
Monasca Documentation
Release 11.1.0.dev16

[’OpenStack Foundation’]

Jul 23, 2025

CONTENTS

1 Architecture 3
1.1 Repositories . 3

2 For Contributors 5
2.1 Contribution documentation . 5

2.1.1 So You Want to Contribute . 5
Communication . 5
Contacting the Core Team . 5
New Feature Planning . 5
Task Tracking . 6
Reporting a Bug . 7
Getting Your Patch Merged . 7
Project Team Lead Duties . 7

2.1.2 Database Migrations . 7
2.1.3 Codebase documentation . 7

Modules . 8

3 For Operators 9
3.1 Administrating . 9

3.1.1 Administration guide . 9
Schema Setup . 9
Time Series Databases Setup . 10

3.2 Glossary . 10
3.2.1 Glossary . 10

3.3 Installation . 10
3.3.1 Installation . 10

3.4 User . 10
3.4.1 User guide . 10

3.5 Configuration . 10
3.5.1 Command Line Interface . 10

monasca (python-monascaclient) . 10
monasca_db . 10
monasca-status . 11

3.5.2 Samples . 11
Sample Configuration For Application . 11
Sample Configuration For Logging . 11
Sample Configuration For Paster . 12

i

ii

Monasca Documentation, Release 11.1.0.dev16

The monitoring requirements in OpenStack environments are vast, varied, and highly complex. Monascas
project mission is to provide a monitoring-as-a-service solution that is multi-tenant, highly scalable,
performant, and fault-tolerant. Monasca provides an extensible platform for advanced monitoring that
can be used by both operators and tenants to gain operational insights about their infrastructure and
applications.

Monasca uses REST APIs for high-speed metrics, logs processing and querying. It integrates a streaming
alarm engine, a notification engine and an aggregation engine.

The use cases you can implement with Monasca are very diverse. Monasca follows a micro-services
architecture, with several services split across multiple repositories. Each module is designed to pro-
vide a discrete service in the overall monitoring solution and can be deployed or omitted according to
operators/customers needs.

CONTENTS 1

Monasca Documentation, Release 11.1.0.dev16

2 CONTENTS

CHAPTER

ONE

ARCHITECTURE

The following illustration provides an overview of Monascas metrics pipeline and the interaction of the
involved components. For information on Monascas log pipeline, refer to this wiki page.

1.1 Repositories
• monasca-api: RESTful API for metrics, alarms, and notifications.

• monasca-agent: Agent for retrieving metrics data.

• monasca-persister: Writes metrics and alarm state transitions to a time-series database.

• monasca-thresh: Thresholding engine for computing thresholds on metrics and determining alarm
states.

• monasca-notification: Pluggable notification engine for consuming alarm state transitions and
sending notifications for alarms.

• monasca-transform: Aggregation engine based on Apache Spark.

• monasca-aggregator: Light-weight metrics aggregator.

3

https://wiki.openstack.org/wiki/Monasca/Logging
https://github.com/openstack/monasca-api
https://github.com/openstack/monasca-agent
https://github.com/openstack/monasca-persister
https://github.com/openstack/monasca-thresh
https://github.com/openstack/monasca-notification
https://github.com/openstack/monasca-transform
https://github.com/monasca/monasca-aggregator

Monasca Documentation, Release 11.1.0.dev16

Apart from sending requests directly to the API, the following tools are available for interacting with
Monasca:

• Monasca Client: CLI and Python client.

• Horizon plugin: Plugin adding the monitoring panel to Horizon.

• Grafana app: Plugin for Grafana to view and configure alarm definitions, alarms, and notifications.

Libraries:

• monasca-common: Common code used in the Monasca components.

• monasca-statsd: StatsD-compatible library for sending metrics from instrumented applications.

Grafana integration:

• monasca-grafana-datasource: Multi-tenant Monasca data source for Grafana.

• grafana: Forked version of Grafana 4.1.2 with Keystone authentication added.

4 Chapter 1. Architecture

https://docs.openstack.org/python-monascaclient
https://github.com/openstack/monasca-ui
https://github.com/monasca/monasca-grafana
https://github.com/openstack/monasca-common
https://github.com/openstack/monasca-statsd
https://grafana.com/
https://github.com/openstack/monasca-grafana-datasource
https://github.com/monasca/grafana

CHAPTER

TWO

FOR CONTRIBUTORS

2.1 Contribution documentation

2.1.1 So You Want to Contribute
For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Monasca.

Communication

For communicating with Monasca Team, you can reach out to us on #openstack-monasca IRC channel
at OFTC.

We hold weekly team meetings in our IRC channel which is a good opportunity to ask questions, propose
new features or just get in touch with the team.

You can also send us an email to the mailing list openstack-discuss@lists.openstack.org. Please use
[Monasca] tag for easier thread filtering.

Contacting the Core Team

Name IRC nick Email
Martin Chacon Piza chaconpiza MartinDavid.ChaconPiza1@est.fujitsu.com
Witek Bedyk witek witold.bedyk@suse.com
Doug Szumski dougsz doug@stackhpc.com
Adrian Czarnecki adriancz adrian.czarnecki@ts.fujitsu.com
Joseph Davis joadavis joseph.davis@suse.com

New Feature Planning

Our process is meant to allow users, developers, and operators to express their desires for new features
using Storyboard stories. The workflow is very simple:

• If something is clearly broken, submit a bug report in Storyboard.

• If you want to change or add a feature, submit a story in Storyboard.

• Monasca core reviewers may request that you submit a specification to gerrit to elaborate on the
feature request.

5

https://docs.openstack.org/contributors/
http://eavesdrop.openstack.org/#Monasca_Team_Meeting
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
mailto:MartinDavid.ChaconPiza1@est.fujitsu.com
mailto:witold.bedyk@suse.com
mailto:doug@stackhpc.com
mailto:adrian.czarnecki@ts.fujitsu.com
mailto:joseph.davis@suse.com

Monasca Documentation, Release 11.1.0.dev16

• Significant features require release notes to be included when the code is merged.

Stories

New features can be proposed in Storyboard as new Story.

The initial story primarily needs to express the intent of the idea with enough details that it can be eval-
uated for compatibility with the project mission and whether or not the change requires a specification.
It is not expected to contain all of the implementation details. If the feature is very simple and well un-
derstood by the team, then describe it simply. The story is then used to track all the related code reviews.
Team members will request more information as needed.

Specifications

We use the monasca-specs repository for specification reviews. Specifications:

• Provide a review tool for collaborating on feedback and reviews for complex features.

• Collect team priorities.

• Serve as the basis for documenting the feature once implemented.

• Ensure that the overall impact on the system is considered.

Release Notes

The release notes for a patch should be included in the patch. If not, the release notes should be in a
follow-on review.

If any of the following applies to the patch, a release note is required:

• The deployer needs to take an action when upgrading

• A new feature is implemented

• Plugin API function was removed or changed

• Current behavior is changed

• A new config option is added that the deployer should consider changing from the default

• A security bug is fixed

• Change may break previous versions of the client library(ies)

• Requirement changes are introduced for important libraries like oslo, six requests, etc.

• Deprecation period starts or code is purged

A release note is suggested if a long-standing or important bug is fixed. Otherwise, a release note is not
required.

Task Tracking

We track our tasks in Storyboard

https://storyboard.openstack.org/#!/project_group/monasca

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag.

6 Chapter 2. For Contributors

https://storyboard.openstack.org/#!/project_group/59
https://github.com/openstack/monasca-specs
https://storyboard.openstack.org/#!/project_group/monasca

Monasca Documentation, Release 11.1.0.dev16

Kanban Board

Progress on implementation of important stories in Ussuri release is tracked in Monasca Board on Sto-
ryBoard.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can report them on Storyboard.

When filing a bug please remember to add the bug tag to the story. Please provide information on what
the problem is, how to replicate it, any suggestions for fixing it, and a recommendation of the priority.

All open bugs can be found in this Worklist.

Getting Your Patch Merged

All changes proposed to Monasca requires at least one Code-Review +2 votes from Monasca core re-
viewers before one of the core reviewers can approve patch by giving Workflow +1 vote.

Reviews Prioritisation

Monasca project uses Review-Priority field in Gerrit to emphasize prioritized code changes.

Every developer can propose the changes which should be prioritized in weekly team meeting or in the
mailing list. Any core reviewer, preferably from a different company, can confirm such proposed change
by setting Review-Priority +1.

Prioritized changes can be listed in this dashboard.

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

2.1.2 Database Migrations
Monasca uses Alembic migrations to set up its configuration database. If you need to change the config-
uration databases schema, you need to create a migration to adjust the database accordingly, as follows:

cd monasca_api/db/
alembic revision

This will create a new skeleton revision for you to edit. You will find existing revisions to use for inspi-
ration in the /monasca_api/db/alembic/versions/ directory.

Measurement data stored in a Time Series database (such as InfluxDB) would be migrated to a new
version using standard practice for a given TSDB.

2.1.3 Codebase documentation
Following section contains codebase documenation generated with, a little bit of assistance,
sphinx.ext.autodoc.

2.1. Contribution documentation 7

https://storyboard.openstack.org/#!/board/190
https://storyboard.openstack.org/#!/board/190
https://storyboard.openstack.org/#!/project_group/monasca
https://storyboard.openstack.org/#!/worklist/213
http://eavesdrop.openstack.org/#Monasca_Team_Meeting
http://www.tinyurl.com/monasca
https://docs.openstack.org/project-team-guide/ptl.html
http://alembic.zzzcomputing.com/en/latest/
http://www.sphinx-doc.org/en/stable/ext/autodoc.html

Monasca Documentation, Release 11.1.0.dev16

Modules

8 Chapter 2. For Contributors

CHAPTER

THREE

FOR OPERATORS

3.1 Administrating

3.1.1 Administration guide

Schema Setup

For setting up the Monasca configuration database, we provide monasca_db, an Alembic based database
migration tool. Historically, the schema for the configuration database was created by a SQL script. This
SQL was changed a couple of times, so monasca_db comes with a mechanism to detect the SQL script
revision being used to create it and stamp the database with the matching Alembic revision.

Setting up a new database

If you are deploying Monasca from scratch, database setup is quite straightforward:

1. Create a database and configure access credentials with ALL PRIVILEGES permission level on it
in the Monasca API configuration files [database] section.

2. Run schema migrations: monasca_db upgrade. It will run all migrations up to and including the
most recent one (head) unless a revision to migrate to is explicitly specified.

Upgrading Existing Database from Legacy Schema

If you have been running an older version of Monasca, you can attempt to identify and stamp its database
schema:

monasca_db stamp --from-fingerprint

This command will generate a unique fingerprint for the database schema in question and match that
fingerprint with an in-code map of fingerprints to database schema revisions. This should work for all
official (shipped as part of the monasca-api repository) schema scripts. If you used a custom third-party
schema script to set up the database, it may not be listed and youll get an error message similar to this
one (the fingerprint hash will vary):

Schema fingerprint 3d45493070e3b8e6fc492d2369e51423ca4cc1ac does not match␣
↪→any known legacy revision.

If this happens to you, please create a Storyboard story against the openstack/monasca-api project. Pro-
vide the following alongside the story:

1. A copy of or pointer to the schema SQL script being used to set up the database.

2. The fingerprint shown in the error message.

9

https://storyboard.openstack.org/#!/project/863

Monasca Documentation, Release 11.1.0.dev16

3. The output of monasca_db fingerprint --raw.

Time Series Databases Setup

Enabling InfluxDB Time Series Index in existing deployments

If enabling TSI on an existing InfluxDB install please follow the instructions for migrat-
ing existing data here: https://docs.influxdata.com/influxdb/v1.7/administration/upgrading/
#upgrading-influxdb-1-3-1-4-no-tsi-preview-to-1-7-x-tsi-enabled

Database Per Tenant

It is envisaged that separate database per tenant will be the default behaviour in a future release of
Monasca. Not only would it make queries faster for tenants, it would also allow administrators to
define retention policy per tenancy. To enable this, set influxdb.db_per_tenant to True in monasca-
{api,persister} config (it defaults to False at the moment if not set).

To migrate existing data to database per tenant, refer to README.rst under the following URL which
also contains the Python script to facilitate migration: https://opendev.org/openstack/monasca-persister/
src/branch/master/monasca_persister/tools/db-per-tenant/

3.2 Glossary

3.2.1 Glossary

3.3 Installation

3.3.1 Installation

3.4 User

3.4.1 User guide

3.5 Configuration
• Sample Config Files

3.5.1 Command Line Interface

monasca (python-monascaclient)

This is the main command line interface for working with the Monasca services, including retrieving
metrics from storage.

See the https://docs.openstack.org/python-monascaclient/latest/ for details.

monasca_db

CLI for Monasca database management.

usage: api [-h] [--config-dir DIR] [--config-file PATH] [--version]
{fingerprint,detect-revision,stamp,upgrade,version} ...

10 Chapter 3. For Operators

https://docs.influxdata.com/influxdb/v1.7/administration/upgrading/#upgrading-influxdb-1-3-1-4-no-tsi-preview-to-1-7-x-tsi-enabled
https://docs.influxdata.com/influxdb/v1.7/administration/upgrading/#upgrading-influxdb-1-3-1-4-no-tsi-preview-to-1-7-x-tsi-enabled
https://opendev.org/openstack/monasca-persister/src/branch/master/monasca_persister/tools/db-per-tenant/
https://opendev.org/openstack/monasca-persister/src/branch/master/monasca_persister/tools/db-per-tenant/
https://docs.openstack.org/python-monascaclient/latest/

Monasca Documentation, Release 11.1.0.dev16

monasca-status

CLI for checking the status of Monasca.

Use the command monasca-status upgrade check to check the readiness of the system for an upgrade.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing

to do.
1 At least one check encountered an issue and requires further investiga-

tion. This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated.

This should be considered something that stops an upgrade.
255 An unexpected error occurred.

History

Introduced in the Stein cycle as part of the OpenStack Community wide goal. https://governance.
openstack.org/tc/goals/stein/upgrade-checkers.html

3.5.2 Samples
The following sections show sample configuration files for monasca-api and related utilities. These are
generated from the code (apart from the samples for logging and paster) and reflect the current state of
code in the monasca-api repository.

Sample Configuration For Application

This sample configuration can also be viewed in monasca-api.conf.sample.

[DEFAULT]

Sample Configuration For Logging

This sample configuration can also be viewed in api-logging.conf.

[loggers]
keys = root, sqlalchemy, kafka, kafkalib

[handlers]
keys = console, file

[formatters]
keys = context

[logger_root]
level = DEBUG
handlers = console, file

[logger_sqlalchemy]
(continues on next page)

3.5. Configuration 11

https://governance.openstack.org/tc/goals/stein/upgrade-checkers.html
https://governance.openstack.org/tc/goals/stein/upgrade-checkers.html
../_static/monasca-api.conf.sample
https://git.openstack.org/cgit/openstack/monasca-api/plain/etc/api-logging.conf

Monasca Documentation, Release 11.1.0.dev16

(continued from previous page)

qualname = sqlalchemy.engine
"level = INFO" logs SQL queries.
"level = DEBUG" logs SQL queries and results.
"level = WARN" logs neither. (Recommended for production systems.)
level = DEBUG
handlers = console, file
propagate=0

[logger_kafka]
qualname = kafka
level = DEBUG
handlers = console, file
propagate = 0

[logger_kafkalib]
qualname = monasca_common.kafka_lib
level = INFO
handlers = console, file
propagate = 0

[handler_console]
class = logging.StreamHandler
args = (sys.stderr,)
level = DEBUG
formatter = context

[handler_file]
class = logging.handlers.RotatingFileHandler
level = DEBUG
formatter = context
store up to 5*100MB of logs
args = ('/var/log/monasca/api/monasca-api.log', 'a', 104857600, 5)

[formatter_context]
class = oslo_log.formatters.ContextFormatter

Sample Configuration For Paster

This sample configuration can also be viewed in api-config.ini.

[DEFAULT]
name = monasca_api

[pipeline:main]
pipeline = request_id auth api

[app:api]
paste.app_factory = monasca_api.api.server:launch

(continues on next page)

12 Chapter 3. For Operators

https://git.openstack.org/cgit/openstack/monasca-api/plain/etc/api-config.ini

Monasca Documentation, Release 11.1.0.dev16

(continued from previous page)

[filter:auth]
paste.filter_factory = monasca_api.healthcheck.keystone_protocol:filter_
↪→factory

[filter:request_id]
paste.filter_factory = oslo_middleware.request_id:RequestId.factory

[server:main]
use = egg:gunicorn#main
host = 127.0.0.1
port = 8070
workers = 9
worker-connections = 2000
worker-class = eventlet
timeout = 30
backlog = 2048
keepalive = 2
proc_name = monasca-api
loglevel = DEBUG

3.5. Configuration 13

	Architecture
	Repositories

	For Contributors
	Contribution documentation
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	New Feature Planning
	Stories
	Specifications
	Release Notes

	Task Tracking
	Kanban Board

	Reporting a Bug
	Getting Your Patch Merged
	Reviews Prioritisation

	Project Team Lead Duties

	Database Migrations
	Codebase documentation
	Modules

	For Operators
	Administrating
	Administration guide
	Schema Setup
	Setting up a new database
	Upgrading Existing Database from Legacy Schema

	Time Series Databases Setup
	Enabling InfluxDB Time Series Index in existing deployments
	Database Per Tenant

	Glossary
	Glossary

	Installation
	Installation

	User
	User guide

	Configuration
	Command Line Interface
	monasca (python-monascaclient)
	monasca_db
	monasca-status

	Samples
	Sample Configuration For Application
	Sample Configuration For Logging
	Sample Configuration For Paster

