration.html

Manila Developer Documentation, Release 15.4.2.dev5

Parameter Description

service_host Manila host, back end and share name. For ex-
ample, ubuntu@hitachil#hspl. The available
hosts can be listed with the command: manila
pool-1list (admin only).

protocol Protocol of share to manage, such as NFS or
CIFS.

export_path
P P Share export path. For NFS: 10.0.0.1:/

shares/share_name
For CIFS: \\10.0.0.1\share_name

Note: For NFS exports, export_path must include /shares/ after the target address. Trying to
reference the share name directly or under another path will fail.

Note: For CIFS exports, although the shares will be created under the /shares/ folder in the back end,
only the share name is needed in the export path. It should also be noted that the backslash \ character
has to be escaped when entered in Linux terminals.

For additional details, refer to manila help manage.

To unmanage a share, use:

manila unmanage <share>

Where:

Parame- | Description
ter
share ID or name of the share to be unmanaged. A list of shares can be fetched with manila
list.

Manage and unmanage shapshots

The Shared File Systems service also has the ability to manage share snapshots. Existing HNAS snap-
shots can be managed, as long as the snapshot directory is located in /snapshots/share_ID. New
snapshots created through the Shared File Systems service are also created according to this specific
folder structure.

To manage a snapshot, use:

manila snapshot-manage ' --name <name> --description <description>

Where:

440 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Parameter Description

share ID or name of the share to be managed. A list of shares can be fetched with
manila list.

provider_locatignLocation of the snapshot on the back end, such as /snapshots/share_ID/
snapshot_ID.

--driver_options Driver-related configuration, passed such as size=10.

Note: The mandatory provider_location parameter uses the same syntax for both NFS and CIFS
shares. This is only the case for snapshot management.

Note: The --driver_options parameter size is required for the HNAS driver. Administrators need
to know the size of the to-be-managed snapshot beforehand.

Note: If the mount_snapshot_support=True extra-spec is set in the share type, the HNAS driver
will automatically create an export when managing a snapshot if one does not already exist.

To unmanage a snapshot, use:

manila snapshot-unmanage <snapshot>

Where:

Parameter | Description
snapshot Name or ID of the snapshot(s).

Additional notes

* HNAS has some restrictions about the number of EVSs, filesystems, virtual-volumes, and simul-
taneous SSC connections. Check the manual specification for your system.

*» Shares and snapshots are thin provisioned. It is reported to Shared File System only the real used
space in HNAS. Also, a snapshot does not initially take any space in HNAS, it only stores the
difference between the share and the snapshot, so it grows when share data is changed.

* Administrators should manage the projects quota (manila quota-update) to control the back
end usage.

» Shares will need to be remounted after a revert-to-snapshot operation.

3.3. Reference 441

Manila Developer Documentation, Release 15.4.2.dev5

Hitachi Hyper Scale-Out Platform File Services Driver for OpenStack

The Hitachi Hyper Scale-Out Platform File Services Driver for OpenStack provides the management of
file shares, supporting NFS shares with IP based rules to control access. It has a layer that handles the
complexity of the protocol used to communicate to Hitachi Hyper Scale-Out Platform via a RESTful
API, formatting and sending requests to the backend.

Requirements

 Hitachi Hyper Scale-Out Platform (HSP) version 1.1.
e HSP user with file-system-full-access role.

* Established network connection between the HSP interface and OpenStack nodes.

Supported shared filesystems and operations

The driver supports NFS shares.
The following operations are supported:
* Create a share.
* Delete a share.
* Extend a share.
* Shrink a share.
* Allow share access.
* Deny share access.
* Manage a share.

* Unmanage a share.

* Only IP access type is supported

* Both RW and RO access levels supported

Known restrictions

* The Hitachi HSP allows only 1024 virtual file systems per cluster. This determines the limit of
shares the driver can provide.

» The Hitachi HSP file systems must have at least 128 GB. This means that all shares created by
Shared File Systems service should have 128 GB or more.

442 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Note: The driver has an internal filter function that accepts only requests for shares size greater
than or equal to 128 GB, otherwise the request will fail or be redirected to another available storage
backend.

Driver options
The following table contains the configuration options specific to the share driver.

Table 21: Description of HDS HSP share driver configuration op-

tions
Configuration option = Default value Description
[hsp1]
share_backend_name = None (String) The backend name for a given
driver implementation.
share_driver = manila.share.drivers. | (String) Driver to use for share creation.
generic.GenericShareDriver

Network approach

Note: In the driver mode used by HSP Driver (DHSS = False), the driver does not handle network
configuration, it is up to the administrator to configure it.

* Configure the network of the manila-share, Compute and Networking nodes to reach HSP inter-
face. For this, your provider network should be capable of reaching HSP Cluster-Virtual-IP. These
connections are mandatory so nova instances are capable of accessing shares provided by the back-
end.

* The following image represents a valid scenario:

3.3. Reference 443

Manila Developer Documentation, Release 15.4.2.dev5

[HSP

-
==

=
=

Physical Interface

Admin Network

| Mmilt-shlre] m] \m

ETHO |

[Prlvnte Netwnrk]

Note: To HSP, the Virtual IP is the address through which clients access shares and the Shared File

Systems service sends commands to the management interface. This IP can be checked in HSP using its
CLI:

hspadm ip-address list

Back end configuration

1. Configure HSP driver according to your environment. This example shows a valid HSP driver
configuration:

[DEFAULT]

[hsp1]

2. Configure HSP share type.

Note: Shared File Systems service requires that the share type includes the

444 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

driver_handles_share_servers extra-spec. This ensures that the share will be created
on a backend that supports the requested driver_handles_share_servers capability. Also,
snapshot_support extra-spec should be provided if its value differs from the default value
(True), as this driver version that currently does not support snapshot operations. For this driver
both extra-specs must be set to False.

manila type-create --snapshot_support False hsp False

3. Restart all Shared File Systems services (manila-share,manila-scheduler and manila-api).

Manage and unmanage shares

The Shared File Systems service has the ability to manage and unmanage shares. If there is a share in the
storage and it is not in OpenStack, you can manage that share and use it as a Shared File Systems share.
Previous access rules are not imported by manila. The unmanage operation only unlinks the share from
OpenStack, preserving all data in the share.

In order to manage a HSP share, it must adhere to the following rules:
* File system and share name must not contain spaces.
e Share name must not contain backslashes (\).

To manage a share use:

manila manage --name <name> --description <description>
Where:

Pa- Description

rame-

ter

service| Watila host, backend and share name. For example, ubuntu@hitachil#hspl. The avail-
able hosts can be listed with the command: manila pool-list (admin only).
protocol Must be NFS, the only supported protocol in this driver version.

export_padite Hitachi Hyper Scale-Out Platform export path of the share, for example: 172.24.47.
190: /some_share_name

To unmanage a share use:

manila unmanage <share>

Where:

Parame- Description
ter
share ID or name of the share to be unmanaged. This list can be fetched with: manila list.

3.3. Reference 445

Manila Developer Documentation, Release 15.4.2.dev5

Additional notes

 Shares are thin provisioned. It is reported to manila only the real used space in HSP.

* Administrators should manage the tenants quota (manila quota-update) to control the backend
usage.

HPE 3PAR Driver for OpenStack Manila

The HPE 3PAR driver provides NFS and CIFS shared file systems to OpenStack using HPE 3PARs File
Persona capabilities.

For information on HPE 3PAR Driver for OpenStack Manila, refer to content kit page.

HPE 3PAR File Persona Software Suite concepts and terminology

The software suite comprises the following managed objects:
* File Provisioning Groups (FPGs)
 Virtual File Servers (VFSs)
* File Stores
* File Shares

The File Persona Software Suite is built upon the resilient mesh-active architecture of HPE 3PAR Store-
Serv and benefits from HPE 3PAR storage foundation of wide-striped logical disks and autonomic
Common Provisioning Groups (CPGs). A CPG can be shared between file and block to create the
File Shares or the logical unit numbers (LUNS) to provide true convergence.

A File Provisioning Group (FPG) is an instance of the HPE intellectual property Adaptive File
System. It controls how files are stored and retrieved. Each FPG is transparently constructed from one
or multiple Virtual Volumes (VVs) and is the unit for replication and disaster recovery for File Persona
Software Suite. There are up to 16 FPGs supported on a node pair.

A Virtual File Server (VFS) is conceptually like a server. As such, it presents virtual IP ad-
dresses to clients, participates in user authentication services, and can have properties for such things
as user/group quota management and antivirus policies. Up to 16 VFSs are supported on a node pair,
one per FPG.

File Stores are the slice of a VFS and FPG at which snapshots are taken, capacity quota manage-
ment can be performed, and antivirus scan service policies customized. There are up to 256 File Stores
supported on a node pair, 16 File Stores per VFS.

File Shares are what provide data access to clients via SMB, NFS, and the Object Access API, subject
to the share permissions applied to them. Multiple File Shares can be created for a File Store and at
different directory levels within a File Store.

446 Chapter 3. For operators

https://www.hpe.com/us/en/product-catalog/storage/storage-software/pip.openstack-device-management-software.1008537377.html

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems

The driver supports CIFS and NFS shares.

Operations supported

* Create a share.
Share is not accessible until access rules allow access.

* Delete a share.

* Allow share access.
Note the following limitations:
IP access rules are required for NFS share access.
User access rules are not allowed for NFS shares.
User access rules are required for SMB share access.
User access requires a File Persona local user for SMB shares.
Shares are read/write (and subject to ACLs).

* Deny share access.

* Create a snapshot.

* Delete a snapshot.

* Create a share from a snapshot.

* Extend a share.

* Shrink a share.

* Share networks.

HPE 3PAR File Persona driver can be configured to work with or without share networks. When using
share networks, the HPE 3PAR driver allocates an FSIP on the back end FPG (VFS) to match the share
networks subnet and segmentation ID. Security groups associated with share networks are ignored.

Operations not supported

* Manage and unmanage

* Manila Experimental APIs (consistency groups, replication, and migration) were added in Mitaka
but have not yet been implemented by the HPE 3PAR File Persona driver.

3.3. Reference 447

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

On the OpenStack host running the Manila share service:
* python-3parclient version 4.2.0 or newer from PyPI.
On the HPE 3PAR array:
* HPE 3PAR Operating System software version 3.2.1 MU3 or higher.

* The array class and hardware configuration must support File Persona.

Pre-configuration on the HPE 3PAR StoreServ

The following HPE 3PAR CLI commands show how to set up the HPE 3PAR StoreServ to use File
Persona with OpenStack Manila. HPE 3PAR File Persona must be initialized, and started on the HPE
3PAR storage.

* A File Provisioning Group (FPG) must be created for use with the Shared File Systems service.

e A Virtual File Server (VFS) must be created on the FPG.

The VFS must be configured with an appropriate share export IP address.

* A local user in the Administrators group is needed for CIFS (SMB) shares.

The WSAPI with HTTP and/or HTTPS must be enabled and started.

448 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

HPE 3PAR shared file system driver configuration

* Install the python-3parclient python package on the OpenStack Block Storage system:

pip install

* Manila configuration file

The Manila configuration file (typically /etc/manila/manila.conf) defines and configures the
Manila drivers and backends. After updating the configuration file, the Manila share service must
be restarted for changes to take effect.

* Enable share protocols

To enable share protocols, an optional list of supported protocols can be specified using the
enabled_share_protocols setting in the DEFAULT section of the manila. conf file. The de-
fault is NFS, CIFS which allows both protocols supported by HPE 3PAR (NFS and SMB). Where
Manila uses the term CIFS, HPE 3PAR uses the term SMB. Use the enabled_share_protocols
option if you want to only provide one type of share (for example, only NFS) or if you want to
explicitly avoid the introduction of other protocols that can be added for other drivers in the future.

¢ Enable share back ends

In the [DEFAULT] section of the Manila configuration file, use the enabled_share_backends
option to specify the name of one or more back-end configuration sections to be enabled. To enable
multiple back ends, use a comma-separated list.

Note: The name of the backends configuration section is used (which may be different from the
share_backend_name value)

* Configure each back end

For each back end, a configuration section defines the driver and back end options. These include
common Manila options, as well as driver-specific options. The following Driver options sec-
tion describes the parameters that need to be configured in the Manila configuration file for the
HPE 3PAR driver.

3.3. Reference 449

Manila Developer Documentation, Release 15.4.2.dev5

Driver options

The following table contains the configuration options specific to the share driver.

Table 22: Description of HPE 3PAR share driver configuration op-

tions

Configuration option = Default value

Description

[DEFAULT]

hpe3par_api_url =

(String) 3PAR WSAPI Server Url like https://<3par
ip>:8080/api/v1

hpe3par_cifs_admin_access_domain
= LOCAL_CLUSTER

(String) File system domain for the CIFS admin user.

hpe3par_cifs_admin_access_password

| (String) File system admin password for CIFS.

hpe3par_cifs_admin_access_username

(String) File system admin user name for CIFS.

hpe3par_debug = False

(Boolean) Enable HTTP debugging to 3PAR

hpe3par_£fpg = None

(Unknown) The File Provisioning Group (FPG) to use

hpe3par_fstore_per_share = False

(Boolean) Use one filestore per share

hpe3par_password =

(String) 3PAR password for the user specified in
hpe3par_username

hpe3par_require_cifs_ip =False

(Boolean) Require IP access rules for CIFS (in addition
to user)

hpe3par_san_ip =

(String) IP address of SAN controller

hpe3par_san_login =

(String) Username for SAN controller

hpe3par_san_password =

(String) Password for SAN controller

hpe3par_san_ssh_port = 22

(Port number) SSH port to use with SAN

hpe3par_share_mount_path = /mnt/

(String) The path where shares will be mounted when
deleting nested file trees.

hpe3par_username =

(String) 3PAR username with the edit role

HPE 3PAR Manila driver configuration

example

The following parameters shows a sample subset of the manila. conf file, which configures two back-
ends and the relevant [DEFAULT] options. A real configuration would include additional [DEFAULT]

options and additional sections that are not d
are using different FPGs on the same array:

iscussed in this document. In this example, the backends

(continues on next page)

450

Chapter 3. For operators

https:/

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Network approach

Network connectivity between the storage array (SSH/CLI and WSAPI) and the Manila host is required
for share management. Network connectivity between the clients and the VFES is required for mounting
and using the shares. This includes:

* Routing from the client to the external network.

* Assigning the client an external IP address, for example a floating IP.

* Configuring the Shared File Systems service host networking properly for IP forwarding.
* Configuring the VES networking properly for client subnets.

» Configuring network segmentation, if applicable.

In the OpenStack Kilo release, the HPE 3PAR driver did not support share networks. Share access from
clients to HPE 3PAR shares required external network access (external to OpenStack) and was set up and
configured outside of Manila.

In the OpenStack Liberty release, the HPE 3PAR driver could run with or without share networks. The
configuration option driver_handles_share_servers " (" True or False) indicated whether
share networks could be used. When set to False, the HPE 3PAR driver behaved as described ear-
lier for Kilo. When set to True, the share networks subnet, segmentation ID and IP address range were
used to allocate an FSIP on the HPE 3PAR. There is a limit of four FSIPs per VES. For clients to com-
municate with shares via this FSIP, the client must have access to the external network using the subnet
and segmentation ID of the share network.

3.3. Reference 451

Manila Developer Documentation, Release 15.4.2.dev5

For example, the client must be routed to the neutron provider network with external access. The Manila
host networking configuration and network switches must support the subnet routing. If the VLAN
segmentation ID is used, communication with the share will use the FSIP IP address. Neutron networking
is required for HPE 3PAR share network support. Flat and VLAN provider networks are supported, but
the HPE 3PAR driver does not support share network security groups.

Share access

A share that is mounted before access is allowed can appear to be an empty read-only share. After
granting access, the share must be remounted.

* [P access rules are required for NFS.
* SMB shares require user access rules.

With the proper access rules, share access is not limited to the OpenStack environment. Access rules
added via Manila or directly in HPE 3PAR CLI can be used to allow access to clients outside of the
stack. The HPE 3PAR VFES/FSIP settings determine the subnets visible for HPE 3PAR share access.

e IP access rules

To allow IP access to a share in the horizon UL, find the share in the Project{Manage Compute|Shares
view. Use the Manage Rules action to add a rule. Select IP as the access type, and enter the
external IP address (for example, the floating IP) of the client in the Access to box.

You can also use the command line to allow IP access to a share in the horizon UI with the com-
mand:

manila access-allow <share-id> ip <ip-address>

e User access rules

To allow user access to a share in the horizon UlI, find the share in the Project{Manage Com-
pute|Shares view. Use the Manage Rules action to add a rule. Select user as the access type and
enter user name in the Access to box.

You can also use the command line to allow user access to a share in the horizon UI with the
command:

manila access-allow <share-id> user <user name>

The user name must be an HPE 3PAR user.

Share access is different from file system permissions, for example, ACLs on files and folders. If
a user wants to read a file, the user must have at least read permissions on the share and an ACL
that grants him read permissions on the file or folder. Even with full control share access, it does
not mean every user can do everything due to the additional restrictions of the folder ACLs.

To modify the file or folder ACLs, allow access to an HPE 3PAR File Persona local user that is
in the administrators group and connect to the share using that users credentials. Then, use the
appropriate mechanism to modify the ACL or permissions to allow different access than what is
provided by default.

452 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Share types

When creating a share, a share type can be specified to determine where and how the share will be
created. If a share type is not specified, the default_share_type set in the Shared File Systems service
configuration file is used.

Manila share types are a type or label that can be selected at share creation time in OpenStack. These
types can be created either in the Admin horizon UI or using the command line, as follows:

manila --os-username admin --os-tenant-name demo type-create

The <name> is the name of the new share type. False at the end specifies
driver_handles_share_servers=False. The driver_handles_share_servers setting in
the share type needs to match the setting configured for the back end in the manila. conf file.

is_public is used to indicate whether this share type is applicable to all tenants or will be assigned to
specific tenants.

--os-username admin --os-tenant-name demo are only needed if your environment variables do
not specify the desired user and tenant.

For share types that are not public, use Manila type-access-add to assign the share type to a tenant.
* Using share types to require share networks

The Shared File Systems service requires that the share type include the
driver_handles_share_servers extra-spec. This ensures that the share is created on a
back end that supports the requested driver_handles_share_servers (share networks)
capability. From the Liberty release forward, both True and False are supported.

The driver_handles_share_servers setting in the share type must match the setting in the
back end configuration.

» Using share types to select backends by name

Administrators can optionally specify that a particular share type be explicitly associated with a
single back end (or group of backends) by including the extra spec share_backend_name to match
the name specified within the share_backend_name option in the back end configuration.

When a share type is not selected during share creation, the default share type is used. To prevent
creating these shares on any back end, the default share type needs to be specific enough to find
appropriate default backends (or to find none if the default should not be used). The following
example shows how to set share_backend_name for a share type.

manila --os-username admin --os-tenant-name demo type-key <share-type>

» Using share types to select backends with capabilities

The HPE 3PAR driver automatically reports capabilities based on the FPG used for each back end.
An administrator can create share types with extra specs, which controls share types that can use
FPGs with or without specific capabilities.

With the OpenStack Liberty release or later, below section shows the extra specs used with the
capabilities filter and the HPE 3PAR driver:

3.3. Reference 453

Manila Developer Documentation, Release 15.4.2.dev5

hpe3par_flash_cache When the value is set to <is> True (or <is> False), shares of this
type are only created on a back end that uses HPE 3PAR Adaptive Flash Cache. For Adaptive
Flash Cache, the HPE 3PAR StoreServ Storage array must meet the following requirements:

— Adaptive Flash Cache enabled
— Auvailable SSDs

— Adaptive Flash Cache must be enabled on the HPE 3PAR StoreServ Storage array. This
is done with the following CLI command:

<size> must be in 16 GB increments. For example, the below command creates 128
GB of Flash Cache for each node pair in the array.

— Adaptive Flash Cache must be enabled for the VV set used by an FPG. For example,
setflashcache vvset:<fpgname>. The VV set name is the same as the FPG name.

Note: This setting affects all shares in that FPG (on that back end).

Dedupe When the value is setto <is> True (or <is> False), shares of this type are only created
on a back end that uses deduplication. For HPE 3PAR File Persona, the provisioning type
is determined when the FPG is created. Using the createfpg tdvv option creates an FPG
that supports both dedupe and thin provisioning. The thin deduplication must be enabled to
use the tdvv option.

thin_provisioning When the value is set to <is> True (or <is> False), shares of this type
are only created on a back end that uses thin (or full) provisioning. For HPE 3PAR File
Persona, the provisioning type is determined when the FPG is created. By default, FPGs
are created with thin provisioning. The capacity filter uses the total provisioned space and
configured max_oversubscription_ratio when filtering and weighing backends that use
thin provisioning.

» Using share types to influence share creation options

Scoped extra-specs are used to influence vendor-specific implementation details. Scoped extra-
specs use a prefix followed by a colon. For HPE 3PAR, these extra specs have a prefix of hpe3par.

The following HPE 3PAR extra-specs are used when creating CIFS (SMB) shares:

hpe3par:smb_access_based_enum smb_access_based_enum (Access Based Enumeration)
specifies if users can see only the files and directories to which they have been allowed access
on the shares. Valid values are True or False. The default is False.

hpe3par:smb_continuous_avail smb_continuous_avail (Continuous Availability) speci-
fies if continuous availability features of SMB3 should be enabled for this share. Valid values
are True or False. The default is True.

hpe3par:smb_cache smb_cache specifies client-side caching for offline files. The default value
ismanual. Valid values are:

— off the client must not cache any files from this share. The share is configured to
disallow caching.

454 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

— manual the client must allow only manual caching for the files open from this share.

— optimized the client may cache every file that it opens from this share. Also, the
client may satisfy the file requests from its local cache. The share is configured to allow
automatic caching of programs and documents.

— auto the client may cache every file that it opens from this share. The share is configured
to allow automatic caching of documents.

When creating NFS shares, the following HPE 3PAR extra-specs are used:
hpe3par:nfs_options Comma separated list of NFS export options.
The NFS export options have the following limitations:
ro and rw are not allowed (will be determined by the driver)
no_subtree_check and fsid are not allowed per HPE 3PAR CLI support

(in)secure and (no_)root_squash are not allowed because the HPE 3PAR driver con-
trols those settings

All other NFS options are forwarded to the HPE 3PAR as part of share creation. The HPE
3PAR performs additional validation at share creation time. For details, see the HPE 3PAR
CLI help.

Implementation characteristics

 Shares from snapshots

— When a share is created from a snapshot, the share must be deleted before the snapshot can
be deleted. This is enforced by the driver.

— A snapshot of an empty share will appear to work correctly, but attempting to create a share
from an empty share snapshot may fail with an NFS Create export error.

— HPE 3PAR File Persona snapshots are for an entire File Store. In Manila, they appear as
snapshots of shares. A share sub-directory is used to give the appearance of a share snapshot
when using create share from snapshot.

* Snapshots

— For HPE 3PAR File Persona, snapshots are per File Store and not per share. So, the HPE
3PAR limit of 1024 snapshots per File Store results in a Manila limit of 1024 snapshots per
tenant on each back end FPG.

— Before deleting a share, you must delete its snapshots. This is enforced by Manila. For HPE
3PAR File Persona, this also kicks off a snapshot reclamation.

¢ Size enforcement

Manila users create shares with size limits. HPE 3PAR enforces size limits by using File
Store quotas. When using hpe3par_fstore_per_share "= " True ' (the non-default
setting) there is only one share per File Store, so the size enforcement
acts as expected. When using " "hpe3par_fstore_per_share = False (the default),
the HPE 3PAR Manila driver uses one File Store for multiple shares. In this case, the size of the
File Store limit is set to the cumulative limit of its Manila share sizes. This can allow one tenant
share to exceed the limit and affect the space available for the same tenants other shares. One
tenant cannot use another tenants File Store.

3.3. Reference 455

Manila Developer Documentation, Release 15.4.2.dev5

¢ File removal

When shares are removed and the hpe3par_fstore_per_share” "=""False setting is used (the
default), files may be left behind in the File Store. Prior to Mitaka, removal of obsolete share
directories and files that have been stranded would require tools outside of OpenStack/Manila.
In Mitaka and later, the driver mounts the File Store to remove the deleted shares subdirectory
and files. For SMB/CIFS share, it requires the hpe3par_cifs_admin_access_username and
hpe3par_cifs_admin_access_password configuration. If the mount and delete cannot be per-
formed, an error is logged and the share is deleted in Manila. Due to the potential space held by
leftover files, File Store quotas are not reduced when shares are removed.

* Multi-tenancy
— Network

The driver_handles_share_servers configuration setting determines whether share
networks are supported. When driver_handles_share_servers is set to True, a share
network is required to create a share. The administrator creates share networks with the de-
sired network, subnet, IP range, and segmentation ID. The HPE 3PAR is configured with
an FSIP using the same subnet and segmentation ID and an IP address allocated from the
neutron network. Using share network-specific IP addresses, subnets, and segmentation IDs
give the appearance of better tenant isolation. Shares on an FPG, however, are accessible
via any of the FSIPs (subject to access rules). Back end filtering should be used for further
separation.

— Back end filtering

A Manila HPE 3PAR back end configuration refers to a specific array and a specific FPG.
With multiple backends and multiple tenants, the scheduler determines where shares will
be created. In a scenario where an array or back end needs to be restricted to one or more
specific tenants, share types can be used to influence the selection of a back end. For more
information on using share types, see Share types .

— Tenant limit

The HPE 3PAR driver uses one File Store per tenant per protocol in each configured FPG.
When only one back end is configured, this results in a limit of eight tenants (16 if only using
one protocol). Use multiple back end configurations to introduce additional FPGs on the
same array to increase the tenant limit.

When using share networks, an FSIP is created for each share network (when its first share
is created on the back end). The HPE 3PAR supports 4 FSIPs per FPG (VES). One of those
4 FSIPs is reserved for the initial VFS IP, so the share network limit is 48 share networks per
node pair.

Huawei driver

Huawei NAS driver is a plug-in based on the Shared File Systems service. The Huawei NAS driver
can be used to provide functions such as the share and snapshot for virtual machines, or instances, in
OpenStack. Huawei NAS driver enables the OceanStor V3 series V300R002 storage system to provide
only network filesystems for OpenStack.

456 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

* The OceanStor V3 series V300R002 storage system.

* The following licenses should be activated on V3 for File: CIFS, NFS, HyperSnap License (for

Supported shared filesystems and operations

snapshot).

The driver supports CIFS and NFS shares.

The following operations are supported:

Create a share.
Delete a share.
Allow share access.

Note the following limitations:

— Only IP access type is supported for NFS.

— Only user access is supported for CIFS.
Deny share access.
Create a snapshot.
Delete a snapshot.
Support pools in one backend.
Extend a share.
Shrink a share.
Create a replica.
Delete a replica.
Promote a replica.

Update a replica state.

Pre-configurations on Huawei

1. Create a driver configuration file. The driver configuration file name must be the same as the

manila_huawei_conf_file item in the manila_conf configuration file.

2. Configure the product. Product indicates the storage system type. For the OceanStor V3 series

V300R002 storage systems, the driver configuration file is as follows:

<?xml version='1.0' encoding='UTF-8'?>

V3
X.X.X.X

(continues on next page)

3.3. Reference

457

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

https://x.x.x.x:8088/deviceManager/rest/

XXXXXXXXX
XXXXXXXXX
XXXXXXXXX
XXXXXXXXX
3
60

The options are:

Product is a type of storage product. Set it to V3.
LogicalPortIP is the IP address of the logical port.

RestURL is an access address of the REST interface. Multiple RestURLSs can be configured
in <RestURL>, separated by ;. The driver will automatically retry another RestURL if one
fails to connect.

UserName is the user name of an administrator.

UserPassword is the password of an administrator.
Thin_StoragePool is the name of a thin storage pool to be used.
Thick_StoragePool is the name of a thick storage pool to be used.
WaitInterval is the interval time of querying the file system status.

Timeout is the timeout period for waiting command execution of a device to complete.

Back end configuration

Modify the manila.conf Shared File Systems service configuration file and add share_driver and
manila_huawei_conf_file items. Here is an example for configuring a storage system:

Driver options

The following table contains the configuration options specific to the share driver.

Table 23: Description of Huawei share driver configuration options

Configuration option = Default value Description
[DEFAULT]
manila_huawei_conf_file = /etc/manila/ | (String) The configuration file for the
manila_huawei_conf.zxml Manila Huawei driver.
458 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

IBM Spectrum Scale share driver

IBM Spectrum Scale is a flexible software-defined storage product that can be deployed as high-
performance file storage or a cost optimized large-scale content repository. IBM Spectrum Scale, previ-
ously known as IBM General Parallel File System (GPFS), is designed to scale performance and capacity
with no bottlenecks. IBM Spectrum Scale is a cluster file system that provides concurrent access to file
systems from multiple nodes. The storage provided by these nodes can be direct attached, network at-
tached, SAN attached, or a combination of these methods. Spectrum Scale provides many features beyond
common data access, including data replication, policy based storage management, and space efficient
file snapshot and clone operations.

Supported shared filesystems and operations (NFS shares only)

The Spectrum Scale share driver supports NFS shares.
The following operations are supported:
* Create a share.
* Delete a share.
* Allow share access.
— Only IP access type is supported.
— Both RW & RO access level is supported.
* Deny share access.
* Create a share snapshot.
* Delete a share snapshot.
* Create a share from a snapshot.
» Extend a share.
* Manage a share.

* Unmanage a share.

Requirements

Spectrum Scale must be installed and a cluster must be created that includes one or more storage nodes
and protocol server nodes. The NFS server running on these nodes is used to export shares to storage
consumers in OpenStack virtual machines or even to bare metal storage consumers in the OpenStack en-
vironment. A file system must also be created and mounted on these nodes before configuring the manila
service to use Spectrum Scale storage. For more details, refer to Spectrum Scale product documentation.

Spectrum Scale supports two ways of exporting data through NFS with high availability.
1. CES (which uses Ganesha NFS)

* This is provided inherently by the protocol support in Spectrum Scale and is a recommended
method for NFS access.

2. CNFS (which uses kernel NFES)

3.3. Reference 459

https://ibm.biz/Bdi84g

Manila Developer Documentation, Release 15.4.2.dev5

For more information on NFS support in Spectrum Scale, refer to Protocol support in Spectrum Scale
and NES Support overview in Spectrum Scale.

The following figure is an example of Spectrum Scale architecture with OpenStack services:

OpenStack
— Vil Compsta
Ganesha ESILE odes
Instances
OpenStack Nova
Controller N compute
Nodes Controller Protocol/CES
Services nodes Hypervisor
m
Scale
Client
[Eecn—peton o e L |

Quotas should be enabled for the Spectrum Scale filesystem to be exported through NFS using Spectrum
Scale share driver. Use the following command to enable quota for a filesystem:

$ mmchfs <filesystem> -Q yes

Limitation
Spectrum Scale share driver currently supports creation of NFS shares in the flat network space only. For

example, the Spectrum Scale storage node exporting the data should be in the same network as that of
the Compute VMs which mount the shares acting as NFS clients.

Driver configuration

Spectrum Scale share driver supports creation of shares using both NFS servers (Ganesha using Spectrum
Scale CES/Kernel NFS).

For both the NFS server types, you need to set the share_driver in the manila.conf as:

manila.share.drivers.ibm.gpfs.GPFSShareDriver

460 Chapter 3. For operators

https://ibm.biz/BdiuZN
https://ibm.biz/BdiuZ7

Manila Developer Documentation, Release 15.4.2.dev5

Spectrum Scale CES (NFS Ganesha server)

To use Spectrum Scale share driver in this mode, set the gpfs_share_helpers in the manila.conf
as:

Following table lists the additional configuration options which are used with this driver configuration.

Table 24: Description of IBM Spectrum Scale CES share driver
configuration options

Configuration option = Default value Description

[DEFAULT]

gpfs_mount_point_base = | (String) Base folder where exported shares are lo-

$state_path/mnt cated.

gpfs_nfs_server_type = CES (String) NFS Server type. Valid choices are CES
(Ganesha NFS) or KNFS (Kernel NFS).

gpfs_share_export_ip = None (Host address) IP to be added to GPFS export string.

gpfs_share_helpers = KNFS=manila. | (List) Specify list of share export helpers.
share.drivers.ibm.gpfs.KNFSHelper,
CES=manila.share.drivers.ibm.gpfs.

CESHelper

gpfs_ssh_login = None (String) GPFS server SSH login name.

gpfs_ssh_password = None (String) GPFS server SSH login password. The pass-
word is not needed, if gpfs_ssh_private_key is con-
figured.

gpfs_ssh_port =22 (Port number) GPFS server SSH port.

gpfs_ssh_private_key = None (String) Path to GPFS server SSH private key for lo-
gin.

is_gpfs_node = False (Boolean) True:when Manila services are running on

one of the Spectrum Scale node. False:when Manila
services are not running on any of the Spectrum Scale
node.

Note: Configuration options related to ssh are required only if is_gpfs_node is set to False.

Spectrum Scale Clustered NFS (Kernel NFS server)

To use Spectrum Scale share driver in this mode, set the gpfs_share_helpers in the manila.conf
as:

Following table lists the additional configuration options which are used with this driver configuration.

3.3. Reference 461

Manila Developer Documentation, Release 15.4.2.dev5

Table 25: Description of IBM Spectrum Scale KNFS share driver

configuration options

Configuration option = Default value

Description

[DEFAULT]

gpfs_mount_point_base =

$state_path/mnt

(String) Base folder where exported shares are lo-
cated.

gpfs_nfs_server_list = None

(List) A list of the fully qualified NFS server names
that make up the OpenStack Manila configuration.

gpfs_nfs_server_type = CES

(String) NFS Server type. Valid choices are CES
(Ganesha NFS) or KNFS (Kernel NFS).

gpfs_share_export_ip = None

(Host address) IP to be added to GPFS export string.

gpfs_share_helpers = KNFS=manila.
share.drivers.ibm.gpfs.KNFSHelper,
CES=manila.share.drivers.ibm.gpfs.
CESHelper

(List) Specify list of share export helpers.

gpfs_ssh_login = None

(String) GPFS server SSH login name.

gpfs_ssh_password = None

(String) GPFS server SSH login password. The pass-
word is not needed, if gpfs_ssh_private_key is con-
figured.

gpfs_ssh_port =22

(Port number) GPFS server SSH port.

gpfs_ssh_private_key = None

(String) Path to GPFS server SSH private key for lo-
gin.

is_gpfs_node = False

(Boolean) True:when Manila services are running on
one of the Spectrum Scale node. False:when Manila
services are not running on any of the Spectrum Scale
node.

Note: Configuration options related to ssh are required only if is_gpfs_node is set to False.

Share creation steps

Sample configuration

462

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Create GPFS share type and set extra spec

manila type-create --snapshot_support True
--create_share_from_snapshot_support True gpfs False

manila type-key gpfs GPFS

INFINIDAT InfiniBox Share driver

The INFINIDAT Share driver provides support for managing filesystem shares on the INFINIDAT In-

finiBox storage systems.

This section explains how to configure the INFINIDAT driver.

Supported operations

* Create and delete filesystem shares.
* Ensure filesystem shares.
» Extend a share.
* Create and delete filesystem snapshots.
* Create a share from a share snapshot.
* Revert a share to its snapshot.
* Mount a snapshot.
» Set access rights to shares and snapshots.
Note the following limitations:
— Only IP access type is supported.
— Both RW & RO access levels are supported.

External package installation

The driver requires the infinisdk package for communicating with InfiniBox systems. Install the pack-

age from PyPI using the following command:

pip install infinisdk

3.3. Reference

463

Manila Developer Documentation, Release 15.4.2.dev5

Setting up the storage array

Create a storage pool object on the InfiniBox array in advance. The storage pool will contain shares
managed by OpenStack. Refer to the InfiniBox manuals for details on pool management.

Driver configuration

Edit the manila. conf file, which is usually located under the following path /etc/manila/manila.
conf.

¢ Add a section for the INFINIDAT driver back end.

* Under the [DEFAULT] section, set the enabled_share_backends parameter with the name of
the new back-end section.

Configure the driver back-end section with the parameters below.

* Configure the driver name by setting the following parameter:

* Configure the management IP of the InfiniBox array by adding the following parameter:

* Configure SSL support for InfiniBox management API:

We recommend enabling SSL support for InfiniBox management API. Refer to the InfiniBox man-
uals for details on security management. Configure SSL options by adding the following parame-
ters:

These parameters defaults to false.
* Configure user credentials:

The driver requires an InfiniBox user with administrative privileges. We recommend creating a
dedicated OpenStack user account that holds an administrative user role. Refer to the InfiniBox
manuals for details on user account management. Configure the user credentials by adding the
following parameters:

Configure the name of the InfiniBox pool by adding the following parameter:

Configure the name of the InfiniBox NAS network space by adding the following parameter:

464 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* The back-end name is an identifier for the back end. We recommend using the same name as the
name of the section. Configure the back-end name by adding the following parameter:

* Thin provisioning:

The INFINIDAT driver supports creating thin or thick provisioned filesystems. Configure thin or
thick provisioning by adding the following parameter:

This parameter defaults to true.

* Controls access to the . snapshot directory:

By default, each share allows access to its own .snapshot directory, which contains files and
directories of each snapshot taken. To restrict access to the .snapshot directory on the client
side, this option should be set to false.

This parameter defaults to true.

* Controls visibility of the . snapshot directory:

By default, each share contains the .snapshot directory, which is hidden on the client side. To
make the . snapshot directory visible, this option should be set to true.

This parameter defaults to false.

Configuration example

3.3. Reference 465

Manila Developer Documentation, Release 15.4.2.dev5

Driver options

Configuration opti

ons specific to this driver:

Table 26: Description of INFINIDAT InfiniBox share driver con-
figuration options

Configura-
tion option
Default value

Description

[DEFAULT]

infinibox_hog
= None

t¢fmieg) The name (or IP address) for the INFINIDAT Infinibox storage system.

infinidat_use
=False

_&dolean) Enable SSL communication to access the INFINIDAT Infinibox storage
system.

infinidat_sup
=False

piessleas)] Suppresngsquests library SSL certificate warnings.

infinibox_log
= None

i(Btring) Administrative user account name used to access the INFINIDAT Infinibox
storage system.

infinibox_pas
= None

seRiricig) Password for the administrative user account specified in the infini-
box_login option.

infinidat_pog
= None

1(Staing) Name of the pool from which volumes are allocated.

infinidat_nas
= None

_(Sttingy Nmpa o thadeAS network space on the INFINIDAT InfiniBox.

infinidat_thi
= True

n(lpaoleis)bise thin provisioning.

infinidat_sn4g
= True

paoleank Eibbds access to the . snapshot directory. By default, each share al-
lows access to its own .snapshot directory, which contains files and directories
of each snapshot taken. To restrict access to the . snapshot directory, this option
should be set to False.

infinidat_sna
=False

pavleisibbatrols visibility of the .snapshot directory. By default, each share
contains the . snapshot directory, which is hidden on the client side. To make the
.snapshot directory visible, this option should be set to True.

Infortrend Mani

la driver

The Infortrend Manila driver provides NFS and CIFS shared file systems to OpenStack.

Requirements

To use the Infortrend Manila driver, the following items are required:

* GS/GSe Family firmware version v73.1.0-4 and later.

» Configure at least one channel for shared file systems.

466

Chapter 3. For operators

http://www.infortrend.com/global

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems and operations

This driver supports NFS and CIFS shares.

The following operations are supported:

Create a share.
Delete a share.
Allow share access.
Note the following limitations:
— Only IP access type is supported for NFS.
— Only user access type is supported for CIFS.
Deny share access.
Manage a share.
Unmanage a share.
Extend a share.

Shrink a share.

Restrictions

The Infortrend manila driver has the following restrictions:

Only IP access type is supported for NFS.
Only user access type is supported for CIFS.

Only file-level data service channel can offer the NAS service.

Driver configuration

Onmanila-share nodes, set the following in your /etc/manila/manila. conf, and use the following
options to configure it:

3.3. Reference

467

Manila Developer Documentation, Release 15.4.2.dev5

Driver options

Table 27: Description of Infortrend Manila driver configuration
options

Configuration option = | Description

Default value

[DEFAULT]

infortrend_nas_ip = | (String) Infortrend NAS ip. It is the ip for management.

None

infortrend_nas_user = | (String) Infortrend NAS username.

manila

infortrend_nas_password(String) Password for the Infortrend NAS server. This is not necessary
= None if infortrend_nas_ssh_key is set.

infortrend_nas_ssh_key| (String) SSH key for the Infortrend NAS server. This is not necessary
= None if infortrend_nas_password is set.

infortrend_share_pools| (String) Infortrend nas pool name list. It is separated with comma.

= None

infortrend_share_channelString) Infortrend channels for file service. Itis separated with comma.
= None

infortrend_cli_timeout| (Integer) CLI timeout in seconds.

=30

Back-end configuration example

MapRFS native driver

MapR-FS native driver is a plug-in based on the Shared File Systems service and provides high-
throughput access to the data on MapR-FS distributed file system, which is designed to hold very large
amounts of data.

A Shared File Systems service share in this driver is a volume in MapR-FS. Instances talk directly to the
MapR-FS storage backend via the (mapr-posix) client. To mount a MapR-FS volume, the MapR POSIX
client is required. Access to each share is allowed by user and group based access type, which is aligned

468 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

with MapR-FS ACE:s to support access control for multiple users and groups. If user name and group

name are the same, the group access type will be used by default.

For more details, see MapR documentation.

Network configuration

The storage backend and Shared File Systems service hosts should be in a flat network. Otherwise, the
L3 connectivity between them should exist.

Supported shared filesystems and operations

The driver supports MapR-FS shares.

The following operations are supported:

Create MapR-FS share.
Delete MapR-FS share.
Allow MapR-FS Share access.

— Only support user and group access type.

— Support level of access (ro/rw).
Deny MapR-FS Share access.
Update MapR-FS Share access.
Create snapshot.

Delete snapshot.

Create share from snapshot.
Extend share.

Shrink share.

Manage share.

Unmanage share.

Manage snapshot.
Unmanage snapshot.

Ensure share.

3.3. Reference

469

http://maprdocs.mapr.com/

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

* Install MapR core packages, version >= 5.2.x, on the storage backend.
* To enable snapshots, the MapR cluster should have at least M5 license.
* Establish network connection between the Shared File Systems service hosts and storage backend.

* Obtain a ticket for user who will be used to access MapR-FS.

Back end configuration (manila.conf)

Add MapR-FS protocol to enabled_share_protocols:

Create a section for MapR-FS backend. Example:

Set driver-handles-share-servers to False as the driver does not manage the lifecycle of
share-servers.

Add driver backend to enabled_share_backends:

470 Chapter 3. For operators

http://maprdocs.mapr.com/home/SecurityGuide/Tickets.html

Manila Developer Documentation, Release 15.4.2.dev5

Driver options

The following table contains the configuration options specific to this driver.

Table 28: Description of MapRFS share driver configuration op-

tions
Configuration option = | Description
Default value
[DEFAULT]

maprfs_base_volume_dir (String) Path in MapRFS where share volumes must be created.
=/
maprfs_cldb_ip = None | (List) The list of IPs or hostnames of CLDB nodes.
maprfs_clinode_ip = | (List) The list of IPs or hostnames of nodes where mapr-core is installed.
None
maprfs_rename_managed_vdamean) Specify whether existing volume should be renamed when
=True start managing.

maprfs_ssh_name = | (String) Cluster admin user ssh login name.

mapr
maprfs_ssh_port = 22 (Port number) CLDB node SSH port.
maprfs_ssh_private_key (String) Path to SSH private key for login.

= None

maprfs_ssh_pw = None (String) Cluster node SSH login password, This parameter is not nec-
essary, if maprfs_ssh_private_key is configured.

maprfs_zookeeper_ip = | (List) The list of IPs or hostnames of ZooKeeper nodes.

None

Known restrictions

This driver does not handle user authentication, no tickets or users are created by this driver. This means
that when access_allow or update_access is calling, this will have no effect without providing tickets to
users.

Share metadata

MapR-FS shares can be created by specifying additional options. Metadata is used for this purpose.
Every metadata option with - prefix is passed to MapR-FS volume. For example, to specify advisory
volume quota add _advisoryquota=10G option to metadata:

manila create MAPRFS --metadata 10G

If you need to create a share with your custom backend name or export location instead if uuid, you can
specify _name and _path options:

manila create MAPRFS --metadata example /example

Warning: Specifying invalid options will cause an error.

3.3. Reference 471

Manila Developer Documentation, Release 15.4.2.dev5

The list of allowed options depends on mapr-core version. See volume create for more information.

NetApp Clustered Data ONTAP driver

The Shared File Systems service can be configured to use NetApp clustered Data ONTAP version 8.

Network approach

L3 connectivity between the storage cluster and Shared File Systems service host should exist, and VLAN
segmentation should be configured.

The clustered Data ONTAP driver creates storage virtual machines (SVM, previously known as vServers)
as representations of the Shared File Systems service share server interface, configures logical interfaces
(LIFs) and stores shares there.

Supported shared filesystems and operations

The driver supports CIFS and NFS shares.

The following operations are supported:

Create a share.

Delete a share.

Allow share access.

Note the following limitations:
— Only IP access type is supported for NFS.
— Only user access type is supported for CIFS.

Deny share access.

Create a snapshot.

Delete a snapshot.

Create a share from a snapshot.

Extend a share.

Shrink a share.

Create a consistency group.

Delete a consistency group.

Create a consistency group snapshot.

Delete a consistency group snapshot.

472

Chapter 3. For operators

http://maprdocs.mapr.com/home/ReferenceGuide/volume-create.html

Manila Developer Documentation, Release 15.4.2.dev5

Required licenses

 NFS
e CIFS
¢ FlexClone

Known restrictions

* For CIFS shares an external active directory service is required. Its data should be provided via
security-service that is attached to used share-network.

» Share access rule by user for CIFS shares can be created only for existing user in active directory.

* To be able to configure clients to security services, the time on these external security services and
storage should be synchronized. The maximum allowed clock skew is 5 minutes.

Driver options

The following table contains the configuration options specific to the share driver.

3.3. Reference 473

Manila Developer Documentation, Release 15.4.2.dev5

Table 29:

Description of NetApp share driver configuration options

Configuration option
Default value

Description

[DEFAULT]

netapp_aggregate_namg

= (.

»_(SedrghPpadrnefcn searching available aggregates for provisioning.

netapp_enabled_share]
=nfs3, nfs4.0

| ot ddbsNES protocol versions that will be enabled. Supported values
include nfs3, nfs4.0, nfs4.1. This option only applies when the option
driver_handles_share servers is set to True.

netapp_lif_name_temp]

0s_%(nmet_allocation_]

| (8ering) Logical interface (LIF) name template

1d)s

netapp_login = None

(String) Administrative user account name used to access the storage sys-
tem.

netapp_password
None

(String) Password for the administrative user account specified in the ne-
tapp_login option.

netapp_port_name_seal

=(.%)

raqBbtpagxBatern for overriding the selection of network ports on which to
create Vserver LIFs.

netapp_root_volume=
root

(String) Root volume name.

netapp_root_volume_ag
= None

ygBSedagrName of aggregate to create Vserver root volumes on. This op-
tion only applies when the option driver_handles_share_servers is set to
True.

netapp_server_hostnarn
= None

ngString) The hostname (or IP address) for the storage system.

netapp_server_port=
None

(Port number) The TCP port to use for communication with the storage
system or proxy server. If not specified, Data ONTAP drivers will use 80
for HTTP and 443 for HTTPS.

netapp_snapmirror_qui
= 3600

| ddtegeiniEbemaximum time in seconds to wait for existing snapmirror
transfers to complete before aborting when promoting a replica.

netapp_storage_family
=ontap_cluster

v (String) The storage family type used on the storage system; valid values
include ontap_cluster for using clustered Data ONTAP.

netapp_trace_flags=
None

(String) Comma-separated list of options that control which trace info is
written to the debug logs. Values include method and api.

netapp_transport_typé
=http

2 (String) The transport protocol used when communicating with the stor-
age system or proxy server. Valid values are http or https.

netapp_volume_move_cutdwepet)itkowtaximum time in seconds to wait for the completion of a

= 3600

volume move operation after the cutover was triggered.

netapp_volume_name_ts¢
=share_%(share_id)s

2n(Phdme) NetApp volume name template.

netapp_volume_snapshg
=5

v t(ImegenvEh@ peremtage of share space set aside as reserve for snapshot
usage; valid values range from 0O to 90.

netapp_vserver_name_t
= 0S_%S

L eipding pName template to use for new Vserver. When using CIFS proto-
col make sure to not configure characters illegal in DNS hostnames.

474

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Quobyte Driver

Quobyte can be used as a storage back end for the OpenStack Shared File System service. Shares in the
Shared File System service are mapped 1:1 to Quobyte volumes. Access is provided via NFS protocol
and IP-based authentication. The Quobyte driver uses the Quobyte API service.

Supported shared filesystems and operations

The drivers supports NFS shares.
The following operations are supported:
* Create a share.
* Delete a share.
* Allow share access.
Note the following limitations:
— Only IP access type is supported.

* Deny share access.

Driver options
The following table contains the configuration options specific to the share driver.

Table 30: Description of Quobyte share driver configuration op-

tions
Configuration option = Default value Description
[DEFAULT]
quobyte_api_ca = None (String) The X.509 CA file to verify the server cert.
quobyte_api_password = quobyte (String) Password for Quobyte API server
quobyte_api_url = None (String) URL of the Quobyte API server (http or https)
quobyte_api_username = admin (String) Username for Quobyte API server.
quobyte_default_volume_group = | (String) Default owning group for new volumes.
root
quobyte_default_volume_user = | (String) Default owning user for new volumes.
root
quobyte_delete_shares = False (Boolean) Actually deletes shares (vs. unexport)
quobyte_volume_configuration = | (String) Name of volume configuration used for new
BASE shares.

3.3. Reference 475

Manila Developer Documentation, Release 15.4.2.dev5

Configuration

To configure Quobyte access for the Shared File System service, a back end configuration sec-
tion has to be added in the manila.conf file. Add the name of the configuration section to
enabled_share_backends in the manila. conf file. For example, if the section is named Quobyte:

Create the new back end configuration section, in this case named Quobyte:

The section name must match the name used in the enabled_share_backends option described above.
The share_driver setting is required as shown, the other options should be set according to your local
Quobyte setup.

Other security-related options are:

Quobyte support can be found at the Quobyte support webpage.

NexentaStor5 Driver

Nexentastor5 can be used as a storage back end for the OpenStack Shared File System service. Shares in
the Shared File System service are mapped 1:1 to Nexentastor5 filesystems. Access is provided via NFS
protocol and IP-based authentication.

Network approach

L3 connectivity between the storage back end and the host running the Shared File Systems share service
should exist.

476 Chapter 3. For operators

http://support.quobyte.com

Manila Developer Documentation, Release 15.4.2.dev5

Supported shared filesystems and operations

The drivers supports NFS shares.
The following operations are supported:
* Create NFS share
* Delete share
* Extend share
* Shrink share
* Allow share access
Note the following limitation:
— Only IP based access is supported (ro/rw).
* Deny share access
* Create snapshot
* Revert to snapshot
* Delete snapshot
* Create share from snapshot
* Manage share

* Unmanage share

Requirements

* NexentaStor 5.x Appliance pre-provisioned and licensed

* Pool and parent filesystem configured (this filesystem will contain all manila shares)

Restrictions

* Only IP share access control is allowed for NFS shares.

Configuration

Create the new back end configuration section, in this case named NexentaStor5:

(continues on next page)

3.3. Reference 477

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

More information can be found at the Nexenta documentation webpage <https://nexenta.github.io>.

Driver options

The following table contains the configuration options specific to the share driver.

478 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Table 31: Description of NexentaStor5 configuration options

Configuration option
= Default value

Description

[DEFAULT]

nexenta_rest_addres
= None

s9dsist) One or more comma delimited IP addresses for management commu-
nication with NexentaStor appliance.

nexenta_rest_port
= 8443

(Integer) Port to connect to Nexenta REST API server.

nexenta_use_https
=True

(Boolean) Use HTTP secure protocol for NexentaStor management REST
API connections.

nexenta_user
admin

(String) User name to connect to Nexenta SA.

nexenta_password =
None

(String) Password to connect to Nexenta SA.

nexenta_pool
pooll

(String) Pool name on NexentaStor.

nexenta_nfs = True

(Boolean) Defines whether share over NFS is enabled.

nexenta_ssl_cert_ve
=False

r@Bolean) Defines whether the driver should check ssl cert.

nexenta_rest_conneq
=30

rt(RaateGpecifies the time limit (in seconds), within which the connection to
NexentaStor management REST API server must be established.

nexenta_rest_read_t
=300

 igkdoath Specifies the time limit (in seconds), within which NexentaStor man-
agement REST API server must send a response.

nexenta_rest_backo{
=1

F f{(Haat) Gipecifies the backoff factor to apply between connection attempts to
NexentaStor management REST API server.

nexenta_rest_retry
=5

| dduateger) Specifies the number of times to repeat NexentaStor management
REST API call in case of connection errors and NexentaStor appliance
EBUSY or ENOENT errors.

nexenta_nas_host =
None

(Hostname) Data IP address of Nexenta storage appliance.

nexenta_mount_point
= §state_path/mnt

1_(%adiag) Base directory that contains NFS share mount points.

nexenta_share_name|
= share-

| paSefing) Nexenta share name prefix.

nexenta_folder
folder

(String) Parent folder on NexentaStor.

nexenta_dataset_compi¢sagpfiiompression value for new ZFS folders.

=0n

nexenta_thin_provis
=True

s iddalgan) If True shares will not be space guaranteed and overprovisioning
will be enabled.

nexenta_dataset_red
=131072

roddtegereSpecifies a suggested block size in for files in a file system. (bytes)

3.3. Reference

479

Manila Developer Documentation, Release 15.4.2.dev5

Pure Storage FlashBlade driver

The Pure Storage FlashBlade driver provides support for managing filesystem shares on the Pure Storage
FlashBlade storage systems.

The driver is compatible with Pure Storage FlashBlades that support REST API version 1.6 or higher
(Purity//FB v2.3.0 or higher). This section explains how to configure the FlashBlade driver.

Supported operations

¢ Create and delete NFS shares.

Extend/Shrink a share.
* Create and delete filesystem snapshots (No support for create-from or mount).

* Revert to Snapshot.

Both RW and RO access levels are supported.
» Set access rights to NFS shares.
Note the following limitations:

— Only IP (for NFS shares) access types are supported.

External package installation

The driver requires the purity_£fb package for communicating with FlashBlade systems. Install the
package from PyPI using the following command:

pip install purity_f£b

Driver configuration

Edit the manila. conf file, which is usually located under the following path /etc/manila/manila.
conf.

¢ Add a section for the FlashBlade driver back end.

* Under the [DEFAULT] section, set the enabled_share_backends parameter with the name of
the new back-end section.

Configure the driver back-end section with the parameters below.

* Configure the driver name by setting the following parameter:

* Configure the management and data VIPs of the FlashBlade array by adding the following param-
eters:

480 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

* Configure user credentials:

The driver requires a FlashBlade user with administrative privileges. We recommend creating a
dedicated OpenStack user account that holds an administrative user role. Refer to the FlashBlade
manuals for details on user account management. Configure the user credentials by adding the
following parameters:

* (Optional) Configure File System and Snapshot Eradication:

The option, when enabled, all FlashBlade file systems and snapshots will be eradicated at the time
of deletion in Manila. Data will NOT be recoverable after a delete with this set to True! When
disabled, file systems and snapshots will go into pending eradication state and can be recovered.
Recovery of these pending eradication snapshots cannot be accomplished through Manila. These
snapshots will self-eradicate after 24 hours unless manually restored. The default setting is True.

* The back-end name is an identifier for the back end. We recommend using the same name as the
name of the section. Configure the back-end name by adding the following parameter:

Configuration example

3.3. Reference 481

Manila Developer Documentation, Release 15.4.2.dev5

Driver options

Configuration options specific to this driver:

Table 32: Description of Pure Storage FlashBlade share driver con-
figuration options

Configuration option = | Description

Default value

[DEFAULT]

flashblade_mgmt_vip = | (String) The name (or IP address) for the Pure Storage FlashBlade stor-
None age system management port.

flashblade_data_vip = | (String) The name (or IP address) for the Pure Storage FlashBlade stor-
None age system data port.

flashblade_api = None (String) API token for an administrative level user account.
flashblade_eradicate (Boolean) Enable or disable filesystem and snapshot eradication on
= True delete.

To use different share drivers for the Shared File Systems service, use the parameters described in these
sections.

The Shared File Systems service can handle multiple drivers at once. The configuration for all of them
follows a common paradigm:

1. In the configuration file manila.conf, configure the option enabled_backends with the list of
names for your configuration.

For example, if you want to enable two drivers and name them Driverl and Driver2:

2. Configure a separate section for each driver using these names. You need to define in each section
at least the option share_driver and assign it the value of your driver. In this example it is the
generic driver:

The share drivers are included in the Shared File Systems repository.

482 Chapter 3. For operators

https://opendev.org/openstack/manila/src/branch/master/manila/share/drivers

Manila Developer Documentation, Release 15.4.2.dev5

Log files used by Shared File Systems

The corresponding log file of each Shared File Systems service is stored in the /var/log/manila/
directory of the host on which each service runs.

Table 33: Log files used by Shared File Systems services

Log file Service/interface (for CentOS, Fedora, openSUSE, | Service/interface (for
Red Hat Enterprise Linux, and SUSE Linux Enterprise) | Ubuntu and Debian)

api.log openstack-manila-api manila-api

manila-managanila-manage manila-manage

log

scheduler. openstack-manila-scheduler manila-scheduler

log

share. openstack-manila-share manila-share

log

data.log | openstack-manila-data manila-data

Additional options

These options can also be set in the manila. conf file.

Table 34: Description of Certificate Authority configuration op-

tions

Configuration option = Default value | Description

[DEFAULT]

osapi_share_use_ssl =False

(Boolean) Wraps the socket in a SSL context if True is set.

Configuration option = Default value

Description

[DEFAULT]

check_hash = False

(Boolean) Chooses whether hash of each file should be

client_socket_timeout =900

(Integer) Timeout for client connections socket operatic

compute_api_class =manila.compute.nova.API

(String) The full class name of the Compute API class 1

data_access_wait_access_rules_timeout = 180

(Integer) Time to wait for access rules to be allowed/de

data_manager =manila.data.manager.DataManager

(String) Full class name for the data manager.

data_node_access_admin_user = None

(String) The admin user name registered in the security

data_node_access_cert = None

(String) The certificate installed in the data node in ord

data_node_access_ips = None

(String) A list of the IPs of the node interface connecte

data_node_mount_options = {}

(Dict) Mount options to be included in the mount comn

data_topic =manila-data

(String) The topic data nodes listen on.

enable_new_services = True

(Boolean) Services to be added to the available pool on

fatal_exception_format_errors = False

(Boolean) Whether to make exception message format

filter_function = None

(String) String representation for an equation that will t

host = <your_hostname>

(String) Name of this node. This can be an opaque iden

max_over_subscription_ratio=20.0

(Floating point) Float representation of the over subscri

memcached_servers = None

(List) Memcached servers or None for in process cache

monkey_patch = False

(Boolean) Whether to log monkey patching.

3.3. Reference

483

Manila Developer Documentation, Release 15.4.2.dev5

Configuration option = Default value

Description

monkey_patch_modules =

(List) List of modules or decorators to monkey patch.

mount_tmp_location=/tmp/

(String) Temporary path to create and mount shares dus

my_ip = <your_ip>

(String) IP address of this host.

num_shell_tries =3

(Integer) Number of times to attempt to run flakey shell

periodic_fuzzy_delay = 60

(Integer) Range of seconds to randomly delay when sta

periodic_hooks_interval = 300.0

(Floating point) Interval in seconds between execution |

periodic_interval =60

(Integer) Seconds between running periodic tasks.

replica_state_update_interval = 300

(Integer) This value, specified in seconds, determines h

replication_domain = None

(String) A string specifying the replication domain that

report_interval = 10

(Integer) Seconds between nodes reporting state to data

reserved_share_percentage =0

(Integer) The percentage of backend capacity reserved.

rootwrap_config = None

(String) Path to the rootwrap configuration file to use fc

service_down_time = 60

(Integer) Maximum time since last check-in for up serv

smb_template_config_path = $state_path/smb.conf

(String) Path to smb config.

sql_idle_timeout = 3600

(Integer) Timeout before idle SQL connections are reag

sql_max_retries =10

(Integer) Maximum database connection retries during

sql_retry_interval = 10

(Integer) Interval between retries of opening a SQL cor

sqlite_clean_db =clean.sqlite

(String) File name of clean sqlite database.

sqlite_db =manila.sqlite

(String) The filename to use with sqlite.

sqlite_synchronous = True

(Boolean) If passed, use synchronous mode for sqlite.

state_path = /var/lib/manila

(String) Top-level directory for maintaining manilas sta

storage_availability_zone = nova

(String) Availability zone of this node.

tcp_keepalive = True

(Boolean) Sets the value of TCP_KEEPALIVE (True/F

tcp_keepalive_count = None

(Integer) Sets the value of TCP_KEEPCNT for each se;

tcp_keepalive_interval = None

(Integer) Sets the value of TCP_KEEPINTVL in secon

tcp_keepidle = 600

(Integer) Sets the value of TCP_KEEPIDLE in seconds

until_refresh =0

(Integer) Count of reservations until usage is refreshed.

use_forwarded_for = False

(Boolean) Treat X-Forwarded-For as the canonical rem

wsgi_keep_alive = True

(Boolean) If False, closes the client socket connection ¢

[coordination]

backend_url = file://$state_path (String) The back end URL to use for distributed coord
[healthcheck]

backends = (List) Additional backends that can perform health che

detailed = False

(Boolean) Show more detailed information as part of th

disable_by_file_path = None

(String) Check the presence of a file to determine if an

disable_by_file_paths =

(List) Check the presence of a file based on a port to de

path = /healthcheck

(String) DEPRECATED: The path to respond to healtcl

Table 36: Description of Compute configuration options

Configuration option = Default value | Description

[nova]

api_microversion=12.10

(String) Version of Nova API to be used.

endpoint_type = publicURL

(String) Endpoint type to be used with nova client calls.

region_name = None

(String) Region name for connecting to nova.

484

Chapter 3. For operators

Manila

Developer Documentation, Release 15.4.2.dev5

Table 37: Description of Ganesha configuration options

Configuration option = Default value

Description

[DEFAULT]

ganesha_config_dir = /etc/ganesha

(String) Directory where Ganesha config files are
stored.

ganesha_config_path
$ganesha_config_dir/ganesha.conf

(String) Path to main Ganesha config file.

ganesha_db_path $state_path/
manila-ganesha.db

(String) Location of Ganesha database file. (Gane-
sha module only.)

ganesha_export_dir
$ganesha_config_dir/export.d

(String) Path to directory containing Ganesha export
configuration. (Ganesha module only.)

/etc/

ganesha_export_template_dir
manila/ganesha-export-templ.d

(String) Path to directory containing Ganesha export
block templates. (Ganesha module only.)

ganesha_service_name = ganesha.nfsd

(String) Name of the ganesha nfs service.

Table 38: Description of hnas configuration options

Configuration option = Default value

Description

[DEFAULT]

hitachi_hnas_driver_helper
hitachi.hnas.ssh.HNASSSHBackend

manila.share.drivers.

(String) Python class to be used
for driver helper.

Table 39: Description

of Quota configuration options

Configuration option = Default value

Description

[DEFAULT]

max_age=0

(Integer) Number of seconds between subsequent usage
refreshes.

max_gigabytes = 10000

(Integer) Maximum number of volume gigabytes to al-
low per host.

quota_driver manila.quota.

DbQuotaDriver

(String) Default driver to use for quota checks.

quota_gigabytes = 1000

(Integer) Number of share gigabytes allowed per
project.

quota_share_networks = 10

(Integer) Number of share-networks allowed per
project.

quota_shares = 50

(Integer) Number of shares allowed per project.

quota_snapshot_gigabytes = 1000

(Integer) Number of snapshot gigabytes allowed per
project.

quota_snapshots = 50

(Integer) Number of share snapshots allowed per
project.

quota_share_groups = 50

(Integer) Number of share groups allowed.

quota_share_group_snapshots =50

(Integer) Number of share group snapshots allowed.

reservation_expire = 86400

(Integer) Number of seconds until a reservation expires.

3.3. Reference

485

Manila Developer Documentation, Release 15.4.2.dev5

Table 40: Description of Redis configuration options

Configuration option =
Default value

Description

[matchmaker_redis]

check_timeout = 20000

(Integer) Time in ms to wait before the transaction is killed.

host =127.0.0.1

(String) DEPRECATED: Host to locate redis. Replaced by [DE-
FAULT]/transport_url

password = (String) DEPRECATED: Password for Redis server (optional). Re-
placed by [DEFAULT]/transport_url
port = 6379 (Port number) DEPRECATED: Use this port to connect to redis host.

Replaced by [DEFAULT/transport_url

sentinel_group_name =
oslo-messaging-zeromq

(String) Redis replica set name.

sentinel_hosts =

(List) DEPRECATED: List of Redis Sentinel hosts (fault toler-
ance mode), e.g., [host:port, hostl:port] Replaced by [DE-
FAULT]/transport_url

socket_timeout = 10000

(Integer) Timeout in ms on blocking socket operations.

wait_timeout = 2000

(Integer) Time in ms to wait between connection attempts.

Table 41: Description of SAN configuration options

Configuration option = Default value

Description

[DEFAULT]

ssh_conn_timeout = 60

(Integer) Backend server SSH connection timeout.

ssh_max_pool_conn = 10

(Integer) Maximum number of connections in the SSH pool.

ssh_min_pool_conn =1

(Integer) Minimum number of connections in the SSH pool.

486

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

Table 42: Description of Scheduler configuration options

Configuration option = Default value

Description

[DEFAULT]

capacity_weight_multiplier=1.0

(Floating point) Multiplier used for weigh-
ing share capacity. Negative numbers mean
to stack vs spread.

pool_weight_multiplier=1.0

(Floating point) Multiplier used for weigh-
ing pools which have existing share servers.
Negative numbers mean to spread vs stack.

scheduler_default_filters
AvailabilityZoneFilter, CapacityFilter,
CapabilitiesFilter, DriverFilter,
ShareReplicationFilter

(List) Which filter class names to use for
filtering hosts when not specified in the re-
quest.

scheduler_default_weighers
CapacityWeigher, GoodnessWeigher

(List) Which weigher class names to use for
weighing hosts.

scheduler_driver =
drivers.filter.FilterScheduler

manila.scheduler.

(String) Default scheduler driver to use.

host_manager.HostManager

scheduler_host_manager = manila.scheduler.

(String) The scheduler host manager class to
use.

scheduler_json_config_location =

(String) Absolute path to scheduler config-
uration JSON file.

scheduler_manager =
manager.SchedulerManager

manila.scheduler.

(String) Full class name for the scheduler
manager.

scheduler_max_attempts =3

(Integer) Maximum number of attempts to
schedule a share.

scheduler_topic =manila-scheduler

(String) The topic scheduler nodes listen on.

3.3. Reference

487

Manila Develo

per Documentation, Release 15.4.2.dev5

Table 43: Description of Share configuration options

Configura-
tion option
Default

value

Description

[DEFAULT]

automatic_sh
= True

1aBnodean)elf sel eatinpe, then Manila will delete all share servers which were unused
more than specified time .If set to False - automatic deletion of share servers will be
disabled.

backlog
4096

(Integer) Number of backlog requests to configure the socket with.

default_shazr
= None

re(SgringpDeypdt share group type to use.

default_shar
= None

rgStaipg) Default share type to use.

delete_shareg
=False

»_(Baolean wiMiethasshasharesers will be deleted on deletion of the last share.

driver_handl
= None

| (B slleare) Thenems two possible approaches for share drivers in Manila. First is
when share driver is able to handle share-servers and second when not. Drivers can
support either both or only one of these approaches. So, set this opt to True if share
driver is able to handle share servers and it is desired mode else set False. It is set to
None by default to make this choice intentional.

enable_perig
=False

ydBndleakisWhether to enable periodic hooks or not.

enable_post/|
=False

| Hdwdedean) Whether to enable post hooks or not.

enable_pre_}
=False

1dddomlean) Whether to enable pre hooks or not.

enabled_shaz
= None

relhstgléehidsof share backend names to use. These backend names should be backed
by a unique [CONFIG] group with its options.

enabled_shazr
=NFS, CIFS

rgLpstd Speoify list of protocols to be allowed for share creation. Available values are
(NFS, CIFS, GLUSTERFS, HDFS, CEPHFS, MAPRES)

executor_thr
=64

reddtegon)Sige 2d executor thread pool.

hook_drivers

5 (List) Driver(s) to perform some additional actions before and after share driver ac-
tions and on a periodic basis. Default is [].

migration_cz
=300

rednegde)]l Firmeshafor_dreatogtand deleting share instances when performing share
migration (seconds).

migration_dz
=60

ri(etegeonthisuealupdspeeified érgadonds, determines how often the share manager
will poll the driver to perform the next step of migration in the storage backend, for
a migrating share.

migration_ig

lost+found

jndiet) Fiidtesf files and folders to be ignored when migrating shares. Items should be
names (not including any path).

migration_r¢
=True

» (Bl yamuDEPRIPAIHD: Specify whether read only access rule mode is supported
in this backend. Obsolete. All drivers are now required to support read-only access
rules.

migration_wdg
=180

1i(in@gep)sEime le sydii fimoadcess rules to be allowed/denied on backends when mi-
grating shares using generic approach (seconds).

network_cont
= None

FiGugmgulame of the configuration group in the Manila conf file to look for network
config options.If not set, the share backends config group will be used.If an option

488

is not found within provided group, thenDEFAULT gro&g& aﬁélseg J?rcﬁga]i%} 8F s

option.

share_manage
manila.

21(String) Full class name for the share manager.

Manila Developer Documentation, Release 15.4.2.dev5

Table 44: Description of Tegile share driver configuration options

Configuration option = Default value | Description

[DEFAULT]

tegile_default_project = None

(String) Create shares in this project

tegile_nas_login = None

(String) User name for the Tegile NAS server.

tegile_nas_password = None

(String) Password for the Tegile NAS server.

tegile_nas_server = None

(String) Tegile NAS server hostname or IP address.

Table 45: Description of WinRM configuration options

Configuration option = Default
value

Description

[DEFAULT]

winrm_cert_key_pem_path = ~/.
ssl/key.pem

(String) Path to the x509 certificate key.

winrm_cert_pem_path = ~/.ssl/
cert.pem

(String) Path to the x509 certificate used for accessing the
serviceinstance.

winrm_conn_timeout = 60

(Integer) WinRM connection timeout.

winrm_operation_timeout = 60

(Integer) WinRM operation timeout.

winrm_retry_count = 3

(Integer) WinRM retry count.

winrm_retry_interval =5

(Integer) WinRM retry interval in seconds

winrm_use_cert_based_auth =
False

(Boolean) Use x509 certificates in order to authenticate to
theservice instance.

Shared File Systems service sample configuration files

All the files in this section can be found in /etc/manila.

manila.conf

The manila. conf file is installed in /etc/manila by default. When you manually install the Shared
File Systems service, the options in the manila. conf file are set to default values.

The manila. conf file contains most of the options needed to configure the Shared File Systems service.

See the online version of this documentation for the full config file example.

api-paste.ini

The shared file systems service stores its API configuration settings in the api-paste.ini file.

(continues on next page)

3.3. Reference

489

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

/: apiversions
/healthcheck: healthcheck
/vl: openstack_share_api
/v2: openstack_share_api_v2

[composite:openstack_share_api]

use call:manila.api.middleware.auth:pipeline_factory

noauth = cors faultwrap http_proxy_to_wsgi sizelimit osprofiler noauth api
keystone = cors faultwrap http_proxy_to_wsgi sizelimit osprofiler authtoken.,
—keystonecontext api

keystone_nolimit cors faultwrap http_proxy_to_wsgi sizelimit osprofiler.
—authtoken keystonecontext api

[composite:openstack_share_api_v2]

use call:manila.api.middleware.auth:pipeline_factory

noauth = cors faultwrap http_proxy_to_wsgi sizelimit osprofiler noauth apiv2
noauthv?2 cors faultwrap http_proxy_to_wsgi sizelimit osprofiler noauthv2.
—apiv2

keystone cors faultwrap http_proxy_to_wsgi sizelimit osprofiler authtoken.
—keystonecontext apiv2

keystone_nolimit cors faultwrap http_proxy_to_wsgi sizelimit osprofiler.
—authtoken keystonecontext apiv2

[filter:faultwrap]
paste.filter_factory = manila.api.middleware.fault:FaultWrapper.factory

[filter:noauth]
paste.filter_factory = manila.api.middleware.auth:NoAuthMiddleware.factory

[filter:noauthv2]
paste.filter_factory = manila.api.middleware.auth:NoAuthMiddlewarev2_60.
—factory

[filter:sizelimit]
paste.filter_factory = oslo_middleware.sizelimit:RequestBodySizelLimiter.
—factory

[filter:osprofiler]
paste.filter_factory = osprofiler.web:WsgiMiddleware.factory

[filter:http_proxy_to_wsgi]
paste.filter_factory = oslo_middleware.http_proxy_to_wsgi:HTTPProxyToWSGI.
—factory

[app:api]
paste.app_factory = manila.api.vl.router:APIRouter.factory

[app:apiv2]
paste.app_factory = manila.api.v2.router:APIRouter.factory

(continues on next page)

490 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

[pipeline:apiversions]
pipeline cors faultwrap http_proxy_to_wsgi osshareversionapp

[app:osshareversionapp]
paste.app_factory = manila.api.versions:VersionsRouter. factory

HERBHRBHHH
Shared
HHBHAH A

[filter:keystonecontext]
paste.filter_factory = manila.api.middleware.auth:ManilaKeystoneContext.
—factory

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_factory

[filter:cors]
paste.filter_factory = oslo_middleware.cors:filter_factory
oslo_config_project = manila

[app:healthcheck]

paste.app_factory oslo_middleware:Healthcheck.app_factory
backends = disable_by_file

disable_by_file_path /etc/manila/healthcheck_disable

rootwrap.conf

The rootwrap . conf file defines configuration values used by the rootwrap script when the Shared File
Systems service must escalate its privileges to those of the root user.

Configuration for manila-rootwrap
This file should be owned by (and only-writeable by) the root user

[DEFAULT]

List of directories to load filter definitions from (separated by ',").
These directories MUST all be only writeable by root !
filters_path=/etc/manila/rootwrap.d, /usr/share/manila/rootwrap

List of directories to search executables in, in case filters do not

explicitly specify a full path (separated by ',")

If not specified, defaults to system PATH environment variable.

These directories MUST all be only writeable by root !

exec_dirs=/sbin, /usr/sbin, /bin, /usr/bin, /usr/local/sbin, /usr/local/bin, /usr/
<lpp/mmfs/bin

Enable logging to syslog

(continues on next page)

3.3. Reference 491

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Policy configuration

Warning: JSON formatted policy file is deprecated since Manila 12.0.0 (Wallaby). This oslopolicy-
convert-json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML in a
backward-compatible way.

Configuration

See the online version of this documentation for the list of available policies in Manila.

Manila Sample Policy

Warning: JSON formatted policy file is deprecated since Manila 12.0.0 (Wallaby). This oslopolicy-
convert-json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML in a
backward-compatible way.

The following is a sample Manila policy file that has been auto-generated from default policy values in
code. If youre using the default policies, then the maintenance of this file is not necessary. It is here
to help explain which policy operations protect specific Manila API, but it is not suggested to copy and
paste into a deployment unless youre planning on providing a different policy for an operation that is not
the default. For instance, if you want to change the default value of share:create, you only need to keep
this single rule in your policy config file (/etc/manila/policy.yaml).

See the online version of this documentation for the sample file (manila.policy.yaml.sample).

The Shared File Systems service works with many different drivers that you can configure by using these
instructions.

492 Chapter 3. For operators

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Manila Developer Documentation, Release 15.4.2.dev5

3.3.2 Command Line Interface

Shared File Systems service (manila) command-line client

The manila client is the command-line interface (CLI) for the Shared File Systems service (manila) API

and its extensions.
This chapter documents manila version 1.16.0.

For help on a specific manila command, enter:

manila COMMAND

manila usage

Subcommands:

absolute-limits Print a list of absolute limits for a user.
access-allow Allow access to the share.

access-deny Deny access to a share.

access-list Show access list for share.

api-version Display the API version information.

availability-zone-list List all availability zones.

create Creates a new share (NFS, CIFS, CephFS, GlusterFS or HDFES).

credentials Show user credentials returned from auth.

delete Remove one or more shares.

3.3. Reference

493

Manila Developer Documentation, Release 15.4.2.dev5

endpoints Discover endpoints that get returned from the authenticate services.

extend Increases the size of an existing share.

extra-specs-list Print a list of current share types and extra specs (Admin Only).
force-delete Attempt force-delete of share, regardless of state (Admin only).

list List NAS shares with filters.

manage Manage share not handled by Manila (Admin only).

message-delete Remove one or more messages.

message-list Lists all messages.

message-show Show messages details.

metadata Set or delete metadata on a share.

metadata-show Show metadata of given share.

metadata-update-all Update all metadata of a share.

migration-cancel Cancels migration of a given share when copying (Admin only, Experimental).
migration-complete Completes migration for a given share (Admin only, Experimental).

migration-get-progress Gets migration progress of a given share when copying (Admin only, Ex-
perimental).

migration-start Migrates share to a new host (Admin only, Experimental).

pool-list List all backend storage pools known to the scheduler (Admin only).
quota-class-show List the quotas for a quota class.

quota-class-update Update the quotas for a quota class (Admin only).
quota-defaults List the default quotas for a tenant.

quota-delete Delete quota for a tenant/user. The quota will revert back to default (Admin only).
quota-show List the quotas for a tenant/user.

quota-update Update the quotas for a tenant/user (Admin only).

rate-limits Print a list of rate limits for a user.

reset-state Explicitly update the state of a share (Admin only).

reset-task-state Explicitly update the task state of a share (Admin only, Experimental).
revert-to-snapshot Revert a share to the specified snapshot.
security-service-create Create security service used by tenant.
security-service-delete Delete one or more security services.
security-service-list Get a list of security services.

security-service-show Show security service.

security-service-update Update security service.

service-disable Disables manila-share or manila-scheduler services (Admin only).

service-enable Enables manila-share or manila-scheduler services (Admin only).

494 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

service-list List all services (Admin only).

share-export-location-list List export locations of a given share.
share-export-location-show Show export location of the share.

share-group-create Creates a new share group (Experimental).

share-group-delete Remove one or more share groups (Experimental).

share-group-list List share groups with filters (Experimental).

share-group-reset-state Explicitly update the state of a share group (Admin only, Experimental).
share-group-show Show details about a share group (Experimental).
share-group-snapshot-create Creates a new share group snapshot (Experimental).
share-group-snapshot-delete Remove one or more share group snapshots (Experimental).
share-group-snapshot-list List share group snapshots with filters (Experimental).
share-group-snapshot-list-members List members of a share group snapshot (Experimental).

share-group-snapshot-reset-state Explicitly update the state of a share group snapshot (Admin
only, Experimental).

share-group-snapshot-show Show details about a share group snapshot (Experimental).
share-group-snapshot-update Update a share group snapshot (Experimental).
share-group-type-access-add Adds share group type access for the given project (Admin only).
share-group-type-access-1list Print access information about a share group type (Admin only).

share-group-type-access-remove Removes share group type access for the given project (Admin
only).

share-group-type-create Create a new share group type (Admin only).
share-group-type-delete Delete a specific share group type (Admin only).
share-group-type-key Set or unset group_spec for a share group type (Admin only).
share-group-type-1list Print a list of available share group types.
share-group-type-specs-1list Print a list of share group types specs (Admin Only).
share-group-update Update a share group (Experimental).
share-instance-export-location-list List export locations of a given share instance.
share-instance-export-location-show Show export location for the share instance.
share-instance-force-delete Force-delete the share instance, regardless of state (Admin only).
share-instance-list List share instances (Admin only).

share-instance-reset-state Explicitly update the state of a share instance (Admin only).
share-instance-show Show details about a share instance (Admin only).
share-network-create Create description for network used by the tenant.
share-network-delete Delete one or more share networks.

share-network-1list Get a list of network info.

3.3. Reference 495

Manila Developer Documentation, Release 15.4.2.dev5

share-network-security-service-add Associate security service with share network.

share-network-security-service-list Get list of security services associated with a given share
network.

share-network-security-service-remove Dissociate security service from share network.
share-network-show Get a description for network used by the tenant.
share-network-update Update share network data.

share-replica-create Create a share replica (Experimental).

share-replica-delete Remove one or more share replicas (Experimental).
share-replica-list List share replicas (Experimental).

share-replica-promote Promote specified replica to active replica_state (Experimental).

share-replica-reset-replica-state Explicitly update the replica_state of a share replica (Exper-
imental).

share-replica-reset-state Explicitly update the status of a share replica (Experimental).
share-replica-resync Attempt to update the share replica with its active mirror (Experimental).
share-replica-show Show details about a replica (Experimental).

share-server-delete Delete one or more share servers (Admin only).
share-server-details Show share server details (Admin only).

share-server-list List all share servers (Admin only).

share-server-show Show share server info (Admin only).

show Show details about a NAS share.

shrink Decreases the size of an existing share.

snapshot-access-allow Allow read only access to a snapshot.

snapshot-access-deny Deny access to a snapshot.

snapshot-access-1ist Show access list for a snapshot.

snapshot-create Add a new snapshot.

snapshot-delete Remove one or more snapshots.

snapshot-export-location-list List export locations of a given snapshot.
snapshot-export-location-show Show export location of the share snapshot.

snapshot-force-delete Attempt force-deletion of one or more snapshots. Regardless of the state
(Admin only).

snapshot-instance-export-location-list List export locations of a given snapshot instance.
snapshot-instance-export-location-show Show export location of the share instance snapshot.
snapshot-instance-list List share snapshot instances.

snapshot-instance-reset-state Explicitly update the state of a share snapshot instance.

snapshot-instance-show Show details about a share snapshot instance.

496 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

snapshot-1list List all the snapshots.

snapshot-manage Manage share snapshot not handled by Manila (Admin only).
snapshot-rename Rename a snapshot.

snapshot-reset-state Explicitly update the state of a snapshot (Admin only).
snapshot-show Show details about a snapshot.

snapshot-unmanage Unmanage one or more share snapshots (Admin only).
type-access-add Adds share type access for the given project (Admin only).
type-access-list Print access information about the given share type (Admin only).
type-access-remove Removes share type access for the given project (Admin only).
type-create Create a new share type (Admin only).

type-delete Delete one or more specific share types (Admin only).

type-key Set or unset extra_spec for a share type (Admin only).

type-1list Print a list of available share types.

unmanage Unmanage share (Admin only).

update Rename a share.

bash-completion Print arguments for bash_completion. Prints all of the commands and options to
stdout so that the manila.bash_completion script doesnt have to hard code them.

help Display help about this program or one of its subcommands.

list-extensions List all the os-api extensions that are available.

manila optional arguments

--version show programs version number and exit

-d, --debug Print debugging output.

--os-cache Use the auth token cache. Defaults to env[0S_CACHE].
--os-reset-cache Delete cached password and auth token.

--os-user-id <auth-user-id> Defaults to env [OS_USER_ID].
--os-username <auth-user-name> Defaults to env[0S_USERNAME].
--os-password <auth-password> Defaults to env[0S_PASSWORD].
--os-tenant-name <auth-tenant-name> Defaults to env[OS_TENANT_NAME].

--os-project-name <auth-project-name> Another way to specify tenant name. This option is
mutually exclusive with os-tenant-name. Defaults to env[0S_PROJECT_NAME].

--os-tenant-id <auth-tenant-id> Defaults to env[OS_TENANT_ID].

--os-project-id <auth-project-id> Another way to specify tenant ID. This option is mutually
exclusive with os-tenant-id. Defaults to env[0S_PROJECT_ID].

3.3. Reference 497

Manila Developer Documentation, Release 15.4.2.dev5

--os-user-domain-id <auth-user-domain-id> OpenStack user domain ID. Defaults to
env[OS_USER_DOMAIN_ID].

--os-user-domain-name <auth-user-domain-name> OpenStack user domain name. Defaults to
env[OS_USER_DOMAIN_NAME].

--os-project-domain-id <auth-project-domain-id> Defaults to
env[0S_PROJECT_DOMAIN_ID].

--os-project-domain-name <auth-project-domain-name> Defaults to
env[0OS_PROJECT_DOMAIN_NAME].

--os-auth-url <auth-url> Defaults to env[0OS_AUTH_URL].
--os-region-name <region-name> Defaults to env[0S_REGION_NAME].
--os-token <token> Defaults to env[0S_TOKEN].

--bypass-url <bypass-url> Use this API endpoint instead of the Service Catalog. Defaults to
env[OS_MANILA_BYPASS_URL].

--service-type <service-type> Defaults to compute for most actions.
--service-name <service-name> Defaults to env[0S_MANILA_SERVICE_NAME].
--share-service-name <share-service-name> Defaultsto env[0S_MANILA_SHARE_SERVICE_NAME].

--endpoint-type <endpoint-type> Defaults to env[OS_MANILA_ENDPOINT_TYPE] or publi-
cURL.

--os-share-api-version <share-api-ver> Accepts 1.x to override default to
env[OS_SHARE_API_VERSION].

--os-cacert <ca-certificate> Specify a CA bundle file to use in verifying a TLS (https) server
certificate. Defaults to env[0OS_CACERT].

--retries <retries> Number of retries.

--os-cert <certificate> Defaults to env[0S_CERT].

manila absolute-limits

Print a list of absolute limits for a user.

manila access-allow

Allow access to the share.
Positional arguments:
<share> Name or ID of the NAS share to modify.

<access_type> Access rule type (only ip, user(user or group), cert or cephx are supported).

498 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

<access_to> Value that defines access.
Optional arguments:

--access-level <access_level>, --access_level <access_level> Share access level (rw
and ro access levels are supported). Defaults to rw.

manila access-deny

Deny access to a share.
Positional arguments:
<share> Name or ID of the NAS share to modify.

<id> ID of the access rule to be deleted.

manila access-list

Show access list for share.
Positional arguments:

<share> Name or ID of the share.
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns ac-
cess_type,access_to.

manila api-version

Display the API version information.

manila availability-zone-list

List all availability zones.
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

3.3. Reference 499

Manila Developer Documentation, Release 15.4.2.dev5

manila create

Creates a new share (NFS, CIFS, CephFS, GlusterFS or HDFS).

Positional arguments:

<share_protocol> Share protocol (NFS, CIFS, CephFS, GlusterFS or HDFS).
<size> Share size in GiB.

Optional arguments:

--snapshot-id <snapshot-id>, --snapshot_id <snapshot-id> Optional snapshot ID to cre-
ate the share from. (Default=None)

--name <name> Optional share name. (Default=None)

--metadata [<key=value> [<key=value> ...]] Metadata key=value pairs (Optional, De-
fault=None).

--share-network <network-info>, --share_network <network-info> Optional = network
info ID or name.

--description <description> Optional share description. (Default=None)

--share-type <share-type>, --share_type <share-type>, --volume-type <share-type>, --volume_:
Optional share type. Use of optional volume type is deprecated. (Default=None)

--public Level of visibility for share. Defines whether other tenants are able to see it or not.

--availability-zone <availability-zone>, --availability_zone <availability-zone>, --az <ava:
Auvailability zone in which share should be created.

--share-group <share-group>, --share_group <share-group>, --group <share-group>
Optional share group name or ID in which to create the share (Experimental, Default=None).

manila credentials

Show user credentials returned from auth.

500 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila delete

Remove one or more shares.
Positional arguments:

<share> Name or ID of the share(s).
Optional arguments:

--share-group <share-group>, --share_group <share-group>, --group <share-group>
Optional share group name or ID which contains the share (Experimental, Default=None).

manila endpoints

Discover endpoints that get returned from the authenticate services.

manila extend

Increases the size of an existing share.
Positional arguments:

<share> Name or ID of share to extend.
<new_size> New size of share, in GiBs.
Optional arguments:

--wait Wait for share extension.

--force Extend share directly and not go through scheduler.

manila extra-specs-list

Print a list of current share types and extra specs (Admin Only).
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

3.3. Reference 501

Manila Developer Documentation, Release 15.4.2.dev5

manila force-delete

Attempt force-delete of share, regardless of state (Admin only).
Positional arguments:

<share> Name or ID of the share(s) to force delete.

manila list

List NAS shares with filters.

Optional arguments:

--all-tenants [<0|1>] Display information from all tenants (Admin only).
--name <name> Filter results by name.

--status <status> Filter results by status.

--share-server-id <share_server_id>, --share-server_id <share_server_id>, --share_server-id
Filter results by share server ID (Admin only).

--metadata [<key=value> [<key=value> ...]] Filters results by a metadata key and value. OP-
TIONAL: Default=None.

--extra-specs [<key=value> [<key=value> ...]], --extra_specs [<key=value> [<key=value> ...].

Filters results by an extra specs key and value of share type that was used for share creation.
OPTIONAL: Default=None.

--share-type <share_type>, --volume-type <share_type>, --share_type <share_type>, --share-t;
Filter results by a share type id or name that was used for share creation.

--1limit <limit> Maximum number of shares to return. OPTIONAL: Default=None.
--offset <offset> Set offset to define start point of share listing. OPTIONAL: Default=None.

--sort-key <sort_key>, --sort_key <sort_key> Key to be sorted, available keys are (id, sta-
tus, size, host, share_proto, availability_zone, user_id, project_id, created_at, updated_at, dis-
play_name, name, share_type_id, share_type, share_network_id, share_network, snapshot_id,
snapshot). OPTIONAL: Default=None.

--sort-dir <sort_dir>, --sort_dir <sort_dir> Sort direction, available values are (asc,
desc). OPTIONAL: Default=None.

502 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

--snapshot <snapshot> Filter results by snapshot name or id, that was used for share.
--host <host> Filter results by host.

--share-network <share_network>, --share_network <share_network> Filter results by
share-network name or id.

--project-id <project_id>, --project_id <project_id> Filter results by project id. Useful
with set key all-tenants.

--public Add public shares from all tenants to result.

--share-group <share_group>, --share_group <share_group>, --group <share_group>
Filter results by share group name or ID (Experimental, Default=None).

--columns <columns> Comma separated list of columns to be displayed example columns ex-
port_location,is public.

manila list-extensions

List all the os-api extensions that are available.

manila manage

Manage share not handled by Manila (Admin only).

Positional arguments:

<service_host> manage-share service host: some.host@driver#pool.
<protocol> Protocol of the share to manage, such as NFS or CIFS.

<export_path> Share export path, NFS share such as: 10.0.0.1:/example_path, CIFS share such as:
\10.0.0.1\example_cifs_share.

Optional arguments:
--name <name> Optional share name. (Default=None)
--description <description> Optional share description. (Default=None)

--share_type <share-type>, --share-type <share-type> Optional share type assigned to
share. (Default=None)

--driver_options [<key=value> [<key=value> ...]], --driver-options [<key=value> [<key=value:
Driver option key=value pairs (Optional, Default=None).

--public Level of visibility for share. Defines whether other tenants are able to see it or not. Available
only for microversion >= 2.8.

3.3. Reference 503

mailto:some.host@driver#pool

Manila Developer Documentation, Release 15.4.2.dev5

manila message-delete

Remove one or more messages.
Positional arguments:

<message> ID of the message(s).

manila message-list

Lists all messages.
Optional arguments:

--resource_id <resource_id>, --resource-id <resource_id>, --resource <resource_id>
Filters results by a resource uuid. (Default=None).

--resource_type <type>, --resource-type <type> Filters results by a resource type. (De-
fault=None). Example: manila message-list resource_type share

--action_id <id>, --action-id <id>, --action <id> Filters results by action id. (De-
fault=None).

--detail_id <id>, --detail-id <id>, --detail <id> Filters results by detail id. (De-
fault=None).

--request_id <request_id>, --request-id <request_id>, --request <request_id>
Filters results by request id. (Default=None).

--level <level>, --message_level <level>, --message-level <level> Filters results by
the message level. (Default=None). Example: manila message-list level ERROR.

--limit <1limit> Maximum number of messages to return. (Default=None)
--offset <offset> Start position of message listing.

--sort-key <sort_key>, --sort_key <sort_key> Key to be sorted, available keys are (id,
project_id, request_id, resource_type, action_id, detail_id, resource_id, message_level, expires_at,
request_id, created_at). (Default=desc).

--sort-dir <sort_dir>, --sort_dir <sort_dir> Sort direction, available values are (asc,
desc). OPTIONAL: Default=None.

--columns <columns> Comma separated list of columns to be displayed example columns re-
source_id, user_message.

504 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

--since <since> Return only user messages created since given date. The date format must be con-
forming to ISO8601. Available only for microversion >= 2.52.

--before <before> Return only user messages created before given date. The date format must be
conforming to ISO8601. Available only for microversion >=2.52.

manila message-show

Show details about a message.
Positional arguments:

<message> ID of the message.

manila metadata

Set or delete metadata on a share.

Positional arguments:

<share> Name or ID of the share to update metadata on.
<action> Actions: set or unset.

<key=value> Metadata to set or unset (key is only necessary on unset).

manila metadata-show

Show metadata of given share.
Positional arguments:

<share> Name or ID of the share.

manila metadata-update-all

Update all metadata of a share.
Positional arguments:
<share> Name or ID of the share to update metadata on.

<key=value> Metadata entry or entries to update.

3.3. Reference 505

Manila Developer Documentation, Release 15.4.2.dev5

manila migration-cancel

Cancels migration of a given share when copying (Admin only, Experimental).
Positional arguments:

<share> Name or ID of share to cancel migration.

manila migration-complete

Completes migration for a given share (Admin only, Experimental).
Positional arguments:

<share> Name or ID of share to complete migration.

manila migration-get-progress

Gets migration progress of a given share when copying (Admin only, Experimental).
Positional arguments:

<share> Name or ID of the share to get share migration progress information.

manila migration-start

Migrates share to a new host (Admin only, Experimental).
Positional arguments:
<share> Name or ID of share to migrate.

<host@backend#pool> Destination host where share will be migrated to. Use the format
host@backend#pool.

Optional arguments:

506 Chapter 3. For operators

mailto:'host@backend#pool

Manila Developer Documentation, Release 15.4.2.dev5

--force_host_assisted_migration <True|False>, --force-host-assisted-migration <True|False>
Enforces the use of the host-assisted migration approach, which bypasses driver optimizations.
Default=False.

--preserve-metadata <True|False>, --preserve_metadata <True|False> Enforces mi-
gration to preserve all file metadata when moving its contents. If set to True, host-assisted
migration will not be attempted.

--preserve-snapshots <True|False>, --preserve_snapshots <True|False> Enforces mi-
gration of the share snapshots to the destination. If set to True, host-assisted migration will not be
attempted.

--writable <True|False> Enforces migration to keep the share writable while contents are being
moved. If set to True, host-assisted migration will not be attempted.

--nondisruptive <True|False> Enforces migration to be nondisruptive. If set to True, host-
assisted migration will not be attempted.

--new_share_network <new_share_network>, --new-share-network <new_share_network>
Specify the new share network for the share. Do not specify this parameter if the migrating share
has to be retained within its current share network.

--new_share_type <new_share_type>, --new-share-type <new_share_type> Specify the
new share type for the share. Do not specify this parameter if the migrating share has to be
retained with its current share type.

manila pool-list

List all backend storage pools known to the scheduler (Admin only).

Optional arguments:

--host <host> Filter results by host name. Regular expressions are supported.

--backend <backend> Filter results by backend name. Regular expressions are supported.

--pool <pool> Filter results by pool name. Regular expressions are supported.

--columns <columns> Comma separated list of columns to be displayed example columns name,host.
--detail, --detailed Show detailed information about pools. (Default=False)

--share-type <share_type>, --share_type <share_type>, --share-type-id <share_type>, --share
Filter results by share type name or ID. (Default=None)Available only for microversion >= 2.23.

3.3. Reference 507

Manila Developer Documentation, Release 15.4.2.dev5

manila quota-class-show

List the quotas for a quota class.
Positional arguments:

<class> Name of quota class to list the quotas for.

manila quota-class-update

Update the quotas for a quota class (Admin only).

Positional arguments:

<class-name> Name of quota class to set the quotas for.
Optional arguments:

--shares <shares> New value for the shares quota.
--snapshots <snapshots> New value for the snapshots quota.
--gigabytes <gigabytes> New value for the gigabytes quota.

--snapshot-gigabytes <snapshot_gigabytes>, --snapshot_gigabytes <snapshot_gigabytes>
New value for the snapshot_gigabytes quota.

--share-networks <share-networks>, --share_networks <share-networks> New value
for the share_networks quota.

--share-groups <share-groups>, --share_groups <share-groups> New value for the
share_groups quota.

--share-group-snapshots <share-group-snapshots>, --share_group_snapshots <share-group-snapsl]
New value for the share_group_snapshots quota.

508 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila quota-defaults

List the default quotas for a tenant.
Optional arguments:

--tenant <tenant-id> ID of tenant to list the default quotas for.

manila quota-delete

Delete quota for a tenant/user. The quota will revert back to default (Admin only).
Optional arguments:

--tenant <tenant-id> ID of tenant to delete quota for.

--user <user-id> ID of user to delete quota for.

--share-type <share-type>, --share_type <share-type> UUID or name of a share type to

set the quotas for. Optional. Mutually exclusive with user-id. Available only for microversion >=
2.39

manila quota-show

List the quotas for a tenant/user.

Optional arguments:

--tenant <tenant-id> ID of tenant to list the quotas for.
--user <user-id> ID of user to list the quotas for.

--share-type <share-type>, --share_type <share-type> UUID or name of a share type to
set the quotas for. Optional. Mutually exclusive with user-id. Available only for microversion >=
2.39

--detail Optional flag to indicate whether to show quota in detail. Default false, available only for
microversion >= 2.25.

3.3. Reference 509

Manila Developer Documentation, Release 15.4.2.dev5

manila quota-update

Update the quotas for a tenant/user (Admin only).

Positional arguments:

<tenant_id> UUID of tenant to set the quotas for.

Optional arguments:

--user <user-id> ID of user to set the quotas for.

--shares <shares> New value for the shares quota.
--snapshots <snapshots> New value for the snapshots quota.
--gigabytes <gigabytes> New value for the gigabytes quota.

--snapshot-gigabytes <snapshot_gigabytes>, --snapshot_gigabytes <snapshot_gigabytes>
New value for the snapshot_gigabytes quota.

--share-networks <share-networks>, --share_networks <share-networks> New value
for the share_networks quota.

--share-groups <share-groups>, --share_groups <share-groups> New value for the
share_groups quota.

--share-group-snapshots <share-group-snapshots>, --share_group_snapshots <share-group-snapsl
New value for the share_group_snapshots quota.

--share-type <share-type>, --share_type <share-type> UUID or name of a share type to
set the quotas for. Optional. Mutually exclusive with user-id. Available only for microversion >=
2.39

--force Whether force update the quota even if the already used and reserved exceeds the new quota.

manila rate-limits

Print a list of rate limits for a user.
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns
verb,uri,value.

510 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila reset-state

Explicitly update the state of a share (Admin only).
Positional arguments:

<share> Name or ID of the share to modify.
Optional arguments:

--state <state> Indicate which state to assign the share. Options include available, error, creating,
deleting, error_deleting. If no state is provided, available will be used.

manila reset-task-state

Explicitly update the task state of a share (Admin only, Experimental).
Positional arguments:

<share> Name or ID of the share to modify.

Optional arguments:

--task-state <task_state>, --task_state <task_state>, --state <task_state>

Indicate which task state to assign the share. Options include migration_starting,
migration_in_progress, migration_completing, migration_success, migration_error,
migration_cancelled, migration_driver_in_progress, migration_driver_phasel_done,
data_copying_starting, data_copying_in_progress, data_copying_completing,

data_copying_completed, data_copying_cancelled, data_copying_error. If no value is pro-
vided, None will be used.

manila revert-to-snapshot

Revert a share to the specified snapshot.
Positional arguments:

<snapshot> Name or ID of the snapshot to restore. The snapshot must be the most recent one known
to manila.

3.3. Reference 511

Manila Developer Documentation, Release 15.4.2.dev5

manila security-service-create

Create security service used by tenant.

Positional arguments:

<type> Security service type: ldap, kerberos or active_directory.
Optional arguments:

--dns-ip <dns_ip> DNS IP address used inside tenants network.
--server <server> Security service IP address or hostname.
--domain <domain> Security service domain.

--user <user> Security service user or group used by tenant.
--password <password> Password used by user.

--hame <name> Security service name.

--description <description> Security service description.

manila security-service-delete

Delete one or more security services.
Positional arguments:

<security-service> Name or ID of the security service(s) to delete.

manila security-service-list

Get a list of security services.

Optional arguments:

512 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

--all-tenants [<0]|1>] Display information from all tenants (Admin only).

--share-network <share_network>, --share_network <share_network> Filter results by
share network id or name.

--status <status> Filter results by status.

--name <name> Filter results by name.

--type <type> Filter results by type.

--user <user> Filter results by user or group used by tenant.

--dns-ip <dns_ip>, --dns_ip <dns_ip> Filter results by DNS IP address used inside tenants net-
work.

--server <server> Filter results by security service IP address or hostname.
--domain <domain> Filter results by domain.

--detailed [<®|1>] Show detailed information about filtered security services.
--offset <offset> Start position of security services listing.

--limit <1limit> Number of security services to return per request.

--columns <columns> Comma separated list of columns to be displayed example columns name,type.

manila security-service-show

Show security service.
Positional arguments:

<security-service> Security service name or ID to show.

manila security-service-update

Update security service.

Positional arguments:

<security-service> Security service name or ID to update.
Optional arguments:

--dns-ip <dns-ip> DNS IP address used inside tenants network.
--server <server> Security service IP address or hostname.

--domain <domain> Security service domain.

3.3. Reference 513

Manila Developer Documentation, Release 15.4.2.dev5

--user <user> Security service user or group used by tenant.
--password <password> Password used by user.
--hame <name> Security service name.

--description <description> Security service description.

manila service-disable

Disables manila-share or manila-scheduler services (Admin only).
Positional arguments:
<hostname> Host name as example_host@example_backend.

<binary> Service binary, could be manila-share or manila-scheduler.

manila service-enable

Enables manila-share or manila-scheduler services (Admin only).
Positional arguments:
<hostname> Host name as example_host@example_backend.

<binary> Service binary, could be manila-share or manila-scheduler.

manila service-list

List all services (Admin only).

Optional arguments:

--host <hostname> Name of host.
--binary <binary> Service binary.
--status <status> Filter results by status.
--state <state> Filter results by state.
--zone <zone> Availability zone.

--columns <columns> Comma separated list of columns to be displayed example columns id,host.

514 Chapter 3. For operators

mailto:'example_host@example_backend
mailto:'example_host@example_backend

Manila Developer Documentation, Release 15.4.2.dev5

manila share-export-location-list

List export locations of a given share.
Positional arguments:

<share> Name or ID of the share.
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns
id,host,status.

manila share-export-location-show

Show export location of the share.
Positional arguments:
<share> Name or ID of the share.

<export_location> ID of the share export location.

manila share-group-create

Creates a new share group (Experimental).

Optional arguments:

--name <name> Optional share group name. (Default=None)

--description <description> Optional share group description. (Default=None)

--share-types <share_types>, --share_types <share_types> Comma-separated list of
share types. (Default=None)

--share-group-type <share_group_type>, --share_group_type <share_group_type>, --type <share.
Share group type name or ID of the share group to be created. (Default=None)

--share-network <share_network>, --share_network <share_network> Specify share net-
work name or id.

3.3. Reference 515

Manila Developer Documentation, Release 15.4.2.dev5

--source-share-group-snapshot <source_share_group_snapshot>, --source_share_group_snapshot -
Optional share group snapshot name or ID to create the share group from. (Default=None)

--availability-zone <availability-zone>, --availability_zone <availability-zone>, --az <ava:
Optional availability zone in which group should be created. (Default=None)

manila share-group-delete

Remove one or more share groups (Experimental).
Positional arguments:

<share_group> Name or ID of the share_group(s).
Optional arguments:

--force Attempt to force delete the share group (Default=False) (Admin only).

manila share-group-list

List share groups with filters (Experimental).

Optional arguments:

--all-tenants [<0]|1>] Display information from all tenants (Admin only).
--name <name> Filter results by name.

--status <status> Filter results by status.

--share-server-id <share_server_id>, --share-server_id <share_server_id>, --share_server-id
Filter results by share server ID (Admin only).

--share-group-type <share_group_type>, --share-group-type-id <share_group_type>, --share_gra
Filter results by a share group type ID or name that was used for share group creation.

--snapshot <snapshot> Filter results by share group snapshot name or ID that was used to create
the share group.

--host <host> Filter results by host.

--share-network <share_network>, --share_network <share_network> Filter results by
share-network name or ID.

516 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

--project-id <project_id>, --project_id <project_id> Filter results by project ID. Useful
with set key all-tenants.

--limit <limit> Maximum number of share groups to return. (Default=None)
--offset <offset> Start position of share group listing.

--sort-key <sort_key>, --sort_key <sort_key> Key tobe sorted, available keys are (id, name,
status, host, user_id, project_id, created_at, availability_zone, share_network, share_network_id,
share_group_type, share_group_type_id, source_share_group_snapshot_id). Default=None.

--sort-dir <sort_dir>, --sort_dir <sort_dir> Sort direction, available values are (asc,
desc). OPTIONAL: Default=None.

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

manila share-group-reset-state

Explicitly update the state of a share group (Admin only, Experimental).
Positional arguments:

<share_group> Name or ID of the share group to modify.

Optional arguments:

--state <state> Indicate which state to assign the share group. Options include available, error,
creating, deleting, error_deleting. If no state is provided, available will be used.

manila share-group-show

Show details about a share group (Experimental).
Positional arguments:

<share_group> Name or ID of the share group.

manila share-group-snapshot-create

Creates a new share group snapshot (Experimental).
Positional arguments:
<share_group> Name or ID of the share group.

Optional arguments:

3.3. Reference 517

Manila Developer Documentation, Release 15.4.2.dev5

--name <name> Optional share group snapshot name. (Default=None)

--description <description> Optional share group snapshot description. (Default=None)

manila share-group-snapshot-delete

Remove one or more share group snapshots (Experimental).

Positional arguments:

<share_group_snapshot> Name or ID of the share group snapshot(s) to delete.
Optional arguments:

--force Attempt to force delete the share group snapshot(s) (Default=False) (Admin only).

manila share-group-snapshot-list

List share group snapshots with filters (Experimental).

Optional arguments:

--all-tenants [<0]|1>] Display information from all tenants (Admin only).
--name <name> Filter results by name.

--status <status> Filter results by status.

--share-group-id <share_group_id>, --share_group_id <share_group_id> Filter results
by share group ID.

--limit <limit> Maximum number of share group snapshots to return. (Default=None)
--offset <offset> Start position of share group snapshot listing.

--sort-key <sort_key>, --sort_key <sort_key> Key tobe sorted, available keys are (id, name,
status, host, user_id, project_id, created_at, share_group_id). Default=None.

--sort-dir <sort_dir>, --sort_dir <sort_dir> Sort direction, available values are (asc,
desc). OPTIONAL: Default=None.

--detailed DETAILED Show detailed information about share group snapshots.

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

518 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila share-group-snapshot-list-members

List members of a share group snapshot (Experimental).

Positional arguments:

<share_group_snapshot> Name or ID of the share group snapshot.
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

manila share-group-snapshot-reset-state

Explicitly update the state of a share group snapshot (Admin only, Experimental).
Positional arguments:

<share_group_snapshot> Name or ID of the share group snapshot.

Optional arguments:

--state <state> Indicate which state to assign the share group snapshot. Options include available,
error, creating, deleting, error_deleting. If no state is provided, available will be used.

manila share-group-snapshot-show

Show details about a share group snapshot (Experimental).
Positional arguments:

<share_group_snapshot> Name or ID of the share group snapshot.

manila share-group-snapshot-update

Update a share group snapshot (Experimental).
Positional arguments:
<share_group_snapshot> Name or ID of the share group snapshot to update.

Optional arguments:

3.3. Reference 519

Manila Developer Documentation, Release 15.4.2.dev5

--name <name> Optional new name for the share group snapshot. (Default=None)

--description <description> Optional share group snapshot description. (Default=None)

manila share-group-type-access-add

Adds share group type access for the given project (Admin only).
Positional arguments:
<share_group_type> Share group type name or ID to add access for the given project.

<project_id> Project ID to add share group type access for.

manila share-group-type-access-list

Print access information about a share group type (Admin only).
Positional arguments:

<share_group_type> Filter results by share group type name or ID.

manila share-group-type-access-remove

Removes share group type access for the given project (Admin only).
Positional arguments:
<share_group_type> Share group type name or ID to remove access for the given project.

<project_id> Project ID to remove share group type access for.

manila share-group-type-create

Create a new share group type (Admin only).

Positional arguments:

<name> Name of the new share group type.

<share_types> Comma-separated list of share type names or IDs.

Optional arguments:

520 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

--is_public <is_public>, --is-public <is_public> Make type accessible to the public (de-
fault true).

manila share-group-type-delete

Delete a specific share group type (Admin only).
Positional arguments:

<id> Name or ID of the share group type to delete.

manila share-group-type-key

Set or unset group_spec for a share group type (Admin only).
Positional arguments:

<share_group_type> Name or ID of the share group type.
<action> Actions: set or unset.

<key=value> Group specs to set or unset (key is only necessary on unset).

manila share-group-type-list

Print a list of available share group types.
Optional arguments:
--all Display all share group types (Admin only).

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

manila share-group-type-specs-list

Print a list of share group types specs (Admin Only).
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

3.3. Reference 521

Manila Developer Documentation, Release 15.4.2.dev5

manila share-group-update

Update a share group (Experimental).

Positional arguments:

<share_group> Name or ID of the share group to update.

Optional arguments:

--name <name> Optional new name for the share group. (Default=None)

--description <description> Optional share group description. (Default=None)

manila share-instance-export-location-list

List export locations of a given share instance.
Positional arguments:

<instance> Name or ID of the share instance.
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns
id,host,status.

manila share-instance-export-location-show

Show export location for the share instance.
Positional arguments:
<instance> Name or ID of the share instance.

<export_location> ID of the share instance export location.

522 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila share-instance-force-delete

Force-delete the share instance, regardless of state (Admin only).
Positional arguments:

<instance> Name or ID of the instance(s) to force delete.

manila share-instance-list

List share instances (Admin only).
Optional arguments:
--share-id <share_id>, --share_id <share_id> Filter results by share ID.

--columns <columns> Comma separated list of columns to be displayed example columns
id,host,status.

manila share-instance-reset-state

Explicitly update the state of a share instance (Admin only).
Positional arguments:

<instance> Name or ID of the share instance to modify.
Optional arguments:

--state <state> Indicate which state to assign the instance. Options include available, error, cre-
ating, deleting, error_deleting, migrating,migrating_to. If no state is provided, available will be
used.

manila share-instance-show

Show details about a share instance (Admin only).
Positional arguments:

<instance> Name or ID of the share instance.

3.3. Reference 523

Manila Developer Documentation, Release 15.4.2.dev5

manila share-network-create

Create description for network used by the tenant.
Optional arguments:

--neutron-net-id <neutron-net-id>, --neutron-net_id <neutron-net-id>, --neutron_net_id <neu
Neutron network ID. Used to set up network for share servers.

--neutron-subnet-id <neutron-subnet-id>, --neutron-subnet_id <neutron-subnet-id>, --neutron,
Neutron subnet ID. Used to set up network for share servers. This subnet should belong to specified
neutron network.

--name <name> Share network name.

--description <description> Share network description.

manila share-network-delete

Delete one or more share networks.
Positional arguments:

<share-network> Name or ID of share network(s) to be deleted.

manila share-network-list

Get a list of network info.
Optional arguments:

--all-tenants [<0]|1>] Display information from all tenants (Admin only).

524 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

--project-id <project_id>, --project_id <project_id> Filter results by project ID.
--name <name> Filter results by name.

--created-since <created_since>, --created_since <created_since> Return only share
networks created since given date. The date is in the format yyyy-mm-dd.

--created-before <created_before>, --created_before <created_before> Return only
share networks created until given date. The date is in the format yyyy-mm-dd.

--security-service <security_service>, --security_service <security_service>
Filter results by attached security service.

--neutron-net-id <neutron_net_id>, --neutron_net_id <neutron_net_id>, --neutron_net-id <neu:
Filter results by neutron net ID.

--neutron-subnet-id <neutron_subnet_id>, --neutron_subnet_id <neutron_subnet_id>, --neutron-
Filter results by neutron subnet ID.

--network-type <network_type>, --network_type <network_type> Filter results by net-
work type.

--segmentation-id <segmentation_id>, --segmentation_id <segmentation_id> Filter
results by segmentation ID.

--cidr <cidr> Filter results by CIDR.

--ip-version <ip_version>, --ip_version <ip_version> Filter results by IP version.
--offset <offset> Start position of share networks listing.

--limit <1limit> Number of share networks to return per request.

--columns <columns> Comma separated list of columns to be displayed example columns id.

manila share-network-security-service-add

Associate security service with share network.
Positional arguments:
<share-network> Share network name or ID.

<security-service> Security service name or ID to associate with.

manila share-network-security-service-list

Get list of security services associated with a given share network.
Positional arguments:

<share-network> Share network name or ID.

3.3. Reference 525

Manila Developer Documentation, Release 15.4.2.dev5

Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

manila share-network-security-service-remove

Dissociate security service from share network.
Positional arguments:
<share-network> Share network name or ID.

<security-service> Security service name or ID to dissociate.

manila share-network-show

Get a description for network used by the tenant.
Positional arguments:

<share-network> Name or ID of the share network to show.

manila share-network-update

Update share network data.

Positional arguments:

<share-network> Name or ID of share network to update.
Optional arguments:

--neutron-net-id <neutron-net-id>, --neutron-net_id <neutron-net-id>, --neutron_net_id <neu
Neutron network ID. Used to set up network for share servers. This option is deprecated and will
be rejected in newer releases of OpenStack Manila.

--neutron-subnet-id <neutron-subnet-id>, --neutron-subnet_id <neutron-subnet-id>, --neutron,
Neutron subnet ID. Used to set up network for share servers. This subnet should belong to specified
neutron network.

--name <name> Share network name.

--description <description> Share network description.

526 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila share-replica-create

Create a share replica (Experimental).
Positional arguments:

<share> Name or ID of the share to replicate.
Optional arguments:

--availability-zone <availability-zone>, --availability_zone <availability-zone>, --az <ava:
Optional Availability zone in which replica should be created.

--share-network <network-info>, --share_network <network-info> Optional network
info ID or name.

manila share-replica-delete

Remove one or more share replicas (Experimental).
Positional arguments:

<replica> ID of the share replica.

Optional arguments:

--force Attempt to force deletion of a replica on its backend. Using this option will purge the replica
from Manila even if it is not cleaned up on the backend. Defaults to False.

manila share-replica-list

List share replicas (Experimental).
Optional arguments:

--share-id <share_id>, --share_id <share_id>, --si <share_id> List replicas belong-
ing to share.

--columns <columns> Comma separated list of columns to be displayed example columns
replica_state,id.

3.3. Reference 527

Manila Developer Documentation, Release 15.4.2.dev5

manila share-replica-promote

Promote specified replica to active replica_state (Experimental).
Positional arguments:

<replica> ID of the share replica.

manila share-replica-reset-replica-state

Explicitly update the replica_state of a share replica (Experimental).
Positional arguments:

<replica> ID of the share replica to modity.

Optional arguments:

--replica-state <replica_state>, --replica_state <replica_state>, --state <replica_state>
Indicate which replica_state to assign the replica. Options include in_sync, out_of_sync, active,
error. If no state is provided, out_of_sync will be used.

manila share-replica-reset-state

Explicitly update the status of a share replica (Experimental).
Positional arguments:

<replica> ID of the share replica to modify.

Optional arguments:

--state <state> Indicate which state to assign the replica. Options include available, error, creating,
deleting, error_deleting. If no state is provided, available will be used.

528 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila share-replica-resync

Attempt to update the share replica with its active mirror (Experimental).

Positional arguments:

<replica> ID of the share replica to resync.

manila share-replica-show

Show details about a replica (Experimental).
Positional arguments:

<replica> ID of the share replica.

manila share-server-delete

Delete one or more share servers (Admin only).
Positional arguments:

<id> ID of the share server(s) to delete.

manila share-server-details

Show share server details (Admin only).
Positional arguments:

<id> ID of share server.

manila share-server-list

List all share servers (Admin only).

Optional arguments:

3.3. Reference

529

Manila Developer Documentation, Release 15.4.2.dev5

--host <hostname> Filter results by name of host.

--status <status> Filter results by status.

--share-network <share_network> Filter results by share network.
--project-id <project_id> Filter results by project ID.

--columns <columns> Comma separated list of columns to be displayed example columns
id,host,status.

manila share-server-show

Show share server info (Admin only).
Positional arguments:

<id> ID of share server.

manila show

Show details about a NAS share.
Positional arguments:

<share> Name or ID of the NAS share.

manila shrink

Decreases the size of an existing share.
Positional arguments:
<share> Name or ID of share to shrink.

<new_size> New size of share, in GiBs.

manila shapshot-access-allow

Allow read only access to a snapshot.
Positional arguments:
<snapshot> Name or ID of the share snapshot to allow access to.

<access_type> Access rule type (only ip, user(user or group), cert or cephx are supported).

530 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

<access_to> Value that defines access.

manila shapshot-access-deny

Deny access to a snapshot.
Positional arguments:
<snapshot> Name or ID of the share snapshot to deny access to.

<id> ID(s) of the access rule(s) to be deleted.

manila shapshot-access-list

Show access list for a snapshot.

Positional arguments:

<snapshot> Name or ID of the share snapshot to list access of.
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns ac-
cess_type,access_to.

manila shapshot-create

Add a new snapshot.

Positional arguments:

<share> Name or ID of the share to snapshot.
Optional arguments:

--force <True|False> Optional flag to indicate whether to snapshot a share even if its busy. (De-
fault=False)

--name <name> Optional snapshot name. (Default=None)

--description <description> Optional snapshot description. (Default=None)

3.3. Reference 531

Manila Developer Documentation, Release 15.4.2.dev5

manila shapshot-delete

Remove one or more snapshots.
Positional arguments:

<snapshot> Name or ID of the snapshot(s) to delete.

manila shapshot-export-location-list

List export locations of a given snapshot.
Positional arguments:
<snapshot> Name or ID of the snapshot.

Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns id,path.

manila shapshot-export-location-show

Show export location of the share snapshot.
Positional arguments:
<snapshot> Name or ID of the snapshot.

<export_location> ID of the share snapshot export location.

manila shapshot-force-delete

Attempt force-deletion of one or more snapshots. Regardless of the state (Admin only).

Positional arguments:

<snapshot> Name or ID of the snapshot(s) to force delete.

532

Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila shapshot-instance-export-location-list

List export locations of a given snapshot instance.
Positional arguments:

<instance> Name or ID of the snapshot instance.
Optional arguments:

--columns <columns> Comma separated list of columns to be displayed example columns
id,path,is_admin_only.

manila shapshot-instance-export-location-show

Show export location of the share instance snapshot.
Positional arguments:
<snapshot_instance> ID of the share snapshot instance.

<export_location> ID of the share snapshot instance export location.

manila shapshot-instance-list

List share snapshot instances.

Optional arguments:

--snapshot <snapshot> Filter results by share snapshot ID.

--columns <columns> Comma separated list of columns to be displayed example columns id.

--detailed <detailed> Show detailed information about snapshot instances. (Default=False)

3.3. Reference 533

Manila Developer Documentation, Release 15.4.2.dev5

manila shapshot-instance-reset-state

Explicitly update the state of a share snapshot instance.
Positional arguments:

<snapshot_instance> ID of the snapshot instance to modify.
Optional arguments:

--state <state> Indicate which state to assign the snapshot instance. Options include available, er-
ror, creating, deleting, error_deleting. If no state is provided, available will be used.

manila shapshot-instance-show

Show details about a share snapshot instance.
Positional arguments:

<snapshot_instance> ID of the share snapshot instance.

manila shapshot-list

List all the snapshots.

Optional arguments:

--all-tenants [<0|1>] Display information from all tenants (Admin only).

--name <name> Filter results by name.

--status <status> Filter results by status.

--share-id <share_id>, --share_id <share_id> Filter results by source share ID.

--usage [any|used|unused] Either filter or not snapshots by its usage. OPTIONAL: Default=any.
--limit <1limit> Maximum number of share snapshots to return. OPTIONAL: Default=None.

--offset <offset> Set offset to define start point of share snapshots listing. OPTIONAL: De-
fault=None.

--sort-key <sort_key>, --sort_key <sort_key> Key to be sorted, available keys are (id, sta-
tus, size, share_id, user_id, project_id, progress, name, display_name). Default=None.

534 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

--sort-dir <sort_dir>, --sort_dir <sort_dir> Sort direction, available values are (asc,
desc). OPTIONAL: Default=None.

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

manila shapshot-manage

Manage share snapshot not handled by Manila (Admin only).

Positional arguments:

<share> Name or ID of the share.

<provider_location> Provider location of the snapshot on the backend.
Optional arguments:

--name <name> Optional snapshot name (Default=None).

--description <description> Optional snapshot description (Default=None).

--driver_options [<key=value> [<key=value> ...]], --driver-options [<key=value> [<key=value
Optional driver options as key=value pairs (Default=None).

manila shapshot-rename

Rename a snapshot.

Positional arguments:

<snapshot> Name or ID of the snapshot to rename.
<name> New name for the snapshot.

Optional arguments:

--description <description> Optional snapshot description. (Default=None)

3.3. Reference 535

Manila Developer Documentation, Release 15.4.2.dev5

manila snapshot-reset-state

Explicitly update the state of a snapshot (Admin only).
Positional arguments:

<snapshot> Name or ID of the snapshot to modify.
Optional arguments:

--state <state> Indicate which state to assign the snapshot. Options include available, error, creat-
ing, deleting, error_deleting. If no state is provided, available will be used.

manila shapshot-show

Show details about a snapshot.
Positional arguments:

<snapshot> Name or ID of the snapshot.

manila shapshot-unmanage

Unmanage one or more share snapshots (Admin only).
Positional arguments:

<snapshot> Name or ID of the snapshot(s).

manila type-access-add

Adds share type access for the given project (Admin only).
Positional arguments:
<share_type> Share type name or ID to add access for the given project.

<project_id> Project ID to add share type access for.

536 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila type-access-list

Print access information about the given share type (Admin only).
Positional arguments:

<share_type> Filter results by share type name or ID.

manila type-access-remove

Removes share type access for the given project (Admin only).
Positional arguments:
<share_type> Share type name or ID to remove access for the given project.

<project_id> Project ID to remove share type access for.

manila type-create

Create a new share type (Admin only).
Positional arguments:
<name> Name of the new share type.

<spec_driver_handles_share_servers> Required extra specification. Valid values are true/1 and
false/0.

Optional arguments:

--snapshot_support <snapshot_support>, --snapshot-support <snapshot_support>
Boolean extra spec used for filtering of back ends by their capability to create share snapshots.

--create_share_from_snapshot_support <create_share_from_snapshot_support>, --create-share-fi
Boolean extra spec used for filtering of back ends by their capability to create shares from snap-
shots.

--revert_to_snapshot_support <revert_to_snapshot_support>, --revert-to-snapshot-support <re
Boolean extra spec used for filtering of back ends by their capability to revert shares to snapshots.
(Default is False).

3.3. Reference 537

Manila Developer Documentation, Release 15.4.2.dev5

--mount_snapshot_support <mount_snapshot_support>, --mount-snapshot-support <mount_snapshot.
Boolean extra spec used for filtering of back ends by their capability to mount share snapshots.
(Default is False).

--extra-specs [<key=value> [<key=value> ...]], --extra_specs [<key=value> [<key=value> ...].
Extra specs key and value of share type that will be used for share type creation. OPTIONAL.:
Default=None. example extra-specs thin_provisioning=<is> True, replication_type=readable.

--is_public <is_public>, --is-public <is_public> Make type accessible to the public (de-
fault true).

manila type-delete

Delete one or more specific share types (Admin only).
Positional arguments:

<id> Name or ID of the share type(s) to delete.

manila type-key

Set or unset extra_spec for a share type (Admin only).
Positional arguments:

<stype> Name or ID of the share type.

<action> Actions: set or unset.

<key=value> Extra_specs to set or unset (key is only necessary on unset).

manila type-list

Print a list of available share types.
Optional arguments:
--all Display all share types (Admin only).

--columns <columns> Comma separated list of columns to be displayed example columns id,name.

538 Chapter 3. For operators

Manila Developer Documentation, Release 15.4.2.dev5

manila unmanage

Unmanage share (Admin only).
Positional arguments:

<share> Name or ID of the share(s).

manila update

Rename a share.

Positional arguments:

<share> Name or ID of the share to rename.

Optional arguments:

--name <name> New name for the share.

--description <description> Optional share description. (Default=None)

--is-public <is_public>, --is_public <is_public> Public share is visible for all tenants.

manila-manage

control and manage shared filesystems

Author openstack @lists.Jaunchpad.net
Date 2014-06-11

Copyright OpenStack LLC

Version 2014.2

Manual section 1

Manual group shared filesystems

3.3. Reference 539

mailto:openstack@lists.launchpad.net

Manila Developer Documentation, Release 15.4.2.dev5

SYNOPSIS

manila-manage <category> <action> [<args>]

DESCRIPTION

manila-manage controls shared filesystems service. More information about OpenStack Manila is at
https://wiki.openstack.org/wiki/Manila

OPTIONS

The standard pattern for executing a manila-manage command is: manila-manage <category>
<command> [<args>]

For example, to obtain a list of all hosts: manila-manage host list
Run without arguments to see a list of available command categories: manila-manage
Categories are shell, logs, service, db, host, version and config. Detailed descriptions are below.

These sections describe the available categories and arguments for manila-manage.

Manila Db

manila-manage db version
Print the current database version.
manila-manage db sync

Sync the database up to the most recent version. This is the standard way to create the db as
well.

manila-manage db downgrade <version>
Downgrade database to given version.

manila-manage db stamp <version>
Stamp database with given version.

manila-manage db revision <message> <autogenerate>
Generate new migration.

manila-manage db purge <age_in_days>

Purge deleted rows older than a given age from manila database tables. If age_in_days is not
given or is specified as 0 all available rows will be deleted.

540 Chapter 3. For operators

https://wiki.openstack.org/wiki/Manila

Manila Developer Documentation, Release 15.4.2.dev5

Manila Logs

manila-manage logs errors
Displays manila errors from log files.
manila-manage logs syslog <number>

Displays manila alerts from syslog.

Manila Shell

manila-manage shell bpython
Starts a new bpython shell.
manila-manage shell ipython
Starts a new ipython shell.
manila-manage shell python
Starts a new python shell.
manila-manage shell run
Starts a new shell using python.
manila-manage shell script <path/scriptname>

Runs the named script from the specified path with flags set.

Manila Host

manila-manage host list

Returns list of running manila hosts.

Manila Config

manila-manage config list

Returns list of currently set config options and its values.

Manila Service

manila-manage service list

Returns list of manila services.

3.3. Reference 541

Manila Developer Documentation, Release 15.4.2.dev5

Manila Version

manila-manage version list

Returns list of versions.

FILES

The manila-manage.conf file contains configuration information in the form of python-gflags.

BUGS

* Manila is sourced in Launchpad so you can view current bugs at OpenStack Manila

manila-status

Synopsis

Description

manila-status is a tool that provides routines for checking the status of a Manila deployment.

Options

The standard pattern for executing a manila-status command is:

Run without arguments to see a list of available command categories:

Categories are:
* upgrade
Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

These sections describe the available categories and arguments for manila-status.

542 Chapter 3. For operators

https://bugs.launchpad.net/manila

Manila Developer Documentation, Release 15.4.2.dev5

Upgrade

manila-status upgrade check Performs a release-specific readiness check before restarting ser-
vices with new code. This command expects to have complete configuration and access to

databases and services.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.
This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This
should be considered something that stops an upgrade.
255 An unexpected error occurred.
History of Checks
8.0.0 (Stein)

* Placeholder to be filled in with checks as they are added in Stein.

3.4 Additional resources

e Manila release notes

3.4. Additional resources 543

https://docs.openstack.org/releasenotes/manila/

Manila Developer Documentation, Release 15.4.2.dev5

544 Chapter 3. For operators

CHAPTER
FOUR

FOR CONTRIBUTORS

If you are a new contributor start here.

4.1 Contributor/Developer Guide

In this section you will find information helpful for contributing to manila.

4.1.1 Basic Information
So You Want to Contribute

For general information on contributing to OpenStack, check out the contributor guide to get started. It
covers all the basics that are common to all OpenStack projects: the accounts you need, the basics of
interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Manila (Shared File
System service).

Where is the code?

manila

The OpenStack Shared File System Service

code: https://opendev.org/openstack/manila

docs: https://docs.openstack.org/manila/

api-ref: https://docs.openstack.org/api-ref/shared-file-system

release model: https://releases.openstack.org/reference/release_models.html#cycle-with-rc
Launchpad: https://launchpad.net/manila

python-manilaclient

Python client library for the OpenStack Shared File System Service API; includes standalone CLI
shells and OpenStack client plugin and shell

code: https://opendev.org/openstack/python-manilaclient
docs: https://docs.openstack.org/python-manilaclient

release model:
https://releases.openstack.org/reference/release_models.html#cycle-with-intermediary

Launchpad: https://launchpad.net/python-manilaclient

545

https://docs.openstack.org/contributors/
https://opendev.org/openstack/manila
https://docs.openstack.org/manila/
https://docs.openstack.org/api-ref/shared-file-system
https://releases.openstack.org/reference/release_models.html#cycle-with-rc
https://launchpad.net/manila
https://opendev.org/openstack/python-manilaclient
https://docs.openstack.org/python-manilaclient
https://releases.openstack.org/reference/release_models.html#cycle-with-intermediary
https://launchpad.net/python-manilaclient

Manila Developer Documentation, Release 15.4.2.dev5

manila-ui

OpenStack dashboard plugin for the Shared File System Service
code: https://opendev.org/openstack/manila-ui
docs: https://docs.openstack.org/manila-ui

release model:
https://releases.openstack.org/reference/release_models.html#cycle-with-intermediary

Launchpad: https://launchpad.net/manila-ui

manila-tempest-plugin

An OpenStack test integration (tempest) plugin containing API and scenario tests for the Shared
File System Service

code: https://opendev.org/openstack/manila-tempest-plugin
release model: https://releases.openstack.org/reference/release_models.html#cycle-automatic
Launchpad: https://launchpad.net/manila

manila-image-elements

A Disk Image Builder project with scripts to build a bootable Linux image for testing and use by
some Shared File System Service storage drivers including the Generic Driver

code: https://opendev.org/openstack/manila-tempest-plugin
release model: no releases

Launchpad: https://launchpad.net/manila

manila-test-image

A project with scripts to create a Buildroot based image to create a small bootable Linux image,
primarily for the purposes of testing Manila

code: https://opendev.org/openstack/manila-image-elements

images: https://tarballs.opendev.org/openstack/manila-image-elements/
release model: no releases

Launchpad: https://launchpad.net/manila-image-elements

manila-specs

Design Specifications for the Shared File System service

code: https://opendev.org/openstack/manila-specs

published specs: https://specs.openstack.org/openstack/manila-specs/
release model: no releases

Launchpad: https://launchpad.net/manila

See the CONTRIBUTING. rst file in each code repository for more information about contributing to that
specific deliverable. Additionally, you should look over the docs links above; most components have
helpful developer information specific to that deliverable.

Manila and its associated projects follow a coordinated release alongside other OpenStack projects. De-
velopment cycles are code named. See the OpenStack Releases website for names and schedules of the
current, past and future development cycles.

546

Chapter 4. For contributors

https://opendev.org/openstack/manila-ui
https://docs.openstack.org/manila-ui
https://releases.openstack.org/reference/release_models.html#cycle-with-intermediary
https://launchpad.net/manila-ui
https://opendev.org/openstack/manila-tempest-plugin
https://releases.openstack.org/reference/release_models.html#cycle-automatic
https://launchpad.net/manila
https://opendev.org/openstack/manila-tempest-plugin
https://launchpad.net/manila
https://opendev.org/openstack/manila-image-elements
https://tarballs.opendev.org/openstack/manila-image-elements/
https://launchpad.net/manila-image-elements
https://opendev.org/openstack/manila-specs
https://specs.openstack.org/openstack/manila-specs/
https://launchpad.net/manila
<https://releases.openstack.org>

Manila Developer Documentation, Release 15.4.2.dev5

Communication
IRC

The team uses IRC extensively for communication and coordination of project activities. The IRC chan-
nel is #openstack-manila on OFTC. Contributors work in various timezones across the world; so many
of them run IRC Bouncers and appear to be always online. If you ping someone, or raise a question on
the IRC channel, someone will get back to you when they are back on their computer. Additionally, the
IRC channel is logged, so if you ask a question when no one is around, you can check the log to see if it
has been answered.

Team Meetings

We host a one-hour IRC based community meeting every Thursday at 1500 UTC on
#openstack-meeting-alt channel. See the OpenStack meetings page for the most up-to-date
meeting information and for downloading the ICS file to integrate this slot with your calendar. The
community meeting is a good opportunity to gather the attention of multiple contributors synchronously.
If you wish to do so, add a meeting topic along with your IRC nick to the Meeting agenda.

Mailing List

In addition to IRC, the team uses the OpenStack Discuss Mailing List for development discussions. This
list is meant for communication about all things developing OpenStack; so we also use this list to engage
with contributors across projects, and make any release cycle announcements. Since it is a wide distri-
bution list, the use of subject line tags is encouraged to make sure you reach the right people. Prefix the
subject line with [manila] when sending email that concern Manila on this list.

Other Communication Avenues

Contributors gather at least once per release at the OpenDev Project Team Gathering to discuss plans for
an upcoming development cycle. This is usually where developers pool ideas and brainstorm features
and bug fixes. We have had both virtual, and in-person Project Technical Gathering events in the past.
Before every such event, we gather opinions from the community via IRC Meetings and the Mailing list
on planning these Project Technical Gatherings.

We make extensive use of Etherpads. You can find some of them that the team used in the past in the
project Wiki. To share code snippets or logs, we use PasteBin.

Contacting the Core Team

When you contribute patches, your change will need to be approved by one or more maintainers (collec-
tively known as the Core Team).

Were always looking for more maintainers! If youre looking to help maintain Manila, express your
interest to the existing core team. We have mentored many individuals for one or more development
cycles and added them to the core team.

Any new core reviewer needs to be nominated to the team by an existing core reviewer by making a
proposal on OpenStack Discuss Mailing List. Other maintainers and contributors can then express their

4.1. Contributor/Developer Guide 547

https://docs.openstack.org/contributors/common/irc.html
http://eavesdrop.openstack.org/irclogs/%23openstack-manila/
http://eavesdrop.openstack.org/#Manila_Team_Meeting
https://wiki.openstack.org/wiki/Manila/Meetings
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://www.openstack.org/ptg
https://etherpad.opendev.org
https://wiki.openstack.org/wiki/Manila/Etherpads
https://wiki.openstack.org/wiki/Manila/Etherpads
http://paste.openstack.org
https://wiki.openstack.org/wiki/Manila#People
https://wiki.openstack.org/wiki/Manila#People
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Manila Developer Documentation, Release 15.4.2.dev5

approval or disapproval by responding to the proposal. If there is a decision, the project team lead will
add the concerned individual to the core reviewers team. An example proposal is here.

New Feature Planning

If youd like to propose a new feature, do so by creating a blueprint on Launchpad. For significant changes
we might require a design specification.

Feature changes that need a specification include:

* Adding new API methods

Substantially modifying the behavior of existing API methods
* Adding a new database resource or modifying existing resources

* Modifying a share back end driver interface, thereby affecting all share back end drivers

What doesnt need a design specification:

* Making trivial (backwards compatible) changes to the behavior of an existing API method. Ex-
amples include adding a new field to the response schema of an existing method, or introducing a
new query parameter. See AP/ Microversions on how Manila APIs are versioned.

* Adding new share back end drivers or modifying share drivers, without affecting the share back
end driver interface

* Adding or changing tests
After filing a blueprint, if youre in doubt whether to create a design specification, contact the maintainers.

Design specifications are tracked in the Manila Specifications repository and are published on the Open-
Stack Project Specifications website. Refer to the specification template to structure your design spec.

Specifications and new features have deadlines. Usually, specifications for an upcoming release are frozen
midway into the release development cycle. To determine the exact deadlines, see the published release
calendars by navigating to the specific release from the OpenStack releases website.

Task Tracking

* We track our bugs in Launchpad:
https://bugs.launchpad.net/manila

If youre looking for some smaller, easier work item to pick up and get started on, search for the
low-hanging-fruit tag

* We track future features as blueprints on Launchpad:
https://blueprints.launchpad.net/manila
» Unimplemented specifications are tracked here:

https://specs.openstack.org/openstack/manila-specs/#unimplemented-specs

548 Chapter 4. For contributors

http://lists.openstack.org/pipermail/openstack-discuss/2020-February/012677.html
https://blueprints.launchpad.net/manila
https://opendev.org/openstack/manila-specs
https://specs.openstack.org/openstack/manila-specs/
https://specs.openstack.org/openstack/manila-specs/
https://specs.openstack.org/openstack/manila-specs/specs/template.html
<https://releases.openstack.org>
https://bugs.launchpad.net/manila
https://blueprints.launchpad.net/manila
https://specs.openstack.org/openstack/manila-specs/#unimplemented-specs

Manila Developer Documentation, Release 15.4.2.dev5

These specifications need a new owner. If youre interested to pick them up and drive them to com-
pletion, you can update the corresponding blueprint and get in touch with the project maintainers
for help

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad.

Getting Your Patch Merged

When you submit your change through Gerrit, a number of automated Continuous Integration tests are
run on your change. A change must receive a +1 vote from the OpenStack CI system in order for it to be
merge-worthy. If these tests are failing and you cant determine why, contact the maintainers.

See the Manila team code review policy to understand our code review conventions. Generally, reviewers
look at new code submissions pro-actively; if you do not have sufficient attention to your change, or are
looking for help, do not hesitate to jump into the teams IRC channel, or bring our attention to your
issue during a community meeting. The core team would prefer to have an open discussion instead of a
one-on-one/private chat.

Project Team Lead Duties

A project team lead is elected from the project contributors each cycle. Manila Project specific respon-
sibilities for a lead are listed in the Manila Project Team Lead guide.

4.1.2 Programming HowTos and Tutorials
Setting Up a Development Environment

This page describes how to setup a working Python development environment that can be used in devel-
oping manila on Ubuntu, Fedora or Mac OS X. These instructions assume youre already familiar with
git. Refer to Getting the code for additional information.

Following these instructions will allow you to run the manila unit tests. If you want to be able to run
manila (i.e., create NFS/CIFS shares), you will also need to install dependent projects: nova, neutron,
cinder and glance. For this purpose devstack project can be used (A documented shell script to build com-
plete OpenStack development environments). You can check out Setting up a development environment
with devstack for instructions on how to enable manila on devstack.

Virtual environments

Manila development uses virtualenv to track and manage Python dependencies while in development
and testing. This allows you to install all of the Python package dependencies in a virtual environment
or virtualenv (a special subdirectory of your manila directory), instead of installing the packages at the
system level.

4.1. Contributor/Developer Guide 549

https://bugs.launchpad.net/manila
https://zuul.opendev.org/t/openstack/status
https://docs.openstack.org/project-team-guide/ptl.html
http://wiki.openstack.org/GettingTheCode
https://docs.openstack.org/manila/latest/contributor/development-environment-devstack.html
https://docs.openstack.org/manila/latest/contributor/development-environment-devstack.html
https://pypi.org/project/virtualenv/

Manila Developer Documentation, Release 15.4.2.dev5

Note: Virtualenv is useful for running the unit tests, but is not typically used for full integration testing
or production usage.

Linux Systems

Note: This section is tested for manila on Ubuntu and Fedora-based distributions. Feel free to add notes
and change according to your experiences or operating system.

Install the prerequisite packages.

¢ On Ubuntu/Debian:

¢ On RHELS/CentosS:

Note: If using RHEL and yum reports No package python3-pip available and No package git-review
available, use the EPEL software repository. Instructions can be found at http://fedoraproject.org/wiki/
EPEL/FAQ#howtouse.

* On Fedora 22 and higher:

Note: Additionally, if using Fedora 23, redhat-rpm-config package should be installed so that de-
velopment virtualenv can be built successfully.

550 Chapter 4. For contributors

http://fedoraproject.org/wiki/EPEL/FAQ#howtouse
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse

Manila Developer Documentation, Release 15.4.2.dev5

Mac OS X Systems

Install virtualenv:

Check the version of OpenSSL you have installed:

If you have installed OpenSSL 1.0.0a, which can happen when installing a MacPorts package for
OpenSSL, you will see an error when running manila.tests.auth_unittest.AuthTestCase.
test_209_can_generate_x509.

The stock version of OpenSSL that ships with Mac OS X 10.6 (OpenSSL 0.9.81) or Mac OS X 10.7
(OpenSSL 0.9.8r) works fine with manila.

Getting the code

Grab the code:

Running unit tests

The preferred way to run the unit tests is using tox. Tox executes tests in isolated environ-
ment, by creating separate virtualenv and installing dependencies from the requirements.txt and
test-requirements. txt files, so the only package you install is tox itself:

Run the unit tests with:

Example:

See Unit Tests for more details.

4.1. Contributor/Developer Guide 551

Manila Developer Documentation, Release 15.4.2.dev5

Manually installing and using the virtualenv

You can also manually install the virtual environment:

This will install all of the Python packages listed in the requirements. txt file into your virtualenv.

To activate the Manila virtualenv you can run:

$ source .tox/py36/bin/activate

To exit your virtualenv, just type:

$ deactivate

Or, if you prefer, you can run commands in the virtualenv on a case by case basis by running:

$ tox -e venv -- <your command>

Contributing Your Work

Once your work is complete you may wish to contribute it to the project. Manila uses the Gerrit code
review system. For information on how to submit your branch to Gerrit, see GerritWorkflow.

Setting up a development environment with devstack

This page describes how to setup a working development environment that can be used in deploying
manila and manila-ui on latest releases of Ubuntu, Fedora or CentOS. These instructions assume you
are already familiar with git.

We recommend using devstack to develop and test code changes to manila and/or manila-ui, in order
to simply evaluate the manila and/or project. Devstack is a shell script to build complete OpenStack
development environments on a virtual machine. If you are not familiar with devstack, these pages can
give you context:

» Testing Changes with DevStack
* Devstack project documentation

Be aware that manila and manila-ui are not enabled in devstack by default; you will need to add a few
lines to the devstack local. conf file to let devstack deploy and configure manila and manila-ui on
your virtual machine.

Note: If you do not intend to deploy with the OpenStack Dashboard (horizon) service, you can ignore
instructions about enabling manila-ui.

552 Chapter 4. For contributors

https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/contributors/code-and-documentation/devstack.html
https://docs.openstack.org/devstack/latest

Manila Developer Documentation, Release 15.4.2.dev5

Getting devstack

Start by cloning the devstack repository:

Change to devstack directory:

Youre now on master branch of devstack, switch to the branch you want to test or develop against.

Sample local.conf files that get you started

Now that you have cloned the devstack repository, you need to configure devstack before deploying it.
This is done with a 1local.conf file. For manila, the local.conf file can also determine which back
end(s) are set up.

Caution: When using devstack with the below configurations, be aware that you will be setting up
fake storage. The LVM, Generic, ZFSOnLinux drivers have not been developed for production use.
They exist to provide a vanilla development and testing environment for manila contributors.

DHSS=False (driver_handles share_servers=False) mode:

This is the easier mode for new contributors. Manila share back-end drivers that operate in
driver_handles_share_servers=False mode do not allow creating shares on private project net-
works. On the resulting stack, all manila shares created by you are exported on the host network and
hence are accessible to any compute resource (e.g.: virtual machine, baremetal, container) that is able to
reach the devstack host.

e LVM driver
e ZFSOnLinux driver

e CEPHFS driver

DHSS=True (driver_handles share_servers=True) mode:

You may use the following setups if you are familiar with manila, and would like to test with the project
(tenant) isolation that manila provides on the network and data path. Manila share back-end drivers that
operate in driver_handles_share_servers=True mode create shares on isolated project networks
if told to do so. On the resulting stack, when creating a share, you must specify a share network to export
the share to, and the share will be accessible to any compute resource (e.g.: Virtual machine, baremetal,
containers) that is able to reach the share network you indicated.

Typically, new contributors take a while to understand OpenStack networking, and we recommend that
you familiarize yourself with the DHSS=False mode setup before attempting DHSS=True.

e Generic driver

4.1. Contributor/Developer Guide 553

Manila Developer Documentation, Release 15.4.2.dev5

e Container driver

Building your devstack

Copy the appropriate sample local.conf file into the devstack folder on your virtual machine, make
sure to name it local.conf

Make sure to read inline comments and customize values where necessary

If you would like to run minimal services in your stack, or allow devstack to bootstrap tempest
testing framework for you, see More devstack customizations

Finally, run the stack. sh script from within the devstack directory. We recommend that your run
this inside a screen or tmux session because it could take a while:

After the script completes, you should have manila services running. You can verify that the
services are running with the following commands:

§ systemctl status devstack@m-sch
§ systemctl status devstack@m-shr
§ systemctl status devstack@n-dat

By default, devstack sets up manila-api behind apache. The service name is httpd on Red Hat
based systems and apache2 on Debian based systems.

You may also use your demo credentials to invoke the command line clients:

§ source DEVSTACK_DIR/openrc admin demo
$ manila service-list

The logs are accessible through journalctl. The following commands let you query logs. You
may use the -f option to tail these logs:

$ journalctl -a -o short-precise --unit devstack@m-sch
$ journalctl -a -o short-precise --unit devstack@m-shr
$ journalctl -a -o short-precise --unit devstack@nm-dat

If running behind apache, the manila-api logs will be in /var/log/httpd/manila_api.log
(Red Hat) or in /var/log/apache2/manila_api.log (Debian).

Manila UI will now be available through OpenStack Horizon; look for the Shares tab under Project
> Share.

554

Chapter 4. For contributors

Manila Developer Documentation, Release 15.4.2.dev5

More devstack customizations
Testing branches and changes submitted for review

To test a patch in review:

If the ref is from review.opendev.org, it is structured as:

For example, if you want to test patchset 4 of https://review.opendev.org/#/c/614170/, you can provide
this in your local. conf:

ref can also simply be a stable branch name, for example:

Limiting the services enabled in your stack

Manila needs only a message queue (rabbitmq) and a database (mysq]l, postgresql) to operate. Addition-
ally, keystone service provides project administration if necessary, all other OpenStack services are not
necessary to set up a basic test system.'?

You can add the following to your local.conf to deploy your stack in a minimal fashion. This saves
you a lot of time and resources, but could limit your testing:

Optionally, you can deploy with Manila, Nova, Neutron, Glance and Tempest:

You can also enable t1s-proxy with ENABLED_SERVICES to allow devstack to use Apache and setup a
TLS proxy to terminate TLS connections. Using tls-proxy secures all OpenStack service API endpoints
and inter-service communication on your devstack.

! The Generic driver cannot be run without deploying Cinder, Nova, Glance and Neutron.
2 You must enable Horizon to use manila-ui. Horizon will not work well when Nova, Cinder, Glance and Neutron are not
enabled.

4.1. Contributor/Developer Guide 555

https://review.opendev.org/#/c/614170/

Manila Developer Documentation, Release 15.4.2.dev5

Bootstrapping Tempest

Add the following options in your local. conf to set up tempest:

Running manila API with a web server

As part of the community goals for Pike, manila has packaged a wsgi script entrypoint that allows you
to run it with a real web server like Apache HTTPD or NGINX.

This doc shows a sample of deploying manila with uwsgi

Installing the API via uwsgi

For this deployment we use uwsgi as a web server bound to a random local port. Then we configure apache
using mod_proxy to forward all incoming requests on the specified endpoint to that local webserver. This
has the advantage of letting apache manage all inbound http connections, but allowing uwsgi run the
python code. This also means that when we make changes to manila code or configuration we dont need
to restart all of apache (which may be running other services as well) and just need to restart the local
uwsgi daemon.

The httpd/ directory contains sample files for configuring HTTPD to run manila under uwsgi. To use
sample configs, simply copy httpd/uwsgi-manila.conf to the appropiate location for your apache server.

On RHEL/CentOS/Fedora it is:

On SLES/OpenSUSE it is:

On Debian/Ubuntu it is:

Enable mod_proxy by running sudo a2enmod proxy

On Ubuntu/Debian systems enable the site using the a2ensite tool:

This is not required on RHEL/CentOS/Fedora systems.
Start or restart HTTPD/Apache?2 to pick up the new configuration.

Now we have to configure and start the uwsgi service. Copy the httpd/manila-uwsgi.ini file to /etc/manila.
Update the file to match your system configuration (i.e. tweak the number of processes and threads)

Install uwsgi.

556 Chapter 4. For contributors

https://governance.openstack.org/tc/goals/pike/deploy-api-in-wsgi.html#control-plane-api-endpoints-deployment-via-wsgi

Manila Developer Documentation, Release 15.4.2.dev5

On RHEL/CentOS:

On Fedora:

On SLES/OpenSUSE:

On Ubuntu/Debian:

And start the manila server using uwsgi:

Note: In the sample configs port 51999 is used, this is a randomly selected number.

Installing the API via mod_wsgi

The httpd/ directory contains sample files for configuring HTTPD to run manila API via mod_wsgi. To
use sample configs, simply copy httpd/mod_wsgi-manila.conf to the appropiate location for your apache
Sserver.

On RHEL/CentOS/Fedora it is:

On SLES/OpenSUSE it is:

On Debian/Ubuntu it is:

On Ubuntu/Debian systems enable the site using the a2ensite tool:

This is not required on RHEL/CentOS/Fedora systems.

Start or restart HT'TPD/Apache?2 to pick up the new configuration.

Note: manilas primary configuration file (etc/manila.conf) and the PasteDeploy configuration file

4.1. Contributor/Developer Guide 557

Manila Developer Documentation, Release 15.4.2.dev5

(etc/manila-paste.ini) must be readable to httpd in one of the default locations described in Configur-
ing Manila.

Access Control

If you are running with Linux kernel security module enabled (for example SELinux or AppArmor),
make sure that the configuration file has the appropriate context to access the linked file.

Unit Tests

Manila contains a suite of unit tests, in the manila/tests directory.

Any proposed code change will be automatically rejected by the OpenStack Zuul server if the change
causes unit test failures.

Running the tests

To run all unit tests simply run:

This will create a virtual environment, load all the packages from test-requirements.txt and run all unit
tests as well as run flake8 and hacking checks against the code.

You may run individual test targets, for example only unit tests, by running:

Note that you can inspect the tox.ini file to get more details on the available options and what the test run
does by default.

Running a subset of tests

Instead of running all tests, you can specify an individual directory, file, class, or method that contains
test code.

To run the tests in the manila/tests/scheduler directory:

To run the tests in the ShareManagerTestCase class in manila/tests/share/test_manager.py:

To run the ShareManagerTestCase::test_share_manager_instance test method in manila/tests/
share/test_manager.py:

558 Chapter 4. For contributors

Manila Developer Documentation, Release 15.4.2.dev5

For more information on these options and details about stestr, please see the stestr documentation.

Database Setup

Some unit tests will use a local database. You can use tools/test-setup.sh to set up your local
system the same way as its setup in the CI environment.

Gotchas

Running Tests from Shared Folders

If you are running the unit tests from a shared folder, you may see tests start to fail or stop completely as
a result of Python lockfile issues®. You can get around this by manually setting or updating the following
line in manila/tests/conf_fixture.py:

Note that you may use any location (not just /tmp!) as long as it is not a shared folder.

Tempest Tests

Manilas functional API and scenario tests are in the manila tempest plugin repository.

Installation of plugin to tempest

Tempest plugin installation is common for all its plugins and detailed information can be found in its docs.
In simple words: if you have installed manila project on the same machine as tempest, then tempest will
find it.

In case the plugin is not installed (see the verification steps below), you can clone and install it yourself.

git clone https://opendev.org/openstack/manila-tempest-plugin
pip install -e manila-tempest-plugin

Verifying installation

To verify that the plugin is installed on your system, run the following command and find manila_tests
in its output.

tempest list-plugins

Alternatively, or to double-check, list all the tests available on the system and find manila tests in it.

tempest run -1

3 See Vishs comment in this bug report: https:/bugs.launchpad.net/manila/+bug/882933

4.1. Contributor/Developer Guide 559

http://stestr.readthedocs.io/en/latest/MANUAL.html
https://opendev.org/openstack/manila-tempest-plugin
https://docs.openstack.org/tempest/latest/plugin.html#using-plugins
https://bugs.launchpad.net/manila/+bug/882933

Manila Developer Documentation, Release 15.4.2.dev5

Configuration of manila-related tests in tempest.conf

All config options for manila are defined in manila_tempest_tests/config.py module. They can be
set/redefined in tempest.conf file.

Here is a configuration example:

Note: None of existing share drivers support all features. So, make sure that share backends really
support features you enable in config. See the Manila share features support mapping to see what features
are supported by the back end that you are testing.

560 Chapter 4. For contributors

https://opendev.org/openstack/manila-tempest-plugin/src/branch/master/manila_tempest_tests/config.py

Manila Developer Documentation, Release 15.4.2.dev5

Running tests

To run tests, it is required to install pip, tox and virtualenv packages on host machine. Then run following
command from tempest root directory:

tempest run -r manila_tempest_tests.tests.api

or to run only scenario tests:

tempest run -r manila_tempest_tests.tests.scenario

Running a subset of tests based on test location

Instead of running all tests, you can specify an individual directory, file, class, or method that contains
test code.

To run the tests in the manila_tempest_tests/tests/api/admin directory:

tempest run -r manila_tempest_tests.tests.api.admin

To run the tests in the manila_tempest_tests/tests/api/admin/test_admin_actions.py mod-
ule:

tempest run -r manila_tempest_tests.tests.api.admin.test_admin_actions

To run the tests in the AdminActionsTest class in manila_tempest_tests/tests/api/admin/
test_admin_actions.py module:

tempest run -r manila_tempest_tests.tests.api.admin.test_admin_actions.
—AdminActionsTest

To run the AdminActionsTest.test_reset_share_state test method in manila_tempest_tests/tests/
api/admin/test_admin_actions.py module:

tempest run -r manila_tempest_tests.tests.api.admin.test_admin_actions.
—AdminActionsTest.test_reset_share_state

Running a subset of tests based on service involvement

To run the tests that require only manila-api service running:

tempest run -r
bapi\\b
manila_tempest_tests.tests.api

To run the tests that require all manila services running, but intended to test API behaviour:

tempest run -r
b\ (api\ |api_with_backend b
manila_tempest_tests.tests.api

4.1. Contributor/Developer Guide 561

https://pypi.org/project/pip/
https://pypi.org/project/tox/
https://pypi.org/project/virtualenv

Manila Developer Documentation, Release 15.4.2.dev5

To run the tests that require all manila services running, but intended to test back-end (manila-share)
behaviour:

tempest run -r
bbackend\\b
manila_tempest_tests.tests.api

Running a subset of positive or negative tests

To run only positive tests, use following command:

tempest run -r
bpositive\\b
manila_tempest_tests.tests.api

To run only negative tests, use following command:

tempest run -r
bnegative\\b
manila_tempest_tests.tests.api

To run only positive API tests, use following command:

tempest run -r
bpositive\\b
bapi\\b
manila_tempest_tests.tests.api

Adding a Method to the OpenStack Manila API

The interface to manila is a RESTful API. REST stands for Representational State Transfer and provides
an architecture style for distributed systems using HTTP for transport. Figure out a way to express your
request and response in terms of resources that are being created, modified, read, or destroyed. Manilas
APT aims to conform to the guidelines set by OpenStack API SIG.

Routing

To map URLS to controllers+actions, manila uses the Routes package. See the routes package documen-
tation for more information.

URLSs are mapped to action methods on controller classes in manila/api/<VERSION>/router.py.
These are two methods of the routes package that are used to perform the mapping and the routing:
* mapper.connect() lets you map a single URL to a single action on a controller.

* mapper.resource() connects many standard URLs to actions on a controller.

562 Chapter 4. For contributors

http://specs.openstack.org/openstack/api-sig/
https://routes.readthedocs.io/en/latest/
https://routes.readthedocs.io/en/latest/

Manila Developer Documentation, Release 15.4.2.dev5

Controllers and actions

Controllers live in manila/api/v1 and manila/api/v2.
See manila/api/v1/shares.py for an example.

Action methods take parameters that are sucked out of the URL by mapper.connect() or .resource(). The
first two parameters are self and the WebOb request, from which you can get the req.environ, req.body,
req.headers, etc.

Actions return a dictionary, and wsgi.Controller serializes that to JSON.

Faults

If you need to return a non-200, you should return faults.Fault(webob.exc .HTTPNotFound()) replacing
the exception as appropriate.

Evolving the API

The v1 version of the manila API has been deprecated. The v2 version of the API supports micro versions.
So all changes to the v2 API strive to maintain stability at any given API micro version, so consumers
can safely rely on a specific micro version of the API never to change the request and response seman-
tics. Read more about API Microversions to understand how stability and backwards compatibility are
maintained.

Documenting your work

As with most OpenStack services and libraries, manila suffers from appearing very complicated to un-
derstand, develop, deploy, administer and use. As OpenStack developers working on manila, our respon-
sibility goes beyond introducing new features and maintaining existing features. We ought to provide
adequate documentation for the benefit of all kinds of audiences. The guidelines below will explain how
you can document (or maintain documentation for) new (or existing) features and bug fixes in the core
manila project and other projects that are part of the manila suite.

Where to add documentation?
OpenStack User Guide

* Any documentation targeted at end users of manila in OpenStack needs to go here. This contains
high level information about any feature as long as it is available on python-manilaclient and/or
manila-ui.

* If you develop an end user facing feature, you need to provide an overview, use cases and example
work-flows as part of this documentation.

* The source files for the user guide live in manilas code tree.

* Link: User guide

4.1. Contributor/Developer Guide 563

https://docs.openstack.org/manila/latest/user/

Manila Developer Documentation, Release 15.4.2.dev5

OpenStack Administrator Guide

Documentation for administrators of manila deployments in OpenStack clouds needs to go here.

Document instructions for administrators to perform necessary set up for utilizing a feature, along
with managing and troubleshooting manila when the feature is used.

Relevant configuration options may be mentioned here briefly.
The source files for the administrator guide live in manilas code tree.

Link: Administrator guide

OpenStack Configuration Reference

Instructions regarding configuration of different manila back ends need to be added in this docu-
ment.

The configuration reference also contains sections where manilas configuration options are auto-
documented.

It contains sample configuration files for using manila with various configuration options.

If you are a driver maintainer, please ensure that your driver and all of its relevant configuration is
documented here.

The source files for the configuration guide live in manilas code tree.

Link: Manila release configuration reference

OpenStack Installation Tutorial

Instructions regarding setting up manila on OpenStack need to be documented here.

This tutorial covers step-by-step deployment of OpenStack services using a functional example
architecture suitable for new users of OpenStack with sufficient Linux experience.

The instructions are written with reference to different distributions.
The source files for this tutorial live in manilas code tree.

Link: Draft installation tutorial

OpenStack API Reference

When you add or change a REST API in manila, you will need to add or edit descriptions of the
API, request and response parameters, microversions and expected HTTP response codes as part
of the API reference.

For releases prior to Newton, the API reference was maintained in Web Application Description
Language (WADL) in the api-site project.

Since the Newton release, manilas API reference is maintained in-tree in custom YAML/JSON
format files.

Link: REST API reference of the Shared File Systems Project v2.0

564

Chapter 4. For contributors

https://docs.openstack.org/manila/latest/admin/
https://docs.openstack.org/manila/latest/configuration/index.html
https://docs.openstack.org/project-install-guide/shared-file-systems/draft/
https://en.wikipedia.org/wiki/Web_Application_Description_Language
https://en.wikipedia.org/wiki/Web_Application_Description_Language
https://opendev.org/openstack/api-site
https://docs.openstack.org/api-ref/shared-file-system/

Manila Developer Documentation, Release 15.4.2.dev5

Manila Developer Reference

* When working on a feature in manila, provide judicious inline documentation in the form of com-
ments and docstrings. Code is our best developer reference.

* Driver entry-points must be documented with docstrings explaining the expected behavior from a
driver routine.

* Apart from inline documentation, further developer facing documentation will be necessary when
you are introducing changes that will affect vendor drivers, consumers of the manila database and
when building a utility in manila that can be consumed by other developers.

* The developer reference for manila is maintained in-tree.
* Feel free to use it as a sandbox for other documentation that does not live in manilas code-tree.

e Link: Manila developer reference

OpenStack Security Guide

* Any feature that has a security impact needs to be documented here.

* In general, administrators will follow the guidelines regarding best practices of setting up their
manila deployments with this guide.

* Any changes to policy.yaml based authorization, share network related security, access to
manila resources, tenant and user related information needs to be documented here.

e Link: Security guide

* Repository: The security guide is maintained within the OpenStack Security-doc project

OpenStack Command Line Reference

* Help text provided in the python-manilaclient is extracted into this document automatically.

* No manual corrections are allowed on this repository; make necessary corrections in the
python-manilaclient repository.

e Link: Manila CLI reference.

Important things to note

* When implementing a new feature, use appropriate Commit Message Tags (Using Commit Mes-
sage Tags in Manila).

* Using the DocImpact flag in particular will create a [doc] bug under the manila project in launch-
pad. When your code patch merges, assign this bug to yourself and track your documentation
changes with it.

* When writing documentation outside of manila, use either a commit message header that includes
the word Manila or set the topic of the change-set to manila-docs. This will make it easy for
manila reviewers to find your patches to aid with a technical content review.

4.1. Contributor/Developer Guide 565

https://docs.openstack.org/manila/latest/
http://docs.openstack.org/security-guide/
https://opendev.org/openstack/security-doc/
https://docs.openstack.org/python-openstackclient/latest/
https://bugs.launchpad.net/manila
https://bugs.launchpad.net/manila

Manila Developer Documentation, Release 15.4.2.dev5

* When writing documentation in user/admin/config/api/install guides, always refer to the project
with its service name: Shared File Systems service and not the service type (share) or the
project name (manila).

* Follow documentation styles prescribed in the OpenStack Documentation Contributor Guide. Pay
heed to the RST formatting conventions and Writing style.

» Use CamelCase to spell out OpenStack and sentence casing to spell out service types, ex: Shared
File Systems service and lower case to spell out project names, ex: manila (except when the project
name is in the beginning of a sentence or a title).

* ALWAYS use a first party driver when documenting a feature in the user or administrator guides.
Provide cross-references to configuration reference sections to lead readers to detailed setup in-
structions for these drivers.

* The manila developer reference, the OpenStack user guide, administrator reference, API reference
and security guide are always current, i.e, get built with every commit in the respective codebase.
Therefore, documentation added here need not be backported to previous releases.

* You may backport changes to some documentation such as the configuration reference and the
installation guide.

* Important documentation that isnt really documentation - specs and release notes are
NOT documentation. A specification document is written to initiate a dialogue and gather feed-
back regarding the design of a feature. Neither developers nor users will regard a specification
document as official documentation after a feature has been implemented. Release notes (Release
Notes) allow for gathering release summaries and they are not used to understand, configure, use
or troubleshoot any manila feature.

* Less is not more, more is more - Always add detail when possible. The health and maturity of
our community is reflected in our documentation.

Release Notes

What are release notes?

Release notes are important for change management within manila. Since manila follows a release cycle
with milestones, release notes provide a way for the community and users to quickly grasp what changes
occurred within a development milestone. To the OpenStack release management and documentation
teams, release notes are a way to compile changes per milestone. These notes are published on the Open-
Stack Releases website. Automated tooling is built around releasenotes and they get appropriately
handled per release milestone, including any back-ports to stable releases.

What needs a release note?

» Changes that impact an upgrade, most importantly, those that require a deployer to take some action
while upgrading

* API changes
— New APIs
— Changes to the response schema of existing APIs

— Changes to request/response headers

566 Chapter 4. For contributors

https://docs.openstack.org/doc-contrib-guide/
https://docs.openstack.org/doc-contrib-guide/rst-conv.html
https://docs.openstack.org/doc-contrib-guide/writing-style.html
http://releases.openstack.org
http://releases.openstack.org

Manila Developer Documentation, Release 15.4.2.dev5

— Non-trivial API changes such as response code changes from 2xx to 4xx
— Deprecation of APIs or response fields
— Removal of APIs

* A new feature is implemented, such as a new core feature in manila, driver support for an existing
manila feature or a new driver

* An existing feature is deprecated

* An existing feature is removed

* Behavior of an existing feature has changed in a discernible way to an end user or administrator
* Backend driver interface changes

* A security bug is fixed

* New configuration option is added

What does not need a release note?

* A code change that doesnt change the general behavior of any feature such as code refactor or
logging changes. One case of this could be the exercise that all drivers went through by removing
allow_access and deny_access interfaces in favor of an update_access interface as sug-
gested in the Mitaka release.

» Tempest or unit test coverage enhancement
* Changes to response message with API failure codes 4xx and 5xx
* Any change submitted with a justified TrivialFix flag added in the commit message

* Adding or changing documentation within in-tree documentation guides

How do | add a release note?

We use Reno to create and manage release notes. The new subcommand combines a random suffix with a
slug value to make the new file with a unique name that is easy to identify again later. To create a release
note for your change, use:

reno new slug-goes-here

If reno is not installed globally on your system, you can use a tox environment in manila:

tox -e newnote slug-goes-here

Note: When you are adding a bug-fix reno, name your file using the template: bug-<launchpad-bug-
id>-slug-goes-here.

Then add the notes in yaml format in the file created. Pay attention to the type of section. The following
are general sections to use:

prelude

4.1. Contributor/Developer Guide 567

https://docs.openstack.org/reno/latest/

Manila Developer Documentation, Release 15.4.2.dev5

General comments about the change. The prelude from all notes in a release are combined,
in note order, to produce a single prelude introducing the release.

features
New features introduced
issues

A list of known issues with respect to the change being introduced. For example, if the
new feature in the change is experimental or known to not work in some cases, it should be
mentioned here.

upgrade

A list of upgrade notes in the release. Any removals that affect upgrades are to be noted
here.

deprecations

Any features, APIs, configuration options that the change has deprecated. Deprecations
are not removals. Deprecations suggest that there will be support for a certain timeline.
Deprecation should allow time for users to make necessary changes for the removal to happen
in a future release. It is important to note the timeline of deprecation in this section.

critical

A list of fixed critical bugs (descriptions only).
security

A list of fixed security issues (descriptions only).
fixes

A list of other fixed bugs (descriptions only).
other

Other notes that are important but do not fall into any of the given categories.

(continues on next page)

568 Chapter 4. For contributors

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Dos and Donts

* Release notes need to be succinct. Short and unambiguous descriptions are preferred

* Write in past tense, unless you are writing an imperative statement

* Do not have blank sections in the file

* Do not include code or links

* Avoid special rst formatting unless absolutely necessary

* Always prefer including a release note in the same patch

* Release notes are not a replacement for developer/user/admin documentation

* Release notes are not a way of conveying behavior of any features or usage of any APIs
* Limit a release note to fewer than 2-3 lines per change per section

* OpenStack prefers atomic changes. So remember that your change may need the fewest sections
possible

* General writing guidelines can be found here

* Proofread your note. Pretend you are a user or a deployer who is reading the note after a milestone
or a release has been cut

Examples

The following need only be considered as directions for formatting. They are not fixes or features in
manila.

* fix-failing-automount-23aef89a7e¢98c8.yaml

* add-librsync-backup-plugin-for-m-bkup-41cadl7c1498a3.yaml

(continues on next page)

4.1. Contributor/Developer Guide 569

https://docs.openstack.org/doc-contrib-guide/writing-style/general-writing-guidelines.html

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

Using Commit Message Tags in Manila

When writing git commit messages for code submissions into manila, it can be useful to provide tags in the
message for both human consumption as well as linking to other external resources, such as Launchpad.
Each tag should be placed on a separate line. The following tags are used in manila.

APIImpact - Use this tag when the code change modifies a public HTTP API interface. This tag
indicates that the patch creates, changes, or deletes a public API interface or changes its behavior.
The tag may be followed by a reason beginning on the next line. If you are touching manilas API
layer and you are unsure if your change has an impact on the API, use this tag anyway.

Change-id - This tag is automatically generated by a Gerrit hook and is a unique hash that describes
the change. This hash should not be changed when rebasing as it is used by Gerrit to keep track of
the change.

Closes-Bug: | Partial-Bug: | Related-Bug: <#launchpad_bug_id> - These tags are used when
the change closes, partially closes, or relates to the bug referenced by the Launchpad bug ID re-
spectively. This will automatically generate a link to the bug in Launchpad for easy access for
reviewers.

DocImpact - Use this tag when the code change requires changes or updates to documentation in
order to be understood. This tag can also be used if the documentation is provided along with the
patch itself. This will also generate a Launchpad bug in manila for triaging and tracking. Refer to
the section on Documenting your work to understand where to add documentation.

Implements: | Partially Implements: blueprint <name_of _blueprint> - Use this tag when a
change implements or partially implements the given blueprint in Launchpad. This will automat-
ically generate a link to the blueprint in Gerrit for easy access for reviewers.

TrivialFix - This tag is used for a trivial issue, such as a typo, an unclear log message, or a sim-
ple code refactor that does not change existing behavior which does not require the creation of a
separate bug or blueprint in Launchpad.

Make sure that the Closes-Bug, Partial-Bug, Related-Bug, blueprint, and Change-id tags are at the
very end of the commit message. The Gerrit hooks will automatically put the hash at the end of the
commit message. For more information on tags and some examples of good commit messages, refer to
the GitCommitMessages documentation.

Guru Meditation Reports

Manila contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Manila executable. This report is called a Guru Meditation Report (GMR for short).

570

Chapter 4. For contributors

https://wiki.openstack.org/wiki/GitCommitMessages#Including_external_references

Manila Developer Documentation, Release 15.4.2.dev5

Generating a GMR

A GMR can be generated by sending the SIGUSRI1/SIGUSR? signal to any Manila process with support
(see below). The GMR will then output to standard error for that particular process.

For example, suppose that manila-api has process id 8675, and was run with 2>/var/log/manila/
manila-api-err.log. Then, kill -SIGUSR1 8675 will trigger the Guru Meditation report to be
printed to /var/log/manila/manila-api-err.log.

It could save these reports to a well known directory for later analysis by the sysadmin or automated bug
analysis tools. To configure GMR you have to add the following section to manila.conf:

[oslo_reports] log_dir = /path/to/logs/dir

There is other way to trigger a generation of report, user should add a configuration in Manilas conf file:

a GMR can be generated by touching the file which was specified in file_event_handler. The GMR will
then output to standard error for that particular process.

For example, suppose that manila-api was run with 2>/var/log/manila/manila-api-err.1log,
and the file path is /tmp/guru_report. Then, touch /tmp/guru_report will trigger the Guru Med-
itation report to be printed to /var/log/manila/manila-api-err.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However, the
base GMR consists of several sections:

Package Shows information about the package to which this process belongs, including version infor-
mation

Threads Shows stack traces and thread ids for each of the threads within this process

Green Threads Shows stack traces for each of the green threads within this process (green threads dont
have thread ids)

Configuration Lists all the configuration options currently accessible via the CONF object for the cur-
rent process

4.1. Contributor/Developer Guide 571

Manila Developer Documentation, Release 15.4.2.dev5

Adding Support for GMRs to New Executables

Adding support for a GMR to a given executable is fairly easy.

First import the module (currently residing in oslo.reports), as well as the Manila version module:

Then, register any additional sections (optional):

Finally (under main), before running the main loop of the executable (usually service.
server(server) or something similar), register the GMR hook:

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the inline documentation about oslo.reports: oslo.reports

User Messages

User messages are a way to inform users about the state of asynchronous operations. One example would
be notifying the user of why a share provisioning request failed. These messages can be requested via
the /messages API. All user visible messages must be defined in the permitted messages module in order
to prevent sharing sensitive information with users.

Example message generation:

572 Chapter 4. For contributors

https://docs.openstack.org/oslo.reports/latest/

Manila Developer Documentation, Release 15.4.2.dev5

Will produce the following:

The Message API Module

Handles all requests related to user facing messages.

class API(db_driver=None)

API for handling user messages.

cleanup_expired_messages (context)
create(context, action, project_id, resource_type=None, resource_id=None, exception=None,
detail=None, level="ERROR")
Create a message with the specified information.
delete(context, id)
Delete message with the specified message id.

get (context, id)
Return message with the specified message id.

get_all (context, search_opts=None, limit=None, offset=None, sort_key=None,
sort_dir=None)

Return messages for the given context.

4.1. Contributor/Developer Guide 573

Manila Developer Documentation, Release 15.4.2.dev5

The Permitted Messages Module

class Action

Bases: object

ADD_UPDATE_SECURITY_SERVICE = ('011', 'add or update security service')

ALL = (('001', 'allocate host'), ('002', 'create'), ('003', 'delete access
rules'), ('004', 'promote'), ('005', 'update'), ('006', 'revert to
snapshot'), ('007', 'delete'), ('008', 'extend'), ('009', 'shrink'),
('010', 'update access rules'), ('011', 'add or update security service'))

ALLOCATE_HOST = ('001', 'allocate host')

CREATE

('002', 'create')

DELETE = ('007', 'delete')

DELETE_ACCESS_RULES = ('003', 'delete access rules')
EXTEND = ('008', 'extend')

PROMOTE = ('004', 'promote')

REVERT_TO_SNAPSHOT = ('006', 'revert to snapshot')

SHRINK

('009', 'shrink')

UPDATE

('005', 'update')
UPDATE_ACCESS_RULES = ('010', 'update access rules')

class Detail

Bases: object

574 Chapter 4. For contributors

Manila Developer Documentation, Release 15.4.2.dev5

ALL = (('001', 'An unknown error occurred.'), ('002', 'No storage could be
allocated for this share request. Trying again with a different size or
share type may succeed.'), ('003', 'Driver does not expect share-network
to be provided with current configuration.'), ('004', "Could not find an
existing share server or allocate one on the share network provided. You
may use a different share network, or verify the network details in the
share network and retry your request. If this doesn't work, contact your

administrator to troubleshoot issues with your network."), ('005', "An
'active' replica must exist in 'available' state to create a new replica
for share."), ('006', "Share has no replica with 'replica_state' set to

'active'."), ('007', "No storage could be allocated for this share
request, AvailabilityZone filter didn't succeed."), ('008', "No storage
could be allocated for this share request, Capabilities filter didn't
succeed."), ('009', "No storage could be allocated for this share request,
Capacity filter didn't succeed."), ('010', "No storage could be allocated
for this share request, Driver filter didn't succeed.™), ('011', "No
storage could be allocated for this share request, IgnoreAttemptedHosts
filter didn't succeed.”), ('012', "No storage could be allocated for this
share request, Json filter didn't succeed."), ('013', "No storage could be
allocated for this share request, Retry filter didn't succeed."), ('014',
"No storage could be allocated for this share request, ShareReplication
filter didn't succeed."), ('015', 'Share Driver failed to extend share,
The share status has been set to extending_error. This action cannot be
re-attempted until the status has been rectified. Contact your
administrator to determine the cause of this failure.'), ('016', "No
storage could be allocated for this share request, CreateFromSnapshot
filter didn't succeed.™), ('017', 'Share Driver has failed to create the
share from snapshot. This operation can be re-attempted by creating a new
share. Contact your administrator to determine the cause of this
failure.'), ('018', 'Share Driver refused to shrink the share. The size to
be shrunk is smaller than the current used space. The share status has
been set to available. Please select a size greater than the current used
space.'), ('019', 'Share Driver does not support shrinking shares.
Shrinking share operation failed.'), ('020', 'Failed to grant access to
client. The client ID used may be forbidden. You may try again with a
different client identifier.'), ('021', 'Failed to grant access to client.
The access level or type may be unsupported. You may try again with a
different access level or access type.'), ('022', 'Share driver has failed
to setup one or more security services that are associated with the used
share network. The security service may be unsupported or the provided
parameters are invalid. You may try again with a different set of
configurations.'), ('023', 'Share Driver failed to create share due to a
security service authentication issue. The security service user has
either insufficient privileges or wrong credentials. Please check your
user, password, ou and domain.'), ('024', 'No default share type has been
made available. You must specify a share type for creating shares.'),
('025', 'Share Driver failed to create share because a security service
has not been added to the share network used. Please add a security
service to the share network.'))

4.1,

Contributor/Developer Guide 575

Manila Developer Documentation, Release 15.4.2.dev5

DRIVER_FAILED_CREATING_FROM_SNAP = ('017', 'Share Driver has failed to
create the share from snapshot. This operation can be re-attempted by
creating a new share. Contact your administrator to determine the cause of
this failure.')

DRIVER_FAILED_EXTEND = ('015', 'Share Driver failed to extend share, The
share status has been set to extending_error. This action cannot be
re-attempted until the status has been rectified. Contact your
administrator to determine the cause of this failure.')

DRIVER_FAILED_SHRINK = ('019', 'Share Driver does not support shrinking
shares. Shrinking share operation failed.')

DRIVER_REFUSED_SHRINK = ('018', 'Share Driver refused to shrink the share.
The size to be shrunk is smaller than the current used space. The share
status has been set to available. Please select a size greater than the
current used space.')

EXCEPTION_DETAIL_MAPPINGS = {('002', 'No storage could be allocated for
this share request. Trying again with a different size or share type may
succeed.'): ['NoValidHost']}

FILTER_AVAILABILITY = ('007', "No storage could be allocated for this
share request, AvailabilityZone filter didn't succeed.™)

FILTER_CAPABILITIES = ('008', "No storage could be allocated for this
share request, Capabilities filter didn't succeed.")

FILTER_CAPACITY = ('009', "No storage could be allocated for this share
request, Capacity filter didn't succeed.")

FILTER_CREATE_FROM_SNAPSHOT = ('016', "No storage could be allocated for
this share request, CreateFromSnapshot filter didn't succeed.")

FILTER_DETAIL_MAPPINGS = {'AvailabilityZoneFilter': ('007', "No storage
could be allocated for this share request, AvailabilityZone filter didn't
succeed."), 'CapabilitiesFilter': ('008', "No storage could be allocated
for this share request, Capabilities filter didn't succeed."),
'CapacityFilter': ('009', "No storage could be allocated for this share
request, Capacity filter didn't succeed."), 'CreateFromSnapshotFilter':
('016', "No storage could be allocated for this share request,
CreateFromSnapshot filter didn't succeed."), 'DriverFilter': ('010', "No
storage could be allocated for this share request, Driver filter didn't
succeed."), 'IgnoreAttemptedHostsFilter': ('011', "No storage could be
allocated for this share request, IgnoreAttemptedHosts filter didn't
succeed."), 'JsonFilter': ('012', "No storage could be allocated for this
share request, Json filter didn't succeed.”), 'RetryFilter': ('013', "No
storage could be allocated for this share request, Retry filter didn't
succeed."), 'ShareReplicationFilter': ('014', "No storage could be
allocated for this share request, ShareReplication filter didn't
succeed. ")}

576

Chapter 4. For contributors

Manila Developer Documentation, Release 15.4.2.dev5

FILTER_DRIVER = ('010', "No storage could be allocated for this share
request, Driver filter didn't succeed.")

FILTER_IGNORE = ('011', "No storage could be allocated for this share
request, IgnoreAttemptedHosts filter didn't succeed.")

FILTER_JSON = ('012', "No storage could be allocated for this share
request, Json filter didn't succeed.")

FILTER_MSG = "No storage could be allocated for this share request, %s
filter didn't succeed."”

FILTER_REPLICATION = ('014', "No storage could be allocated for this share
request, ShareReplication filter didn't succeed.™)

FILTER_RETRY = ('013', "No storage could be allocated for this share
request, Retry filter didn't succeed.")

FORBIDDEN_CLIENT_ACCESS = ('020', 'Failed to grant access to client. The
client ID used may be forbidden. You may try again with a different client
identifier.")

MISSING_SECURITY_SERVICE = ('025', 'Share Driver failed to create share
because a security service has not been added to the share network used.
Please add a security service to the share network.')

NO_ACTIVE_AVAILABLE_REPLICA = ('005', "An 'active' replica must exist in
'available' state to create a new replica for share.")

NO_ACTIVE_REPLICA = ('006', "Share has no replica with 'replica_state' set
to 'active'.")

NO_DEFAULT_SHARE_TYPE = ('024', 'No default share type has been made
available. You must specify a share type for creating shares.')

NO_SHARE_SERVER = ('004', "Could not find an existing share server or
allocate one on the share network provided. You may use a different share
network, or verify the network details in the share network and retry your
request. If this doesn't work, contact your administrator to troubleshoot
issues with your network.")

NO_VALID_HOST = ('002', 'No storage could be allocated for this share
request. Trying again with a different size or share type may succeed.')

SECURITY_SERVICE_FAILED_AUTH = ('023', 'Share Driver failed to create
share due to a security service authentication issue. The security service
user has either insufficient privileges or wrong credentials. Please check
your user, password, ou and domain.')

UNEXPECTED_NETWORK = ('003', 'Driver does not expect share-network to be
provided with current configuration.')

UNKNOWN_ERROR = ('001', 'An unknown error occurred.')

4.1. Contributor/Developer Guide 577

Manila Developer Documentation, Release 15.4.2.dev5

UNSUPPORTED_ADD_UDPATE_SECURITY_SERVICE = ('022', 'Share driver has failed
to setup one or more security services that are associated with the used
share network. The security service may be unsupported or the provided
parameters are invalid. You may try again with a different set of
configurations."')

UNSUPPORTED_CLIENT_ACCESS = ('021', 'Failed to grant access to client. The
access level or type may be unsupported. You may try again with a
different access level or access type.')

class Resource

Bases: object

SECURITY_SERVICE = 'SECURITY_SERVICE'

SHARE = 'SHARE'

SHARE_GROUP = 'SHARE_GROUP'

SHARE_REPLICA = 'SHARE_REPLICA'

SHARE_SNAPSHOT = 'SHARE_SNAPSHOT'
translate_action(action_id)
translate_detail (detail_id)

translate_detail_id(excep, detail)

Ganesha Library

The Ganesha Library provides base classes that can be used by drivers to provision shares via NFS
(NFSv3 and NFSv4), utilizing the NFS-Ganesha NFS server.

Supported operations

* Allow NFS Share access
— Only IP access type is supported.
* Deny NFS Share access

Supported manila drivers

* CephFS driver uses ganesha.GaneshaNASHelper?2 library class

* GlusterFS driver uses ganesha.GaneshaNASHelper library class

578 Chapter 4. For contributors

Manila Developer Documentation, Release 15.4.2.dev5

Requirements

¢ Preferred:

NFS-Ganesha v2.4 or later, which allows dynamic update of access rules. Use with manilas
ganesha.GaneshaNASHelper2 class as described later in Using Ganesha Library in drivers.

(or)

NES-Ganesha v2.5.4 or later that allows dynamic update of access rules, and can make use of
highly available Ceph RADOS (distributed object storage) as its shared storage for NFS client
recovery data, and exports. Use with Ceph v12.2.2 or later, and ganesha.GaneshaNASHelper2
library class in manila Queens release or later.

¢ For use with limitations documented in Known Issues:

NFS-Ganesha v2.1 to v2.3. Use with manilas ganesha.GaneshaNASHelper class as described
later in Using Ganesha Library in drivers.

NFS-Ganesha configuration

The library has just modest requirements against general NFS-Ganesha (in the following: Ganesha) con-
figuration; a best effort was made to remain agnostic towards it as much as possible. This section de-
scribes the few requirements.

Note that Ganeshas concept of storage backend modules is called FSAL (File System Abstraction Layer).
The FSAL the driver intends to leverage needs to be enabled in Ganesha config.

Beyond that (with default manila config) the following line is needed to be present in the Ganesha config
file (that defaults to /etc/ganesha/ganesha.conf):

%include /etc/ganesha/export.d/INDEX.conf
The above paths can be customized through manila configuration as follows:
* ganesha_config_dir = toplevel directory for Ganesha configuration, defaults to /etc/ganesha

* ganesha_config_path = location of the Ganesha config file, defaults to ganesha.conf in gane-
sha_config_dir

» ganesha_export_dir = directory where manila generated config bits are stored, defaults to ex-
port.d in ganesha_config_dir. The following line is required to be included (with value ex-
panded) in the Ganesha config file (at ganesha_config_path):

%include <ganesha_export_dir>/INDEX.conf

In versions 2.5.4 or later, Ganesha can store NFS client recovery data in Ceph RADOS, and also read ex-
ports stored in Ceph RADOS. These features are useful to make Ganesha server that has access to a Ceph
(luminous or later) storage backend, highly available. The Ganesha library class GaneshaNASHelper2
(in manila Queens or later) allows you to store Ganesha exports directly in a shared storage, RADOS
objects, by setting the following manila config options in the driver section:

*» ganesha_rados_store_enable = True to persist Ganesha exports and export counter in Ceph RA-
DOS objects

* ganesha_rados_store_pool_name = name of the Ceph RADOS pool to store Ganesha exports and
export counter objects

4.1. Contributor/Developer Guide 579

https://github.com/nfs-ganesha/nfs-ganesha/wiki
https://github.com/nfs-ganesha/nfs-ganesha/wiki
https://github.com/nfs-ganesha/nfs-ganesha/wiki

Manila Developer Documentation, Release 15.4.2.dev5

ganesha_rados_export_index = name of the Ceph RADOS object used to store a list of export
RADOS object URLSs (defaults to ganesha-export-index)

Check out the cephfs_driver documentation for an example driver section that uses these options.

To allow Ganesha to read from RADOS objects add the below code block in ganeshas configuration file,
substituting values per your setup.

To

exports from RADOS objects

Replace with actual pool name, and index object

url
To

rados://<ganesha_rados_store_pool_name>/<ganesha_rados_export_index>
store client recovery data the same RADOS pool

Replace with actual pool name

For a fresh setup, make sure to create the Ganesha export index object as an empty object before starting
the Ganesha server.

Further Ganesha related manila configuration

There are further Ganesha related options in manila (which affect the behavior of Ganesha, but do not
affect how to set up the Ganesha service itself).

These are:

ganesha_service_name = name of the system service representing Ganesha, defaults to gane-
sha.nfsd

ganesha_db_path = location of on-disk database storing permanent Ganesha state, e.g. an export
ID counter to generate export IDs for shares

(or)

When ganesha_rados_store_enabled is set to True, the ganesha export counter is stored in a Ceph
RADOS object instead of in a SQLite database local to the manila driver. The counter can be
optionally configured with, ganesha_rados_export_counter = name of the Ceph RADOS object
used as the Ganesha export counter (defaults to ganesha-export-counter)

* ganesha_export_template_dir = directory from where Ganesha loads export customizations

(cf. Customizing Ganesha exports).

580

Chapter 4. For contributors

Manila Developer Documentation, Release 15.4.2.dev5

Using Ganesha Library in drivers

A driver that wants to use the Ganesha Library has to inherit from driver.GaneshaMixin.

The driver has to contain a subclass of ganesha.GaneshaNASHelper2, instantiate it along with the
driver instance and delegate update_access method to it (when appropriate, i.e., when access_proto
is NFS).

Note: You can also subclass ganesha.GaneshaNASHelper. It works with NFS-Ganesha v2.1 to v2.3
that doesnt support dynamic update of exports. To update access rules without having to restart NFS-
Ganesha server, the class manipulates exports created per share access rule (rather than per share) intro-
ducing limitations documented in Known Issues.

In the following we explain what has to be implemented by the ganesha.GaneshaNASHelper2 subclass
(to which we refer as helper class).

Ganesha exports are described by so-called Ganesha export blocks (introduced in the 2.* release series),
that is, snippets of Ganesha config specifying key-pair values.

The Ganesha Library generates sane default export blocks for the exports it manages, with one thing left
blank, the so-called FSAL subblock. The helper class has to implement the _fsal_hook method which
returns the FSAL subblock (in Python represented as a dict with string keys and values). It has one
mandatory key, Name, to which the value should be the name of the FSAL (eg.: {"Name": "CEPH"}).
Further content of it is optional and FSAL specific.

Customizing Ganesha exports

As noted, the Ganesha Library provides sane general defaults.
However, the driver is allowed to:

* customize defaults

* allow users to customize exports

The config format for Ganesha Library is called export block template. They are syntactically either
Ganesha export blocks, (please consult the Ganesha documentation about the format), or isomorphic
JSON (as Ganesha export blocks are by-and-large equivalent to arrayless JSON), with two special place-
holders for values: @config and @runtime. @config means a value that shall be filled from manila
config, and @runtime means a value thats filled at runtime with dynamic data.

As an example, we show the librarys defaults in JSON format (also valid Python literal):

(continues on next page)

4.1. Contributor/Developer Guide 581

Manila Developer Documentation, Release 15.4.2.dev5

(continued from previous page)

The Ganesha Library takes these values from
manila/share/drivers/ganesha/conf/00-base-export-template.conf
where the same data is stored in Ganesha conf format (also supplied with comments).
For customization, the driver has to extend the _default_config_hook method as follows:
* take the result of the super method (a dict representing an export block template)
* set up another export block dict that include your custom values, either by
— using a predefined export block dict stored in code
— loading a predefined export block from the manila source tree
— loading an export block from an user exposed location (to allow user configuration)
* merge the two export block dict using the ganesha_utils.patch method
* return the result

With respect to loading export blocks, that can be done through the utility method _load_conf_dir.

Known Restrictions

* The library does not support network segmented multi-tenancy model but instead works over a flat
network, where the tenants share a network.

Known Issues

Following issues concern only users of ganesha. GaneshaNASHelper class that works with NFS-Ganesha
v2.1 to v2.3.

* The export location for shares of a driver that uses the Ganesha Library will be of the format
<ganesha-server>:/share-<share-id>. However, this is incomplete information, because it
pertains only to NFSv3 access, which is partially broken. NFSv4 mounts work well but the actual
NFSv4 export paths differ from the above. In detail:

— The export location is usable only for NFSv3 mounts.

— The export location works only for the first access rule thats added for the given share. Tenants
that should be allowed to access according to a further access rule will be refused (cf. https:
//bugs.launchpad.net/manila/+bug/1513061).

582 Chapter 4. For contributors

https://bugs.launchpad.net/manila/+bug/1513061
https://bugs.launchpad.net/manila/+bug/1513061

Manila Developer Documentation, Release 15.4.2.dev5

— The share is, however, exported through NFSv4, just on paths that differ from

the one indicated by the export location, namely at: <ganesha-server>:/
share-<share-id>--<access-id>, where <access-id> ranges over the ID-s of
access rules of the share (and the export with <access-id> is accessible according to the
access rule of that ID).

— NFSv4 access also works with pseudofs. That is, the tenant can do a v4

mount of“‘<ganesha-server>:/* and access the shares allowed for her at the respective
share-<share-id>--<access-id> subdirectories.

Deployment considerations

When using NFS-Ganesha v2.4 or later and manilas ganesha.GaneshaNASHelper2 class, dynamic
export of access rules is implemented by using the dbus-send command to signal NFS-Ganesha to update
its exports. The dbus-send command is executed on the host where NFS-Ganesha runs. This may be the
same host where the manila-share service runs, or it may be remote to manila-share depending on how
the relevant driver has been configured. Either way, the dbus-send command and NFS-Ganesha must
be able to communicate over an abstract socket and must be in the same namespace. Consequently, if
you deploy NFS-Ganesha in a container you likely should run the container in the host namespace (e.g.
docker run net=host) rather than in its own network namespace. For details, see this article.

The manila.share.drivers.ganesha Module

class GaneshaNASHelper (execute, config, tag="<no name>’, **kwargs)

Bases: manila.share.drivers.ganesha.NASHelperBase
Perform share access changes using Ganesha version < 2.4.

init_helper()

Initializes protocol-specific NAS drivers.

supported_access_levels = ('rw', 'ro')
supported_access_types = ('ip',)

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access rules of share.

class GaneshaNASHelper2 (execute, config, tag="<no name=", **kwargs)

Bases: manila.share.drivers.ganesha.GaneshaNASHelper
Perform share access changes using Ganesha version >= 2.4,
init_helper()

Initializes protocol-specific NAS drivers.

update_access (context, share, access_rules, add_rules, delete_rules, share_server=None)

Update access rules of share.

Creates an export per share. Modifies access rules of shares by dynamically updating exports

via DBUS.

4.1,

Contributor/Developer Guide

583

https://github.com/nfs-ganesha/nfs-ganesha/wiki
https://dbus.freedesktop.org/doc/dbus-send.1.html
https://github.com/nfs-ganesha/nfs-ganesha/wiki
https://dbus.freedesktop.org/doc/dbus-send.1.html
https://github.com/nfs-ganesha/nfs-ganesha/wiki
https://dbus.freedesktop.org/doc/dbus-send.1.html
https://github.com/nfs-ganesha/nfs-ganesha/wiki
https://github.com/nfs-ganesha/nfs-ganesha/wiki
https://stackoverflow.com/questions/38455283/docker-containers-share-unix-abstract-socket-or-dbus

Manila Developer Documentation, Release 15.4.2.dev5

class NASHelperBase (execute, config, **kwargs)

Bases: object
Interface to work with share.

init_helper()

Initializes protocol-specific NAS drivers.

supported_access_levels = ()
supported_access_types =

abstract update_access(context, share, access_rules, add_rules, delete_rules,
share_server=None)

Update access rules of share.

4.1.3 Background Concepts for manila
Manila System Architecture

The Shared File Systems service is intended to be ran on one or more nodes.

Manila uses a sql-based central database that is shared by all manila services in the system. The amount
and depth of the data fits into a sql database quite well. For small deployments this seems like an optimal
solution. For larger deployments, and especially if security is a concern, manila will be moving towards
multiple data stores with some kind of aggregation system.

Components

Below you will a brief explanation of the different components.

* DB: sql database for data storage. Used by all components (LINKS NOT SHOWN)

* Web Dashboard: external component that talks to the api, implemented as a plugin to the Open-
Stack Dashboard (Horizon) project, source is here.

* manila-api

584 Chapter 4. For contributors

https://opendev.org/openstack/manila-ui

Manila Developer Documentation, Release 15.4.2.dev5

* Auth Manager: component responsible for users/projects/and roles. Can backend to DB or LDAP.
This is not a separate binary, but rather a python class that is used by most components in the
system.

e manila-scheduler

* manila-share

Further Challenges

* More efficient share/snapshot size calculation

 Create a notion of attached shares with automation of mount operations

* Allow admin-created share-servers and share-networks to be used by multiple tenants

* Support creation of new subnets for share servers (to connect VLANs with VXLAN/GRE/etc)
* Gateway mediated networking model with NFS-Ganesha

* Add support for more backends

Threading model

All OpenStack services use green thread model of threading, implemented through using the Python
eventlet and greenlet libraries.

Green threads use a cooperative model of threading: thread context switches can only occur when specific
eventlet or greenlet library calls are made (e.g., sleep, certain I/O calls). From the operating systems point
of view, each OpenStack service runs in a single thread.

The use of green threads reduces the likelihood of race conditions, but does not completely eliminate
them. In some cases, you may need to use the @utils.synchronized(...) decorator to avoid races.

In addition, since there is only one operating system thread, a call that blocks that main thread will block
the entire process.

Yielding the thread in long-running tasks

If a code path takes a long time to execute and does not contain any methods that trigger an eventlet
context switch, the long-running thread will block any pending threads.

Thi