Neutron Documentation
Release 17.4.2.dev115

Neutron development team

Sep 30, 2024

CONTENTS

Overview 3
1.1 Example architecture e e e e e 3
1.1.1 Controller e 4

1.1.2 Compute e e e e e e 5

1.1.3 Block Storage e 5

1.1.4 Object Storage o v i i it e e e 5

1.2 Networking o e e e 5
1.2.1 Networking Option 1: Provider networks 5

1.2.2 Networking Option 2: Self-service networks 6
Networking service overview 9
Networking (neutron) concepts 11
Install and configure for openSUSE and SUSE Linux Enterprise 13
4.1 Hostnetworking 13
4.1.1 Controllernode L 15
Configure network interfaces L oo oL 15

Configure name resolution Lo 15

412 Computenode.t e e e e 16
Configure network interfaces oL 16

Configure name resolution 17

4.1.3 Block storage node (Optional) 17
Configure network interfaces 17

Configure name resolution oL oL 18

4.1.4 Verifyconnectivity i 0 i e e e 18

4.2 Install and configure controllernode oL oo, 20
421 PrerequiSites e e e e e e e e e e 20

4.2.2 Configure networking optionso 22
Networking Option 1: Provider networks 23

Networking Option 2: Self-service networks 27

4.2.3 Configure the metadataagent 31

424 Configure the Compute service to use the Networking service 32

4.2.5 Finalize installation oL o 32

4.3 Install and configure computenode 33
4.3.1 Installthe components 33

4.3.2 Configure the common component v ... 33

4.3.3 Configure networking options oL 34
Networking Option 1: Provider networks 34

Networking Option 2: Self-service networks 35

4.3.4 Configure the Compute service to use the Networking service 36

43.5 Finalizeinstallation L oL 37

4.4 Verifyoperation e e e 37
4.4.1 Networking Option 1: Providernetworks 40

4.4.2 Networking Option 2: Self-service networks 41
Install and configure for Red Hat Enterprise Linux and CentOS 43
5.1 Hostnetworking e 43
5.1.1 Controllernode 45
Configure network interfaces 45

Configure name resolution Lo Lo 45

5.1.2 Computenode. e 46
Configure network interfaces oL oL 46

Configure name resolution oL o 47

5.1.3 Verify connectivity e e e e 47

5.2 Install and configure controllernode L., 49
5.2.1 PrerequiSiteS e e e e e e e e e e e e e 49

5.2.2 Configure networking options o 51
Networking Option 1: Provider networks 52

Networking Option 2: Self-service networks 56

5.2.3 Configure the metadataagent, 60

5.2.4 Configure the Compute service to use the Networking service 61

5.2.5 Finalizeinstallation L 61

5.3 Install and configure compute node 62
5.3.1 Install the components 62

5.3.2 Configure the common componento v ... 62

5.3.3 Configure networking options oL o 63
Networking Option 1: Provider networks 63

Networking Option 2: Self-service networks 64

5.3.4 Configure the Compute service to use the Networking service 65

5.3.5 Finalizeinstallation oL 66
Install and configure for Ubuntu 67
6.1 Hostnetworking e 67
6.1.1 Controllernode 69
Configure network interfaces oL oL 69

Configure name resolutiono 69

6.1.2 Computenode e e 70
Configure network interfaces 70

Configure name resolution oL oL 71

6.1.3 Verify connectivityo e e 71

6.2 Install and configure controllernode L. 72
6.2.1 PrerequiSiteS e e e e e e e e e e e 72

6.2.2 Configure networking options L. 75
Networking Option 1: Provider networks 75

Networking Option 2: Self-service networks 80

6.2.3 Configure the metadataagent 84

6.2.4 Configure the Compute service to use the Networking service 85

6.2.5 Finalizeinstallation L o 85

6.3 Install and configure computenode 86

6.3.1 Install the components 86

6.3.2 Configure the common component
6.3.3 Configure networking options
Networking Option 1: Provider networks
Networking Option 2: Self-service networks
6.3.4 Configure the Compute service to use the Networking service
6.3.5 Finalizeinstallation L o

7 OVN Install Documentation

7.1

7.2

Manual install & Configuration i
7.1.1 Packaging
7.1.2 Controllernodes
7.1.3 Networknodes e
7.1.4 Compute nodes vt e e e e e e e e e
7.1.5 Verifyoperation e e e e e e e e e
TripleO/RDO based deployments
7.2.1 Deployment Steps i i e e e e e e e e e e e e e e e e
7.2.2 Description of the environment L.

Network architecture of the environment

Connecting toone of thenodes viassh.
7.2.3 Initial resource creationo oL e e e e

8 OpenStack Networking Guide

8.1

Introduction e e e e e e
8.1.1 Basicnetworking
Ethernet e
VLANS . . e e e e e e e e

8.1.2 Network components v v v v v i it
Switches e e e e e e e e e
Routers e
Firewalls e e
Loadbalancers i i i i e e e

8.1.3 Overlay (tunnel) protocols
Generic routing encapsulation (GRE)
Virtual extensible local area network (VXLAN)
Generic Network Virtualization Encapsulation (GENEVE)

8.1.4 Network namespaces e
Linux network namespaces L.
Virtual routing and forwarding (VRF)

8.1.5 Network address translation

8.1.6 OpenStack Networking
CONCEPLS « v v v v e e e e e e e e e e
Service and component hierarchy 0.0 ...

8.1.7 Firewall-as-a-Service (FWaaS)
FWaaS v2 o e
FWaaS vl . . . o o e

91
91
91
92
95
95
96
96
96
98
98
99
100

103
103
104
104
105
106
107
108
109
111
111
111
111
111
111
112
112
112
112
112
113
113
113
114
114
114
115
119
121
121
121

8.2

FWaaS Feature Matrix o i i e e e e 121

Configuration e e e e e e e e 122
8.2.1 Servicesand agentso e e e e 122
Configuration options ot e e e e e 122
External processesrunby agentso 122
822 ML2plug-in. e 123
Architecture o o e e e e e e 123
Configuration L. e e 124
Reference implementations 129
8.2.3 AdAress SCOPES v v i it e e e 130
Accessing address SCOPeS .« . v v v v v e e e e e e e e e e e e e 130
Backwards compatibility 0oL oo 131
Create shared address scopes as an administrativeuser 131
Routing with address scopes for non-privileged users 134
8.2.4 Automatic allocation of network topologies 139
Enabling the deployment for auto-allocation 139
GetMe ANetwork 141
Validating the requirements for auto-allocation 142
Project resources created by auto-allocation L. 142
Compatibility notes e e 142
8.2.5 Availabilityzones 143
USECase . . . v i i e e e e e 143
Required extensions 143
Network scheduler 147
Router scheduler 148
L3 highavailability L 148
DHCP high availability 148
8.2.6 BGPdynamicrouting 148
Example configuration 149
Prefix advertisement L. 162
Operation with Distributed Virtual Routers (DVR) 164
IPVO . . e 166
High availability e 166
8.2.7 High-availability for DHCP 167
Demosetup e e e e e e 168
Configuration 169
Prerequisites for demonstration oL oL L. 171
Managing agents in neutron deployment oL, 171
Managing assignment of networks to DHCPagent 174
HA of DHCPagents 175
No HA for metadata service on isolated networks 177
Disabling and removing an agent e e . 177
Enabling DHCP high availability by default 178
8.2.8 DNSintegration e e e e e e 178
The Networking service internal DNS resolution 179
8.2.9 DNS integration with an external service 184
Configuring OpenStack Networking for integration with an external DNS service 184
Use case 1: Floating IPs are published with associated port DNS attributes . . . 186
Use case 2: Floating IPs are published in the external DNS service 192
Use case 3: Ports are published directly in the external DNS service 198
Performance considerationso oL 210

Configuration of the externally accessible network for use cases 3b and 3c 211

8.2.10 DNS resolution forinstances oo 211
Case 1: Each virtual network uses unique DNS resolver(s) 211
Case 2: DHCP agents forward DNS queries from instances 212
8.2.11 Distributed Virtual Routing with VRRP 213
Configurationexample L e 214
Known limitations L 216
8.2.12 Floating IP port forwarding 216
Configuring floating IP port forwarding 216
8.2.13 TPAM configuration L. 217
Thebasics. o o o e 217
Known limitations e 217
82.14 IPVO 218
Neutron subnets and the IPv6 APl attributes 218
Project network considerations oL oo L 221
Router support e 223
Advanced Services e e 224
Security considerations e e e e e e e 224
OpenStack control & management network considerations 225
Prefix delegation 225
8.2.15 Neutron Packet Logging Framework 230
Supported loggable resource typeso 230
Service Configurationo 230
Service workflow for Operator, 232
Logged events description e 234
8.2.16 Macvtap mechanismdriver oo 236
Prerequisites e e e 237
Architecture e 237
Example configuration 238
Network trafficflow 241
8.2.17 MTU considerations ittt 241
Jumboframes L. L 241
Instance network interfaces (VIFs) 243
8.2.18 Network segment rangesot e e e 243
Why youneedit 243
Howitworks o . o 244
Default network segmentranges L. 244
Example configuration L o e 244
Workflow o e 245
Known limitations L 249
8.2.19 Open vSwitch with DPDK datapath 249
Thebasics. o . L e 249
Using vhost-userinterfaces L L. 250
Using vhost-user multiqueue 251
Known limitations L 251
8.2.20 Open vSwitch hardware offloading 252
Thebasics. o o o e 252
Using Open vSwitch hardware offloading 253
8.2.21 Native Open vSwitch firewall driver 258
Configuring heterogeneous firewall drivers 258
Prerequisites 259

Enable the native OVS firewall driver 259

Using GRE tunnels inside VMs with OVS firewall driver 259
8.2.22 Quality of Service (QoS) e 259
Supported QoS rule types 260
Configuration e e e e e 261
Userworkflow 264
8.2.23 Quality of Service (QoS): Guaranteed Minimum Bandwidth 272
Limitations e e e 273
Placement pre-requiSites e e e e e e 274
Nova pre-requisites« v v v vt e e e e e e 274
Neutron pre-requiSites v v v v v v v e e e e e e e e e e e 274
Propagation of resource information oL 0oL oL 276
Sample usage e e 278
On Healing of Allocations, 279
Debugging e e 279
Links . . . o o 281
8.2.24 Role-Based Access Control (RBAC) 282
Supported objects for sharing with specific projects 282
Sharing an object with specific projects L. oL L. 282
Sharing a network with specific projects 282
Sharing a QoS policy with specific projects 284
Sharing a security group with specific projects 285
Sharing an address scope with specific projects 286
Sharing a subnet pool with specific projects 287
How the shared flag relates to these entries 289
Allowing a network to be used as an external network 290
Preventing regular users from sharing objects with each other 293
8.2.25 Routed provider networks L oo 293
Prerequisites e 294
Example configuration L oo 295
Create arouted providernetwork 296
Migrating non-routed networks torouted L. 301
8.2.26 Service function chaining L. 302
ArChitecture v v e e e e e e e e 303
Resources 304
Operations v v v v i e e e e e e e e e e e e e e e 305
8227 SR-IOV . . . e 308
Thebasics. o e 308
Using SR-IOVinterfaces 309
SR-IOV with ConnectX-3/ConnectX-3 Pro Dual Port Ethernet 316
SR-IOV with InfiniBand L . 318
Known limitations 318
8.2.28 Subnetpools 319
Why youneedthem 319
Howthey work 319
QUOLas e e e e e 320
Default subnetpools e 320
8.2.29 Subnetonboard L 323
Howitworks o . o 323
8.2.30 Servicesubnets e 326
Operation v v i e e e e e e e e e e e e e e e 326

Vi

8.3

8.4

8.5

8.6

Usage . . . o o o e e 327

8.2.31 Trunking e e 333
Operation v i i e e e e e e e e e e e 333
Example configuration Lo 334
Using trunks and subports inside an instance 339
Trunk states e e 339
Limitations and isSUes oL e e 340

8.2.32 Installing Neutron APIviaWSGI 340
WSGI Application 340
Neutron API behinduwsgi 340
Neutron API behind mod_wsgi 341
Start Neutron RPC server. o 341
Neutron Worker Processes 342

Deployment examples L e e e e e e e 342

8.3.1 PrerequiSites 342
Nodes o e 343
Networks and network interfaces L. 344

8.3.2 Mechanismdrivers e 344
Linux bridge mechanismdriver 344
Open vSwitch mechanismdriver 392

Operations e e e e e e 462

8.4.1 IPavailability metrics 462

842 ReSOUrcetags i i i i e e e 463
USECASES « v v v o e e e e e e e e e e e e e e e e e 464
Filtering with tags 464
Userworkflow 465
Limitations e 471
Future support e 471

843 RESOUICE PUIZE . . . v v v v o e e e e e e e e e e e e e e e 471
USage . .« v o e e e e e 471

8.4.4 Manage Networking service quotas o v v v v vt 472
Basic quota configuration Lo 472
Configure per-project qUOtas v v v v v vt e e e e e e e 473

Migration e e e e e e e e e e e e 477

8.5.1 Database 477
Database management command-linetool 478

8.5.2 Legacy nova-network to OpenStack Networking (neutron) 480
Impact and limitations e e 480
Migration process OVeIVIEW i et e e e 481

8.5.3 Add VRRPtoanexistingrouter 482
Migration e 482
L3HAtoLegacy o i e 484

Miscellaneous L L e e e e 485

8.6.1 Firewall-as-a-Service (FWaaS) v2scenario 485
Enable FWaaSv2 o 485
Configure Firewall-as-a-Service v2 486

8.6.2 Disable libvirt networking L L . 487
libvirt network implementation oL oL 487
How to disable libvirt networks oL oL 488

8.6.3 neutron-linuxbridge-cleanup utility L. 489
Description e e e e e e e 489

Vii

8.7

8.8

Usage o e 489

8.6.4 Virtual Private Network-as-a-Service (VPNaaS) scenario 489
Enabling VPNaaS 489
Using VPNaaS with endpoint group (recommended) 491
Configure VPNaaS without endpoint group (the legacy way) 495
OVN Driver Administration Guide 498
8.7.1 OVNinformation i 498
8.7.2 Features e e e 499
8.7.3 Routing e e e 500
North/South 500
East/West o o 506
8.7.4 IP Multicast: IGMP snooping configuration guide for OVN 508
Howtoenableit 508
OVN Database information 509
Extrainformation L. 509
8.7.5 OpenStack and OVN Tutorial 510
8.7.6 Reference architecture 510
Layout e e 510
Networking service with OVN integration 512
Accessing OVN database content 514
Addingacomputenode o 515
Security Groups/Rules 515
Networks o e 517
Routers o 537
Instances L. 552
877 DPDK SupportinOVN 581
Configuration Settings 0 e e e e 581
Configuration Settings in compute hosts 581
8.7.8 Troubleshooting 582
Launching VMs failure L oL 582
Multi-Node setupnot working 582
879 SR-IOV guide for OVN 582
External ports 582
Environment setup for OVN SR-IOV 583
OVN Database information 583
Known limitations L 584
8.7.10 Router Availability Zones guide for OVN 585
How toconfigureit 585
Using router availability zones 586
OVN Database information e 587
Archived Contents o o i e e e e e 588
8.8.1 Introduction to Networking 588
Networking API 588
Configure SSL support for networking API 589
Firewall-as-a-Service (FWaaS) overview 589
Allowed-address-pairso e e e e 589
Virtual-Private-Network-as-a-Service (VPNaaS) 590
8.8.2 Networking architecture 590
OVEIVIEW . . . o vt e it e e e e e e e e 590
VMware NSX integration o e 591
8.8.3 Plug-inconfigurations 591

viii

Configure Big Switch (Floodlight REST Proxy) plug-in 594

Configure Brocade plug-in 594
Configure NSX-mhplug-in, 595
Configure PLUMgrid plug-in oL 596

8.8.4 Configure neutron agentsottt e e e e 597
Configure data-forwarding nodes 597
Configure DHCPagent 598
Configure L3agent 599
Configure metering agent v v vttt e e e e 601
Configure Hyper-V L2 agent 602

Basic operations on agents e e e e e e e 603

8.8.5 Configure Identity service for Networking 603
Compute o e e e e e e e e e e e 605
Networking API and credential configuration 605
Configure security groups o o bt 606
Configure metadata e e e 607
Example nova.conf (for nova-compute and nova-api) 607

8.8.6 Advanced configurationoptions 608
L3 meteringagent 608

8.8.7 Scalable and highly available DHCP agents 608
88.8 UseNetworking 609
Core Networking APl features 609

Use Compute with Networking 611

8.8.9 Advanced features through APl extensions 613
Providernetworkso 613
L3routingand NAT 616
SECUrity ErOUPS . & v v v v o v e 618
Plug-in specificextensions L o oL 619
L3metering o e e e e e e e e e 625

8.8.10 Advanced operational features oL oL 627
Logging settings v v i i e e e e e e e e 627
Notifications oo e 627

8.8.11 Authentication and authorization 629
9 Configuration Guide 633
9.1 Configuration Reference L L 633
9.1.1 neutron.conf 633
DEFAULT e 633

AZENT . . . L L e e e e e e e e e e e e 650

COTS o v v e e e e e e e e e e e e e e e e e 652
database e 653

IONIC o o e e 657
keystone_authtoken L. L 660

NOVA o v v e v vt e 665
0SlO_CONCUITENCY v v o v et e et e e e e e e 669
oslo_messaging_ amqgp it e e e e e e e 670
oslo_messaging_kafka 677
oslo_messaging_notifications oL oL 679
oslo_messaging_rabbit L L e 680
oslo_middleware 685
oslo_policy e 685

PIIVSED . . v o o e 687

QUOAS & v v v e 688
SSl L e 689

ml2 _confini. e 690
DEFAULT 690
ml2 .. e e 695
ml2_type_flat 696
ml2_type_geneve L e e e 696
MI2_tYPe_GIe o v e e e e e e e e e e e e e e 697
ml2_type_vlano 697
ml2_type_vxlan e 697
OVS_AIIVET o o o e e e e e e e e 697
SECUMIEYZIOUD & v v v v v v v e e e e e e e e e e e e e e e e e e 698
SHOV_AIIVET . . . v . o e e e e e e e e e e e e e s 698

linuxbridge_agent.ini L 699
DEFAULT e 699
AZENT . . . o o e e e e e e e e 704
linux_bridge e 705
network_log L. e 705
SECUMIEYZIOUD & v v v v v v v e 706
vxlan ..o e e e e e e 706

macvtap_agentini e e e e e e e e e e 708
DEFAULT e 708
AZENT . . . L L e e e e e e e e e e e e e 713
00 VoV 7 1 o 714
SECUMIEYZIOUD &« v v v v v v v e e e e e e e e e e e e e e e e e e e 714

openvswitch_agent.ini L e e 715
DEFAULT e e e 715
AZENE © v v e 720
network_log L. e 722
OVS o v e e e e e e e e e e e e e e e e e 722
SECUTILYZIOUP .« « . v v v v e v e e e e e e e e e e e e e e e e e e 726
=) 110 726

SHOV_AEeNntinl v v L i e e e e e e e e e e e e e e 727
DEFAULT e 727
AZENE + o i e 732
SIHIOV_NIC . o v v v vt e e e e e e e e e e e e e e e e 732

OVILINT . . v v v v e 733
DEFAULT e e e e 733
OVIL o v vt e 738
OVS v v e 742

dhep_agentini L e 742
DEFAULT e 742
AZENT . . . o L e e e e e e e e e e e e e e 751
OVS o v e 751

I3_agentini e e e e e 752
DEFAULT e 752
AZENT . . . L L e e e e e e e e e e e e e 757
network_log e e 758
OVS o e e e e e e e e e e e e e e e e 758

DEFAULT e 759

AZENT . . . L L e e e e e e e e e e e e e 766

cache 767

9.1.11 Neutron Metering system o .t v v vt i e 771
Non-granular traffic messages 000, 771

Granular traffic messages L 772

Sample of metering_agent.ini 773

9.2 PolicyReference 781
0.2.1 Neutron e e e e e e 781

10 Command-Line Interface Reference 817
10.1 neutron-debug L e e e e 817
10.1.1 neutron-debug usage e e 817
Subcommands 818

10.1.2 neutron-debug optional arguments L. 818

10.1.3 neutron-debug probe-create command, 819
Positional arguments oL L 819

10.1.4 neutron-debug probe-listcommand 820

10.1.5 neutron-debug probe-clearcommand 820

10.1.6 neutron-debug probe-delete command 820
Positional arguments oL Lo 820

10.1.7 neutron-debug probe-exec command L. 820

10.1.8 neutron-debug ping-allcommand L. 820
Positional arguments L. Lo 820

Optional arguments e e e e e e e 821

10.1.9 neutron-debugexample L oo 821

10.2 neutron-sanity-check L e 821
10.2.1 neutron-sanity-checkusage 821

10.2.2 neutron-sanity-check optional arguments 822

103 neutron-status e e e e e e e e e e e e e 824
10.3.1 neutron-status USAZE . . . « « v v v v v e e e e e e e e e e e e e e e 824
Commanddetails 825

11 OVN Driver 827
I1.1 Migration Stratey v v v v v e e e e e e e e e e e e e e e e 827
IT.1.1 Overview o o oo e e s e e e e e 827

11.1.2 Steps for migration L e 827
Perform the following steps in the overcloud/undercloud 827

Perform the following steps in the undercloud 828

11.2 Gaps from ML2/OVS e e e 832
11.2.1 References e 834

11.3 OVNsupported DHCPoptions o v ittt et 834
11.3.1 IPversion4 o e e 834

11.3.2 IPversion 6 o0t 835

11.3.3 OVN Database information 836

11.4 Frequently Asked Questions i i e 837
12 API Reference 839
13 Neutron Feature Classification 841
13.1 Introduction e e e 841
13.1.1 Goals o e e e 841

Xi

13.1.2 Concepts o vt i e e e e e e e e e e e e e e e 841

13.1.3 Feature status v v i e e e e e e e e e e e e e e e e e e 841
Immature e e e e e e e e e e 842

Mature e e e e e e e e e e e e e 842

Required e 842

Deprecated 842

Deployment rating of features 842

13.2 General Feature Support L 843
13.3 Provider Network Support e 848
14 Contributor Guide 851
14.1 Basic Information e 851
14.1.1 So You Wantto Contribute 851
Communication oL L e e e e e e 851

Contacting the Core Team 852

New Feature Planning 852

Task Tracking e 852
ReportingaBug 852

Getting Your Patch Merged L L. 853

Project Team Lead Duties 853

142 Neutron Policies e 853
14.2.1 Neutron Policies e 853
Blueprintsand Specs e e 853

Neutron Bugs e 858

Contributor Onboarding e 872

Neutron Team Structure o .ttt 872

Neutron Gate Failure Triage 877

Neutron Code Reviews e 881

Pre-release check list 883

Neutron Third-party CI 885

Recheck Failed Cl jobsinNeutron 888

143 Neutron Stadium e e 888
14.3.1 Neutron Stadium L 888
Stadium Governance oL e e e e e 888

Sub-Project Guidelines 892

144 Developer Guide e e 896
14.4.1 Effective Neutron: 100 specific ways to improve your Neutron contributions . . 896
Developing better software o oo 896

Landing patches morerapidly, 902

14.4.2 Setting Up a Development Environment 905
Gettingthecode 905
Aboutignorefiles. 905

Testing Neutron L 905

14.4.3 Deploying a development environment with vagrant 905
Vagrant prerequisites o . b e e e e e e e e e e e e e e 906

Sparse architecture e e e e 906

14.4.4 Contributing new extensions to Neutron 908
Introduction e e 908
Contribution Process oL 909

Designand Development 909

Testing and Continuous Integration 909

Xii

14.5

Defect Management 910

Backport Management Strategieso . 911
DevStack Integration Strategies L 0oL 911
Documentation e 912
ProjectInitial Setup e 912
Internationalization support oL o 912
Integrating with the Neutron system 914
1445 NeutronpublicAPI 917
Breakages e 918
14.4.6 Client command extension support oo 919
14.47 Alembic Migrations it e e 919
Introduction 919
The Migration Wrapper v v v v v v i et e e e e e e 919
Migration Branches Lo 921
Developers e e 921
144.8 Upgradechecks e 928
Introduction 928
3rd party pluginschecks 928
1449 Testing v i i e e e e e 928
Testing Neutron o v i v e e e e e e e e e e 928
Full Stack Testing 940
Test COVErage v v v v e e e e e e e e e e e e e e 940
Template for ModelMigrationSync for external repos 942
Transient DB Failure Injection 944
Neutron jobs running in Zuul CI o 0oL 945
Testing OVN with DevStack 948
Neutron Internals e 960
14.5.1 NeutronlInternals L 960
Subnet Pools and Address Scopes 960
Agent exXtenSIONS oo i e e e e e e e e e e e e e e 964
APLEXtensions oo i e 965
Neutron WSGI/HTTP APl layer 967
Callingthe ML2 Plugin it 968
Profiling Neutron Code 968
Neutron Database Layer 975
Relocation of Database Models 978
Keep DNS Nameserver Order Consistency In Neutron 979
Integration with external DNS services 980
Neutron Stadium il8n L L 981
L2agent extensions v v v i e e e e e e e e e e e e e 981
L2 Agent Networking 982
L3agent extensions v v v i e e e e e e e e e e e e e e 993
Layer 3 Networking in Neutron - via Layer 3 agent & OpenVSwitch 993
Live-migration e e e e 1000
ML2 Extension Managero 1004
Network IP Availability Extension 1004
Objects INNEULION v v v i e e e e e e e e e e e e e e e e e e 1007
Open vSwitch Firewall Driver 1019
Neutron Open vSwitch vhost-user support 1030
Neutron Plugin Architecture, 1030
Authorization Policy Enforcement 0oL, 1037

Composite Object Status via Provisioning Blocks 1043

Quality of Service e e 1045

Quota Management and Enforcement 1053

Retrying Operations e 1058

Neutron RPC API Layer 1060

Neutron Messaging Callback System 1063

Segments eXteNSION v v v v e e e e e e e e e e e e e e e e e 1068

Service Extensions 1069

Servicesand agentso e e e e e e e e e e e 1070

Add Tags to Neutron Resources 1072

Upgrade Strategy v v v v e e e e e e e e e e e e e e e e 1074

OVN Design Notes ot s e 1078

1452 Module Reference 1109

146 OVNDriver e e e 1109
OVNbackend e 1109

OVNTools o e 1109

147 Dashboards e e e 1111
CI Status Dashboards 1112

Gerrit Dashboards Lo 1112

Grafana Dashboards 1112

Xiv

Neutron Documentation, Release 17.4.2.dev115

Neutron is an OpenStack project to provide network connectivity as a service between interface de-
vices (e.g., VNICs) managed by other OpenStack services (e.g., nova). It implements the OpenStack
Networking API.

This documentation is generated by the Sphinx toolkit and lives in the source tree. Additional docu-
mentation on Neutron and other components of OpenStack can be found on the OpenStack wiki and the
Neutron section of the wiki. The Neutron Development wiki is also a good resource for new contributors.

Enjoy!

CONTENTS 1

https://docs.openstack.org/api-ref/network/
https://docs.openstack.org/api-ref/network/
https://wiki.openstack.org
https://wiki.openstack.org/NeutronDevelopment

Neutron Documentation, Release 17.4.2.dev115

2 CONTENTS

CHAPTER
ONE

OVERVIEW

The OpenStack project is an open source cloud computing platform that supports all types of cloud
environments. The project aims for simple implementation, massive scalability, and a rich set of features.
Cloud computing experts from around the world contribute to the project.

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a variety of complementary
services. Each service offers an Application Programming Interface (API) that facilitates this integration.

This guide covers step-by-step deployment of the major OpenStack services using a functional example
architecture suitable for new users of OpenStack with sufficient Linux experience. This guide is not
intended to be used for production system installations, but to create a minimum proof-of-concept for
the purpose of learning about OpenStack.

After becoming familiar with basic installation, configuration, operation, and troubleshooting of these
OpenStack services, you should consider the following steps toward deployment using a production
architecture:

* Determine and implement the necessary core and optional services to meet performance and re-
dundancy requirements.

* Increase security using methods such as firewalls, encryption, and service policies.

* Implement a deployment tool such as Ansible, Chef, Puppet, or Salt to automate deployment and
management of the production environment.

1.1 Example architecture

The example architecture requires at least two nodes (hosts) to launch a basic virtual machine (VM) or
instance. Optional services such as Block Storage and Object Storage require additional nodes.

Important: The example architecture used in this guide is a minimum configuration, and is not in-
tended for production system installations. It is designed to provide a minimum proof-of-concept for the
purpose of learning about OpenStack. For information on creating architectures for specific use cases,
or how to determine which architecture is required, see the Architecture Design Guide.

This example architecture differs from a minimal production architecture as follows:
* Networking agents reside on the controller node instead of one or more dedicated network nodes.

* Overlay (tunnel) traffic for self-service networks traverses the management network instead of a
dedicated network.

https://docs.openstack.org/arch-design/

Neutron Documentation, Release 17.4.2.dev115

For more information on production architectures, see the Architecture Design Guide, OpenStack Oper-
ations Guide, and OpenStack Networking Guide.

Hardware Requirements
g N ™ -

Controller Node Compute Node 1
1-2 4GB
[CPU] [RAM J

1-2 8 GB 2-4+ 8+ GB
CPU RAM CPU RAM
100 GB 2 100+ GB 2 100+ GB
Storage NIC Storage MNIC Storage
\, VAN j

bject Storage Node 2
4+ GB
) (%)

100+ GB 1
Storage MNIC

-

100+ GB
Storage

EBREE 1}
)

— N N ol
[
e

o
- o A,

T e e mm mm mm mm o e e

R —

Fig. 1: Hardware requirements

1.1.1 Controller

The controller node runs the Identity service, Image service, management portions of Compute, manage-
ment portion of Networking, various Networking agents, and the Dashboard. It also includes supporting
services such as an SQL database, message queue, and Network Time Protocol (NTP).

Optionally, the controller node runs portions of the Block Storage, Object Storage, Orchestration, and
Telemetry services.

The controller node requires a minimum of two network interfaces.

4 Chapter 1. Overview

https://docs.openstack.org/arch-design/
https://wiki.openstack.org/wiki/OpsGuide
https://wiki.openstack.org/wiki/OpsGuide

Neutron Documentation, Release 17.4.2.dev115

1.1.2 Compute

The compute node runs the hypervisor portion of Compute that operates instances. By default, Compute
uses the kernel-based VM (KVM) hypervisor. The compute node also runs a Networking service agent
that connects instances to virtual networks and provides firewalling services to instances via security
groups.

You can deploy more than one compute node. Each node requires a minimum of two network interfaces.

1.1.3 Block Storage

The optional Block Storage node contains the disks that the Block Storage and Shared File System
services provision for instances.

For simplicity, service traffic between compute nodes and this node uses the management network.
Production environments should implement a separate storage network to increase performance and
security.

You can deploy more than one block storage node. Each node requires a minimum of one network
interface.

1.1.4 Object Storage

The optional Object Storage node contain the disks that the Object Storage service uses for storing
accounts, containers, and objects.

For simplicity, service traffic between compute nodes and this node uses the management network.
Production environments should implement a separate storage network to increase performance and
security.

This service requires two nodes. Each node requires a minimum of one network interface. You can
deploy more than two object storage nodes.

1.2 Networking

Choose one of the following virtual networking options.

1.2.1 Networking Option 1: Provider networks

The provider networks option deploys the OpenStack Networking service in the simplest way possible
with primarily layer-2 (bridging/switching) services and VLAN segmentation of networks. Essentially,
it bridges virtual networks to physical networks and relies on physical network infrastructure for layer-
3 (routing) services. Additionally, a DHCP<Dynamic Host Configuration Protocol (DHCP) service
provides IP address information to instances.

The OpenStack user requires more information about the underlying network infrastructure to create a
virtual network to exactly match the infrastructure.

1.2. Networking 5

Neutron Documentation, Release 17.4.2.dev115

Warning: This option lacks support for self-service (private) networks, layer-3 (routing) services,
and advanced services such as FireWall-as-a-Service (FWaaS). Consider the self-service networks
option below if you desire these features.

Networking Option 1: Provider Networks

Service Layout

——

g R g ~ - \
1
Controller Node Compute i Block Storage !
]
—_———————— -~ 1
[SQL Database J [MNetworking J : Block Storage : Nodes : Nodes 1
Service Management Management l ! : !
: ! : -/ KVM Hypervisor I 'Siir:?gegﬂ :
e ————— s T s 1
I | i I \ 1
! NOSQSL Da_itabase | ;i?;:'kmg I Orchestration | : 1
\ Al v [ug-in] \ J - I Block Storage 1
m———————=- - P 1 Volume Service :
Linux Network I Object Storage | 1 1
Message Queue Utiliti L Servi 1 aiaininininininis -
tilities \ T ICEN Linux Network 1| Shared File System 1 |
e ~ Utilities I Service '
[Network Time J [Networking] : Shared File System : : el el 1
.)) i A
Service Linux Bridge Agent \ Management w, Networking | Telemetry 1y
—_———————— - Linux Bridge Agent : Agent !
) Networking f Database | N f
Identity I | b ~| TTTTTTTT o=
DHCP Agent \ Management v, Telemetry I
lr --------- - Agent H e
: Networking Telemetry ! \ w :
[Image Service J (Metadata Agent J '\ Management J DbJECt
e — \ Storage Nodes
Compute f Telemetry | :
Management \ Agent(s) | Object Storage
_ -————————-—"/ Account Service

Cj Core component

—————

, Optional component

-

Object Storage
Container Service

Object Storage
Object Service

il

1.2.2 Networking Option 2: Self-service networks

The self-service networks option augments the provider networks option with layer-3 (routing) services
that enable self-service networks using overlay segmentation methods such as Virtual Extensible LAN
(VXLAN). Essentially, it routes virtual networks to physical networks using Network Address Transla-
tion (NAT). Additionally, this option provides the foundation for advanced services such as FWaaS.

The OpenStack user can create virtual networks without the knowledge of underlying infrastructure on
the data network. This can also include VLAN networks if the layer-2 plug-in is configured accordingly.

Chapter 1. Overview

Neutron Documentation, Release 17.4.2.dev115

Networking Option 2: Self-Service Networks

Service Layout

e ' ' TS \
1
Controller Node Compute i Block Storage !
!
. A B 1
[SQL Database J [MNetworking ! Block Storage J p Nodes . : Nodes :
Service Management Management 1 i
AW . iISC5| Target 1
1 l I
P ’ p———c———o » KVM Hypervisor | Service :
No5SQL Database Metworking . S 1
_ . | Orchestration - ~ 1
" Service J | ML2 Plug-in) v J Compute : Block Storage I
N\ Ammmmmmm o= -4 L P) 1L Volume Service :
[Message Queue [Linux Network ! Object Storage : S —— T
y Utilities)\ ProxyService Linux Network 1 { Shared File System | :
~ pr—— e ~ Utilities 1 Service ! 1
Network Time Networking Shared File System —— : !
.) — ———————==
Service) Linux Bridge Agent I Management Networking I Telemetry 1 :
. pm—_———————— ~ Linux Bridge Agent : Agent 1
[\dentity [Networking || Database S— | Seeeeeeee/ ’
y L3 Agent _Management Telemetry 1
N[Neworking)i Telemery et T R
) etworking elemetry /o : I
[Image Service y [DHCP Agent \ Management I DbJECt 1
1 1
< Y — > | Storage Nodes |
Compute Metworking | Telemetry 1) 1
Management J| Metadata Agent [, Agent(s) 1 Object Storage :
_ v, : Account Service] |
|l ———— |
1 Object Storage :
l N .
C] Core component | Container Service J
| — !
: Object Storage :
T T T 3 \ Object Service 1
1 1 H N\ H)
\ ; Optional compeonent . MooooeomeT
o o - -
1.2. Networking

Neutron Documentation, Release 17.4.2.dev115

8 Chapter 1. Overview

CHAPTER
TWO

NETWORKING SERVICE OVERVIEW

OpenStack Networking (neutron) allows you to create and attach interface devices managed by other
OpenStack services to networks. Plug-ins can be implemented to accommodate different networking
equipment and software, providing flexibility to OpenStack architecture and deployment.

It includes the following components:

neutron-server Accepts and routes API requests to the appropriate OpenStack Networking plug-in for
action.

OpenStack Networking plug-ins and agents Plug and unplug ports, create networks or subnets, and
provide IP addressing. These plug-ins and agents differ depending on the vendor and technologies
used in the particular cloud. OpenStack Networking ships with plug-ins and agents for Cisco
virtual and physical switches, NEC OpenFlow products, Open vSwitch, Linux bridging, and the
VMware NSX product.

The common agents are 1.3 (layer 3), DHCP (dynamic host IP addressing), and a plug-in agent.

Messaging queue Used by most OpenStack Networking installations to route information between the
neutron-server and various agents. Also acts as a database to store networking state for particular
plug-ins.

OpenStack Networking mainly interacts with OpenStack Compute to provide networks and connectivity
for its instances.

Neutron Documentation, Release 17.4.2.dev115

10 Chapter 2. Networking service overview

CHAPTER
THREE

NETWORKING (NEUTRON) CONCEPTS

OpenStack Networking (neutron) manages all networking facets for the Virtual Networking Infrastruc-
ture (VNI) and the access layer aspects of the Physical Networking Infrastructure (PNI) in your Open-
Stack environment. OpenStack Networking enables projects to create advanced virtual network topolo-
gies which may include services such as a firewall, and a virtual private network (VPN).

Networking provides networks, subnets, and routers as object abstractions. Each abstraction has func-
tionality that mimics its physical counterpart: networks contain subnets, and routers route traffic between
different subnets and networks.

Any given Networking set up has at least one external network. Unlike the other networks, the external
network is not merely a virtually defined network. Instead, it represents a view into a slice of the
physical, external network accessible outside the OpenStack installation. IP addresses on the external
network are accessible by anybody physically on the outside network.

In addition to external networks, any Networking set up has one or more internal networks. These
software-defined networks connect directly to the VMs. Only the VMs on any given internal network,
or those on subnets connected through interfaces to a similar router, can access VMs connected to that
network directly.

For the outside network to access VMSs, and vice versa, routers between the networks are needed. Each
router has one gateway that is connected to an external network and one or more interfaces connected
to internal networks. Like a physical router, subnets can access machines on other subnets that are
connected to the same router, and machines can access the outside network through the gateway for the
router.

Additionally, you can allocate IP addresses on external networks to ports on the internal network. When-
ever something is connected to a subnet, that connection is called a port. You can associate external
network IP addresses with ports to VMs. This way, entities on the outside network can access VMs.

Networking also supports security groups. Security groups enable administrators to define firewall rules
in groups. A VM can belong to one or more security groups, and Networking applies the rules in those
security groups to block or unblock ports, port ranges, or traffic types for that VM.

Each plug-in that Networking uses has its own concepts. While not vital to operating the VNI and
OpenStack environment, understanding these concepts can help you set up Networking. All Networking
installations use a core plug-in and a security group plug-in (or just the No-Op security group plug-in).
Additionally, Firewall-as-a-Service (FWaaS) is available.

11

Neutron Documentation, Release 17.4.2.dev115

12 Chapter 3. Networking (neutron) concepts

CHAPTER
FOUR

INSTALL AND CONFIGURE FOR OPENSUSE AND SUSE LINUX
ENTERPRISE

4.1 Host networking

After installing the operating system on each node for the architecture that you choose to deploy, you
must configure the network interfaces. We recommend that you disable any automated network man-
agement tools and manually edit the appropriate configuration files for your distribution. For more
information on how to configure networking on your distribution, see the SLES 12 or openSUSE docu-
mentation.

All nodes require Internet access for administrative purposes such as package installation, security up-
dates, Domain Name System (DNS), and Network Time Protocol (NTP). In most cases, nodes should
obtain Internet access through the management network interface. To highlight the importance of net-
work separation, the example architectures use private address space for the management network and
assume that the physical network infrastructure provides Internet access via Network Address Transla-
tion (NAT) or other methods. The example architectures use routable IP address space for the provider
(external) network and assume that the physical network infrastructure provides direct Internet access.

In the provider networks architecture, all instances attach directly to the provider network. In the self-
service (private) networks architecture, instances can attach to a self-service or provider network. Self-
service networks can reside entirely within OpenStack or provide some level of external network access
using Network Address Translation (NAT) through the provider network.

The example architectures assume use of the following networks:
* Management on 10.0.0.0/24 with gateway 10.0.0.1

This network requires a gateway to provide Internet access to all nodes for administrative purposes
such as package installation, security updates, Domain Name System (DNS), and Network Time
Protocol (NTP).

* Provider on 203.0.113.0/24 with gateway 203.0.113.1

This network requires a gateway to provide Internet access to instances in your OpenStack envi-
ronment.

You can modify these ranges and gateways to work with your particular network infrastructure.

Network interface names vary by distribution. Traditionally, interfaces use et h followed by a sequential
number. To cover all variations, this guide refers to the first interface as the interface with the lowest
number and the second interface as the interface with the highest number.

Unless you intend to use the exact configuration provided in this example architecture, you must modify
the networks in this procedure to match your environment. Each node must resolve the other nodes by

13

https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_basicnet_manconf.html
https://doc.opensuse.org/documentation/leap/reference/html/book-reference/cha-network.html
https://tools.ietf.org/html/rfc1918

Neutron Documentation, Release 17.4.2.dev115

Network Layout

r \ pmmEmm_—_—__—__——_——_—_——_—————————— kY
Controller Node 1

Interface 1

Interface 1
10.0.0.11/24 4

10.0.0 4

Interface 2
{unnumberad)

Interface 2
{unnumbered)

Interface 1

Internet

. Management network Provider network
10.0.0.0/24 203.0.113.0/24

——————
i !

C] Core component) : Optional component
e o — — -

14 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

name in addition to IP address. For example, the controller name must resolve to 10.0.0.11,
the IP address of the management interface on the controller node.

Warning: Reconfiguring network interfaces will interrupt network connectivity. We recommend
using a local terminal session for these procedures.

Note: Your distribution enables a restrictive firewall by default. During the installation process, cer-
tain steps will fail unless you alter or disable the firewall. For more information about securing your
environment, refer to the OpenStack Security Guide.

4.1.1 Controller node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.11
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

e Edit the /etc/sysconfig/network/ifcfg-INTERFACE_NAME file to contain the fol-
lowing:

1. Reboot the system to activate the changes.

Configure name resolution

1. Set the hostname of the node to controller.

2. Edit the /etc/hosts file to contain the following:

controller
10.0.0.11 controller

computel

10.0.0.31 computel
blockl

10.0.0.41 blockl

objectl

(continues on next page)

4.1. Host networking 15

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

10.0.0.51 objectl
object2
10.0.0.52 object2

Warning: Some distributions add an extraneous entry in the /et c/hosts file that resolves
the actual hostname to another loopback IP address suchas 127.0.1. 1. You must comment
out or remove this entry to prevent name resolution problems. Do not remove the 127.0.0.1
entry.

Note: This guide includes host entries for optional services in order to reduce complexity should
you choose to deploy them.

4.1.2 Compute node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.31
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

Note: Additional compute nodes should use 10.0.0.32, 10.0.0.33, and so on.

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

e Edit the /etc/sysconfig/network/ifcfg-INTERFACE_NAME file to contain the fol-
lowing:

1. Reboot the system to activate the changes.

16 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

Configure name resolution

1. Set the hostname of the node to computel.

2. Edit the /etc/hosts file to contain the following:

controller

10.0.0.11 controller
computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2

Warning: Some distributions add an extraneous entry in the /et c/hosts file that resolves
the actual hostname to another loopback IP address suchas 127.0.1.1. You must comment
out or remove this entry to prevent name resolution problems. Do not remove the 127.0.0.1
entry.

Note: This guide includes host entries for optional services in order to reduce complexity should
you choose to deploy them.

4.1.3 Block storage node (Optional)

If you want to deploy the Block Storage service, configure one additional storage node.

Configure network interfaces

» Configure the management interface:
— IP address: 10.0.0.41
— Network mask: 255.255.255.0 (or /24)

— Default gateway: 10.0.0.1

4.1. Host networking 17

Neutron Documentation, Release 17.4.2.dev115

Configure name resolution

1. Set the hostname of the node to block1.

2. Editthe /etc/hosts file to contain the following:

controller

10.0.0.11 controller
computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2

Warning: Some distributions add an extraneous entry in the /et c/hosts file that resolves
the actual hostname to another loopback IP address suchas 127.0.1.1. You must comment
out or remove this entry to prevent name resolution problems. Do not remove the 127.0.0.1
entry.

Note: This guide includes host entries for optional services in order to reduce complexity should
you choose to deploy them.

3. Reboot the system to activate the changes.

4.1.4 Verify connectivity

We recommend that you verify network connectivity to the Internet and among the nodes before pro-
ceeding further.

1. From the controller node, test access to the Internet:

ping —-c 4 openstack.org

2. From the controller node, test access to the management interface on the compute node:

18 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

ping —-c 4 computel

3. From the compute node, test access to the Internet:

ping —-c 4 openstack.org

4. From the compute node, test access to the management interface on the controller node:

ping -c 4 controller

Note: Your distribution enables a restrictive firewall by default. During the installation process, cer-
tain steps will fail unless you alter or disable the firewall. For more information about securing your
environment, refer to the OpenStack Security Guide.

4.1. Host networking 19

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 17.4.2.dev115

4.2 Install and configure controller node

4.2.1 Prerequisites
Before you configure the OpenStack Networking (neutron) service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl —-u root -p

¢ Create the neut ron database:

» Grant proper access to the neut ron database, replacing NEUTRON_DBPASS with a suit-
able password:

¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the neutron user:

openstack user create —--domain default --password-prompt neutron

Add the admin role to the neut ron user:

openstack role add —--project service —--user neutron admin

20 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

Note: This command provides no output.

* Create the neut ron service entity:

openstack service create —--name neutron
—-—description network

4. Create the Networking service API endpoints:

openstack endpoint create —--region RegionOne
network public http://controller:9696

openstack endpoint create --region RegionOne
network internal http://controller:9696

openstack endpoint create --region RegionOne
network admin http://controller:9696

(continues on next page)

4.2. Install and configure controller node 21

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

4.2.2 Configure networking options

You can deploy the Networking service using one of two architectures represented by options 1 and 2.

Option 1 deploys the simplest possible architecture that only supports attaching instances to provider
(external) networks. No self-service (private) networks, routers, or floating IP addresses. Only the
admin or other privileged user can manage provider networks.

Option 2 augments option 1 with layer-3 services that support attaching instances to self-service net-
works. The demo or other unprivileged user can manage self-service networks including routers that
provide connectivity between self-service and provider networks. Additionally, floating IP addresses
provide connectivity to instances using self-service networks from external networks such as the Inter-
net.

Self-service networks typically use overlay networks. Overlay network protocols such as VXLAN in-
clude additional headers that increase overhead and decrease space available for the payload or user
data. Without knowledge of the virtual network infrastructure, instances attempt to send packets using
the default Ethernet maximum transmission unit (MTU) of 1500 bytes. The Networking service auto-
matically provides the correct MTU value to instances via DHCP. However, some cloud images do not
use DHCP or ignore the DHCP MTU option and require configuration using metadata or a script.

Note: Option 2 also supports attaching instances to provider networks.

Choose one of the following networking options to configure services specific to it. Afterwards, return
here and proceed to Configure the metadata agent.

22 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

Networking Option 1: Provider networks

Install and configure the Networking components on the controller node.

Install the components

zypper install --no-recommends openstack-neutron
openstack—-neutron-server openstack-neutron-linuxbridge—-agent
openstack—neutron-dhcp—agent openstack—-neutron-metadata-agent
bridge-utils

Configure the server component

The Networking server component configuration includes the database, authentication mechanism, mes-
sage queue, topology change notifications, and plug-in.

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

* Editthe /etc/neutron/neutron.conf file and complete the following actions:

— Inthe [database] section, configure database access:

[database]

Replace NEUTRON_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database]
section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and disable addi-
tional plug-ins:

[DEFAULT]

— Inthe [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

4.2. Install and configure controller node 23

Neutron Documentation, Release 17.4.2.dev115

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of net-
work topology changes:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* Inthe [oslo_concurrency] section, configure the lock path:

24 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

» Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following
actions:

— Inthe [m12] section, enable flat and VLAN networks:

— In the [m12] section, disable self-service networks:

— Inthe [m12] section, enable the Linux bridge mechanism:

Warning: After you configure the ML2 plug-in, removing values in the
type_drivers option can lead to database inconsistency.

— Inthe [m12] section, enable the port security extension driver:

— In the [m12_type_flat] section, configure the provider virtual network as a flat net-
work:

— In the [securitygroup] section, enable ipset to increase efficiency of security group
rules:

4.2. Install and configure controller node 25

Neutron Documentation, Release 17.4.2.dev115

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, disable VXLAN overlay networks:

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Editthe /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

(continues on next page)

26 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Create the provider network

Follow this provider network document from the General Installation Guide.

Return to Networking controller node configuration.

Networking Option 2: Self-service networks

Install and configure the Networking components on the controller node.

Install the components

zypper install --no-recommends openstack-neutron
openstack-neutron-server openstack-neutron-linuxbridge—agent
openstack-neutron-13-agent openstack-neutron-dhcp-agent
openstack-neutron-metadata-agent bridge-utils

Configure the server component

* Editthe /etc/neutron/neutron.conf file and complete the following actions:

— Inthe [database] section, configure database access:

[database]

Replace NEUTRON_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database]
section.

— Inthe [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in, router service, and
overlapping IP addresses:

[DEFAULT]

— Inthe [DEFAULT] section, configure RabbitMQ message queue access:

4.2. Install and configure controller node 27

https://docs.openstack.org/install-guide/launch-instance-networks-provider.html

Neutron Documentation, Release 17.4.2.dev115

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of net-
work topology changes:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* Inthe [oslo_concurrency] section, configure the lock path:

28 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

» Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following
actions:

— Inthe [m12] section, enable flat, VLAN, and VXLAN networks:

— In the [m12] section, enable VXLAN self-service networks:

— Inthe [m12] section, enable the Linux bridge and layer-2 population mechanisms:

Warning: After you configure the ML2 plug-in, removing values in the
type_drivers option can lead to database inconsistency.

Note: The Linux bridge agent only supports VXLAN overlay networks.

— Inthe [m12] section, enable the port security extension driver:

— In the [m12_type_flat] section, configure the provider virtual network as a flat net-
work:

— In the [m12_type_vxlan] section, configure the VXLAN network identifier range for
self-service networks:

4.2. Install and configure controller node 29

Neutron Documentation, Release 17.4.2.dev115

— In the [securitygroup] section, enable ipset to increase efficiency of security group
rules:

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, enable VXLAN overlay networks, configure the IP address of the
physical network interface that handles overlay networks, and enable layer-2 population:

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the controller
node. See Host networking for more information.

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

30 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Configure the layer-3 agent

The Layer-3 (L3) agent provides routing and NAT services for self-service virtual networks.
» Editthe /etc/neutron/13_agent.ini file and complete the following actions:

— Inthe [DEFAULT] section, configure the Linux bridge interface driver:

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
» Edit the /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

Return to Networking controller node configuration.

4.2.3 Configure the metadata agent

The metadata agent provides configuration information such as credentials to instances.
* Editthe /etc/neutron/metadata_agent.ini file and complete the following actions:

— Inthe [DEFAULT] section, configure the metadata host and shared secret:

Replace METADATA_SECRET with a suitable secret for the metadata proxy.

4.2. Install and configure controller node 31

Neutron Documentation, Release 17.4.2.dev115

4.2.4 Configure the Compute service to use the Networking service

Note: The Nova compute service must be installed to complete this step. For more details see the
compute install guide found under the Installation Guides section of the docs website.

* Editthe /etc/nova/nova.conf file and perform the following actions:

— In the [neutron] section, configure access parameters, enable the metadata proxy, and
configure the secret:

[neutron]

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Replace METADATA_SECRET with the secret you chose for the metadata proxy.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

4.2.5 Finalize installation

Note: SLES enables apparmor by default and restricts dnsmasq. You need to either completely disable
apparmor or disable only the dnsmasq profile:

In -s /etc/apparmor.d/usr.sbin.dnsmasq /etc/apparmor.d/disable/
systemctl restart apparmor

1. Restart the Compute API service:

systemctl restart openstack-nova-api.service

2. Start the Networking services and configure them to start when the system boots.

For both networking options:

systemctl enable openstack-neutron.service
openstack-neutron-linuxbridge—-agent.service
openstack-neutron-dhcp-agent.service
openstack-neutron-metadata—-agent.service
systemctl start openstack-neutron.service

(continues on next page)

32 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

https://docs.openstack.org
https://docs.openstack.org/nova/victoria/configuration/config.html#neutron

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack-neutron-linuxbridge-agent.service
openstack-neutron-dhcp-agent.service
openstack—-neutron-metadata-agent.service

For networking option 2, also enable and start the layer-3 service:

systemctl enable openstack-neutron-13-agent.service
systemctl start openstack-neutron-13-agent.service

4.3 Install and configure compute node

The compute node handles connectivity and security groups for instances.

4.3.1 Install the components

zypper install —--no-recommends
openstack-neutron-linuxbridge—agent bridge-utils

4.3.2 Configure the common component

The Networking common component configuration includes the authentication mechanism, message
queue, and plug-in.

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

* Editthe /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, comment out any connection options because compute
nodes do not directly access the database.

— Inthe [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

[DEFAULT]

(continues on next page)

4.3. Install and configure compute node 33

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[keystone_authtoken]

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

* Inthe [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]

4.3.3 Configure networking options

Choose the same networking option that you chose for the controller node to configure services specific
to it. Afterwards, return here and proceed to Configure the Compute service to use the Networking
service.

Networking Option 1: Provider networks

Configure the Networking components on a compute node.

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

[linux_bridge]

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

34 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

— Inthe [vxlan] section, disable VXLAN overlay networks:

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration

Networking Option 2: Self-service networks

Configure the Networking components on a compute node.

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

e Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, enable VXLAN overlay networks, configure the IP address of the
physical network interface that handles overlay networks, and enable layer-2 population:

4.3. Install and configure compute node 35

Neutron Documentation, Release 17.4.2.dev115

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the compute
node. See Host networking for more information.

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration.
4.3.4 Configure the Compute service to use the Networking service

» Edit the /etc/nova/nova. conf file and complete the following actions:

— Inthe [neutron] section, configure access parameters:

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

36 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

https://docs.openstack.org/nova/victoria/configuration/config.html#neutron

Neutron Documentation, Release 17.4.2.dev115

4.3.5 Finalize installation

1. The Networking service initialization scripts expect the variable NEUTRON_PLUGIN_CONF in
the /etc/sysconfig/neutron file to reference the ML2 plug-in configuration file. Ensure
that the /etc/sysconfig/neutron file contains the following:

2. Restart the Compute service:

systemctl restart openstack-nova-compute.service

3. Start the Linux Bridge agent and configure it to start when the system boots:

systemctl enable openstack-neutron-linuxbridge—-agent.service

systemctl start openstack-neutron-linuxbridge-agent.service

4.4 Verify operation

Note: Perform these commands on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

2. List loaded extensions to verify successful launch of the neut ron-server process:

openstack extension list —--network

[}

(continues on next page)

4.4. Verify operation 37

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

(continues on next page)

38 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[}

(continues on next page)

4.4. Verify operation 39

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

Note: Actual output may differ slightly from this example.

You can perform further testing of your networking using the neutron-sanity-check command line client.

Use the verification section for the networking option that you chose to deploy.

4.4.1 Networking Option 1: Provider networks

* List agents to verify successful launch of the neutron agents:

openstack network agent list

—

!

!

(continues on next page)

40 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

https://docs.openstack.org/cli-reference/neutron-sanity-check.html

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

!

!

!

!

The output should indicate three agents on the controller node and one agent on each compute
node.

4.4.2 Networking Option 2: Self-service networks

* List agents to verify successful launch of the neutron agents:

openstack network agent list

!

!

!

!

!

)

!

!

The output should indicate four agents on the controller node and one agent on each compute
node.

4.4. Verify operation 41

Neutron Documentation, Release 17.4.2.dev115

42 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

CHAPTER
FIVE

INSTALL AND CONFIGURE FOR RED HAT ENTERPRISE LINUX
AND CENTOS

5.1 Host networking

After installing the operating system on each node for the architecture that you choose to deploy, you
must configure the network interfaces. We recommend that you disable any automated network man-
agement tools and manually edit the appropriate configuration files for your distribution. For more
information on how to configure networking on your distribution, see the documentation .

All nodes require Internet access for administrative purposes such as package installation, security up-
dates, Domain Name System (DNS), and Network Time Protocol (NTP). In most cases, nodes should
obtain Internet access through the management network interface. To highlight the importance of net-
work separation, the example architectures use private address space for the management network and
assume that the physical network infrastructure provides Internet access via Network Address Transla-
tion (NAT) or other methods. The example architectures use routable IP address space for the provider
(external) network and assume that the physical network infrastructure provides direct Internet access.

In the provider networks architecture, all instances attach directly to the provider network. In the self-
service (private) networks architecture, instances can attach to a self-service or provider network. Self-
service networks can reside entirely within OpenStack or provide some level of external network access
using Network Address Translation (NAT) through the provider network.

The example architectures assume use of the following networks:
* Management on 10.0.0.0/24 with gateway 10.0.0.1

This network requires a gateway to provide Internet access to all nodes for administrative purposes
such as package installation, security updates, Domain Name System (DNS), and Network Time
Protocol (NTP).

* Provider on 203.0.113.0/24 with gateway 203.0.113.1

This network requires a gateway to provide Internet access to instances in your OpenStack envi-
ronment.

You can modify these ranges and gateways to work with your particular network infrastructure.

Network interface names vary by distribution. Traditionally, interfaces use et h followed by a sequential
number. To cover all variations, this guide refers to the first interface as the interface with the lowest
number and the second interface as the interface with the highest number.

Unless you intend to use the exact configuration provided in this example architecture, you must modify
the networks in this procedure to match your environment. Each node must resolve the other nodes by

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/sec-network_config_using_cli
https://tools.ietf.org/html/rfc1918

Neutron Documentation, Release 17.4.2.dev115

Network Layout

(_ -\ ra Y
Controller Node 1

Interfa
10.0.0.1

Interface 2
{unnumberad)

-

Interface 2
{unnumbered)

Inte
10.0.0.52/24

Internet

. Management network Provider network
10.0.0.0/24 203.0.113.0/24

——————
i !

C] Core component) : Optional component
e o — — -

44 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

name in addition to IP address. For example, the controller name must resolve to 10.0.0.11,
the IP address of the management interface on the controller node.

Warning: Reconfiguring network interfaces will interrupt network connectivity. We recommend
using a local terminal session for these procedures.

Note: Your distribution enables a restrictive firewall by default. During the installation process, cer-
tain steps will fail unless you alter or disable the firewall. For more information about securing your
environment, refer to the OpenStack Security Guide.

5.1.1 Controller node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.11
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

* Edit the /etc/sysconfig/network-scripts/ifcfg-INTERFACE_NAME file to con-
tain the following:

Do not change the HWADDR and UUID keys.

1. Reboot the system to activate the changes.

Configure name resolution

1. Set the hostname of the node to controller.

2. Edit the /etc/hosts file to contain the following:

controller
10.0.0.11 controller

computel
10.0.0.31 computel

(continues on next page)

5.1. Host networking 45

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

blockl
10.0.0.41 blockl
objectl
10.0.0.51 objectl
object2
10.0.0.52 object2

Warning: Some distributions add an extraneous entry in the /et c/hosts file that resolves
the actual hostname to another loopback IP address suchas 127.0.1.1. You must comment
out or remove this entry to prevent name resolution problems. Do not remove the 127.0.0.1
entry.

Note: This guide includes host entries for optional services in order to reduce complexity should
you choose to deploy them.

5.1.2 Compute node

Configure network interfaces

1. Configure the first interface as the management interface:

IP address: 10.0.0.31
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

Note: Additional compute nodes should use 10.0.0.32, 10.0.0.33, and so on.

. The provider interface uses a special configuration without an IP address assigned to it. Configure

the second interface as the provider interface:
Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

Edit the /etc/sysconfig/network—-scripts/ifcfg-INTERFACE_NAME file to con-
tain the following:

Do not change the HWADDR and UUID keys.

INTERFACE_NAME
Ethernet

1. Reboot the system to activate the changes.

46

Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

Configure name resolution

1. Set the hostname of the node to computel.

2. Edit the /etc/hosts file to contain the following:

controller

10.0.0.11 controller
computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2

Warning: Some distributions add an extraneous entry in the /et c/hosts file that resolves
the actual hostname to another loopback IP address suchas 127.0.1.1. You must comment
out or remove this entry to prevent name resolution problems. Do not remove the 127.0.0.1
entry.

Note: This guide includes host entries for optional services in order to reduce complexity should
you choose to deploy them.

5.1.3 Verify connectivity

We recommend that you verify network connectivity to the Internet and among the nodes before pro-
ceeding further.

1. From the controller node, test access to the Internet:

ping -c 4 openstack.org

2. From the controller node, test access to the management interface on the compute node:

5.1. Host networking 47

Neutron Documentation, Release 17.4.2.dev115

ping —-c 4 computel

3. From the compute node, test access to the Internet:

ping —-c 4 openstack.org

4. From the compute node, test access to the management interface on the controller node:

ping -c 4 controller

Note: Your distribution enables a restrictive firewall by default. During the installation process, cer-
tain steps will fail unless you alter or disable the firewall. For more information about securing your
environment, refer to the OpenStack Security Guide.

48 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 17.4.2.dev115

5.2 Install and configure controller node

5.2.1 Prerequisites
Before you configure the OpenStack Networking (neutron) service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl —-u root -p

¢ Create the neut ron database:

» Grant proper access to the neut ron database, replacing NEUTRON_DBPASS with a suit-
able password:

¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the neutron user:

openstack user create —--domain default --password-prompt neutron

Add the admin role to the neut ron user:

openstack role add —--project service —--user neutron admin

5.2. Install and configure controller node 49

Neutron Documentation, Release 17.4.2.dev115

Note: This command provides no output.

* Create the neut ron service entity:

openstack service create —--name neutron
—-—description network

4. Create the Networking service API endpoints:

openstack endpoint create —--region RegionOne
network public http://controller:9696

openstack endpoint create --region RegionOne
network internal http://controller:9696

openstack endpoint create --region RegionOne
network admin http://controller:9696

(continues on next page)

50 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

5.2.2 Configure networking options

You can deploy the Networking service using one of two architectures represented by options 1 and 2.

Option 1 deploys the simplest possible architecture that only supports attaching instances to provider
(external) networks. No self-service (private) networks, routers, or floating IP addresses. Only the
admin or other privileged user can manage provider networks.

Option 2 augments option 1 with layer-3 services that support attaching instances to self-service net-
works. The demo or other unprivileged user can manage self-service networks including routers that
provide connectivity between self-service and provider networks. Additionally, floating IP addresses
provide connectivity to instances using self-service networks from external networks such as the Inter-
net.

Self-service networks typically use overlay networks. Overlay network protocols such as VXLAN in-
clude additional headers that increase overhead and decrease space available for the payload or user
data. Without knowledge of the virtual network infrastructure, instances attempt to send packets using
the default Ethernet maximum transmission unit (MTU) of 1500 bytes. The Networking service auto-
matically provides the correct MTU value to instances via DHCP. However, some cloud images do not
use DHCP or ignore the DHCP MTU option and require configuration using metadata or a script.

Note: Option 2 also supports attaching instances to provider networks.

Choose one of the following networking options to configure services specific to it. Afterwards, return
here and proceed to Configure the metadata agent.

5.2. Install and configure controller node 51

Neutron Documentation, Release 17.4.2.dev115

Networking Option 1: Provider networks

Install and configure the Networking components on the controller node.

Install the components

yum install openstack-neutron openstack-neutron-ml2
openstack—-neutron-linuxbridge ebtables

Configure the server component

The Networking server component configuration includes the database, authentication mechanism, mes-
sage queue, topology change notifications, and plug-in.

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

» Editthe /etc/neutron/neutron.conf file and complete the following actions:

— Inthe [database] section, configure database access:

[database]

Replace NEUTRON_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database]
section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and disable addi-
tional plug-ins:

[DEFAULT]

— Inthe [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

52 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of net-
work topology changes:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* Inthe [oslo_concurrency] section, configure the lock path:

5.2. Install and configure controller node 53

Neutron Documentation, Release 17.4.2.dev115

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

» Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following
actions:

— Inthe [m12] section, enable flat and VLAN networks:

— In the [m12] section, disable self-service networks:

— Inthe [m12] section, enable the Linux bridge mechanism:

Warning: After you configure the ML2 plug-in, removing values in the
type_drivers option can lead to database inconsistency.

— Inthe [m12] section, enable the port security extension driver:

— In the [m12_type_flat] section, configure the provider virtual network as a flat net-
work:

— In the [securitygroup] section, enable ipset to increase efficiency of security group
rules:

54 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, disable VXLAN overlay networks:

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Editthe /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

(continues on next page)

5.2. Install and configure controller node 55

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Create the provider network

Follow this provider network document from the General Installation Guide.

Return to Networking controller node configuration.

Networking Option 2: Self-service networks

Install and configure the Networking components on the controller node.

Install the components

yum install openstack-neutron openstack-neutron-ml2
openstack—neutron-linuxbridge ebtables

Configure the server component

» Editthe /etc/neutron/neutron.conf file and complete the following actions:

— Inthe [database] section, configure database access:

[database]

Replace NEUTRON_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database]
section.

— Inthe [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in, router service, and
overlapping IP addresses:

[DEFAULT]

— Inthe [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

56 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

https://docs.openstack.org/install-guide/launch-instance-networks-provider.html

Neutron Documentation, Release 17.4.2.dev115

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of net-
work topology changes:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* Inthe [oslo_concurrency] section, configure the lock path:

5.2. Install and configure controller node 57

Neutron Documentation, Release 17.4.2.dev115

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

» Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following
actions:

— Inthe [m12] section, enable flat, VLAN, and VXLAN networks:

— In the [m12] section, enable VXLAN self-service networks:

— Inthe [m12] section, enable the Linux bridge and layer-2 population mechanisms:

Warning: After you configure the ML2 plug-in, removing values in the
type_drivers option can lead to database inconsistency.

Note: The Linux bridge agent only supports VXLAN overlay networks.

— Inthe [m12] section, enable the port security extension driver:

— In the [m12_type_flat] section, configure the provider virtual network as a flat net-
work:

— In the [m12_type_vxlan] section, configure the VXLAN network identifier range for
self-service networks:

58 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

— In the [securitygroup] section, enable ipset to increase efficiency of security group
rules:

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

» Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, enable VXLAN overlay networks, configure the IP address of the
physical network interface that handles overlay networks, and enable layer-2 population:

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the controller
node. See Host networking for more information.

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_netfilter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling

5.2. Install and configure controller node 59

Neutron Documentation, Release 17.4.2.dev115

this module.

Configure the layer-3 agent

The Layer-3 (LL3) agent provides routing and NAT services for self-service virtual networks.
* Editthe /etc/neutron/13_agent.ini file and complete the following actions:

— Inthe [DEFAULT] section, configure the Linux bridge interface driver:

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Editthe /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

Return to Networking controller node configuration.

5.2.3 Configure the metadata agent

The metadata agent provides configuration information such as credentials to instances.
» Editthe /etc/neutron/metadata_agent. ini file and complete the following actions:

— Inthe [DEFAULT] section, configure the metadata host and shared secret:

Replace METADATA__SECRET with a suitable secret for the metadata proxy.

60 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

5.2.4 Configure the Compute service to use the Networking service

Note: The Nova compute service must be installed to complete this step. For more details see the
compute install guide found under the Installation Guides section of the docs website.

* Editthe /etc/nova/nova.conf file and perform the following actions:

— In the [neutron] section, configure access parameters, enable the metadata proxy, and
configure the secret:

[neutron]

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Replace METADATA_SECRET with the secret you chose for the metadata proxy.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

5.2.5 Finalize installation

1. The Networking service initialization scripts expect a symbolic link /etc/neutron/plugin.
ini pointing to the ML2 plug-in configuration file, /etc/neutron/plugins/ml2/
ml2_conf.ini. If this symbolic link does not exist, create it using the following command:

In -s /etc/neutron/plugins/ml2/ml2_conf.ini /etc/neutron/plugin.ini

2. Populate the database:

su -s /bin/sh -c

—

—neutron

Note: Database population occurs later for Networking because the script requires complete
server and plug-in configuration files.

3. Restart the Compute API service:

5.2. Install and configure controller node 61

https://docs.openstack.org
https://docs.openstack.org/nova/victoria/configuration/config.html#neutron

Neutron Documentation, Release 17.4.2.dev115

systemctl restart openstack-nova-api.service

4. Start the Networking services and configure them to start when the system boots.

For both networking options:

systemctl enable neutron-server.service
neutron-linuxbridge-agent.service neutron-dhcp-agent.service
neutron-metadata—-agent.service

systemctl start neutron-server.service
neutron-linuxbridge—-agent.service neutron-dhcp-agent.service
neutron-metadata—-agent.service

For networking option 2, also enable and start the layer-3 service:

systemctl enable neutron-l3-agent.service
systemctl start neutron-13-agent.service

5.3 Install and configure compute node

The compute node handles connectivity and security groups for instances.

5.3.1 Install the components

yum install openstack-neutron-linuxbridge ebtables ipset

5.3.2 Configure the common component

The Networking common component configuration includes the authentication mechanism, message
queue, and plug-in.

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

» Editthe /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, comment out any connection options because compute
nodes do not directly access the database.

— Inthe [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

62 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

[DEFAULT]

[keystone_authtoken]

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

* Inthe [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]

5.3.3 Configure networking options

Choose the same networking option that you chose for the controller node to configure services specific
to it. Afterwards, return here and proceed to Configure the Compute service to use the Networking
service.

Networking Option 1: Provider networks

Configure the Networking components on a compute node.

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

5.3. Install and configure compute node 63

Neutron Documentation, Release 17.4.2.dev115

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, disable VXLAN overlay networks:

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration

Networking Option 2: Self-service networks

Configure the Networking components on a compute node.

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

64 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 17.4.2.dev115

— Inthe [vxlan] section, enable VXLAN overlay networks, configure the IP address of the
physical network interface that handles overlay networks, and enable layer-2 population:

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the compute
node. See Host networking for more information.

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration.
5.3.4 Configure the Compute service to use the Networking service

* Editthe /etc/nova/nova.conf file and complete the following actions:

— Inthe [neutron] section, configure access parameters:

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

5.3. Install and configure compute node 65

Neutron Documentation, Release 17.4.2.dev115

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

5.3.5 Finalize installation

1. Restart the Compute service:

systemctl restart openstack-nova-compute.service

2. Start the Linux bridge agent and configure it to start when the system boots:

systemctl enable neutron-linuxbridge-agent.service
systemctl start neutron-linuxbridge-agent.service

66 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

https://docs.openstack.org/nova/victoria/configuration/config.html#neutron

CHAPTER
SIX

INSTALL AND CONFIGURE FOR UBUNTU

6.1 Host networking

After installing the operating system on each node for the architecture that you choose to deploy, you
must configure the network interfaces. We recommend that you disable any automated network man-
agement tools and manually edit the appropriate configuration files for your distribution. For more
information on how to configure networking on your distribution, see the documentation.

All nodes require Internet access for administrative purposes such as package installation, security up-
dates, Domain Name System (DNS), and Network Time Protocol (NTP). In most cases, nodes should
obtain Internet access through the management network interface. To highlight the importance of net-
work separation, the example architectures use private address space for the management network and
assume that the physical network infrastructure provides Internet access via Network Address Transla-
tion (NAT) or other methods. The example architectures use routable IP address space for the provider
(external) network and assume that the physical network infrastructure provides direct Internet access.

In the provider networks architecture, all instances attach directly to the provider network. In the self-
service (private) networks architecture, instances can attach to a self-service or provider network. Self-
service networks can reside entirely within OpenStack or provide some level of external network access
using Network Address Translation (NAT) through the provider network.

The example architectures assume use of the following networks:
* Management on 10.0.0.0/24 with gateway 10.0.0.1

This network requires a gateway to provide Internet access to all nodes for administrative purposes
such as package installation, security updates, Domain Name System (DNS), and Network Time
Protocol (NTP).

* Provider on 203.0.113.0/24 with gateway 203.0.113.1

This network requires a gateway to provide Internet access to instances in your OpenStack envi-
ronment.

You can modify these ranges and gateways to work with your particular network infrastructure.

Network interface names vary by distribution. Traditionally, interfaces use et h followed by a sequential
number. To cover all variations, this guide refers to the first interface as the interface with the lowest
number and the second interface as the interface with the highest number.

Unless you intend to use the exact configuration provided in this example architecture, you must modify
the networks in this procedure to match your environment. Each node must resolve the other nodes by
name in addition to IP address. For example, the controller name must resolve to 10.0.0.11,
the IP address of the management interface on the controller node.

67

https://help.ubuntu.com/lts/serverguide/network-configuration.html
https://tools.ietf.org/html/rfc1918

Neutron Documentation, Release 17.4.2.dev115

Network Layout

(_ -\ ra Y
Controller Node 1

Interface
{unnumib:

-

Inte
10.0.0.52/24

Internet

. Management network Provider network
10.0.0.0/24 203.0.113.0/24

——————
i !

C] Core component) : Optional component
e o — — -

68 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

Warning: Reconfiguring network interfaces will interrupt network connectivity. We recommend
using a local terminal session for these procedures.

Note: Your distribution does not enable a restrictive firewall by default. For more information about
securing your environment, refer to the OpenStack Security Guide.

6.1.1 Controller node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.11
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

» Edit the /etc/network/interfaces file to contain the following:

auto INTERFACE_NAME

iface INTERFACE_NAME inet manual
up ip link set dev up
down ip link set dev down

1. Reboot the system to activate the changes.

Configure name resolution

1. Set the hostname of the node to controller.

2. Edit the /etc/hosts file to contain the following:

controller
10.0.0.11 controller

computel

10.0.0.31 computel
blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

(continues on next page)

6.1. Host networking 69

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

object2
10.0.0.52 object?2

Warning: Some distributions add an extraneous entry in the /et c/hosts file that resolves
the actual hostname to another loopback IP address suchas 127.0.1.1. You must comment
out or remove this entry to prevent name resolution problems. Do not remove the 127.0.0.1
entry.

Note: This guide includes host entries for optional services in order to reduce complexity should
you choose to deploy them.

6.1.2 Compute node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.31
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

Note: Additional compute nodes should use 10.0.0.32, 10.0.0.33, and so on.

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, eth! or ens224.

* Editthe /etc/network/interfaces file to contain the following:

auto INTERFACE_NAME

iface INTERFACE_NAME inet manual
up ip link set dev up

down ip link set dev down

1. Reboot the system to activate the changes.

70 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

Configure name resolution

1. Set the hostname of the node to computel.

2. Edit the /etc/hosts file to contain the following:

controller

10.0.0.11 controller
computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2

Warning: Some distributions add an extraneous entry in the /et c/hosts file that resolves
the actual hostname to another loopback IP address suchas 127.0.1.1. You must comment
out or remove this entry to prevent name resolution problems. Do not remove the 127.0.0.1
entry.

Note: This guide includes host entries for optional services in order to reduce complexity should
you choose to deploy them.

6.1.3 Verify connectivity

We recommend that you verify network connectivity to the Internet and among the nodes before pro-
ceeding further.

1. From the controller node, test access to the Internet:

ping -c 4 openstack.org

2. From the controller node, test access to the management interface on the compute node:

6.1. Host networking 71

Neutron Documentation, Release 17.4.2.dev115

ping —-c 4 computel

3. From the compute node, test access to the Internet:

ping -c 4 openstack.org

4. From the compute node, test access to the management interface on the controller node:

ping —-c 4 controller

Note: Your distribution does not enable a restrictive firewall by default. For more information about
securing your environment, refer to the OpenStack Security Guide.

6.2 Install and configure controller node

6.2.1 Prerequisites
Before you configure the OpenStack Networking (neutron) service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

» Use the database access client to connect to the database server as the root user:

72 Chapter 6. Install and configure for Ubuntu

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 17.4.2.dev115

mysgl —-u root -p

Create the neut ron database:

* Grant proper access to the neut ron database, replacing NEUTRON_DBPASS with a suit-
able password:

» EXxit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the neutron user:

openstack user create —--domain default --password-prompt neutron

¢ Add the admin role to the neut ron user:

openstack role add —--project service —--user neutron admin

Note: This command provides no output.

* Create the neut ron service entity:

openstack service create —--name neutron
—-—description network

(continues on next page)

6.2. Install and configure controller node 73

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

. Create the Networking service API endpoints:

openstack endpoint create --region RegionOne
network public http://controller:9696

openstack endpoint create —--region RegionOne
network internal http://controller:9696

openstack endpoint create —--region RegionOne
network admin http://controller:9696

(continues on next page)

74

Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

6.2.2 Configure networking options

You can deploy the Networking service using one of two architectures represented by options 1 and 2.

Option 1 deploys the simplest possible architecture that only supports attaching instances to provider
(external) networks. No self-service (private) networks, routers, or floating IP addresses. Only the
admin or other privileged user can manage provider networks.

Option 2 augments option 1 with layer-3 services that support attaching instances to self-service net-
works. The demo or other unprivileged user can manage self-service networks including routers that
provide connectivity between self-service and provider networks. Additionally, floating IP addresses
provide connectivity to instances using self-service networks from external networks such as the Inter-
net.

Self-service networks typically use overlay networks. Overlay network protocols such as VXLAN in-
clude additional headers that increase overhead and decrease space available for the payload or user
data. Without knowledge of the virtual network infrastructure, instances attempt to send packets using
the default Ethernet maximum transmission unit (MTU) of 1500 bytes. The Networking service auto-
matically provides the correct MTU value to instances via DHCP. However, some cloud images do not
use DHCP or ignore the DHCP MTU option and require configuration using metadata or a script.

Note: Option 2 also supports attaching instances to provider networks.

Choose one of the following networking options to configure services specific to it. Afterwards, return
here and proceed to Configure the metadata agent.

Networking Option 1: Provider networks

Install and configure the Networking components on the controller node.

Install the components

apt install neutron-server neutron-plugin-ml2
neutron-linuxbridge—agent neutron-dhcp-agent
neutron-metadata-agent

6.2. Install and configure controller node 75

Neutron Documentation, Release 17.4.2.dev115

Configure the server component

The Networking server component configuration includes the database, authentication mechanism, mes-
sage queue, topology change notifications, and plug-in.

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

» Editthe /etc/neutron/neutron.conf file and complete the following actions:

— Inthe [database] section, configure database access:

Replace NEUTRON_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database]
section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and disable addi-
tional plug-ins:

— Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

(continues on next page)

76 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of net-
work topology changes:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* Inthe [oslo_concurrency] section, configure the lock path:

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

» Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following
actions:

— Inthe [m12] section, enable flat and VLAN networks:

6.2. Install and configure controller node 77

Neutron Documentation, Release 17.4.2.dev115

— In the [m12] section, disable self-service networks:

— Inthe [m12] section, enable the Linux bridge mechanism:

Warning: After you configure the ML2 plug-in, removing values in the
type_drivers option can lead to database inconsistency.

— Inthe [m12] section, enable the port security extension driver:

— In the [m12_type_flat] section, configure the provider virtual network as a flat net-
work:

— In the [securitygroup] section, enable ipset to increase efficiency of security group
rules:

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, disable VXLAN overlay networks:

78 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Editthe /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

Create the provider network

Follow this provider network document from the General Installation Guide.

Return to Networking controller node configuration.

6.2. Install and configure controller node 79

https://docs.openstack.org/install-guide/launch-instance-networks-provider.html

Neutron Documentation, Release 17.4.2.dev115

Networking Option 2: Self-service networks

Install and configure the Networking components on the controller node.

Install the components

apt install neutron-server neutron-plugin-ml2
neutron-linuxbridge—-agent neutron-13-agent neutron-dhcp-agent
neutron-metadata-agent

Configure the server component

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— Inthe [database] section, configure database access:

[database]

Replace NEUTRON_DBPASS with the password you chose for the database.

Note: Comment out or remove any other connection options in the [database]
section.

— Inthe [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in, router service, and
overlapping IP addresses:

[DEFAULT]

In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

[DEFAULT]

(continues on next page)

80 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of net-
work topology changes:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* Inthe [oslo_concurrency] section, configure the lock path:

6.2. Install and configure controller node 81

Neutron Documentation, Release 17.4.2.dev115

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

» Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following
actions:

— Inthe [m12] section, enable flat, VLAN, and VXLAN networks:

— In the [m12] section, enable VXLAN self-service networks:

— Inthe [m12] section, enable the Linux bridge and layer-2 population mechanisms:

Warning: After you configure the ML2 plug-in, removing values in the
type_drivers option can lead to database inconsistency.

Note: The Linux bridge agent only supports VXLAN overlay networks.

— Inthe [m12] section, enable the port security extension driver:

— In the [m12_type_flat] section, configure the provider virtual network as a flat net-
work:

— In the [m12_type_vxlan] section, configure the VXLAN network identifier range for
self-service networks:

82 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

— In the [securitygroup] section, enable ipset to increase efficiency of security group
rules:

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

» Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, enable VXLAN overlay networks, configure the IP address of the
physical network interface that handles overlay networks, and enable layer-2 population:

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the controller
node. See Host networking for more information.

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_netfilter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling

6.2. Install and configure controller node 83

Neutron Documentation, Release 17.4.2.dev115

this module.

Configure the layer-3 agent

The Layer-3 (LL3) agent provides routing and NAT services for self-service virtual networks.
* Editthe /etc/neutron/13_agent.ini file and complete the following actions:

— Inthe [DEFAULT] section, configure the Linux bridge interface driver:

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Editthe /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

Return to Networking controller node configuration.

6.2.3 Configure the metadata agent

The metadata agent provides configuration information such as credentials to instances.
» Editthe /etc/neutron/metadata_agent. ini file and complete the following actions:

— Inthe [DEFAULT] section, configure the metadata host and shared secret:

Replace METADATA__SECRET with a suitable secret for the metadata proxy.

84 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

6.2.4 Configure the Compute service to use the Networking service

Note: The Nova compute service must be installed to complete this step. For more details see the
compute install guide found under the Installation Guides section of the docs website.

* Editthe /etc/nova/nova.conf file and perform the following actions:

— In the [neutron] section, configure access parameters, enable the metadata proxy, and
configure the secret:

[neutron]

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Replace METADATA_SECRET with the secret you chose for the metadata proxy.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

6.2.5 Finalize installation

1. Populate the database:

su -s /bin/sh -c

—

—neutron

Note: Database population occurs later for Networking because the script requires complete
server and plug-in configuration files.

2. Restart the Compute API service:

service nova-api restart

3. Restart the Networking services.

For both networking options:

6.2. Install and configure controller node 85

https://docs.openstack.org
https://docs.openstack.org/nova/victoria/configuration/config.html#neutron

Neutron Documentation, Release 17.4.2.dev115

service neutron-server restart

service neutron-linuxbridge-agent restart
service neutron-dhcp-agent restart
service neutron-metadata-agent restart

For networking option 2, also restart the layer-3 service:

service neutron-13-agent restart

6.3 Install and configure compute node

The compute node handles connectivity and security groups for instances.

6.3.1 Install the components

apt install neutron-linuxbridge—agent

6.3.2 Configure the common component

The Networking common component configuration includes the authentication mechanism, message
queue, and plug-in.

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, comment out any connection options because compute
nodes do not directly access the database.

— Inthe [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

[DEFAULT]

[keystone_authtoken]

(continues on next page)

86 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

* Inthe [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]

6.3.3 Configure networking options

Choose the same networking option that you chose for the controller node to configure services specific
to it. Afterwards, return here and proceed to Configure the Compute service to use the Networking
service.

Networking Option 1: Provider networks

Configure the Networking components on a compute node.

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

e Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

[1linux_bridge]

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, disable VXLAN overlay networks:

6.3. Install and configure compute node 87

Neutron Documentation, Release 17.4.2.dev115

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration

Networking Option 2: Self-service networks

Configure the Networking components on a compute node.

Configure the Linux bridge agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

e Edit the /etc/neutron/plugins/ml2/linuxbridge_agent.ini file and complete
the following actions:

— Inthe [1inux_bridge] section, map the provider virtual network to the provider physi-
cal network interface:

Replace PROVIDER_INTERFACE_NAME with the name of the underlying provider physi-
cal network interface. See Host networking for more information.

— Inthe [vxlan] section, enable VXLAN overlay networks, configure the IP address of the
physical network interface that handles overlay networks, and enable layer-2 population:

88 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 17.4.2.dev115

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the compute
node. See Host networking for more information.

— Inthe [securitygroup] section, enable security groups and configure the Linux bridge
iptables firewall driver:

— Ensure your Linux operating system kernel supports network bridge filters by verifying all
the following sysct1 values are set to 1:

To enable networking bridge support, typically the br_net filter kernel module needs
to be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration.
6.3.4 Configure the Compute service to use the Networking service

» Edit the /etc/nova/nova. conf file and complete the following actions:

— Inthe [neutron] section, configure access parameters:

Replace NEUTRON_PASS with the password you chose for the neut ron user in the Iden-
tity service.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

6.3. Install and configure compute node 89

https://docs.openstack.org/nova/victoria/configuration/config.html#neutron

Neutron Documentation, Release 17.4.2.dev115

6.3.5 Finalize installation

1. Restart the Compute service:

service nova-compute restart

2. Restart the Linux bridge agent:

service neutron-linuxbridge-agent restart

920 Chapter 6. Install and configure for Ubuntu

CHAPTER
SEVEN

OVN INSTALL DOCUMENTATION

7.1 Manual install & Configuration

This document discusses what is required for manual installation or integration into a production Open-
Stack deployment tool of conventional architectures that include the following types of nodes:

* Controller - Runs OpenStack control plane services such as REST APIs and databases.

* Network - Runs the layer-2, layer-3 (routing), DHCP, and metadata agents for the Networking
service. Some agents optional. Usually provides connectivity between provider (public) and
project (private) networks via NAT and floating IP addresses.

Note: Some tools deploy these services on controller nodes.

* Compute - Runs the hypervisor and layer-2 agent for the Networking service.

7.1.1 Packaging

Open vSwitch (OVS) includes OVN beginning with version 2.5 and considers it experimental. From
version 2.13 OVN has been released as separate project. The Networking service integration for OVN
is now one of the in-tree Neutron drivers so should be delivered with neut ron package, but older
versions of this integration were delivered with independent package, typically networking-ovn.

Building OVS from source automatically installs OVN for releases older than 2.13. For newer re-
leases it is required to build OVS and OVN separately. For deployment tools using distribution pack-
ages, the openvswitch-ovn package for RHEL/CentOS and compatible distributions automati-
cally installs openvswitch as a dependency. Ubuntu/Debian includes ovn-central, ovn-host,
ovn-docker, and ovn—-common packages that pull in the appropriate Open vSwitch dependencies as
needed.

A python—-networking—ovn RPM may be obtained for Fedora or CentOS from the RDO project.
Since Ussuri release OVN driver is shipped with neut ron package. A package based on the older
branch of networking—ovn can be found at https://trunk.rdoproject.org/.

Fedora and CentOS RPM builds of OVS and OVN from the master branch of ovs can be found in
this COPR repository: https://copr.fedorainfracloud.org/coprs/leifmadsen/ovs-master/.

91

https://trunk.rdoproject.org/
https://copr.fedorainfracloud.org/coprs/leifmadsen/ovs-master/

Neutron Documentation, Release 17.4.2.dev115

7.1.2 Controller nodes

Each controller node runs the OVS service (including dependent services such as ovsdb-server) and
the ovn—northd service. However, only a single instance of the ovsdb-server and ovn-northd
services can operate in a deployment. However, deployment tools can implement active/passive high-
availability using a management tool that monitors service health and automatically starts these services
on another node after failure of the primary node. See the Frequently Asked Questions for more infor-
mation.

1. Install the openvswitch-ovn and networking-ovn packages.

2. Start the OVS service. The central OVS service starts the ovsdb—server service that manages
OVN databases.

Using the systemd unit:

systemctl start openvswitch

Using the ovs—ct1 script:

/usr/share/openvswitch/scripts/ovs—ctl start -—-system-id

3. Configure the ovsdb—server component. By default, the ovsdb-server service only per-
mits local access to databases via Unix socket. However, OVN services on compute nodes require
access to these databases.

¢ Permit remote database access.

ovn—-nbctl set-connection ptcp:6641:0.0.0.0 ——

set connection . 60000
ovn-sbctl set-connection ptcp:6642:0.0.0.0 ——
set connection 60000

using the VTEP functionality:
ovs—appctl -t ovsdb-server ovsdb-server/add-remote
—ptcp:6640:0.0.0.0

Replace 0.0.0.0 with the IP address of the management network interface on the con-
troller node to avoid listening on all interfaces.

Note: Permit remote access to TCP ports: 6640 (OVS) to VTEPS (if you use vteps),
6642 (SBDB) to hosts running neutron-server, gateway nodes that run ovn-controller, and
compute node services like ovn-controller an ovn-metadata-agent. 6641 (NBDB) to hosts
running neutron-server.

4. Start the ovn—northd service.

Using the systemd unit:

systemctl start ovn-northd

Using the ovn-ct1 script:

/usr/share/openvswitch/scripts/ovn-ctl start_northd

Options for start_northd:

92 Chapter 7. OVN Install Documentation

Neutron Documentation, Release 17.4.2.dev115

/usr/share/openvswitch/scripts/ovn-ctl start_northd —--help

5. Configure the Networking server component. The Networking service implements OVN as an
ML2 driver. Edit the /etc/neutron/neutron.conf file:

* Enable the ML2 core plug-in.

* Enable the OVN layer-3 service.

6. Configure the ML2 plug-in. Edit the /et c/neutron/plugins/ml2/ml2_conf.ini file:

* Configure the OVN mechanism driver, network type drivers, self-service (tenant) network
types, and enable the port security extension.

Note: To enable VLAN self-service networks, make sure that OVN version 2.11 (or higher)
is used, then add v1an to the tenant_network_types option. The first network type
in the list becomes the default self-service network type.

To use IPv6 for all overlay (tunnel) network endpoints, set the overlay_ip_version
option to 6.

* Configure the Geneve ID range and maximum header size. The IP version overhead (20
bytes for [Pv4 (default) or 40 bytes for IPv6) is added to the maximum header size based on
the ML2 overlay_ip_version option.

Note: The Networking service uses the vni_ranges option to allocate network segments.
However, OVN ignores the actual values. Thus, the ID range only determines the quantity

7.1. Manual install & Configuration 93

Neutron Documentation, Release 17.4.2.dev115

of Geneve networks in the environment. For example, a range of 5001 : 6000 defines a
maximum of 1000 Geneve networks.

Optionally, enable support for VLAN provider and self-service networks on one or more
physical networks. If you specify only the physical network, only administrative (privileged)
users can manage VLAN networks. Additionally specifying a VLAN ID range for a physical
network enables regular (non-privileged) users to manage VLAN networks. The Networking
service allocates the VLAN ID for each self-service network using the VLAN ID range for
the physical network.

Replace PHYSICAL_NETWORK with the physical network name and optionally define the
minimum and maximum VLAN IDs. Use a comma to separate each physical network.

For example, to enable support for administrative VLAN networks on the physnet1 net-
work and self-service VLAN networks on the physnet 2 network using VLAN IDs 1001
to 2000:

Enable security groups.

Note: The firewall_ driver option under [securitygroup] is ignored since the
OVN ML2 driver itself handles security groups.

Configure OVS database access and L3 scheduler

Note: Replace IP_ADDRESS with the IP address of the controller node that runs the
ovsdb-server service. Replace OVN_L3_SCHEDULER with leastloaded if you
want the scheduler to select a compute node with the least number of gateway ports or
chance if you want the scheduler to randomly select a compute node from the available
list of compute nodes.

Set ovn-cms-options with enable-chassis-as-gw in Open_vSwitch tables external_ids col-
umn. Then if this chassis has proper bridge mappings, it will be selected for scheduling
gateway routers.

94

Chapter 7. OVN Install Documentation

Neutron Documentation, Release 17.4.2.dev115

ovs-vsctl set open . external-ids:ovn-cms-options enable-—
—chassis—-as—-gw

7. Start the neutron—-server service.

7.1.3 Network nodes

Deployments using OVN native layer-3 and DHCP services do not require conventional network nodes
because connectivity to external networks (including VTEP gateways) and routing occurs on compute
nodes.

7.1.4 Compute nodes
Each compute node runs the OVS and ovn-controller services. The ovn—controller service
replaces the conventional OVS layer-2 agent.

1. Install the openvswitch-ovn and networking-ovn packages.

2. Start the OVS service.

Using the systemd unit:

systemctl start openvswitch

Using the ovs—ct1 script:

/usr/share/openvswitch/scripts/ovs—ctl start —--system-id

3. Configure the OVS service.

¢ Use OVS databases on the controller node.

ovs-vsctl set open . external-ids:ovn-remote tcp:IP_ADDRESS:6642

Replace IP_ADDRESS with the IP address of the controller node that runs the
ovsdb-server service.

* Enable one or more overlay network protocols. At a minimum, OVN requires enabling
the geneve protocol. Deployments using VTEP gateways should also enable the vx1lan
protocol.

ovs-vsctl set open . external-ids:ovn-encap-type geneve,vxlan

Note: Deployments without VTEP gateways can safely enable both protocols.

* Configure the overlay network local endpoint IP address.

ovs-vsctl set open . external-ids:ovn-encap-ip IP_ADDRESS

Replace TP_ADDRESS with the IP address of the overlay network interface on the compute
node.

7.1. Manual install & Configuration 95

Neutron Documentation, Release 17.4.2.dev115

4. Start the ovn—controller service.

Using the systemd unit:

systemctl start ovn-controller

Using the ovn—ct1 script:

/usr/share/openvswitch/scripts/ovn-ctl start_controller

7.1.5 Verify operation

1. Each compute node should contain an ovn—controller instance.

ovn—-sbctl show

7.2 TripleO/RDO based deployments

TripleO is a project aimed at installing, upgrading and operating OpenStack clouds using OpenStacks
own cloud facilities as the foundation.

RDO is the OpenStack distribution that runs on top of CentOS, and can be deployed via TripleO.
TripleO Quickstart is an easy way to try out TripleO in a libvirt virtualized environment.

In this document we will stick to the details of installing a 3 controller + 1 compute in high availability
through TripleO Quickstart, but the non-quickstart details in this document also work with TripleO.

Note: This deployment requires 32GB for the VMs, so your host may have >32GB of RAM at least. If
you have 32GB I recommend to trim down the compute node memory in config/nodes/3ctlr_1comp.yml
to 2GB and controller nodes to 5GB.

7.2.1 Deployment steps

1. Download the quickstart.sh script with curl:

curl -0 https://raw.githubusercontent.com/openstack/tripleo—
—quickstart/master/quickstart.sh

2. Install the necessary dependencies by running:

bash quickstart.sh --install-deps

3. Clone the tripleo-quickstart and neutron repositories:

git clone https://opendev.org/openstack/tripleo—quickstart
git clone https://opendev.org/openstack/neutron

4. Once youre done, run quickstart as follows (3 controller HA + 1 compute):

96 Chapter 7. OVN Install Documentation

http://tripleo.org/
http://rdoproject.org/
https://github.com/openstack/tripleo-quickstart/blob/master/README.rst

Neutron Documentation, Release 17.4.2.dev115

Exporting the tags is a workaround the bug
https://bugs.launchpad.net/tripleo/+bug/1737602 is resolved

export

bash ./quickstart.sh —--tags ——teardown all
—-—-release master-tripleo-ci
—--nodes tripleo—quickstart/config/nodes/3ctlr_lcomp.yml
—-—config neutron/tools/tripleo/ovn.yml

Note: When deploying directly on localhost use the loopback address 127.0.0.2 as your
$VIRTHOST. The loopback address 127.0.0.1 is reserved by ansible. Also make sure that
127.0.0.2 is accessible via public keys:

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Note: You can adjust RAM/VCPUs if you want by editing config/nodes/3ctlr_Icomp.yml before
running the above command. If you have enough memory stick to the defaults. We recommend
using 8GB of RAM for the controller nodes.

5. When quickstart has finished you will have 5 VMs ready to be used, 1 for the undercloud (TripleOs
node to deploy your openstack from), 3 VMs for controller nodes and 1 VM for the compute node.

6. Log in into the undercloud:

ssh -F ~/.quickstart/ssh.config.ansible undercloud

7. Prepare overcloud container images:

./overcloud-prep-containers.sh

8. Run inside the undercloud:

./overcloud-deploy.sh

9. Grab a coffee, that may take around 1 hour (depending on your hardware).

10. If anything goes wrong, go to IRC on freenode, and ask on #o0o00q

7.2. TripleO/RDO based deployments 97

Neutron Documentation, Release 17.4.2.dev115

7.2.2 Description of the environment

Once deployed, inside the undercloud root directory two files are present: stackrc and overcloudre,
which will let you connect to the APIs of the undercloud (managing the openstack node), and to the
overcloud (where your instances would live).

We can find out the existing controller/computes this way:

[stack@undercloud ~]$ source stackrc
(undercloud) [stacklundercloud ~15 openstack server list —-c Name -c_,
—Networks —-c Flavor

Network architecture of the environment

Tenant/geneve

13
o
c
a
=
b
c
o
§
=

Interna lAPI

Interna l&P|

ET
External

=1
wi
[
m

wlan20
wlansl®

=)
o
[
]
=

Controller Node 1..3

Compute Node 1

(\ Internal API ™9
NBDB/S BDE)"

e
172.17.0.0/24

-
-
=
N

-

192.24.0.0/24

98 Chapter 7. OVN Install Documentation

Neutron Documentation, Release 17.4.2.dev115

Connecting to one of the nodes via ssh

We can connect to the IP address in the openstack server list we showed before.

ssh heat-admin@192.168.24.16

ps fax grep ovn—-controller

sudo ovs-vsctl show

7.2. TripleO/RDO based deployments 929

Neutron Documentation, Release 17.4.2.dev115

7.2.3 Initial resource creation

Well, now you have a virtual cloud with 3 controllers in HA, and one compute node, but no instances or
routers running. We can give it a try and create a few resources:

router 1
10.0.0.23/192.168.99.1

4
_private

i 10.0.0.130*{FIP) = cirros
10.0.(?.0,-"24 """""""""""" ’,192.168..99.5

.....

..........................

Virtual resources

undercloud

External/

Provider Net
"datacentre"

10.0.0.0/24 (vlan10)

10.0.0.1 (vlanl0)

You can use the following script to create the resources.

(continues on next page)

100 Chapter 7. OVN Install Documentation

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Note: You can now log in into the instance if you want. In a CirrOS >0.4.0 image, the login account is
cirros. The password is gocubsgo.

ssh cirros@10.0.0.130

ip a grep eth0 -A 10

ping 10.0.0.1

ping 8.8.8.8

(continues on next page)

7.2. TripleO/RDO based deployments 101

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

curl http://169.254.169.254/2009-04-04/meta-data/instance-1id

This chapter explains how to install and configure the Networking service (neutron) using the provider
networks or self-service networks option.

For more information about the Networking service including virtual networking components, layout,
and traffic flows, see the OpenStack Networking Guide.

102 Chapter 7. OVN Install Documentation

CHAPTER
EIGHT

OPENSTACK NETWORKING GUIDE

This guide targets OpenStack administrators seeking to deploy and manage OpenStack Networking
(neutron).

8.1 Introduction

The OpenStack Networking service (neutron) provides an API that allows users to set up and define
network connectivity and addressing in the cloud. The project code-name for Networking services is
neutron. OpenStack Networking handles the creation and management of a virtual networking infras-
tructure, including networks, switches, subnets, and routers for devices managed by the OpenStack
Compute service (nova). Advanced services such as firewalls or virtual private network (VPN) can also
be used.

OpenStack Networking consists of the neutron-server, a database for persistent storage, and any num-
ber of plug-in agents, which provide other services such as interfacing with native Linux networking
mechanisms, external devices, or SDN controllers.

OpenStack Networking is entirely standalone and can be deployed to a dedicated host. If your deploy-
ment uses a controller host to run centralized Compute components, you can deploy the Networking
server to that specific host instead.

OpenStack Networking integrates with various OpenStack components:
* OpenStack Identity service (keystone) is used for authentication and authorization of API requests.

* OpenStack Compute service (nova) is used to plug each virtual NIC on the VM into a particular
network.

* OpenStack Dashboard (horizon) is used by administrators and project users to create and manage
network services through a web-based graphical interface.

Note: The network address ranges used in this guide are chosen in accordance with RFC 5737 and RFC
3849, and as such are restricted to the following:

IPv4:
* 192.0.2.0/24
* 198.51.100.0/24
* 203.0.113.0/24
IPv6:

103

https://tools.ietf.org/rfc/rfc5737
https://tools.ietf.org/html/rfc3849
https://tools.ietf.org/html/rfc3849

Neutron Documentation, Release 17.4.2.dev115

* 2001:DBS8::/32

The network address ranges in the examples of this guide should not be used for any purpose other than
documentation.

Note: To reduce clutter, this guide removes command output without relevance to the particular action.

8.1.1 Basic networking

Ethernet

Ethernet is a networking protocol, specified by the IEEE 802.3 standard. Most wired network interface
cards (NICs) communicate using Ethernet.

In the OSI model of networking protocols, Ethernet occupies the second layer, which is known as the
data link layer. When discussing Ethernet, you will often hear terms such as local network, layer 2, L2,
link layer and data link layer.

In an Ethernet network, the hosts connected to the network communicate by exchanging frames. Every
host on an Ethernet network is uniquely identified by an address called the media access control (MAC)
address. In particular, every virtual machine instance in an OpenStack environment has a unique MAC
address, which is different from the MAC address of the compute host. A MAC address has 48 bits and
is typically represented as a hexadecimal string, such as 08:00:27:09:88:74. The MAC address
is hard-coded into the NIC by the manufacturer, although modern NICs allow you to change the MAC
address programmatically. In Linux, you can retrieve the MAC address of a NIC using the ip command:

ip link show ethO

Conceptually, you can think of an Ethernet network as a single bus that each of the network hosts
connects to. In early implementations, an Ethernet network consisted of a single coaxial cable that
hosts would tap into to connect to the network. However, network hosts in modern Ethernet networks
connect directly to a network device called a switch. Still, this conceptual model is useful, and in network
diagrams (including those generated by the OpenStack dashboard) an Ethernet network is often depicted
as if it was a single bus. Youll sometimes hear an Ethernet network referred to as a layer 2 segment.

In an Ethernet network, every host on the network can send a frame directly to every other host. An Eth-
ernet network also supports broadcasts so that one host can send a frame to every host on the network
by sending to the special MAC address f£: ff: ff: £f:£f:£f. ARP and DHCP are two notable pro-
tocols that use Ethernet broadcasts. Because Ethernet networks support broadcasts, you will sometimes
hear an Ethernet network referred to as a broadcast domain.

When a NIC receives an Ethernet frame, by default the NIC checks to see if the destination MAC
address matches the address of the NIC (or the broadcast address), and the Ethernet frame is discarded
if the MAC address does not match. For a compute host, this behavior is undesirable because the frame
may be intended for one of the instances. NICs can be configured for promiscuous mode, where they
pass all Ethernet frames to the operating system, even if the MAC address does not match. Compute
hosts should always have the appropriate NICs configured for promiscuous mode.

104 Chapter 8. OpenStack Networking Guide

https://en.wikipedia.org/wiki/OSI_model

Neutron Documentation, Release 17.4.2.dev115

As mentioned earlier, modern Ethernet networks use switches to interconnect the network hosts. A
switch is a box of networking hardware with a large number of ports that forward Ethernet frames from
one connected host to another. When hosts first send frames over the switch, the switch doesnt know
which MAC address is associated with which port. If an Ethernet frame is destined for an unknown MAC
address, the switch broadcasts the frame to all ports. The switch learns which MAC addresses are at
which ports by observing the traffic. Once it knows which MAC address is associated with a port, it can
send Ethernet frames to the correct port instead of broadcasting. The switch maintains the mappings of
MAC addresses to switch ports in a table called a forwarding table or forwarding information base (FIB).
Switches can be daisy-chained together, and the resulting connection of switches and hosts behaves like
a single network.

VLANSs

VLAN is a networking technology that enables a single switch to act as if it was multiple independent
switches. Specifically, two hosts that are connected to the same switch but on different VLANs do not
see each others traffic. OpenStack is able to take advantage of VLANS to isolate the traffic of different
projects, even if the projects happen to have instances running on the same compute host. Each VLAN
has an associated numerical ID, between 1 and 4095. We say VLAN 15 to refer to the VLAN with a
numerical ID of 15.

To understand how VLANs work, lets consider VLAN applications in a traditional IT environment,
where physical hosts are attached to a physical switch, and no virtualization is involved. Imagine a
scenario where you want three isolated networks but you only have a single physical switch. The net-
work administrator would choose three VLAN IDs, for example, 10, 11, and 12, and would configure
the switch to associate switchports with VLAN IDs. For example, switchport 2 might be associated
with VLAN 10, switchport 3 might be associated with VLAN 11, and so forth. When a switchport is
configured for a specific VLAN, it is called an access port. The switch is responsible for ensuring that
the network traffic is isolated across the VL ANS.

Now consider the scenario that all of the switchports in the first switch become occupied, and so the
organization buys a second switch and connects it to the first switch to expand the available number of
switchports. The second switch is also configured to support VLAN IDs 10, 11, and 12. Now imagine
host A connected to switch 1 on a port configured for VLAN ID 10 sends an Ethernet frame intended
for host B connected to switch 2 on a port configured for VLAN ID 10. When switch 1 forwards the
Ethernet frame to switch 2, it must communicate that the frame is associated with VLAN ID 10.

If two switches are to be connected together, and the switches are configured for VLANS, then the
switchports used for cross-connecting the switches must be configured to allow Ethernet frames from
any VLAN to be forwarded to the other switch. In addition, the sending switch must tag each Ethernet
frame with the VLAN ID so that the receiving switch can ensure that only hosts on the matching VLAN
are eligible to receive the frame.

A switchport that is configured to pass frames from all VLANs and tag them with the VLAN IDs is
called a trunk port. IEEE 802.1Q is the network standard that describes how VLAN tags are encoded in
Ethernet frames when trunking is being used.

Note that if you are using VLANSs on your physical switches to implement project isolation in your
OpenStack cloud, you must ensure that all of your switchports are configured as trunk ports.

It is important that you select a VLAN range not being used by your current network infrastructure. For
example, if you estimate that your cloud must support a maximum of 100 projects, pick a VLAN range
outside of that value, such as VLAN 200299. OpenStack, and all physical network infrastructure that
handles project networks, must then support this VLAN range.

8.1. Introduction 105

Neutron Documentation, Release 17.4.2.dev115

Trunking is used to connect between different switches. Each trunk uses a tag to identify which VLAN
is in use. This ensures that switches on the same VLAN can communicate.

Subnets and ARP

While NICs use MAC addresses to address network hosts, TCP/IP applications use IP addresses. The
Address Resolution Protocol (ARP) bridges the gap between Ethernet and IP by translating IP addresses
into MAC addresses.

IP addresses are broken up into two parts: a network number and a host identifier. Two hosts are on
the same subnet if they have the same network number. Recall that two hosts can only communicate
directly over Ethernet if they are on the same local network. ARP assumes that all machines that are in
the same subnet are on the same local network. Network administrators must take care when assigning
IP addresses and netmasks to hosts so that any two hosts that are in the same subnet are on the same
local network, otherwise ARP does not work properly.

To calculate the network number of an IP address, you must know the nefmask associated with the
address. A netmask indicates how many of the bits in the 32-bit IP address make up the network number.

There are two syntaxes for expressing a netmask:
¢ dotted quad
* classless inter-domain routing (CIDR)

Consider an IP address of 192.0.2.5, where the first 24 bits of the address are the network number. In
dotted quad notation, the netmask would be written as 255.255.255. 0. CIDR notation includes both
the IP address and netmask, and this example would be written as 192.0.2.5/24.

Note: Creating CIDR subnets including a multicast address or a loopback address cannot be used in an
OpenStack environment. For example, creating a subnet using 224.0.0.0/160r 127.0.1.0/24
is not supported.

Sometimes we want to refer to a subnet, but not any particular IP address on the subnet. A common
convention is to set the host identifier to all zeros to make reference to a subnet. For example, if a hosts
IP addressis 192.0.2.24/24, then we would say the subnetis 192.0.2.0/24.

To understand how ARP translates IP addresses to MAC addresses, consider the following example.
Assume host A has an IP address of 192.0.2.5/24 and a MAC addressof £c:99:47:49:d4:a0,
and wants to send a packet to host B with an IP address of 192.0.2. 7. Note that the network number
is the same for both hosts, so host A is able to send frames directly to host B.

The first time host A attempts to communicate with host B, the destination MAC address is not known.
Host A makes an ARP request to the local network. The request is a broadcast with a message like this:

To: everybody (ff:ff:ff:1f-1f-ff). I am looking for the computer who has IP address 192.0.2.7. Signed:
MAC address fc:99:47:49:d4:a0.

Host B responds with a response like this:
To: fc:99:47:49:d4:a0. I have IP address 192.0.2.7. Signed: MAC address 54:78:1a:86:00:a5.
Host A then sends Ethernet frames to host B.

You can initiate an ARP request manually using the arping command. For example, to send an ARP
request to IP address 192.0.2.132:

106 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

arping -I eth0 192.0.2.132

To reduce the number of ARP requests, operating systems maintain an ARP cache that contains the
mappings of IP addresses to MAC address. On a Linux machine, you can view the contents of the ARP
cache by using the arp command:

arp -n

DHCP

Hosts connected to a network use the Dynamic Host Configuration Protocol (DHCP) to dynamically
obtain IP addresses. A DHCP server hands out the IP addresses to network hosts, which are the DHCP
clients.

DHCEP clients locate the DHCP server by sending a UDP packet from port 68 to address 255.255.
255.255 on port 67. Address 255.255.255.255 is the local network broadcast address: all hosts
on the local network see the UDP packets sent to this address. However, such packets are not forwarded
to other networks. Consequently, the DHCP server must be on the same local network as the client, or
the server will not receive the broadcast. The DHCP server responds by sending a UDP packet from port
67 to port 68 on the client. The exchange looks like this:

1. The client sends a discover (Im a client at MAC address 08:00:27:09:88:74, I need an IP
address)

2. The server sends an offer (OK 08:00:27:09:88:74, Im offering IP address 192.0.2.112)
3. The client sends a request (Server 192.0.2.131, I would like to have I[P 192.0.2.112)

4. The server sends an acknowledgement (OK 08:00:27:09:88:74, IP 192.0.2.112 is
yours)

OpenStack uses a third-party program called dnsmasq to implement the DHCP server. Dnsmasq writes
to the syslog, where you can observe the DHCP request and replies:

23 15:53:46 1 08:00:27 88:74

23 15:53:46 1 192.0.2.112
—08:00:27 88:74

23 15:53:48 1 192.0.2.112 (192.0.2.131)
s 08:00:27 88:74

23 15:53:48 1 192.0.2.112 08:00:27 88:74_,

When troubleshooting an instance that is not reachable over the network, it can be helpful to examine
this log to verify that all four steps of the DHCP protocol were carried out for the instance in question.

8.1. Introduction 107

http://www.thekelleys.org.uk/dnsmasq/doc.html

Neutron Documentation, Release 17.4.2.dev115

IP

The Internet Protocol (IP) specifies how to route packets between hosts that are connected to different
local networks. IP relies on special network hosts called routers or gateways. A router is a host that is
connected to at least two local networks and can forward IP packets from one local network to another.
A router has multiple IP addresses: one for each of the networks it is connected to.

In the OSI model of networking protocols IP occupies the third layer, known as the network layer. When
discussing IP, you will often hear terms such as layer 3, L3, and network layer.

A host sending a packet to an IP address consults its routing table to determine which machine on the
local network(s) the packet should be sent to. The routing table maintains a list of the subnets associated
with each local network that the host is directly connected to, as well as a list of routers that are on these
local networks.

On a Linux machine, any of the following commands displays the routing table:

ip route show
route —n
netstat -rn

Here is an example of output from ip route show:

ip route show

Line 1 of the output specifies the location of the default route, which is the effective routing rule if
none of the other rules match. The router associated with the default route (192.0. 2. 2 in the example
above) is sometimes referred to as the default gateway. A DHCP server typically transmits the IP address
of the default gateway to the DHCP client along with the clients IP address and a netmask.

Line 2 of the output specifies that [IPsinthe 192.0.2.0/24 subnet are on the local network associated
with the network interface ethO.

Line 3 of the output specifies that IPs in the 198.51.100.0/25 subnet are on the local network
associated with the network interface ethl.

Line 4 of the output specifies that IPs in the 198.51.100.192/26 subnet are on the local network
associated with the network interface virbr0.

The output of the route —-n and netstat -—rn commands are formatted in a slightly different way.
This example shows how the same routes would be formatted using these commands:

route —-n

[}

(continues on next page)

108 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

|

The ip route get command outputs the route for a destination IP address. From the below example,
destination IP address 192 .0.2.14 is on the local network of ethQ and would be sent directly:

ip route get 192.0.2.14

The destination IP address 203.0.113. 34 is not on any of the connected local networks and would
be forwarded to the default gateway at 192.0.2.2:

ip route get 203.0.113.34

It is common for a packet to hop across multiple routers to reach its final destination. On a Linux
machine, the t raceroute and more recent mt r programs prints out the IP address of each router that
an IP packet traverses along its path to its destination.

TCP/UDP/ICMP

For networked software applications to communicate over an IP network, they must use a protocol
layered atop IP. These protocols occupy the fourth layer of the OSI model known as the transport layer
or layer 4. See the Protocol Numbers web page maintained by the Internet Assigned Numbers Authority
(IANA) for a list of protocols that layer atop IP and their associated numbers.

The Transmission Control Protocol (TCP) is the most commonly used layer 4 protocol in networked ap-
plications. TCP is a connection-oriented protocol: it uses a client-server model where a client connects
to a server, where server refers to the application that receives connections. The typical interaction in a
TCP-based application proceeds as follows:

1. Client connects to server.
2. Client and server exchange data.
3. Client or server disconnects.

Because a network host may have multiple TCP-based applications running, TCP uses an addressing
scheme called ports to uniquely identify TCP-based applications. A TCP port is associated with a
number in the range 1-65535, and only one application on a host can be associated with a TCP port at a
time, a restriction that is enforced by the operating system.

A TCP server is said to listen on a port. For example, an SSH server typically listens on port 22. For a
client to connect to a server using TCP, the client must know both the IP address of a servers host and
the servers TCP port.

The operating system of the TCP client application automatically assigns a port number to the client.
The client owns this port number until the TCP connection is terminated, after which the operating
system reclaims the port number. These types of ports are referred to as ephemeral ports.

TANA maintains a registry of port numbers for many TCP-based services, as well as services that use
other layer 4 protocols that employ ports. Registering a TCP port number is not required, but registering
a port number is helpful to avoid collisions with other services. See firewalls and default ports in Open-
Stack Installation Guide for the default TCP ports used by various services involved in an OpenStack
deployment.

8.1. Introduction 109

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://docs.openstack.org/install-guide/firewalls-default-ports.html

Neutron Documentation, Release 17.4.2.dev115

The most common application programming interface (API) for writing TCP-based applications is called
Berkeley sockets, also known as BSD sockets or, simply, sockets. The sockets API exposes a stream ori-
ented interface for writing TCP applications. From the perspective of a programmer, sending data over
a TCP connection is similar to writing a stream of bytes to a file. It is the responsibility of the operating
systems TCP/IP implementation to break up the stream of data into IP packets. The operating system is
also responsible for automatically retransmitting dropped packets, and for handling flow control to en-
sure that transmitted data does not overrun the senders data buffers, receivers data buffers, and network
capacity. Finally, the operating system is responsible for re-assembling the packets in the correct order
into a stream of data on the receivers side. Because TCP detects and retransmits lost packets, it is said
to be a reliable protocol.

The User Datagram Protocol (UDP) is another layer 4 protocol that is the basis of several well-known
networking protocols. UDP is a connectionless protocol: two applications that communicate over UDP
do not need to establish a connection before exchanging data. UDP is also an unreliable protocol. The
operating system does not attempt to retransmit or even detect lost UDP packets. The operating system
also does not provide any guarantee that the receiving application sees the UDP packets in the same
order that they were sent in.

UDP, like TCP, uses the notion of ports to distinguish between different applications running on the same
system. Note, however, that operating systems treat UDP ports separately from TCP ports. For example,
it is possible for one application to be associated with TCP port 16543 and a separate application to be
associated with UDP port 16543.

Like TCP, the sockets API is the most common API for writing UDP-based applications. The sockets
API provides a message-oriented interface for writing UDP applications: a programmer sends data over
UDP by transmitting a fixed-sized message. If an application requires retransmissions of lost packets
or a well-defined ordering of received packets, the programmer is responsible for implementing this
functionality in the application code.

DHCP, the Domain Name System (DNS), the Network Time Protocol (NTP), and Virtual extensible
local area network (VXLAN) are examples of UDP-based protocols used in OpenStack deployments.

UDP has support for one-to-many communication: sending a single packet to multiple hosts. An appli-
cation can broadcast a UDP packet to all of the network hosts on a local network by setting the receiver
IP address as the special IP broadcast address 255.255.255.255. An application can also send a
UDP packet to a set of receivers using IP multicast. The intended receiver applications join a multicast
group by binding a UDP socket to a special IP address that is one of the valid multicast group addresses.
The receiving hosts do not have to be on the same local network as the sender, but the intervening routers
must be configured to support IP multicast routing. VXLAN is an example of a UDP-based protocol
that uses IP multicast.

The Internet Control Message Protocol (ICMP) is a protocol used for sending control messages over
an IP network. For example, a router that receives an IP packet may send an ICMP packet back to the
source if there is no route in the routers routing table that corresponds to the destination address (ICMP
code 1, destination host unreachable) or if the IP packet is too large for the router to handle ICMP code
4, fragmentation required and dont fragment flag is set).

The ping and mt r Linux command-line tools are two examples of network utilities that use ICMP.

110 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

8.1.2 Network components
Switches

Switches are Multi-Input Multi-Output (MIMO) devices that enable packets to travel from one node to
another. Switches connect hosts that belong to the same layer-2 network. Switches enable forwarding of
the packet received on one port (input) to another port (output) so that they reach the desired destination
node. Switches operate at layer-2 in the networking model. They forward the traffic based on the
destination Ethernet address in the packet header.

Routers

Routers are special devices that enable packets to travel from one layer-3 network to another. Routers
enable communication between two nodes on different layer-3 networks that are not directly connected
to each other. Routers operate at layer-3 in the networking model. They route the traffic based on the
destination IP address in the packet header.

Firewalls

Firewalls are used to regulate traffic to and from a host or a network. A firewall can be either a specialized
device connecting two networks or a software-based filtering mechanism implemented on an operating
system. Firewalls are used to restrict traffic to a host based on the rules defined on the host. They can
filter packets based on several criteria such as source IP address, destination IP address, port numbers,
connection state, and so on. It is primarily used to protect the hosts from unauthorized access and
malicious attacks. Linux-based operating systems implement firewalls through iptables.

Load balancers

Load balancers can be software-based or hardware-based devices that allow traffic to evenly be dis-
tributed across several servers. By distributing the traffic across multiple servers, it avoids overload of
a single server thereby preventing a single point of failure in the product. This further improves the
performance, network throughput, and response time of the servers. Load balancers are typically used
in a 3-tier architecture. In this model, a load balancer receives a request from the front-end web server,
which then forwards the request to one of the available back-end database servers for processing. The
response from the database server is passed back to the web server for further processing.

8.1.3 Overlay (tunnel) protocols

Tunneling is a mechanism that makes transfer of payloads feasible over an incompatible delivery net-
work. It allows the network user to gain access to denied or insecure networks. Data encryption may be
employed to transport the payload, ensuring that the encapsulated user network data appears as public
even though it is private and can easily pass the conflicting network.

8.1. Introduction 111

Neutron Documentation, Release 17.4.2.dev115

Generic routing encapsulation (GRE)

Generic routing encapsulation (GRE) is a protocol that runs over IP and is employed when delivery and
payload protocols are compatible but payload addresses are incompatible. For instance, a payload might
think it is running on a datalink layer but it is actually running over a transport layer using datagram
protocol over IP. GRE creates a private point-to-point connection and works by encapsulating a pay-
load. GRE is a foundation protocol for other tunnel protocols but the GRE tunnels provide only weak
authentication.

Virtual extensible local area network (VXLAN)

The purpose of VXLAN is to provide scalable network isolation. VXLAN is a Layer 2 overlay scheme
on a Layer 3 network. It allows an overlay layer-2 network to spread across multiple underlay layer-3
network domains. Each overlay is termed a VXLAN segment. Only VMs within the same VXLAN
segment can communicate.

Generic Network Virtualization Encapsulation (GENEVE)

Geneve is designed to recognize and accommodate changing capabilities and needs of different devices
in network virtualization. It provides a framework for tunneling rather than being prescriptive about the
entire system. Geneve defines the content of the metadata flexibly that is added during encapsulation
and tries to adapt to various virtualization scenarios. It uses UDP as its transport protocol and is dynamic
in size using extensible option headers. Geneve supports unicast, multicast, and broadcast.

8.1.4 Network namespaces

A namespace is a way of scoping a particular set of identifiers. Using a namespace, you can use the
same identifier multiple times in different namespaces. You can also restrict an identifier set visible to
particular processes.

For example, Linux provides namespaces for networking and processes, among other things. If a process
is running within a process namespace, it can only see and communicate with other processes in the same
namespace. So, if a shell in a particular process namespace ran ps waux, it would only show the other
processes in the same namespace.

Linux network namespaces

In a network namespace, the scoped identifiers are network devices; so a given network device, such as
ethO, exists in a particular namespace. Linux starts up with a default network namespace, so if your
operating system does not do anything special, that is where all the network devices will be located. But
it is also possible to create further non-default namespaces, and create new devices in those namespaces,
or to move an existing device from one namespace to another.

Each network namespace also has its own routing table, and in fact this is the main reason for namespaces
to exist. A routing table is keyed by destination IP address, so network namespaces are what you need if
you want the same destination IP address to mean different things at different times - which is something
that OpenStack Networking requires for its feature of providing overlapping IP addresses in different
virtual networks.

112 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Each network namespace also has its own set of iptables (for both IPv4 and IPv6). So, you can apply
different security to flows with the same IP addressing in different namespaces, as well as different
routing.

Any given Linux process runs in a particular network namespace. By default this is inherited from its
parent process, but a process with the right capabilities can switch itself into a different namespace; in
practice this is mostly done using the ip netns exec NETNS COMMAND. .. invocation, which
starts COMMAND running in the namespace named NETNS. Suppose such a process sends out a message
to IP address A.B.C.D, the effect of the namespace is that A.B.C.D will be looked up in that namespaces
routing table, and that will determine the network device that the message is transmitted through.

Virtual routing and forwarding (VRF)

Virtual routing and forwarding is an IP technology that allows multiple instances of a routing table to
coexist on the same router at the same time. It is another name for the network namespace functionality
described above.

8.1.5 Network address translation

Network Address Translation (NAT) is a process for modifying the source or destination addresses in
the headers of an IP packet while the packet is in transit. In general, the sender and receiver applications
are not aware that the IP packets are being manipulated.

NAT is often implemented by routers, and so we will refer to the host performing NAT as a NAT router.
However, in OpenStack deployments it is typically Linux servers that implement the NAT functionality,
not hardware routers. These servers use the iptables software package to implement the NAT function-
ality.

There are multiple variations of NAT, and here we describe three kinds commonly found in OpenStack
deployments.

SNAT

In Source Network Address Translation (SNAT), the NAT router modifies the IP address of the sender
in IP packets. SNAT is commonly used to enable hosts with private addresses to communicate with
servers on the public Internet.

RFC 1918 reserves the following three subnets as private addresses:
*10.0.0.0/8
* 172.16.0.0/12
* 192.168.0.0/16

These IP addresses are not publicly routable, meaning that a host on the public Internet can not send
an IP packet to any of these addresses. Private IP addresses are widely used in both residential and
corporate environments.

Often, an application running on a host with a private IP address will need to connect to a server on the
public Internet. An example is a user who wants to access a public website such as www.openstack.org.
If the IP packets reach the web server at www.openstack.org with a private IP address as the source, then
the web server cannot send packets back to the sender.

8.1. Introduction 113

https://www.netfilter.org/projects/iptables/index.html
https://tools.ietf.org/rfc/rfc1918

Neutron Documentation, Release 17.4.2.dev115

SNAT solves this problem by modifying the source IP address to an IP address that is routable on the
public Internet. There are different variations of SNAT; in the form that OpenStack deployments use, a
NAT router on the path between the sender and receiver replaces the packets source IP address with the
routers public IP address. The router also modifies the source TCP or UDP port to another value, and
the router maintains a record of the senders true IP address and port, as well as the modified IP address
and port.

When the router receives a packet with the matching IP address and port, it translates these back to the
private IP address and port, and forwards the packet along.

Because the NAT router modifies ports as well as IP addresses, this form of SNAT is sometimes referred
to as Port Address Translation (PAT). It is also sometimes referred to as NAT overload.

OpenStack uses SNAT to enable applications running inside of instances to connect out to the public
Internet.

DNAT

In Destination Network Address Translation (DNAT), the NAT router modifies the IP address of the
destination in IP packet headers.

OpenStack uses DNAT to route packets from instances to the OpenStack metadata service. Applications
running inside of instances access the OpenStack metadata service by making HTTP GET requests to a
web server with IP address 169.254.169.254. In an OpenStack deployment, there is no host with this IP
address. Instead, OpenStack uses DNAT to change the destination IP of these packets so they reach the
network interface that a metadata service is listening on.

One-to-one NAT

In one-to-one NAT, the NAT router maintains a one-to-one mapping between private [P addresses and
public IP addresses. OpenStack uses one-to-one NAT to implement floating IP addresses.

8.1.6 OpenStack Networking

OpenStack Networking allows you to create and manage network objects, such as networks, subnets, and
ports, which other OpenStack services can use. Plug-ins can be implemented to accommodate different
networking equipment and software, providing flexibility to OpenStack architecture and deployment.

The Networking service, code-named neutron, provides an API that lets you define network connectivity
and addressing in the cloud. The Networking service enables operators to leverage different networking
technologies to power their cloud networking. The Networking service also provides an API to configure
and manage a variety of network services ranging from L3 forwarding and Network Address Translation
(NAT) to perimeter firewalls, and virtual private networks.

It includes the following components:

API server The OpenStack Networking API includes support for Layer 2 networking and IP Address
Management (IPAM), as well as an extension for a Layer 3 router construct that enables routing
between Layer 2 networks and gateways to external networks. OpenStack Networking includes a
growing list of plug-ins that enable interoperability with various commercial and open source net-
work technologies, including routers, switches, virtual switches and software-defined networking
(SDN) controllers.

114 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

OpenStack Networking plug-in and agents Plugs and unplugs ports, creates networks or subnets, and
provides IP addressing. The chosen plug-in and agents differ depending on the vendor and tech-
nologies used in the particular cloud. It is important to mention that only one plug-in can be used
at a time.

Messaging queue Accepts and routes RPC requests between agents to complete API operations. Mes-
sage queue is used in the ML2 plug-in for RPC between the neutron server and neutron agents
that run on each hypervisor, in the ML2 mechanism drivers for Open vSwitch and Linux bridge.

Concepts

To configure rich network topologies, you can create and configure networks and subnets and instruct
other OpenStack services like Compute to attach virtual devices to ports on these networks. OpenStack
Compute is a prominent consumer of OpenStack Networking to provide connectivity for its instances. In
particular, OpenStack Networking supports each project having multiple private networks and enables
projects to choose their own IP addressing scheme, even if those IP addresses overlap with those that
other projects use. There are two types of network, project and provider networks. It is possible to share
any of these types of networks among projects as part of the network creation process.

Provider networks

Provider networks offer layer-2 connectivity to instances with optional support for DHCP and metadata
services. These networks connect, or map, to existing layer-2 networks in the data center, typically using
VLAN (802.1q) tagging to identify and separate them.

Provider networks generally offer simplicity, performance, and reliability at the cost of flexibility. By
default only administrators can create or update provider networks because they require configuration
of physical network infrastructure. It is possible to change the user who is allowed to create or update
provider networks with the following parameters of policy. json:

* create_network:provider:physical_network

* update_network:provider:physical_network

Warning: The creation and modification of provider networks enables use of physical network
resources, such as VLAN-s. Enable these changes only for trusted projects.

Also, provider networks only handle layer-2 connectivity for instances, thus lacking support for features
such as routers and floating IP addresses.

In many cases, operators who are already familiar with virtual networking architectures that rely on
physical network infrastructure for layer-2, layer-3, or other services can seamlessly deploy the Open-
Stack Networking service. In particular, provider networks appeal to operators looking to migrate from
the Compute networking service (nova-network) to the OpenStack Networking service. Over time, op-
erators can build on this minimal architecture to enable more cloud networking features.

In general, the OpenStack Networking software components that handle layer-3 operations impact per-
formance and reliability the most. To improve performance and reliability, provider networks move
layer-3 operations to the physical network infrastructure.

In one particular use case, the OpenStack deployment resides in a mixed environment with conventional
virtualization and bare-metal hosts that use a sizable physical network infrastructure. Applications that

8.1. Introduction 115

Neutron Documentation, Release 17.4.2.dev115

run inside the OpenStack deployment might require direct layer-2 access, typically using VLANS, to
applications outside of the deployment.

Routed provider networks

Routed provider networks offer layer-3 connectivity to instances. These networks map to existing layer-
3 networks in the data center. More specifically, the network maps to multiple layer-2 segments, each
of which is essentially a provider network. Each has a router gateway attached to it which routes traffic
between them and externally. The Networking service does not provide the routing.

Routed provider networks offer performance at scale that is difficult to achieve with a plain provider
network at the expense of guaranteed layer-2 connectivity.

Neutron port could be associated with only one network segment, but there is an exception for OVN
distributed services like OVN Metadata.

See Routed provider networks for more information.

Self-service networks

Self-service networks primarily enable general (non-privileged) projects to manage networks without
involving administrators. These networks are entirely virtual and require virtual routers to interact with
provider and external networks such as the Internet. Self-service networks also usually provide DHCP
and metadata services to instances.

In most cases, self-service networks use overlay protocols such as VXLAN or GRE because they can
support many more networks than layer-2 segmentation using VLAN tagging (802.1q). Furthermore,
VLAN:S typically require additional configuration of physical network infrastructure.

IPv4 self-service networks typically use private IP address ranges (RFC1918) and interact with provider
networks via source NAT on virtual routers. Floating IP addresses enable access to instances from
provider networks via destination NAT on virtual routers. IPv6 self-service networks always use public
IP address ranges and interact with provider networks via virtual routers with static routes.

The Networking service implements routers using a layer-3 agent that typically resides at least one net-
work node. Contrary to provider networks that connect instances to the physical network infrastructure
at layer-2, self-service networks must traverse a layer-3 agent. Thus, oversubscription or failure of a
layer-3 agent or network node can impact a significant quantity of self-service networks and instances
using them. Consider implementing one or more high-availability features to increase redundancy and
performance of self-service networks.

Users create project networks for connectivity within projects. By default, they are fully isolated and are
not shared with other projects. OpenStack Networking supports the following types of network isolation
and overlay technologies.

Flat All instances reside on the same network, which can also be shared with the hosts. No VLAN
tagging or other network segregation takes place.

VLAN Networking allows users to create multiple provider or project networks using VLAN IDs
(802.1Q tagged) that correspond to VLANs present in the physical network. This allows in-
stances to communicate with each other across the environment. They can also communicate with
dedicated servers, firewalls, and other networking infrastructure on the same layer 2 VLAN.

116 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

GRE and VXLAN VXLAN and GRE are encapsulation protocols that create overlay networks to acti-
vate and control communication between compute instances. A Networking router is required to
allow traffic to flow outside of the GRE or VXLAN project network. A router is also required to
connect directly-connected project networks with external networks, including the Internet. The

router provides the ability to connect to instances directly from an external network using floating
IP addresses.

Compute Node Network Node

Neutron Router

L@

Project Network

Prowder Network

Project Network 1 Project Network 2 Physical
Network

Subnets

A block of IP addresses and associated configuration state. This is also known as the native [IPAM
(IP Address Management) provided by the networking service for both project and provider networks.
Subnets are used to allocate IP addresses when new ports are created on a network.

Subnet pools

End users normally can create subnets with any valid IP addresses without other restrictions. However,
in some cases, it is nice for the admin or the project to pre-define a pool of addresses from which to
create subnets with automatic allocation.

Using subnet pools constrains what addresses can be used by requiring that every subnet be within the
defined pool. It also prevents address reuse or overlap by two subnets from the same pool.

See Subnet pools for more information.

8.1. Introduction 117

Neutron Documentation, Release 17.4.2.dev115

Ports

A port is a connection point for attaching a single device, such as the NIC of a virtual server, to a
virtual network. The port also describes the associated network configuration, such as the MAC and IP
addresses to be used on that port.

Routers

Routers provide virtual layer-3 services such as routing and NAT between self-service and provider
networks or among self-service networks belonging to a project. The Networking service uses a layer-3
agent to manage routers via namespaces.

Security groups

Security groups provide a container for virtual firewall rules that control ingress (inbound to instances)
and egress (outbound from instances) network traffic at the port level. Security groups use a default deny
policy and only contain rules that allow specific traffic. Each port can reference one or more security
groups in an additive fashion. The firewall driver translates security group rules to a configuration for
the underlying packet filtering technology such as iptables.

Each project contains a default security group that allows all egress traffic and denies all ingress
traffic. You can change the rules in the default security group. If you launch an instance without
specifying a security group, the default security group automatically applies to it. Similarly, if you
create a port without specifying a security group, the default security group automatically applies to
1t.

Note: If you use the metadata service, removing the default egress rules denies access to TCP port 80
on 169.254.169.254, thus preventing instances from retrieving metadata.

Security group rules are stateful. Thus, allowing ingress TCP port 22 for secure shell automatically
creates rules that allow return egress traffic and ICMP error messages involving those TCP connections.

By default, all security groups contain a series of basic (sanity) and anti-spoofing rules that perform the
following actions:

» Allow egress traffic only if it uses the source MAC and IP addresses of the port for the instance,
source MAC and IP combination in allowed-address-pairs, or valid MAC address (port
or allowed-address—pairs) and associated EUI64 link-local IPv6 address.

* Allow egress DHCP discovery and request messages that use the source MAC address of the port
for the instance and the unspecified IPv4 address (0.0.0.0).

* Allow ingress DHCP and DHCPv6 responses from the DHCP server on the subnet so instances
can acquire IP addresses.

* Deny egress DHCP and DHCPv6 responses to prevent instances from acting as DHCP(v6) servers.

* Allow ingress/egress ICMPv6 MLD, neighbor solicitation, and neighbor discovery messages so
instances can discover neighbors and join multicast groups.

* Deny egress ICMPv6 router advertisements to prevent instances from acting as IPv6 routers and
forwarding IPv6 traffic for other instances.

118 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

* Allow egress ICMPv6 MLD reports (vl and v2) and neighbor solicitation messages that use the
source MAC address of a particular instance and the unspecified IPv6 address (::). Duplicate
address detection (DAD) relies on these messages.

* Allow egress non-IP traffic from the MAC address of the port for the instance and any additional
MAC addresses in allowed—-address—pairs on the port for the instance.

Although non-IP traffic, security groups do not implicitly allow all ARP traffic. Separate ARP filtering
rules prevent instances from using ARP to intercept traffic for another instance. You cannot disable or
remove these rules.

You can disable security groups including basic and anti-spoofing rules by setting the port attribute
port_security_enabledtoFalse.

Extensions

The OpenStack Networking service is extensible. Extensions serve two purposes: they allow the intro-
duction of new features in the API without requiring a version change and they allow the introduction of
vendor specific niche functionality. Applications can programmatically list available extensions by per-
forming a GET on the /extensions URI. Note that this is a versioned request; that is, an extension
available in one API version might not be available in another.

DHCP

The optional DHCP service manages IP addresses for instances on provider and self-service networks.
The Networking service implements the DHCP service using an agent that manages gdhcp namespaces
and the dnsmasq service.

Metadata

The optional metadata service provides an API for instances to obtain metadata such as SSH keys.

Service and component hierarchy

Server

* Provides API, manages database, etc.

Plug-ins

* Manages agents

8.1. Introduction 119

Neutron Documentation, Release 17.4.2.dev115

Agents

* Provides layer 2/3 connectivity to instances
* Handles physical-virtual network transition

e Handles metadata, etc.

Layer 2 (Ethernet and Switching)

* Linux Bridge
* OVS

Layer 3 (IP and Routing)

L3
* DHCP

Miscellaneous

e Metadata

Services
Routing services
VPNaa$S

The Virtual Private Network-as-a-Service (VPNaaS) is a neutron extension that introduces the VPN
feature set.

LBaaS

The Load-Balancer-as-a-Service (LBaaS) API provisions and configures load balancers. The reference
implementation is based on the HAProxy software load balancer. See the Octavia project for more
information.

120 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/octavia/latest/

Neutron Documentation, Release 17.4.2.dev115

FWaaS

The Firewall-as-a-Service (FWaaS) API allows to apply firewalls to OpenStack objects such as projects,
routers, and router ports.

8.1.7 Firewall-as-a-Service (FWaaS)
The Firewall-as-a-Service (FWaaS) plug-in applies firewalls to OpenStack objects such as projects,
routers, and router ports.

The central concepts with OpenStack firewalls are the notions of a firewall policy and a firewall rule. A
policy is an ordered collection of rules. A rule specifies a collection of attributes (such as port ranges,
protocol, and IP addresses) that constitute match criteria and an action to take (allow or deny) on matched
traffic. A policy can be made public, so it can be shared across projects.

Firewalls are implemented in various ways, depending on the driver used. For example, an iptables
driver implements firewalls using iptable rules. An OpenVSwitch driver implements firewall rules using
flow entries in flow tables. A Cisco firewall driver manipulates NSX devices.

FWaa$ v2
The newer FWaaS implementation, v2, provides a much more granular service. The notion of a firewall
has been replaced with firewall group to indicate that a firewall consists of two policies: an ingress policy

and an egress policy. A firewall group is applied not at the router level (all ports on a router) but at the
port level. Currently, router ports can be specified. For Ocata, VM ports can also be specified.

FWaas v1

FWaaS v1 was deprecated in the Newton cycle and removed entirely in the Stein cycle.

FWaaS Feature Matrix

The following table shows FWaaS v2 features.

Feature Supported
Supports L3 firewalling for routers NO*
Supports L3 firewalling for router ports | YES
Supports L2 firewalling (VM ports) YES

CLI support YES
Horizon support NO

* A firewall group can be applied to all ports on a given router in order to effect this.

For further information, see the FWaaS v2 configuration guide.

8.1. Introduction 121

./fwaas-v2-scenario.html

Neutron Documentation, Release 17.4.2.dev115

8.2 Configuration

8.2.1 Services and agents

A usual neutron setup consists of multiple services and agents running on one or multiple nodes (though
some setups may not need any agents). Each of these services provide some of the networking or API
services. Among those of special interest are:

1. The neutron-server that provides API endpoints and serves as a single point of access to the
database. It usually runs on the controller nodes.

2. Layer2 agent that can utilize Open vSwitch, Linux Bridge or other vendor-specific technology to
provide network segmentation and isolation for project networks. The L2 agent should run on
every node where it is deemed responsible for wiring and securing virtual interfaces (usually both
compute and network nodes).

3. Layer3 agent that runs on network node and provides east-west and north-south routing plus some
advanced services such as FWaaS or VPNaasS.

Configuration options

The neutron configuration options are segregated between neutron-server and agents. Both services and
agents may load the main neutron. conf since this file should contain the oslo.messaging configu-
ration for internal neutron RPCs and may contain host specific configuration, such as file paths. The
neutron.conf contains the database, keystone, nova credentials, and endpoints strictly for neutron-
server to use.

In addition, neutron-server may load a plugin-specific configuration file, yet the agents should not. As
the plugin configuration is primarily site wide options and the plugin provides the persistence layer for
neutron, agents should be instructed to act upon these values through RPC.

Each individual agent may have its own configuration file. This file should be loaded after the main
neutron.conf file, so the agent configuration takes precedence. The agent-specific configuration
may contain configurations which vary between hosts in a neutron deployment such as the local_ip
for an L2 agent. If any agent requires access to additional external services beyond the neutron RPC,
those endpoints should be defined in the agent-specific configuration file (for example, nova metadata
for metadata agent).

External processes run by agents

Some neutron agents, like DHCP, Metadata or L3, often run external processes to provide some of their
functionalities. It may be keepalived, dnsmasq, haproxy or some other process. Neutron agents are
responsible for spawning and killing such processes when necessary. By default, to kill such processes,
agents use a simple ki1l command, but in some cases, like for example when those additional ser-
vices are running inside containers, it may be not a good solution. To address this problem, operators
should use the AGENT config group option kill_scripts_path to configure a path to where k111
scripts for such processes live. By default, it is set to /etc/neutron/kill_scripts/. If
option kill_scripts_path is changed in the config to the different location, exec_dirs in /
etc/rootwrap.conf should be changed accordingly. If ki1l scripts_path is set, every time
neutron has to kill a process, for example dnsmasg, it will look in this directory for a file with the
name <process_name>-kill. So for dnsmasq process it will look for a dnsmasqg-kil1l script.
If such a file exists there, it will be called instead of using the ki11 command.

122 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Kill scripts are called with two parameters:

where: <sig> is the signal, same as with the k111 command, for example 9 or STGKILL; and <pid>
is pid of the process to kill.

This external script should then handle killing of the given process as neutron will not call the k111
command for it anymore.

8.2.2 ML2 plug-in
Architecture

The Modular Layer 2 (ML2) neutron plug-in is a framework allowing OpenStack Networking to simul-
taneously use the variety of layer 2 networking technologies found in complex real-world data centers.
The ML2 framework distinguishes between the two kinds of drivers that can be configured:

* Type drivers
Define how an OpenStack network is technically realized. Example: VXLAN

Each available network type is managed by an ML2 type driver. Type drivers maintain any needed
type-specific network state. They validate the type specific information for provider networks and
are responsible for the allocation of a free segment in project networks.

e Mechanism drivers

Define the mechanism to access an OpenStack network of a certain type. Example: Open vSwitch
mechanism driver.

The mechanism driver is responsible for taking the information established by the type driver
and ensuring that it is properly applied given the specific networking mechanisms that have been
enabled.

Mechanism drivers can utilize L2 agents (via RPC) and/or interact directly with external devices
or controllers.

Multiple mechanism and type drivers can be used simultaneously to access different ports of the same
virtual network.

Todo: Picture showing relationships

ML2 driver support matrix

Table 1: Mechanism drivers and L2 agents

type driver / mech driver | Flat | VLAN | VXLAN | GRE
Open vSwitch yes | yes yes yes
Linux bridge yes | yes yes no
SRIOV yes | yes no no
MacVTap yes | yes no no
L2 population no no yes yes

8.2. Configuration 123

Neutron Documentation, Release 17.4.2.dev115

Note: L2 population is a special mechanism driver that optimizes BUM (Broadcast, unknown des-
tination address, multicast) traffic in the overlay networks VXLAN and GRE. It needs to be used in
conjunction with either the Linux bridge or the Open vSwitch mechanism driver and cannot be used as
standalone mechanism driver. For more information, see the Mechanism drivers section below.

Configuration

Network type drivers

To enable type drivers in the ML2 plug-in. Edit the /etc/neutron/plugins/ml2/ml2_conf.
ini file:

[ml2]

Note: For more detailssee the Bug 1567792.

For more details, see the Networking configuration options of Configuration Reference.
The following type drivers are available

* Flat

* VLAN

* GRE

* VXLAN

Provider network types

Provider networks provide connectivity like project networks. But only administrative (privileged) users
can manage those networks because they interface with the physical network infrastructure. More infor-
mation about provider networks see OpenStack Networking.

e Flat

The administrator needs to configure a list of physical network names that can be used for provider
networks. For more details, see the related section in the Configuration Reference.

* VLAN

The administrator needs to configure a list of physical network names that can be used for provider
networks. For more details, see the related section in the Configuration Reference.

* GRE
No additional configuration required.
* VXLAN

The administrator can configure the VXLAN multicast group that should be used.

124 Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/openstack-manuals/+bug/1567792
../configuration/ml2-conf.html
../configuration/ml2-conf.html#ml2-type-flat
../configuration/ml2-conf.html#ml2-type-vlan

Neutron Documentation, Release 17.4.2.dev115

Note: VXLAN multicast group configuration is not applicable for the Open vSwitch agent.

As of today it is not used in the Linux bridge agent. The Linux bridge agent has its own agent
specific configuration option. For more details, see the Bug 1523614,

Project network types

Project networks provide connectivity to instances for a particular project. Regular (non-privileged)
users can manage project networks within the allocation that an administrator or operator defines for
them. More information about project and provider networks see OpenStack Networking.

Project network configurations are made in the /etc/neutron/plugins/ml2/ml2_conf.ini
configuration file on the neutron server:

* VLAN

The administrator needs to configure the range of VLAN IDs that can be used for project network
allocation. For more details, see the related section in the Configuration Reference.

* GRE

The administrator needs to configure the range of tunnel IDs that can be used for project network
allocation. For more details, see the related section in the Configuration Reference.

* VXLAN

The administrator needs to configure the range of VXLAN IDs that can be used for project network
allocation. For more details, see the related section in the Configuration Reference.

Note: Flat networks for project allocation are not supported. They only can exist as a provider network.

Mechanism drivers

To enable mechanism drivers in the ML2 plug-in, edit the /etc/neutron/plugins/ml2/
ml2_conf.ini file on the neutron server:

[ml2]

Note: For more details, see the Bug 1567792.

For more details, see the Configuration Reference.
* Linux bridge

No additional configurations required for the mechanism driver. Additional agent configuration is
required. For details, see the related L2 agent section below.

* Open vSwitch

8.2. Configuration 125

https://bugs.launchpad.net/neutron/+bug/1523614
../configuration/ml2-conf.html#ml2-type-vlan
../configuration/ml2-conf.html#ml2-type-gre
../configuration/ml2-conf.html#ml2-type-vxlan
https://bugs.launchpad.net/openstack-manuals/+bug/1567792
../configuration/ml2-conf.html#ml2

Neutron Documentation, Release 17.4.2.dev115

No additional configurations required for the mechanism driver. Additional agent configuration is
required. For details, see the related L2 agent section below.

SRIOV
The SRIOV driver accepts all PCI vendor devices.
MacVTap

No additional configurations required for the mechanism driver. Additional agent configuration is
required. Please see the related section.

L2 population

The administrator can configure some optional configuration options. For more details, see the
related section in the Configuration Reference.

Specialized
— Open source

External open source mechanism drivers exist as well as the neutron integrated reference
implementations. Configuration of those drivers is not part of this document. For example:

* OpenDaylight
* OpenContrail
— Proprietary (vendor)

External mechanism drivers from various vendors exist as well as the neutron integrated
reference implementations.

Configuration of those drivers is not part of this document.

Supported VNIC types

The vnic_type_prohibit_list option is used to remove values from the mechanism drivers
supported_vnic_types list.

Table 2: Mechanism drivers and supported VNIC types

mech driver / sup- | supported VNIC | prohibiting available

ported_vnic_types types

Linux bridge normal no

MacVTap macvtap no

Open vSwitch normal, direct yes (ovs_driver vnic_type_prohibit_list, see:

Configuration Reference)

SRIOV direct, macvtap, di- | yes (sriov_driver vnic_type_prohibit_list, see:

rect_physical Configuration Reference)
126 Chapter 8. OpenStack Networking Guide

../configuration/ml2-conf.html#l2pop
../configuration/ml2-conf.html#ovs_driver
../configuration/ml2-conf.html#sriov_driver

Neutron Documentation, Release 17.4.2.dev115

Extension Drivers

The ML2 plug-in also supports extension drivers that allows other pluggable drivers to extend the core
resources implemented in the ML2 plug-in (networks, ports, etc.). Examples of extension drivers
include support for QoS, port security, etc. For more details see the extension_drivers configu-
ration option in the Configuration Reference.

Agents
L2 agent

An L2 agent serves layer 2 (Ethernet) network connectivity to OpenStack resources. It typically runs on
each Network Node and on each Compute Node.

* Open vSwitch agent

The Open vSwitch agent configures the Open vSwitch to realize L2 networks for OpenStack
resources.

Configuration for the Open vSwitch agent is typically done in the openvswitch_agent.ini
configuration file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.
* Linux bridge agent
The Linux bridge agent configures Linux bridges to realize L2 networks for OpenStack resources.

Configuration for the Linux bridge agent is typically done in the 1inuxbridge_agent.ini
configuration file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.
* SRIOV Nic Switch agent

The sriov nic switch agent configures PCI virtual functions to realize L2 networks for OpenStack
instances. Network attachments for other resources like routers, DHCP, and so on are not sup-
ported.

Configuration for the SRIOV nic switch agent is typically done in the sriov_agent.ini con-
figuration file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.
* MacVTap agent

The MacVTap agent uses kernel MacVTap devices for realizing L2 networks for OpenStack in-
stances. Network attachments for other resources like routers, DHCP, and so on are not supported.

Configuration for the MacVTap agent is typically done in the macvtap_agent.ini configu-
ration file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

8.2. Configuration 127

../configuration/ml2-conf.html#ml2.extension_drivers
../configuration/openvswitch-agent.html
../configuration/linuxbridge-agent.html
../configuration/sriov-agent.html
../configuration/macvtap-agent.html

Neutron Documentation, Release 17.4.2.dev115

L3 agent

The L3 agent offers advanced layer 3 services, like virtual Routers and Floating IPs. It requires an L2
agent running in parallel.

Configuration for the L3 agent is typically done in the 13_agent . ini configuration file. Make sure
that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

DHCP agent

The DHCP agent is responsible for DHCP (Dynamic Host Configuration Protocol) and RADVD (Router
Advertisement Daemon) services. It requires a running L2 agent on the same node.

Configuration for the DHCP agent is typically done in the dhcp_agent . ini configuration file. Make
sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

Metadata agent

The Metadata agent allows instances to access cloud-init meta data and user data via the network. It
requires a running L2 agent on the same node.

Configuration for the Metadata agent is typically done in the metadata_agent.ini configuration
file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

L3 metering agent

The L3 metering agent enables layer3 traffic metering. It requires a running L3 agent on the same node.

Configuration for the L3 metering agent is typically done in the metering_agent . ini configuration
file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

Security

L2 agents support some important security configurations.
* Security Groups
For more details, see the related section in the Configuration Reference.
* Arp Spoofing Prevention

Configured in the L2 agent configuration.

128 Chapter 8. OpenStack Networking Guide

../configuration/l3-agent.html
../configuration/dhcp-agent.html
../configuration/metadata-agent.html
../configuration/metering-agent.html
../configuration/ml2-conf.html#securitygroup

Neutron Documentation, Release 17.4.2.dev115

Reference implementations

Overview

In this section, the combination of a mechanism driver and an L2 agent is called reference implementa-
tion. The following table lists these implementations:

Table 3: Mechanism drivers and L2 agents

Mechanism Driver | L2 agent

Open vSwitch Open vSwitch agent

Linux bridge Linux bridge agent

SRIOV SRIOV nic switch agent

MacVTap MacVTap agent

L2 population Open vSwitch agent, Linux bridge agent

The following tables shows which reference implementations support which non-L2 neutron agents:

Table 4: Reference implementations and other agents

Reference Implementation L3 DHCP Metadata L3 Metering
agent agent agent agent

Open vSwitch & Open vSwitch | yes yes yes yes

agent

Linux bridge & Linux bridge | yes yes yes yes

agent

SRIOV & SRIOV nic switch | no no no no

agent

MacVTap & MacVTap agent no no no no

Note: L2 population is not listed here, as it is not a standalone mechanism. If other agents are supported
depends on the conjunctive mechanism driver that is used for binding a port.

More information about L.2 population see the OpenStack Manuals.

Buying guide

This guide characterizes the L2 reference implementations that currently exist.
* Open vSwitch mechanism and Open vSwitch agent

Can be used for instance network attachments as well as for attachments of other network re-
sources like routers, DHCP, and so on.

* Linux bridge mechanism and Linux bridge agent

Can be used for instance network attachments as well as for attachments of other network re-
sources like routers, DHCP, and so on.

* SRIOV mechanism driver and SRIOV NIC switch agent

Can only be used for instance network attachments (device_owner = compute).

8.2. Configuration 129

https://networkop.co.uk/blog/2016/05/06/neutron-l2pop/

Neutron Documentation, Release 17.4.2.dev115

Is deployed besides an other mechanism driver and L2 agent such as OVS or Linux bridge. It
offers instances direct access to the network adapter through a PCI Virtual Function (VF). This
gives an instance direct access to hardware capabilities and high performance networking.

The cloud consumer can decide via the neutron APIs VNIC_TYPE attribute, if an instance gets a
normal OVS port or an SRIOV port.

Due to direct connection, some features are not available when using SRIOV. For example, DVR,
security groups, migration.

For more information see the SR-IOV.
* MacVTap mechanism driver and MacVTap agent

Can only be used for instance network attachments (device_owner = compute) and not for attach-
ment of other resources like routers, DHCP, and so on.

It is positioned as alternative to Open vSwitch or Linux bridge support on the compute node for
internal deployments.

MacVTap offers a direct connection with very little overhead between instances and down to the
adapter. You can use MacVTap agent on the compute node when you require a network connection
that is performance critical. It does not require specific hardware (like with SRIOV).

Due to the direct connection, some features are not available when using it on the compute node.
For example, DVR, security groups and arp-spoofing protection.

8.2.3 Address scopes

Address scopes build from subnet pools. While subnet pools provide a mechanism for controlling the
allocation of addresses to subnets, address scopes show where addresses can be routed between net-
works, preventing the use of overlapping addresses in any two subnets. Because all addresses allocated
in the address scope do not overlap, neutron routers do not NAT between your projects network and
your external network. As long as the addresses within an address scope match, the Networking service
performs simple routing between networks.

Accessing address scopes

Anyone with access to the Networking service can create their own address scopes. However, network
administrators can create shared address scopes, allowing other projects to create networks within that
address scope.

Access to addresses in a scope are managed through subnet pools. Subnet pools can either be created in
an address scope, or updated to belong to an address scope.

With subnet pools, all addresses in use within the address scope are unique from the point of view of the
address scope owner. Therefore, add more than one subnet pool to an address scope if the pools have
different owners, allowing for delegation of parts of the address scope. Delegation prevents address
overlap across the whole scope. Otherwise, you receive an error if two pools have the same address
ranges.

Each router interface is associated with an address scope by looking at subnets connected to the network.
When a router connects to an external network with matching address scopes, network traffic routes
between without Network address translation (NAT). The router marks all traffic connections originating
from each interface with its corresponding address scope. If traffic leaves an interface in the wrong
scope, the router blocks the traffic.

130 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Backwards compatibility

Networks created before the Mitaka release do not contain explicitly named address scopes, unless
the network contains subnets from a subnet pool that belongs to a created or updated address scope.
The Networking service preserves backwards compatibility with pre-Mitaka networks through special
address scope properties so that these networks can perform advanced routing:

1. Unlimited address overlap is allowed.
2. Neutron routers, by default, will NAT traffic from internal networks to external networks.

3. Pre-Mitaka address scopes are not visible through the API. You cannot list address scopes or show
details. Scopes exist implicitly as a catch-all for addresses that are not explicitly scoped.

Create shared address scopes as an administrative user

This section shows how to set up shared address scopes to allow simple routing for project networks
with the same subnet pools.

Note: Irrelevant fields have been trimmed from the output of these commands for brevity.

1. Create IPv6 and IPv4 address scopes:

openstack address scope create —--share --ip-version 6 address-scope-
openstack address scope create —--share --ip-version 4 address-scope-
<—>ip4

2. Create subnet pools specifying the name (or UUID) of the address scope that the subnet pool
belongs to. If you have existing subnet pools, use the openstack subnet pool set com-
mand to put them in a new address scope:

8.2. Configuration 131

Neutron Documentation, Release 17.4.2.dev115

openstack subnet pool create —--address-scope address—-scope-ip6
——-share --pool-prefix 2001:db8:a583::/48 --default-prefix-length 64
subnet-pool-ip6

openstack subnet pool create —--address-scope address-scope-ip4
—-—share --pool-prefix 203.0.113.0/24 --default-prefix-length 26
subnet-pool-ip4

3. Make sure that subnets on an external network are created from the subnet pools created above:

openstack subnet show ipv6-public-subnet

(continues on next page)

132 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack subnet show public-subnet

8.2. Configuration 133

Neutron Documentation, Release 17.4.2.dev115

Routing with address scopes for non-privileged users

This section shows how non-privileged users can use address scopes to route straight to an external
network without NAT.

1. Create a couple of networks to host subnets:

openstack network create networkl

openstack network create network2

(continues on next page)

134

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

2. Create a subnet not associated with a subnet pool or an address scope:

openstack subnet create --network networkl —--subnet-range
198.51.100.0/26 subnet-ip4-1

openstack subnet create —--network networkl --ipvé6-ra-mode slaac
——ipvé6-address-mode slaac —--ip-version 6 —--subnet-range
2001:db8:80d2:c4d3::/64 subnet-ip6-1

(continues on next page)

8.2. Configuration 135

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

3. Create a subnet using a subnet pool associated with an address scope from an external network:

openstack subnet create —--subnet-pool subnet-pool-ip4
—--network network2 subnet-ip4-2

openstack subnet create —--ip-version 6 —-—-ipvé6-ra-mode slaac
——ipv6-address-mode slaac —--subnet-pool subnet-pool-ip6
—--network network2 subnet-ip6-2

(continues on next page)

136 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

By creating subnets from scoped subnet pools, the network is associated with the address scope.

openstack network show network2

4. Connect a router to each of the project subnets that have been created, for example, using a router
called routerl:

8.2. Configuration 137

Neutron Documentation, Release 17.4.2.dev115

openstack router
openstack router
openstack router
openstack router

add
add
add
add

subnet
subnet
subnet
subnet

routerl
routerl
routerl
routerl

subnet-ip4-1
subnet-ip4-2
subnet-ip6-1
subnet—-ip6-2

Checking connectivity

This example shows how to check the connectivity between networks with address scopes.

1. Launch two instances, instancel on networkl and instance2 on network?2. Associate
a floating IP address to both instances.

2. Adjust security groups to allow pings and SSH (both IPv4 and IPv6):

!

!

!

openstack server list

Regardless of address scopes, the floating IPs can be pinged from the external network:

ping -¢ 1 203.0.113.3

ping -c 1 203.0.113.4

You can now ping instance?2 directly because instance?2 shares the same address scope as the

external network:

Note: BGP routing can be used to automatically set up a static route for your instances.

ip route add 203.0.113.0/26 via 203.0.113.2

ping -¢ 1 203.0.113.3

ip route add 2001:db8:a583::/64 via 2001:db8::1
ping6 —-c 1 2001:db8:a583:0:f816:3eff:fed2:1eeb

You cannot ping instancel directly because the address scopes do not match:

138

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

ip route add 198.51.100.0/26 via 203.0.113.2
ping -c¢ 1 198.51.100.3

ip route add 2001:db8:80d2:c4d3::/64 via 2001:db8::1
ping6 —-c 1 2001:db8:80d2:c4d3:£816:3eff:fe52:b69f

If the address scopes match between networks then pings and other traffic route directly through. If the
scopes do not match between networks, the router either drops the traffic or applies NAT to cross scope
boundaries.

8.2.4 Automatic allocation of network topologies
The auto-allocation feature introduced in Mitaka simplifies the procedure of setting up an external con-
nectivity for end-users, and is also known as Get Me A Network.

Previously, a user had to configure a range of networking resources to boot a server and get access to the
Internet. For example, the following steps are required:

* Create a network

* Create a subnet

* Create a router

» Uplink the router on an external network

* Downlink the router on the previously created subnet

These steps need to be performed on each logical segment that a VM needs to be connected to, and may
require networking knowledge the user might not have.

This feature is designed to automate the basic networking provisioning for projects. The steps to provi-
sion a basic network are run during instance boot, making the networking setup hands-free.

To make this possible, provide a default external network and default subnetpools (one for IPv4, or one
for IPv6, or one of each) so that the Networking service can choose what to do in lieu of input. Once
these are in place, users can boot their VMs without specifying any networking details. The Compute
service will then use this feature automatically to wire user VMs.

Enabling the deployment for auto-allocation

To use this feature, the neutron service must have the following extensions enabled:
e auto—allocated-topology
e subnet_allocation
* external-net
* router

Before the end-user can use the auto-allocation feature, the operator must create the resources that will be
used for the auto-allocated network topology creation. To perform this task, proceed with the following
steps:

8.2. Configuration 139

Neutron Documentation, Release 17.4.2.dev115

1.

Set up a default external network

Setting up an external network is described in OpenStack Networking Guide. Assuming the ex-
ternal network to be used for the auto-allocation feature is named public, make it the default
external network with the following command:

openstack network set public —--default

Note: The flag ——default (and ——no-default flag) is only effective with external networks
and has no effects on regular (or internal) networks.

2. Create default subnetpools
The auto-allocation feature requires at least one default subnetpool. One for IPv4, or one for IPv6,
or one of each.
openstack subnet pool create —--share --default
——pool-prefix 192.0.2.0/24 —--default-prefix-length 26
shared-default
openstack subnet pool create —-share —--default
——pool-prefix 2001:db8:8000::/48 —-default-prefix—length 64
default-vé
(continues on next page)
140 Chapter 8. OpenStack Networking Guide

./archives/adv-features.html

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Get Me A Network

In a deployment where the operator has set up the resources as described above, they can get their
auto-allocated network topology as follows:

openstack network auto allocated topology create —--or-show

Note: When the ——or—-show option is used the command returns the topology information if it already
exists.

Operators (and users with admin role) can get the auto-allocated topology for a project by specifying the
project ID:

openstack network auto allocated topology create —--project
cfd1889%ac7d64ad891d4£f20aef9f8d7c —-or-show

The ID returned by this command is a network which can be used for booting a VM.

openstack server create —--flavor ml.small --image
cirros—-0.3.5-x86_64-uec ——-nic
net-id 8b835bfb-cae2-4acc-b53f-cl6bb5f9a7d0 vml

The auto-allocated topology for a user never changes. In practice, when a user boots a server omitting

8.2. Configuration 141

Neutron Documentation, Release 17.4.2.dev115

the ——nic option, and there is more than one network available, the Compute service will invoke the
APIbehind auto allocated topology create, fetch the network UUID, and pass it on during
the boot process.

Validating the requirements for auto-allocation

To validate that the required resources are correctly set up for auto-allocation, without actually provi-
sioning anything, use the -——check-resources option:

openstack network auto allocated topology create —-—-check-resources
openstack network set public --default
openstack network auto allocated topology create —-—check-resources

openstack subnet pool set shared-default --default

openstack network auto allocated topology create —-—-check-resources

The validation option behaves identically for all users. However, it is considered primarily an admin or
service utility since it is the operator who must set up the requirements.

Project resources created by auto-allocation

The auto-allocation feature creates one network topology in every project where it is used. The auto-
allocated network topology for a project contains the following resources:

Resource Name

network auto_allocated_network
subnet (IPv4) | auto_allocated_subnet_vi4
subnet (IPv6) | auto_allocated_subnet_v6
router auto_allocated_router

Compatibility notes

Nova uses the auto allocated topology feature with API micro version 2.37 or later. This is
because, unlike the neutron feature which was implemented in the Mitaka release, the integration for
nova was completed during the Newton release cycle. Note that the CLI option ——nic can be omitted
regardless of the microversion used as long as there is no more than one network available to the project,
in which case nova fails with a 400 error because it does not know which network to use. Furthermore,
nova does not start using the feature, regardless of whether or not a user requests micro version 2.37 or
later, unless all of the nova—-compute services are running Newton-level code.

142 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

8.2.5 Availability zones

An availability zone groups network nodes that run services like DHCP, L3, FW, and others. It is defined
as an agents attribute on the network node. This allows users to associate an availability zone with their
resources so that the resources get high availability.

Use case

An availability zone is used to make network resources highly available. The operators group the nodes
that are attached to different power sources under separate availability zones and configure scheduling
for resources with high availability so that they are scheduled on different availability zones.

Required extensions

The core plug-in must support the availability_zone extension. The core plug-in also
must support the network_availability_zone extension to schedule a network according
to availability zones. The M12Plugin supports it. The router service plug-in must support the
router_availability_zone extension to schedule a router according to the availability zones.
The L3RouterPlugin supports it.

openstack extension list —--network -c Alias -c Name

Availability zone of agents

The availability_zone attribute can be defined in dhcp-agent and 13-agent. To de-
fine an availability zone for each agent, set the value into [AGENT] section of /etc/neutron/
dhcp_agent.inior /etc/neutron/13_agent.ini:

To confirm the agents availability zone:

openstack network agent show 116ccl28-4398-49af-ad4ed-3e95494cd5bfc

(continues on next page)

8.2. Configuration 143

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack network agent show 9632309a-2aa4-4304-8603-c4de02c4ab5f

Availability zone related attributes

The following attributes are added into network and router:

Attribute name Access| Requiredinput | Description
type
availability_zone_hints RW(POSNo list of | availability zone candidates for the resource
only) string
availability_zones RO N/A list of | availability zones for the resource
string

Use availability_zone_hints to specify the zone in which the resource is hosted:

144 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

openstack network create --availability-zone-hint zone-1
——availability-zone-hint zone-2 netl

openstack router create —--ha —-—availability-zone-hint zone-1
——availability-zone-hint zone-2 routerl

8.2. Configuration 145

Neutron Documentation, Release 17.4.2.dev115

Availability zone is selected from default_availability_zones in /etc/neutron/
neutron.conf if a resource is created without availability_zone_hints:

To confirm the availability zone defined by the system:

openstack availability zone list

Look at the availability_zones attribute of each resource to confirm in which zone the resource

is hosted:

openstack network show netl

openstack router show routerl

(continues on next page)

146

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Note: The availability_zones attribute does not have a value until the resource
is scheduled. @ Once the Networking service schedules the resource to zones according to
availability_zone_hints, availability_zones shows in which zone the resource is
hosted practically. The availability_zones may not match availability_zone_hints.
For example, even if you specify a zone with availability_zone_hints, all agents of the zone
may be dead before the resource is scheduled. In general, they should match, unless there are failures or
there is no capacity left in the zone requested.

Availability zone aware scheduler

Network scheduler

Set AZAwareWeightScheduler to network_scheduler driver in /etc/neutron/
neutron.conf so that the Networking service schedules a network according to the availability zone:

The Networking service schedules a network to one of the agents within the selected zone as with
WeightScheduler. In this case, scheduler refers to dhcp_load_type as well.

8.2. Configuration 147

Neutron Documentation, Release 17.4.2.dev115

Router scheduler

Set AZLeastRoutersScheduler to router scheduler_driver in file /etc/neutron/
neutron.conf so that the Networking service schedules a router according to the availability zone:

The Networking service schedules a router to one of the agents within the selected zone as with
LeastRouterScheduler.

Achieving high availability with availability zone

Although, the Networking service provides high availability for routers and high availability and fault
tolerance for networks DHCP services, availability zones provide an extra layer of protection by seg-
menting a Networking service deployment in isolated failure domains. By deploying HA nodes across
different availability zones, it is guaranteed that network services remain available in face of zone-wide
failures that affect the deployment.

This section explains how to get high availability with the availability zone for L3 and DHCP. You
should naturally set above configuration options for the availability zone.

L3 high availability

Set the following configuration options in file /etc/neutron/neutron.conf so that you get L3
high availability.

HA routers are created on availability zones you selected when creating the router.

DHCP high availability

Set the following configuration options in file /etc/neutron/neutron.conf so that you get
DHCP high availability.

DHCEP services are created on availability zones you selected when creating the network.

8.2.6 BGP dynamic routing

BGP dynamic routing enables advertisement of self-service (private) network prefixes to physical net-
work devices that support BGP such as routers, thus removing the conventional dependency on static
routes. The feature relies on address scopes and requires knowledge of their operation for proper de-
ployment.

BGP dynamic routing consists of a service plug-in and an agent. The service plug-in implements the
Networking service extension and the agent manages BGP peering sessions. A cloud administrator
creates and configures a BGP speaker using the CLI or API and manually schedules it to one or more

148 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

hosts running the agent. Agents can reside on hosts with or without other Networking service agents.
Prefix advertisement depends on the binding of external networks to a BGP speaker and the address
scope of external and internal IP address ranges or subnets.

BGP Dynamic Routing

Overview
o
BGP Agent L3 Agent
Peering Self-service
H
Y
Self-service
Router 2 @
H
Y
Self-service
Provider \.—J
Router

Peering o
Session
Router X

Provider
Natworks

Note: Although self-service networks generally use private IP address ranges (RFC1918) for IPv4
subnets, BGP dynamic routing can advertise any IPv4 address ranges.

Example configuration

The example configuration involves the following components:
* One BGP agent.

* One address scope containing IP address range 203.0.113.0/24 for provider networks, and IP
address ranges 192.0.2.0/25 and 192.0.2.128/25 for self-service networks.

* One provider network using IP address range 203.0.113.0/24.
* Three self-service networks.
— Self-service networks 1 and 2 use IP address ranges inside of the address scope.

— Self-service network 3 uses a unique IP address range 198.51.100.0/24 to demonstrate that
the BGP speaker does not advertise prefixes outside of address scopes.

* Three routers. Each router connects one self-service network to the provider network.

— Router 1 contains IP addresses 203.0.113.11 and 192.0.2.1

8.2. Configuration 149

Neutron Documentation, Release 17.4.2.dev115

— Router 2 contains IP addresses 203.0.113.12 and 192.0.2.129
— Router 3 contains IP addresses 203.0.113.13 and 198.51.100.1

Note: The example configuration assumes sufficient knowledge about the Networking service, routing,
and BGP. For basic deployment of the Networking service, consult one of the Deployment examples.
For more information on BGP, see RFC 4271.

Controller node

* In the neutron.conf file, enable the conventional layer-3 and BGP dynamic routing service
plug-ins:

[DEFAULT]

Agent nodes

* Inthe bgp_dragent.ini file:

— Configure the driver.

[BGP]

Note: The agent currently only supports the os-ken BGP driver.

— Configure the router ID.

[BGP]

Replace ROUTER_ID with a suitable unique 32-bit number, typically an IPv4 address on
the host running the agent. For example, 192.0.2.2.

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of each BGP dynamic routing agent.

openstack network agent list —--agent-type bgp

!

[}

!

(continues on next page)

!

150 Chapter 8. OpenStack Networking Guide

https://tools.ietf.org/html/rfc4271

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

!

!

!

!

Create the address scope and subnet pools

1. Create an address scope. The provider (external) and self-service networks must belong to the
same address scope for the agent to advertise those self-service network prefixes.

openstack address scope create —--share —--ip-version 4 bgp

2. Create subnet pools. The provider and self-service networks use different pools.

* Create the provider network pool.

openstack subnet pool create —--pool-prefix 203.0.113.0/24
——address-scope bgp provider

(continues on next page)

8.2. Configuration 151

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Create the self-service network pool.

openstack subnet pool create —--pool-prefix 192.0.2.0/25
—-—-pool-prefix 192.0.2.128/25 --address-scope bgp
——-share selfservice

Create the provider and self-service networks

1. Create the provider network.

openstack network create provider --external —--provider-physical-
—network
provider —--provider-network-type flat

(continues on next page)

152 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

2. Create a subnet on the provider network using an IP address range from the provider subnet pool.

openstack subnet create —--subnet-pool provider
——prefix-length 24 --gateway 203.0.113.1 --network provider
—-—allocation-pool 203.0.113.11,end 203.0.113.254 provider

Note: The IP address allocation pool starting at . 11 improves clarity of the diagrams. You can
safely omit it.

3. Create the self-service networks.

openstack network create selfservicel

(continues on next page)

8.2. Configuration 153

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack network create selfservice2

(continues on next page)

154 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack network create selfservice3

4. Create a subnet on the first two self-service networks using an IP address range from the self-
service subnet pool.

openstack subnet create —--network selfservicel --subnet-pool_
—~selfservice
——prefix—-length 25 selfservicel

(continues on next page)

8.2. Configuration 155

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack subnet create --network selfservice?2 --subnet-pool

—selfservice
——prefix-length 25 selfservice2

156

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

5. Create a subnet on the last self-service network using an IP address range outside of the address
scope.

openstack subnet create —--network selfservice3 —--prefix 198.51.100.
—0/24 subnet3

8.2. Configuration 157

Neutron Documentation, Release 17.4.2.dev115

Create and configure the routers

1. Create the routers.

openstack router create routerl

openstack router create router2

openstack router create router3

(continues on next page)

158

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

2. For each router, add one self-service subnet as an interface on the router.

openstack router add subnet routerl selfservicel
openstack router add subnet router2 selfservice?2

openstack router add subnet router3 selfservice3

3. Add the provider network as a gateway on each router.

openstack router set —--external-gateway provider routerl
openstack router set --external-gateway provider router2
openstack router set —--external-gateway provider router3

Create and configure the BGP speaker

The BGP speaker advertises the next-hop IP address for eligible self-service networks and floating IP
addresses for instances using those networks.

1. Create the BGP speaker.

openstack bgp speaker create —--ip-version 4
——local-as LOCAL_AS bgpspeaker

[

> (continues on next page)

8.2. Configuration 159

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Replace LOCAL_AS with an appropriate local autonomous system number. The example config-
uration uses AS 1234.

2. A BGP speaker requires association with a provider network to determine eligible prefixes. The
association builds a list of all virtual routers with gateways on provider and self-service networks
in the same address scope so the BGP speaker can advertise self-service network prefixes with
the corresponding router as the next-hop IP address. Associate the BGP speaker with the provider
network.

openstack bgp speaker add network bgpspeaker provider
3. Verify association of the provider network with the BGP speaker.
openstack bgp speaker show bgpspeaker
o
o
<
<
<
<
<
o
(continues on next page)
160 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

4. Verity the prefixes and next-hop IP addresses that the BGP speaker advertises.

openstack bgp speaker list advertised routes bgpspeaker

5. Create a BGP peer.

openstack bgp peer create —--peer-ip 192.0.2.1
——remote—as REMOTE_AS bgppeer

Replace REMOTE_AS with an appropriate remote autonomous system number. The example
configuration uses AS 4321 which triggers EBGP peering.

Note: The host containing the BGP agent must have layer-3 connectivity to the provider router.

6. Add a BGP peer to the BGP speaker.

openstack bgp speaker add peer bgpspeaker bgppeer

7. Verify addition of the BGP peer to the BGP speaker.

openstack bgp speaker show bgpspeaker

(continues on next page)

8.2. Configuration 161

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

Note: After creating a peering session, you cannot change the local or remote autonomous system
numbers.

Schedule the BGP speaker to an agent

1. Unlike most agents, BGP speakers require manual scheduling to an agent. BGP speakers only
form peering sessions and begin prefix advertisement after scheduling to an agent. Schedule the
BGP speaker to agent 37729181-2224-48d8-89%ef-16ecal8e2f77e.

openstack bgp dragent add speaker 37729181-2224-48d8-89%ef-
—~1l6eca8e2f77e bgpspeaker

2. Verify scheduling of the BGP speaker to the agent.

openstack bgp speaker show dragents bgpspeaker

Prefix advertisement
BGP dynamic routing advertises prefixes for self-service networks and host routes for floating IP ad-
dresses.
Advertisement of a self-service network requires satisfying the following conditions:
* The external and self-service network reside in the same address scope.
* The router contains an interface on the self-service subnet and a gateway on the external network.
» The BGP speaker associates with the external network that provides a gateway on the router.

* The BGP speaker has the advertise_tenant_networks attribute set to True.

162 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

BGP Dynamic Routing

Example with self-service networks

BGP Agent L3 Agent

Peering
Session
AS 1234

Self-service

rk 1

Prefix Advertisements
10.0.1.0/24 next-hop 203.0.113.1
10.0.2.0/24 next-hop 203.0.113.2

Provider

Router

Peering

Session o

AS 4321 External

Networks
. Ext | network Peering network Provider network
ALernal networks 192.0.2.0/30 203.0.113.0/24

Self-service network 1 Self-service network 2 Self-service network 3
10.0.1.0/24 10.0.2.0/24 10.0.3.0/24

r 1
I ; Address scope

Advertisement of a floating IP address requires satisfying the following conditions:

* The router with the floating IP address binding contains a gateway on an external network with
the BGP speaker association.

* The BGP speaker has the advertise_floating_ip_host_routes attribute set to True.

8.2. Configuration 163

Neutron Documentation, Release 17.4.2.dev115

BGP Dynamic Routing

Example with floating IP addresses

Y
BGP Agent L3 Agent

Router 1
203.0.1134

Peering
Session
A5 1234

Instance 1
203.0.113.101

Prefix Advertisements
10.0.1.0/24 next-hop 202.0.113.1
10.0.2.0/24 next-hop 203.0.113.2
2032.0.113.101/32 next-hop 203.0.113.1

203.0.113.102/32 next-hop 203.0.113.2 Self-service
. MNetwork 3

Instance 2
203.0.113.102

Instance 3
203.0.113.103

alald

Provider Pravider
Router Network

Peering

Session External
AS 4321 ki
Netwarks

. Ext | net K Peering network Provider network
ALernar networks 192.0.2.0/30 203.0.113.0/24
Self-service network 1 Self-service network 2 Self-service network 3
100010024 10.0.2.0/24 10.0.3.0/24

- ———

! _: Address scope

Operation with Distributed Virtual Routers (DVR)

For both floating IP and IPv4 fixed IP addresses, the BGP speaker advertises the floating IP agent gate-
way on the corresponding compute node as the next-hop IP address. When using IPv6 fixed IP addresses,
the BGP speaker advertises the DVR SNAT node as the next-hop IP address.

For example, consider the following components:

1. A provider network using IP address range 203.0.113.0/24, and supporting floating IP addresses
203.0.113.101, 203.0.113.102, and 203.0.113.103.

A self-service network using IP address range 198.51.100.0/24.
Instances with fixed IPs 198.51.100.11, 198.51.100.12, and 198.51.100.13
The SNAT gateway resides on 203.0.113.11.

A

The floating IP agent gateways (one per compute node) reside on 203.0.113.12, 203.0.113.13, and
203.0.113.14.

o

Three instances, one per compute node, each with a floating IP address.

7. advertise_tenant_networks is set to False on the BGP speaker

164 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

openstack bgp speaker list advertised routes bgpspeaker

When floating IPs are disassociated and advertise_tenant_networks is set to True, the fol-
lowing routes will be advertised:

openstack bgp speaker list advertised routes bgpspeaker

You can also identify floating IP agent gateways in your environment to assist with verifying operation
of the BGP speaker.

openstack port list —--device-owner network:floatingip_agent_gateway

{

!

{

!

)

!

)

)

8.2. Configuration 165

Neutron Documentation, Release 17.4.2.dev115

IPv6

BGP dynamic routing supports peering via IPv6 and advertising IPv6 prefixes.
* To enable peering via IPv6, create a BGP peer and use an IPv6 address for peer_ip.

* To enable advertising IPv6 prefixes, create an address scope with ip_version=6 and a BGP
speaker with ip_version=6.

Note: DVR lacks support for routing directly to a fixed IPv6 address via the floating IP agent gateway
port and thus prevents the BGP speaker from advertising /128 host routes.

High availability

BGP dynamic routing supports scheduling a BGP speaker to multiple agents which effectively multiplies
prefix advertisements to the same peer. If an agent fails, the peer continues to receive advertisements
from one or more operational agents.

1. Show available dynamic routing agents.

openstack network agent list —--—-agent-type bgp

!

!

!

!

!

!

!

!

!

!

!

!

2. Schedule BGP speaker to multiple agents.

openstack bgp dragent add speaker 37729181-2224-48d8-89%ef-
—~1l6eca8e2f77e bgpspeaker

openstack bgp dragent add speaker 1a2d33bb-9321-30a2-76ab-
—~22eff3d2f56a bgpspeaker

openstack bgp speaker show dragents bgpspeaker

(continues on next page)

166 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

8.2.7 High-availability for DHCP

This section describes how to use the agent management (alias agent) and scheduler (alias
agent_scheduler) extensions for DHCP agents scalability and HA.

Note: Use the openstack extension 1list command to check if these extensions are enabled.
Check agent and agent_scheduler are included in the output.

openstack extension list —--network -c Name -c Alias

(continues on next page)

8.2. Configuration 167

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Demo setup

There will be three hosts in the setup.

168 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

[
. Neutron Server L2 Agent
Nova Services Nova Compute
Keystone Data
DHCP Agent Network
Controller Node Management HosiA
[Network |
HostB
Nova Compute
DHCP Agent
L2 Agent
Host Description
OpenStack controller host - | Runs the Networking, Identity, and Compute services that are re-
controlnode quired to deploy VMs. The node must have at least one network

interface that is connected to the Management Network. Note that
nova-network should not be running because it is replaced by

Neutron.
HostA Runs nova-compute, the Neutron L2 agent and DHCP agent
HostB Same as HostA

Configuration

controlnode: neutron server

1. Neutron configuration file /etc/neutron/neutron.conf:

[DEFAULT]
linuxbridge
controlnode
True

controlnode

Note: In the above configuration, we use dhcp_agents_per_network = 1 for this

8.2. Configuration 169

Neutron Documentation, Release 17.4.2.dev115

demonstration. In usual deployments, we suggest setting dhcp_agents_per_network to
more than one to match the number of DHCP agents in your deployment. See Enabling DHCP
high availability by default.

2. Update the plug-in configuration file /etc/neutron/plugins/linuxbridge/
linuxbridge_conf.ini:

HostA and HostB: L2 agent

1. Neutron configuration file /etc/neutron/neutron.conf:

2. Update the plug-in configuration file /etc/neutron/plugins/linuxbridge/
linuxbridge_conf.ini:

3. Update the nova configuration file /et c/nova/nova.conft:

HostA and HostB: DHCP agent

» Update the DHCP configuration file /etc/neutron/dhcp_agent.ini:

170 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Prerequisites for demonstration

Admin role is required to use the agent management and scheduler extensions. Ensure you run the
following commands under a project with an admin role.

To experiment, you need VMs and a neutron network:

openstack server list

openstack network list

Managing agents in neutron deployment

1. List all agents:

openstack network agent list

(continues on next page)

8.2. Configuration 171

Neutron Documentation, Release 17.4.2.dev115

2.

3.

(continued from previous page)

[

Every agent that supports these extensions will register itself with the neutron server when it starts
up.

The output shows information for four agents. The alive field shows True if the agent reported
its state within the period defined by the agent_down_t ime option in the neutron.conf
file. Otherwise the alive is False.

List DHCP agents that host a specified network:

openstack network agent list —--network netl

List the networks hosted by a given DHCP agent:

This command is to show which networks a given dhcp agent is managing.

openstack network list —--agent 22467163-01lea-4231-bad5-3bd316£425e6

4. Show agent details.

The openstack network agent show command shows details for a specified agent:

openstack network agent show 2444c54d-0d28-460c-ab0f-cdle6b5d3c7b

(continues on next page)

172

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

In this output, last_heartbeat_at is the time on the neutron server. You do not need to syn-
chronize all agents to this time for this extension to run correctly. configurations describes
the static configuration for the agent or run time data. This agent is a DHCP agent and it hosts one
network, one subnet, and three ports.

Different types of agents show different details. The following output shows information for a
Linux bridge agent:

openstack network agent show 22467163-01lea-4231-bad5-3bd316£425e6

(continues on next page)

8.2. Configuration 173

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

The output shows bridge-mapping and the number of virtual network devices on this L2
agent.

Managing assignment of networks to DHCP agent
A single network can be assigned to more than one DHCP agents and one DHCP agent can host more
than one network. You can add a network to a DHCP agent and remove one from it.

1. Default scheduling.

When you create a network with one port, the network will be scheduled to an active DHCP agent.
If many active DHCP agents are running, select one randomly. You can design more sophisticated
scheduling algorithms in the same way as nova-schedule later on.

openstack network create net2

openstack subnet create —--network net2 —--subnet-range 198.51.100.0/
—24 subnet2

openstack port create port2 --network net2

openstack network agent list —--network net2

Itis allocated to DHCP agent on HostA. If you want to validate the behavior through the dnsmasq
command, you must create a subnet for the network because the DHCP agent starts the dnsmasq
service only if there is a DHCP.

2. Assign a network to a given DHCP agent.

To add another DHCP agent to host the network, run this command:

openstack network agent add network —-dhcp
55569f4e-6£f31-41a6-be9d-526efcelf7fe net2
openstack network agent list —--network net2

(continues on next page)

174 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[}

Both DHCP agents host the net 2 network.
3. Remove a network from a specified DHCP agent.

This command is the sibling command for the previous one. Remove net 2 from the DHCP agent

for HostA:
openstack network agent remove network -—--dhcp
2444c54d-0d28-460c-ab0f-cdle6b6b5d3c7b net2
openstack network agent list —--network net2

<

.

.

<

You can see that only the DHCP agent for HostB is hosting the net 2 network.

HA of DHCP agents

Boot a VM on net2. Let both DHCP agents host net2. Fail the agents in turn to see if the VM can
still get the desired IP.

1. Boota VM on net?2:

openstack network list
<
N o
.
N
.
<
openstack server create —--image tty -—--flavor 1 myserverd

(continues on next page)

8.2. Configuration 175

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

——nic net-id 9b96bl4f-71b8-4918-90aa—-c5d705606bla
openstack server list

<

o

<

<

-

2. Make sure both DHCP agents hosting net?2:

Use the previous commands to assign the network to agents.

openstack network agent list —--network net2

To test the HA of DHCP agent:
1. Log in to the myserver4 VM, and run udhcpc, dhclient or other DHCP client.

2. Stop the DHCP agent on HostA. Besides stopping the neut ron-dhcp-agent binary, you must
stop the dnsmasq processes.

Run a DHCP client in VM to see if it can get the wanted IP.
Stop the DHCP agent on HostB too.

Run udhcpc in the VM; it cannot get the wanted IP.

A

Start DHCP agent on HostB. The VM gets the wanted IP again.

176 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

No HA for metadata service on isolated networks

All Neutron backends using the DHCP agent can also provide metadata service in isolated networks
(i.e. networks without a router). In this case the DHCP agent manages the metadata service (see config
option enable_isolated_metadata).

Note however that the metadata service is only redundant for IPv4, and not IPv6, even when the DHCP
service is configured to be highly available (config option dhcp_agents_per_network > 1). This is be-
cause the DHCP agent will insert a route to the well known metadata IPv4 address (169.254.169.254)
via its own IP address, so it will be reachable as long as the DHCP service is available at that IP address.
This also means that recovery after a failure is tied to the renewal of the DHCP lease, since that route
will only change if the DHCP server for a VM changes.

With IPv6, the well known metadata IPv6 address (fe80::a9fe:a9fe) is used, but directly configured in
the DHCP agent network namespace. Due to the enforcement of duplicate address detection (DAD),
this address can only be configured in at most one DHCP network namespaces at any time. See RFC
4862 for details on the DAD process.

For this reason, even when you have multiple DHCP agents, an arbitrary one (where the metadata IPv6
address is not in dadfailed state) will serve all metadata requests over IPv6. When that metadata service
instance becomes unreachable there is no failover and the service will become unreachable.

Disabling and removing an agent

An administrator might want to disable an agent if a system hardware or software upgrade is planned.
Some agents that support scheduling also support disabling and enabling agents, such as L3 and DHCP
agents. After the agent is disabled, the scheduler does not schedule new resources to the agent.

After the agent is disabled, you can safely remove the agent. Even after disabling the agent, resources on
the agent are kept assigned. Ensure you remove the resources on the agent before you delete the agent.

Disable the DHCP agent on HostA before you stop it:

openstack network agent set 2444c54d-0d28-460c-ab0f-cdle6b5d3c7b ——
—disable
openstack network agent list

After you stop the DHCP agent on HostA, you can delete it by the following command:

8.2. Configuration 177

https://docs.openstack.org/nova/latest/user/metadata.html
https://docs.openstack.org/neutron/latest/configuration/dhcp-agent.html#DEFAULT.enable_isolated_metadata
https://docs.openstack.org/neutron/latest/configuration/neutron.html#DEFAULT.dhcp_agents_per_network
https://www.rfc-editor.org/rfc/rfc4862#section-5.4
https://www.rfc-editor.org/rfc/rfc4862#section-5.4

Neutron Documentation, Release 17.4.2.dev115

openstack network agent delete 2444c54d-0d28-460c-ab0f-cdlebb5d3c7b
openstack network agent list

After deletion, if you restart the DHCP agent, it appears on the agent list again.

Enabling DHCP high availability by default

You can control the default number of DHCP agents assigned to a network by setting the following
configuration option in the file /etc/neutron/neutron.conft.

8.2.8 DNS integration

This page serves as a guide for how to use the DNS integration functionality of the Networking service
and its interaction with the Compute service.

The integration of the Networking service with an external DNSaaS (DNS-as-a-Service) is described in
DNS integration with an external service.

Users can control the behavior of the Networking service in regards to DNS using two attributes associ-
ated with ports, networks, and floating IPs. The following table shows the attributes available for each
one of these resources:

Resource dns_name dns_domain
Ports Yes Yes
Networks No Yes
Floating IPs Yes Yes

Note: The DNS Integration extension enables all the attribute and resource combinations shown
in the previous table, except for dns_domain for ports, which requires the dns_domain for
ports extension.

Note: Since the DNS Integration extension is a subset of dns_domain for ports, if

178 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

dns_domain functionality for ports is required, only the latter extension has to be configured.

Note: When the dns_domain for ports extension is configured, DNS Integration is also
included when the Neutron server responds to a request to list the active API extensions. This preserves
backwards API compatibility.

The Networking service internal DNS resolution

The Networking service enables users to control the name assigned to ports by the internal DNS. To
enable this functionality, do the following:

1. Edit the /etc/neutron/neutron.conf file and assign a value different to
openstacklocal (its default value) to the dns_domain parameter in the [default]
section. As an example:

2. Add dns (for the DNS Integration extension) or dns_domain_ports (for the
dns_domain for ports extension) to extension_drivers in the [m12] section of
/etc/neutron/plugins/ml2/ml2_conf.ini. The following is an example:

[ml2]

After re-starting the neutron-server, users will be able to assign a dns_name attribute to their
ports.

Note: The enablement of this functionality is prerequisite for the enablement of the Networking service
integration with an external DNS service, which is described in detail in DNS integration with an external
service.

The following illustrates the creation of a port with my—-port inits dns_name attribute.

Note: The name assigned to the port by the Networking service internal DNS is now visible in the
response in the dns_assignment attribute.

openstack port create —--network my-net --dns-name my-port test

—

= (continues on next page)

8.2. Configuration 179

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

180 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

When this functionality is enabled, it is leveraged by the Compute service when creating instances.
When allocating ports for an instance during boot, the Compute service populates the dns_name at-
tributes of these ports with the hostname attribute of the instance, which is a DNS sanitized version of
its display name. As a consequence, at the end of the boot process, the allocated ports will be known in
the dnsmasq associated to their networks by their instance hostname.

The following is an example of an instance creation, showing how its hostname populates the
dns_name attribute of the allocated port:

openstack server create —--image cirros —-—-flavor 42
—--nic net-id 37aaff3a-6047-45ac-bfd4f-a825e56fd2b3 my_vm

(continues on next page)

8.2. Configuration 181

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack port list —--device-id 66cl3cb4-3002-4ab3-8400-7efc2659c363

{

)

!

!

!

!

openstack port show b3eccd64-1263-44a7-8c38-2d8a52751773

(continues on next page)

182 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

In the above example notice that:

8.2. Configuration 183

Neutron Documentation, Release 17.4.2.dev115

The name given to the instance by the user, my_wvm, is sanitized by the Compute service and
becomes my—vm as the ports dns_name.

The ports dns_assignment attribute shows that its FQDN is my-vm.example.org. in the
Networking service internal DNS, which is the result of concatenating the ports dns_name with
the value configured in the dns_domain parameter in neutron.conf, as explained previ-
ously.

The dns_assignment attribute also shows that the ports hostname in the Networking service
internal DNS is my—vm.

Instead of having the Compute service create the port for the instance, the user might have cre-
ated it and assigned a value to its dns_name attribute. In this case, the value assigned to the
dns_name attribute must be equal to the value that Compute service will assign to the instances
hostname, in this example my—-vm. Otherwise, the instance boot will fail.

8.2.9 DNS integration with an external service

This page serves as a guide for how to use the DNS integration functionality of the Networking service
with an external DNSaaS (DNS-as-a-Service).

As a prerequisite this needs the internal DNS functionality offered by the Networking service to be
enabled, see DNS integration.

Configuring OpenStack Networking for integration with an external DNS service

The first step to configure the integration with an external DNS service is to enable the functionality
described in The Networking service internal DNS resolution. Once this is done, the user has to take the
following steps and restart neutron-server.

1.

Edit the [default] section of /etc/neutron/neutron.conf and specify the external
DNS service driver to be used in parameter external_dns_driver. The valid options are
defined in namespace neutron.services.external_dns_drivers. The following ex-
ample shows how to set up the driver for the OpenStack DNS service:

If the OpenStack DNS service is the target external DNS, the [designate] section of /etc/
neutron/neutron.conf must define the following parameters:

* url: the OpenStack DNS service public endpoint URL. Note that this must always be the
versioned endpoint currently.

* auth_type: the authorization plugin to use. Usually this should be password, see https:
/ldocs.openstack.org/keystoneauth/latest/authentication-plugins.html for other options.

* auth_url: the Identity service authorization endpoint url. This endpoint will be used by
the Networking service to authenticate as an user to create and update reverse lookup (PTR)
zones.

* username: the username to be used by the Networking service to create and update reverse
lookup (PTR) zones.

* password: the password of the user to be used by the Networking service to create and
update reverse lookup (PTR) zones.

184

Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/keystoneauth/latest/authentication-plugins.html
https://docs.openstack.org/keystoneauth/latest/authentication-plugins.html

Neutron Documentation, Release 17.4.2.dev115

* project_name: the name of the project to be used by the Networking service to create
and update reverse lookup (PTR) zones.

* project_domain_name: the name of the domain for the project to be used by the Net-
working service to create and update reverse lookup (PTR) zones.

* user_domain_name: the name of the domain for the user to be used by the Networking
service to create and update reverse lookup (PTR) zones.

* region_name: the name of the region to be used by the Networking service to create and
update reverse lookup (PTR) zones.

* allow_reverse_dns_lookup: a boolean value specifying whether to enable or not
the creation of reverse lookup (PTR) records.

* ipv4_ptr_zone_prefix_size: the size in bits of the prefix for the IPv4 reverse
lookup (PTR) zones.

* ipv6_ptr_zone_prefix_size: the size in bits of the prefix for the IPv6 reverse
lookup (PTR) zones.

* ptr_zone_email: the email address to use when creating new reverse lookup (PTR)
zones. The default is admin@<dns_domain> where <dns_domain> is the domain for
the first record being created in that zone.

* insecure: whether to disable SSL certificate validation. By default, certificates are vali-
dated.

* cafile: Path to a valid Certificate Authority (CA) certificate. Optional, the system CAs
are used as default.

The following is an example:

Once the neut ron—server has been configured and restarted, users will have functionality that cov-
ers three use cases, described in the following sections. In each of the use cases described below:

* The examples assume the OpenStack DNS service as the external DNS.
* A, AAAA and PTR records will be created in the DNS service.

* Before executing any of the use cases, the user must create in the DNS service under their project
a DNS zone where the A and AAAA records will be created. For the description of the use cases
below, it is assumed the zone example.org. was created previously.

8.2. Configuration 185

Neutron Documentation, Release 17.4.2.dev115

* The PTR records will be created in zones owned by the project specified for project_name
above.

Use case 1: Floating IPs are published with associated port DNS attributes

In this use case, the address of a floating IP is published in the external DNS service in conjunction with
the dns_name of its associated port and the dns_domain of the ports network. The steps to execute
in this use case are the following:

1. Assign a valid domain name to the networks dns_domain attribute. This name must end with a
period (.).

2. Boot an instance or alternatively, create a port specifying a valid value to its dns_name attribute.
If the port is going to be used for an instance boot, the value assigned to dns_name must be
equal to the hostname that the Compute service will assign to the instance. Otherwise, the boot
will fail.

3. Create a floating IP and associate it to the port.

Following is an example of these steps:

openstack network set —--dns-domain example.org. 38c5e950-b450-4c30-83d4-
—eel8lc28aad3

openstack network show 38c5e950-b450-4c30-83d4-eel81lc28aad3

(continues on next page)

186 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack server create —--image cirros —-—-flavor 42
—--nic net-id 38c5e950-b450-4c30-83d4-eel8lc28aad3 my_vm

(continues on next page)

8.2. Configuration 187

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack server list

openstack port list —--device-id 43f328bb-b2dl1-4cfl-a36f-3b2593397cbl

!

)

!

!

)

!

)

openstack port show daOblf75-c895-460f-9fcl-4d6ec84cf85f

—

— (continues on next page)

188 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

(continues on next page)

8.2. Configuration 189

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack recordset list example.org.

!

{

!

{

{

)

openstack floating ip create 41fa3995-9ed4a-4cd9-bb51-3e5424f2ff2a
——port dalOblf75-c895-460f-9fcl-4d6ec84cf85f

openstack recordset list example.org.

{

—

— (continues on next page)

190 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

!

!

{

!

In this example, notice that the data is published in the DNS service when the floating IP is associated
to the port.

Following are the PTR records created for this example. Note that for IPv4, the value of
ipv4d_ptr_zone_prefix_size is 24. Also, since the zone for the PTR records is created in the
service project, you need to use admin credentials in order to be able to view it.

openstack recordset list —--all-projects 100.51.198.in-addr.arpa.

!

)

!

!

)

)

)

!

8.2. Configuration 191

Neutron Documentation, Release 17.4.2.dev115

Use case 2: Floating IPs are published in the external DNS service

In this use case, the user assigns dns_name and dns_domain attributes to a floating IP when it is
created. The floating IP data becomes visible in the external DNS service as soon as it is created. The
floating IP can be associated with a port on creation or later on. The following example shows a user
booting an instance and then creating a floating IP associated to the port allocated for the instance:

openstack network show 38c5e950-b450-4c30-83d4-eel8lc28aad3

(continues on next page)

192 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack server create —--image cirros —-—-flavor 42
—--nic net-id 38c5e950-b450-4c30-83d4-eel8lc28aad3 my_vm

—

— (continues on next page)

8.2. Configuration 193

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack server list

!

!

openstack port list —--device-id 71fbd4ac8-eed8-4644-8113-0641962bbl125

!

!

!

!

openstack port show 1e7033fb-8e9d-458b-89%ed-8312cafcfdcb

— (continues on next page)

194 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

(continues on next page)

8.2. Configuration 195

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack recordset list example.org.

!

)

{

!

{

)

openstack floating ip create --dns-domain example.org. —--dns-name my-—
—floatingip 41fa3995-9ed4a-4cd9-bb51-3e5424£2ff2a

(continues on next page)

196 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack recordset list example.org.

!

)

!

)

!

)

)

Note that in this use case:

* The dns_name and dns_domain attributes of a floating IP must be specified together on cre-
ation. They cannot be assigned to the floating IP separately and they cannot be changed after the
floating IP has been created.

* The dns_name and dns_domain of a floating IP have precedence, for purposes of being
published in the external DNS service, over the dns_name of its associated port and the
dns_domain of the ports network, whether they are specified or not. Only the dns_name
and the dns_domain of the floating IP are published in the external DNS service.

Following are the PTR records created for this example. Note that for IPv4, the value of
ipv4d_ptr_zone_prefix_size is 24. Also, since the zone for the PTR records is created in the
project specified in the [designate] section in the config above, usually the service project, you
need to use admin credentials in order to be able to view it.

openstack recordset list —--all-projects 100.51.198.in-addr.arpa.

!

!

!

—

!

o (continues on next page)

8.2. Configuration 197

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

!

)

!

Use case 3: Ports are published directly in the external DNS service

In this case, the user is creating ports or booting instances on a network that is accessible externally.
There are multiple possible scenarios here depending on which of the DNS extensions is enabled in the
Neutron configuration. These extensions are described in the following in descending order of priority.

Use case 3a: The subnet_dns_publish_fixed_ ip extension

When the subnet_dns_publish_fixed_ip extension is enabled, it is possible to make a selec-
tion per subnet whether DNS records should be published for fixed IPs that are assigned to ports from
that subnet. This happens via the dns_publish_fixed_ips attribute that this extension adds to the
definition of the subnet resource. It is a boolean flag with a default value of False but it can be set
to True when creating or updating subnets. When the flag is True, all fixed IPs from this subnet are
published in the external DNS service, while at the same time IPs from other subnets having the flag
set to False are not published, even if they otherwise would meet the criteria from the other use cases
below.

A typical scenario for this use case is a dual stack deployment, where a tenant network would be con-
figured with both an IPv4 and an IPv6 subnet. The IPv4 subnet will usually be using some RFC1918
address space and being NATted towards the outside on the attached router, therefore the fixed IPs from
this subnet will not be globally routed and they also should not be published in the DNS service. (One
can still bind floating IPs to these fixed IPs and DNS records for those floating IPs can still be published
as described above in use cases 1 and 2).

But for the IPv6 subnet, no NAT will happen, instead the subnet will be configured with some globally
routable prefix and thus the user will want to publish DNS records for fixed IPs from this subnet. This
can be achieved by setting the dns_publish_fixed_ips attribute for the IPv6 subnet to True
while leaving the flag set to False for the IPv4 subnet. Example:

openstack network create dualstack

openstack subnet create —-—network dualstack dualstackv4 —--subnet-range
—192.0.2.0/24

openstack subnet create —--network dualstack dualstackv6 —--protocol ipv6 -
——subnet-range 2001:db8:42:42::/64 —--dns-publish-fixed-ip

openstack zone create example.org. —--email mail@example.org

openstack recordset list example.org.

(continues on next page)

198 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

!

!

)

!

openstack port create portl --dns-domain example.org. —-dns—-name portl —-—
—network dualstack

!

!

)

)

)

!

!

!

!

!

!

)

!

(continues on next page)

8.2. Configuration 199

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

!

!

)

)

)

!

{

i)

!

!

!

!

!

i)

!

)

)

!

[

!

—

— (continues on next page)

200 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

!

!

)

!

)

!

—>

openstack recordset list example.org.

!

!

{

!

!

{

{

)

Use case 3b: The dns_domain_ports extension

If the dns_domain for ports extension has been configured, the user can create a port specify-
ing a non-blank value in its dns_domain attribute. If the port is created in an externally accessible
network, DNS records will be published for this port:

openstack port create ——network 37aaff3a-6047-45ac-bfdf-a825e56£d2b3 —-
—dns—-name my-vm —--dns-domain port-domain.org. test

(continues on next page)

8.2. Configuration 201

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

(continues on next page)

202 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

In this case, the ports dns_name (my—vm) will be published in the port-domain.org. zone, as
shown here:

openstack recordset list port-domain.org.

!

{

)

{

{

!

!

{

)

!

Note: If both the port and its network have a valid non-blank string assigned to their dns_domain
attributes, the ports dns_domain takes precedence over the networks.

Note: The name assigned to the ports dns_domain attribute must end with a period (.).

8.2. Configuration 203

Neutron Documentation, Release 17.4.2.dev115

Note: In the above example, the port-domain.org. zone must be created before Neutron can
publish any port data to it.

Note: See Configuration of the externally accessible network for use cases 3b and 3c for detailed
instructions on how to create the externally accessible network.

Use case 3c: The dns extension

If the user wants to publish a port in the external DNS service in a zone specified by the dns_domain
attribute of the network, these are the steps to be taken:

1. Assign a valid domain name to the networks dns_domain attribute. This name must end with a
period (.).

2. Boot an instance specifying the externally accessible network. Alternatively, create a port on the
externally accessible network specifying a valid value to its dns_name attribute. If the port is
going to be used for an instance boot, the value assigned to dns_name must be equal to the
hostname that the Compute service will assign to the instance. Otherwise, the boot will fail.

Once these steps are executed, the ports DNS data will be published in the external DNS service. This
is an example:

openstack network list

openstack network set —--dns-domain example.org. 37aaff3a-6047-45ac-bf4df-
—aB825e56£d2b3

openstack network show 37aaff3a-6047-45ac-bfdf-a825e56fd2b3

[

(continues on next page)

204 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack recordset list example.org.

(continues on next page)

8.2. Configuration 205

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

!

!

{

)

)

!

openstack port create —--network 37aaff3a-6047-45ac-bf4f-a825e56£fd2b3 —-
—dns—name my-vm test

—

— (continues on next page)

206 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack recordset list example.org.

!

!

!

!

{

!

(continues on next page)

8.2. Configuration 207

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[}

{

{

openstack server create —--image cirros —-—-flavor 42
—--nic port-id 04be331b-dc5e-410a-9103-9c8983aebl86 my_vm

—

— (continues on next page)

208 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

openstack server list

In this example the port is created manually by the user and then used to boot an instance. Notice that:
* The ports data was visible in the DNS service as soon as it was created.

* See Performance considerations for an explanation of the potential performance impact associated
with this use case.

Following are the PTR records created for this example. Note that for IPv4, the
value of ipv4_ptr_ zone_prefix_size is 24. In the case of IPv6, the value of
ipv6_ptr_zone_prefix_sizeis 116.

openstack recordset list —--all-projects 113.0.203.in-addr.arpa.

!

!

!

!

)

!

—

[

(continues on next page)

8.2. Configuration 209

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

!

!

openstack recordset list --all-projects 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
—0.0.1.0.0.8.b.d.0.1.0.0.2.1ip6.arpa.

!

!

)

)

!

!

)

!

)

i)

)

{

!

!

)

See Configuration of the externally accessible network for use cases 3b and 3c for detailed instructions
on how to create the externally accessible network.

Performance considerations

Only for Use case 3: Ports are published directly in the external DNS service, if the port binding
extension is enabled in the Networking service, the Compute service will execute one additional port
update operation when allocating the port for the instance during the boot process. This may have a
noticeable adverse effect in the performance of the boot process that should be evaluated before adoption
of this use case.

210 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Configuration of the externally accessible network for use cases 3b and 3c

For use cases 3b and 3c, the externally accessible network must meet the following requirements:
* The network may not have attribute router:external setto True.
* The network type can be FLAT, VLAN, GRE, VXLAN or GENEVE.

* For network types VLAN, GRE, VXLAN or GENEVE, the segmentation ID must be outside the
ranges assigned to project networks.

This usually implies that these use cases only work for networks specifically created for this purpose by
an admin, they do not work for networks which tenants can create on their own.

8.2.10 DNS resolution for instances

The Networking service offers several methods to configure name resolution (DNS) for instances. Most
deployments should implement case 1 or 2a. Case 2b requires security considerations to prevent leaking
internal DNS information to instances.

Note: All of these setups require the configured DNS resolvers to be reachable from the virtual network
in question. So unless the resolvers are located inside the virtual network itself, this implies the need for
a router to be attached to that network having an external gateway configured.

Case 1: Each virtual network uses unique DNS resolver(s)

In this case, the DHCP agent offers one or more unique DNS resolvers to instances via DHCP on each
virtual network. You can configure a DNS resolver when creating or updating a subnet. To configure
more than one DNS resolver, repeat the option multiple times.

* Configure a DNS resolver when creating a subnet.

openstack subnet create --dns—-nameserver DNS_RESOLVER

Replace DNS_RESOLVER with the IP address of a DNS resolver reachable from the virtual net-
work. Repeat the option if you want to specify multiple IP addresses. For example:

openstack subnet create --dns-nameserver 203.0.113.8 —--dns-
—nameserver 198.51.100.53

Note: This command requires additional options outside the scope of this content.

* Add a DNS resolver to an existing subnet.

openstack subnet set —--dns—-nameserver DNS_RESOLVER SUBNET_ID_OR_NAME

Replace DNS_RESOLVER with the IP address of a DNS resolver reachable from the virtual net-
work and SUBNET_ID_OR_NAME with the UUID or name of the subnet. For example, using the
selfservice subnet:

8.2. Configuration 211

Neutron Documentation, Release 17.4.2.dev115

openstack subnet set —--dns-nameserver 203.0.113.9 selfservice

Remove all DNS resolvers from a subnet.

openstack subnet set —-—no-dns—nameservers SUBNET_ID_OR_NAME

Replace SUBNET_ID_OR_NAME with the UUID or name of the subnet. For example, using the
selfservice subnet:

openstack subnet set —--no-dns-nameservers selfservice

Note: You can use this option in combination with the previous one in order to replace all existing
DNS resolver addresses with new ones.

You can also set the DNS resolver address to 0. 0. 0. 0 for IPv4 subnets, or : : for IPv6 subnets, which
are special values that indicate to the DHCP agent that it should not announce any DNS resolver at all
on the subnet.

Note: When DNS resolvers are explicitly specified for a subnet this way, that setting will take prece-
dence over the options presented in case 2.

Case 2: DHCP agents forward DNS queries from instances
In this case, the DHCP agent offers the list of all DHCP agents IP addresses on a subnet as DNS re-
solver(s) to instances via DHCP on that subnet.

The DHCP agent then runs a masquerading forwarding DNS resolver with two possible options to
determine where the DNS queries are sent to.

Note: The DHCP agent will answer queries for names and addresses of instances running within the
virtual network directly instead of forwarding them.

Case 2a: Queries are forwarded to an explicitly configured set of DNS resolvers

In the dhcp_agent . ini file, configure one or more DNS resolvers. To configure more than one DNS
resolver, use a comma between the values.

[DEFAULT]

Replace DNS_RESOLVER with a list of IP addresses of DNS resolvers reachable from all virtual net-
works. For example:

[DEFAULT]

212 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Note: You must configure this option for all eligible DHCP agents and restart them to activate the
values.

Case 2b: Queries are forwarded to DNS resolver(s) configured on the host

In this case, the DHCP agent forwards queries from the instances to the DNS resolver(s) configured
in the resolv.conf file on the host running the DHCP agent. This requires these resolvers being
reachable from all virtual networks.

In the dhcp_agent. ini file, enable using the DNS resolver(s) configured on the host.

[DEFAULT]

Note: You must configure this option for all eligible DHCP agents and restart them to activate this
setting.

8.2.11 Distributed Virtual Routing with VRRP

Open vSwitch: High availability using DVR supports augmentation using Virtual Router Redundancy
Protocol (VRRP). Using this configuration, virtual routers support both the ——distributed and
——ha options.

Similar to legacy HA routers, DVR/SNAT HA routers provide a quick fail over of the SNAT service to
a backup DVR/SNAT router on an 13-agent running on a different node.

SNAT high availability is implemented in a manner similar to the Linux bridge: High availability using
VRRP and Open vSwitch: High availability using VRRP examples where keepalived uses VRRP to
provide quick failover of SNAT services.

During normal operation, the primary router periodically transmits heartbeat packets over a hidden
project network that connects all HA routers for a particular project.

If the DVR/SNAT backup router stops receiving these packets, it assumes failure of the primary
DVR/SNAT router and promotes itself to primary router by configuring IP addresses on the interfaces
in the snat namespace. In environments with more than one backup router, the rules of VRRP are
followed to select a new primary router.

Warning: There is a known bug with keepalived v1.2.15 and earlier which can cause packet
loss when max_13_agents_per_router is set to 3 or more. Therefore, we recommend that
you upgrade to keepalived v1.2.16 or greater when using this feature.

8.2. Configuration 213

Neutron Documentation, Release 17.4.2.dev115

Configuration example

The basic deployment model consists of one controller node, two or more network nodes, and multiple
computes nodes.

Controller node configuration

1. Add the following to /etc/neutron/neutron.conf:

When the router_distributed = True flag is configured, routers created by all users
are distributed. Without it, only privileged users can create distributed routers by using
——distributed True.

Similarly, when the 13_ha = True flag is configured, routers created by all users default to
HA.

It follows that with these two flags set to True in the configuration file, routers created by all
users will default to distributed HA routers (DVR HA).

The same can explicitly be accomplished by a user with administrative credentials setting the flags
in the openstack router create command:

openstack router create name-of-router —--distributed --ha

Note: The max_I3_agents_per_router determine the number of backup DVR/SNAT routers
which will be instantiated.

2. Add the following to /etc/neutron/plugins/ml2/ml2_conf.ini:

Replace MIN_VXLAN_ID and MAX_VXLAN_ID with VXLAN ID minimum and maximum val-
ues suitable for your environment.

214

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Note: The first value in the tenant_network_types option becomes the default project
network type when a regular user creates a network.

Network nodes

1. Configure the Open vSwitch agent. Add the following to /etc/neutron/plugins/ml2/
openvswitch_agent.ini:

Replace TUNNEL_INTERFACE_IP_ADDRESS with the IP address of the interface that handles
VXLAN project networks.

2. Configure the L3 agent. Add the following to /etc/neutron/13_agent.ini:

Compute nodes

1. Configure the Open vSwitch agent. Add the following to /etc/neutron/plugins/ml2/
openvswitch_agent.ini:

2. Configure the L3 agent. Add the following to /etc/neutron/13_agent.ini:

8.2. Configuration 215

Neutron Documentation, Release 17.4.2.dev115

Replace TUNNEL_INTERFACE_IP_ADDRESS with the IP address of the interface that handles
VXLAN project networks.

Keepalived VRRP health check

The health of your keepalived instances can be automatically monitored via a bash script that verifies
connectivity to all available and configured gateway addresses. In the event that connectivity is lost, the
master router is rescheduled to another node.

If all routers lose connectivity simultaneously, the process of selecting a new master router will be
repeated in a round-robin fashion until one or more routers have their connectivity restored.

To enable this feature, edit the 13_agent . ini file:

Where ha_vrrp_health_check_interval indicates how often in seconds the health check
should run. The default value is 0, which indicates that the check should not run at all.

Known limitations

* Migrating a router from distributed only, HA only, or legacy to distributed HA is not supported at
this time. The router must be created as distributed HA. The reverse direction is also not supported.
You cannot reconfigure a distributed HA router to be only distributed, only HA, or legacy.

* There are certain scenarios where 12pop and distributed HA routers do not interact in an expected
manner. These situations are the same that affect HA only routers and 12pop.

8.2.12 Floating IP port forwarding

Floating IP port forwarding enables users to forward traffic from a TCP/UDP/other protocol port of a
floating IP to a TCP/UDP/other protocol port associated to one of the fixed IPs of a Neutron port. This
is accomplished by associating port_forwarding sub-resource to a floating IP.

CRUD operations for port forwarding are implemented by a Neutron API extension and a service plug-
in. Please refer to the Neutron API Reference documentation for details on the CRUD operations.

Configuring floating IP port forwarding

To configure floating IP port forwarding, take the following steps:

* Addthe port_forwarding service tothe service_plugins settingin /etc/neutron/
neutron.conf. For example:

* Set the extensions option in the [agent] section of /etc/neutron/13_agent.ini
to include port_forwarding. This has to be done in each network and compute node where
the L3 agent is running. For example:

216 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Note: The router service plug-in manages floating IPs and routers. As a consequence, it has to be
configured along with the port_forwarding service plug-in.

Note: After updating the options in the configuration files, the neutron-server and every neutron-13-
agent need to be restarted for the new values to take effect.

After configuring floating IP port forwarding, the floating-ip-port-forwarding extension
alias will be included in the output of the following command:

openstack extension list —--network

8.2.13 IPAM configuration

Starting with the Liberty release, OpenStack Networking includes a pluggable interface for the IP Ad-
dress Management (IPAM) function. This interface creates a driver framework for the allocation and
de-allocation of subnets and IP addresses, enabling the integration of alternate IPAM implementations
or third-party IP Address Management systems.

The basics

In Liberty and Mitaka, the IPAM implementation within OpenStack Networking provided a pluggable
and non-pluggable flavor. As of Newton, the non-pluggable flavor is no longer available. Instead, it is
completely replaced with a reference driver implementation of the pluggable framework. All data will be
automatically migrated during the upgrade process, unless you have previously configured a pluggable
IPAM driver. In that case, no migration is necessary.

To configure a driver other than the reference driver, specify it in the neut ron. conf file. Do this after
the migration is complete. There is no need to specify any value if you wish to use the reference driver.

There is no need to specify any value if you wish to use the reference driver, though specifying
internal will explicitly choose the reference driver. The documentation for any alternate drivers
will include the value to use when specifying that driver.

Known limitations
* The driver interface is designed to allow separate drivers for each subnet pool. However, the
current implementation allows only a single IPAM driver system-wide.

* Third-party drivers must provide their own migration mechanisms to convert existing OpenStack
installations to their [IPAM.

8.2. Configuration 217

Neutron Documentation, Release 17.4.2.dev115

8.2.14 IPv6

This section describes the OpenStack Networking reference implementation for IPv6, including the
following items:

¢ How to enable dual-stack (IPv4 and IPv6 enabled) instances.

* How those instances receive an IPv6 address.

* How those instances communicate across a router to other subnets or the internet.
* How those instances interact with other OpenStack services.

Enabling a dual-stack network in OpenStack Networking simply requires creating a subnet with the
ip_version field set to 6, then the IPv6 attributes (ipv6_ra_mode and ipv6_address_mode)
set. The ipv6_ra_mode and ipv6_address_mode will be described in detail in the next section.
Finally, the subnets cidr needs to be provided.

This section does not include the following items:
* Single stack IPv6 project networking
* OpenStack control communication between servers and services over an IPv6 network.

* Connection to the OpenStack APIs via an IPv6 transport network

IPv6 multicast

» IPv6 support in conjunction with any out of tree routers, switches, services or agents whether in
physical or virtual form factors.

Neutron subnets and the IPv6 API attributes
As of Juno, the OpenStack Networking service (neutron) provides two new attributes to the subnet
object, which allows users of the API to configure IPv6 subnets.
There are two IPv6 attributes:
* ipv6_ra_mode
* ipv6_address_mode
These attributes can be set to the following values:
* slaac
* dhcpvb-stateful
¢ dhcpvb-stateless

The attributes can also be left unset.

218 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

IPv6 addressing

The ipv6_address_mode attribute is used to control how addressing is handled by OpenStack.
There are a number of different ways that guest instances can obtain an IPv6 address, and this attribute
exposes these choices to users of the Networking API.

Router advertisements

The ipv6_ra_mode attribute is used to control router advertisements for a subnet.

The IPv6 Protocol uses Internet Control Message Protocol packets (ICMPv6) as a way to distribute
information about networking. ICMPv6 packets with the type flag set to 134 are called Router Adver-
tisement messages, which contain information about the router and the route that can be used by guest
instances to send network traffic.

The ipv6_ra_mode is used to specify if the Networking service should generate Router Advertise-
ment messages for a subnet.

8.2. Configuration 219

Neutron Documentation, Release 17.4.2.dev115

ipv6_ra_mode and ipv6_address_mode combinations

ipv6 ra | ipv6 radvd | External Description
mode | ad- A,M,O | Router
dress AM,0
mode
N/S N/S Off Not Backwards compatibility with pre-Juno IPv6 behavior.
De-
fined
N/S slaac Off 1,0,0 Guest instance obtains IPv6 address from non-OpenStack
router using SLAAC.
N/S dhcpv6- | Off 0,1,1 Not currently implemented in the reference implementa-
stateful tion.
N/S dhcpv6- | Off 1,0,1 Not currently implemented in the reference implementa-
stateless tion.
slaac N/S 1,0,0 Off Not currently implemented in the reference implementa-
tion.
dhcpv6- | N/S 0,1,1 Off Not currently implemented in the reference implementa-
stateful tion.
dhcpv6- | N/S 1,0,1 Off Not currently implemented in the reference implementa-
stateless tion.
slaac slaac 1,0,0 Off Guest instance obtains IPv6 address from OpenStack man-
aged radvd using SLAAC.
dhcpv6- | dhcpv6-| 0,1,1 Off Guest instance obtains IPv6 address from dnsmasq using
stateful | stateful DHCPvV6 stateful and optional info from dnsmasq using
DHCPv6.
dhcpv6- | dhepv6-| 1,0,1 Off Guest instance obtains IPv6 address from OpenStack man-
stateless | stateless aged radvd using SLAAC and optional info from dnsmasq
using DHCPv6.
slaac dhcpv6- Invalid combination.
stateful
slaac dhcpv6- Invalid combination.
stateless
dhcpv6- | slaac Invalid combination.
stateful
dhcpv6- | dhepv6- Invalid combination.
stateful | stateless
dhcpv6- | slaac Invalid combination.
stateless
dhcpv6- | dhepv6- Invalid combination.
stateless | stateful

220 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Project network considerations

Dataplane

Both the Linux bridge and the Open vSwitch dataplane modules support forwarding IPv6 packets
amongst the guests and router ports. Similar to IPv4, there is no special configuration or setup re-
quired to enable the dataplane to properly forward packets from the source to the destination using IPv6.
Note that these dataplanes will forward Link-local Address (LLA) packets between hosts on the same
network just fine without any participation or setup by OpenStack components after the ports are all
connected and MAC addresses learned.

Addresses for subnets

There are three methods currently implemented for a subnet to get its cidr in OpenStack:
1. Direct assignment during subnet creation via command line or Horizon
2. Referencing a subnet pool during subnet creation
3. Using a Prefix Delegation (PD) client to request a prefix for a subnet from a PD server

In the future, additional techniques could be used to allocate subnets to projects, for example, use of an
external IPAM module.

Address modes for ports

Note: An external DHCPvG6 server in theory could override the full address OpenStack assigns based
on the EUI-64 address, but that would not be wise as it would not be consistent through the system.

IPv6 supports three different addressing schemes for address configuration and for providing optional
network information.

Stateless Address Auto Configuration (SLAAC) Address configuration using Router Advertise-
ments.

DHCPv6-stateless Address configuration using Router Advertisements and optional information using
DHCPv6.

DHCPvo6-stateful Address configuration and optional information using DHCPv6.

OpenStack can be setup such that OpenStack Networking directly provides Router Advertisements,
DHCP relay and DHCPv6 address and optional information for their networks or this can be delegated
to external routers and services based on the drivers that are in use. There are two neutron subnet
attributes - ipv6_ra_mode and ipv6_address_mode that determine how IPv6 addressing and
network information is provided to project instances:

* ipv6_ra_mode: Determines who sends Router Advertisements.

* ipv6_address_mode: Determines how instances obtain IPv6 address, default gateway, or
optional information.

For the above two attributes to be effective, enalble_dhcp of the subnet object must be set to True.

8.2. Configuration 221

Neutron Documentation, Release 17.4.2.dev115

Using SLAAC for addressing

When using SLAAC, the currently supported combinations for ipvé6_ra_mode and
ipv6_address_mode are as follows.

ipv6_ra_modéve_addregsResde

Not speci- | SLAAC Addresses are assigned using EUI-64, and an external router will be
fied. used for routing.
SLAAC SLAAC Address are assigned using EUI-64, and OpenStack Networking pro-

vides routing.

Setting SLAAC for ipv6_ra_mode configures the neutron router with an radvd agent to send Router
Advertisements. The list below captures the values set for the address configuration flags in the Router
Advertisement messages in this scenario.

* Auto Configuration Flag = 1
* Managed Configuration Flag =0
* Other Configuration Flag =0

New or existing neutron networks that contain a SLAAC enabled IPv6 subnet will result in all neutron
ports attached to the network receiving IPv6 addresses. This is because when Router Advertisement
messages are multicast on a neutron network, they are received by all IPv6 capable ports on the network,
and each port will then configure an IPv6 address based on the information contained in the Router
Advertisement messages. In some cases, an [IPv6 SLAAC address will be added to a port, in addition to
other IPv4 and IPv6 addresses that the port already has been assigned.

Note: If a router is not created and added to the subnet, SLAAC addressing will not succeed for
instances since no Router Advertisement messages will be generated.

DHCPv6

For DHCPV6, the currently supported combinations are as follows:

ipv6_ra_modéove_ addregsRemde

DHCPvo6- DHCPvo6- Addresses are assigned through Router Advertisements (see SLAAC
stateless stateless above) and optional information is delivered through DHCPv6.
DHCPv6- DHCPv6- Addresses and optional information are assigned using DHCPv6.
stateful stateful

Setting DHCPv6-stateless for 1pv6_ra_mode configures the neutron router with an radvd agent to
send Router Advertisements. The list below captures the values set for the address configuration
flags in the Router Advertisement messages in this scenario. Similarly, setting DHCPv6-stateless for
ipv6_address_mode configures neutron DHCP implementation to provide the additional network
information.

* Auto Configuration Flag = 1

* Managed Configuration Flag =0

222 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

* Other Configuration Flag = 1

Setting DHCPvo6-stateful for ipv6_ra_mode configures the neutron router with an radvd agent to
send Router Advertisements. The list below captures the values set for the address configuration
flags in the Router Advertisements messages in this scenario. Similarly, setting DHCPv6-stateful for
ipv6_address_mode configures neutron DHCP implementation to provide addresses and additional
network information through DHCPV6.

* Auto Configuration Flag =0
* Managed Configuration Flag =1
* Other Configuration Flag = 1

Note: If a router is not created and added to the subnet, DHCPv6 addressing will not succeed for
instances since no Router Advertisement messages will be generated.

Router support

The behavior of the neutron router for IPv6 is different than for IPv4 in a few ways.

Internal router ports, that act as default gateway ports for a network, will share a common port for all
IPv6 subnets associated with the network. This implies that there will be an IPv6 internal router interface
with multiple IPv6 addresses from each of the IPv6 subnets associated with the network and a separate
IPv4 internal router interface for the IPv4 subnet. On the other hand, external router ports are allowed
to have a dual-stack configuration with both an IPv4 and an IPv6 address assigned to them.

Neutron project networks that are assigned Global Unicast Address (GUA) prefixes and addresses dont
require NAT on the neutron router external gateway port to access the outside world. As a consequence
of the lack of NAT the external router port doesnt require a GUA to send and receive to the external
networks. This implies a GUA IPv6 subnet prefix is not necessarily needed for the neutron external
network. By default, a IPv6 LLA associated with the external gateway port can be used for routing
purposes. To handle this scenario, the implementation of router-gateway-set API in neutron has been
modified so that an IPv6 subnet is not required for the external network that is associated with the
neutron router. The LLA address of the upstream router can be learned in two ways.

1. In the absence of an upstream Router Advertisement message, the ipv6_gateway flag can be
set with the external router gateway LLA in the neutron L3 agent configuration file. This also
requires that no subnet is associated with that port.

2. The upstream router can send a Router Advertisement and the neutron router will automatically
learn the next-hop LLA, provided again that no subnet is assigned and the ipv6_gateway flag
is not set.

Effectively the ipv6_gateway flag takes precedence over a Router Advertisements that is received
from the upstream router. If it is desired to use a GUA next hop that is accomplished by allocating a
subnet to the external router port and assigning the upstream routers GUA address as the gateway for the
subnet.

Note: It should be possible for projects to communicate with each other on an isolated network (a
network without a router port) using LLA with little to no participation on the part of OpenStack. The
authors of this section have not proven that to be true for all scenarios.

8.2. Configuration 223

Neutron Documentation, Release 17.4.2.dev115

Note: When using the neutron L3 agent in a configuration where it is auto-configuring an IPv6 address
via SLAAC, and the agent is learning its default IPv6 route from the ICMPv6 Router Advertisement, it
may be necessary to set the net .ipv6.conf.<physical_interface>.accept_ra sysctl to
the value 2 in order for routing to function correctly. For a more detailed description, please see the bug.

Neutrons Distributed Router feature and IPv6

IPv6 does work when the Distributed Virtual Router functionality is enabled, but all ingress/egress traf-
fic is via the centralized router (hence, not distributed). More work is required to fully enable this
functionality.

Advanced services

VPNaaS

VPNaaS supports IPv6, but support in Kilo and prior releases will have some bugs that may limit how
it can be used. More thorough and complete testing and bug fixing is being done as part of the Liberty
release. IPv6-based VPN-as-a-Service is configured similar to the IPv4 configuration. Either or both
the peer_address and the peer_cidr can specified as an IPv6 address. The choice of addressing
modes and router modes described above should not impact support.

FWaa$S

FWaasS allows creation of IPv6 based rules.

NAT & Floating IPs

At the current time OpenStack Networking does not provide any facility to support any flavor of NAT
with IPv6. Unlike IPv4 there is no current embedded support for floating IPs with IPv6. It is assumed
that the IPv6 addressing amongst the projects is using GUAs with no overlap across the projects.

Security considerations

For more information about security considerations, see the Security groups section in OpenStack
Networking.

224 Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/neutron/+bug/1616282

Neutron Documentation, Release 17.4.2.dev115

Configuring interfaces of the guest

OpenStack currently doesnt support the Privacy Extensions defined by RFC 4941, or the Opaque Iden-
tifier generation methods defined in RFC 7217. The interface identifier and DUID used must be directly
derived from the MAC address as described in RFC 2373. The compute instances must not be set up
to utilize either of these methods when generating their interface identifier, or they might not be able to
communicate properly on the network. For example, in Linux guests, these are controlled via these two
sysctl variables:

* net.ipv6.conf.*.use_tempaddr (Privacy Extensions)

This allows the use of non-changing interface identifiers for IPv6 addresses according to RFC3041
semantics. It should be disabled (zero) so that stateless addresses are constructed using a stable, EUI64-
based value.

* net.ipvé.conf.*.addr_gen_mode

This defines how link-local and auto-configured IPv6 addresses are generated. It should be set to zero
(default) so that IPv6 addresses are generated using an EUI64-based value.

Note: Support for addr_gen_mode was added in kernel version 4.11.

Other types of guests might have similar configuration options, please consult your distribution docu-
mentation for more information.

There are no provisions for an IPv6-based metadata service similar to what is provided for IPv4. In
the case of dual-stacked guests though it is always possible to use the IPv4 metadata service instead.
IPv6-only guests will have to use another method for metadata injection such as using a configuration
drive, which is described in the Nova documentation on config-drive.

Unlike IPv4, the MTU of a given network can be conveyed in both the Router Advertisement messages
sent by the router, as well as in DHCP messages.

OpenStack control & management network considerations

As of the Kilo release, considerable effort has gone in to ensuring the project network can handle dual
stack IPv6 and IPv4 transport across the variety of configurations described above. OpenStack control
network can be run in a dual stack configuration and OpenStack API endpoints can be accessed via an
IPv6 network. At this time, Open vSwitch (OVS) tunnel types - STT, VXLAN, GRE, support both [Pv4
and IPv6 endpoints.

Prefix delegation

From the Liberty release onwards, OpenStack Networking supports IPv6 prefix delegation. This section
describes the configuration and workflow steps necessary to use IPv6 prefix delegation to provide auto-
matic allocation of subnet CIDRs. This allows you as the OpenStack administrator to rely on an external
(to the OpenStack Networking service) DHCPv6 server to manage your project network prefixes.

Note: Prefix delegation became available in the Liberty release, it is not available in the Kilo release.
HA and DVR routers are not currently supported by this feature.

8.2. Configuration 225

https://docs.openstack.org/nova/latest/user/config-drive.html

Neutron Documentation, Release 17.4.2.dev115

Configuring OpenStack Networking for prefix delegation

To enable prefix delegation, edit the /et c/neutron/neutron.conf file.

Note: If you are not using the default dibbler-based driver for prefix delegation, then you also need to
set the driver in /et c/neutron/neutron.conft:

Drivers other than the default one may require extra configuration.

This tells OpenStack Networking to use the prefix delegation mechanism for subnet allocation when the
user does not provide a CIDR or subnet pool id when creating a subnet.

Requirements

To use this feature, you need a prefix delegation capable DHCPv6 server that is reachable from your
OpenStack Networking node(s). This could be software running on the OpenStack Networking node(s)
or elsewhere, or a physical router. For the purposes of this guide we are using the open-source DHCPv6
server, Dibbler. Dibbler is available in many Linux package managers, or from source at tomaszmrugal-
ski/dibbler.

When using the reference implementation of the OpenStack Networking prefix delegation driver, Dib-
bler must also be installed on your OpenStack Networking node(s) to serve as a DHCPv6 client. Version
1.0.1 or higher is required.

This guide assumes that you are running a Dibbler server on the network node where the external net-
work bridge exists. If you already have a prefix delegation capable DHCPv6 server in place, then you
can skip the following section.

Configuring the Dibbler server

After installing Dibbler, edit the /etc/dibbler/server.conf file:

script "/var/lib/dibbler/pd-server.sh"

iface "br-ex" {
pd-class {
pd-pool 2001:db8:2222::/48
pd-length 64

The options used in the configuration file above are:

* script Points to a script to be run when a prefix is delegated or released. This is only needed if
you want instances on your subnets to have external network access. More on this below.

* iface The name of the network interface on which to listen for prefix delegation messages.

226 Chapter 8. OpenStack Networking Guide

https://github.com/tomaszmrugalski/dibbler
https://github.com/tomaszmrugalski/dibbler

Neutron Documentation, Release 17.4.2.dev115

* pd-pool The larger prefix from which you want your delegated prefixes to come. The example
given is sufficient if you do not need external network access, otherwise a unique globally routable
prefix is necessary.

* pd-length The length that delegated prefixes will be. This must be 64 to work with the current
OpenStack Networking reference implementation.

To provide external network access to your instances, your Dibbler server also needs to create new
routes for each delegated prefix. This is done using the script file named in the config file above. Edit
the /var/lib/dibbler/pd-server. sh file:

!

sudo ip -6 route add /64 via dev

sudo ip -6 route del /64 via dev

The variables used in the script file above are:
* SPREFIX1 The prefix being added/deleted by the Dibbler server.
* $1 The operation being performed.
* SREMOTE_ADDR The IP address of the requesting Dibbler client.
* SIFACE The network interface upon which the request was received.

The above is all you need in this scenario, but more information on installing, configuring, and running
Dibbler is available in the Dibbler user guide, at Dibbler a portable DHCPv6.

To start your Dibbler server, run:

dibbler—-server run

Or to run in headless mode:

dibbler-server start

When using DevStack, it is important to start your server after the stack. sh script has finished to
ensure that the required network interfaces have been created.

User workflow

First, create a network and IPv6 subnet:

openstack network create ipvé6-pd

(continues on next page)

8.2. Configuration 227

http://klub.com.pl/dhcpv6/doc/dibbler-user.pdf

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack subnet create --ip-version 6 --ipv6-ra-mode slaac
—-—ipv6-address-mode slaac —--use-default-subnet-pool
——network ipv6-pd ipvé6-pd-1

The subnet is initially created with a temporary CIDR before one can be assigned by prefix delega-
tion. Any number of subnets with this temporary CIDR can exist without raising an overlap error. The
subnetpool_id is automatically set to prefix_delegation.

To trigger the prefix delegation process, create a router interface between this subnet and a router with
an active interface on the external network:

228 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

openstack router add subnet routerl ipvé6-pd-1

The prefix delegation mechanism then sends a request via the external network to your prefix delegation
server, which replies with the delegated prefix. The subnet is then updated with the new prefix, including
issuing new IP addresses to all ports:

openstack subnet show ipv6-pd-1

If the prefix delegation server is configured to delegate globally routable prefixes and setup routes, then
any instance with a port on this subnet should now have external network access.

Deleting the router interface causes the subnet to be reverted to the temporary CIDR, and all ports have
their IPs updated. Prefix leases are released and renewed automatically as necessary.

References

The following presentation from the Barcelona Summit provides a great guide for setting up IPv6 with
OpenStack: Deploying IPv6 in OpenStack Environments.

8.2. Configuration 229

https://www.youtube.com/watch?v=j5hy11YlSOU

Neutron Documentation, Release 17.4.2.dev115

8.2.15 Neutron Packet Logging Framework

Packet logging service is designed as a Neutron plug-in that captures network packets for relevant re-
sources (e.g. security group or firewall group) when the registered events occur.

Log C: Virtual Router

Rule: DENY &)
(FlrewaIIGroup Rule: ALLOW-)
-

1 .
(Rule: DROP if Security Group) Virtual network

&

Supported loggable resource types

('Rule: ACCEPT

From Rocky release, both of security_group and firewall_group are supported as resource
types in Neutron packet logging framework.

Service Configuration

To enable the logging service, follow the below steps.

1. On Neutron controller node, add 1og to service_plugins setting in /etc/neutron/
neutron.conf file. For example:

service_plugins = router,metering, log

2. To enable logging service for security_group in Layer 2, add log to option
extensions in section [agent] in /etc/neutron/plugins/ml2/ml2_conf.ini
for controller node and in /etc/neutron/plugins/ml2/openvswitch_agent.ini
for compute/network nodes. For example:

[agent]

Note: Fwaas v2 log is currently only supported by openvswitch, the firewall logging driver of
linuxbridge is not implemented.

230 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

3. To enable logging service for firewall_group in Layer 3, add fwaas_v2_1log to option

extensions in section [AGENT] in /etc/neutron/13_agent.ini for network nodes.
For example:

4. On compute/network nodes, add configuration for logging service to [network_log] in
/etc/neutron/plugins/ml2/openvswitch_agent.ini and in /etc/neutron/
13_agent.ini as shown bellow:

In which, rate_limit is used to configure the maximum number of packets to be
logged per second (packets per second). When a high rate triggers rate_limit,
logging queues packets to be logged. burst_limit is used to configure the max-

imum of queued packets. And logged packets can be stored anywhere by using
local_output_log_base.

Note:
It requires at least 100 for rate_1limit and at least 25 for burst_limit.
* If rate_limit is unset, logging will log unlimited.

* If we dont specify 1local_output_log_base, logged packets will be stored
in system journal like /var/log/syslog by default.

Trusted projects policy.json configuration
With the default /etc/neutron/policy. json, administrators must set up resource logging on
behalf of the cloud projects.

If projects are trusted to administer their own loggable resources in their cloud, neutrons policy file
policy. json can be modified to allow this.

Modify /etc/neutron/policy. json entries as follows:

"get_loggable_resources": "rule:regular_user",
"create_log": "rule:regular_user",

"get_log": "rule:regular_user",

"get_logs": "rule:regular_user",

"update_log": "rule:regular_user",
"delete_log": "rule:regular_user",

8.2. Configuration 231

Neutron Documentation, Release 17.4.2.dev115

Service workflow for Operator

1. To check the loggable resources that are supported by framework:

openstack network loggable resources list

Note:

* In VM ports, logging for security_group in currently works with openvswitch fire-
wall driver only. 1inuxbridge is under development.

* Logging for firewall_group works on internal router ports only. VM ports would be
supported in the future.

2. Log creation:

* Create a logging resource with an appropriate resource type

openstack network log create —--resource-type security_
—group

—-—description

——event ALL Log_Created

—

(continues on next page)

232 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

Warning: In the case of ——resource and ——target are not specified from the request,

these arguments will be assigned to ALL by default. Hence, there is an enormous range of log
events will be created.

* Create logging resource with a given resource (sgl or fwgl)

openstack network log create my-log —-resource-type,

—security_group --resource sgl
openstack network log create my-log —-resource—-type,
—~firewall group —--resource fwgl

* Create logging resource with a given target (portA)

openstack network log create my-log —-resource—-type,
—security_group —--target portA

* Create logging resource for only the given target (portB) and the given resource (sgl or
fwgl)

openstack network log create my-log —-—-resource-type,,
—»security_group —--target portB —--resource sgl

openstack network log create my-log —-resource-type,
—~firewall_group —--target portB --resource fwgl

Note:

* The Enabled field is set to True by default. If enabled, logged events are written to

the destination if 1local_output_log_base is configured or /var/log/syslog in
default.

* The Event field will be set to ALL if ——event is not specified from log creation request.

3. Enable/Disable log

We can enable or disable logging objects at runtime. It means that it will apply to all regis-
tered ports with the logging object immediately. For example:

openstack network log set —--disable Log_Created
openstack network log show Log_Created

(continues on next page)

8.2. Configuration 233

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Logged events description

Currently, packet logging framework supports to collect ACCEPT or DROP or both events related to
registered resources. As mentioned above, Neutron packet logging framework offers two loggable re-
sources through the 1og service plug-in: security_group and firewall_group.

The general characteristics of each event will be shown as the following:

* Log every DROP event: Every DROP security events will be generated when an incoming or
outgoing session is blocked by the security groups or firewall groups

* Logan ACCEPT event: The ACCEPT security event will be generated only for each NEW incoming
or outgoing session that is allowed by security groups or firewall groups. More details for the
ACCEPT events are shown as bellow:

— North/South ACCEPT: For a North/South session there would be a single ACCEPT event
irrespective of direction.

— East/West ACCEPT/ACCEPT: In an intra-project East/West session where the originating
port allows the session and the destination port allows the session, i.e. the traffic is allowed,
there would be two ACCEPT security events generated, one from the perspective of the
originating port and one from the perspective of the destination port.

— East/West ACCEPT/DROP: In an intra-project East/West session initiation where the origi-
nating port allows the session and the destination port does not allow the session there would
be ACCEPT security events generated from the perspective of the originating port and DROP
security events generated from the perspective of the destination port.

1. The security events that are collected by security group should include:
* A timestamp of the flow.
* A status of the flow ACCEPT/DROP.

* An indication of the originator of the flow, e.g which project or log resource generated the
events.

* An identifier of the associated instance interface (neutron port id).
* A layer 2, 3 and 4 information (mac, address, port, protocol, etc).
* Security event record format:

— Logged data of an ACCEPT event would look like:

234 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

I

!

— Logged data of a DROP event:

!

!

2. The events that are collected by firewall group should include:
* A timestamp of the flow.
* A status of the flow ACCEPT/DROP.
* The identifier of log objects that are collecting this event
* An identifier of the associated instance interface (neutron port id).
* A layer 2, 3 and 4 information (mac, address, port, protocol, etc).
* Security event record format:

— Logged data of an ACCEPT event would look like:

8.2. Configuration 235

Neutron Documentation, Release 17.4.2.dev115

— Logged data of a DROP event:

!

!

Note: No other extraneous events are generated within the security event logs, e.g. no debugging data,
etc.

8.2.16 Macvtap mechanism driver

The Macvtap mechanism driver for the ML2 plug-in generally increases network performance of in-
stances.

Consider the following attributes of this mechanism driver to determine practicality in your environment:

* Supports only instance ports. Ports for DHCP and layer-3 (routing) services must use another
mechanism driver such as Linux bridge or Open vSwitch (OVS).

» Supports only untagged (flat) and tagged (VLAN) networks.
* Lacks support for security groups including basic (sanity) and anti-spoofing rules.

* Lacks support for layer-3 high-availability mechanisms such as Virtual Router Redundancy Pro-
tocol (VRRP) and Distributed Virtual Routing (DVR).

* Only compute resources can be attached via macvtap. Attaching other resources like DHCP,
Routers and others is not supported. Therefore run either OVS or linux bridge in VLAN or flat
mode on the controller node.

236 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

* Instance migration requires the same values for the physical_interface_mapping con-
figuration option on each compute node. For more information, see https://bugs.launchpad.net/
neutron/+bug/1550400.

Prerequisites

You can add this mechanism driver to an existing environment using either the Linux bridge or OVS
mechanism drivers with only provider networks or provider and self-service networks. You can change
the configuration of existing compute nodes or add compute nodes with the Macvtap mechanism driver.
The example configuration assumes addition of compute nodes with the Macvtap mechanism driver to
the Linux bridge: Self-service networks or Open vSwitch: Self-service networks deployment examples.

Add one or more compute nodes with the following components:
* Three network interfaces: management, provider, and overlay.

* OpenStack Networking Macvtap layer-2 agent and any dependencies.

Note: To support integration with the deployment examples, this content configures the Macvtap mech-
anism driver to use the overlay network for untagged (flat) or tagged (VLAN) networks in addition to
overlay networks such as VXLAN. Your physical network infrastructure must support VLAN (802.1q)
tagging on the overlay network.

Architecture

The Macvtap mechanism driver only applies to compute nodes. Otherwise, the environment resembles
the prerequisite deployment example.

Compute Node Overview

Compute Node

Linux Metwork Utilities

Instance
Macvtap
Agent
WLAM
Sub Inﬂaﬂeg e VLANSs
Interface B

VLAN network

8.2. Configuration 237

https://bugs.launchpad.net/neutron/+bug/1550400
https://bugs.launchpad.net/neutron/+bug/1550400

Neutron Documentation, Release 17.4.2.dev115

Compute Node Components

Instance Instance Instance
| etho |
#

" VLAN Sub ‘ ‘ VLAN Sub
Interface Interface

Interface 2
|urrminerad)
i el M |
- VLANs
..\'-._ _x.\-.- _--..-.i_ _-".
<~ Project Network 1 y Project Network 2
‘. VLAN network . 192.168.1.0/24 - 192.168.2.0/24

Example configuration

Use the following example configuration as a template to add support for the Macvtap mechanism driver
to an existing operational environment.

Controller node

1. Intheml2_conf.ini file:

¢ Add macvtap to mechanism drivers.

[m1l2]
macvtap

* Configure network mappings.

238 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

[ml2_type_flat]

[ml2_type vlan]

Note: Use of macvtap is arbitrary. Only the self-service deployment examples require
VLAN ID ranges. Replace VLAN_ID_START and VLAN_ID_END with appropriate nu-

merical values.

2. Restart the following services:

e Server

Network nodes
No changes.

Compute nodes

1. Install the Networking service Macvtap layer-2 agent.

2. In the neutron. conf file, configure common options:

[DEFAULT]

[database]

[keystone_authtoken]

[noval]

[agent]

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack re-
lease to obtain the appropriate additional configuration for the [DEFAULT], [databasel],
[keystone_authtoken], [noval, and [agent] sections.

3. Inthe macvtap_agent . ini file, configure the layer-2 agent.

[macvtap]

[securitygroup]

8.2. Configuration 239

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 17.4.2.dev115

Replace MACVTAP_INTERFACE with the name of the underlying interface that handles
Macvtap mechanism driver interfaces. If using a prerequisite deployment example, replace
MACVTAP_INTERFACE with the name of the underlying interface that handles overlay networks.
For example, ethl.

4. Start the following services:

* Macvtap agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents:

openstack network agent list

{

!

!

!

!

!

I

240 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Create initial networks

This mechanism driver simply changes the virtual network interface driver for instances. Thus, you can
reference the Create initial networks content for the prerequisite deployment example.

Verify network operation

This mechanism driver simply changes the virtual network interface driver for instances. Thus, you can
reference the Verify network operation content for the prerequisite deployment example.

Network traffic flow

This mechanism driver simply removes the Linux bridge handling security groups on the compute nodes.
Thus, you can reference the network traffic flow scenarios for the prerequisite deployment example.

8.2.17 MTU considerations

The Networking service uses the MTU of the underlying physical network to calculate the MTU for
virtual network components including instance network interfaces. By default, it assumes a standard
1500-byte MTU for the underlying physical network.

The Networking service only references the underlying physical network MTU. Changing the underly-
ing physical network device MTU requires configuration of physical network devices such as switches
and routers.

Jumbo frames

The Networking service supports underlying physical networks using jumbo frames and also enables in-
stances to use jumbo frames minus any overlay protocol overhead. For example, an underlying physical
network with a 9000-byte MTU yields a 8950-byte MTU for instances using a VXLAN network with
IPv4 endpoints. Using IPv6 endpoints for overlay networks adds 20 bytes of overhead for any protocol.

The Networking service supports the following underlying physical network architectures. Case 1 refers
to the most common architecture. In general, architectures should avoid cases 2 and 3.

Note: After you adjust MTU configuration options in neutron.conf and m12_conf.ini, you
should update mtu attribute for all existing networks that need a new MTU. (Network MTU update is
available for all core plugins that implement the net -mtu-writable API extension.)

8.2. Configuration 241

Neutron Documentation, Release 17.4.2.dev115

Case 1

For typical underlying physical network architectures that implement a single MTU value, you can lever-
age jumbo frames using two options, one in the neutron. conf file and the other in the m12_conf.
ini file. Most environments should use this configuration.

For example, referencing an underlying physical network with a 9000-byte MTU:

1. Inthe neutron.conf file:

2. Intheml2_conf.ini file:

Case 2

Some underlying physical network architectures contain multiple layer-2 networks with different MTU
values. You can configure each flat or VLAN provider network in the bridge or interface mapping
options of the layer-2 agent to reference a unique MTU value.

For example, referencing a 4000-byte MTU for provider2, a 1500-byte MTU for provider3, and
a 9000-byte MTU for other networks using the Open vSwitch agent:

1. In the neutron.conf file:

2. Inthe openvswitch_agent.ini file:

3. Intheml2_conf.ini file:

Case 3

Some underlying physical network architectures contain a unique layer-2 network for overlay networks
using protocols such as VXLAN and GRE.

For example, referencing a 4000-byte MTU for overlay networks and a 9000-byte MTU for other net-
works:

1. In the neutron.conf file:

242 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

2. Intheml2_conf.ini file:

Note: Other networks including provider networks and flat or VLAN self-service networks
assume the value of the global_physnet_mtu option.

Instance network interfaces (VIFs)

The DHCP agent provides an appropriate MTU value to instances using IPv4, while the L3 agent pro-
vides an appropriate MTU value to instances using [Pv6. IPv6 uses RA via the L3 agent because the
DHCP agent only supports IPv4. Instances using IPv4 and IPv6 should obtain the same MTU value
regardless of method.

8.2.18 Network segment ranges

The network segment range service exposes the segment range management to be administered via the
Neutron API. In addition, it introduces the ability for the administrator to control the segment ranges
globally or on a per-tenant basis.

Why you need it

Before Stein, network segment ranges were configured as an entry in ML2 config file m12_conf.ini
that was statically defined for tenant network allocation and therefore had to be managed as part of
the host deployment and management. When a regular tenant user creates a network, Neutron assigns
the next free segmentation ID (VLAN ID, VNI etc.) from the configured segment ranges. Only an
administrator can assign a specific segment ID via the provider extension.

The network segment range management service provides the following capabilities that the administra-
tor may be interested in:

1. To check out the network segment ranges defined by the operators in the ML2 config file so that
the admin can use this information to make segment range allocation.

2. To dynamically create and assign network segment ranges, which can help with the distribution of
the underlying network connection mapping for privacy or dedicated business connection needs.
This includes:

* global shared network segment ranges
* tenant-specific network segment ranges

3. To dynamically update a network segment range to offer the ability to adapt to the connection
mapping changes.

8.2. Configuration 243

Neutron Documentation, Release 17.4.2.dev115

4. To dynamically manage a network segment range when there are no segment ranges defined within
the ML2 config file m12_conf.ini and no restart of the Neutron server is required in this
situation.

5. To check the availability and usage statistics of network segment ranges.

How it works

A network segment range manages a set of segments from which self-service networks can be allocated.
The network segment range management service is admin-only.

As a regular project in an OpenStack cloud, you can not create a network segment range of your own
and you just create networks in regular way.

If you are an admin, you can create a network segment range which can be shared (i.e. used by any
regular project) or tenant-specific (i.e. assignment on a per-tenant basis). Your network segment ranges
will not be visible to any other regular projects. Other CRUD operations are also supported.

When a tenant allocates a segment, it will first be allocated from an available segment range assigned to
the tenant, and then a shared range if no tenant specific allocation is possible.

Default network segment ranges

A set of default network segment ranges are created out of the values defined in the ML2
config file: network_vlan_ranges for ml2_type_vlan, vni_ranges for ml2_type_vxlan,
tunnel_id_ranges for ml2_type_gre and vni_ranges for ml2_type_geneve. They will be
reloaded when Neutron server starts or restarts. The default network segment ranges are
read-only, but will be treated as any other shared ranges on segment allocation.

The administrator can use the default network segment range information to make shared and/or per-
tenant range creation and assignment.

Example configuration

Controller node

1. Enable the network segment range service plugin by appending network_segment_range
to the list of service_plugins in the neutron.conf file on all nodes running the
neutron-server service:

2. Restart the neutron—-server service.

244 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Verify service operation

1. Source the administrative project credentials and list the enabled extensions.

2. Use the command openstack extension list -—-—network to verify thatthe Neutron
Network Segment Range extension with Alias network—segment-range is enabled.

openstack extension list —--network

Workflow

At a high level, the basic workflow for a network segment range creation is the following:
1. The Cloud administrator:
* Lists the existing network segment ranges.
* Creates a shared or a tenant-specific network segment range based on the requirement.

2. A regular tenant creates a network in regular way. The network created will automatically allocate
a segment from the segment ranges assigned to the tenant or shared if no tenant specific range
available.

At a high level, the basic workflow for a network segment range update is the following:
1. The Cloud administrator:
* Lists the existing network segment ranges and identifies the one that needs to be updated.
» Updates the network segment range based on the requirement.

2. A regular tenant creates a network in regular way. The network created will automatically allocate
a segment from the updated network segment ranges available.

8.2. Configuration 245

Neutron Documentation, Release 17.4.2.dev115

List the network segment ranges or show a network segment range

As admin, list the existing network segment ranges:

openstack network segment range list

!

!

!

!

!

{

!

)

{

The network segment ranges with Default as True are the ranges specified by the operators in the
ML2 config file. Besides, there are also shared and tenant specific network segment ranges created by
the admin previously.

The admin is also able to check/show the detailed information (e.g. availability and usage statistics) of
a network segment range:

openstack network segment range show test_range_1

(continues on next page)

246 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Create or update the network segment range

As admin, create a network segment range based on your requirement:

openstack network segment range create —--private —--project demo
——network-type vxlan ——minimum 120 —--maximum 140 test_range_4

Update a network segment range based on your requirement:

openstack network segment range set —-minimum 100 —--maximum 150
test_range_4

Create a tenant network

Now, as project demo (to source the client environment script demo-openrc for demo project accord-
ing to https://docs.openstack.org/keystone/latest/install/keystone-openrc-rdo.html), create a network in
a regular way.

source demo-openrc
openstack network create test_net

(continues on next page)

8.2. Configuration 247

https://docs.openstack.org/keystone/latest/install/keystone-openrc-rdo.html

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Then, switch back to the admin to check the segmentation ID of the tenant network created.

source admin-openrc
openstack network show test_net

(continues on next page)

248 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

The tenant network created automatically allocates a segment with segmentation ID 137 from the net-
work segment range with segmentation ID range 120-140 that is assigned to the tenant.

If no more available segment in the network segment range assigned to this tenant, then the segment
allocation would refer to the shared segment ranges to check whether theres one segment available. If
still there is no segment available, the allocation will fail as follows:

openstack network create test_net
Unable to create the network. No tenant network is available

In this case, the admin is advised to check the availability and usage statistics of the related network
segment ranges in order to take further actions (e.g. enlarging a segment range etc.).

Known limitations

* This service plugin is only compatible with ML2 core plugin for now. However, it is possible for
other core plugins to support this feature with a follow-on effort.

8.2.19 Open vSwitch with DPDK datapath

This page serves as a guide for how to use the OVS with DPDK datapath functionality available in the
Networking service as of the Mitaka release.

The basics

Open vSwitch (OVS) provides support for a Data Plane Development Kit (DPDK) datapath since OVS
2.2, and a DPDK-backed vhost—user virtual interface since OVS 2.4. The DPDK datapath provides
lower latency and higher performance than the standard kernel OVS datapath, while DPDK-backed
vhost-user interfaces can connect guests to this datapath. For more information on DPDK, refer to
the DPDK website.

OVS with DPDK, or OVS-DPDK, can be used to provide high-performance networking between in-
stances on OpenStack compute nodes.

8.2. Configuration 249

http://dpdk.org/

Neutron Documentation, Release 17.4.2.dev115

Prerequisites

Using DPDK in OVS requires the following minimum software versions:
* OVS 24
* DPDK 2.0
* QEMU 2.1.0
* libvirt 1.2.13

Support of vhost —user multiqueue that enables use of multiqueue with virtio-net and igb_uio
is available if the following newer versions are used:

« OVS 2.5

« DPDK 2.2

« QEMU 2.5
e libvirt 1.2.17

In both cases, install and configure Open vSwitch with DPDK support for each node. For more informa-
tion, see the OVS-DPDK installation guide (select an appropriate OVS version in the Branch drop-down
menu).

Neutron Open vSwitch vhost-user support for configuration of neutron OVS agent.

In case you wish to configure multiqueue, see the OVS configuration chapter on vhost-user in QEMU
documentation.

The technical background of multiqueue is explained in the corresponding blueprint.

Additionally, OpenStack supports vhost —user reconnect feature starting from the Ocata release, as
implementation of fix for bug 1604924. Starting from OpenStack Ocata release this feature is used
without any configuration necessary in case the following minimum software versions are used:

« OVS 2.6
« DPDK 16.07
« QEMU 2.7

The support of this feature is not yet present in M2 OVN and ODL mechanism drivers.
Using vhost-user interfaces
Once OVS and neutron are correctly configured with DPDK support, vhost —user interfaces are com-

pletely transparent to the guest (except in case of multiqueue configuration described below). However,
guests must request huge pages. This can be done through flavors. For example:

openstack flavor set ml.large —-property hw:mem_page_size large

For more information about the syntax for hw:mem_page_size, refer to the Flavors guide.

Note: vhost-user requires file descriptor-backed shared memory. Currently, the only way to request
this is by requesting large pages. This is why instances spawned on hosts with OVS-DPDK must request

250 Chapter 8. OpenStack Networking Guide

https://github.com/openvswitch/ovs/blob/master/Documentation/intro/install/dpdk.rst
http://wiki.qemu.org/Documentation/vhost-user-ovs-dpdk#Enabling_multi-queue
https://specs.openstack.org/openstack/nova-specs/specs/liberty/implemented/libvirt-virtiomq.html
https://bugs.launchpad.net/neutron/+bug/1604924
https://docs.openstack.org/nova/latest/admin/flavors.html

Neutron Documentation, Release 17.4.2.dev115

large pages. The aggregate flavor affinity filter can be used to associate flavors with large page support
to hosts with OVS-DPDK support.

Create and add vhost—user network interfaces to instances in the same fashion as conventional in-
terfaces. These interfaces can use the kernel virtio-net driver or a DPDK-compatible driver in the
guest

openstack server create --nic net-id ... testserver

Using vhost-user multiqueue

To use this feature, the following should be set in the flavor extra specs (flavor keys):

openstack flavor set .large —-property hw:vif_multiqueue_enabled true

This setting can be overridden by the image metadata property if the feature is enabled in the extra specs:

openstack image set ——-property true IMAGE_NAME

Support of virtio-net multiqueue needs to be present in kernel of guest VM and is available starting
from Linux kernel 3.8.

Check pre-set maximum for number of combined channels in channel configuration. Configuration of
OVS and flavor done successfully should result in maximum being more than 1):

ethtool -1 INTERFACE_NAME

To increase number of current combined channels run following command in guest VM:

ethtool -L INTERFACE_NAME combined QUEUES_NR

The number of queues should typically match the number of vCPUs defined for the instance. In newer
kernel versions this is configured automatically.

Known limitations

* This feature is only supported when using the libvirt compute driver, and the KVM/QEMU hy-
pervisor.

* Huge pages are required for each instance running on hosts with OVS-DPDK. If huge pages are
not present in the guest, the interface will appear but will not function.

* Expect performance degradation of services using tap devices: these devices do not support
DPDK. Example services include DVR and FWaaS.

* When the ovs_use_veth option is set to True, any traffic sent from a DHCP namespace will
have an incorrect TCP checksum. This means that if enable_isolated_metadata is setto
True and metadata service is reachable through the DHCP namespace, responses from metadata
will be dropped due to an invalid checksum. In such cases, ovs_use_veth should be switched
to False and Open vSwitch (OVS) internal ports should be used instead.

8.2. Configuration 251

Neutron Documentation, Release 17.4.2.dev115

8.2.20 Open vSwitch hardware offloading

The purpose of this page is to describe how to enable Open vSwitch hardware offloading functional-
ity available in OpenStack (using OpenStack Networking). This functionality was first introduced in
the OpenStack Pike release. This page intends to serve as a guide for how to configure OpenStack
Networking and OpenStack Compute to enable Open vSwitch hardware offloading.

The basics

Open vSwitch is a production quality, multilayer virtual switch licensed under the open source Apache
2.0 license. It is designed to enable massive network automation through programmatic extension,
while still supporting standard management interfaces and protocols. Open vSwitch (OVS) allows Vir-
tual Machines (VM) to communicate with each other and with the outside world. The OVS software
based solution is CPU intensive, affecting system performance and preventing fully utilizing available
bandwidth.

Term Definition

PF Physical Function. The physical Ethernet controller that supports SR-IOV.

VF Virtual Function. The virtual PCle device created from a physical Ethernet
controller.

Representor Port Virtual network interface similar to SR-IOV port that represents Nova in-
stance.

First Compute Node OpenStack Compute Node that can host Compute instances (Virtual Ma-
chines).

Second Compute Node | OpenStack Compute Node that can host Compute instances (Virtual Ma-
chines).

Supported Ethernet controllers

The following manufacturers are known to work:
¢ Mellanox ConnectX-4 NIC (VLAN Offload)
* Mellanox ConnectX-4 Lx/ConnectX-5 NICs (VLAN/VXLAN Offload)
* Broadcom NetXtreme-S series NICs
* Broadcom NetXtreme-E series NICs

For information on Mellanox Ethernet Cards, see Mellanox: Ethernet Cards - Overview.

Prerequisites

* Linux Kernel >=4.13
* Open vSwitch >=2.8
* iproute >=4.12

¢ Mellanox or Broadcom NIC

252 Chapter 8. OpenStack Networking Guide

http://www.mellanox.com/page/ethernet_cards_overview

Neutron Documentation, Release 17.4.2.dev115

Note: Mellanox NIC FW that supports Open vSwitch hardware offloading:
ConnectX-5 >=16.21.0338

ConnectX-4 >= 12.18.2000

ConnectX-4 Lx >= 14.21.0338

Using Open vSwitch hardware offloading

In order to enable Open vSwitch hardware offloading, the following steps are required:
1. Enable SR-IOV
2. Configure NIC to switchdev mode (relevant Nodes)

3. Enable Open vSwitch hardware offloading

Note: Throughout this guide, enp3s0£0 is used as the PF and eth3 is used as the representor port.
These ports may vary in different environments.

Note: Throughout this guide, we use systemctl to restart OpenStack services. This is correct for
systemd OS. Other methods to restart services should be used in other environments.

Create Compute virtual functions

Create the VFs for the network interface that will be used for SR-IOV. We use enp3s0£0 as PF, which
is also used as the interface for the VLAN provider network and has access to the private networks of
all nodes.

Note: The following steps detail how to create VFs using Mellanox ConnectX-4 and SR-IOV Ethernet
cards on an Intel system. Steps may be different for the hardware of your choice.

1. Ensure SR-IOV and VT-d are enabled on the system. Enable IOMMU in Linux by adding
intel_iommu=on to kernel parameters, for example, using GRUB.

2. On each Compute node, create the VFs:

Note: A network interface can be used both for PCI passthrough, using the PF, and SR-IOV,
using the VFs. If the PF is used, the VF number stored in the sriov_numvfs file is lost. If the
PF is attached again to the operating system, the number of VFs assigned to this interface will be
zero. To keep the number of VFs always assigned to this interface, update a relevant file according
to your OS. See some examples below:

In Ubuntu, modifying the /etc/network/interfaces file:

8.2. Configuration 253

Neutron Documentation, Release 17.4.2.dev115

In Red Hat, modifying the /sbin/ifup-local file:

echo > /sys/class/net/enp3s0f0/device/sriov_numvfs

Warning: Alternatively, you can create VFs by passing the max_vfs to the kernel module
of your network interface. However, the max_ v fs parameter has been deprecated, so the PCI
/sys interface is the preferred method.

You can determine the maximum number of VFs a PF can support:

3. Verify that the VFs have been created and are in up state:

Note: The PCI bus number of the PF (03:00.0) and VFs (03:00.2 .. 03:00.5) will be used later.

8: enp3s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc mqg,,
—state UP mode DEFAULT glen 1000
link/ether a0:36:9f:8f:3f:b8 brd ff:ff:ff:ff:ff:ff
vE 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 1 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vf 2 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
vEf 3 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

If the interfaces are down, set them to up before launching a guest, otherwise the instance will
fail to spawn:

Configure Open vSwitch hardware offloading

1. Change the e-switch mode from legacy to switchdev on the PF device. This will also create the
VF representor network devices in the host OS.

This tells the driver to unbind VF 03:00.2

254 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Note: This should be done for all relevant VFs (in this example 0000:03:00.2 .. 0000:03:00.5)

2. Enable Open vSwitch hardware offloading, set PF to switchdev mode and bind VFs back.

Note: This should be done for all relevant VFs (in this example 0000:03:00.2 .. 0000:03:00.5)

3. Restart Open vSwitch

Note: The given aging of OVS is given in milliseconds and can be controlled with:

Configure Nodes (VLAN Configuration)

1. Update /etc/neutron/plugins/ml2/ml2_conf.ini on Controller nodes

[ml2]

2. Update /etc/neutron/neutron.conf on Controller nodes

[DEFAULT]

3. Update /etc/nova/nova.cont on Controller nodes

[filter_scheduler]

4. Update /etc/nova/nova.conft on Compute nodes

[pci]

8.2. Configuration 255

Neutron Documentation, Release 17.4.2.dev115

Configure Nodes (VXLAN Configuration)

1.

Update /etc/neutron/plugins/ml2/ml2_conf.ini on Controller nodes

Update /etc/neutron/neutron.conf on Controller nodes

. Update /etc/nova/nova.conf on Controller nodes

. Update /etc/nova/nova.conf on Compute nodes

Note: VXLAN configuration requires physical_network to be null.

Restart nova and neutron services

Validate Open vSwitch hardware offloading

Note: In this example we will bring up two instances on different Compute nodes and send
ICMP echo packets between them. Then we will check TCP packets on a representor port
and we will see that only the first packet will be shown there. All the rest will be offloaded.

. Create a port direct on private network

. Create an instance using the direct port on First Compute Node

. Repeat steps above and create a second instance on Second Compute Node

256

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Note: You can use availability-zone nova:compute_node_1 option to set the desired Compute
Node

4. Connect to instancel and send ICMP Echo Request packets to instance2

vin_1# ping wvm2

5. Connect to Second Compute Node and find representor port of the instance

Note: Find a representor port first, in our case its eth3

(continues on next page)

8.2. Configuration 257

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

6. Check traffic on the representor port. Verify that only the first ICMP packet appears.

8.2.21 Native Open vSwitch firewall driver

Historically, Open vSwitch (OVS) could not interact directly with iptables to implement security groups.
Thus, the OVS agent and Compute service use a Linux bridge between each instance (VM) and the OVS
integration bridge br—-int to implement security groups. The Linux bridge device contains the iptables
rules pertaining to the instance. In general, additional components between instances and physical net-
work infrastructure cause scalability and performance problems. To alleviate such problems, the OVS
agent includes an optional firewall driver that natively implements security groups as flows in OVS rather
than the Linux bridge device and iptables. This increases scalability and performance.

Configuring heterogeneous firewall drivers

L2 agents can be configured to use differing firewall drivers. There is no requirement that they all be the
same. If an agent lacks a firewall driver configuration, it will default to what is configured on its server.
This also means there is no requirement that the server has any firewall driver configured at all, as long
as the agents are configured correctly.

258 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Prerequisites

The native OVS firewall implementation requires kernel and user space support for conntrack, thus
requiring minimum versions of the Linux kernel and Open vSwitch. All cases require Open vSwitch
version 2.5 or newer.

* Kernel version 4.3 or newer includes conntrack support.

» Kernel version 3.3, but less than 4.3, does not include conntrack support and requires building the
OVS modules.

Enable the native OVS firewall driver

* On nodes running the Open vSwitch agent, edit the openvswitch_agent. ini file and enable
the firewall driver.

For more information, see the Open vSwitch Firewall Driver and the video.

Using GRE tunnels inside VMs with OVS firewall driver

If GRE tunnels from VM to VM are going to be used, the native OVS firewall implementation requires
nf_conntrack_proto_gre module to be loaded in the kernel on nodes running the Open vSwitch
agent. It can be loaded with the command:

modprobe nf_conntrack_proto_gre

Some Linux distributions have files that can be used to automatically load kernel modules at boot time,
for example, /et c/modules. Check with your distribution for further information.

This isnt necessary to use gre tunnel network type Neutron.

8.2.22 Quality of Service (QoS)

QoS is defined as the ability to guarantee certain network requirements like bandwidth, latency, jitter,
and reliability in order to satisfy a Service Level Agreement (SLA) between an application provider and
end users.

Network devices such as switches and routers can mark traffic so that it is handled with a higher priority
to fulfill the QoS conditions agreed under the SLA. In other cases, certain network traffic such as Voice
over IP (VoIP) and video streaming needs to be transmitted with minimal bandwidth constraints. On a
system without network QoS management, all traffic will be transmitted in a best-effort manner making
it impossible to guarantee service delivery to customers.

QoS is an advanced service plug-in. QoS is decoupled from the rest of the OpenStack Networking code
on multiple levels and it is available through the ml2 extension driver.

Details about the DB models, API extension, and use cases are out of the scope of this guide but can be
found in the Neutron QoS specification.

8.2. Configuration 259

https://www.youtube.com/watch?v=SOHeZ3g9yxM
https://specs.openstack.org/openstack/neutron-specs/specs/liberty/qos-api-extension.html

Neutron Documentation, Release 17.4.2.dev115

Supported QoS rule types

QoS supported rule types are now available as VALID_RULE_TYPES in QoS rule types:

* bandwidth_limit: Bandwidth limitations on networks, ports or floating IPs.

* dscp_marking: Marking network traffic with a DSCP value.

e minimum_bandwidth: Minimum bandwidth constraints on certain types of traffic.

Any QoS driver can claim support for some QoS rule types by providing a driver property called
supported_rules, the QoS driver manager will recalculate rule types dynamically that the QoS

driver supports.

The following table shows the Networking back ends, QoS supported rules, and traffic directions (from

the VM point of view).

Table 5: Networking back ends, supported rules, and traffic

direction
Rule \ back end | Open vSwitch SR-I0V Linux bridge OVN
Bandwidth limit | Egress \ Ingress Egress (1) Egress \ Ingress Egress \ Ingress
Minimum band- | Egress \ Ingress | Egress \ Ingress . .
width 2) 2)
DSCP marking Egress . Egress Egress
Note:

(1) Max burst parameter is skipped because it is not supported by the IP tool.

(2) Placement based enforcement works for both egress and ingress directions, but dataplane enforce-

ment depends on the backend.

Table 6: Neutron backends, supported directions and enforce-

ment types for Minimum Bandwidth rule

Enforcement Open vSwitch SR-I0V Linux Bridge OVN
type Backend
Dataplane Egress (3) Egress (1) . .
Placement Egress/Ingress Egress/Ingress . .
@) 2
Note:

(1) Since Newton

(2) Since Stein

(3) Open vSwitch minimum bandwidth support is only implemented for egress direction and only for

networks without tunneled traffic (only VLAN and flat network types).

260

Chapter 8. OpenStack Networking Guide

https://opendev.org/openstack/neutron-lib/tree/neutron_lib/services/qos/constants.py

Neutron Documentation, Release 17.4.2.dev115

In the most simple case, the property can be represented by a simple Python list defined on the class.

For an ml2 plug-in, the list of supported QoS rule types and parameters is defined as a common subset of
rules supported by all active mechanism drivers. A QoS rule is always attached to a QoS policy. When
arule is created or updated:

* The QoS plug-in will check if this rule and parameters are supported by any active mechanism
driver if the QoS policy is not attached to any port or network.

* The QoS plug-in will check if this rule and parameters are supported by the mechanism drivers
managing those ports if the QoS policy is attached to any port or network.

Valid DSCP Marks

Valid DSCP mark values are even numbers between 0 and 56, except 2-6, 42, 44, and 50-54. The full
list of valid DSCP marks is:

0, 8,10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 46, 48, 56

Configuration

To enable the service on a cloud with the architecture described in Networking architecture, follow the
steps below:

On the controller nodes:

1. Add the QoS service to the service_plugins setting in /etc/neutron/neutron.
conf. For example:

service_plugins = router,metering, gos

2. Optionally, set the needed notification_drivers in the [gos] section in /etc/
neutron/neutron.conf (message_queue is the default).

3. Optionally, in order to enable the floating IP QoS extension gos-fip, set the
service_plugins option in /etc/neutron/neutron.conf to include both router
and gos. For example:

service_plugins = router, gos

4. In /etc/neutron/plugins/ml2/ml2_conf.ini, add gos to extension_drivers
in the [m12] section. For example:

5. Edit the configuration file for the agent you are using and set the extensions to include gos in
the [agent] section of the configuration file. The agent configuration file will reside in /etc/
neutron/plugins/ml2/<agent_name>_agent.ini where agent_name is the name
of the agent being used (for example openvswitch). For example:

8.2. Configuration 261

https://docs.openstack.org/security-guide/networking/architecture.html#openstack-networking-service-placement-on-physical-servers

Neutron Documentation, Release 17.4.2.dev115

On the network and compute nodes:

1. Edit the configuration file for the agent you are using and set the extensions to include gos in
the [agent] section of the configuration file. The agent configuration file will reside in /etc/
neutron/plugins/ml2/<agent_name>_agent.ini where agent_name is the name
of the agent being used (for example openvswitch). For example:

2. Optionally, in order to enable QoS for floating IPs, set the extensions optionin the [agent]
section of /etc/neutron/13_agent.ini toinclude fip_gos. If dvr is enabled, this has
to be done for all the L3 agents. For example:

Note: Floating IP associated to neutron port or to port forwarding can all have bandwidth limit since
Stein release. These neutron server side and agent side extension configs will enable it once for all.

1. Optionally, in order to enable QoS for router gateway IPs, set the extensions option in the
[agent] section of /etc/neutron/13_agent.ini toinclude gateway_ip_gos. Set
this to all the dvr_snat or legacy L3 agents. For example:

And gateway_1ip_gos should work together with the fip_gos in L3 agent for centralized
routers, then all L3 IPs with binding QoS policy can be limited under the QoS bandwidth limit
rules:

2. As rate limit doesnt work on Open vSwitchs internal ports, optionally, as a workaround, to
make QoS bandwidth limit work on routers gateway ports, set ovs_use_veth to True in
DEFAULT sectionin /etc/neutron/13_agent.ini

Note: QoS currently works with ml2 only (SR-IOV, Open vSwitch, and linuxbridge are drivers enabled
for QoS).

262 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

DSCP marking on outer header for overlay networks

When using overlay networks (e.g., VXLAN), the DSCP marking rule only applies to the inner header,
and during encapsulation, the DSCP mark is not automatically copied to the outer header.

1. In order to set the DSCP value of the outer header, modify the dscp configuration option in /
etc/neutron/plugins/ml2/<agent_name>_agent.ini where <agent_name> is
the name of the agent being used (e.g., openvswitch):

2. In order to copy the DSCP field of the inner header to the outer header, change
the dscp_inherit configuration option to true in /etc/neutron/plugins/ml2/
<agent_name>_agent.ini where <agent_name> is the name of the agent being used
(e.g., openvswitch):

If the dscp_inherit option is set to true, the previous dscp option is overwritten.

Trusted projects policy.json configuration

If projects are trusted to administrate their own QoS policies in your cloud, neutrons file policy. json
can be modified to allow this.

Modify /etc/neutron/policy. json policy entries as follows:

"get_policy": "rule:regular_user",

"create_policy": "rule:regular_user",
"update_policy": "rule:regular_user",
"delete_policy": "rule:regular_user",
"get_rule_type": "rule:regular_user",

To enable bandwidth limit rule:

"get_policy_bandwidth_limit_rule": "rule:regular_user",

"create_policy_bandwidth_limit_rule": "rule:regular_user",
"delete_policy_bandwidth_limit_rule": "rule:regular_user",
"update_policy_bandwidth_limit_rule": "rule:regular_user",

To enable DSCP marking rule:

"get_policy_dscp_marking_rule": "rule:regular_user",
"create_dscp_marking_rule": "rule:regular_user",
"delete_dscp_marking_rule": "rule:regular_user",
"update_dscp_marking_rule": "rule:regqular_user",

To enable minimum bandwidth rule:

"get_policy_minimum_bandwidth_rule": "rule:regular_user",

"create_policy_minimum_bandwidth_rule": "rule:regular_user",
"delete_policy_minimum_ bandwidth_rule": "rule:regular_user",
"update_policy_minimum_bandwidth_rule": "rule:regular_user",

8.2. Configuration 263

Neutron Documentation, Release 17.4.2.dev115

User workflow
QoS policies are only created by admins with the default policy. json. Therefore, you should have
the cloud operator set them up on behalf of the cloud projects.

If projects are trusted to create their own policies, check the trusted projects policy. json configura-
tion section.

First, create a QoS policy and its bandwidth limit rule:

openstack network gos policy create bw-limiter

openstack network gos rule create —--type bandwidth-limit --max-kbps 3000
.

——max—-burst-kbits 2400 --egress bw-limiter

Note: The QoS implementation requires a burst value to ensure proper behavior of bandwidth limit rules
in the Open vSwitch and Linux bridge agents. Configuring the proper burst value is very important. If the
burst value is set too low, bandwidth usage will be throttled even with a proper bandwidth limit setting.
This issue is discussed in various documentation sources, for example in Junipers documentation. For
TCP traffic it is recommended to set burst value as 80% of desired bandwidth limit value. For example,
if the bandwidth limit is set to 1000kbps then enough burst value will be 800kbit. If the configured burst
value is too low, achieved bandwidth limit will be lower than expected. If the configured burst value is
too high, too few packets could be limited and achieved bandwidth limit would be higher than expected.
If you do not provide a value, it defaults to 80% of the bandwidth limit which works for typical TCP
traffic.

Second, associate the created policy with an existing neutron port. In order to do this, user extracts
the port id to be associated to the already created policy. In the next example, we will assign the
bw-limiter policy to the VM with IP address 192.0.2.1.

264 Chapter 8. OpenStack Networking Guide

http://www.juniper.net/documentation/en_US/junos12.3/topics/concept/policer-mx-m120-m320-burstsize-determining.html

Neutron Documentation, Release 17.4.2.dev115

openstack port list

openstack port set --gos-policy bw-limiter
88101e57-76fa-4d12-b0e0-4£fc7634b874a

In order to detach a port from the QoS policy, simply update again the port configuration.

openstack port unset —--gos-policy 88101e57-76fa-4d12-b0e0-4£fc7634b874a

Ports can be created with a policy attached to them too.

openstack port create —--gos-policy bw-limiter —--network private portl

(continues on next page)

8.2. Configuration 265

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

You can attach networks to a QoS policy. The meaning of this is that any compute port connected to
the network will use the network policy by default unless the port has a specific policy attached to it.
Internal network owned ports like DHCP and internal router ports are excluded from network policy
application.

In order to attach a QoS policy to a network, update an existing network, or initially create the network
attached to the policy.

openstack network set —-—-gos-policy bw-limiter private

The created policy can be associated with an existing floating IP. In order to do this, user extracts the

266 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

floating IP id to be associated to the already created policy. In the next example, we will assign the
bw-limiter policy to the floating IP address 172.16.100.18.

openstack floating ip list

openstack floating ip set —-—-gos—-policy bw-limiter d0ed7491-3eb7-4c4df-
—a0f0-df04£f10a067c

In order to detach a floating IP from the QoS policy, simply update the floating IP configuration.

openstack floating ip set —--no-gos-policy d0ed7491-3eb7-4c4f-al0f0-
—df04£f10a067c

Or use the unset action.

openstack floating ip unset —--gos-policy d0ed7491-3eb7-4c4f-al0f0-
—df04£10a067c

Floating IPs can be created with a policy attached to them too.

openstack floating ip create —--gos-policy bw-limiter public

The QoS bandwidth limit rules attached to a floating IP will become active when you associate the
latter with a port. For example, to associate the previously created floating IP 172.16.100.12 to the

8.2. Configuration 267

Neutron Documentation, Release 17.4.2.dev115

instance port with uuid a7£25e73-4288-4a16-93b9-b71e6£d00862 and fixed [P 192.168.
222.5:

openstack floating ip set ——-port a7£25e73-4288-4al6-93b9-b71e6£d400862
OeeblfB8a-de96-4cd9-a0f6-3£535c409558

Note: The QoS policy attached to a floating IP is not applied to a port, it is applied to an associated
floating IP only. Thus the ID of QoS policy attached to a floating IP will not be visible in a ports
gos_policy_id field after asscoating a floating IP to the port. It is only visible in the floating IP
attributes.

Note: For now, the L3 agent floating IP QoS extension only supports bandwidth_limit rules.
Other rule types (like DSCP marking) will be silently ignored for floating IPs. A QoS policy that does
not contain any bandwidth_1limit rules will have no effect when attached to a floating IP.

If floating IP is bound to a port, and both have binding QoS bandwidth rules, the L3 agent floating IP
QoS extension ignores the behavior of the port QoS, and installs the rules from the QoS policy associated
to the floating IP on the appropriate device in the router namespace.

Each project can have at most one default QoS policy, although it is not mandatory. If a default QoS
policy is defined, all new networks created within this project will have this policy assigned, as long as
no other QoS policy is explicitly attached during the creation process. If the default QoS policy is unset,
no change to existing networks will be made.

In order to set a QoS policy as default, the parameter ——default must be used. To unset this QoS
policy as default, the parameter ——no—-default must be used.

openstack network gos policy create --default bw-limiter

openstack network gqos policy set —--no-default bw-limiter

268 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Administrator enforcement

Administrators are able to enforce policies on project ports or networks. As long as the policy is not
shared, the project is not be able to detach any policy attached to a network or port.

If the policy is shared, the project is able to attach or detach such policy from its own ports and networks.

Rule modification

You can modify rules at runtime. Rule modifications will be propagated to any attached port.

openstack network gos rule set —--max—-kbps 2000 --max-burst-kbits 1600
——ingress bw-limiter 92ceb52f-170f-49d0-9528-976e2fee2d6f

openstack network gos rule show
bw-limiter 92ceb52f-170f-49d0-9528-976e2fee2d6f

Just like with bandwidth limiting, create a policy for DSCP marking rule:

openstack network gos policy create dscp-marking

You can create, update, list, delete, and show DSCP markings with the neutron client:

openstack network gos rule create —--type dscp-marking —--dscp-mark 26
dscp-marking

8.2. Configuration 269

Neutron Documentation, Release 17.4.2.dev115

openstack network gos rule set —--dscp-mark 22
dscp-marking 115e4£70-8034-4176-8fe9-2c47£8878a7d

openstack network gos rule list dscp-marking

openstack network gos rule show
dscp-marking 115e4£70-8034-4176-8fe9-2c47£8878a7d

openstack network gos rule delete
dscp-marking 115e4£70-8034-4176-8fe9-2c47£8878a7d

You can also include minimum bandwidth rules in your policy:

openstack network gos policy create bandwidth-control

openstack network gos rule create
—-—type minimum-bandwidth --min-kbps 1000 --egress bandwidth-control

A policy with a minimum bandwidth ensures best efforts are made to provide no less than the specified
bandwidth to each port on which the rule is applied. However, as this feature is not yet integrated with
the Compute scheduler, minimum bandwidth cannot be guaranteed.

It is also possible to combine several rules in one policy, as long as the type or direction of each rule

270 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

is different. For example, You can specify two bandwidth-1imit rules, one with egress and one
with ingress direction.

openstack network gos rule create —--type bandwidth-limit
——-max—kbps 50000 —--max-burst-kbits 50000 --egress bandwidth-control

openstack network gos rule create ——-type bandwidth-limit
——max—kbps 10000 —--max-burst-kbits 10000 —--ingress bandwidth-control

openstack network gos rule create —--type minimum-bandwidth

—-min-kbps 1000 --egress bandwidth-control

openstack network gos policy show bandwidth-control

—

(continues on next page)

8.2. Configuration 271

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

[

8.2.23 Quality of Service (QoS): Guaranteed Minimum Bandwidth

Most Networking Quality of Service (QoS) features are implemented solely by OpenStack Neutron and
they are already documented in the QoS configuration chapter of the Networking Guide. Some more
complex QoS features necessarily involve the scheduling of a cloud server, therefore their implementa-
tion is shared between OpenStack Nova, Neutron and Placement. As of the OpenStack Stein release the
Guaranteed Minimum Bandwidth feature is like the latter.

This Networking Guide chapter does not aim to replace Nova or Placement documentation in any way,
but it still hopes to give an overall OpenStack-level guide to understanding and configuring a deployment
to use the Guaranteed Minimum Bandwidth feature.

A guarantee of minimum available bandwidth can be enforced on two levels:

* Scheduling a server on a compute host where the bandwidth is available. To be more precise:
scheduling one or more ports of a server on a compute hosts physical network interfaces where
the bandwidth is available.

* Queueing network packets on a physical network interface to provide the guaranteed bandwidth.

272 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

In short the enforcement has two levels:

(server) placement and

data plane.

Since the data plane enforcement is already documented in the QoS chapter, here we only document the
placement-level enforcement.

Limitations

A pre-created port with a minimum-bandwidth rule must be passed when booting a server
(openstack server create). Passing a network with a minimum-bandwidth rule at boot
is not supported because of technical reasons (in this case the port is created too late for Neutron
to affect scheduling).

Bandwidth guarantees for ports can only be requested on networks backed by a physical network
(physnet).

In Stein there is no support for networks with multiple physnets. However some simpler multi-
segment networks are still supported:

— Networks with multiple segments all having the same physnet name.
— Networks with only one physnet segment (the other segments being tunneled segments).

If you mix ports with and without bandwidth guarantees on the same physical interface then the
ports without a guarantee may starve. Therefore mixing them is not recommended. Instead it is
recommended to separate them by Nova host aggregates.

Changing the guarantee of a QoS policy (adding/deleting a minimum_bandwidth rule, or
changing the min_kbps field of aminimum_bandwidth rule) is only possible while the pol-
icy is not in effect. That is ports of the QoS policy are not yet used by Nova. Requests to change
guarantees of in-use policies are rejected.

The first data-plane-only Guaranteed Minimum Bandwidth implementation (for SR-IOV egress
traffic) was released in the Newton release of Neutron. Because of the known lack of placement-
level enforcement it was marked as best effort (5th bullet point). Since placement-level enforce-
ment was not implemented bandwidth may have become overallocated and the system level re-
source inventory may have become inconsistent. Therefore for users of the data-plane-only im-
plementation a migration/healing process is mandatory (see section On Healing of Allocations)
to bring the system level resource inventory to a consistent state. Further operations that would
reintroduce inconsistency (e.g. migrating a server with minimum_bandwidth QoS rule, but no
resource allocation in Placement) are rejected now in a backward-incompatible way.

The Guaranteed Minimum Bandwidth feature is not complete in the Stein release. Not all Nova
server lifecycle operations can be executed on a server with bandwidth guarantees. Since Stein
(Nova API microversion 2.72+) you can boot and delete a server with a guarantee and detach a
port with a guarantee. Since Train you can also migrate and resize a server with a guarantee.
Support for further server move operations (for example evacuate, live-migrate and unshelve after
shelve-offload) is to be implemented later. For the definitive documentation please refer to the
Port with Resource Request chapter of the OpenStack Compute API Guide.

If an SR-IOV physical function is configured for use by the neutron-openvswitch-agent, and the
same physical functions virtual functions are configured for use by the neutron-sriov-agent then
the available bandwidth must be statically split between the corresponding resource providers by
administrative choice. For example a 10 Gbps SR-IOV capable physical NIC could be treated as

8.2. Configuration 273

https://docs.openstack.org/nova/victoria/admin/aggregates
https://docs.openstack.org/releasenotes/neutron/newton.html#other-notes
https://docs.openstack.org/api-guide/compute/port_with_resource_request.html

Neutron Documentation, Release 17.4.2.dev115

two independent NICs - a 5 Gbps NIC (technically the physical function of the NIC) added to
an Open vSwitch bridge, and another 5 Gbps NIC whose virtual functions can be handed out to
servers by neutron-sriov-agent.

Placement pre-requisites

Placement must support microversion 1.29. This was first released in Rocky.

Nova pre-requisites

Nova must support microversion 2.72. This was first released in Stein.

Not all Nova virt drivers are supported, please refer to the Virt Driver Support section of the Nova Admin
Guide.

Neutron pre-requisites

Neutron must support the following API extensions:
* agent-resources—-synced
* port—resource—-request
* gos—-bw-minimum-ingress

These were all first released in Stein.

Supported drivers and agents

In release Stein the following agent-based ML2 mechanism drivers are supported:
* Open vSwitch (openvswitch) vnic_types: normal, direct

* SR-IOV (sriovnicswitch) vnic_types: direct, macvtap

neutron-server config

The placement service plugin synchronizes the agents resource provider information from neutron-
server to Placement.

Since neutron-server talks to Placement you need to configure how neutron-server should find Placement
and authenticate to it.

/etc/neutron/neutron.conf (on controller nodes):

[DEFAULT]

[Placement]

(continues on next page)

274 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/placement/latest/placement-api-microversion-history.html#support-allocation-candidates-with-nested-resource-providers
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#maximum-in-stein
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html#virt-driver-support
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html#virt-driver-support

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

If a vnic_type is supported by default by multiple ML2 mechanism drivers (e.g. vhic_type=direct
by both openvswitch and sriovnicswitch) and multiple agents resources are also meant to be
tracked by Placement, then the admin must decide which driver to take ports of that vnic_type by pro-
hibiting the vnic_type for the unwanted drivers. Use ovs_driver.vnic type prohibit_1list
in this case. Valid values are all the supported_vnic_types of the respective mechanism drivers.

/etc/neutron/plugins/ml2/ml2_conf.ini (on controller nodes):

[ovs_driver]

[sriov_driver]

neutron-openvswitch-agent config

Set the agent configuration as the authentic source of the resources available. Set it on a per-bridge basis
by ovs. resource_provider_bandwidths. The formatis: bridge:egress:ingress, ..
. You may set only one direction and omit the other.

Note: egress/ ingress is meant from the perspective of a cloud server. That is egress = cloud
server upload, ingress = download.

Egress and ingress available bandwidth values are in kilobit/sec (kbps).

If desired, resource provider inventory fields can be tweaked on a per-agent basis by setting ovs.
resource_provider_inventory_defaults. Valid values are all the optional parameters of
the update resource provider inventory call.

/etc/neutron/plugins/ml2/ovs_agent.ini (on compute and network nodes):

[ovs]

8.2. Configuration 275

https://docs.openstack.org/neutron/latest/admin/config-ml2.html#supported-vnic-types
https://docs.openstack.org/api-ref/placement/?expanded=update-resource-provider-inventory-detail#update-resource-provider-inventory
https://docs.openstack.org/api-ref/placement/?expanded=update-resource-provider-inventory-detail#update-resource-provider-inventory

Neutron Documentation, Release 17.4.2.dev115

neutron-sriov-agent config

The configuration of neutron-sriov-agent is analog to that of neutron-openvswitch-agent. However look
out for:

* The different .ini section names as you can see below.
* That neutron-sriov-agent allows a physnet to be backed by multiple physical devices.

* Of course refer to SR-IOV physical functions instead of bridges in sriov _nic.
resource provider. _bandwidths.

/etc/neutron/plugins/ml2/sriov_agent.ini (on compute nodes):

Propagation of resource information

The flow of information is different for available and used resources.

The authentic source of available resources is neutron agent configuration - where the resources actually
exist, as described in the agent configuration sections above. This information is propagated in the
following chain: neutron-12-agent -> neutron-server -> Placement.

From neutron agent to server the information is included in the configurations field of the agent
heartbeat message sent on the message queue periodically.

as admin
openstack network agent list —--agent-type open-vswitch --host devstackO

output shortened and pretty printed

note: on the wire, but in the cli

openstack network agent show —-f value -c configuration 5e57b85f-b017-
—419a-8745-9c406e149f9%e

276 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Re-reading the resource related subset of configuration on STGHUP is not implemented. The agent must
be restarted to pick up and send changed configuration.

Neutron-server propagates the information further to Placement for the resources of each agent via
Placements HTTP REST API. To avoid overloading Placement this synchronization generally does not
happen on every received heartbeat message. Instead the re-synchronization of the resources of one
agent is triggered by:

* The creation of a network agent record (as queried by openstack network agent list).
Please note that deleting an agent record and letting the next heartbeat to re-create it can be used
to trigger synchronization without restarting an agent.

* The restart of that agent (technically start_f1lag being present in the heartbeat message).
Both of these can be used by an admin to force a re-sync if needed.

The success of a synchronization attempt from neutron-server to Placement is persisted into the relevant
agents resources_synced attribute. For example:

as admin
openstack network agent show —-f value -c resources_synced 5e57b85f-b017-
—419a-8745-9c406e149f9%e

resources_synced may take the value True, False and None:
* None: No sync was attempted (normal for agents not reporting Placement-backed resources).
* True: The last sync attempt was completely successful.
* False: The last sync attempt was partially or utterly unsuccessful.

In case resources_synced is not True for an agent, neutron-server does try to re-sync on receiving
every heartbeat message from that agent. Therefore it should be able to recover from transient errors of
Neutron-Placement communication (e.g. Placement being started later than Neutron).

It is important to note that the restart of neutron-server does not trigger any kind of re-sync to Placement
(to avoid an update storm).

As mentioned before, the information flow for resources requested and (if proper) allocated is different.
It involves a conversation between Nova, Neutron and Placement.

1. Neutron exposes a ports resource needs in terms of resource classes and traits as the admin-only
resource_request attribute of that port.

2. Nova reads this and incorporates it as a numbered request group into the cloud servers overall
allocation candidate request to Placement.

3. Nova selects (schedules) and allocates one candidate returned by Placement.

4. Nova informs Neutron when binding the port of which physical network interface resource
provider had been selected for the ports resource request in the binding:profile.
allocation sub-attribute of that port.

For details please see slides 13-15 of a (pre-release) demo that was presented on the Berlin Summit in
November 2018.

8.2. Configuration 277

https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html#resource-group-policy
https://www.openstack.org/videos/summits/berlin-2018/guaranteed-minimum-bandwidth-feature-demo

Neutron Documentation, Release 17.4.2.dev115

Sample usage

Physnets and QoS policies (together with their rules) are usually pre-created by a cloud admin:

as admin

openstack network create netO
——provider-network-type wvlan
——provider-physical-network physnetO
—-—provider-segment 100

openstack subnet create subnetO
—--network netoO
——subnet-range 10.0.4.0/24

openstack network gos policy create policyO

openstack network gos rule create policy0
—-—type minimum-bandwidth
—-—min-kbps 1000000
—-—egress

openstack network gos rule create policy0
—-—type minimum-bandwidth
——min-kbps 1000000
—-—-ingress

Then a normal user can use the pre-created policy to create ports and boot servers with those ports:

as an unprivileged user

an ordinary soft-switched port: —--vnic-type normal is the default
openstack port create port-normal-gos

——network netO

——gos—-policy policyO

alternatively an SR-IOV port, unused in this example
openstack port create port-direct-gos

——network netO

—--vnic-type direct

——gos—-policy policyO

openstack server create server0
—-—flavor cirros256
—-—image cirros-0.5.1-x86_64-disk
——port port-normal-gos

278 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

On Healing of Allocations

Since Placement carries a global view of a cloud deployments resources (what is available, what is used)
it may in some conditions get out of sync with reality.

One important case is when the data-plane-only Minimum Guaranteed Bandwidth feature was used be-
fore Stein (first released in Newton). Since before Stein guarantees were not enforced during server
placement the available resources may have become overallocated without notice. In this case Place-
ments view and the reality of resource usage should be made consistent during/after an upgrade to Stein.

Another case stems from OpenStack not having distributed transactions to allocate resources provided
by multiple OpenStack components (here Nova and Neutron). There are known race conditions in which
Placements view may get out of sync with reality. The design knowingly minimizes the race condition
windows, but there are known problems:

* If a QoS policy is modified after Nova read a ports resource_request but before the port is
bound its state before the modification will be applied.

* If a bound port with a resource allocation is deleted. The ports allocation is leaked. https://bugs.
launchpad.net/nova/+bug/1820588

Note: Deleting a bound port has no known use case. Please consider detaching the interface first by
openstack server remove port instead.

Incorrect allocations may be fixed by:

* Moving the server, which will delete the wrong allocation and create the correct allocation as
soon as move operations are implemented (not in Stein unfortunately). Moving servers fixes local
overallocations.

* The need for an upgrade-helper allocation healing tool is being tracked in bug 1819923.

* Manually, by using openstack resource provider allocation set /delete.

Debugging

* Are all components running at least the Stein release?
* Is the placement service plugin enabled in neutron-server?
* Isresource_provider_bandwidths configured for the relevant neutron agent?

* Is resource_provider_bandwidths aligned with bridge_mappings or
physical_device_mappings?

* Was the agent restarted since changing the configuration file?

* Isresource_provider_bandwidths reaching neutron-server?

as admin
openstack network agent show ... grep configurations

Please find an example in section Propagation of resource information.

* Did neutron-server successfully sync to Placement?

8.2. Configuration 279

https://bugs.launchpad.net/nova/+bug/1820588
https://bugs.launchpad.net/nova/+bug/1820588
https://bugs.launchpad.net/nova/+bug/1819923
https://docs.openstack.org/osc-placement/latest/cli/index.html#resource-provider-allocation-set
https://docs.openstack.org/osc-placement/latest/cli/index.html#resource-provider-allocation-delete

Neutron Documentation, Release 17.4.2.dev115

as admin
openstack network agent show ... grep resources_synced

Please find an example in section Propagation of resource information.

* Is the resource provider tree correct? Is the root a compute host? One level below the agents?
Two levels below the physical network interfaces?

openstack --os-placement-api-version 1.17 resource provider list

!

!

{

!

)

)

!

i)

* Does Placement have the expected traits?

as admin
openstack —--os-placement-api-version 1.17 trait list awk
N sort

* Do the physical network interface resource providers have the proper trait associations and inven-
tories?

as admin

openstack --os-placement-api-version 1.17 resource provider trait list
—RP-UUID
openstack —--os-placement-api-version 1.17 resource provider inventory,,

—1list RP-UUID

280 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

* Does the QoS policy have a minimum-bandwidth rule?
* Does the port have the proper policy?

* Does the port have a resource_request?

as admin
openstack port show port-normal-gos grep resource_request

* Was the server booted with a port (as opposed to a network)?

¢ Did nova allocate resources for the server in Placement?

as admin
openstack —--os-placement-api-version 1.17 resource provider allocation
—show SERVER-UUID

* Does the allocation have a part on the expected physical network interface resource provider?

as admin
openstack --os-placement-api-version 1.17 resource provider show —-
—allocations RP-UUID

* Did placement manage to produce an allocation candidate list to nova during scheduling?
* Did nova manage to schedule the server?

* Did nova tell neutron which physical network interface resource provider was allocated to satisfy
the bandwidth request?

as admin
openstack port show port-normal-gos grep binding.profile.xallocation

* Did neutron manage to bind the port?

Links

* Pre-release feature demo presented on the Berlin Summit in November 2018
* Nova documentation on using a port with resource_request
— API Guide
— Admin Guide
* Neutron spec: QoS minimum bandwidth allocation in Placement API
— on specs.openstack.org
— on review.opendev.org
* Nova spec: Network Bandwidth resource provider
— on specs.openstack.org
— on review.opendev.org
» Relevant OpenStack Networking API references

— https://docs.openstack.org/api-ref/network/v2/#agent-resources-synced-extension

8.2. Configuration 281

https://www.openstack.org/videos/summits/berlin-2018/guaranteed-minimum-bandwidth-feature-demo
https://docs.openstack.org/api-guide/compute/port_with_resource_request.html
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html
https://specs.openstack.org/openstack/neutron-specs/specs/rocky/minimum-bandwidth-allocation-placement-api.html
https://review.opendev.org/508149
https://specs.openstack.org/openstack/nova-specs/specs/stein/approved/bandwidth-resource-provider.html
https://review.opendev.org/502306
https://docs.openstack.org/api-ref/network/v2/#agent-resources-synced-extension

Neutron Documentation, Release 17.4.2.dev115

— https://docs.openstack.org/api-ref/network/v2/#port-resource-request

— https://docs.openstack.org/api-ref/network/v2/#qos-minimum-bandwidth-rules
* Microversion histories

— Compute 2.72

— Placement 1.29
* Implementation

— on review.opendev.org
* Known Bugs

— Missing tool to heal allocations

— Bandwidth resource is leaked

8.2.24 Role-Based Access Control (RBAC)

The Role-Based Access Control (RBAC) policy framework enables both operators and users to grant
access to resources for specific projects.

Supported objects for sharing with specific projects

Currently, the access that can be granted using this feature is supported by:
* Regular port creation permissions on networks (since Liberty).
* Binding QoS policies permissions to networks or ports (since Mitaka).
* Attaching router gateways to networks (since Mitaka).
* Binding security groups to ports (since Stein).
* Assigning address scopes to subnet pools (since Ussuri).

* Assigning subnet pools to subnets (since Ussuri).

Sharing an object with specific projects

Sharing an object with a specific project is accomplished by creating a policy entry that permits the
target project the access_as_shared action on that object.

Sharing a network with specific projects

Create a network to share:

openstack network create secret_network

(continues on next page)

282 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/api-ref/network/v2/#port-resource-request
https://docs.openstack.org/api-ref/network/v2/#qos-minimum-bandwidth-rules
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#maximum-in-stein
https://docs.openstack.org/placement/latest/placement-api-microversion-history.html#support-allocation-candidates-with-nested-resource-providers
https://review.opendev.org/#/q/topic:minimum-bandwidth-allocation-placement-api+OR+topic:bp/bandwidth-resource-provider
https://bugs.launchpad.net/nova/+bug/1819923
https://bugs.launchpad.net/nova/+bug/1820588

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Create the policy entry using the openstack network rbac create command (in this example,
the ID of the project we want to share with is b87b2fc13e0248a4a031d38e06dc191d):

openstack network rbac create —--target-project
b87b2fcl3e0248a4a031d38e06dcl191d ——action access_as_shared
—-—type network £55961b9-3eb8-42eb-ac96-b97038b568de

The target-project parameter specifies the project that requires access to the network. The
action parameter specifies what the project is allowed to do. The type parameter says that the
target object is a network. The final parameter is the ID of the network we are granting access to.

Project b87b2fc13e0248a4a031d38e06dc191d will now be able to see the network when run-
ning openstack network list and openstack network show and will also be able to cre-
ate ports on that network. No other users (other than admins and the owner) will be able to see the
network.

Note: Subnets inherit the RBAC policy entries of their network.

8.2. Configuration 283

Neutron Documentation, Release 17.4.2.dev115

To remove access for that project, delete the policy that allows it using the openstack network
rbac delete command:

openstack network rbac delete £93efdbf-fle0-41d2-b093-8328959d469%e

If that project has ports on the network, the server will prevent the policy from being deleted until the
ports have been deleted:

openstack network rbac delete £93efdbf-f1le0-41d2-b093-8328959d469%e

This process can be repeated any number of times to share a network with an arbitrary number of
projects.

Sharing a QoS policy with specific projects

Create a QoS policy to share:

openstack network gos policy create secret_policy

Create the RBAC policy entry using the openstack network rbac create command (in this
example, the ID of the project we want to share withis be 98082£8fdf46b696e9e01lcebc33£d9):

openstack network rbac create —--target-project
be98b82f8fdf46b696e9e0lcebec33fd9 ——action access_as_shared
-—type gos_policy 1£730d69-1c45-4ade-a8f2-89070ac4f046

The target—project parameter specifies the project that requires access to the QoS policy. The
action parameter specifies what the project is allowed to do. The t ype parameter says that the target
object is a QoS policy. The final parameter is the ID of the QoS policy we are granting access to.

284 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Project be98b82f8fdf46b696e9e0lcebc33£fd9 will now be able to see the QoS policy
when running openstack network qos policy list and openstack network gos
policy show and will also be able to bind it to its ports or networks. No other users (other than
admins and the owner) will be able to see the QoS policy.

To remove access for that project, delete the RBAC policy that allows it using the openstack
network rbac delete command:

openstack network rbac delete 8828e38d-a0df-4c78-963b-e5f215d3d550

If that project has ports or networks with the QoS policy applied to them, the server will not delete the
RBAC policy until the QoS policy is no longer in use:

openstack network rbac delete 8828e38d-a0df-4c78-963b-e5£215d3d550

This process can be repeated any number of times to share a qos-policy with an arbitrary number of
projects.

Sharing a security group with specific projects

Create a security group to share:

openstack security group create my_security_group

Create the RBAC policy entry using the openstack network rbac create command (in this
example, the ID of the project we want to share withis 32016615de5d43bb88de99e7f2e26ale):

openstack network rbac create —--target-project
32016615de5d43bb88de99%e7f2e26ale ——action access_as_shared
—-—type security_group 5ba835b7-22b0-4beb6-bdbe-e0722d1b5£f24

(continues on next page)

8.2. Configuration 285

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

The target—project parameter specifies the project that requires access to the security group. The
action parameter specifies what the project is allowed to do. The t ype parameter says that the target
object is a security group. The final parameter is the ID of the security group we are granting access to.

Project 32016615de5d43bb88de99e7f2e26ale will now be able to see the security group when
running openstack security group list and openstack security group show
and will also be able to bind it to its ports. No other users (other than admins and the owner) will
be able to see the security group.

To remove access for that project, delete the RBAC policy that allows it using the openstack
network rbac delete command:

openstack network rbac delete 8828e38d-a0df-4c78-963b-e5£215d3d550

If that project has ports with the security group applied to them, the server will not delete the RBAC
policy until the security group is no longer in use:

openstack network rbac delete 8828e38d-a0df-4c78-963b-e5£215d3d550

This process can be repeated any number of times to share a security-group with an arbitrary number of
projects.

Sharing an address scope with specific projects

Create an address scope to share:

openstack address scope create my_address_scope

Create the RBAC policy entry using the openstack network rbac create command (in this
example, the ID of the project we want to share withis 32016615de5d43bb88de99e7f2e26ale):

openstack network rbac create —--target-project
32016615de5d43bb88de99%e7f2e26ale —-action access_as_shared
——type address_scope cl19cb654-3489-4160-9c82-8a3015483643

(continues on next page)

286 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

The target-project parameter specifies the project that requires access to the address scope. The
action parameter specifies what the project is allowed to do. The t ype parameter says that the target
object is an address scope. The final parameter is the ID of the address scope we are granting access to.

Project 32016615de5d43bb88de99e7£f2e26ale will now be able to see the address scope when
running openstack address scope list and openstack address scope show and
will also be able to assign it to its subnet pools. No other users (other than admins and the owner)
will be able to see the address scope.

To remove access for that project, delete the RBAC policy that allows it using the openstack
network rbac delete command:

openstack network rbac delete d54b1482-98c4-44aa-9115-ede80387£ffe0

If that project has subnet pools with the address scope applied to them, the server will not delete the
RBAC policy until the address scope is no longer in use:

openstack network rbac delete d54b1482-98c4-44aa-9115-ede80387£ffe0

This process can be repeated any number of times to share an address scope with an arbitrary number of
projects.

Sharing a subnet pool with specific projects

Create a subnet pool to share:

openstack subnet pool create my_subnetpool —--pool-prefix 203.0.113.0/24

(continues on next page)

8.2. Configuration 287

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Create the RBAC policy entry using the openstack network rbac create command (in this
example, the ID of the project we want to share withis 32016615de5d43bb88de99e7f2e26ale):

openstack network rbac create —--target-project
32016615de5d43bb88de99%e7f2e26ale —-action access_as_shared
——type subnetpool 11£79287-bcl7-46b2-bfd0-2562471eb631

The target—project parameter specifies the project that requires access to the subnet pool. The
action parameter specifies what the project is allowed to do. The t ype parameter says that the target
object is a subnet pool. The final parameter is the ID of the subnet pool we are granting access to.

Project 32016615de5d43bb88de99%e7f2e26ale will now be able to see the subnet pool when
running openstack subnet pool list and openstack subnet pool show and will
also be able to assign it to its subnets. No other users (other than admins and the owner) will be able to
see the subnet pool.

To remove access for that project, delete the RBAC policy that allows it using the openstack
network rbac delete command:

openstack network rbac delete d54b1482-98c4-44aa-9115-ede80387ffel

If that project has subnets with the subnet pool applied to them, the server will not delete the RBAC
policy until the subnet pool is no longer in use:

openstack network rbac delete d54b1482-98c4-44aa-9115-ede80387£ffe0

This process can be repeated any number of times to share a subnet pool with an arbitrary number of
projects.

288 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

How the shared flag relates to these entries

As introduced in other guide entries, neutron provides a means of making an object (address—-scope,
network, gos-policy, security—group, subnetpool) available to every project. This is
accomplished using the shared flag on the supported object:

openstack network create global_network —-share

This is the equivalent of creating a policy on the network that permits every project to perform the action
access_as_shared on that network. Neutron treats them as the same thing, so the policy entry for
that network should be visible using the openstack network rbac list command:

openstack network rbac list

—

(continues on next page)

8.2. Configuration 289

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

Use the openstack network rbac show command to see the details:

openstack network rbac show 27efbd79-£384-4d89-9dfc-6c4a606ceech

The output shows that the entry allows the action access_as_shared on object
84a7e627-573b-49da-af66-c%9a65244f3ce of type network to target_tenant *, which is a
wildcard that represents all projects.

Currently, the shared flag is just a mapping to the underlying RBAC policies for a network. Setting the
flag to True on a network creates a wildcard RBAC entry. Setting it to False removes the wildcard
entry.

When you run openstack network list or openstack network show, the shared flag
is calculated by the server based on the calling project and the RBAC entries for each network. For
QoS objects use openstack network gqos policy list or openstack network gos
policy show respectively. If there is a wildcard entry, the shared flag is always set to True.
If there are only entries that share with specific projects, only the projects the object is shared to will see
the flag as True and the rest will see the flag as False.

Allowing a network to be used as an external network

To make a network available as an external network for specific projects rather than all projects, use the
access_as_external action.

1. Create a network that you want to be available as an external network:

openstack network create secret_external_network

(continues on next page)

290 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

2. Create a policy entry using the openstack network rbac create com-
mand (in this example, the ID of the project we want to share with is
838030a7bf3c4d04b4b054c0£f0b2bl7c):

openstack network rbac create —--target-project
838030a7bf3c4d04b4b054c0f0b2bl7¢c ——action access_as_external
——type network 802d4e9e-4649-43e6-9ee2-8d052a880cfb

The target-project parameter specifies the project that requires access to the network. The
action parameter specifies what the project is allowed to do. The type parameter indicates that
the target object is a network. The final parameter is the ID of the network we are granting external
access to.

Now project 838030a7b£3c4d04b4b054c0£0b2bl7c is able to see the network when running
openstack network list and openstack network show and can attach router gateway
ports to that network. No other users (other than admins and the owner) are able to see the network.

To remove access for that project, delete the policy that allows it using the openstack network
rbac delete command:

openstack network rbac delete afddbb8d-b6f5-4a15-9817-5231434057be

If that project has router gateway ports attached to that network, the server prevents the policy from
being deleted until the ports have been deleted:

8.2. Configuration 291

Neutron Documentation, Release 17.4.2.dev115

openstack network rbac delete afddbSb8d-b6f5-4a15-9817-5231434057be

This process can be repeated any number of times to make a network available as external to an arbitrary
number of projects.

If a network is marked as external during creation, it now implicitly creates a wildcard RBAC policy
granting everyone access to preserve previous behavior before this feature was added.

openstack network create global_external_ network —--—-external

In the output above the standard router:external attribute is External as expected. Now a
wildcard policy is visible in the RBAC policy listings:

openstack network rbac list --long —-c¢ ID —-c Action

You can modify or delete this policy with the same constraints as any other RBAC
access_as_external policy.

292 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Preventing regular users from sharing objects with each other

The default policy. json file will not allow regular users to share objects with every other project
using a wildcard; however, it will allow them to share objects with specific project IDs.

If an operator wants to prevent normal users from doing this, the "create_rbac_policy": entry
inpolicy. json can be adjusted from "" to "rule:admin_only".

8.2.25 Routed provider networks

Note: Use of this feature requires the OpenStack client version 3.3 or newer.

Before routed provider networks, the Networking service could not present a multi-segment layer-3
network as a single entity. Thus, each operator typically chose one of the following architectures:

* Single large layer-2 network
* Multiple smaller layer-2 networks
Single large layer-2 networks become complex at scale and involve significant failure domains.

Multiple smaller layer-2 networks scale better and shrink failure domains, but leave network selection
to the user. Without additional information, users cannot easily differentiate these networks.

A routed provider network enables a single provider network to represent multiple layer-2 networks
(broadcast domains) or segments and enables the operator to present one network to users. However, the
particular IP addresses available to an instance depend on the segment of the network available on the
particular compute node. Neutron port could be associated with only one network segment, but there is
an exception for OVN distributed services like OVN Metadata.

Similar to conventional networking, layer-2 (switching) handles transit of traffic between ports on the
same segment and layer-3 (routing) handles transit of traffic between segments.

Each segment requires at least one subnet that explicitly belongs to that segment. The association be-
tween a segment and a subnet distinguishes a routed provider network from other types of networks.
The Networking service enforces that either zero or all subnets on a particular network associate with a
segment. For example, attempting to create a subnet without a segment on a network containing subnets
with segments generates an error.

The Networking service does not provide layer-3 services between segments. Instead, it relies on phys-
ical network infrastructure to route subnets. Thus, both the Networking service and physical network
infrastructure must contain configuration for routed provider networks, similar to conventional provider
networks. In the future, implementation of dynamic routing protocols may ease configuration of routed
networks.

8.2. Configuration 293

Neutron Documentation, Release 17.4.2.dev115

Prerequisites

Routed provider networks require additional prerequisites over conventional provider networks. We
recommend using the following procedure:

1.

Begin with segments. The Networking service defines a segment using the following components:
* Unique physical network name
* Segmentation type
* Segmentation ID

For example, providerl, VLAN, and 201 6. See the API reference for more information.

Within a network, use a unique physical network name for each segment which enables reuse of
the same segmentation details between subnets. For example, using the same VLAN ID across
all segments of a particular provider network. Similar to conventional provider networks, the
operator must provision the layer-2 physical network infrastructure accordingly.

Implement routing between segments.

The Networking service does not provision routing among segments. The operator must imple-
ment routing among segments of a provider network. Each subnet on a segment must contain the
gateway address of the router interface on that particular subnet. For example:

Segment | Version | Addresses Gateway
segmentl | 4 203.0.113.0/24 203.0.113.1
segmentl | 6 £d00:203:0:113::/64 | £d00:203:0:113::1
segment2 | 4 198.51.100.0/24 198.51.100.1
segment2 | 6 £d00:198:51:100::/64 | £d00:198:51:100::1

Map segments to compute nodes.

Routed provider networks imply that compute nodes reside on different segments. The operator
must ensure that every compute host that is supposed to participate in a router provider network
has direct connectivity to one of its segments.

Host Rack | Physical Network
compute0001 | rack 1 | segment 1
compute0002 | rack 1 | segment 1

compute0101 | rack 2 | segment 2
compute0102 | rack 2 | segment 2
compute0102 | rack 2 | segment 2

. Deploy DHCP agents.

Unlike conventional provider networks, a DHCP agent cannot support more than one segment
within a network. The operator must deploy at least one DHCP agent per segment. Consider de-
ploying DHCP agents on compute nodes containing the segments rather than one or more network
nodes to reduce node count.

294

Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/api-ref/network/v2/#segments

Neutron Documentation, Release 17.4.2.dev115

Host Rack | Physical Network
networkOO01 | rack 1 | segment 1
network0002 | rack 2 | segment 2

5. Configure communication of the Networking service with the Compute scheduler.

An instance with an interface with an IPv4 address in a routed provider network must be placed
by the Compute scheduler in a host that has access to a segment with available IPv4 addresses. To
make this possible, the Networking service communicates to the Compute scheduler the inventory
of IPv4 addresses associated with each segment of a routed provider network. The operator must
configure the authentication credentials that the Networking service will use to communicate with
the Compute schedulers placement API. Please see below an example configuration.

Note: Coordination between the Networking service and the Compute scheduler is not necessary
for IPv6 subnets as a consequence of their large address spaces.

Note: The coordination between the Networking service and the Compute scheduler requires the
following minimum API micro-versions.

* Compute service API: 2.41
* Placement API: 1.1

Example configuration

Controller node

1. Enable the segments service plug-in by appending segment s to the listof service_plugins
in the neutron. conf file on all nodes running the neut ron-server service:

2. Add a placement section to the neutron.conf file with authentication credentials for the
Compute service placement API:

3. Restart the neutron—-server service.

8.2. Configuration 295

Neutron Documentation, Release 17.4.2.dev115

Network or compute nodes

» Configure the layer-2 agent on each node to map one or more segments to the appropriate physical
network bridge or interface and restart the agent.

Create a routed provider network
The following steps create a routed provider network with two segments. Each segment contains one
IPv4 subnet and one IPv6 subnet.

1. Source the administrative project credentials.

2. Create a VLAN provider network which includes a default segment. In this example, the network
uses the provider1 physical network with VLAN ID 2016.

openstack network create --share —--provider-physical-network
—providerl
—-provider-network-type vlan —--provider-segment 2016 multisegmentl

3. Rename the default segment to segment1.

openstack network segment list —--network multisegmentl

openstack network segment set —--name segmentl 43e16869-ad31-48e4-
7ce—acfl7156709e18

(continues on next page)

296 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

|

Note: This command provides no output.

4. Create a second segment on the provider network. In this example, the segment uses the
provider2 physical network with VLAN ID 2017.

openstack network segment create --physical-network provider2
—-—network-type vlan --segment 2017 --network multisegmentl segment?2

5. Verify that the network contains the segment1 and segment 2 segments.

openstack network segment list —--network multisegmentl

6. Create subnets on the segment 1 segment. In this example, the IPv4 subnet uses 203.0.113.0/24
and the IPv6 subnet uses fd00:203:0:113::/64.

openstack subnet create

—-—-network multisegmentl --network-segment segmentl
——ip-version 4 —--subnet-range 203.0.113.0/24
multisegmentl-segmentl-v4

(continues on next page)

8.2. Configuration 297

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

openstack subnet create

—-—-network multisegmentl —--network-segment segmentl
-—ip-version 6 —-subnet-range £d00:203:0:113::/64
——ipv6-address-mode slaac multisegmentl-segmentl-vo6

Note: By default, IPv6 subnets on provider networks rely on physical network infrastructure for
stateless address autoconfiguration (SLAAC) and router advertisement.

7. Create subnets on the segment 2 segment. In this example, the IPv4 subnet uses 198.51.100.0/24
and the IPv6 subnet uses fd00:198:51:100::/64.

298 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

openstack subnet create

—-—-network multisegmentl —--network-segment segment2
——ip-version 4 —--subnet-range 198.51.100.0/24
multisegmentl-segment2-v4

openstack subnet create

—-—-network multisegmentl --network-segment segment?2
—-—-ip-version 6 —--subnet-range f£d00:198:51:100::/64
——ipv6-address-mode slaac multisegmentl-segment2-v6

o (continues on next page)

8.2. Configuration 299

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

l |

8. Verify that each IPv4 subnet associates with at least one DHCP agent.

openstack network agent list --agent-type dhcp —--network,,
—multisegmentl

9. Verify that inventories were created for each segment IPv4 subnet in the Compute service place-
ment API (for the sake of brevity, only one of the segments is shown in this example).

053b7925-9a89-4489-9992-e164c8cc8763
openstack resource provider inventory list
.
- o
o
N o

10. Verify that host aggregates were created for each segment in the Compute service (for the sake of
brevity, only one of the segments is shown in this example).

openstack aggregate list

11. Launch one or more instances. Each instance obtains IP addresses according to the segment it
uses on the particular compute node.

Note: If a fixed IP is specified by the user in the port create request, that particular IP is allocated
immediately to the port. However, creating a port and passing it to an instance yields a different

300 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

behavior than conventional networks. If the fixed IP is not specified on the port create request,
the Networking service defers assignment of IP addresses to the port until the particular compute
node becomes apparent. For example:

openstack port create ——network multisegmentl portl

Migrating non-routed networks to routed

Migration of existing non-routed networks is only possible if there is only one segment and one subnet
on the network. To migrate a candidate network, update the subnet and set id of the existing network
segment as segment_id.

Note: In the case where there are multiple subnets or segments it is not possible to safely migrate. The
reason for this is that in non-routed networks addresses from the subnets allocation pools are assigned
to ports without considering to which network segment the port is bound.

Example

The following steps migrate an existing non-routed network with one subnet and one segment to a routed
one.

1. Source the administrative project credentials.

2. Get the id of the current network segment on the network that is being migrated.

openstack network segment list —--network my_network

— (continues on next page)

8.2. Configuration 301

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

l |

3. Get the 1d or name of the current subnet on the network.

openstack subnet list —--network my_network

4. Verify the current segment_id of the subnet is None.

openstack subnet show my_subnet --c segment_id

5. Update the segment__1id of the subnet.

openstack subnet set —--network-segment 81e5453d-4c9f-43a5-8ddf-
—~feaf3937e8c7 my_subnet

6. Verify that the subnet is now associated with the desired network segment.

openstack subnet show my_subnet --c segment_id

8.2.26 Service function chaining

Service function chain (SFC) essentially refers to the software-defined networking (SDN) version of
policy-based routing (PBR). In many cases, SFC involves security, although it can include a variety of
other features.

Fundamentally, SFC routes packets through one or more service functions instead of conventional rout-
ing that routes packets using destination IP address. Service functions essentially emulate a series of
physical network devices with cables linking them together.

A basic example of SFC involves routing packets from one location to another through a firewall that
lacks a next hop IP address from a conventional routing perspective. A more complex example involves
an ordered series of service functions, each implemented using multiple instances (VMs). Packets must
flow through one instance and a hashing algorithm distributes flows across multiple instances at each
hop.

302 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

Architecture

All OpenStack Networking services and OpenStack Compute instances connect to a virtual network via
ports making it possible to create a traffic steering model for service chaining using only ports. Including
these ports in a port chain enables steering of traffic through one or more instances providing service
functions.

A port chain, or service function path, consists of the following:
* A set of ports that define the sequence of service functions.
* A set of flow classifiers that specify the classified traffic flows entering the chain.

If a service function involves a pair of ports, the first port acts as the ingress port of the service function
and the second port acts as the egress port. If both ports use the same value, they function as a single
virtual bidirectional port.

A port chain is a unidirectional service chain. The first port acts as the head of the service function chain
and the second port acts as the tail of the service function chain. A bidirectional service function chain
consists of two unidirectional port chains.

A flow classifier can only belong to one port chain to prevent ambiguity as to which chain should
handle packets in the flow. A check prevents such ambiguity. However, you can associate multiple flow
classifiers with a port chain because multiple flows can request the same service function path.

Currently, SFC lacks support for multi-project service functions.

The port chain plug-in supports backing service providers including the OVS driver and a variety of SDN
controller drivers. The common driver API enables different drivers to provide different implementations
for the service chain path rendering.

Neutron Server

Port Chain API

Port Chain Database

Driver Manager

Common Driver API

) Controller Controller
OVS Driver Driver 1 Driver 2
| | |
SDN SDN
OVS Agent || nirolier 1 || Controller 2
Por_t - Port Pair |1 Port Pair
Chain [port_pair_groups | Group | port_pairs
1 11
lﬁow_classifiers l ingress/
. egress
1-2
Flow Neutron
Classifier Port

See the networking-sfc documentation for more information.

8.2. Configuration 303

https://docs.openstack.org/networking-sfc/latest/

Neutron Documentation, Release 17.4.2.dev115

Resources

Port chain

* id - Port chain ID

* project_id - Project ID

* name - Readable name

* description - Readable description

* port_pair_groups - List of port pair group IDs

e flow_classifiers - List of flow classifier IDs

* chain_parameters - Dictionary of chain parameters

A port chain consists of a sequence of port pair groups. Each port pair group is a hop in the port chain.
A group of port pairs represents service functions providing equivalent functionality. For example, a
group of firewall service functions.

A flow classifier identifies a flow. A port chain can contain multiple flow classifiers. Omitting the flow
classifier effectively prevents steering of traffic through the port chain.

The chain_parameters attribute contains one or more parameters for the port chain. Currently, it
only supports a correlation parameter that defaults to mp1ls for consistency with Open vSwitch (OVS)
capabilities. Future values for the correlation parameter may include the network service header (NSH).

Port pair group

* id - Port pair group ID

* project_id - Project ID

* name - Readable name

* description - Readable description

* port_pairs - List of service function port pairs

A port pair group may contain one or more port pairs. Multiple port pairs enable load balanc-
ing/distribution over a set of functionally equivalent service functions.

Port pair

* id - Port pair ID

* project_id - Project ID

* name - Readable name

* description - Readable description
* ingress - Ingress port

* egress - Egress port

* service_function_parameters - Dictionary of service function parameters

304 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 17.4.2.dev115

A port pair represents a service function instance that includes an ingress and egress port. A service
function containing a bidirectional port uses the same ingress and egress port.

The service_function_parameters attribute includes one or more parameters for the service
function. Currently, it only supports a correlation parameter that determines association of a packet with
a chain. This parameter defaults to none for legacy service functions that lack support for correlation
such as the NSH. If set to none, the data plane implementation must provide service function proxy
functionality.

Flow classifier

* id - Flow classifier ID

* project_id - Project ID

* name - Readable name

* description - Readable description

* ethertype - Ethertype (IPv4/IPv6)

* protocol - IP protocol

* source_port_range_min - Minimum source protocol port

* source_port_range_max - Maximum source protocol port

* destination_port_range_min - Minimum destination protocol port
* destination_port_range_max - Maximum destination protocol port
* source_ip_prefix - Source IP address or prefix

* destination_ip_prefix - Destination IP address or prefix

* logical_source_port - Source port

* logical_destination_port - Destination port

* 17_parameters - Dictionary of L7 parameters

A combination of the source attributes defines the source of the flow. A combination of the destina-
tion attributes defines the destination of the flow. The 17_parameters attribute is a place holder
that may be used to support flow classification using layer 7 fields, such as a URL. If unspecified,
the logical_source_port and logical_destination_port attributes default to none, the
ethertype attribute defaults to IPv4, and all other attributes default to a wildcard value.

Operations

Create a port chain

The following example uses the openstack command-line interface (CLI) to create a port chain con-
sisting of three service function instances to handle HTTP (TCP) traffic flows from 192.0.2.11:1000 to
198.51.100.11:80.

¢ Instance 1

— Name: vml

8.2. Configuration 305

Neutron Documentation, Release 17.4.2.dev115

— Function: Firewall
— Port pair: [pl, p2]
* Instance 2
— Name: vm?2
— Function: Firewall
— Port pair: [p3, p4]
* Instance 3
— Name: vm3
— Function: Intrusion detection system (IDS)

— Port pair: [p35, p6]

Note: The example network net 1 must exist before creating ports on it.

1. Source the credentials of the project that owns the net 1 network.

2. Create ports on network net 1 and record the UUID values.

openstack port create pl —-—-network netl
openstack port create p2 —-—-network netl
openstack port create p3 —--network netl
openstack port create p4 —-—network netl
openstack port create p5 —-—-network netl
openstack port create p6 —--network netl

3. Launch service function instance vm1 using ports pl and p2, vm2 using ports p3 and p4, and
vm3 using ports p5 and p6.

openstack server create --nic port-id P1_ID --nic port-id P2_ID wvml
openstack server create —--nic port-id P3_ID --nic port-id P4_ID vm2
openstack server create --nic port-id P5_ID —--nic port-id P6_ID vm3

Replace P1_1ID,P2_1ID,P3_ID,P4_ID,P5_1ID, and P6_ID with the UUIDs of the respective
ports.

Note: This command requires additional options to successfully launch an instance. See the CLI
reference for more information.

Alternatively, you can launch each instance with one network interface and attach additional ports
later.

4. Create flow classifier FC1 that matches the appropriate packet headers.

openstack sfc flow classifier create
——description

——ethertype IPv4

-—-source—-ip-prefix 192.0.2.11/32
——destination—-ip-prefix 198.51.100.11/32

(continues on next page)

306 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/cli-reference/openstack.html
https://docs.openstack.org/cli-reference/openstack.html

Neutron Documentation, Release 17.4.2.dev115

(continued from previous page)

——protocol tcp
——source-port 1000:1000
—-—destination-port 80:80 FC1

Note: When using the (default) OVS driver, the ——1ogical-source-port parameter is also
required

5. Create port pair PP1 with ports p1 and p2, PP2 with ports p3 and p4, and PP 3 with ports p5
and p6.

openstack sfc port pair create
—-—description

—-—-ingress pl

—-—egress p2 PP1

openstack sfc port pair create
—-—description

—-—ingress p3

—-—egress p4 PP2

openstack sfc port pair create
——description

—-—ingress pb5

—-—egress p6 PP3

6. Create port pair group PPG1 with port pair PP1 and PP2 and PPG2 with port pair PP 3.

openstack sfc port pair group create
——port-pair PPl —-port-pair PP2 PPGl
openstack sfc port pair group create
——port-pair PP3 PPG2

Note: You canrepeat the ——port-pair option for multiple port pairs of functionally equivalent
service functions.

7. Create port chain PC1 with port pair groups PPG1 and PPG2 and flow classifier FC1.

openstack sfc port chain create
——port-pair-group PPGl —--port-pair-group PPG2
——flow-classifier FC1l PC1l

Note: You can repeat the ——port-pair—group option to specify additional port pair groups
in the port chain. A port chain must contain at least one port pair group.

You can repeat the ——flow—-classifier option to specify multiple flow classifiers for a port
chain. Each flow classifier identifies a flow.

8.2. Configuration 307

Neutron Documentation, Release 17.4.2.dev115

Update a port chain or port pair group

* Use the openstack sfc port chain set command to dynamically add or remove port
pair groups or flow classifiers on a port chain.

— For example, add port pair group PPG3 to port chain PC1:

openstack sfc port chain set

——port-pair-group PPGl —--port-pair-group PPG2 —--port-pair-group,,
—~PPG3

——flow-classifier FC1l PCl

— For example, add flow classifier FC2 to port chain PC1:

openstack sfc port chain set
—-—-port-pair-group PPGl —--port-pair-group PPG2
——flow-classifier FCl --flow-classifier FC2 PCl

SEC steers traffic matching the additional flow classifier to the port pair groups in the port
chain.

* Use the openstack sfc port pair group set command to perform dynamic scale-
out or scale-in operations by adding or removing port pairs on a port pair group.

openstack sfc port pair group set
—-—-port-pair PPl —--port-pair PP2 --port-pair PP4 PPGl

SFC performs load balancing/distribution over the additional service functions in the port pair
group.

8.2.27 SR-IOV

The purpose of this page is to describe how to enable SR-IOV functionality available in OpenStack (us-
ing OpenStack Networking). This functionality was first introduced in the OpenStack Juno release. This
page intends to serve as a guide for how to configure O