
Nova Documentation
Release 22.4.1.dev41

OpenStack Foundation

Jan 22, 2025

CONTENTS

1 What is nova? 1

2 For End Users 2
2.1 User Documentation . 2

2.1.1 End user guide . 2
2.1.1.1 Availability zones . 2
2.1.1.2 Launch instances . 3
2.1.1.3 Metadata . 18
2.1.1.4 Manage IP addresses . 26
2.1.1.5 Image Signature Certificate Validation 30
2.1.1.6 Resize an instance . 43
2.1.1.7 Reboot an instance . 44
2.1.1.8 Rescue an instance . 44
2.1.1.9 Block Device Mapping in Nova . 46
2.1.1.10 REST API Version History . 49

2.1.2 Architecture Overview . 70
2.1.3 Deployment Considerations . 70
2.1.4 Maintenance . 71

2.2 Tools for using Nova . 71
2.3 Writing to the API . 71

3 For Operators 73
3.1 Architecture Overview . 73

3.1.1 Nova System Architecture . 73
3.1.1.1 Components . 73

3.2 Installation . 75
3.2.1 Compute service . 75

3.2.1.1 Overview . 75
3.2.1.2 Compute service overview . 79
3.2.1.3 Install and configure controller node 81
3.2.1.4 Install and configure a compute node 99
3.2.1.5 Verify operation . 112

3.3 Deployment Considerations . 114
3.3.1 Feature Classification . 115

3.3.1.1 Aims . 115
3.3.1.2 General Purpose Cloud Features . 115
3.3.1.3 NFV Cloud Features . 125
3.3.1.4 HPC Cloud Features . 126
3.3.1.5 Notes on Concepts . 128

i

3.3.2 Feature Support Matrix . 129
3.3.3 Cells Layout (v2) . 157

3.3.3.1 Concepts . 157
3.3.3.2 Service Layout . 158

3.3.4 Using WSGI with Nova . 162
3.4 Maintenance . 163

3.4.1 Compute . 163
3.4.1.1 Overview . 163
3.4.1.2 Advanced configuration . 204
3.4.1.3 Additional guides . 240

3.4.2 Flavors . 381
3.4.2.1 Overview . 381

3.4.3 Upgrades . 394
3.4.3.1 Minimal Downtime Upgrade Process 394
3.4.3.2 Current Database Upgrade Types . 396
3.4.3.3 Concepts . 398
3.4.3.4 Testing . 399

3.4.4 Quotas . 399
3.4.4.1 Types of quota . 399
3.4.4.2 Usage . 400

3.4.5 Filter Scheduler . 403
3.4.5.1 Filtering . 403
3.4.5.2 Configuring Filters . 408
3.4.5.3 Writing Your Own Filter . 408
3.4.5.4 Weights . 410

3.5 Reference Material . 413
3.5.1 Command-line Utilities . 413

3.5.1.1 Nova Management Commands . 414
3.5.1.2 Service Daemons . 427
3.5.1.3 WSGI Services . 433
3.5.1.4 Additional Tools . 435

3.5.2 Configuration Guide . 436
3.5.2.1 Configuration . 436
3.5.2.2 Policy . 659
3.5.2.3 Extra Specs . 713

4 For Contributors 760
4.1 Contributor Documentation . 760

4.1.1 Basic Information . 760
4.1.1.1 So You Want to Contribute . 760

4.1.2 Getting Started . 761
4.1.2.1 How to get (more) involved with Nova 762
4.1.2.2 Development Quickstart . 767

4.1.3 Nova Process . 770
4.1.3.1 Scope of the Nova project . 771
4.1.3.2 Development policies . 775
4.1.3.3 Nova team process . 778
4.1.3.4 Blueprints, Specs and Priorities . 793
4.1.3.5 Chronological PTL guide . 794

4.1.4 Reviewing . 799
4.1.4.1 Release Notes . 799

ii

4.1.4.2 Code Review Guide for Nova . 801
4.1.4.3 Internationalization . 805
4.1.4.4 Documentation Guidelines . 806

4.1.5 Testing . 807
4.1.5.1 Test Strategy . 808
4.1.5.2 Testing NUMA related hardware setup with libvirt 809
4.1.5.3 Testing Serial Console . 823
4.1.5.4 Testing Zero Downtime Upgrade Process 825
4.1.5.5 Testing Down Cells . 828
4.1.5.6 Profiling With Eventlet . 834

4.1.6 The Nova API . 840
4.1.6.1 Extending the API . 840
4.1.6.2 Adding a Method to the OpenStack API 845
4.1.6.3 API Microversions . 846
4.1.6.4 API reference guideline . 853

4.1.7 Nova Major Subsystems . 860
4.1.7.1 Evacuate vs Rebuild . 861
4.1.7.2 Resize and cold migrate . 862

4.2 Technical Reference Deep Dives . 865
4.2.1 Internals . 865

4.2.1.1 AMQP and Nova . 865
4.2.1.2 Scheduling . 871
4.2.1.3 Scheduler hints versus flavor extra specs 874
4.2.1.4 Live Migration . 877
4.2.1.5 Services, Managers and Drivers . 877
4.2.1.6 Virtual Machine States and Transitions 881
4.2.1.7 Threading model . 884
4.2.1.8 Notifications in Nova . 885
4.2.1.9 ComputeDriver.update_provider_tree 895
4.2.1.10 Upgrade checks . 898
4.2.1.11 Conductor as a place for orchestrating tasks 903
4.2.1.12 Filtering hosts by isolating aggregates 904

4.2.2 Debugging . 905
4.2.2.1 Guru Meditation Reports . 905

4.2.3 Forward Looking Plans . 906
4.2.3.1 Cells . 907
4.2.3.2 REST API Policy Enforcement . 918
4.2.3.3 Nova Stable REST API . 921
4.2.3.4 Scheduler Evolution . 923

4.2.4 Additional Information . 925
4.2.4.1 Glossary . 925

Index 927

iii

CHAPTER

ONE

WHAT IS NOVA?

Nova is the OpenStack project that provides a way to provision compute instances (aka virtual servers).
Nova supports creating virtual machines, baremetal servers (through the use of ironic), and has limited
support for system containers. Nova runs as a set of daemons on top of existing Linux servers to provide
that service.

It requires the following additional OpenStack services for basic function:

• Keystone: This provides identity and authentication for all OpenStack services.

• Glance: This provides the compute image repository. All compute instances launch from glance
images.

• Neutron: This is responsible for provisioning the virtual or physical networks that compute in-
stances connect to on boot.

• Placement: This is responsible for tracking inventory of resources available in a cloud and assist-
ing in choosing which provider of those resources will be used when creating a virtual machine.

It can also integrate with other services to include: persistent block storage, encrypted disks, and
baremetal compute instances.

1

https://docs.openstack.org/keystone/victoria/
https://docs.openstack.org/glance/victoria/
https://docs.openstack.org/neutron/victoria/
https://docs.openstack.org/placement/victoria/

CHAPTER

TWO

FOR END USERS

As an end user of nova, youll use nova to create and manage servers with either tools or the API directly.

2.1 User Documentation

2.1.1 End user guide

2.1.1.1 Availability zones

Availability Zones are an end-user visible logical abstraction for partitioning a cloud without knowing
the physical infrastructure. Availability zones can be used to partition a cloud on arbitrary factors, such
as location (country, datacenter, rack), network layout and/or power source. Because of the flexibility,
the names and purposes of availability zones can vary massively between clouds.

In addition, other services, such as the networking service and the block storage service, also provide
an availability zone feature. However, the implementation of these features differs vastly between these
different services. Consult the documentation for these other services for more information on their
implementation of this feature.

Usage

Availability zones can only be created and configured by an admin but they can be used by an end-user
when creating an instance. For example:

$ openstack server create --availability-zone ZONE ... SERVER

It is also possible to specify a destination host and/or node using this command; however, this is an
admin-only operation by default. For more information, see Using availability zones to select hosts.

2

https://docs.openstack.org/neutron/victoria/
https://docs.openstack.org/cinder/victoria/

Nova Documentation, Release 22.4.1.dev41

2.1.1.2 Launch instances

Instances are virtual machines that run inside the cloud.

Before you can launch an instance, gather the following parameters:

• The instance source can be an image, snapshot, or block storage volume that contains an image
or snapshot.

• A name for your instance.

• The flavor for your instance, which defines the compute, memory, and storage capacity of nova
computing instances. A flavor is an available hardware configuration for a server. It defines the
size of a virtual server that can be launched.

• Any user data files. A user data file is a special key in the metadata service that holds a file that
cloud-aware applications in the guest instance can access. For example, one application that uses
user data is the cloud-init system, which is an open-source package from Ubuntu that is available
on various Linux distributions and that handles early initialization of a cloud instance.

• Access and security credentials, which include one or both of the following credentials:

– A key pair for your instance, which are SSH credentials that are injected into images when
they are launched. For the key pair to be successfully injected, the image must contain the
cloud-init package. Create at least one key pair for each project. If you already have
generated a key pair with an external tool, you can import it into OpenStack. You can use
the key pair for multiple instances that belong to that project.

– A security group that defines which incoming network traffic is forwarded to instances.
Security groups hold a set of firewall policies, known as security group rules.

• If needed, you can assign a floating (public) IP address to a running instance to make it accessible
from outside the cloud. See Manage IP addresses.

• You can also attach a block storage device, or volume, for persistent storage.

Note: Instances that use the default security group cannot, by default, be accessed from any IP address
outside of the cloud. If you want those IP addresses to access the instances, you must modify the rules
for the default security group.

After you gather the parameters that you need to launch an instance, you can launch it from an image
or a volume. You can launch an instance directly from one of the available OpenStack images or from
an image that you have copied to a persistent volume. The OpenStack Image service provides a pool of
images that are accessible to members of different projects.

Gather parameters to launch an instance

Before you begin, source the OpenStack RC file.

1. Create a flavor.

Creating a flavor is typically only available to administrators of a cloud because this has implica-
tions for scheduling efficiently in the cloud.

2.1. User Documentation 3

https://help.ubuntu.com/community/CloudInit

Nova Documentation, Release 22.4.1.dev41

$ openstack flavor create --ram 512 --disk 1 --vcpus 1 m1.tiny

2. List the available flavors.

$ openstack flavor list

Note the ID of the flavor that you want to use for your instance:

+-----+-----------+-------+------+-----------+-------+-----------+
| ID | Name | RAM | Disk | Ephemeral | VCPUs | Is_Public |
+-----+-----------+-------+------+-----------+-------+-----------+
1	m1.tiny	512	1	0	1	True
2	m1.small	2048	20	0	1	True
3	m1.medium	4096	40	0	2	True
4	m1.large	8192	80	0	4	True
5	m1.xlarge	16384	160	0	8	True
+-----+-----------+-------+------+-----------+-------+-----------+

3. List the available images.

$ openstack image list

Note the ID of the image from which you want to boot your instance:

+--------------------------------------+------------------------------
↪→---+--------+
| ID | Name
↪→ | Status |
+--------------------------------------+------------------------------
↪→---+--------+
| 397e713c-b95b-4186-ad46-6126863ea0a9 | cirros-0.3.5-x86_64-uec
↪→ | active |
| df430cc2-3406-4061-b635-a51c16e488ac | cirros-0.3.5-x86_64-uec-
↪→kernel | active |
| 3cf852bd-2332-48f4-9ae4-7d926d50945e | cirros-0.3.5-x86_64-uec-
↪→ramdisk | active |
+--------------------------------------+------------------------------
↪→---+--------+

You can also filter the image list by using grep to find a specific image, as follows:

$ openstack image list | grep 'kernel'

| df430cc2-3406-4061-b635-a51c16e488ac | cirros-0.3.5-x86_64-uec-
↪→kernel | active |

4. List the available security groups.

$ openstack security group list

Note: If you are an admin user, this command will list groups for all tenants.

Note the ID of the security group that you want to use for your instance:

2.1. User Documentation 4

Nova Documentation, Release 22.4.1.dev41

+--------------------------------------+---------+--------------------
↪→----+----------------------------------+
| ID | Name | Description
↪→ | Project |
+--------------------------------------+---------+--------------------
↪→----+----------------------------------+
| b0d78827-0981-45ef-8561-93aee39bbd9f | default | Default security
↪→group | 5669caad86a04256994cdf755df4d3c1 |
| ec02e79e-83e1-48a5-86ad-14ab9a8c375f | default | Default security
↪→group | 1eaaf6ede7a24e78859591444abf314a |
+--------------------------------------+---------+--------------------
↪→----+----------------------------------+

If you have not created any security groups, you can assign the instance to only the default security
group.

You can view rules for a specified security group:

$ openstack security group rule list default

5. List the available key pairs, and note the key pair name that you use for SSH access.

$ openstack keypair list

Launch an instance

You can launch an instance from various sources.

Launch an instance from an image

Follow the steps below to launch an instance from an image.

1. After you gather required parameters, run the following command to launch an instance. Specify
the server name, flavor ID, and image ID.

$ openstack server create --flavor FLAVOR_ID --image IMAGE_ID --key-
↪→name KEY_NAME \
--user-data USER_DATA_FILE --security-group SEC_GROUP_NAME --

↪→property KEY=VALUE \
INSTANCE_NAME

Optionally, you can provide a key name for access control and a security group for security. You
can also include metadata key and value pairs. For example, you can add a description for your
server by providing the --property description="My Server" parameter.

You can pass user data in a local file at instance launch by using the --user-data
USER-DATA-FILE parameter.

Important: If you boot an instance with an INSTANCE_NAME greater than 63 characters,
Compute truncates it automatically when turning it into a host name to ensure the correct work of
dnsmasq. The corresponding warning is written into the neutron-dnsmasq.log file.

2.1. User Documentation 5

Nova Documentation, Release 22.4.1.dev41

The following command launches the MyCirrosServer instance with the
m1.small flavor (ID of 1), cirros-0.3.2-x86_64-uec image (ID of
397e713c-b95b-4186-ad46-6126863ea0a9), default security group, KeyPair01
key, and a user data file called cloudinit.file:

$ openstack server create --flavor 1 --image 397e713c-b95b-4186-ad46-
↪→6126863ea0a9 \
--security-group default --key-name KeyPair01 --user-data cloudinit.

↪→file \
myCirrosServer

Depending on the parameters that you provide, the command returns a list of server properties.

+--------------------------------------+------------------------------
↪→-----------------+
| Field | Value
↪→ |
+--------------------------------------+------------------------------
↪→-----------------+
| OS-DCF:diskConfig | MANUAL
↪→ |
| OS-EXT-AZ:availability_zone |
↪→ |
| OS-EXT-SRV-ATTR:host | None
↪→ |
| OS-EXT-SRV-ATTR:hypervisor_hostname | None
↪→ |
| OS-EXT-SRV-ATTR:instance_name |
↪→ |
| OS-EXT-STS:power_state | NOSTATE
↪→ |
| OS-EXT-STS:task_state | scheduling
↪→ |
| OS-EXT-STS:vm_state | building
↪→ |
| OS-SRV-USG:launched_at | None
↪→ |
| OS-SRV-USG:terminated_at | None
↪→ |
| accessIPv4 |
↪→ |
| accessIPv6 |
↪→ |
| addresses |
↪→ |
| adminPass | E4Ksozt4Efi8
↪→ |
| config_drive |
↪→ |
| created | 2016-11-30T14:48:05Z
↪→ |
| flavor | m1.tiny
↪→ |
| hostId |
↪→ |
| id | 89015cc9-bdf1-458a-8518-
↪→fdca2b4a5785 |

(continues on next page)

2.1. User Documentation 6

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| image | cirros (397e713c-b95b-4186-
↪→ad46-6126863ea0a9) |
| key_name | KeyPair01
↪→ |
| name | myCirrosServer
↪→ |
| os-extended-volumes:volumes_attached | []
↪→ |
| progress | 0
↪→ |
| project_id |
↪→5669caad86a04256994cdf755df4d3c1 |
| properties |
↪→ |
| security_groups | [{u'name': u'default'}]
↪→ |
| status | BUILD
↪→ |
| updated | 2016-11-30T14:48:05Z
↪→ |
| user_id |
↪→c36cec73b0e44876a4478b1e6cd749bb |
| metadata | {u'KEY': u'VALUE'}
↪→ |
+--------------------------------------+------------------------------
↪→-----------------+

A status of BUILD indicates that the instance has started, but is not yet online.

A status of ACTIVE indicates that the instance is active.

2. Copy the server ID value from the id field in the output. Use the ID to get server details or to
delete your server.

3. Copy the administrative password value from the adminPass field. Use the password to log in
to your server.

4. Check if the instance is online.

$ openstack server list

The list shows the ID, name, status, and private (and if assigned, public) IP addresses for all
instances in the project to which you belong:

+-------------+----------------------+--------+------------+----------
↪→---+------------------+------------+
| ID | Name | Status | Task State | Power
↪→State | Networks | Image Name |
+-------------+----------------------+--------+------------+----------
↪→---+------------------+------------+
| 84c6e57d... | myCirrosServer | ACTIVE | None | Running
↪→ | private=10.0.0.3 | cirros |
| 8a99547e... | myInstanceFromVolume | ACTIVE | None | Running
↪→ | private=10.0.0.4 | centos |
+-------------+----------------------+--------+------------+----------
↪→---+------------------+------------+

2.1. User Documentation 7

Nova Documentation, Release 22.4.1.dev41

If the status for the instance is ACTIVE, the instance is online.

5. To view the available options for the openstack server list command, run the following
command:

$ openstack help server list

Note: If you did not provide a key pair, security groups, or rules, you can access the instance
only from inside the cloud through VNC. Even pinging the instance is not possible.

Launch an instance from a volume

You can boot instances from a volume instead of an image.

To complete these tasks, use these parameters on the nova boot command:

Task nova boot parameter Information
Boot an instance from an im-
age and attach a non-bootable
volume.

--block-device Boot instance from image and attach non-
bootable volume

Create a volume from an image
and boot an instance from that
volume.

--block-device Create volume from image and boot in-
stance

Boot from an existing source
image, volume, or snapshot.

--block-device Create volume from image and boot in-
stance

Attach a swap disk to an in-
stance.

--swap Attach swap or ephemeral disk to an in-
stance

Attach an ephemeral disk to an
instance.

--ephemeral Attach swap or ephemeral disk to an in-
stance

Note: To attach a volume to a running instance, refer to the Cinder documentation.

Note: The maximum limit on the number of disk devices allowed to attach to a single server is config-
urable with the option compute.max_disk_devices_to_attach.

Boot instance from image and attach non-bootable volume

Create a non-bootable volume and attach that volume to an instance that you boot from an image.

To create a non-bootable volume, do not create it from an image. The volume must be entirely empty
with no partition table and no file system.

1. Create a non-bootable volume.

2.1. User Documentation 8

https://docs.openstack.org/cinder/victoria/cli/cli-manage-volumes.html#attach-a-volume-to-an-instance

Nova Documentation, Release 22.4.1.dev41

$ openstack volume create --size 8 my-volume
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-11-25T10:37:08.850997
description	None
encrypted	False
id	b8f7bbec-6274-4cd7-90e7-60916a5e75d4
migration_status	None
multiattach	False
name	my-volume
properties	
replication_status	disabled
size	8
snapshot_id	None
source_volid	None
status	creating
type	None
updated_at	None
user_id	0678735e449149b0a42076e12dd54e28
+---------------------+--------------------------------------+

2. List volumes.

$ openstack volume list
+--------------------------------------+--------------+-----------+---
↪→---+-------------+
| ID | Name | Status |
↪→Size | Attached to |
+--------------------------------------+--------------+-----------+---
↪→---+-------------+
| b8f7bbec-6274-4cd7-90e7-60916a5e75d4 | my-volume | available |
↪→ 8 | |
+--------------------------------------+--------------+-----------+---
↪→---+-------------+

3. Boot an instance from an image and attach the empty volume to the instance.

$ nova boot --flavor 2 --image 98901246-af91-43d8-b5e6-a4506aa8f369 \
--block-device source=volume,id=d620d971-b160-4c4e-8652-

↪→2513d74e2080,dest=volume,shutdown=preserve \
myInstanceWithVolume

+--------------------------------------+------------------------------
↪→--------------+
| Property | Value
↪→ |
+--------------------------------------+------------------------------
↪→--------------+
| OS-DCF:diskConfig | MANUAL
↪→ |
| OS-EXT-AZ:availability_zone | nova
↪→ |

(continues on next page)

2.1. User Documentation 9

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| OS-EXT-SRV-ATTR:host | -
↪→ |
| OS-EXT-SRV-ATTR:hypervisor_hostname | -
↪→ |
| OS-EXT-SRV-ATTR:instance_name | instance-00000004
↪→ |
| OS-EXT-STS:power_state | 0
↪→ |
| OS-EXT-STS:task_state | scheduling
↪→ |
| OS-EXT-STS:vm_state | building
↪→ |
| OS-SRV-USG:launched_at | -
↪→ |
| OS-SRV-USG:terminated_at | -
↪→ |
| accessIPv4 |
↪→ |
| accessIPv6 |
↪→ |
| adminPass | ZaiYeC8iucgU
↪→ |
| config_drive |
↪→ |
| created | 2014-05-09T16:34:50Z
↪→ |
| flavor | m1.small (2)
↪→ |
| hostId |
↪→ |
| id | 1e1797f3-1662-49ff-ae8c-
↪→a77e82ee1571 |
| image | cirros-0.3.5-x86_64-uec
↪→(98901246-af91-... |
| key_name | -
↪→ |
| metadata | {}
↪→ |
| name | myInstanceWithVolume
↪→ |
| os-extended-volumes:volumes_attached | [{"id": "d620d971-b160-4c4e-
↪→8652-2513d7... |
| progress | 0
↪→ |
| security_groups | default
↪→ |
| status | BUILD
↪→ |
| tenant_id |
↪→ccef9e62b1e645df98728fb2b3076f27 |
| updated | 2014-05-09T16:34:51Z
↪→ |
| user_id |
↪→fef060ae7bfd4024b3edb97dff59017a |
+--------------------------------------+------------------------------
↪→--------------+

2.1. User Documentation 10

Nova Documentation, Release 22.4.1.dev41

Create volume from image and boot instance

You can create a volume from an existing image, volume, or snapshot. This procedure shows you how
to create a volume from an image, and use the volume to boot an instance.

1. List the available images.

$ openstack image list
+-----------------+---------------------------------+--------+
| ID | Name | Status |
+-----------------+---------------------------------+--------+
484e05af-a14...	Fedora-x86_64-20-20131211.1-sda	active
98901246-af9...	cirros-0.3.5-x86_64-uec	active
b6e95589-7eb...	cirros-0.3.5-x86_64-uec-kernel	active
c90893ea-e73...	cirros-0.3.5-x86_64-uec-ramdisk	active
+-----------------+---------------------------------+--------+

Note the ID of the image that you want to use to create a volume.

If you want to create a volume to a specific storage backend, you need to use an image which
has cinder_img_volume_type property. In this case, a new volume will be created as stor-
age_backend1 volume type.

$ openstack image show 98901246-af9d-4b61-bea8-09cc6dc41829
+------------------+--
↪→----+
| Field | Value
↪→ |
+------------------+--
↪→----+
| checksum | ee1eca47dc88f4879d8a229cc70a07c6
↪→ |
| container_format | bare
↪→ |
| created_at | 2016-10-08T14:59:05Z
↪→ |
| disk_format | qcow2
↪→ |
| file | /v2/images/9fef3b2d-c35d-4b61-bea8-09cc6dc41829/
↪→file |
| id | 98901246-af9d-4b61-bea8-09cc6dc41829
↪→ |
| min_disk | 0
↪→ |
| min_ram | 0
↪→ |
| name | cirros-0.3.5-x86_64-uec
↪→ |
| owner | 8d8ef3cdf2b54c25831cbb409ad9ae86
↪→ |
| protected | False
↪→ |
| schema | /v2/schemas/image
↪→ |
| size | 13287936
↪→ |
| status | active
↪→ | (continues on next page)

2.1. User Documentation 11

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| tags |
↪→ |
| updated_at | 2016-10-19T09:12:52Z
↪→ |
| virtual_size | None
↪→ |
| visibility | public
↪→ |
+------------------+--
↪→----+

2. List the available flavors.

$ openstack flavor list
+-----+-----------+-------+------+-----------+-------+-----------+
| ID | Name | RAM | Disk | Ephemeral | VCPUs | Is_Public |
+-----+-----------+-------+------+-----------+-------+-----------+
1	m1.tiny	512	1	0	1	True
2	m1.small	2048	20	0	1	True
3	m1.medium	4096	40	0	2	True
4	m1.large	8192	80	0	4	True
5	m1.xlarge	16384	160	0	8	True
+-----+-----------+-------+------+-----------+-------+-----------+

Note the ID of the flavor that you want to use to create a volume.

3. To create a bootable volume from an image and launch an instance from this volume, use the
--block-device parameter with the nova boot command.

For example:

$ nova boot --flavor FLAVOR --block-device \
source=SOURCE,id=ID,dest=DEST,size=SIZE,shutdown=PRESERVE,

↪→bootindex=INDEX \
NAME

The parameters are:

• --flavor The flavor ID or name.

• --block-device source=SOURCE,id=ID,dest=DEST,size=SIZE,shutdown=PRESERVE,bootindex=INDEX

source=SOURCE The type of object used to create the block device. Valid values are
volume, snapshot, image, and blank.

id=ID The ID of the source object.

dest=DEST The type of the target virtual device. Valid values are volume and local.

size=SIZE The size of the volume that is created.

shutdown={preserve|remove} What to do with the volume when the instance is deleted.
preserve does not delete the volume. remove deletes the volume.

bootindex=INDEX Orders the boot disks. Use 0 to boot from this volume.

• NAME. The name for the server.

2.1. User Documentation 12

Nova Documentation, Release 22.4.1.dev41

See the nova boot command documentation and Block Device Mapping in Nova for more details
on these parameters.

Note: As of the Stein release, the openstack server create command does not support
creating a volume-backed server from a source image like the nova boot command. The next
steps will show how to create a bootable volume from an image and then create a server from that
boot volume using the openstack server create command.

4. Create a bootable volume from an image. Cinder makes a volume bootable when --image
parameter is passed.

$ openstack volume create --image IMAGE_ID --size SIZE_IN_GB bootable_
↪→volume

Note: A bootable encrypted volume can also be created by adding the type EN-
CRYPTED_VOLUME_TYPE parameter to the volume create command:

$ openstack volume create --type ENCRYPTED_VOLUME_TYPE --image IMAGE_
↪→ID --size SIZE_IN_GB bootable_volume
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2017-06-13T18:59:57.626872
description	None
encrypted	True
id	ded57a86-5b51-43ab-b70e-9bc0f91ef4ab
multiattach	False
name	bootable_volume
properties	
replication_status	None
size	1
snapshot_id	None
source_volid	None
status	creating
type	LUKS
updated_at	None
user_id	459ae34ffcd94edab0c128ed616bb19f
+---------------------+--------------------------------------+

This requires an encrypted volume type, which must be created ahead of time by an admin. Re-
fer to horizonadmin/manage-volumes.html#create-an-encrypted-volume-type. in the OpenStack
Horizon Administration Guide.

5. Create a VM from previously created bootable volume. The volume is not deleted when the
instance is terminated.

Note: The example here uses the --volume option for simplicity. The
--block-device-mapping option could also be used for more granular control over the

2.1. User Documentation 13

https://docs.openstack.org/python-novaclient/latest/cli/nova.html#nova-boot
https://docs.openstack.org/horizon/victoria/admin/manage-volumes.html#create-an-encrypted-volume-type

Nova Documentation, Release 22.4.1.dev41

parameters. See the openstack server create documentation for details.

$ openstack server create --flavor 2 --volume VOLUME_ID
↪→myInstanceFromVolume
+--------------------------------------+------------------------------
↪→--+
| Field | Value
↪→ |
+--------------------------------------+------------------------------
↪→--+
| OS-EXT-STS:task_state | scheduling
↪→ |
| image | Attempt to boot from volume
↪→ |
| | - no image supplied
↪→ |
| OS-EXT-STS:vm_state | building
↪→ |
| OS-EXT-SRV-ATTR:instance_name | instance-00000003
↪→ |
| OS-SRV-USG:launched_at | None
↪→ |
| flavor | m1.small
↪→ |
| id | 2e65c854-dba9-4f68-8f08-fe3..
↪→. |
| security_groups | [{u'name': u'default'}]
↪→ |
| user_id | 352b37f5c89144d4ad053413926..
↪→. |
| OS-DCF:diskConfig | MANUAL
↪→ |
| accessIPv4 |
↪→ |
| accessIPv6 |
↪→ |
| progress | 0
↪→ |
| OS-EXT-STS:power_state | 0
↪→ |
| OS-EXT-AZ:availability_zone | nova
↪→ |
| config_drive |
↪→ |
| status | BUILD
↪→ |
| updated | 2014-02-02T13:29:54Z
↪→ |
| hostId |
↪→ |
| OS-EXT-SRV-ATTR:host | None
↪→ |
| OS-SRV-USG:terminated_at | None
↪→ |
| key_name | None
↪→ |

(continues on next page)

2.1. User Documentation 14

https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/server.html#server-create

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| OS-EXT-SRV-ATTR:hypervisor_hostname | None
↪→ |
| name | myInstanceFromVolume
↪→ |
| adminPass | TzjqyGsRcJo9
↪→ |
| tenant_id | f7ac731cc11f40efbc03a9f9e1d..
↪→. |
| created | 2014-02-02T13:29:53Z
↪→ |
| os-extended-volumes:volumes_attached | [{"id": "2fff50ab..."}]
↪→ |
| metadata | {}
↪→ |
+--------------------------------------+------------------------------
↪→--+

6. List volumes to see the bootable volume and its attached myInstanceFromVolume instance.

$ openstack volume list
+---------------------+-----------------+--------+------+-------------
↪→--------------------+
| ID | Name | Status | Size | Attached to
↪→ |
+---------------------+-----------------+--------+------+-------------
↪→--------------------+
| c612f739-8592-44c4- | bootable_volume | in-use | 10 | Attached to
↪→myInstanceFromVolume|
| b7d4-0fee2fe1da0c | | | | on /dev/vda
↪→ |
+---------------------+-----------------+--------+------+-------------
↪→--------------------+

Attach swap or ephemeral disk to an instance

Use the nova boot --swap parameter to attach a swap disk on boot or the nova boot
--ephemeral parameter to attach an ephemeral disk on boot. When you terminate the instance,
both disks are deleted.

Boot an instance with a 512 MB swap disk and 2 GB ephemeral disk.

$ nova boot --flavor FLAVOR --image IMAGE_ID --swap 512 \
--ephemeral size=2 NAME

Note: The flavor defines the maximum swap and ephemeral disk size. You cannot exceed these maxi-
mum values.

2.1. User Documentation 15

Nova Documentation, Release 22.4.1.dev41

Launch an instance using ISO image

Boot an instance from an ISO image

OpenStack supports booting instances using ISO images. But before you make such instances func-
tional, use the openstack server create command with the following parameters to boot an
instance:

$ openstack server create --image ubuntu-14.04.2-server-amd64.iso \
--nic net-id = NETWORK_UUID \
--flavor 2 INSTANCE_NAME

+--------------------------------------+-----------------------------------
↪→---------+
| Field | Value
↪→ |
+--------------------------------------+-----------------------------------
↪→---------+
| OS-DCF:diskConfig | MANUAL
↪→ |
| OS-EXT-AZ:availability_zone | nova
↪→ |
| OS-EXT-SRV-ATTR:host | -
↪→ |
| OS-EXT-SRV-ATTR:hypervisor_hostname | -
↪→ |
| OS-EXT-SRV-ATTR:instance_name | instance-00000004
↪→ |
| OS-EXT-STS:power_state | 0
↪→ |
| OS-EXT-STS:task_state | scheduling
↪→ |
| OS-EXT-STS:vm_state | building
↪→ |
| OS-SRV-USG:launched_at | -
↪→ |
| OS-SRV-USG:terminated_at | -
↪→ |
| accessIPv4 |
↪→ |
| accessIPv6 |
↪→ |
| adminPass | ZaiYeC8iucgU
↪→ |
| config_drive |
↪→ |
| created | 2015-06-01T16:34:50Z
↪→ |
| flavor | m1.small (2)
↪→ |
| hostId |
↪→ |
| id | 1e1797f3-1662-49ff-ae8c-
↪→a77e82ee1571 |
| image | ubuntu-14.04.2-server-amd64.iso
↪→ |
| key_name | -
↪→ | (continues on next page)

2.1. User Documentation 16

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| metadata | {}
↪→ |
| name | INSTANCE_NAME
↪→ |
| os-extended-volumes:volumes_attached | []
↪→ |
| progress | 0
↪→ |
| security_groups | default
↪→ |
| status | BUILD
↪→ |
| tenant_id | ccef9e62b1e645df98728fb2b3076f27
↪→ |
| updated | 2014-05-09T16:34:51Z
↪→ |
| user_id | fef060ae7bfd4024b3edb97dff59017a
↪→ |
+--------------------------------------+-----------------------------------
↪→---------+

In this command, ubuntu-14.04.2-server-amd64.iso is the ISO image, and
INSTANCE_NAME is the name of the new instance. NETWORK_UUID is a valid network id in
your system.

Create a bootable volume for the instance to reside on after shutdown.

1. Create the volume:

$ openstack volume create \
--size <SIZE_IN_GB> \
--bootable VOLUME_NAME

2. Attach the instance to the volume:

$ openstack server add volume
INSTANCE_NAME \
VOLUME_NAME \
--device /dev/vda

Note: You need the Block Storage service to preserve the instance after shutdown. The
--block-device argument, used with the legacy nova boot, will not work with the Open-
Stack openstack server create command. Instead, the openstack volume create and
openstack server add volume commands create persistent storage.

After the instance is successfully launched, connect to the instance using a remote console and follow
the instructions to install the system as using ISO images on regular computers. When the installation
is finished and system is rebooted, the instance asks you again to install the operating system, which
means your instance is not usable. If you have problems with image creation, please check the Virtual
Machine Image Guide for reference.

2.1. User Documentation 17

https://docs.openstack.org/image-guide/create-images-manually.html
https://docs.openstack.org/image-guide/create-images-manually.html

Nova Documentation, Release 22.4.1.dev41

Make the instances booted from ISO image functional

Now complete the following steps to make your instances created using ISO image actually functional.

1. Delete the instance using the following command.

$ openstack server delete INSTANCE_NAME

2. After you delete the instance, the system you have just installed using your ISO image remains,
because the parameter shutdown=preserve was set, so run the following command.

$ openstack volume list
+--------------------------+-------------------------+-----------+----
↪→--+-------------+
| ID | Name | Status |
↪→Size | Attached to |
+--------------------------+-------------------------+-----------+----
↪→--+-------------+
| 8edd7c97-1276-47a5-9563- |dc01d873-d0f1-40b6-bfcc- | available |
↪→10 | |
| 1025f4264e4f | 26a8d955a1d9-blank-vol | |
↪→ | |
+--------------------------+-------------------------+-----------+----
↪→--+-------------+

You get a list with all the volumes in your system. In this list, you can find the volume that is
attached to your ISO created instance, with the false bootable property.

3. Upload the volume to glance.

$ openstack image create --volume SOURCE_VOLUME IMAGE_NAME
$ openstack image list
+-------------------+------------+--------+
| ID | Name | Status |
+-------------------+------------+--------+
| 74303284-f802-... | IMAGE_NAME | active |
+-------------------+------------+--------+

The SOURCE_VOLUME is the UUID or a name of the volume that is attached to your ISO created
instance, and the IMAGE_NAME is the name that you give to your new image.

4. After the image is successfully uploaded, you can use the new image to boot instances.

The instances launched using this image contain the system that you have just installed using the
ISO image.

2.1.1.3 Metadata

Nova presents configuration information to instances it starts via a mechanism called metadata. These
mechanisms are widely used via helpers such as cloud-init to specify things like the root password the
instance should use.

This metadata is made available via either a config drive or the metadata service and can be somewhat
customised by the user using the user data feature. This guide provides an overview of these features
along with a summary of the types of metadata available.

2.1. User Documentation 18

https://cloudinit.readthedocs.io/en/latest/

Nova Documentation, Release 22.4.1.dev41

Types of metadata

There are three separate groups of users who need to be able to specify metadata for an instance.

User provided data

The user who booted the instance can pass metadata to the instance in several ways. For authentication
keypairs, the keypairs functionality of the nova API can be used to upload a key and then specify that key
during the nova boot API request. For less structured data, a small opaque blob of data may be passed
via the user data feature of the nova API. Examples of such unstructured data would be the puppet role
that the instance should use, or the HTTP address of a server from which to fetch post-boot configuration
information.

Nova provided data

Nova itself needs to pass information to the instance via its internal implementation of the metadata
system. Such information includes the requested hostname for the instance and the availability zone the
instance is in. This happens by default and requires no configuration by the user or deployer.

Nova provides both an OpenStack metadata API and an EC2-compatible API. Both the OpenStack
metadata and EC2-compatible APIs are versioned by date. These are described later.

Deployer provided data

A deployer of OpenStack may need to pass data to an instance. It is also possible that this data is
not known to the user starting the instance. An example might be a cryptographic token to be used to
register the instance with Active Directory post boot the user starting the instance should not have access
to Active Directory to create this token, but the nova deployment might have permissions to generate the
token on the users behalf. This is possible using the vendordata feature, which must be configured by
your cloud operator.

The metadata service

Note: This section provides end user information about the metadata service. For deployment informa-
tion about the metadata service, refer to the admin guide.

The metadata service provides a way for instances to retrieve instance-specific data via a REST API. In-
stances access this service at 169.254.169.254 or at fe80::a9fe:a9fe. All types of metadata,
be it user-, nova- or vendor-provided, can be accessed via this service.

Changed in version 22.0.0: Starting with the Victoria release the metadata service is accessible over
IPv6 at the link-local address fe80::a9fe:a9fe.

Note: As with all IPv6 link-local addresses, the metadata IPv6 address is not complete with-
out a zone identifier (in a Linux guest that is usually the interface name concatenated after a per-
cent sign). Please also note that in URLs you should URL-encode the percent sign itself. For

2.1. User Documentation 19

Nova Documentation, Release 22.4.1.dev41

example, assuming that the primary network interface in the guest is ens2 substitute http://
[fe80::a9fe:a9fe%25ens2]:80/... for http://169.254.169.254/....

Using the metadata service

To retrieve a list of supported versions for the OpenStack metadata API, make a GET request to http:/
/169.254.169.254/openstack, which will return a list of directories:

$ curl http://169.254.169.254/openstack
2012-08-10
2013-04-04
2013-10-17
2015-10-15
2016-06-30
2016-10-06
2017-02-22
2018-08-27
latest

Refer to OpenStack format metadata for information on the contents and structure of these directories.

To list supported versions for the EC2-compatible metadata API, make a GET request to http://
169.254.169.254, which will, once again, return a list of directories:

$ curl http://169.254.169.254
1.0
2007-01-19
2007-03-01
2007-08-29
2007-10-10
2007-12-15
2008-02-01
2008-09-01
2009-04-04
latest

Refer to EC2-compatible metadata for information on the contents and structure of these directories.

Config drives

Note: This section provides end user information about config drives. For deployment information
about the config drive feature, refer to the admin guide.

Config drives are special drives that are attached to an instance when it boots. The instance can mount
this drive and read files from it to get information that is normally available through the metadata service.

One use case for using the config drive is to pass a networking configuration when you do not use DHCP
to assign IP addresses to instances. For example, you might pass the IP address configuration for the
instance through the config drive, which the instance can mount and access before you configure the
network settings for the instance.

2.1. User Documentation 20

Nova Documentation, Release 22.4.1.dev41

Using the config drive

To enable the config drive for an instance, pass the --config-drive true parameter to the
openstack server create command.

The following example enables the config drive and passes a user data file and two key/value metadata
pairs, all of which are accessible from the config drive:

$ openstack server create --config-drive true --image my-image-name \
--flavor 1 --key-name mykey --user-data ./my-user-data.txt \
--property role=webservers --property essential=false MYINSTANCE

Note: The Compute service can be configured to always create a config drive. For more information,
refer to the admin guide.

If your guest operating system supports accessing disk by label, you can mount the config drive as the
/dev/disk/by-label/configurationDriveVolumeLabel device. In the following exam-
ple, the config drive has the config-2 volume label:

mkdir -p /mnt/config
mount /dev/disk/by-label/config-2 /mnt/config

If your guest operating system does not use udev, the /dev/disk/by-label directory is not
present. You can use the blkid command to identify the block device that corresponds to the con-
fig drive. For example:

blkid -t LABEL="config-2" -odevice
/dev/vdb

Once identified, you can mount the device:

mkdir -p /mnt/config
mount /dev/vdb /mnt/config

Once mounted, you can examine the contents of the config drive:

$ cd /mnt/config
$ find . -maxdepth 2
.
./ec2
./ec2/2009-04-04
./ec2/latest
./openstack
./openstack/2012-08-10
./openstack/2013-04-04
./openstack/2013-10-17
./openstack/2015-10-15
./openstack/2016-06-30
./openstack/2016-10-06
./openstack/2017-02-22
./openstack/latest

The files that appear on the config drive depend on the arguments that you pass to the openstack
server create command. The format of this directory is the same as that provided by the metadata

2.1. User Documentation 21

Nova Documentation, Release 22.4.1.dev41

service, with the exception that the EC2-compatible metadata is now located in the ec2 directory instead
of the root (/) directory. Refer to the OpenStack format metadata and EC2-compatible metadata sections
for information about the format of the files and subdirectories within these directories.

Nova metadata

As noted previously, nova provides its metadata in two formats: OpenStack format and EC2-compatible
format.

OpenStack format metadata

Changed in version 12.0.0: Support for network metadata was added in the Liberty release.

Metadata from the OpenStack API is distributed in JSON format. There are two files provided for each
version: meta_data.json and network_data.json. The meta_data.json file contains
nova-specific information, while the network_data.json file contains information retrieved from
neutron. For example:

$ curl http://169.254.169.254/openstack/2018-08-27/meta_data.json

{
"random_seed": "yu5ZnkqF2CqnDZVAfZgarGLoFubhcK5wHG4fcNfVZEtie/

↪→bTV8k2dDXK\
C7krP2cjp9A7g9LIWe5+WSaZ3zpvQ03hp/4mMNy9V1U/

↪→mnRMZyQ3W4Fn\
Nex7UP/

↪→0Smjb9rVzfUb2HrVUCN61Yo4jHySTd7UeEasF0nxBrx6NFY6e\

↪→KRoELGPPr1S6+ZDcDT1Sp7pRoHqwVbzyJZc80ICndqxGkZOuvwDgVKZD\
B6O3kFSLuqOfNRaL8y79gJizw/

↪→MHI7YjOxtPMr6g0upIBHFl8Vt1VKjR\
s3zB+c3WkC6JsopjcToHeR4tPK0RtdIp6G2Bbls5cblQUAc/

↪→zG0a8BAm\

↪→p6Pream9XRpaQBDk4iXtjIn8Bf56SCANOFfeI5BgBeTwfdDGoM0Ptml6\

↪→BJQiyFtc3APfXVVswrCq2SuJop+spgrpiKXOzXvve+gEWVhyfbigI52e\
l1VyMoyZ7/pbdnX0LCGHOdAU8KRnBoo99ZOErv+p7sROEIN4Yywq/U/

↪→C\

↪→xXtQ5BNCtae389+3yT5ZCV7fYzLYChgDMJSZ9ds9fDFIWKmsRu3N+wUg\
eL4klxAjRgzQ7MMlap5kppnIYRxXVy0a5j1qOaBAzJB5LLJ7r3/

↪→Om38x\

↪→Z4+XGWjqd6KbSwhUVs1aqzxpep1Sp3nTurQCuYjgMchjslt0O5oJjh5Z\
hbCZT3YUc8M=\n",

"uuid": "d8e02d56-2648-49a3-bf97-6be8f1204f38",
"availability_zone": "nova",
"keys": [

{
"data": "ssh-rsa

↪→AAAAB3NzaC1yc2EAAAADAQABAAAAgQDYVEprvtYJXVOBN0XNKV\
VRNCRX6BlnNbI+USLGais1sUWPwtSg7z9K9vhbYAPUZcq8c/

↪→s5S9dg5vTH\
(continues on next page)

2.1. User Documentation 22

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

bsiyPCIDOKyeHba4MUJq8Oh5b2i71/3BISpyxTBH/
↪→uZDHdslW2a+SrPDCe\

uMMoss9NFhBdKtDkdG9zyi0ibmCP6yMdEX8Q== Generated by Nova\
↪→n",

"type": "ssh",
"name": "mykey"

}
],
"hostname": "test.novalocal",
"launch_index": 0,
"meta": {

"priority": "low",
"role": "webserver"

},
"devices": [

{
"type": "nic",
"bus": "pci",
"address": "0000:00:02.0",
"mac": "00:11:22:33:44:55",
"tags": ["trusted"]

},
{

"type": "disk",
"bus": "ide",
"address": "0:0",
"serial": "disk-vol-2352423",
"path": "/dev/sda",
"tags": ["baz"]

}
],
"project_id": "f7ac731cc11f40efbc03a9f9e1d1d21f",
"public_keys": {

"mykey": "ssh-rsa
↪→AAAAB3NzaC1yc2EAAAADAQABAAAAgQDYVEprvtYJXVOBN0XNKV\

VRNCRX6BlnNbI+USLGais1sUWPwtSg7z9K9vhbYAPUZcq8c/
↪→s5S9dg5vTH\

bsiyPCIDOKyeHba4MUJq8Oh5b2i71/3BISpyxTBH/
↪→uZDHdslW2a+SrPDCe\

uMMoss9NFhBdKtDkdG9zyi0ibmCP6yMdEX8Q== Generated by Nova\n
↪→"

},
"name": "test"

}

$ curl http://169.254.169.254/openstack/2018-08-27/network_data.json

{
"links": [

{
"ethernet_mac_address": "fa:16:3e:9c:bf:3d",
"id": "tapcd9f6d46-4a",
"mtu": null,
"type": "bridge",
"vif_id": "cd9f6d46-4a3a-43ab-a466-994af9db96fc"

(continues on next page)

2.1. User Documentation 23

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

}
],
"networks": [

{
"id": "network0",
"link": "tapcd9f6d46-4a",
"network_id": "99e88329-f20d-4741-9593-25bf07847b16",
"type": "ipv4_dhcp"

}
],
"services": [

{
"address": "8.8.8.8",
"type": "dns"

}
]

}

:Download network_data.json JSON schema.

EC2-compatible metadata

The EC2-compatible API is compatible with version 2009-04-04 of the Amazon EC2 metadata service
This means that virtual machine images designed for EC2 will work properly with OpenStack.

The EC2 API exposes a separate URL for each metadata element. Retrieve a listing of these elements
by making a GET query to http://169.254.169.254/2009-04-04/meta-data/. For ex-
ample:

$ curl http://169.254.169.254/2009-04-04/meta-data/
ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
hostname
instance-action
instance-id
instance-type
kernel-id
local-hostname
local-ipv4
placement/
public-hostname
public-ipv4
public-keys/
ramdisk-id
reservation-id
security-groups

$ curl http://169.254.169.254/2009-04-04/meta-data/block-device-mapping/
ami

$ curl http://169.254.169.254/2009-04-04/meta-data/placement/
availability-zone

2.1. User Documentation 24

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Nova Documentation, Release 22.4.1.dev41

$ curl http://169.254.169.254/2009-04-04/meta-data/public-keys/
0=mykey

Instances can retrieve the public SSH key (identified by keypair name when a user requests a new in-
stance) by making a GET request to http://169.254.169.254/2009-04-04/meta-data/
public-keys/0/openssh-key:

$ curl http://169.254.169.254/2009-04-04/meta-data/public-keys/0/openssh-
↪→key
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQDYVEprvtYJXVOBN0XNKVVRNCRX6BlnNbI+US\
LGais1sUWPwtSg7z9K9vhbYAPUZcq8c/s5S9dg5vTHbsiyPCIDOKyeHba4MUJq8Oh5b2i71/3B\
ISpyxTBH/uZDHdslW2a+SrPDCeuMMoss9NFhBdKtDkdG9zyi0ibmCP6yMdEX8Q== Generated\
by Nova

User data

User data is a blob of data that the user can specify when they launch an instance. The instance can
access this data through the metadata service or config drive. Commonly used to pass a shell script that
the instance runs on boot.

For example, one application that uses user data is the cloud-init system, which is an open-source pack-
age from Ubuntu that is available on various Linux distributions and which handles early initialization
of a cloud instance.

You can place user data in a local file and pass it through the --user-data <user-data-file>
parameter at instance creation.

$ openstack server create --image ubuntu-cloudimage --flavor 1 \
--user-data mydata.file VM_INSTANCE

Note: The provided user data should not be base64-encoded, as it will be automatically encoded in
order to pass valid input to the REST API, which has a limit of 65535 bytes after encoding.

Once booted, you can access this data from the instance using either the metadata service or
the config drive. To access it via the metadata service, make a GET request to either http:/
/169.254.169.254/openstack/{version}/user_data (OpenStack API) or http://
169.254.169.254/{version}/user-data (EC2-compatible API). For example:

$ curl http://169.254.169.254/openstack/2018-08-27/user_data

#!/bin/bash
echo 'Extra user data here'

2.1. User Documentation 25

https://help.ubuntu.com/community/CloudInit

Nova Documentation, Release 22.4.1.dev41

Vendordata

Note: This section provides end user information about the vendordata feature. For deployment infor-
mation about this feature, refer to the admin guide.

Changed in version 14.0.0: Support for dynamic vendor data was added in the Newton release.

Where configured, instances can retrieve vendor-specific data from the metadata service or
config drive. To access it via the metadata service, make a GET request to either
http://169.254.169.254/openstack/{version}/vendor_data.json or http://
169.254.169.254/openstack/{version}/vendor_data2.json, depending on the de-
ployment. For example:

$ curl http://169.254.169.254/openstack/2018-08-27/vendor_data2.json

{
"testing": {

"value1": 1,
"value2": 2,
"value3": "three"

}
}

Note: The presence and contents of this file will vary from deployment to deployment.

General guidelines

• Do not rely on the presence of the EC2 metadata in the metadata API or config drive, because
this content might be removed in a future release. For example, do not rely on files in the ec2
directory.

• When you create images that access metadata service or config drive data and multiple di-
rectories are under the openstack directory, always select the highest API version by date
that your consumer supports. For example, if your guest image supports the 2012-03-05,
2012-08-05, and 2013-04-13 versions, try 2013-04-13 first and fall back to a previous
version if 2013-04-13 is not present.

2.1.1.4 Manage IP addresses

Each instance has a private, fixed IP address and can also have a public, or floating IP address. Private
IP addresses are used for communication between instances, and public addresses are used for commu-
nication with networks outside the cloud, including the Internet.

When you launch an instance, it is automatically assigned a private IP address that stays the same until
you explicitly terminate the instance. Rebooting an instance has no effect on the private IP address.

A pool of floating IP addresses, configured by the cloud administrator, is available in OpenStack Com-
pute. The project quota defines the maximum number of floating IP addresses that you can allocate to
the project. After you allocate a floating IP address to a project, you can:

2.1. User Documentation 26

Nova Documentation, Release 22.4.1.dev41

• Associate the floating IP address with an instance of the project.

• Disassociate a floating IP address from an instance in the project.

• Delete a floating IP from the project which automatically deletes that IPs associations.

Use the openstack commands to manage floating IP addresses.

List floating IP address information

To list all pools that provide floating IP addresses, run:

$ openstack floating ip pool list
+--------+
| name |
+--------+
| public |
| test |
+--------+

Note: If this list is empty, the cloud administrator must configure a pool of floating IP addresses.

To list all floating IP addresses that are allocated to the current project, run:

$ openstack floating ip list
+--------------------------------------+---------------------+-------------
↪→-----+------+
| ID | Floating IP Address | Fixed IP
↪→Address | Port |
+--------------------------------------+---------------------+-------------
↪→-----+------+
| 760963b2-779c-4a49-a50d-f073c1ca5b9e | 172.24.4.228 | None
↪→ | None |
| 89532684-13e1-4af3-bd79-f434c9920cc3 | 172.24.4.235 | None
↪→ | None |
| ea3ebc6d-a146-47cd-aaa8-35f06e1e8c3d | 172.24.4.229 | None
↪→ | None |
+--------------------------------------+---------------------+-------------
↪→-----+------+

For each floating IP address that is allocated to the current project, the command outputs the floating
IP address, the ID for the instance to which the floating IP address is assigned, the associated fixed IP
address, and the pool from which the floating IP address was allocated.

2.1. User Documentation 27

Nova Documentation, Release 22.4.1.dev41

Associate floating IP addresses

You can assign a floating IP address to a project and to an instance.

1. Run the following command to allocate a floating IP address to the current project. By default,
the floating IP address is allocated from the public pool. The command outputs the allocated IP
address:

$ openstack floating ip create public
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
created_at	2016-11-30T15:02:05Z
description	
fixed_ip_address	None
floating_ip_address	172.24.4.236
floating_network_id	0bf90de6-fc0f-4dba-b80d-96670dfb331a
headers	
id	c70ad74b-2f64-4e60-965e-f24fc12b3194
port_id	None
project_id	5669caad86a04256994cdf755df4d3c1
project_id	5669caad86a04256994cdf755df4d3c1
revision_number	1
router_id	None
status	DOWN
updated_at	2016-11-30T15:02:05Z
+---------------------+--------------------------------------+

2. List all project instances with which a floating IP address could be associated.

$ openstack server list
+---------------------+------+---------+------------+-------------+---
↪→---------------+------------+
| ID | Name | Status | Task State | Power State |
↪→Networks | Image Name |
+---------------------+------+---------+------------+-------------+---
↪→---------------+------------+
| d5c854f9-d3e5-4f... | VM1 | ACTIVE | - | Running |
↪→private=10.0.0.3 | cirros |
| 42290b01-0968-43... | VM2 | SHUTOFF | - | Shutdown |
↪→private=10.0.0.4 | centos |
+---------------------+------+---------+------------+-------------+---
↪→---------------+------------+

Note the server ID to use.

3. List ports associated with the selected server.

$ openstack port list --device-id SERVER_ID
+--------------------------------------+------+-------------------+---
↪→---+--------
↪→+
| ID | Name | MAC Address |
↪→Fixed IP Addresses |
↪→Status |
+--------------------------------------+------+-------------------+---
↪→---+--------
↪→+ (continues on next page)

2.1. User Documentation 28

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| 40e9dea9-f457-458f-bc46-6f4ebea3c268 | | fa:16:3e:00:57:3e |
↪→ip_address='10.0.0.4', subnet_id='23ee9de7-362e- |
↪→ACTIVE |
| | | |
↪→49e2-a3b0-0de1c14930cb' |
↪→ |
| | | |
↪→ip_address='fd22:4c4c:81c2:0:f816:3eff:fe00:573e', subnet_id |
↪→ |
| | | | =
↪→'a2b3acbe-fbeb-40d3-b21f-121268c21b55' |
↪→ |
+--------------------------------------+------+-------------------+---
↪→---+--------
↪→+

Note the port ID to use.

4. Associate an IP address with an instance in the project, as follows:

$ openstack floating ip set --port PORT_ID FLOATING_IP_ADDRESS

For example:

$ openstack floating ip set --port 40e9dea9-f457-458f-bc46-
↪→6f4ebea3c268 172.24.4.225

The instance is now associated with two IP addresses:

$ openstack server list
+------------------+------+--------+------------+-------------+-------
↪→------------------------+------------+
| ID | Name | Status | Task State | Power State |
↪→Networks | Image Name |
+------------------+------+--------+------------+-------------+-------
↪→------------------------+------------+
| d5c854f9-d3e5... | VM1 | ACTIVE | - | Running |
↪→private=10.0.0.3, 172.24.4.225| cirros |
| 42290b01-0968... | VM2 | SHUTOFF| - | Shutdown |
↪→private=10.0.0.4 | centos |
+------------------+------+--------+------------+-------------+-------
↪→------------------------+------------+

After you associate the IP address and configure security group rules for the instance, the instance
is publicly available at the floating IP address.

2.1. User Documentation 29

Nova Documentation, Release 22.4.1.dev41

Disassociate floating IP addresses

To disassociate a floating IP address from an instance:

$ openstack floating ip unset --port FLOATING_IP_ADDRESS

To remove the floating IP address from a project:

$ openstack floating ip delete FLOATING_IP_ADDRESS

The IP address is returned to the pool of IP addresses that is available for all projects. If the IP address
is still associated with a running instance, it is automatically disassociated from that instance.

2.1.1.5 Image Signature Certificate Validation

Nova can determine if the certificate used to generate and verify the signature of a signed image (see
Glance Image Signature Verification documentation) is trusted by the user. This feature is called certifi-
cate validation and can be applied to the creation or rebuild of an instance.

Certificate validation is meant to be performed jointly with image signature verification but
each feature has its own Nova configuration option, to be specified in the [glance] sec-
tion of the nova.conf configuration file. To enable certificate validation, set glance.
enable_certificate_validation to True. To enable signature validation, set glance.
verify_glance_signatures to True. Conversely, to disable either of these features, set their
option to False or do not include the option in the Nova configurations at all.

Certificate validation operates in concert with signature validation in Cursive. It takes in a list of trusted
certificate IDs and verifies that the certificate used to sign the image being booted is cryptographically
linked to at least one of the provided trusted certificates. This provides the user with confidence in the
identity and integrity of the image being booted.

Certificate validation will only be performed if image signature validation is enabled. However,
the presence of trusted certificate IDs overrides the enable_certificate_validation and
verify_glance_signatures settings. In other words, if a list of trusted certificate IDs is pro-
vided to the instance create or rebuild commands, signature verification and certificate validation will be
performed, regardless of their settings in the Nova configurations. See Using Signature Verification for
details.

Note: Certificate validation configuration options must be specified in the Nova configuration file
that controls the nova-osapi_compute and nova-compute services, as opposed to other Nova
services (conductor, scheduler, etc.).

2.1. User Documentation 30

https://docs.openstack.org/glance/latest/user/signature.html
http://opendev.org/x/cursive/

Nova Documentation, Release 22.4.1.dev41

Requirements

Key manager that is a backend to the Castellan Interface. Possible key managers are:

• Barbican

• Vault

Limitations

• As of the 18.0.0 Rocky release, only the libvirt compute driver supports trusted image certification
validation. The feature is not, however, driver specific so other drivers should be able to support
this feature over time. See the feature support matrix for information on which drivers support the
feature at any given release.

• As of the 18.0.0 Rocky release, image signature and trusted image certification validation is not
supported with the Libvirt compute driver when using the rbd image backend ([libvirt]/
images_type=rbd) and RAW formatted images. This is due to the images being cloned directly
in the RBD backend avoiding calls to download and verify on the compute.

• As of the 18.0.0 Rocky release, trusted image certification validation is not supported with volume-
backed (boot from volume) instances. The block storage service support may be available in a
future release:

https://blueprints.launchpad.net/cinder/+spec/certificate-validate

• Trusted image certification support can be controlled via policy configuration if it needs
to be disabled. See the os_compute_api:servers:create:trusted_certs and
os_compute_api:servers:rebuild:trusted_certs policy rules.

Configuration

Nova will use the key manager defined by the Castellan key manager interface, which is the Bar-
bican key manager by default. To use a different key manager, update the backend value in the
[key_manager] group of the nova configuration file. For example:

[key_manager]
backend = barbican

Note: If these lines do not exist, then simply add them to the end of the file.

2.1. User Documentation 31

https://docs.openstack.org/castellan/latest/
https://docs.openstack.org/barbican/latest/contributor/devstack.html
https://www.vaultproject.io/
https://docs.openstack.org/nova/latest/user/support-matrix.html#operation_trusted_certs
https://blueprints.launchpad.net/cinder/+spec/certificate-validate
https://docs.openstack.org/nova/latest/configuration/policy.html

Nova Documentation, Release 22.4.1.dev41

Using Signature Verification

An image will need a few properties for signature verification to be enabled:

img_signature Signature of your image. Signature restrictions are:

• 255 character limit

img_signature_hash_method Method used to hash your signature. Possible hash methods are:

• SHA-224

• SHA-256

• SHA-384

• SHA-512

img_signature_key_type Key type used for your image. Possible key types are:

• RSA-PSS

• DSA

• ECC-CURVES

– SECT571K1

– SECT409K1

– SECT571R1

– SECT409R1

– SECP521R1

– SECP384R1

img_signature_certificate_uuid UUID of the certificate that you uploaded to the key man-
ager. Possible certificate types are:

• X_509

Using Certificate Validation

Certificate validation is triggered by one of two ways:

1. The Nova configuration options verify_glance_signatures and
enable_certificate_validation are both set to True:

[glance]
verify_glance_signatures = True
enable_certificate_validation = True

2. A list of trusted certificate IDs is provided by one of three ways:

Note: The command line support is pending changes https://review.opendev.org/#/c/500396/ and
https://review.opendev.org/#/c/501926/ to python-novaclient and python-openstackclient, respec-
tively.

2.1. User Documentation 32

https://review.opendev.org/#/c/500396/
https://review.opendev.org/#/c/501926/

Nova Documentation, Release 22.4.1.dev41

Environment Variable Use the environment variable OS_TRUSTED_IMAGE_CERTIFICATE_IDS
to define a comma-delimited list of trusted certificate IDs. For example:

$ export OS_TRUSTED_IMAGE_CERTIFICATE_IDS=79a6ad17-3298-4e55-8b3a-
↪→1672dd93c40f,b20f5600-3c9d-4af5-8f37-3110df3533a0

Command-Line Flag If booting or rebuilding an instance using the nova commands, use the
--trusted-image-certificate-id flag to define a single trusted certificate ID.
The flag may be used multiple times to specify multiple trusted certificate IDs. For example:

$ nova boot myInstanceName \
--flavor 1 \
--image myImageId \
--trusted-image-certificate-id 79a6ad17-3298-4e55-8b3a-

↪→1672dd93c40f \
--trusted-image-certificate-id b20f5600-3c9d-4af5-8f37-

↪→3110df3533a0

If booting or rebuilding an instance using the openstack server commands, use the
--trusted-image-certificate-id flag to define a single trusted certificate ID.
The flag may be used multiple times to specify multiple trusted certificate IDs. For example:

$ openstack --os-compute-api-version=2.63 server create
↪→myInstanceName \

--flavor 1 \
--image myImageId \
--nic net-id=fd25c0b2-b36b-45a8-82e4-ab52516289e5 \
--trusted-image-certificate-id 79a6ad17-3298-4e55-8b3a-

↪→1672dd93c40f \
--trusted-image-certificate-id b20f5600-3c9d-4af5-8f37-

↪→3110df3533a0

Nova Configuration Option Use the Nova configuration option glance.
default_trusted_certificate_ids to define a comma-delimited list of trusted
certificate IDs. This configuration value is only used if verify_glance_signatures
and enable_certificate_validation options are set to True, and the trusted
certificate IDs are not specified anywhere else. For example:

[glance]
default_trusted_certificate_ids=79a6ad17-3298-4e55-8b3a-
↪→1672dd93c40f,b20f5600-3c9d-4af5-8f37-3110df3533a0

Example Usage

For these instructions, we will construct a 4-certificate chain to illustrate that it is possible to have a
single trusted root certificate. We will upload all four certificates to Barbican. Then, we will sign an
image and upload it to Glance, which will illustrate image signature verification. Finally, we will boot
the signed image from Glance to show that certificate validation is enforced.

2.1. User Documentation 33

Nova Documentation, Release 22.4.1.dev41

Enable certificate validation

Enable image signature verification and certificate validation by setting both of their Nova configuration
options to True:

[glance]
verify_glance_signatures = True
enable_certificate_validation = True

Create a certificate chain

As mentioned above, we will construct a 4-certificate chain to illustrate that it is possible to have a
single trusted root certificate. Before we begin to build our certificate chain, we must first create files for
OpenSSL to use for indexing and serial number tracking:

$ touch index.txt
$ echo '01' > serial.txt

Create a certificate configuration file

For these instructions, we will create a single configuration file called ca.conf, which contains various
sections that we can specify for use on the command-line during certificate requests and generation.

Note that this certificate will be able to sign other certificates because it is a certificate authority. Also
note the root CAs unique common name (root). The intermediate certificates common names will be
specified on the command-line when generating the corresponding certificate requests.

ca.conf:

[req]
prompt = no
distinguished_name = dn-param
x509_extensions = ca_cert_extensions

[ca]
default_ca = ca_default

[dn-param]
C = US
CN = Root CA

[ca_cert_extensions]
keyUsage = keyCertSign, digitalSignature
basicConstraints = CA:TRUE, pathlen:2

[ca_default]
new_certs_dir = . # Location for new certs after signing
database = ./index.txt # Database index file
serial = ./serial.txt # The current serial number

default_days = 1000
default_md = sha256

(continues on next page)

2.1. User Documentation 34

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

policy = signing_policy
email_in_dn = no

[intermediate_cert_extensions]
keyUsage = keyCertSign, digitalSignature
basicConstraints = CA:TRUE, pathlen:1

[client_cert_extensions]
keyUsage = keyCertSign, digitalSignature
basicConstraints = CA:FALSE

[signing_policy]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Generate the certificate authority (CA) and corresponding private key

For these instructions, we will save the certificate as cert_ca.pem and the private key as key_ca.
pem. This certificate will be a self-signed root certificate authority (CA) that can sign other CAs and
non-CA certificates.

$ openssl req \
-x509 \
-nodes \
-newkey rsa:1024 \
-config ca.conf \
-keyout key_ca.pem \
-out cert_ca.pem

Generating a 1024 bit RSA private key
............................++++++
...++++++
writing new private key to 'key_ca.pem'

Create the first intermediate certificate

Create a certificate request for the first intermediate certificate. For these instructions, we
will save the certificate request as cert_intermeidate_a.csr and the private key as
key_intermediate_a.pem.

$ openssl req \
-nodes \
-newkey rsa:2048 \
-subj '/CN=First Intermediate Certificate' \

(continues on next page)

2.1. User Documentation 35

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

-keyout key_intermediate_a.pem \
-out cert_intermediate_a.csr

Generating a 2048 bit RSA private key
...
↪→..................................+++
.....+++
writing new private key to 'key_intermediate_a.pem'

Generate the first intermediate certificate by signing its certificate request with the CA. For these instruc-
tions we will save the certificate as cert_intermediate_a.pem.

$ openssl ca \
-config ca.conf \
-extensions intermediate_cert_extensions \
-cert cert_ca.pem \
-keyfile key_ca.pem \
-out cert_intermediate_a.pem \
-infiles cert_intermediate_a.csr

Using configuration from ca.conf
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
commonName :ASN.1 12:'First Intermediate Certificate'
Certificate is to be certified until Nov 15 16:24:21 2020 GMT (1000 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Create the second intermediate certificate

Create a certificate request for the second intermediate certificate. For these instructions, we
will save the certificate request as cert_intermeidate_b.csr and the private key as
key_intermediate_b.pem.

$ openssl req \
-nodes \
-newkey rsa:2048 \
-subj '/CN=Second Intermediate Certificate' \
-keyout key_intermediate_b.pem \
-out cert_intermediate_b.csr

Generating a 2048 bit RSA private key
..........+++
..+++
writing new private key to 'key_intermediate_b.pem'

Generate the second intermediate certificate by signing its certificate request with the first intermediate

2.1. User Documentation 36

Nova Documentation, Release 22.4.1.dev41

certificate. For these instructions we will save the certificate as cert_intermediate_b.pem.

$ openssl ca \
-config ca.conf \
-extensions intermediate_cert_extensions \
-cert cert_intermediate_a.pem \
-keyfile key_intermediate_a.pem \
-out cert_intermediate_b.pem \
-infiles cert_intermediate_b.csr

Using configuration from ca.conf
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
commonName :ASN.1 12:'Second Intermediate Certificate'
Certificate is to be certified until Nov 15 16:25:42 2020 GMT (1000 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Create the client certificate

Create a certificate request for the client certificate. For these instructions, we will save the certificate
request as cert_client.csr and the private key as key_client.pem.

$ openssl req \
-nodes \
-newkey rsa:2048 \
-subj '/CN=Client Certificate' \
-keyout key_client.pem \
-out cert_client.csr

Generating a 2048 bit RSA private key
...
↪→..+++
...
↪→...................+++
writing new private key to 'key_client.pem'

Generate the client certificate by signing its certificate request with the second intermediate certificate.
For these instructions we will save the certificate as cert_client.pem.

$ openssl ca \
-config ca.conf \
-extensions client_cert_extensions \
-cert cert_intermediate_b.pem \
-keyfile key_intermediate_b.pem \
-out cert_client.pem \
-infiles cert_client.csr

Using configuration from ca.conf

(continues on next page)

2.1. User Documentation 37

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
commonName :ASN.1 12:'Client Certificate'
Certificate is to be certified until Nov 15 16:26:46 2020 GMT (1000 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Upload the generated certificates to the key manager

In order interact with the key manager, the user needs to have a creator role.

To list all users with a creator role, run the following command as an admin:

$ openstack role assignment list --role creator --names

+---------+-----------------------------+-------+-------------------+------
↪→--+-----------+
| Role | User | Group | Project |
↪→Domain | Inherited |
+---------+-----------------------------+-------+-------------------+------
↪→--+-----------+
| creator | project_a_creator_2@Default | | project_a@Default |
↪→ | False |
| creator | project_b_creator@Default | | project_b@Default |
↪→ | False |
| creator | project_a_creator@Default | | project_a@Default |
↪→ | False |
+---------+-----------------------------+-------+-------------------+------
↪→--+-----------+

To give the demo user a creator role in the demo project, run the following command as an admin:

$ openstack role add --user demo --project demo creator

Note: This command provides no output. If the command fails, the user will see a 4xx Client error
indicating that Secret creation attempt not allowed and to please review your user/project privileges.

Note: The following openstack secret commands require that the python-barbicanclient package is
installed.

$ openstack secret store \
--name CA \
--algorithm RSA \
--expiration 2018-06-29 \

(continues on next page)

2.1. User Documentation 38

https://pypi.org/project/python-barbicanclient/

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

--secret-type certificate \
--payload-content-type "application/octet-stream" \
--payload-content-encoding base64 \
--payload "$(base64 cert_ca.pem)"

$ openstack secret store \
--name IntermediateA \
--algorithm RSA \
--expiration 2018-06-29 \
--secret-type certificate \
--payload-content-type "application/octet-stream" \
--payload-content-encoding base64 \
--payload "$(base64 cert_intermediate_a.pem)"

$ openstack secret store \
--name IntermediateB \
--algorithm RSA \
--expiration 2018-06-29 \
--secret-type certificate \
--payload-content-type "application/octet-stream" \
--payload-content-encoding base64 \
--payload "$(base64 cert_intermediate_b.pem)"

$ openstack secret store \
--name Client \
--algorithm RSA \
--expiration 2018-06-29 \
--secret-type certificate \
--payload-content-type "application/octet-stream" \
--payload-content-encoding base64 \
--payload "$(base64 cert_client.pem)"

The responses should look something like this:

+---------------+--
↪→--------------------+
| Field | Value
↪→ |
+---------------+--
↪→--------------------+
| Secret href | http://127.0.0.1/key-manager/v1/secrets/8fbcce5d-d646-
↪→4295-ba8a-269fc9451eeb |
| Name | CA
↪→ |
| Created | None
↪→ |
| Status | None
↪→ |
| Content types | {u'default': u'application/octet-stream'}
↪→ |
| Algorithm | RSA
↪→ |
| Bit length | 256
↪→ |
| Secret type | certificate
↪→ |

(continues on next page)

2.1. User Documentation 39

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| Mode | cbc
↪→ |
| Expiration | 2018-06-29T00:00:00+00:00
↪→ |
+---------------+--
↪→--------------------+

Save off the certificate UUIDs (found in the secret href):

$ cert_ca_uuid=8fbcce5d-d646-4295-ba8a-269fc9451eeb
$ cert_intermediate_a_uuid=0b5d2c72-12cc-4ba6-a8d7-3ff5cc1d8cb8
$ cert_intermediate_b_uuid=674736e3-f25c-405c-8362-bbf991e0ce0a
$ cert_client_uuid=125e6199-2de4-46e3-b091-8e2401ef0d63

Create a signed image

For these instructions, we will download a small CirrOS image:

$ wget -nc -O cirros.tar.gz http://download.cirros-cloud.net/0.3.5/cirros-
↪→0.3.5-source.tar.gz

--2018-02-19 11:37:52-- http://download.cirros-cloud.net/0.3.5/cirros-0.3.
↪→5-source.tar.gz
Resolving download.cirros-cloud.net (download.cirros-cloud.net)... 64.90.
↪→42.85
Connecting to download.cirros-cloud.net (download.cirros-cloud.net)|64.90.
↪→42.85|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 434333 (424K) [application/x-tar]
Saving to: cirros.tar.gz

cirros.tar.gz 100%[===================>] 424.15K --.-KB/s in 0.1s

2018-02-19 11:37:54 (3.79 MB/s) - cirros.tar.gz saved [434333/434333]

Sign the image with the generated client private key:

$ openssl dgst \
-sha256 \
-sign key_client.pem \
-sigopt rsa_padding_mode:pss \
-out cirros.self_signed.signature \
cirros.tar.gz

Note: This command provides no output.

Save off the base64 encoded signature:

$ base64_signature=$(base64 -w 0 cirros.self_signed.signature)

Upload the signed image to Glance:

2.1. User Documentation 40

Nova Documentation, Release 22.4.1.dev41

$ openstack image create \
--public \
--container-format bare \
--disk-format qcow2 \
--property img_signature="$base64_signature" \
--property img_signature_certificate_uuid="$cert_client_uuid" \
--property img_signature_hash_method='SHA-256' \
--property img_signature_key_type='RSA-PSS' \
--file cirros.tar.gz \
cirros_client_signedImage

+------------------+---
↪→-----------------+
| Field | Value
↪→ |
+------------------+---
↪→-----------------+
| checksum | d41d8cd98f00b204e9800998ecf8427e
↪→ |
| container_format | bare
↪→ |
| created_at | 2019-02-06T06:29:56Z
↪→ |
| disk_format | qcow2
↪→ |
| file | /v2/images/17f48a6c-e592-446e-9c91-00fbc436d47e/file
↪→ |
| id | 17f48a6c-e592-446e-9c91-00fbc436d47e
↪→ |
| min_disk | 0
↪→ |
| min_ram | 0
↪→ |
| name | cirros_client_signedImage
↪→ |
| owner | 45e13e63606f40d6b23275c3cd91aec2
↪→ |
| properties | img_signature='swA/
↪→hZi3WaNh35VMGlnfGnBWuXMlUbdO8h306uG7W3nwOyZP6dGRJ3 |
| | Xoi/
↪→07Bo2dMUB9saFowqVhdlW5EywQAK6vgDsi9O5aItHM4u7zUPw+2e8eeaIoHlGhTks |
| |
↪→kmW9isLy0mYA9nAfs3coChOIPXW4V8VgVXEfb6VYGHWm0nShiAP1e0do9WwitsE/TVKoS |
| | QnWjhggIYij5hmUZ628KAygPnXklxVhqPpY/
↪→dFzL+tTzNRD0nWAtsc5wrl6/8HcNzZsaP |
| |
↪→oexAysXJtcFzDrf6UQu66D3UvFBVucRYL8S3W56It3Xqu0+InLGaXJJpNagVQBb476zB2 |
| | ZzZ5RJ/4Zyxw==',
↪→ |
| | img_signature_certificate_uuid='125e6199-2de4-46e3-
↪→b091-8e2401ef0d63', |
| | img_signature_hash_method='SHA-256',
↪→ |
| | img_signature_key_type='RSA-PSS',
↪→ |
| | os_hash_algo='sha512',
↪→ |

(continues on next page)

2.1. User Documentation 41

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| | os_hash_value=
↪→'cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a92 |
| |
↪→1d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927d |
| | a3e',
↪→ |
| | os_hidden='False'
↪→ |
| protected | False
↪→ |
| schema | /v2/schemas/image
↪→ |
| size | 0
↪→ |
| status | active
↪→ |
| tags |
↪→ |
| updated_at | 2019-02-06T06:29:56Z
↪→ |
| virtual_size | None
↪→ |
| visibility | public
↪→ |
+------------------+---
↪→-----------------+

Note: Creating the image can fail if validation does not succeed. This will cause the image to be deleted
and the Glance log to report that Signature verification failed for the given image ID.

Boot the signed image

Boot the signed image without specifying trusted certificate IDs:

$ nova boot myInstance \
--flavor m1.tiny \
--image cirros_client_signedImage

Note: The instance should fail to boot because certificate validation fails when the feature is enabled
but no trusted image certificates are provided. The Nova log output should indicate that Image signature
certificate validation failed because Certificate chain building failed.

Boot the signed image with trusted certificate IDs:

$ nova boot myInstance \
--flavor m1.tiny \
--image cirros_client_signedImage \
--trusted-image-certificate-id $cert_ca_uuid,$cert_intermediate_a_uuid

↪→\
--trusted-image-certificate-id $cert_intermediate_b_uuid

2.1. User Documentation 42

Nova Documentation, Release 22.4.1.dev41

Note: The instance should successfully boot and certificate validation should succeed. The Nova log
output should indicate that Image signature certificate validation succeeded.

Other Links

• https://etherpad.openstack.org/p/mitaka-glance-image-signing-instructions

• https://etherpad.openstack.org/p/queens-nova-certificate-validation

• https://wiki.openstack.org/wiki/OpsGuide/User-Facing_Operations

• http://specs.openstack.org/openstack/nova-specs/specs/rocky/approved/
nova-validate-certificates.html

2.1.1.6 Resize an instance

You can change the size of an instance by changing its flavor. This rebuilds the instance and therefore
results in a restart.

To list the VMs you want to resize, run:

$ openstack server list

Once you have the name or UUID of the server you wish to resize, resize it using the openstack
server resize command:

$ openstack server resize --flavor FLAVOR SERVER

Note: By default, the openstack server resize command gives the guest operating system a
chance to perform a controlled shutdown before the instance is powered off and the instance is resized.
This behavior can be configured by the administrator but it can also be overridden on a per image basis
using the os_shutdown_timeout image metadata setting. This allows different types of operating
systems to specify how much time they need to shut down cleanly. See Useful image properties for
details.

Resizing can take some time. During this time, the instance status will be RESIZE:

$ openstack server list
+----------------------+----------------+--------+-------------------------
↪→----------------+
| ID | Name | Status | Networks
↪→ |
+----------------------+----------------+--------+-------------------------
↪→----------------+
| 67bc9a9a-5928-47c... | myCirrosServer | RESIZE | admin_internal_net=192.
↪→168.111.139 |
+----------------------+----------------+--------+-------------------------
↪→----------------+

When the resize completes, the instance status will be VERIFY_RESIZE. You can now confirm the
resize to change the status to ACTIVE:

2.1. User Documentation 43

https://etherpad.openstack.org/p/mitaka-glance-image-signing-instructions
https://etherpad.openstack.org/p/queens-nova-certificate-validation
https://wiki.openstack.org/wiki/OpsGuide/User-Facing_Operations
http://specs.openstack.org/openstack/nova-specs/specs/rocky/approved/nova-validate-certificates.html
http://specs.openstack.org/openstack/nova-specs/specs/rocky/approved/nova-validate-certificates.html
https://docs.openstack.org/glance/victoria/admin/useful-image-properties

Nova Documentation, Release 22.4.1.dev41

$ openstack server resize confirm SERVER

Note: The resized server may be automatically confirmed based on the administrators configuration of
the deployment.

If the resize does not work as expected, you can revert the resize. This will revert the instance to the old
flavor and change the status to ACTIVE:

$ openstack server resize revert SERVER

2.1.1.7 Reboot an instance

You can soft or hard reboot a running instance. A soft reboot attempts a graceful shut down and restart
of the instance. A hard reboot power cycles the instance.

To reboot a server, use the openstack server reboot command:

$ openstack server reboot SERVER

By default, when you reboot an instance it is a soft reboot. To perform a hard reboot, pass the --hard
parameter as follows:

$ openstack server reboot --hard SERVER

It is also possible to reboot a running instance into rescue mode. For example, this operation may be
required if a filesystem of an instance becomes corrupted with prolonged use. See Rescue an instance
for more details.

2.1.1.8 Rescue an instance

Instance rescue provides a mechanism for access, even if an image renders the instance inaccessible.
Two rescue modes are currently provided.

Instance rescue

By default the instance is booted from the provided rescue image or a fresh copy of the original instance
image if a rescue image is not provided. The root disk and optional regenerated config drive are also
attached to the instance for data recovery.

Note: Rescuing a volume-backed instance is not supported with this mode.

2.1. User Documentation 44

Nova Documentation, Release 22.4.1.dev41

Stable device instance rescue

As of 21.0.0 (Ussuri) an additional stable device rescue mode is available. This mode now supports the
rescue of volume-backed instances.

This mode keeps all devices both local and remote attached in their original order to the instance during
the rescue while booting from the provided rescue image. This mode is enabled and controlled by
the presence of hw_rescue_device or hw_rescue_bus image properties on the provided rescue
image.

As their names suggest these properties control the rescue device type (cdrom, disk or floppy) and
bus type (scsi, virtio, ide, or usb) used when attaching the rescue image to the instance.

Support for each combination of the hw_rescue_device and hw_rescue_bus image properties
is dependent on the underlying hypervisor and platform being used. For example the IDE bus is not
available on POWER KVM based compute hosts.

Note: This mode is only supported when using the Libvirt virt driver.

This mode is not supported when using LXC or Xen hypervisors as enabled by the libvirt.
virt_type configurable on the computes.

Usage

Note: Pause, suspend, and stop operations are not allowed when an instance is running in rescue
mode, as triggering these actions causes the loss of the original instance state and makes it impossible
to unrescue the instance.

To perform an instance rescue, use the openstack server rescue command:

$ openstack server rescue SERVER

Note: On running the openstack server rescue command, an instance performs a soft shut-
down first. This means that the guest operating system has a chance to perform a controlled shutdown
before the instance is powered off. The shutdown behavior is configured by the shutdown_timeout
parameter that can be set in the nova.conf file. Its value stands for the overall period (in seconds) a
guest operating system is allowed to complete the shutdown.

The timeout value can be overridden on a per image basis by means of os_shutdown_timeout that
is an image metadata setting allowing different types of operating systems to specify how much time
they need to shut down cleanly.

If you want to rescue an instance with a specific image, rather than the default one, use the --image
parameter:

$ openstack server rescue --image IMAGE_ID SERVER

To restart the instance from the normal boot disk, run the following command:

2.1. User Documentation 45

Nova Documentation, Release 22.4.1.dev41

$ openstack server unrescue SERVER

2.1.1.9 Block Device Mapping in Nova

Nova has a concept of block devices that can be exposed to cloud instances. There are several types of
block devices an instance can have (we will go into more details about this later in this document), and
which ones are available depends on a particular deployment and the usage limitations set for tenants
and users. Block device mapping is a way to organize and keep data about all of the block devices an
instance has.

When we talk about block device mapping, we usually refer to one of two things

1. API/CLI structure and syntax for specifying block devices for an instance boot request

2. The data structure internal to Nova that is used for recording and keeping, which is ultimately per-
sisted in the block_device_mapping table. However, Nova internally has several slightly different
formats for representing the same data. All of them are documented in the code and or presented
by a distinct set of classes, but not knowing that they exist might trip up people reading the code.
So in addition to BlockDeviceMapping1 objects that mirror the database schema, we have:

2.1 The API format - this is the set of raw key-value pairs received from the API client, and is
almost immediately transformed into the object; however, some validations are done using this
format. We will refer to this format as the API BDMs from now on.

2.2 The virt driver format - this is the format defined by the classes in :mod:
nova.virt.block_device. This format is used and expected by the code in the various virt drivers.
These classes, in addition to exposing a different format (mimicking the Python dict interface),
also provide a place to bundle some functionality common to certain types of block devices (for
example attaching volumes which has to interact with both Cinder and the virt driver code). We
will refer to this format as Driver BDMs from now on.

Note: The maximum limit on the number of disk devices allowed to attach to a single server is config-
urable with the option compute.max_disk_devices_to_attach.

Data format and its history

In the early days of Nova, block device mapping general structure closely mirrored that of the EC2 API.
During the Havana release of Nova, block device handling code, and in turn the block device mapping
structure, had work done on improving the generality and usefulness. These improvements included
exposing additional details and features in the API. In order to facilitate this, a new extension was added
to the v2 API called BlockDeviceMappingV2Boot2, that added an additional block_device_mapping_v2
field to the instance boot API request.

1 In addition to the BlockDeviceMapping Nova object, we also have the BlockDeviceDict class in :mod: nova.block_device
module. This class handles transforming and validating the API BDM format.

2 This work predates API microversions and thus the only way to add it was by means of an API extension.

2.1. User Documentation 46

Nova Documentation, Release 22.4.1.dev41

Block device mapping v1 (aka legacy)

This was the original format that supported only cinder volumes (similar to how EC2 block devices
support only EBS volumes). Every entry was keyed by device name (we will discuss why this was
problematic in its own section later on this page), and would accept only:

• UUID of the Cinder volume or snapshot

• Type field - used only to distinguish between volumes and Cinder volume snapshots

• Optional size field

• Optional delete_on_termination flag

While all of Nova internal code only uses and stores the new data structure, we still need to handle API
requests that use the legacy format. This is handled by the Nova API service on every request. As we will
see later, since block device mapping information can also be stored in the image metadata in Glance,
this is another place where we need to handle the v1 format. The code to handle legacy conversions is
part of the :mod: nova.block_device module.

Intermezzo - problem with device names

Using device names as the primary per-instance identifier, and exposing them in the API, is problematic
for Nova mostly because several hypervisors Nova supports with its drivers cant guarantee that the
device names the guest OS assigns are the ones the user requested from Nova. Exposing such a detail
in the public API of Nova is obviously not ideal, but it needed to stay for backwards compatibility. It is
also required for some (slightly obscure) features around overloading a block device in a Glance image
when booting an instance3.

The plan for fixing this was to allow users to not specify the device name of a block device, and Nova
will determine it (with the help of the virt driver), so that it can still be discovered through the API and
used when necessary, like for the features mentioned above (and preferably only then).

Another use for specifying the device name was to allow the boot from volume functionality, by speci-
fying a device name that matches the root device name for the instance (usually /dev/vda).

Currently (mid Liberty) users are discouraged from specifying device names for all calls requiring or
allowing block device mapping, except when trying to override the image block device mapping on
instance boot, and it will likely remain like that in the future. Libvirt device driver will outright override
any device names passed with its own values.

Block device mapping v2

New format was introduced in an attempt to solve issues with the original block device mapping format
discussed above, and also to allow for more flexibility and addition of features that were not possible
with the simple format we had.

New block device mapping is a list of dictionaries containing the following fields (in addition to the ones
that were already there):

• source_type - this can have one of the following values:
3 This is a feature that the EC2 API offers as well and has been in Nova for a long time, although it has been broken in

several releases. More info can be found on this bug <https://launchpad.net/bugs/1370250>

2.1. User Documentation 47

Nova Documentation, Release 22.4.1.dev41

– image

– volume

– snapshot

– blank

• destination_type - this can have one of the following values:

– local

– volume

• guest_format - Tells Nova how/if to format the device prior to attaching, should be only used with
blank local images. Denotes a swap disk if the value is swap.

• device_name - See the previous section for a more in depth explanation of this - currently best
left empty (not specified that is), unless the user wants to override the existing device specified in
the image metadata. In case of Libvirt, even when passed in with the purpose of overriding the
existing image metadata, final set of device names for the instance may still get changed by the
driver.

• disk_bus and device_type - low level details that some hypervisors (currently only libvirt) may
support. Some example disk_bus values can be: ide, usb, virtio, scsi, while device_type may be
disk, cdrom, floppy, lun. This is not an exhaustive list as it depends on the virtualization driver,
and may change as more support is added. Leaving these empty is the most common thing to do.

• boot_index - Defines the order in which a hypervisor will try devices when attempting to boot the
guest from storage. Each device which is capable of being used as boot device should be given a
unique boot index, starting from 0 in ascending order. Some hypervisors may not support booting
from multiple devices, so will only consider the device with boot index of 0. Some hypervisors
will support booting from multiple devices, but only if they are of different types - eg a disk
and CD-ROM. Setting a negative value or None indicates that the device should not be used for
booting. The simplest usage is to set it to 0 for the boot device and leave it as None for any other
devices.

• volume_type - Added in microversion 2.67 to the servers create API to support specify-
ing volume type when booting instances. When we snapshot a volume-backed server, the
block_device_mapping_v2 image metadata will include the volume_type from the BDM record
so if the user then creates another server from that snapshot, the volume that nova creates from
that snapshot will use the same volume_type. If a user wishes to change that volume type in the
image metadata, they can do so via the image API.

Valid source / destination combinations

Combination of the source_type and destination_type will define the kind of block device
the entry is referring to. The following combinations are supported:

• image -> local - this is only currently reserved for the entry referring to the Glance image that the
instance is being booted with (it should also be marked as a boot device). It is also worth noting
that an API request that specifies this, also has to provide the same Glance uuid as the image_ref
parameter to the boot request (this is done for backwards compatibility and may be changed in the
future). This functionality might be extended to specify additional Glance images to be attached
to an instance after boot (similar to kernel/ramdisk images) but this functionality is not supported
by any of the current drivers.

2.1. User Documentation 48

Nova Documentation, Release 22.4.1.dev41

• volume -> volume - this is just a Cinder volume to be attached to the instance. It can be marked as
a boot device.

• snapshot -> volume - this works exactly as passing type=snap does. It would create a volume
from a Cinder volume snapshot and attach that volume to the instance. Can be marked bootable.

• image -> volume - As one would imagine, this would download a Glance image to a cinder volume
and attach it to an instance. Can also be marked as bootable. This is really only a shortcut for
creating a volume out of an image before booting an instance with the newly created volume.

• blank -> volume - Creates a blank Cinder volume and attaches it. This will also require the volume
size to be set.

• blank -> local - Depending on the guest_format field (see below), this will either mean an
ephemeral blank disk on hypervisor local storage, or a swap disk (instances can have only one
of those).

Nova will not allow mixing of BDMv1 and BDMv2 in a single request, and will do basic validation to
make sure that the requested block device mapping is valid before accepting a boot request.

FAQs

1. Is it possible to configure nova to automatically use cinder to back all root disks with volumes?

No, there is nothing automatic within nova that converts a non-boot-from-volume request to con-
vert the image to a root volume. Several ideas have been discussed over time which are captured in
the spec for volume-backed flavors. However, if you wish to force users to always create volume-
backed servers, you can configure the API service by setting max_local_block_devices to
0. This will result in any non-boot-from-volume server create request to fail with a 400 response.

2.1.1.10 REST API Version History

This documents the changes made to the REST API with every microversion change. The description
for each version should be a verbose one which has enough information to be suitable for use in user
documentation.

2.1

This is the initial version of the v2.1 API which supports microversions. The V2.1 API is from the REST
API users point of view exactly the same as v2.0 except with strong input validation.

A user can specify a header in the API request:

X-OpenStack-Nova-API-Version: <version>

where <version> is any valid api version for this API.

If no version is specified then the API will behave as if a version request of v2.1 was requested.

2.1. User Documentation 49

https://review.opendev.org/511965/

Nova Documentation, Release 22.4.1.dev41

2.2

Added Keypair type.

A user can request the creation of a certain type of keypair (ssh or x509) in the os-keypairs plugin

If no keypair type is specified, then the default ssh type of keypair is created.

Fixes status code for os-keypairs create method from 200 to 201

Fixes status code for os-keypairs delete method from 202 to 204

2.3 (Maximum in Kilo)

Exposed additional attributes in os-extended-server-attributes: reservation_id,
launch_index, ramdisk_id, kernel_id, hostname, root_device_name, userdata.

Exposed delete_on_termination for volumes_attached in os-extended-volumes.

This change is required for the extraction of EC2 API into a standalone service. It exposes necessary
properties absent in public nova APIs yet. Add info for Standalone EC2 API to cut access to Nova DB.

2.4

Show the reserved status on a FixedIP object in the os-fixed-ips API extension. The ex-
tension allows one to reserve and unreserve a fixed IP but the show method does not report the
current status.

2.5

Before version 2.5, the command nova list --ip6 xxx returns all servers for non-admins, as the
filter option is silently discarded. There is no reason to treat ip6 different from ip, though, so we just add
this option to the allowed list.

2.6

A new API for getting remote console is added:

POST /servers/<uuid>/remote-consoles
{

"remote_console": {
"protocol": ["vnc"|"rdp"|"serial"|"spice"],
"type": ["novnc"|"xpvnc"|"rdp-html5"|"spice-html5"|"serial"]

}
}

Example response:

{
"remote_console": {

"protocol": "vnc",

(continues on next page)

2.1. User Documentation 50

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

"type": "novnc",
"url": "http://example.com:6080/vnc_auto.html?path=%3Ftoken%3DXYZ"

}
}

The old APIs os-getVNCConsole, os-getSPICEConsole, os-getSerialConsole and
os-getRDPConsole are removed.

2.7

Check the is_public attribute of a flavor before adding tenant access to it. Reject the request with
HTTPConflict error.

2.8

Add mks protocol and webmks type for remote consoles.

2.9

Add a new locked attribute to the detailed view, update, and rebuild action. locked will be true if
anyone is currently holding a lock on the server, false otherwise.

2.10

Added user_id parameter to os-keypairs plugin, as well as a new property in the request body,
for the create operation.

Administrators will be able to list, get details and delete keypairs owned by users other than themselves
and to create new keypairs on behalf of their users.

2.11

Exposed attribute forced_down for os-services. Added ability to change the forced_down
attribute by calling an update.

2.12 (Maximum in Liberty)

Exposes VIF net_id attribute in os-virtual-interfaces. User will be able to get Virtual
Interfaces net_id in Virtual Interfaces list and can determine in which network a Virtual Interface is
plugged into.

2.1. User Documentation 51

Nova Documentation, Release 22.4.1.dev41

2.13

Add information project_id and user_id to os-server-groups API response data.

2.14

Remove onSharedStorage parameter from servers evacuate action. Nova will automatically detect
if the instance is on shared storage.

adminPass is removed from the response body. The user can get the password with the servers
os-server-password action.

2.15

From this version of the API users can choose soft-affinity and soft-anti-affinity rules too for server-
groups.

2.16

Exposes new host_status attribute for servers/detail and servers/{server_id}. Ability to get nova-
compute status when querying servers. By default, this is only exposed to cloud administrators.

2.17

Add a new API for triggering crash dump in an instance. Different operation systems in instance may
need different configurations to trigger crash dump.

2.18

Establishes a set of routes that makes project_id an optional construct in v2.1.

2.19

Allow the user to set and get the server description. The user will be able to set the description when
creating, rebuilding, or updating a server, and get the description as part of the server details.

2.20

From this version of the API user can call detach and attach volumes for instances which are in
shelved and shelved_offloaded state.

2.1. User Documentation 52

Nova Documentation, Release 22.4.1.dev41

2.21

The os-instance-actions API now returns information from deleted instances.

2.22

A new resource, servers:migrations, is added. A new API to force live migration to complete
added:

POST /servers/<uuid>/migrations/<id>/action
{

"force_complete": null
}

2.23

From this version of the API users can get the migration summary list by index API or the information
of a specific migration by get API. Add migration_type for old /os-migrations API, also
add ref link to the /servers/{uuid}/migrations/{id} for it when the migration is an in-
progress live-migration.

2.24

A new API call to cancel a running live migration:

DELETE /servers/<uuid>/migrations/<id>

2.25 (Maximum in Mitaka)

Modify input parameter for os-migrateLive. The block_migration field now supports an
auto value and the disk_over_commit flag is removed.

2.26

Added support of server tags.

A user can create, update, delete or check existence of simple string tags for servers by the
os-server-tags plugin.

Tags have the following schema restrictions:

• Tag is a Unicode bytestring no longer than 60 characters.

• Tag is a non-empty string.

• / is not allowed to be in a tag name

• Comma is not allowed to be in a tag name in order to simplify requests that specify lists of tags

• All other characters are allowed to be in a tag name

2.1. User Documentation 53

Nova Documentation, Release 22.4.1.dev41

• Each server can have up to 50 tags.

The resource point for these operations is /servers/<server_id>/tags.

A user can add a single tag to the server by making a PUT request to /servers/<server_id>/
tags/<tag>.

where <tag> is any valid tag name.

A user can replace all current server tags to the new set of tags by making a PUT request to the /
servers/<server_id>/tags. The new set of tags must be specified in request body. This set
must be in list tags.

A user can remove specified tag from the server by making a DELETE request to /servers/
<server_id>/tags/<tag>.

where <tag> is tag name which user wants to remove.

A user can remove all tags from the server by making a DELETE request to the /servers/
<server_id>/tags.

A user can get a set of server tags with information about server by making a GET request to /
servers/<server_id>.

Request returns dictionary with information about specified server, including list tags:

{
'id': {server_id},
...
'tags': ['foo', 'bar', 'baz']

}

A user can get only a set of server tags by making a GET request to /servers/<server_id>/
tags.

Response

{
'tags': ['foo', 'bar', 'baz']

}

A user can check if a tag exists or not on a server by making a GET request to /servers/
{server_id}/tags/{tag}.

Request returns 204 No Content if tag exist on a server or 404 Not Found if tag doesnt exist on
a server.

A user can filter servers in GET /servers request by new filters:

• tags

• tags-any

• not-tags

• not-tags-any

These filters can be combined. Also user can use more than one string tags for each filter. In this case
string tags for each filter must be separated by comma. For example:

2.1. User Documentation 54

Nova Documentation, Release 22.4.1.dev41

GET /servers?tags=red&tags-any=green,orange

2.27

Added support for the new form of microversion headers described in the Microversion Specification.
Both the original form of header and the new form is supported.

2.28

Nova API hypervisor.cpu_info change from string to JSON object.

From this version of the API the hypervisors cpu_info field will be returned as JSON object (not
string) by sending GET request to the /v2.1/os-hypervisors/{hypervisor_id}.

2.29

Updates the POST request body for the evacuate action to include the optional force boolean field
defaulted to False. Also changes the evacuate action behaviour when providing a host string field by
calling the nova scheduler to verify the provided host unless the force attribute is set.

2.30

Updates the POST request body for the live-migrate action to include the optional force boolean
field defaulted to False. Also changes the live-migrate action behaviour when providing a host string
field by calling the nova scheduler to verify the provided host unless the force attribute is set.

2.31

Fix os-console-auth-tokens to return connection info for all types of tokens, not just RDP.

2.32

Adds an optional, arbitrary tag item to the networks item in the server boot request body. In addition,
every item in the block_device_mapping_v2 array can also have an optional, arbitrary tag item. These
tags are used to identify virtual device metadata, as exposed in the metadata API and on the config drive.
For example, a network interface on the virtual PCI bus tagged with nic1 will appear in the metadata
along with its bus (PCI), bus address (ex: 0000:00:02.0), MAC address, and tag (nic1).

Note: A bug has caused the tag attribute to no longer be accepted for networks starting with version 2.37
and for block_device_mapping_v2 starting with version 2.33. In other words, networks could only be
tagged between versions 2.32 and 2.36 inclusively and block devices only in version 2.32. As of version
2.42 the tag attribute has been restored and both networks and block devices can be tagged again.

2.1. User Documentation 55

http://specs.openstack.org/openstack/api-wg/guidelines/microversion_specification.html

Nova Documentation, Release 22.4.1.dev41

2.33

Support pagination for hypervisor by accepting limit and marker from the GET API request:

GET /v2.1/{tenant_id}/os-hypervisors?marker={hypervisor_id}&limit={limit}

In the context of device tagging at server create time, 2.33 also removes the tag attribute from
block_device_mapping_v2. This is a bug that is fixed in 2.42, in which the tag attribute is reintroduced.

2.34

Checks in os-migrateLive before live-migration actually starts are now made in background.
os-migrateLive is not throwing 400 Bad Request if pre-live-migration checks fail.

2.35

Added pagination support for keypairs.

Optional parameters limit and marker were added to GET /os-keypairs request, the default sort_key was
changed to name field as ASC order, the generic request format is:

GET /os-keypairs?limit={limit}&marker={kp_name}

2.36

All the APIs which proxy to another service were deprecated in this version, also the fping API. Those
APIs will return 404 with Microversion 2.36. The network related quotas and limits are removed from
API also. The deprecated API endpoints as below:

'/images'
'/os-networks'
'/os-tenant-networks'
'/os-fixed-ips'
'/os-floating-ips'
'/os-floating-ips-bulk'
'/os-floating-ip-pools'
'/os-floating-ip-dns'
'/os-security-groups'
'/os-security-group-rules'
'/os-security-group-default-rules'
'/os-volumes'
'/os-snapshots'
'/os-baremetal-nodes'
'/os-fping'

Note: A regression was introduced in this microversion which broke the force parameter in the PUT
/os-quota-sets API. The fix will have to be applied to restore this functionality.

2.1. User Documentation 56

https://bugs.launchpad.net/nova/+bug/1733886

Nova Documentation, Release 22.4.1.dev41

Changed in version 18.0.0: The os-fping API was completely removed in the 18.0.0 (Rocky) release.
On deployments newer than this, the API will return HTTP 410 (Gone) regardless of the requested
microversion.

Changed in version 21.0.0: The os-security-group-default-rules API was completely re-
moved in the 21.0.0 (Ussuri) release. On deployments newer than this, the APIs will return HTTP 410
(Gone) regardless of the requested microversion.

Changed in version 21.0.0: The os-networks API was partially removed in the 21.0.0 (Ussuri) re-
lease. On deployments newer than this, some endpoints of the API will return HTTP 410 (Gone) regard-
less of the requested microversion.

Changed in version 21.0.0: The os-tenant-networks API was partially removed in the 21.0.0
(Ussuri) release. On deployments newer than this, some endpoints of the API will return HTTP 410
(Gone) regardless of the requested microversion.

2.37

Added support for automatic allocation of networking, also known as Get Me a Network. With this
microversion, when requesting the creation of a new server (or servers) the networks entry in the
server portion of the request body is required. The networks object in the request can either be a
list or an enum with values:

1. none which means no networking will be allocated for the created server(s).

2. auto which means either a network that is already available to the project will be used, or if one
does not exist, will be automatically created for the project. Automatic network allocation for a
project only happens once for a project. Subsequent requests using auto for the same project will
reuse the network that was previously allocated.

Also, the uuid field in the networks object in the server create request is now strictly enforced to be
in UUID format.

In the context of device tagging at server create time, 2.37 also removes the tag attribute from networks.
This is a bug that is fixed in 2.42, in which the tag attribute is reintroduced.

2.1. User Documentation 57

Nova Documentation, Release 22.4.1.dev41

2.38 (Maximum in Newton)

Before version 2.38, the command nova list --status invalid_status was returning
empty list for non admin user and 500 InternalServerError for admin user. As there are sufficient statuses
defined already, any invalid status should not be accepted. From this version of the API admin as well
as non admin user will get 400 HTTPBadRequest if invalid status is passed to nova list command.

2.39

Deprecates image-metadata proxy API that is just a proxy for Glance API to operate the image meta-
data. Also removes the extra quota enforcement with Nova metadata quota (quota checks for createIm-
age and createBackup actions in Nova were removed). After this version Glance configuration option
image_property_quota should be used to control the quota of image metadatas. Also, removes the max-
ImageMeta field from os-limits API response.

2.40

Optional query parameters limit and marker were added to the os-simple-tenant-usage
endpoints for pagination. If a limit isnt provided, the configurable max_limit will be used which
currently defaults to 1000.

GET /os-simple-tenant-usage?limit={limit}&marker={instance_uuid}
GET /os-simple-tenant-usage/{tenant_id}?limit={limit}&marker={instance_
↪→uuid}

A tenants usage statistics may span multiple pages when the number of instances exceeds limit, and API
consumers will need to stitch together the aggregate results if they still want totals for all instances in a
specific time window, grouped by tenant.

Older versions of the os-simple-tenant-usage endpoints will not accept these new paging query
parameters, but they will start to silently limit by max_limit to encourage the adoption of this new mi-
croversion, and circumvent the existing possibility of DoS-like usage requests when there are thousands
of instances.

2.1. User Documentation 58

Nova Documentation, Release 22.4.1.dev41

2.41

The uuid attribute of an aggregate is now returned from calls to the /os-aggregates endpoint. This
attribute is auto-generated upon creation of an aggregate. The os-aggregates API resource endpoint
remains an administrator-only API.

2.42 (Maximum in Ocata)

In the context of device tagging at server create time, a bug has caused the tag attribute to no longer be
accepted for networks starting with version 2.37 and for block_device_mapping_v2 starting with version
2.33. Microversion 2.42 restores the tag parameter to both networks and block_device_mapping_v2,
allowing networks and block devices to be tagged again.

2.43

The os-hosts API is deprecated as of the 2.43 microversion. Requests made with microversion >=
2.43 will result in a 404 error. To list and show host details, use the os-hypervisors API. To enable
or disable a service, use the os-services API. There is no replacement for the shutdown, startup,
reboot, or maintenance_mode actions as those are system-level operations which should be outside of
the control of the compute service.

2.44

The following APIs which are considered as proxies of Neutron networking API, are deprecated and
will result in a 404 error response in new Microversion:

POST /servers/{server_uuid}/action
{

"addFixedIp": {...}
}

POST /servers/{server_uuid}/action
{

"removeFixedIp": {...}
}

POST /servers/{server_uuid}/action
{

"addFloatingIp": {...}
}

POST /servers/{server_uuid}/action
{

"removeFloatingIp": {...}
}

Those server actions can be replaced by calling the Neutron API directly.

The nova-network specific API to query the servers interfaces is deprecated:

2.1. User Documentation 59

Nova Documentation, Release 22.4.1.dev41

GET /servers/{server_uuid}/os-virtual-interfaces

To query attached neutron interfaces for a specific server, the API GET /servers/{server_uuid}/os-
interface can be used.

2.45

The createImage and createBackup server action APIs no longer return a Location header in
the response for the snapshot image, they now return a json dict in the response body with an image_id
key and uuid value.

2.46

The request_id created for every inbound request is now returned in X-OpenStack-Request-ID in
addition to X-Compute-Request-ID to be consistent with the rest of OpenStack. This is a signaling
only microversion, as these header settings happen well before microversion processing.

2.47

Replace the flavor name/ref with the actual flavor details from the embedded flavor object when
displaying server details. Requests made with microversion >= 2.47 will no longer return the flavor
ID/link but instead will return a subset of the flavor details. If the user is prevented by policy from
indexing extra-specs, then the extra_specs field will not be included in the flavor information.

2.48

Before version 2.48, VM diagnostics response was just a blob of data returned by each hypervisor. From
this version VM diagnostics response is standardized. It has a set of fields which each hypervisor will
try to fill. If a hypervisor driver is unable to provide a specific field then this field will be reported as
None.

2.49

Continuing from device role tagging at server create time introduced in version 2.32 and later fixed in
2.42, microversion 2.49 allows the attachment of network interfaces and volumes with an optional tag
parameter. This tag is used to identify the virtual devices in the guest and is exposed in the metadata
API. Because the config drive cannot be updated while the guest is running, it will only contain metadata
of devices that were tagged at boot time. Any changes made to devices while the instance is running -
be it detaching a tagged device or performing a tagged device attachment - will not be reflected in the
config drive.

Tagged volume attachment is not supported for shelved-offloaded instances.

2.1. User Documentation 60

Nova Documentation, Release 22.4.1.dev41

2.50

The server_groups and server_group_members keys are exposed in GET & PUT
os-quota-class-sets APIs Response body. Networks related quotas have been filtered out from
os-quota-class. Below quotas are filtered out and not available in os-quota-class-sets APIs
from this microversion onwards.

• fixed_ips

• floating_ips

• networks,

• security_group_rules

• security_groups

2.51

There are two changes for the 2.51 microversion:

• Add volume-extended event name to the os-server-external-events API. This
will be used by the Block Storage service when extending the size of an attached volume. This
signals the Compute service to perform any necessary actions on the compute host or hypervisor
to adjust for the new volume block device size.

• Expose the events field in the response body for the GET /servers/{server_id}/
os-instance-actions/{request_id}API. This is useful for API users to monitor when
a volume extend operation completes for the given server instance. By default only users with the
administrator role will be able to see event traceback details.

2.52

Adds support for applying tags when creating a server. The tag schema is the same as in the 2.26
microversion.

2.53 (Maximum in Pike)

os-services

Services are now identified by uuid instead of database id to ensure uniqueness across cells. This mi-
croversion brings the following changes:

• GET /os-services returns a uuid in the id field of the response

• DELETE /os-services/{service_uuid} requires a service uuid in the path

• The following APIs have been superseded by PUT /os-services/{service_uuid}/:

– PUT /os-services/disable

– PUT /os-services/disable-log-reason

– PUT /os-services/enable

– PUT /os-services/force-down

2.1. User Documentation 61

Nova Documentation, Release 22.4.1.dev41

PUT /os-services/{service_uuid} takes the following fields in the body:

– status - can be either enabled or disabled to enable or disable the given service

– disabled_reason - specify with status=disabled to log a reason for why the service is
disabled

– forced_down - boolean indicating if the service was forced down by an external service

• PUT /os-services/{service_uuid} will now return a full service resource representa-
tion like in a GET response

os-hypervisors

Hypervisors are now identified by uuid instead of database id to ensure uniqueness across cells. This
microversion brings the following changes:

• GET /os-hypervisors/{hypervisor_hostname_pattern}/search is depre-
cated and replaced with the hypervisor_hostname_pattern query parameter on the
GET /os-hypervisors and GET /os-hypervisors/detail APIs. Paging with
hypervisor_hostname_pattern is not supported.

• GET /os-hypervisors/{hypervisor_hostname_pattern}/servers is
deprecated and replaced with the with_servers query parameter on the GET /
os-hypervisors and GET /os-hypervisors/detail APIs.

• GET /os-hypervisors/{hypervisor_id} supports the with_servers query pa-
rameter to include hosted server details in the response.

• GET /os-hypervisors/{hypervisor_id} and GET /os-hypervisors/
{hypervisor_id}/uptime APIs now take a uuid value for the {hypervisor_id}
path parameter.

• The GET /os-hypervisors and GET /os-hypervisors/detail APIs will now use a
uuid marker for paging across cells.

• The following APIs will now return a uuid value for the hypervisor id and optionally service id
fields in the response:

– GET /os-hypervisors

– GET /os-hypervisors/detail

– GET /os-hypervisors/{hypervisor_id}

– GET /os-hypervisors/{hypervisor_id}/uptime

2.54

Allow the user to set the server key pair while rebuilding.

2.1. User Documentation 62

Nova Documentation, Release 22.4.1.dev41

2.55

Adds a description field to the flavor resource in the following APIs:

• GET /flavors

• GET /flavors/detail

• GET /flavors/{flavor_id}

• POST /flavors

• PUT /flavors/{flavor_id}

The embedded flavor description will not be included in server representations.

2.56

Updates the POST request body for the migrate action to include the the optional host string field
defaulted to null. If host is set the migrate action verifies the provided host with the nova scheduler
and uses it as the destination for the migration.

2.57

The 2.57 microversion makes the following changes:

• The personality parameter is removed from the server create and rebuild APIs.

• The user_data parameter is added to the server rebuild API.

• The maxPersonality and maxPersonalitySize limits are excluded from the GET /
limits API response.

• The injected_files, injected_file_content_bytes and
injected_file_path_bytes quotas are removed from the os-quota-sets and
os-quota-class-sets APIs.

2.58

Add pagination support and changes-since filter for os-instance-actions API. Users can now use
limit and marker to perform paginated query when listing instance actions. Users can also use
changes-since filter to filter the results based on the last time the instance action was updated.

2.59

Added pagination support for migrations, there are four changes:

• Add pagination support and changes-since filter for os-migrations API. Users can now use
limit and marker to perform paginate query when listing migrations.

• Users can also use changes-since filter to filter the results based on the last time the migration
record was updated.

2.1. User Documentation 63

Nova Documentation, Release 22.4.1.dev41

• GET /os-migrations, GET /servers/{server_id}/migrations/
{migration_id} and GET /servers/{server_id}/migrations will now return a
uuid value in addition to the migrations id in the response.

• The query parameter schema of the GET /os-migrations API no longer allows additional
properties.

2.60 (Maximum in Queens)

From this version of the API users can attach a multiattach capable volume to multiple instances.
The API request for creating the additional attachments is the same. The chosen virt driver and the
volume back end has to support the functionality as well.

2.61

Exposes flavor extra_specs in the flavor representation. Now users can see the flavor extra-specs in
flavor APIs response and do not need to call GET /flavors/{flavor_id}/os-extra_specs
API. If the user is prevented by policy from indexing extra-specs, then the extra_specs field will
not be included in the flavor information. Flavor extra_specs will be included in Response body of the
following APIs:

• GET /flavors/detail

• GET /flavors/{flavor_id}

• POST /flavors

• PUT /flavors/{flavor_id}

2.62

Adds host (hostname) and hostId (an obfuscated hashed host id string) fields to the in-
stance action GET /servers/{server_id}/os-instance-actions/{req_id}
API. The display of the newly added host field will be controlled via policy rule
os_compute_api:os-instance-actions:events, which is the same policy used for
the events.traceback field. If the user is prevented by policy, only hostId will be displayed.

2.63

Adds support for the trusted_image_certificates parameter, which is used to define a list
of trusted certificate IDs that can be used during image signature verification and certificate validation.
The list is restricted to a maximum of 50 IDs. Note that trusted_image_certificates is not
supported with volume-backed servers.

The trusted_image_certificates request parameter can be passed to the server create and
rebuild APIs:

• POST /servers

• POST /servers/{server_id}/action (rebuild)

2.1. User Documentation 64

Nova Documentation, Release 22.4.1.dev41

The trusted_image_certificates parameter will be in the response body of the following
APIs:

• GET /servers/detail

• GET /servers/{server_id}

• PUT /servers/{server_id}

• POST /servers/{server_id}/action (rebuild)

2.64

Enable users to define the policy rules on server group policy to meet more advanced policy requirement.
This microversion brings the following changes in server group APIs:

• Add policy and rules fields in the request of POST /os-server-groups. The policy
represents the name of policy. The rules field, which is a dict, can be applied to the policy,
which currently only support max_server_per_host for anti-affinity policy.

• The policy and rules fields will be returned in response body of POST, GET /
os-server-groups API and GET /os-server-groups/{server_group_id} API.

• The policies and metadata fields have been removed from the response body of POST, GET
/os-server-groups API and GET /os-server-groups/{server_group_id}
API.

2.65 (Maximum in Rocky)

Add support for abort live migrations in queued and preparing status for API DELETE /
servers/{server_id}/migrations/{migration_id}.

2.66

The changes-before filter can be included as a request parameter of the following APIs to filter by
changes before or equal to the resource updated_at time:

• GET /servers

• GET /servers/detail

• GET /servers/{server_id}/os-instance-actions

• GET /os-migrations

2.1. User Documentation 65

Nova Documentation, Release 22.4.1.dev41

2.67

Adds the volume_type parameter to block_device_mapping_v2, which can be used to specify
cinder volume_type when creating a server.

2.68

Remove support for forced live migration and evacuate server actions.

2.69

Add support for returning minimal constructs for GET /servers, GET /servers/detail, GET
/servers/{server_id} and GET /os-services when there is a transient unavailability con-
dition in the deployment like an infrastructure failure. Starting from this microversion, the responses
from the down part of the infrastructure for the above four requests will have missing key values to
make it more resilient. The response body will only have a minimal set of information obtained from
the available information in the API database for the down cells. See handling down cells for more
information.

2.70

Exposes virtual device tags for volume attachments and virtual interfaces (ports). A tag parameter is
added to the response body for the following APIs:

Volumes

• GET /servers/{server_id}/os-volume_attachments (list)

• GET /servers/{server_id}/os-volume_attachments/{volume_id} (show)

• POST /servers/{server_id}/os-volume_attachments (attach)

Ports

• GET /servers/{server_id}/os-interface (list)

• GET /servers/{server_id}/os-interface/{port_id} (show)

• POST /servers/{server_id}/os-interface (attach)

2.71

The server_groups parameter will be in the response body of the following APIs to list the server
groups to which the server belongs:

• GET /servers/{server_id}

• PUT /servers/{server_id}

• POST /servers/{server_id}/action (rebuild)

2.1. User Documentation 66

https://docs.openstack.org/api-guide/compute/down_cells.html

Nova Documentation, Release 22.4.1.dev41

2.72 (Maximum in Stein)

API microversion 2.72 adds support for creating servers with neutron ports that has resource request,
e.g. neutron ports with QoS minimum bandwidth rule. Deleting servers with such ports have already
been handled properly as well as detaching these type of ports.

API limitations:

• Creating servers with Neutron networks having QoS minimum bandwidth rule is not supported.

• Attaching Neutron ports and networks having QoS minimum bandwidth rule is not supported.

• Moving (resizing, migrating, live-migrating, evacuating, unshelving after shelve offload) servers
with ports having resource request is not yet supported.

2.73

API microversion 2.73 adds support for specifying a reason when locking the server and exposes this
information via GET /servers/detail, GET /servers/{server_id}, PUT servers/
{server_id} and POST /servers/{server_id}/action where the action is rebuild. It also
supports locked as a filter/sort parameter for GET /servers/detail and GET /servers.

2.74

API microversion 2.74 adds support for specifying optional host and/or hypervisor_hostname
parameters in the request body of POST /servers. These request a specific destination
host/node to boot the requested server. These parameters are mutually exclusive with the special
availability_zone format of zone:host:node. Unlike zone:host:node, the host
and/or hypervisor_hostname parameters still allow scheduler filters to be run. If the requested
host/node is unavailable or otherwise unsuitable, earlier failure will be raised. There will be also a new
policy named compute:servers:create:requested_destination. By default, it can be
specified by administrators only.

2.75

Multiple API cleanups are done in API microversion 2.75:

• 400 error response for an unknown parameter in the querystring or request body.

• Make the server representation consistent among GET, PUT and rebuild server API
responses. PUT /servers/{server_id} and POST /servers/{server_id}/
action {rebuild} API responses are modified to add all the missing fields which are re-
turned by GET /servers/{server_id}.

• Change the default return value of the swap field from the empty string to 0 (integer) in flavor
APIs.

• Always return the servers field in the response of the GET /os-hypervisors, GET
/os-hypervisors/detail and GET /os-hypervisors/{hypervisor_id} APIs
even when there are no servers on a hypervisor.

2.1. User Documentation 67

https://docs.openstack.org/neutron/latest/admin/config-qos-min-bw.html

Nova Documentation, Release 22.4.1.dev41

2.76

Adds power-update event name to os-server-external-events API. The changes
to the power state of an instance caused by this event can be viewed through GET /
servers/{server_id}/os-instance-actions and GET /servers/{server_id}/
os-instance-actions/{request_id}.

2.77

API microversion 2.77 adds support for specifying availability zone when unshelving a shelved of-
floaded server.

2.78

Add server sub-resource topology to show server NUMA information.

• GET /servers/{server_id}/topology

The default behavior is configurable using two new policies:

• compute:server:topology:index

• compute:server:topology:host:index

2.79 (Maximum in Train)

API microversion 2.79 adds support for specifying the delete_on_termination field in the re-
quest body when attaching a volume to a server, to support configuring whether to delete the data volume
when the server is destroyed. Also, delete_on_termination is added to the GET responses when
showing attached volumes, and the delete_on_termination field is contained in the POST API
response body when attaching a volume.

The affected APIs are as follows:

• POST /servers/{server_id}/os-volume_attachments

• GET /servers/{server_id}/os-volume_attachments

• GET /servers/{server_id}/os-volume_attachments/{volume_id}

2.80

Microversion 2.80 changes the list migrations APIs and the os-migrations API.

Expose the user_id and project_id fields in the following APIs:

• GET /os-migrations

• GET /servers/{server_id}/migrations

• GET /servers/{server_id}/migrations/{migration_id}

The GET /os-migrations API will also have optional user_id and project_id query param-
eters for filtering migrations by user and/or project, for example:

2.1. User Documentation 68

Nova Documentation, Release 22.4.1.dev41

• GET /os-migrations?user_id=ef9d34b4-45d0-4530-871b-3fb535988394

• GET /os-migrations?project_id=011ee9f4-8f16-4c38-8633-a254d420fd54

• GET /os-migrations?user_id=ef9d34b4-45d0-4530-871b-3fb535988394&project_id=011ee9f4-8f16-4c38-8633-a254d420fd54

2.81

Adds support for image cache management by aggregate by adding POST /os-aggregates/
{aggregate_id}/images.

2.82

Adds accelerator-request-bound event to os-server-external-events API. This
event is sent by Cyborg to indicate completion of the binding event for one accelerator request (ARQ)
associated with an instance.

2.83

Allow the following filter parameters for GET /servers/detail and GET /servers for non-
admin :

• availability_zone

• config_drive

• key_name

• created_at

• launched_at

• terminated_at

• power_state

• task_state

• vm_state

• progress

• user_id

2.84

The GET /servers/{server_id}/os-instance-actions/{request_id}API returns a
details parameter for each failed event with a fault message, similar to the server fault.message
parameter in GET /servers/{server_id} for a server with status ERROR.

2.1. User Documentation 69

Nova Documentation, Release 22.4.1.dev41

2.85

Adds the ability to specify delete_on_termination in the PUT /servers/{server_id}/
os-volume_attachments/{volume_id} API, which allows changing the behavior of volume
deletion on instance deletion.

2.86

Add support for validation of known extra specs. This is enabled by default for the following APIs:

• POST /flavors/{flavor_id}/os-extra_specs

• PUT /flavors/{flavor_id}/os-extra_specs/{id}

Validation is only used for recognized extra spec namespaces, currently: accel,
aggregate_instance_extra_specs, capabilities, hw, hw_rng, hw_video, os,
pci_passthrough, powervm, quota, resources, trait, and vmware.

2.87 (Maximum in Ussuri and Victoria)

Adds support for rescuing boot from volume instances when the compute host reports the
COMPUTE_BFV_RESCUE capability trait.

Todo: The rest of this document should probably move to the admin guide.

2.1.2 Architecture Overview

• Nova architecture: An overview of how all the parts in nova fit together.

• Block Device Mapping: One of the more complicated parts to understand is the Block Device
Mapping parameters used to connect specific block devices to computes. This deserves its own
deep dive.

See the reference guide for details about more internal subsystems.

2.1.3 Deployment Considerations

There is information you might want to consider before doing your deployment, especially if it is going
to be a larger deployment. For smaller deployments the defaults from the install guide will be sufficient.

• Compute Driver Features Supported: While the majority of nova deployments use libvirt/kvm,
you can use nova with other compute drivers. Nova attempts to provide a unified feature set across
these, however, not all features are implemented on all backends, and not all features are equally
well tested.

– Feature Support by Use Case: A view of what features each driver supports based on whats
important to some large use cases (General Purpose Cloud, NFV Cloud, HPC Cloud).

– Feature Support full list: A detailed dive through features in each compute driver backend.

2.1. User Documentation 70

Nova Documentation, Release 22.4.1.dev41

• Cells v2 Planning: For large deployments, Cells v2 allows sharding of your compute environment.
Upfront planning is key to a successful Cells v2 layout.

• Placement service: Overview of the placement service, including how it fits in with the rest of
nova.

• Running nova-api on wsgi: Considerations for using a real WSGI container instead of the baked-in
eventlet web server.

2.1.4 Maintenance

Once you are running nova, the following information is extremely useful.

• Admin Guide: A collection of guides for administrating nova.

• Upgrades: How nova is designed to be upgraded for minimal service impact, and the order you
should do them in.

• Quotas: Managing project quotas in nova.

• Availablity Zones: Availability Zones are an end-user visible logical abstraction for partitioning
a cloud without knowing the physical infrastructure. They can be used to partition a cloud on
arbitrary factors, such as location (country, datacenter, rack), network layout and/or power source.

• Filter Scheduler: How the filter scheduler is configured, and how that will impact where compute
instances land in your environment. If you are seeing unexpected distribution of compute instances
in your hosts, youll want to dive into this configuration.

• Exposing custom metadata to compute instances: How and when you might want to extend the
basic metadata exposed to compute instances (either via metadata server or config drive) for your
specific purposes.

2.2 Tools for using Nova

• Horizon: The official web UI for the OpenStack Project.

• OpenStack Client: The official CLI for OpenStack Projects. You should use this as your CLI for
most things, it includes not just nova commands but also commands for most of the projects in
OpenStack.

• Nova Client: For some very advanced features (or administrative commands) of nova you may
need to use nova client. It is still supported, but the openstack cli is recommended.

2.3 Writing to the API

All end user (and some administrative) features of nova are exposed via a REST API, which can be used
to build more complicated logic or automation with nova. This can be consumed directly, or via various
SDKs. The following resources will help you get started with consuming the API directly.

• Compute API Guide: The concept guide for the API. This helps lay out the concepts behind the
API to make consuming the API reference easier.

• Compute API Reference: The complete reference for the compute API, including all methods and
request / response parameters and their meaning.

2.2. Tools for using Nova 71

https://docs.openstack.org/placement/victoria/
https://docs.openstack.org/horizon/victoria/user/launch-instances.html
https://docs.openstack.org/python-openstackclient/victoria/
https://docs.openstack.org/python-novaclient/victoria/user/shell.html
https://docs.openstack.org/api-guide/compute/
https://docs.openstack.org/api-ref/compute/

Nova Documentation, Release 22.4.1.dev41

• Compute API Microversion History: The compute API evolves over time through Microversions.
This provides the history of all those changes. Consider it a whats new in the compute API.

• Block Device Mapping: One of the trickier parts to understand is the Block Device Mapping
parameters used to connect specific block devices to computes. This deserves its own deep dive.

• Metadata: Provide information to the guest instance when it is created.

Nova can be configured to emit notifications over RPC.

• Versioned Notifications: This provides the list of existing versioned notifications with sample
payloads.

Other end-user guides can be found under User Documentation.

2.3. Writing to the API 72

https://docs.openstack.org/api-guide/compute/microversions.html

CHAPTER

THREE

FOR OPERATORS

3.1 Architecture Overview

• Nova architecture: An overview of how all the parts in nova fit together.

3.1.1 Nova System Architecture

Nova comprises multiple server processes, each performing different functions. The user-facing in-
terface is a REST API, while internally Nova components communicate via an RPC message passing
mechanism.

The API servers process REST requests, which typically involve database reads/writes, optionally send-
ing RPC messages to other Nova services, and generating responses to the REST calls. RPC messaging
is done via the oslo.messaging library, an abstraction on top of message queues. Most of the major nova
components can be run on multiple servers, and have a manager that is listening for RPC messages. The
one major exception is nova-compute, where a single process runs on the hypervisor it is managing
(except when using the VMware or Ironic drivers). The manager also, optionally, has periodic tasks. For
more details on our RPC system, please see: AMQP and Nova

Nova also uses a central database that is (logically) shared between all components. However, to aid up-
grade, the DB is accessed through an object layer that ensures an upgraded control plane can still com-
municate with a nova-compute running the previous release. To make this possible nova-compute
proxies DB requests over RPC to a central manager called nova-conductor.

To horizontally expand Nova deployments, we have a deployment sharding concept called cells. For
more information please see: Cells

3.1.1.1 Components

Below you will find a helpful explanation of the key components of a typical Nova deployment.

73

Nova Documentation, Release 22.4.1.dev41

oslo.messaging

DB

HTTP

Nova service

External service

API

Conductor

API
API

Conductor
Conductor

Scheduler
Scheduler

Scheduler

DB

Compute
Compute
Compute

Keystone

Glance &
Cinder

Hypervisor

Neutron

Placement

• DB: sql database for data storage.

• API: component that receives HTTP requests, converts commands and communicates with other
components via the oslo.messaging queue or HTTP.

• Scheduler: decides which host gets each instance.

• Compute: manages communication with hypervisor and virtual machines.

• Conductor: handles requests that need coordination (build/resize), acts as a database proxy, or
handles object conversions.

• Placement: tracks resource provider inventories and usages.

While all services are designed to be horizontally scalable, you should have significantly more computes
than anything else.

3.1. Architecture Overview 74

https://docs.openstack.org/placement/victoria/

Nova Documentation, Release 22.4.1.dev41

3.2 Installation

The detailed install guide for nova. A functioning nova will also require having installed keystone,
glance, neutron, and placement. Ensure that you follow their install guides first.

3.2.1 Compute service

3.2.1.1 Overview

The OpenStack project is an open source cloud computing platform that supports all types of cloud
environments. The project aims for simple implementation, massive scalability, and a rich set of features.
Cloud computing experts from around the world contribute to the project.

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a variety of complementary
services. Each service offers an Application Programming Interface (API) that facilitates this integration.

This guide covers step-by-step deployment of the major OpenStack services using a functional example
architecture suitable for new users of OpenStack with sufficient Linux experience. This guide is not
intended to be used for production system installations, but to create a minimum proof-of-concept for
the purpose of learning about OpenStack.

After becoming familiar with basic installation, configuration, operation, and troubleshooting of these
OpenStack services, you should consider the following steps toward deployment using a production
architecture:

• Determine and implement the necessary core and optional services to meet performance and re-
dundancy requirements.

• Increase security using methods such as firewalls, encryption, and service policies.

• Implement a deployment tool such as Ansible, Chef, Puppet, or Salt to automate deployment and
management of the production environment.

Example architecture

The example architecture requires at least two nodes (hosts) to launch a basic virtual machine (VM) or
instance. Optional services such as Block Storage and Object Storage require additional nodes.

Important: The example architecture used in this guide is a minimum configuration, and is not in-
tended for production system installations. It is designed to provide a minimum proof-of-concept for the
purpose of learning about OpenStack. For information on creating architectures for specific use cases,
or how to determine which architecture is required, see the Architecture Design Guide.

This example architecture differs from a minimal production architecture as follows:

• Networking agents reside on the controller node instead of one or more dedicated network nodes.

• Overlay (tunnel) traffic for self-service networks traverses the management network instead of a
dedicated network.

For more information on production architectures, see the Architecture Design Guide, OpenStack Oper-
ations Guide, and OpenStack Networking Guide.

3.2. Installation 75

https://docs.openstack.org/keystone/victoria/install/
https://docs.openstack.org/glance/victoria/install/
https://docs.openstack.org/neutron/victoria/install/
https://docs.openstack.org/placement/victoria/install/
https://docs.openstack.org/arch-design/
https://docs.openstack.org/arch-design/
https://wiki.openstack.org/wiki/OpsGuide
https://wiki.openstack.org/wiki/OpsGuide
https://docs.openstack.org/ocata/networking-guide/

Nova Documentation, Release 22.4.1.dev41

Fig. 1: Hardware requirements

3.2. Installation 76

Nova Documentation, Release 22.4.1.dev41

Controller

The controller node runs the Identity service, Image service, management portions of Compute, manage-
ment portion of Networking, various Networking agents, and the Dashboard. It also includes supporting
services such as an SQL database, message queue, and Network Time Protocol (NTP).

Optionally, the controller node runs portions of the Block Storage, Object Storage, Orchestration, and
Telemetry services.

The controller node requires a minimum of two network interfaces.

Compute

The compute node runs the hypervisor portion of Compute that operates instances. By default, Compute
uses the kernel-based VM (KVM) hypervisor. The compute node also runs a Networking service agent
that connects instances to virtual networks and provides firewalling services to instances via security
groups.

You can deploy more than one compute node. Each node requires a minimum of two network interfaces.

Block Storage

The optional Block Storage node contains the disks that the Block Storage and Shared File System
services provision for instances.

For simplicity, service traffic between compute nodes and this node uses the management network.
Production environments should implement a separate storage network to increase performance and
security.

You can deploy more than one block storage node. Each node requires a minimum of one network
interface.

Object Storage

The optional Object Storage node contain the disks that the Object Storage service uses for storing
accounts, containers, and objects.

For simplicity, service traffic between compute nodes and this node uses the management network.
Production environments should implement a separate storage network to increase performance and
security.

This service requires two nodes. Each node requires a minimum of one network interface. You can
deploy more than two object storage nodes.

3.2. Installation 77

Nova Documentation, Release 22.4.1.dev41

Networking

Choose one of the following virtual networking options.

Networking Option 1: Provider networks

The provider networks option deploys the OpenStack Networking service in the simplest way possible
with primarily layer-2 (bridging/switching) services and VLAN segmentation of networks. Essentially,
it bridges virtual networks to physical networks and relies on physical network infrastructure for layer-
3 (routing) services. Additionally, a DHCP<Dynamic Host Configuration Protocol (DHCP) service
provides IP address information to instances.

The OpenStack user requires more information about the underlying network infrastructure to create a
virtual network to exactly match the infrastructure.

Warning: This option lacks support for self-service (private) networks, layer-3 (routing) services,
and advanced services such as Load-Balancer-as-a-Service (LBaaS) and FireWall-as-a-Service
(FWaaS). Consider the self-service networks option below if you desire these features.

3.2. Installation 78

Nova Documentation, Release 22.4.1.dev41

Networking Option 2: Self-service networks

The self-service networks option augments the provider networks option with layer-3 (routing) services
that enable self-service networks using overlay segmentation methods such as Virtual Extensible LAN
(VXLAN). Essentially, it routes virtual networks to physical networks using Network Address Transla-
tion (NAT). Additionally, this option provides the foundation for advanced services such as LBaaS and
FWaaS.

The OpenStack user can create virtual networks without the knowledge of underlying infrastructure on
the data network. This can also include VLAN networks if the layer-2 plug-in is configured accordingly.

3.2.1.2 Compute service overview

Todo: Update a lot of the links in here.

Use OpenStack Compute to host and manage cloud computing systems. OpenStack Compute is a major
part of an Infrastructure-as-a-Service (IaaS) system. The main modules are implemented in Python.

OpenStack Compute interacts with OpenStack Identity for authentication, OpenStack Placement for
resource inventory tracking and selection, OpenStack Image service for disk and server images, and
OpenStack Dashboard for the user and administrative interface. Image access is limited by projects, and

3.2. Installation 79

Nova Documentation, Release 22.4.1.dev41

by users; quotas are limited per project (the number of instances, for example). OpenStack Compute
can scale horizontally on standard hardware, and download images to launch instances.

OpenStack Compute consists of the following areas and their components:

nova-api service Accepts and responds to end user compute API calls. The service supports the
OpenStack Compute API. It enforces some policies and initiates most orchestration activities,
such as running an instance.

nova-api-metadata service Accepts metadata requests from instances. For more information,
refer to Metadata service.

nova-compute service A worker daemon that creates and terminates virtual machine instances
through hypervisor APIs. For example:

• libvirt for KVM or QEMU

• VMwareAPI for VMware

Processing is fairly complex. Basically, the daemon accepts actions from the queue and performs
a series of system commands such as launching a KVM instance and updating its state in the
database.

nova-scheduler service Takes a virtual machine instance request from the queue and determines
on which compute server host it runs.

nova-conductor module Mediates interactions between the nova-compute service and the
database. It eliminates direct accesses to the cloud database made by the nova-compute ser-
vice. The nova-conductor module scales horizontally. However, do not deploy it on nodes
where the nova-compute service runs. For more information, see the conductor section in
the Configuration Options.

nova-novncproxy daemon Provides a proxy for accessing running instances through a VNC con-
nection. Supports browser-based novnc clients.

nova-spicehtml5proxy daemon Provides a proxy for accessing running instances through a
SPICE connection. Supports browser-based HTML5 client.

The queue A central hub for passing messages between daemons. Usually implemented with Rab-
bitMQ but other options are available.

SQL database Stores most build-time and run-time states for a cloud infrastructure, including:

• Available instance types

• Instances in use

• Available networks

• Projects

Theoretically, OpenStack Compute can support any database that SQLAlchemy supports. Com-
mon databases are SQLite3 for test and development work, MySQL, MariaDB, and PostgreSQL.

3.2. Installation 80

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://docs.openstack.org/oslo.messaging/victoria/admin/drivers

Nova Documentation, Release 22.4.1.dev41

3.2.1.3 Install and configure controller node

This section describes how to install and configure the Compute service on the controller node for
Ubuntu, openSUSE and SUSE Linux Enterprise, and Red Hat Enterprise Linux and CentOS.

Install and configure controller node for Ubuntu

This section describes how to install and configure the Compute service, code-named nova, on the
controller node.

Prerequisites

Before you install and configure the Compute service, you must create databases, service credentials,
and API endpoints.

1. To create the databases, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the nova_api, nova, and nova_cell0 databases:

MariaDB [(none)]> CREATE DATABASE nova_api;
MariaDB [(none)]> CREATE DATABASE nova;
MariaDB [(none)]> CREATE DATABASE nova_cell0;

• Grant proper access to the databases:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_api.* TO 'nova'@
↪→'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_api.* TO 'nova'@'%
↪→' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@
↪→'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_cell0.* TO 'nova'@
↪→'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_cell0.* TO 'nova'@'
↪→%' \
IDENTIFIED BY 'NOVA_DBPASS';

Replace NOVA_DBPASS with a suitable password.

• Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

3.2. Installation 81

Nova Documentation, Release 22.4.1.dev41

$. admin-openrc

3. Create the Compute service credentials:

• Create the nova user:

$ openstack user create --domain default --password-prompt nova

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	8a7dbf5279404537b1c7b86c033620fe
name	nova
options	{}
password_expires_at	None
+---------------------+----------------------------------+

• Add the admin role to the nova user:

$ openstack role add --project service --user nova admin

Note: This command provides no output.

• Create the nova service entity:

$ openstack service create --name nova \
--description "OpenStack Compute" compute

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Compute
enabled	True
id	060d59eac51b4594815603d75a00aba2
name	nova
type	compute
+-------------+----------------------------------+

4. Create the Compute API service endpoints:

$ openstack endpoint create --region RegionOne \
compute public http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	3c1caa473bfe4390a11e7177894bcc7b
interface	public
region	RegionOne

(continues on next page)

3.2. Installation 82

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

$ openstack endpoint create --region RegionOne \
compute internal http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	e3c918de680746a586eac1f2d9bc10ab
interface	internal
region	RegionOne
region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

$ openstack endpoint create --region RegionOne \
compute admin http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	38f7af91666a47cfb97b4dc790b94424
interface	admin
region	RegionOne
region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

5. Install Placement service and configure user and endpoints:

• Refer to the Placement service install guide for more information.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

3.2. Installation 83

https://docs.openstack.org/placement/victoria/install/install-ubuntu.html#configure-user-and-endpoints

Nova Documentation, Release 22.4.1.dev41

apt install nova-api nova-conductor nova-novncproxy nova-scheduler

2. Edit the /etc/nova/nova.conf file and complete the following actions:

• In the [api_database] and [database] sections, configure database access:

[api_database]
...
connection = mysql+pymysql://nova:NOVA_DBPASS@controller/nova_api

[database]
...
connection = mysql+pymysql://nova:NOVA_DBPASS@controller/nova

Replace NOVA_DBPASS with the password you chose for the Compute databases.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller:5672/

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [api] and [keystone_authtoken] sections, configure Identity service access:

[api]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000/
auth_url = http://controller:5000/
memcached_servers = controller:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

• In the [service_user] section, configure service user tokens:

[service_user]
send_service_user_token = true
auth_url = https://controller/identity
auth_strategy = keystone
auth_type = password

(continues on next page)

3.2. Installation 84

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

project_domain_name = Default
project_name = service
user_domain_name = Default
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

• In the [DEFAULT] section, configure the my_ip option to use the management interface
IP address of the controller node:

[DEFAULT]
...
my_ip = 10.0.0.11

• Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more information.

• In the [vnc] section, configure the VNC proxy to use the management interface IP address
of the controller node:

[vnc]
enabled = true
...
server_listen = $my_ip
server_proxyclient_address = $my_ip

• In the [glance] section, configure the location of the Image service API:

[glance]
...
api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/nova/tmp

• Due to a packaging bug, remove the log_dir option from the [DEFAULT] section.

• In the [placement] section, configure access to the Placement service:

[placement]
...
region_name = RegionOne
project_domain_name = Default
project_name = service
auth_type = password
user_domain_name = Default
auth_url = http://controller:5000/v3
username = placement
password = PLACEMENT_PASS

Replace PLACEMENT_PASS with the password you choose for the placement service
user created when installing Placement. Comment out or remove any other options in the

3.2. Installation 85

https://docs.openstack.org/neutron/victoria/install/controller-install-ubuntu.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/neutron/victoria/install/controller-install-ubuntu.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/placement/victoria/install/

Nova Documentation, Release 22.4.1.dev41

[placement] section.

3. Populate the nova-api database:

su -s /bin/sh -c "nova-manage api_db sync" nova

Note: Ignore any deprecation messages in this output.

4. Register the cell0 database:

su -s /bin/sh -c "nova-manage cell_v2 map_cell0" nova

5. Create the cell1 cell:

su -s /bin/sh -c "nova-manage cell_v2 create_cell --name=cell1 --
↪→verbose" nova

6. Populate the nova database:

su -s /bin/sh -c "nova-manage db sync" nova

7. Verify nova cell0 and cell1 are registered correctly:

su -s /bin/sh -c "nova-manage cell_v2 list_cells" nova
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+
| Name | UUID |
↪→Transport URL | Database
↪→Connection | Disabled |
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+
| cell0 | 00000000-0000-0000-0000-000000000000 |
↪→ none:/ | mysql+pymysql://
↪→nova:****@controller/nova_cell0?charset=utf8 | False |
| cell1 | f690f4fd-2bc5-4f15-8145-db561a7b9d3d | rabbit://
↪→openstack:****@controller:5672/nova_cell1 | mysql+pymysql://
↪→nova:****@controller/nova_cell1?charset=utf8 | False |
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+

Finalize installation

• Restart the Compute services:

service nova-api restart
service nova-scheduler restart
service nova-conductor restart
service nova-novncproxy restart

3.2. Installation 86

Nova Documentation, Release 22.4.1.dev41

Install and configure controller node for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Compute service, code-named nova, on the
controller node.

Prerequisites

Before you install and configure the Compute service, you must create databases, service credentials,
and API endpoints.

1. To create the databases, complete these steps:

• Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

• Create the nova_api, nova, and nova_cell0 databases:

MariaDB [(none)]> CREATE DATABASE nova_api;
MariaDB [(none)]> CREATE DATABASE nova;
MariaDB [(none)]> CREATE DATABASE nova_cell0;

• Grant proper access to the databases:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_api.* TO 'nova'@
↪→'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_api.* TO 'nova'@'%
↪→' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@
↪→'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_cell0.* TO 'nova'@
↪→'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_cell0.* TO 'nova'@'
↪→%' \
IDENTIFIED BY 'NOVA_DBPASS';

Replace NOVA_DBPASS with a suitable password.

• Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. Create the Compute service credentials:

• Create the nova user:

3.2. Installation 87

Nova Documentation, Release 22.4.1.dev41

$ openstack user create --domain default --password-prompt nova

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	8a7dbf5279404537b1c7b86c033620fe
name	nova
options	{}
password_expires_at	None
+---------------------+----------------------------------+

• Add the admin role to the nova user:

$ openstack role add --project service --user nova admin

Note: This command provides no output.

• Create the nova service entity:

$ openstack service create --name nova \
--description "OpenStack Compute" compute

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Compute
enabled	True
id	060d59eac51b4594815603d75a00aba2
name	nova
type	compute
+-------------+----------------------------------+

4. Create the Compute API service endpoints:

$ openstack endpoint create --region RegionOne \
compute public http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	3c1caa473bfe4390a11e7177894bcc7b
interface	public
region	RegionOne
region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

(continues on next page)

3.2. Installation 88

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

$ openstack endpoint create --region RegionOne \
compute internal http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	e3c918de680746a586eac1f2d9bc10ab
interface	internal
region	RegionOne
region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

$ openstack endpoint create --region RegionOne \
compute admin http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	38f7af91666a47cfb97b4dc790b94424
interface	admin
region	RegionOne
region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

5. Install Placement service and configure user and endpoints:

• Refer to the Placement service install guide for more information.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

Note: As of the Newton release, SUSE OpenStack packages are shipped with the upstream default con-
figuration files. For example, /etc/nova/nova.conf has customizations in /etc/nova/nova.
conf.d/010-nova.conf. While the following instructions modify the default configuration file,
adding a new file in /etc/nova/nova.conf.d achieves the same result.

1. Install the packages:

3.2. Installation 89

https://docs.openstack.org/placement/victoria/install/install-obs.html#configure-user-and-endpoints

Nova Documentation, Release 22.4.1.dev41

zypper install \
openstack-nova-api \
openstack-nova-scheduler \
openstack-nova-conductor \
openstack-nova-novncproxy \
iptables

2. Edit the /etc/nova/nova.conf file and complete the following actions:

• In the [DEFAULT] section, enable only the compute and metadata APIs:

[DEFAULT]
...
enabled_apis = osapi_compute,metadata

• In the [api_database] and [database] sections, configure database access:

[api_database]
...
connection = mysql+pymysql://nova:NOVA_DBPASS@controller/nova_api

[database]
...
connection = mysql+pymysql://nova:NOVA_DBPASS@controller/nova

Replace NOVA_DBPASS with the password you chose for the Compute databases.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller:5672/

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [api] and [keystone_authtoken] sections, configure Identity service access:

[api]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000/
auth_url = http://controller:5000/
memcached_servers = controller:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-

3.2. Installation 90

Nova Documentation, Release 22.4.1.dev41

tion.

• In the [service_user] section, configure service user tokens:

[service_user]
send_service_user_token = true
auth_url = https://controller/identity
auth_strategy = keystone
auth_type = password
project_domain_name = Default
project_name = service
user_domain_name = Default
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

• In the [DEFAULT] section, configure the my_ip option to use the management interface
IP address of the controller node:

[DEFAULT]
...
my_ip = 10.0.0.11

• Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

• In the [vnc] section, configure the VNC proxy to use the management interface IP address
of the controller node:

[vnc]
enabled = true
...
server_listen = $my_ip
server_proxyclient_address = $my_ip

• In the [glance] section, configure the location of the Image service API:

[glance]
...
api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/run/nova

• In the [placement] section, configure access to the Placement service:

[placement]
...
region_name = RegionOne
project_domain_name = Default
project_name = service
auth_type = password

(continues on next page)

3.2. Installation 91

https://docs.openstack.org/neutron/victoria/install/controller-install-obs.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/neutron/victoria/install/controller-install-obs.html#configure-the-compute-service-to-use-the-networking-service

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

user_domain_name = Default
auth_url = http://controller:5000/v3
username = placement
password = PLACEMENT_PASS

Replace PLACEMENT_PASS with the password you choose for the placement service
user created when installing Placement. Comment out or remove any other options in the
[placement] section.

3. Populate the nova-api database:

su -s /bin/sh -c "nova-manage api_db sync" nova

Note: Ignore any deprecation messages in this output.

4. Register the cell0 database:

su -s /bin/sh -c "nova-manage cell_v2 map_cell0" nova

5. Create the cell1 cell:

su -s /bin/sh -c "nova-manage cell_v2 create_cell --name=cell1 --
↪→verbose" nova

6. Populate the nova database:

su -s /bin/sh -c "nova-manage db sync" nova

7. Verify nova cell0 and cell1 are registered correctly:

su -s /bin/sh -c "nova-manage cell_v2 list_cells" nova
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+
| Name | UUID |
↪→Transport URL | Database
↪→Connection | Disabled |
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+
| cell0 | 00000000-0000-0000-0000-000000000000 |
↪→ none:/ | mysql+pymysql://
↪→nova:****@controller/nova_cell0?charset=utf8 | False |
| cell1 | f690f4fd-2bc5-4f15-8145-db561a7b9d3d | rabbit://
↪→openstack:****@controller:5672/nova_cell1 | mysql+pymysql://
↪→nova:****@controller/nova_cell1?charset=utf8 | False |
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+

3.2. Installation 92

https://docs.openstack.org/placement/victoria/install/

Nova Documentation, Release 22.4.1.dev41

Finalize installation

• Start the Compute services and configure them to start when the system boots:

systemctl enable \
openstack-nova-api.service \
openstack-nova-scheduler.service \
openstack-nova-conductor.service \
openstack-nova-novncproxy.service

systemctl start \
openstack-nova-api.service \
openstack-nova-scheduler.service \
openstack-nova-conductor.service \
openstack-nova-novncproxy.service

Install and configure controller node for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Compute service, code-named nova, on the
controller node.

Prerequisites

Before you install and configure the Compute service, you must create databases, service credentials,
and API endpoints.

1. To create the databases, complete these steps:

• Use the database access client to connect to the database server as the root user:

$ mysql -u root -p

• Create the nova_api, nova, and nova_cell0 databases:

MariaDB [(none)]> CREATE DATABASE nova_api;
MariaDB [(none)]> CREATE DATABASE nova;
MariaDB [(none)]> CREATE DATABASE nova_cell0;

• Grant proper access to the databases:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_api.* TO 'nova'@
↪→'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_api.* TO 'nova'@'%
↪→' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@
↪→'localhost' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' \
IDENTIFIED BY 'NOVA_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_cell0.* TO 'nova'@
↪→'localhost' \

(continues on next page)

3.2. Installation 93

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

IDENTIFIED BY 'NOVA_DBPASS';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON nova_cell0.* TO 'nova'@'
↪→%' \
IDENTIFIED BY 'NOVA_DBPASS';

Replace NOVA_DBPASS with a suitable password.

• Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. Create the Compute service credentials:

• Create the nova user:

$ openstack user create --domain default --password-prompt nova

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	8a7dbf5279404537b1c7b86c033620fe
name	nova
options	{}
password_expires_at	None
+---------------------+----------------------------------+

• Add the admin role to the nova user:

$ openstack role add --project service --user nova admin

Note: This command provides no output.

• Create the nova service entity:

$ openstack service create --name nova \
--description "OpenStack Compute" compute

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Compute
enabled	True
id	060d59eac51b4594815603d75a00aba2
name	nova
type	compute
+-------------+----------------------------------+

4. Create the Compute API service endpoints:

3.2. Installation 94

Nova Documentation, Release 22.4.1.dev41

$ openstack endpoint create --region RegionOne \
compute public http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	3c1caa473bfe4390a11e7177894bcc7b
interface	public
region	RegionOne
region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

$ openstack endpoint create --region RegionOne \
compute internal http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	e3c918de680746a586eac1f2d9bc10ab
interface	internal
region	RegionOne
region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

$ openstack endpoint create --region RegionOne \
compute admin http://controller:8774/v2.1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	38f7af91666a47cfb97b4dc790b94424
interface	admin
region	RegionOne
region_id	RegionOne
service_id	060d59eac51b4594815603d75a00aba2
service_name	nova
service_type	compute
url	http://controller:8774/v2.1
+--------------+---+

5. Install Placement service and configure user and endpoints:

• Refer to the Placement service install guide for more information.

3.2. Installation 95

https://docs.openstack.org/placement/victoria/install/install-rdo.html#configure-user-and-endpoints

Nova Documentation, Release 22.4.1.dev41

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

yum install openstack-nova-api openstack-nova-conductor \
openstack-nova-novncproxy openstack-nova-scheduler

2. Edit the /etc/nova/nova.conf file and complete the following actions:

• In the [DEFAULT] section, enable only the compute and metadata APIs:

[DEFAULT]
...
enabled_apis = osapi_compute,metadata

• In the [api_database] and [database] sections, configure database access:

[api_database]
...
connection = mysql+pymysql://nova:NOVA_DBPASS@controller/nova_api

[database]
...
connection = mysql+pymysql://nova:NOVA_DBPASS@controller/nova

Replace NOVA_DBPASS with the password you chose for the Compute databases.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller:5672/

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [api] and [keystone_authtoken] sections, configure Identity service access:

[api]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000/
auth_url = http://controller:5000/
memcached_servers = controller:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service

(continues on next page)

3.2. Installation 96

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

• In the [service_user] section, configure service user tokens:

[service_user]
send_service_user_token = true
auth_url = https://controller/identity
auth_strategy = keystone
auth_type = password
project_domain_name = Default
project_name = service
user_domain_name = Default
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

• In the [DEFAULT] section, configure the my_ip option to use the management interface
IP address of the controller node:

[DEFAULT]
...
my_ip = 10.0.0.11

• Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

• In the [vnc] section, configure the VNC proxy to use the management interface IP address
of the controller node:

[vnc]
enabled = true
...
server_listen = $my_ip
server_proxyclient_address = $my_ip

• In the [glance] section, configure the location of the Image service API:

[glance]
...
api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/nova/tmp

3.2. Installation 97

https://docs.openstack.org/neutron/victoria/install/compute-install-rdo.html
https://docs.openstack.org/neutron/victoria/install/compute-install-rdo.html

Nova Documentation, Release 22.4.1.dev41

• In the [placement] section, configure access to the Placement service:

[placement]
...
region_name = RegionOne
project_domain_name = Default
project_name = service
auth_type = password
user_domain_name = Default
auth_url = http://controller:5000/v3
username = placement
password = PLACEMENT_PASS

Replace PLACEMENT_PASS with the password you choose for the placement service
user created when installing Placement. Comment out or remove any other options in the
[placement] section.

3. Populate the nova-api database:

su -s /bin/sh -c "nova-manage api_db sync" nova

Note: Ignore any deprecation messages in this output.

4. Register the cell0 database:

su -s /bin/sh -c "nova-manage cell_v2 map_cell0" nova

5. Create the cell1 cell:

su -s /bin/sh -c "nova-manage cell_v2 create_cell --name=cell1 --
↪→verbose" nova

6. Populate the nova database:

su -s /bin/sh -c "nova-manage db sync" nova

7. Verify nova cell0 and cell1 are registered correctly:

su -s /bin/sh -c "nova-manage cell_v2 list_cells" nova
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+
| Name | UUID |
↪→Transport URL | Database
↪→Connection | Disabled |
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+
| cell0 | 00000000-0000-0000-0000-000000000000 |
↪→ none:/ | mysql+pymysql://
↪→nova:****@controller/nova_cell0?charset=utf8 | False |
| cell1 | f690f4fd-2bc5-4f15-8145-db561a7b9d3d | rabbit://
↪→openstack:****@controller:5672/nova_cell1 | mysql+pymysql://
↪→nova:****@controller/nova_cell1?charset=utf8 | False |
+-------+--------------------------------------+----------------------
↪→------------------------------+-------------------------------------
↪→-------------------------+----------+

(continues on next page)

3.2. Installation 98

https://docs.openstack.org/placement/victoria/install/

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

Finalize installation

• Start the Compute services and configure them to start when the system boots:

systemctl enable \
openstack-nova-api.service \
openstack-nova-scheduler.service \
openstack-nova-conductor.service \
openstack-nova-novncproxy.service

systemctl start \
openstack-nova-api.service \
openstack-nova-scheduler.service \
openstack-nova-conductor.service \
openstack-nova-novncproxy.service

3.2.1.4 Install and configure a compute node

This section describes how to install and configure the Compute service on a compute node for Ubuntu,
openSUSE and SUSE Linux Enterprise, and Red Hat Enterprise Linux and CentOS.

The service supports several hypervisors to deploy instances or virtual machines (VMs). For simplicity,
this configuration uses the Quick EMUlator (QEMU) hypervisor with the kernel-based VM (KVM) ex-
tension on compute nodes that support hardware acceleration for virtual machines. On legacy hardware,
this configuration uses the generic QEMU hypervisor. You can follow these instructions with minor
modifications to horizontally scale your environment with additional compute nodes.

Note: This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion to the first compute node in the example architectures section. Each additional compute node
requires a unique IP address.

Install and configure a compute node for Ubuntu

This section describes how to install and configure the Compute service on a compute node. The ser-
vice supports several hypervisors to deploy instances or virtual machines (VMs). For simplicity, this
configuration uses the Quick EMUlator (QEMU) hypervisor with the kernel-based VM (KVM) exten-
sion on compute nodes that support hardware acceleration for virtual machines. On legacy hardware,
this configuration uses the generic QEMU hypervisor. You can follow these instructions with minor
modifications to horizontally scale your environment with additional compute nodes.

Note: This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion to the first compute node in the example architectures section. Each additional compute node
requires a unique IP address.

3.2. Installation 99

Nova Documentation, Release 22.4.1.dev41

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt install nova-compute

2. Edit the /etc/nova/nova.conf file and complete the following actions:

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [api] and [keystone_authtoken] sections, configure Identity service access:

[api]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000/
auth_url = http://controller:5000/
memcached_servers = controller:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

• In the [service_user] section, configure service user tokens:

[service_user]
send_service_user_token = true
auth_url = https://controller/identity
auth_strategy = keystone
auth_type = password
project_domain_name = Default
project_name = service

(continues on next page)

3.2. Installation 100

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

user_domain_name = Default
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

• In the [DEFAULT] section, configure the my_ip option:

[DEFAULT]
...
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your compute node, typically 10.0.0.31 for the first node in the
example architecture.

• Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

• In the [vnc] section, enable and configure remote console access:

[vnc]
...
enabled = true
server_listen = 0.0.0.0
server_proxyclient_address = $my_ip
novncproxy_base_url = http://controller:6080/vnc_auto.html

The server component listens on all IP addresses and the proxy component only listens on
the management interface IP address of the compute node. The base URL indicates the
location where you can use a web browser to access remote consoles of instances on this
compute node.

Note: If the web browser to access remote consoles resides on a host that cannot resolve the
controller hostname, you must replace controller with the management interface
IP address of the controller node.

• In the [glance] section, configure the location of the Image service API:

[glance]
...
api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/nova/tmp

• In the [placement] section, configure the Placement API:

[placement]
...

(continues on next page)

3.2. Installation 101

https://docs.openstack.org/neutron/victoria/install/compute-install-ubuntu.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/neutron/victoria/install/compute-install-ubuntu.html#configure-the-compute-service-to-use-the-networking-service

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

region_name = RegionOne
project_domain_name = Default
project_name = service
auth_type = password
user_domain_name = Default
auth_url = http://controller:5000/v3
username = placement
password = PLACEMENT_PASS

Replace PLACEMENT_PASS with the password you choose for the placement user in
the Identity service. Comment out any other options in the [placement] section.

Finalize installation

1. Determine whether your compute node supports hardware acceleration for virtual machines:

$ egrep -c '(vmx|svm)' /proc/cpuinfo

If this command returns a value of one or greater, your compute node supports hardware
acceleration which typically requires no additional configuration.

If this command returns a value of zero, your compute node does not support hardware acceler-
ation and you must configure libvirt to use QEMU instead of KVM.

• Edit the [libvirt] section in the /etc/nova/nova-compute.conf file as follows:

[libvirt]
...
virt_type = qemu

2. Restart the Compute service:

service nova-compute restart

Note: If the nova-compute service fails to start, check /var/log/nova/nova-compute.
log. The error message AMQP server on controller:5672 is unreachable likely in-
dicates that the firewall on the controller node is preventing access to port 5672. Configure the firewall
to open port 5672 on the controller node and restart nova-compute service on the compute node.

Add the compute node to the cell database

Important: Run the following commands on the controller node.

1. Source the admin credentials to enable admin-only CLI commands, then confirm there are com-
pute hosts in the database:

3.2. Installation 102

Nova Documentation, Release 22.4.1.dev41

$. admin-openrc

$ openstack compute service list --service nova-compute
+----+-------+--------------+------+-------+---------+----------------
↪→------------+
| ID | Host | Binary | Zone | State | Status | Updated At
↪→ |
+----+-------+--------------+------+-------+---------+----------------
↪→------------+
| 1 | node1 | nova-compute | nova | up | enabled | 2017-04-
↪→14T15:30:44.000000 |
+----+-------+--------------+------+-------+---------+----------------
↪→------------+

2. Discover compute hosts:

su -s /bin/sh -c "nova-manage cell_v2 discover_hosts --verbose" nova

Found 2 cell mappings.
Skipping cell0 since it does not contain hosts.
Getting compute nodes from cell 'cell1': ad5a5985-a719-4567-98d8-
↪→8d148aaae4bc
Found 1 computes in cell: ad5a5985-a719-4567-98d8-8d148aaae4bc
Checking host mapping for compute host 'compute': fe58ddc1-1d65-4f87-
↪→9456-bc040dc106b3
Creating host mapping for compute host 'compute': fe58ddc1-1d65-4f87-
↪→9456-bc040dc106b3

Note: When you add new compute nodes, you must run nova-manage cell_v2
discover_hosts on the controller node to register those new compute nodes. Alternatively,
you can set an appropriate interval in /etc/nova/nova.conf:

[scheduler]
discover_hosts_in_cells_interval = 300

Install and configure a compute node for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Compute service on a compute node. The ser-
vice supports several hypervisors to deploy instances or virtual machines (VMs). For simplicity, this
configuration uses the Quick EMUlator (QEMU) hypervisor with the kernel-based VM (KVM) exten-
sion on compute nodes that support hardware acceleration for virtual machines. On legacy hardware,
this configuration uses the generic QEMU hypervisor. You can follow these instructions with minor
modifications to horizontally scale your environment with additional compute nodes.

Note: This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion to the first compute node in the example architectures section. Each additional compute node
requires a unique IP address.

3.2. Installation 103

Nova Documentation, Release 22.4.1.dev41

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

yum install openstack-nova-compute

2. Edit the /etc/nova/nova.conf file and complete the following actions:

• In the [DEFAULT] section, enable only the compute and metadata APIs:

[DEFAULT]
...
enabled_apis = osapi_compute,metadata

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [api] and [keystone_authtoken] sections, configure Identity service access:

[api]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000/
auth_url = http://controller:5000/
memcached_servers = controller:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

• In the [service_user] section, configure service user tokens:

3.2. Installation 104

Nova Documentation, Release 22.4.1.dev41

[service_user]
send_service_user_token = true
auth_url = https://controller/identity
auth_strategy = keystone
auth_type = password
project_domain_name = Default
project_name = service
user_domain_name = Default
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

• In the [DEFAULT] section, configure the my_ip option:

[DEFAULT]
...
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your compute node, typically 10.0.0.31 for the first node in the
example architecture.

• Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

• In the [vnc] section, enable and configure remote console access:

[vnc]
...
enabled = true
server_listen = 0.0.0.0
server_proxyclient_address = $my_ip
novncproxy_base_url = http://controller:6080/vnc_auto.html

The server component listens on all IP addresses and the proxy component only listens on
the management interface IP address of the compute node. The base URL indicates the
location where you can use a web browser to access remote consoles of instances on this
compute node.

Note: If the web browser to access remote consoles resides on a host that cannot resolve the
controller hostname, you must replace controller with the management interface
IP address of the controller node.

• In the [glance] section, configure the location of the Image service API:

[glance]
...
api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/lib/nova/tmp

3.2. Installation 105

https://docs.openstack.org/neutron/victoria/install/compute-install-rdo.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/neutron/victoria/install/compute-install-rdo.html#configure-the-compute-service-to-use-the-networking-service

Nova Documentation, Release 22.4.1.dev41

• In the [placement] section, configure the Placement API:

[placement]
...
region_name = RegionOne
project_domain_name = Default
project_name = service
auth_type = password
user_domain_name = Default
auth_url = http://controller:5000/v3
username = placement
password = PLACEMENT_PASS

Replace PLACEMENT_PASS with the password you choose for the placement user in
the Identity service. Comment out any other options in the [placement] section.

Finalize installation

1. Determine whether your compute node supports hardware acceleration for virtual machines:

$ egrep -c '(vmx|svm)' /proc/cpuinfo

If this command returns a value of one or greater, your compute node supports hardware
acceleration which typically requires no additional configuration.

If this command returns a value of zero, your compute node does not support hardware acceler-
ation and you must configure libvirt to use QEMU instead of KVM.

• Edit the [libvirt] section in the /etc/nova/nova.conf file as follows:

[libvirt]
...
virt_type = qemu

2. Start the Compute service including its dependencies and configure them to start automatically
when the system boots:

systemctl enable libvirtd.service openstack-nova-compute.service
systemctl start libvirtd.service openstack-nova-compute.service

Note: If the nova-compute service fails to start, check /var/log/nova/nova-compute.
log. The error message AMQP server on controller:5672 is unreachable likely in-
dicates that the firewall on the controller node is preventing access to port 5672. Configure the firewall
to open port 5672 on the controller node and restart nova-compute service on the compute node.

3.2. Installation 106

Nova Documentation, Release 22.4.1.dev41

Add the compute node to the cell database

Important: Run the following commands on the controller node.

1. Source the admin credentials to enable admin-only CLI commands, then confirm there are com-
pute hosts in the database:

$. admin-openrc

$ openstack compute service list --service nova-compute
+----+-------+--------------+------+-------+---------+----------------
↪→------------+
| ID | Host | Binary | Zone | State | Status | Updated At
↪→ |
+----+-------+--------------+------+-------+---------+----------------
↪→------------+
| 1 | node1 | nova-compute | nova | up | enabled | 2017-04-
↪→14T15:30:44.000000 |
+----+-------+--------------+------+-------+---------+----------------
↪→------------+

2. Discover compute hosts:

su -s /bin/sh -c "nova-manage cell_v2 discover_hosts --verbose" nova

Found 2 cell mappings.
Skipping cell0 since it does not contain hosts.
Getting compute nodes from cell 'cell1': ad5a5985-a719-4567-98d8-
↪→8d148aaae4bc
Found 1 computes in cell: ad5a5985-a719-4567-98d8-8d148aaae4bc
Checking host mapping for compute host 'compute': fe58ddc1-1d65-4f87-
↪→9456-bc040dc106b3
Creating host mapping for compute host 'compute': fe58ddc1-1d65-4f87-
↪→9456-bc040dc106b3

Note: When you add new compute nodes, you must run nova-manage cell_v2
discover_hosts on the controller node to register those new compute nodes. Alternatively,
you can set an appropriate interval in /etc/nova/nova.conf:

[scheduler]
discover_hosts_in_cells_interval = 300

3.2. Installation 107

Nova Documentation, Release 22.4.1.dev41

Install and configure a compute node for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Compute service on a compute node. The ser-
vice supports several hypervisors to deploy instances or virtual machines (VMs). For simplicity, this
configuration uses the Quick EMUlator (QEMU) hypervisor with the kernel-based VM (KVM) exten-
sion on compute nodes that support hardware acceleration for virtual machines. On legacy hardware,
this configuration uses the generic QEMU hypervisor. You can follow these instructions with minor
modifications to horizontally scale your environment with additional compute nodes.

Note: This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion to the first compute node in the example architectures section. Each additional compute node
requires a unique IP address.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

zypper install openstack-nova-compute genisoimage qemu-kvm libvirt

2. Edit the /etc/nova/nova.conf file and complete the following actions:

• In the [DEFAULT] section, enable only the compute and metadata APIs:

[DEFAULT]
...
enabled_apis = osapi_compute,metadata

• In the [DEFAULT] section, set the compute_driver:

[DEFAULT]
...
compute_driver = libvirt.LibvirtDriver

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [api] and [keystone_authtoken] sections, configure Identity service access:

3.2. Installation 108

Nova Documentation, Release 22.4.1.dev41

[api]
...
auth_strategy = keystone

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000/
auth_url = http://controller:5000/
memcached_servers = controller:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] sec-
tion.

• In the [service_user] section, configure service user tokens:

[service_user]
send_service_user_token = true
auth_url = https://controller/identity
auth_strategy = keystone
auth_type = password
project_domain_name = Default
project_name = service
user_domain_name = Default
username = nova
password = NOVA_PASS

Replace NOVA_PASSwith the password you chose for the nova user in the Identity service.

• In the [DEFAULT] section, configure the my_ip option:

[DEFAULT]
...
my_ip = MANAGEMENT_INTERFACE_IP_ADDRESS

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your compute node, typically 10.0.0.31 for the first node in
the example architecture.

• Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

• In the [vnc] section, enable and configure remote console access:

[vnc]
...
enabled = true
server_listen = 0.0.0.0

(continues on next page)

3.2. Installation 109

https://docs.openstack.org/neutron/victoria/install/compute-install-obs.html
https://docs.openstack.org/neutron/victoria/install/compute-install-obs.html

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

server_proxyclient_address = $my_ip
novncproxy_base_url = http://controller:6080/vnc_auto.html

The server component listens on all IP addresses and the proxy component only listens on
the management interface IP address of the compute node. The base URL indicates the
location where you can use a web browser to access remote consoles of instances on this
compute node.

Note: If the web browser to access remote consoles resides on a host that cannot resolve the
controller hostname, you must replace controller with the management interface
IP address of the controller node.

• In the [glance] section, configure the location of the Image service API:

[glance]
...
api_servers = http://controller:9292

• In the [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]
...
lock_path = /var/run/nova

• In the [placement] section, configure the Placement API:

[placement]
...
region_name = RegionOne
project_domain_name = Default
project_name = service
auth_type = password
user_domain_name = Default
auth_url = http://controller:5000/v3
username = placement
password = PLACEMENT_PASS

Replace PLACEMENT_PASS with the password you choose for the placement user in
the Identity service. Comment out any other options in the [placement] section.

3. Ensure the kernel module nbd is loaded.

modprobe nbd

4. Ensure the module loads on every boot by adding nbd to the /etc/modules-load.d/nbd.
conf file.

3.2. Installation 110

Nova Documentation, Release 22.4.1.dev41

Finalize installation

1. Determine whether your compute node supports hardware acceleration for virtual machines:

$ egrep -c '(vmx|svm)' /proc/cpuinfo

If this command returns a value of one or greater, your compute node supports hardware
acceleration which typically requires no additional configuration.

If this command returns a value of zero, your compute node does not support hardware acceler-
ation and you must configure libvirt to use QEMU instead of KVM.

• Edit the [libvirt] section in the /etc/nova/nova.conf file as follows:

[libvirt]
...
virt_type = qemu

2. Start the Compute service including its dependencies and configure them to start automatically
when the system boots:

systemctl enable libvirtd.service openstack-nova-compute.service
systemctl start libvirtd.service openstack-nova-compute.service

Note: If the nova-compute service fails to start, check /var/log/nova/nova-compute.
log. The error message AMQP server on controller:5672 is unreachable likely in-
dicates that the firewall on the controller node is preventing access to port 5672. Configure the firewall
to open port 5672 on the controller node and restart nova-compute service on the compute node.

Add the compute node to the cell database

Important: Run the following commands on the controller node.

1. Source the admin credentials to enable admin-only CLI commands, then confirm there are com-
pute hosts in the database:

$. admin-openrc

$ openstack compute service list --service nova-compute
+----+-------+--------------+------+-------+---------+----------------
↪→------------+
| ID | Host | Binary | Zone | State | Status | Updated At
↪→ |
+----+-------+--------------+------+-------+---------+----------------
↪→------------+
| 1 | node1 | nova-compute | nova | up | enabled | 2017-04-
↪→14T15:30:44.000000 |
+----+-------+--------------+------+-------+---------+----------------
↪→------------+

2. Discover compute hosts:

3.2. Installation 111

Nova Documentation, Release 22.4.1.dev41

su -s /bin/sh -c "nova-manage cell_v2 discover_hosts --verbose" nova

Found 2 cell mappings.
Skipping cell0 since it does not contain hosts.
Getting compute nodes from cell 'cell1': ad5a5985-a719-4567-98d8-
↪→8d148aaae4bc
Found 1 computes in cell: ad5a5985-a719-4567-98d8-8d148aaae4bc
Checking host mapping for compute host 'compute': fe58ddc1-1d65-4f87-
↪→9456-bc040dc106b3
Creating host mapping for compute host 'compute': fe58ddc1-1d65-4f87-
↪→9456-bc040dc106b3

Note: When you add new compute nodes, you must run nova-manage cell_v2
discover_hosts on the controller node to register those new compute nodes. Alternatively,
you can set an appropriate interval in /etc/nova/nova.conf:

[scheduler]
discover_hosts_in_cells_interval = 300

3.2.1.5 Verify operation

Verify operation of the Compute service.

Note: Perform these commands on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

2. List service components to verify successful launch and registration of each process:

$ openstack compute service list

+----+--------------------+------------+----------+---------+-------+-
↪→---------------------------+
| Id | Binary | Host | Zone | Status | State |
↪→Updated At |
+----+--------------------+------------+----------+---------+-------+-
↪→---------------------------+
| 1 | nova-scheduler | controller | internal | enabled | up |
↪→2016-02-09T23:11:15.000000 |
| 2 | nova-conductor | controller | internal | enabled | up |
↪→2016-02-09T23:11:16.000000 |
| 3 | nova-compute | compute1 | nova | enabled | up |
↪→2016-02-09T23:11:20.000000 |
+----+--------------------+------------+----------+---------+-------+-
↪→---------------------------+

Note: This output should indicate two service components enabled on the controller node and

3.2. Installation 112

Nova Documentation, Release 22.4.1.dev41

one service component enabled on the compute node.

3. List API endpoints in the Identity service to verify connectivity with the Identity service:

Note: Below endpoints list may differ depending on the installation of OpenStack components.

$ openstack catalog list

+-----------+-----------+---+
| Name | Type | Endpoints |
+-----------+-----------+---+
keystone	identity	RegionOne
		public: http://controller:5000/v3/
		RegionOne
		internal: http://controller:5000/v3/
		RegionOne
		admin: http://controller:5000/v3/
glance	image	RegionOne
		admin: http://controller:9292
		RegionOne
		public: http://controller:9292
		RegionOne
		internal: http://controller:9292
nova	compute	RegionOne
		admin: http://controller:8774/v2.1
		RegionOne
		internal: http://controller:8774/v2.1
		RegionOne
		public: http://controller:8774/v2.1
placement	placement	RegionOne
		public: http://controller:8778
		RegionOne
		admin: http://controller:8778
		RegionOne
		internal: http://controller:8778
+-----------+-----------+---+

Note: Ignore any warnings in this output.

4. List images in the Image service to verify connectivity with the Image service:

$ openstack image list

+--------------------------------------+-------------+-------------+
| ID | Name | Status |
+--------------------------------------+-------------+-------------+
| 9a76d9f9-9620-4f2e-8c69-6c5691fae163 | cirros | active |
+--------------------------------------+-------------+-------------+

3.2. Installation 113

Nova Documentation, Release 22.4.1.dev41

5. Check the cells and placement API are working successfully and that other necessary prerequisites
are in place:

nova-status upgrade check

+--+
| Upgrade Check Results |
+--+
| Check: Cells v2 |
| Result: Success |
| Details: None |
+--+
| Check: Placement API |
| Result: Success |
| Details: None |
+--+
| Check: Ironic Flavor Migration |
| Result: Success |
| Details: None |
+--+
| Check: Cinder API |
| Result: Success |
| Details: None |
+--+
| Check: Policy Scope-based Defaults |
| Result: Success |
| Details: None |
+--+
| Check: Policy File JSON to YAML Migration |
| Result: Success |
| Details: None |
+--+
| Check: Older than N-1 computes |
| Result: Success |
| Details: None |
+--+

3.3 Deployment Considerations

There is information you might want to consider before doing your deployment, especially if it is going
to be a larger deployment. For smaller deployments the defaults from the install guide will be sufficient.

• Compute Driver Features Supported: While the majority of nova deployments use libvirt/kvm,
you can use nova with other compute drivers. Nova attempts to provide a unified feature set across
these, however, not all features are implemented on all backends, and not all features are equally
well tested.

– Feature Support by Use Case: A view of what features each driver supports based on whats
important to some large use cases (General Purpose Cloud, NFV Cloud, HPC Cloud).

– Feature Support full list: A detailed dive through features in each compute driver backend.

• Cells v2 Planning: For large deployments, Cells v2 allows sharding of your compute environment.
Upfront planning is key to a successful Cells v2 layout.

3.3. Deployment Considerations 114

Nova Documentation, Release 22.4.1.dev41

• Running nova-api on wsgi: Considerations for using a real WSGI container instead of the baked-in
eventlet web server.

3.3.1 Feature Classification

This document presents a matrix that describes which features are ready to be used and which features
are works in progress. It includes links to relevant documentation and functional tests.

Warning: Please note: this is a work in progress!

3.3.1.1 Aims

Users want reliable, long-term solutions for their use cases. The feature classification matrix identifies
which features are complete and ready to use, and which should be used with caution.

The matrix also benefits developers by providing a list of features that require further work to be con-
sidered complete.

Below is a matrix for a selection of important verticals:

• General Purpose Cloud Features

• NFV Cloud Features

• HPC Cloud Features

For more details on the concepts in each matrix, please see Notes on Concepts.

3.3.1.2 General Purpose Cloud Features

This is a summary of the key features dev/test clouds, and other similar general purpose clouds need,
and it describes their current state.

Below there are sections on NFV and HPC specific features. These look at specific features and scenarios
that are important to those more specific sets of use cases. Summary

3.3. Deployment Considerations 115

Nova Documentation, Release 22.4.1.dev41

Feature Ma-
tu-
rity

Hyper-
V
CI

Ironic
CI

lib-
virt+kvm
(x86 &
ppc64)

lib-
virt+kvm
(s390x)

lib-
virt+virtuozzo
CT

lib-
virt+virtuozzo
VM

lib-
virt+xen

IBM
Pow-
erVM
CI

VMware
CI

IBM
zVM
CI

Create
Server
and Delete
Server

com-
plete

✓✓✓ ? ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Snapshot
Server

com-
plete

? ? ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ? ✓✓✓

Server
power ops

com-
plete

✓✓✓ ? ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Rebuild
Server

com-
plete

✓✓✓ ? ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Resize
Server

com-
plete

✓✓✓ ? ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Volume
Operations

com-
plete

✓✓✓ ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Custom
disk con-
figurations
on boot

com-
plete

✓✓✓
n

✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓

Custom
neutron
configu-
rations on
boot

com-
plete

✓✓✓ ✓✓✓ ? ? ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Pause a
Server

com-
plete

✓✓✓ ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Suspend a
Server

com-
plete

✓✓✓ ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Server con-
sole output

com-
plete

✓✓✓ ✓✓✓ ? ? ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Server Res-
cue

com-
plete

✓✓✓ ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Server
Config
Drive

com-
plete

✓✓✓ ✓✓✓ ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Server
Change
Password

ex-
per-
i-
men-
tal

✓✓✓ ✓✓✓ ?

Server
Shelve and
Unshelve

com-
plete

✓✓✓ ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓

Details

• Create Server and Delete Server This includes creating a server, and deleting a server. Specif-

3.3. Deployment Considerations 116

https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/XenProject_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/XenProject_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/NovaVMware/Minesweeper
https://wiki.openstack.org/wiki/NovaVMware/Minesweeper
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_z/VM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_z/VM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_z/VM_CI

Nova Documentation, Release 22.4.1.dev41

ically this is about booting a server from a glance image using the default disk and network con-
figuration.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/#servers-servers

– Admin Docs: https://docs.openstack.org/nova/latest/user/launch-instances.html

– Tempest tests: 9a438d88-10c6-4bcd-8b5b-5b6e25e1346f, 585e934c-448e-43c4-acbf-
d06a9b899997

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: partial

– libvirt+virtuozzo VM: partial

– libvirt+xen: complete

– VMware CI: complete

– Hyper-V CI: complete

– Ironic CI: unknown

– IBM PowerVM CI: complete

– IBM zVM CI: complete

• Snapshot Server This is creating a glance image from the currently running server.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/?expanded=
#servers-run-an-action-servers-action

– Admin Docs: https://docs.openstack.org/glance/latest/admin/troubleshooting.html

– Tempest tests: aaacd1d0-55a2-4ce8-818a-b5439df8adc9

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: partial

– libvirt+virtuozzo VM: partial

– libvirt+xen: complete

– VMware CI: unknown

– Hyper-V CI: unknown

– Ironic CI: unknown

3.3. Deployment Considerations 117

https://docs.openstack.org/api-ref/compute/#servers-servers
https://docs.openstack.org/nova/latest/user/launch-instances.html
https://github.com/openstack/tempest/search?q=9a438d88-10c6-4bcd-8b5b-5b6e25e1346f
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/glance/latest/admin/troubleshooting.html
https://github.com/openstack/tempest/search?q=aaacd1d0-55a2-4ce8-818a-b5439df8adc9

Nova Documentation, Release 22.4.1.dev41

– IBM PowerVM CI: complete

– IBM zVM CI: complete

• Server power ops This includes reboot, shutdown and start.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/?expanded=
#servers-run-an-action-servers-action

– Admin Docs:

– Tempest tests: 2cb1baf6-ac8d-4429-bf0d-ba8a0ba53e32, af8eafd4-38a7-4a4b-bdbc-
75145a580560

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: partial

– libvirt+virtuozzo VM: partial

– libvirt+xen: complete

– VMware CI: complete

– Hyper-V CI: complete

– Ironic CI: unknown

– IBM PowerVM CI: complete

– IBM zVM CI: complete

• Rebuild Server You can rebuild a server, optionally specifying the glance image to use.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/?expanded=
#servers-run-an-action-servers-action

– Admin Docs:

– Tempest tests: aaa6cdf3-55a7-461a-add9-1c8596b9a07c

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: partial

– libvirt+virtuozzo VM: partial

– libvirt+xen: complete

– VMware CI: complete

3.3. Deployment Considerations 118

https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://github.com/openstack/tempest/search?q=2cb1baf6-ac8d-4429-bf0d-ba8a0ba53e32
https://github.com/openstack/tempest/search?q=af8eafd4-38a7-4a4b-bdbc-75145a580560
https://github.com/openstack/tempest/search?q=af8eafd4-38a7-4a4b-bdbc-75145a580560
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://github.com/openstack/tempest/search?q=aaa6cdf3-55a7-461a-add9-1c8596b9a07c

Nova Documentation, Release 22.4.1.dev41

– Hyper-V CI: complete

– Ironic CI: unknown

– IBM PowerVM CI: missing

– IBM zVM CI: missing

• Resize Server You resize a server to a new flavor, then confirm or revert that operation.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/?expanded=
#servers-run-an-action-servers-action

– Admin Docs:

– Tempest tests: 1499262a-9328-4eda-9068-db1ac57498d2

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: complete

– libvirt+virtuozzo VM: partial

– libvirt+xen: complete

– VMware CI: complete

– Hyper-V CI: complete

– Ironic CI: unknown

– IBM PowerVM CI: missing

– IBM zVM CI: missing

• Volume Operations This is about attaching volumes, detaching volumes.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/
#servers-with-volume-attachments-servers-os-volume-attachments

– Admin Docs: https://docs.openstack.org/cinder/latest/admin/
blockstorage-manage-volumes.html

– Tempest tests: fff42874-7db5-4487-a8e1-ddda5fb5288d

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: complete

– libvirt+virtuozzo VM: complete

3.3. Deployment Considerations 119

https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://github.com/openstack/tempest/search?q=1499262a-9328-4eda-9068-db1ac57498d2
https://docs.openstack.org/api-ref/compute/#servers-with-volume-attachments-servers-os-volume-attachments
https://docs.openstack.org/api-ref/compute/#servers-with-volume-attachments-servers-os-volume-attachments
https://docs.openstack.org/cinder/latest/admin/blockstorage-manage-volumes.html
https://docs.openstack.org/cinder/latest/admin/blockstorage-manage-volumes.html
https://github.com/openstack/tempest/search?q=fff42874-7db5-4487-a8e1-ddda5fb5288d

Nova Documentation, Release 22.4.1.dev41

– libvirt+xen: complete

– VMware CI: complete

– Hyper-V CI: complete

– Ironic CI: missing

– IBM PowerVM CI: complete

– IBM zVM CI: missing

• Custom disk configurations on boot This is about supporting all the features of BDMv2. This
includes booting from a volume, in various ways, and specifying a custom set of ephemeral disks.
Note some drivers only supports part of what the API allows.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/?expanded=
create-image-createimage-action-detail#create-server

– Admin Docs: https://docs.openstack.org/nova/latest/user/block-device-mapping.html

– Tempest tests: 557cd2c2-4eb8-4dce-98be-f86765ff311b, 36c34c67-7b54-4b59-b188-
02a2f458a63b

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: missing

– libvirt+virtuozzo VM: complete

– libvirt+xen: complete

– VMware CI: partial

– Hyper-V CI: complete (updated in N release)

– Ironic CI: missing

– IBM PowerVM CI: missing

– IBM zVM CI: missing

• Custom neutron configurations on boot This is about supporting booting from one or more
neutron ports, or all the related short cuts such as booting a specified network. This does not
include SR-IOV or similar, just simple neutron ports.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/?&expanded=create-server-detail

– Admin Docs:

– Tempest tests: 2f3a0127-95c7-4977-92d2-bc5aec602fb4

drivers:

3.3. Deployment Considerations 120

https://docs.openstack.org/api-ref/compute/?expanded=create-image-createimage-action-detail#create-server
https://docs.openstack.org/api-ref/compute/?expanded=create-image-createimage-action-detail#create-server
https://docs.openstack.org/nova/latest/user/block-device-mapping.html
https://github.com/openstack/tempest/search?q=557cd2c2-4eb8-4dce-98be-f86765ff311b, 36c34c67-7b54-4b59-b188-02a2f458a63b
https://github.com/openstack/tempest/search?q=557cd2c2-4eb8-4dce-98be-f86765ff311b, 36c34c67-7b54-4b59-b188-02a2f458a63b
https://docs.openstack.org/api-ref/compute/?&expanded=create-server-detail
https://github.com/openstack/tempest/search?q=2f3a0127-95c7-4977-92d2-bc5aec602fb4

Nova Documentation, Release 22.4.1.dev41

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: unknown

– libvirt+virtuozzo VM: unknown

– libvirt+xen: partial

– VMware CI: partial

– Hyper-V CI: partial

– Ironic CI: missing

– IBM PowerVM CI: complete

– IBM zVM CI: partial

• Pause a Server This is pause and unpause a server, where the state is held in memory.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/?#pause-server-pause-action

– Admin Docs:

– Tempest tests: bd61a9fd-062f-4670-972b-2d6c3e3b9e73

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: missing

– libvirt+virtuozzo VM: partial

– libvirt+xen: complete

– VMware CI: partial

– Hyper-V CI: complete

– Ironic CI: missing

– IBM PowerVM CI: missing

– IBM zVM CI: complete

• Suspend a Server This suspend and resume a server, where the state is held on disk.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/?expanded=
suspend-server-suspend-action-detail

– Admin Docs:

– Tempest tests: 0d8ee21e-b749-462d-83da-b85b41c86c7f

drivers:

3.3. Deployment Considerations 121

https://docs.openstack.org/api-ref/compute/?#pause-server-pause-action
https://github.com/openstack/tempest/search?q=bd61a9fd-062f-4670-972b-2d6c3e3b9e73
https://docs.openstack.org/api-ref/compute/?expanded=suspend-server-suspend-action-detail
https://docs.openstack.org/api-ref/compute/?expanded=suspend-server-suspend-action-detail
https://github.com/openstack/tempest/search?q=0d8ee21e-b749-462d-83da-b85b41c86c7f

Nova Documentation, Release 22.4.1.dev41

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: partial

– libvirt+virtuozzo VM: partial

– libvirt+xen: complete

– VMware CI: complete

– Hyper-V CI: complete

– Ironic CI: missing

– IBM PowerVM CI: missing

– IBM zVM CI: missing

• Server console output This gets the current server console output.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/
#show-console-output-os-getconsoleoutput-action

– Admin Docs:

– Tempest tests: 4b8867e6-fffa-4d54-b1d1-6fdda57be2f3

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: unknown

– libvirt+virtuozzo VM: unknown

– libvirt+xen: complete

– VMware CI: partial

– Hyper-V CI: partial

– Ironic CI: missing

– IBM PowerVM CI: complete

– IBM zVM CI: complete

• Server Rescue This boots a server with a new root disk from the specified glance image to allow
a user to fix a boot partition configuration, or similar.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/#rescue-server-rescue-action

– Admin Docs:

3.3. Deployment Considerations 122

https://docs.openstack.org/api-ref/compute/#show-console-output-os-getconsoleoutput-action
https://docs.openstack.org/api-ref/compute/#show-console-output-os-getconsoleoutput-action
https://github.com/openstack/tempest/search?q=4b8867e6-fffa-4d54-b1d1-6fdda57be2f3
https://docs.openstack.org/api-ref/compute/#rescue-server-rescue-action

Nova Documentation, Release 22.4.1.dev41

– Tempest tests: fd032140-714c-42e4-a8fd-adcd8df06be6, 70cdb8a1-89f8-437d-9448-
8844fd82bf46

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: partial

– libvirt+virtuozzo VM: complete

– libvirt+xen: complete

– VMware CI: complete

– Hyper-V CI: partial

– Ironic CI: missing

– IBM PowerVM CI: missing

– IBM zVM CI: missing

• Server Config Drive This ensures the user data provided by the user when booting a server is
available in one of the expected config drive locations.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/#create-server

– Admin Docs: https://docs.openstack.org/nova/latest/admin/config-drive.html

– Tempest tests: 7fff3fb3-91d8-4fd0-bd7d-0204f1f180ba

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: missing

– libvirt+virtuozzo VM: partial

– libvirt+xen: complete

– VMware CI: complete

– Hyper-V CI: complete

– Ironic CI: partial

– IBM PowerVM CI: complete

– IBM zVM CI: complete

• Server Change Password The ability to reset the password of a user within the server.

info:

– Maturity: experimental

3.3. Deployment Considerations 123

https://github.com/openstack/tempest/search?q=fd032140-714c-42e4-a8fd-adcd8df06be6
https://github.com/openstack/tempest/search?q=70cdb8a1-89f8-437d-9448-8844fd82bf46
https://github.com/openstack/tempest/search?q=70cdb8a1-89f8-437d-9448-8844fd82bf46
https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/config-drive.html
https://github.com/openstack/tempest/search?q=7fff3fb3-91d8-4fd0-bd7d-0204f1f180ba

Nova Documentation, Release 22.4.1.dev41

– API Docs: https://docs.openstack.org/api-ref/compute/
#change-administrative-password-changepassword-action

– Admin Docs:

– Tempest tests: 6158df09-4b82-4ab3-af6d-29cf36af858d

drivers:

– libvirt+kvm (x86 & ppc64): partial

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: missing

– libvirt+virtuozzo VM: missing

– libvirt+xen: missing

– VMware CI: missing

– Hyper-V CI: partial

– Ironic CI: missing

– IBM PowerVM CI: missing

– IBM zVM CI: missing

• Server Shelve and Unshelve The ability to keep a server logically alive, but not using any cloud
resources. For local disk based instances, this involves taking a snapshot, called offloading.

info:

– Maturity: complete

– API Docs: https://docs.openstack.org/api-ref/compute/#shelve-server-shelve-action

– Admin Docs:

– Tempest tests: 1164e700-0af0-4a4c-8792-35909a88743c,c1b6318c-b9da-490b-9c67-
9339b627271f

drivers:

– libvirt+kvm (x86 & ppc64): complete

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: missing

– libvirt+virtuozzo VM: complete

– libvirt+xen: complete

– VMware CI: missing

– Hyper-V CI: complete

– Ironic CI: missing

– IBM PowerVM CI: complete

– IBM zVM CI: missing

3.3. Deployment Considerations 124

https://docs.openstack.org/api-ref/compute/#change-administrative-password-changepassword-action
https://docs.openstack.org/api-ref/compute/#change-administrative-password-changepassword-action
https://github.com/openstack/tempest/search?q=6158df09-4b82-4ab3-af6d-29cf36af858d
https://docs.openstack.org/api-ref/compute/#shelve-server-shelve-action
https://github.com/openstack/tempest/search?q=1164e700-0af0-4a4c-8792-35909a88743c,c1b6318c-b9da-490b-9c67-9339b627271f
https://github.com/openstack/tempest/search?q=1164e700-0af0-4a4c-8792-35909a88743c,c1b6318c-b9da-490b-9c67-9339b627271f

Nova Documentation, Release 22.4.1.dev41

3.3.1.3 NFV Cloud Features

Network Function Virtualization (NFV) is about virtualizing network node functions into building
blocks that may connect, or chain together to create a particular service. It is common for this workloads
needing bare metal like performance, i.e. low latency and close to line speed performance.

Important: In deployments older than Train, or in mixed Stein/Train deployments with a rolling
upgrade in progress, unless specifically enabled, live migration is not possible for instances
with a NUMA topology when using the libvirt driver. A NUMA topology may be specified explicitly or
can be added implicitly due to the use of CPU pinning or huge pages. Refer to bug #1289064 for more
information. As of Train, live migration of instances with a NUMA topology when using the libvirt
driver is fully supported.

Summary

Feature Maturity libvirt+kvm (x86 &
ppc64)

libvirt+kvm
(s390x)

lib-
virt+xen

NUMA Placement experi-
mental

✓✓✓ ?

CPU Pinning Policy experi-
mental

✓✓✓ ?

CPU Pinning Thread
Policy

experi-
mental

✓✓✓ ?

Details

• NUMA Placement Configure placement of instance vCPUs and memory across host NUMA
nodes

info:

– Maturity: experimental

– API Docs: https://docs.openstack.org/api-ref/compute/#create-server

– Admin Docs: https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#
customizing-instance-cpu-pinning-policies

– Tempest tests: 9a438d88-10c6-4bcd-8b5b-5b6e25e1346f, 585e934c-448e-43c4-acbf-
d06a9b899997

drivers:

– libvirt+kvm (x86 & ppc64): partial

– libvirt+kvm (s390x): unknown

– libvirt+xen: missing

• CPU Pinning Policy Enable/disable binding of instance vCPUs to host CPUs

info:

– Maturity: experimental

– API Docs: https://docs.openstack.org/api-ref/compute/#create-server

3.3. Deployment Considerations 125

https://bugs.launchpad.net/nova/+bug/1289064
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
https://wiki.openstack.org/wiki/ThirdPartySystems/XenProject_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/XenProject_CI
https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://github.com/openstack/tempest/search?q=9a438d88-10c6-4bcd-8b5b-5b6e25e1346f
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://docs.openstack.org/api-ref/compute/#create-server

Nova Documentation, Release 22.4.1.dev41

– Admin Docs: https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#
customizing-instance-cpu-pinning-policies

– Tempest tests:

drivers:

– libvirt+kvm (x86 & ppc64): partial

– libvirt+kvm (s390x): unknown

– libvirt+xen: missing

• CPU Pinning Thread Policy Configure usage of host hardware threads when pinning is used

info:

– Maturity: experimental

– API Docs: https://docs.openstack.org/api-ref/compute/#create-server

– Admin Docs: https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#
customizing-instance-cpu-pinning-policies

– Tempest tests:

drivers:

– libvirt+kvm (x86 & ppc64): partial

– libvirt+kvm (s390x): unknown

– libvirt+xen: missing

3.3.1.4 HPC Cloud Features

High Performance Compute (HPC) cloud have some specific needs that are covered in this set of fea-
tures. Summary

Fea-
ture

Ma-
tu-
rity

Hyper-
V
CI

Ironiclib-
virt+kvm
(x86 &
ppc64)

lib-
virt+kvm
(s390x)

lib-
virt+virtuozzo
CT

lib-
virt+virtuozzo
VM

lib-
virt+xen

Pow-
erVM
CI

VMware
CI

GPU
Passthrough

ex-
peri-
men-
tal

? ✓✓✓ l ? ✓✓✓ ✓✓✓

Vir-
tual
GPUs

ex-
peri-
men-
tal

✓✓✓ queens ? ? ? ?

Details

• GPU Passthrough The PCI passthrough feature in OpenStack allows full access and direct control
of a physical PCI device in guests. This mechanism is generic for any devices that can be attached
to a PCI bus. Correct driver installation is the only requirement for the guest to properly use the
devices.

3.3. Deployment Considerations 126

https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/XenProject_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/XenProject_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/NovaVMware/Minesweeper
https://wiki.openstack.org/wiki/NovaVMware/Minesweeper

Nova Documentation, Release 22.4.1.dev41

info:

– Maturity: experimental

– API Docs: https://docs.openstack.org/api-ref/compute/#create-server

– Admin Docs: https://docs.openstack.org/nova/latest/admin/pci-passthrough.html

– Tempest tests: 9a438d88-10c6-4bcd-8b5b-5b6e25e1346f, 585e934c-448e-43c4-acbf-
d06a9b899997

drivers:

– libvirt+kvm (x86 & ppc64): complete (updated in L release)

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: partial

– libvirt+virtuozzo VM: partial

– libvirt+xen: missing

– VMware CI: missing

– Hyper-V CI: missing

– Ironic: unknown

– PowerVM CI: missing

• Virtual GPUs Attach a virtual GPU to an instance at server creation time

info:

– Maturity: experimental

– API Docs: https://docs.openstack.org/api-ref/compute/#create-server

– Admin Docs: https://docs.openstack.org/nova/latest/admin/virtual-gpu.html

– Tempest tests:

drivers:

– libvirt+kvm (x86 & ppc64): partial (updated in QUEENS release)

– libvirt+kvm (s390x): unknown

– libvirt+virtuozzo CT: unknown

– libvirt+virtuozzo VM: unknown

– libvirt+xen: unknown

– VMware CI: missing

– Hyper-V CI: missing

– Ironic: missing

– PowerVM CI: missing

3.3. Deployment Considerations 127

https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/pci-passthrough.html
https://github.com/openstack/tempest/search?q=9a438d88-10c6-4bcd-8b5b-5b6e25e1346f
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/virtual-gpu.html

Nova Documentation, Release 22.4.1.dev41

3.3.1.5 Notes on Concepts

This document uses the following terminology.

Users

These are the users we talk about in this document:

application deployer creates and deletes servers, directly or indirectly using an API

application developer creates images and apps that run on the cloud

cloud operator administers the cloud

self service administrator runs and uses the cloud

Note: This is not an exhaustive list of personas, but rather an indicative set of users.

Feature Group

To reduce the size of the matrix, we organize the features into groups. Each group maps to a set of user
stories that can be validated by a set of scenarios and tests. Typically, this means a set of tempest tests.

This list focuses on API concepts like attach and detach volumes, rather than deployment specific con-
cepts like attach an iSCSI volume to a KVM based VM.

Deployment

A deployment maps to a specific test environment. We provide a full description of the environment, so
it is possible to reproduce the reported test results for each of the Feature Groups.

This description includes all aspects of the deployment, for example the hypervisor, number of nova-
compute services, storage, network driver, and types of images being tested.

Feature Group Maturity

The Feature Group Maturity rating is specific to the API concepts, rather than specific to a particular
deployment. That detail is covered in the deployment rating for each feature group.

Note: Although having some similarities, this list is not directly related to the DefCore effort.

Feature Group ratings:

Incomplete Incomplete features are those that do not have enough functionality to satisfy real world
use cases.

Experimental Experimental features should be used with extreme caution. They are likely to have little
or no upstream testing, and are therefore likely to contain bugs.

Complete For a feature to be considered complete, it must have:

3.3. Deployment Considerations 128

Nova Documentation, Release 22.4.1.dev41

• complete API docs (concept and REST call definition)

• complete Administrator docs

• tempest tests that define if the feature works correctly

• sufficient functionality and reliability to be useful in real world scenarios

• a reasonable expectation that the feature will be supported long-term

Complete and Required There are various reasons why a complete feature may be required, but gener-
ally it is when all drivers support that feature. New drivers need to prove they support all required
features before they are allowed in upstream Nova.

Required features are those that any new technology must support before being allowed into tree.
The larger the list, the more features are available on all Nova based clouds.

Deprecated Deprecated features are those that are scheduled to be removed in a future major release of
Nova. If a feature is marked as complete, it should never be deprecated.

If a feature is incomplete or experimental for several releases, it runs the risk of being deprecated
and later removed from the code base.

Deployment Rating for a Feature Group

The deployment rating refers to the state of the tests for each Feature Group on a particular deployment.

Deployment ratings:

Unknown No data is available.

Not Implemented No tests exist.

Implemented Self declared that the tempest tests pass.

Regularly Tested Tested by third party CI.

Checked Tested as part of the check or gate queue.

The eventual goal is to automate this list from a third party CI reporting system, but currently we docu-
ment manual inspections in an ini file. Ideally, we will review the list at every milestone.

3.3.2 Feature Support Matrix

When considering which capabilities should be marked as mandatory the following general guiding
principles were applied

• Inclusivity - people have shown ability to make effective use of a wide range of virtualization
technologies with broadly varying feature sets. Aiming to keep the requirements as inclusive as
possible, avoids second-guessing what a user may wish to use the cloud compute service for.

• Bootstrapping - a practical use case test is to consider that starting point for the compute de-
ploy is an empty data center with new machines and network connectivity. The look at what are
the minimum features required of a compute service, in order to get user instances running and
processing work over the network.

• Competition - an early leader in the cloud compute service space was Amazon EC2. A sanity
check for whether a feature should be mandatory is to consider whether it was available in the first
public release of EC2. This had quite a narrow feature set, but none the less found very high usage

3.3. Deployment Considerations 129

Nova Documentation, Release 22.4.1.dev41

in many use cases. So it serves to illustrate that many features need not be considered mandatory
in order to get useful work done.

• Reality - there are many virt drivers currently shipped with Nova, each with their own supported
feature set. Any feature which is missing in at least one virt driver that is already in-tree, must
by inference be considered optional until all in-tree drivers support it. This does not rule out
the possibility of a currently optional feature becoming mandatory at a later date, based on other
principles above.

Summary

Feature Status Hyper-V Ironic Libvirt KVM (aarch64) Libvirt KVM (ppc64) Libvirt KVM (s390x) Libvirt KVM (x86) Libvirt LXC Libvirt QEMU (x86) Libvirt Virtuozzo CT Libvirt Virtuozzo VM Libvirt Xen PowerVM VMware vCenter zVM
Attach block volume to instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Attach tagged block device to instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Detach block volume from instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Extend block volume attached to instance optional ✓✓✓ ? ? ✓✓✓ ✓✓✓ ? ? ✓✓✓
Attach virtual network interface to instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Attach tagged virtual network interface to instance optional ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Detach virtual network interface from instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Set the host in a maintenance mode optional
Evacuate instances from a host optional ? ? ✓✓✓ ? ✓✓✓ ✓✓✓ ? ? ? ? ?
Rebuild instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ?
Guest instance status mandatory ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Guest host uptime optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Guest host ip optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Live migrate instance across hosts optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Force live migration to complete optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Abort an in-progress or queued live migration optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ? ? ✓✓✓
Launch instance mandatory ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Stop instance CPUs (pause) optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Reboot instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Rescue instance optional ✓✓✓ ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Resize instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Restore instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Set instance admin password optional ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Save snapshot of instance disk optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Suspend instance optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Swap block volumes optional ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Shutdown instance mandatory ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Trigger crash dump optional ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Resume instance CPUs (unpause) optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
uefi boot optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Device tags optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ? ✓✓✓ ? ✓✓✓ ✓✓✓
quiesce optional ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
unquiesce optional ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Attach block volume to multiple instances optional ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Attach encrypted block volume to server optional ? ? ? ✓✓✓ ✓✓✓ ? ?
Validate image with trusted certificates optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
File backed memory optional ? ? ? ✓✓✓ ✓✓✓
Report CPU traits optional ? ✓✓✓ ✓✓✓ ✓✓✓

continues on next page

3.3. Deployment Considerations 130

Nova Documentation, Release 22.4.1.dev41

Table 1 – continued from previous page
Feature Status Hyper-V Ironic Libvirt KVM (aarch64) Libvirt KVM (ppc64) Libvirt KVM (s390x) Libvirt KVM (x86) Libvirt LXC Libvirt QEMU (x86) Libvirt Virtuozzo CT Libvirt Virtuozzo VM Libvirt Xen PowerVM VMware vCenter zVM
SR-IOV ports with resource request optional ✓✓✓ ✓✓✓
Boot instance with secure encrypted memory optional ✓✓✓
Cache base images for faster instance boot optional ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ? ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
Boot instance with an emulated trusted platform module (TPM) optional ✓✓✓ ✓✓✓

Details

• Attach block volume to instance Status: optional.

CLI commands:

– nova volume-attach <server> <volume>

Notes: The attach volume operation provides a means to hotplug additional block storage to a
running instance. This allows storage capabilities to be expanded without interruption of service.
In a cloud model it would be more typical to just spin up a new instance with large storage, so the
ability to hotplug extra storage is for those cases where the instance is considered to be more of a
pet than cattle. Therefore this operation is not considered to be mandatory to support.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete Notes: This is not tested for every CI run. Add a powervm:volume-
check comment to trigger a CI job running volume tests.

– VMware vCenter: complete

– zVM: missing

• Attach tagged block device to instance Status: optional.

CLI commands:

– nova volume-attach <server> <volume> [--tag <tag>]

Notes: Attach a block device with a tag to an existing server instance. See Device tags for more
information.

Driver Support:

3.3. Deployment Considerations 131

Nova Documentation, Release 22.4.1.dev41

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Detach block volume from instance Status: optional.

CLI commands:

– nova volume-detach <server> <volume>

Notes: See notes for attach volume operation.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete Notes: This is not tested for every CI run. Add a powervm:volume-
check comment to trigger a CI job running volume tests.

– VMware vCenter: complete

– zVM: missing

3.3. Deployment Considerations 132

Nova Documentation, Release 22.4.1.dev41

• Extend block volume attached to instance Status: optional.

CLI commands:

– cinder extend <volume> <new_size>

Notes: The extend volume operation provides a means to extend the size of an attached volume.
This allows volume size to be expanded without interruption of service. In a cloud model it would
be more typical to just spin up a new instance with large storage, so the ability to extend the size
of an attached volume is for those cases where the instance is considered to be more of a pet than
cattle. Therefore this operation is not considered to be mandatory to support.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): unknown

– Libvirt KVM (s390x): unknown

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: unknown

– Libvirt Xen: unknown

– PowerVM: complete Notes: This is not tested for every CI run. Add a powervm:volume-
check comment to trigger a CI job running volume tests.

– VMware vCenter: missing

– zVM: missing

• Attach virtual network interface to instance Status: optional.

CLI commands:

– nova interface-attach <server>

Notes: The attach interface operation provides a means to hotplug additional interfaces to a run-
ning instance. Hotplug support varies between guest OSes and some guests require a reboot for
new interfaces to be detected. This operation allows interface capabilities to be expanded without
interruption of service. In a cloud model it would be more typical to just spin up a new instance
with more interfaces.

Driver Support:

– Hyper-V: partial Notes: Works without issue if instance is off. When hotplugging, only
works if using Windows/Hyper-V Server 2016 and the instance is a Generation 2 VM.

– Ironic: complete

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

3.3. Deployment Considerations 133

Nova Documentation, Release 22.4.1.dev41

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete

– VMware vCenter: complete

– zVM: missing

• Attach tagged virtual network interface to instance Status: optional.

CLI commands:

– nova interface-attach <server> [--tag <tag>]

Notes: Attach a virtual network interface with a tag to an existing server instance. See Device
tags for more information.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Detach virtual network interface from instance Status: optional.

CLI commands:

– nova interface-detach <server> <port_id>

Notes: See notes for attach-interface operation.

Driver Support:

3.3. Deployment Considerations 134

Nova Documentation, Release 22.4.1.dev41

– Hyper-V: complete Notes: Works without issue if instance is off. When hotplugging,
only works if using Windows/Hyper-V Server 2016 and the instance is a Generation 2 VM.

– Ironic: complete

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete

– VMware vCenter: complete

– zVM: missing

• Set the host in a maintenance mode Status: optional.

CLI commands:

– nova host-update <host>

Notes: This operation allows a host to be placed into maintenance mode, automatically triggering
migration of any running instances to an alternative host and preventing new instances from being
launched. This is not considered to be a mandatory operation to support. The driver methods to
implement are host_maintenance_mode and set_host_enabled.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): missing

– Libvirt KVM (ppc64): missing

– Libvirt KVM (s390x): missing

– Libvirt KVM (x86): missing

– Libvirt LXC: missing

– Libvirt QEMU (x86): missing

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

3.3. Deployment Considerations 135

Nova Documentation, Release 22.4.1.dev41

– zVM: missing

• Evacuate instances from a host Status: optional.

CLI commands:

– nova evacuate <server>

– nova host-evacuate <host>

Notes: A possible failure scenario in a cloud environment is the outage of one of the compute
nodes. In such a case the instances of the down host can be evacuated to another host. It is assumed
that the old host is unlikely ever to be powered back on, otherwise the evacuation attempt will be
rejected. When the instances get moved to the new host, their volumes get re-attached and the
locally stored data is dropped. That happens in the same way as a rebuild. This is not considered
to be a mandatory operation to support.

Driver Support:

– Hyper-V: unknown

– Ironic: unknown

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): unknown

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: unknown

– Libvirt QEMU (x86): unknown

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: unknown

– PowerVM: missing

– VMware vCenter: unknown

– zVM: unknown

• Rebuild instance Status: optional.

CLI commands:

– nova rebuild <server> <image>

Notes: A possible use case is additional attributes need to be set to the instance, nova will purge
all existing data from the system and remakes the VM with given information such as metadata
and personalities. Though this is not considered to be a mandatory operation to support.

Driver Support:

– Hyper-V: complete

– Ironic: complete

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

3.3. Deployment Considerations 136

Nova Documentation, Release 22.4.1.dev41

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: complete

– zVM: unknown

• Guest instance status Status: mandatory.

Notes: Provides realtime information about the power state of the guest instance. Since the power
state is used by the compute manager for tracking changes in guests, this operation is considered
mandatory to support.

Driver Support:

– Hyper-V: complete

– Ironic: complete

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete

– VMware vCenter: complete

– zVM: complete

• Guest host uptime Status: optional.

Notes: Returns the result of host uptime since power on, its used to report hypervisor status.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

3.3. Deployment Considerations 137

Nova Documentation, Release 22.4.1.dev41

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete

– VMware vCenter: missing

– zVM: complete

• Guest host ip Status: optional.

Notes: Returns the ip of this host, its used when doing resize and migration.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete

– VMware vCenter: complete

– zVM: complete

• Live migrate instance across hosts Status: optional.

CLI commands:

– nova live-migration <server>

– nova host-evacuate-live <host>

Notes: Live migration provides a way to move an instance off one compute host, to another
compute host. Administrators may use this to evacuate instances from a host that needs to undergo
maintenance tasks, though of course this may not help if the host is already suffering a failure. In

3.3. Deployment Considerations 138

Nova Documentation, Release 22.4.1.dev41

general instances are considered cattle rather than pets, so it is expected that an instance is liable
to be killed if host maintenance is required. It is technically challenging for some hypervisors to
provide support for the live migration operation, particularly those built on the container based
virtualization. Therefore this operation is not considered mandatory to support.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): missing

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: complete

– zVM: missing

• Force live migration to complete Status: optional.

CLI commands:

– nova live-migration-force-complete <server> <migration>

Notes: Live migration provides a way to move a running instance to another compute host. But
it can sometimes fail to complete if an instance has a high rate of memory or disk page access.
This operation provides the user with an option to assist the progress of the live migration. The
mechanism used to complete the live migration depends on the underlying virtualization subsys-
tem capabilities. If libvirt/qemu is used and the post-copy feature is available and enabled then
the force complete operation will cause a switch to post-copy mode. Otherwise the instance will
be suspended until the migration is completed or aborted.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): missing

– Libvirt KVM (ppc64): complete Notes: Requires libvirt>=1.3.3, qemu>=2.5.0

– Libvirt KVM (s390x): complete Notes: Requires libvirt>=1.3.3, qemu>=2.5.0

– Libvirt KVM (x86): complete Notes: Requires libvirt>=1.3.3, qemu>=2.5.0

– Libvirt LXC: missing

3.3. Deployment Considerations 139

Nova Documentation, Release 22.4.1.dev41

– Libvirt QEMU (x86): complete Notes: Requires libvirt>=1.3.3, qemu>=2.5.0

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Abort an in-progress or queued live migration Status: optional.

CLI commands:

– nova live-migration-abort <server> <migration>

Notes: Live migration provides a way to move a running instance to another compute host. But it
can sometimes need a large amount of time to complete if an instance has a high rate of memory or
disk page access or is stuck in queued status if there are too many in-progress live migration jobs
in the queue. This operation provides the user with an option to abort in-progress live migrations.
When the live migration job is still in queued or preparing status, it can be aborted regardless of
the type of underneath hypervisor, but once the job status changes to running, only some of the
hypervisors support this feature.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): missing

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: unknown

– Libvirt Virtuozzo VM: unknown

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Launch instance Status: mandatory.

Notes: Importing pre-existing running virtual machines on a host is considered out of scope of
the cloud paradigm. Therefore this operation is mandatory to support in drivers.

Driver Support:

– Hyper-V: complete

3.3. Deployment Considerations 140

Nova Documentation, Release 22.4.1.dev41

– Ironic: complete

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete

– VMware vCenter: complete

– zVM: complete

• Stop instance CPUs (pause) Status: optional.

CLI commands:

– nova pause <server>

Notes: Stopping an instances CPUs can be thought of as roughly equivalent to suspend-to-RAM.
The instance is still present in memory, but execution has stopped. The problem, however, is that
there is no mechanism to inform the guest OS that this takes place, so upon unpausing, its clocks
will no longer report correct time. For this reason hypervisor vendors generally discourage use of
this feature and some do not even implement it. Therefore this operation is considered optional to
support in drivers.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: missing

3.3. Deployment Considerations 141

Nova Documentation, Release 22.4.1.dev41

– zVM: complete

• Reboot instance Status: optional.

CLI commands:

– nova reboot <server>

Notes: It is reasonable for a guest OS administrator to trigger a graceful reboot from inside the
instance. A host initiated graceful reboot requires guest co-operation and a non-graceful reboot
can be achieved by a combination of stop+start. Therefore this operation is considered optional.

Driver Support:

– Hyper-V: complete

– Ironic: complete

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete

– VMware vCenter: complete

– zVM: complete

• Rescue instance Status: optional.

CLI commands:

– nova rescue <server>

Notes: The rescue operation starts an instance in a special configuration whereby it is booted from
an special root disk image. The goal is to allow an administrator to recover the state of a broken
virtual machine. In general the cloud model considers instances to be cattle, so if an instance
breaks the general expectation is that it be thrown away and a new instance created. Therefore
this operation is considered optional to support in drivers.

Driver Support:

– Hyper-V: complete

– Ironic: complete

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

3.3. Deployment Considerations 142

Nova Documentation, Release 22.4.1.dev41

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: complete

– zVM: missing

• Resize instance Status: optional.

CLI commands:

– nova resize <server> <flavor>

Notes: The resize operation allows the user to change a running instance to match the size of
a different flavor from the one it was initially launched with. There are many different flavor
attributes that potentially need to be updated. In general it is technically challenging for a hyper-
visor to support the alteration of all relevant config settings for a running instance. Therefore this
operation is considered optional to support in drivers.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: complete

– zVM: missing

• Restore instance Status: optional.

CLI commands:

– nova resume <server>

3.3. Deployment Considerations 143

Nova Documentation, Release 22.4.1.dev41

Notes: See notes for the suspend operation

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: complete

– zVM: missing

• Set instance admin password Status: optional.

CLI commands:

– nova set-password <server>

Notes: Provides a mechanism to (re)set the password of the administrator account inside the
instance operating system. This requires that the hypervisor has a way to communicate with the
running guest operating system. Given the wide range of operating systems in existence it is
unreasonable to expect this to be practical in the general case. The configdrive and metadata
service both provide a mechanism for setting the administrator password at initial boot time. In
the case where this operation were not available, the administrator would simply have to login to
the guest and change the password in the normal manner, so this is just a convenient optimization.
Therefore this operation is not considered mandatory for drivers to support.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): missing

– Libvirt KVM (s390x): missing

– Libvirt KVM (x86): complete Notes: Requires libvirt>=1.2.16 and
hw_qemu_guest_agent.

– Libvirt LXC: missing

3.3. Deployment Considerations 144

Nova Documentation, Release 22.4.1.dev41

– Libvirt QEMU (x86): complete Notes: Requires libvirt>=1.2.16 and
hw_qemu_guest_agent.

– Libvirt Virtuozzo CT: complete Notes: Requires libvirt>=2.0.0

– Libvirt Virtuozzo VM: complete Notes: Requires libvirt>=2.0.0

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Save snapshot of instance disk Status: optional.

CLI commands:

– nova image-create <server> <name>

Notes: The snapshot operation allows the current state of the instance root disk to be saved and
uploaded back into the glance image repository. The instance can later be booted again using
this saved image. This is in effect making the ephemeral instance root disk into a semi-persistent
storage, in so much as it is preserved even though the guest is no longer running. In general
though, the expectation is that the root disks are ephemeral so the ability to take a snapshot cannot
be assumed. Therefore this operation is not considered mandatory to support.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: partial Notes: Only cold snapshots (pause + snapshot) supported

– PowerVM: complete Notes: When using the localdisk disk driver, snapshot is only sup-
ported if I/O is being hosted by the management partition. If hosting I/O on traditional
VIOS, we are limited by the fact that a VSCSI device cant be mapped to two partitions (the
VIOS and the management) at once.

– VMware vCenter: complete

– zVM: complete

• Suspend instance Status: optional.

CLI commands:

3.3. Deployment Considerations 145

Nova Documentation, Release 22.4.1.dev41

– nova suspend <server>

Notes: Suspending an instance can be thought of as roughly equivalent to suspend-to-disk. The
instance no longer consumes any RAM or CPUs, with its live running state having been preserved
in a file on disk. It can later be restored, at which point it should continue execution where it left
off. As with stopping instance CPUs, it suffers from the fact that the guest OS will typically be left
with a clock that is no longer telling correct time. For container based virtualization solutions, this
operation is particularly technically challenging to implement and is an area of active research.
This operation tends to make more sense when thinking of instances as pets, rather than cattle,
since with cattle it would be simpler to just terminate the instance instead of suspending. Therefore
this operation is considered optional to support.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: complete

– zVM: missing

• Swap block volumes Status: optional.

CLI commands:

– nova volume-update <server> <attachment> <volume>

Notes: The swap volume operation is a mechanism for changing a running instance so that its
attached volume(s) are backed by different storage in the host. An alternative to this would be to
simply terminate the existing instance and spawn a new instance with the new storage. In other
words this operation is primarily targeted towards the pet use case rather than cattle, however, it
is required for volume migration to work in the volume service. This is considered optional to
support.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): complete

3.3. Deployment Considerations 146

Nova Documentation, Release 22.4.1.dev41

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Shutdown instance Status: mandatory.

CLI commands:

– nova delete <server>

Notes: The ability to terminate a virtual machine is required in order for a cloud user to stop uti-
lizing resources and thus avoid indefinitely ongoing billing. Therefore this operation is mandatory
to support in drivers.

Driver Support:

– Hyper-V: complete

– Ironic: complete

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete Notes: Fails in latest Ubuntu Trusty kernel from security repos-
itory (3.13.0-76-generic), but works in upstream 3.13.x kernels as well as default Ubuntu
Trusty latest kernel (3.13.0-58-generic).

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: complete

– VMware vCenter: complete

– zVM: complete

• Trigger crash dump Status: optional.

CLI commands:

– nova trigger-crash-dump <server>

3.3. Deployment Considerations 147

Nova Documentation, Release 22.4.1.dev41

Notes: The trigger crash dump operation is a mechanism for triggering a crash dump in an in-
stance. The feature is typically implemented by injecting an NMI (Non-maskable Interrupt) into
the instance. It provides a means to dump the production memory image as a dump file which is
useful for users. Therefore this operation is considered optional to support.

Driver Support:

– Hyper-V: missing

– Ironic: complete

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Resume instance CPUs (unpause) Status: optional.

CLI commands:

– nova unpause <server>

Notes: See notes for the Stop instance CPUs operation

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

3.3. Deployment Considerations 148

Nova Documentation, Release 22.4.1.dev41

– PowerVM: missing

– VMware vCenter: missing

– zVM: complete

• uefi boot Status: optional.

Notes: This allows users to boot a guest with uefi firmware.

Driver Support:

– Hyper-V: complete Notes: In order to use uefi, a second generation Hyper-V vm must
be requested.

– Ironic: partial Notes: depends on hardware support

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): missing

– Libvirt KVM (s390x): missing

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: complete

– zVM: missing

• Device tags Status: optional.

CLI commands:

– nova boot

Notes: This allows users to set tags on virtual devices when creating a server instance. Device
tags are used to identify virtual device metadata, as exposed in the metadata API and on the config
drive. For example, a network interface tagged with nic1 will appear in the metadata along with its
bus (ex: PCI), bus address (ex: 0000:00:02.0), MAC address, and tag (nic1). If multiple networks
are defined, the order in which they appear in the guest operating system will not necessarily reflect
the order in which they are given in the server boot request. Guests should therefore not depend
on device order to deduce any information about their network devices. Instead, device role tags
should be used. Device tags can be applied to virtual network interfaces and block devices.

Driver Support:

– Hyper-V: complete

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

3.3. Deployment Considerations 149

Nova Documentation, Release 22.4.1.dev41

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: unknown

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: unknown

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• quiesce Status: optional.

Notes: Quiesce the specified instance to prepare for snapshots. For libvirt, guest filesystems will
be frozen through qemu agent.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• unquiesce Status: optional.

Notes: See notes for the quiesce operation

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): complete

3.3. Deployment Considerations 150

Nova Documentation, Release 22.4.1.dev41

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Attach block volume to multiple instances Status: optional.

CLI commands:

– nova volume-attach <server> <volume>

Notes: The multiattach volume operation is an extension to the attach volume operation. It allows
to attach a single volume to multiple instances. This operation is not considered to be mandatory
to support. Note that for the libvirt driver, this is only supported if qemu<2.10 or libvirt>=3.10.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Attach encrypted block volume to server Status: optional.

CLI commands:

– nova volume-attach <server> <volume>

3.3. Deployment Considerations 151

Nova Documentation, Release 22.4.1.dev41

Notes: This is the same as the attach volume operation except with an encrypted block device.
Encrypted volumes are controlled via admin-configured volume types in the block storage service.
Since attach volume is optional this feature is also optional for compute drivers to support.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): unknown

– Libvirt KVM (s390x): unknown

– Libvirt KVM (x86): complete Notes: For native QEMU decryption of the encrypted
volume (and rbd support), QEMU>=2.6.0 and libvirt>=2.2.0 are required and only the luks
type provider is supported. Otherwise both luks and cryptsetup types are supported but not
natively, i.e. not all volume types are supported.

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete Notes: The same restrictions apply as KVM x86.

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: unknown

– Libvirt Xen: unknown

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Validate image with trusted certificates Status: optional.

CLI commands:

– nova boot --trusted-image-certificate-id ...

Notes: Since trusted image certification validation is configurable by the cloud deployer it is
considered optional. However, it is a virt-agnostic feature so there is no good reason that all virt
drivers cannot support the feature since it is mostly just plumbing user requests through the virt
driver when downloading images.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: complete

– Libvirt QEMU (x86): complete

3.3. Deployment Considerations 152

Nova Documentation, Release 22.4.1.dev41

– Libvirt Virtuozzo CT: complete

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• File backed memory Status: optional.

Notes: The file backed memory feature in Openstack allows a Nova node to serve guest memory
from a file backing store. This mechanism uses the libvirt file memory source, causing guest
instance memory to be allocated as files within the libvirt memory backing directory. This is only
supported if qemu>2.6 and libvirt>4.0.0

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): unknown

– Libvirt KVM (s390x): unknown

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Report CPU traits Status: optional.

Notes: The report CPU traits feature in OpenStack allows a Nova node to report its CPU traits
according to CPU mode configuration. This gives users the ability to boot instances based on
desired CPU traits.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): unknown

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): missing

3.3. Deployment Considerations 153

Nova Documentation, Release 22.4.1.dev41

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• SR-IOV ports with resource request Status: optional.

CLI commands:

– nova boot --nic port-id <neutron port with resource request>
...

Notes: To support neutron SR-IOV ports (vnic_type=direct or vnic_type=macvtap) with re-
source request the virt driver needs to include the parent_ifname key in each subdict which
represents a VF under the pci_passthrough_devices key in the dict returned from the Comput-
eDriver.get_available_resource() call.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): missing

– Libvirt KVM (ppc64): missing

– Libvirt KVM (s390x): missing

– Libvirt KVM (x86): complete

– Libvirt LXC: missing

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Boot instance with secure encrypted memory Status: optional.

CLI commands:

– openstack server create <usual server create parameters>

3.3. Deployment Considerations 154

Nova Documentation, Release 22.4.1.dev41

Notes: The feature allows VMs to be booted with their memory hardware-encrypted with a key
specific to the VM, to help protect the data residing in the VM against access from anyone other
than the user of the VM. The Configuration and Security Guides specify usage of this feature.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): missing

– Libvirt KVM (ppc64): missing

– Libvirt KVM (s390x): missing

– Libvirt KVM (x86): partial Notes: This feature is currently only available with hosts
which support the SEV (Secure Encrypted Virtualization) technology from AMD.

– Libvirt LXC: missing

– Libvirt QEMU (x86): missing

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

• Cache base images for faster instance boot Status: optional.

CLI commands:

– openstack server create <usual server create parameters>

Notes: Drivers supporting this feature cache base images on the compute host so that subsequent
boots need not incur the expense of downloading them. Partial support entails caching an image
after the first boot that uses it. Complete support allows priming the cache so that the first boot
also benefits. Image caching support is tunable via config options in the [image_cache] group.

Driver Support:

– Hyper-V: partial

– Ironic: missing

– Libvirt KVM (aarch64): complete

– Libvirt KVM (ppc64): complete

– Libvirt KVM (s390x): complete

– Libvirt KVM (x86): complete

– Libvirt LXC: unknown

– Libvirt QEMU (x86): complete

– Libvirt Virtuozzo CT: complete

3.3. Deployment Considerations 155

Nova Documentation, Release 22.4.1.dev41

– Libvirt Virtuozzo VM: complete

– Libvirt Xen: complete

– PowerVM: partial Notes: The PowerVM driver does image caching natively when us-
ing the SSP disk driver. It does not use the config options in the [image_cache] group.

– VMware vCenter: partial

– zVM: missing

• Boot instance with an emulated trusted platform module (TPM) Status: optional.

CLI commands:

– openstack server create <usual server create parameters>

Notes: Allows VMs to be booted with an emulated trusted platform module (TPM) device. Only
lifecycle operations performed by the VM owner are supported, as the users credentials are re-
quired to unlock the virtual device files on the host.

Driver Support:

– Hyper-V: missing

– Ironic: missing

– Libvirt KVM (aarch64): missing

– Libvirt KVM (ppc64): missing

– Libvirt KVM (s390x): missing

– Libvirt KVM (x86): partial Notes: Move operations are not yet supported.

– Libvirt LXC: missing

– Libvirt QEMU (x86): partial Notes: Move operations are not yet supported.

– Libvirt Virtuozzo CT: missing

– Libvirt Virtuozzo VM: missing

– Libvirt Xen: missing

– PowerVM: missing

– VMware vCenter: missing

– zVM: missing

Notes:

• This document is a continuous work in progress

3.3. Deployment Considerations 156

Nova Documentation, Release 22.4.1.dev41

3.3.3 Cells Layout (v2)

This document describes the layout of a deployment with Cells version 2, including deployment con-
siderations for security and scale. It is focused on code present in Pike and later, and while it is geared
towards people who want to have multiple cells for whatever reason, the nature of the cellsv2 support in
Nova means that it applies in some way to all deployments.

3.3.3.1 Concepts

A basic Nova system consists of the following components:

• The nova-api service which provides the external REST API to users.

• The nova-scheduler and placement services which are responsible for tracking resources and de-
ciding which compute node instances should be on.

• An API database that is used primarily by nova-api and nova-scheduler (called API-level services
below) to track location information about instances, as well as a temporary location for instances
being built but not yet scheduled.

• The nova-conductor service which offloads long-running tasks for the API-level service, as well
as insulates compute nodes from direct database access

• The nova-compute service which manages the virt driver and hypervisor host.

• A cell database which is used by API, conductor and compute services, and which houses the
majority of the information about instances.

• A cell0 database which is just like the cell database, but contains only instances that failed to be
scheduled.

• A message queue which allows the services to communicate with each other via RPC.

All deployments have at least the above components. Small deployments likely have a single message
queue that all services share, and a single database server which hosts the API database, a single cell
database, as well as the required cell0 database. This is considered a single-cell deployment because it
only has one real cell. The cell0 database mimics a regular cell, but has no compute nodes and is used
only as a place to put instances that fail to land on a real compute node (and thus a real cell).

The purpose of the cells functionality in nova is specifically to allow larger deployments to shard their
many compute nodes into cells, each of which has a database and message queue. The API database is
always and only global, but there can be many cell databases (where the bulk of the instance information
lives), each with a portion of the instances for the entire deployment within.

All of the nova services use a configuration file, all of which will at a minimum specify a message
queue endpoint (i.e. [DEFAULT]/transport_url). Most of the services also require configuration
of database connection information (i.e. [database]/connection). API-level services that need
access to the global routing and placement information will also be configured to reach the API database
(i.e. [api_database]/connection).

Note: The pair of transport_url and [database]/connection configured for a service
defines what cell a service lives in.

3.3. Deployment Considerations 157

Nova Documentation, Release 22.4.1.dev41

API-level services need to be able to contact other services in all of the cells. Since they only have one
configured transport_url and [database]/connection they look up the information for the
other cells in the API database, with records called cell mappings.

Note: The API database must have cell mapping records that match the transport_url
and [database]/connection configuration elements of the lower-level services. See the
nova-manage Nova Cells v2 commands for more information about how to create and examine these
records.

3.3.3.2 Service Layout

The services generally have a well-defined communication pattern that dictates their layout in a de-
ployment. In a small/simple scenario, the rules do not have much of an impact as all the services can
communicate with each other on a single message bus and in a single cell database. However, as the
deployment grows, scaling and security concerns may drive separation and isolation of the services.

Simple

This is a diagram of the basic services that a simple (single-cell) deployment would have, as well as the
relationships (i.e. communication paths) between them:

nova-api API Database

MQ

Cell0 Database Cell Database

nova-scheduler

nova-compute

nova-conductor

All of the services are configured to talk to each other over the same message bus, and there is only one
cell database where live instance data resides. The cell0 database is present (and required) but as no
compute nodes are connected to it, this is still a single cell deployment.

3.3. Deployment Considerations 158

Nova Documentation, Release 22.4.1.dev41

Multiple Cells

In order to shard the services into multiple cells, a number of things must happen. First, the message bus
must be split into pieces along the same lines as the cell database. Second, a dedicated conductor must
be run for the API-level services, with access to the API database and a dedicated message queue. We
call this super conductor to distinguish its place and purpose from the per-cell conductor nodes.

Cell 0

Cell 1 Cell 2

nova-api

API MQ API Database

Cell Database Cell MQ

Cell Database

Cell MQ

Cell Database

nova-scheduler super conductor

nova-conductor nova-compute nova-conductor nova-compute

It is important to note that services in the lower cell boxes only have the ability to call back to the
placement API but cannot access any other API-layer services via RPC, nor do they have access to the
API database for global visibility of resources across the cloud. This is intentional and provides security
and failure domain isolation benefits, but also has impacts on some things that would otherwise require
this any-to-any communication style. Check the release notes for the version of Nova you are using for
the most up-to-date information about any caveats that may be present due to this limitation.

Caveats of a Multi-Cell deployment

Note: This information is correct as of the Pike release. Where improvements have been made or issues
fixed, they are noted per item.

3.3. Deployment Considerations 159

Nova Documentation, Release 22.4.1.dev41

Cross-cell instance migrations

Currently it is not possible to migrate an instance from a host in one cell to a host in another cell. This
may be possible in the future, but it is currently unsupported. This impacts cold migration, resizes, live
migrations, evacuate, and unshelve operations.

Quota-related quirks

Quotas are now calculated live at the point at which an operation would consume more resource, instead
of being kept statically in the database. This means that a multi-cell environment may incorrectly calcu-
late the usage of a tenant if one of the cells is unreachable, as those resources cannot be counted. In this
case, the tenant may be able to consume more resource from one of the available cells, putting them far
over quota when the unreachable cell returns.

Note: Starting in the Train (20.0.0) release, it is possible to configure counting of quota usage from
the placement service and API database to make quota usage calculations resilient to down or poor-
performing cells in a multi-cell environment. See the quotas documentation for more details.

Performance of listing instances

Note: This has been resolved in the Queens release1.

With multiple cells, the instance list operation may not sort and paginate results properly when crossing
multiple cell boundaries. Further, the performance of a sorted list operation will be considerably slower
than with a single cell.

Notifications

With a multi-cell environment with multiple message queues, it is likely that operators will want to
configure a separate connection to a unified queue for notifications. This can be done in the configuration
file of all nodes. Refer to the oslo.messaging configuration documentation for more details.

Nova Metadata API service

Starting from the Stein release, the nova metadata API service can be run either globally or per cell
using the api.local_metadata_per_cell configuration option.

Global

If you have networks that span cells, you might need to run Nova metadata API globally. When run-
ning globally, it should be configured as an API-level service with access to the api_database.
connection information. The nova metadata API service must not be run as a standalone service,
using the nova-api-metadata service, in this case.

1 https://blueprints.launchpad.net/nova/+spec/efficient-multi-cell-instance-list-and-sort

3.3. Deployment Considerations 160

https://docs.openstack.org/oslo.messaging/victoria/configuration/opts.html#oslo_messaging_notifications.transport_url
https://blueprints.launchpad.net/nova/+spec/efficient-multi-cell-instance-list-and-sort

Nova Documentation, Release 22.4.1.dev41

Local per cell

Running Nova metadata API per cell can have better performance and data isolation in a multi-cell
deployment. If your networks are segmented along cell boundaries, then you can run Nova metadata
API service per cell. If you choose to run it per cell, you should also configure each neutron-metadata-
agent service to point to the corresponding nova-api-metadata. The nova metadata API service
must be run as a standalone service, using the nova-api-metadata service, in this case.

Console proxies

Starting from the Rocky release, console proxies must be run per cell because console token authoriza-
tions are stored in cell databases. This means that each console proxy server must have access to the
database.connection information for the cell database containing the instances for which it is
proxying console access.

Operations Requiring upcalls

If you deploy multiple cells with a superconductor as described above, computes and cell-based conduc-
tors will not have the ability to speak to the scheduler as they are not connected to the same MQ. This is
by design for isolation, but currently the processes are not in place to implement some features without
such connectivity. Thus, anything that requires a so-called upcall will not function. This impacts the
following:

1. Instance reschedules during boot and resize (part 1)

Note: This has been resolved in the Queens release2.

2. Instance affinity reporting from the compute nodes to scheduler

3. The late anti-affinity check during server create and evacuate

4. Querying host aggregates from the cell

Note: This has been resolved in the Rocky release3.

5. Attaching a volume and [cinder]/cross_az_attach=False

6. Instance reschedules during boot and resize (part 2)

Note: This has been resolved in the Ussuri release45.

The first is simple: if you boot an instance, it gets scheduled to a compute node, fails, it would normally
be re-scheduled to another node. That requires scheduler intervention and thus it will not work in Pike
with a multi-cell layout. If you do not rely on reschedules for covering up transient compute-node

2 https://specs.openstack.org/openstack/nova-specs/specs/queens/approved/return-alternate-hosts.html
3 https://blueprints.launchpad.net/nova/+spec/live-migration-in-xapi-pool
4 https://review.opendev.org/686047/
5 https://review.opendev.org/686050/

3.3. Deployment Considerations 161

https://docs.openstack.org/neutron/victoria/configuration/metadata-agent.html?#DEFAULT.nova_metadata_host
https://docs.openstack.org/neutron/victoria/configuration/metadata-agent.html?#DEFAULT.nova_metadata_host
https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/convert-consoles-to-objects.html
https://specs.openstack.org/openstack/nova-specs/specs/queens/approved/return-alternate-hosts.html
https://blueprints.launchpad.net/nova/+spec/live-migration-in-xapi-pool
https://review.opendev.org/686047/
https://review.opendev.org/686050/

Nova Documentation, Release 22.4.1.dev41

failures, then this will not affect you. To ensure you do not make futile attempts at rescheduling, you
should set [scheduler]/max_attempts=1 in nova.conf.

The second two are related. The summary is that some of the facilities that Nova
has for ensuring that affinity/anti-affinity is preserved between instances does not function
in Pike with a multi-cell layout. If you dont use affinity operations, then this will
not affect you. To make sure you dont make futile attempts at the affinity check,
you should set [workarounds]/disable_group_policy_check_upcall=True and
[filter_scheduler]/track_instance_changes=False in nova.conf.

The fourth was previously only a problem when performing live migrations using the since-removed
XenAPI driver and not specifying --block-migrate. The driver would attempt to figure out if
block migration should be performed based on source and destination hosts being in the same aggregate.
Since aggregates data had migrated to the API database, the cell conductor would not be able to access
the aggregate information and would fail.

The fifth is a problem because when a volume is attached to an instance in the nova-compute service,
and [cinder]/cross_az_attach=False in nova.conf, we attempt to look up the availability
zone that the instance is in which includes getting any host aggregates that the instance.host is in.
Since the aggregates are in the API database and the cell conductor cannot access that information, so
this will fail. In the future this check could be moved to the nova-api service such that the availability
zone between the instance and the volume is checked before we reach the cell, except in the case of boot
from volume where the nova-compute service itself creates the volume and must tell Cinder in which
availability zone to create the volume. Long-term, volume creation during boot from volume should be
moved to the top-level superconductor which would eliminate this AZ up-call check problem.

The sixth is detailed in bug 1781286 and similar to the first issue. The issue is that servers created without
a specific availability zone will have their AZ calculated during a reschedule based on the alternate host
selected. Determining the AZ for the alternate host requires an up call to the API DB.

3.3.4 Using WSGI with Nova

Though the compute and metadata APIs can be run using independent scripts that provide eventlet-based
HTTP servers, it is generally considered more performant and flexible to run them using a generic HTTP
server that supports WSGI (such as Apache or nginx).

The nova project provides two automatically generated entry points that support this:
nova-api-wsgi and nova-metadata-wsgi. These read nova.conf and api-paste.
ini and generate the required module-level application that most WSGI servers require. If nova
is installed using pip, these two scripts will be installed into whatever the expected bin directory is for
the environment.

The new scripts replace older experimental scripts that could be found in the nova/wsgi directory of
the code repository. The new scripts are not experimental.

When running the compute and metadata services with WSGI, sharing the compute and metadata service
in the same process is not supported (as it is in the eventlet-based scripts).

In devstack as of May 2017, the compute and metadata APIs are hosted by a Apache communicating with
uwsgi via mod_proxy_uwsgi. Inspecting the configuration created there can provide some guidance on
one option for managing the WSGI scripts. It is important to remember, however, that one of the major
features of using WSGI is that there are many different ways to host a WSGI application. Different
servers make different choices about performance and configurability.

3.3. Deployment Considerations 162

https://bugs.launchpad.net/nova/+bug/1781286
https://www.python.org/dev/peps/pep-3333/
http://httpd.apache.org/
http://nginx.org/en/
https://uwsgi-docs.readthedocs.io/
http://uwsgi-docs.readthedocs.io/en/latest/Apache.html#mod-proxy-uwsgi

Nova Documentation, Release 22.4.1.dev41

3.4 Maintenance

Once you are running nova, the following information is extremely useful.

• Admin Guide: A collection of guides for administrating nova.

• Flavors: What flavors are and why they are used.

• Upgrades: How nova is designed to be upgraded for minimal service impact, and the order you
should do them in.

• Quotas: Managing project quotas in nova.

• Aggregates: Aggregates are a useful way of grouping hosts together for scheduling purposes.

• Filter Scheduler: How the filter scheduler is configured, and how that will impact where compute
instances land in your environment. If you are seeing unexpected distribution of compute instances
in your hosts, youll want to dive into this configuration.

• Exposing custom metadata to compute instances: How and when you might want to extend the
basic metadata exposed to compute instances (either via metadata server or config drive) for your
specific purposes.

3.4.1 Compute

The OpenStack Compute service allows you to control an Infrastructure-as-a-Service (IaaS) cloud com-
puting platform. It gives you control over instances and networks, and allows you to manage access to
the cloud through users and projects.

Compute does not include virtualization software. Instead, it defines drivers that interact with underlying
virtualization mechanisms that run on your host operating system, and exposes functionality over a web-
based API.

3.4.1.1 Overview

To effectively administer compute, you must understand how the different installed nodes interact with
each other. Compute can be installed in many different ways using multiple servers, but generally
multiple compute nodes control the virtual servers and a cloud controller node contains the remaining
Compute services.

The Compute cloud works using a series of daemon processes named nova-* that exist persistently on
the host machine. These binaries can all run on the same machine or be spread out on multiple boxes in
a large deployment. The responsibilities of services and drivers are:

Services

nova-api Receives XML requests and sends them to the rest of the system. A WSGI app routes and
authenticates requests. Supports the OpenStack Compute APIs. A nova.conf configuration file
is created when Compute is installed.

Todo: Describe nova-api-metadata, nova-api-os-compute, nova-serialproxy and nova-spicehtml5proxy

3.4. Maintenance 163

Nova Documentation, Release 22.4.1.dev41

nova-console, nova-dhcpbridge and nova-xvpvncproxy are all deprecated for removal so they can be
ignored.

nova-compute Manages virtual machines. Loads a Service object, and exposes the public methods
on ComputeManager through a Remote Procedure Call (RPC).

nova-conductor Provides database-access support for compute nodes (thereby reducing security
risks).

nova-scheduler Dispatches requests for new virtual machines to the correct node.

nova-novncproxy Provides a VNC proxy for browsers, allowing VNC consoles to access virtual
machines.

Note: Some services have drivers that change how the service implements its core functionality. For
example, the nova-compute service supports drivers that let you choose which hypervisor type it can
use.

Manage volumes

Depending on the setup of your cloud provider, they may give you an endpoint to use to manage volumes.
You can use the openstack CLI to manage volumes.

For the purposes of the compute service, attaching, detaching and creating a server from a volume are
of primary interest.

Refer to the CLI documentation for more information.

Volume multi-attach

Nova added support for multiattach volumes in the 17.0.0 Queens release.

This document covers the nova-specific aspects of this feature. Refer to the block storage admin guide
for more details about creating multiattach-capable volumes.

Boot from volume and attaching a volume to a server that is not SHELVED_OFFLOADED is supported.
Ultimately the ability to perform these actions depends on the compute host and hypervisor driver that
is being used.

There is also a recorded overview and demo for volume multi-attach.

Requirements

• The minimum required compute API microversion for attaching a multiattach-capable volume to
more than one server is 2.60.

• Cinder 12.0.0 (Queens) or newer is required.

• The nova-compute service must be running at least Queens release level code (17.0.0) and the
hypervisor driver must support attaching block storage devices to more than one guest. Refer to
Feature Support Matrix for details on which compute drivers support volume multiattach.

3.4. Maintenance 164

https://docs.openstack.org/python-openstackclient/victoria/cli/command-objects/volume.html
https://specs.openstack.org/openstack/nova-specs/specs/queens/implemented/multi-attach-volume.html
https://docs.openstack.org/cinder/victoria/admin/blockstorage-volume-multiattach.html
https://www.youtube.com/watch?v=hZg6wqxdEHk

Nova Documentation, Release 22.4.1.dev41

• When using the libvirt compute driver, the following native package versions determine multiat-
tach support:

– libvirt must be greater than or equal to 3.10, or

– qemu must be less than 2.10

• Swapping an in-use multiattach volume is not supported (this is actually controlled via the block
storage volume retype API).

Known issues

• Creating multiple servers in a single request with a multiattach-capable volume as the root disk is
not yet supported: https://bugs.launchpad.net/nova/+bug/1747985

• Subsequent attachments to the same volume are all attached in read/write mode by default in the
block storage service. A future change either in nova or cinder may address this so that subsequent
attachments are made in read-only mode, or such that the mode can be specified by the user when
attaching the volume to the server.

Testing

Continuous integration testing of the volume multiattach feature is done via the tempest-full and
tempest-slow jobs, which, along with the tests themselves, are defined in the tempest repository.

Manage Flavors

Admin users can use the openstack flavor command to customize and manage flavors. To see
information for this command, run:

$ openstack flavor --help
Command "flavor" matches:

flavor create
flavor delete
flavor list
flavor set
flavor show
flavor unset

Note: Configuration rights can be delegated to additional users by redefin-
ing the access controls for os_compute_api:os-flavor-manage:create,
os_compute_api:os-flavor-manage:update and os_compute_api:os-flavor-manage:delete
in /etc/nova/policy.yaml on the nova-api server.

Note: Flavor customization can be limited by the hypervisor in use. For example the libvirt driver
enables quotas on CPUs available to a VM, disk tuning, bandwidth I/O, watchdog behavior, random
number generator device control, and instance VIF traffic control.

For information on the flavors and flavor extra specs, refer to Flavors.

3.4. Maintenance 165

https://bugs.launchpad.net/nova/+bug/1747985
http://codesearch.openstack.org/?q=CONF.compute_feature_enabled.volume_multiattach&i=nope&files=&repos=tempest

Nova Documentation, Release 22.4.1.dev41

Create a flavor

1. List flavors to show the ID and name, the amount of memory, the amount of disk space for the
root partition and for the ephemeral partition, the swap, and the number of virtual CPUs for each
flavor:

$ openstack flavor list

2. To create a flavor, specify a name, ID, RAM size, disk size, and the number of vCPUs for the
flavor, as follows:

$ openstack flavor create FLAVOR_NAME --id FLAVOR_ID \
--ram RAM_IN_MB --disk ROOT_DISK_IN_GB --vcpus NUMBER_OF_VCPUS

Note: Unique ID (integer or UUID) for the new flavor. If specifying auto, a UUID will be
automatically generated.

Here is an example that creates a public m1.extra_tiny flavor that automatically gets an ID
assigned, with 256 MB memory, no disk space, and one VCPU.

$ openstack flavor create --public m1.extra_tiny --id auto \
--ram 256 --disk 0 --vcpus 1

3. If an individual user or group of users needs a custom flavor that you do not want other projects
to have access to, you can create a private flavor.

$ openstack flavor create --private m1.extra_tiny --id auto \
--ram 256 --disk 0 --vcpus 1

After you create a flavor, assign it to a project by specifying the flavor name or ID and the project
ID:

$ openstack flavor set --project PROJECT_ID m1.extra_tiny

For a list of optional parameters, run this command:

$ openstack help flavor create

4. In addition, you can set or unset properties, commonly referred to as extra specs, for the existing
flavor. The extra_specs metadata keys can influence the instance directly when it is launched.
If a flavor sets the quota:vif_outbound_peak=65536 extra spec, the instances outbound
peak bandwidth I/O should be less than or equal to 512 Mbps. There are several aspects that can
work for an instance including CPU limits, Disk tuning, Bandwidth I/O, Watchdog behavior, and
Random-number generator. For information about available metadata keys, see Flavors.

For a list of optional parameters, run this command:

$ openstack flavor set --help

3.4. Maintenance 166

Nova Documentation, Release 22.4.1.dev41

Modify a flavor

Only the description of flavors can be modified (starting from microversion 2.55). To modify the de-
scription of a flavor, specify the flavor name or ID and a new description as follows:

$ openstack --os-compute-api-version 2.55 flavor set --description
↪→<DESCRIPTION> <FLAVOR>

Note: The only field that can be updated is the description field. Nova has historically intentionally not
included an API to update a flavor because that would be confusing for instances already created with
that flavor. Needing to change any other aspect of a flavor requires deleting and/or creating a new flavor.

Nova stores a serialized version of the flavor associated with an instance record in the
instance_extra table. While nova supports updating flavor extra_specs it does not update the
embedded flavor in existing instances. Nova does not update the embedded flavor as the extra_specs
change may invalidate the current placement of the instance or alter the compute context that has been
created for the instance by the virt driver. For this reason admins should avoid updating extra_specs for
flavors used by existing instances. A resize can be used to update existing instances if required but as a
resize performs a cold migration it is not transparent to a tenant.

Delete a flavor

To delete a flavor, specify the flavor name or ID as follows:

$ openstack flavor delete FLAVOR

Default Flavors

Previous versions of nova typically deployed with default flavors. This was removed from Newton. The
following table lists the default flavors for Mitaka and earlier.

Flavor VCPUs Disk (in GB) RAM (in MB)
m1.tiny 1 1 512
m1.small 1 20 2048
m1.medium 2 40 4096
m1.large 4 80 8192
m1.xlarge 8 160 16384

3.4. Maintenance 167

https://docs.openstack.org/api-ref/compute/?expanded=#update-an-extra-spec-for-a-flavor

Nova Documentation, Release 22.4.1.dev41

Compute service node firewall requirements

Console connections for virtual machines, whether direct or through a proxy, are received on ports 5900
to 5999. The firewall on each Compute service node must allow network traffic on these ports.

This procedure modifies the iptables firewall to allow incoming connections to the Compute services.

Configuring the service-node firewall

1. Log in to the server that hosts the Compute service, as root.

2. Edit the /etc/sysconfig/iptables file, to add an INPUT rule that allows TCP traffic on
ports from 5900 to 5999. Make sure the new rule appears before any INPUT rules that REJECT
traffic:

-A INPUT -p tcp -m multiport --dports 5900:5999 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file, and restart the iptables service
to pick up the changes:

$ service iptables restart

4. Repeat this process for each Compute service node.

Injecting the administrator password

Compute can generate a random administrator (root) password and inject that password into an instance.
If this feature is enabled, users can run ssh to an instance without an ssh keypair. The random password
appears in the output of the openstack server create command. You can also view and set the
admin password from the dashboard.

Password injection using the dashboard

By default, the dashboard will display the admin password and allow the user to modify it.

If you do not want to support password injection, disable the password fields by editing the dashboards
local_settings.py file.

OPENSTACK_HYPERVISOR_FEATURES = {
...

'can_set_password': False,
}

Password injection on libvirt-based hypervisors

For hypervisors that use the libvirt back end (such as KVM, QEMU, and LXC), admin password injec-
tion is disabled by default. To enable it, set this option in /etc/nova/nova.conf:

[libvirt]
inject_password=true

3.4. Maintenance 168

Nova Documentation, Release 22.4.1.dev41

When enabled, Compute will modify the password of the admin account by editing the /etc/shadow
file inside the virtual machine instance.

Note: Linux distribution guest only.

Note: Users can only use ssh to access the instance by using the admin password if the virtual machine
image is a Linux distribution, and it has been configured to allow users to use ssh as the root user with
password authorization. This is not the case for Ubuntu cloud images which, by default, does not allow
users to use ssh to access the root account, or CentOS cloud images which, by default, does not allow
ssh access to the instance with password.

Password injection and Windows images (all hypervisors)

For Windows virtual machines, configure the Windows image to retrieve the admin password on boot
by installing an agent such as cloudbase-init.

Manage the cloud

Show usage statistics for hosts and instances

You can show basic statistics on resource usage for hosts and instances.

Note: For more sophisticated monitoring, see the Ceilometer project. You can also use tools, such as
Ganglia or Graphite, to gather more detailed data.

Show host usage statistics

The following examples show the host usage statistics for a host called devstack.

• List the hosts and the nova-related services that run on them:

$ openstack host list
+-----------+-------------+----------+
| Host Name | Service | Zone |
+-----------+-------------+----------+
devstack	conductor	internal
devstack	compute	nova
devstack	network	internal
devstack	scheduler	internal
+-----------+-------------+----------+

• Get a summary of resource usage of all of the instances running on the host:

$ openstack host show devstack
+----------+----------------------------------+-----+-----------+-----
↪→----+

(continues on next page)

3.4. Maintenance 169

http://uec-images.ubuntu.com
http://cloud.centos.org/centos/
https://cloudbase.it/cloudbase-init
https://docs.openstack.org/ceilometer/latest/
http://ganglia.info/
http://graphite.wikidot.com/

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| Host | Project | CPU | MEMORY MB |
↪→DISK GB |
+----------+----------------------------------+-----+-----------+-----
↪→----+
| devstack | (total) | 2 | 4003 | 157
↪→ |
| devstack | (used_now) | 3 | 5120 | 40
↪→ |
| devstack | (used_max) | 3 | 4608 | 40
↪→ |
| devstack | b70d90d65e464582b6b2161cf3603ced | 1 | 512 | 0
↪→ |
| devstack | 66265572db174a7aa66eba661f58eb9e | 2 | 4096 | 40
↪→ |
+----------+----------------------------------+-----+-----------+-----
↪→----+

The CPU column shows the sum of the virtual CPUs for instances running on the host.

The MEMORY MB column shows the sum of the memory (in MB) allocated to the instances that
run on the host.

The DISK GB column shows the sum of the root and ephemeral disk sizes (in GB) of the instances
that run on the host.

The row that has the value used_now in the PROJECT column shows the sum of the resources
allocated to the instances that run on the host, plus the resources allocated to the host itself.

The row that has the value used_max in the PROJECT column shows the sum of the resources
allocated to the instances that run on the host.

Note: These values are computed by using information about the flavors of the instances that run
on the hosts. This command does not query the CPU usage, memory usage, or hard disk usage of
the physical host.

Show instance usage statistics

• Get CPU, memory, I/O, and network statistics for an instance.

1. List instances:

$ openstack server list
+----------+----------------------+--------+------------------+---
↪→-----+----------+
| ID | Name | Status | Networks |
↪→Image | Flavor |
+----------+----------------------+--------+------------------+---
↪→-----+----------+
| 84c6e... | myCirrosServer | ACTIVE | private=10.0.0.3 |
↪→cirros | m1.tiny |
| 8a995... | myInstanceFromVolume | ACTIVE | private=10.0.0.4 |
↪→ubuntu | m1.small |
+----------+----------------------+--------+------------------+---
↪→-----+----------+ (continues on next page)

3.4. Maintenance 170

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

2. Get diagnostic statistics:

Note: As of microversion v2.48, diagnostics information for all virt drivers will have a
standard format as below. Before microversion 2.48, each hypervisor had its own format.
For more details on diagnostics response message see server diagnostics api documentation.

$ nova diagnostics myCirrosServer
+----------------+--
↪→------------------------+
| Property | Value
↪→ |
+----------------+--
↪→------------------------+
| config_drive | False
↪→ |
| cpu_details | []
↪→ |
| disk_details | [{"read_requests": 887, "errors_count": -1,
↪→"read_bytes": 20273152, |
| | "write_requests": 89, "write_bytes": 303104}]
↪→ |
| driver | libvirt
↪→ |
| hypervisor | qemu
↪→ |
| hypervisor_os | linux
↪→ |
| memory_details | {"used": 0, "maximum": 0}
↪→ |
| nic_details | [{"rx_packets": 9, "rx_drop": 0, "tx_octets":
↪→1464, "tx_errors": 0, |
| | "mac_address": "fa:16:3e:fa:db:d3", "rx_octets
↪→": 958, "rx_rate": null, |
| | "rx_errors": 0, "tx_drop": 0, "tx_packets": 9,
↪→"tx_rate": null}] |
| num_cpus | 0
↪→ |
| num_disks | 1
↪→ |
| num_nics | 1
↪→ |
| state | running
↪→ |
| uptime | 5528
↪→ |
+----------------+--
↪→------------------------+

config_drive indicates if the config drive is supported on the instance.

cpu_details contains a list of details per vCPU.

disk_details contains a list of details per disk.

3.4. Maintenance 171

https://docs.openstack.org/api-ref/compute/#servers-diagnostics-servers-diagnostics

Nova Documentation, Release 22.4.1.dev41

driver indicates the current driver on which the VM is running.

hypervisor indicates the current hypervisor on which the VM is running.

nic_details contains a list of details per vNIC.

uptime is the amount of time in seconds that the VM has been running.

Diagnostics prior to v2.48:

$ nova diagnostics myCirrosServer
+---------------------------+--------+
| Property | Value |
+---------------------------+--------+
memory	524288
memory-actual	524288
memory-rss	6444
tap1fec8fb8-7a_rx	22137
tap1fec8fb8-7a_rx_drop	0
tap1fec8fb8-7a_rx_errors	0
tap1fec8fb8-7a_rx_packets	166
tap1fec8fb8-7a_tx	18032
tap1fec8fb8-7a_tx_drop	0
tap1fec8fb8-7a_tx_errors	0
tap1fec8fb8-7a_tx_packets	130
vda_errors	-1
vda_read	2048
vda_read_req	2
vda_write	182272
vda_write_req	74
+---------------------------+--------+

• Get summary statistics for each project:

$ openstack usage list
Usage from 2013-06-25 to 2013-07-24:
+---------+---------+--------------+-----------+---------------+
| Project | Servers | RAM MB-Hours | CPU Hours | Disk GB-Hours |
+---------+---------+--------------+-----------+---------------+
| demo | 1 | 344064.44 | 672.00 | 0.00 |
| stack | 3 | 671626.76 | 327.94 | 6558.86 |
+---------+---------+--------------+-----------+---------------+

System administrators can use the openstack to manage their clouds.

The openstack client can be used by all users, though specific commands might be restricted by the
Identity service.

Managing the cloud with the openstack client

1. The python-openstackclient package provides an openstack shell that enables Com-
pute API interactions from the command line. Install the client, and provide your user name and
password (which can be set as environment variables for convenience), for the ability to administer
the cloud from the command line.

3.4. Maintenance 172

Nova Documentation, Release 22.4.1.dev41

For more information on python-openstackclient, refer to the documentation.

2. Confirm the installation was successful:

$ openstack help
usage: openstack [--version] [-v | -q] [--log-file LOG_FILE] [-h] [--
↪→debug]

[--os-cloud <cloud-config-name>]
[--os-region-name <auth-region-name>]
[--os-cacert <ca-bundle-file>] [--verify | --insecure]
[--os-default-domain <auth-domain>]
...

Running openstack help returns a list of openstack commands and parameters. To get
help for a subcommand, run:

$ openstack help SUBCOMMAND

For a complete list of openstack commands and parameters, refer to the OpenStack Command-
Line Reference.

3. Set the required parameters as environment variables to make running commands easier. For
example, you can add --os-username as an openstack option, or set it as an environment
variable. To set the user name, password, and project as environment variables, use:

$ export OS_USERNAME=joecool
$ export OS_PASSWORD=coolword
$ export OS_TENANT_NAME=coolu

4. The Identity service gives you an authentication endpoint, which Compute recognizes as
OS_AUTH_URL:

$ export OS_AUTH_URL=http://hostname:5000/v2.0

Logging

Logging module

Logging behavior can be changed by creating a configuration file. To specify the configuration file, add
this line to the /etc/nova/nova.conf file:

log_config_append=/etc/nova/logging.conf

To change the logging level, add DEBUG, INFO, WARNING, or ERROR as a parameter.

The logging configuration file is an INI-style configuration file, which must contain a section called
logger_nova. This controls the behavior of the logging facility in the nova-* services. For exam-
ple:

[logger_nova]
level = INFO
handlers = stderr
qualname = nova

3.4. Maintenance 173

https://docs.openstack.org/python-openstackclient/victoria/
https://docs.openstack.org/python-openstackclient/victoria/cli/index.html
https://docs.openstack.org/python-openstackclient/victoria/cli/index.html

Nova Documentation, Release 22.4.1.dev41

This example sets the debugging level to INFO (which is less verbose than the default DEBUG setting).

For more about the logging configuration syntax, including the handlers and qualname variables,
see the Python documentation on logging configuration files.

For an example of the logging.conf file with various defined handlers, see the Example Configura-
tion File for nova.

Syslog

OpenStack Compute services can send logging information to syslog. This is useful if you want to
use rsyslog to forward logs to a remote machine. Separately configure the Compute service (nova), the
Identity service (keystone), the Image service (glance), and, if you are using it, the Block Storage service
(cinder) to send log messages to syslog. Open these configuration files:

• /etc/nova/nova.conf

• /etc/keystone/keystone.conf

• /etc/glance/glance-api.conf

• /etc/glance/glance-registry.conf

• /etc/cinder/cinder.conf

In each configuration file, add these lines:

debug = False
use_syslog = True
syslog_log_facility = LOG_LOCAL0

In addition to enabling syslog, these settings also turn off debugging output from the log.

Note: Although this example uses the same local facility for each service (LOG_LOCAL0, which
corresponds to syslog facility LOCAL0), we recommend that you configure a separate local facility
for each service, as this provides better isolation and more flexibility. For example, you can capture
logging information at different severity levels for different services. syslog allows you to define up
to eight local facilities, LOCAL0, LOCAL1, ..., LOCAL7. For more information, see the syslog
documentation.

Rsyslog

rsyslog is useful for setting up a centralized log server across multiple machines. This section briefly
describe the configuration to set up an rsyslog server. A full treatment of rsyslog is beyond the scope
of this book. This section assumes rsyslog has already been installed on your hosts (it is installed by
default on most Linux distributions).

This example provides a minimal configuration for /etc/rsyslog.conf on the log server host,
which receives the log files

provides TCP syslog reception
$ModLoad imtcp
$InputTCPServerRun 1024

3.4. Maintenance 174

https://docs.python.org/release/2.7/library/logging.html#configuration-file-format
https://docs.openstack.org/oslo.log/victoria/admin/example_nova.html
https://docs.openstack.org/oslo.log/victoria/admin/example_nova.html

Nova Documentation, Release 22.4.1.dev41

Add a filter rule to /etc/rsyslog.conf which looks for a host name. This example uses COM-
PUTE_01 as the compute host name:

:hostname, isequal, "COMPUTE_01" /mnt/rsyslog/logs/compute-01.log

On each compute host, create a file named /etc/rsyslog.d/60-nova.conf, with the following
content:

prevent debug from dnsmasq with the daemon.none parameter

.;auth,authpriv.none,daemon.none,local0.none -/var/log/syslog
Specify a log level of ERROR
local0.error @@172.20.1.43:1024

Once you have created the file, restart the rsyslog service. Error-level log messages on the compute
hosts should now be sent to the log server.

Serial console

The serial console provides a way to examine kernel output and other system messages during trou-
bleshooting if the instance lacks network connectivity.

Read-only access from server serial console is possible using the os-GetSerialOutput server ac-
tion. Most cloud images enable this feature by default. For more information, see Common errors and
fixes for Compute.

OpenStack Juno and later supports read-write access using the serial console using the
os-GetSerialConsole server action. This feature also requires a websocket client to access the
serial console.

Configuring read-write serial console access

1. On a compute node, edit the /etc/nova/nova.conf file:

In the [serial_console] section, enable the serial console:

[serial_console]
...
enabled = true

2. In the [serial_console] section, configure the serial console proxy similar to graphical
console proxies:

[serial_console]
...
base_url = ws://controller:6083/
listen = 0.0.0.0
proxyclient_address = MANAGEMENT_INTERFACE_IP_ADDRESS

The base_url option specifies the base URL that clients receive from the API upon requesting
a serial console. Typically, this refers to the host name of the controller node.

The listen option specifies the network interface nova-compute should listen on for virtual
console connections. Typically, 0.0.0.0 will enable listening on all interfaces.

3.4. Maintenance 175

Nova Documentation, Release 22.4.1.dev41

The proxyclient_address option specifies which network interface the proxy should con-
nect to. Typically, this refers to the IP address of the management interface.

When you enable read-write serial console access, Compute will add serial console information
to the Libvirt XML file for the instance. For example:

<console type='tcp'>
<source mode='bind' host='127.0.0.1' service='10000'/>
<protocol type='raw'/>
<target type='serial' port='0'/>
<alias name='serial0'/>

</console>

Accessing the serial console on an instance

1. Use the nova get-serial-proxy command to retrieve the websocket URL for the serial
console on the instance:

$ nova get-serial-proxy INSTANCE_NAME

Type Url
serial ws://127.0.0.1:6083/?token=18510769-71ad-4e5a-8348-4218b5613b3d

Alternatively, use the API directly:

$ curl -i 'http://<controller>:8774/v2.1/<tenant_uuid>/servers/
↪→<instance_uuid>/action' \
-X POST \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-H "X-Auth-Project-Id: <project_id>" \
-H "X-Auth-Token: <auth_token>" \
-d '{"os-getSerialConsole": {"type": "serial"}}'

2. Use Python websocket with the URL to generate .send, .recv, and .fileno methods for
serial console access. For example:

import websocket
ws = websocket.create_connection(

'ws://127.0.0.1:6083/?token=18510769-71ad-4e5a-8348-4218b5613b3d',
subprotocols=['binary', 'base64'])

Alternatively, use a Python websocket client.

Note: When you enable the serial console, typical instance logging using the nova console-log
command is disabled. Kernel output and other system messages will not be visible unless you are
actively viewing the serial console.

3.4. Maintenance 176

https://github.com/larsks/novaconsole/

Nova Documentation, Release 22.4.1.dev41

Secure with rootwrap

Rootwrap allows unprivileged users to safely run Compute actions as the root user. Compute previously
used sudo for this purpose, but this was difficult to maintain, and did not allow advanced filters. The
rootwrap command replaces sudo for Compute.

To use rootwrap, prefix the Compute command with nova-rootwrap. For example:

$ sudo nova-rootwrap /etc/nova/rootwrap.conf command

A generic sudoers entry lets the Compute user run nova-rootwrap as root. The
nova-rootwrap code looks for filter definition directories in its configuration file, and loads com-
mand filters from them. It then checks if the command requested by Compute matches one of those
filters and, if so, executes the command (as root). If no filter matches, it denies the request.

Note: Be aware of issues with using NFS and root-owned files. The NFS share must be configured
with the no_root_squash option enabled, in order for rootwrap to work correctly.

Rootwrap is fully controlled by the root user. The root user owns the sudoers entry which allows Com-
pute to run a specific rootwrap executable as root, and only with a specific configuration file (which
should also be owned by root). The nova-rootwrap command imports the Python modules it needs
from a cleaned, system-default PYTHONPATH. The root-owned configuration file points to root-owned
filter definition directories, which contain root-owned filters definition files. This chain ensures that the
Compute user itself is not in control of the configuration or modules used by the nova-rootwrap
executable.

Configure rootwrap

Configure rootwrap in the rootwrap.conf file. Because it is in the trusted security path, it must be
owned and writable by only the root user. The rootwrap_config=entry parameter specifies the
files location in the sudoers entry and in the nova.conf configuration file.

The rootwrap.conf file uses an INI file format with these sections and parameters:

Table 2: rootwrap.conf configuration options
Configuration option=Default value (Type) Description
[DEFAULT] filters_path=/etc/nova/rootwrap.d,/usr/share/nova/rootwrap(ListOpt) Comma-separated

list of directories containing
filter definition files. Defines
where rootwrap filters are
stored. Directories defined on
this line should all exist, and
be owned and writable only by
the root user.

If the root wrapper is not performing correctly, you can add a workaround option into the nova.conf
configuration file. This workaround re-configures the root wrapper configuration to fall back to running
commands as sudo, and is a Kilo release feature.

3.4. Maintenance 177

Nova Documentation, Release 22.4.1.dev41

Including this workaround in your configuration file safeguards your environment from issues that can
impair root wrapper performance. Tool changes that have impacted Python Build Reasonableness (PBR)
for example, are a known issue that affects root wrapper performance.

To set up this workaround, configure the disable_rootwrap option in the [workaround] section
of the nova.conf configuration file.

The filters definition files contain lists of filters that rootwrap will use to allow or deny a specific com-
mand. They are generally suffixed by .filters . Since they are in the trusted security path, they need
to be owned and writable only by the root user. Their location is specified in the rootwrap.conf file.

Filter definition files use an INI file format with a [Filters] section and several lines, each with a
unique parameter name, which should be different for each filter you define:

Table 3: Filters configuration options
Configuration option=Default value (Type) Description
[Filters] filter_name=kpartx: CommandFilter, /sbin/kpartx, root (ListOpt) Comma-separated list

containing the filter class to use,
followed by the Filter arguments
(which vary depending on the Fil-
ter class selected).

Configure the rootwrap daemon

Administrators can use rootwrap daemon support instead of running rootwrap with sudo. The rootwrap
daemon reduces the overhead and performance loss that results from running oslo.rootwrap with
sudo. Each call that needs rootwrap privileges requires a new instance of rootwrap. The daemon pre-
vents overhead from the repeated calls. The daemon does not support long running processes, however.

To enable the rootwrap daemon, set use_rootwrap_daemon to True in the Compute service con-
figuration file.

Configure live migrations

Migration enables an administrator to move a virtual machine instance from one compute host to an-
other. A typical scenario is planned maintenance on the source host, but migration can also be useful to
redistribute the load when many VM instances are running on a specific physical machine.

This document covers live migrations using the Libvirt and VMWare hypervisors

Note: Not all Compute service hypervisor drivers support live-migration, or support all live-migration
features. Similarly not all compute service features are supported.

Consult Feature Support Matrix to determine which hypervisors support live-migration.

See the Configuration Guide for details on hypervisor configuration settings.

The migration types are:

• Non-live migration, also known as cold migration or simply migration.

3.4. Maintenance 178

https://opendev.org/openstack/pbr/

Nova Documentation, Release 22.4.1.dev41

The instance is shut down, then moved to another hypervisor and restarted. The instance recog-
nizes that it was rebooted, and the application running on the instance is disrupted.

This section does not cover cold migration.

• Live migration

The instance keeps running throughout the migration. This is useful when it is not possible or
desirable to stop the application running on the instance.

Live migrations can be classified further by the way they treat instance storage:

– Shared storage-based live migration. The instance has ephemeral disks that are located on
storage shared between the source and destination hosts.

– Block live migration, or simply block migration. The instance has ephemeral disks that are
not shared between the source and destination hosts. Block migration is incompatible with
read-only devices such as CD-ROMs and Configuration Drive (config_drive).

– Volume-backed live migration. Instances use volumes rather than ephemeral disks.

Block live migration requires copying disks from the source to the destination host. It takes more
time and puts more load on the network. Shared-storage and volume-backed live migration does
not copy disks.

Note: In a multi-cell cloud, instances can be live migrated to a different host in the same cell, but not
across cells.

The following sections describe how to configure your hosts for live migrations using the libvirt virt
driver and KVM hypervisor.

Libvirt

General configuration

To enable any type of live migration, configure the compute hosts according to the instructions below:

1. Set the following parameters in nova.conf on all compute hosts:

• server_listen=0.0.0.0

You must not make the VNC server listen to the IP address of its compute host, since that
addresses changes when the instance is migrated.

Important: Since this setting allows VNC clients from any IP address to connect to instance
consoles, you must take additional measures like secure networks or firewalls to prevent
potential attackers from gaining access to instances.

• instances_pathmust have the same value for all compute hosts. In this guide, the value
/var/lib/nova/instances is assumed.

2. Ensure that name resolution on all compute hosts is identical, so that they can connect each other
through their hostnames.

3.4. Maintenance 179

Nova Documentation, Release 22.4.1.dev41

If you use /etc/hosts for name resolution and enable SELinux, ensure that /etc/hosts
has the correct SELinux context:

restorecon /etc/hosts

3. Enable password-less SSH so that root on one compute host can log on to any other compute
host without providing a password. The libvirtd daemon, which runs as root, uses the SSH
protocol to copy the instance to the destination and cant know the passwords of all compute hosts.

You may, for example, compile roots public SSH keys on all compute hosts into an
authorized_keys file and deploy that file to the compute hosts.

4. Configure the firewalls to allow libvirt to communicate between compute hosts.

By default, libvirt uses the TCP port range from 49152 to 49261 for copying memory and disk
contents. Compute hosts must accept connections in this range.

For information about ports used by libvirt, see the libvirt documentation.

Important: Be mindful of the security risks introduced by opening ports.

Securing live migration streams

If your compute nodes have at least libvirt 4.4.0 and QEMU 2.11.0, it is strongly recommended to secure
all your live migration streams by taking advantage of the QEMU-native TLS feature. This requires a
pre-existing PKI (Public Key Infrastructure) setup. For further details on how to set this all up, refer to
the Secure live migration with QEMU-native TLS document.

Block migration, volume-based live migration

If your environment satisfies the requirements for QEMU-native TLS, then block migration requires
some setup; refer to the above section, Securing live migration streams, for details. Otherwise, no
additional configuration is required for block migration and volume-backed live migration.

Be aware that block migration adds load to the network and storage subsystems.

Shared storage

Compute hosts have many options for sharing storage, for example NFS, shared disk array LUNs, Ceph
or GlusterFS.

The next steps show how a regular Linux system might be configured as an NFS v4 server for live
migration. For detailed information and alternative ways to configure NFS on Linux, see instructions
for Ubuntu, RHEL and derivatives or SLES and OpenSUSE.

1. Ensure that UID and GID of the nova user are identical on the compute hosts and the NFS server.

2. Create a directory with enough disk space for all instances in the cloud, owned by user nova. In
this guide, we assume /var/lib/nova/instances.

3. Set the execute/search bit on the instances directory:

3.4. Maintenance 180

http://libvirt.org/remote.html#Remote_libvirtd_configuration
https://help.ubuntu.com/community/SettingUpNFSHowTo
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/nfs-serverconfig.html
https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_nfs_configuring-nfs-server.html

Nova Documentation, Release 22.4.1.dev41

$ chmod o+x /var/lib/nova/instances

This allows qemu to access the instances directory tree.

4. Export /var/lib/nova/instances to the compute hosts. For example, add the following
line to /etc/exports:

/var/lib/nova/instances *(rw,sync,fsid=0,no_root_squash)

The asterisk permits access to any NFS client. The option fsid=0 exports the instances directory
as the NFS root.

After setting up the NFS server, mount the remote filesystem on all compute hosts.

1. Assuming the NFS servers hostname is nfs-server, add this line to /etc/fstab to mount
the NFS root:

nfs-server:/ /var/lib/nova/instances nfs4 defaults 0 0

2. Test NFS by mounting the instances directory and check access permissions for the nova user:

$ sudo mount -a -v
$ ls -ld /var/lib/nova/instances/
drwxr-xr-x. 2 nova nova 6 Mar 14 21:30 /var/lib/nova/instances/

Advanced configuration for KVM and QEMU

Live migration copies the instances memory from the source to the destination compute host. After
a memory page has been copied, the instance may write to it again, so that it has to be copied again.
Instances that frequently write to different memory pages can overwhelm the memory copy process and
prevent the live migration from completing.

This section covers configuration settings that can help live migration of memory-intensive instances
succeed.

1. Live migration completion timeout

The Compute service will either abort or force complete a migration when it
has been running too long. This behavior is configurable using the libvirt.
live_migration_timeout_action config option. The timeout is calculated based
on the instance size, which is the instances memory size in GiB. In the case of block migration,
the size of ephemeral storage in GiB is added.

The timeout in seconds is the instance size multiplied by the configurable parameter libvirt.
live_migration_completion_timeout, whose default is 800. For example, shared-
storage live migration of an instance with 8GiB memory will time out after 6400 seconds.

2. Instance downtime

Near the end of the memory copy, the instance is paused for a short time so that the remaining
few pages can be copied without interference from instance memory writes. The Compute service
initializes this time to a small value that depends on the instance size, typically around 50 mil-
liseconds. When it notices that the memory copy does not make sufficient progress, it increases
the time gradually.

3.4. Maintenance 181

Nova Documentation, Release 22.4.1.dev41

You can influence the instance downtime algorithm with the help of three configuration variables
on the compute hosts:

live_migration_downtime = 500
live_migration_downtime_steps = 10
live_migration_downtime_delay = 75

live_migration_downtime sets the maximum permitted downtime for a live migration, in
milliseconds. The default is 500.

live_migration_downtime_steps sets the total number of adjustment steps until
live_migration_downtime is reached. The default is 10 steps.

live_migration_downtime_delay sets the time interval between two adjustment steps in
seconds. The default is 75.

3. Auto-convergence

One strategy for a successful live migration of a memory-intensive instance is slowing the in-
stance down. This is called auto-convergence. Both libvirt and QEMU implement this feature by
automatically throttling the instances CPU when memory copy delays are detected.

Auto-convergence is disabled by default. You can enable it by setting
live_migration_permit_auto_converge=true.

Caution: Before enabling auto-convergence, make sure that the instances application toler-
ates a slow-down.

Be aware that auto-convergence does not guarantee live migration success.

4. Post-copy

Live migration of a memory-intensive instance is certain to succeed when you enable post-copy.
This feature, implemented by libvirt and QEMU, activates the virtual machine on the destination
host before all of its memory has been copied. When the virtual machine accesses a page that is
missing on the destination host, the resulting page fault is resolved by copying the page from the
source host.

Post-copy is disabled by default. You can enable it by setting
live_migration_permit_post_copy=true.

When you enable both auto-convergence and post-copy, auto-convergence remains disabled.

Caution: The page faults introduced by post-copy can slow the instance down.

When the network connection between source and destination host is interrupted, page faults
cannot be resolved anymore and the instance is rebooted.

The full list of live migration configuration parameters is documented in the Nova Configuration Options

3.4. Maintenance 182

Nova Documentation, Release 22.4.1.dev41

VMware

vSphere configuration

Enable vMotion on all ESX hosts which are managed by Nova by following the instructions in this KB
article.

Live-migrate instances

Live-migrating an instance means moving its virtual machine to a different OpenStack Compute server
while the instance continues running. Before starting a live-migration, review the chapter Configure live
migrations. It covers the configuration settings required to enable live-migration, but also reasons for
migrations and non-live-migration options.

The instructions below cover shared-storage and volume-backed migration. To block-migrate instances,
add the command-line option -block-migrate to the nova live-migration command, and
--block-migration to the openstack server migrate command.

Manual selection of the destination host

1. Obtain the ID of the instance you want to migrate:

$ openstack server list

+--------------------------------------+------+--------+--------------
↪→---+------------+
| ID | Name | Status | Networks
↪→ | Image Name |
+--------------------------------------+------+--------+--------------
↪→---+------------+
| d1df1b5a-70c4-4fed-98b7-423362f2c47c | vm1 | ACTIVE | private=a.b.
↪→c.d | ... |
| d693db9e-a7cf-45ef-a7c9-b3ecb5f22645 | vm2 | ACTIVE | private=e.f.
↪→g.h | ... |
+--------------------------------------+------+--------+--------------
↪→---+------------+

2. Determine on which host the instance is currently running. In this example, vm1 is running on
HostB:

$ openstack server show d1df1b5a-70c4-4fed-98b7-423362f2c47c

+----------------------+--------------------------------------+
| Field | Value |
+----------------------+--------------------------------------+
...	...
OS-EXT-SRV-ATTR:host	HostB
...	...
addresses	a.b.c.d
flavor	m1.tiny
id	d1df1b5a-70c4-4fed-98b7-423362f2c47c
name	vm1

(continues on next page)

3.4. Maintenance 183

https://kb.vmware.com/s/article/2054994

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| status | ACTIVE |
| ... | ... |
+----------------------+--------------------------------------+

3. Select the compute node the instance will be migrated to. In this example, we will migrate the
instance to HostC, because nova-compute is running on it:

$ openstack compute service list

+----+------------------+-------+----------+---------+-------+--------
↪→--------------------+
| ID | Binary | Host | Zone | Status | State |
↪→Updated At |
+----+------------------+-------+----------+---------+-------+--------
↪→--------------------+
| 3 | nova-conductor | HostA | internal | enabled | up | 2017-
↪→02-18T09:42:29.000000 |
| 4 | nova-scheduler | HostA | internal | enabled | up | 2017-
↪→02-18T09:42:26.000000 |
| 5 | nova-compute | HostB | nova | enabled | up | 2017-
↪→02-18T09:42:29.000000 |
| 6 | nova-compute | HostC | nova | enabled | up | 2017-
↪→02-18T09:42:29.000000 |
+----+------------------+-------+----------+---------+-------+--------
↪→--------------------+

4. Check that HostC has enough resources for migration:

$ openstack host show HostC

+-------+------------+-----+-----------+---------+
| Host | Project | CPU | Memory MB | Disk GB |
+-------+------------+-----+-----------+---------+
HostC	(total)	16	32232	878
HostC	(used_now)	22	21284	422
HostC	(used_max)	22	21284	422
HostC	p1	22	21284	422
HostC	p2	22	21284	422
+-------+------------+-----+-----------+---------+

• cpu: Number of CPUs

• memory_mb: Total amount of memory, in MB

• disk_gb: Total amount of space for NOVA-INST-DIR/instances, in GB

In this table, the first row shows the total amount of resources available on the physical server.
The second line shows the currently used resources. The third line shows the maximum used
resources. The fourth line and below shows the resources available for each project.

5. Migrate the instance:

$ openstack server migrate d1df1b5a-70c4-4fed-98b7-423362f2c47c --
↪→live HostC

6. Confirm that the instance has been migrated successfully:

3.4. Maintenance 184

Nova Documentation, Release 22.4.1.dev41

$ openstack server show d1df1b5a-70c4-4fed-98b7-423362f2c47c

+----------------------+--------------------------------------+
| Field | Value |
+----------------------+--------------------------------------+
...	...
OS-EXT-SRV-ATTR:host	HostC
...	...
+----------------------+--------------------------------------+

If the instance is still running on HostB, the migration failed. The nova-scheduler and
nova-conductor log files on the controller and the nova-compute log file on the source
compute host can help pin-point the problem.

Automatic selection of the destination host

To leave the selection of the destination host to the Compute service, use the nova command-line client.

1. Obtain the instance ID as shown in step 1 of the section Manual selection of the destination host.

2. Leave out the host selection steps 2, 3, and 4.

3. Migrate the instance:

$ nova live-migration d1df1b5a-70c4-4fed-98b7-423362f2c47c

Monitoring the migration

1. Confirm that the instance is migrating:

$ openstack server show d1df1b5a-70c4-4fed-98b7-423362f2c47c

+----------------------+--------------------------------------+
| Field | Value |
+----------------------+--------------------------------------+
...	...
status	MIGRATING
...	...
+----------------------+--------------------------------------+

2. Check progress

Use the nova command-line client for novas migration monitoring feature. First, obtain the mi-
gration ID:

$ nova server-migration-list d1df1b5a-70c4-4fed-98b7-423362f2c47c
+----+-------------+----------- (...)
| Id | Source Node | Dest Node | (...)
+----+-------------+-----------+ (...)
| 2 | - | - | (...)
+----+-------------+-----------+ (...)

For readability, most output columns were removed. Only the first column, Id, is relevant. In this
example, the migration ID is 2. Use this to get the migration status.

3.4. Maintenance 185

Nova Documentation, Release 22.4.1.dev41

$ nova server-migration-show d1df1b5a-70c4-4fed-98b7-423362f2c47c 2
+------------------------+--------------------------------------+
| Property | Value |
+------------------------+--------------------------------------+
created_at	2017-03-08T02:53:06.000000
dest_compute	controller
dest_host	-
dest_node	-
disk_processed_bytes	0
disk_remaining_bytes	0
disk_total_bytes	0
id	2
memory_processed_bytes	65502513
memory_remaining_bytes	786427904
memory_total_bytes	1091379200
server_uuid	d1df1b5a-70c4-4fed-98b7-423362f2c47c
source_compute	compute2
source_node	-
status	running
updated_at	2017-03-08T02:53:47.000000
+------------------------+--------------------------------------+

The output shows that the migration is running. Progress is measured by the number of memory
bytes that remain to be copied. If this number is not decreasing over time, the migration may be
unable to complete, and it may be aborted by the Compute service.

Note: The command reports that no disk bytes are processed, even in the event of block migra-
tion.

What to do when the migration times out

During the migration process, the instance may write to a memory page after that page has been copied
to the destination. When that happens, the same page has to be copied again. The instance may write
to memory pages faster than they can be copied, so that the migration cannot complete. There are two
optional actions, controlled by libvirt.live_migration_timeout_action, which can be
taken against a VM after libvirt.live_migration_completion_timeout is reached:

1. abort (default): The live migration operation will be cancelled after the completion timeout is
reached. This is similar to using API DELETE /servers/{server_id}/migrations/
{migration_id}.

2. force_complete: The compute service will either pause the VM or trig-
ger post-copy depending on if post copy is enabled and available (libvirt.
live_migration_permit_post_copy is set to True). This is similar to using
API POST /servers/{server_id}/migrations/{migration_id}/action
(force_complete).

You can also read the libvirt.live_migration_timeout_action configuration option help
for more details.

The following remarks assume the KVM/Libvirt hypervisor.

3.4. Maintenance 186

Nova Documentation, Release 22.4.1.dev41

How to know that the migration timed out

To determine that the migration timed out, inspect the nova-compute log file on the source host. The
following log entry shows that the migration timed out:

grep WARNING.*d1df1b5a-70c4-4fed-98b7-423362f2c47c /var/log/nova/nova-
↪→compute.log
...
WARNING nova.virt.libvirt.migration [req-...] [instance: ...]
live migration not completed after 1800 sec

Addressing migration timeouts

To stop the migration from putting load on infrastructure resources like network and disks, you may opt
to cancel it manually.

$ nova live-migration-abort INSTANCE_ID MIGRATION_ID

To make live-migration succeed, you have several options:

• Manually force-complete the migration

$ nova live-migration-force-complete INSTANCE_ID MIGRATION_ID

The instance is paused until memory copy completes.

Caution: Since the pause impacts time keeping on the instance and not all applications
tolerate incorrect time settings, use this approach with caution.

• Enable auto-convergence

Auto-convergence is a Libvirt feature. Libvirt detects that the migration is unlikely to complete
and slows down its CPU until the memory copy process is faster than the instances memory writes.

To enable auto-convergence, set live_migration_permit_auto_converge=true in
nova.conf and restart nova-compute. Do this on all compute hosts.

Caution: One possible downside of auto-convergence is the slowing down of the instance.

• Enable post-copy

This is a Libvirt feature. Libvirt detects that the migration does not progress and responds by
activating the virtual machine on the destination host before all its memory has been copied.
Access to missing memory pages result in page faults that are satisfied from the source host.

To enable post-copy, set live_migration_permit_post_copy=true in nova.conf
and restart nova-compute. Do this on all compute hosts.

When post-copy is enabled, manual force-completion does not pause the instance but switches to
the post-copy process.

3.4. Maintenance 187

Nova Documentation, Release 22.4.1.dev41

Caution: Possible downsides:

– When the network connection between source and destination is interrupted, page faults
cannot be resolved anymore, and the virtual machine is rebooted.

– Post-copy may lead to an increased page fault rate during migration, which can slow the
instance down.

If live migrations routinely timeout or fail during cleanup operations due to the user token timing out,
consider configuring nova to use service user tokens.

Configure remote console access

OpenStack provides a number of different methods to interact with your guests: VNC, SPICE, Serial,
RDP or MKS. If configured, these can be accessed by users through the OpenStack dashboard or the
command line. This document outlines how these different technologies can be configured.

Overview

It is considered best practice to deploy only one of the consoles types and not all console types are
supported by all compute drivers. Regardless of what option is chosen, a console proxy service is
required. These proxy services are responsible for the following:

• Provide a bridge between the public network where the clients live and the private network where
the servers with consoles live.

• Mediate token authentication.

• Transparently handle hypervisor-specific connection details to provide a uniform client experi-
ence.

For some combinations of compute driver and console driver, these proxy services are provided by the
hypervisor or another service. For all others, nova provides services to handle this proxying. Consider a
noVNC-based VNC console connection for example:

1. A user connects to the API and gets an access_url such as, http://ip:port/?
path=%3Ftoken%3Dxyz.

2. The user pastes the URL in a browser or uses it as a client parameter.

3. The browser or client connects to the proxy.

4. The proxy authorizes the token for the user, and maps the token to the private host and port of the
VNC server for an instance.

The compute host specifies the address that the proxy should use to connect through the vnc.
server_proxyclient_address option. In this way, the VNC proxy works as a bridge
between the public network and private host network.

5. The proxy initiates the connection to VNC server and continues to proxy until the session ends.

This means a typical deployment with noVNC-based VNC consoles will have the following components:

3.4. Maintenance 188

Nova Documentation, Release 22.4.1.dev41

• One or more nova-novncproxy service. Supports browser-based noVNC clients. For simple
deployments, this service typically runs on the same machine as nova-api because it operates
as a proxy between the public network and the private compute host network.

• One or more nova-compute services. Hosts the instances for which consoles are provided.

Todo: The below diagram references nova-consoleauth and needs to be updated.

This particular example is illustrated below.

noVNC-based VNC console

VNC is a graphical console with wide support among many hypervisors and clients. noVNC provides
VNC support through a web browser.

Note: It has been reported that versions of noVNC older than 0.6 do not work with the
nova-novncproxy service.

If using non-US key mappings, you need at least noVNC 1.0.0 for a fix.

If using VMware ESX/ESXi hypervisors, you need at least noVNC 1.1.0 for a fix.

Configuration

To enable the noVNC VNC console service, you must configure both the nova-novncproxy service
and the nova-compute service. Most options are defined in the vnc group.

The nova-novncproxy service accepts the following options:

• daemon

• ssl_only

• source_is_ipv6

• cert

• key

3.4. Maintenance 189

https://bugs.launchpad.net/nova/+bug/1752896
https://github.com/novnc/noVNC/commit/99feba6ba8fee5b3a2b2dc99dc25e9179c560d31
https://github.com/novnc/noVNC/commit/2c813a33fe6821f5af737327c50f388052fa963b

Nova Documentation, Release 22.4.1.dev41

• web

• console.ssl_ciphers

• console.ssl_minimum_version

• vnc.novncproxy_host

• vnc.novncproxy_port

If using the libvirt compute driver and enabling VNC proxy security, the following additional options are
supported:

• vnc.auth_schemes

• vnc.vencrypt_client_key

• vnc.vencrypt_client_cert

• vnc.vencrypt_ca_certs

For example, to configure this via a nova-novncproxy.conf file:

[vnc]
novncproxy_host = 0.0.0.0
novncproxy_port = 6082

Note: This doesnt show configuration with security. For information on how to configure this, refer to
VNC proxy security below.

The nova-compute service requires the following options to configure noVNC-based VNC console
support:

• vnc.enabled

• vnc.novncproxy_base_url

• vnc.server_listen

• vnc.server_proxyclient_address

If using the VMware compute driver, the following additional options are supported:

• vmware.vnc_port

• vmware.vnc_port_total

For example, to configure this via a nova.conf file:

[vnc]
enabled = True
novncproxy_base_url = http://IP_ADDRESS:6082/vnc_auto.html
server_listen = 127.0.0.1
server_proxyclient_address = 127.0.0.1

Replace IP_ADDRESS with the IP address from which the proxy is accessible by the outside world.
For example, this may be the management interface IP address of the controller or the VIP.

3.4. Maintenance 190

Nova Documentation, Release 22.4.1.dev41

VNC proxy security

Deploy the public-facing interface of the VNC proxy with HTTPS to prevent attacks from malicious
parties on the network between the tenant user and proxy server. When using HTTPS, the TLS encryp-
tion only applies to data between the tenant user and proxy server. The data between the proxy server
and Compute node instance will still be unencrypted. To provide protection for the latter, it is necessary
to enable the VeNCrypt authentication scheme for VNC in both the Compute nodes and noVNC proxy
server hosts.

QEMU/KVM Compute node configuration

Ensure each Compute node running QEMU/KVM with libvirt has a set of certificates issued to it. The
following is a list of the required certificates:

• /etc/pki/libvirt-vnc/server-cert.pem

An x509 certificate to be presented by the VNC server. The CommonName should match the
primary hostname of the compute node. Use of subjectAltName is also permitted if there
is a need to use multiple hostnames or IP addresses to access the same Compute node.

• /etc/pki/libvirt-vnc/server-key.pem

The private key used to generate the server-cert.pem file.

• /etc/pki/libvirt-vnc/ca-cert.pem

The authority certificate used to sign server-cert.pem and sign the VNC proxy server cer-
tificates.

The certificates must have v3 basic constraints2 present to indicate the permitted key use and purpose
data.

We recommend using a dedicated certificate authority solely for the VNC service. This authority may
be a child of the master certificate authority used for the OpenStack deployment. This is because libvirt
does not currently have a mechanism to restrict what certificates can be presented by the proxy server.

For further details on certificate creation, consult the QEMU manual page documentation on VNC server
certificate setup1.

Configure libvirt to enable the VeNCrypt authentication scheme for the VNC server. In /etc/
libvirt/qemu.conf, uncomment the following settings:

• vnc_tls=1

This instructs libvirt to enable the VeNCrypt authentication scheme when launching QEMU, pass-
ing it the certificates shown above.

• vnc_tls_x509_verify=1

This instructs QEMU to require that all VNC clients present a valid x509 certificate. Assuming a
dedicated certificate authority is used for the VNC service, this ensures that only approved VNC
proxy servers can connect to the Compute nodes.

After editing qemu.conf, the libvirtd service must be restarted:
2 https://tools.ietf.org/html/rfc3280#section-4.2.1.10
1 https://qemu.weilnetz.de/doc/qemu-doc.html#vnc_005fsec_005fcertificate_005fverify

3.4. Maintenance 191

https://tools.ietf.org/html/rfc3280#section-4.2.1.10
https://qemu.weilnetz.de/doc/qemu-doc.html#vnc_005fsec_005fcertificate_005fverify

Nova Documentation, Release 22.4.1.dev41

$ systemctl restart libvirtd.service

Changes will not apply to any existing running guests on the Compute node, so this configuration should
be done before launching any instances.

noVNC proxy server configuration

The noVNC proxy server initially only supports the none authentication scheme, which does no check-
ing. Therefore, it is necessary to enable the vencrypt authentication scheme by editing the nova.
conf file to set.

[vnc]
auth_schemes=vencrypt,none

The vnc.auth_schemes values should be listed in order of preference. If enabling VeNCrypt on
an existing deployment which already has instances running, the noVNC proxy server must initially be
allowed to use vencrypt and none. Once it is confirmed that all Compute nodes have VeNCrypt
enabled for VNC, it is possible to remove the none option from the list of the vnc.auth_schemes
values.

At that point, the noVNC proxy will refuse to connect to any Compute node that does not offer VeN-
Crypt.

As well as enabling the authentication scheme, it is necessary to provide certificates to the noVNC proxy.

• /etc/pki/nova-novncproxy/client-cert.pem

An x509 certificate to be presented to the VNC server. While libvirt/QEMU will not currently do
any validation of the CommonName field, future versions will allow for setting up access controls
based on the CommonName. The CommonName field should match the primary hostname of
the controller node. If using a HA deployment, the Organization field can also be configured
to a value that is common across all console proxy instances in the deployment. This avoids the
need to modify each compute nodes whitelist every time a console proxy instance is added or
removed.

• /etc/pki/nova-novncproxy/client-key.pem

The private key used to generate the client-cert.pem file.

• /etc/pki/nova-novncproxy/ca-cert.pem

The certificate authority cert used to sign client-cert.pem and sign the compute node VNC
server certificates.

The certificates must have v3 basic constraints2 present to indicate the permitted key use and purpose
data.

Once the certificates have been created, the noVNC console proxy service must be told where to find
them. This requires editing nova.conf to set.

[vnc]
vencrypt_client_key=/etc/pki/nova-novncproxy/client-key.pem
vencrypt_client_cert=/etc/pki/nova-novncproxy/client-cert.pem
vencrypt_ca_certs=/etc/pki/nova-novncproxy/ca-cert.pem

3.4. Maintenance 192

Nova Documentation, Release 22.4.1.dev41

SPICE console

The VNC protocol is fairly limited, lacking support for multiple monitors, bi-directional audio, reliable
cut-and-paste, video streaming and more. SPICE is a new protocol that aims to address the limitations
in VNC and provide good remote desktop support.

SPICE support in OpenStack Compute shares a similar architecture to the VNC implementa-
tion. The OpenStack dashboard uses a SPICE-HTML5 widget in its console tab that com-
municates with the nova-spicehtml5proxy service by using SPICE-over-websockets. The
nova-spicehtml5proxy service communicates directly with the hypervisor process by using
SPICE.

Configuration

Important: VNC must be explicitly disabled to get access to the SPICE console. Set the vnc.
enabled option to False to disable the VNC console.

To enable the SPICE console service, you must configure both the nova-spicehtml5proxy service
and the nova-compute service. Most options are defined in the spice group.

The nova-spicehtml5proxy service accepts the following options.

• daemon

• ssl_only

• source_is_ipv6

• cert

• key

• web

• console.ssl_ciphers

• console.ssl_minimum_version

• spice.html5proxy_host

• spice.html5proxy_port

For example, to configure this via a nova-spicehtml5proxy.conf file:

[spice]
html5proxy_host = 0.0.0.0
html5proxy_port = 6082

The nova-compute service requires the following options to configure SPICE console support.

• spice.enabled

• spice.agent_enabled

• spice.html5proxy_base_url

• spice.server_listen

3.4. Maintenance 193

Nova Documentation, Release 22.4.1.dev41

• spice.server_proxyclient_address

For example, to configure this via a nova.conf file:

[spice]
agent_enabled = False
enabled = True
html5proxy_base_url = http://IP_ADDRESS:6082/spice_auto.html
server_listen = 127.0.0.1
server_proxyclient_address = 127.0.0.1

Replace IP_ADDRESS with the IP address from which the proxy is accessible by the outside world.
For example, this may be the management interface IP address of the controller or the VIP.

Serial

Serial consoles provide an alternative to graphical consoles like VNC or SPICE. They work a little
differently to graphical consoles so an example is beneficial. The example below uses these nodes:

• controller node with IP 192.168.50.100

• compute node 1 with IP 192.168.50.104

• compute node 2 with IP 192.168.50.105

Heres the general flow of actions:

nova-serialproxynova-api

nova-compute

nova.conf
[DEFAULT]
my_ip=192.168.50.104
[serial_console]
enabled=true
port_range=10000:20000
base_url=ws://192.168.50.100:6083
proxyclient_address=192.168.50.104# nova.conf

[DEFAULT]
my_ip=192.168.50.100
[serial_console]
enabled=true
serialproxy_host=192.168.50.100
serialproxy_port=6083

10000

...

20000

nova-compute

nova.conf
[DEFAULT]
my_ip=192.168.50.105
[serial_console]
enabled=true
port_range=10000:20000
base_url=ws://192.168.50.100:6083
proxyclient_address=192.168.50.105

10000

...

20000

Browser/CLI/Client

1.

2.

3.

4.

1. The user requests a serial console connection string for an instance from the REST API.

2. The nova-api service asks the nova-compute service, which manages that instance, to fulfill
that request.

3.4. Maintenance 194

Nova Documentation, Release 22.4.1.dev41

3. That connection string gets used by the user to connect to the nova-serialproxy service.

4. The nova-serialproxy service then proxies the console interaction to the port of the com-
pute node where the instance is running. That port gets forwarded by the hypervisor (or ironic
conductor, for ironic) to the guest.

Configuration

To enable the serial console service, you must configure both the nova-serialproxy service and
the nova-compute service. Most options are defined in the serial_console group.

The nova-serialproxy service accepts the following options.

• daemon

• ssl_only

• source_is_ipv6

• cert

• key

• web

• console.ssl_ciphers

• console.ssl_minimum_version

• serial_console.serialproxy_host

• serial_console.serialproxy_port

For example, to configure this via a nova-serialproxy.conf file:

[serial_console]
serialproxy_host = 0.0.0.0
serialproxy_port = 6083

The nova-compute service requires the following options to configure serial console support.

• serial_console.enabled

• serial_console.base_url

• serial_console.proxyclient_address

• serial_console.port_range

For example, to configure this via a nova.conf file:

[serial_console]
enabled = True
base_url = ws://IP_ADDRESS:6083/
proxyclient_address = 127.0.0.1
port_range = 10000:20000

Replace IP_ADDRESS with the IP address from which the proxy is accessible by the outside world.
For example, this may be the management interface IP address of the controller or the VIP.

There are some things to keep in mind when configuring these options:

3.4. Maintenance 195

Nova Documentation, Release 22.4.1.dev41

• serial_console.serialproxy_host is the address the nova-serialproxy service
listens to for incoming connections.

• serial_console.serialproxy_port must be the same value as the port in the URI of
serial_console.base_url.

• The URL defined in serial_console.base_urlwill form part of the response the user will
get when asking for a serial console connection string. This means it needs to be an URL the user
can connect to.

• serial_console.proxyclient_address will be used by the nova-serialproxy
service to determine where to connect to for proxying the console interaction.

RDP

RDP is a graphical console primarily used with Hyper-V. Nova does not provide a console proxy service
for RDP - instead, an external proxy service, such as the wsgate application provided by FreeRDP-
WebConnect, should be used.

Configuration

To enable the RDP console service, you must configure both a console proxy service like wsgate and
the nova-compute service. All options for the latter service are defined in the rdp group.

Information on configuring an RDP console proxy service, such as wsgate, is not provided here.
However, more information can be found at cloudbase.it.

The nova-compute service requires the following options to configure RDP console support.

• rdp.enabled

• rdp.html5_proxy_base_url

For example, to configure this via a nova.conf file:

[rdp]
enabled = True
html5_proxy_base_url = https://IP_ADDRESS:6083/

Replace IP_ADDRESS with the IP address from which the proxy is accessible by the outside world.
For example, this may be the management interface IP address of the controller or the VIP.

MKS

MKS is the protocol used for accessing the console of a virtual machine running on VMware vSphere.
It is very similar to VNC. Due to the architecture of the VMware vSphere hypervisor, it is not necessary
to run a console proxy service.

3.4. Maintenance 196

https://github.com/FreeRDP/FreeRDP-WebConnect
https://github.com/FreeRDP/FreeRDP-WebConnect
https://cloudbase.it/freerdp-html5-proxy-windows/

Nova Documentation, Release 22.4.1.dev41

Configuration

To enable the MKS console service, only the nova-compute service must be configured. All options
are defined in the mks group.

The nova-compute service requires the following options to configure MKS console support.

• mks.enabled

• mks.mksproxy_base_url

For example, to configure this via a nova.conf file:

[mks]
enabled = True
mksproxy_base_url = https://127.0.0.1:6090/

About nova-consoleauth

The now-removed nova-consoleauth service was previously used to provide a shared service to
manage token authentication that the client proxies outlined below could leverage. Token authentication
was moved to the database in 18.0.0 (Rocky) and the service was removed in 20.0.0 (Train).

Frequently Asked Questions

• Q: I want VNC support in the OpenStack dashboard. What services do I need?

A: You need nova-novncproxy and correctly configured compute hosts.

• Q: My VNC proxy worked fine during my all-in-one test, but now it doesnt work on multi
host. Why?

A: The default options work for an all-in-one install, but changes must be made on your compute
hosts once you start to build a cluster. As an example, suppose you have two servers:

PROXYSERVER (public_ip=172.24.1.1, management_ip=192.168.1.1)
COMPUTESERVER (management_ip=192.168.1.2)

Your nova-compute configuration file must set the following values:

[vnc]
These flags help construct a connection data structure
server_proxyclient_address=192.168.1.2
novncproxy_base_url=http://172.24.1.1:6080/vnc_auto.html

This is the address where the underlying vncserver (not the proxy)
will listen for connections.
server_listen=192.168.1.2

Note: novncproxy_base_url uses a public IP; this is the URL that is ultimately returned to
clients, which generally do not have access to your private network. Your PROXYSERVER must
be able to reach server_proxyclient_address, because that is the address over which
the VNC connection is proxied.

3.4. Maintenance 197

Nova Documentation, Release 22.4.1.dev41

• Q: My noVNC does not work with recent versions of web browsers. Why?

A: Make sure you have installed python-numpy, which is required to support a newer version
of the WebSocket protocol (HyBi-07+).

• Q: How do I adjust the dimensions of the VNC window image in the OpenStack dashboard?

A: These values are hard-coded in a Django HTML template. To alter them, edit the
_detail_vnc.html template file. The location of this file varies based on Linux distribution.
On Ubuntu 14.04, the file is at /usr/share/pyshared/horizon/dashboards/nova/
instances/templates/instances/_detail_vnc.html.

Modify the width and height options, as follows:

<iframe src="{{ vnc_url }}" width="720" height="430"></iframe>

• Q: My noVNC connections failed with ValidationError: Origin header protocol does not
match. Why?

A: Make sure the base_url match your TLS setting. If you are using https console con-
nections, make sure that the value of novncproxy_base_url is set explicitly where the
nova-novncproxy service is running.

References

Configure Compute service groups

The Compute service must know the status of each compute node to effectively manage and use them.
This can include events like a user launching a new VM, the scheduler sending a request to a live node,
or a query to the ServiceGroup API to determine if a node is live.

When a compute worker running the nova-compute daemon starts, it calls the join API to join the
compute group. Any service (such as the scheduler) can query the groups membership and the status of
its nodes. Internally, the ServiceGroup client driver automatically updates the compute worker status.

Database ServiceGroup driver

By default, Compute uses the database driver to track if a node is live. In a compute worker, this driver
periodically sends a db update command to the database, saying Im OK with a timestamp. Compute
uses a pre-defined timeout (service_down_time) to determine if a node is dead.

The driver has limitations, which can be problematic depending on your environment. If a lot of compute
worker nodes need to be checked, the database can be put under heavy load, which can cause the timeout
to trigger, and a live node could incorrectly be considered dead. By default, the timeout is 60 seconds.
Reducing the timeout value can help in this situation, but you must also make the database update more
frequently, which again increases the database workload.

The database contains data that is both transient (such as whether the node is alive) and persistent (such
as entries for VM owners). With the ServiceGroup abstraction, Compute can treat each type separately.

3.4. Maintenance 198

Nova Documentation, Release 22.4.1.dev41

Memcache ServiceGroup driver

The memcache ServiceGroup driver uses memcached, a distributed memory object caching system that
is used to increase site performance. For more details, see memcached.org.

To use the memcache driver, you must install memcached. You might already have it installed, as the
same driver is also used for the OpenStack Object Storage and OpenStack dashboard. To install mem-
cached, see the Environment -> Memcached section in the Installation Tutorials and Guides depending
on your distribution.

These values in the /etc/nova/nova.conf file are required on every node for the memcache driver:

Driver for the ServiceGroup service
servicegroup_driver = "mc"

Memcached servers. Use either a list of memcached servers to use for
↪→caching (list value),
or "<None>" for in-process caching (default).
memcached_servers = <None>

Timeout; maximum time since last check-in for up service (integer value).
Helps to define whether a node is dead
service_down_time = 60

Recover from a failed compute node

If you deploy Compute with a shared file system, you can use several methods to quickly recover from
a node failure. This section discusses manual recovery.

Evacuate instances

If a hardware malfunction or other error causes the cloud compute node to fail, you can use the nova
evacuate command to evacuate instances. See evacuate instances for more information on using the
command.

Manual recovery

To manually recover a failed compute node:

1. Identify the VMs on the affected hosts by using a combination of the openstack server
list and openstack server show commands.

2. Query the Compute database for the status of the host. This example converts an EC2 API instance
ID to an OpenStack ID. If you use the nova commands, you can substitute the ID directly. This
example output is truncated:

mysql> SELECT * FROM instances WHERE id = CONV('15b9', 16, 10) \G;

*************************** 1. row ***************************
created_at: 2012-06-19 00:48:11
updated_at: 2012-07-03 00:35:11
deleted_at: NULL

(continues on next page)

3.4. Maintenance 199

http://memcached.org/
https://docs.openstack.org/install-guide

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

...
id: 5561
...
power_state: 5
vm_state: shutoff
...
hostname: at3-ui02
host: np-rcc54
...
uuid: 3f57699a-e773-4650-a443-b4b37eed5a06
...
task_state: NULL
...

Note: Find the credentials for your database in /etc/nova.conf file.

3. Decide to which compute host to move the affected VM. Run this database command to move the
VM to that host:

mysql> UPDATE instances SET host = 'np-rcc46' WHERE uuid = '3f57699a-
↪→e773-4650-a443-b4b37eed5a06';

4. If you use a hypervisor that relies on libvirt, such as KVM, update the libvirt.xml file in
/var/lib/nova/instances/[instance ID] with these changes:

• Change the DHCPSERVER value to the host IP address of the new compute host.

• Update the VNC IP to 0.0.0.0.

5. Reboot the VM:

$ openstack server reboot 3f57699a-e773-4650-a443-b4b37eed5a06

Typically, the database update and openstack server reboot command recover a VM from a
failed host. However, if problems persist, try one of these actions:

• Use virsh to recreate the network filter configuration.

• Restart Compute services.

• Update the vm_state and power_state fields in the Compute database.

Recover from a UID/GID mismatch

Sometimes when you run Compute with a shared file system or an automated configuration tool, files
on your compute node might use the wrong UID or GID. This UID or GID mismatch can prevent you
from running live migrations or starting virtual machines.

This procedure runs on nova-compute hosts, based on the KVM hypervisor:

1. Set the nova UID to the same number in /etc/passwd on all hosts. For example, set the UID
to 112.

3.4. Maintenance 200

Nova Documentation, Release 22.4.1.dev41

Note: Choose UIDs or GIDs that are not in use for other users or groups.

2. Set the libvirt-qemu UID to the same number in the /etc/passwd file on all hosts. For
example, set the UID to 119.

3. Set the nova group to the same number in the /etc/group file on all hosts. For example, set
the group to 120.

4. Set the libvirtd group to the same number in the /etc/group file on all hosts. For example,
set the group to 119.

5. Stop the services on the compute node.

6. Change all files that the nova user or group owns. For example:

find / -uid 108 -exec chown nova {} \;
note the 108 here is the old nova UID before the change
find / -gid 120 -exec chgrp nova {} \;

7. Repeat all steps for the libvirt-qemu files, if required.

8. Restart the services.

9. To verify that all files use the correct IDs, run the find command.

Recover cloud after disaster

This section describes how to manage your cloud after a disaster and back up persistent storage volumes.
Backups are mandatory, even outside of disaster scenarios.

For a definition of a disaster recovery plan (DRP), see https://en.wikipedia.org/wiki/Disaster_Recovery_
Plan.

A disk crash, network loss, or power failure can affect several components in your cloud architecture.
The worst disaster for a cloud is a power loss. A power loss affects these components:

• A cloud controller (nova-api, nova-conductor, nova-scheduler)

• A compute node (nova-compute)

• A storage area network (SAN) used by OpenStack Block Storage (cinder-volumes)

Before a power loss:

• Create an active iSCSI session from the SAN to the cloud controller (used for the
cinder-volumes LVMs VG).

• Create an active iSCSI session from the cloud controller to the compute node (managed by
cinder-volume).

• Create an iSCSI session for every volume (so 14 EBS volumes requires 14 iSCSI sessions).

• Create iptables or ebtables rules from the cloud controller to the compute node. This
allows access from the cloud controller to the running instance.

• Save the current state of the database, the current state of the running instances, and the attached
volumes (mount point, volume ID, volume status, etc), at least from the cloud controller to the
compute node.

3.4. Maintenance 201

https://en.wikipedia.org/wiki/Disaster_Recovery_Plan
https://en.wikipedia.org/wiki/Disaster_Recovery_Plan

Nova Documentation, Release 22.4.1.dev41

After power resumes and all hardware components restart:

• The iSCSI session from the SAN to the cloud no longer exists.

• The iSCSI session from the cloud controller to the compute node no longer exists.

• Instances stop running.

Instances are not lost because neither destroy nor terminate ran. The files for the instances
remain on the compute node.

• The database does not update.

Begin recovery

Warning: Do not add any steps or change the order of steps in this procedure.

1. Check the current relationship between the volume and its instance, so that you can recreate the
attachment.

Use the openstack volume list command to get this information. Note that the
openstack client can get volume information from OpenStack Block Storage.

2. Update the database to clean the stalled state. Do this for every volume by using these queries:

mysql> use cinder;
mysql> update volumes set mountpoint=NULL;
mysql> update volumes set status="available" where status <>"error_
↪→deleting";
mysql> update volumes set attach_status="detached";
mysql> update volumes set instance_id=0;

Use openstack volume list command to list all volumes.

3. Restart the instances by using the openstack server reboot INSTANCE command.

Important: Some instances completely reboot and become reachable, while some might stop at
the plymouth stage. This is expected behavior. DO NOT reboot a second time.

Instance state at this stage depends on whether you added an /etc/fstab entry for that volume.
Images built with the cloud-init package remain in a pending state, while others skip the missing
volume and start. You perform this step to ask Compute to reboot every instance so that the
stored state is preserved. It does not matter if not all instances come up successfully. For more
information about cloud-init, see help.ubuntu.com/community/CloudInit/.

4. If required, run the openstack server add volume command to reattach the volumes to
their respective instances. This example uses a file of listed volumes to reattach them:

#!/bin/bash

while read line; do
volume=`echo $line | $CUT -f 1 -d " "`
instance=`echo $line | $CUT -f 2 -d " "`

(continues on next page)

3.4. Maintenance 202

https://help.ubuntu.com/community/CloudInit/

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

mount_point=`echo $line | $CUT -f 3 -d " "`
echo "ATTACHING VOLUME FOR INSTANCE - $instance"

openstack server add volume $instance $volume $mount_point
sleep 2

done < $volumes_tmp_file

Instances that were stopped at the plymouth stage now automatically continue booting and start
normally. Instances that previously started successfully can now see the volume.

5. Log in to the instances with SSH and reboot them.

If some services depend on the volume or if a volume has an entry in fstab, you can now restart
the instance. Restart directly from the instance itself and not through nova:

shutdown -r now

When you plan for and complete a disaster recovery, follow these tips:

• Use the errors=remount option in the fstab file to prevent data corruption.

In the event of an I/O error, this option prevents writes to the disk. Add this configu-
ration option into the cinder-volume server that performs the iSCSI connection to the
SAN and into the instances fstab files.

• Do not add the entry for the SANs disks to the cinder-volumes fstab file.

Some systems hang on that step, which means you could lose access to your cloud-
controller. To re-run the session manually, run this command before performing the
mount:

iscsiadm -m discovery -t st -p $SAN_IP $ iscsiadm -m node --
↪→target-name $IQN -p $SAN_IP -l

• On your instances, if you have the whole /home/ directory on the disk, leave a users directory
with the users bash files and the authorized_keys file instead of emptying the /home/
directory and mapping the disk on it.

This action enables you to connect to the instance without the volume attached, if you allow only
connections through public keys.

To reproduce the power loss, connect to the compute node that runs that instance and close the iSCSI
session. Do not detach the volume by using the openstack server remove volume command.
You must manually close the iSCSI session. This example closes an iSCSI session with the number 15:

iscsiadm -m session -u -r 15

Do not forget the -r option. Otherwise, all sessions close.

Warning: There is potential for data loss while running instances during this procedure. If you are
using Liberty or earlier, ensure you have the correct patch and set the options appropriately.

3.4. Maintenance 203

Nova Documentation, Release 22.4.1.dev41

3.4.1.2 Advanced configuration

OpenStack clouds run on platforms that differ greatly in the capabilities that they provide. By default,
the Compute service seeks to abstract the underlying hardware that it runs on, rather than exposing
specifics about the underlying host platforms. This abstraction manifests itself in many ways. For ex-
ample, rather than exposing the types and topologies of CPUs running on hosts, the service exposes a
number of generic CPUs (virtual CPUs, or vCPUs) and allows for overcommitting of these. In a sim-
ilar manner, rather than exposing the individual types of network devices available on hosts, generic
software-powered network ports are provided. These features are designed to allow high resource uti-
lization and allows the service to provide a generic cost-effective and highly scalable cloud upon which
to build applications.

This abstraction is beneficial for most workloads. However, there are some workloads where determin-
ism and per-instance performance are important, if not vital. In these cases, instances can be expected to
deliver near-native performance. The Compute service provides features to improve individual instance
for these kind of workloads.

Important: In deployments older than Train, or in mixed Stein/Train deployments with a rolling
upgrade in progress, unless specifically enabled, live migration is not possible for instances
with a NUMA topology when using the libvirt driver. A NUMA topology may be specified explicitly or
can be added implicitly due to the use of CPU pinning or huge pages. Refer to bug #1289064 for more
information. As of Train, live migration of instances with a NUMA topology when using the libvirt
driver is fully supported.

Attaching physical PCI devices to guests

The PCI passthrough feature in OpenStack allows full access and direct control of a physical PCI device
in guests. This mechanism is generic for any kind of PCI device, and runs with a Network Interface
Card (NIC), Graphics Processing Unit (GPU), or any other devices that can be attached to a PCI bus.
Correct driver installation is the only requirement for the guest to properly use the devices.

Some PCI devices provide Single Root I/O Virtualization and Sharing (SR-IOV) capabilities. When SR-
IOV is used, a physical device is virtualized and appears as multiple PCI devices. Virtual PCI devices
are assigned to the same or different guests. In the case of PCI passthrough, the full physical device is
assigned to only one guest and cannot be shared.

PCI devices are requested through flavor extra specs, specifically via the
pci_passthrough:alias=<alias> flavor extra spec. This guide demonstrates how to
enable PCI passthrough for a type of PCI device with a vendor ID of 8086 and a product ID of 154d -
an Intel X520 Network Adapter - by mapping them to the alias a1. You should adjust the instructions
for other devices with potentially different capabilities.

Note: For information on creating servers with SR-IOV network interfaces, refer to the Networking
Guide.

Limitations

• Attaching SR-IOV ports to existing servers was not supported until the 22.0.0 Victoria release.
Due to various bugs in libvirt and qemu we recommend to use at least libvirt version 6.0.0 and at
least qemu version 4.2.

3.4. Maintenance 204

https://bugs.launchpad.net/nova/+bug/1289064
https://docs.openstack.org/neutron/victoria/admin/config-sriov
https://docs.openstack.org/neutron/victoria/admin/config-sriov

Nova Documentation, Release 22.4.1.dev41

• Cold migration (resize) of servers with SR-IOV devices attached was not supported until the 14.0.0
Newton release, see bug 1512800 for details.

Note: Nova only supports PCI addresses where the fields are restricted to the following maximum
value:

• domain - 0xFFFF

• bus - 0xFF

• slot - 0x1F

• function - 0x7

Nova will ignore PCI devices reported by the hypervisor if the address is outside of these ranges.

Configure host (Compute)

To enable PCI passthrough on an x86, Linux-based compute node, the following are required:

• VT-d enabled in the BIOS

• IOMMU enabled on the host OS, e.g. by adding the intel_iommu=on or amd_iommu=on
parameter to the kernel parameters

• Assignable PCIe devices

To enable PCI passthrough on a Hyper-V compute node, the following are required:

• Windows 10 or Windows / Hyper-V Server 2016 or newer

• VT-d enabled on the host

• Assignable PCI devices

In order to check the requirements above and if there are any assignable PCI devices, run the following
Powershell commands:

Start-BitsTransfer https://raw.githubusercontent.com/Microsoft/
↪→Virtualization-Documentation/master/hyperv-samples/benarm-powershell/DDA/
↪→survey-dda.ps1
.\survey-dda.ps1

If the compute node passes all the requirements, the desired assignable PCI devices to be disabled and
unmounted from the host, in order to be assignable by Hyper-V. The following can be read for more
details: Hyper-V PCI passthrough.

3.4. Maintenance 205

https://bugs.launchpad.net/nova/+bug/1512880
https://devblogs.microsoft.com/scripting/passing-through-devices-to-hyper-v-vms-by-using-discrete-device-assignment/

Nova Documentation, Release 22.4.1.dev41

Configure nova-compute (Compute)

Once PCI passthrough has been configured for the host, nova-compute must be configured to allow
the PCI device to pass through to VMs. This is done using the pci.passthrough_whitelist
option. For example, assuming our sample PCI device has a PCI address of 41:00.0 on each host:

[pci]
passthrough_whitelist = { "address": "0000:41:00.0" }

Refer to pci.passthrough_whitelist for syntax information.

Alternatively, to enable passthrough of all devices with the same product and vendor ID:

[pci]
passthrough_whitelist = { "vendor_id": "8086", "product_id": "154d" }

If using vendor and product IDs, all PCI devices matching the vendor_id and product_id are
added to the pool of PCI devices available for passthrough to VMs.

In addition, it is necessary to configure the pci.alias option, which is a JSON-style configuration
option that allows you to map a given device type, identified by the standard PCI vendor_id and (op-
tional) product_id fields, to an arbitrary name or alias. This alias can then be used to request a PCI
device using the pci_passthrough:alias=<alias> flavor extra spec, as discussed previously.
For our sample device with a vendor ID of 0x8086 and a product ID of 0x154d, this would be:

[pci]
alias = { "vendor_id":"8086", "product_id":"154d", "device_type":"type-PF",
↪→ "name":"a1" }

Its important to note the addition of the device_type field. This is necessary because this PCI device
supports SR-IOV. The nova-compute service categorizes devices into one of three types, depending
on the capabilities the devices report:

type-PF The device supports SR-IOV and is the parent or root device.

type-VF The device is a child device of a device that supports SR-IOV.

type-PCI The device does not support SR-IOV.

By default, it is only possible to attach type-PCI devices using PCI passthrough. If you wish to attach
type-PF or type-VF devices, you must specify the device_type field in the config option. If the
device was a device that did not support SR-IOV, the device_type field could be omitted.

Refer to pci.alias for syntax information.

Important: This option must also be configured on controller nodes. This is discussed later in this
document.

Once configured, restart the nova-compute service.

3.4. Maintenance 206

Nova Documentation, Release 22.4.1.dev41

Configure nova-scheduler (Controller)

The nova-scheduler service must be configured to enable the PciPassthroughFilter. To
do this, add this filter to the list of filters specified in filter_scheduler.enabled_filters
and set filter_scheduler.available_filters to the default of nova.scheduler.
filters.all_filters. For example:

[filter_scheduler]
enabled_filters = ...,PciPassthroughFilter
available_filters = nova.scheduler.filters.all_filters

Once done, restart the nova-scheduler service.

Configure nova-api (Controller)

It is necessary to also configure the pci.alias config option on the controller. This configuration
should match the configuration found on the compute nodes. For example:

[pci]
alias = { "vendor_id":"8086", "product_id":"154d", "device_type":"type-PF",
↪→ "name":"a1", "numa_policy":"preferred" }

Refer to pci.alias for syntax information. Refer to Affinity for numa_policy information.

Once configured, restart the nova-api service.

Configure a flavor (API)

Once the alias has been configured, it can be used for an flavor extra spec. For example, to request two
of the PCI devices referenced by alias a1, run:

$ openstack flavor set m1.large --property "pci_passthrough:alias"="a1:2"

For more information about the syntax for pci_passthrough:alias, refer to Flavors.

Create instances with PCI passthrough devices

The nova-scheduler service selects a destination host that has PCI devices available that match the
alias specified in the flavor.

openstack server create --flavor m1.large --image cirros-0.3.5-x86_64-
↪→uec --wait test-pci

3.4. Maintenance 207

Nova Documentation, Release 22.4.1.dev41

CPU topologies

The NUMA topology and CPU pinning features in OpenStack provide high-level control over how
instances run on hypervisor CPUs and the topology of virtual CPUs available to instances. These features
help minimize latency and maximize performance.

Important: In deployments older than Train, or in mixed Stein/Train deployments with a rolling
upgrade in progress, unless specifically enabled, live migration is not possible for instances
with a NUMA topology when using the libvirt driver. A NUMA topology may be specified explicitly or
can be added implicitly due to the use of CPU pinning or huge pages. Refer to bug #1289064 for more
information. As of Train, live migration of instances with a NUMA topology when using the libvirt
driver is fully supported.

SMP, NUMA, and SMT

Symmetric multiprocessing (SMP) SMP is a design found in many modern multi-core systems. In an
SMP system, there are two or more CPUs and these CPUs are connected by some interconnect.
This provides CPUs with equal access to system resources like memory and input/output ports.

Non-uniform memory access (NUMA) NUMA is a derivative of the SMP design that is found in many
multi-socket systems. In a NUMA system, system memory is divided into cells or nodes that are
associated with particular CPUs. Requests for memory on other nodes are possible through an
interconnect bus. However, bandwidth across this shared bus is limited. As a result, competition
for this resource can incur performance penalties.

Simultaneous Multi-Threading (SMT) SMT is a design complementary to SMP. Whereas CPUs in
SMP systems share a bus and some memory, CPUs in SMT systems share many more components.
CPUs that share components are known as thread siblings. All CPUs appear as usable CPUs on
the system and can execute workloads in parallel. However, as with NUMA, threads compete for
shared resources.

Non-Uniform I/O Access (NUMA I/O) In a NUMA system, I/O to a device mapped to a local memory
region is more efficient than I/O to a remote device. A device connected to the same socket provid-
ing the CPU and memory offers lower latencies for I/O operations due to its physical proximity.
This generally manifests itself in devices connected to the PCIe bus, such as NICs or vGPUs, but
applies to any device support memory-mapped I/O.

In OpenStack, SMP CPUs are known as cores, NUMA cells or nodes are known as sockets, and SMT
CPUs are known as threads. For example, a quad-socket, eight core system with Hyper-Threading
would have four sockets, eight cores per socket and two threads per core, for a total of 64 CPUs.

3.4. Maintenance 208

https://bugs.launchpad.net/nova/+bug/1289064

Nova Documentation, Release 22.4.1.dev41

PCPU and VCPU

PCPU Resource class representing an amount of dedicated CPUs for a single guest.

VCPU Resource class representing a unit of CPU resources for a single guest approximating the pro-
cessing power of a single physical processor.

Customizing instance NUMA placement policies

Important: The functionality described below is currently only supported by the libvirt/KVM and
Hyper-V driver. The Hyper-V driver may require some host configuration for this to work.

When running workloads on NUMA hosts, it is important that the vCPUs executing processes are on the
same NUMA node as the memory used by these processes. This ensures all memory accesses are local to
the node and thus do not consume the limited cross-node memory bandwidth, adding latency to memory
accesses. Similarly, large pages are assigned from memory and benefit from the same performance
improvements as memory allocated using standard pages. Thus, they also should be local. Finally, PCI
devices are directly associated with specific NUMA nodes for the purposes of DMA. Instances that use
PCI or SR-IOV devices should be placed on the NUMA node associated with these devices.

NUMA topology can exist on both the physical hardware of the host and the virtual hardware of the
instance. In OpenStack, when booting a process, the hypervisor driver looks at the NUMA topology
field of both the instance and the host it is being booted on, and uses that information to generate an
appropriate configuration.

By default, an instance floats across all NUMA nodes on a host. NUMA awareness can be enabled
implicitly through the use of huge pages or pinned CPUs or explicitly through the use of flavor extra
specs or image metadata. If the instance has requested a specific NUMA topology, compute will try to
pin the vCPUs of different NUMA cells on the instance to the corresponding NUMA cells on the host.
It will also expose the NUMA topology of the instance to the guest OS.

In all cases where NUMA awareness is used, the NUMATopologyFilter filter must be enabled.
Details on this filter are provided in Compute schedulers.

Caution: The NUMA node(s) used are normally chosen at random. However, if a PCI passthrough
or SR-IOV device is attached to the instance, then the NUMA node that the device is associated
with will be used. This can provide important performance improvements. However, booting a large
number of similar instances can result in unbalanced NUMA node usage. Care should be taken to
mitigate this issue. See this discussion for more details.

Caution: Inadequate per-node resources will result in scheduling failures. Resources that are
specific to a node include not only CPUs and memory, but also PCI and SR-IOV resources. It is not
possible to use multiple resources from different nodes without requesting a multi-node layout. As
such, it may be necessary to ensure PCI or SR-IOV resources are associated with the same NUMA
node or force a multi-node layout.

When used, NUMA awareness allows the operating system of the instance to intelligently schedule the

3.4. Maintenance 209

http://lists.openstack.org/pipermail/openstack-dev/2016-March/090367.html

Nova Documentation, Release 22.4.1.dev41

workloads that it runs and minimize cross-node memory bandwidth. To restrict an instances vCPUs to a
single host NUMA node, run:

$ openstack flavor set [FLAVOR_ID] --property hw:numa_nodes=1

Some workloads have very demanding requirements for memory access latency or bandwidth that ex-
ceed the memory bandwidth available from a single NUMA node. For such workloads, it is beneficial
to spread the instance across multiple host NUMA nodes, even if the instances RAM/vCPUs could the-
oretically fit on a single NUMA node. To force an instances vCPUs to spread across two host NUMA
nodes, run:

$ openstack flavor set [FLAVOR_ID] --property hw:numa_nodes=2

The allocation of instances vCPUs and memory from different host NUMA nodes can be configured.
This allows for asymmetric allocation of vCPUs and memory, which can be important for some work-
loads. To spread the 6 vCPUs and 6 GB of memory of an instance across two NUMA nodes and create
an asymmetric 1:2 vCPU and memory mapping between the two nodes, run:

$ openstack flavor set [FLAVOR_ID] --property hw:numa_nodes=2
configure guest node 0
$ openstack flavor set [FLAVOR_ID] \

--property hw:numa_cpus.0=0,1 \
--property hw:numa_mem.0=2048

configure guest node 1
$ openstack flavor set [FLAVOR_ID] \

--property hw:numa_cpus.1=2,3,4,5 \
--property hw:numa_mem.1=4096

Note: Hyper-V does not support asymmetric NUMA topologies, and the Hyper-V driver will not spawn
instances with such topologies.

For more information about the syntax for hw:numa_nodes, hw:numa_cpus.N and
hw:num_mem.N, refer to the NUMA topology guide.

Customizing instance CPU pinning policies

Important: The functionality described below is currently only supported by the libvirt/KVM driver
and requires some host configuration for this to work. Hyper-V does not support CPU pinning.

Note: There is no correlation required between the NUMA topology exposed in the instance and how
the instance is actually pinned on the host. This is by design. See this invalid bug for more information.

By default, instance vCPU processes are not assigned to any particular host CPU, instead, they float
across host CPUs like any other process. This allows for features like overcommitting of CPUs. In
heavily contended systems, this provides optimal system performance at the expense of performance
and latency for individual instances.

Some workloads require real-time or near real-time behavior, which is not possible with the latency
introduced by the default CPU policy. For such workloads, it is beneficial to control which host CPUs

3.4. Maintenance 210

https://bugs.launchpad.net/nova/+bug/1466780

Nova Documentation, Release 22.4.1.dev41

are bound to an instances vCPUs. This process is known as pinning. No instance with pinned CPUs can
use the CPUs of another pinned instance, thus preventing resource contention between instances.

CPU pinning policies can be used to determine whether an instance should be pinned or not. There
are three policies: dedicated, mixed and shared (the default). The dedicated CPU policy is
used to specify that all CPUs of an instance should use pinned CPUs. To configure a flavor to use the
dedicated CPU policy, run:

$ openstack flavor set [FLAVOR_ID] --property hw:cpu_policy=dedicated

This works by ensuring PCPU allocations are used instead of VCPU allocations. As such, it is also
possible to request this resource type explicitly. To configure this, run:

$ openstack flavor set [FLAVOR_ID] --property resources:PCPU=N

where N is the number of vCPUs defined in the flavor.

Note: It is not currently possible to request PCPU and VCPU resources in the same instance.

The shared CPU policy is used to specify that an instance should not use pinned CPUs. To configure
a flavor to use the shared CPU policy, run:

$ openstack flavor set [FLAVOR_ID] --property hw:cpu_policy=shared

The mixed CPU policy is used to specify that an instance use pinned CPUs along with unpinned CPUs.
The instance pinned CPU could be specified in the hw:cpu_dedicated_mask or, if real-time is
enabled (hw:cpu_realtime= yes), in the hw:cpu_realtime_mask extra spec. For example, to
configure a flavor to use the mixed CPU policy with 4 vCPUs in total and the first 2 vCPUs as pinned
CPUs, with the hw:cpu_realtime_mask extra spec, run:

$ openstack flavor set [FLAVOR_ID] \
--vcpus=4 \
--property hw:cpu_policy=mixed \
--property hw:cpu_dedicated_mask=0-1

To create the mixed instance with the real-time extra specs, run:

$ openstack flavor set [FLAVOR_ID] \
--vcpus=4 \
--property hw:cpu_policy=mixed \
--property hw:cpu_realtime=yes \
--property hw:cpu_realtime_mask=0-1

Note: For more information about the syntax for hw:cpu_policy, hw:cpu_dedicated_mask,
hw:realtime_cpu and hw:cpu_realtime_mask, refer to the Flavors guide.

It is also possible to configure the CPU policy via image metadata. This can be useful when packaging
applications that require real-time or near real-time behavior by ensuring instances created with a given
image are always pinned regardless of flavor. To configure an image to use the dedicated CPU policy,
run:

3.4. Maintenance 211

Nova Documentation, Release 22.4.1.dev41

$ openstack image set [IMAGE_ID] --property hw_cpu_policy=dedicated

Likewise, to configure an image to use the shared CPU policy, run:

$ openstack image set [IMAGE_ID] --property hw_cpu_policy=shared

Note: For more information about image metadata, refer to the Image metadata guide.

Important: Flavor-based policies take precedence over image-based policies. For example, if a flavor
specifies a CPU policy of dedicated then that policy will be used. If the flavor specifies a CPU
policy of shared and the image specifies no policy or a policy of shared then the shared policy
will be used. However, the flavor specifies a CPU policy of shared and the image specifies a policy
of dedicated, or vice versa, an exception will be raised. This is by design. Image metadata is often
configurable by non-admin users, while flavors are only configurable by admins. By setting a shared
policy through flavor extra-specs, administrators can prevent users configuring CPU policies in images
and impacting resource utilization.

Customizing instance CPU thread pinning policies

Important: The functionality described below requires the use of pinned instances and is therefore
currently only supported by the libvirt/KVM driver and requires some host configuration for this to
work. Hyper-V does not support CPU pinning.

When running pinned instances on SMT hosts, it may also be necessary to consider the impact that
thread siblings can have on the instance workload. The presence of an SMT implementation like Intel
Hyper-Threading can boost performance by up to 30% for some workloads. However, thread siblings
share a number of components and contention on these components can diminish performance for other
workloads. For this reason, it is also possible to explicitly request hosts with or without SMT.

To configure whether an instance should be placed on a host with SMT or not, a CPU thread policy may
be specified. For workloads where sharing benefits performance, you can request hosts with SMT. To
configure this, run:

$ openstack flavor set [FLAVOR_ID] \
--property hw:cpu_policy=dedicated \
--property hw:cpu_thread_policy=require

This will ensure the instance gets scheduled to a host with SMT by requesting hosts that report the
HW_CPU_HYPERTHREADING trait. It is also possible to request this trait explicitly. To configure this,
run:

$ openstack flavor set [FLAVOR_ID] \
--property resources:PCPU=N \
--property trait:HW_CPU_HYPERTHREADING=required

For other workloads where performance is impacted by contention for resources, you can request hosts
without SMT. To configure this, run:

3.4. Maintenance 212

https://docs.openstack.org/image-guide/introduction.html#image-metadata
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application

Nova Documentation, Release 22.4.1.dev41

$ openstack flavor set [FLAVOR_ID] \
--property hw:cpu_policy=dedicated \
--property hw:cpu_thread_policy=isolate

This will ensure the instance gets scheduled to a host with SMT by requesting hosts that do not report
the HW_CPU_HYPERTHREADING trait. It is also possible to request this trait explicitly. To configure
this, run:

$ openstack flavor set [FLAVOR_ID] \
--property resources:PCPU=N \
--property trait:HW_CPU_HYPERTHREADING=forbidden

Finally, for workloads where performance is minimally impacted, you may use thread siblings if avail-
able and fallback to not using them if necessary. This is the default, but it can be set explicitly:

$ openstack flavor set [FLAVOR_ID] \
--property hw:cpu_policy=dedicated \
--property hw:cpu_thread_policy=prefer

This does not utilize traits and, as such, there is no trait-based equivalent.

Note: For more information about the syntax for hw:cpu_thread_policy, refer to the Flavors
guide.

As with CPU policies, it also possible to configure the CPU thread policy via image metadata. This
can be useful when packaging applications that require real-time or near real-time behavior by ensuring
instances created with a given image are always pinned regardless of flavor. To configure an image to
use the require CPU policy, run:

$ openstack image set [IMAGE_ID] \
--property hw_cpu_policy=dedicated \
--property hw_cpu_thread_policy=require

Likewise, to configure an image to use the isolate CPU thread policy, run:

$ openstack image set [IMAGE_ID] \
--property hw_cpu_policy=dedicated \
--property hw_cpu_thread_policy=isolate

Finally, to configure an image to use the prefer CPU thread policy, run:

$ openstack image set [IMAGE_ID] \
--property hw_cpu_policy=dedicated \
--property hw_cpu_thread_policy=prefer

If the flavor does not specify a CPU thread policy then the CPU thread policy specified by the image (if
any) will be used. If both the flavor and image specify a CPU thread policy then they must specify the
same policy, otherwise an exception will be raised.

Note: For more information about image metadata, refer to the Image metadata guide.

3.4. Maintenance 213

https://docs.openstack.org/image-guide/introduction.html#image-metadata

Nova Documentation, Release 22.4.1.dev41

Customizing instance emulator thread pinning policies

Important: The functionality described below requires the use of pinned instances and is therefore
currently only supported by the libvirt/KVM driver and requires some host configuration for this to
work. Hyper-V does not support CPU pinning.

In addition to the work of the guest OS and applications running in an instance, there is a small amount
of overhead associated with the underlying hypervisor. By default, these overhead tasks - known collec-
tively as emulator threads - run on the same host CPUs as the instance itself and will result in a minor
performance penalty for the instance. This is not usually an issue, however, for things like real-time
instances, it may not be acceptable for emulator thread to steal time from instance CPUs.

Emulator thread policies can be used to ensure emulator threads are run on cores separate from those
used by the instance. There are two policies: isolate and share. The default is to run the emulator
threads on the same core. The isolate emulator thread policy is used to specify that emulator threads
for a given instance should be run on their own unique core, chosen from one of the host cores listed
in compute.cpu_dedicated_set. To configure a flavor to use the isolate emulator thread
policy, run:

$ openstack flavor set [FLAVOR_ID] \
--property hw:cpu_policy=dedicated \
--property hw:emulator_threads_policy=isolate

The share policy is used to specify that emulator threads from a given instance should be run on the
pool of host cores listed in compute.cpu_shared_set. To configure a flavor to use the share
emulator thread policy, run:

$ openstack flavor set [FLAVOR_ID] \
--property hw:cpu_policy=dedicated \
--property hw:emulator_threads_policy=share

Note: For more information about the syntax for hw:emulator_threads_policy, refer to the
Flavors guide.

Customizing instance CPU topologies

Important: The functionality described below is currently only supported by the libvirt/KVM driver.

Note: Currently it also works with libvirt/QEMU driver but we dont recommend it in production use
cases. This is because vCPUs are actually running in one thread on host in qemu TCG (Tiny Code
Generator), which is the backend for libvirt/QEMU driver. Work to enable full multi-threading support
for TCG (a.k.a. MTTCG) is on going in QEMU community. Please see this MTTCG project page for
detail.

In addition to configuring how an instance is scheduled on host CPUs, it is possible to configure how

3.4. Maintenance 214

http://wiki.qemu.org/Features/tcg-multithread

Nova Documentation, Release 22.4.1.dev41

CPUs are represented in the instance itself. By default, when instance NUMA placement is not specified,
a topology of N sockets, each with one core and one thread, is used for an instance, where N corresponds
to the number of instance vCPUs requested. When instance NUMA placement is specified, the number
of sockets is fixed to the number of host NUMA nodes to use and the total number of instance CPUs is
split over these sockets.

Some workloads benefit from a custom topology. For example, in some operating systems, a different
license may be needed depending on the number of CPU sockets. To configure a flavor to use a maximum
of two sockets, run:

$ openstack flavor set [FLAVOR_ID] --property hw:cpu_sockets=2

Similarly, to configure a flavor to use one core and one thread, run:

$ openstack flavor set [FLAVOR_ID] \
--property hw:cpu_cores=1 \
--property hw:cpu_threads=1

Caution: If specifying all values, the product of sockets multiplied by cores multiplied by threads
must equal the number of instance vCPUs. If specifying any one of these values or the multiple of
two values, the values must be a factor of the number of instance vCPUs to prevent an exception. For
example, specifying hw:cpu_sockets=2 on a host with an odd number of cores fails. Similarly,
specifying hw:cpu_cores=2 and hw:cpu_threads=4 on a host with ten cores fails.

For more information about the syntax for hw:cpu_sockets, hw:cpu_cores and
hw:cpu_threads, refer to the Flavors guide.

It is also possible to set upper limits on the number of sockets, cores, and threads used. Unlike the hard
values above, it is not necessary for this exact number to used because it only provides a limit. This can
be used to provide some flexibility in scheduling, while ensuring certain limits are not exceeded. For
example, to ensure no more than two sockets are defined in the instance topology, run:

$ openstack flavor set [FLAVOR_ID] --property hw:cpu_max_sockets=2

For more information about the syntax for hw:cpu_max_sockets, hw:cpu_max_cores, and
hw:cpu_max_threads, refer to the Flavors guide.

Applications are frequently packaged as images. For applications that prefer certain CPU topologies,
configure image metadata to hint that created instances should have a given topology regardless of flavor.
To configure an image to request a two-socket, four-core per socket topology, run:

$ openstack image set [IMAGE_ID] \
--property hw_cpu_sockets=2 \
--property hw_cpu_cores=4

To constrain instances to a given limit of sockets, cores or threads, use the max_ variants. To configure
an image to have a maximum of two sockets and a maximum of one thread, run:

$ openstack image set [IMAGE_ID] \
--property hw_cpu_max_sockets=2 \
--property hw_cpu_max_threads=1

The value specified in the flavor is treated as the absolute limit. The image limits are not permitted to
exceed the flavor limits, they can only be equal to or lower than what the flavor defines. By setting a

3.4. Maintenance 215

Nova Documentation, Release 22.4.1.dev41

max value for sockets, cores, or threads, administrators can prevent users configuring topologies that
might, for example, incur an additional licensing fees.

For more information about image metadata, refer to the Image metadata guide.

Configuring libvirt compute nodes for CPU pinning

Changed in version 20.0.0: Prior to 20.0.0 (Train), it was not necessary to explicitly configure hosts for
pinned instances. However, it was not possible to place pinned instances on the same host as unpinned
CPUs, which typically meant hosts had to be grouped into host aggregates. If this was not done, un-
pinned instances would continue floating across all enabled host CPUs, even those that some instance
CPUs were pinned to. Starting in 20.0.0, it is necessary to explicitly identify the host cores that should
be used for pinned instances.

Nova treats host CPUs used for unpinned instances differently from those used by pinned instances. The
former are tracked in placement using the VCPU resource type and can be overallocated, while the latter
are tracked using the PCPU resource type. By default, nova will report all host CPUs as VCPU inventory,
however, this can be configured using the compute.cpu_shared_set config option, to specify
which host CPUs should be used for VCPU inventory, and the compute.cpu_dedicated_set
config option, to specify which host CPUs should be used for PCPU inventory.

Consider a compute node with a total of 24 host physical CPU cores with hyperthreading enabled.
The operator wishes to reserve 1 physical CPU core and its thread sibling for host processing (not
for guest instance use). Furthermore, the operator wishes to use 8 host physical CPU cores and their
thread siblings for dedicated guest CPU resources. The remaining 15 host physical CPU cores and their
thread siblings will be used for shared guest vCPU usage, with an 8:1 allocation ratio for those physical
processors used for shared guest CPU resources.

The operator could configure nova.conf like so:

[DEFAULT]
cpu_allocation_ratio=8.0

[compute]
cpu_dedicated_set=2-17
cpu_shared_set=18-47

The virt driver will construct a provider tree containing a single resource provider representing the
compute node and report inventory of PCPU and VCPU for this single provider accordingly:

COMPUTE NODE provider
PCPU:

total: 16
reserved: 0
min_unit: 1
max_unit: 16
step_size: 1
allocation_ratio: 1.0

VCPU:
total: 30
reserved: 0
min_unit: 1
max_unit: 30
step_size: 1
allocation_ratio: 8.0

3.4. Maintenance 216

https://docs.openstack.org/image-guide/introduction.html#image-metadata

Nova Documentation, Release 22.4.1.dev41

Instances using the dedicated CPU policy or an explicit PCPU resource request, PCPU inventory will
be consumed. Instances using the shared CPU policy, meanwhile, will consume VCPU inventory.

Note: PCPU and VCPU allocations are currently combined to calculate the value for the cores quota
class.

Configuring Hyper-V compute nodes for instance NUMA policies

Hyper-V is configured by default to allow instances to span multiple NUMA nodes, regardless if the
instances have been configured to only span N NUMA nodes. This behaviour allows Hyper-V instances
to have up to 64 vCPUs and 1 TB of memory.

Checking NUMA spanning can easily be done by running this following PowerShell command:

(Get-VMHost).NumaSpanningEnabled

In order to disable this behaviour, the host will have to be configured to disable NUMA spanning. This
can be done by executing these following PowerShell commands:

Set-VMHost -NumaSpanningEnabled $false
Restart-Service vmms

In order to restore this behaviour, execute these PowerShell commands:

Set-VMHost -NumaSpanningEnabled $true
Restart-Service vmms

The Virtual Machine Management Service (vmms) is responsible for managing the Hyper-V VMs. The
VMs will still run while the service is down or restarting, but they will not be manageable by the
nova-compute service. In order for the effects of the host NUMA spanning configuration to take
effect, the VMs will have to be restarted.

Hyper-V does not allow instances with a NUMA topology to have dynamic memory allocation turned
on. The Hyper-V driver will ignore the configured dynamic_memory_ratio from the given nova.
conf file when spawning instances with a NUMA topology.

Huge pages

The huge page feature in OpenStack provides important performance improvements for applications that
are highly memory IO-bound.

Note: Huge pages may also be referred to hugepages or large pages, depending on the source. These
terms are synonyms.

3.4. Maintenance 217

Nova Documentation, Release 22.4.1.dev41

Pages, the TLB and huge pages

Pages Physical memory is segmented into a series of contiguous regions called pages. Each page
contains a number of bytes, referred to as the page size. The system retrieves memory by accessing
entire pages, rather than byte by byte.

Translation Lookaside Buffer (TLB) A TLB is used to map the virtual addresses of pages to the phys-
ical addresses in actual memory. The TLB is a cache and is not limitless, storing only the most
recent or frequently accessed pages. During normal operation, processes will sometimes attempt
to retrieve pages that are not stored in the cache. This is known as a TLB miss and results in a
delay as the processor iterates through the pages themselves to find the missing address mapping.

Huge Pages The standard page size in x86 systems is 4 kB. This is optimal for general purpose comput-
ing but larger page sizes - 2 MB and 1 GB - are also available. These larger page sizes are known
as huge pages. Huge pages result in less efficient memory usage as a process will not generally
use all memory available in each page. However, use of huge pages will result in fewer overall
pages and a reduced risk of TLB misses. For processes that have significant memory requirements
or are memory intensive, the benefits of huge pages frequently outweigh the drawbacks.

Persistent Huge Pages On Linux hosts, persistent huge pages are huge pages that are reserved upfront.
The HugeTLB provides for the mechanism for this upfront configuration of huge pages. The
HugeTLB allows for the allocation of varying quantities of different huge page sizes. Allocation
can be made at boot time or run time. Refer to the Linux hugetlbfs guide for more information.

Transparent Huge Pages (THP) On Linux hosts, transparent huge pages are huge pages that are au-
tomatically provisioned based on process requests. Transparent huge pages are provisioned on a
best effort basis, attempting to provision 2 MB huge pages if available but falling back to 4 kB
small pages if not. However, no upfront configuration is necessary. Refer to the Linux THP guide
for more information.

Enabling huge pages on the host

Important: Huge pages may not be used on a host configured for file-backed memory. See File-backed
memory for details

Persistent huge pages are required owing to their guaranteed availability. However, persistent huge
pages are not enabled by default in most environments. The steps for enabling huge pages differ from
platform to platform and only the steps for Linux hosts are described here. On Linux hosts, the number
of persistent huge pages on the host can be queried by checking /proc/meminfo:

$ grep Huge /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

In this instance, there are 0 persistent huge pages (HugePages_Total) and 0 transparent huge pages
(AnonHugePages) allocated. Huge pages can be allocated at boot time or run time. Huge pages
require a contiguous area of memory - memory that gets increasingly fragmented the long a host is

3.4. Maintenance 218

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt

Nova Documentation, Release 22.4.1.dev41

running. Identifying contiguous areas of memory is an issue for all huge page sizes, but it is particularly
problematic for larger huge page sizes such as 1 GB huge pages. Allocating huge pages at boot time
will ensure the correct number of huge pages is always available, while allocating them at run time can
fail if memory has become too fragmented.

To allocate huge pages at run time, the kernel boot parameters must be extended to include some
huge page-specific parameters. This can be achieved by modifying /etc/default/grub and ap-
pending the hugepagesz, hugepages, and transparent_hugepages=never arguments to
GRUB_CMDLINE_LINUX. To allocate, for example, 2048 persistent 2 MB huge pages at boot time,
run:

echo 'GRUB_CMDLINE_LINUX="$GRUB_CMDLINE_LINUX hugepagesz=2M
↪→hugepages=2048 transparent_hugepage=never"' > /etc/default/grub
$ grep GRUB_CMDLINE_LINUX /etc/default/grub
GRUB_CMDLINE_LINUX="..."
GRUB_CMDLINE_LINUX="$GRUB_CMDLINE_LINUX hugepagesz=2M hugepages=2048
↪→transparent_hugepage=never"

Important: Persistent huge pages are not usable by standard host OS processes. Ensure enough free,
non-huge page memory is reserved for these processes.

Reboot the host, then validate that huge pages are now available:

$ grep "Huge" /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
HugePages_Total: 2048
HugePages_Free: 2048
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

There are now 2048 2 MB huge pages totalling 4 GB of huge pages. These huge pages must be mounted.
On most platforms, this happens automatically. To verify that the huge pages are mounted, run:

mount | grep huge
hugetlbfs on /dev/hugepages type hugetlbfs (rw)

In this instance, the huge pages are mounted at /dev/hugepages. This mount point varies from
platform to platform. If the above command did not return anything, the hugepages must be mounted
manually. To mount the huge pages at /dev/hugepages, run:

mkdir -p /dev/hugepages
mount -t hugetlbfs hugetlbfs /dev/hugepages

There are many more ways to configure huge pages, including allocating huge pages at run time, speci-
fying varying allocations for different huge page sizes, or allocating huge pages from memory affinitized
to different NUMA nodes. For more information on configuring huge pages on Linux hosts, refer to the
Linux hugetlbfs guide.

3.4. Maintenance 219

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

Nova Documentation, Release 22.4.1.dev41

Customizing instance huge pages allocations

Important: The functionality described below is currently only supported by the libvirt/KVM driver.

Important: For performance reasons, configuring huge pages for an instance will implicitly result in
a NUMA topology being configured for the instance. Configuring a NUMA topology for an instance
requires enablement of NUMATopologyFilter. Refer to CPU topologies for more information.

By default, an instance does not use huge pages for its underlying memory. However, huge pages
can bring important or required performance improvements for some workloads. Huge pages must be
requested explicitly through the use of flavor extra specs or image metadata. To request an instance use
huge pages, run:

$ openstack flavor set m1.large --property hw:mem_page_size=large

Different platforms offer different huge page sizes. For example: x86-based platforms offer 2 MB and
1 GB huge page sizes. Specific huge page sizes can be also be requested, with or without a unit suffix.
The unit suffix must be one of: Kb(it), Kib(it), Mb(it), Mib(it), Gb(it), Gib(it), Tb(it), Tib(it), KB, KiB,
MB, MiB, GB, GiB, TB, TiB. Where a unit suffix is not provided, Kilobytes are assumed. To request an
instance to use 2 MB huge pages, run one of:

$ openstack flavor set m1.large --property hw:mem_page_size=2MB

$ openstack flavor set m1.large --property hw:mem_page_size=2048

Enabling huge pages for an instance can have negative consequences for other instances by consuming
limited huge pages resources. To explicitly request an instance use small pages, run:

$ openstack flavor set m1.large --property hw:mem_page_size=small

Note: Explicitly requesting any page size will still result in a NUMA topology being applied to the
instance, as described earlier in this document.

Finally, to leave the decision of huge or small pages to the compute driver, run:

$ openstack flavor set m1.large --property hw:mem_page_size=any

For more information about the syntax for hw:mem_page_size, refer to Manage Flavors.

Applications are frequently packaged as images. For applications that require the IO performance im-
provements that huge pages provides, configure image metadata to ensure instances always request the
specific page size regardless of flavor. To configure an image to use 1 GB huge pages, run:

$ openstack image set [IMAGE_ID] --property hw_mem_page_size=1GB

If the flavor specifies a numerical page size or a page size of small the image is not allowed to specify a
page size and if it does an exception will be raised. If the flavor specifies a page size of any or large
then any page size specified in the image will be used. By setting a small page size in the flavor,

3.4. Maintenance 220

Nova Documentation, Release 22.4.1.dev41

administrators can prevent users requesting huge pages in flavors and impacting resource utilization. To
configure this page size, run:

$ openstack flavor set m1.large --property hw:mem_page_size=small

Note: Explicitly requesting any page size will still result in a NUMA topology being applied to the
instance, as described earlier in this document.

For more information about image metadata, refer to the Image metadata guide.

Attaching virtual GPU devices to guests

Important: The functionality described below is only supported by the libvirt/KVM driver.

The virtual GPU feature in Nova allows a deployment to provide specific GPU types for instances using
physical GPUs that can provide virtual devices.

For example, a single Intel GVT-g or a NVIDIA GRID vGPU physical Graphics Processing Unit (pGPU)
can be virtualized as multiple virtual Graphics Processing Units (vGPUs) if the hypervisor supports the
hardware driver and has the capability to create guests using those virtual devices.

This feature is highly dependent on the version of libvirt and the physical devices present on the host.
In addition, the vendors vGPU driver software must be installed and configured on the host at the same
time.

Caveats are mentioned in the Caveats section.

To enable virtual GPUs, follow the steps below:

1. Enable GPU types (Compute)

2. Configure a flavor (Controller)

Enable GPU types (Compute)

1. Specify which specific GPU type(s) the instances would get.

Edit devices.enabled_vgpu_types:

[devices]
enabled_vgpu_types = nvidia-35

If you want to support more than a single GPU type, you need to provide a separate configuration
section for each device. For example:

[devices]
enabled_vgpu_types = nvidia-35, nvidia-36

[vgpu_nvidia-35]
device_addresses = 0000:84:00.0,0000:85:00.0

(continues on next page)

3.4. Maintenance 221

https://docs.openstack.org/image-guide/introduction.html#image-metadata
https://01.org/igvt-g
http://docs.nvidia.com/grid/5.0/pdf/grid-vgpu-user-guide.pdf

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

[vgpu_nvidia-36]
device_addresses = 0000:86:00.0

where you have to define which physical GPUs are supported per GPU type.

If the same PCI address is provided for two different types, nova-compute will refuse to start and
issue a specific error in the logs.

To know which specific type(s) to mention, please refer to How to discover a GPU type.

Changed in version 21.0.0: Supporting multiple GPU types is only supported by the Ussuri release
and later versions.

2. Restart the nova-compute service.

Warning: Changing the type is possible but since existing physical GPUs cant address mul-
tiple guests having different types, that will make Nova return you a NoValidHost if existing
instances with the original type still exist. Accordingly, its highly recommended to instead
deploy the new type to new compute nodes that dont already have workloads and rebuild
instances on the nodes that need to change types.

Configure a flavor (Controller)

Configure a flavor to request one virtual GPU:

$ openstack flavor set vgpu_1 --property "resources:VGPU=1"

Note: As of the Queens release, all hypervisors that support virtual GPUs only accept a single virtual
GPU per instance.

The enabled vGPU types on the compute hosts are not exposed to API users. Flavors configured for
vGPU support can be tied to host aggregates as a means to properly schedule those flavors onto the
compute hosts that support them. See Host aggregates for more information.

Create instances with virtual GPU devices

The nova-scheduler selects a destination host that has vGPU devices available by calling the Place-
ment API for a specific VGPU resource class provided by compute nodes.

$ openstack server create --flavor vgpu_1 --image cirros-0.3.5-x86_64-uec -
↪→-wait test-vgpu

Note: As of the Queens release, only the FilterScheduler scheduler driver uses the Placement API.

3.4. Maintenance 222

Nova Documentation, Release 22.4.1.dev41

How to discover a GPU type

Virtual GPUs are seen as mediated devices. Physical PCI devices (the graphic card here) supporting
virtual GPUs propose mediated device (mdev) types. Since mediated devices are supported by the
Linux kernel through sysfs files after installing the vendors virtual GPUs driver software, you can see
the required properties as follows:

$ ls /sys/class/mdev_bus/*/mdev_supported_types
/sys/class/mdev_bus/0000:84:00.0/mdev_supported_types:
nvidia-35 nvidia-36 nvidia-37 nvidia-38 nvidia-39 nvidia-40 nvidia-
↪→41 nvidia-42 nvidia-43 nvidia-44 nvidia-45

/sys/class/mdev_bus/0000:85:00.0/mdev_supported_types:
nvidia-35 nvidia-36 nvidia-37 nvidia-38 nvidia-39 nvidia-40 nvidia-
↪→41 nvidia-42 nvidia-43 nvidia-44 nvidia-45

/sys/class/mdev_bus/0000:86:00.0/mdev_supported_types:
nvidia-35 nvidia-36 nvidia-37 nvidia-38 nvidia-39 nvidia-40 nvidia-
↪→41 nvidia-42 nvidia-43 nvidia-44 nvidia-45

/sys/class/mdev_bus/0000:87:00.0/mdev_supported_types:
nvidia-35 nvidia-36 nvidia-37 nvidia-38 nvidia-39 nvidia-40 nvidia-
↪→41 nvidia-42 nvidia-43 nvidia-44 nvidia-45

Checking allocations and inventories for virtual GPUs

Note: The information below is only valid from the 19.0.0 Stein release. Before this release, inventories
and allocations related to a VGPU resource class are still on the root resource provider related to the
compute node. If upgrading from Rocky and using the libvirt driver, VGPU inventory and allocations are
moved to child resource providers that represent actual physical GPUs.

The examples you will see are using the osc-placement plugin for OpenStackClient. For details on
specific commands, see its documentation.

1. Get the list of resource providers

$ openstack resource provider list
+--------------------------------------+------------------------------
↪→---------------------------+------------+
| uuid | name
↪→ | generation |
+--------------------------------------+------------------------------
↪→---------------------------+------------+
| 5958a366-3cad-416a-a2c9-cfbb5a472287 | virtlab606.
↪→xxxxxxxxxxxxxxxxxxxxxxxxxxx | 7 |
| fc9b9287-ef5e-4408-aced-d5577560160c | virtlab606.
↪→xxxxxxxxxxxxxxxxxxxxxxxxxxx_pci_0000_86_00_0 | 2 |
| e2f8607b-0683-4141-a8af-f5e20682e28c | virtlab606.
↪→xxxxxxxxxxxxxxxxxxxxxxxxxxx_pci_0000_85_00_0 | 3 |
| 85dd4837-76f9-41f2-9f19-df386017d8a0 | virtlab606.
↪→xxxxxxxxxxxxxxxxxxxxxxxxxxx_pci_0000_87_00_0 | 2 |
| 7033d860-8d8a-4963-8555-0aa902a08653 | virtlab606.
↪→xxxxxxxxxxxxxxxxxxxxxxxxxxx_pci_0000_84_00_0 | 2 |(continues on next page)

3.4. Maintenance 223

https://docs.openstack.org/osc-placement/latest/index.html

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

+--------------------------------------+------------------------------
↪→---------------------------+------------+

In this example, we see the root resource provider 5958a366-3cad-416a-a2c9-cfbb5a472287
with four other resource providers that are its children and where each of them corresponds to a
single physical GPU.

2. Check the inventory of each resource provider to see resource classes

$ openstack resource provider inventory list 5958a366-3cad-416a-a2c9-
↪→cfbb5a472287
+----------------+------------------+----------+----------+-----------
↪→+----------+-------+
| resource_class | allocation_ratio | max_unit | reserved | step_size
↪→| min_unit | total |
+----------------+------------------+----------+----------+-----------
↪→+----------+-------+
| VCPU | 16.0 | 48 | 0 | 1
↪→| 1 | 48 |
| MEMORY_MB | 1.5 | 65442 | 512 | 1
↪→| 1 | 65442 |
| DISK_GB | 1.0 | 49 | 0 | 1
↪→| 1 | 49 |
+----------------+------------------+----------+----------+-----------
↪→+----------+-------+
$ openstack resource provider inventory list e2f8607b-0683-4141-a8af-
↪→f5e20682e28c
+----------------+------------------+----------+----------+-----------
↪→+----------+-------+
| resource_class | allocation_ratio | max_unit | reserved | step_size
↪→| min_unit | total |
+----------------+------------------+----------+----------+-----------
↪→+----------+-------+
| VGPU | 1.0 | 16 | 0 | 1
↪→| 1 | 16 |
+----------------+------------------+----------+----------+-----------
↪→+----------+-------+

Here you can see a VGPU inventory on the child resource provider while other resource class
inventories are still located on the root resource provider.

3. Check allocations for each server that is using virtual GPUs

$ openstack server list
+--------------------------------------+-------+--------+-------------
↪→--+-----------------------
↪→---+--------+
| ID | Name | Status | Networks
↪→ | Image
↪→ | Flavor |
+--------------------------------------+-------+--------+-------------
↪→--+-----------------------
↪→---+--------+
| 5294f726-33d5-472a-bef1-9e19bb41626d | vgpu2 | ACTIVE | private=10.
↪→0.0.14, fd45:cdad:c431:0:f816:3eff:fe78:a748 | cirros-0.4.0-x86_64-
↪→disk | vgpu |

(continues on next page)

3.4. Maintenance 224

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| a6811fc2-cec8-4f1d-baea-e2c6339a9697 | vgpu1 | ACTIVE | private=10.
↪→0.0.34, fd45:cdad:c431:0:f816:3eff:fe54:cc8f | cirros-0.4.0-x86_64-
↪→disk | vgpu |
+--------------------------------------+-------+--------+-------------
↪→--+-----------------------
↪→---+--------+

$ openstack resource provider allocation show 5294f726-33d5-472a-bef1-
↪→9e19bb41626d
+--------------------------------------+------------+-----------------
↪→-------------------------------+
| resource_provider | generation | resources
↪→ |
+--------------------------------------+------------+-----------------
↪→-------------------------------+
| 5958a366-3cad-416a-a2c9-cfbb5a472287 | 8 | {u'VCPU': 1, u
↪→'MEMORY_MB': 512, u'DISK_GB': 1} |
| 7033d860-8d8a-4963-8555-0aa902a08653 | 3 | {u'VGPU': 1}
↪→ |
+--------------------------------------+------------+-----------------
↪→-------------------------------+

$ openstack resource provider allocation show a6811fc2-cec8-4f1d-baea-
↪→e2c6339a9697
+--------------------------------------+------------+-----------------
↪→-------------------------------+
| resource_provider | generation | resources
↪→ |
+--------------------------------------+------------+-----------------
↪→-------------------------------+
| e2f8607b-0683-4141-a8af-f5e20682e28c | 3 | {u'VGPU': 1}
↪→ |
| 5958a366-3cad-416a-a2c9-cfbb5a472287 | 8 | {u'VCPU': 1, u
↪→'MEMORY_MB': 512, u'DISK_GB': 1} |
+--------------------------------------+------------+-----------------
↪→-------------------------------+

In this example, two servers were created using a flavor asking for 1 VGPU, so when
looking at the allocations for each consumer UUID (which is the server UUID), you
can see that VGPU allocation is against the child resource provider while other alloca-
tions are for the root resource provider. Here, that means that the virtual GPU used by
a6811fc2-cec8-4f1d-baea-e2c6339a9697 is actually provided by the physical GPU
having the PCI ID 0000:85:00.0.

(Optional) Provide custom traits for multiple GPU types

Since operators want to support different GPU types per compute, it would be nice to have flavors asking
for a specific GPU type. This is now possible using custom traits by decorating child Resource Providers
that correspond to physical GPUs.

Note: Possible improvements in a future release could consist of providing automatic tagging of Re-
source Providers with standard traits corresponding to versioned mapping of public GPU types. For the

3.4. Maintenance 225

Nova Documentation, Release 22.4.1.dev41

moment, this has to be done manually.

1. Get the list of resource providers

See Checking allocations and inventories for virtual GPUs first for getting the list of Resource
Providers that support a VGPU resource class.

2. Define custom traits that will correspond for each to a GPU type

$ openstack --os-placement-api-version 1.6 trait create CUSTOM_NVIDIA_
↪→11

In this example, we ask to create a custom trait named CUSTOM_NVIDIA_11.

3. Add the corresponding trait to the Resource Provider matching the GPU

$ openstack --os-placement-api-version 1.6 resource provider trait
↪→set \

--trait CUSTOM_NVIDIA_11 e2f8607b-0683-4141-a8af-f5e20682e28c

In this case, the trait CUSTOM_NVIDIA_11 will be added to the Resource Provider with the
UUID e2f8607b-0683-4141-a8af-f5e20682e28c that corresponds to the PCI address
0000:85:00:0 as shown above.

4. Amend the flavor to add a requested trait

$ openstack flavor set --property trait:CUSTOM_NVIDIA_11=required
↪→vgpu_1

In this example, we add the CUSTOM_NVIDIA_11 trait as a required information for the
vgpu_1 flavor we created earlier.

This will allow the Placement service to only return the Resource Providers matching this trait so
only the GPUs that were decorated with will be checked for this flavor.

Caveats

Note: This information is correct as of the 17.0.0 Queens release. Where improvements have been
made or issues fixed, they are noted per item.

• Suspending a guest that has vGPUs doesnt yet work because of a libvirt limitation (it cant hot-
unplug mediated devices from a guest). Workarounds using other instance actions (like snapshot-
ting the instance or shelving it) are recommended until libvirt gains mdev hot-unplug support. If a
user attempts to suspend the instance, the libvirt driver will raise an exception that will cause the
instance to be set back to ACTIVE. The suspend action in the os-instance-actions API
will have an Error state.

• Resizing an instance with a new flavor that has vGPU resources doesnt allocate those vGPUs to
the instance (the instance is created without vGPU resources). The proposed workaround is to
rebuild the instance after resizing it. The rebuild operation allocates vGPUS to the instance.

Changed in version 21.0.0: This has been resolved in the Ussuri release. See bug 1778563.

3.4. Maintenance 226

https://bugs.launchpad.net/nova/+bug/1778563

Nova Documentation, Release 22.4.1.dev41

• Cold migrating an instance to another host will have the same problem as resize. If you want to
migrate an instance, make sure to rebuild it after the migration.

Changed in version 21.0.0: This has been resolved in the Ussuri release. See bug 1778563.

• Rescue images do not use vGPUs. An instance being rescued does not keep its vGPUs during
rescue. During that time, another instance can receive those vGPUs. This is a known issue. The
recommended workaround is to rebuild an instance immediately after rescue. However, rebuilding
the rescued instance only helps if there are other free vGPUs on the host.

Changed in version 18.0.0: This has been resolved in the Rocky release. See bug 1762688.

For nested vGPUs:

Note: This information is correct as of the 21.0.0 Ussuri release. Where improvements have been made
or issues fixed, they are noted per item.

• If creating servers with a flavor asking for vGPUs and the user wants multi-create (i.e. say max
2) then the scheduler could be returning a NoValidHosts exception even if each physical GPU can
support at least one specific instance, if the total wanted capacity is not supported by only one
physical GPU. (See bug 1874664.)

For example, creating servers with a flavor asking for vGPUs, if two children RPs have 4 vGPU
inventories each:

– You can ask for a flavor with 2 vGPU with max 2.

– But you cant ask for a flavor with 4 vGPU and max 2.

File-backed memory

Important: As of the 18.0.0 Rocky release, the functionality described below is only supported by the
libvirt/KVM driver.

The file-backed memory feature in Openstack allows a Nova node to serve guest memory from a file
backing store. This mechanism uses the libvirt file memory source, causing guest instance memory to
be allocated as files within the libvirt memory backing directory.

Since instance performance will be related to the speed of the backing store, this feature works best
when used with very fast block devices or virtual file systems - such as flash or RAM devices.

When configured, nova-computewill report the capacity configured for file-backed memory to place-
ment in place of the total system memory capacity. This allows the node to run more instances than
would normally fit within system memory.

When available in libvirt and qemu, instance memory will be discarded by qemu at shutdown by calling
madvise(MADV_REMOVE), to avoid flushing any dirty memory to the backing store on exit.

To enable file-backed memory, follow the steps below:

1. Configure the backing store

2. Configure Nova Compute for file-backed memory

3.4. Maintenance 227

https://bugs.launchpad.net/nova/+bug/1778563
https://bugs.launchpad.net/nova/+bug/1762688
https://bugs.launchpad.net/nova/+bug/1874664

Nova Documentation, Release 22.4.1.dev41

Important: It is not possible to live migrate from a node running a version of OpenStack that does
not support file-backed memory to a node with file backed memory enabled. It is recommended that all
Nova compute nodes are upgraded to Rocky before enabling file-backed memory.

Prerequisites and Limitations

Libvirt File-backed memory requires libvirt version 4.0.0 or newer. Discard capability requires libvirt
version 4.4.0 or newer.

Qemu File-backed memory requires qemu version 2.6.0 or newer. Discard capability requires qemu
version 2.10.0 or newer.

Memory overcommit File-backed memory is not compatible with memory overcommit.
ram_allocation_ratio must be set to 1.0 in nova.conf, and the host must not
be added to a host aggregate with ram_allocation_ratio set to anything but 1.0.

Reserved memory When configured, file-backed memory is reported as total system memory to place-
ment, with RAM used as cache. Reserved memory corresponds to disk space not set aside for
file-backed memory. reserved_host_memory_mb should be set to 0 in nova.conf.

Huge pages File-backed memory is not compatible with huge pages. Instances with huge pages con-
figured will not start on a host with file-backed memory enabled. It is recommended to use host
aggregates to ensure instances configured for huge pages are not placed on hosts with file-backed
memory configured.

Handling these limitations could be optimized with a scheduler filter in the future.

Configure the backing store

Note: /dev/sdb and the ext4 filesystem are used here as an example. This will differ between
environments.

Note: /var/lib/libvirt/qemu/ram is the default location. The value can be set via
memory_backing_dir in /etc/libvirt/qemu.conf, and the mountpoint must match the
value configured there.

By default, Libvirt with qemu/KVM allocates memory within /var/lib/libvirt/qemu/ram/.
To utilize this, you need to have the backing store mounted at (or above) this location.

1. Create a filesystem on the backing device

mkfs.ext4 /dev/sdb

2. Mount the backing device

Add the backing device to /etc/fstab for automatic mounting to /var/lib/libvirt/
qemu/ram

Mount the device

3.4. Maintenance 228

Nova Documentation, Release 22.4.1.dev41

mount /dev/sdb /var/lib/libvirt/qemu/ram

Configure Nova Compute for file-backed memory

1. Enable File-backed memory in nova-compute

Configure Nova to utilize file-backed memory with the capacity of the backing store in MiB.
1048576 MiB (1 TiB) is used in this example.

Edit /etc/nova/nova.conf

[libvirt]
file_backed_memory=1048576

2. Restart the nova-compute service

Using ports with resource request

Starting from microversion 2.72 nova supports creating servers with neutron ports having resource re-
quest visible as a admin-only port attribute resource_request. For example a neutron port has
resource request if it has a QoS minimum bandwidth rule attached.

The Quality of Service (QoS): Guaranteed Bandwidth document describes how to configure neutron to
use this feature.

Resource allocation

Nova collects and combines the resource request from each port in a boot request and sends one allo-
cation candidate request to placement during scheduling so placement will make sure that the resource
request of the ports are fulfilled. At the end of the scheduling nova allocates one candidate in placement.
Therefore the requested resources for each port from a single boot request will be allocated under the
servers allocation in placement.

Resource Group policy

Nova represents the resource request of each neutron port as a separate Granular Resource Request
group when querying placement for allocation candidates. When a server create request includes more
than one port with resource requests then more than one group will be used in the allocation candidate
query. In this case placement requires to define the group_policy. Today it is only possible via the
group_policy key of the flavor extra_spec. The possible values are isolate and none.

When the policy is set to isolate then each request group and therefore the resource request of
each neutron port will be fulfilled from separate resource providers. In case of neutron ports with
vnic_type=direct or vnic_type=macvtap this means that each port will use a virtual function
from different physical functions.

When the policy is set to none then the resource request of the neutron ports can be fulfilled
from overlapping resource providers. In case of neutron ports with vnic_type=direct or
vnic_type=macvtap this means the ports may use virtual functions from the same physical func-
tion.

3.4. Maintenance 229

https://docs.openstack.org/neutron/victoria/admin/config-qos-min-bw.html
https://docs.openstack.org/placement/victoria/usage/provider-tree.html#granular-resource-requests
https://docs.openstack.org/placement/victoria/usage/provider-tree.html#granular-resource-requests
https://docs.openstack.org/nova/victoria/user/flavors.html

Nova Documentation, Release 22.4.1.dev41

For neutron ports with vnic_type=normal the group policy defines the collocation policy on OVS
bridge level so group_policy=none is a reasonable default value in this case.

If the group_policy is missing from the flavor then the server create request will fail with No valid
host was found and a warning describing the missing policy will be logged.

Virt driver support

Supporting neutron ports with vnic_type=direct or vnic_type=macvtap depends on the ca-
pability of the virt driver. For the supported virt drivers see the Support matrix

If the virt driver on the compute host does not support the needed capability then the PCI claim will fail
on the host and re-schedule will be triggered. It is suggested not to configure bandwidth inventory in the
neutron agents on these compute hosts to avoid unnecessary reschedule.

Attaching virtual persistent memory to guests

New in version 20.0.0: (Train)

Starting in the 20.0.0 (Train) release, the virtual persistent memory (vPMEM) feature in Nova allows a
deployment using the libvirt compute driver to provide vPMEMs for instances using physical persistent
memory (PMEM) that can provide virtual devices.

PMEM must be partitioned into PMEM namespaces for applications to use. This vPMEM feature only
uses PMEM namespaces in devdaxmode as QEMU vPMEM backends. If you want to dive into related
notions, the document NVDIMM Linux kernel document is recommended.

To enable vPMEMs, follow the steps below.

Dependencies

The following are required to support the vPMEM feature:

• Persistent Memory Hardware

One such product is Intelő Optane DC Persistent Memory. ipmctl is used to configure it.

• Linux Kernel version >= 4.18 with the following modules loaded:

dax_pmem, nd_pmem, device_dax, nd_btt

Note: NVDIMM support is present in the Linux Kernel v4.0 or newer. It is recommended to use Kernel
version 4.2 or later since NVDIMM support is enabled by default. We met some bugs in older versions,
and we have done all verification works with OpenStack on 4.18 version, so 4.18 version and newer will
probably guarantee its functionality.

• QEMU version >= 3.1.0

• Libvirt version >= 5.0.0

• ndctl version >= 62

• daxio version >= 1.6

3.4. Maintenance 230

https://docs.openstack.org/nova/victoria/user/support-matrix.html#operation_port_with_resource_request
http://pmem.io/ndctl/ndctl-create-namespace.html
https://github.com/qemu/qemu/blob/19b599f7664b2ebfd0f405fb79c14dd241557452/docs/nvdimm.txt#L145
https://www.kernel.org/doc/Documentation/nvdimm/nvdimm.txt
https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux
https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/linux-environments
http://pmem.io/ndctl/

Nova Documentation, Release 22.4.1.dev41

The vPMEM feature has been verified under the software and hardware listed above.

Configure PMEM namespaces (Compute)

1. Create PMEM namespaces as vPMEM backends using the ndctl utility.

For example, to create a 30GiB namespace named ns3:

$ sudo ndctl create-namespace -s 30G -m devdax -M mem -n ns3
{
"dev":"namespace1.0",
"mode":"devdax",
"map":"mem",
"size":"30.00 GiB (32.21 GB)",
"uuid":"937e9269-512b-4f65-9ac6-b74b61075c11",
"raw_uuid":"17760832-a062-4aef-9d3b-95ea32038066",
"daxregion":{

"id":1,
"size":"30.00 GiB (32.21 GB)",
"align":2097152,
"devices":[
{

"chardev":"dax1.0",
"size":"30.00 GiB (32.21 GB)"

}
]

},
"name":"ns3",
"numa_node":1

}

Then list the available PMEM namespaces on the host:

$ ndctl list -X
[
{

...
"size":6440353792,
...
"name":"ns0",
...

},
{

...
"size":6440353792,
...
"name":"ns1",
...

},
{

...
"size":6440353792,
...
"name":"ns2",
...

},

(continues on next page)

3.4. Maintenance 231

https://github.com/qemu/qemu/blob/19b599f7664b2ebfd0f405fb79c14dd241557452/docs/nvdimm.txt#L145
http://pmem.io/ndctl/

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

{
...
"size":32210157568,
...
"name":"ns3",
...

}
]

2. Specify which PMEM namespaces should be available to instances.

Edit libvirt.pmem_namespaces:

[libvirt]
pmem_namespaces=$LABEL:$NSNAME[|$NSNAME][,$LABEL:$NSNAME[|$NSNAME]]
pmem_namespaces = 6GB:ns0|ns1|ns2,LARGE:ns3

Configured PMEM namespaces must have already been created on the host as described above.
The conf syntax allows the admin to associate one or more namespace $NSNAMEs with an arbi-
trary $LABEL that can subsequently be used in a flavor to request one of those namespaces. It is
recommended, but not required, for namespaces under a single $LABEL to be the same size.

3. Restart the nova-compute service.

Nova will invoke ndctl to identify the configured PMEM namespaces, and report vPMEM re-
sources to placement.

Configure a flavor

Specify a comma-separated list of the $LABELs from libvirt.pmem_namespaces to the flavors
hw:pmem property. Note that multiple instances of the same label are permitted:

$ openstack flavor set --property hw:pmem='6GB' my_flavor
$ openstack flavor set --property hw:pmem='6GB,LARGE' my_flavor_large
$ openstack flavor set --property hw:pmem='6GB,6GB' m1.medium

Note: If a NUMA topology is specified, all vPMEM devices will be put on guest NUMA node 0;
otherwise nova will generate one NUMA node automatically for the guest.

Based on the above examples, an openstack server create request with my_flavor_large
will spawn an instance with two vPMEMs. One, corresponding to the LARGE label, will be ns3; the
other, corresponding to the 6G label, will be arbitrarily chosen from ns0, ns1, or ns2.

Note: Using vPMEM inside a virtual machine requires the following:

• Guest kernel version 4.18 or higher;

• The dax_pmem, nd_pmem, device_dax, and nd_btt kernel modules;

• The ndctl utility.

3.4. Maintenance 232

http://pmem.io/ndctl/
http://pmem.io/ndctl/

Nova Documentation, Release 22.4.1.dev41

Note: When resizing an instance with vPMEMs, the vPMEM data wont be migrated.

Verify inventories and allocations

This section describes how to check that:

• vPMEM inventories were created correctly in placement, validating the configuration described
above.

• allocations were created correctly in placement for instances spawned from flavors configured
with vPMEMs.

Note: Inventories and allocations related to vPMEM resource classes are on the root resource provider
related to the compute node.

1. Get the list of resource providers

$ openstack resource provider list
+--------------------------------------+--------+------------+
| uuid | name | generation |
+--------------------------------------+--------+------------+
| 1bc545f9-891f-4930-ab2b-88a56078f4be | host-1 | 47 |
| 7d994aef-680d-43d4-9325-a67c807e648e | host-2 | 67 |
--------------------------------------+---------+------------+

2. Check the inventory of each resource provider to see resource classes

Each $LABEL configured in libvirt.pmem_namespaces is used to generate a resource
class named CUSTOM_PMEM_NAMESPACE_$LABEL. Nova will report to Placement the num-
ber of vPMEM namespaces configured for each $LABEL. For example, assuming host-1 was
configured as described above:

$ openstack resource provider inventory list 1bc545f9-891f-4930-ab2b-
↪→88a56078f4be
+-----------------------------+------------------+----------+---------
↪→-+-----------+----------+--------+
| resource_class | allocation_ratio | max_unit |
↪→reserved | step_size | min_unit | total |
+-----------------------------+------------------+----------+---------
↪→-+-----------+----------+--------+
| VCPU | 16.0 | 64 |
↪→0 | 1 | 1 | 64 |
| MEMORY_MB | 1.5 | 190604 |
↪→512 | 1 | 1 | 190604 |
| CUSTOM_PMEM_NAMESPACE_LARGE | 1.0 | 1 |
↪→0 | 1 | 1 | 1 |
| CUSTOM_PMEM_NAMESPACE_6GB | 1.0 | 3 |
↪→0 | 1 | 1 | 3 |
| DISK_GB | 1.0 | 439 |
↪→0 | 1 | 1 | 439 |
+-----------------------------+------------------+----------+---------
↪→-+-----------+----------+--------+

3.4. Maintenance 233

Nova Documentation, Release 22.4.1.dev41

Here you can see the vPMEM resource classes prefixed with CUSTOM_PMEM_NAMESPACE_.
The LARGE label was configured with one namespace (ns3), so it has an inventory of
1. Since the 6GB label was configured with three namespaces (ns0, ns1, and ns2), the
CUSTOM_PMEM_NAMESPACE_6GB inventory has a total and max_unit of 3.

3. Check allocations for each server that is using vPMEMs

$ openstack server list
+--------------------------------------+----------------------+-------
↪→-+-------------------+---------------+-----------------+
| ID | Name |
↪→Status | Networks | Image | Flavor |
+--------------------------------------+----------------------+-------
↪→-+-------------------+---------------+-----------------+
| 41d3e139-de5c-40fd-9d82-016b72f2ba1d | server-with-2-vpmems |
↪→ACTIVE | private=10.0.0.24 | ubuntu-bionic | my_flavor_large |
| a616a7f6-b285-4adf-a885-dd8426dd9e6a | server-with-1-vpmem |
↪→ACTIVE | private=10.0.0.13 | ubuntu-bionic | my_flavor |
+--------------------------------------+----------------------+-------
↪→-+-------------------+---------------+-----------------+

$ openstack resource provider allocation show 41d3e139-de5c-40fd-9d82-
↪→016b72f2ba1d
+--------------------------------------+------------+-----------------
↪→--
↪→-----------------------------------+
| resource_provider | generation | resources
↪→

↪→ |
+--------------------------------------+------------+-----------------
↪→--
↪→-----------------------------------+
| 1bc545f9-891f-4930-ab2b-88a56078f4be | 49 | {u'MEMORY_MB':
↪→32768, u'VCPU': 16, u'DISK_GB': 20, u'CUSTOM_PMEM_NAMESPACE_6GB': 1,
↪→ u'CUSTOM_PMEM_NAMESPACE_LARGE': 1} |
+--------------------------------------+------------+-----------------
↪→--
↪→-----------------------------------+

$ openstack resource provider allocation show a616a7f6-b285-4adf-a885-
↪→dd8426dd9e6a
+--------------------------------------+------------+-----------------
↪→--+
| resource_provider | generation | resources
↪→ |
+--------------------------------------+------------+-----------------
↪→--+
| 1bc545f9-891f-4930-ab2b-88a56078f4be | 49 | {u'MEMORY_MB':
↪→8192, u'VCPU': 8, u'DISK_GB': 20, u'CUSTOM_PMEM_NAMESPACE_6GB': 1} |
+--------------------------------------+------------+-----------------
↪→--+

In this example, two servers were created. server-with-2-vpmems used
my_flavor_large asking for one 6GB vPMEM and one LARGE vPMEM.
server-with-1-vpmem used my_flavor asking for a single 6GB vPMEM.

3.4. Maintenance 234

Nova Documentation, Release 22.4.1.dev41

Emulated Trusted Platform Module (vTPM)

New in version 22.0.0: (Victoria)

Starting in the 22.0.0 (Victoria) release, Nova supports adding an emulated virtual Trusted Platform
Module (vTPM) to guests.

Enabling vTPM

The following are required on each compute host wishing to support the vTPM feature:

• Currently vTPM is only supported when using the libvirt compute driver with a libvirt.
virt_type of kvm or qemu.

• A key manager service, such as barbican, must be configured to store secrets used to encrypt the
virtual device files at rest.

• QEMU version >= 2.11 (>= 2.12 is recommended)

• Libvirt version >= 5.6.0

• The swtpm binary and associated libraries.

• Set the libvirt.swtpm_enabled config option to True. This will enable support for both
TPM version 1.2 and 2.0.

With the above requirements satisfied, verify vTPM support by inspecting the traits on the compute
nodes resource provider:

$ openstack resource provider trait list $compute_uuid | grep SECURITY_TPM
| COMPUTE_SECURITY_TPM_1_2 |
| COMPUTE_SECURITY_TPM_2_0 |

Configuring a flavor or image

A vTPM can be requested on a server via flavor extra_specs or image metadata properties.

Flavor ex-
tra_specs

Image meta-
data

Description

hw:tpm_versionhw_tpm_versionSpecify the TPM version, 1.2 or 2.0. Required if requesting a
vTPM.

hw:tpm_modelhw_tpm_modelSpecify the TPM model, tpm-tis (the default) or tpm-crb
(only valid with version 2.0.

Scheduling will fail if flavor and image supply conflicting values, or if model tpm-crb is requested
with version 1.2.

Upon successful boot, the server should see a TPM device such as /dev/tpm0 which can be used in
the same manner as a hardware TPM.

3.4. Maintenance 235

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://docs.openstack.org/api-guide/key-manager/
https://docs.openstack.org/barbican/latest/
https://github.com/stefanberger/swtpm/wiki
https://github.com/stefanberger/libtpms/

Nova Documentation, Release 22.4.1.dev41

Limitations

• Only server operations performed by the server owner are supported, as the users credentials are
required to unlock the virtual device files on the host. Thus the admin may need to decide whether
to grant the user additional policy roles; if not, those operations are effectively disabled.

• Live migration, evacuation, shelving and rescuing of servers with vTPMs is not currently sup-
ported.

Security

With a hardware TPM, the root of trust is a secret known only to the TPM user. In contrast, an emulated
TPM comprises a file on disk which the libvirt daemon must be able to present to the guest. At rest,
this file is encrypted using a passphrase stored in a key manager service. The passphrase in the key
manager is associated with the credentials of the owner of the server (the user who initially created it).
The passphrase is retrieved and used by libvirt to unlock the emulated TPM data any time the server is
booted.

Although the above mechanism uses a libvirt secret that is both private (cant be displayed via the
libvirt API or virsh) and ephemeral (exists only in memory, never on disk), it is theoretically
possible for a sufficiently privileged user to retrieve the secret and/or vTPM data from memory.

A full analysis and discussion of security issues related to emulated TPM is beyond the scope of this
document.

References

• QEMU docs on tpm

• Libvirt XML to request emulated TPM device

• Libvirt secret for usage type “vtpm“

Managing Resource Providers Using Config Files

In order to facilitate management of resource provider information in the Placement API, Nova provides
a method for admins to add custom inventory and traits to resource providers using YAML files.

Note: Only CUSTOM_* resource classes and traits may be managed this way.

3.4. Maintenance 236

https://libvirt.org/formatsecret.html#SecretAttributes
https://github.com/qemu/qemu/blob/stable-2.12/docs/specs/tpm.txt
https://libvirt.org/formatdomain.html#elementsTpm
https://libvirt.org/formatsecret.html#vTPMUsageType
https://specs.openstack.org/openstack/nova-specs/specs/ussuri/approved/provider-config-file.html

Nova Documentation, Release 22.4.1.dev41

Placing Files

Nova-compute will search for *.yaml files in the path specified in compute.
provider_config_location. These files will be loaded and validated for errors on nova-compute
startup. If there are any errors in the files, nova-compute will fail to start up.

Administrators should ensure that provider config files have appropriate permissions and ownership. See
the specification and admin guide for more details.

Note: The files are loaded once at nova-compute startup and any changes or new files will not be
recognized until the next nova-compute startup.

Examples

Resource providers to target can be identified by either UUID or name. In addition, the value
$COMPUTE_NODE can be used in the UUID field to identify all nodes managed by the service.

If an entry does not include any additional inventory or traits, it will be logged at load time but otherwise
ignored. In the case of a resource provider being identified by both $COMPUTE_NODE and individual
UUID/name, the values in the $COMPUTE_NODE entry will be ignored for that provider only if the
explicit entry includes inventory or traits.

Note: In the case that a resource provider is identified more than once by explicit UUID/name, the nova-
compute service will fail to start. This is a global requirement across all supplied provider.yaml
files.

meta:
schema_version: '1.0'

providers:
- identification:

name: 'EXAMPLE_RESOURCE_PROVIDER'
Additional valid identification examples:
uuid: '$COMPUTE_NODE'
uuid: '5213b75d-9260-42a6-b236-f39b0fd10561'

inventories:
additional:

- CUSTOM_EXAMPLE_RESOURCE_CLASS:
total: 100
reserved: 0
min_unit: 1
max_unit: 10
step_size: 1
allocation_ratio: 1.0

traits:
additional:

- 'CUSTOM_EXAMPLE_TRAIT'

3.4. Maintenance 237

https://specs.openstack.org/openstack/nova-specs/specs/ussuri/approved/provider-config-file.html
https://docs.openstack.org/nova/latest/admin/managing-resource-providers.html

Nova Documentation, Release 22.4.1.dev41

Schema Example

type: object
properties:

This property is used to track where the provider.yaml file originated.
It is reserved for internal use and should never be set in a provider.

↪→yaml
file supplied by an end user.
__source_file:

not: {}
meta:

type: object
properties:

Version ($Major, $minor) of the schema must successfully parse
documents conforming to ($Major, 0..N). Any breaking schema change
(e.g. removing fields, adding new required fields, imposing a

↪→stricter
pattern on a value, etc.) must bump $Major.
schema_version:

type: string
pattern: '^1\.([0-9]|[1-9][0-9]+)$'

required:
- schema_version

additionalProperties: true
providers:

type: array
items:

type: object
properties:

identification:
$ref: '#/provider_definitions/provider_identification'

inventories:
$ref: '#/provider_definitions/provider_inventories'

traits:
$ref: '#/provider_definitions/provider_traits'

required:
- identification

additionalProperties: true
required:

- meta
additionalProperties: true

provider_definitions:
provider_identification:

Identify a single provider to configure. Exactly one identification
method should be used. Currently `uuid` or `name` are supported, but
future versions may support others.
The uuid can be set to the sentinel value `$COMPUTE_NODE` which will
cause the consuming compute service to apply the configuration to
to all compute node root providers it manages that are not otherwise
specified using a uuid or name.
type: object
properties:

uuid:
oneOf:

TODO(sean-k-mooney): replace this with type uuid when we can
↪→depend

(continues on next page)

3.4. Maintenance 238

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

on a version of the jsonschema lib that implements draft 8
↪→or later

of the jsonschema spec.
- type: string

pattern: '^[0-9A-Fa-f]{8}-[0-9A-Fa-f]{4}-[0-9A-Fa-f]{4}-[0-9A-
↪→Fa-f]{4}-[0-9A-Fa-f]{12}$'

- type: string
const: '$COMPUTE_NODE'

name:
type: string
minLength: 1

This introduces the possibility of an unsupported key name being
↪→used to

get by schema validation, but is necessary to support forward
compatibility with new identification methods. This should be checked
after schema validation.
minProperties: 1
maxProperties: 1
additionalProperties: false

provider_inventories:
Allows the admin to specify various adjectives to create and manage
providers' inventories. This list of adjectives can be extended in

↪→the
future as the schema evolves to meet new use cases. As of v1.0, only

↪→one
adjective, `additional`, is supported.
type: object
properties:

additional:
type: array
items:

patternProperties:
Allows any key name matching the resource class pattern,
check to prevent conflicts with virt driver owned resouces

↪→classes
will be done after schema validation.
^[A-Z0-9_]{1,255}$:

type: object
properties:
Any optional properties not populated will be given a

↪→default value by
placement. If overriding a pre-existing provider values

↪→will not be
preserved from the existing inventory.
total:

type: integer
reserved:

type: integer
min_unit:

type: integer
max_unit:

type: integer
step_size:

type: integer
allocation_ratio:

type: number
(continues on next page)

3.4. Maintenance 239

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

required:
- total

The defined properties reflect the current placement data
model. While defining those in the schema and not allowing
additional properties means we will need to bump the schema
version if they change, that is likely to be part of a

↪→large
change that may have other impacts anyway. The benefit of
stricter validation of property names outweighs the (small)
chance of having to bump the schema version as described

↪→above.
additionalProperties: false

This ensures only keys matching the pattern above are allowed
additionalProperties: false

additionalProperties: true
provider_traits:

Allows the admin to specify various adjectives to create and manage
providers' traits. This list of adjectives can be extended in the
future as the schema evolves to meet new use cases. As of v1.0, only

↪→one
adjective, `additional`, is supported.
type: object
properties:

additional:
type: array
items:

Allows any value matching the trait pattern here, additional
validation will be done after schema validation.
type: string
pattern: '^[A-Z0-9_]{1,255}$'

additionalProperties: true

Note: When creating a provider.yaml config file it is recommended to use the schema provided
by nova to validate the config using a simple jsonschema validator rather than starting the nova compute
agent to enable faster iteration.

3.4.1.3 Additional guides

Host aggregates

Host aggregates are a mechanism for partitioning hosts in an OpenStack cloud, or a region of an Open-
Stack cloud, based on arbitrary characteristics. Examples where an administrator may want to do this
include where a group of hosts have additional hardware or performance characteristics.

Host aggregates started out as a way to use Xen hypervisor resource pools, but have been generalized to
provide a mechanism to allow administrators to assign key-value pairs to groups of machines. Each node
can have multiple aggregates, each aggregate can have multiple key-value pairs, and the same key-value
pair can be assigned to multiple aggregates. This information can be used in the scheduler to enable
advanced scheduling, to set up Xen hypervisor resource pools or to define logical groups for migration.

Host aggregates are not explicitly exposed to users. Instead administrators map flavors to host ag-
gregates. Administrators do this by setting metadata on a host aggregate, and matching flavor extra

3.4. Maintenance 240

Nova Documentation, Release 22.4.1.dev41

specifications. The scheduler then endeavors to match user requests for instances of the given flavor
to a host aggregate with the same key-value pair in its metadata. Compute nodes can be in more than
one host aggregate. Weight multipliers can be controlled on a per-aggregate basis by setting the desired
xxx_weight_multiplier aggregate metadata.

Administrators are able to optionally expose a host aggregate as an Availability Zone. Availability zones
are different from host aggregates in that they are explicitly exposed to the user, and hosts can only be
in a single availability zone. Administrators can configure a default availability zone where instances
will be scheduled when the user fails to specify one. For more information on how to do this, refer to
Availability Zones.

Configure scheduler to support host aggregates

One common use case for host aggregates is when you want to support scheduling instances to a subset
of compute hosts because they have a specific capability. For example, you may want to allow users to
request compute hosts that have SSD drives if they need access to faster disk I/O, or access to compute
hosts that have GPU cards to take advantage of GPU-accelerated code.

To configure the scheduler to support host aggregates, the
filter_scheduler.enabled_filters configuration option must contain the
AggregateInstanceExtraSpecsFilter in addition to the other filters used by the scheduler.
Add the following line to nova.conf on the host that runs the nova-scheduler service to enable
host aggregates filtering, as well as the other filters that are typically enabled:

[filter_scheduler]
enabled_filters=...,AggregateInstanceExtraSpecsFilter

Example: Specify compute hosts with SSDs

This example configures the Compute service to enable users to request nodes that have solid-state
drives (SSDs). You create a fast-io host aggregate in the nova availability zone and you add the
ssd=true key-value pair to the aggregate. Then, you add the node1, and node2 compute nodes to
it.

$ openstack aggregate create --zone nova fast-io
+-------------------+----------------------------+
| Field | Value |
+-------------------+----------------------------+
availability_zone	nova
created_at	2016-12-22T07:31:13.013466
deleted	False
deleted_at	None
id	1
name	fast-io
updated_at	None
+-------------------+----------------------------+

$ openstack aggregate set --property ssd=true 1
+-------------------+----------------------------+
| Field | Value |
+-------------------+----------------------------+
| availability_zone | nova |

(continues on next page)

3.4. Maintenance 241

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

created_at	2016-12-22T07:31:13.000000
deleted	False
deleted_at	None
hosts	[]
id	1
name	fast-io
properties	ssd='true'
updated_at	None
+-------------------+----------------------------+

$ openstack aggregate add host 1 node1
+-------------------+--+
| Field | Value |
+-------------------+--+
availability_zone	nova
created_at	2016-12-22T07:31:13.000000
deleted	False
deleted_at	None
hosts	[u'node1']
id	1
metadata	{u'ssd': u'true', u'availability_zone': u'nova'}
name	fast-io
updated_at	None
+-------------------+--+

$ openstack aggregate add host 1 node2
+-------------------+--+
| Field | Value |
+-------------------+--+
availability_zone	nova
created_at	2016-12-22T07:31:13.000000
deleted	False
deleted_at	None
hosts	[u'node1', u'node2']
id	1
metadata	{u'ssd': u'true', u'availability_zone': u'nova'}
name	fast-io
updated_at	None
+-------------------+--+

Use the openstack flavor create command to create the ssd.large flavor called with an ID
of 6, 8 GB of RAM, 80 GB root disk, and 4 vCPUs.

$ openstack flavor create --id 6 --ram 8192 --disk 80 --vcpus 4 ssd.large
+----------------------------+-----------+
| Field | Value |
+----------------------------+-----------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	80
id	6
name	ssd.large
os-flavor-access:is_public	True
ram	8192
rxtx_factor	1.0
swap	

(continues on next page)

3.4. Maintenance 242

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| vcpus | 4 |
+----------------------------+-----------+

Once the flavor is created, specify one or more key-value pairs that match the key-value pairs on
the host aggregates with scope aggregate_instance_extra_specs. In this case, that is the
aggregate_instance_extra_specs:ssd=true key-value pair. Setting a key-value pair on a
flavor is done using the openstack flavor set command.

$ openstack flavor set \
--property aggregate_instance_extra_specs:ssd=true ssd.large

Once it is set, you should see the extra_specs property of the ssd.large flavor populated with a
key of ssd and a corresponding value of true.

$ openstack flavor show ssd.large
+----------------------------+---+
| Field | Value |
+----------------------------+---+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	80
id	6
name	ssd.large
os-flavor-access:is_public	True
properties	aggregate_instance_extra_specs:ssd='true'
ram	8192
rxtx_factor	1.0
swap	
vcpus	4
+----------------------------+---+

Now, when a user requests an instance with the ssd.large flavor, the scheduler only considers hosts
with the ssd=true key-value pair. In this example, these are node1 and node2.

Aggregates in Placement

Aggregates also exist in placement and are not the same thing as host aggregates in nova. These aggre-
gates are defined (purely) as groupings of related resource providers. Since compute nodes in nova are
represented in placement as resource providers, they can be added to a placement aggregate as well. For
example, get the UUID of the compute node using openstack hypervisor list and add it to
an aggregate in placement using openstack resource provider aggregate set.

$ openstack --os-compute-api-version=2.53 hypervisor list
+--------------------------------------+---------------------+-------------
↪→----+-----------------+-------+
| ID | Hypervisor Hostname | Hypervisor
↪→Type | Host IP | State |
+--------------------------------------+---------------------+-------------
↪→----+-----------------+-------+
| 815a5634-86fb-4e1e-8824-8a631fee3e06 | node1 | QEMU
↪→ | 192.168.1.123 | up |
+--------------------------------------+---------------------+-------------
↪→----+-----------------+-------+

(continues on next page)

3.4. Maintenance 243

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

$ openstack --os-placement-api-version=1.2 resource provider aggregate set
↪→\

--aggregate df4c74f3-d2c4-4991-b461-f1a678e1d161 \
815a5634-86fb-4e1e-8824-8a631fee3e06

Some scheduling filter operations can be performed by placement for increased speed and efficiency.

Note: The nova-api service attempts (as of nova 18.0.0) to automatically mirror the association of
a compute host with an aggregate when an administrator adds or removes a host to/from a nova host
aggregate. This should alleviate the need to manually create those association records in the placement
API using the openstack resource provider aggregate set CLI invocation.

Tenant Isolation with Placement

In order to use placement to isolate tenants, there must be placement aggregates that match the mem-
bership and UUID of nova host aggregates that you want to use for isolation. The same key pattern
in aggregate metadata used by the AggregateMultiTenancyIsolation filter controls this function, and is
enabled by setting scheduler.limit_tenants_to_placement_aggregate to True.

$ openstack --os-compute-api-version=2.53 aggregate create myagg
+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
availability_zone	None
created_at	2018-03-29T16:22:23.175884
deleted	False
deleted_at	None
id	4
name	myagg
updated_at	None
uuid	019e2189-31b3-49e1-aff2-b220ebd91c24
+-------------------+--------------------------------------+

$ openstack --os-compute-api-version=2.53 aggregate add host myagg node1
+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
availability_zone	None
created_at	2018-03-29T16:22:23.175884
deleted	False
deleted_at	None
hosts	[u'node1']
id	4
name	myagg
updated_at	None
uuid	019e2189-31b3-49e1-aff2-b220ebd91c24
+-------------------+--------------------------------------+

$ openstack project list -f value | grep 'demo'
9691591f913949818a514f95286a6b90 demo

(continues on next page)

3.4. Maintenance 244

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

$ openstack aggregate set \
--property filter_tenant_id=9691591f913949818a514f95286a6b90 myagg

$ openstack --os-placement-api-version=1.2 resource provider aggregate set
↪→\

--aggregate 019e2189-31b3-49e1-aff2-b220ebd91c24 \
815a5634-86fb-4e1e-8824-8a631fee3e06

Note that the filter_tenant_id metadata key can be optionally suffixed with any string for multi-
ple tenants, such as filter_tenant_id3=$tenantid.

Usage

Much of the configuration of host aggregates is driven from the API or command-line clients. For
example, to create a new aggregate and add hosts to it using the openstack client, run:

$ openstack aggregate create my-aggregate
$ openstack aggregate add host my-aggregate my-host

To list all aggregates and show information about a specific aggregate, run:

$ openstack aggregate list
$ openstack aggregate show my-aggregate

To set and unset a property on the aggregate, run:

$ openstack aggregate set --property pinned=true my-aggregrate
$ openstack aggregate unset --property pinned my-aggregate

To rename the aggregate, run:

$ openstack aggregate set --name my-awesome-aggregate my-aggregate

To remove a host from an aggregate and delete the aggregate, run:

$ openstack aggregate remove host my-aggregate my-host
$ openstack aggregate delete my-aggregate

For more information, refer to the OpenStack Client documentation.

Configuration

In addition to CRUD operations enabled by the API and clients, the following configuration options can
be used to configure how host aggregates and the related availability zones feature operate under the
hood:

• default_schedule_zone

• scheduler.limit_tenants_to_placement_aggregate

• cinder.cross_az_attach

3.4. Maintenance 245

https://docs.openstack.org/python-openstackclient/victoria/cli/command-objects/aggregate.html

Nova Documentation, Release 22.4.1.dev41

Finally, as discussed previously, there are a number of host aggregate-specific scheduler filters. These
are:

• AggregateImagePropertiesIsolation

• AggregateInstanceExtraSpecsFilter

• AggregateIoOpsFilter

• AggregateMultiTenancyIsolation

• AggregateNumInstancesFilter

• AggregateTypeAffinityFilter

The following configuration options are applicable to the scheduler configuration:

• cpu_allocation_ratio

• ram_allocation_ratio

• filter_scheduler.max_instances_per_host

• filter_scheduler.aggregate_image_properties_isolation_separator

• filter_scheduler.aggregate_image_properties_isolation_namespace

Image Caching

Aggregates can be used as a way to target multiple compute nodes for the purpose of requesting that
images be pre-cached for performance reasons.

Note: Some of the virt drivers provide image caching support, which improves performance of second-
and-later boots of the same image by keeping the base image in an on-disk cache. This avoids the need to
re-download the image from Glance, which reduces network utilization and time-to-boot latency. Image
pre-caching is the act of priming that cache with images ahead of time to improve performance of the
first boot.

Assuming an aggregate called my-aggregate where two images should be pre-cached, running the
following command will initiate the request:

$ nova aggregate-cache-images my-aggregate image1 image2

Note that image pre-caching happens asynchronously in a best-effort manner. The images and aggre-
gate provided are checked by the server when the command is run, but the compute nodes are not
checked to see if they support image caching until the process runs. Progress and results are logged
by each compute, and the process sends aggregate.cache_images.start, aggregate.
cache_images.progress, and aggregate.cache_images.end notifications, which may be
useful for monitoring the operation externally.

3.4. Maintenance 246

https://docs.openstack.org/nova/latest/user/support-matrix.html#operation_cache_images

Nova Documentation, Release 22.4.1.dev41

References

• Curse your bones, Availability Zones! (Openstack Summit Vancouver 2018)

System architecture

OpenStack Compute contains several main components.

• The cloud controller represents the global state and interacts with the other components. The
API server acts as the web services front end for the cloud controller. The compute
controller provides compute server resources and usually also contains the Compute service.

• The object store is an optional component that provides storage services; you can also use
OpenStack Object Storage instead.

• An auth manager provides authentication and authorization services when used with the Com-
pute system; you can also use OpenStack Identity as a separate authentication service instead.

• A volume controller provides fast and permanent block-level storage for the compute
servers.

• The network controller provides virtual networks to enable compute servers to interact
with each other and with the public network. You can also use OpenStack Networking instead.

• The scheduler is used to select the most suitable compute controller to host an instance.

Compute uses a messaging-based, shared nothing architecture. All major components exist on
multiple servers, including the compute, volume, and network controllers, and the Object Storage or
Image service. The state of the entire system is stored in a database. The cloud controller communicates
with the internal object store using HTTP, but it communicates with the scheduler, network controller,
and volume controller using Advanced Message Queuing Protocol (AMQP). To avoid blocking a com-
ponent while waiting for a response, Compute uses asynchronous calls, with a callback that is triggered
when a response is received.

Hypervisors

Compute controls hypervisors through an API server. Selecting the best hypervisor to use can be dif-
ficult, and you must take budget, resource constraints, supported features, and required technical spec-
ifications into account. However, the majority of OpenStack development is done on systems using
KVM-based hypervisors. For a detailed list of features and support across different hypervisors, see
Feature Support Matrix.

You can also orchestrate clouds using multiple hypervisors in different availability zones. Compute
supports the following hypervisors:

• Baremetal

• Hyper-V

• Kernel-based Virtual Machine (KVM)

• Linux Containers (LXC)

• PowerVM

• Quick Emulator (QEMU)

3.4. Maintenance 247

https://www.openstack.org/videos/vancouver-2018/curse-your-bones-availability-zones-1
https://docs.openstack.org/ironic/victoria/
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://www.linux-kvm.org/page/Main_Page
https://linuxcontainers.org
https://www.ibm.com/us-en/marketplace/ibm-powervm
https://wiki.qemu.org/Manual

Nova Documentation, Release 22.4.1.dev41

• User Mode Linux (UML)

• Virtuozzo

• VMware vSphere

• Xen (using libvirt)

• zVM

For more information about hypervisors, see Hypervisors section in the Nova Configuration Reference.

Projects, users, and roles

To begin using Compute, you must create a user with the Identity service.

The Compute system is designed to be used by different consumers in the form of projects on a shared
system, and role-based access assignments. Roles control the actions that a user is allowed to perform.

Projects are isolated resource containers that form the principal organizational structure within the Com-
pute service. They consist of an individual VLAN, and volumes, instances, images, keys, and users. A
user can specify the project by appending project_id to their access key. If no project is specified in
the API request, Compute attempts to use a project with the same ID as the user.

For projects, you can use quota controls to limit the:

• Number of volumes that can be launched.

• Number of processor cores and the amount of RAM that can be allocated.

• Floating IP addresses assigned to any instance when it launches. This allows instances to have the
same publicly accessible IP addresses.

• Fixed IP addresses assigned to the same instance when it launches. This allows instances to have
the same publicly or privately accessible IP addresses.

Roles control the actions a user is allowed to perform. By default, most actions do not require a particular
role, but you can configure them by editing the policy.yaml file for user roles. For example, a rule
can be defined so that a user must have the admin role in order to be able to allocate a public IP address.

A project limits users access to particular images. Each user is assigned a user name and password.
Keypairs granting access to an instance are enabled for each user, but quotas are set, so that each project
can control resource consumption across available hardware resources.

Note: Earlier versions of OpenStack used the term tenant instead of project. Because of this
legacy terminology, some command-line tools use --tenant_id where you would normally expect
to enter a project ID.

3.4. Maintenance 248

http://user-mode-linux.sourceforge.net
https://www.virtuozzo.com/products/vz7.html
https://www.vmware.com/support/vsphere-hypervisor.html
https://www.xenproject.org
https://www.ibm.com/it-infrastructure/z/zvm
https://docs.openstack.org/keystone/victoria/

Nova Documentation, Release 22.4.1.dev41

Block storage

OpenStack provides two classes of block storage: ephemeral storage and persistent volume.

Ephemeral storage

Ephemeral storage includes a root ephemeral volume and an additional ephemeral volume.

The root disk is associated with an instance, and exists only for the life of this very instance. Generally,
it is used to store an instances root file system, persists across the guest operating system reboots, and is
removed on an instance deletion. The amount of the root ephemeral volume is defined by the flavor of
an instance.

In addition to the ephemeral root volume, all default types of flavors, except m1.tiny, which is the
smallest one, provide an additional ephemeral block device sized between 20 and 160 GB (a configurable
value to suit an environment). It is represented as a raw block device with no partition table or file sys-
tem. A cloud-aware operating system can discover, format, and mount such a storage device. OpenStack
Compute defines the default file system for different operating systems as Ext4 for Linux distributions,
VFAT for non-Linux and non-Windows operating systems, and NTFS for Windows. However, it is pos-
sible to specify any other filesystem type by using virt_mkfs or default_ephemeral_format
configuration options.

Note: For example, the cloud-init package included into an Ubuntus stock cloud image, by default,
formats this space as an Ext4 file system and mounts it on /mnt. This is a cloud-init feature, and is not
an OpenStack mechanism. OpenStack only provisions the raw storage.

Persistent volume

A persistent volume is represented by a persistent virtualized block device independent of any particular
instance, and provided by OpenStack Block Storage.

Only a single configured instance can access a persistent volume. Multiple instances cannot access a
persistent volume. This type of configuration requires a traditional network file system to allow multiple
instances accessing the persistent volume. It also requires a traditional network file system like NFS,
CIFS, or a cluster file system such as GlusterFS. These systems can be built within an OpenStack cluster,
or provisioned outside of it, but OpenStack software does not provide these features.

You can configure a persistent volume as bootable and use it to provide a persistent virtual instance
similar to the traditional non-cloud-based virtualization system. It is still possible for the resulting
instance to keep ephemeral storage, depending on the flavor selected. In this case, the root file system
can be on the persistent volume, and its state is maintained, even if the instance is shut down. For more
information about this type of configuration, see Introduction to the Block Storage service.

Note: A persistent volume does not provide concurrent access from multiple instances. That type of
configuration requires a traditional network file system like NFS, or CIFS, or a cluster file system such
as GlusterFS. These systems can be built within an OpenStack cluster, or provisioned outside of it, but
OpenStack software does not provide these features.

3.4. Maintenance 249

https://docs.openstack.org/cinder/victoria/configuration/block-storage/block-storage-overview.html

Nova Documentation, Release 22.4.1.dev41

Building blocks

In OpenStack the base operating system is usually copied from an image stored in the OpenStack Image
service. This is the most common case and results in an ephemeral instance that starts from a known
template state and loses all accumulated states on virtual machine deletion. It is also possible to put an
operating system on a persistent volume in the OpenStack Block Storage volume system. This gives a
more traditional persistent system that accumulates states which are preserved on the OpenStack Block
Storage volume across the deletion and re-creation of the virtual machine. To get a list of available
images on your system, run:

$ openstack image list
+--------------------------------------+-----------------------------+-----
↪→---+
| ID | Name |
↪→Status |
+--------------------------------------+-----------------------------+-----
↪→---+
| aee1d242-730f-431f-88c1-87630c0f07ba | Ubuntu 14.04 cloudimg amd64 |
↪→active |
| 0b27baa1-0ca6-49a7-b3f4-48388e440245 | Ubuntu 14.10 cloudimg amd64 |
↪→active |
| df8d56fc-9cea-4dfd-a8d3-28764de3cb08 | jenkins |
↪→active |
+--------------------------------------+-----------------------------+-----
↪→---+

The displayed image attributes are:

ID Automatically generated UUID of the image

Name Free form, human-readable name for image

Status The status of the image. Images marked ACTIVE are available for use.

Server For images that are created as snapshots of running instances, this is the UUID of the instance
the snapshot derives from. For uploaded images, this field is blank.

Virtual hardware templates are called flavors. By default, these are configurable by ad-
min users, however that behavior can be changed by redefining the access controls for
compute_extension:flavormanage in /etc/nova/policy.yaml on the compute-api
server. For more information, refer to Nova Policies.

For a list of flavors that are available on your system:

$ openstack flavor list
+-----+-----------+-------+------+-----------+-------+-----------+
| ID | Name | RAM | Disk | Ephemeral | VCPUs | Is_Public |
+-----+-----------+-------+------+-----------+-------+-----------+
1	m1.tiny	512	1	0	1	True
2	m1.small	2048	20	0	1	True
3	m1.medium	4096	40	0	2	True
4	m1.large	8192	80	0	4	True
5	m1.xlarge	16384	160	0	8	True
+-----+-----------+-------+------+-----------+-------+-----------+

3.4. Maintenance 250

Nova Documentation, Release 22.4.1.dev41

Compute service architecture

These basic categories describe the service architecture and information about the cloud controller.

API server

At the heart of the cloud framework is an API server, which makes command and control of the hyper-
visor, storage, and networking programmatically available to users.

The API endpoints are basic HTTP web services which handle authentication, authorization, and basic
command and control functions using various API interfaces under the Amazon, Rackspace, and related
models. This enables API compatibility with multiple existing tool sets created for interaction with
offerings from other vendors. This broad compatibility prevents vendor lock-in.

Message queue

A messaging queue brokers the interaction between compute nodes (processing), the networking con-
trollers (software which controls network infrastructure), API endpoints, the scheduler (determines
which physical hardware to allocate to a virtual resource), and similar components. Communication
to and from the cloud controller is handled by HTTP requests through multiple API endpoints.

A typical message passing event begins with the API server receiving a request from a user. The API
server authenticates the user and ensures that they are permitted to issue the subject command. The
availability of objects implicated in the request is evaluated and, if available, the request is routed to the
queuing engine for the relevant workers. Workers continually listen to the queue based on their role, and
occasionally their type host name. When an applicable work request arrives on the queue, the worker
takes assignment of the task and begins executing it. Upon completion, a response is dispatched to the
queue which is received by the API server and relayed to the originating user. Database entries are
queried, added, or removed as necessary during the process.

Compute worker

Compute workers manage computing instances on host machines. The API dispatches commands to
compute workers to complete these tasks:

• Run instances

• Delete instances (Terminate instances)

• Reboot instances

• Attach volumes

• Detach volumes

• Get console output

3.4. Maintenance 251

Nova Documentation, Release 22.4.1.dev41

Network Controller

The Network Controller manages the networking resources on host machines. The API server dispatches
commands through the message queue, which are subsequently processed by Network Controllers. Spe-
cific operations include:

• Allocating fixed IP addresses

• Configuring VLANs for projects

• Configuring networks for compute nodes

Availability Zones

Note: This section provides deployment and admin-user usage information about the availability zone
feature. For end-user information about availability zones, refer to the user guide.

Availability Zones are an end-user visible logical abstraction for partitioning a cloud without knowing
the physical infrastructure. Availability zones are not modeled in the database; rather, they are defined
by attaching specific metadata information to an aggregate The addition of this specific metadata to an
aggregate makes the aggregate visible from an end-user perspective and consequently allows users to
schedule instances to a specific set of hosts, the ones belonging to the aggregate.

However, despite their similarities, there are a few additional differences to note when comparing avail-
ability zones and host aggregates:

• A host can be part of multiple aggregates but it can only be in one availability zone.

• By default a host is part of a default availability zone even if it doesnt belong to
an aggregate. The name of this default availability zone can be configured using
default_availability_zone config option.

Warning: The use of the default availability zone name is requests can be very error-prone.
Since the user can see the list of availability zones, they have no way to know whether the
default availability zone name (currently nova) is provided because an host belongs to an
aggregate whose AZ metadata key is set to nova, or because there is at least one host not
belonging to any aggregate. Consequently, it is highly recommended for users to never ever
ask for booting an instance by specifying an explicit AZ named nova and for operators to
never set the AZ metadata for an aggregate to nova. This can result is some problems due
to the fact that the instance AZ information is explicitly attached to nova which could break
further move operations when either the host is moved to another aggregate or when the user
would like to migrate the instance.

Note: Availability zone names must NOT contain : since it is used by admin users to specify
hosts where instances are launched in server creation. See Using availability zones to select hosts
for more information.

In addition, other services, such as the networking service and the block storage service, also provide
an availability zone feature. However, the implementation of these features differs vastly between these

3.4. Maintenance 252

https://docs.openstack.org/neutron/victoria/
https://docs.openstack.org/cinder/victoria/

Nova Documentation, Release 22.4.1.dev41

different services. Consult the documentation for these other services for more information on their
implementation of this feature.

Availability Zones with Placement

In order to use placement to honor availability zone requests, there must be placement aggregates that
match the membership and UUID of nova host aggregates that you assign as availability zones. The
same key in aggregate metadata used by the AvailabilityZoneFilter filter controls this function, and is
enabled by setting scheduler.query_placement_for_availability_zone to True.

$ openstack --os-compute-api-version=2.53 aggregate create myaz
+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
availability_zone	None
created_at	2018-03-29T16:22:23.175884
deleted	False
deleted_at	None
id	4
name	myaz
updated_at	None
uuid	019e2189-31b3-49e1-aff2-b220ebd91c24
+-------------------+--------------------------------------+

$ openstack --os-compute-api-version=2.53 aggregate add host myaz node1
+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
availability_zone	None
created_at	2018-03-29T16:22:23.175884
deleted	False
deleted_at	None
hosts	[u'node1']
id	4
name	myagg
updated_at	None
uuid	019e2189-31b3-49e1-aff2-b220ebd91c24
+-------------------+--------------------------------------+

$ openstack aggregate set --property availability_zone=az002 myaz

$ openstack --os-placement-api-version=1.2 resource provider aggregate set
↪→--aggregate 019e2189-31b3-49e1-aff2-b220ebd91c24 815a5634-86fb-4e1e-8824-
↪→8a631fee3e06

With the above configuration, the AvailabilityZoneFilter filter can be disabled in
filter_scheduler.enabled_filters while retaining proper behavior (and doing so
with the higher performance of placements implementation).

3.4. Maintenance 253

Nova Documentation, Release 22.4.1.dev41

Implications for moving servers

There are several ways to move a server to another host: evacuate, resize, cold migrate, live migrate, and
unshelve. Move operations typically go through the scheduler to pick the target host unless a target host
is specified and the request forces the server to that host by bypassing the scheduler. Only evacuate and
live migrate can forcefully bypass the scheduler and move a server to a specified host and even then it is
highly recommended to not force and bypass the scheduler.

With respect to availability zones, a server is restricted to a zone if:

1. The server was created in a specific zone with the POST /servers request containing the
availability_zone parameter.

2. If the server create request did not contain the availability_zone parameter but the API ser-
vice is configured for default_schedule_zone then by default the server will be scheduled
to that zone.

3. The shelved offloaded server was unshelved by specifying the availability_zone with the
POST /servers/{server_id}/action request using microversion 2.77 or greater.

4. cinder.cross_az_attach is False, default_schedule_zone is None, the server is
created without an explicit zone but with pre-existing volume block device mappings. In that case
the server will be created in the same zone as the volume(s) if the volume zone is not the same as
default_availability_zone. See Resource affinity for details.

If the server was not created in a specific zone then it is free to be moved to other zones, i.e. the
AvailabilityZoneFilter is a no-op.

Knowing this, it is dangerous to force a server to another host with evacuate or live migrate if the server
is restricted to a zone and is then forced to move to a host in another zone, because that will create an
inconsistency in the internal tracking of where that server should live and may require manually updating
the database for that server. For example, if a user creates a server in zone A and then the admin force
live migrates the server to zone B, and then the user resizes the server, the scheduler will try to move it
back to zone A which may or may not work, e.g. if the admin deleted or renamed zone A in the interim.

Resource affinity

The cinder.cross_az_attach configuration option can be used to restrict servers and the vol-
umes attached to servers to the same availability zone.

A typical use case for setting cross_az_attach=False is to enforce compute and block storage
affinity, for example in a High Performance Compute cluster.

By default cross_az_attach is True meaning that the volumes attached to a server can be in a
different availability zone than the server. If set to False, then when creating a server with pre-existing
volumes or attaching a volume to a server, the server and volume zone must match otherwise the request
will fail. In addition, if the nova-compute service creates the volumes to attach to the server during
server create, it will request that those volumes are created in the same availability zone as the server,
which must exist in the block storage (cinder) service.

As noted in the Implications for moving servers section, forcefully moving a server to another zone
could also break affinity with attached volumes.

Note: cross_az_attach=False is not widely used nor tested extensively and thus suffers from
some known issues:

3.4. Maintenance 254

Nova Documentation, Release 22.4.1.dev41

• Bug 1694844. This is fixed in the 21.0.0 (Ussuri) release by using the volume zone for the server
being created if the server is created without an explicit zone, default_schedule_zone is
None, and the volume zone does not match the value of default_availability_zone.

• Bug 1781421

Using availability zones to select hosts

We can combine availability zones with a specific host and/or node to select where an instance is
launched. For example:

$ openstack server create --availability-zone ZONE:HOST:NODE ... SERVER

Note: It is possible to use ZONE, ZONE:HOST, and ZONE::NODE.

Note: This is an admin-only operation by default, though you can modify this behavior using the
os_compute_api:servers:create:forced_host rule in policy.yaml.

However, as discussed previously, when launching instances in this manner the scheduler filters are not
run. For this reason, this behavior is considered legacy behavior and, starting with the 2.74 microversion,
it is now possible to specify a host or node explicitly. For example:

$ openstack --os-compute-api-version 2.74 server create \
--host HOST --hypervisor-hostname HYPERVISOR ... SERVER

Note: This is an admin-only operation by default, though you can modify this behavior using the
compute:servers:create:requested_destination rule in policy.yaml.

This avoids the need to explicitly select an availability zone and ensures the scheduler filters are not
bypassed.

Usage

Creating an availability zone (AZ) is done by associating metadata with a host aggregate. For this
reason, the openstack client provides the ability to create a host aggregate and associate it with an
AZ in one command. For example, to create a new aggregate, associating it with an AZ in the process,
and add host to it using the openstack client, run:

$ openstack aggregate create --zone my-availability-zone my-aggregate
$ openstack aggregate add host my-aggregate my-host

Note: While it is possible to add a host to multiple host aggregates, it is not possible to add them
to multiple availability zones. Attempting to add a host to multiple host aggregates associated with
differing availability zones will result in a failure.

3.4. Maintenance 255

https://bugs.launchpad.net/nova/+bug/1694844
https://bugs.launchpad.net/nova/+bug/1781421

Nova Documentation, Release 22.4.1.dev41

Alternatively, you can set this metadata manually for an existing host aggregate. For example:

$ openstack aggregate set \
--property availability_zone=my-availability-zone my-aggregate

To list all host aggregates and show information about a specific aggregate, in order to determine which
AZ the host aggregate(s) belong to, run:

$ openstack aggregate list --long
$ openstack aggregate show my-aggregate

Finally, to disassociate a host aggregate from an availability zone, run:

$ openstack aggregate unset --property availability_zone my-aggregate

Configuration

Refer to Host aggregates for information on configuring both host aggregates and availability zones.

CellsV2 Management

This section describes the various recommended practices/tips for runnning and maintaining CellsV2
for admins and operators. For more details regarding the basic concept of CellsV2 and its layout please
see the main Cells Layout (v2) page.

Handling cell failures

For an explanation on how nova-api handles cell failures please see the Handling Down Cells section
of the Compute API guide. Below, you can find some recommended practices and considerations for
effectively tolerating cell failure situations.

Configuration considerations

Since a cell being reachable or not is determined through timeouts, it is suggested to provide suitable
values for the following settings based on your requirements.

1. database.max_retries is 10 by default meaning every time a cell becomes unreachable, it
would retry 10 times before nova can declare the cell as a down cell.

2. database.retry_interval is 10 seconds and oslo_messaging_rabbit.
rabbit_retry_interval is 1 second by default meaning every time a cell becomes
unreachable it would retry every 10 seconds or 1 second depending on if its a database or a
message queue problem.

3. Nova also has a timeout value called CELL_TIMEOUT which is hardcoded to 60 seconds and that
is the total time the nova-api would wait before returning partial results for the down cells.

The values of the above settings will affect the time required for nova to decide if a cell is unreachable
and then take the necessary actions like returning partial results.

3.4. Maintenance 256

https://docs.openstack.org/api-guide/compute/down_cells.html

Nova Documentation, Release 22.4.1.dev41

The operator can also control the results of certain actions like listing servers and services depending on
the value of the api.list_records_by_skipping_down_cells config option. If this is true,
the results from the unreachable cells will be skipped and if it is false, the request will just fail with an
API error in situations where partial constructs cannot be computed.

Disabling down cells

While the temporary outage in the infrastructure is being fixed, the affected cells can be disabled so that
they are removed from being scheduling candidates. To enable or disable a cell, use nova-manage
cell_v2 update_cell --cell_uuid <cell_uuid> --disable. See the Nova Cells v2
man page for details on command usage.

Known issues

1. Services and Performance: In case a cell is down during the startup of nova services, there is
the chance that the services hang because of not being able to connect to all the cell databases that
might be required for certain calculations and initializations. An example scenario of this situa-
tion is if upgrade_levels.compute is set to auto then the nova-api service hangs on
startup if there is at least one unreachable cell. This is because it needs to connect to all the cells
to gather information on each of the compute services version to determine the compute version
cap to use. The current workaround is to pin the upgrade_levels.compute to a particular
version like rocky and get the service up under such situations. See bug 1815697 for more de-
tails. Also note that in general during situations where cells are not reachable certain slowness
may be experienced in operations requiring hitting all the cells because of the aforementioned
configurable timeout/retry values.

2. Counting Quotas: Another known issue is in the current approach of counting quotas where we
query each cell database to get the used resources and aggregate them which makes it sensitive
to temporary cell outages. While the cell is unavailable, we cannot count resource usage residing
in that cell database and things would behave as though more quota is available than should be.
That is, if a tenant has used all of their quota and part of it is in cell A and cell A goes offline
temporarily, that tenant will suddenly be able to allocate more resources than their limit (assuming
cell A returns, the tenant will have more resources allocated than their allowed quota).

Note: Starting in the Train (20.0.0) release, it is possible to configure counting of quota usage
from the placement service and API database to make quota usage calculations resilient to down
or poor-performing cells in a multi-cell environment. See the quotas documentation for more
details.

3.4. Maintenance 257

https://bugs.launchpad.net/nova/+bug/1815697

Nova Documentation, Release 22.4.1.dev41

Config drives

Note: This section provides deployment information about the config drive feature. For end-user
information about the config drive feature and instance metadata in general, refer to the user guide.

Config drives are special drives that are attached to an instance when it boots. The instance can mount
this drive and read files from it to get information that is normally available through the metadata service.

There are many use cases for the config drive. One such use case is to pass a networking configuration
when you do not use DHCP to assign IP addresses to instances. For example, you might pass the
IP address configuration for the instance through the config drive, which the instance can mount and
access before you configure the network settings for the instance. Another common reason to use config
drives is load. If running something like the OpenStack puppet providers in your instances, they can hit
the metadata servers every fifteen minutes, simultaneously for every instance you have. They are just
checking in, and building facts, but its not insignificant load. With a config drive, that becomes a local
(cached) disk read. Finally, using a config drive means youre not dependent on the metadata service
being up, reachable, or performing well to do things like reboot your instance that runs cloud-init at the
beginning.

Any modern guest operating system that is capable of mounting an ISO 9660 or VFAT file system can
use the config drive.

Requirements and guidelines

To use the config drive, you must follow the following requirements for the compute host and image.

Compute host requirements

The following virt drivers support the config drive: libvirt, Hyper-V, VMware, and (since 17.0.0 Queens)
PowerVM. The Bare Metal service also supports the config drive.

• To use config drives with libvirt or VMware, you must first install the genisoimage package
on each compute host. Use the mkisofs_cmd config option to set the path where you install
the genisoimage program. If genisoimage is in the same path as the nova-compute
service, you do not need to set this flag.

• To use config drives with Hyper-V, you must set the mkisofs_cmd config option to the full path
to an mkisofs.exe installation. Additionally, you must set the hyperv.qemu_img_cmd
config option to the full path to an qemu-img command installation.

• To use config drives with PowerVM or the Bare Metal service, you do not need to prepare any-
thing.

3.4. Maintenance 258

https://cloudinit.readthedocs.io/en/latest/

Nova Documentation, Release 22.4.1.dev41

Image requirements

An image built with a recent version of the cloud-init package can automatically access metadata passed
through the config drive. The cloud-init package version 0.7.1 works with Ubuntu, Fedora based images
(such as Red Hat Enterprise Linux) and openSUSE based images (such as SUSE Linux Enterprise
Server). If an image does not have the cloud-init package installed, you must customize the image to run
a script that mounts the config drive on boot, reads the data from the drive, and takes appropriate action
such as adding the public key to an account. For more details about how data is organized on the config
drive, refer to the user guide.

Configuration

The nova-compute service accepts the following config drive-related options:

• api.config_drive_skip_versions

• force_config_drive

• config_drive_format

If using the HyperV compute driver, the following additional options are supported:

• hyperv.config_drive_cdrom

For example, to ensure nova always provides a config drive to instances but versions 2018-08-27
(Rocky) and 2017-02-22 (Ocata) are skipped, add the following to nova.conf:

[DEFAULT]
force_config_drive = True

[api]
config_drive_skip_versions = 2018-08-27 2017-02-22

Note: The img_config_drive image metadata property can be used to force enable the config
drive. In addition, users can explicitly request a config drive when booting instances. For more informa-
tion, refer to the user guide.

Configuration

To configure your Compute installation, you must define configuration options in these files:

• nova.conf contains most of the Compute configuration options and resides in the /etc/nova
directory.

• api-paste.ini defines Compute limits and resides in the /etc/nova directory.

• Configuration files for related services, such as the Image and Identity services.

A list of config options based on different topics can be found below:

3.4. Maintenance 259

https://cloudinit.readthedocs.io/en/latest/

Nova Documentation, Release 22.4.1.dev41

Service User Tokens

Note: Configuration of service user tokens is required for every Nova service for security reasons. See
https://bugs.launchpad.net/nova/+bug/2004555 for details.

Configure Nova to send service user tokens alongside regular user tokens when making REST API calls
to other services. The identity service (Keystone) will authenticate a request using the service user token
if the regular user token has expired.

This is important when long-running operations such as live migration or snapshot take long enough to
exceed the expiry of the user token. Without the service token, if a long-running operation exceeds the
expiry of the user token, post operations such as cleanup after a live migration could fail when Nova
calls other service APIs like block-storage (Cinder) or networking (Neutron).

The service token is also used by services to validate whether the API caller is a service. Some service
APIs are restricted to service users only.

To set up service tokens, create a nova service user and service role in the identity service (Keystone)
and assign the service role to the nova service user.

Then, configure the service_user section of the Nova configuration file, for example:

[service_user]
send_service_user_token = true
auth_url = https://104.130.216.102/identity
auth_strategy = keystone
auth_type = password
project_domain_name = Default
project_name = service
user_domain_name = Default
username = nova
password = secretservice
...

And configure the other identity options as necessary for the service user, much like you would configure
nova to work with the image service (Glance) or networking service (Neutron).

Note: Please note that the role assigned to the service_user needs to be in the configured
keystone_authtoken.service_token_roles of other services such as block-storage (Cin-
der), image (Glance), and networking (Neutron).

Compute API configuration

The Compute API, is the component of OpenStack Compute that receives and responds to user requests,
whether they be direct API calls, or via the CLI tools or dashboard.

3.4. Maintenance 260

https://bugs.launchpad.net/nova/+bug/2004555

Nova Documentation, Release 22.4.1.dev41

Configure Compute API password handling

The OpenStack Compute API enables users to specify an administrative password when they create,
rebuild, rescue or evacuate a server instance. If the user does not specify a password, a random password
is generated and returned in the API response.

In practice, how the admin password is handled depends on the hypervisor in use and might require
additional configuration of the instance. For example, you might have to install an agent to handle the
password setting. If the hypervisor and instance configuration do not support setting a password at server
create time, the password that is returned by the create API call is misleading because it was ignored.

To prevent this confusion, set the enable_instance_password configuration to False to disable
the return of the admin password for installations that do not support setting instance passwords.

Resize

Resize (or Server resize) is the ability to change the flavor of a server, thus allowing it to upscale or
downscale according to user needs. For this feature to work properly, you might need to configure some
underlying virt layers.

This document describes how to configure hosts for standard resize. For information on cross-cell resize,
refer to Cross-cell resize.

Virt drivers

Todo: This section needs to be updated for other virt drivers, shared storage considerations, etc.

KVM

Resize on KVM is implemented currently by transferring the images between compute nodes over ssh.
For KVM you need hostnames to resolve properly and passwordless ssh access between your compute
hosts. Direct access from one compute host to another is needed to copy the VM file across.

Cloud end users can find out how to resize a server by reading Resize an instance.

Automatic confirm

There is a periodic task configured by configuration option resize_confirm_window (in seconds).
If this value is not 0, the nova-compute service will check whether servers are in a resized state longer
than the value of resize_confirm_window and if so will automatically confirm the resize of the
servers.

3.4. Maintenance 261

Nova Documentation, Release 22.4.1.dev41

Cross-cell resize

This document describes how to configure nova for cross-cell resize. For information on same-cell
resize, refer to Resize.

Historically resizing and cold migrating a server has been explicitly restricted to within the same cell in
which the server already exists. The cross-cell resize feature allows configuring nova to allow resizing
and cold migrating servers across cells.

The full design details are in the Ussuri spec and there is a video from a summit talk with a high-level
overview.

Use case

There are many reasons to use multiple cells in a nova deployment beyond just scaling the database
and message queue. Cells can also be used to shard a deployment by hardware generation and feature
functionality. When sharding by hardware generation, it would be natural to setup a host aggregate for
each cell and map flavors to the aggregate. Then when it comes time to decommission old hardware the
deployer could provide new flavors and request that users resize to the new flavors, before some deadline,
which under the covers will migrate their servers to the new cell with newer hardware. Administrators
could also just cold migrate the servers during a maintenance window to the new cell.

Requirements

To enable cross-cell resize functionality the following conditions must be met.

Minimum compute versions

All compute services must be upgraded to 21.0.0 (Ussuri) or later and not be pinned to older RPC API
versions in upgrade_levels.compute.

Policy configuration

The policy rule compute:servers:resize:cross_cell controls who can perform a cross-
cell resize or cold migrate operation. By default the policy disables the functionality for all users.
A microversion is not required to opt into the behavior, just passing the policy check. As such, it is
recommended to start by allowing only certain users to be able to perform a cross-cell resize or cold
migration, for example by setting the rule to rule:admin_api or some other rule for test teams but
not normal users until you are comfortable supporting the feature.

3.4. Maintenance 262

https://opendev.org/openstack/nova/src/tag/20.0.0/nova/conductor/tasks/migrate.py#L164
https://specs.openstack.org/openstack/nova-specs/specs/ussuri/approved/cross-cell-resize.html
https://www.openstack.org/videos/summits/denver-2019/whats-new-in-nova-cellsv2

Nova Documentation, Release 22.4.1.dev41

Compute driver

There are no special compute driver implementations required to support the feature, it is built on exist-
ing driver interfaces used during resize and shelve/unshelve. However, only the libvirt compute driver
has integration testing in the nova-multi-cell CI job.

Networking

The networking API must expose the Port Bindings Extended API extension which was added
in the 13.0.0 (Rocky) release for Neutron.

Notifications

The types of events and their payloads remain unchanged. The major difference from same-cell resize is
the publisher_id may be different in some cases since some events are sent from the conductor service
rather than a compute service. For example, with same-cell resize the instance.resize_revert.
start notification is sent from the source compute host in the finish_revert_resize method but with
cross-cell resize that same notification is sent from the conductor service.

Obviously the actual message queue sending the notifications would be different for the source and target
cells assuming they use separate transports.

Instance actions

The overall instance actions named resize, confirmResize and revertResize are the same as
same-cell resize. However, the events which make up those actions will be different for cross-cell resize
since the event names are generated based on the compute service methods involved in the operation and
there are different methods involved in a cross-cell resize. This is important for triage when a cross-cell
resize operation fails.

Scheduling

The CrossCellWeigher is enabled by default. When a scheduling request allows selecting com-
pute nodes from another cell the weigher will by default prefer hosts within the source cell over
hosts from another cell. However, this behavior is configurable using the filter_scheduler.
cross_cell_move_weight_multiplier configuration option if, for example, you want to
drain old cells when resizing or cold migrating.

3.4. Maintenance 263

https://opendev.org/openstack/nova/src/tag/20.0.0/nova/compute/manager.py#L4326

Nova Documentation, Release 22.4.1.dev41

Code flow

The end user experience is meant to not change, i.e. status transitions. A successfully cross-cell resized
server will go to VERIFY_RESIZE status and from there the user can either confirm or revert the
resized server using the normal confirmResize and revertResize server action APIs.

Under the covers there are some differences from a traditional same-cell resize:

• There is no inter-compute interaction. Everything is synchronously orchestrated from the (su-
per)conductor service. This uses the long_rpc_timeout configuration option.

• The orchestration tasks in the (super)conductor service are in charge of creating a copy of the
instance and its related records in the target cell database at the beginning of the operation,
deleting them in case of rollback or when the resize is confirmed/reverted, and updating the
instance_mappings table record in the API database.

• Non-volume-backed servers will have their root disk uploaded to the image service as a temporary
snapshot image just like during the shelveOffload operation. When finishing the resize on the
destination host in the target cell that snapshot image will be used to spawn the guest and then the
snapshot image will be deleted.

Sequence diagram

The following diagrams are current as of the 21.0.0 (Ussuri) release.

Resize

This is the sequence of calls to get the server to VERIFY_RESIZE status.

3.4. Maintenance 264

https://docs.openstack.org/api-ref/compute/#confirm-resized-server-confirmresize-action
https://docs.openstack.org/api-ref/compute/#revert-resized-server-revertresize-action
https://opendev.org/openstack/nova/src/branch/master/nova/conductor/tasks/cross_cell_migrate.py
https://docs.openstack.org/api-ref/compute/#shelf-offload-remove-server-shelveoffload-action

Nova Documentation, Release 22.4.1.dev41

Confirm resize

This is the sequence of calls when confirming or deleting a server in VERIFY_RESIZE status.

Revert resize

This is the sequence of calls when reverting a server in VERIFY_RESIZE status.

Limitations

These are known to not yet be supported in the code:

• Instances with ports attached that have bandwidth-aware resource provider allocations. Nova falls
back to same-cell resize if the server has such ports.

• Rescheduling to alternative hosts within the same target cell in case the primary selected host fails
the prep_snapshot_based_resize_at_dest call.

These may not work since they have not been validated by integration testing:

• Instances with PCI devices attached.

3.4. Maintenance 265

https://opendev.org/openstack/nova/src/tag/20.0.0/nova/compute/api.py#L2171

Nova Documentation, Release 22.4.1.dev41

• Instances with a NUMA topology.

Other limitations:

• The config drive associated with the server, if there is one, will be re-generated on the destination
host in the target cell. Therefore if the server was created with personality files they will be lost.
However, this is no worse than evacuating a server that had a config drive when the source and
destination compute host are not on shared storage or when shelve offloading and unshelving a
server with a config drive. If necessary, the resized server can be rebuilt to regain the personality
files.

• The _poll_unconfirmed_resizes periodic task, which can be configured to automat-
ically confirm pending resizes on the target host, might not support cross-cell resizes because
doing so would require an up-call to the API to confirm the resize and cleanup the source cell
database.

Troubleshooting

Timeouts

Configure a service user in case the user token times out, e.g. during the snapshot and download of a
large server image.

If RPC calls are timing out with a MessagingTimeout error in the logs, check the
long_rpc_timeout option to see if it is high enough though the default value (30 minutes) should
be sufficient.

Recovering from failure

The orchestration tasks in conductor that drive the operation are built with rollbacks so each part of the
operation can be rolled back in order if a subsequent task fails.

The thing to keep in mind is the instance_mappings record in the API DB is the authority on
where the instance lives and that is where the API will go to show the instance in a GET /servers/
{server_id} call or any action performed on the server, including deleting it.

So if the resize fails and there is a copy of the instance and its related records in the target cell, the tasks
should automatically delete them but if not you can hard-delete the records from whichever cell is not
the one in the instance_mappings table.

If the instance is in ERROR status, check the logs in both the source and destination compute service
to see if there is anything that needs to be manually recovered, for example volume attachments or port
bindings, and also check the (super)conductor service logs. Assuming volume attachments and port
bindings are OK (current and pointing at the correct host), then try hard rebooting the server to get it
back to ACTIVE status. If that fails, you may need to rebuild the server on the source host. Note that the
guests disks on the source host are not deleted until the resize is confirmed so if there is an issue prior
to confirm or confirm itself fails, the guest disks should still be available for rebuilding the instance if
necessary.

3.4. Maintenance 266

https://docs.openstack.org/api-guide/compute/server_concepts.html#server-personality
https://docs.openstack.org/api-ref/compute/#evacuate-server-evacuate-action
https://docs.openstack.org/api-ref/compute/#rebuild-server-rebuild-action

Nova Documentation, Release 22.4.1.dev41

Configuring Fibre Channel Support

Fibre Channel support in OpenStack Compute is remote block storage attached to compute nodes for
VMs.

Todo: This below statement needs to be verified for current release

Fibre Channel supported only the KVM hypervisor.

Compute and Block Storage support Fibre Channel automatic zoning on Brocade and Cisco switches.
On other hardware Fibre Channel arrays must be pre-zoned or directly attached to the KVM hosts.

KVM host requirements

You must install these packages on the KVM host:

sysfsutils Nova uses the systool application in this package.

sg3-utils or sg3_utils Nova uses the sg_scan and sginfo applications.

Installing the multipath-tools or device-mapper-multipath package is optional.

Configuring iSCSI interface and offload support

Compute supports open-iscsi iSCSI interfaces for offload cards. Offload hardware must be present and
configured on every compute node where offload is desired. Once an open-iscsi interface is configured,
the iface name (iface.iscsi_ifacename) should be passed to libvirt via the iscsi_iface
parameter for use. All iSCSI sessions will be bound to this iSCSI interface.

Currently supported transports (iface.transport_name) are be2iscsi, bnx2i, cxgb3i,
cxgb4i, qla4xxx, ocs. Configuration changes are required on the compute node only.

iSER is supported using the separate iSER LibvirtISERVolumeDriver and will be rejected if used via the
iscsi_iface parameter.

iSCSI iface configuration

• Note the distinction between the transport name (iface.transport_name) and iface name
(iface.iscsi_ifacename). The actual iface name must be specified via the iscsi_iface
parameter to libvirt for offload to work.

• The default name for an iSCSI iface (open-iscsi parameter iface.iscsi_ifacename) is in
the format transport_name.hwaddress when generated by iscsiadm.

• iscsiadm can be used to view and generate current iface configuration. Every network interface
that supports an open-iscsi transport can have one or more iscsi ifaces associated with it. If no
ifaces have been configured for a network interface supported by an open-iscsi transport, this
command will create a default iface configuration for that network interface. For example :

3.4. Maintenance 267

Nova Documentation, Release 22.4.1.dev41

iscsiadm -m iface
default tcp,<empty>,<empty>,<empty>,<empty>
iser iser,<empty>,<empty>,<empty>,<empty>
bnx2i.00:05:b5:d2:a0:c2 bnx2i,00:05:b5:d2:a0:c2,5.10.10.20,<empty>,
↪→<empty>

The output is in the format:

iface_name transport_name,hwaddress,ipaddress,net_ifacename,
↪→initiatorname

• Individual iface configuration can be viewed via

iscsiadm -m iface -I IFACE_NAME
BEGIN RECORD 2.0-873
iface.iscsi_ifacename = cxgb4i.00:07:43:28:b2:58
iface.net_ifacename = <empty>
iface.ipaddress = 102.50.50.80
iface.hwaddress = 00:07:43:28:b2:58
iface.transport_name = cxgb4i
iface.initiatorname = <empty>
END RECORD

Configuration can be updated as desired via

iscsiadm -m iface-I IFACE_NAME--op=update -n iface.SETTING -v VALUE

• All iface configurations need a minimum of iface.iface_name, iface.
transport_name and iface.hwaddress to be correctly configured to work. Some
transports may require iface.ipaddress and iface.net_ifacename as well to bind
correctly.

Detailed configuration instructions can be found at: https://github.com/open-iscsi/open-iscsi/blob/
master/README

Hypervisors

Hypervisor Configuration Basics

The node where the nova-compute service is installed and operates on the same node that runs all of
the virtual machines. This is referred to as the compute node in this guide.

By default, the selected hypervisor is KVM. To change to another hypervisor, change the virt_type
option in the [libvirt] section of nova.conf and restart the nova-compute service.

Specific options for particular hypervisors can be found in the following sections.

3.4. Maintenance 268

https://github.com/open-iscsi/open-iscsi/blob/master/README
https://github.com/open-iscsi/open-iscsi/blob/master/README

Nova Documentation, Release 22.4.1.dev41

KVM

Todo: Some of this is installation guide material and should probably be moved.

KVM is configured as the default hypervisor for Compute.

Note: This document contains several sections about hypervisor selection. If you are reading this
document linearly, you do not want to load the KVM module before you install nova-compute.
The nova-compute service depends on qemu-kvm, which installs /lib/udev/rules.d/
45-qemu-kvm.rules, which sets the correct permissions on the /dev/kvm device node.

To enable KVM explicitly, add the following configuration options to the /etc/nova/nova.conf
file:

compute_driver = libvirt.LibvirtDriver

[libvirt]
virt_type = kvm

The KVM hypervisor supports the following virtual machine image formats:

• Raw

• QEMU Copy-on-write (QCOW2)

• QED Qemu Enhanced Disk

• VMware virtual machine disk format (vmdk)

This section describes how to enable KVM on your system. For more information, see the following
distribution-specific documentation:

• Fedora: Virtualization Getting Started Guide from the Fedora 22 documentation.

• Ubuntu: KVM/Installation from the Community Ubuntu documentation.

• Debian: Virtualization with KVM from the Debian handbook.

• Red Hat Enterprise Linux: Installing virtualization packages on an existing Red Hat Enter-
prise Linux system from the Red Hat Enterprise Linux Virtualization Host
Configuration and Guest Installation Guide.

• openSUSE: Installing KVM from the openSUSE Virtualization with KVM manual.

• SLES: Installing KVM from the SUSE Linux Enterprise Server Virtualization Guide.

3.4. Maintenance 269

http://docs.fedoraproject.org/en-US/Fedora/22/html/Virtualization_Getting_Started_Guide/index.html
https://help.ubuntu.com/community/KVM/Installation
http://static.debian-handbook.info/browse/stable/sect.virtualization.html#idp11279352
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Host_Configuration_and_Guest_Installation_Guide/sect-Virtualization_Host_Configuration_and_Guest_Installation_Guide-Host_Installation-Installing_KVM_packages_on_an_existing_Red_Hat_Enterprise_Linux_system.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Host_Configuration_and_Guest_Installation_Guide/sect-Virtualization_Host_Configuration_and_Guest_Installation_Guide-Host_Installation-Installing_KVM_packages_on_an_existing_Red_Hat_Enterprise_Linux_system.html
http://doc.opensuse.org/documentation/html/openSUSE/opensuse-kvm/cha.kvm.requires.html#sec.kvm.requires.install
https://www.suse.com/documentation/sles-12/book_virt/data/sec_vt_installation_kvm.html

Nova Documentation, Release 22.4.1.dev41

Enable KVM

The following sections outline how to enable KVM based hardware virtualization on different architec-
tures and platforms. To perform these steps, you must be logged in as the root user.

For x86 based systems

1. To determine whether the svm or vmx CPU extensions are present, run this command:

grep -E 'svm|vmx' /proc/cpuinfo

This command generates output if the CPU is capable of hardware-virtualization. Even if output
is shown, you might still need to enable virtualization in the system BIOS for full support.

If no output appears, consult your system documentation to ensure that your CPU and mother-
board support hardware virtualization. Verify that any relevant hardware virtualization options
are enabled in the system BIOS.

The BIOS for each manufacturer is different. If you must enable virtualization in the BIOS, look
for an option containing the words virtualization, VT, VMX, or SVM.

2. To list the loaded kernel modules and verify that the kvm modules are loaded, run this command:

lsmod | grep kvm

If the output includes kvm_intel or kvm_amd, the kvm hardware virtualization modules are
loaded and your kernel meets the module requirements for OpenStack Compute.

If the output does not show that the kvm module is loaded, run this command to load it:

modprobe -a kvm

Run the command for your CPU. For Intel, run this command:

modprobe -a kvm-intel

For AMD, run this command:

modprobe -a kvm-amd

Because a KVM installation can change user group membership, you might need to log in again
for changes to take effect.

If the kernel modules do not load automatically, use the procedures listed in these subsections.

If the checks indicate that required hardware virtualization support or kernel modules are disabled or
unavailable, you must either enable this support on the system or find a system with this support.

Note: Some systems require that you enable VT support in the system BIOS. If you believe your
processor supports hardware acceleration but the previous command did not produce output, reboot
your machine, enter the system BIOS, and enable the VT option.

If KVM acceleration is not supported, configure Compute to use a different hypervisor, such as QEMU.

3.4. Maintenance 270

Nova Documentation, Release 22.4.1.dev41

These procedures help you load the kernel modules for Intel-based and AMD-based processors if they
do not load automatically during KVM installation.

Intel-based processors

If your compute host is Intel-based, run these commands as root to load the kernel modules:

modprobe kvm
modprobe kvm-intel

Add these lines to the /etc/modules file so that these modules load on reboot:

kvm
kvm-intel

AMD-based processors

If your compute host is AMD-based, run these commands as root to load the kernel modules:

modprobe kvm
modprobe kvm-amd

Add these lines to /etc/modules file so that these modules load on reboot:

kvm
kvm-amd

For POWER based systems

KVM as a hypervisor is supported on POWER systems PowerNV platform.

1. To determine if your POWER platform supports KVM based virtualization run the following
command:

cat /proc/cpuinfo | grep PowerNV

If the previous command generates the following output, then CPU supports KVM based virtual-
ization.

platform: PowerNV

If no output is displayed, then your POWER platform does not support KVM based hardware
virtualization.

2. To list the loaded kernel modules and verify that the kvm modules are loaded, run the following
command:

lsmod | grep kvm

If the output includes kvm_hv, the kvm hardware virtualization modules are loaded and your
kernel meets the module requirements for OpenStack Compute.

If the output does not show that the kvm module is loaded, run the following command to load it:

3.4. Maintenance 271

Nova Documentation, Release 22.4.1.dev41

modprobe -a kvm

For PowerNV platform, run the following command:

modprobe -a kvm-hv

Because a KVM installation can change user group membership, you might need to log in again
for changes to take effect.

Configure Compute backing storage

Backing Storage is the storage used to provide the expanded operating system image, and any ephemeral
storage. Inside the virtual machine, this is normally presented as two virtual hard disks (for example,
/dev/vda and /dev/vdb respectively). However, inside OpenStack, this can be derived from one
of these methods: lvm, qcow, rbd or flat, chosen using the libvirt.images_type option in
nova.conf on the compute node.

Note: The option raw is acceptable but deprecated in favor of flat. The Flat back end uses either
raw or QCOW2 storage. It never uses a backing store, so when using QCOW2 it copies an image rather
than creating an overlay. By default, it creates raw files but will use QCOW2 when creating a disk from
a QCOW2 if force_raw_images is not set in configuration.

QCOW is the default backing store. It uses a copy-on-write philosophy to delay allocation of storage
until it is actually needed. This means that the space required for the backing of an image can be
significantly less on the real disk than what seems available in the virtual machine operating system.

Flat creates files without any sort of file formatting, effectively creating files with the plain binary one
would normally see on a real disk. This can increase performance, but means that the entire size of the
virtual disk is reserved on the physical disk.

Local LVM volumes can also be used. Set the libvirt.images_volume_group configuration
option to the name of the LVM group you have created.

Direct download of images from Ceph

When the Glance image service is set up with the Ceph backend and Nova is using a local ephemeral
store ([libvirt]/images_type!=rbd), it is possible to configure Nova to download images di-
rectly into the local compute image cache.

With the following configuration, images are downloaded using the RBD export command instead of
using the Glance HTTP API. In some situations, especially for very large images, this could be substan-
tially faster and can improve the boot times of instances.

On the Glance API node in glance-api.conf:

[DEFAULT]
show_image_direct_url=true

On the Nova compute node in nova.conf:

3.4. Maintenance 272

https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

Nova Documentation, Release 22.4.1.dev41

[glance]
enable_rbd_download=true
rbd_user=glance
rbd_pool=images
rbd_ceph_conf=/etc/ceph/ceph.conf
rbd_connect_timeout=5

Specify the CPU model of KVM guests

The Compute service enables you to control the guest CPU model that is exposed to KVM virtual
machines. Use cases include:

• To maximize performance of virtual machines by exposing new host CPU features to the guest

• To ensure a consistent default CPU across all machines, removing reliance of variable QEMU
defaults

In libvirt, the CPU is specified by providing a base CPU model name (which is a shorthand for a set
of feature flags), a set of additional feature flags, and the topology (sockets/cores/threads). The lib-
virt KVM driver provides a number of standard CPU model names. These models are defined in the
/usr/share/libvirt/cpu_map.xml file for libvirt prior to version 4.7.0 or /usr/share/
libvirt/cpu_map/*.xml files thereafter. Make a check to determine which models are supported
by your local installation.

Two Compute configuration options in the libvirt group of nova.conf define which type of
CPU model is exposed to the hypervisor when using KVM: libvirt.cpu_mode and libvirt.
cpu_models.

The libvirt.cpu_mode option can take one of the following values: none,
host-passthrough, host-model, and custom.

See Effective Virtual CPU configuration in Nova for a recorded presentation about this topic.

Host model (default for KVM & QEMU)

If your nova.conf file contains cpu_mode=host-model, libvirt identifies the CPU model in
/usr/share/libvirt/cpu_map.xml for version prior to 4.7.0 or /usr/share/libvirt/
cpu_map/*.xml for version 4.7.0 and higher that most closely matches the host, and requests addi-
tional CPU flags to complete the match. This configuration provides the maximum functionality and
performance and maintains good reliability.

With regard to enabling and facilitating live migration between compute nodes, you should assess
whether host-model is suitable for your compute architecture. In general, using host-model is
a safe choice if your compute node CPUs are largely identical. However, if your compute nodes span
multiple processor generations, you may be better advised to select a custom CPU model.

3.4. Maintenance 273

https://www.openstack.org/videos/summits/berlin-2018/effective-virtual-cpu-configuration-in-nova

Nova Documentation, Release 22.4.1.dev41

Host pass through

If your nova.conf file contains cpu_mode=host-passthrough, libvirt tells KVM to pass
through the host CPU with no modifications. The difference to host-model, instead of just matching
feature flags, every last detail of the host CPU is matched. This gives the best performance, and can
be important to some apps which check low level CPU details, but it comes at a cost with respect to
migration.

In host-passthrough mode, the guest can only be live-migrated to a target host that matches the
source host extremely closely. This definitely includes the physical CPU model and running microcode,
and may even include the running kernel. Use this mode only if

• your compute nodes have a very large degree of homogeneity (i.e. substantially all of your com-
pute nodes use the exact same CPU generation and model), and you make sure to only live-migrate
between hosts with exactly matching kernel versions, or

• you decide, for some reason and against established best practices, that your compute infrastruc-
ture should not support any live migration at all.

Custom

If nova.conf contains libvirt.cpu_mode=custom, you can explicitly specify an ordered list of
supported named models using the libvirt.cpu_models configuration option. It is expected that
the list is ordered so that the more common and less advanced cpu models are listed earlier.

An end user can specify required CPU features through traits. When specified, the libvirt driver will
select the first cpu model in the libvirt.cpu_models list that can provide the requested feature
traits. If no CPU feature traits are specified then the instance will be configured with the first cpu model
in the list.

For example, if specifying CPU features avx and avx2 as follows:

$ openstack flavor set FLAVOR_ID --property trait:HW_CPU_X86_AVX=required \
--property trait:HW_CPU_X86_AVX2=required

and libvirt.cpu_models is configured like this:

[libvirt]
cpu_mode = custom
cpu_models = Penryn,IvyBridge,Haswell,Broadwell,Skylake-Client

Then Haswell, the first cpu model supporting both avx and avx2, will be chosen by libvirt.

In selecting the custom mode, along with a libvirt.cpu_models that matches the oldest of
your compute node CPUs, you can ensure that live migration between compute nodes will always be
possible. However, you should ensure that the libvirt.cpu_models you select passes the correct
CPU feature flags to the guest.

If you need to further tweak your CPU feature flags in the custom mode, see Set CPU feature flags.

Note: If libvirt.cpu_models is configured, the CPU models in the list needs to be compatible
with the host CPU. Also, if libvirt.cpu_model_extra_flags is configured, all flags needs to

3.4. Maintenance 274

Nova Documentation, Release 22.4.1.dev41

be compatible with the host CPU. If incompatible CPU models or flags are specified, nova service will
raise an error and fail to start.

None (default for all libvirt-driven hypervisors other than KVM & QEMU)

If your nova.conf file contains cpu_mode=none, libvirt does not specify a CPU model. Instead,
the hypervisor chooses the default model.

Set CPU feature flags

Regardless of whether your selected libvirt.cpu_mode is host-passthrough,
host-model, or custom, it is also possible to selectively enable additional feature flags. Suppose
your selected custom CPU model is IvyBridge, which normally does not enable the pcid feature
flag but you do want to pass pcid into your guest instances. In that case, you would set:

[libvirt]
cpu_mode = custom
cpu_models = IvyBridge
cpu_model_extra_flags = pcid

Nested guest support

You may choose to enable support for nested guests that is, allow your Nova instances to themselves
run hardware-accelerated virtual machines with KVM. Doing so requires a module parameter on your
KVM kernel module, and corresponding nova.conf settings.

Nested guest support in the KVM kernel module

To enable nested KVM guests, your compute node must load the kvm_intel or kvm_amd module
with nested=1. You can enable the nested parameter permanently, by creating a file named /etc/
modprobe.d/kvm.conf and populating it with the following content:

options kvm_intel nested=1
options kvm_amd nested=1

A reboot may be required for the change to become effective.

Nested guest support in nova.conf

To support nested guests, you must set your libvirt.cpu_mode configuration to one of the follow-
ing options:

Host pass through In this mode, nested virtualization is automatically enabled once the KVM kernel
module is loaded with nesting support.

[libvirt]
cpu_mode = host-passthrough

3.4. Maintenance 275

Nova Documentation, Release 22.4.1.dev41

However, do consider the other implications that Host pass through mode has on compute func-
tionality.

Host model In this mode, nested virtualization is automatically enabled once the KVM kernel mod-
ule is loaded with nesting support, if the matching CPU model exposes the vmx feature flag
to guests by default (you can verify this with virsh capabilities on your compute
node). If your CPU model does not pass in the vmx flag, you can force it with libvirt.
cpu_model_extra_flags:

[libvirt]
cpu_mode = host-model
cpu_model_extra_flags = vmx

Again, consider the other implications that apply to the Host model (default for KVM & Qemu)
mode.

Custom In custom mode, the same considerations apply as in host-model mode, but you may addition-
ally want to ensure that libvirt passes not only the vmx, but also the pcid flag to its guests:

[libvirt]
cpu_mode = custom
cpu_models = IvyBridge
cpu_model_extra_flags = vmx,pcid

Nested guest support limitations

When enabling nested guests, you should be aware of (and inform your users about) certain limita-
tions that are currently inherent to nested KVM virtualization. Most importantly, guests using nested
virtualization will, while nested guests are running,

• fail to complete live migration;

• fail to resume from suspend.

See the KVM documentation for more information on these limitations.

AMD SEV (Secure Encrypted Virtualization)

Secure Encrypted Virtualization (SEV) is a technology from AMD which enables the memory for a VM
to be encrypted with a key unique to the VM. SEV is particularly applicable to cloud computing since
it can reduce the amount of trust VMs need to place in the hypervisor and administrator of their host
system.

Nova supports SEV from the Train release onwards.

3.4. Maintenance 276

https://www.linux-kvm.org/page/Nested_Guests#Limitations
https://developer.amd.com/sev/

Nova Documentation, Release 22.4.1.dev41

Requirements for SEV

First the operator will need to ensure the following prerequisites are met:

• At least one of the Nova compute hosts must be AMD hardware capable of supporting SEV. It
is entirely possible for the compute plane to be a mix of hardware which can and cannot support
SEV, although as per the section on Permanent limitations below, the maximum number of simul-
taneously running guests with SEV will be limited by the quantity and quality of SEV-capable
hardware available.

• An appropriately configured software stack on those compute hosts, so that the various layers are
all SEV ready:

– kernel >= 4.16

– QEMU >= 2.12

– libvirt >= 4.5

– ovmf >= commit 75b7aa9528bd 2018-07-06

Deploying SEV-capable infrastructure

In order for users to be able to use SEV, the operator will need to perform the following steps:

• Ensure that sufficient memory is reserved on the SEV compute hosts for host-level services to
function correctly at all times. This is particularly important when hosting SEV-enabled guests,
since they pin pages in RAM, preventing any memory overcommit which may be in normal oper-
ation on other compute hosts.

It is recommended to achieve this by configuring an rlimit at the /machine.slice top-level
cgroup on the host, with all VMs placed inside that. (For extreme detail, see this discussion on
the spec.)

An alternative approach is to configure the reserved_host_memory_mb option in the
[DEFAULT] section of nova.conf, based on the expected maximum number of SEV guests
simultaneously running on the host, and the details provided in an earlier version of the AMD
SEV spec regarding memory region sizes, which cover how to calculate it correctly.

See the Memory Locking and Accounting section of the AMD SEV spec and previous discussion
for further details.

• A cloud administrator will need to define one or more SEV-enabled flavors as described in the
user guide, unless it is sufficient for users to define SEV-enabled images.

Additionally the cloud operator should consider the following optional steps:

• Configure the libvirt.num_memory_encrypted_guests option in nova.conf to rep-
resent the number of guests an SEV compute node can host concurrently with memory encrypted
at the hardware level. For example:

[libvirt]
num_memory_encrypted_guests = 15

This option exists because on AMD SEV-capable hardware, the memory controller has a fixed
number of slots for holding encryption keys, one per guest. For example, at the time of writing,
earlier generations of hardware only have 15 slots, thereby limiting the number of SEV guests

3.4. Maintenance 277

http://specs.openstack.org/openstack/nova-specs/specs/train/approved/amd-sev-libvirt-support.html#memory-reservation-solutions
https://review.opendev.org/#/c/641994/2/specs/train/approved/amd-sev-libvirt-support.rst@167
https://review.opendev.org/#/c/641994/2/specs/train/approved/amd-sev-libvirt-support.rst@167
https://specs.openstack.org/openstack/nova-specs/specs/stein/approved/amd-sev-libvirt-support.html#proposed-change
https://specs.openstack.org/openstack/nova-specs/specs/stein/approved/amd-sev-libvirt-support.html#proposed-change
http://specs.openstack.org/openstack/nova-specs/specs/train/approved/amd-sev-libvirt-support.html#memory-locking-and-accounting
https://review.opendev.org/#/c/641994/2/specs/train/approved/amd-sev-libvirt-support.rst@167
https://review.opendev.org/#/c/641994/2/specs/train/approved/amd-sev-libvirt-support.rst@167

Nova Documentation, Release 22.4.1.dev41

which can be run concurrently to 15. Nova needs to track how many slots are available and used
in order to avoid attempting to exceed that limit in the hardware.

At the time of writing (September 2019), work is in progress to allow QEMU and libvirt to expose
the number of slots available on SEV hardware; however until this is finished and released, it will
not be possible for Nova to programmatically detect the correct value.

So this configuration option serves as a stop-gap, allowing the cloud operator the option of pro-
viding this value manually. It may later be demoted to a fallback value for cases where the limit
cannot be detected programmatically, or even removed altogether when Novas minimum QEMU
version guarantees that it can always be detected.

Note: When deciding whether to use the default of None or manually impose a limit, operators
should carefully weigh the benefits vs. the risk. The benefits of using the default are a) immediate
convenience since nothing needs to be done now, and b) convenience later when upgrading com-
pute hosts to future versions of Nova, since again nothing will need to be done for the correct limit
to be automatically imposed. However the risk is that until auto-detection is implemented, users
may be able to attempt to launch guests with encrypted memory on hosts which have already
reached the maximum number of guests simultaneously running with encrypted memory. This
risk may be mitigated by other limitations which operators can impose, for example if the small-
est RAM footprint of any flavor imposes a maximum number of simultaneously running guests
which is less than or equal to the SEV limit.

• Configure libvirt.hw_machine_type on all SEV-capable compute hosts to include
x86_64=q35, so that all x86_64 images use the q35 machine type by default. (Currently Nova
defaults to the pc machine type for the x86_64 architecture, although it is expected that this will
change in the future.)

Changing the default from pc to q35 makes the creation and configuration of images by users
more convenient by removing the need for the hw_machine_type property to be set to q35
on every image for which SEV booting is desired.

Caution: Consider carefully whether to set this option. It is particularly important since
a limitation of the implementation prevents the user from receiving an error message with a
helpful explanation if they try to boot an SEV guest when neither this configuration option nor
the image property are set to select a q35 machine type.

On the other hand, setting it to q35 may have other undesirable side-effects on other images
which were expecting to be booted with pc, so it is suggested to set it on a single compute
node or aggregate, and perform careful testing of typical images before rolling out the setting
to all SEV-capable compute hosts.

3.4. Maintenance 278

https://bugs.launchpad.net/nova/+bug/1780138
https://bugs.launchpad.net/nova/+bug/1780138

Nova Documentation, Release 22.4.1.dev41

Launching SEV instances

Once an operator has covered the above steps, users can launch SEV instances either by requesting a
flavor for which the operator set the hw:mem_encryption extra spec to True, or by using an image
with the hw_mem_encryption property set to True.

These do not inherently cause a preference for SEV-capable hardware, but for now SEV is the only
way of fulfilling the requirement for memory encryption. However in the future, support for other
hardware-level guest memory encryption technology such as Intel MKTME may be added. If a guest
specifically needs to be booted using SEV rather than any other memory encryption technology, it is
possible to ensure this by adding trait:HW_CPU_X86_AMD_SEV=required to the flavor extra
specs or image properties.

In all cases, SEV instances can only be booted from images which have the hw_firmware_type
property set to uefi, and only when the machine type is set to q35. This can be set per image by setting
the image property hw_machine_type=q35, or per compute node by the operator via libvirt.
hw_machine_type as explained above.

Impermanent limitations

The following limitations may be removed in the future as the hardware, firmware, and various layers of
software receive new features:

• SEV-encrypted VMs cannot yet be live-migrated or suspended, therefore they will need to be fully
shut down before migrating off an SEV host, e.g. if maintenance is required on the host.

• SEV-encrypted VMs cannot contain directly accessible host devices (PCI passthrough). So for
example mdev vGPU support will not currently work. However technologies based on vhost-user
should work fine.

• The boot disk of SEV-encrypted VMs can only be virtio. (virtio-blk is typically the
default for libvirt disks on x86, but can also be explicitly set e.g. via the image property
hw_disk_bus=virtio). Valid alternatives for the disk include using hw_disk_bus=scsi
with hw_scsi_model=virtio-scsi , or hw_disk_bus=sata.

• QEMU and libvirt cannot yet expose the number of slots available for encrypted guests in the
memory controller on SEV hardware. Until this is implemented, it is not possible for Nova to
programmatically detect the correct value. As a short-term workaround, operators can optionally
manually specify the upper limit of SEV guests for each compute host, via the new libvirt.
num_memory_encrypted_guests configuration option described above.

Permanent limitations

The following limitations are expected long-term:

• The number of SEV guests allowed to run concurrently will always be limited. On the first gener-
ation of EPYC machines it will be limited to 15 guests; however this limit becomes much higher
with the second generation (Rome).

• The operating system running in an encrypted virtual machine must contain SEV support.

3.4. Maintenance 279

https://wiki.qemu.org/Features/VirtioVhostUser
https://www.redhat.com/archives/libvir-list/2019-January/msg00652.html
https://www.redhat.com/archives/libvir-list/2019-January/msg00652.html

Nova Documentation, Release 22.4.1.dev41

Non-limitations

For the sake of eliminating any doubt, the following actions are not expected to be limited when SEV
encryption is used:

• Cold migration or shelve, since they power off the VM before the operation at which point there
is no encrypted memory (although this could change since there is work underway to add support
for PMEM)

• Snapshot, since it only snapshots the disk

• nova evacuate (despite the name, more akin to resurrection than evacuation), since this is
only initiated when the VM is no longer running

• Attaching any volumes, as long as they do not require attaching via an IDE bus

• Use of spice / VNC / serial / RDP consoles

• VM guest virtual NUMA (a.k.a. vNUMA)

For further technical details, see the nova spec for SEV support.

Guest agent support

Use guest agents to enable optional access between compute nodes and guests through a socket, using
the QMP protocol.

To enable this feature, you must set hw_qemu_guest_agent=yes as a metadata parameter on the
image you wish to use to create the guest-agent-capable instances from. You can explicitly disable the
feature by setting hw_qemu_guest_agent=no in the image metadata.

KVM performance tweaks

The VHostNet kernel module improves network performance. To load the kernel module, run the fol-
lowing command as root:

modprobe vhost_net

Troubleshoot KVM

Trying to launch a new virtual machine instance fails with the ERROR state, and the following error
appears in the /var/log/nova/nova-compute.log file:

libvirtError: internal error no supported architecture for os type 'hvm'

This message indicates that the KVM kernel modules were not loaded.

If you cannot start VMs after installation without rebooting, the permissions might not be set correctly.
This can happen if you load the KVM module before you install nova-compute. To check whether
the group is set to kvm, run:

ls -l /dev/kvm

3.4. Maintenance 280

https://pmem.io/
https://www.suse.com/documentation/sles-12/singlehtml/article_vt_best_practices/article_vt_best_practices.html#sec.vt.best.perf.numa.vmguest
http://specs.openstack.org/openstack/nova-specs/specs/train/approved/amd-sev-libvirt-support.html
http://www.linux-kvm.org/page/VhostNet

Nova Documentation, Release 22.4.1.dev41

If it is not set to kvm, run:

udevadm trigger

QEMU

From the perspective of the Compute service, the QEMU hypervisor is very similar to the KVM hy-
pervisor. Both are controlled through libvirt, both support the same feature set, and all virtual machine
images that are compatible with KVM are also compatible with QEMU. The main difference is that
QEMU does not support native virtualization. Consequently, QEMU has worse performance than KVM
and is a poor choice for a production deployment.

The typical uses cases for QEMU are

• Running on older hardware that lacks virtualization support.

• Running the Compute service inside of a virtual machine for development or testing purposes,
where the hypervisor does not support native virtualization for guests.

To enable QEMU, add these settings to nova.conf:

compute_driver = libvirt.LibvirtDriver

[libvirt]
virt_type = qemu

For some operations you may also have to install the guestmount utility:

On Ubuntu:

apt-get install guestmount

On Red Hat Enterprise Linux, Fedora, or CentOS:

yum install libguestfs-tools

On openSUSE:

zypper install guestfs-tools

The QEMU hypervisor supports the following virtual machine image formats:

• Raw

• QEMU Copy-on-write (qcow2)

• VMware virtual machine disk format (vmdk)

3.4. Maintenance 281

Nova Documentation, Release 22.4.1.dev41

Xen via libvirt

OpenStack Compute supports the Xen Project Hypervisor (or Xen). Xen can be integrated with Open-
Stack Compute via the libvirt toolstack toolstack.

Installing Xen with libvirt

At this stage we recommend using the baseline that we use for the Xen Project OpenStack CI Loop,
which contains the most recent stability fixes to both Xen and libvirt.

Xen 4.5.1 (or newer) and libvirt 1.2.15 (or newer) contain the minimum required OpenStack improve-
ments for Xen. Although libvirt 1.2.15 works with Xen, libvirt 1.3.2 or newer is recommended. The
necessary Xen changes have also been backported to the Xen 4.4.3 stable branch. Please check with the
Linux and FreeBSD distros you are intending to use as Dom 0, whether the relevant version of Xen and
libvirt are available as installable packages.

The latest releases of Xen and libvirt packages that fulfil the above minimum requirements for the various
openSUSE distributions can always be found and installed from the Open Build Service Virtualization
project. To install these latest packages, add the Virtualization repository to your software management
stack and get the newest packages from there. More information about the latest Xen and libvirt packages
are available here and here.

Alternatively, it is possible to use the Ubuntu LTS 14.04 Xen Package 4.4.1-0ubuntu0.14.04.4 (Xen
4.4.1) and apply the patches outlined here. You can also use the Ubuntu LTS 14.04 libvirt package
1.2.2 libvirt_1.2.2-0ubuntu13.1.7 as baseline and update it to libvirt version 1.2.15, or 1.2.14 with the
patches outlined here applied. Note that this will require rebuilding these packages partly from source.

For further information and latest developments, you may want to consult the Xen Projects mailing lists
for OpenStack related issues and questions.

Configuring Xen with libvirt

To enable Xen via libvirt, ensure the following options are set in /etc/nova/nova.conf on all
hosts running the nova-compute service.

compute_driver = libvirt.LibvirtDriver

[libvirt]
virt_type = xen

Additional configuration options

Use the following as a guideline for configuring Xen for use in OpenStack:

1. Dom0 memory: Set it between 1GB and 4GB by adding the following parameter to the Xen Boot
Options in the grub.conf file.

dom0_mem=1024M

3.4. Maintenance 282

http://libvirt.org/
http://wiki.xen.org/wiki/Choice_of_Toolstacks
http://wiki.xen.org/wiki/Choice_of_Toolstacks
http://wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_Xen-Libvirt
https://xenproject.org/downloads/xen-project-archives/xen-project-4-5-series/xen-project-4-5-1/
http://libvirt.org/sources/
http://wiki.xenproject.org/wiki/Category:Host_Install
https://build.opensuse.org/project/show/Virtualization
https://build.opensuse.org/package/show/Virtualization/xen
https://build.opensuse.org/package/show/Virtualization/libvirt
http://wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_Xen-Libvirt#Baseline
http://wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_Xen-Libvirt#Baseline
http://lists.xenproject.org/cgi-bin/mailman/listinfo/wg-openstack
http://lists.xenproject.org/cgi-bin/mailman/listinfo/wg-openstack
http://xenbits.xen.org/docs/unstable/misc/xen-command-line.html

Nova Documentation, Release 22.4.1.dev41

Note: The above memory limits are suggestions and should be based on the available compute
host resources. For large hosts that will run many hundreds of instances, the suggested values may
need to be higher.

Note: The location of the grub.conf file depends on the host Linux distribution that you are using.
Please refer to the distro documentation for more details (see Dom 0 for more resources).

2. Dom0 vcpus: Set the virtual CPUs to 4 and employ CPU pinning by adding the following param-
eters to the Xen Boot Options in the grub.conf file.

dom0_max_vcpus=4 dom0_vcpus_pin

Note: Note that the above virtual CPU limits are suggestions and should be based on the available
compute host resources. For large hosts, that will run many hundred of instances, the suggested
values may need to be higher.

3. PV vs HVM guests: A Xen virtual machine can be paravirtualized (PV) or hardware virtualized
(HVM). The virtualization mode determines the interaction between Xen, Dom 0, and the guest
VMs kernel. PV guests are aware of the fact that they are virtualized and will co-operate with
Xen and Dom 0. The choice of virtualization mode determines performance characteristics. For
an overview of Xen virtualization modes, see Xen Guest Types.

In OpenStack, customer VMs may run in either PV or HVM mode. The mode is a property of the
operating system image used by the VM, and is changed by adjusting the image metadata stored
in the Image service. The image metadata can be changed using the openstack commands.

To choose one of the HVM modes (HVM, HVM with PV Drivers or PVHVM), use openstack
to set the vm_mode property to hvm.

To choose one of the HVM modes (HVM, HVM with PV Drivers or PVHVM), use one of the
following two commands:

$ openstack image set --property vm_mode=hvm IMAGE

To chose PV mode, which is supported by NetBSD, FreeBSD and Linux, use one of the following
two commands

$ openstack image set --property vm_mode=xen IMAGE

Note: The default for virtualization mode in nova is PV mode.

4. Image formats: Xen supports raw, qcow2 and vhd image formats. For more information on
image formats, refer to the OpenStack Virtual Image Guide and the Storage Options Guide on the
Xen Project Wiki.

5. Image metadata: In addition to the vm_mode property discussed above, the
hypervisor_type property is another important component of the image metadata, especially

3.4. Maintenance 283

http://wiki.xenproject.org/wiki/Category:Host_Install
http://xenbits.xen.org/docs/unstable/misc/xen-command-line.html
http://wiki.xen.org/wiki/Xen_Overview#Guest_Types
https://docs.openstack.org/image-guide/introduction.html
http://wiki.xenproject.org/wiki/Storage_options
http://wiki.xenproject.org/wiki/Storage_options

Nova Documentation, Release 22.4.1.dev41

if your cloud contains mixed hypervisor compute nodes. Setting the hypervisor_type prop-
erty allows the nova scheduler to select a compute node running the specified hypervisor when
launching instances of the image. Image metadata such as vm_mode, hypervisor_type,
architecture, and others can be set when importing the image to the Image service. The metadata
can also be changed using the openstack commands:

$ openstack image set --property hypervisor_type=xen vm_mode=hvm IMAGE

For more information on image metadata, refer to the OpenStack Virtual Image Guide.

6. Libguestfs file injection: OpenStack compute nodes can use libguestfs to inject files into an in-
stances image prior to launching the instance. libguestfs uses libvirts QEMU driver to start a qemu
process, which is then used to inject files into the image. When using libguestfs for file injection,
the compute node must have the libvirt qemu driver installed, in addition to the Xen driver. In
RPM based distributions, the qemu driver is provided by the libvirt-daemon-qemu pack-
age. In Debian and Ubuntu, the qemu driver is provided by the libvirt-bin package.

Troubleshoot Xen with libvirt

Important log files: When an instance fails to start, or when you come across other issues, you should
first consult the following log files:

• /var/log/nova/nova-compute.log

• /var/log/libvirt/libxl/libxl-driver.log,

• /var/log/xen/qemu-dm-${instancename}.log,

• /var/log/xen/xen-hotplug.log,

• /var/log/xen/console/guest-${instancename} (to enable see Enabling Guest
Console Logs)

• Host Console Logs (read Enabling and Retrieving Host Console Logs).

If you need further help you can ask questions on the mailing lists xen-users@, wg-openstack@ or raise
a bug against Xen.

Known issues

• Live migration: Live migration is supported in the libvirt libxl driver since version 1.2.5. How-
ever, there were a number of issues when used with OpenStack, in particular with libvirt migration
protocol compatibility. It is worth mentioning that libvirt 1.3.0 addresses most of these issues. We
do however recommend using libvirt 1.3.2, which is fully supported and tested as part of the
Xen Project CI loop. It addresses live migration monitoring related issues and adds support for
peer-to-peer migration mode, which nova relies on.

• Live migration monitoring: On compute nodes running Kilo or later, live migration monitoring
relies on libvirt APIs that are only implemented from libvirt version 1.3.1 onwards. When at-
tempting to live migrate, the migration monitoring thread would crash and leave the instance state
as MIGRATING. If you experience such an issue and you are running on a version released before
libvirt 1.3.1, make sure you backport libvirt commits ad71665 and b7b4391 from upstream.

3.4. Maintenance 284

https://docs.openstack.org/image-guide/introduction.html#image-metadata
http://libguestfs.org/
http://wiki.xen.org/wiki/Reporting_Bugs_against_Xen#Guest_console_logs
http://wiki.xen.org/wiki/Reporting_Bugs_against_Xen#Guest_console_logs
http://wiki.xen.org/wiki/Reporting_Bugs_against_Xen#Host_console_logs
http://lists.xenproject.org/cgi-bin/mailman/listinfo/xen-users
http://lists.xenproject.org/cgi-bin/mailman/listinfo/wg-openstack
http://wiki.xen.org/wiki/Reporting_Bugs_against_Xen
http://wiki.xen.org/wiki/Reporting_Bugs_against_Xen

Nova Documentation, Release 22.4.1.dev41

Additional information and resources

The following section contains links to other useful resources.

• wiki.xenproject.org/wiki/OpenStack - OpenStack Documentation on the Xen Project wiki

• wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_Xen-Libvirt - Information about the Xen
Project OpenStack CI Loop

• wiki.xenproject.org/wiki/OpenStack_via_DevStack - How to set up OpenStack via DevStack

• Mailing lists for OpenStack related issues and questions - This list is dedicated to coordinating
bug fixes and issues across Xen, libvirt and OpenStack and the CI loop.

LXC (Linux containers)

LXC (also known as Linux containers) is a virtualization technology that works at the operating system
level. This is different from hardware virtualization, the approach used by other hypervisors such as
KVM, Xen, and VMware. LXC (as currently implemented using libvirt in the Compute service) is
not a secure virtualization technology for multi-tenant environments (specifically, containers may affect
resource quotas for other containers hosted on the same machine). Additional containment technologies,
such as AppArmor, may be used to provide better isolation between containers, although this is not the
case by default. For all these reasons, the choice of this virtualization technology is not recommended
in production.

If your compute hosts do not have hardware support for virtualization, LXC will likely provide better
performance than QEMU. In addition, if your guests must access specialized hardware, such as GPUs,
this might be easier to achieve with LXC than other hypervisors.

Note: Some OpenStack Compute features might be missing when running with LXC as the hypervisor.
See the hypervisor support matrix for details.

To enable LXC, ensure the following options are set in /etc/nova/nova.conf on all hosts running
the nova-compute service.

compute_driver = libvirt.LibvirtDriver

[libvirt]
virt_type = lxc

On Ubuntu, enable LXC support in OpenStack by installing the nova-compute-lxc package.

VMware vSphere

Introduction

OpenStack Compute supports the VMware vSphere product family and enables access to advanced
features such as vMotion, High Availability, and Dynamic Resource Scheduling (DRS).

This section describes how to configure VMware-based virtual machine images for launch. The VMware
driver supports vCenter version 5.5.0 and later.

3.4. Maintenance 285

http://wiki.xenproject.org/wiki/OpenStack
http://wiki.xenproject.org/wiki/OpenStack_CI_Loop_for_Xen-Libvirt
http://wiki.xenproject.org/wiki/OpenStack_via_DevStack
http://lists.xenproject.org/cgi-bin/mailman/listinfo/wg-openstack
http://wiki.openstack.org/HypervisorSupportMatrix

Nova Documentation, Release 22.4.1.dev41

The VMware vCenter driver enables the nova-compute service to communicate with a VMware
vCenter server that manages one or more ESX host clusters. The driver aggregates the ESX hosts in
each cluster to present one large hypervisor entity for each cluster to the Compute scheduler. Because
individual ESX hosts are not exposed to the scheduler, Compute schedules to the granularity of clusters
and vCenter uses DRS to select the actual ESX host within the cluster. When a virtual machine makes
its way into a vCenter cluster, it can use all vSphere features.

The following sections describe how to configure the VMware vCenter driver.

High-level architecture

The following diagram shows a high-level view of the VMware driver architecture:

VMware driver architecture

As the figure shows, the OpenStack Compute Scheduler sees three hypervisors that each correspond
to a cluster in vCenter. nova-compute contains the VMware driver. You can run with multiple
nova-compute services. It is recommended to run with one nova-compute service per ESX clus-
ter thus ensuring that while Compute schedules at the granularity of the nova-compute service it is
also in effect able to schedule at the cluster level. In turn the VMware driver inside nova-compute
interacts with the vCenter APIs to select an appropriate ESX host within the cluster. Internally, vCenter
uses DRS for placement.

3.4. Maintenance 286

Nova Documentation, Release 22.4.1.dev41

The VMware vCenter driver also interacts with the Image service to copy VMDK images from the
Image service back-end store. The dotted line in the figure represents VMDK images being copied from
the OpenStack Image service to the vSphere data store. VMDK images are cached in the data store so
the copy operation is only required the first time that the VMDK image is used.

After OpenStack boots a VM into a vSphere cluster, the VM becomes visible in vCenter and can access
vSphere advanced features. At the same time, the VM is visible in the OpenStack dashboard and you
can manage it as you would any other OpenStack VM. You can perform advanced vSphere operations
in vCenter while you configure OpenStack resources such as VMs through the OpenStack dashboard.

The figure does not show how networking fits into the architecture. For details, see Networking with
VMware vSphere.

Configuration overview

To get started with the VMware vCenter driver, complete the following high-level steps:

1. Configure vCenter. See Prerequisites and limitations.

2. Configure the VMware vCenter driver in the nova.conf file. See VMware vCenter driver.

3. Load desired VMDK images into the Image service. See Images with VMware vSphere.

4. Configure the Networking service (neutron). See Networking with VMware vSphere.

Prerequisites and limitations

Use the following list to prepare a vSphere environment that runs with the VMware vCenter driver:

Copying VMDK files In vSphere 5.1, copying large image files (for example, 12 GB and greater) from
the Image service can take a long time. To improve performance, VMware recommends that you
upgrade to VMware vCenter Server 5.1 Update 1 or later. For more information, see the Release
Notes.

DRS For any cluster that contains multiple ESX hosts, enable DRS and enable fully automated place-
ment.

Shared storage Only shared storage is supported and data stores must be shared among all hosts in a
cluster. It is recommended to remove data stores not intended for OpenStack from clusters being
configured for OpenStack.

Clusters and data stores Do not use OpenStack clusters and data stores for other purposes. If you do,
OpenStack displays incorrect usage information.

Networking The networking configuration depends on the desired networking model. See Networking
with VMware vSphere.

Security groups If you use the VMware driver with OpenStack Networking and the NSX plug-in,
security groups are supported.

Note: The NSX plug-in is the only plug-in that is validated for vSphere.

VNC The port range 5900 - 6105 (inclusive) is automatically enabled for VNC connections on every
ESX host in all clusters under OpenStack control.

3.4. Maintenance 287

https://www.vmware.com/support/vsphere5/doc/vsphere-vcenter-server-51u1-release-notes.html#resolvedissuescimapi
https://www.vmware.com/support/vsphere5/doc/vsphere-vcenter-server-51u1-release-notes.html#resolvedissuescimapi

Nova Documentation, Release 22.4.1.dev41

Note: In addition to the default VNC port numbers (5900 to 6000) specified in the above docu-
ment, the following ports are also used: 6101, 6102, and 6105.

You must modify the ESXi firewall configuration to allow the VNC ports. Additionally, for the
firewall modifications to persist after a reboot, you must create a custom vSphere Installation
Bundle (VIB) which is then installed onto the running ESXi host or added to a custom image
profile used to install ESXi hosts. For details about how to create a VIB for persisting the firewall
configuration modifications, see Knowledge Base.

Note: The VIB can be downloaded from openstack-vmwareapi-team/Tools.

To use multiple vCenter installations with OpenStack, each vCenter must be assigned to a separate
availability zone. This is required as the OpenStack Block Storage VMDK driver does not currently
work across multiple vCenter installations.

VMware vCenter service account

OpenStack integration requires a vCenter service account with the following minimum permissions.
Apply the permissions to the Datacenter root object, and select the Propagate to Child Objects
option.

Table 4: vCenter permissions tree

All Privi-
leges

Datastore
Allocate space
Browse datastore
Low level file operation
Remove file

Extension
Register extension

Folder
Create folder

Host
Configuration

Maintenance
Network configuration
Storage partition configuration

Network
Assign network

Resource
Assign virtual machine to resource
pool
Migrate powered off virtual machine
Migrate powered on virtual machine

continues on next page

3.4. Maintenance 288

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2007381
https://github.com/openstack-vmwareapi-team/Tools

Nova Documentation, Release 22.4.1.dev41

Table 4 – continued from previous page
All Privi-
leges

Virtual
Machine

Configuration
Add existing disk
Add new disk
Add or remove device
Advanced
CPU count
Change resource
Disk change tracking
Host USB device
Memory
Modify device settings
Raw device
Remove disk
Rename
Set annotation
Swapfile placement

Interaction
Configure CD media
Power Off
Power On
Reset
Suspend

Inventory
Create from existing
Create new
Move
Remove
Unregister

Provisioning
Clone virtual machine
Customize
Create template from virtual ma-
chine

Snapshot management
Create snapshot
Remove snapshot

Profile-
driven
storage

Profile-driven storage view
Sessions

Validate session
View and stop sessions

vApp
continues on next page

3.4. Maintenance 289

Nova Documentation, Release 22.4.1.dev41

Table 4 – continued from previous page
All Privi-
leges

Export
Import

VMware vCenter driver

Use the VMware vCenter driver (VMwareVCDriver) to connect OpenStack Compute with vCenter. This
recommended configuration enables access through vCenter to advanced vSphere features like vMotion,
High Availability, and Dynamic Resource Scheduling (DRS).

VMwareVCDriver configuration options

Add the following VMware-specific configuration options to the nova.conf file:

[DEFAULT]
compute_driver = vmwareapi.VMwareVCDriver

[vmware]
host_ip = <vCenter hostname or IP address>
host_username = <vCenter username>
host_password = <vCenter password>
cluster_name = <vCenter cluster name>
datastore_regex = <optional datastore regex>

Note:

• Clusters: The vCenter driver can support only a single cluster. Clusters and data stores used by
the vCenter driver should not contain any VMs other than those created by the driver.

• Data stores: The datastore_regex setting specifies the data stores to use with Compute. For
example, datastore_regex="nas.*" selects all the data stores that have a name starting
with nas. If this line is omitted, Compute uses the first data store returned by the vSphere API.
It is recommended not to use this field and instead remove data stores that are not intended for
OpenStack.

• Reserved host memory: The reserved_host_memory_mb option value is 512 MB by de-
fault. However, VMware recommends that you set this option to 0 MB because the vCenter driver
reports the effective memory available to the virtual machines.

• The vCenter driver generates instance name by instance ID. Instance name template is ignored.

• The minimum supported vCenter version is 5.5.0. Starting in the OpenStack Ocata release any
version lower than 5.5.0 will be logged as a warning. In the OpenStack Pike release this will be
enforced.

A nova-compute service can control one or more clusters containing multiple ESXi hosts, making
nova-compute a critical service from a high availability perspective. Because the host that runs
nova-compute can fail while the vCenter and ESX still run, you must protect the nova-compute
service against host failures.

3.4. Maintenance 290

Nova Documentation, Release 22.4.1.dev41

Note: Many nova.conf options are relevant to libvirt but do not apply to this driver.

Images with VMware vSphere

The vCenter driver supports images in the VMDK format. Disks in this format can be obtained from
VMware Fusion or from an ESX environment. It is also possible to convert other formats, such as
qcow2, to the VMDK format using the qemu-img utility. After a VMDK disk is available, load it into
the Image service. Then, you can use it with the VMware vCenter driver. The following sections provide
additional details on the supported disks and the commands used for conversion and upload.

Supported image types

Upload images to the OpenStack Image service in VMDK format. The following VMDK disk types are
supported:

• VMFS Flat Disks (includes thin, thick, zeroedthick, and eagerzeroedthick). Note that once
a VMFS thin disk is exported from VMFS to a non-VMFS location, like the OpenStack Image
service, it becomes a preallocated flat disk. This impacts the transfer time from the Image service
to the data store when the full preallocated flat disk, rather than the thin disk, must be transferred.

• Monolithic Sparse disks. Sparse disks get imported from the Image service into ESXi
as thin provisioned disks. Monolithic Sparse disks can be obtained from VMware Fusion or can
be created by converting from other virtual disk formats using the qemu-img utility.

• Stream-optimized disks. Stream-optimized disks are compressed sparse disks. They can
be obtained from VMware vCenter/ESXi when exporting vm to ovf/ova template.

The following table shows the vmware_disktype property that applies to each of the supported
VMDK disk types:

Table 5: OpenStack Image service disk type settings
vmware_disktype property VMDK disk type
sparse Monolithic Sparse
thin VMFS flat, thin provisioned
preallocated (default) VMFS flat, thick/zeroedthick/eagerzeroedthick
streamOptimized Compressed Sparse

The vmware_disktype property is set when an image is loaded into the Image service. For ex-
ample, the following command creates a Monolithic Sparse image by setting vmware_disktype to
sparse:

$ openstack image create \
--disk-format vmdk \
--container-format bare \
--property vmware_disktype="sparse" \
--property vmware_ostype="ubuntu64Guest" \
ubuntu-sparse < ubuntuLTS-sparse.vmdk

3.4. Maintenance 291

Nova Documentation, Release 22.4.1.dev41

Note: Specifying thin does not provide any advantage over preallocatedwith the current version
of the driver. Future versions might restore the thin properties of the disk after it is downloaded to a
vSphere data store.

The following table shows the vmware_ostype property that applies to each of the supported guest
OS:

Note: If a glance image has a vmware_ostype property which does not correspond to a valid
VMware guestId, VM creation will fail, and a warning will be logged.

Table 6: OpenStack Image service OS type settings

vmware_ostype property Retail Name
asianux3_64Guest Asianux Server 3 (64 bit)
asianux3Guest Asianux Server 3
asianux4_64Guest Asianux Server 4 (64 bit)
asianux4Guest Asianux Server 4
darwin64Guest Darwin 64 bit
darwinGuest Darwin
debian4_64Guest Debian GNU/Linux 4 (64 bit)
debian4Guest Debian GNU/Linux 4
debian5_64Guest Debian GNU/Linux 5 (64 bit)
debian5Guest Debian GNU/Linux 5
dosGuest MS-DOS
freebsd64Guest FreeBSD x64
freebsdGuest FreeBSD
mandrivaGuest Mandriva Linux
netware4Guest Novell NetWare 4
netware5Guest Novell NetWare 5.1
netware6Guest Novell NetWare 6.x
nld9Guest Novell Linux Desktop 9
oesGuest Open Enterprise Server
openServer5Guest SCO OpenServer 5
openServer6Guest SCO OpenServer 6
opensuse64Guest openSUSE (64 bit)
opensuseGuest openSUSE
os2Guest OS/2
other24xLinux64Guest Linux 2.4x Kernel (64 bit) (experimental)
other24xLinuxGuest Linux 2.4x Kernel
other26xLinux64Guest Linux 2.6x Kernel (64 bit) (experimental)
other26xLinuxGuest Linux 2.6x Kernel (experimental)
otherGuest Other Operating System
otherGuest64 Other Operating System (64 bit) (experimental)
otherLinux64Guest Linux (64 bit) (experimental)
otherLinuxGuest Other Linux
redhatGuest Red Hat Linux 2.1
rhel2Guest Red Hat Enterprise Linux 2

continues on next page

3.4. Maintenance 292

Nova Documentation, Release 22.4.1.dev41

Table 6 – continued from previous page
vmware_ostype property Retail Name
rhel3_64Guest Red Hat Enterprise Linux 3 (64 bit)
rhel3Guest Red Hat Enterprise Linux 3
rhel4_64Guest Red Hat Enterprise Linux 4 (64 bit)
rhel4Guest Red Hat Enterprise Linux 4
rhel5_64Guest Red Hat Enterprise Linux 5 (64 bit) (experimental)
rhel5Guest Red Hat Enterprise Linux 5
rhel6_64Guest Red Hat Enterprise Linux 6 (64 bit)
rhel6Guest Red Hat Enterprise Linux 6
sjdsGuest Sun Java Desktop System
sles10_64Guest SUSE Linux Enterprise Server 10 (64 bit) (experimental)
sles10Guest SUSE Linux Enterprise Server 10
sles11_64Guest SUSE Linux Enterprise Server 11 (64 bit)
sles11Guest SUSE Linux Enterprise Server 11
sles64Guest SUSE Linux Enterprise Server 9 (64 bit)
slesGuest SUSE Linux Enterprise Server 9
solaris10_64Guest Solaris 10 (64 bit) (experimental)
solaris10Guest Solaris 10 (32 bit) (experimental)
solaris6Guest Solaris 6
solaris7Guest Solaris 7
solaris8Guest Solaris 8
solaris9Guest Solaris 9
suse64Guest SUSE Linux (64 bit)
suseGuest SUSE Linux
turboLinux64Guest Turbolinux (64 bit)
turboLinuxGuest Turbolinux
ubuntu64Guest Ubuntu Linux (64 bit)
ubuntuGuest Ubuntu Linux
unixWare7Guest SCO UnixWare 7
win2000AdvServGuest Windows 2000 Advanced Server
win2000ProGuest Windows 2000 Professional
win2000ServGuest Windows 2000 Server
win31Guest Windows 3.1
win95Guest Windows 95
win98Guest Windows 98
windows7_64Guest Windows 7 (64 bit)
windows7Guest Windows 7
windows7Server64Guest Windows Server 2008 R2 (64 bit)
winLonghorn64Guest Windows Longhorn (64 bit) (experimental)
winLonghornGuest Windows Longhorn (experimental)
winMeGuest Windows Millennium Edition
winNetBusinessGuest Windows Small Business Server 2003
winNetDatacenter64Guest Windows Server 2003, Datacenter Edition (64 bit) (experimental)
winNetDatacenterGuest Windows Server 2003, Datacenter Edition
winNetEnterprise64Guest Windows Server 2003, Enterprise Edition (64 bit)
winNetEnterpriseGuest Windows Server 2003, Enterprise Edition
winNetStandard64Guest Windows Server 2003, Standard Edition (64 bit)
winNetEnterpriseGuest Windows Server 2003, Enterprise Edition

continues on next page

3.4. Maintenance 293

Nova Documentation, Release 22.4.1.dev41

Table 6 – continued from previous page
vmware_ostype property Retail Name
winNetStandard64Guest Windows Server 2003, Standard Edition (64 bit)
winNetStandardGuest Windows Server 2003, Standard Edition
winNetWebGuest Windows Server 2003, Web Edition
winNTGuest Windows NT 4
winVista64Guest Windows Vista (64 bit)
winVistaGuest Windows Vista
winXPHomeGuest Windows XP Home Edition
winXPPro64Guest Windows XP Professional Edition (64 bit)
winXPProGuest Windows XP Professional

Convert and load images

Using the qemu-img utility, disk images in several formats (such as, qcow2) can be converted to the
VMDK format.

For example, the following command can be used to convert a qcow2 Ubuntu Trusty cloud image:

$ qemu-img convert -f qcow2 ~/Downloads/trusty-server-cloudimg-amd64-disk1.
↪→img \
-O vmdk trusty-server-cloudimg-amd64-disk1.vmdk

VMDK disks converted through qemu-img are always monolithic sparse VMDK disks with an IDE
adapter type. Using the previous example of the Ubuntu Trusty image after the qemu-img conversion,
the command to upload the VMDK disk should be something like:

$ openstack image create \
--container-format bare --disk-format vmdk \
--property vmware_disktype="sparse" \
--property vmware_adaptertype="ide" \
trusty-cloud < trusty-server-cloudimg-amd64-disk1.vmdk

Note that the vmware_disktype is set to sparse and the vmware_adaptertype is set to ide
in the previous command.

If the image did not come from the qemu-img utility, the vmware_disktype and
vmware_adaptertype might be different. To determine the image adapter type from an image
file, use the following command and look for the ddb.adapterType= line:

$ head -20 <vmdk file name>

Assuming a preallocated disk type and an iSCSI lsiLogic adapter type, the following command uploads
the VMDK disk:

$ openstack image create \
--disk-format vmdk \
--container-format bare \
--property vmware_adaptertype="lsiLogic" \
--property vmware_disktype="preallocated" \
--property vmware_ostype="ubuntu64Guest" \
ubuntu-thick-scsi < ubuntuLTS-flat.vmdk

3.4. Maintenance 294

http://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img

Nova Documentation, Release 22.4.1.dev41

Currently, OS boot VMDK disks with an IDE adapter type cannot be attached to a virtual SCSI con-
troller and likewise disks with one of the SCSI adapter types (such as, busLogic, lsiLogic, lsiLogicsas,
paraVirtual) cannot be attached to the IDE controller. Therefore, as the previous examples show, it is
important to set the vmware_adaptertype property correctly. The default adapter type is lsiLogic,
which is SCSI, so you can omit the vmware_adaptertype property if you are certain that the image
adapter type is lsiLogic.

Tag VMware images

In a mixed hypervisor environment, OpenStack Compute uses the hypervisor_type tag to match
images to the correct hypervisor type. For VMware images, set the hypervisor type to vmware. Other
valid hypervisor types include: hyperv, ironic, lxc, qemu, uml, and xen. Note that qemu is used
for both QEMU and KVM hypervisor types.

$ openstack image create \
--disk-format vmdk \
--container-format bare \
--property vmware_adaptertype="lsiLogic" \
--property vmware_disktype="preallocated" \
--property hypervisor_type="vmware" \
--property vmware_ostype="ubuntu64Guest" \
ubuntu-thick-scsi < ubuntuLTS-flat.vmdk

Optimize images

Monolithic Sparse disks are considerably faster to download but have the overhead of an additional
conversion step. When imported into ESX, sparse disks get converted to VMFS flat thin provisioned
disks. The download and conversion steps only affect the first launched instance that uses the sparse
disk image. The converted disk image is cached, so subsequent instances that use this disk image can
simply use the cached version.

To avoid the conversion step (at the cost of longer download times) consider converting sparse disks to
thin provisioned or preallocated disks before loading them into the Image service.

Use one of the following tools to pre-convert sparse disks.

vSphere CLI tools Sometimes called the remote CLI or rCLI.

Assuming that the sparse disk is made available on a data store accessible by an ESX host, the
following command converts it to preallocated format:

vmkfstools --server=ip_of_some_ESX_host -i \
/vmfs/volumes/datastore1/sparse.vmdk \
/vmfs/volumes/datastore1/converted.vmdk

Note that the vifs tool from the same CLI package can be used to upload the disk to be converted.
The vifs tool can also be used to download the converted disk if necessary.

vmkfstools directly on the ESX host If the SSH service is enabled on an ESX host, the sparse disk
can be uploaded to the ESX data store through scp and the vmkfstools local to the ESX host can
use used to perform the conversion. After you log in to the host through ssh, run this command:

3.4. Maintenance 295

Nova Documentation, Release 22.4.1.dev41

vmkfstools -i /vmfs/volumes/datastore1/sparse.vmdk /vmfs/volumes/
↪→datastore1/converted.vmdk

vmware-vdiskmanager vmware-vdiskmanager is a utility that comes bundled with VMware
Fusion and VMware Workstation. The following example converts a sparse disk to preallocated
format:

'/Applications/VMware Fusion.app/Contents/Library/vmware-vdiskmanager
↪→' -r sparse.vmdk -t 4 converted.vmdk

In the previous cases, the converted vmdk is actually a pair of files:

• The descriptor file converted.vmdk.

• The actual virtual disk data file converted-flat.vmdk.

The file to be uploaded to the Image service is converted-flat.vmdk.

Image handling

The ESX hypervisor requires a copy of the VMDK file in order to boot up a virtual machine. As a result,
the vCenter OpenStack Compute driver must download the VMDK via HTTP from the Image service
to a data store that is visible to the hypervisor. To optimize this process, the first time a VMDK file is
used, it gets cached in the data store. A cached image is stored in a folder named after the image ID.
Subsequent virtual machines that need the VMDK use the cached version and dont have to copy the file
again from the Image service.

Even with a cached VMDK, there is still a copy operation from the cache location to the hypervisor file
directory in the shared data store. To avoid this copy, boot the image in linked_clone mode. To learn
how to enable this mode, see Configuration reference.

Note: You can also use the img_linked_clone property (or legacy property
vmware_linked_clone) in the Image service to override the linked_clone mode on a per-image
basis.

If spawning a virtual machine image from ISO with a VMDK disk, the image is created and attached to
the virtual machine as a blank disk. In that case img_linked_clone property for the image is just
ignored.

If multiple compute nodes are running on the same host, or have a shared file system, you can en-
able them to use the same cache folder on the back-end data store. To configure this action, set the
cache_prefix option in the nova.conf file. Its value stands for the name prefix of the folder
where cached images are stored.

Note: This can take effect only if compute nodes are running on the same host, or have a shared file
system.

You can automatically purge unused images after a specified period of time. To configure this action, set
these options in the :oslo.config:group‘image_cache‘ section in the nova.conf file:

• image_cache.remove_unused_base_images

3.4. Maintenance 296

Nova Documentation, Release 22.4.1.dev41

• image_cache.remove_unused_original_minimum_age_seconds

Networking with VMware vSphere

The VMware driver supports networking with the Networking Service (neutron). Depending on your
installation, complete these configuration steps before you provision VMs:

1. Before provisioning VMs, create a port group with the same name as the vmware.
integration_bridge value in nova.conf (default is br-int). All VM NICs are attached
to this port group for management by the OpenStack Networking plug-in.

Volumes with VMware vSphere

The VMware driver supports attaching volumes from the Block Storage service. The VMware VMDK
driver for OpenStack Block Storage is recommended and should be used for managing volumes based
on vSphere data stores. For more information about the VMware VMDK driver, see Cinders manual on
the VMDK Driver (TODO: this has not yet been imported and published). Also an iSCSI volume driver
provides limited support and can be used only for attachments.

Configuration reference

To customize the VMware driver, use the configuration option settings below.

3.4. Maintenance 297

Nova Documentation, Release 22.4.1.dev41

Table 7: Description of VMware configuration options
Configuration option = Default value Description
[vmware]
api_retry_count = 10 (Integer) Number of times VMware vCenter

server API must be retried on connection failures,
e.g. socket error, etc.

ca_file = None (String) Specifies the CA bundle file to be used
in verifying the vCenter server certificate.

cache_prefix = None (String) This option adds a prefix to the folder
where cached images are stored
This is not the full path - just a folder prefix. This
should only be used when a datastore cache is
shared between compute nodes.

Note: This should only be used when the com-
pute nodes are running on same host or they have
a shared file system.

Possible values:
• Any string representing the cache prefix to

the folder

cluster_name = None (String) Name of a VMware Cluster ComputeRe-
source.

console_delay_seconds = None (Integer) Set this value if affected by an in-
creased network latency causing repeated char-
acters when typing in a remote console.

datastore_regex = None (String) Regular expression pattern to match the
name of datastore.
The datastore_regex setting specifies the datas-
tores to use with Compute. For example, data-
store_regex=nas.* selects all the data stores that
have a name starting with nas.

Note: If no regex is given, it just picks the data-
store with the most freespace.

Possible values:
• Any matching regular expression to a data-

store must be given

host_ip = None (String) Hostname or IP address for connection
to VMware vCenter host.

host_password = None (String) Password for connection to VMware
vCenter host.

host_port = 443 (Port number) Port for connection to VMware
vCenter host.

host_username = None (String) Username for connection to VMware
vCenter host.

insecure = False (Boolean) If true, the vCenter server certificate is
not verified. If false, then the default CA trust-
store is used for verification.
Related options:

• ca_file: This option is ignored if ca_file is
set.

integration_bridge = None (String) This option should be configured only
when using the NSX-MH Neutron plugin. This
is the name of the integration bridge on the ESXi
server or host. This should not be set for any
other Neutron plugin. Hence the default value
is not set.
Possible values:

• Any valid string representing the name of
the integration bridge

maximum_objects = 100 (Integer) This option specifies the limit on the
maximum number of objects to return in a sin-
gle result.
A positive value will cause the operation to sus-
pend the retrieval when the count of objects
reaches the specified limit. The server may still
limit the count to something less than the con-
figured value. Any remaining objects may be re-
trieved with additional requests.

pbm_default_policy = None (String) This option specifies the default policy
to be used.
If pbm_enabled is set and there is no defined stor-
age policy for the specific request, then this pol-
icy will be used.
Possible values:

• Any valid storage policy such as VSAN
default storage policy

Related options:
• pbm_enabled

pbm_enabled = False (Boolean) This option enables or disables storage
policy based placement of instances.
Related options:

• pbm_default_policy

pbm_wsdl_location = None (String) This option specifies the PBM service
WSDL file location URL.
Setting this will disable storage policy based
placement of instances.
Possible values:

• Any valid file path e.g file:///opt/SDK/
spbm/wsdl/pbmService.wsdl

serial_port_proxy_uri = None (String) Identifies a proxy service that provides
network access to the serial_port_service_uri.
Possible values:

• Any valid URI
Related options: This option is ignored if se-
rial_port_service_uri is not specified.

• serial_port_service_uri

serial_port_service_uri = None (String) Identifies the remote system where the
serial port traffic will be sent.
This option adds a virtual serial port which sends
console output to a configurable service URI. At
the service URI address there will be virtual se-
rial port concentrator that will collect console
logs. If this is not set, no serial ports will be
added to the created VMs.
Possible values:

• Any valid URI

task_poll_interval = 0.5 (Floating point) Time interval in seconds to poll
remote tasks invoked on VMware VC server.

use_linked_clone = True (Boolean) This option enables/disables the use of
linked clone.
The ESX hypervisor requires a copy of the
VMDK file in order to boot up a virtual machine.
The compute driver must download the VMDK
via HTTP from the OpenStack Image service to
a datastore that is visible to the hypervisor and
cache it. Subsequent virtual machines that need
the VMDK use the cached version and dont have
to copy the file again from the OpenStack Image
service.
If set to false, even with a cached VMDK, there
is still a copy operation from the cache location
to the hypervisor file directory in the shared data-
store. If set to true, the above copy operation is
avoided as it creates copy of the virtual machine
that shares virtual disks with its parent VM.

wsdl_location = None (String) This option specifies VIM Service
WSDL Location
If vSphere API versions 5.1 and later is being
used, this section can be ignored. If version is
less than 5.1, WSDL files must be hosted locally
and their location must be specified in the above
section.
Optional over-ride to default location for bug
work-arounds.
Possible values:

• http://<server>/vimService.wsdl
• file:///opt/stack/vmware/SDK/wsdl/

vim25/vimService.wsdl

3.4. Maintenance 298

file:///opt/SDK/spbm/wsdl/pbmService.wsdl
file:///opt/SDK/spbm/wsdl/pbmService.wsdl
http:/
file:///opt/stack/vmware/SDK/wsdl/vim25/vimService.wsdl
file:///opt/stack/vmware/SDK/wsdl/vim25/vimService.wsdl

Nova Documentation, Release 22.4.1.dev41

Troubleshooting

Operators can troubleshoot VMware specific failures by correlating OpenStack logs to vCenter logs.
Every RPC call which is made by an OpenStack driver has an opID which can be traced in the vCenter
logs. For example consider the following excerpt from a nova-compute log:

Aug 15 07:31:09 localhost nova-compute[16683]: DEBUG oslo_vmware.service [-
↪→] Invoking Folder.CreateVM_Task with opID=oslo.vmware-debb6064-690e-45ac-
↪→b0ae-1b94a9638d1f {{(pid=16683) request_handler /opt/stack/oslo.vmware/
↪→oslo_vmware/service.py:355}}

In this case the opID is oslo.vmware-debb6064-690e-45ac-b0ae-1b94a9638d1f and we
can grep the vCenter log (usually /var/log/vmware/vpxd/vpxd.log) for it to find if anything
went wrong with the CreateVM operation.

Hyper-V virtualization platform

Todo: This is really installation guide material and should probably be moved.

It is possible to use Hyper-V as a compute node within an OpenStack Deployment. The
nova-compute service runs as openstack-compute, a 32-bit service directly upon the Win-
dows platform with the Hyper-V role enabled. The necessary Python components as well as the
nova-compute service are installed directly onto the Windows platform. Windows Clustering Ser-
vices are not needed for functionality within the OpenStack infrastructure. The use of the Windows
Server 2012 platform is recommend for the best experience and is the platform for active development.
The following Windows platforms have been tested as compute nodes:

• Windows Server 2012

• Windows Server 2012 R2 Server and Core (with the Hyper-V role enabled)

• Hyper-V Server

Hyper-V configuration

The only OpenStack services required on a Hyper-V node are nova-compute and
neutron-hyperv-agent. Regarding the resources needed for this host you have to consider
that Hyper-V will require 16 GB - 20 GB of disk space for the OS itself, including updates. Two NICs
are required, one connected to the management network and one to the guest data network.

The following sections discuss how to prepare the Windows Hyper-V node for operation as an Open-
Stack compute node. Unless stated otherwise, any configuration information should work for the Win-
dows 2012 and 2012 R2 platforms.

3.4. Maintenance 299

Nova Documentation, Release 22.4.1.dev41

Local storage considerations

The Hyper-V compute node needs to have ample storage for storing the virtual machine images running
on the compute nodes. You may use a single volume for all, or partition it into an OS volume and VM
volume.

Configure NTP

Network time services must be configured to ensure proper operation of the OpenStack nodes. To set
network time on your Windows host you must run the following commands:

C:\>net stop w32time
C:\>w32tm /config "/manualpeerlist:pool.ntp.org,0x8" /syncfromflags:MANUAL
C:\>net start w32time

Keep in mind that the node will have to be time synchronized with the other nodes of your OpenStack
environment, so it is important to use the same NTP server. Note that in case of an Active Directory
environment, you may do this only for the AD Domain Controller.

Configure Hyper-V virtual switching

Information regarding the Hyper-V virtual Switch can be found in the Hyper-V Virtual Switch Overview.

To quickly enable an interface to be used as a Virtual Interface the following PowerShell may be used:

PS C:\> $if = Get-NetIPAddress -IPAddress 192* | Get-NetIPInterface
PS C:\> New-VMSwitch -NetAdapterName $if.ifAlias -Name YOUR_BRIDGE_NAME -
↪→AllowManagementOS $false

Note: It is very important to make sure that when you are using a Hyper-V node with only 1 NIC
the -AllowManagementOS option is set on True, otherwise you will lose connectivity to the Hyper-V
node.

Enable iSCSI initiator service

To prepare the Hyper-V node to be able to attach to volumes provided by cinder you must first make
sure the Windows iSCSI initiator service is running and started automatically.

PS C:\> Set-Service -Name MSiSCSI -StartupType Automatic
PS C:\> Start-Service MSiSCSI

3.4. Maintenance 300

https://technet.microsoft.com/en-us/library/hh831823.aspx

Nova Documentation, Release 22.4.1.dev41

Configure shared nothing live migration

Detailed information on the configuration of live migration can be found in this guide

The following outlines the steps of shared nothing live migration.

1. The target host ensures that live migration is enabled and properly configured in Hyper-V.

2. The target host checks if the image to be migrated requires a base VHD and pulls it from the
Image service if not already available on the target host.

3. The source host ensures that live migration is enabled and properly configured in Hyper-V.

4. The source host initiates a Hyper-V live migration.

5. The source host communicates to the manager the outcome of the operation.

The following three configuration options are needed in order to support Hyper-V live migration and
must be added to your nova.conf on the Hyper-V compute node:

• This is needed to support shared nothing Hyper-V live migrations. It is used in nova/compute/
manager.py.

instances_shared_storage = False

• This flag is needed to support live migration to hosts with different CPU features. This flag is
checked during instance creation in order to limit the CPU features used by the VM.

limit_cpu_features = True

• This option is used to specify where instances are stored on disk.

instances_path = DRIVELETTER:\PATH\TO\YOUR\INSTANCES

Additional Requirements:

• Hyper-V 2012 R2 or Windows Server 2012 R2 with Hyper-V role enabled

• A Windows domain controller with the Hyper-V compute nodes as domain members

• The instances_path command-line option/flag needs to be the same on all hosts

• The openstack-compute service deployed with the setup must run with domain credentials.
You can set the service credentials with:

C:\>sc config openstack-compute obj="DOMAIN\username" password="password"

How to setup live migration on Hyper-V

To enable shared nothing live migration, run the 3 instructions below on each Hyper-V host:

PS C:\> Enable-VMMigration
PS C:\> Set-VMMigrationNetwork IP_ADDRESS
PS C:\> Set-VMHost -VirtualMachineMigrationAuthenticationTypeKerberos

Note: Replace the IP_ADDRESS with the address of the interface which will provide live migration.

3.4. Maintenance 301

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/Use-live-migration-without-Failover-Clustering-to-move-a-virtual-machine

Nova Documentation, Release 22.4.1.dev41

Additional Reading

This article clarifies the various live migration options in Hyper-V:

Hyper-V Live Migration of Yesterday

Install nova-compute using OpenStack Hyper-V installer

In case you want to avoid all the manual setup, you can use Cloudbase Solutions installer. You can find
it here:

HyperVNovaCompute_Beta download

The tool installs an independent Python environment in order to avoid conflicts with existing applica-
tions, and dynamically generates a nova.conf file based on the parameters provided by you.

The tool can also be used for an automated and unattended mode for deployments on a massive number
of servers. More details about how to use the installer and its features can be found here:

Cloudbase

Requirements

Python

Python 2.7 32bit must be installed as most of the libraries are not working properly on the 64bit version.

Setting up Python prerequisites

1. Download and install Python 2.7 using the MSI installer from here:

python-2.7.3.msi download

PS C:\> $src = "https://www.python.org/ftp/python/2.7.3/python-2.7.3.
↪→msi"
PS C:\> $dest = "$env:temp\python-2.7.3.msi"
PS C:\> Invoke-WebRequest -Uri $src -OutFile $dest
PS C:\> Unblock-File $dest
PS C:\> Start-Process $dest

2. Make sure that the Python and Python\Scripts paths are set up in the PATH environment
variable.

PS C:\> $oldPath = [System.Environment]::GetEnvironmentVariable("Path
↪→")
PS C:\> $newPath = $oldPath + ";C:\python27\;C:\python27\Scripts\"
PS C:\> [System.Environment]::SetEnvironmentVariable("Path", $newPath,
↪→ [System.EnvironmentVariableTarget]::User

3.4. Maintenance 302

https://ariessysadmin.blogspot.ro/2012/04/hyper-v-live-migration-of-windows.html
https://www.cloudbase.it/downloads/HyperVNovaCompute_Beta.msi
https://www.cloudbase.it
https://www.python.org/ftp/python/2.7.3/python-2.7.3.msi

Nova Documentation, Release 22.4.1.dev41

Python dependencies

The following packages need to be downloaded and manually installed:

setuptools https://pypi.python.org/packages/2.7/s/setuptools/setuptools-0.6c11.win32-py2.7.exe

pip https://pip.pypa.io/en/latest/installing/

PyMySQL http://codegood.com/download/10/

PyWin32 https://sourceforge.net/projects/pywin32/files/pywin32/Build%20217/pywin32-217.
win32-py2.7.exe

Greenlet http://www.lfd.uci.edu/~gohlke/pythonlibs/#greenlet

PyCryto http://www.voidspace.org.uk/downloads/pycrypto26/pycrypto-2.6.win32-py2.7.exe

The following packages must be installed with pip:

• ecdsa

• amqp

• wmi

PS C:\> pip install ecdsa
PS C:\> pip install amqp
PS C:\> pip install wmi

Other dependencies

qemu-img is required for some of the image related operations. You can get it from here: http://qemu.
weilnetz.de/. You must make sure that the qemu-img path is set in the PATH environment variable.

Some Python packages need to be compiled, so you may use MinGW or Visual Studio. You can get
MinGW from here: http://sourceforge.net/projects/mingw/. You must configure which compiler is to be
used for this purpose by using the distutils.cfg file in $Python27\Lib\distutils, which
can contain:

[build]
compiler = mingw32

As a last step for setting up MinGW, make sure that the MinGW binaries directories are set up in PATH.

Install nova-compute

Download the nova code

1. Use Git to download the necessary source code. The installer to run Git on Windows can be
downloaded here:

https://github.com/msysgit/msysgit/releases/download/Git-1.9.2-preview20140411/Git-1.9.
2-preview20140411.exe

2. Download the installer. Once the download is complete, run the installer and follow the prompts
in the installation wizard. The default should be acceptable for the purposes of this guide.

3.4. Maintenance 303

https://pypi.python.org/packages/2.7/s/setuptools/setuptools-0.6c11.win32-py2.7.exe
https://pip.pypa.io/en/latest/installing/
http://codegood.com/download/10/
https://sourceforge.net/projects/pywin32/files/pywin32/Build%20217/pywin32-217.win32-py2.7.exe
https://sourceforge.net/projects/pywin32/files/pywin32/Build%20217/pywin32-217.win32-py2.7.exe
http://www.lfd.uci.edu/~gohlke/pythonlibs/#greenlet
http://www.voidspace.org.uk/downloads/pycrypto26/pycrypto-2.6.win32-py2.7.exe
http://qemu.weilnetz.de/
http://qemu.weilnetz.de/
http://sourceforge.net/projects/mingw/
https://github.com/msysgit/msysgit/releases/download/Git-1.9.2-preview20140411/Git-1.9.2-preview20140411.exe
https://github.com/msysgit/msysgit/releases/download/Git-1.9.2-preview20140411/Git-1.9.2-preview20140411.exe

Nova Documentation, Release 22.4.1.dev41

PS C:\> $src = "https://github.com/msysgit/msysgit/releases/download/
↪→Git-1.9.2-preview20140411/Git-1.9.2-preview20140411.exe"
PS C:\> $dest = "$env:temp\Git-1.9.2-preview20140411.exe"
PS C:\> Invoke-WebRequest -Uri $src -OutFile $dest
PS C:\> Unblock-File $dest
PS C:\> Start-Process $dest

3. Run the following to clone the nova code.

PS C:\> git.exe clone https://opendev.org/openstack/nova

Install nova-compute service

To install nova-compute, run:

PS C:\> cd c:\nova
PS C:\> python setup.py install

Configure nova-compute

The nova.conf file must be placed in C:\etc\nova for running OpenStack on Hyper-V. Below is
a sample nova.conf for Windows:

[DEFAULT]
auth_strategy = keystone
image_service = nova.image.glance.GlanceImageService
compute_driver = nova.virt.hyperv.driver.HyperVDriver
volume_api_class = nova.volume.cinder.API
fake_network = true
instances_path = C:\Program Files (x86)\OpenStack\Instances
use_cow_images = true
force_config_drive = false
injected_network_template = C:\Program Files (x86)\OpenStack\Nova\etc\
↪→interfaces.template
policy_file = C:\Program Files (x86)\OpenStack\Nova\etc\policy.yaml
mkisofs_cmd = C:\Program Files (x86)\OpenStack\Nova\bin\mkisofs.exe
allow_resize_to_same_host = true
running_deleted_instance_action = reap
running_deleted_instance_poll_interval = 120
resize_confirm_window = 5
resume_guests_state_on_host_boot = true
rpc_response_timeout = 1800
lock_path = C:\Program Files (x86)\OpenStack\Log\
rpc_backend = nova.openstack.common.rpc.impl_kombu
rabbit_host = IP_ADDRESS
rabbit_port = 5672
rabbit_userid = guest
rabbit_password = Passw0rd
logdir = C:\Program Files (x86)\OpenStack\Log\
logfile = nova-compute.log
instance_usage_audit = true
instance_usage_audit_period = hour

(continues on next page)

3.4. Maintenance 304

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

[glance]
api_servers = http://IP_ADDRESS:9292

[neutron]
endpoint_override = http://IP_ADDRESS:9696
auth_strategy = keystone
project_name = service
username = neutron
password = Passw0rd
auth_url = http://IP_ADDRESS:5000/v3
auth_type = password

[hyperv]
vswitch_name = newVSwitch0
limit_cpu_features = false
config_drive_inject_password = false
qemu_img_cmd = C:\Program Files (x86)\OpenStack\Nova\bin\qemu-img.exe
config_drive_cdrom = true
dynamic_memory_ratio = 1
enable_instance_metrics_collection = true

[rdp]
enabled = true
html5_proxy_base_url = https://IP_ADDRESS:4430

Prepare images for use with Hyper-V

Hyper-V currently supports only the VHD and VHDX file format for virtual machine instances. Detailed
instructions for installing virtual machines on Hyper-V can be found here:

Create Virtual Machines

Once you have successfully created a virtual machine, you can then upload the image to glance using
the openstack-client:

PS C:\> openstack image create --name "VM_IMAGE_NAME" --property
↪→hypervisor_type=hyperv --public \

--container-format bare --disk-format vhd

Note: VHD and VHDX files sizes can be bigger than their maximum internal size, as such you need
to boot instances using a flavor with a slightly bigger disk size than the internal size of the disk file. To
create VHDs, use the following PowerShell cmdlet:

PS C:\> New-VHD DISK_NAME.vhd -SizeBytes VHD_SIZE

3.4. Maintenance 305

http://technet.microsoft.com/en-us/library/cc772480.aspx

Nova Documentation, Release 22.4.1.dev41

Inject interfaces and routes

The interfaces.template file describes the network interfaces and routes available on
your system and how to activate them. You can specify the location of the file with the
injected_network_template configuration option in /etc/nova/nova.conf.

injected_network_template = PATH_TO_FILE

A default template exists in nova/virt/interfaces.template.

Run Compute with Hyper-V

To start the nova-compute service, run this command from a console in the Windows server:

PS C:\> C:\Python27\python.exe c:\Python27\Scripts\nova-compute --config-
↪→file c:\etc\nova\nova.conf

Troubleshoot Hyper-V configuration

• I ran the nova-manage service list command from my controller; however, Im not see-
ing smiley faces for Hyper-V compute nodes, what do I do?

Verify that you are synchronized with a network time source. For instructions about how to
configure NTP on your Hyper-V compute node, see Configure NTP.

• How do I restart the compute service?

PS C:\> net stop nova-compute && net start nova-compute

• How do I restart the iSCSI initiator service?

PS C:\> net stop msiscsi && net start msiscsi

Virtuozzo

Virtuozzo 7.0.0 (or newer), or its community edition OpenVZ, provides both types of virtualization:
Kernel Virtual Machines and OS Containers. The type of instance to span is chosen depending on the
hw_vm_type property of an image.

Note: Some OpenStack Compute features may be missing when running with Virtuozzo as the hyper-
visor. See Feature Support Matrix for details.

To enable Virtuozzo Containers, set the following options in /etc/nova/nova.conf on all hosts
running the nova-compute service.

compute_driver = libvirt.LibvirtDriver
force_raw_images = False

[libvirt]
(continues on next page)

3.4. Maintenance 306

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

virt_type = parallels
images_type = ploop
connection_uri = parallels:///system
inject_partition = -2

To enable Virtuozzo Virtual Machines, set the following options in /etc/nova/nova.conf on all
hosts running the nova-compute service.

compute_driver = libvirt.LibvirtDriver

[libvirt]
virt_type = parallels
images_type = qcow2
connection_uri = parallels:///system

PowerVM

Introduction

OpenStack Compute supports the PowerVM hypervisor through NovaLink. In the NovaLink archi-
tecture, a thin NovaLink virtual machine running on the Power system manages virtualization for that
system. The nova-compute service can be installed on the NovaLink virtual machine and configured
to use the PowerVM compute driver. No external management element (e.g. Hardware Management
Console) is needed.

Configuration

In order to function properly, the nova-compute service must be executed by a member of the
pvm_admin group. Use the usermod command to add the user. For example, to add the stacker
user to the pvm_admin group, execute:

sudo usermod -a -G pvm_admin stacker

The user must re-login for the change to take effect.

To enable the PowerVM compute driver, set the following configuration option in the /etc/nova/
nova.conf file:

[Default]
compute_driver = powervm.PowerVMDriver

The PowerVM driver supports two types of storage for ephemeral disks: localdisk or ssp. If
localdisk is selected, you must specify which volume group should be used. E.g.:

[powervm]
disk_driver = localdisk
volume_group_name = openstackvg

3.4. Maintenance 307

https://www.ibm.com/support/knowledgecenter/en/POWER8/p8eig/p8eig_kickoff.htm

Nova Documentation, Release 22.4.1.dev41

Note: Using the rootvg volume group is strongly discouraged since rootvg is used by the manage-
ment partition and filling this will cause failures.

The PowerVM driver also supports configuring the default amount of physical processor compute power
(known as proc units) which will be given to each vCPU. This value will be used if the requested flavor
does not specify the powervm:proc_units extra-spec. A factor value of 1.0 means a whole physical
processor, whereas 0.05 means 1/20th of a physical processor. E.g.:

[powervm]
proc_units_factor = 0.1

Volume Support

Volume support is provided for the PowerVM virt driver via Cinder. Currently, the only supported
volume protocol is vSCSI Fibre Channel. Attach, detach, and extend are the operations supported by the
PowerVM vSCSI FC volume adapter. Boot From Volume is not yet supported.

zVM

z/VM System Requirements

• The appropriate APARs installed, the current list of which can be found: z/VM OpenStack Cloud
Information (http://www.vm.ibm.com/sysman/osmntlvl.html).

Note: IBM z Systems hardware requirements are based on both the applications and the load on the
system.

Active Engine Guide

Active engine is used as an initial configuration and management tool during deployed machine startup.
Currently the z/VM driver uses zvmguestconfigure and cloud-init as a two stage active en-
gine.

Installation and Configuration of zvmguestconfigure

Cloudlib4zvm supports initiating changes to a Linux on z Systems virtual machine while Linux is
shut down or the virtual machine is logged off. The changes to Linux are implemented using an
activation engine (AE) that is run when Linux is booted the next time. The first active engine,
zvmguestconfigure, must be installed in the Linux on z Systems virtual server so it can process
change request files transmitted by the cloudlib4zvm service to the reader of the virtual machine as a
class X file.

3.4. Maintenance 308

https://www.ibm.com/support/knowledgecenter/en/POWER8/p8hat/p8hat_virtualscsi.htm
http://www.vm.ibm.com/sysman/osmntlvl.html

Nova Documentation, Release 22.4.1.dev41

Note: An additional activation engine, cloud-init, should be installed to handle OpenStack related
tailoring of the system. The cloud-init AE relies on tailoring performed by zvmguestconfigure.

Installation and Configuration of cloud-init

OpenStack uses cloud-init as its activation engine. Some Linux distributions include cloud-init either
already installed or available to be installed. If your distribution does not include cloud-init, you can
download the code from https://launchpad.net/cloud-init/+download. After installation, if you issue the
following shell command and no errors occur, cloud-init is installed correctly:

cloud-init init --local

Installation and configuration of cloud-init differs among different Linux distributions, and cloud-init
source code may change. This section provides general information, but you may have to tailor cloud-init
to meet the needs of your Linux distribution. You can find a community-maintained list of dependencies
at http://ibm.biz/cloudinitLoZ.

As of the Rocky release, the z/VM OpenStack support has been tested with cloud-init 0.7.4 and 0.7.5
for RHEL6.x and SLES11.x, 0.7.6 for RHEL7.x and SLES12.x, and 0.7.8 for Ubuntu 16.04.

During cloud-init installation, some dependency packages may be required. You can use zypper and
python setuptools to easily resolve these dependencies. See https://pypi.python.org/pypi/setuptools for
more information.

Image guide

This guideline will describe the requirements and steps to create and configure images for use with
z/VM.

Image Requirements

• The following Linux distributions are supported for deploy:

– RHEL 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7

– RHEL 7.0, 7.1 and 7.2

– SLES 11.2, 11.3, and 11.4

– SLES 12 and SLES 12.1

– Ubuntu 16.04

• A supported root disk type for snapshot/spawn. The following are supported:

– FBA

– ECKD

• An image deployed on a compute node must match the disk type supported by that compute
node, as configured by the zvm_diskpool_type property in the zvmsdk.conf configuration
file in zvm cloud connector A compute node supports deployment on either an ECKD or FBA

3.4. Maintenance 309

https://launchpad.net/cloud-init/+download
http://ibm.biz/cloudinitLoZ
https://pypi.python.org/pypi/setuptools
https://cloudlib4zvm.readthedocs.io/en/latest/configuration.html#configuration-options
https://cloudlib4zvm.readthedocs.io/en/latest/

Nova Documentation, Release 22.4.1.dev41

image, but not both at the same time. If you wish to switch image types, you need to change the
zvm_diskpool_type and zvm_diskpool properties in the zvmsdk.conf file, accordingly.
Then restart the nova-compute service to make the changes take effect.

• If you deploy an instance with an ephemeral disk, both the root disk and the ephemeral disk
will be created with the disk type that was specified by zvm_diskpool_type property in the
zvmsdk.conf file. That property can specify either ECKD or FBA.

• The network interfaces must be IPv4 interfaces.

• Image names should be restricted to the UTF-8 subset, which corresponds to the ASCII character
set. In addition, special characters such as /, \, $, %, @ should not be used. For the FBA disk type
vm, capture and deploy is supported only for an FBA disk with a single partition. Capture and
deploy is not supported for the FBA disk type vm on a CMS formatted FBA disk.

• The virtual server/Linux instance used as the source of the new image should meet the following
criteria:

1. The root filesystem must not be on a logical volume.

2. The minidisk on which the root filesystem resides should be a minidisk of the same type as
desired for a subsequent deploy (for example, an ECKD disk image should be captured for
a subsequent deploy to an ECKD disk).

3. The minidisks should not be a full-pack minidisk, since cylinder 0 on full-pack minidisks is
reserved, and should be defined with virtual address 0100.

4. The root disk should have a single partition.

5. The image being captured should not have any network interface cards (NICs) defined below
virtual address 1100.

In addition to the specified criteria, the following recommendations allow for efficient use of the image:

• The minidisk on which the root filesystem resides should be defined as a multiple of full gigabytes
in size (for example, 1GB or 2GB). OpenStack specifies disk sizes in full gigabyte values, whereas
z/VM handles disk sizes in other ways (cylinders for ECKD disks, blocks for FBA disks, and so
on). See the appropriate online information if you need to convert cylinders or blocks to gigabytes;
for example: http://www.mvsforums.com/helpboards/viewtopic.php?t=8316.

• During subsequent deploys of the image, the OpenStack code will ensure that a disk image is not
copied to a disk smaller than the source disk, as this would result in loss of data. The disk specified
in the flavor should therefore be equal to or slightly larger than the source virtual machines root
disk.

Ironic

Introduction

The ironic hypervisor driver wraps the Bare Metal (ironic) API, enabling Nova to provision baremetal
resources using the same user-facing API as for server management.

This is the only driver in nova where one compute service can map to many hosts , meaning a
nova-compute service can manage multiple ComputeNodes. An ironic driver managed compute
service uses the ironic node uuid for the compute node hypervisor_hostname (nodename) and
uuid fields. The relationship of instance:compute node:ironic node is 1:1:1.

3.4. Maintenance 310

https://cloudlib4zvm.readthedocs.io/en/latest/configuration.html#configuration-options
https://cloudlib4zvm.readthedocs.io/en/latest/configuration.html#configuration-options
http://www.mvsforums.com/helpboards/viewtopic.php?t=8316

Nova Documentation, Release 22.4.1.dev41

Scheduling of bare metal nodes is based on custom resource classes, specified via the
resource_class property on a node and a corresponding resource property on a flavor (see the
flavor documentation). The RAM and CPU settings on a flavor are ignored, and the disk is only used to
determine the root partition size when a partition image is used (see the image documentation).

Configuration

• Configure the Compute service to use the Bare Metal service.

• Create flavors for use with the Bare Metal service.

• Conductors Groups.

Scaling and Performance Issues

• The update_available_resource periodic task reports all the resources managed by
Ironic. Depending the number of nodes, it can take a lot of time. The nova-compute will not
perform any other operations when this task is running. You can use conductor groups to help
scale, by setting ironic.partition_key .

Known limitations / Missing features

• Migrate

• Resize

• Snapshot

• Pause

• Shelve

• Evacuate

OpenStack Compute supports many hypervisors, which might make it difficult for you to choose one.
Most installations use only one hypervisor. However, you can use ComputeFilter and ImageProper-
tiesFilter to schedule different hypervisors within the same installation. The following links help you
choose a hypervisor. See Feature Support Matrix for a detailed list of features and support across the
hypervisors.

The following hypervisors are supported:

• KVM - Kernel-based Virtual Machine. The virtual disk formats that it supports is inherited from
QEMU since it uses a modified QEMU program to launch the virtual machine. The supported
formats include raw images, the qcow2, and VMware formats.

• LXC - Linux Containers (through libvirt), used to run Linux-based virtual machines.

• QEMU - Quick EMUlator, generally only used for development purposes.

• VMware vSphere 5.1.0 and newer - Runs VMware-based Linux and Windows images through a
connection with a vCenter server.

• Xen (using libvirt) - Xen Project Hypervisor using libvirt as management interface into
nova-compute to run Linux, Windows, FreeBSD and NetBSD virtual machines.

3.4. Maintenance 311

https://docs.openstack.org/ironic/latest/install/configure-nova-flavors.html
https://docs.openstack.org/ironic/latest/install/configure-glance-images.html
https://docs.openstack.org/ironic/latest/install/configure-compute.html
https://docs.openstack.org/ironic/latest/install/configure-nova-flavors.html
https://docs.openstack.org/ironic/latest/admin/conductor-groups.html
https://www.linux-kvm.org/page/Main_Page
https://linuxcontainers.org
https://wiki.qemu.org/Manual
https://www.vmware.com/support/vsphere-hypervisor.html
https://www.xenproject.org

Nova Documentation, Release 22.4.1.dev41

• Hyper-V - Server virtualization with Microsoft Hyper-V, use to run Windows, Linux, and
FreeBSD virtual machines. Runs nova-compute natively on the Windows virtualization plat-
form.

• Virtuozzo 7.0.0 and newer - OS Containers and Kernel-based Virtual Machines supported via
libvirt virt_type=parallels. The supported formats include ploop and qcow2 images.

• PowerVM - Server virtualization with IBM PowerVM for AIX, IBM i, and Linux workloads on
the Power Systems platform.

• zVM - Server virtualization on z Systems and IBM LinuxONE, it can run Linux, z/OS and more.

• UML - User-Mode Linux is a safe, secure way of running Linux versions and Linux processes.

• Ironic - OpenStack project which provisions bare metal (as opposed to virtual) machines.

Nova supports hypervisors via virt drivers. Nova has the following in tree virt drivers:

• compute_driver = libvirt.LibvirtDriver

This driver runs on Linux and supports multiple hypervisor backends, which can be configured
via the libvirt.virt_type config option.

• compute_driver = ironic.IronicDriver

• compute_driver = vmwareapi.VMwareVCDriver

• compute_driver = hyperv.HyperVDriver

• compute_driver = powervm.PowerVMDriver

• compute_driver = zvm.ZVMDriver

• compute_driver = fake.FakeDriver

This driver does not spawn any virtual machines and therefore should only be used during testing.

Compute schedulers

Compute uses the nova-scheduler service to determine how to dispatch compute requests. For
example, the nova-scheduler service determines on which host a VM should launch. In the context
of filters, the term host means a physical node that has a nova-compute service running on it. You
can configure the scheduler through a variety of options.

Compute is configured with the following default scheduler options in the /etc/nova/nova.conf
file:

[scheduler]
driver = filter_scheduler

[filter_scheduler]
available_filters = nova.scheduler.filters.all_filters
enabled_filters = AvailabilityZoneFilter, ComputeFilter,
↪→ComputeCapabilitiesFilter, ImagePropertiesFilter,
↪→ServerGroupAntiAffinityFilter, ServerGroupAffinityFilter

By default, the scheduler driver is configured as a filter scheduler, as described in the next section. In
the default configuration, this scheduler considers hosts that meet all the following criteria:

• Are in the requested Availability Zone (AvailabilityZoneFilter).

3.4. Maintenance 312

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://www.virtuozzo.com/products/vz7.html
https://www.ibm.com/us-en/marketplace/ibm-powervm
https://www.ibm.com/it-infrastructure/z/zvm
http://user-mode-linux.sourceforge.net
https://docs.openstack.org/ironic/latest/

Nova Documentation, Release 22.4.1.dev41

• Can service the request (ComputeFilter).

• Satisfy the extra specs associated with the instance type (ComputeCapabilitiesFilter).

• Satisfy any architecture, hypervisor type, or virtual machine mode properties specified on the
instances image properties (ImagePropertiesFilter).

• Are on a different host than other instances of a group (if requested)
(ServerGroupAntiAffinityFilter).

• Are in a set of group hosts (if requested) (ServerGroupAffinityFilter).

The scheduler chooses a new host when an instance is migrated.

When evacuating instances from a host, the scheduler service honors the target host defined by the
administrator on the nova evacuate command. If a target is not defined by the administrator, the
scheduler determines the target host. For information about instance evacuation, see Evacuate instances.

Prefiltering

As of the Rocky release, the scheduling process includes a prefilter step to increase the efficiency of
subsequent stages. These prefilters are largely optional, and serve to augment the request that is sent
to placement to reduce the set of candidate compute hosts based on attributes that placement is able
to answer for us ahead of time. In addition to the prefilters listed here, also see Tenant Isolation with
Placement and Availability Zones with Placement.

Compute Image Type Support

Starting in the Train release, there is a prefilter available for excluding compute nodes that do not
support the disk_format of the image used in a boot request. This behavior is enabled by set-
ting [scheduler]/query_placement_for_image_type_support=True. For example,
the libvirt driver, when using ceph as an ephemeral backend, does not support qcow2 images (with-
out an expensive conversion step). In this case (and especially if you have a mix of ceph and non-ceph
backed computes), enabling this feature will ensure that the scheduler does not send requests to boot a
qcow2 image to computes backed by ceph.

Compute Disabled Status Support

Starting in the Train release, there is a mandatory pre-filter which will exclude disabled compute nodes
similar to (but does not fully replace) the ComputeFilter. Compute node resource providers with the
COMPUTE_STATUS_DISABLED trait will be excluded as scheduling candidates. The trait is managed
by the nova-compute service and should mirror the disabled status on the related compute service
record in the os-services API. For example, if a compute services status is disabled, the related
compute node resource provider(s) for that service should have the COMPUTE_STATUS_DISABLED
trait. When the service status is enabled the COMPUTE_STATUS_DISABLED trait shall be removed.

If the compute service is down when the status is changed, the trait will be synchronized by the compute
service when it is restarted. Similarly, if an error occurs when trying to add or remove the trait on a given
resource provider, the trait will be synchronized when the update_available_resource periodic
task runs - which is controlled by the update_resources_interval configuration option.

3.4. Maintenance 313

https://specs.openstack.org/openstack/nova-specs/specs/train/approved/pre-filter-disabled-computes.html
https://docs.openstack.org/api-ref/compute/#compute-services-os-services

Nova Documentation, Release 22.4.1.dev41

Isolate Aggregates

Starting in the Train release, there is an optional placement pre-request filter Filtering hosts by isolating
aggregates When enabled, the traits required in the servers flavor and image must be at least those
required in an aggregates metadata in order for the server to be eligible to boot on hosts in that aggregate.

Filter scheduler

The filter scheduler (nova.scheduler.filter_scheduler.FilterScheduler) is the de-
fault scheduler for scheduling virtual machine instances. It supports filtering and weighting to make
informed decisions on where a new instance should be created.

When the filter scheduler receives a request for a resource, it first applies filters to determine which hosts
are eligible for consideration when dispatching a resource. Filters are binary: either a host is accepted by
the filter, or it is rejected. Hosts that are accepted by the filter are then processed by a different algorithm
to decide which hosts to use for that request, described in the Weights section.

Filtering

The available_filters configuration option in nova.conf provides the Compute service with
the list of the filters that are available for use by the scheduler. The default setting specifies all of the
filters that are included with the Compute service:

[filter_scheduler]
available_filters = nova.scheduler.filters.all_filters

This configuration option can be specified multiple times. For example, if you implemented your own
custom filter in Python called myfilter.MyFilter and you wanted to use both the built-in filters
and your custom filter, your nova.conf file would contain:

3.4. Maintenance 314

Nova Documentation, Release 22.4.1.dev41

[filter_scheduler]
available_filters = nova.scheduler.filters.all_filters
available_filters = myfilter.MyFilter

The filter_scheduler.enabled_filters configuration option in nova.conf defines the
list of filters that are applied by the nova-scheduler service.

Compute filters

The following sections describe the available compute filters.

AggregateImagePropertiesIsolation

Changed in version 12.0.0: (Liberty)

Prior to 12.0.0 Liberty, it was possible to specify and use arbitrary metadata with this filter. Starting in
Liberty, nova only parses standard metadata. If you wish to use arbitrary metadata, consider using the
AggregateInstanceExtraSpecsFilter filter instead.

Matches properties defined in an images metadata against those of aggregates to determine host matches:

• If a host belongs to an aggregate and the aggregate defines one or more metadata that matches an
images properties, that host is a candidate to boot the images instance.

• If a host does not belong to any aggregate, it can boot instances from all images.

For example, the following aggregate myWinAgg has the Windows operating system as metadata
(named windows):

$ openstack aggregate show myWinAgg
+-------------------+----------------------------+
| Field | Value |
+-------------------+----------------------------+
availability_zone	zone1
created_at	2017-01-01T15:36:44.000000
deleted	False
deleted_at	None
hosts	[u'sf-devel']
id	1
name	myWinAgg
properties	os_distro='windows'
updated_at	None
+-------------------+----------------------------+

In this example, because the following Win-2012 image has the windows property, it boots on the
sf-devel host (all other filters being equal):

$ openstack image show Win-2012
+------------------+--+
| Field | Value |
+------------------+--+
checksum	ee1eca47dc88f4879d8a229cc70a07c6
container_format	bare
created_at	2016-12-13T09:30:30Z

(continues on next page)

3.4. Maintenance 315

https://docs.openstack.org/glance/victoria/admin/useful-image-properties.html

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| disk_format | qcow2 |
| ... |
| name | Win-2012 |
| ... |
| properties | os_distro='windows' |
| ... |

You can configure the AggregateImagePropertiesIsolation filter by using the following
options in the nova.conf file:

[scheduler]
Considers only keys matching the given namespace (string).
Multiple values can be given, as a comma-separated list.
aggregate_image_properties_isolation_namespace = <None>

Separator used between the namespace and keys (string).
aggregate_image_properties_isolation_separator = .

Note: This filter has limitations as described in bug 1677217 which are addressed in placement Filtering
hosts by isolating aggregates request filter.

Refer to Host aggregates for more information.

AggregateInstanceExtraSpecsFilter

Matches properties defined in extra specs for an instance type against admin-defined properties on a host
aggregate. Works with specifications that are scoped with aggregate_instance_extra_specs.
Multiple values can be given, as a comma-separated list. For backward compatibility, also works with
non-scoped specifications; this action is highly discouraged because it conflicts with ComputeCapabili-
tiesFilter filter when you enable both filters.

Refer to Host aggregates for more information.

3.4. Maintenance 316

https://bugs.launchpad.net/nova/+bug/1677217

Nova Documentation, Release 22.4.1.dev41

AggregateIoOpsFilter

Filters host by disk allocation with a per-aggregate max_io_ops_per_host value. If the per-
aggregate value is not found, the value falls back to the global setting. If the host is in more than
one aggregate and more than one value is found, the minimum value will be used.

Refer to Host aggregates and IoOpsFilter for more information.

AggregateMultiTenancyIsolation

Ensures hosts in tenant-isolated host aggregates will only be available to a specified set of tenants. If a
host is in an aggregate that has the filter_tenant_id metadata key, the host can build instances
from only that tenant or comma-separated list of tenants. A host can be in different aggregates. If a host
does not belong to an aggregate with the metadata key, the host can build instances from all tenants.
This does not restrict the tenant from creating servers on hosts outside the tenant-isolated aggregate.

For example, consider there are two available hosts for scheduling, HostA and HostB. HostB is in an
aggregate isolated to tenant X. A server create request from tenant X will result in either HostA or HostB
as candidates during scheduling. A server create request from another tenant Y will result in only HostA
being a scheduling candidate since HostA is not part of the tenant-isolated aggregate.

Note: There is a known limitation with the number of tenants that can be isolated per aggregate using
this filter. This limitation does not exist, however, for the Tenant Isolation with Placement filtering
capability added in the 18.0.0 Rocky release.

AggregateNumInstancesFilter

Filters host by number of instances with a per-aggregate max_instances_per_host value. If the
per-aggregate value is not found, the value falls back to the global setting. If the host is in more than one
aggregate and thus more than one value is found, the minimum value will be used.

Refer to Host aggregates and NumInstancesFilter for more information.

AggregateTypeAffinityFilter

This filter passes hosts if no instance_type key is set or the instance_type aggregate metadata
value contains the name of the instance_type requested. The value of the instance_typemeta-
data entry is a string that may contain either a single instance_type name or a comma-separated
list of instance_type names, such as m1.nano or m1.nano,m1.small.

Refer to Host aggregates for more information.

3.4. Maintenance 317

https://bugs.launchpad.net/nova/+bug/1802111

Nova Documentation, Release 22.4.1.dev41

AllHostsFilter

This is a no-op filter. It does not eliminate any of the available hosts.

AvailabilityZoneFilter

Filters hosts by availability zone. You must enable this filter for the scheduler to respect availability
zones in requests.

Refer to Availability Zones for more information.

ComputeCapabilitiesFilter

Matches properties defined in extra specs for an instance type against compute capabilities. If an extra
specs key contains a colon (:), anything before the colon is treated as a namespace and anything after
the colon is treated as the key to be matched. If a namespace is present and is not capabilities,
the filter ignores the namespace. For backward compatibility, also treats the extra specs key as the key
to be matched if no namespace is present; this action is highly discouraged because it conflicts with
AggregateInstanceExtraSpecsFilter filter when you enable both filters.

Some virt drivers support reporting CPU traits to the Placement service. With that feature available,
you should consider using traits in flavors instead of ComputeCapabilitiesFilter, because traits provide
consistent naming for CPU features in some virt drivers and querying traits is efficient. For more detail,
please see Support Matrix, Required traits, Forbidden traits and Report CPU features to the Placement
service.

Also refer to Compute capabilities as traits.

ComputeFilter

Passes all hosts that are operational and enabled.

In general, you should always enable this filter.

DifferentHostFilter

Schedules the instance on a different host from a set of instances. To take advantage of this filter, the
requester must pass a scheduler hint, using different_host as the key and a list of instance UUIDs
as the value. This filter is the opposite of the SameHostFilter. Using the openstack server
create command, use the --hint flag. For example:

$ openstack server create --image cedef40a-ed67-4d10-800e-17455edce175 \
--flavor 1 --hint different_host=a0cf03a5-d921-4877-bb5c-86d26cf818e1 \
--hint different_host=8c19174f-4220-44f0-824a-cd1eeef10287 server-1

With the API, use the os:scheduler_hints key. For example:

3.4. Maintenance 318

https://docs.openstack.org/nova/latest/user/support-matrix.html
https://specs.openstack.org/openstack/nova-specs/specs/rocky/approved/report-cpu-features-as-traits.html
https://specs.openstack.org/openstack/nova-specs/specs/rocky/approved/report-cpu-features-as-traits.html

Nova Documentation, Release 22.4.1.dev41

{
"server": {

"name": "server-1",
"imageRef": "cedef40a-ed67-4d10-800e-17455edce175",
"flavorRef": "1"

},
"os:scheduler_hints": {

"different_host": [
"a0cf03a5-d921-4877-bb5c-86d26cf818e1",
"8c19174f-4220-44f0-824a-cd1eeef10287"

]
}

}

ImagePropertiesFilter

Filters hosts based on properties defined on the instances image. It passes hosts that can support the
specified image properties contained in the instance. Properties include the architecture, hypervisor
type, hypervisor version, and virtual machine mode.

For example, an instance might require a host that runs an ARM-based processor, and QEMU as the
hypervisor. You can decorate an image with these properties by using:

$ openstack image set --architecture arm --property img_hv_type=qemu \
img-uuid

The image properties that the filter checks for are:

hw_architecture Describes the machine architecture required by the image. Examples are i686,
x86_64, arm, and ppc64.

Changed in version 12.0.0: (Liberty)

This was previously called architecture.

img_hv_type Describes the hypervisor required by the image. Examples are qemu and hyperv.

Note: qemu is used for both QEMU and KVM hypervisor types.

Changed in version 12.0.0: (Liberty)

This was previously called hypervisor_type.

img_hv_requested_version Describes the hypervisor version required by the image. The prop-
erty is supported for HyperV hypervisor type only. It can be used to enable support for multiple
hypervisor versions, and to prevent instances with newer HyperV tools from being provisioned
on an older version of a hypervisor. If available, the property value is compared to the hypervisor
version of the compute host.

To filter the hosts by the hypervisor version, add the img_hv_requested_version property
on the image as metadata and pass an operator and a required hypervisor version as its value:

$ openstack image set --property hypervisor_type=hyperv --property \
hypervisor_version_requires=">=6000" img-uuid

3.4. Maintenance 319

Nova Documentation, Release 22.4.1.dev41

Changed in version 12.0.0: (Liberty)

This was previously called hypervisor_version_requires.

hw_vm_mode describes the hypervisor application binary interface (ABI) required by the image. Ex-
amples are xen for Xen 3.0 paravirtual ABI, hvm for native ABI, uml for User Mode Linux
paravirtual ABI, exe for container virt executable ABI.

Changed in version 12.0.0: (Liberty)

This was previously called vm_mode.

IsolatedHostsFilter

Allows the admin to define a special (isolated) set of images and a special (isolated) set of hosts, such
that the isolated images can only run on the isolated hosts, and the isolated hosts can only run isolated
images. The flag restrict_isolated_hosts_to_isolated_images can be used to force
isolated hosts to only run isolated images.

The logic within the filter depends on the restrict_isolated_hosts_to_isolated_images
config option, which defaults to True. When True, a volume-backed instance will not be put on an
isolated host. When False, a volume-backed instance can go on any host, isolated or not.

The admin must specify the isolated set of images and hosts in the nova.conf file using the
isolated_hosts and isolated_images configuration options. For example:

[filter_scheduler]
isolated_hosts = server1, server2
isolated_images = 342b492c-128f-4a42-8d3a-c5088cf27d13, ebd267a6-ca86-4d6c-
↪→9a0e-bd132d6b7d09

IoOpsFilter

The IoOpsFilter filters hosts by concurrent I/O operations on it. Hosts with too many concurrent I/O
operations will be filtered out. The max_io_ops_per_host option specifies the maximum number
of I/O intensive instances allowed to run on a host. A host will be ignored by the scheduler if more than
max_io_ops_per_host instances in build, resize, snapshot, migrate, rescue or unshelve task states
are running on it.

JsonFilter

Warning: This filter is not enabled by default and not comprehensively tested, and thus could fail
to work as expected in non-obvious ways. Furthermore, the filter variables are based on attributes
of the HostState class which could change from release to release so usage of this filter is generally
not recommended. Consider using other filters such as the ImagePropertiesFilter or traits-based
scheduling.

The JsonFilter allows a user to construct a custom filter by passing a scheduler hint in JSON format. The
following operators are supported:

3.4. Maintenance 320

https://opendev.org/openstack/nova/src/branch/master/nova/scheduler/host_manager.py

Nova Documentation, Release 22.4.1.dev41

• =

• <

• >

• in

• <=

• >=

• not

• or

• and

The filter supports any attribute in the HostState class such as the following variables:

• $free_ram_mb

• $free_disk_mb

• $hypervisor_hostname

• $total_usable_ram_mb

• $vcpus_total

• $vcpus_used

Using the openstack server create command, use the --hint flag:

$ openstack server create --image 827d564a-e636-4fc4-a376-d36f7ebe1747 \
--flavor 1 --hint query='[">=","$free_ram_mb",1024]' server1

With the API, use the os:scheduler_hints key:

{
"server": {

"name": "server-1",
"imageRef": "cedef40a-ed67-4d10-800e-17455edce175",
"flavorRef": "1"

},
"os:scheduler_hints": {

"query": "[\">=\",\"$free_ram_mb\",1024]"
}

}

MetricsFilter

Filters hosts based on meters weight_setting. Only hosts with the available meters are passed so
that the metrics weigher will not fail due to these hosts.

3.4. Maintenance 321

https://opendev.org/openstack/nova/src/branch/master/nova/scheduler/host_manager.py

Nova Documentation, Release 22.4.1.dev41

NUMATopologyFilter

Filters hosts based on the NUMA topology that was specified for the instance through the use of flavor
extra_specs in combination with the image properties, as described in detail in the related nova-
spec document. Filter will try to match the exact NUMA cells of the instance to those of the host. It
will consider the standard over-subscription limits for each host NUMA cell, and provide limits to the
compute host accordingly.

Note: If instance has no topology defined, it will be considered for any host. If instance has a topology
defined, it will be considered only for NUMA capable hosts.

NumInstancesFilter

Hosts that have more instances running than specified by the max_instances_per_host option
are filtered out when this filter is in place.

PciPassthroughFilter

The filter schedules instances on a host if the host has devices that meet the device requests in the
extra_specs attribute for the flavor.

SameHostFilter

Schedules the instance on the same host as another instance in a set of instances. To take advantage
of this filter, the requester must pass a scheduler hint, using same_host as the key and a list of in-
stance UUIDs as the value. This filter is the opposite of the DifferentHostFilter. Using the
openstack server create command, use the --hint flag:

$ openstack server create --image cedef40a-ed67-4d10-800e-17455edce175 \
--flavor 1 --hint same_host=a0cf03a5-d921-4877-bb5c-86d26cf818e1 \
--hint same_host=8c19174f-4220-44f0-824a-cd1eeef10287 server-1

With the API, use the os:scheduler_hints key:

{
"server": {

"name": "server-1",
"imageRef": "cedef40a-ed67-4d10-800e-17455edce175",
"flavorRef": "1"

},
"os:scheduler_hints": {

"same_host": [
"a0cf03a5-d921-4877-bb5c-86d26cf818e1",
"8c19174f-4220-44f0-824a-cd1eeef10287"

]
}

}

3.4. Maintenance 322

http://specs.openstack.org/openstack/nova-specs/specs/juno/implemented/virt-driver-numa-placement.html
http://specs.openstack.org/openstack/nova-specs/specs/juno/implemented/virt-driver-numa-placement.html

Nova Documentation, Release 22.4.1.dev41

ServerGroupAffinityFilter

The ServerGroupAffinityFilter ensures that an instance is scheduled on to a host from a set of group
hosts. To take advantage of this filter, the requester must create a server group with an affinity
policy, and pass a scheduler hint, using group as the key and the server group UUID as the value.
Using the openstack server create command, use the --hint flag. For example:

$ openstack server group create --policy affinity group-1
$ openstack server create --image IMAGE_ID --flavor 1 \

--hint group=SERVER_GROUP_UUID server-1

ServerGroupAntiAffinityFilter

The ServerGroupAntiAffinityFilter ensures that each instance in a group is on a different host. To take
advantage of this filter, the requester must create a server group with an anti-affinity policy, and
pass a scheduler hint, using group as the key and the server group UUID as the value. Using the
openstack server create command, use the --hint flag. For example:

$ openstack server group create --policy anti-affinity group-1
$ openstack server create --image IMAGE_ID --flavor 1 \

--hint group=SERVER_GROUP_UUID server-1

SimpleCIDRAffinityFilter

Schedules the instance based on host IP subnet range. To take advantage of this filter, the requester must
specify a range of valid IP address in CIDR format, by passing two scheduler hints:

build_near_host_ip The first IP address in the subnet (for example, 192.168.1.1)

cidr The CIDR that corresponds to the subnet (for example, /24)

Using the openstack server create command, use the --hint flag. For example, to specify
the IP subnet 192.168.1.1/24:

$ openstack server create --image cedef40a-ed67-4d10-800e-17455edce175 \
--flavor 1 --hint build_near_host_ip=192.168.1.1 --hint cidr=/24 server-1

With the API, use the os:scheduler_hints key:

{
"server": {

"name": "server-1",
"imageRef": "cedef40a-ed67-4d10-800e-17455edce175",
"flavorRef": "1"

},
"os:scheduler_hints": {

"build_near_host_ip": "192.168.1.1",
"cidr": "24"

}
}

3.4. Maintenance 323

Nova Documentation, Release 22.4.1.dev41

Weights

When resourcing instances, the filter scheduler filters and weights each host in the list of acceptable
hosts. Each time the scheduler selects a host, it virtually consumes resources on it, and subsequent
selections are adjusted accordingly. This process is useful when the customer asks for the same large
amount of instances, because weight is computed for each requested instance.

All weights are normalized before being summed up; the host with the largest weight is given the highest
priority.

Weighting hosts

Hosts are weighted based on the following options in the /etc/nova/nova.conf file:

3.4. Maintenance 324

Nova Documentation, Release 22.4.1.dev41

Table 8: Host weighting options
Section Option Description
[DEFAULT]ram_weight_multiplierBy default, the scheduler spreads instances across all hosts

evenly. Set the ram_weight_multiplier option to a
negative number if you prefer stacking instead of spread-
ing. Use a floating-point value. If the per aggregate
ram_weight_multiplier metadata is set, this multiplier
will override the configuration option value.

[DEFAULT]disk_weight_multiplierBy default, the scheduler spreads instances across all hosts
evenly. Set the disk_weight_multiplier option to
a negative number if you prefer stacking instead of spread-
ing. Use a floating-point value. If the per aggregate
disk_weight_multiplier metadata is set, this multi-
plier will override the configuration option value.

[DEFAULT]cpu_weight_multiplierBy default, the scheduler spreads instances across all hosts
evenly. Set the cpu_weight_multiplier option to a
negative number if you prefer stacking instead of spread-
ing. Use a floating-point value. If the per aggregate
cpu_weight_multiplier metadata is set, this multiplier
will override the configuration option value.

[DEFAULT]scheduler_host_subset_sizeNew instances are scheduled on a host that is chosen randomly
from a subset of the N best hosts. This property defines the
subset size from which a host is chosen. A value of 1 chooses
the first host returned by the weighting functions. This value
must be at least 1. A value less than 1 is ignored, and 1 is used
instead. Use an integer value.

[DEFAULT]scheduler_weight_classesDefaults to nova.scheduler.weights.
all_weighers. Hosts are then weighted and sorted
with the largest weight winning.

[DEFAULT]io_ops_weight_multiplierMultiplier used for weighing host I/O operations. A negative
value means a preference to choose light workload compute
hosts. If the per aggregate io_ops_weight_multiplier
metadata is set, this multiplier will override the configuration
option value.

[filter_scheduler]soft_affinity_weight_multiplierMultiplier used for weighing hosts for group soft-affinity. Only
a positive value is allowed.

[filter_scheduler]
If the
per ag-
gregate
soft_affinity_weight_multiplier
meta-
data is
set, this
mul-
tiplier
will
over-
ride the
config-
uration
option
value.

soft_anti_affinity_weight_multiplierMultiplier used for weighing hosts for group soft-anti-
affinity. Only a positive value is allowed. If the per ag-
gregate soft_anti_affinity_weight_multiplier
metadata is set, this multiplier will override the configuration
option value.

[filter_scheduler]build_failure_weight_multiplierMultiplier used for weighing hosts which have recent
build failures. A positive value increases the signifi-
cance of build failures reported by the host recently, mak-
ing them less likely to be chosen. If the per aggregate
build_failure_weight_multiplier metadata is set,
this multiplier will override the configuration option value.

[filter_scheduler]cross_cell_move_weight_multiplierMultiplier used for weighing hosts during a cross-cell
move. By default, prefers hosts within the same source
cell when migrating a server. If the per aggregate
cross_cell_move_weight_multiplier metadata is
set, this multiplier will override the configuration option value.

[metrics] weight_multiplier Multiplier for weighting meters. Use a floating-point value. If
the per aggregate metrics_weight_multiplier meta-
data is set, this multiplier will override the configuration option
value.

[metrics] weight_setting Determines how meters are weighted. Use a comma-
separated list of metricName=ratio. For example: name1=1.
0, name2=-1.0 results in: name1.value * 1.0 +
name2.value * -1.0

[metrics] required Specifies how to treat unavailable meters:
• True - Raises an exception. To avoid the raised

exception, you should use the scheduler filter
MetricFilter to filter out hosts with unavail-
able meters.

• False - Treated as a negative factor in the weighting pro-
cess (uses the weight_of_unavailable option).

[metrics] weight_of_unavailableIf required is set to False, and any one of the
meters set by weight_setting is unavailable, the
weight_of_unavailable value is returned to the sched-
uler.

3.4. Maintenance 325

Nova Documentation, Release 22.4.1.dev41

For example:

[DEFAULT]
scheduler_host_subset_size = 1
scheduler_weight_classes = nova.scheduler.weights.all_weighers
ram_weight_multiplier = 1.0
io_ops_weight_multiplier = 2.0
soft_affinity_weight_multiplier = 1.0
soft_anti_affinity_weight_multiplier = 1.0
[metrics]
weight_multiplier = 1.0
weight_setting = name1=1.0, name2=-1.0
required = false
weight_of_unavailable = -10000.0

Utilization aware scheduling

It is possible to schedule VMs using advanced scheduling decisions. These decisions are made based
on enhanced usage statistics encompassing data like memory cache utilization, memory bandwidth uti-
lization, or network bandwidth utilization. This is disabled by default. The administrator can configure
how the metrics are weighted in the configuration file by using the weight_setting configuration
option in the nova.conf configuration file. For example to configure metric1 with ratio1 and metric2
with ratio2:

weight_setting = "metric1=ratio1, metric2=ratio2"

Allocation ratios

The following configuration options exist to control allocation ratios per compute node to support over-
commit of resources:

• cpu_allocation_ratio: allows overriding the VCPU inventory allocation ratio for a com-
pute node

• ram_allocation_ratio: allows overriding the MEMORY_MB inventory allocation ratio
for a compute node

• disk_allocation_ratio: allows overriding the DISK_GB inventory allocation ratio for a
compute node

Prior to the 19.0.0 Stein release, if left unset, the cpu_allocation_ratio defaults to 16.0, the
ram_allocation_ratio defaults to 1.5, and the disk_allocation_ratio defaults to 1.0.

Starting with the 19.0.0 Stein release, the following configuration options control the initial allocation
ratio values for a compute node:

• initial_cpu_allocation_ratio: the initial VCPU inventory allocation ratio for a new
compute node record, defaults to 16.0

• initial_ram_allocation_ratio: the initial MEMORY_MB inventory allocation ratio
for a new compute node record, defaults to 1.5

• initial_disk_allocation_ratio: the initial DISK_GB inventory allocation ratio for a
new compute node record, defaults to 1.0

3.4. Maintenance 326

Nova Documentation, Release 22.4.1.dev41

Scheduling considerations

The allocation ratio configuration is used both during reporting of compute node resource provider
inventory to the placement service and during scheduling.

Usage scenarios

Since allocation ratios can be set via nova configuration, host aggregate metadata and the placement
API, it can be confusing to know which should be used. This really depends on your scenario. A few
common scenarios are detailed here.

1. When the deployer wants to always set an override value for a resource on a compute node,
the deployer would ensure that the [DEFAULT]/cpu_allocation_ratio, [DEFAULT]/
ram_allocation_ratio and [DEFAULT]/disk_allocation_ratio configuration
options are set to a non-None value (or greater than 0.0 before the 19.0.0 Stein release). This
will make the nova-compute service overwrite any externally-set allocation ratio values set
via the placement REST API.

2. When the deployer wants to set an initial value for a compute node allocation ratio but
wants to allow an admin to adjust this afterwards without making any configuration file
changes, the deployer would set the [DEFAULT]/initial_cpu_allocation_ratio,
[DEFAULT]/initial_ram_allocation_ratio and [DEFAULT]/
initial_disk_allocation_ratio configuration options and then manage the allocation
ratios using the placement REST API (or osc-placement command line interface). For example:

$ openstack resource provider inventory set --resource
↪→VCPU:allocation_ratio=1.0 815a5634-86fb-4e1e-8824-8a631fee3e06

3. When the deployer wants to always use the placement API to set allocation ratios, then the de-
ployer should ensure that [DEFAULT]/xxx_allocation_ratio options are all set to None
(the default since 19.0.0 Stein, 0.0 before Stein) and then manage the allocation ratios using the
placement REST API (or osc-placement command line interface).

This scenario is the workaround for bug 1804125.

Hypervisor-specific considerations

Nova provides three configuration options, reserved_host_cpus,
reserved_host_memory_mb, and reserved_host_disk_mb, that can be used to set
aside some number of resources that will not be consumed by an instance, whether these resources
are overcommitted or not. Some virt drivers may benefit from the use of these options to account for
hypervisor-specific overhead.

HyperV Hyper-V creates a VM memory file on the local disk when an instance starts. The size of this
file corresponds to the amount of RAM allocated to the instance.

You should configure the reserved_host_disk_mb config option to account for this over-
head, based on the amount of memory available to instances.

3.4. Maintenance 327

https://docs.openstack.org/api-ref/placement/?expanded=#resource-provider-inventories
https://docs.openstack.org/api-ref/placement/?expanded=#resource-provider-inventories
https://docs.openstack.org/osc-placement/latest/index.html
https://docs.openstack.org/osc-placement/latest/index.html
https://bugs.launchpad.net/nova/+bug/1804125

Nova Documentation, Release 22.4.1.dev41

Cells considerations

By default cells are enabled for scheduling new instances but they can be disabled (new schedulings
to the cell are blocked). This may be useful for users while performing cell maintenance, failures or
other interventions. It is to be noted that creating pre-disabled cells and enabling/disabling existing cells
should either be followed by a restart or SIGHUP of the nova-scheduler service for the changes to take
effect.

Command-line interface

The nova-manage command-line client supports the cell-disable related commands. To enable or
disable a cell, use nova-manage cell_v2 update_cell and to create pre-disabled cells, use
nova-manage cell_v2 create_cell. See the Nova Cells v2 man page for details on command
usage.

Compute capabilities as traits

Starting with the 19.0.0 Stein release, the nova-compute service will report certain COMPUTE_*
traits based on its compute driver capabilities to the placement service. The traits will be associated with
the resource provider for that compute service. These traits can be used during scheduling by configuring
flavors with Required traits or Forbidden traits. For example, if you have a host aggregate with a set of
compute nodes that support multi-attach volumes, you can restrict a flavor to that aggregate by adding the
trait:COMPUTE_VOLUME_MULTI_ATTACH=required extra spec to the flavor and then restrict
the flavor to the aggregate as normal.

Here is an example of a libvirt compute node resource provider that is exposing some CPU features as
traits, driver capabilities as traits, and a custom trait denoted by the CUSTOM_ prefix:

$ openstack --os-placement-api-version 1.6 resource provider trait list \
> d9b3dbc4-50e2-42dd-be98-522f6edaab3f --sort-column name
+---------------------------------------+
| name |
+---------------------------------------+
| COMPUTE_DEVICE_TAGGING |
| COMPUTE_NET_ATTACH_INTERFACE |
| COMPUTE_NET_ATTACH_INTERFACE_WITH_TAG |
| COMPUTE_TRUSTED_CERTS |
| COMPUTE_VOLUME_ATTACH_WITH_TAG |
| COMPUTE_VOLUME_EXTEND |
| COMPUTE_VOLUME_MULTI_ATTACH |
| CUSTOM_IMAGE_TYPE_RBD |
| HW_CPU_X86_MMX |
| HW_CPU_X86_SSE |
| HW_CPU_X86_SSE2 |
| HW_CPU_X86_SVM |
+---------------------------------------+

Rules

There are some rules associated with capability-defined traits.

1. The compute service owns these traits and will add/remove them when the nova-compute

3.4. Maintenance 328

Nova Documentation, Release 22.4.1.dev41

service starts and when the update_available_resource periodic task runs, with run in-
tervals controlled by config option update_resources_interval.

2. The compute service will not remove any custom traits set on the resource provider externally,
such as the CUSTOM_IMAGE_TYPE_RBD trait in the example above.

3. If compute-owned traits are removed from the resource provider externally, for example by
running openstack resource provider trait delete <rp_uuid>, the compute
service will add its traits again on restart or SIGHUP.

4. If a compute trait is set on the resource provider externally which is not supported by the driver,
for example by adding the COMPUTE_VOLUME_EXTEND trait when the driver does not support
that capability, the compute service will automatically remove the unsupported trait on restart or
SIGHUP.

5. Compute capability traits are standard traits defined in the os-traits library.

Further information on capabilities and traits can be found in the Technical Reference Deep Dives
section.

Compute log files

The corresponding log file of each Compute service is stored in the /var/log/nova/ directory of
the host on which each service runs.

Table 9: Log files used by Compute services
Log file Service name (Cen-

tOS/Fedora/openSUSE/Red
Hat Enterprise Linux/SUSE
Linux Enterprise)

Service name
(Ubuntu/Debian)

nova-api.log openstack-nova-api nova-api
nova-compute.log openstack-nova-compute nova-compute
nova-conductor.log openstack-nova-conductornova-conductor
nova-manage.log nova-manage nova-manage
nova-scheduler.log openstack-nova-schedulernova-scheduler

Compute service sample configuration files

Files in this section can be found in /etc/nova.

api-paste.ini

The Compute service stores its API configuration settings in the api-paste.ini file.

############
Metadata
############
[composite:metadata]
use = egg:Paste#urlmap
/: meta

(continues on next page)

3.4. Maintenance 329

https://opendev.org/openstack/os-traits/src/branch/master/os_traits/compute

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

[pipeline:meta]
pipeline = cors metaapp

[app:metaapp]
paste.app_factory = nova.api.metadata.handler:MetadataRequestHandler.
↪→factory

#############
OpenStack
#############

[composite:osapi_compute]
use = call:nova.api.openstack.urlmap:urlmap_factory
/: oscomputeversions
/v2: oscomputeversion_legacy_v2
/v2.1: oscomputeversion_v2
v21 is an exactly feature match for v2, except it has more stringent
input validation on the wsgi surface (prevents fuzzing early on the
API). It also provides new features via API microversions which are
opt into for clients. Unaware clients will receive the same frozen
v2 API feature set, but with some relaxed validation
/v2/+: openstack_compute_api_v21_legacy_v2_compatible
/v2.1/+: openstack_compute_api_v21

[composite:openstack_compute_api_v21]
use = call:nova.api.auth:pipeline_factory_v21
keystone = cors http_proxy_to_wsgi compute_req_id faultwrap request_log
↪→sizelimit osprofiler authtoken keystonecontext osapi_compute_app_v21
DEPRECATED: The [api]auth_strategy conf option is deprecated and will be
removed in a subsequent release, whereupon this pipeline will be
↪→unreachable.
noauth2 = cors http_proxy_to_wsgi compute_req_id faultwrap request_log
↪→sizelimit osprofiler noauth2 osapi_compute_app_v21

[composite:openstack_compute_api_v21_legacy_v2_compatible]
use = call:nova.api.auth:pipeline_factory_v21
keystone = cors http_proxy_to_wsgi compute_req_id faultwrap request_log
↪→sizelimit osprofiler authtoken keystonecontext legacy_v2_compatible
↪→osapi_compute_app_v21
DEPRECATED: The [api]auth_strategy conf option is deprecated and will be
removed in a subsequent release, whereupon this pipeline will be
↪→unreachable.
noauth2 = cors http_proxy_to_wsgi compute_req_id faultwrap request_log
↪→sizelimit osprofiler noauth2 legacy_v2_compatible osapi_compute_app_v21

[filter:request_log]
paste.filter_factory = nova.api.openstack.requestlog:RequestLog.factory

[filter:compute_req_id]
paste.filter_factory = nova.api.compute_req_id:ComputeReqIdMiddleware.
↪→factory

[filter:faultwrap]
paste.filter_factory = nova.api.openstack:FaultWrapper.factory

(continues on next page)

3.4. Maintenance 330

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

DEPRECATED: NoAuthMiddleware will be removed in a subsequent release,
whereupon this filter will cease to function.
[filter:noauth2]
paste.filter_factory = nova.api.openstack.auth:NoAuthMiddleware.factory

[filter:osprofiler]
paste.filter_factory = nova.profiler:WsgiMiddleware.factory

[filter:sizelimit]
paste.filter_factory = oslo_middleware:RequestBodySizeLimiter.factory

[filter:http_proxy_to_wsgi]
paste.filter_factory = oslo_middleware.http_proxy_to_wsgi:HTTPProxyToWSGI.
↪→factory

[filter:legacy_v2_compatible]
paste.filter_factory = nova.api.openstack:LegacyV2CompatibleWrapper.factory

[app:osapi_compute_app_v21]
paste.app_factory = nova.api.openstack.compute:APIRouterV21.factory

[pipeline:oscomputeversions]
pipeline = cors faultwrap request_log http_proxy_to_wsgi
↪→oscomputeversionapp

[pipeline:oscomputeversion_v2]
pipeline = cors compute_req_id faultwrap request_log http_proxy_to_wsgi
↪→oscomputeversionapp_v2

[pipeline:oscomputeversion_legacy_v2]
pipeline = cors compute_req_id faultwrap request_log http_proxy_to_wsgi
↪→legacy_v2_compatible oscomputeversionapp_v2

[app:oscomputeversionapp]
paste.app_factory = nova.api.openstack.compute.versions:Versions.factory

[app:oscomputeversionapp_v2]
paste.app_factory = nova.api.openstack.compute.versions:VersionsV2.factory

##########
Shared
##########

[filter:cors]
paste.filter_factory = oslo_middleware.cors:filter_factory
oslo_config_project = nova

[filter:keystonecontext]
paste.filter_factory = nova.api.auth:NovaKeystoneContext.factory

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_factory

3.4. Maintenance 331

Nova Documentation, Release 22.4.1.dev41

rootwrap.conf

The rootwrap.conf file defines configuration values used by the rootwrap script when the Compute
service needs to escalate its privileges to those of the root user.

It is also possible to disable the root wrapper, and default to sudo only. Configure the
disable_rootwrap option in the [workaround] section of the nova.conf configuration file.

Configuration for nova-rootwrap
This file should be owned by (and only-writeable by) the root user

[DEFAULT]
List of directories to load filter definitions from (separated by ',').
These directories MUST all be only writeable by root !
filters_path=/etc/nova/rootwrap.d,/usr/share/nova/rootwrap

List of directories to search executables in, in case filters do not
explicitly specify a full path (separated by ',')
If not specified, defaults to system PATH environment variable.
These directories MUST all be only writeable by root !
exec_dirs=/sbin,/usr/sbin,/bin,/usr/bin,/usr/local/sbin,/usr/local/bin

Enable logging to syslog
Default value is False
use_syslog=False

Which syslog facility to use.
Valid values include auth, authpriv, syslog, local0, local1...
Default value is 'syslog'
syslog_log_facility=syslog

Which messages to log.
INFO means log all usage
ERROR means only log unsuccessful attempts
syslog_log_level=ERROR

Evacuate instances

If a hardware malfunction or other error causes a cloud compute node to fail, you can evacuate instances
to make them available again.

To preserve user data on the server disk, configure shared storage on the target host. When you evacuate
the instance, Compute detects whether shared storage is available on the target host. Also, you must
validate that the current VM host is not operational. Otherwise, the evacuation fails.

There are two different ways to evacuate instances from a failed compute node. The first one using the
nova evacuate command can be used to evacuate a single instance from a failed node. In some cases
where the node in question hosted many instances it might be easier to use nova host-evacuate
to evacuate them all in one shot.

3.4. Maintenance 332

Nova Documentation, Release 22.4.1.dev41

Evacuate a single instance

The procedure below explains how to evacuate a single instance from a failed compute node. Please be
aware that these steps describe a post failure scenario and should not be used if the instance is still up
and running.

1. To find a host for the evacuated instance, list all hosts:

$ openstack host list

2. Evacuate the instance. You can use the --password PWD option to pass the instance password
to the command. If you do not specify a password, the command generates and prints one after it
finishes successfully. The following command evacuates a server from a failed host to HOST_B.

$ nova evacuate EVACUATED_SERVER_NAME HOST_B

The command rebuilds the instance from the original image or volume and returns a password.
The command preserves the original configuration, which includes the instance ID, name, uid, IP
address, and so on.

+-----------+--------------+
| Property | Value |
+-----------+--------------+
| adminPass | kRAJpErnT4xZ |
+-----------+--------------+

Optionally you can omit the HOST_B parameter and let the scheduler choose a new target host.

3. To preserve the user disk data on the evacuated server, deploy Compute with a shared file system.
To configure your system, see Configure live migrations. The following example does not change
the password.

$ nova evacuate EVACUATED_SERVER_NAME HOST_B --on-shared-storage

Note: Starting with the 2.14 compute API version, one no longer needs to specify
--on-shared-storage even if the server is on a compute host which is using shared storage.
The compute service will automatically detect if it is running on shared storage.

Evacuate all instances

The procedure below explains how to evacuate all instances from a failed compute node. Please note
that this method should not be used if the host still has instances up and running.

1. To find a host for the evacuated instances, list all hosts:

$ openstack host list

2. Evacuate all instances from FAILED_HOST to TARGET_HOST:

$ nova host-evacuate --target_host TARGET_HOST FAILED_HOST

3.4. Maintenance 333

Nova Documentation, Release 22.4.1.dev41

The option --target_host is optional and can be omitted to let the scheduler decide where to
place the instances.

The above argument FAILED_HOST can also be a pattern to search for instead of an exact hy-
pervisor hostname but it is recommended to use a fully qualified domain name to make sure no
hypervisor host is getting evacuated by mistake. As long as you are not using a pattern you might
want to use the --strict flag which got introduced in version 10.2.0 to make sure nova matches
the FAILED_HOST exactly.

Note:

+------+--------+--------------+
| Name | Status | Task State |
+------+--------+--------------+
| vm_1 | ACTIVE | powering-off |
+------------------------------+

If the instance task state is not None, evacuation will be possible. However, depending on the ongoing
operation, there may be clean up required in other services which the instance was using, such as neutron,
cinder, glance, or the storage backend.

Image Caching

Nova supports caching base images on compute nodes when using a supported virt driver.

What is Image Caching?

In order to understand what image caching is and why it is beneficial, it helps to be familiar with the
process by which an instance is booted from a given base image. When a new instance is created on a
compute node, the following general steps are performed by the compute manager in conjunction with
the virt driver:

1. Download the base image from glance

2. Copy or COW the base image to create a new root disk image for the instance

3. Boot the instance using the new root disk image

The first step involves downloading the entire base image to the local disk on the compute node, which
could involve many gigabytes of network traffic, storage, and many minutes of latency between the start
of the boot process and actually running the instance. When the virt driver supports image caching, step
#1 above may be skipped if the base image is already present on the compute node. This is most often
the case when another instance has been booted on that node from the same base image recently. If
present, the download operation can be skipped, which greatly reduces the time-to-boot for the second
and subsequent instances that use the same base image, as well as avoids load on the glance server and
the network connection.

By default, the compute node will periodically scan the images it has cached, looking for base images
that are not used by any instances on the node that are older than a configured lifetime (24 hours by
default). Those unused images are deleted from the cache directory until they are needed again.

3.4. Maintenance 334

https://docs.openstack.org/nova/latest/user/support-matrix.html#operation_cache_images

Nova Documentation, Release 22.4.1.dev41

For more information about configuring image cache behavior, see the documentation for the configura-
tion options in the image_cache group.

Note: Some ephemeral backend drivers may not use or need image caching, or may not behave in the
same way as others. For example, when using the rbd backend with the libvirt driver and a shared
pool with glance, images are COWd at the storage level and thus need not be downloaded (and thus
cached) at the compute node at all.

Image Caching Resource Accounting

Generally the size of the image cache is not part of the data Nova includes when reporting available or
consumed disk space. This means that when nova-compute reports 100G of total disk space, the
scheduler will assume that 100G of instances may be placed there. Usually disk is the most plentiful
resource and thus the last to be exhausted, so this is often not problematic. However, if many instances
are booted from distinct images, all of which need to be cached in addition to the disk space used by the
instances themselves, Nova may overcommit the disk unintentionally by failing to consider the size of
the image cache.

There are two approaches to addressing this situation:

1. Mount the image cache as a separate filesystem. This will cause Nova to report the amount of
disk space available purely to instances, independent of how much is consumed by the cache.
Nova will continue to disregard the size of the image cache and, if the cache space is ex-
hausted, builds will fail. However, available disk space for instances will be correctly reported
by nova-compute and accurately considered by the scheduler.

2. Enable optional reserved disk amount behavior. The configuration workaround
workarounds.reserve_disk_resource_for_image_cache will cause
nova-compute to periodically update the reserved disk amount to include the statically
configured value, as well as the amount currently consumed by the image cache. This will cause
the scheduler to see the available disk space decrease as the image cache grows. This is not
updated synchronously and thus is not a perfect solution, but should vastly increase the schedulers
visibility resulting in better decisions. (Note this solution is currently libvirt-specific)

As above, not all backends and virt drivers use image caching, and thus a third option may be to consider
alternative infrastructure to eliminate this problem altogether.

Image pre-caching

It may be beneficial to pre-cache images on compute nodes in order to achieve low time-to-boot latency
for new instances immediately. This is often useful when rolling out a new version of an application
where downtime is important and having the new images already available on the compute nodes is
critical.

Nova provides (since the Ussuri release) a mechanism to request that images be cached without having
to boot an actual instance on a node. This best-effort service operates at the host aggregate level in order
to provide an efficient way to indicate that a large number of computes should receive a given set of
images. If the computes that should pre-cache an image are not already in a defined host aggregate, that
must be done first.

3.4. Maintenance 335

Nova Documentation, Release 22.4.1.dev41

For information on how to perform aggregate-based image pre-caching, see the Image Caching section
of the Host aggregates documentation.

Metadata service

Note: This section provides deployment information about the metadata service. For end-user infor-
mation about the metadata service and instance metadata in general, refer to the user guide.

The metadata service provides a way for instances to retrieve instance-specific data. Instances access the
metadata service at http://169.254.169.254. The metadata service supports two sets of APIs -
an OpenStack metadata API and an EC2-compatible API - and also exposes vendordata and user data.
Both the OpenStack metadata and EC2-compatible APIs are versioned by date.

The metadata service can be run globally, as part of the nova-api application, or on a per-cell basis,
as part of the standalone nova-api-metadata application. A detailed comparison is provided in the
cells V2 guide.

Changed in version 19.0.0: The ability to run the nova metadata API service on a per-cell basis was added
in Stein. For versions prior to this release, you should not use the standalone nova-api-metadata
application for multiple cells.

Guests access the service at 169.254.169.254 or at fe80::a9fe:a9fe.

Changed in version 22.0.0: Starting with the Victoria release the metadata service is accessible over
IPv6 at the link-local address fe80::a9fe:a9fe.

The networking service, neutron, is responsible for intercepting these requests and adding HTTP headers
which uniquely identify the source of the request before forwarding it to the metadata API server. For
the Open vSwitch and Linux Bridge backends provided with neutron, the flow looks something like so:

1. Instance sends a HTTP request for metadata to 169.254.169.254.

2. This request either hits the router or DHCP namespace depending on the route in the instance

3. The metadata proxy service in the namespace adds the following info to the request:

• Instance IP (X-Forwarded-For header)

• Router or Network-ID (X-Neutron-Network-Id or X-Neutron-Router-Id
header)

4. The metadata proxy service sends this request to the metadata agent (outside the namespace) via
a UNIX domain socket.

5. The neutron-metadata-agent application forwards the request to the nova metadata API
service by adding some new headers (instance ID and Tenant ID) to the request.

This flow may vary if a different networking backend is used.

Neutron and nova must be configured to communicate together with a shared secret. Neutron uses
this secret to sign the Instance-ID header of the metadata request to prevent spoofing. This secret is
configured through the neutron.metadata_proxy_shared_secret config option in nova and
the equivalent metadata_proxy_shared_secret config option in neutron.

3.4. Maintenance 336

Nova Documentation, Release 22.4.1.dev41

Configuration

The nova-api application accepts the following metadata service-related options:

• enabled_apis

• enabled_ssl_apis

• neutron.service_metadata_proxy

• neutron.metadata_proxy_shared_secret

• api.metadata_cache_expiration

• api.use_forwarded_for

• api.local_metadata_per_cell

• api.dhcp_domain

Note: This list excludes configuration options related to the vendordata feature. Refer to vendordata
feature documentation for information on configuring this.

For example, to configure the nova-api application to serve the metadata API, without SSL, using the
StaticJSON vendordata provider, add the following to a nova-api.conf file:

[DEFAULT]
enabled_apis = osapi_compute,metadata
enabled_ssl_apis =
metadata_listen = 0.0.0.0
metadata_listen_port = 0
metadata_workers = 4

[neutron]
service_metadata_proxy = True

[api]
dhcp_domain =
metadata_cache_expiration = 15
use_forwarded_for = False
local_metadata_per_cell = False
vendordata_providers = StaticJSON
vendordata_jsonfile_path = /etc/nova/vendor_data.json

Note: This does not include configuration options that are not metadata-specific but are nonetheless
required, such as api.auth_strategy .

Configuring the application to use the DynamicJSON vendordata provider is more involved and is not
covered here.

The nova-api-metadata application accepts almost the same options:

• neutron.service_metadata_proxy

• neutron.metadata_proxy_shared_secret

• api.metadata_cache_expiration

3.4. Maintenance 337

Nova Documentation, Release 22.4.1.dev41

• api.use_forwarded_for

• api.local_metadata_per_cell

• api.dhcp_domain

Note: This list excludes configuration options related to the vendordata feature. Refer to vendordata
feature documentation for information on configuring this.

For example, to configure the nova-api-metadata application to serve the metadata API, without
SSL, add the following to a nova-api.conf file:

[DEFAULT]
metadata_listen = 0.0.0.0
metadata_listen_port = 0
metadata_workers = 4

[neutron]
service_metadata_proxy = True

[api]
dhcp_domain =
metadata_cache_expiration = 15
use_forwarded_for = False
local_metadata_per_cell = False

Note: This does not include configuration options that are not metadata-specific but are nonetheless
required, such as api.auth_strategy .

For information about configuring the neutron side of the metadata service, refer to the neutron config-
uration guide

Config drives

Config drives are special drives that are attached to an instance when it boots. The instance can mount
this drive and read files from it to get information that is normally available through the metadata service.
For more information, refer to Config drives and the user guide.

Vendordata

Vendordata provides a way to pass vendor or deployment-specific information to instances. For more
information, refer to Vendordata and the user guide.

3.4. Maintenance 338

https://docs.openstack.org/neutron/victoria/configuration/metadata-agent.html
https://docs.openstack.org/neutron/victoria/configuration/metadata-agent.html

Nova Documentation, Release 22.4.1.dev41

User data

User data is a blob of data that the user can specify when they launch an instance. For more information,
refer to the user guide.

Migrate instances

Note: This documentation is about cold migration. For live migration usage, see Live-migrate in-
stances.

When you want to move an instance from one compute host to another, you can migrate the instance.
The migration operation, which is also known as the cold migration operation to distinguish it from the
live migration operation, functions similarly to the resize operation with the main difference being that
a cold migration does not change the flavor of the instance. As with resize, the scheduler chooses the
destination compute host based on its settings. This process does not assume that the instance has shared
storage available on the target host. If you are using SSH tunneling, you must ensure that each node is
configured with SSH key authentication so that the Compute service can use SSH to move disks to other
nodes. For more information, see Configure SSH between compute nodes.

To list the VMs you want to migrate, run:

$ openstack server list

Once you have the name or UUID of the server you wish to migrate, migrate it using the openstack
server migrate command:

$ openstack server migrate SERVER

Once an instance has successfully migrated, you can use the openstack server migrate
confirm command to confirm it:

$ openstack server migrate confirm SERVER

Alternatively, you can use the openstack server migrate revert command to revert the mi-
gration and restore the instance to its previous host:

$ openstack server migrate revert SERVER

Note: You can configure automatic confirmation of migrations and resizes. Refer to the
resize_confirm_window option for more information.

3.4. Maintenance 339

Nova Documentation, Release 22.4.1.dev41

Example

To migrate an instance and watch the status, use this example script:

#!/bin/bash

Provide usage
usage() {

echo "Usage: $0 VM_ID"
exit 1

}

[[$# -eq 0]] && usage
VM_ID=$1

Show the details for the VM
echo "Instance details:"
openstack server show ${VM_ID}

Migrate the VM to an alternate hypervisor
echo -n "Migrating instance to alternate host "
openstack server migrate ${VM_ID}
while [["$(openstack server show ${VM_ID} -f value -c status)" != "VERIFY_
↪→RESIZE"]]; do

echo -n "."
sleep 2

done
openstack server migrate confirm ${VM_ID}
echo " instance migrated and resized."

Show the details for the migrated VM
echo "Migrated instance details:"
openstack server show ${VM_ID}

Pause to allow users to examine VM details
read -p "Pausing, press <enter> to exit."

Note: If you see the following error, it means you are either running the command with the wrong
credentials, such as a non-admin user, or the policy.yaml file prevents migration for your user:

Policy doesn't allow os_compute_api:os-migrate-server:migrate to be
↪→performed. (HTTP 403)

Note: If you see the following error, similar to this message, SSH tunneling was not set up between the
compute nodes:

ProcessExecutionError: Unexpected error while running command.
Stderr: u Host key verification failed.\r\n

The instance is booted from a new host, but preserves its configuration including instance ID, name, IP
address, any metadata, and other properties.

3.4. Maintenance 340

Nova Documentation, Release 22.4.1.dev41

Use snapshots to migrate instances

This guide can be used to migrate an instance between different clouds.

To use snapshots to migrate instances from OpenStack projects to clouds, complete these steps.

In the source project:

1. Create a snapshot of the instance

2. Download the snapshot as an image

In the destination project:

1. Import the snapshot to the new environment

2. Boot a new instance from the snapshot

Note: Some cloud providers allow only administrators to perform this task.

Create a snapshot of the instance

1. Shut down the source VM before you take the snapshot to ensure that all data is flushed to disk.
If necessary, list the instances to view the instance name:

$ openstack server list
+--------------------------------------+------------+--------+--------
↪→----------+--------------------+-------------------------+
| ID | Name | Status |
↪→Networks | Image | Flavor |
+--------------------------------------+------------+--------+--------
↪→----------+--------------------+-------------------------+
| d0d1b7d9-a6a5-41d3-96ab-07975aadd7fb | myInstance | ACTIVE |
↪→private=10.0.0.3 | ubuntu-16.04-amd64 | general.micro.tmp.linux |
+--------------------------------------+------------+--------+--------
↪→----------+--------------------+-------------------------+

2. Use the openstack server stop command to shut down the instance:

$ openstack server stop myInstance

3. Use the openstack server list command to confirm that the instance shows a SHUTOFF
status:

$ openstack server list
+--------------------------------------+------------+---------+-------
↪→-----------+--------------------+-------------------------+
| ID | Name | Status |
↪→Networks | Image | Flavor |
+--------------------------------------+------------+---------+-------
↪→-----------+--------------------+-------------------------+
| d0d1b7d9-a6a5-41d3-96ab-07975aadd7fb | myInstance | SHUTOFF |
↪→private=10.0.0.3 | ubuntu-16.04-amd64 | general.micro.tmp.linux |
+--------------------------------------+------------+---------+-------
↪→-----------+--------------------+-------------------------+

3.4. Maintenance 341

Nova Documentation, Release 22.4.1.dev41

4. Use the openstack server image create command to take a snapshot:

$ openstack server image create --name myInstanceSnapshot myInstance

If snapshot operations routinely fail because the user token times out while uploading a large disk
image, consider configuring nova to use service user tokens.

5. Use the openstack image list command to check the status until the status is ACTIVE:

$ openstack image list
+--------------------------------------+---------------------------+--
↪→------+
| ID | Name |
↪→Status |
+--------------------------------------+---------------------------+--
↪→------+
| ab567a44-b670-4d22-8ead-80050dfcd280 | myInstanceSnapshot |
↪→active |
+--------------------------------------+---------------------------+--
↪→------+

Download the snapshot as an image

1. Get the image ID:

$ openstack image list
+--------------------------------------+---------------------------+--
↪→------+
| ID | Name |
↪→Status |
+--------------------------------------+---------------------------+--
↪→------+
| ab567a44-b670-4d22-8ead-80050dfcd280 | myInstanceSnapshot |
↪→active |
+--------------------------------------+---------------------------+--
↪→------+

2. Download the snapshot by using the image ID that was returned in the previous step:

$ openstack image save --file snapshot.raw ab567a44-b670-4d22-8ead-
↪→80050dfcd280

Note: The openstack image save command requires the image ID and cannot use the
image name. Check there is sufficient space on the destination file system for the image file.

3. Make the image available to the new environment, either through HTTP or direct upload to a
machine (scp).

3.4. Maintenance 342

Nova Documentation, Release 22.4.1.dev41

Import the snapshot to the new environment

In the new project or cloud environment, import the snapshot:

$ openstack image create --container-format bare --disk-format qcow2 \
--file snapshot.raw myInstanceSnapshot

Boot a new instance from the snapshot

In the new project or cloud environment, use the snapshot to create the new instance:

$ openstack server create --flavor m1.tiny --image myInstanceSnapshot
↪→myNewInstance

Networking with neutron

While nova uses the OpenStack Networking service (neutron) to provide network connectivity for in-
stances, nova itself provides some additional features not possible with neutron alone. These are de-
scribed below.

SR-IOV

Changed in version 2014.2: The feature described below was first introduced in the Juno release.

The SR-IOV specification defines a standardized mechanism to virtualize PCIe devices. This mechanism
can virtualize a single PCIe Ethernet controller to appear as multiple PCIe devices. Each device can be
directly assigned to an instance, bypassing the hypervisor and virtual switch layer. As a result, users are
able to achieve low latency and near-line wire speed.

A full guide on configuring and using SR-IOV is provided in the OpenStack Networking service docu-
mentation

Note: Nova only supports PCI addresses where the fields are restricted to the following maximum
value:

• domain - 0xFFFF

• bus - 0xFF

• slot - 0x1F

• function - 0x7

Nova will ignore PCI devices reported by the hypervisor if the address is outside of these ranges.

3.4. Maintenance 343

https://docs.openstack.org/neutron/victoria/
https://docs.openstack.org/neutron/victoria/admin/config-sriov.html
https://docs.openstack.org/neutron/victoria/admin/config-sriov.html

Nova Documentation, Release 22.4.1.dev41

NUMA Affinity

New in version 18.0.0: The feature described below was first introduced in the Rocky release.

Important: The functionality described below is currently only supported by the libvirt/KVM driver.

As described in CPU topologies, NUMA is a computer architecture where memory accesses to certain
regions of system memory can have higher latencies than other regions, depending on the CPU(s) your
process is running on. This effect extends to devices connected to the PCIe bus, a concept known as
NUMA I/O. Many Network Interface Cards (NICs) connect using the PCIe interface, meaning they
are susceptible to the ill-effects of poor NUMA affinitization. As a result, NUMA locality must be
considered when creating an instance where high dataplane performance is a requirement.

Fortunately, nova provides functionality to ensure NUMA affinitization is provided for instances using
neutron. How this works depends on the type of port you are trying to use.

Todo: Add documentation for PCI NUMA affinity and PCI policies and link to it from here.

For SR-IOV ports, virtual functions, which are PCI devices, are attached to the instance. This means
the instance can benefit from the NUMA affinity guarantees provided for PCI devices. This happens
automatically.

For all other types of ports, some manual configuration is required.

1. Identify the type of network(s) you wish to provide NUMA affinity for.

• If a network is an L2-type network (provider:network_type of flat or vlan),
affinity of the network to given NUMA node(s) can vary depending on value of the
provider:physical_network attribute of the network, commonly referred to as the
physnet of the network. This is because most neutron drivers map each physnet to a different
bridge, to which multiple NICs are attached, or to a different (logical) NIC.

• If a network is an L3-type networks (provider:network_type of vxlan, gre or
geneve), all traffic will use the device to which the endpoint IP is assigned. This means
all L3 networks on a given host will have affinity to the same NUMA node(s). Refer to the
neutron documentation for more information.

2. Determine the NUMA affinity of the NICs attached to the given network(s).

How this should be achieved varies depending on the switching solution used and whether the
network is a L2-type network or an L3-type networks.

Consider an L2-type network using the Linux Bridge mechanism driver. As noted in the
neutron documentation, physnets are mapped to interfaces using the [linux_bridge]
physical_interface_mappings configuration option. For example:

[linux_bridge]
physical_interface_mappings = provider:PROVIDER_INTERFACE

Once you have the device name, you can query sysfs to retrieve the NUMA affinity for this device.
For example:

$ cat /sys/class/net/PROVIDER_INTERFACE/device/numa_node

3.4. Maintenance 344

https://docs.openstack.org/neutron/victoria/admin/intro-overlay-protocols.html
https://docs.openstack.org/neutron/victoria/admin/intro-overlay-protocols.html
https://docs.openstack.org/neutron/victoria/admin/deploy-lb-selfservice.html

Nova Documentation, Release 22.4.1.dev41

For an L3-type network using the Linux Bridge mechanism driver, the device used will be config-
ured using protocol-specific endpoint IP configuration option. For VXLAN, this is the [vxlan]
local_ip option. For example:

[vxlan]
local_ip = OVERLAY_INTERFACE_IP_ADDRESS

Once you have the IP address in question, you can use ip to identify the device that has been
assigned this IP address and from there can query the NUMA affinity using sysfs as above.

Note: The example provided above is merely that: an example. How one should identify this
information can vary massively depending on the driver used, whether bonding is used, the type
of network used, etc.

3. Configure NUMA affinity in nova.conf.

Once you have identified the NUMA affinity of the devices used for your networks, you need to
configure this in nova.conf. As before, how this should be achieved varies depending on the
type of network.

For L2-type networks, NUMA affinity is defined based on the
provider:physical_network attribute of the network. There are two configuration
options that must be set:

[neutron] physnets This should be set to the list of physnets for which you wish to provide
NUMA affinity. Refer to the documentation for more information.

[neutron_physnet_{physnet}] numa_nodes This should be set to the list of NUMA
node(s) that networks with the given {physnet} should be affinitized to.

For L3-type networks, NUMA affinity is defined globally for all tunneled networks on a given
host. There is only one configuration option that must be set:

[neutron_tunneled] numa_nodes This should be set to a list of one or NUMA nodes to
which instances using tunneled networks will be affinitized.

4. Configure a NUMA topology for instance flavor(s)

For network NUMA affinity to have any effect, the instance must have a NUMA topology itself.
This can be configured explicitly, using the hw:numa_nodes extra spec, or implicitly through
the use of CPU pinning (hw:cpu_policy=dedicated) or PCI devices. For more informa-
tion, refer to CPU topologies.

Examples

Take an example for deployment using L2-type networks first.

[neutron]
physnets = foo,bar

[neutron_physnet_foo]
numa_nodes = 0

[neutron_physnet_bar]
numa_nodes = 2, 3

3.4. Maintenance 345

Nova Documentation, Release 22.4.1.dev41

This configuration will ensure instances using one or more L2-type networks with
provider:physical_network=foo must be scheduled on host cores from NUMA nodes
0, while instances using one or more networks with provider:physical_network=bar must
be scheduled on host cores from both NUMA nodes 2 and 3. For the latter case, it will be necessary to
split the guest across two or more host NUMA nodes using the hw:numa_nodes flavor extra spec.

Now, take an example for a deployment using L3 networks.

[neutron_tunneled]
numa_nodes = 0

This is much simpler as all tunneled traffic uses the same logical interface. As with the L2-type networks,
this configuration will ensure instances using one or more L3-type networks must be scheduled on host
cores from NUMA node 0. It is also possible to define more than one NUMA node, in which case the
instance must be split across these nodes.

Manage quotas

Note: This section provides deployment information about the quota feature. For end-user information
about quotas, including information about the type of quotas available, refer to the user guide.

To prevent system capacities from being exhausted without notification, you can set up quotas. Quotas
are operational limits. For example, the number of gigabytes allowed for each project can be controlled
so that cloud resources are optimized. Quotas can be enforced at both the project and the project-user
level.

Starting in the 16.0.0 Pike release, the quota calculation system in nova was overhauled and the old
reserve/commit/rollback flow was changed to count resource usage at the point of whatever operation is
being performed, such as creating or resizing a server. A check will be performed by counting current
usage for the relevant resource and then, if quota.recheck_quota is True, another check will be
performed to ensure the initial check is still valid.

By default resource usage is counted using the API and cell databases but nova can be configured to count
some resource usage without using the cell databases. See Quota usage from placement for details.

Using the command-line interface, you can manage quotas for nova, along with cinder and neutron. You
would typically change default values because, for example, a project requires more than ten volumes
or 1 TB on a compute node.

Checking quota

When calculating limits for a given resource and project, the following checks are made in order:

1. Project-specific limits

Depending on the resource, is there a project-specific limit on the resource in either the quotas
or project_user_quotas tables in the database? If so, use that as the limit. You can create
these resources using:

$ openstack quota set --instances 5 <project>

3.4. Maintenance 346

https://specs.openstack.org/openstack/nova-specs/specs/pike/implemented/cells-count-resources-to-check-quota-in-api.html
https://docs.openstack.org/cinder/victoria/cli/cli-cinder-quotas.html
https://docs.openstack.org/neutron/victoria/contributor/internals/quota.html

Nova Documentation, Release 22.4.1.dev41

2. Default limits

Check to see if there is a hard limit for the given resource in the quota_classes table in the
database for the default quota class. If so, use that as the limit. You can modify the default
quota limit for a resource using:

$ openstack quota set --instances 5 --class default

Note: Only the default class is supported by nova.

3. Config-driven limits

If the above does not provide a resource limit, then rely on the configuration options in the quota
config group for the default limits.

Note: The API sets the limit in the quota_classes table. Once a default limit is set via the default
quota class, that takes precedence over any changes to that resource limit in the configuration options.
In other words, once youve changed things via the API, you either have to keep those synchronized with
the configuration values or remove the default limit from the database manually as there is no REST API
for removing quota class values from the database.

Quota usage from placement

Starting in the Train (20.0.0) release, it is possible to configure quota usage counting of cores and
RAM from the placement service and instances from instance mappings in the API database instead of
counting resources from cell databases. This makes quota usage counting resilient in the presence of
down or poor-performing cells.

Quota usage counting from placement is opt-in via the :quota.count_usage_from_placement
config option:

[quota]
count_usage_from_placement = True

There are some things to note when opting in to counting quota usage from placement:

• Counted usage will not be accurate in an environment where multiple Nova deployments
are sharing a placement deployment because currently placement has no way of partition-
ing resource providers between different Nova deployments. Operators who are running
multiple Nova deployments that share a placement deployment should not set the quota.
count_usage_from_placement configuration option to True.

• Behavior will be different for resizes. During a resize, resource allocations are held on both
the source and destination (even on the same host, see https://bugs.launchpad.net/nova/+bug/
1790204) until the resize is confirmed or reverted. Quota usage will be inflated for servers in
this state and operators should weigh the advantages and disadvantages before enabling quota.
count_usage_from_placement.

• The populate_queued_for_delete and populate_user_id online data migrations
must be completed before usage can be counted from placement. Until the data mi-
gration is complete, the system will fall back to legacy quota usage counting from cell

3.4. Maintenance 347

https://docs.openstack.org/api-guide/compute/down_cells.html
https://bugs.launchpad.net/nova/+bug/1790204
https://bugs.launchpad.net/nova/+bug/1790204

Nova Documentation, Release 22.4.1.dev41

databases depending on the result of an EXISTS database query during each quota check,
if quota.count_usage_from_placement is set to True. Operators who want
to avoid the performance hit from the EXISTS queries should wait to set the quota.
count_usage_from_placement configuration option to True until after they have com-
pleted their online data migrations via nova-manage db online_data_migrations.

• Behavior will be different for unscheduled servers in ERROR state. A server in ERROR state that
has never been scheduled to a compute host will not have placement allocations, so it will not
consume quota usage for cores and ram.

• Behavior will be different for servers in SHELVED_OFFLOADED state. A server in
SHELVED_OFFLOADED state will not have placement allocations, so it will not consume quota
usage for cores and ram. Note that because of this, it will be possible for a request to unshelve a
server to be rejected if the user does not have enough quota available to support the cores and ram
needed by the server to be unshelved.

Known issues

If not counting quota usage from placement it is possible for down or poor-performing cells to impact
quota calculations. See the cells documentation for details.

Future plans

Hierarchical quotas

There has long been a desire to support hierarchical or nested quotas leveraging support in the identity
service for hierarchical projects. See the unified limits spec for details.

Configuration

View and update default quota values

To list all default quotas for a project, run:

$ openstack quota show --default

Note: This lists default quotas for all services and not just nova.

To update a default value for a new project, run:

$ openstack quota set --class --instances 15 default

3.4. Maintenance 348

https://review.opendev.org/#/c/602201/

Nova Documentation, Release 22.4.1.dev41

View and update quota values for a project or class

To list quotas for a project, run:

$ openstack quota show PROJECT

Note: This lists project quotas for all services and not just nova.

To update quotas for a project, run:

$ openstack quota set --QUOTA QUOTA_VALUE PROJECT

To update quotas for a class, run:

$ openstack quota set --class --QUOTA QUOTA_VALUE CLASS

Note: Only the default class is supported by nova.

For example:

$ openstack quota set --instances 12 my-project
$ openstack quota show my-project
+----------------------+----------------------------------+
| Field | Value |
+----------------------+----------------------------------+
backup-gigabytes	1000
backups	10
cores	32
fixed-ips	-1
floating-ips	10
gigabytes	1000
health_monitors	None
injected-file-size	10240
injected-files	5
injected-path-size	255
instances	12
key-pairs	100
l7_policies	None
listeners	None
load_balancers	None
location	None
name	None
networks	20
per-volume-gigabytes	-1
pools	None
ports	60
project	c8156b55ec3b486193e73d2974196993
project_name	project
properties	128
ram	65536
rbac_policies	10
routers	10

(continues on next page)

3.4. Maintenance 349

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

secgroup-rules	50
secgroups	50
server-group-members	10
server-groups	10
snapshots	10
subnet_pools	-1
subnets	20
volumes	10
+----------------------+----------------------------------+

To view a list of options for the openstack quota show and openstack quota set com-
mands, run:

$ openstack quota show --help
$ openstack quota set --help

View and update quota values for a project user

Note: User-specific quotas are legacy and will be removed when migration to unified limits is complete.
User-specific quotas were added as a way to provide two-level hierarchical quotas and this feature is
already being offered in unified limits. For this reason, the below commands have not and will not be
ported to openstackclient.

To show quotas for a specific project user, run:

$ nova quota-show --user USER PROJECT

To update quotas for a specific project user, run:

$ nova quota-update --user USER --QUOTA QUOTA_VALUE PROJECT

For example:

$ projectUser=$(openstack user show -f value -c id USER)
$ project=$(openstack project show -f value -c id PROJECT)

$ nova quota-update --user $projectUser --instance 12 $project
$ nova quota-show --user $projectUser --tenant $project
+-----------------------------+-------+
| Quota | Limit |
+-----------------------------+-------+
instances	12
cores	20
ram	51200
floating_ips	10
fixed_ips	-1
metadata_items	128
injected_files	5
injected_file_content_bytes	10240
injected_file_path_bytes	255
key_pairs	100

(continues on next page)

3.4. Maintenance 350

https://docs.openstack.org/keystone/victoria//admin/unified-limits.html

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

security_groups	10
security_group_rules	20
server_groups	10
server_group_members	10
+-----------------------------+-------+

To view the quota usage for the current user, run:

$ nova limits --tenant PROJECT

For example:

$ nova limits --tenant my-project
+------+-----+-------+--------+------+----------------+
| Verb | URI | Value | Remain | Unit | Next_Available |
+------+-----+-------+--------+------+----------------+
+------+-----+-------+--------+------+----------------+

+--------------------+------+-------+
| Name | Used | Max |
+--------------------+------+-------+
Cores	0	20
Instances	0	10
Keypairs	-	100
Personality	-	5
Personality Size	-	10240
RAM	0	51200
Server Meta	-	128
ServerGroupMembers	-	10
ServerGroups	0	10
+--------------------+------+-------+

Note: The nova limits command generates an empty table as a result of the Compute API, which
prints an empty list for backward compatibility purposes.

To view a list of options for the nova quota-show and nova quota-update commands, run:

$ nova help quota-show
$ nova help quota-update

Manage project security

Security groups are sets of IP filter rules that are applied to all project instances, which define networking
access to the instance. Group rules are project specific; project members can edit the default rules for
their group and add new rule sets.

All projects have a default security group which is applied to any instance that has no other defined
security group. Unless you change the default, this security group denies all incoming traffic and allows
only outgoing traffic to your instance.

Security groups (and their quota) are managed by Neutron, the networking service.

3.4. Maintenance 351

https://docs.openstack.org/neutron/victoria//admin/archives/adv-features.html#security-groups

Nova Documentation, Release 22.4.1.dev41

Working with security groups

From the command-line you can get a list of security groups for the project, using the openstack
commands.

List and view current security groups

1. Ensure your system variables are set for the user and project for which you are checking security
group rules. For example:

export OS_USERNAME=demo00
export OS_TENANT_NAME=tenant01

2. Output security groups, as follows:

$ openstack security group list
+--------------------------------------+---------+-------------+
| Id | Name | Description |
+--------------------------------------+---------+-------------+
| 73580272-d8fa-4927-bd55-c85e43bc4877 | default | default |
| 6777138a-deb7-4f10-8236-6400e7aff5b0 | open | all ports |
+--------------------------------------+---------+-------------+

3. View the details of a group, as follows:

$ openstack security group rule list GROUPNAME

For example:

$ openstack security group rule list open
+--------------------------------------+-------------+-----------+----
↪→-------------+-----------------------+
| ID | IP Protocol | IP Range |
↪→Port Range | Remote Security Group |
+--------------------------------------+-------------+-----------+----
↪→-------------+-----------------------+
| 353d0611-3f67-4848-8222-a92adbdb5d3a | udp | 0.0.0.0/0 |
↪→1:65535 | None |
| 63536865-e5b6-4df1-bac5-ca6d97d8f54d | tcp | 0.0.0.0/0 |
↪→1:65535 | None |
+--------------------------------------+-------------+-----------+----
↪→-------------+-----------------------+

These rules are allow type rules as the default is deny. The first column is the IP protocol (one
of ICMP, TCP, or UDP). The second and third columns specify the affected port range. The third
column specifies the IP range in CIDR format. This example shows the full port range for all
protocols allowed from all IPs.

3.4. Maintenance 352

Nova Documentation, Release 22.4.1.dev41

Create a security group

When adding a new security group, you should pick a descriptive but brief name. This name shows
up in brief descriptions of the instances that use it where the longer description field often does not.
For example, seeing that an instance is using security group http is much easier to understand than
bobs_group or secgrp1.

1. Ensure your system variables are set for the user and project for which you are creating security
group rules.

2. Add the new security group, as follows:

$ openstack security group create GroupName --description Description

For example:

$ openstack security group create global_http --description "Allows
↪→Web traffic anywhere on the Internet."
+-----------------+---
↪→--
↪→---+
| Field | Value
↪→

↪→ |
+-----------------+---
↪→--
↪→---+
| created_at | 2016-11-03T13:50:53Z
↪→

↪→ |
| description | Allows Web traffic anywhere on the Internet.
↪→

↪→ |
| headers |
↪→

↪→ |
| id | c0b92b20-4575-432a-b4a9-eaf2ad53f696
↪→

↪→ |
| name | global_http
↪→

↪→ |
| project_id | 5669caad86a04256994cdf755df4d3c1
↪→

↪→ |
| project_id | 5669caad86a04256994cdf755df4d3c1
↪→

↪→ |
| revision_number | 1
↪→

↪→ |
| rules | created_at='2016-11-03T13:50:53Z', direction=
↪→'egress', ethertype='IPv4', id='4d8cec94-e0ee-4c20-9f56-8fb67c21e4df
↪→', |
| | project_id='5669caad86a04256994cdf755df4d3c1',
↪→revision_number='1', updated_at='2016-11-03T13:50:53Z'
↪→ |

(continues on next page)

3.4. Maintenance 353

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| | created_at='2016-11-03T13:50:53Z', direction=
↪→'egress', ethertype='IPv6', id='31be2ad1-be14-4aef-9492-ecebede2cf12
↪→', |
| | project_id='5669caad86a04256994cdf755df4d3c1',
↪→revision_number='1', updated_at='2016-11-03T13:50:53Z'
↪→ |
| updated_at | 2016-11-03T13:50:53Z
↪→

↪→ |
+-----------------+---
↪→--
↪→---+

3. Add a new group rule, as follows:

$ openstack security group rule create SEC_GROUP_NAME \
--protocol PROTOCOL --dst-port FROM_PORT:TO_PORT --remote-ip CIDR

The arguments are positional, and the from-port and to-port arguments specify the local
port range connections are allowed to access, not the source and destination ports of the connec-
tion. For example:

$ openstack security group rule create global_http \
--protocol tcp --dst-port 80:80 --remote-ip 0.0.0.0/0

+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
created_at	2016-11-06T14:02:00Z
description	
direction	ingress
ethertype	IPv4
headers	
id	2ba06233-d5c8-43eb-93a9-8eaa94bc9eb5
port_range_max	80
port_range_min	80
project_id	5669caad86a04256994cdf755df4d3c1
project_id	5669caad86a04256994cdf755df4d3c1
protocol	tcp
remote_group_id	None
remote_ip_prefix	0.0.0.0/0
revision_number	1
security_group_id	c0b92b20-4575-432a-b4a9-eaf2ad53f696
updated_at	2016-11-06T14:02:00Z
+-------------------+--------------------------------------+

You can create complex rule sets by creating additional rules. For example, if you want to pass
both HTTP and HTTPS traffic, run:

$ openstack security group rule create global_http \
--protocol tcp --dst-port 443:443 --remote-ip 0.0.0.0/0

+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
| created_at | 2016-11-06T14:09:20Z |
| description | |

(continues on next page)

3.4. Maintenance 354

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

direction	ingress
ethertype	IPv4
headers	
id	821c3ef6-9b21-426b-be5b-c8a94c2a839c
port_range_max	443
port_range_min	443
project_id	5669caad86a04256994cdf755df4d3c1
project_id	5669caad86a04256994cdf755df4d3c1
protocol	tcp
remote_group_id	None
remote_ip_prefix	0.0.0.0/0
revision_number	1
security_group_id	c0b92b20-4575-432a-b4a9-eaf2ad53f696
updated_at	2016-11-06T14:09:20Z
+-------------------+--------------------------------------+

Despite only outputting the newly added rule, this operation is additive (both rules are created and
enforced).

4. View all rules for the new security group, as follows:

$ openstack security group rule list global_http
+--------------------------------------+-------------+-----------+----
↪→-------------+-----------------------+
| ID | IP Protocol | IP Range |
↪→Port Range | Remote Security Group |
+--------------------------------------+-------------+-----------+----
↪→-------------+-----------------------+
| 353d0611-3f67-4848-8222-a92adbdb5d3a | tcp | 0.0.0.0/0 |
↪→80:80 | None |
| 63536865-e5b6-4df1-bac5-ca6d97d8f54d | tcp | 0.0.0.0/0 |
↪→443:443 | None |
+--------------------------------------+-------------+-----------+----
↪→-------------+-----------------------+

Delete a security group

1. Ensure your system variables are set for the user and project for which you are deleting a security
group.

2. Delete the new security group, as follows:

$ openstack security group delete GROUPNAME

For example:

3.4. Maintenance 355

Nova Documentation, Release 22.4.1.dev41

$ openstack security group delete global_http

Create security group rules for a cluster of instances

Source Groups are a special, dynamic way of defining the CIDR of allowed sources. The user specifies a
Source Group (Security Group name), and all the users other Instances using the specified Source Group
are selected dynamically. This alleviates the need for individual rules to allow each new member of the
cluster.

1. Make sure to set the system variables for the user and project for which you are creating a security
group rule.

2. Add a source group, as follows:

$ openstack security group rule create secGroupName \
--remote-group source-group --protocol ip-protocol \
--dst-port from-port:to-port

For example:

$ openstack security group rule create cluster \
--remote-group global_http --protocol tcp --dst-port 22:22

The cluster rule allows SSH access from any other instance that uses the global_http
group.

Security hardening

OpenStack Compute can be integrated with various third-party technologies to increase security. For
more information, see the OpenStack Security Guide.

Encrypt Compute metadata traffic

Enabling SSL encryption

OpenStack supports encrypting Compute metadata traffic with HTTPS. Enable SSL encryption in the
metadata_agent.ini file.

1. Enable the HTTPS protocol.

nova_metadata_protocol = https

2. Determine whether insecure SSL connections are accepted for Compute metadata server requests.
The default value is False.

nova_metadata_insecure = False

3. Specify the path to the client certificate.

nova_client_cert = PATH_TO_CERT

4. Specify the path to the private key.

3.4. Maintenance 356

https://docs.openstack.org/security-guide/

Nova Documentation, Release 22.4.1.dev41

nova_client_priv_key = PATH_TO_KEY

Securing live migration streams with QEMU-native TLS

It is strongly recommended to secure all the different live migration streams of a nova instancei.e. guest
RAM, device state, and disks (via NBD) when using non-shared storage. For further details on how to
set this up, refer to the Secure live migration with QEMU-native TLS document.

Mitigation for MDS (Microarchitectural Data Sampling) security flaws

It is strongly recommended to patch all compute nodes and nova instances against the processor-related
security flaws, such as MDS (and other previous vulnerabilities). For details on applying mitigation for
the MDS flaws, refer to the Mitigation for MDS (Microarchitectural Data Sampling) Security Flaws
document.

Manage Compute services

You can enable and disable Compute services. The following examples disable and enable the
nova-compute service.

1. List the Compute services:

$ openstack compute service list
+----+----------------+------------+----------+---------+-------+-----
↪→-----------------------+
| ID | Binary | Host | Zone | Status | State |
↪→Updated At |
+----+----------------+------------+----------+---------+-------+-----
↪→-----------------------+
| 4 | nova-scheduler | controller | internal | enabled | up |
↪→2016-12-20T00:44:48.000000 |
| 5 | nova-conductor | controller | internal | enabled | up |
↪→2016-12-20T00:44:54.000000 |
| 8 | nova-compute | compute | nova | enabled | up |
↪→2016-10-21T02:35:03.000000 |
+----+----------------+------------+----------+---------+-------+-----
↪→-----------------------+

2. Disable a nova service:

$ openstack compute service set --disable --disable-reason "trial log
↪→" compute nova-compute
+----------+--------------+----------+-------------------+
| Host | Binary | Status | Disabled Reason |
+----------+--------------+----------+-------------------+
| compute | nova-compute | disabled | trial log |
+----------+--------------+----------+-------------------+

3. Check the service list:

3.4. Maintenance 357

Nova Documentation, Release 22.4.1.dev41

$ openstack compute service list
+----+----------------+------------+----------+---------+-------+-----
↪→-----------------------+
| ID | Binary | Host | Zone | Status | State |
↪→Updated At |
+----+----------------+------------+----------+---------+-------+-----
↪→-----------------------+
| 5 | nova-scheduler | controller | internal | enabled | up |
↪→2016-12-20T00:44:48.000000 |
| 6 | nova-conductor | controller | internal | enabled | up |
↪→2016-12-20T00:44:54.000000 |
| 9 | nova-compute | compute | nova | disabled| up |
↪→2016-10-21T02:35:03.000000 |
+----+----------------+------------+----------+---------+-------+-----
↪→-----------------------+

4. Enable the service:

$ openstack compute service set --enable compute nova-compute
+----------+--------------+---------+
| Host | Binary | Status |
+----------+--------------+---------+
| compute | nova-compute | enabled |
+----------+--------------+---------+

Configure SSH between compute nodes

Todo: Consider merging this into a larger migration document or to the installation guide

If you are resizing or migrating an instance between hypervisors, you might encounter an SSH (Permis-
sion denied) error. Ensure that each node is configured with SSH key authentication so that the Compute
service can use SSH to move disks to other nodes.

Note: It is not necessary that all the compute nodes share the same key pair. However for the ease of the
configuration, this document only utilizes a single key pair for communication between compute nodes.

To share a key pair between compute nodes, complete the following steps:

1. On the first node, obtain a key pair (public key and private key). Use the root key that is in the
/root/.ssh/id_rsa and /root/.ssh/id_rsa.pub directories or generate a new key
pair.

2. Run setenforce 0 to put SELinux into permissive mode.

3. Enable login abilities for the nova user:

usermod -s /bin/bash nova

Ensure you can switch to the nova account:

3.4. Maintenance 358

Nova Documentation, Release 22.4.1.dev41

su - nova

4. As root, create the folder that is needed by SSH and place the private key that you obtained in step
1 into this folder, and add the pub key to the authorized_keys file:

mkdir -p /var/lib/nova/.ssh
cp <private key> /var/lib/nova/.ssh/id_rsa
echo 'StrictHostKeyChecking no' >> /var/lib/nova/.ssh/config
chmod 600 /var/lib/nova/.ssh/id_rsa /var/lib/nova/.ssh/authorized_keys
echo <pub key> >> /var/lib/nova/.ssh/authorized_keys

5. Copy the whole folder created in step 4 to the rest of the nodes:

scp -r /var/lib/nova/.ssh remote-host:/var/lib/nova/

6. Ensure that the nova user can now log in to each node without using a password:

su - nova
$ ssh *computeNodeAddress*
$ exit

7. As root on each node, restart both libvirt and the Compute services:

systemctl restart libvirtd.service
systemctl restart openstack-nova-compute.service

Troubleshoot Compute

Common problems for Compute typically involve misconfigured networking or credentials that are not
sourced properly in the environment. Also, most flat networking configurations do not enable ping or
ssh from a compute node to the instances that run on that node. Another common problem is trying to
run 32-bit images on a 64-bit compute node. This section shows you how to troubleshoot Compute.

Todo: Move the sections below into sub-pages for readability.

Orphaned resource allocations

Problem

There are orphaned resource allocations in the placement service which can cause resource providers to:

• Appear to the scheduler to be more utilized than they really are

• Prevent deletion of compute services

One scenario in which this could happen is a compute service host is having problems so the adminis-
trator forces it down and evacuates servers from it. Note that in this case evacuates refers to the server
evacuate action, not live migrating all servers from the running compute service. Assume the com-
pute host is down and fenced.

3.4. Maintenance 359

Nova Documentation, Release 22.4.1.dev41

In this case, the servers have allocations tracked in placement against both the down source compute
node and their current destination compute host. For example, here is a server vm1 which has been
evacuated from node devstack1 to node devstack2:

$ openstack --os-compute-api-version 2.53 compute service list --service
↪→nova-compute
+--------------------------------------+--------------+-----------+------+-
↪→--------+-------+----------------------------+
| ID | Binary | Host | Zone |
↪→Status | State | Updated At |
+--------------------------------------+--------------+-----------+------+-
↪→--------+-------+----------------------------+
| e3c18c2d-9488-4863-b728-f3f292ec5da8 | nova-compute | devstack1 | nova |
↪→enabled | down | 2019-10-25T20:13:51.000000 |
| 50a20add-cc49-46bd-af96-9bb4e9247398 | nova-compute | devstack2 | nova |
↪→enabled | up | 2019-10-25T20:13:52.000000 |
| b92afb2e-cd00-4074-803e-fff9aa379c2f | nova-compute | devstack3 | nova |
↪→enabled | up | 2019-10-25T20:13:53.000000 |
+--------------------------------------+--------------+-----------+------+-
↪→--------+-------+----------------------------+
$ vm1=$(openstack server show vm1 -f value -c id)
$ openstack server show $vm1 -f value -c OS-EXT-SRV-ATTR:host
devstack2

The server now has allocations against both devstack1 and devstack2 resource providers in the placement
service:

$ devstack1=$(openstack resource provider list --name devstack1 -f value -
↪→c uuid)
$ devstack2=$(openstack resource provider list --name devstack2 -f value -
↪→c uuid)
$ openstack resource provider show --allocations $devstack1
+-------------+--
↪→---+
| Field | Value
↪→ |
+-------------+--
↪→---+
| uuid | 9546fce4-9fb5-4b35-b277-72ff125ad787
↪→ |
| name | devstack1
↪→ |
| generation | 6
↪→ |
| allocations | {u'a1e6e0b2-9028-4166-b79b-c177ff70fbb7': {u'resources': {u
↪→'VCPU': 1, u'MEMORY_MB': 512, u'DISK_GB': 1}}} |
+-------------+--
↪→---+
$ openstack resource provider show --allocations $devstack2
+-------------+--
↪→---+
| Field | Value
↪→ |
+-------------+--
↪→---+
| uuid | 52d0182d-d466-4210-8f0d-29466bb54feb
↪→ |

(continues on next page)

3.4. Maintenance 360

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| name | devstack2
↪→ |
| generation | 3
↪→ |
| allocations | {u'a1e6e0b2-9028-4166-b79b-c177ff70fbb7': {u'resources': {u
↪→'VCPU': 1, u'MEMORY_MB': 512, u'DISK_GB': 1}}} |
+-------------+--
↪→---+
$ openstack --os-placement-api-version 1.12 resource provider allocation
↪→show $vm1
+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+
| resource_provider | generation | resources
↪→ | project_id | user_id
↪→ |
+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+
| 9546fce4-9fb5-4b35-b277-72ff125ad787 | 6 | {u'VCPU': 1, u
↪→'MEMORY_MB': 512, u'DISK_GB': 1} | 2f3bffc5db2b47deb40808a4ed2d7c7a |
↪→2206168427c54d92ae2b2572bb0da9af |
| 52d0182d-d466-4210-8f0d-29466bb54feb | 3 | {u'VCPU': 1, u
↪→'MEMORY_MB': 512, u'DISK_GB': 1} | 2f3bffc5db2b47deb40808a4ed2d7c7a |
↪→2206168427c54d92ae2b2572bb0da9af |
+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+

One way to find all servers that were evacuated from devstack1 is:

$ nova migration-list --source-compute devstack1 --migration-type
↪→evacuation
+----+--------------------------------------+-------------+-----------+----
↪→------------+--------------+-------------+--------+----------------------
↪→----------------+------------+------------+----------------------------+-
↪→---------------------------+------------+
| Id | UUID | Source Node | Dest Node |
↪→Source Compute | Dest Compute | Dest Host | Status | Instance UUID
↪→ | Old Flavor | New Flavor | Created At
↪→ | Updated At | Type |
+----+--------------------------------------+-------------+-----------+----
↪→------------+--------------+-------------+--------+----------------------
↪→----------------+------------+------------+----------------------------+-
↪→---------------------------+------------+
| 1 | 8a823ba3-e2e9-4f17-bac5-88ceea496b99 | devstack1 | devstack2 |
↪→devstack1 | devstack2 | 192.168.0.1 | done | a1e6e0b2-9028-
↪→4166-b79b-c177ff70fbb7 | None | None | 2019-10-25T17:46:35.
↪→000000 | 2019-10-25T17:46:37.000000 | evacuation |
+----+--------------------------------------+-------------+-----------+----
↪→------------+--------------+-------------+--------+----------------------
↪→----------------+------------+------------+----------------------------+-
↪→---------------------------+------------+

Trying to delete the resource provider for devstack1 will fail while there are allocations against it:

3.4. Maintenance 361

Nova Documentation, Release 22.4.1.dev41

$ openstack resource provider delete $devstack1
Unable to delete resource provider 9546fce4-9fb5-4b35-b277-72ff125ad787:
↪→Resource provider has allocations. (HTTP 409)

Solution

Using the example resources above, remove the allocation for server vm1 from the devstack1 re-
source provider. If you have osc-placement 1.8.0 or newer, you can use the openstack resource
provider allocation unset command to remove the allocations for consumer vm1 from re-
source provider devstack1:

$ openstack --os-placement-api-version 1.12 resource provider allocation \
unset --provider $devstack1 $vm1

+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+
| resource_provider | generation | resources
↪→ | project_id | user_id
↪→ |
+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+
| 52d0182d-d466-4210-8f0d-29466bb54feb | 4 | {u'VCPU': 1, u
↪→'MEMORY_MB': 512, u'DISK_GB': 1} | 2f3bffc5db2b47deb40808a4ed2d7c7a |
↪→2206168427c54d92ae2b2572bb0da9af |
+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+

If you have osc-placement 1.7.x or older, the unset command is not available and you must in-
stead overwrite the allocations. Note that we do not use openstack resource provider
allocation delete here because that will remove the allocations for the server from all resource
providers, including devstack2 where it is now running; instead, we use openstack resource
provider allocation set to overwrite the allocations and only retain the devstack2 provider
allocations. If you do remove all allocations for a given server, you can heal them later. See Using
heal_allocations for details.

$ openstack --os-placement-api-version 1.12 resource provider allocation
↪→set $vm1 \

--project-id 2f3bffc5db2b47deb40808a4ed2d7c7a \
--user-id 2206168427c54d92ae2b2572bb0da9af \
--allocation rp=52d0182d-d466-4210-8f0d-29466bb54feb,VCPU=1 \
--allocation rp=52d0182d-d466-4210-8f0d-29466bb54feb,MEMORY_MB=512 \
--allocation rp=52d0182d-d466-4210-8f0d-29466bb54feb,DISK_GB=1

+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+
| resource_provider | generation | resources
↪→ | project_id | user_id
↪→ |
+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+

(continues on next page)

3.4. Maintenance 362

https://pypi.org/project/osc-placement/

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| 52d0182d-d466-4210-8f0d-29466bb54feb | 4 | {u'VCPU': 1, u
↪→'MEMORY_MB': 512, u'DISK_GB': 1} | 2f3bffc5db2b47deb40808a4ed2d7c7a |
↪→2206168427c54d92ae2b2572bb0da9af |
+--------------------------------------+------------+----------------------
↪→--------------------------+----------------------------------+-----------
↪→-----------------------+

Once the devstack1 resource provider allocations have been removed using either of the approaches
above, the devstack1 resource provider can be deleted:

$ openstack resource provider delete $devstack1

And the related compute service if desired:

$ openstack --os-compute-api-version 2.53 compute service delete e3c18c2d-
↪→9488-4863-b728-f3f292ec5da8

For more details on the resource provider commands used in this guide, refer to the osc-placement plugin
documentation.

Using heal_allocations

If you have a particularly troubling allocation consumer and just want to delete its allocations from
all providers, you can use the openstack resource provider allocation delete com-
mand and then heal the allocations for the consumer using the heal_allocations command. For example:

$ openstack resource provider allocation delete $vm1
$ nova-manage placement heal_allocations --verbose --instance $vm1
Looking for instances in cell: 04879596-d893-401c-b2a6-3d3aa096089d(cell1)
Found 1 candidate instances.
Successfully created allocations for instance a1e6e0b2-9028-4166-b79b-
↪→c177ff70fbb7.
Processed 1 instances.
$ openstack resource provider allocation show $vm1
+--------------------------------------+------------+----------------------
↪→--------------------------+
| resource_provider | generation | resources
↪→ |
+--------------------------------------+------------+----------------------
↪→--------------------------+
| 52d0182d-d466-4210-8f0d-29466bb54feb | 5 | {u'VCPU': 1, u
↪→'MEMORY_MB': 512, u'DISK_GB': 1} |
+--------------------------------------+------------+----------------------
↪→--------------------------+

Note that deleting allocations and then relying on heal_allocations may not always be the best
solution since healing allocations does not account for some things:

• Migration-based allocations would be lost if manually deleted during a resize. These are alloca-
tions tracked by the migration resource record on the source compute service during a migration.

• Healing allocations does not supported nested resource allocations before the 20.0.0 (Train) re-
lease.

3.4. Maintenance 363

https://docs.openstack.org/osc-placement/latest/
https://docs.openstack.org/osc-placement/latest/
https://specs.openstack.org/openstack/nova-specs/specs/queens/implemented/migration-allocations.html

Nova Documentation, Release 22.4.1.dev41

If you do use the heal_allocations command to cleanup allocations for a specific trouble instance,
it is recommended to take note of what the allocations were before you remove them in case you need
to reset them manually later. Use the openstack resource provider allocation show
command to get allocations for a consumer before deleting them, e.g.:

$ openstack --os-placement-api-version 1.12 resource provider allocation
↪→show $vm1

Rebuild placement DB

Problem

You have somehow changed a nova cell database and the compute_nodes table entries are now
reporting different uuids to the placement service but placement already has resource_providers
table entries with the same names as those computes so the resource providers in placement and the
compute nodes in the nova database are not synchronized. Maybe this happens as a result of restoring
the nova cell database from a backup where the compute hosts have not changed but they are using
different uuids.

Nova reports compute node inventory to placement using the hypervisor_hostname and uuid of
the compute_nodes table to the placement resource_providers table, which has a unique
constraint on the name (hostname in this case) and uuid. Trying to create a new resource provider with
a new uuid but the same name as an existing provider results in a 409 error from placement, such as in
bug 1817833.

Solution

Warning: This is likely a last resort when all computes and resource providers are not synchronized
and it is simpler to just rebuild the placement database from the current state of nova. This may,
however, not work when using placement for more advanced features such as ports with minimum
bandwidth guarantees or accelerators. Obviously testing first in a pre-production environment is
ideal.

These are the steps at a high level:

1. Make a backup of the existing placement database in case these steps fail and you need to start
over.

2. Recreate the placement database and run the schema migrations to initialize the placement
database.

3. Either restart or wait for the update_resources_interval on the nova-compute ser-
vices to report resource providers and their inventory to placement.

4. Run the nova-manage placement heal_allocations command to report allocations to placement
for the existing instances in nova.

5. Run the nova-manage placement sync_aggregates command to synchronize nova host aggregates
to placement resource provider aggregates.

3.4. Maintenance 364

https://bugs.launchpad.net/nova/+bug/1817833
https://docs.openstack.org/neutron/victoria//admin/config-qos-min-bw
https://docs.openstack.org/neutron/victoria//admin/config-qos-min-bw
https://docs.openstack.org/cyborg/latest/

Nova Documentation, Release 22.4.1.dev41

Once complete, test your deployment as usual, e.g. running Tempest integration and/or Rally tests,
creating, migrating and deleting a server, etc.

Affinity policy violated with parallel requests

Problem

Parallel server create requests for affinity or anti-affinity land on the same host and servers go to the
ACTIVE state even though the affinity or anti-affinity policy was violated.

Solution

There are two ways to avoid anti-/affinity policy violations among multiple server create requests.

Create multiple servers as a single request

Use the multi-create API with the min_count parameter set or the multi-create CLI with the --min
option set to the desired number of servers.

This works because when the batch of requests is visible to nova-scheduler at the same time as a
group, it will be able to choose compute hosts that satisfy the anti-/affinity constraint and will send them
to the same hosts or different hosts accordingly.

Adjust Nova configuration settings

When requests are made separately and the scheduler cannot consider the batch of requests at the
same time as a group, anti-/affinity races are handled by what is called the late affinity check in
nova-compute. Once a server lands on a compute host, if the request involves a server group,
nova-compute contacts the API database (via nova-conductor) to retrieve the server group
and then it checks whether the affinity policy has been violated. If the policy has been violated,
nova-compute initiates a reschedule of the server create request. Note that this means the deployment
must have scheduler.max_attempts set greater than 1 (default is 3) to handle races.

An ideal configuration for multiple cells will minimize upcalls from the cells to the API
database. This is how devstack, for example, is configured in the CI gate. The cell con-
ductors do not set api_database.connection and nova-compute sets workarounds.
disable_group_policy_check_upcall to True.

However, if a deployment needs to handle racing affinity requests, it needs to configure cell conductors
to have access to the API database, for example:

[api_database]
connection = mysql+pymysql://root:a@127.0.0.1/nova_api?charset=utf8

The deployment also needs to configure nova-compute services not to disable the
group policy check upcall by either not setting (use the default) workarounds.
disable_group_policy_check_upcall or setting it to False, for example:

3.4. Maintenance 365

https://docs.openstack.org/api-ref/compute/#create-multiple-servers
https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/server.html#server-create
https://docs.openstack.org/nova/latest/user/cellsv2-layout.html#operations-requiring-upcalls

Nova Documentation, Release 22.4.1.dev41

[workarounds]
disable_group_policy_check_upcall = False

With these settings, anti-/affinity policy should not be violated even when parallel server create requests
are racing.

Future work is needed to add anti-/affinity support to the placement service in order to eliminate the
need for the late affinity check in nova-compute.

Compute service logging

Compute stores a log file for each service in /var/log/nova. For example, nova-compute.log
is the log for the nova-compute service. You can set the following options to format log strings for
the nova.log module in the nova.conf file:

• logging_context_format_string

• logging_default_format_string

If the log level is set to debug, you can also specify logging_debug_format_suffix to append
extra formatting. For information about what variables are available for the formatter, see Formatter
Objects.

You have two logging options for OpenStack Compute based on configuration settings. In nova.conf,
include the logfile option to enable logging. Alternatively you can set use_syslog = 1 so that
the nova daemon logs to syslog.

Guru Meditation reports

A Guru Meditation report is sent by the Compute service upon receipt of the SIGUSR2 signal
(SIGUSR1 before Mitaka). This report is a general-purpose error report that includes details about
the current state of the service. The error report is sent to stderr.

For example, if you redirect error output to nova-api-err.log using nova-api 2>/var/log/
nova/nova-api-err.log, resulting in the process ID 8675, you can then run:

kill -USR2 8675

This command triggers the Guru Meditation report to be printed to /var/log/nova/
nova-api-err.log.

The report has the following sections:

• Package: Displays information about the package to which the process belongs, including version
information.

• Threads: Displays stack traces and thread IDs for each of the threads within the process.

• Green Threads: Displays stack traces for each of the green threads within the process (green
threads do not have thread IDs).

• Configuration: Lists all configuration options currently accessible through the CONF object for
the current process.

For more information, see Guru Meditation Reports.

3.4. Maintenance 366

https://docs.python.org/library/logging.html#formatter-objects
https://docs.python.org/library/logging.html#formatter-objects

Nova Documentation, Release 22.4.1.dev41

Common errors and fixes for Compute

The ask.openstack.org site offers a place to ask and answer questions, and you can also mark questions
as frequently asked questions. This section describes some errors people have posted previously. Bugs
are constantly being fixed, so online resources are a great way to get the most up-to-date errors and fixes.

Credential errors, 401, and 403 forbidden errors

Problem

Missing credentials cause a 403 forbidden error.

Solution

To resolve this issue, use one of these methods:

1. Manual method

Gets the novarc file from the project ZIP file, saves existing credentials in case of override, and
manually sources the novarc file.

2. Script method

Generates novarc from the project ZIP file and sources it for you.

When you run nova-api the first time, it generates the certificate authority information, including
openssl.cnf. If you start the CA services before this, you might not be able to create your ZIP file.
Restart the services. When your CA information is available, create your ZIP file.

Also, check your HTTP proxy settings to see whether they cause problems with novarc creation.

Live migration permission issues

Problem

When live migrating an instance, you may see errors like the below:

libvirtError: operation failed: Failed to connect to remote libvirt URI
qemu+ssh://stack@cld6b16/system: Cannot recv data: Host key verification
failed.: Connection reset by peer

Solution

Ensure you have completed all the steps outlined in Configure SSH between compute nodes. In particular,
its important to note that the libvirt process runs as root even though it may be connecting to a
different user (stack in the above example). You can ensure everything is correctly configured by
attempting to connect to the remote host via the root user. Using the above example once again:

$ su - -c 'ssh stack@cld6b16'

3.4. Maintenance 367

http://ask.openstack.org

Nova Documentation, Release 22.4.1.dev41

Instance errors

Problem

Sometimes a particular instance shows pending or you cannot SSH to it. Sometimes the image itself
is the problem. For example, when you use flat manager networking, you do not have a DHCP server
and certain images do not support interface injection; you cannot connect to them.

Solution

To fix instance errors use an image that does support this method, such as Ubuntu, which obtains an IP
address correctly with FlatManager network settings.

To troubleshoot other possible problems with an instance, such as an instance that stays in a spawning
state, check the directory for the particular instance under /var/lib/nova/instances on the
nova-compute host and make sure that these files are present:

• libvirt.xml

• disk

• disk-raw

• kernel

• ramdisk

• console.log, after the instance starts.

If any files are missing, empty, or very small, the nova-compute service did not successfully down-
load the images from the Image service.

Also check nova-compute.log for exceptions. Sometimes they do not appear in the console output.

Next, check the log file for the instance in the /var/log/libvirt/qemu directory to see if it exists
and has any useful error messages in it.

Finally, from the /var/lib/nova/instances directory for the instance, see if this command re-
turns an error:

virsh create libvirt.xml

Empty log output for Linux instances

Problem

You can view the log output of running instances from either the Log tab of the dashboard or the output
of nova console-log. In some cases, the log output of a running Linux instance will be empty or
only display a single character (for example, the ? character).

This occurs when the Compute service attempts to retrieve the log output of the instance via a serial
console while the instance itself is not configured to send output to the console.

3.4. Maintenance 368

Nova Documentation, Release 22.4.1.dev41

Solution

To rectify this, append the following parameters to kernel arguments specified in the instances boot
loader:

console=tty0 console=ttyS0,115200n8

Upon rebooting, the instance will be configured to send output to the Compute service.

Reset the state of an instance

Problem

Instances can remain in an intermediate state, such as deleting.

Solution

You can use the nova reset-state command to manually reset the state of an instance to an error
state. You can then delete the instance. For example:

$ nova reset-state c6bbbf26-b40a-47e7-8d5c-eb17bf65c485
$ openstack server delete c6bbbf26-b40a-47e7-8d5c-eb17bf65c485

You can also use the --active parameter to force the instance back to an active state instead of an
error state. For example:

$ nova reset-state --active c6bbbf26-b40a-47e7-8d5c-eb17bf65c485

Injection problems

Problem

Instances may boot slowly, or do not boot. File injection can cause this problem.

Solution

To disable injection in libvirt, set the following in nova.conf:

[libvirt]
inject_partition = -2

Note: If you have not enabled the config drive and you want to make user-specified files available from
the metadata server for to improve performance and avoid boot failure if injection fails, you must disable
injection.

3.4. Maintenance 369

Nova Documentation, Release 22.4.1.dev41

Cannot find suitable emulator for x86_64

Problem

When you attempt to create a VM, the error shows the VM is in the BUILD then ERROR state.

Solution

On the KVM host, run cat /proc/cpuinfo. Make sure the vmx or svm flags are set.

Follow the instructions in the Enable KVM section in the Nova Configuration Reference to enable hard-
ware virtualization support in your BIOS.

Failed to attach volume after detaching

Problem

Failed to attach a volume after detaching the same volume.

Solution

You must change the device name on the nova-attach command. The VM might not clean up after
a nova-detach command runs. This example shows how the nova-attach command fails when
you use the vdb, vdc, or vdd device names:

ls -al /dev/disk/by-path/
total 0
drwxr-xr-x 2 root root 200 2012-08-29 17:33 .
drwxr-xr-x 5 root root 100 2012-08-29 17:33 ..
lrwxrwxrwx 1 root root 9 2012-08-29 17:33 pci-0000:00:04.0-virtio-pci-
↪→virtio0 -> ../../vda
lrwxrwxrwx 1 root root 10 2012-08-29 17:33 pci-0000:00:04.0-virtio-pci-
↪→virtio0-part1 -> ../../vda1
lrwxrwxrwx 1 root root 10 2012-08-29 17:33 pci-0000:00:04.0-virtio-pci-
↪→virtio0-part2 -> ../../vda2
lrwxrwxrwx 1 root root 10 2012-08-29 17:33 pci-0000:00:04.0-virtio-pci-
↪→virtio0-part5 -> ../../vda5
lrwxrwxrwx 1 root root 9 2012-08-29 17:33 pci-0000:00:06.0-virtio-pci-
↪→virtio2 -> ../../vdb
lrwxrwxrwx 1 root root 9 2012-08-29 17:33 pci-0000:00:08.0-virtio-pci-
↪→virtio3 -> ../../vdc
lrwxrwxrwx 1 root root 9 2012-08-29 17:33 pci-0000:00:09.0-virtio-pci-
↪→virtio4 -> ../../vdd
lrwxrwxrwx 1 root root 10 2012-08-29 17:33 pci-0000:00:09.0-virtio-pci-
↪→virtio4-part1 -> ../../vdd1

You might also have this problem after attaching and detaching the same volume from the same VM
with the same mount point multiple times. In this case, restart the KVM host.

3.4. Maintenance 370

Nova Documentation, Release 22.4.1.dev41

Failed to attach volume, systool is not installed

Problem

This warning and error occurs if you do not have the required sysfsutils package installed on the
compute node:

WARNING nova.virt.libvirt.utils [req-1200f887-c82b-4e7c-a891-fac2e3735dbb\
admin admin|req-1200f887-c82b-4e7c-a891-fac2e3735dbb admin admin] systool\
is not installed
ERROR nova.compute.manager [req-1200f887-c82b-4e7c-a891-fac2e3735dbb admin\
admin|req-1200f887-c82b-4e7c-a891-fac2e3735dbb admin admin]
[instance: df834b5a-8c3f-477a-be9b-47c97626555c|instance: df834b5a-8c3f-47\
7a-be9b-47c97626555c]
Failed to attach volume 13d5c633-903a-4764-a5a0-3336945b1db1 at /dev/vdk.

Solution

Install the sysfsutils package on the compute node. For example:

apt-get install sysfsutils

Failed to connect volume in FC SAN

Problem

The compute node failed to connect to a volume in a Fibre Channel (FC) SAN configuration. The WWN
may not be zoned correctly in your FC SAN that links the compute host to the storage array:

ERROR nova.compute.manager [req-2ddd5297-e405-44ab-aed3-152cd2cfb8c2 admin\
demo|req-2ddd5297-e405-44ab-aed3-152cd2cfb8c2 admin demo] [instance: 60ebd\
6c7-c1e3-4bf0-8ef0-f07aa4c3d5f3|instance: 60ebd6c7-c1e3-4bf0-8ef0-f07aa4c3\
d5f3]
Failed to connect to volume 6f6a6a9c-dfcf-4c8d-b1a8-4445ff883200 while\
attaching at /dev/vdjTRACE nova.compute.manager [instance: 60ebd6c7-c1e3-4\
bf0-8ef0-f07aa4c3d5f3|instance: 60ebd6c7-c1e3-4bf0-8ef0-f07aa4c3d5f3]
Traceback (most recent call last):...f07aa4c3d5f3\] ClientException: The\
server has either erred or is incapable of performing the requested\
operation.(HTTP 500)(Request-ID: req-71e5132b-21aa-46ee-b3cc-19b5b4ab2f00)

Solution

The network administrator must configure the FC SAN fabric by correctly zoning the WWN (port
names) from your compute node HBAs.

3.4. Maintenance 371

Nova Documentation, Release 22.4.1.dev41

Multipath call failed exit

Problem

Multipath call failed exit. This warning occurs in the Compute log if you do not have the optional
multipath-tools package installed on the compute node. This is an optional package and the vol-
ume attachment does work without the multipath tools installed. If the multipath-tools package
is installed on the compute node, it is used to perform the volume attachment. The IDs in your message
are unique to your system.

WARNING nova.storage.linuxscsi [req-cac861e3-8b29-4143-8f1b-705d0084e571 \
admin admin|req-cac861e3-8b29-4143-8f1b-705d0084e571 admin admin] \
Multipath call failed exit (96)

Solution

Install the multipath-tools package on the compute node. For example:

apt-get install multipath-tools

Failed to Attach Volume, Missing sg_scan

Problem

Failed to attach volume to an instance, sg_scan file not found. This error occurs when the sg3-utils
package is not installed on the compute node. The IDs in your message are unique to your system:

ERROR nova.compute.manager [req-cf2679fd-dd9e-4909-807f-48fe9bda3642 admin
↪→admin|req-cf2679fd-dd9e-4909-807f-48fe9bda3642 admin admin]
[instance: 7d7c92e0-49fa-4a8e-87c7-73f22a9585d5|instance: 7d7c92e0-49fa-
↪→4a8e-87c7-73f22a9585d5]
Failed to attach volume 4cc104c4-ac92-4bd6-9b95-c6686746414a at /dev/
↪→vdcTRACE nova.compute.manager
[instance: 7d7c92e0-49fa-4a8e-87c7-73f22a9585d5|instance: 7d7c92e0-49fa-
↪→4a8e-87c7-73f22a9585d5]
Stdout: '/usr/local/bin/nova-rootwrap: Executable not found: /usr/bin/sg_
↪→scan'

Solution

Install the sg3-utils package on the compute node. For example:

apt-get install sg3-utils

3.4. Maintenance 372

Nova Documentation, Release 22.4.1.dev41

Requested microversions are ignored

Problem

When making a request with a microversion beyond 2.1, for example:

$ openstack --os-compute-api-version 2.15 server group create \
--policy soft-anti-affinity my-soft-anti-group

It fails saying that soft-anti-affinity is not a valid policy, even thought it is allowed with the 2.15 mi-
croversion.

Solution

Ensure the compute endpoint in the identity service catalog is pointing at /v2.1 instead of /v2. The
former route supports microversions, while the latter route is considered the legacy v2.0 compatibility-
mode route which renders all requests as if they were made on the legacy v2.0 API.

Secure live migration with QEMU-native TLS

Context

The encryption offered by novas libvirt.live_migration_tunnelled does not secure all the
different migration streams of a nova instance, namely: guest RAM, device state, and disks (via NBD)
when using non-shared storage. Further, the tunnelling via libvirtd has inherent limitations: (a) it cannot
handle live migration of disks in a non-shared storage setup (a.k.a. block migration); and (b) has a huge
performance overhead and latency, because it burns more CPU and memory bandwidth due to increased
number of data copies on both source and destination hosts.

To solve this existing limitation, QEMU and libvirt have gained (refer below for version details) support
for native TLS, i.e. TLS built into QEMU. This will secure all data transports, including disks that are
not on shared storage, without incurring the limitations of the tunnelled via libvirtd transport.

To take advantage of the native TLS support in QEMU and libvirt, nova has introduced new configuration
attribute libvirt.live_migration_with_native_tls.

Prerequisites

(1) Version requirement: This feature needs at least libvirt 4.4.0 and QEMU 2.11.

(2) A pre-configured TLS environmenti.e. CA, server, and client certificates, their file permissions,
et almust be correctly configured (typically by an installer tool) on all relevant compute nodes.
To simplify your PKI (Public Key Infrastructure) setup, use deployment tools that take care of
handling all the certificate lifecycle management. For example, refer to the TLS everywhere
guide from the TripleO project.

(3) Password-less SSH setup for all relevant compute nodes.

(4) On all relevant compute nodes, ensure the TLS-related config attributes in /etc/libvirt/
qemu.conf are in place:

3.4. Maintenance 373

https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#id13
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#id13
https://docs.openstack.org/tripleo-docs/latest/install/advanced_deployment/tls_everywhere.html

Nova Documentation, Release 22.4.1.dev41

default_tls_x509_cert_dir = "/etc/pki/qemu"
default_tls_x509_verify = 1

If it is not already configured, modify /etc/sysconfig/libvirtd on both (ComputeNode1
& ComputeNode2) to listen for TCP/IP connections:

LIBVIRTD_ARGS="--listen"

Then, restart the libvirt daemon (also on both nodes):

$ systemctl restart libvirtd

Refer to the Related information section on a note about the other TLS-related configuration
attributes in /etc/libvirt/qemu.conf.

Validating your TLS environment on compute nodes

Assuming you have two compute hosts (ComputeNode1, and ComputeNode2) run the
virt-pki-validate tool (comes with the libvirt-client package on your Linux distribu-
tion) on both the nodes to ensure all the necessary PKI files are configured are configured:

[ComputeNode1]$ virt-pki-validate
Found /usr/bin/certtool
Found CA certificate /etc/pki/CA/cacert.pem for TLS Migration Test
Found client certificate /etc/pki/libvirt/clientcert.pem for ComputeNode1
Found client private key /etc/pki/libvirt/private/clientkey.pem
Found server certificate /etc/pki/libvirt/servercert.pem for ComputeNode1
Found server private key /etc/pki/libvirt/private/serverkey.pem
Make sure /etc/sysconfig/libvirtd is setup to listen to
TCP/IP connections and restart the libvirtd service

[ComputeNode2]$ virt-pki-validate
Found /usr/bin/certtool
Found CA certificate /etc/pki/CA/cacert.pem for TLS Migration Test
Found client certificate /etc/pki/libvirt/clientcert.pem for ComputeNode2
Found client private key /etc/pki/libvirt/private/clientkey.pem
Found server certificate /etc/pki/libvirt/servercert.pem for ComputeNode2
Found server private key /etc/pki/libvirt/private/serverkey.pem
Make sure /etc/sysconfig/libvirtd is setup to listen to
TCP/IP connections and restart the libvirtd service

Other TLS environment related checks on compute nodes

IMPORTANT: Ensure that the permissions of certificate files and keys in /etc/pki/qemu/* direc-
tory on both source and destination compute nodes to be the following 0640 with root:qemu as the
group/user. For example, on a Fedora-based system:

$ ls -lasrtZ /etc/pki/qemu
total 32
0 drwxr-xr-x. 10 root root system_u:object_r:cert_t:s0 110 Dec 10
↪→10:39 ..
4 -rw-r-----. 1 root qemu unconfined_u:object_r:cert_t:s0 1464 Dec 10
↪→11:08 ca-cert.pem (continues on next page)

3.4. Maintenance 374

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

4 -rw-r-----. 1 root qemu unconfined_u:object_r:cert_t:s0 1558 Dec 10
↪→11:08 server-cert.pem
4 -rw-r-----. 1 root qemu unconfined_u:object_r:cert_t:s0 1619 Dec 10
↪→11:09 client-cert.pem
8 -rw-r-----. 1 root qemu unconfined_u:object_r:cert_t:s0 8180 Dec 10
↪→11:09 client-key.pem
8 -rw-r-----. 1 root qemu unconfined_u:object_r:cert_t:s0 8177 Dec 11
↪→05:35 server-key.pem
0 drwxr-xr-x. 2 root root unconfined_u:object_r:cert_t:s0 146 Dec 11
↪→06:01 .

Performing the migration

(1) On all relevant compute nodes, enable the libvirt.
live_migration_with_native_tls configuration attribute and set the libvirt.
live_migration_scheme configuration attribute to tls:

[libvirt]
live_migration_with_native_tls = true
live_migration_scheme = tls

Note: Setting both libvirt.live_migration_with_native_tls and libvirt.
live_migration_tunnelled at the same time is invalid (and disallowed).

Note: Not setting libvirt.live_migration_scheme to tls will result in libvirt using
the unencrypted TCP connection without displaying any error or a warning in the logs.

And restart the nova-compute service:

$ systemctl restart openstack-nova-compute

(2) Now that all TLS-related configuration is in place, migrate guests (with or without shared storage)
from ComputeNode1 to ComputeNode2. Refer to the Live-migrate instances document on
details about live migration.

Related information

• If you have the relevant libvirt and QEMU versions (mentioned in the Prerequisites section ear-
lier), then using the libvirt.live_migration_with_native_tls is strongly recom-
mended over the more limited libvirt.live_migration_tunnelled option, which is
intended to be deprecated in future.

• There are in total nine TLS-related config options in /etc/libvirt/qemu.conf:

default_tls_x509_cert_dir
default_tls_x509_verify
nbd_tls

(continues on next page)

3.4. Maintenance 375

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

nbd_tls_x509_cert_dir
migrate_tls_x509_cert_dir

vnc_tls_x509_cert_dir
spice_tls_x509_cert_dir
vxhs_tls_x509_cert_dir
chardev_tls_x509_cert_dir

If you set both default_tls_x509_cert_dir and default_tls_x509_verify pa-
rameters for all certificates, there is no need to specify any of the other *_tls* config options.

The intention (of libvirt) is that you can just use the default_tls_x509_* config attributes so
that you dont need to set any other *_tls* parameters, _unless_ you need different certificates
for some services. The rationale for that is that some services (e.g. migration / NBD) are only
exposed to internal infrastructure; while some sevices (VNC, Spice) might be exposed publically,
so might need different certificates. For OpenStack this does not matter, though, we will stick
with the defaults.

• If they are not already open, ensure you open up these TCP ports on your fire-
wall: 16514 (where the authenticated and encrypted TCP/IP socket will be listening
on) and 49152-49215 (for regular migration) on all relevant compute nodes. (Other-
wise you get error: internal error: unable to execute QEMU command
'drive-mirror': Failed to connect socket: No route to host).

Mitigation for MDS (Microarchitectural Data Sampling) Security Flaws

Issue

In May 2019, four new microprocessor flaws, known as MDS , have been discovered. These flaws affect
unpatched Nova compute nodes and instances running on Intel x86_64 CPUs. (The said MDS security
flaws are also referred to as RIDL and Fallout or ZombieLoad).

Resolution

To get mitigation for the said MDS security flaws, a new CPU flag, md-clear, needs to be exposed to the
Nova instances. It can be done as follows.

(1) Update the following components to the versions from your Linux distribution that have fixes for
the MDS flaws, on all compute nodes with Intel x86_64 CPUs:

• microcode_ctl

• kernel

• qemu-system-x86

• libvirt

(2) When using the libvirt driver, ensure that the CPU flag md-clear is exposed to the Nova in-
stances. It can be done so in one of the three following ways, given that Nova supports three
distinct CPU modes:

3.4. Maintenance 376

https://access.redhat.com/security/vulnerabilities/mds
https://mdsattacks.com/
https://zombieloadattack.com

Nova Documentation, Release 22.4.1.dev41

a. libvirt.cpu_mode=host-model

When using host-model CPU mode, the md-clear CPU flag will be passed through to
the Nova guests automatically.

This mode is the default, when libvirt.virt_type=kvm|qemu is set in /etc/nova/
nova-cpu.conf on compute nodes.

b. libvirt.cpu_mode=host-passthrough

When using host-passthrough CPU mode, the md-clear CPU flag will be passed
through to the Nova guests automatically.

c. Specific custom CPU models this can be enabled using the Nova config attributes
libvirt.cpu_mode=custom plus particular named CPU models, e.g. libvirt.
cpu_models=IvyBridge.

(The list of all valid named CPU models that are supported by your host, QEMU, and libvirt
can be found by running the command virsh domcapabilities.)

When using a custom CPU mode, you must explicitly enable the CPU flag md-clear to
the Nova instances, in addition to the flags required for previous vulnerabilities, using the
libvirt.cpu_model_extra_flags. E.g.:

[libvirt]
cpu_mode = custom
cpu_models = IvyBridge
cpu_model_extra_flags = spec-ctrl,ssbd,md-clear

(3) Reboot the compute node for the fixes to take effect. (To minimize workload downtime, you may
wish to live migrate all guests to another compute node first.)

Once the above steps have been taken on every vulnerable compute node in the deployment, each running
guest in the cluster must be fully powered down, and cold-booted (i.e. an explicit stop followed by a
start), in order to activate the new CPU models. This can be done by the guest administrators at a time
of their choosing.

Validate that the fixes are in effect

After applying relevant updates, administrators can check the kernels sysfs interface to see what mitiga-
tion is in place, by running the following command (on the host):

cat /sys/devices/system/cpu/vulnerabilities/mds
Mitigation: Clear CPU buffers; SMT vulnerable

To unpack the message Mitigation: Clear CPU buffers; SMT vulnerable:

• The Mitigation: Clear CPU buffers bit means, you have the CPU buffer clearing
mitigation enabled (which is mechanism to invoke a flush of various exploitable CPU buffers by
invoking a CPU instruction called VERW).

• The SMT vulnerable bit means, depending on your workload, you may still be vulnerable
to SMT-related problems. You need to evaluate whether your workloads need SMT (also called
Hyper-Threading) to be disabled or not. Refer to the guidance from your Linux distribution and
processor vendor.

3.4. Maintenance 377

Nova Documentation, Release 22.4.1.dev41

To see the other possible values for the sysfs file, /sys/devices/system/cpu/
vulnerabilities/mds, refer to the MDS system information section in Linux kernels doc-
umentation for MDS.

On the host, validate that KVM is capable of exposing the md-clear flag to guests:

virsh domcapabilities kvm | grep md-clear
<feature policy='require' name='md-clear'/>

Also, refer to the Diagnosis tab in this security notice document here

Performance Impact

Refer to this section titled Performance Impact and Disabling MDS from the security notice document
here, under the Resolve tab. (Note that although the article referred to is from Red Hat, the findings and
recommendations about performance impact apply for other distributions as well.)

Vendordata

Note: This section provides deployment information about the vendordata feature. For end-user infor-
mation about the vendordata feature and instance metadata in general, refer to the user guide.

The vendordata feature provides a way to pass vendor or deployment-specific information to instances.
This can be accessed by users using the metadata service or with config drives.

There are two vendordata modules provided with nova: StaticJSON and DynamicJSON.

StaticJSON

The StaticJSON module includes the contents of a static JSON file loaded from disk. This can be
used for things which dont change between instances, such as the location of the corporate puppet server.
It is the default provider.

Configuration

The service you must configure to enable the StaticJSON vendordata module depends on how guests
are accessing vendordata. If using the metadata service, configuration applies to either nova-api
or nova-api-metadata, depending on the deployment, while if using config drives, configuration
applies to nova-compute. However, configuration is otherwise the same and the following options
apply:

• api.vendordata_providers

• api.vendordata_jsonfile_path

Refer to the metadata service and config drive documentation for more information on how to configure
the required services.

3.4. Maintenance 378

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html#mds-system-information
https://access.redhat.com/security/vulnerabilities/mds
https://access.redhat.com/security/vulnerabilities/mds

Nova Documentation, Release 22.4.1.dev41

DynamicJSON

The DynamicJSON module can make a request to an external REST service to determine what meta-
data to add to an instance. This is how we recommend you generate things like Active Directory tokens
which change per instance.

When used, the DynamicJSON module will make a request to any REST services listed in the api.
vendordata_dynamic_targets configuration option. There can be more than one of these but
note that they will be queried once per metadata request from the instance which can mean a lot of traffic
depending on your configuration and the configuration of the instance.

The following data is passed to your REST service as a JSON encoded POST:

Key Description
project-id The ID of the project that owns this instance.
instance-id The UUID of this instance.
image-id The ID of the image used to boot this instance.
user-data As specified by the user at boot time.
hostname The hostname of the instance.
metadata As specified by the user at boot time.

Metadata fetched from the REST service will appear in the metadata service at a new file called
vendordata2.json, with a path (either in the metadata service URL or in the config drive) like
this:

openstack/latest/vendor_data2.json

For each dynamic target, there will be an entry in the JSON file named after that target. For example:

{
"testing": {

"value1": 1,
"value2": 2,
"value3": "three"

}
}

The novajoin project provides a dynamic vendordata service to manage host instantiation in an IPA
server.

Deployment considerations

Nova provides authentication to external metadata services in order to provide some level of certainty
that the request came from nova. This is done by providing a service token with the request you can
then just deploy your metadata service with the keystone authentication WSGI middleware. This is
configured using the keystone authentication parameters in the vendordata_dynamic_auth con-
figuration group.

3.4. Maintenance 379

https://opendev.org/x/novajoin

Nova Documentation, Release 22.4.1.dev41

Configuration

As with StaticJSON, the service you must configure to enable the DynamicJSON vendordata mod-
ule depends on how guests are accessing vendordata. If using the metadata service, configuration applies
to either nova-api or nova-api-metadata, depending on the deployment, while if using config
drives, configuration applies to nova-compute. However, configuration is otherwise the same and
the following options apply:

• api.vendordata_providers

• api.vendordata_dynamic_ssl_certfile

• api.vendordata_dynamic_connect_timeout

• api.vendordata_dynamic_read_timeout

• api.vendordata_dynamic_failure_fatal

• api.vendordata_dynamic_targets

Refer to the metadata service and config drive documentation for more information on how to configure
the required services.

In addition, there are also many options related to authentication. These are provided by keystone but
are listed below for completeness:

• vendordata_dynamic_auth.cafile

• vendordata_dynamic_auth.certfile

• vendordata_dynamic_auth.keyfile

• vendordata_dynamic_auth.insecure

• vendordata_dynamic_auth.timeout

• vendordata_dynamic_auth.collect_timing

• vendordata_dynamic_auth.split_loggers

• vendordata_dynamic_auth.auth_type

• vendordata_dynamic_auth.auth_section

• vendordata_dynamic_auth.auth_url

• vendordata_dynamic_auth.system_scope

• vendordata_dynamic_auth.domain_id

• vendordata_dynamic_auth.domain_name

• vendordata_dynamic_auth.project_id

• vendordata_dynamic_auth.project_name

• vendordata_dynamic_auth.project_domain_id

• vendordata_dynamic_auth.project_domain_name

• vendordata_dynamic_auth.trust_id

• vendordata_dynamic_auth.default_domain_id

• vendordata_dynamic_auth.default_domain_name

3.4. Maintenance 380

https://docs.openstack.org/keystone/victoria/

Nova Documentation, Release 22.4.1.dev41

• vendordata_dynamic_auth.user_id

• vendordata_dynamic_auth.username

• vendordata_dynamic_auth.user_domain_id

• vendordata_dynamic_auth.user_domain_name

• vendordata_dynamic_auth.password

• vendordata_dynamic_auth.tenant_id

• vendordata_dynamic_auth.tenant_name

Refer to the keystone documentation for information on configuring these.

References

• Michael Stills talk from the Queens summit in Sydney, Metadata, User Data, Vendor Data, oh my!

• Michaels blog post on deploying a simple vendordata service which provides more details and
sample code to supplement the documentation above.

3.4.2 Flavors

In OpenStack, flavors define the compute, memory, and storage capacity of nova computing instances.
To put it simply, a flavor is an available hardware configuration for a server. It defines the size of a virtual
server that can be launched.

Note: Flavors can also determine on which compute host a flavor can be used to launch an instance.
For information about customizing flavors, refer to Manage Flavors.

3.4.2.1 Overview

A flavor consists of the following parameters:

Flavor ID Unique ID (integer or UUID) for the new flavor. This property is required. If specifying
auto, a UUID will be automatically generated.

Name Name for the new flavor. This property is required.

Historically, names were given a format XX.SIZE_NAME. These are typically not required, though
some third party tools may rely on it.

VCPUs Number of virtual CPUs to use. This property is required.

Memory MB Amount of RAM to use (in megabytes). This property is required.

Root Disk GB Amount of disk space (in gigabytes) to use for the root (/) partition. This property is
required.

The root disk is an ephemeral disk that the base image is copied into. When booting from a
persistent volume it is not used. The 0 size is a special case which uses the native base image size
as the size of the ephemeral root volume. However, in this case the filter scheduler cannot select
the compute host based on the virtual image size. As a result, 0 should only be used for volume

3.4. Maintenance 381

https://docs.openstack.org/keystone/victoria//configuration/index.html
https://www.openstack.org/videos/sydney-2017/metadata-user-data-vendor-data-oh-my
https://www.madebymikal.com/nova-vendordata-deployment-an-excessively-detailed-guide/

Nova Documentation, Release 22.4.1.dev41

booted instances or for testing purposes. Volume-backed instances can be enforced for flavors
with zero root disk via the os_compute_api:servers:create:zero_disk_flavor
policy rule.

Ephemeral Disk GB Amount of disk space (in gigabytes) to use for the ephemeral partition. This
property is optional. If unspecified, the value is 0 by default.

Ephemeral disks offer machine local disk storage linked to the lifecycle of a VM instance. When
a VM is terminated, all data on the ephemeral disk is lost. Ephemeral disks are not included in
any snapshots.

Swap Amount of swap space (in megabytes) to use. This property is optional. If unspecified, the value
is 0 by default.

RXTX Factor (DEPRECATED) This value was only applicable when using the xen compute driver
with the nova-network network driver. Since nova-network has been removed, this no
longer applies and should not be specified. It will likely be removed in a future release. neutron
users should refer to the neutron QoS documentation

Is Public Boolean value that defines whether the flavor is available to all users or private to the project
it was created in. This property is optional. In unspecified, the value is True by default.

By default, a flavor is public and available to all projects. Private flavors are only accessible to
those on the access list for a given project and are invisible to other projects.

Extra Specs Key and value pairs that define on which compute nodes a flavor can run. These are
optional.

Extra specs are generally used as scheduler hints for more advanced instance configuration. The
key-value pairs used must correspond to well-known options. For more information on the stan-
dardized extra specs available, see below

Description A free form description of the flavor. Limited to 65535 characters in length. Only printable
characters are allowed. Available starting in microversion 2.55.

Extra Specs

Todo: A lot of these need investigation - for example, I can find no reference to the
cpu_shares_level option outside of documentation and (possibly) useless tests. We should as-
sess which drivers each option actually apply to.

CPU limits You can configure the CPU limits with control parameters. For example, to configure the
I/O limit, use:

$ openstack flavor set FLAVOR-NAME \
--property quota:read_bytes_sec=10240000 \
--property quota:write_bytes_sec=10240000

Use these optional parameters to control weight shares, enforcement intervals for runtime quotas,
and a quota for maximum allowed bandwidth:

• cpu_shares: Specifies the proportional weighted share for the domain. If this element is
omitted, the service defaults to the OS provided defaults. There is no unit for the value; it is

3.4. Maintenance 382

https://docs.openstack.org/neutron/victoria/admin/config-qos.html

Nova Documentation, Release 22.4.1.dev41

a relative measure based on the setting of other VMs. For example, a VM configured with
value 2048 gets twice as much CPU time as a VM configured with value 1024.

• cpu_shares_level: On VMware, specifies the allocation level. Can be custom,
high, normal, or low. If you choose custom, set the number of shares using
cpu_shares_share.

• cpu_period: Specifies the enforcement interval (unit: microseconds) for QEMU and
LXC hypervisors. Within a period, each VCPU of the domain is not allowed to consume
more than the quota worth of runtime. The value should be in range [1000, 1000000].
A period with value 0 means no value.

• cpu_limit: Specifies the upper limit for VMware machine CPU allocation in MHz. This
parameter ensures that a machine never uses more than the defined amount of CPU time. It
can be used to enforce a limit on the machines CPU performance.

• cpu_reservation: Specifies the guaranteed minimum CPU reservation in MHz for
VMware. This means that if needed, the machine will definitely get allocated the reserved
amount of CPU cycles.

• cpu_quota: Specifies the maximum allowed bandwidth (unit: microseconds). A do-
main with a negative-value quota indicates that the domain has infinite bandwidth, which
means that it is not bandwidth controlled. The value should be in range [1000,
18446744073709551] or less than 0. A quota with value 0 means no value. You can
use this feature to ensure that all vCPUs run at the same speed. For example:

$ openstack flavor set FLAVOR-NAME \
--property quota:cpu_quota=10000 \
--property quota:cpu_period=20000

In this example, an instance of FLAVOR-NAME can only consume a maximum of 50% CPU
of a physical CPU computing capability.

Memory limits For VMware, you can configure the memory limits with control parameters.

Use these optional parameters to limit the memory allocation, guarantee minimum memory reser-
vation, and to specify shares used in case of resource contention:

• memory_limit: Specifies the upper limit for VMware machine memory allocation in
MB. The utilization of a virtual machine will not exceed this limit, even if there are available
resources. This is typically used to ensure a consistent performance of virtual machines
independent of available resources.

• memory_reservation: Specifies the guaranteed minimum memory reservation in MB
for VMware. This means the specified amount of memory will definitely be allocated to the
machine.

• memory_shares_level: On VMware, specifies the allocation level. This can be
custom, high, normal or low. If you choose custom, set the number of shares us-
ing memory_shares_share.

• memory_shares_share: Specifies the number of shares allocated in the event that
custom is used. There is no unit for this value. It is a relative measure based on the
settings for other VMs. For example:

3.4. Maintenance 383

Nova Documentation, Release 22.4.1.dev41

$ openstack flavor set FLAVOR-NAME \
--property quota:memory_shares_level=custom \
--property quota:memory_shares_share=15

Disk I/O limits For VMware, you can configure the resource limits for disk with control parameters.

Use these optional parameters to limit the disk utilization, guarantee disk allocation, and to spec-
ify shares used in case of resource contention. This allows the VMware driver to enable disk
allocations for the running instance.

• disk_io_limit: Specifies the upper limit for disk utilization in I/O per second. The
utilization of a virtual machine will not exceed this limit, even if there are available resources.
The default value is -1 which indicates unlimited usage.

• disk_io_reservation: Specifies the guaranteed minimum disk allocation in terms of
Input/output Operations Per Second (IOPS).

• disk_io_shares_level: Specifies the allocation level. This can be custom,
high, normal or low. If you choose custom, set the number of shares using
disk_io_shares_share.

• disk_io_shares_share: Specifies the number of shares allocated in the event that
custom is used. When there is resource contention, this value is used to determine the
resource allocation.

The example below sets the disk_io_reservation to 2000 IOPS.

$ openstack flavor set FLAVOR-NAME \
--property quota:disk_io_reservation=2000

Disk tuning Using disk I/O quotas, you can set maximum disk write to 10 MB per second for a VM
user. For example:

$ openstack flavor set FLAVOR-NAME \
--property quota:disk_write_bytes_sec=10485760

The disk I/O options are:

• disk_read_bytes_sec

• disk_read_iops_sec

• disk_write_bytes_sec

• disk_write_iops_sec

• disk_total_bytes_sec

• disk_total_iops_sec

Bandwidth I/O The vif I/O options are:

• vif_inbound_average

• vif_inbound_burst

• vif_inbound_peak

• vif_outbound_average

• vif_outbound_burst

3.4. Maintenance 384

Nova Documentation, Release 22.4.1.dev41

• vif_outbound_peak

Incoming and outgoing traffic can be shaped independently. The bandwidth element can have
at most, one inbound and at most, one outbound child element. If you leave any of these child
elements out, no quality of service (QoS) is applied on that traffic direction. So, if you want to
shape only the networks incoming traffic, use inbound only (and vice versa). Each element has
one mandatory attribute average, which specifies the average bit rate on the interface being shaped.

There are also two optional attributes (integer): peak, which specifies the maximum rate at which
a bridge can send data (kilobytes/second), and burst, the amount of bytes that can be burst at
peak speed (kilobytes). The rate is shared equally within domains connected to the network.

The example below sets network traffic bandwidth limits for existing flavor as follows:

• Outbound traffic:

– average: 262 Mbps (32768 kilobytes/second)

– peak: 524 Mbps (65536 kilobytes/second)

– burst: 65536 kilobytes

• Inbound traffic:

– average: 262 Mbps (32768 kilobytes/second)

– peak: 524 Mbps (65536 kilobytes/second)

– burst: 65536 kilobytes

$ openstack flavor set FLAVOR-NAME \
--property quota:vif_outbound_average=32768 \
--property quota:vif_outbound_peak=65536 \
--property quota:vif_outbound_burst=65536 \
--property quota:vif_inbound_average=32768 \
--property quota:vif_inbound_peak=65536 \
--property quota:vif_inbound_burst=65536

Note: All the speed limit values in above example are specified in kilobytes/second. And burst
values are in kilobytes. Values were converted using Data rate units on Wikipedia.

Hardware video RAM Specify hw_video:ram_max_mb to control the maximum RAM for the
video image. Used in conjunction with the hw_video_ram image property. hw_video_ram
must be less than or equal to hw_video:ram_max_mb.

This is currently supported by the libvirt and the vmware drivers.

See https://libvirt.org/formatdomain.html#elementsVideo for more information on how this is
used to set the vram attribute with the libvirt driver.

See https://pubs.vmware.com/vi-sdk/visdk250/ReferenceGuide/vim.vm.device.
VirtualVideoCard.html for more information on how this is used to set the videoRamSizeInKB
attribute with the vmware driver.

Watchdog behavior For the libvirt driver, you can enable and set the behavior of a virtual hardware
watchdog device for each flavor. Watchdog devices keep an eye on the guest server, and carry out
the configured action, if the server hangs. The watchdog uses the i6300esb device (emulating a
PCI Intel 6300ESB). If hw:watchdog_action is not specified, the watchdog is disabled.

3.4. Maintenance 385

https://en.wikipedia.org/wiki/Data_rate_units
https://libvirt.org/formatdomain.html#elementsVideo
https://pubs.vmware.com/vi-sdk/visdk250/ReferenceGuide/vim.vm.device.VirtualVideoCard.html
https://pubs.vmware.com/vi-sdk/visdk250/ReferenceGuide/vim.vm.device.VirtualVideoCard.html

Nova Documentation, Release 22.4.1.dev41

To set the behavior, use:

$ openstack flavor set FLAVOR-NAME --property hw:watchdog_
↪→action=ACTION

Valid ACTION values are:

• disabled: (default) The device is not attached.

• reset: Forcefully reset the guest.

• poweroff: Forcefully power off the guest.

• pause: Pause the guest.

• none: Only enable the watchdog; do nothing if the server hangs.

Note: Watchdog behavior set using a specific images properties will override behavior set using
flavors.

Random-number generator If a random-number generator device has been added to the instance
through its image properties, the device can be enabled and configured using:

$ openstack flavor set FLAVOR-NAME \
--property hw_rng:allowed=True \
--property hw_rng:rate_bytes=RATE-BYTES \
--property hw_rng:rate_period=RATE-PERIOD

Where:

• RATE-BYTES: (integer) Allowed amount of bytes that the guest can read from the hosts
entropy per period.

• RATE-PERIOD: (integer) Duration of the read period in milliseconds.

Performance Monitoring Unit (vPMU) If nova is deployed with the libvirt virt driver and libvirt.
virt_type is set to qemu or kvm, a vPMU can be enabled or disabled for an instance using the
hw:pmu extra_spec or the hw_pmu image property. The supported values are True or False.
If the vPMU is not explicitly enabled or disabled via the flavor or image, its presence is left to
QEMU to decide.

$ openstack flavor set FLAVOR-NAME --property hw:pmu=True|False

The vPMU is used by tools like perf in the guest to provide more accurate information for
profiling application and monitoring guest performance. For realtime workloads, the emulation of
a vPMU can introduce additional latency which may be undesirable. If the telemetry it provides
is not required, such workloads should set hw:pmu=False. For most workloads the default of
unset or enabling the vPMU hw:pmu=True will be correct.

CPU topology For the libvirt driver, you can define the topology of the processors in the virtual machine
using properties. The properties with max limit the number that can be selected by the user with
image properties.

$ openstack flavor set FLAVOR-NAME \
--property hw:cpu_sockets=FLAVOR-SOCKETS \
--property hw:cpu_cores=FLAVOR-CORES \

(continues on next page)

3.4. Maintenance 386

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

--property hw:cpu_threads=FLAVOR-THREADS \
--property hw:cpu_max_sockets=FLAVOR-SOCKETS \
--property hw:cpu_max_cores=FLAVOR-CORES \
--property hw:cpu_max_threads=FLAVOR-THREADS

Where:

• FLAVOR-SOCKETS: (integer) The number of sockets for the guest VM. By default, this is
set to the number of vCPUs requested.

• FLAVOR-CORES: (integer) The number of cores per socket for the guest VM. By default,
this is set to 1.

• FLAVOR-THREADS: (integer) The number of threads per core for the guest VM. By de-
fault, this is set to 1.

CPU pinning policy For the libvirt driver, you can pin the virtual CPUs (vCPUs) of instances to the
hosts physical CPU cores (pCPUs) using properties. You can further refine this by stating how
hardware CPU threads in a simultaneous multithreading-based (SMT) architecture be used. These
configurations will result in improved per-instance determinism and performance.

Note: SMT-based architectures include Intel processors with Hyper-Threading technology. In
these architectures, processor cores share a number of components with one or more other cores.
Cores in such architectures are commonly referred to as hardware threads, while the cores that a
given core share components with are known as thread siblings.

Note: Host aggregates should be used to separate these pinned instances from unpinned instances
as the latter will not respect the resourcing requirements of the former.

$ openstack flavor set FLAVOR-NAME \
--property hw:cpu_policy=CPU-POLICY \
--property hw:cpu_thread_policy=CPU-THREAD-POLICY

Valid CPU-POLICY values are:

• shared: (default) The guest vCPUs will be allowed to freely float across host pCPUs,
albeit potentially constrained by NUMA policy.

• dedicated: The guest vCPUs will be strictly pinned to a set of host pCPUs. In the absence
of an explicit vCPU topology request, the drivers typically expose all vCPUs as sockets with
one core and one thread. When strict CPU pinning is in effect the guest CPU topology will
be setup to match the topology of the CPUs to which it is pinned. This option implies an
overcommit ratio of 1.0. For example, if a two vCPU guest is pinned to a single host core
with two threads, then the guest will get a topology of one socket, one core, two threads.

• mixed: This policy will create an instance combined with the shared policy vCPUs and
dedicated policy vCPUs, as a result, some guest vCPUs will be freely float across host
pCPUs and the rest of guest vCPUs will be pinned to host pCPUs. The pinned guest vCPUs
are configured using the hw:cpu_dedicated_mask extra spec.

Note: The hw:cpu_dedicated_mask option is only valid if hw:cpu_policy is set to

3.4. Maintenance 387

Nova Documentation, Release 22.4.1.dev41

mixed and cannot be configured with hw:cpu_realtime_mask at the same time.

Valid CPU-THREAD-POLICY values are:

• prefer: (default) The host may or may not have an SMT architecture. Where an SMT
architecture is present, thread siblings are preferred.

• isolate: The host must not have an SMT architecture or must emulate a non-SMT archi-
tecture. If the host does not have an SMT architecture, each vCPU is placed on a different
core as expected. If the host does have an SMT architecture - that is, one or more cores have
thread siblings - then each vCPU is placed on a different physical core. No vCPUs from
other guests are placed on the same core. All but one thread sibling on each utilized core is
therefore guaranteed to be unusable.

• require: The host must have an SMT architecture. Each vCPU is allocated on thread
siblings. If the host does not have an SMT architecture, then it is not used. If the host
has an SMT architecture, but not enough cores with free thread siblings are available, then
scheduling fails.

Note: The hw:cpu_thread_policy option is valid if hw:cpu_policy is set to
dedicated or mixed.

PCI NUMA Affinity Policy For the libvirt driver, you can specify the NUMA
affinity policy for PCI passthrough devices and neutron SR-IOV inter-
faces via the hw:pci_numa_affinity_policy flavor extra spec or
hw_pci_numa_affinity_policy image property. The allowed values are
required,“preferred“ or legacy (default).

required This value will mean that nova will boot instances with PCI devices only if at least one
of the NUMA nodes of the instance is associated with these PCI devices. It means that if
NUMA node info for some PCI devices could not be determined, those PCI devices wouldnt
be consumable by the instance. This provides maximum performance.

preferred This value will mean that nova-scheduler will choose a compute host with min-
imal consideration for the NUMA affinity of PCI devices. nova-compute will attempt a
best effort selection of PCI devices based on NUMA affinity, however, if this is not possible
then nova-compute will fall back to scheduling on a NUMA node that is not associated
with the PCI device.

legacy This is the default value and it describes the current nova behavior. Usually we have in-
formation about association of PCI devices with NUMA nodes. However, some PCI devices
do not provide such information. The legacy value will mean that nova will boot instances
with PCI device if either:

• The PCI device is associated with at least one NUMA nodes on which the instance will
be booted

• There is no information about PCI-NUMA affinity available

NUMA topology For the libvirt driver, you can define the host NUMA placement for the instance
vCPU threads as well as the allocation of instance vCPUs and memory from the host NUMA
nodes. For flavors whose memory and vCPU allocations are larger than the size of NUMA nodes
in the compute hosts, the definition of a NUMA topology allows hosts to better utilize NUMA
and improve performance of the instance OS.

3.4. Maintenance 388

Nova Documentation, Release 22.4.1.dev41

$ openstack flavor set FLAVOR-NAME \
--property hw:numa_nodes=FLAVOR-NODES \
--property hw:numa_cpus.N=FLAVOR-CORES \
--property hw:numa_mem.N=FLAVOR-MEMORY

Where:

• FLAVOR-NODES: (integer) The number of host NUMA nodes to restrict execution of in-
stance vCPU threads to. If not specified, the vCPU threads can run on any number of the
host NUMA nodes available.

• N: (integer) The instance NUMA node to apply a given CPU or memory configuration to,
where N is in the range 0 to FLAVOR-NODES - 1.

• FLAVOR-CORES: (comma-separated list of integers) A list of instance vCPUs to map to
instance NUMA node N. If not specified, vCPUs are evenly divided among available NUMA
nodes.

• FLAVOR-MEMORY: (integer) The number of MB of instance memory to map to instance
NUMA node N. If not specified, memory is evenly divided among available NUMA nodes.

Note: hw:numa_cpus.N and hw:numa_mem.N are only valid if hw:numa_nodes is set.
Additionally, they are only required if the instances NUMA nodes have an asymmetrical allocation
of CPUs and RAM (important for some NFV workloads).

Note: The N parameter is an index of guest NUMA nodes and may not correspond to host
NUMA nodes. For example, on a platform with two NUMA nodes, the scheduler may opt to
place guest NUMA node 0, as referenced in hw:numa_mem.0 on host NUMA node 1 and vice
versa. Similarly, the integers used for FLAVOR-CORES are indexes of guest vCPUs and may not
correspond to host CPUs. As such, this feature cannot be used to constrain instances to specific
host CPUs or NUMA nodes.

Warning: If the combined values of hw:numa_cpus.N or hw:numa_mem.N are greater
than the available number of CPUs or memory respectively, an exception is raised.

Hardware encryption of guest memory If there are compute hosts which support encryption of guest
memory at the hardware level, this functionality can be requested via the hw:mem_encryption
extra spec parameter:

$ openstack flavor set FLAVOR-NAME \
--property hw:mem_encryption=True

CPU real-time policy For the libvirt driver, you can state that one or more of your instance virtual
CPUs (vCPUs), though not all of them, run with a real-time policy. When used on a correctly
configured host, this provides stronger guarantees for worst case scheduler latency for vCPUs and
is a requirement for certain applications.

Todo: Document the required steps to configure hosts and guests. There are a lot of things
necessary, from isolating hosts and configuring the [compute] cpu_dedicated_set nova

3.4. Maintenance 389

Nova Documentation, Release 22.4.1.dev41

configuration option on the host, to choosing a correctly configured guest image.

Important: While most of your instance vCPUs can run with a real-time policy, you must either
mark at least one vCPU as non-real-time to be account for emulator overhead (housekeeping) or
explicitly configure an emulator thread policy.

Important: To use this extra spec, you must enable pinned CPUs. Refer to CPU policy for more
information.

$ openstack flavor set FLAVOR-NAME \
--property hw:cpu_realtime=CPU-REALTIME-POLICY \
--property hw:cpu_realtime_mask=CPU-REALTIME-MASK

Where:

CPU-REALTIME-POLICY (enum): One of:

• no: (default) The guest vCPUs will not have a real-time policy

• yes: The guest vCPUs will have a real-time policy

CPU-REALTIME-MASK (coremask): A coremask indicating which vCPUs will or, if starting
with a ^, will not have a real-time policy. For example, a value of 0-5 indicates that vCPUs
0 to 5 will have a real-time policy. Conversely, a value of ^0-1 indicates that all vCPUs
except vCPUs 0 and 1 will have a real-time policy.

Note: The hw:cpu_realtime_mask option is only valid if hw:cpu_realtime is set to
yes.

Changed in version 22.0.0: (Victoria)

Previously, it was necessary to specify hw:cpu_realtime_maskwhen hw:cpu_realtime
was set to yes. Starting in Victoria, it is possible to omit this when an emulator thread policy is
configured using the hw:emulator_threads_policy extra spec.

Changed in version 22.0.0: (Victoria)

Previously, the leading caret was necessary and omitting it would be equivalent to not setting the
mask, resulting in a failure to spawn the instance.

Emulator threads policy For the libvirt driver, you can assign a separate pCPU to an instance that will
be used for emulator threads, which are emulator processes not directly related to the guest OS.
This pCPU will used in addition to the pCPUs used for the guest. This is generally required for
use with a real-time workload.

Important: To use this extra spec, you must enable pinned CPUs. Refer to CPU policy for more
information.

3.4. Maintenance 390

Nova Documentation, Release 22.4.1.dev41

$ openstack flavor set FLAVOR-NAME \
--property hw:emulator_threads_policy=THREAD-POLICY

The expected behavior of emulator threads depends on the value of the
hw:emulator_threads_policy flavor extra spec and the value of compute.
cpu_shared_set. It is presented in the following table:

compute.
cpu_shared_set set

compute.
cpu_shared_set unset

hw:emulator_treads_policy
unset (default)

Pinned to all of the instances
pCPUs

Pinned to all of the instances
pCPUs

hw:emulator_threads_policy
= share

Pinned to compute.
cpu_shared_set

Pinned to all of the instances
pCPUs

hw:emulator_threads_policy
= isolate

Pinned to a single pCPU dis-
tinct from the instances pC-
PUs

Pinned to a single pCPU dis-
tinct from the instances pC-
PUs

Large pages allocation You can configure the size of large pages used to back the VMs.

$ openstack flavor set FLAVOR-NAME \
--property hw:mem_page_size=PAGE_SIZE

Valid PAGE_SIZE values are:

• small: (default) The smallest page size is used. Example: 4 KB on x86.

• large: Only use larger page sizes for guest RAM. Example: either 2 MB or 1 GB on x86.

• any: It is left up to the compute driver to decide. In this case, the libvirt driver might try
to find large pages, but fall back to small pages. Other drivers may choose alternate policies
for any.

• pagesize: (string) An explicit page size can be set if the workload has specific requirements.
This value can be an integer value for the page size in KB, or can use any standard suffix.
Example: 4KB, 2MB, 2048, 1GB.

Note: Large pages can be enabled for guest RAM without any regard to whether the guest OS
will use them or not. If the guest OS chooses not to use huge pages, it will merely see small pages
as before. Conversely, if a guest OS does intend to use huge pages, it is very important that the
guest RAM be backed by huge pages. Otherwise, the guest OS will not be getting the performance
benefit it is expecting.

PCI passthrough You can assign PCI devices to a guest by specifying them in the flavor.

$ openstack flavor set FLAVOR-NAME \
--property pci_passthrough:alias=ALIAS:COUNT

Where:

• ALIAS: (string) The alias which correspond to a particular PCI device class as configured in
the nova configuration file (see pci.alias).

• COUNT: (integer) The amount of PCI devices of type ALIAS to be assigned to a guest.

3.4. Maintenance 391

Nova Documentation, Release 22.4.1.dev41

Hiding hypervisor signature Some hypervisors add a signature to their guests. While the presence of
the signature can enable some paravirtualization features on the guest, it can also have the effect
of preventing some drivers from loading. Hiding the signature by setting this property to true may
allow such drivers to load and work.

Note: As of the 18.0.0 Rocky release, this is only supported by the libvirt driver.

Prior to the 21.0.0 Ussuri release, this was called hide_hypervisor_id. An alias is provided
to provide backwards compatibility.

$ openstack flavor set FLAVOR-NAME \
--property hw:hide_hypervisor_id=VALUE

Where:

• VALUE: (string) true or false. false is equivalent to the property not existing.

Secure Boot When your Compute services use the Hyper-V hypervisor, you can enable secure boot for
Windows and Linux instances.

$ openstack flavor set FLAVOR-NAME \
--property os:secure_boot=SECURE_BOOT_OPTION

Valid SECURE_BOOT_OPTION values are:

• required: Enable Secure Boot for instances running with this flavor.

• disabled or optional: (default) Disable Secure Boot for instances running with this
flavor.

Custom resource classes and standard resource classes to override Added in the 16.0.0 Pike re-
lease.

Specify custom resource classes to require or override quantity values of standard resource classes.

The syntax of the extra spec is resources:<resource_class_name>=VALUE (VALUE
is integer). The name of custom resource classes must start with CUSTOM_. Standard resource
classes to override are VCPU, MEMORY_MB or DISK_GB. In this case, you can disable scheduling
based on standard resource classes by setting the value to 0.

For example:

• resources:CUSTOM_BAREMETAL_SMALL=1

• resources:VCPU=0

See Create flavors for use with the Bare Metal service for more examples.

Required traits Added in the 17.0.0 Queens release.

Required traits allow specifying a server to build on a compute node with the set of traits specified
in the flavor. The traits are associated with the resource provider that represents the compute
node in the Placement API. See the resource provider traits API reference for more details: https:
//docs.openstack.org/api-ref/placement/#resource-provider-traits

The syntax of the extra spec is trait:<trait_name>=required, for example:

• trait:HW_CPU_X86_AVX2=required

3.4. Maintenance 392

https://docs.openstack.org/ironic/victoria/install/configure-nova-flavors
https://docs.openstack.org/api-ref/placement/#resource-provider-traits
https://docs.openstack.org/api-ref/placement/#resource-provider-traits

Nova Documentation, Release 22.4.1.dev41

• trait:STORAGE_DISK_SSD=required

The scheduler will pass required traits to the GET /allocation_candidates endpoint in
the Placement API to include only resource providers that can satisfy the required traits. In 17.0.0
the only valid value is required. In 18.0.0 forbidden is added (see below). Any other value
will be considered invalid.

The FilterScheduler is currently the only scheduler driver that supports this feature.

Traits can be managed using the osc-placement plugin.

Forbidden traits Added in the 18.0.0 Rocky release.

Forbidden traits are similar to required traits, described above, but instead of specifying the set of
traits that must be satisfied by a compute node, forbidden traits must not be present.

The syntax of the extra spec is trait:<trait_name>=forbidden, for example:

• trait:HW_CPU_X86_AVX2=forbidden

• trait:STORAGE_DISK_SSD=forbidden

The FilterScheduler is currently the only scheduler driver that supports this feature.

Traits can be managed using the osc-placement plugin.

Numbered groupings of resource classes and traits Added in the 18.0.0 Rocky release.

Specify numbered groupings of resource classes and traits.

The syntax is as follows (N and VALUE are integers):

resourcesN:<resource_class_name>=VALUE
traitN:<trait_name>=required

A given numbered resources or trait key may be repeated to specify multiple re-
sources/traits in the same grouping, just as with the un-numbered syntax.

Specify inter-group affinity policy via the group_policy key, which may have the following
values:

• isolate: Different numbered request groups will be satisfied by different providers.

• none: Different numbered request groups may be satisfied by different providers or com-
mon providers.

Note: If more than one group is specified then the group_policy is mandatory in the request.
However such groups might come from other sources than flavor extra_spec (e.g. from Neu-
tron ports with QoS minimum bandwidth policy). If the flavor does not specify any groups and
group_policy but more than one group is coming from other sources then nova will default
the group_policy to none to avoid scheduler failure.

For example, to create a server with the following VFs:

• One SR-IOV virtual function (VF) on NET1 with bandwidth 10000 bytes/sec

• One SR-IOV virtual function (VF) on NET2 with bandwidth 20000 bytes/sec on a different
NIC with SSL acceleration

It is specified in the extra specs as follows:

3.4. Maintenance 393

https://docs.openstack.org/osc-placement/latest/index.html
https://docs.openstack.org/osc-placement/latest/index.html

Nova Documentation, Release 22.4.1.dev41

resources1:SRIOV_NET_VF=1
resources1:NET_EGRESS_BYTES_SEC=10000
trait1:CUSTOM_PHYSNET_NET1=required
resources2:SRIOV_NET_VF=1
resources2:NET_EGRESS_BYTES_SEC:20000
trait2:CUSTOM_PHYSNET_NET2=required
trait2:HW_NIC_ACCEL_SSL=required
group_policy=isolate

See Granular Resource Request Syntax for more details.

Emulated Virtual TPM If supported by the compute host, you can add an emulated trusted platform
module (TPM) to the guest OS.

$ openstack flavor set FLAVOR-NAME \
--property hw:tpm_version=$VERSION \
--property hw:tpm_model=$MODEL

hw:tpm_version is required to enable support. Valid $VERSION values are:

• 1.2 : Selects TPM version 1.2 support.

• 2.0 : Selects TPM version 2.0 support.

hw:tpm_model is optional. Valid $MODEL values are:

• tpm-tis: Selects TIS device model. This is the default value.

• tpm-crb: Selects CRB device model. Only valid for TPM version 2.0.

3.4.3 Upgrades

Nova aims to provide upgrades with minimal downtime.

Firstly, the data plane. There should be no VM downtime when you upgrade Nova. Nova has had this
since the early days.

Secondly, we want no downtime during upgrades of the Nova control plane. This document is trying to
describe how we can achieve that.

Once we have introduced the key concepts relating to upgrade, we will introduce the process needed for
a no downtime upgrade of nova.

3.4.3.1 Minimal Downtime Upgrade Process

Plan your upgrade

• Read and ensure you understand the release notes for the next release.

• You should ensure all required steps from the previous upgrade have been completed, such as data
migrations.

• Make a backup of your database. Nova does not support downgrading of the database. Hence, in
case of upgrade failure, restoring database from backup is the only choice.

• During upgrade be aware that there will be additional load on nova-conductor. You may find you
need to add extra nova-conductor workers to deal with the additional upgrade related load.

3.4. Maintenance 394

https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/granular-resource-requests.html

Nova Documentation, Release 22.4.1.dev41

Rolling upgrade process

To reduce downtime, the compute services can be upgraded in a rolling fashion. It means upgrading
a few services at a time. This results in a condition where both old (N) and new (N+1) nova-compute
services co-exist for a certain time period. Note that, there is no upgrade of the hypervisor here, this is
just upgrading the nova services. If reduced downtime is not a concern (or lower complexity is desired),
all services may be taken down and restarted at the same time.

1. Before maintenance window:

• Start the process with the controller node. Install the code for the next version of Nova,
either in a venv or a separate control plane node, including all the python dependencies.

• Using the newly installed nova code, run the DB sync. First run nova-manage api_db
sync, then nova-manage db sync. nova-manage db sync should be run for all
cell databases, including cell0. If necessary, the --config-file argument can be used
to point to the correct nova.conf file for the given cell.

These schema change operations should have minimal or no effect on performance, and
should not cause any operations to fail.

• At this point, new columns and tables may exist in the database. These DB schema changes
are done in a way that both the N and N+1 release can perform operations against the same
schema.

2. During maintenance window:

• Several nova services rely on the external placement service being at the latest level. There-
fore, you must upgrade placement before any nova services. See the placement upgrade
notes for more details on upgrading the placement service.

• For maximum safety (no failed API operations), gracefully shutdown all the services (i.e.
SIG_TERM) except nova-compute.

• Before restarting services with new code, perform the release-specific readiness check with
nova-status upgrade check. See the nova-status upgrade check for more details
on status check.

• Start all services on the new code, with [upgrade_levels]compute=auto
in nova.conf. It is safest to start nova-conductor first and nova-api last.
Note that you may use a static alias name instead of auto, such as
[upgrade_levels]compute=<release_name>. Also note that this step is
only required if compute services are not upgraded in lock-step with the control services.

• If desired, gracefully shutdown nova-compute (i.e. SIG_TERM) services in small batches,
then start the new version of the code with: [upgrade_levels]compute=auto. If
this batch-based approach is used, only a few compute nodes will have any delayed API ac-
tions, and to ensure there is enough capacity online to service any boot requests that happen
during this time.

3. After maintenance window:

• Once all services are running the new code, double check in the DB that there are no old
orphaned service records using nova service-list.

• Now that all services are upgraded, we need to send the SIG_HUP signal, so all the services
clear any cached service version data. When a new service starts, it automatically detects
which version of the compute RPC protocol to use, and it can decide if it is safe to do

3.4. Maintenance 395

https://docs.openstack.org/placement/victoria/admin/upgrade-notes.html
https://docs.openstack.org/placement/victoria/admin/upgrade-notes.html

Nova Documentation, Release 22.4.1.dev41

any online data migrations. Note, if you used a static value for the upgrade_level, such
as [upgrade_levels]compute=<release_name>, you must update nova.conf to
remove that configuration value and do a full service restart.

• Now all the services are upgraded and signaled, the system is able to use the latest version
of the RPC protocol and can access all of the features in the new release.

• Once all the services are running the latest version of the code, and all the services are aware
they all have been upgraded, it is safe to transform the data in the database into its new for-
mat. While some of this work happens on demand when the system reads a database row that
needs updating, we must get all the data transformed into the current version before the next
upgrade. Additionally, some data may not be transformed automatically so performing the
data migration is necessary to avoid performance degradation due to compatibility routines.

• This process can put significant extra write load on the database. Complete all online data
migrations using: nova-manage db online_data_migrations --max-count
<number>. Note that you can use the --max-count argument to reduce the load this
operation will place on the database, which allows you to run a small chunk of the mi-
grations until all of the work is done. The chunk size you should use depends on your
infrastructure and how much additional load you can impose on the database. To reduce
load, perform smaller batches with delays between chunks. To reduce time to completion,
run larger batches. Each time it is run, the command will show a summary of completed and
remaining records. If using the --max-count option, the command should be rerun while
it returns exit status 1 (which indicates that some migrations took effect, and more work may
remain to be done), even if some migrations produce errors. If all possible migrations have
completed and some are still producing errors, exit status 2 will be returned. In this case,
the cause of the errors should be investigated and resolved. Migrations should be considered
successfully completed only when the command returns exit status 0.

• At this point, you must also ensure you update the configuration, to stop using any deprecated
features or options, and perform any required work to transition to alternative features. All
the deprecated options should be supported for one cycle, but should be removed before your
next upgrade is performed.

3.4.3.2 Current Database Upgrade Types

Currently Nova has 2 types of database upgrades that are in use.

1. Schema Migrations

2. Data Migrations

Schema Migrations

Schema migrations are defined in nova/db/sqlalchemy/migrate_repo/versions and in
nova/db/sqlalchemy/api_migrations/migrate_repo/versions. They are the rou-
tines that transform our database structure, which should be additive and able to be applied to a running
system before service code has been upgraded.

Note: The API database migrations should be assumed to run before the migrations for the main/cell
databases. This is because the former contains information about how to find and connect to the latter.

3.4. Maintenance 396

Nova Documentation, Release 22.4.1.dev41

Some management commands that operate on multiple cells will attempt to list and iterate over cell
mapping records, which require a functioning API database schema.

Data Migrations

Online data migrations occur in two places:

1. Inline migrations that occur as part of normal run-time activity as data is read in the old format
and written in the new format

2. Background online migrations that are performed using nova-manage to complete transforma-
tions that will not occur incidentally due to normal runtime activity.

An example of online data migrations are the flavor migrations done as part of Nova object version 1.18.
This included a transient migration of flavor storage from one database location to another.

Note: Database downgrades are not supported.

Migration policy:

The following guidelines for schema and data migrations are followed in order to ease upgrades:

• Additive schema migrations - In general, almost all schema migrations should be additive. Put
simply, they should only create elements like columns, indices, and tables.

• Subtractive schema migrations - To remove an element like a column or table during the N release
cycle:

1. The element must be deprecated and retained for backward compatibility. (This allows for
graceful upgrade from N to N+1.)

2. Data migration, by the objects layer, must completely migrate data from the old version of
the schema to the new version.

– Data migration example

– Data migration enforcement example (for sqlalchemy migrate/deprecated scripts):

3. The column can then be removed with a migration at the start of N+2.

• All schema migrations should be idempotent. (For example, a migration should check if an ele-
ment exists in the schema before attempting to add it.) This logic comes for free in the autogener-
ated workflow of the online migrations.

• Constraints - When adding a foreign or unique key constraint, the schema migration code needs to
handle possible problems with data before applying the constraint. (Example: A unique constraint
must clean up duplicate records before applying said constraint.)

• Data migrations - As mentioned above, data migrations will be done in an online fashion by
custom code in the object layer that handles moving data between the old and new portions of the
schema. In addition, for each type of data migration performed, there should exist a nova-manage
option for an operator to manually request that rows be migrated.

– See flavor migration spec for an example of data migrations in the object layer.

3.4. Maintenance 397

http://specs.openstack.org/openstack/nova-specs/specs/kilo/implemented/flavor-from-sysmeta-to-blob.html
https://review.opendev.org/#/c/174480/15/nova/db/sqlalchemy/migrate_repo/versions/291_enforce_flavors_migrated.py
http://specs.openstack.org/openstack/nova-specs/specs/kilo/implemented/flavor-from-sysmeta-to-blob.html

Nova Documentation, Release 22.4.1.dev41

Future work -

1. Adding plumbing to enforce that relevant data migrations are completed before running
contract in the expand/migrate/contract schema migration workflow. A potential solution
would be for contract to run a gating test for each specific subtract operation to determine if
the operation can be completed.

3.4.3.3 Concepts

Here are the key concepts you need to know before reading the section on the upgrade process:

RPC version pinning Through careful RPC versioning, newer nodes are able to talk to older nova-
compute nodes. When upgrading control plane nodes, we can pin them at an older version of the
compute RPC API, until all the compute nodes are able to be upgraded. https://wiki.openstack.
org/wiki/RpcMajorVersionUpdates

Note: The procedure for rolling upgrades with multiple cells v2 cells is not yet determined.

Online Configuration Reload During the upgrade, we pin new serves at the older RPC version. When
all services are updated to use newer code, we need to unpin them so we are able to use any new
functionality. To avoid having to restart the service, using the current SIGHUP signal handling,
or otherwise, ideally we need a way to update the currently running process to use the latest
configuration.

Graceful service shutdown Many nova services are python processes listening for messages on a
AMQP queue, including nova-compute. When sending the process the SIGTERM the process
stops getting new work from its queue, completes any outstanding work, then terminates. During
this process, messages can be left on the queue for when the python process starts back up. This
gives us a way to shutdown a service using older code, and start up a service using newer code
with minimal impact. If its a service that can have multiple workers, like nova-conductor, you
can usually add the new workers before the graceful shutdown of the old workers. In the case
of singleton services, like nova-compute, some actions could be delayed during the restart, but
ideally no actions should fail due to the restart.

Note: While this is true for the RabbitMQ RPC backend, we need to confirm what happens for
other RPC backends.

API load balancer draining When upgrading API nodes, you can make your load balancer only send
new connections to the newer API nodes, allowing for a seamless update of your API nodes.

Expand/Contract DB Migrations Modern databases are able to make many schema changes while
you are still writing to the database. Taking this a step further, we can make all DB changes by
first adding the new structures, expanding. Then you can slowly move all the data into a new
location and format. Once that is complete, you can drop bits of the scheme that are no long
needed, i.e. contract. This happens multiple cycles after we have stopped using a particular piece
of schema, and can happen in a schema migration without affecting runtime code.

Online Data Migrations using objects In Kilo we are moving all data migration into the DB objects
code. When trying to migrate data in the database from the old format to the new format, this is
done in the object code when reading or saving things that are in the old format. For records that

3.4. Maintenance 398

https://wiki.openstack.org/wiki/RpcMajorVersionUpdates
https://wiki.openstack.org/wiki/RpcMajorVersionUpdates

Nova Documentation, Release 22.4.1.dev41

are not updated, you need to run a background process to convert those records into the newer
format. This process must be completed before you contract the database schema.

DB prune deleted rows Currently resources are soft deleted in the main database, so users are able to
track instances in the DB that are created and destroyed in production. However, most people
have a data retention policy, of say 30 days or 90 days after which they will want to delete those
entries. Not deleting those entries affects DB performance as indices grow very large and data
migrations take longer as there is more data to migrate.

nova-conductor object backports RPC pinning ensures new services can talk to the older services
method signatures. But many of the parameters are objects that may well be too new for the
old service to understand, so you are able to send the object back to the nova-conductor to be
downgraded to a version the older service can understand.

3.4.3.4 Testing

Once we have all the pieces in place, we hope to move the Grenade testing to follow this new pattern.

The current tests only cover the existing upgrade process where:

• old computes can run with new control plane

• but control plane is turned off for DB migrations

3.4.4 Quotas

Nova uses a quota system for setting limits on resources such as number of instances or amount of CPU
that a specific project or user can use.

Quota limits and usage can be retrieved using the command-line interface.

3.4.4.1 Types of quota

Quota name Description
cores Number of instance cores (VCPUs) allowed per project.
instances Number of instances allowed per project.
key_pairs Number of key pairs allowed per user.
metadata_items Number of metadata items allowed per instance.
ram Megabytes of instance ram allowed per project.
server_groups Number of server groups per project.
server_group_membersNumber of servers per server group.

The following quotas were previously available but were removed in microversion 2.36 as they proxied
information available from the networking service.

3.4. Maintenance 399

Nova Documentation, Release 22.4.1.dev41

Quota name Description
fixed_ips Number of fixed IP addresses allowed per project. This number must be equal

to or greater than the number of allowed instances.
floating_ips Number of floating IP addresses allowed per project.
networks Number of networks allowed per project (no longer used).
security_groups Number of security groups per project.
security_group_rulesNumber of security group rules per project.

Similarly, the following quotas were previously available but were removed in microversion 2.57 as the
personality files feature was deprecated.

Quota name Description
injected_files Number of injected files allowed per project.
injected_file_content_bytesNumber of content bytes allowed per injected file.
injected_file_path_bytesLength of injected file path.

3.4.4.2 Usage

Project quotas

To list all default quotas for projects, run:

$ openstack quota show --default

Note: This lists default quotas for all services and not just nova.

For example:

$ openstack quota show --default
+----------------------+----------+
| Field | Value |
+----------------------+----------+
backup-gigabytes	1000
backups	10
cores	20
fixed-ips	-1
floating-ips	50
gigabytes	1000
health_monitors	None
injected-file-size	10240
injected-files	5
injected-path-size	255
instances	10
key-pairs	100
l7_policies	None
listeners	None
load_balancers	None
location	None
name	None

(continues on next page)

3.4. Maintenance 400

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

networks	10
per-volume-gigabytes	-1
pools	None
ports	50
project	None
project_name	project
properties	128
ram	51200
rbac_policies	10
routers	10
secgroup-rules	100
secgroups	10
server-group-members	10
server-groups	10
snapshots	10
subnet_pools	-1
subnets	10
volumes	10
+----------------------+----------+

To list the currently set quota values for your project, run:

$ openstack quota show PROJECT

where PROJECT is the ID or name of your project. For example:

$ openstack quota show $OS_PROJECT_ID
+----------------------+----------------------------------+
| Field | Value |
+----------------------+----------------------------------+
backup-gigabytes	1000
backups	10
cores	32
fixed-ips	-1
floating-ips	10
gigabytes	1000
health_monitors	None
injected-file-size	10240
injected-files	5
injected-path-size	255
instances	10
key-pairs	100
l7_policies	None
listeners	None
load_balancers	None
location	None
name	None
networks	20
per-volume-gigabytes	-1
pools	None
ports	60
project	c8156b55ec3b486193e73d2974196993
project_name	project
properties	128
ram	65536
rbac_policies	10

(continues on next page)

3.4. Maintenance 401

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

routers	10
secgroup-rules	50
secgroups	50
server-group-members	10
server-groups	10
snapshots	10
subnet_pools	-1
subnets	20
volumes	10
+----------------------+----------------------------------+

To view a list of options for the openstack quota show command, run:

$ openstack quota show --help

User quotas

Note: User-specific quotas are legacy and will be removed when migration to unified limits is complete.
User-specific quotas were added as a way to provide two-level hierarchical quotas and this feature is
already being offered in unified limits. For this reason, the below commands have not and will not be
ported to openstackclient.

To list the quotas for your user, run:

$ nova quota-show --user USER --tenant PROJECT

where USER is the ID or name of your user and PROJECT is the ID or name of your project. For
example:

$ nova quota-show --user $OS_USERNAME --tenant $OS_PROJECT_ID
+-----------------------------+-------+
| Quota | Limit |
+-----------------------------+-------+
instances	10
cores	32
ram	65536
metadata_items	128
injected_files	5
injected_file_content_bytes	10240
injected_file_path_bytes	255
key_pairs	100
server_groups	10
server_group_members	10
+-----------------------------+-------+

To view a list of options for the nova quota-show command, run:

$ nova help quota-show

3.4. Maintenance 402

https://docs.openstack.org/keystone/victoria//admin/unified-limits.html

Nova Documentation, Release 22.4.1.dev41

3.4.5 Filter Scheduler

The Filter Scheduler supports filtering and weighting to make informed decisions on where a new
instance should be created. This Scheduler supports working with Compute Nodes only.

3.4.5.1 Filtering

During its work Filter Scheduler iterates over all found compute nodes, evaluating each against a set
of filters. The list of resulting hosts is ordered by weighers. The Scheduler then chooses hosts for the
requested number of instances, choosing the most weighted hosts. For a specific filter to succeed for a
specific host, the filter matches the user request against the state of the host plus some extra magic as
defined by each filter (described in more detail below).

If the Scheduler cannot find candidates for the next instance, it means that there are no appropriate hosts
where that instance can be scheduled.

The Filter Scheduler has to be quite flexible to support the required variety of filtering and weighting
strategies. If this flexibility is insufficient you can implement your own filtering algorithm.

There are many standard filter classes which may be used (nova.scheduler.filters):

• AllHostsFilter - does no filtering. It passes all the available hosts.

• ImagePropertiesFilter - filters hosts based on properties defined on the instances image.
It passes hosts that can support the properties specified on the image used by the instance.

• AvailabilityZoneFilter - filters hosts by availability zone. It passes hosts matching the
availability zone specified in the instance properties. Use a comma to specify multiple zones. The
filter will then ensure it matches any zone specified.

3.4. Maintenance 403

Nova Documentation, Release 22.4.1.dev41

• ComputeCapabilitiesFilter - checks that the capabilities provided by the host compute
service satisfy any extra specifications associated with the instance type. It passes hosts that can
create the specified instance type.

If an extra specs key contains a colon (:), anything before the colon is treated as a names-
pace and anything after the colon is treated as the key to be matched. If a namespace
is present and is not capabilities, the filter ignores the namespace. For example
capabilities:cpu_info:features is a valid scope format. For backward compatibility,
when a key doesnt contain a colon (:), the keys contents are important. If this key is an attribute
of HostState object, like free_disk_mb, the filter also treats the extra specs key as the key to
be matched. If not, the filter will ignore the key.

The extra specifications can have an operator at the beginning of the value string of a key/value
pair. If there is no operator specified, then a default operator of s== is used. Valid operators are:

* = (equal to or greater than as a number; same as vcpus case)

* == (equal to as a number)

* != (not equal to as a number)

* >= (greater than or equal to as a number)

* <= (less than or equal to as a number)

* s== (equal to as a string)

* s!= (not equal to as a string)

* s>= (greater than or equal to as a string)

* s> (greater than as a string)

* s<= (less than or equal to as a string)

* s< (less than as a string)

* <in> (substring)

* <all-in> (all elements contained in collection)

* <or> (find one of these)

Examples are: ">= 5", "s== 2.1.0", "<in> gcc", "<all-in> aes mmx",
↪→and "<or> fpu <or> gpu"

some of attributes that can be used as useful key and their values contains:

* free_ram_mb (compared with a number, values like ">= 4096")

* free_disk_mb (compared with a number, values like ">= 10240")

* host (compared with a string, values like: "<in> compute","s==
↪→compute_01")

* hypervisor_type (compared with a string, values like: "s== QEMU",
↪→"s== powervm")

* hypervisor_version (compared with a number, values like : ">=
↪→1005003", "== 2000000")

* num_instances (compared with a number, values like: "<= 10")

* num_io_ops (compared with a number, values like: "<= 5")

* vcpus_total (compared with a number, values like: "= 48", ">=24")

* vcpus_used (compared with a number, values like: "= 0", "<= 10")

• AggregateInstanceExtraSpecsFilter - checks that the aggregate metadata satis-
fies any extra specifications associated with the instance type (that have no scope or are
scoped with aggregate_instance_extra_specs). It passes hosts that can cre-
ate the specified instance type. The extra specifications can have the same operators as
ComputeCapabilitiesFilter. To specify multiple values for the same key use a comma.
E.g., value1,value2. All hosts are passed if no extra_specs are specified.

• ComputeFilter - passes all hosts that are operational and enabled.

3.4. Maintenance 404

Nova Documentation, Release 22.4.1.dev41

• IsolatedHostsFilter - filter based on filter_scheduler.isolated_images,
filter_scheduler.isolated_hosts and filter_scheduler.
restrict_isolated_hosts_to_isolated_images flags.

• JsonFilter - allows simple JSON-based grammar for selecting hosts.

• NumInstancesFilter - filters compute nodes by number of instances. Nodes with too
many instances will be filtered. The host will be ignored by the scheduler if more than
filter_scheduler.max_instances_per_host already exist on the host.

• AggregateNumInstancesFilter - filters hosts by number of instances with per-
aggregate filter_scheduler.max_instances_per_host setting. If no per-
aggregate value is found, it will fall back to the global default filter_scheduler.
max_instances_per_host. If more than one value is found for a host (meaning the host
is in two or more different aggregates with different max instances per host settings), the mini-
mum value will be used.

• IoOpsFilter - filters hosts by concurrent I/O operations on it. hosts with too many concur-
rent I/O operations will be filtered. filter_scheduler.max_io_ops_per_host setting.
Maximum number of I/O intensive instances allowed to run on this host, the host will be ignored
by scheduler if more than filter_scheduler.max_io_ops_per_host instances such as
build/resize/snapshot etc are running on it.

• AggregateIoOpsFilter - filters hosts by I/O operations with per-aggregate
filter_scheduler.max_io_ops_per_host setting. If no per-aggregate value is found,
it will fall back to the global default :oslo.config:option:‘filter_scheduler.max_io_ops_per_host.
If more than one value is found for a host (meaning the host is in two or more different aggregates
with different max io operations settings), the minimum value will be used.

• PciPassthroughFilter - Filter that schedules instances on a host if the host has devices to
meet the device requests in the extra_specs for the flavor.

• SimpleCIDRAffinityFilter - allows a new instance on a host within the same IP block.

• DifferentHostFilter - allows the instance on a different host from a set of instances.

• SameHostFilter - puts the instance on the same host as another instance in a set of instances.

• AggregateTypeAffinityFilter - limits instance_type by aggregate. This filter passes
hosts if no instance_type key is set or the instance_type aggregate metadata value contains
the name of the instance_type requested. The value of the instance_type metadata entry is
a string that may contain either a single instance_type name or a comma separated list of
instance_type names. e.g. m1.nano or m1.nano,m1.small

• ServerGroupAntiAffinityFilter - This filter implements anti-affinity for a server
group. First you must create a server group with a policy of anti-affinity via the server groups
API. Then, when you boot a new server, provide a scheduler hint of group=<uuid> where <uuid>
is the UUID of the server group you created. This will result in the server getting added to the
group. When the server gets scheduled, anti-affinity will be enforced among all servers in that
group.

• ServerGroupAffinityFilter - This filter works the same way as ServerGroupAntiAffin-
ityFilter. The difference is that when you create the server group, you should specify a policy of
affinity.

• AggregateMultiTenancyIsolation - isolate tenants in specific aggregates. To specify
multiple tenants use a comma. Eg. tenant1,tenant2

3.4. Maintenance 405

Nova Documentation, Release 22.4.1.dev41

• AggregateImagePropertiesIsolation - isolates hosts based on image properties and
aggregate metadata. Use a comma to specify multiple values for the same property. The filter will
then ensure at least one value matches.

• MetricsFilter - filters hosts based on metrics weight_setting. Only hosts with the available
metrics are passed.

• NUMATopologyFilter - filters hosts based on the NUMA topology requested by the instance,
if any.

Now we can focus on these standard filter classes in some detail. Some filters such as
AllHostsFilter and NumInstancesFilter are relatively simple and can be understood from
the code. For example, NumInstancesFilter has the following implementation:

class NumInstancesFilter(filters.BaseHostFilter):
"""Filter out hosts with too many instances."""

def _get_max_instances_per_host(self, host_state, spec_obj):
return CONF.filter_scheduler.max_instances_per_host

def host_passes(self, host_state, spec_obj):
num_instances = host_state.num_instances
max_instances = self._get_max_instances_per_host(host_state, spec_

↪→obj)
passes = num_instances < max_instances
return passes

Here filter_scheduler.max_instances_per_host means the maximum number of in-
stances that can be on a host.

The AvailabilityZoneFilter looks at the availability zone of compute node and availability
zone from the properties of the request. Each compute service has its own availability zone. So de-
ployment engineers have an option to run scheduler with availability zones support and can configure
availability zones on each compute host. This classs method host_passes returns True if availabil-
ity zone mentioned in request is the same on the current compute host.

The ImagePropertiesFilter filters hosts based on the architecture, hypervisor type and vir-
tual machine mode specified in the instance. For example, an instance might require a host
that supports the ARM architecture on a qemu compute host. The ImagePropertiesFilter
will only pass hosts that can satisfy this request. These instance properties are populated
from properties defined on the instances image. E.g. an image can be decorated with these
properties using glance image-update img-uuid --property architecture=arm
--property hypervisor_type=qemu Only hosts that satisfy these requirements will pass the
ImagePropertiesFilter.

ComputeCapabilitiesFilter checks if the host satisfies any extra_specs specified on the
instance type. The extra_specs can contain key/value pairs. The key for the filter is either non-scope
format (i.e. no : contained), or scope format in capabilities scope (i.e. capabilities:xxx:yyy).
One example of capabilities scope is capabilities:cpu_info:features, which will match
hosts cpu features capabilities. The ComputeCapabilitiesFilter will only pass hosts whose
capabilities satisfy the requested specifications. All hosts are passed if no extra_specs are specified.

ComputeFilter is quite simple and passes any host whose compute service is enabled and opera-
tional.

Now we are going to IsolatedHostsFilter. There can be some special hosts reserved
for specific images. These hosts are called isolated. So the images to run on the isolated

3.4. Maintenance 406

Nova Documentation, Release 22.4.1.dev41

hosts are also called isolated. The filter checks if filter_scheduler.isolated_images
flag named in instance specifications is the same as the host specified in filter_scheduler.
isolated_hosts. Isolated hosts can run non-isolated images if the flag filter_scheduler.
restrict_isolated_hosts_to_isolated_images is set to false.

DifferentHostFilter - method host_passes returns True if the host to place an instance on
is different from all the hosts used by a set of instances.

SameHostFilter does the opposite to what DifferentHostFilter does. host_passes re-
turns True if the host we want to place an instance on is one of the hosts used by a set of instances.

SimpleCIDRAffinityFilter looks at the subnet mask and investigates if the network address of
the current host is in the same sub network as it was defined in the request.

JsonFilter - this filter provides the opportunity to write complicated queries for the hosts capabilities
filtering, based on simple JSON-like syntax. There can be used the following operations for the host
states properties: =, <, >, in, <=, >=, that can be combined with the following logical operations: not,
or, and. For example, the following query can be found in tests:

['and',
['>=', '$free_ram_mb', 1024],
['>=', '$free_disk_mb', 200 * 1024]

]

This query will filter all hosts with free RAM greater or equal than 1024 MB and at the same time with
free disk space greater or equal than 200 GB.

Many filters use data from scheduler_hints, that is defined in the moment of creation of the new
server for the user. The only exception for this rule is JsonFilter, that takes data from the schedulers
HostState data structure directly. Variable naming, such as the $free_ram_mb example above,
should be based on those attributes.

The NUMATopologyFilter considers the NUMA topology that was specified for the instance
through the use of flavor extra_specs in combination with the image properties, as described in detail in
the related nova-spec document:

• https://opendev.org/openstack/nova-specs/src/branch/master/specs/juno/implemented/
virt-driver-numa-placement.rst

and try to match it with the topology exposed by the host, accounting for the
ram_allocation_ratio and cpu_allocation_ratio for over-subscription. The filter-
ing is done in the following manner:

• Filter will attempt to pack instance cells onto host cells.

• It will consider the standard over-subscription limits for each host NUMA cell, and provide limits
to the compute host accordingly (as mentioned above).

• If instance has no topology defined, it will be considered for any host.

• If instance has a topology defined, it will be considered only for NUMA capable hosts.

3.4. Maintenance 407

https://opendev.org/openstack/nova-specs/src/branch/master/specs/juno/implemented/virt-driver-numa-placement.rst
https://opendev.org/openstack/nova-specs/src/branch/master/specs/juno/implemented/virt-driver-numa-placement.rst

Nova Documentation, Release 22.4.1.dev41

3.4.5.2 Configuring Filters

To use filters you specify two settings:

• filter_scheduler.available_filters - Defines filter classes made available to the
scheduler. This setting can be used multiple times.

• filter_scheduler.enabled_filters - Of the available filters, defines those that the
scheduler uses by default.

The default values for these settings in nova.conf are:

--filter_scheduler.available_filters=nova.scheduler.filters.all_filters
--filter_scheduler.enabled_filters=ComputeFilter,AvailabilityZoneFilter,
↪→ComputeCapabilitiesFilter,ImagePropertiesFilter,
↪→ServerGroupAntiAffinityFilter,ServerGroupAffinityFilter

With this configuration, all filters in nova.scheduler.filters would be available, and by default
the ComputeFilter, AvailabilityZoneFilter, ComputeCapabilitiesFilter,
ImagePropertiesFilter, ServerGroupAntiAffinityFilter, and
ServerGroupAffinityFilter would be used.

Each filter selects hosts in a different way and has different costs. The order of filter_scheduler.
enabled_filters affects scheduling performance. The general suggestion is to filter out in-
valid hosts as soon as possible to avoid unnecessary costs. We can sort filter_scheduler.
enabled_filters items by their costs in reverse order. For example, ComputeFilter is better
before any resource calculating filters like NUMATopologyFilter.

In medium/large environments having AvailabilityZoneFilter before any capability or resource calculat-
ing filters can be useful.

3.4.5.3 Writing Your Own Filter

To create your own filter, you must inherit from BaseHostFilter and implement one method:
host_passes. This method should return True if a host passes the filter and return False else-
where. It takes two parameters:

• the HostState object allows to get attributes of the host

• the RequestSpec object describes the user request, including the flavor, the image and the
scheduler hints

For further details about each of those objects and their corresponding attributes, refer to the codebase
(at least by looking at the other filters code) or ask for help in the #openstack-nova IRC channel.

In addition, if your custom filter uses non-standard extra specs, you must register validators for these
extra specs. Examples of validators can be found in the nova.api.validation.extra_specs
module. These should be registered via the nova.api.extra_spec_validator entrypoint.

The module containing your custom filter(s) must be packaged and available in the same environment(s)
that the nova controllers, or specifically the nova-scheduler and nova-api services, are available
in. As an example, consider the following sample package, which is the minimal structure for a standard,
setuptools-based Python package:

acmefilter/
acmefilter/

(continues on next page)

3.4. Maintenance 408

https://packaging.python.org/specifications/entry-points/
https://python-packaging.readthedocs.io/en/latest/minimal.html

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

__init__.py
validators.py

setup.py

Where __init__.py contains:

from oslo_log import log as logging
from nova.scheduler import filters

LOG = logging.getLogger(__name__)

class AcmeFilter(filters.BaseHostFilter):

def host_passes(self, host_state, spec_obj):
extra_spec = spec_obj.flavor.extra_specs.get('acme:foo')
LOG.info("Extra spec value was '%s'", extra_spec)

do meaningful stuff here...

return True

validators.py contains:

from nova.api.validation.extra_specs import base

def register():
validators = [

base.ExtraSpecValidator(
name='acme:foo',
description='My custom extra spec.'
value={

'type': str,
'enum': [

'bar',
'baz',

],
},

),
]

return validators

setup.py contains:

from setuptools import setup

setup(
name='acmefilter',
version='0.1',
description='My custom filter',
packages=[

'acmefilter'
],
entry_points={

'nova.api.extra_spec_validators': [
'acme = acmefilter.validators',

(continues on next page)

3.4. Maintenance 409

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

],
},

)

To enable this, you would set the following in nova.conf:

[filter_scheduler]
available_filters = nova.scheduler.filters.all_filters
available_filters = acmefilter.AcmeFilter
enabled_filters = ComputeFilter,AcmeFilter

Note: You must add custom filters to the list of available filters using the filter_scheduler.
available_filters config option in addition to enabling them via the filter_scheduler.
enabled_filters config option. The default nova.scheduler.filters.all_filters
value for the former only includes the filters shipped with nova.

With these settings, nova will use the FilterScheduler for the scheduler driver. All of the standard
nova filters and the custom AcmeFilter filter are available to the FilterScheduler, but just the
ComputeFilter and AcmeFilter will be used on each request.

3.4.5.4 Weights

Filter Scheduler uses the so-called weights during its work. A weigher is a way to select the best suitable
host from a group of valid hosts by giving weights to all the hosts in the list.

In order to prioritize one weigher against another, all the weighers have to define a multiplier that will
be applied before computing the weight for a node. All the weights are normalized beforehand so that
the multiplier can be applied easily. Therefore the final weight for the object will be:

weight = w1_multiplier * norm(w1) + w2_multiplier * norm(w2) + ...

A weigher should be a subclass of weights.BaseHostWeigher and they can implement both the
weight_multiplier and _weight_object methods or just implement the weight_objects
method. weight_objects method is overridden only if you need access to all objects in order to
calculate weights, and it just return a list of weights, and not modify the weight of the object directly,
since final weights are normalized and computed by weight.BaseWeightHandler.

The Filter Scheduler weighs hosts based on the config option filter_scheduler.weight_classes, this de-
faults to nova.scheduler.weights.all_weighers, which selects the following weighers:

• RAMWeigher Compute weight based on available RAM on the compute node.
Sort with the largest weight winning. If the multiplier, filter_scheduler.
ram_weight_multiplier, is negative, the host with least RAM available will win
(useful for stacking hosts, instead of spreading). Starting with the Stein release, if per-aggregate
value with the key ram_weight_multiplier is found, this value would be chosen
as the ram weight multiplier. Otherwise, it will fall back to the filter_scheduler.
ram_weight_multiplier. If more than one value is found for a host in aggregate metadata,
the minimum value will be used.

• CPUWeigher Compute weight based on available vCPUs on the compute node.
Sort with the largest weight winning. If the multiplier, filter_scheduler.

3.4. Maintenance 410

Nova Documentation, Release 22.4.1.dev41

cpu_weight_multiplier, is negative, the host with least CPUs available will win (use-
ful for stacking hosts, instead of spreading). Starting with the Stein release, if per-aggregate
value with the key cpu_weight_multiplier is found, this value would be chosen as
the cpu weight multiplier. Otherwise, it will fall back to the filter_scheduler.
cpu_weight_multiplier. If more than one value is found for a host in aggregate metadata,
the minimum value will be used.

• DiskWeigher Hosts are weighted and sorted by free disk space with the largest weight
winning. If the multiplier is negative, the host with less disk space available will win (use-
ful for stacking hosts, instead of spreading). Starting with the Stein release, if per-aggregate
value with the key disk_weight_multiplier is found, this value would be chosen
as the disk weight multiplier. Otherwise, it will fall back to the filter_scheduler.
disk_weight_multiplier. If more than one value is found for a host in aggregate metadata,
the minimum value will be used.

• MetricsWeigher This weigher can compute the weight based on the compute node hosts vari-
ous metrics. The to-be weighed metrics and their weighing ratio are specified in the configuration
file as the followings:

metrics_weight_setting = name1=1.0, name2=-1.0

Starting with the Stein release, if per-aggregate value with the key metrics_weight_multiplier is
found, this value would be chosen as the metrics weight multiplier. Otherwise, it will fall back to
the metrics.weight_multiplier. If more than one value is found for a host in aggregate
metadata, the minimum value will be used.

• IoOpsWeigher The weigher can compute the weight based on the compute node hosts
workload. The default is to preferably choose light workload compute hosts. If the mul-
tiplier is positive, the weigher prefer choosing heavy workload compute hosts, the weigh-
ing has the opposite effect of the default. Starting with the Stein release, if per-aggregate
value with the key io_ops_weight_multiplier is found, this value would be chosen
as the IO ops weight multiplier. Otherwise, it will fall back to the filter_scheduler.
io_ops_weight_multiplier. If more than one value is found for a host in aggregate
metadata, the minimum value will be used.

• PCIWeigher Compute a weighting based on the number of PCI devices on the host and the
number of PCI devices requested by the instance. For example, given three hosts - one with
a single PCI device, one with many PCI devices, and one with no PCI devices - nova should
prioritise these differently based on the demands of the instance. If the instance requests a single
PCI device, then the first of the hosts should be preferred. Similarly, if the instance requests
multiple PCI devices, then the second of these hosts would be preferred. Finally, if the instance
does not request a PCI device, then the last of these hosts should be preferred.

For this to be of any value, at least one of the PciPassthroughFilter or
NUMATopologyFilter filters must be enabled.

Configuration Option [filter_scheduler] pci_weight_multiplier.
Only positive values are allowed for the multiplier as a negative value would force
non-PCI instances away from non-PCI hosts, thus, causing future scheduling
issues.

Starting with the Stein release, if per-aggregate value with the key pci_weight_multiplier
is found, this value would be chosen as the pci weight multiplier. Otherwise, it will fall back to
the filter_scheduler.pci_weight_multiplier. If more than one value is found for
a host in aggregate metadata, the minimum value will be used.

3.4. Maintenance 411

Nova Documentation, Release 22.4.1.dev41

• ServerGroupSoftAffinityWeigher The weigher can compute the weight based on
the number of instances that run on the same server group. The largest weight defines
the preferred host for the new instance. For the multiplier only a positive value is al-
lowed for the calculation. Starting with the Stein release, if per-aggregate value with the
key soft_affinity_weight_multiplier is found, this value would be chosen as the
soft affinity weight multiplier. Otherwise, it will fall back to the filter_scheduler.
soft_affinity_weight_multiplier. If more than one value is found for a host in ag-
gregate metadata, the minimum value will be used.

• ServerGroupSoftAntiAffinityWeigher The weigher can compute the weight based
on the number of instances that run on the same server group as a negative value. The largest
weight defines the preferred host for the new instance. For the multiplier only a positive value is
allowed for the calculation. Starting with the Stein release, if per-aggregate value with the key
soft_anti_affinity_weight_multiplier is found, this value would be chosen as the
soft anti-affinity weight multiplier. Otherwise, it will fall back to the filter_scheduler.
soft_anti_affinity_weight_multiplier. If more than one value is found for a host
in aggregate metadata, the minimum value will be used.

• BuildFailureWeigher Weigh hosts by the number of recent failed boot attempts. It con-
siders the build failure counter and can negatively weigh hosts with recent failures. This avoids
taking computes fully out of rotation. Starting with the Stein release, if per-aggregate value with
the key build_failure_weight_multiplier is found, this value would be chosen as
the build failure weight multiplier. Otherwise, it will fall back to the filter_scheduler.
build_failure_weight_multiplier. If more than one value is found for a host in ag-
gregate metadata, the minimum value will be used.

• CrossCellWeigher Weighs hosts based on which cell they are in. Local cells are
preferred when moving an instance. Use configuration option filter_scheduler.
cross_cell_move_weight_multiplier to control the weight. If per-aggregate value
with the key cross_cell_move_weight_multiplier is found, this value would be chosen as the
cross-cell move weight multiplier. Otherwise, it will fall back to the filter_scheduler.
cross_cell_move_weight_multiplier. If more than one value is found for a host in
aggregate metadata, the minimum value will be used.

Filter Scheduler makes a local list of acceptable hosts by repeated filtering and weighing. Each time it
chooses a host, it virtually consumes resources on it, so subsequent selections can adjust accordingly.
It is useful if the customer asks for a large block of instances, because weight is computed for each
instance requested.

3.4. Maintenance 412

Nova Documentation, Release 22.4.1.dev41

At the end Filter Scheduler sorts selected hosts by their weight and attempts to provision instances on
the chosen hosts.

P.S.: you can find more examples of using Filter Scheduler and standard filters in nova.tests.
scheduler.

3.5 Reference Material

• Nova CLI Command References: the complete command reference for all the daemons and admin
tools that come with nova.

• Configuration Guide: Information on configuring the system, including role-based access control
policy rules.

3.5.1 Command-line Utilities

In this section you will find information on Novas command line utilities.

3.5. Reference Material 413

Nova Documentation, Release 22.4.1.dev41

3.5.1.1 Nova Management Commands

These commands are used to manage existing installations. They are designed to be run by operators in
an environment where they have direct access to the nova database.

nova-manage

Synopsis

nova-manage <category> [<action> [<options>...]]

Description

nova-manage controls cloud computing instances by managing various admin-only aspects of Nova.

The standard pattern for executing a nova-manage command is:

nova-manage <category> <command> [<args>]

Run without arguments to see a list of available command categories:

nova-manage

You can also run with a category argument such as db to see a list of all commands in that category:

nova-manage db

These sections describe the available categories and arguments for nova-manage.

Options

These options apply to all commands and may be given in any order, before or after commands. Indi-
vidual commands may provide additional options. Options without an argument can be combined after
a single dash.

-h, --help
Show a help message and exit

--config-dir DIR
Path to a config directory to pull *.conf files from. This file set is sorted, so as to provide a
predictable parse order if individual options are over-ridden. The set is parsed after the file(s)
specified via previous --config-file, arguments hence over-ridden options in the directory
take precedence. This option must be set from the command-line.

--config-file PATH
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence. Defaults to None. This option must be set from the command-line.

--debug, -d
If set to true, the logging level will be set to DEBUG instead of the default INFO level.

3.5. Reference Material 414

Nova Documentation, Release 22.4.1.dev41

--log-config-append PATH, --log-config PATH, --log_config PATH
The name of a logging configuration file. This file is appended to any existing logging config-
uration files. For details about logging configuration files, see the Python logging module doc-
umentation. Note that when logging configuration files are used then all logging configuration
is set in the configuration file and other logging configuration options are ignored (for example,
--log-date-format).

--log-date-format DATE_FORMAT
Defines the format string for %(asctime)s in log records. Default: None. This option is
ignored if --log-config-append is set.

--log-dir LOG_DIR, --logdir LOG_DIR
(Optional) The base directory used for relative log_file paths. This option is ignored if
--log-config-append is set.

--log-file PATH, --logfile PATH
(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if --log-config-append is set.

--nodebug
The inverse of --debug.

--nopost-mortem
The inverse of --post-mortem.

--nouse-journal
The inverse of --use-journal.

--nouse-json
The inverse of --use-json.

--nouse-syslog
The inverse of --use-syslog.

--nowatch-log-file
The inverse of --watch-log-file.

--post-mortem
Allow post-mortem debugging

--syslog-log-facility SYSLOG_LOG_FACILITY
Syslog facility to receive log lines. This option is ignored if --log-config-append is set.

--use-journal
Enable journald for logging. If running in a systemd environment you may wish to enable journal
support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages. This option is ignored if --log-config-append is set.

--use-json
Use JSON formatting for logging. This option is ignored if --log-config-append is set.

--use-syslog
Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if --log-config-append is set.

--version
Show programs version number and exit

3.5. Reference Material 415

Nova Documentation, Release 22.4.1.dev41

--watch-log-file
Uses logging handler designed to watch file system. When log file is moved or removed this
handler will open a new log file with specified path instantaneously. It makes sense only
if --log-file option is specified and Linux platform is used. This option is ignored if
--log-config-append is set.

Commands

Nova Database

nova-manage db version Print the current main database version.

nova-manage db sync [--local_cell] [VERSION] Upgrade the main database schema
up to the most recent version or VERSION if specified. By default, this command will also
attempt to upgrade the schema for the cell0 database if it is mapped (see the map_cell0
or simple_cell_setup commands for more details on mapping the cell0 database). If
--local_cell is specified, then only the main database in the current cell is upgraded. The
local database connection is determined by database.connection in the configuration file,
passed to nova-manage using the --config-file option(s). This command should be run after
nova-manage api_db sync.

Returns exit code 0 if the database schema was synced successfully, or 1 if cell0 cannot be ac-
cessed.

nova-manage db archive_deleted_rows [--max_rows <number>] [--verbose] [--until-complete] [--before <date>] [--purge] [--all-cells]
Move deleted rows from production tables to shadow tables. Note that the corresponding rows
in the instance_mappings, request_specs and instance_group_member tables
of the API database are purged when instance records are archived and thus, api_database.
connection is required in the config file. Specifying --verbose will print the results of the
archive operation for any tables that were changed. Specifying --until-complete will make
the command run continuously until all deleted rows are archived. Use the --max_rows option,
which defaults to 1000, as a batch size for each iteration (note that the purged API database table
records are not included in this batch size). Specifying --before will archive only instances
that were deleted before the date provided, and records in other tables related to those instances.
Specifying --purge will cause a full DB purge to be completed after archival. If a date range
is desired for the purge, then run nova-manage db purge --before <date> manually
after archiving is complete. Specifying --all-cells will cause the process to run against all
cell databases.

Return Codes

Return code Description
0 Nothing was archived.
1 Some number of rows were archived.
2 Invalid value for --max_rows.
3 No connection to the API database could be established using

api_database.connection.
4 Invalid value for --before.
255 An unexpected error occurred.

If automating, this should be run continuously while the result is 1, stopping at 0, or use the
--until-complete option.

3.5. Reference Material 416

Nova Documentation, Release 22.4.1.dev41

nova-manage db purge [--all] [--before <date>] [--verbose] [--all-cells]
Delete rows from shadow tables. Specifying --all will delete all data from all shadow tables.
Specifying --beforewill delete data from all shadow tables that is older than the date provided.
Specifying --verbose will cause information to be printed about purged records. Specifying
--all-cells will cause the purge to be applied against all cell databases. For --all-cells
to work, the api database connection information must be configured. Returns exit code 0 if rows
were deleted, 1 if required arguments are not provided, 2 if an invalid date is provided, 3 if no
data was deleted, 4 if the list of cells cannot be obtained.

nova-manage db null_instance_uuid_scan [--delete] Lists and optionally deletes
database records where instance_uuid is NULL.

nova-manage db online_data_migrations [--max-count] Perform data migration to
update all live data.

--max-count controls the maximum number of objects to migrate in a given call. If not speci-
fied, migration will occur in batches of 50 until fully complete.

Returns exit code 0 if no (further) updates are possible, 1 if the --max-count option was used
and some updates were completed successfully (even if others generated errors), 2 if some updates
generated errors and no other migrations were able to take effect in the last batch attempted, or
127 if invalid input is provided (e.g. non-numeric max-count).

This command should be called after upgrading database schema and nova services on all con-
troller nodes. If it exits with partial updates (exit status 1) it should be called again, even if some
updates initially generated errors, because some updates may depend on others having completed.
If it exits with status 2, intervention is required to resolve the issue causing remaining updates to
fail. It should be considered successfully completed only when the exit status is 0.

For example:

$ nova-manage db online_data_migrations
Running batches of 50 until complete
2 rows matched query migrate_instances_add_request_spec, 0 migrated
2 rows matched query populate_queued_for_delete, 2 migrated
+---+--------------+--------
↪→---+
| Migration | Total Needed |
↪→Completed |
+---+--------------+--------
↪→---+
| create_incomplete_consumers | 0 | 0
↪→ |
| migrate_instances_add_request_spec | 2 | 0
↪→ |
| migrate_quota_classes_to_api_db | 0 | 0
↪→ |
| migrate_quota_limits_to_api_db | 0 | 0
↪→ |
| migration_migrate_to_uuid | 0 | 0
↪→ |
| populate_missing_availability_zones | 0 | 0
↪→ |
| populate_queued_for_delete | 2 | 2
↪→ |
| populate_uuids | 0 | 0
↪→ |

(continues on next page)

3.5. Reference Material 417

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

+---+--------------+--------
↪→---+

In the above example, the migrate_instances_add_request_spec migration found
two candidate records but did not need to perform any kind of data migration for either of them.
In the case of the populate_queued_for_delete migration, two candidate records were
found which did require a data migration. Since --max-count defaults to 50 and only two
records were migrated with no more candidates remaining, the command completed successfully
with exit code 0.

nova-manage db ironic_flavor_migration [--all] [--host] [--node] [--resource_class]
Perform the ironic flavor migration process against the database while services are offline. This is
not recommended for most people. The ironic compute driver will do this online and as necessary
if run normally. This routine is provided only for advanced users that may be skipping the 16.0.0
Pike release, never able to run services normally at the Pike level. Since this utility is for use
when all services (including ironic) are down, you must pass the resource class set on your
node(s) with the --resource_class parameter.

To migrate a specific host and node, provide the hostname and node uuid with --host
$hostname --node $uuid. To migrate all instances on nodes managed by a single host,
provide only --host. To iterate over all nodes in the system in a single pass, use --all. Note
that this process is not lightweight, so it should not be run frequently without cause, although it is
not harmful to do so. If you have multiple cellsv2 cells, you should run this once per cell with the
corresponding cell config for each (i.e. this does not iterate cells automatically).

Note that this is not recommended unless you need to run this specific data migration offline, and
it should be used with care as the work done is non-trivial. Running smaller and more targeted
batches (such as specific nodes) is recommended.

--before <date> The date argument accepted by the --before option can be in any of sev-
eral formats, including YYYY-MM-DD [HH:mm[:ss]] and the default format produced by the
date command, e.g. Fri May 24 09:20:11 CDT 2019. Date strings containing spaces
must be quoted appropriately. Some examples:

Purge shadow table rows older than a specific date
nova-manage db purge --before 2015-10-21
or
nova-manage db purge --before "Oct 21 2015"
Times are also accepted
nova-manage db purge --before "2015-10-21 12:00"

Note that relative dates (such as yesterday) are not supported natively. The date command
can be helpful here:

Archive deleted rows more than one month old
nova-manage db archive_deleted_rows --before "$(date -d 'now - 1 month
↪→')"

3.5. Reference Material 418

Nova Documentation, Release 22.4.1.dev41

Nova API Database

nova-manage api_db version Print the current API database version.

nova-manage api_db sync [VERSION] Upgrade the API database schema up to the most re-
cent version or VERSION if specified. This command does not create the API database, it runs
schema migration scripts. The API database connection is determined by api_database.
connection in the configuration file passed to nova-manage.

In the 18.0.0 Rocky or 19.0.0 Stein release, this command will also upgrade the optional placement
database if [placement_database]/connection is configured.

Returns exit code 0 if the database schema was synced successfully. This command should be run
before nova-manage db sync.

Nova Cells v2

nova-manage cell_v2 simple_cell_setup [--transport-url <transport_url>]
Setup a fresh cells v2 environment. If a transport_url is not specified, it will use the one
defined by transport_url in the configuration file. Returns 0 if setup is completed (or has
already been done), 1 if no hosts are reporting (and cannot be mapped) and 1 if the transport url
is missing or invalid.

nova-manage cell_v2 map_cell0 [--database_connection <database_connection>]
Create a cell mapping to the database connection for the cell0 database. If a database_connection
is not specified, it will use the one defined by database.connection in the configuration
file passed to nova-manage. The cell0 database is used for instances that have not been scheduled
to any cell. This generally applies to instances that have encountered an error before they have
been scheduled. Returns 0 if cell0 is created successfully or already setup.

nova-manage cell_v2 map_instances --cell_uuid <cell_uuid> [--max-count <max_count>] [--reset]
Map instances to the provided cell. Instances in the nova database will be queried from oldest to
newest and mapped to the provided cell. A --max-count can be set on the number of instance
to map in a single run. Repeated runs of the command will start from where the last run finished
so it is not necessary to increase --max-count to finish. A --reset option can be passed
which will reset the marker, thus making the command start from the beginning as opposed to the
default behavior of starting from where the last run finished.

If --max-count is not specified, all instances in the cell will be mapped in batches of 50. If
you have a large number of instances, consider specifying a custom value and run the command
until it exits with 0.

Return Codes

Return code Description
0 All instances have been mapped.
1 There are still instances to be mapped.
127 Invalid value for --max-count.
255 An unexpected error occurred.

nova-manage cell_v2 map_cell_and_hosts [--name <cell_name>] [--transport-url <transport_url>] [--verbose]
Create a cell mapping to the database connection and message queue transport url, and map hosts
to that cell. The database connection comes from the database.connection defined in the

3.5. Reference Material 419

Nova Documentation, Release 22.4.1.dev41

configuration file passed to nova-manage. If a transport_url is not specified, it will use the one
defined by transport_url in the configuration file. This command is idempotent (can be run
multiple times), and the verbose option will print out the resulting cell mapping uuid. Returns 0
on successful completion, and 1 if the transport url is missing or invalid.

nova-manage cell_v2 verify_instance --uuid <instance_uuid> [--quiet]
Verify instance mapping to a cell. This command is useful to determine if the cells v2 envi-
ronment is properly setup, specifically in terms of the cell, host, and instance mapping records
required. Returns 0 when the instance is successfully mapped to a cell, 1 if the instance is not
mapped to a cell (see the map_instances command), 2 if the cell mapping is missing (see
the map_cell_and_hosts command if you are upgrading from a cells v1 environment, and
the simple_cell_setup if you are upgrading from a non-cells v1 environment), 3 if it is a
deleted instance which has instance mapping, and 4 if it is an archived instance which still has an
instance mapping.

nova-manage cell_v2 create_cell [--name <cell_name>] [--transport-url <transport_url>] [--database_connection <database_connection>] [--verbose] [--disabled]
Create a cell mapping to the database connection and message queue transport url. If a
database_connection is not specified, it will use the one defined by database.connection
in the configuration file passed to nova-manage. If a transport_url is not specified, it will use the
one defined by transport_url in the configuration file. The verbose option will print out the
resulting cell mapping uuid. All the cells created are by default enabled. However passing the
--disabled option can create a pre-disabled cell, meaning no scheduling will happen to this
cell. The meaning of the various exit codes returned by this command are explained below:

• Returns 0 if the cell mapping was successfully created.

• Returns 1 if the transport url or database connection was missing or invalid.

• Returns 2 if another cell is already using that transport url and/or database connection com-
bination.

nova-manage cell_v2 discover_hosts [--cell_uuid <cell_uuid>] [--verbose] [--strict] [--by-service]
Searches cells, or a single cell, and maps found hosts. This command will check the database
for each cell (or a single one if passed in) and map any hosts which are not currently mapped.
If a host is already mapped, nothing will be done. You need to re-run this command each time
you add a batch of compute hosts to a cell (otherwise the scheduler will never place instances
there and the API will not list the new hosts). If --strict is specified, the command will only
return 0 if an unmapped host was discovered and mapped successfully. If --by-service is
specified, this command will look in the appropriate cell(s) for any nova-compute services and
ensure there are host mappings for them. This is less efficient and is only necessary when using
compute drivers that may manage zero or more actual compute nodes at any given time (currently
only ironic).

This command should be run once after all compute hosts have been deployed and should not be
run in parallel. When run in parallel, the commands will collide with each other trying to map the
same hosts in the database at the same time.

The meaning of the various exit codes returned by this command are explained below:

• Returns 0 if hosts were successfully mapped or no hosts needed to be mapped. If --strict
is specified, returns 0 only if an unmapped host was discovered and mapped.

• Returns 1 if --strict is specified and no unmapped hosts were found. Also returns 1 if
an exception was raised while running.

• Returns 2 if the command aborted because of a duplicate host mapping found. This means
the command collided with another running discover_hosts command or scheduler periodic

3.5. Reference Material 420

Nova Documentation, Release 22.4.1.dev41

task and is safe to retry.

nova-manage cell_v2 list_cells [--verbose] By default the cell name, uuid, disabled
state, masked transport URL and database connection details are shown. Use the --verbose
option to see transport URL and database connection with their sensitive details.

nova-manage cell_v2 delete_cell [--force] --cell_uuid <cell_uuid>
Delete a cell by the given uuid. Returns 0 if the empty cell is found and deleted successfully or the
cell that has hosts is found and the cell, hosts and the instance_mappings are deleted successfully
with --force option (this happens if there are no living instances), 1 if a cell with that uuid
could not be found, 2 if host mappings were found for the cell (cell not empty) without --force
option, 3 if there are instances mapped to the cell (cell not empty) irrespective of the --force
option, and 4 if there are instance mappings to the cell but all instances have been deleted in the
cell, again without the --force option.

nova-manage cell_v2 list_hosts [--cell_uuid <cell_uuid>] Lists the hosts in
one or all v2 cells. By default hosts in all v2 cells are listed. Use the --cell_uuid option
to list hosts in a specific cell. If the cell is not found by uuid, this command will return an exit
code of 1. Otherwise, the exit code will be 0.

nova-manage cell_v2 update_cell --cell_uuid <cell_uuid> [--name <cell_name>] [--transport-url <transport_url>] [--database_connection <database_connection>] [--disable] [--enable]
Updates the properties of a cell by the given uuid. If a database_connection is not specified, it
will attempt to use the one defined by database.connection in the configuration file. If a
transport_url is not specified, it will attempt to use the one defined by transport_url in the
configuration file. The meaning of the various exit codes returned by this command are explained
below:

• If successful, it will return 0.

• If the cell is not found by the provided uuid, it will return 1.

• If the properties cannot be set, it will return 2.

• If the provided transport_url or/and database_connection is/are same as another cell, it will
return 3.

• If an attempt is made to disable and enable a cell at the same time, it will return 4.

• If an attempt is made to disable or enable cell0 it will return 5.

Note: Updating the transport_url or database_connection fields on a running sys-
tem will NOT result in all nodes immediately using the new values. Use caution when changing
these values.

The scheduler will not notice that a cell has been enabled/disabled until it is restarted or sent the
SIGHUP signal.

nova-manage cell_v2 delete_host --cell_uuid <cell_uuid> --host <host>
Delete a host by the given host name and the given cell uuid. Returns 0 if the empty host is found
and deleted successfully, 1 if a cell with that uuid could not be found, 2 if a host with that name
could not be found, 3 if a host with that name is not in a cell with that uuid, 4 if a host with that
name has instances (host not empty).

Note: The scheduler caches host-to-cell mapping information so when deleting a host the sched-

3.5. Reference Material 421

Nova Documentation, Release 22.4.1.dev41

uler may need to be restarted or sent the SIGHUP signal.

Placement

nova-manage placement heal_allocations [--max-count <max_count>] [--verbose] [--skip-port-allocations] [--dry-run] [--instance <instance_uuid>] [--cell <cell_uuid] [--force]
Iterates over non-cell0 cells looking for instances which do not have allocations in the Placement
service and which are not undergoing a task state transition. For each instance found, allocations
are created against the compute node resource provider for that instance based on the flavor
associated with the instance.

Also if the instance has any port attached that has resource request (e.g. Quality of Service (QoS):
Guaranteed Bandwidth) but the corresponding allocation is not found then the allocation is created
against the network device resource providers according to the resource request of that port. It is
possible that the missing allocation cannot be created either due to not having enough resource
inventory on the host the instance resides on or because more than one resource provider could
fulfill the request. In this case the instance needs to be manually deleted or the port needs to be
detached. When nova supports migrating instances with guaranteed bandwidth ports, migration
will heal missing allocations for these instances.

Before the allocations for the ports are persisted in placement nova-manage tries to update each
port in neutron to refer to the resource provider UUID which provides the requested resources. If
any of the port updates fail in neutron or the allocation update fails in placement the command tries
to roll back the partial updates to the ports. If the roll back fails then the process stops with exit
code 7 and the admin needs to do the rollback in neutron manually according to the description in
the exit code section.

There is also a special case handled for instances that do have allocations created before Placement
API microversion 1.8 where project_id and user_id values were required. For those types of
allocations, the project_id and user_id are updated using the values from the instance.

Specify --max-count to control the maximum number of instances to process. If not specified,
all instances in each cell will be mapped in batches of 50. If you have a large number of instances,
consider specifying a custom value and run the command until it exits with 0 or 4.

Specify --verbose to get detailed progress output during execution.

Specify --dry-run to print output but not commit any changes. The return code should be 4.
(Since 20.0.0 Train)

Specify --instance to process a specific instance given its UUID. If specified the
--max-count option has no effect. (Since 20.0.0 Train)

Specify --skip-port-allocations to skip the healing of the resource allocations of bound
ports, e.g. healing bandwidth resource allocation for ports having minimum QoS policy rules
attached. If your deployment does not use such a feature then the performance impact of querying
neutron ports for each instance can be avoided with this flag. (Since 20.0.0 Train)

Specify --cell to process heal allocations within a specific cell. This is mutually exclusive with
the --instance option.

Specify --force to forcefully heal single instance allocation. This option needs to be passed
with --instance.

This command requires that the api_database.connection and placement configura-
tion options are set. Placement API >= 1.28 is required.

3.5. Reference Material 422

https://docs.openstack.org/neutron/victoria/admin/config-qos-min-bw.html
https://docs.openstack.org/neutron/victoria/admin/config-qos-min-bw.html
https://specs.openstack.org/openstack/nova-specs/specs/train/approved/support-move-ops-with-qos-ports.html

Nova Documentation, Release 22.4.1.dev41

Return Codes

Return code Description
0 Command completed successfully and allocations were created.
1 --max-count was reached and there are more instances to process.
2 Unable to find a compute node record for a given instance.
3 Unable to create (or update) allocations for an instance against its compute

node resource provider.
4 Command completed successfully but no allocations were created.
5 Unable to query ports from neutron
6 Unable to update ports in neutron
7 Cannot roll back neutron port updates. Manual steps needed. The error

message will indicate which neutron ports need to be changed to clean up
binding:profile of the port:

$ openstack port unset <port_uuid> --binding-profile
↪→allocation

127 Invalid input.
255 An unexpected error occurred.

nova-manage placement sync_aggregates [--verbose] Mirrors compute host aggre-
gates to resource provider aggregates in the Placement service. Requires the api_database
and placement sections of the nova configuration file to be populated.

Specify --verbose to get detailed progress output during execution.

Note: Depending on the size of your deployment and the number of compute hosts in aggre-
gates, this command could cause a non-negligible amount of traffic to the placement service and
therefore is recommended to be run during maintenance windows.

New in version Rocky.

Return Codes

Return code Description
0 Successful run
1 A host was found with more than one matching compute node record
2 An unexpected error occurred while working with the placement API
3 Failed updating provider aggregates in placement
4 Host mappings not found for one or more host aggregate members
5 Compute node records not found for one or more hosts
6 Resource provider not found by uuid for a given host
255 An unexpected error occurred.

nova-manage placement audit [--verbose] [--delete] [--resource_provider <uuid>]
Iterates over all the Resource Providers (or just one if you provide the UUID) and then verifies if
the compute allocations are either related to an existing instance or a migration UUID. If not, it
will tell which allocations are orphaned.

You can also ask to delete all the orphaned allocations by specifying -delete.

3.5. Reference Material 423

Nova Documentation, Release 22.4.1.dev41

Specify --verbose to get detailed progress output during execution.

This command requires that the api_database.connection and placement configura-
tion options are set. Placement API >= 1.14 is required.

Return Codes

Return code Description
0 No orphaned allocations were found
1 An unexpected error occurred
3 Orphaned allocations were found
4 All found orphaned allocations were deleted
127 Invalid input

See Also

• OpenStack Nova

Bugs

• Nova bugs are managed at Launchpad

nova-status

Synopsis

nova-status <category> [<action> [<options>...]]

Description

nova-status is a tool that provides routines for checking the status of a Nova deployment.

Options

The standard pattern for executing a nova-status command is:

nova-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

nova-status

Categories are:

• upgrade

3.5. Reference Material 424

https://docs.openstack.org/nova/victoria/
https://bugs.launchpad.net/nova

Nova Documentation, Release 22.4.1.dev41

Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that
category:

nova-status upgrade

These sections describe the available categories and arguments for nova-status.

Upgrade

nova-status upgrade check Performs a release-specific readiness check before restarting ser-
vices with new code. This command expects to have complete configuration and access to
databases and services within a cell. For example, this check may query the Nova API database
and one or more cell databases. It may also make requests to other services such as the Placement
REST API via the Keystone service catalog.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to

do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated.

This should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

15.0.0 (Ocata)

• Checks are added for cells v2 so nova-status upgrade check should be run after
running the nova-manage cell_v2 simple_cell_setup command.

• Checks are added for the Placement API such that there is an endpoint in the Keystone
service catalog, the service is running and the check can make a successful request to the
endpoint. The command also checks to see that there are compute node resource providers
checking in with the Placement service. More information on the Placement service can be
found at Placement API.

16.0.0 (Pike)

• Checks for the Placement API are modified to require version 1.4, that is needed in Pike and
further for nova-scheduler to work correctly.

17.0.0 (Queens)

• Checks for the Placement API are modified to require version 1.17.

18.0.0 (Rocky)

• Checks for the Placement API are modified to require version 1.28.

• Checks that ironic instances have had their embedded flavors migrated to use custom re-
source classes.

3.5. Reference Material 425

https://docs.openstack.org/placement/victoria/

Nova Documentation, Release 22.4.1.dev41

• Checks for nova-osapi_compute service versions that are less than 15 across all cell
mappings which might cause issues when querying instances depending on how the nova-
api service is configured. See https://bugs.launchpad.net/nova/+bug/1759316 for details.

• Checks that existing instances have been migrated to have a matching request spec in the
API DB.

19.0.0 (Stein)

• Checks for the Placement API are modified to require version 1.30.

• Checks are added for the nova-consoleauth service to warn and provide additional instruc-
tions to set [workarounds]enable_consoleauth = True while performing a live/rolling up-
grade.

• The Resource Providers upgrade check was removed since the placement service code is be-
ing extracted from nova and the related tables are no longer used in the nova_api database.

• The API Service Version upgrade check was removed since the corresponding code for that
check was removed in Stein.

20.0.0 (Train)

• Checks for the Placement API are modified to require version 1.32.

• Checks to ensure block-storage (cinder) API version 3.44 is available in order to support
multi-attach volumes. If [cinder]/auth_type is not configured this is a no-op check.

• The nova-consoleauth service upgrade check was removed since the service was removed
in Train.

• The Request Spec Migration check was removed.

21.0.0 (Ussuri)

• Checks for the Placement API are modified to require version 1.35.

• Checks for the policy files are not automatically overwritten with new defaults.

22.0.0 (Victoria)

• Checks for the policy files is not JSON-formatted.

• Checks for computes older than the previous major release. This check was backported from
23.0.0 (Wallaby).

See Also

• OpenStack Nova

3.5. Reference Material 426

https://bugs.launchpad.net/nova/+bug/1759316
https://docs.openstack.org/nova/victoria/

Nova Documentation, Release 22.4.1.dev41

Bugs

• Nova bugs are managed at Launchpad

3.5.1.2 Service Daemons

The service daemons make up a functioning nova environment. All of these are expected to be started
by an init system, expect to read a nova.conf file, and daemonize correctly after starting up.

nova-api

Synopsis

nova-api [<options>...]

Description

nova-api is a server daemon that serves the metadata and compute APIs in separate greenthreads.

Options

General options

Files

• /etc/nova/nova.conf

• /etc/nova/api-paste.ini

• /etc/nova/policy.yaml

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

See Also

• OpenStack Nova

• Using WSGI with Nova

3.5. Reference Material 427

https://bugs.launchpad.net/nova
https://docs.openstack.org/nova/victoria/
https://docs.openstack.org/nova/victoria/user/wsgi.html

Nova Documentation, Release 22.4.1.dev41

Bugs

• Nova bugs are managed at Launchpad

nova-compute

Synopsis

nova-compute [<options>...]

Description

nova-compute is a server daemon that serves the Nova Compute service, which is responsible for
building a disk image, launching an instance via the underlying virtualization driver, responding to calls
to check the instances state, attaching persistent storage, and terminating the instance.

Options

General options

Files

• /etc/nova/nova.conf

• /etc/nova/policy.yaml

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

See Also

• OpenStack Nova

Bugs

• Nova bugs are managed at Launchpad

3.5. Reference Material 428

https://bugs.launchpad.net/nova
https://docs.openstack.org/nova/victoria/
https://bugs.launchpad.net/nova

Nova Documentation, Release 22.4.1.dev41

nova-conductor

Synopsis

nova-conductor [<options>...]

Description

nova-conductor is a server daemon that serves the Nova Conductor service, which provides coor-
dination and database query support for nova.

Options

General options

Files

• /etc/nova/nova.conf

See Also

• OpenStack Nova

Bugs

• Nova bugs are managed at Launchpad

nova-novncproxy

Synopsis

nova-novncproxy [<options>...]

Description

nova-novncproxy is a server daemon that serves the Nova noVNC Websocket Proxy service, which
provides a websocket proxy that is compatible with OpenStack Nova noVNC consoles.

3.5. Reference Material 429

https://docs.openstack.org/nova/victoria/
https://bugs.launchpad.net/nova

Nova Documentation, Release 22.4.1.dev41

Options

General options

Files

• /etc/nova/nova.conf

• /etc/nova/policy.yaml

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

See Also

• OpenStack Nova

Bugs

• Nova bugs are managed at Launchpad

nova-scheduler

Synopsis

nova-scheduler [<options>...]

Description

nova-scheduler is a server daemon that serves the Nova Scheduler service, which is responsible
for picking a compute node to run a given instance on.

Options

General options

3.5. Reference Material 430

https://docs.openstack.org/nova/victoria/
https://bugs.launchpad.net/nova

Nova Documentation, Release 22.4.1.dev41

Files

• /etc/nova/nova.conf

• /etc/nova/policy.yaml

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

See Also

• OpenStack Nova

Bugs

• Nova bugs are managed at Launchpad

nova-serialproxy

Synopsis

nova-serialproxy [<options>...]

Description

nova-serialproxy is a server daemon that serves the Nova Serial Websocket Proxy service, which
provides a websocket proxy that is compatible with OpenStack Nova serial ports.

Options

General options

Files

• /etc/nova/nova.conf

• /etc/nova/policy.yaml

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

3.5. Reference Material 431

https://docs.openstack.org/nova/victoria/
https://bugs.launchpad.net/nova

Nova Documentation, Release 22.4.1.dev41

See Also

• OpenStack Nova

Bugs

• Nova bugs are managed at Launchpad

nova-spicehtml5proxy

Synopsis

nova-spicehtml5proxy [<options>...]

Description

nova-spicehtml5proxy is a server daemon that serves the Nova SPICE HTML5 Websocket Proxy
service, which provides a websocket proxy that is compatible with OpenStack Nova SPICE HTML5
consoles.

Options

General options

Files

• /etc/nova/nova.conf

• /etc/nova/policy.yaml

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

See Also

• OpenStack Nova

3.5. Reference Material 432

https://docs.openstack.org/nova/victoria/
https://bugs.launchpad.net/nova
https://docs.openstack.org/nova/victoria/

Nova Documentation, Release 22.4.1.dev41

Bugs

• Nova bugs are managed at Launchpad

3.5.1.3 WSGI Services

Starting in the Pike release, the preferred way to deploy the nova api is in a wsgi container (uwsgi or
apache/mod_wsgi). These are the wsgi entry points to do that.

nova-api-metadata

Synopsis

nova-api-metadata [<options>...]

Description

nova-api-metadata is a server daemon that serves the Nova Metadata API. This daemon routes
database requests via the nova-conductor service, so there are some considerations about using this
in a multi-cell layout.

Options

General options

Files

• /etc/nova/nova.conf

• /etc/nova/api-paste.ini

• /etc/nova/policy.yaml

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

See Also

• OpenStack Nova

• Using WSGI with Nova

3.5. Reference Material 433

https://bugs.launchpad.net/nova
https://docs.openstack.org/nova/victoria/
https://docs.openstack.org/nova/victoria/wsgi.html

Nova Documentation, Release 22.4.1.dev41

Bugs

• Nova bugs are managed at Launchpad

nova-api-os-compute

Synopsis

nova-api-os-compute [<options>...]

Description

nova-api-os-compute is a server daemon that serves the Nova OpenStack Compute API.

Options

General options

Files

• /etc/nova/nova.conf

• /etc/nova/api-paste.ini

• /etc/nova/policy.yaml

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

See Also

• OpenStack Nova

• Using WSGI with Nova

Bugs

• Nova bugs are managed at Launchpad

3.5. Reference Material 434

https://bugs.launchpad.net/nova
https://docs.openstack.org/nova/victoria/
https://docs.openstack.org/nova/victoria/user/wsgi.html
https://bugs.launchpad.net/nova

Nova Documentation, Release 22.4.1.dev41

3.5.1.4 Additional Tools

There are a few additional cli tools which nova services call when appropriate. This should not need to
be called directly by operators, but they are documented for completeness and debugging if something
goes wrong.

nova-rootwrap

Synopsis

nova-rootwrap [<options>...]

Description

nova-rootwrap is an application that filters which commands nova is allowed to run as another user.

To use this, you should set the following in nova.conf:

rootwrap_config=/etc/nova/rootwrap.conf

You also need to let the nova user run nova-rootwrap as root in sudoers:

nova ALL = (root) NOPASSWD: /usr/bin/nova-rootwrap /etc/nova/rootwrap.conf
↪→*

To make allowed commands node-specific, your packaging should only install {compute,
network}.filters respectively on compute and network nodes, i.e. nova-api nodes should
not have any of those files installed.

Note: nova-rootwrap is being slowly deprecated and replaced by oslo.privsep, and will
eventually be removed.

Options

General options

Files

• /etc/nova/nova.conf

• /etc/nova/rootwrap.conf

• /etc/nova/rootwrap.d/

3.5. Reference Material 435

Nova Documentation, Release 22.4.1.dev41

See Also

• OpenStack Nova

Bugs

• Nova bugs are managed at Launchpad

3.5.2 Configuration Guide

The static configuration for nova lives in two main files: nova.conf and policy.yaml. These are
described below. For a bigger picture view on configuring nova to solve specific problems, refer to the
Nova Admin Guide.

3.5.2.1 Configuration

• Configuration Guide: Detailed configuration guides for various parts of your Nova system. Help-
ful reference for setting up specific hypervisor backends.

• Config Reference: A complete reference of all configuration options available in the nova.conf
file.

Configuration Options

The following is an overview of all available configuration options in Nova.

DEFAULT

run_external_periodic_tasks

Type boolean

Default True

Some periodic tasks can be run in a separate process. Should we run them here?

backdoor_port

Type string

Default <None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0 results in
listening on a random tcp port number; <port> results in listening on the specified port number
(and not enabling backdoor if that port is in use); and <start>:<end> results in listening on the
smallest unused port number within the specified range of port numbers. The chosen port is
displayed in the services log file.

backdoor_socket

Type string

3.5. Reference Material 436

https://docs.openstack.org/nova/victoria/
https://bugs.launchpad.net/nova

Nova Documentation, Release 22.4.1.dev41

Default <None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

log_options

Type boolean

Default True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful_shutdown_timeout

Type integer

Default 60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

debug

Type boolean

Default False

Mutable This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.

log_config_append

Type string

Default <None>

Mutable This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging config-
uration files. For details about logging configuration files, see the Python logging module doc-
umentation. Note that when logging configuration files are used then all logging configuration
is set in the configuration file and other logging configuration options are ignored (for example,
log-date-format).

Table 10: Deprecated Variations
Group Name
DEFAULT log-config
DEFAULT log_config

log_date_format

Type string

Default %Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

3.5. Reference Material 437

Nova Documentation, Release 22.4.1.dev41

log_file

Type string

Default <None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 11: Deprecated Variations
Group Name
DEFAULT logfile

log_dir

Type string

Default <None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 12: Deprecated Variations
Group Name
DEFAULT logdir

watch_log_file

Type boolean

Default False

Uses logging handler designed to watch file system. When log file is moved or removed this
handler will open a new log file with specified path instantaneously. It makes sense only if log_file
option is specified and Linux platform is used. This option is ignored if log_config_append is set.

use_syslog

Type boolean

Default False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type boolean

Default False

Enable journald for logging. If running in a systemd environment you may wish to enable journal
support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type string

Default LOG_USER

3.5. Reference Material 438

Nova Documentation, Release 22.4.1.dev41

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type boolean

Default False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type boolean

Default False

Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type boolean

Default False

Log output to Windows Event Log.

log_rotate_interval

Type integer

Default 1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is setto interval.

log_rotate_interval_type

Type string

Default days

Valid Values Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type integer

Default 30

Maximum number of rotated log files.

max_logfile_size_mb

Type integer

Default 200

Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type string

Default none

3.5. Reference Material 439

Nova Documentation, Release 22.4.1.dev41

Valid Values interval, size, none

Log rotation type.

Possible values

interval Rotate logs at predefined time intervals.

size Rotate logs once they reach a predefined size.

none Do not rotate log files.

logging_context_format_string

Type string

Default %(asctime)s.%(msecs)03d %(process)d %(levelname)s
%(name)s [%(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string

Type string

Default %(asctime)s.%(msecs)03d %(process)d %(levelname)s
%(name)s [-] %(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type string

Default %(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used
by oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type string

Default %(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type string

Default %(user)s %(tenant)s %(domain)s %(user_domain)s
%(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

3.5. Reference Material 440

Nova Documentation, Release 22.4.1.dev41

Type list

Default ['amqp=WARN', 'amqplib=WARN', 'boto=WARN',
'qpid=WARN', 'sqlalchemy=WARN', 'suds=INFO',
'oslo.messaging=INFO', 'oslo_messaging=INFO',
'iso8601=WARN', 'requests.packages.urllib3.
connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.
urllib3.util.retry=WARN', 'urllib3.util.
retry=WARN', 'keystonemiddleware=WARN', 'routes.
middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO',
'oslo_policy=INFO', 'dogpile.core.dogpile=INFO']

List of package logging levels in logger=LEVEL pairs. This option is ignored if
log_config_append is set.

publish_errors

Type boolean

Default False

Enables or disables publication of error events.

instance_format

Type string

Default "[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type string

Default "[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type integer

Default 0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type integer

Default 0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

Type string

Default CRITICAL

3.5. Reference Material 441

Nova Documentation, Release 22.4.1.dev41

Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG or empty
string. Logs with level greater or equal to rate_limit_except_level are not filtered. An empty string
means that all levels are filtered.

fatal_deprecations

Type boolean

Default False

Enables or disables fatal status of deprecations.

rpc_conn_pool_size

Type integer

Default 30

Minimum Value 1

Size of RPC connection pool.

Table 13: Deprecated Variations
Group Name
DEFAULT rpc_conn_pool_size

conn_pool_min_size

Type integer

Default 2

The pool size limit for connections expiration policy

conn_pool_ttl

Type integer

Default 1200

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size

Type integer

Default 64

Size of executor thread pool when executor is threading or eventlet.

Table 14: Deprecated Variations
Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout

Type integer

Default 60

Seconds to wait for a response from a call.

3.5. Reference Material 442

Nova Documentation, Release 22.4.1.dev41

transport_url

Type string

Default rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass@]host:port[,[userN:passN@]hostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type string

Default openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type boolean

Default False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

internal_service_availability_zone

Type string

Default internal

Availability zone for internal services.

This option determines the availability zone for the various internal nova services, such as nova-
scheduler, nova-conductor, etc.

Possible values:

• Any string representing an existing availability zone name.

default_availability_zone

Type string

Default nova

Default availability zone for compute services.

This option determines the default availability zone for nova-compute services, which will be used
if the service(s) do not belong to aggregates with availability zone metadata.

Possible values:

• Any string representing an existing availability zone name.

default_schedule_zone

Type string

3.5. Reference Material 443

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Nova Documentation, Release 22.4.1.dev41

Default <None>

Default availability zone for instances.

This option determines the default availability zone for instances, which will be used when a user
does not specify one when creating an instance. The instance(s) will be bound to this availability
zone for their lifetime.

Possible values:

• Any string representing an existing availability zone name.

• None, which means that the instance can move from one availability zone to another during
its lifetime if it is moved from one compute node to another.

Related options:

• [cinder]/cross_az_attach

password_length

Type integer

Default 12

Minimum Value 0

Length of generated instance admin passwords.

instance_usage_audit_period

Type string

Default month

Time period to generate instance usages for. It is possible to define optional offset to given period
by appending @ character followed by a number defining offset.

Possible values:

• period, example: hour, day, month` or ``year

• period with offset, example: month@15 will result in monthly audits starting on 15th day
of month.

use_rootwrap_daemon

Type boolean

Default False

Start and use a daemon that can run the commands that need to be run with root privileges. This
option is usually enabled on nodes that run nova compute processes.

rootwrap_config

Type string

Default /etc/nova/rootwrap.conf

Path to the rootwrap configuration file.

Goal of the root wrapper is to allow a service-specific unprivileged user to run a number of actions
as the root user in the safest manner possible. The configuration file used here must match the one
defined in the sudoers entry.

3.5. Reference Material 444

Nova Documentation, Release 22.4.1.dev41

tempdir

Type string

Default <None>

Explicitly specify the temporary working directory.

compute_driver

Type string

Default <None>

Defines which driver to use for controlling virtualization.

Possible values:

• libvirt.LibvirtDriver

• fake.FakeDriver

• ironic.IronicDriver

• vmwareapi.VMwareVCDriver

• hyperv.HyperVDriver

• powervm.PowerVMDriver

• zvm.ZVMDriver

allow_resize_to_same_host

Type boolean

Default False

Allow destination machine to match source for resize. Useful when testing in single-host environ-
ments. By default it is not allowed to resize to the same host. Setting this option to true will add the
same host to the destination options. Also set to true if you allow the ServerGroupAffinityFilter
and need to resize.

non_inheritable_image_properties

Type list

Default ['cache_in_nova', 'bittorrent']

Image properties that should not be inherited from the instance when taking a snapshot.

This option gives an opportunity to select which image-properties should not be inherited by newly
created snapshots.

Note: The following image properties are never inherited regardless of whether they are listed in
this configuration option or not:

• cinder_encryption_key_id

• cinder_encryption_key_deletion_policy

• img_signature

• img_signature_hash_method

3.5. Reference Material 445

Nova Documentation, Release 22.4.1.dev41

• img_signature_key_type

• img_signature_certificate_uuid

Possible values:

• A comma-separated list whose item is an image property. Usually only the image properties
that are only needed by base images can be included here, since the snapshots that are created
from the base images dont need them.

• Default list: cache_in_nova, bittorrent

max_local_block_devices

Type integer

Default 3

Maximum number of devices that will result in a local image being created on the hypervisor
node.

A negative number means unlimited. Setting max_local_block_devices to 0 means that
any request that attempts to create a local disk will fail. This option is meant to limit the number of
local discs (so root local disc that is the result of imageRef being used when creating a server,
and any other ephemeral and swap disks). 0 does not mean that images will be automatically
converted to volumes and boot instances from volumes - it just means that all requests that attempt
to create a local disk will fail.

Possible values:

• 0: Creating a local disk is not allowed.

• Negative number: Allows unlimited number of local discs.

• Positive number: Allows only these many number of local discs.

compute_monitors

Type list

Default []

A comma-separated list of monitors that can be used for getting compute metrics. You can use
the alias/name from the setuptools entry points for nova.compute.monitors.* namespaces. If no
namespace is supplied, the cpu. namespace is assumed for backwards-compatibility.

NOTE: Only one monitor per namespace (For example: cpu) can be loaded at a time.

Possible values:

• An empty list will disable the feature (Default).

• An example value that would enable the CPU bandwidth monitor that uses the virt driver
variant:

compute_monitors = cpu.virt_driver

default_ephemeral_format

Type string

Default <None>

3.5. Reference Material 446

Nova Documentation, Release 22.4.1.dev41

The default format an ephemeral_volume will be formatted with on creation.

Possible values:

• ext2

• ext3

• ext4

• xfs

• ntfs (only for Windows guests)

vif_plugging_is_fatal

Type boolean

Default True

Determine if instance should boot or fail on VIF plugging timeout.

Nova sends a port update to Neutron after an instance has been scheduled, providing Neutron with
the necessary information to finish setup of the port. Once completed, Neutron notifies Nova that
it has finished setting up the port, at which point Nova resumes the boot of the instance since
network connectivity is now supposed to be present. A timeout will occur if the reply is not
received after a given interval.

This option determines what Nova does when the VIF plugging timeout event happens. When
enabled, the instance will error out. When disabled, the instance will continue to boot on the
assumption that the port is ready.

Possible values:

• True: Instances should fail after VIF plugging timeout

• False: Instances should continue booting after VIF plugging timeout

vif_plugging_timeout

Type integer

Default 300

Minimum Value 0

Timeout for Neutron VIF plugging event message arrival.

Number of seconds to wait for Neutron vif plugging events to arrive before continuing or failing
(see vif_plugging_is_fatal).

If you are hitting timeout failures at scale, consider running rootwrap in daemon mode in the
neutron agent via the [agent]/root_helper_daemon neutron configuration option.

Related options:

• vif_plugging_is_fatal - If vif_plugging_timeout is set to zero and
vif_plugging_is_fatal is False, events should not be expected to arrive at
all.

arq_binding_timeout

Type integer

Default 300

3.5. Reference Material 447

Nova Documentation, Release 22.4.1.dev41

Minimum Value 1

Timeout for Accelerator Request (ARQ) bind event message arrival.

Number of seconds to wait for ARQ bind resolution event to arrive. The event indicates that every
ARQ for an instance has either bound successfully or failed to bind. If it does not arrive, instance
bringup is aborted with an exception.

injected_network_template

Type string

Default $pybasedir/nova/virt/interfaces.template

Path to /etc/network/interfaces template.

The path to a template file for the /etc/network/interfaces-style file, which will be populated by
nova and subsequently used by cloudinit. This provides a method to configure network connec-
tivity in environments without a DHCP server.

The template will be rendered using Jinja2 template engine, and receive a top-level key called
interfaces. This key will contain a list of dictionaries, one for each interface.

Refer to the cloudinit documentaion for more information:

https://cloudinit.readthedocs.io/en/latest/topics/datasources.html

Possible values:

• A path to a Jinja2-formatted template for a Debian /etc/network/interfaces file. This applies
even if using a non Debian-derived guest.

Related options:

• flat_inject: This must be set to True to ensure nova embeds network configuration
information in the metadata provided through the config drive.

preallocate_images

Type string

Default none

Valid Values none, space

The image preallocation mode to use.

Image preallocation allows storage for instance images to be allocated up front when the instance
is initially provisioned. This ensures immediate feedback is given if enough space isnt available.
In addition, it should significantly improve performance on writes to new blocks and may even
improve I/O performance to prewritten blocks due to reduced fragmentation.

3.5. Reference Material 448

https://cloudinit.readthedocs.io/en/latest/topics/datasources.html

Nova Documentation, Release 22.4.1.dev41

Possible values

none No storage provisioning is done up front

space Storage is fully allocated at instance start

use_cow_images

Type boolean

Default True

Enable use of copy-on-write (cow) images.

QEMU/KVM allow the use of qcow2 as backing files. By disabling this, backing files will not be
used.

force_raw_images

Type boolean

Default True

Force conversion of backing images to raw format.

Possible values:

• True: Backing image files will be converted to raw image format

• False: Backing image files will not be converted

Related options:

• compute_driver: Only the libvirt driver uses this option.

• [libvirt]/images_type: If images_type is rbd, setting this option to False is not
allowed. See the bug https://bugs.launchpad.net/nova/+bug/1816686 for more details.

virt_mkfs

Type multi-valued

Default ''

Name of the mkfs commands for ephemeral device.

The format is <os_type>=<mkfs command>

resize_fs_using_block_device

Type boolean

Default False

Enable resizing of filesystems via a block device.

If enabled, attempt to resize the filesystem by accessing the image over a block device. This is
done by the host and may not be necessary if the image contains a recent version of cloud-init.
Possible mechanisms require the nbd driver (for qcow and raw), or loop (for raw).

timeout_nbd

Type integer

Default 10

3.5. Reference Material 449

https://bugs.launchpad.net/nova/+bug/1816686

Nova Documentation, Release 22.4.1.dev41

Minimum Value 0

Amount of time, in seconds, to wait for NBD device start up.

pointer_model

Type string

Default usbtablet

Valid Values ps2mouse, usbtablet, <None>

Generic property to specify the pointer type.

Input devices allow interaction with a graphical framebuffer. For example to provide a graphic
tablet for absolute cursor movement.

If set, the hw_pointer_model image property takes precedence over this configuration option.

Related options:

• usbtablet must be configured with VNC enabled or SPICE enabled and SPICE agent dis-
abled. When used with libvirt the instance mode should be configured as HVM.

Possible values

ps2mouse Uses relative movement. Mouse connected by PS2

usbtablet Uses absolute movement. Tablet connect by USB

<None> Uses default behavior provided by drivers (mouse on PS2 for libvirt x86)

vcpu_pin_set

Type string

Default <None>

Mask of host CPUs that can be used for VCPU resources.

The behavior of this option depends on the definition of the [compute]
cpu_dedicated_set option and affects the behavior of the [compute]
cpu_shared_set option.

• If [compute] cpu_dedicated_set is defined, defining this option will result in an
error.

• If [compute] cpu_dedicated_set is not defined, this option will be used to deter-
mine inventory for VCPU resources and to limit the host CPUs that both pinned and unpinned
instances can be scheduled to, overriding the [compute] cpu_shared_set option.

Possible values:

• A comma-separated list of physical CPU numbers that virtual CPUs can be allocated from.
Each element should be either a single CPU number, a range of CPU numbers, or a caret
followed by a CPU number to be excluded from a previous range. For example:

vcpu_pin_set = "4-12,^8,15"

Related options:

3.5. Reference Material 450

Nova Documentation, Release 22.4.1.dev41

• [compute] cpu_dedicated_set

• [compute] cpu_shared_set

Warning: This option is deprecated for removal since 20.0.0. Its value may be silently
ignored in the future.

Reason This option has been superseded by the [compute]
cpu_dedicated_set and [compute] cpu_shared_set op-
tions, which allow things like the co-existence of pinned and unpinned
instances on the same host (for the libvirt driver).

reserved_huge_pages

Type unknown type

Default <None>

Number of huge/large memory pages to reserved per NUMA host cell.

Possible values:

• A list of valid key=value which reflect NUMA node ID, page size (Default unit is KiB) and
number of pages to be reserved. For example:

reserved_huge_pages = node:0,size:2048,count:64
reserved_huge_pages = node:1,size:1GB,count:1

In this example we are reserving on NUMA node 0 64 pages of 2MiB and on NUMA node
1 1 page of 1GiB.

reserved_host_disk_mb

Type integer

Default 0

Minimum Value 0

Amount of disk resources in MB to make them always available to host. The disk usage gets
reported back to the scheduler from nova-compute running on the compute nodes. To prevent the
disk resources from being considered as available, this option can be used to reserve disk space
for that host.

Possible values:

• Any positive integer representing amount of disk in MB to reserve for the host.

reserved_host_memory_mb

Type integer

Default 512

Minimum Value 0

Amount of memory in MB to reserve for the host so that it is always available to host processes.
The host resources usage is reported back to the scheduler continuously from nova-compute run-
ning on the compute node. To prevent the host memory from being considered as available, this
option is used to reserve memory for the host.

3.5. Reference Material 451

Nova Documentation, Release 22.4.1.dev41

Possible values:

• Any positive integer representing amount of memory in MB to reserve for the host.

reserved_host_cpus

Type integer

Default 0

Minimum Value 0

Number of host CPUs to reserve for host processes.

The host resources usage is reported back to the scheduler continuously from nova-compute run-
ning on the compute node. This value is used to determine the reserved value reported to
placement.

This option cannot be set if the [compute] cpu_shared_set or [compute]
cpu_dedicated_set config options have been defined. When these options are defined, any
host CPUs not included in these values are considered reserved for the host.

Possible values:

• Any positive integer representing number of physical CPUs to reserve for the host.

Related options:

• [compute] cpu_shared_set

• [compute] cpu_dedicated_set

cpu_allocation_ratio

Type floating point

Default <None>

Minimum Value 0.0

Virtual CPU to physical CPU allocation ratio.

This option is used to influence the hosts selected by the Placement API by configuring the allo-
cation ratio for VCPU inventory.

Note: This option does not affect PCPU inventory, which cannot be overcommitted.

Note: If this option is set to something other than None or 0.0, the allocation ratio will be
overwritten by the value of this option, otherwise, the allocation ratio will not change. Once
set to a non-default value, it is not possible to unset the config to get back to the default be-
havior. If you want to reset back to the initial value, explicitly specify it to the value of
initial_cpu_allocation_ratio.

Possible values:

• Any valid positive integer or float value

Related options:

• initial_cpu_allocation_ratio

3.5. Reference Material 452

Nova Documentation, Release 22.4.1.dev41

ram_allocation_ratio

Type floating point

Default <None>

Minimum Value 0.0

Virtual RAM to physical RAM allocation ratio.

This option is used to influence the hosts selected by the Placement API by configuring the allo-
cation ratio for MEMORY_MB inventory.

Note: If this option is set to something other than None or 0.0, the allocation ratio will be
overwritten by the value of this option, otherwise, the allocation ratio will not change. Once
set to a non-default value, it is not possible to unset the config to get back to the default be-
havior. If you want to reset back to the initial value, explicitly specify it to the value of
initial_ram_allocation_ratio.

Possible values:

• Any valid positive integer or float value

Related options:

• initial_ram_allocation_ratio

disk_allocation_ratio

Type floating point

Default <None>

Minimum Value 0.0

Virtual disk to physical disk allocation ratio.

This option is used to influence the hosts selected by the Placement API by configuring the allo-
cation ratio for DISK_GB inventory.

When configured, a ratio greater than 1.0 will result in over-subscription of the available physical
disk, which can be useful for more efficiently packing instances created with images that do not
use the entire virtual disk, such as sparse or compressed images. It can be set to a value between
0.0 and 1.0 in order to preserve a percentage of the disk for uses other than instances.

Note: If the value is set to >1, we recommend keeping track of the free disk space, as the value
approaching 0 may result in the incorrect functioning of instances using it at the moment.

Note: If this option is set to something other than None or 0.0, the allocation ratio will be
overwritten by the value of this option, otherwise, the allocation ratio will not change. Once
set to a non-default value, it is not possible to unset the config to get back to the default be-
havior. If you want to reset back to the initial value, explicitly specify it to the value of
initial_disk_allocation_ratio.

Possible values:

3.5. Reference Material 453

Nova Documentation, Release 22.4.1.dev41

• Any valid positive integer or float value

Related options:

• initial_disk_allocation_ratio

initial_cpu_allocation_ratio

Type floating point

Default 16.0

Minimum Value 0.0

Initial virtual CPU to physical CPU allocation ratio.

This is only used when initially creating the computes_nodes table record for a given nova-
compute service.

See https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html for more details
and usage scenarios.

Related options:

• cpu_allocation_ratio

initial_ram_allocation_ratio

Type floating point

Default 1.5

Minimum Value 0.0

Initial virtual RAM to physical RAM allocation ratio.

This is only used when initially creating the computes_nodes table record for a given nova-
compute service.

See https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html for more details
and usage scenarios.

Related options:

• ram_allocation_ratio

initial_disk_allocation_ratio

Type floating point

Default 1.0

Minimum Value 0.0

Initial virtual disk to physical disk allocation ratio.

This is only used when initially creating the computes_nodes table record for a given nova-
compute service.

See https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html for more details
and usage scenarios.

Related options:

• disk_allocation_ratio

3.5. Reference Material 454

https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html
https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html
https://docs.openstack.org/nova/latest/admin/configuration/schedulers.html

Nova Documentation, Release 22.4.1.dev41

console_host

Type string

Default <current_hostname>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Console proxy host to be used to connect to instances on this host. It is the publicly visible name
for the console host.

Possible values:

• Current hostname (default) or any string representing hostname.

default_access_ip_network_name

Type string

Default <None>

Name of the network to be used to set access IPs for instances. If there are multiple IPs to choose
from, an arbitrary one will be chosen.

Possible values:

• None (default)

• Any string representing network name.

instances_path

Type string

Default $state_path/instances

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Specifies where instances are stored on the hypervisors disk. It can point to locally attached
storage or a directory on NFS.

Possible values:

• $state_path/instances where state_path is a config option that specifies the top-level directory
for maintaining novas state. (default) or Any string representing directory path.

Related options:

• [workarounds]/ensure_libvirt_rbd_instance_dir_cleanup

instance_usage_audit

Type boolean

Default False

This option enables periodic compute.instance.exists notifications. Each compute node must
be configured to generate system usage data. These notifications are consumed by OpenStack
Telemetry service.

live_migration_retry_count

Type integer

3.5. Reference Material 455

Nova Documentation, Release 22.4.1.dev41

Default 30

Minimum Value 0

Maximum number of 1 second retries in live_migration. It specifies number of retries to iptables
when it complains. It happens when an user continuously sends live-migration request to same
host leading to concurrent request to iptables.

Possible values:

• Any positive integer representing retry count.

resume_guests_state_on_host_boot

Type boolean

Default False

This option specifies whether to start guests that were running before the host rebooted. It ensures
that all of the instances on a Nova compute node resume their state each time the compute node
boots or restarts.

network_allocate_retries

Type integer

Default 0

Minimum Value 0

Number of times to retry network allocation. It is required to attempt network allocation retries if
the virtual interface plug fails.

Possible values:

• Any positive integer representing retry count.

max_concurrent_builds

Type integer

Default 10

Minimum Value 0

Limits the maximum number of instance builds to run concurrently by nova-compute. Compute
service can attempt to build an infinite number of instances, if asked to do so. This limit is enforced
to avoid building unlimited instance concurrently on a compute node. This value can be set per
compute node.

Possible Values:

• 0 : treated as unlimited.

• Any positive integer representing maximum concurrent builds.

max_concurrent_snapshots

Type integer

Default 5

Minimum Value 0

3.5. Reference Material 456

Nova Documentation, Release 22.4.1.dev41

Maximum number of instance snapshot operations to run concurrently. This limit is enforced to
prevent snapshots overwhelming the host/network/storage and causing failure. This value can be
set per compute node.

Possible Values:

• 0 : treated as unlimited.

• Any positive integer representing maximum concurrent snapshots.

max_concurrent_live_migrations

Type integer

Default 1

Minimum Value 0

Maximum number of live migrations to run concurrently. This limit is enforced to avoid outbound
live migrations overwhelming the host/network and causing failures. It is not recommended that
you change this unless you are very sure that doing so is safe and stable in your environment.

Possible values:

• 0 : treated as unlimited.

• Any positive integer representing maximum number of live migrations to run concurrently.

block_device_allocate_retries

Type integer

Default 60

Minimum Value 0

The number of times to check for a volume to be available before attaching it during server create.

When creating a server with block device mappings where source_type is one of blank,
image or snapshot and the destination_type is volume, the nova-compute service
will create a volume and then attach it to the server. Before the volume can be attached, it must
be in status available. This option controls how many times to check for the created volume to be
available before it is attached.

If the operation times out, the volume will be deleted if the block device mapping
delete_on_termination value is True.

It is recommended to configure the image cache in the block storage service to speed up this
operation. See https://docs.openstack.org/cinder/latest/admin/blockstorage-image-volume-cache.
html for details.

Possible values:

• 60 (default)

• If value is 0, then one attempt is made.

• For any value > 0, total attempts are (value + 1)

Related options:

• block_device_allocate_retries_interval - controls the interval between
checks

3.5. Reference Material 457

https://docs.openstack.org/cinder/latest/admin/blockstorage-image-volume-cache.html
https://docs.openstack.org/cinder/latest/admin/blockstorage-image-volume-cache.html

Nova Documentation, Release 22.4.1.dev41

sync_power_state_pool_size

Type integer

Default 1000

Number of greenthreads available for use to sync power states.

This option can be used to reduce the number of concurrent requests made to the hypervisor or
system with real instance power states for performance reasons, for example, with Ironic.

Possible values:

• Any positive integer representing greenthreads count.

bandwidth_poll_interval

Type integer

Default 600

Interval to pull network bandwidth usage info.

Not supported on all hypervisors. If a hypervisor doesnt support bandwidth usage, it will not get
the info in the usage events.

Possible values:

• 0: Will run at the default periodic interval.

• Any value < 0: Disables the option.

• Any positive integer in seconds.

sync_power_state_interval

Type integer

Default 600

Interval to sync power states between the database and the hypervisor.

The interval that Nova checks the actual virtual machine power state and the power state that Nova
has in its database. If a user powers down their VM, Nova updates the API to report the VM has
been powered down. Should something turn on the VM unexpectedly, Nova will turn the VM
back off to keep the system in the expected state.

Possible values:

• 0: Will run at the default periodic interval.

• Any value < 0: Disables the option.

• Any positive integer in seconds.

Related options:

• If handle_virt_lifecycle_events in the workarounds group is false and this
option is negative, then instances that get out of sync between the hypervisor and the Nova
database will have to be synchronized manually.

heal_instance_info_cache_interval

Type integer

Default 60

3.5. Reference Material 458

Nova Documentation, Release 22.4.1.dev41

Interval between instance network information cache updates.

Number of seconds after which each compute node runs the task of querying Neutron for all of
its instances networking information, then updates the Nova db with that information. Nova will
never update its cache if this option is set to 0. If we dont update the cache, the metadata service
and nova-api endpoints will be proxying incorrect network data about the instance. So, it is not
recommended to set this option to 0.

Possible values:

• Any positive integer in seconds.

• Any value <=0 will disable the sync. This is not recommended.

reclaim_instance_interval

Type integer

Default 0

Interval for reclaiming deleted instances.

A value greater than 0 will enable SOFT_DELETE of instances. This option decides whether the
server to be deleted will be put into the SOFT_DELETED state. If this value is greater than 0, the
deleted server will not be deleted immediately, instead it will be put into a queue until its too old
(deleted time greater than the value of reclaim_instance_interval). The server can be recovered
from the delete queue by using the restore action. If the deleted server remains longer than the
value of reclaim_instance_interval, it will be deleted by a periodic task in the compute service
automatically.

Note that this option is read from both the API and compute nodes, and must be set globally
otherwise servers could be put into a soft deleted state in the API and never actually reclaimed
(deleted) on the compute node.

Note: When using this option, you should also configure the [cinder] auth options, e.g.
auth_type, auth_url, username, etc. Since the reclaim happens in a periodic task, there
is no user token to cleanup volumes attached to any SOFT_DELETED servers so nova must be
configured with administrator role access to cleanup those resources in cinder.

Possible values:

• Any positive integer(in seconds) greater than 0 will enable this option.

• Any value <=0 will disable the option.

Related options:

• [cinder] auth options for cleaning up volumes attached to servers during the reclaim process

volume_usage_poll_interval

Type integer

Default 0

Interval for gathering volume usages.

This option updates the volume usage cache for every volume_usage_poll_interval number of
seconds.

3.5. Reference Material 459

Nova Documentation, Release 22.4.1.dev41

Possible values:

• Any positive integer(in seconds) greater than 0 will enable this option.

• Any value <=0 will disable the option.

shelved_poll_interval

Type integer

Default 3600

Interval for polling shelved instances to offload.

The periodic task runs for every shelved_poll_interval number of seconds and checks if there are
any shelved instances. If it finds a shelved instance, based on the shelved_offload_time config
value it offloads the shelved instances. Check shelved_offload_time config option description for
details.

Possible values:

• Any value <= 0: Disables the option.

• Any positive integer in seconds.

Related options:

• shelved_offload_time

shelved_offload_time

Type integer

Default 0

Time before a shelved instance is eligible for removal from a host.

By default this option is set to 0 and the shelved instance will be removed from the hypervi-
sor immediately after shelve operation. Otherwise, the instance will be kept for the value of
shelved_offload_time(in seconds) so that during the time period the unshelve action will be faster,
then the periodic task will remove the instance from hypervisor after shelved_offload_time passes.

Possible values:

• 0: Instance will be immediately offloaded after being shelved.

• Any value < 0: An instance will never offload.

• Any positive integer in seconds: The instance will exist for the specified number of seconds
before being offloaded.

instance_delete_interval

Type integer

Default 300

Interval for retrying failed instance file deletes.

This option depends on maximum_instance_delete_attempts. This option specifies how often to
retry deletes whereas maximum_instance_delete_attempts specifies the maximum number of retry
attempts that can be made.

Possible values:

3.5. Reference Material 460

Nova Documentation, Release 22.4.1.dev41

• 0: Will run at the default periodic interval.

• Any value < 0: Disables the option.

• Any positive integer in seconds.

Related options:

• maximum_instance_delete_attempts from instance_cleaning_opts group.

block_device_allocate_retries_interval

Type integer

Default 3

Minimum Value 0

Interval (in seconds) between block device allocation retries on failures.

This option allows the user to specify the time interval between consecutive retries. The
block_device_allocate_retries option specifies the maximum number of retries.

Possible values:

• 0: Disables the option.

• Any positive integer in seconds enables the option.

Related options:

• block_device_allocate_retries - controls the number of retries

scheduler_instance_sync_interval

Type integer

Default 120

Interval between sending the scheduler a list of current instance UUIDs to verify that its view of
instances is in sync with nova.

If the CONF option scheduler_tracks_instance_changes is False, the sync calls will not be made.
So, changing this option will have no effect.

If the out of sync situations are not very common, this interval can be increased to lower the
number of RPC messages being sent. Likewise, if sync issues turn out to be a problem, the
interval can be lowered to check more frequently.

Possible values:

• 0: Will run at the default periodic interval.

• Any value < 0: Disables the option.

• Any positive integer in seconds.

Related options:

• This option has no impact if scheduler_tracks_instance_changes is set to False.

update_resources_interval

Type integer

Default 0

3.5. Reference Material 461

Nova Documentation, Release 22.4.1.dev41

Interval for updating compute resources.

This option specifies how often the update_available_resource periodic task should run. A number
less than 0 means to disable the task completely. Leaving this at the default of 0 will cause this
to run at the default periodic interval. Setting it to any positive value will cause it to run at
approximately that number of seconds.

Possible values:

• 0: Will run at the default periodic interval.

• Any value < 0: Disables the option.

• Any positive integer in seconds.

reboot_timeout

Type integer

Default 0

Minimum Value 0

Time interval after which an instance is hard rebooted automatically.

When doing a soft reboot, it is possible that a guest kernel is completely hung in a way that
causes the soft reboot task to not ever finish. Setting this option to a time period in seconds
will automatically hard reboot an instance if it has been stuck in a rebooting state longer than N
seconds.

Possible values:

• 0: Disables the option (default).

• Any positive integer in seconds: Enables the option.

instance_build_timeout

Type integer

Default 0

Minimum Value 0

Maximum time in seconds that an instance can take to build.

If this timer expires, instance status will be changed to ERROR. Enabling this option will make
sure an instance will not be stuck in BUILD state for a longer period.

Possible values:

• 0: Disables the option (default)

• Any positive integer in seconds: Enables the option.

rescue_timeout

Type integer

Default 0

Minimum Value 0

Interval to wait before un-rescuing an instance stuck in RESCUE.

Possible values:

3.5. Reference Material 462

Nova Documentation, Release 22.4.1.dev41

• 0: Disables the option (default)

• Any positive integer in seconds: Enables the option.

resize_confirm_window

Type integer

Default 0

Minimum Value 0

Automatically confirm resizes after N seconds.

Resize functionality will save the existing server before resizing. After the resize completes, user
is requested to confirm the resize. The user has the opportunity to either confirm or revert all
changes. Confirm resize removes the original server and changes server status from resized to
active. Setting this option to a time period (in seconds) will automatically confirm the resize if the
server is in resized state longer than that time.

Possible values:

• 0: Disables the option (default)

• Any positive integer in seconds: Enables the option.

shutdown_timeout

Type integer

Default 60

Minimum Value 0

Total time to wait in seconds for an instance to perform a clean shutdown.

It determines the overall period (in seconds) a VM is allowed to perform a clean shutdown. While
performing stop, rescue and shelve, rebuild operations, configuring this option gives the VM a
chance to perform a controlled shutdown before the instance is powered off. The default timeout
is 60 seconds. A value of 0 (zero) means the guest will be powered off immediately with no
opportunity for guest OS clean-up.

The timeout value can be overridden on a per image basis by means of os_shutdown_timeout that
is an image metadata setting allowing different types of operating systems to specify how much
time they need to shut down cleanly.

Possible values:

• A positive integer or 0 (default value is 60).

running_deleted_instance_action

Type string

Default reap

Valid Values reap, log, shutdown, noop

The compute service periodically checks for instances that have been deleted in the database but
remain running on the compute node. The above option enables action to be taken when such
instances are identified.

Related options:

3.5. Reference Material 463

Nova Documentation, Release 22.4.1.dev41

• running_deleted_instance_poll_interval

• running_deleted_instance_timeout

Possible values

reap Powers down the instances and deletes them

log Logs warning message about deletion of the resource

shutdown Powers down instances and marks them as non-bootable which can be later used for
debugging/analysis

noop Takes no action

running_deleted_instance_poll_interval

Type integer

Default 1800

Time interval in seconds to wait between runs for the clean up action. If set to 0, above check will
be disabled. If running_deleted_instance _action is set to log or reap, a value greater than 0 must
be set.

Possible values:

• Any positive integer in seconds enables the option.

• 0: Disables the option.

• 1800: Default value.

Related options:

• running_deleted_instance_action

running_deleted_instance_timeout

Type integer

Default 0

Time interval in seconds to wait for the instances that have been marked as deleted in database to
be eligible for cleanup.

Possible values:

• Any positive integer in seconds(default is 0).

Related options:

• running_deleted_instance_action

maximum_instance_delete_attempts

Type integer

Default 5

Minimum Value 1

3.5. Reference Material 464

Nova Documentation, Release 22.4.1.dev41

The number of times to attempt to reap an instances files.

This option specifies the maximum number of retry attempts that can be made.

Possible values:

• Any positive integer defines how many attempts are made.

Related options:

• [DEFAULT] instance_delete_interval can be used to disable this option.

osapi_compute_unique_server_name_scope

Type string

Default ''

Valid Values , project, global

Sets the scope of the check for unique instance names.

The default doesnt check for unique names. If a scope for the name check is set, a launch of a new
instance or an update of an existing instance with a duplicate name will result in an InstanceExists
error. The uniqueness is case-insensitive. Setting this option can increase the usability for end
users as they dont have to distinguish among instances with the same name by their IDs.

Possible values

An empty value means that no uniqueness check is done and duplicate names are possible

project The instance name check is done only for instances within the same project

global The instance name check is done for all instances regardless of the project

enable_new_services

Type boolean

Default True

Enable new nova-compute services on this host automatically.

When a new nova-compute service starts up, it gets registered in the database as an enabled ser-
vice. Sometimes it can be useful to register new compute services in disabled state and then en-
abled them at a later point in time. This option only sets this behavior for nova-compute services, it
does not auto-disable other services like nova-conductor, nova-scheduler, or nova-osapi_compute.

Possible values:

• True: Each new compute service is enabled as soon as it registers itself.

• False: Compute services must be enabled via an os-services REST API call or with the
CLI with nova service-enable <hostname> <binary>, otherwise they are not
ready to use.

instance_name_template

Type string

Default instance-%08x

3.5. Reference Material 465

Nova Documentation, Release 22.4.1.dev41

Template string to be used to generate instance names.

This template controls the creation of the database name of an instance. This is not the display
name you enter when creating an instance (via Horizon or CLI). For a new deployment it is
advisable to change the default value (which uses the database autoincrement) to another value
which makes use of the attributes of an instance, like instance-%(uuid)s. If you already
have instances in your deployment when you change this, your deployment will break.

Possible values:

• A string which either uses the instance database ID (like the default)

• A string with a list of named database columns, for example %(id)d or %(uuid)s or
%(hostname)s.

migrate_max_retries

Type integer

Default -1

Minimum Value -1

Number of times to retry live-migration before failing.

Possible values:

• If == -1, try until out of hosts (default)

• If == 0, only try once, no retries

• Integer greater than 0

config_drive_format

Type string

Default iso9660

Valid Values iso9660, vfat

Config drive format.

Config drive format that will contain metadata attached to the instance when it boots.

Related options:

• This option is meaningful when one of the following alternatives occur:

1. force_config_drive option set to true

2. the REST API call to create the instance contains an enable flag for config drive option

3. the image used to create the instance requires a config drive, this is defined by
img_config_drive property for that image.

• A compute node running Hyper-V hypervisor can be configured to attach config drive
as a CD drive. To attach the config drive as a CD drive, set the [hyperv]
config_drive_cdrom option to true.

3.5. Reference Material 466

Nova Documentation, Release 22.4.1.dev41

Possible values

iso9660 A file system image standard that is widely supported across operating systems.

vfat Provided for legacy reasons and to enable live migration with the libvirt driver and non-
shared storage

Warning: This option is deprecated for removal since 19.0.0. Its value may be silently
ignored in the future.

Reason This option was originally added as a workaround for bug in libvirt,
#1246201, that was resolved in libvirt v1.2.17. As a result, this option is
no longer necessary or useful.

force_config_drive

Type boolean

Default False

Force injection to take place on a config drive

When this option is set to true config drive functionality will be forced enabled by default, other-
wise users can still enable config drives via the REST API or image metadata properties. Launched
instances are not affected by this option.

Possible values:

• True: Force to use of config drive regardless the users input in the REST API call.

• False: Do not force use of config drive. Config drives can still be enabled via the REST
API or image metadata properties.

Related options:

• Use the mkisofs_cmd flag to set the path where you install the genisoimage program. If
genisoimage is in same path as the nova-compute service, you do not need to set this flag.

• To use a config drive with Hyper-V, you must set the mkisofs_cmd value to the full path
to an mkisofs.exe installation. Additionally, you must set the qemu_img_cmd value in the
hyperv configuration section to the full path to an qemu-img command installation.

mkisofs_cmd

Type string

Default genisoimage

Name or path of the tool used for ISO image creation.

Use the mkisofs_cmd flag to set the path where you install the genisoimage program. If
genisoimage is on the system path, you do not need to change the default value.

To use a config drive with Hyper-V, you must set the mkisofs_cmd value to the full path to an
mkisofs.exe installation. Additionally, you must set the qemu_img_cmd value in the hyperv
configuration section to the full path to an qemu-img command installation.

Possible values:

3.5. Reference Material 467

Nova Documentation, Release 22.4.1.dev41

• Name of the ISO image creator program, in case it is in the same directory as the nova-
compute service

• Path to ISO image creator program

Related options:

• This option is meaningful when config drives are enabled.

• To use config drive with Hyper-V, you must set the qemu_img_cmd value in the hyperv
configuration section to the full path to an qemu-img command installation.

my_ip

Type string

Default <host_ipv4>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

The IP address which the host is using to connect to the management network.

Possible values:

• String with valid IP address. Default is IPv4 address of this host.

Related options:

• my_block_storage_ip

my_block_storage_ip

Type string

Default $my_ip

The IP address which is used to connect to the block storage network.

Possible values:

• String with valid IP address. Default is IP address of this host.

Related options:

• my_ip - if my_block_storage_ip is not set, then my_ip value is used.

host

Type string

Default <current_hostname>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Hostname, FQDN or IP address of this host.

Used as:

• the oslo.messaging queue name for nova-compute worker

• we use this value for the binding_host sent to neutron. This means if you use a neutron
agent, it should have the same value for host.

• cinder host attachment information

3.5. Reference Material 468

Nova Documentation, Release 22.4.1.dev41

Must be valid within AMQP key.

Possible values:

• String with hostname, FQDN or IP address. Default is hostname of this host.

flat_injected

Type boolean

Default False

This option determines whether the network setup information is injected into the VM before it
is booted. While it was originally designed to be used only by nova-network, it is also used by
the vmware virt driver to control whether network information is injected into a VM. The libvirt
virt driver also uses it when we use config_drive to configure network to control whether network
information is injected into a VM.

record

Type string

Default <None>

Filename that will be used for storing websocket frames received and sent by a proxy service (like
VNC, spice, serial) running on this host. If this is not set, no recording will be done.

daemon

Type boolean

Default False

Run as a background process.

ssl_only

Type boolean

Default False

Disallow non-encrypted connections.

Related options:

• cert

• key

source_is_ipv6

Type boolean

Default False

Set to True if source host is addressed with IPv6.

cert

Type string

Default self.pem

Path to SSL certificate file.

Related options:

3.5. Reference Material 469

Nova Documentation, Release 22.4.1.dev41

• key

• ssl_only

• [console] ssl_ciphers

• [console] ssl_minimum_version

key

Type string

Default <None>

SSL key file (if separate from cert).

Related options:

• cert

web

Type string

Default /usr/share/spice-html5

Path to directory with content which will be served by a web server.

pybasedir

Type string

Default <Path>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

The directory where the Nova python modules are installed.

This directory is used to store template files for networking and remote console access. It is
also the default path for other config options which need to persist Nova internal data. It is very
unlikely that you need to change this option from its default value.

Possible values:

• The full path to a directory.

Related options:

• state_path

bindir

Type string

Default /home/zuul/src/opendev.org/openstack/nova/.tox/
docs/local/bin

The directory where the Nova binaries are installed.

This option is only relevant if the networking capabilities from Nova are used (see services below).
Novas networking capabilities are targeted to be fully replaced by Neutron in the future. It is very
unlikely that you need to change this option from its default value.

Possible values:

3.5. Reference Material 470

Nova Documentation, Release 22.4.1.dev41

• The full path to a directory.

state_path

Type string

Default $pybasedir

The top-level directory for maintaining Novas state.

This directory is used to store Novas internal state. It is used by a variety of other config options
which derive from this. In some scenarios (for example migrations) it makes sense to use a storage
location which is shared between multiple compute hosts (for example via NFS). Unless the option
instances_path gets overwritten, this directory can grow very large.

Possible values:

• The full path to a directory. Defaults to value provided in pybasedir.

long_rpc_timeout

Type integer

Default 1800

This option allows setting an alternate timeout value for RPC calls that have the potential to take
a long time. If set, RPC calls to other services will use this value for the timeout (in seconds)
instead of the global rpc_response_timeout value.

Operations with RPC calls that utilize this value:

• live migration

• scheduling

• enabling/disabling a compute service

• image pre-caching

• snapshot-based / cross-cell resize

• resize / cold migration

• volume attach

Related options:

• rpc_response_timeout

report_interval

Type integer

Default 10

Number of seconds indicating how frequently the state of services on a given hypervisor is re-
ported. Nova needs to know this to determine the overall health of the deployment.

Related Options:

• service_down_time report_interval should be less than service_down_time. If ser-
vice_down_time is less than report_interval, services will routinely be considered down,
because they report in too rarely.

service_down_time

3.5. Reference Material 471

Nova Documentation, Release 22.4.1.dev41

Type integer

Default 60

Maximum time in seconds since last check-in for up service

Each compute node periodically updates their database status based on the specified report in-
terval. If the compute node hasnt updated the status for more than service_down_time, then the
compute node is considered down.

Related Options:

• report_interval (service_down_time should not be less than report_interval)

• scheduler.periodic_task_interval

periodic_enable

Type boolean

Default True

Enable periodic tasks.

If set to true, this option allows services to periodically run tasks on the manager.

In case of running multiple schedulers or conductors you may want to run periodic tasks on only
one host - in this case disable this option for all hosts but one.

periodic_fuzzy_delay

Type integer

Default 60

Minimum Value 0

Number of seconds to randomly delay when starting the periodic task scheduler to reduce stam-
peding.

When compute workers are restarted in unison across a cluster, they all end up running the periodic
tasks at the same time causing problems for the external services. To mitigate this behavior,
periodic_fuzzy_delay option allows you to introduce a random initial delay when starting the
periodic task scheduler.

Possible Values:

• Any positive integer (in seconds)

• 0 : disable the random delay

enabled_apis

Type list

Default ['osapi_compute', 'metadata']

List of APIs to be enabled by default.

enabled_ssl_apis

Type list

Default []

3.5. Reference Material 472

Nova Documentation, Release 22.4.1.dev41

List of APIs with enabled SSL.

Nova provides SSL support for the API servers. enabled_ssl_apis option allows configuring the
SSL support.

osapi_compute_listen

Type string

Default 0.0.0.0

IP address on which the OpenStack API will listen.

The OpenStack API service listens on this IP address for incoming requests.

osapi_compute_listen_port

Type port number

Default 8774

Minimum Value 0

Maximum Value 65535

Port on which the OpenStack API will listen.

The OpenStack API service listens on this port number for incoming requests.

osapi_compute_workers

Type integer

Default <None>

Minimum Value 1

Number of workers for OpenStack API service. The default will be the number of CPUs available.

OpenStack API services can be configured to run as multi-process (workers). This overcomes
the problem of reduction in throughput when API request concurrency increases. OpenStack API
service will run in the specified number of processes.

Possible Values:

• Any positive integer

• None (default value)

metadata_listen

Type string

Default 0.0.0.0

IP address on which the metadata API will listen.

The metadata API service listens on this IP address for incoming requests.

metadata_listen_port

Type port number

Default 8775

Minimum Value 0

3.5. Reference Material 473

Nova Documentation, Release 22.4.1.dev41

Maximum Value 65535

Port on which the metadata API will listen.

The metadata API service listens on this port number for incoming requests.

metadata_workers

Type integer

Default <None>

Minimum Value 1

Number of workers for metadata service. If not specified the number of available CPUs will be
used.

The metadata service can be configured to run as multi-process (workers). This overcomes the
problem of reduction in throughput when API request concurrency increases. The metadata ser-
vice will run in the specified number of processes.

Possible Values:

• Any positive integer

• None (default value)

servicegroup_driver

Type string

Default db

Valid Values db, mc

This option specifies the driver to be used for the servicegroup service.

ServiceGroup API in nova enables checking status of a compute node. When a compute worker
running the nova-compute daemon starts, it calls the join API to join the compute group. Services
like nova scheduler can query the ServiceGroup API to check if a node is alive. Internally, the
ServiceGroup client driver automatically updates the compute worker status. There are multiple
backend implementations for this service: Database ServiceGroup driver and Memcache Service-
Group driver.

Related Options:

• service_down_time (maximum time since last check-in for up service)

Possible values

db Database ServiceGroup driver

mc Memcache ServiceGroup driver

3.5. Reference Material 474

Nova Documentation, Release 22.4.1.dev41

api

Options under this group are used to define Nova API.

auth_strategy

Type string

Default keystone

Valid Values keystone, noauth2

Determine the strategy to use for authentication.

Possible values

keystone Use keystone for authentication.

noauth2 Designed for testing only, as it does no actual credential checking. noauth2 provides
administrative credentials only if admin is specified as the username.

Warning: This option is deprecated for removal since 21.0.0. Its value may be silently
ignored in the future.

Reason The only non-default choice, noauth2, is for internal development and
testing purposes only and should not be used in deployments. This option
and its middleware, NoAuthMiddleware[V2_18], will be removed in a fu-
ture release.

use_forwarded_for

Type boolean

Default False

When True, the X-Forwarded-For header is treated as the canonical remote address. When False
(the default), the remote_address header is used.

You should only enable this if you have an HTML sanitizing proxy.

Table 15: Deprecated Variations
Group Name
DEFAULT use_forwarded_for

config_drive_skip_versions

Type string

Default 1.0 2007-01-19 2007-03-01 2007-08-29 2007-10-10
2007-12-15 2008-02-01 2008-09-01

When gathering the existing metadata for a config drive, the EC2-style metadata is returned for
all versions that dont appear in this option. As of the Liberty release, the available versions are:

• 1.0

3.5. Reference Material 475

Nova Documentation, Release 22.4.1.dev41

• 2007-01-19

• 2007-03-01

• 2007-08-29

• 2007-10-10

• 2007-12-15

• 2008-02-01

• 2008-09-01

• 2009-04-04

The option is in the format of a single string, with each version separated by a space.

Possible values:

• Any string that represents zero or more versions, separated by spaces.

Table 16: Deprecated Variations
Group Name
DEFAULT config_drive_skip_versions

vendordata_providers

Type list

Default ['StaticJSON']

A list of vendordata providers.

vendordata providers are how deployers can provide metadata via configdrive and metadata that
is specific to their deployment.

For more information on the requirements for implementing a vendordata dynamic endpoint,
please see the vendordata.rst file in the nova developer reference.

Related options:

• vendordata_dynamic_targets

• vendordata_dynamic_ssl_certfile

• vendordata_dynamic_connect_timeout

• vendordata_dynamic_read_timeout

• vendordata_dynamic_failure_fatal

Table 17: Deprecated Variations
Group Name
DEFAULT vendordata_providers

vendordata_dynamic_targets

Type list

Default []

3.5. Reference Material 476

Nova Documentation, Release 22.4.1.dev41

A list of targets for the dynamic vendordata provider. These targets are of the form
<name>@<url>.

The dynamic vendordata provider collects metadata by contacting external REST services and
querying them for information about the instance. This behaviour is documented in the vendor-
data.rst file in the nova developer reference.

Table 18: Deprecated Variations
Group Name
DEFAULT vendordata_dynamic_targets

vendordata_dynamic_ssl_certfile

Type string

Default ''

Path to an optional certificate file or CA bundle to verify dynamic vendordata REST services ssl
certificates against.

Possible values:

• An empty string, or a path to a valid certificate file

Related options:

• vendordata_providers

• vendordata_dynamic_targets

• vendordata_dynamic_connect_timeout

• vendordata_dynamic_read_timeout

• vendordata_dynamic_failure_fatal

Table 19: Deprecated Variations
Group Name
DEFAULT vendordata_dynamic_ssl_certfile

vendordata_dynamic_connect_timeout

Type integer

Default 5

Minimum Value 3

Maximum wait time for an external REST service to connect.

Possible values:

• Any integer with a value greater than three (the TCP packet retransmission timeout). Note
that instance start may be blocked during this wait time, so this value should be kept small.

Related options:

• vendordata_providers

• vendordata_dynamic_targets

3.5. Reference Material 477

Nova Documentation, Release 22.4.1.dev41

• vendordata_dynamic_ssl_certfile

• vendordata_dynamic_read_timeout

• vendordata_dynamic_failure_fatal

Table 20: Deprecated Variations
Group Name
DEFAULT vendordata_dynamic_connect_timeout

vendordata_dynamic_read_timeout

Type integer

Default 5

Minimum Value 0

Maximum wait time for an external REST service to return data once connected.

Possible values:

• Any integer. Note that instance start is blocked during this wait time, so this value should be
kept small.

Related options:

• vendordata_providers

• vendordata_dynamic_targets

• vendordata_dynamic_ssl_certfile

• vendordata_dynamic_connect_timeout

• vendordata_dynamic_failure_fatal

Table 21: Deprecated Variations
Group Name
DEFAULT vendordata_dynamic_read_timeout

vendordata_dynamic_failure_fatal

Type boolean

Default False

Should failures to fetch dynamic vendordata be fatal to instance boot?

Related options:

• vendordata_providers

• vendordata_dynamic_targets

• vendordata_dynamic_ssl_certfile

• vendordata_dynamic_connect_timeout

• vendordata_dynamic_read_timeout

metadata_cache_expiration

3.5. Reference Material 478

Nova Documentation, Release 22.4.1.dev41

Type integer

Default 15

Minimum Value 0

This option is the time (in seconds) to cache metadata. When set to 0, metadata caching is dis-
abled entirely; this is generally not recommended for performance reasons. Increasing this setting
should improve response times of the metadata API when under heavy load. Higher values may
increase memory usage, and result in longer times for host metadata changes to take effect.

Table 22: Deprecated Variations
Group Name
DEFAULT metadata_cache_expiration

local_metadata_per_cell

Type boolean

Default False

Indicates that the nova-metadata API service has been deployed per-cell, so that we can have bet-
ter performance and data isolation in a multi-cell deployment. Users should consider the use of
this configuration depending on how neutron is setup. If you have networks that span cells, you
might need to run nova-metadata API service globally. If your networks are segmented along cell
boundaries, then you can run nova-metadata API service per cell. When running nova-metadata
API service per cell, you should also configure each Neutron metadata-agent to point to the cor-
responding nova-metadata API service.

dhcp_domain

Type string

Default novalocal

Domain name used to configure FQDN for instances.

Configure a fully-qualified domain name for instance hostnames. If unset, only the hostname
without a domain will be configured.

Possible values:

• Any string that is a valid domain name.

Table 23: Deprecated Variations
Group Name
DEFAULT dhcp_domain

vendordata_jsonfile_path

Type string

Default <None>

Cloud providers may store custom data in vendor data file that will then be available to the in-
stances via the metadata service, and to the rendering of config-drive. The default class for this,
JsonFileVendorData, loads this information from a JSON file, whose path is configured by this
option. If there is no path set by this option, the class returns an empty dictionary.

3.5. Reference Material 479

Nova Documentation, Release 22.4.1.dev41

Note that when using this to provide static vendor data to a configuration drive, the nova-compute
service must be configured with this option and the file must be accessible from the nova-compute
host.

Possible values:

• Any string representing the path to the data file, or an empty string (default).

Table 24: Deprecated Variations
Group Name
DEFAULT vendordata_jsonfile_path

max_limit

Type integer

Default 1000

Minimum Value 0

As a query can potentially return many thousands of items, you can limit the maximum number
of items in a single response by setting this option.

Table 25: Deprecated Variations
Group Name
DEFAULT osapi_max_limit

compute_link_prefix

Type string

Default <None>

This string is prepended to the normal URL that is returned in links to the OpenStack Compute
API. If it is empty (the default), the URLs are returned unchanged.

Possible values:

• Any string, including an empty string (the default).

Table 26: Deprecated Variations
Group Name
DEFAULT osapi_compute_link_prefix

glance_link_prefix

Type string

Default <None>

This string is prepended to the normal URL that is returned in links to Glance resources. If it is
empty (the default), the URLs are returned unchanged.

Possible values:

• Any string, including an empty string (the default).

3.5. Reference Material 480

Nova Documentation, Release 22.4.1.dev41

Table 27: Deprecated Variations
Group Name
DEFAULT osapi_glance_link_prefix

instance_list_per_project_cells

Type boolean

Default False

When enabled, this will cause the API to only query cell databases in which the tenant has mapped
instances. This requires an additional (fast) query in the API database before each list, but also
(potentially) limits the number of cell databases that must be queried to provide the result. If you
have a small number of cells, or tenants are likely to have instances in all cells, then this should
be False. If you have many cells, especially if you confine tenants to a small subset of those cells,
this should be True.

instance_list_cells_batch_strategy

Type string

Default distributed

Valid Values distributed, fixed

This controls the method by which the API queries cell databases in smaller batches during large
instance list operations. If batching is performed, a large instance list operation will request some
fraction of the overall API limit from each cell database initially, and will re-request that same
batch size as records are consumed (returned) from each cell as necessary. Larger batches mean
less chattiness between the API and the database, but potentially more wasted effort processing
the results from the database which will not be returned to the user. Any strategy will yield a batch
size of at least 100 records, to avoid a user causing many tiny database queries in their request.

Related options:

• instance_list_cells_batch_fixed_size

• max_limit

Possible values

distributed Divide the limit requested by the user by the number of cells in the system. This
requires counting the cells in the system initially, which will not be refreshed until service
restart or SIGHUP. The actual batch size will be increased by 10% over the result of ($limit
/ $num_cells).

fixed Request fixed-size batches from each cell, as defined by
instance_list_cells_batch_fixed_size. If the limit is smaller than the
batch size, the limit will be used instead. If you do not wish batching to be used at all,
setting the fixed size equal to the max_limit value will cause only one request per cell
database to be issued.

instance_list_cells_batch_fixed_size

Type integer

3.5. Reference Material 481

Nova Documentation, Release 22.4.1.dev41

Default 100

Minimum Value 100

This controls the batch size of instances requested from each cell database if
instance_list_cells_batch_strategy` is set to fixed. This integral value
will define the limit issued to each cell every time a batch of instances is requested, regardless
of the number of cells in the system or any other factors. Per the general logic called out in the
documentation for instance_list_cells_batch_strategy, the minimum value for
this is 100 records per batch.

Related options:

• instance_list_cells_batch_strategy

• max_limit

list_records_by_skipping_down_cells

Type boolean

Default True

When set to False, this will cause the API to return a 500 error if there is an infrastructure failure
like non-responsive cells. If you want the API to skip the down cells and return the results from
the up cells set this option to True.

Note that from API microversion 2.69 there could be transient conditions in the deployment where
certain records are not available and the results could be partial for certain requests containing
those records. In those cases this option will be ignored. See Handling Down Cells section
of the Compute API guide (https://docs.openstack.org/api-guide/compute/down_cells.html) for
more information.

use_neutron_default_nets

Type boolean

Default False

When True, the TenantNetworkController will query the Neutron API to get the default networks
to use.

Related options:

• neutron_default_tenant_id

Table 28: Deprecated Variations
Group Name
DEFAULT use_neutron_default_nets

neutron_default_tenant_id

Type string

Default default

Tenant ID for getting the default network from Neutron API (also referred in some places as the
project ID) to use.

Related options:

3.5. Reference Material 482

https://docs.openstack.org/api-guide/compute/down_cells.html

Nova Documentation, Release 22.4.1.dev41

• use_neutron_default_nets

Table 29: Deprecated Variations
Group Name
DEFAULT neutron_default_tenant_id

enable_instance_password

Type boolean

Default True

Enables returning of the instance password by the relevant server API calls such as create, rebuild,
evacuate, or rescue. If the hypervisor does not support password injection, then the password
returned will not be correct, so if your hypervisor does not support password injection, set this to
False.

Table 30: Deprecated Variations
Group Name
DEFAULT enable_instance_password

api_database

The Nova API Database is a separate database which is used for information which is used across cells.
This database is mandatory since the Mitaka release (13.0.0).

This group should not be configured for the nova-compute service.

connection

Type string

Default <None>

The SQLAlchemy connection string to use to connect to the database. Do not set this for the
nova-compute service.

connection_parameters

Type string

Default ''

Optional URL parameters to append onto the connection URL at connect time; specify as
param1=value1¶m2=value2&

sqlite_synchronous

Type boolean

Default True

If True, SQLite uses synchronous mode.

slave_connection

Type string

3.5. Reference Material 483

Nova Documentation, Release 22.4.1.dev41

Default <None>

The SQLAlchemy connection string to use to connect to the slave database.

mysql_sql_mode

Type string

Default TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

connection_recycle_time

Type integer

Default 3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

Table 31: Deprecated Variations
Group Name
api_database idle_timeout

max_pool_size

Type integer

Default <None>

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries

Type integer

Default 10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

retry_interval

Type integer

Default 10

Interval between retries of opening a SQL connection.

max_overflow

Type integer

Default <None>

If set, use this value for max_overflow with SQLAlchemy.

connection_debug

Type integer

3.5. Reference Material 484

Nova Documentation, Release 22.4.1.dev41

Default 0

Verbosity of SQL debugging information: 0=None, 100=Everything.

connection_trace

Type boolean

Default False

Add Python stack traces to SQL as comment strings.

pool_timeout

Type integer

Default <None>

If set, use this value for pool_timeout with SQLAlchemy.

barbican

barbican_endpoint

Type string

Default <None>

Use this endpoint to connect to Barbican, for example: http://localhost:9311/

barbican_api_version

Type string

Default <None>

Version of the Barbican API, for example: v1

auth_endpoint

Type string

Default http://localhost/identity/v3

Use this endpoint to connect to Keystone

Table 32: Deprecated Variations
Group Name
key_manager auth_url

retry_delay

Type integer

Default 1

Number of seconds to wait before retrying poll for key creation completion

number_of_retries

Type integer

Default 60

3.5. Reference Material 485

http://localhost:9311/

Nova Documentation, Release 22.4.1.dev41

Number of times to retry poll for key creation completion

verify_ssl

Type boolean

Default True

Specifies if insecure TLS (https) requests. If False, the servers certificate will not be validated, if
True, we can set the verify_ssl_path config meanwhile.

verify_ssl_path

Type string

Default <None>

A path to a bundle or CA certs to check against, or None for requests to attempt to locate and use
certificates which verify_ssh is True. If verify_ssl is False, this is ignored.

barbican_endpoint_type

Type string

Default public

Valid Values public, internal, admin

Specifies the type of endpoint. Allowed values are: public, private, and admin

cache

config_prefix

Type string

Default cache.oslo

Prefix for building the configuration dictionary for the cache region. This should not need to be
changed unless there is another dogpile.cache region with the same configuration name.

expiration_time

Type integer

Default 600

Default TTL, in seconds, for any cached item in the dogpile.cache region. This applies to any
cached method that doesnt have an explicit cache expiration time defined for it.

backend

Type string

Default dogpile.cache.null

Valid Values oslo_cache.memcache_pool, oslo_cache.dict, oslo_cache.mongo,
oslo_cache.etcd3gw, dogpile.cache.memcached, dogpile.cache.pylibmc,
dogpile.cache.bmemcached, dogpile.cache.dbm, dogpile.cache.redis, dog-
pile.cache.memory, dogpile.cache.memory_pickle, dogpile.cache.null

3.5. Reference Material 486

Nova Documentation, Release 22.4.1.dev41

Cache backend module. For eventlet-based or environments with hundreds of threaded servers,
Memcache with pooling (oslo_cache.memcache_pool) is recommended. For environments
with less than 100 threaded servers, Memcached (dogpile.cache.memcached) or Redis (dog-
pile.cache.redis) is recommended. Test environments with a single instance of the server can
use the dogpile.cache.memory backend.

backend_argument

Type multi-valued

Default ''

Arguments supplied to the backend module. Specify this option once per argument to be passed
to the dogpile.cache backend. Example format: <argname>:<value>.

proxies

Type list

Default []

Proxy classes to import that will affect the way the dogpile.cache backend functions. See the
dogpile.cache documentation on changing-backend-behavior.

enabled

Type boolean

Default False

Global toggle for caching.

debug_cache_backend

Type boolean

Default False

Extra debugging from the cache backend (cache keys, get/set/delete/etc calls). This is only really
useful if you need to see the specific cache-backend get/set/delete calls with the keys/values.
Typically this should be left set to false.

memcache_servers

Type list

Default ['localhost:11211']

Memcache servers in the format of host:port. (dogpile.cache.memcached and
oslo_cache.memcache_pool backends only). If a given host refer to an IPv6 or a given
domain refer to IPv6 then you should prefix the given address with the address family
(inet6) (e.g inet6[::1]:11211, inet6:[fd12:3456:789a:1::1]:11211,
inet6:[controller-0.internalapi]:11211). If the address family is not given then
default address family used will be inet which correspond to IPv4

memcache_dead_retry

Type integer

Default 300

Number of seconds memcached server is considered dead before it is tried again. (dog-
pile.cache.memcache and oslo_cache.memcache_pool backends only).

3.5. Reference Material 487

Nova Documentation, Release 22.4.1.dev41

memcache_socket_timeout

Type floating point

Default 1.0

Timeout in seconds for every call to a server. (dogpile.cache.memcache and
oslo_cache.memcache_pool backends only).

memcache_pool_maxsize

Type integer

Default 10

Max total number of open connections to every memcached server. (oslo_cache.memcache_pool
backend only).

memcache_pool_unused_timeout

Type integer

Default 60

Number of seconds a connection to memcached is held unused in the pool before it is closed.
(oslo_cache.memcache_pool backend only).

memcache_pool_connection_get_timeout

Type integer

Default 10

Number of seconds that an operation will wait to get a memcache client connection.

tls_enabled

Type boolean

Default False

Global toggle for TLS usage when comunicating with the caching servers.

tls_cafile

Type string

Default <None>

Path to a file of concatenated CA certificates in PEM format necessary to establish the caching
servers authenticity. If tls_enabled is False, this option is ignored.

tls_certfile

Type string

Default <None>

Path to a single file in PEM format containing the clients certificate as well as any number of CA
certificates needed to establish the certificates authenticity. This file is only required when client
side authentication is necessary. If tls_enabled is False, this option is ignored.

tls_keyfile

Type string

3.5. Reference Material 488

Nova Documentation, Release 22.4.1.dev41

Default <None>

Path to a single file containing the clients private key in. Otherwhise the private key will be taken
from the file specified in tls_certfile. If tls_enabled is False, this option is ignored.

tls_allowed_ciphers

Type string

Default <None>

Set the available ciphers for sockets created with the TLS context. It should be a string in the
OpenSSL cipher list format. If not specified, all OpenSSL enabled ciphers will be available.

enable_socket_keepalive

Type boolean

Default False

Global toggle for the socket keepalive of dogpiles pymemcache backend

socket_keepalive_idle

Type integer

Default 1

Minimum Value 0

The time (in seconds) the connection needs to remain idle before TCP starts sending keepalive
probes. Should be a positive integer most greater than zero.

socket_keepalive_interval

Type integer

Default 1

Minimum Value 0

The time (in seconds) between individual keepalive probes. Should be a positive integer greater
than zero.

socket_keepalive_count

Type integer

Default 1

Minimum Value 0

The maximum number of keepalive probes TCP should send before dropping the connection.
Should be a positive integer greater than zero.

enable_retry_client

Type boolean

Default False

Enable retry client mechanisms to handle failure. Those mechanisms can be used to wrap all kind
of pymemcache clients. The wrapper allows you to define how many attempts to make and how
long to wait between attemots.

retry_attempts

3.5. Reference Material 489

Nova Documentation, Release 22.4.1.dev41

Type integer

Default 2

Minimum Value 1

Number of times to attempt an action before failing.

retry_delay

Type floating point

Default 0

Number of seconds to sleep between each attempt.

hashclient_retry_attempts

Type integer

Default 2

Minimum Value 1

Amount of times a client should be tried before it is marked dead and removed from the pool in
the HashClients internal mechanisms.

hashclient_retry_delay

Type floating point

Default 1

Time in seconds that should pass between retry attempts in the HashClients internal mechanisms.

dead_timeout

Type floating point

Default 60

Time in seconds before attempting to add a node back in the pool in the HashClients internal
mechanisms.

cinder

catalog_info

Type string

Default volumev3::publicURL

Info to match when looking for cinder in the service catalog.

The <service_name> is optional and omitted by default since it should not be necessary in
most deployments.

Possible values:

• Format is separated values of the form: <service_type>:<service_name>:<endpoint_type>

Note: Nova does not support the Cinder v2 API since the Nova 17.0.0 Queens release.

Related options:

3.5. Reference Material 490

Nova Documentation, Release 22.4.1.dev41

• endpoint_template - Setting this option will override catalog_info

endpoint_template

Type string

Default <None>

If this option is set then it will override service catalog lookup with this template for cinder end-
point

Possible values:

• URL for cinder endpoint API e.g. http://localhost:8776/v3/%(project_id)s

Note: Nova does not support the Cinder v2 API since the Nova 17.0.0 Queens release.

Related options:

• catalog_info - If endpoint_template is not set, catalog_info will be used.

os_region_name

Type string

Default <None>

Region name of this node. This is used when picking the URL in the service catalog.

Possible values:

• Any string representing region name

http_retries

Type integer

Default 3

Minimum Value 0

Number of times cinderclient should retry on any failed http call. 0 means connection is attempted
only once. Setting it to any positive integer means that on failure connection is retried that many
times e.g. setting it to 3 means total attempts to connect will be 4.

Possible values:

• Any integer value. 0 means connection is attempted only once

cross_az_attach

Type boolean

Default True

Allow attach between instance and volume in different availability zones.

If False, volumes attached to an instance must be in the same availability zone in Cinder as the
instance availability zone in Nova.

This also means care should be taken when booting an instance from a volume where source is
not volume because Nova will attempt to create a volume using the same availability zone as what
is assigned to the instance.

If that AZ is not in Cinder (or allow_availability_zone_fallback=False in cin-
der.conf), the volume create request will fail and the instance will fail the build request.

3.5. Reference Material 491

http://localhost:8776/v3/%(project_id)s

Nova Documentation, Release 22.4.1.dev41

By default there is no availability zone restriction on volume attach.

Related options:

• [DEFAULT]/default_schedule_zone

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

Type boolean

Default False

Verify HTTPS connections.

timeout

Type integer

Default <None>

Timeout value for http requests

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

Type boolean

Default False

Log requests to multiple loggers.

auth_type

Type unknown type

Default <None>

3.5. Reference Material 492

Nova Documentation, Release 22.4.1.dev41

Authentication type to load

Table 33: Deprecated Variations
Group Name
cinder auth_plugin

auth_section

Type unknown type

Default <None>

Config Section from which to load plugin specific options

auth_url

Type unknown type

Default <None>

Authentication URL

system_scope

Type unknown type

Default <None>

Scope for system operations

domain_id

Type unknown type

Default <None>

Domain ID to scope to

domain_name

Type unknown type

Default <None>

Domain name to scope to

project_id

Type unknown type

Default <None>

Project ID to scope to

project_name

Type unknown type

Default <None>

Project name to scope to

project_domain_id

Type unknown type

3.5. Reference Material 493

Nova Documentation, Release 22.4.1.dev41

Default <None>

Domain ID containing project

project_domain_name

Type unknown type

Default <None>

Domain name containing project

trust_id

Type unknown type

Default <None>

Trust ID

default_domain_id

Type unknown type

Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type unknown type

Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

user_id

Type unknown type

Default <None>

User ID

username

Type unknown type

Default <None>

Username

Table 34: Deprecated Variations
Group Name
cinder user-name
cinder user_name

user_domain_id

Type unknown type

Default <None>

3.5. Reference Material 494

Nova Documentation, Release 22.4.1.dev41

Users domain id

user_domain_name

Type unknown type

Default <None>

Users domain name

password

Type unknown type

Default <None>

Users password

tenant_id

Type unknown type

Default <None>

Tenant ID

tenant_name

Type unknown type

Default <None>

Tenant Name

compute

consecutive_build_service_disable_threshold

Type integer

Default 10

Enables reporting of build failures to the scheduler.

Any nonzero value will enable sending build failure statistics to the scheduler for use by the
BuildFailureWeigher.

Possible values:

• Any positive integer enables reporting build failures.

• Zero to disable reporting build failures.

Related options:

• [filter_scheduler]/build_failure_weight_multiplier

shutdown_retry_interval

Type integer

Default 10

Minimum Value 1

3.5. Reference Material 495

Nova Documentation, Release 22.4.1.dev41

Time to wait in seconds before resending an ACPI shutdown signal to instances.

The overall time to wait is set by shutdown_timeout.

Possible values:

• Any integer greater than 0 in seconds

Related options:

• shutdown_timeout

resource_provider_association_refresh

Type integer

Default 300

Minimum Value 0

Mutable This option can be changed without restarting.

Interval for updating nova-compute-side cache of the compute node resource providers invento-
ries, aggregates, and traits.

This option specifies the number of seconds between attempts to update a providers inventories,
aggregates and traits in the local cache of the compute node.

A value of zero disables cache refresh completely.

The cache can be cleared manually at any time by sending SIGHUP to the compute process,
causing it to be repopulated the next time the data is accessed.

Possible values:

• Any positive integer in seconds, or zero to disable refresh.

cpu_shared_set

Type string

Default <None>

Mask of host CPUs that can be used for VCPU resources and offloaded emulator threads.

The behavior of this option depends on the definition of the deprecated vcpu_pin_set option.

• If vcpu_pin_set is not defined, [compute] cpu_shared_set will be be used to
provide VCPU inventory and to determine the host CPUs that unpinned instances can be
scheduled to. It will also be used to determine the host CPUS that instance emulator threads
should be offloaded to for instances configured with the share emulator thread policy
(hw:emulator_threads_policy=share).

• If vcpu_pin_set is defined, [compute] cpu_shared_set will only be
used to determine the host CPUs that instance emulator threads should be of-
floaded to for instances configured with the share emulator thread policy
(hw:emulator_threads_policy=share). vcpu_pin_set will be used to
provide VCPU inventory and to determine the host CPUs that both pinned and unpinned
instances can be scheduled to.

This behavior will be simplified in a future release when vcpu_pin_set is removed.

Possible values:

3.5. Reference Material 496

Nova Documentation, Release 22.4.1.dev41

• A comma-separated list of physical CPU numbers that instance VCPUs can be allocated
from. Each element should be either a single CPU number, a range of CPU numbers, or a
caret followed by a CPU number to be excluded from a previous range. For example:

cpu_shared_set = "4-12,^8,15"

Related options:

• [compute] cpu_dedicated_set: This is the counterpart option for defining where
PCPU resources should be allocated from.

• vcpu_pin_set: A legacy option whose definition may change the behavior of this option.

cpu_dedicated_set

Type string

Default <None>

Mask of host CPUs that can be used for PCPU resources.

The behavior of this option affects the behavior of the deprecated vcpu_pin_set option.

• If this option is defined, defining vcpu_pin_set will result in an error.

• If this option is not defined, vcpu_pin_set will be used to determine inventory for VCPU
resources and to limit the host CPUs that both pinned and unpinned instances can be sched-
uled to.

This behavior will be simplified in a future release when vcpu_pin_set is removed.

Possible values:

• A comma-separated list of physical CPU numbers that instance VCPUs can be allocated
from. Each element should be either a single CPU number, a range of CPU numbers, or a
caret followed by a CPU number to be excluded from a previous range. For example:

cpu_dedicated_set = "4-12,^8,15"

Related options:

• [compute] cpu_shared_set: This is the counterpart option for defining where VCPU
resources should be allocated from.

• vcpu_pin_set: A legacy option that this option partially replaces.

live_migration_wait_for_vif_plug

Type boolean

Default True

Determine if the source compute host should wait for a network-vif-plugged event from
the (neutron) networking service before starting the actual transfer of the guest to the destination
compute host.

Note that this option is read on the destination host of a live migration. If you set this option the
same on all of your compute hosts, which you should do if you use the same networking backend
universally, you do not have to worry about this.

Before starting the transfer of the guest, some setup occurs on the destination compute host, in-
cluding plugging virtual interfaces. Depending on the networking backend on the destination

3.5. Reference Material 497

Nova Documentation, Release 22.4.1.dev41

host, a network-vif-plugged event may be triggered and then received on the source com-
pute host and the source compute can wait for that event to ensure networking is set up on the
destination host before starting the guest transfer in the hypervisor.

Note: The compute service cannot reliably determine which types of virtual interfaces (port.
binding:vif_type) will send network-vif-plugged events without an accompanying
port binding:host_id change. Open vSwitch and linuxbridge should be OK, but Open-
Daylight is at least one known backend that will not currently work in this case, see bug
https://launchpad.net/bugs/1755890 for more details.

Possible values:

• True: wait for network-vif-plugged events before starting guest transfer

• False: do not wait for network-vif-plugged events before starting guest transfer (this
is the legacy behavior)

Related options:

• [DEFAULT]/vif_plugging_is_fatal: if live_migration_wait_for_vif_plug is
True and vif_plugging_timeout is greater than 0, and a timeout is reached, the live
migration process will fail with an error but the guest transfer will not have started to the
destination host

• [DEFAULT]/vif_plugging_timeout: if live_migration_wait_for_vif_plug is
True, this controls the amount of time to wait before timing out and either failing if
vif_plugging_is_fatal is True, or simply continuing with the live migration

max_concurrent_disk_ops

Type integer

Default 0

Minimum Value 0

Number of concurrent disk-IO-intensive operations (glance image downloads, image format con-
versions, etc.) that we will do in parallel. If this is set too high then response time suffers. The
default value of 0 means no limit.

max_disk_devices_to_attach

Type integer

Default -1

Minimum Value -1

Maximum number of disk devices allowed to attach to a single server. Note that the number of
disks supported by an server depends on the bus used. For example, the ide disk bus is limited to
4 attached devices. The configured maximum is enforced during server create, rebuild, evacuate,
unshelve, live migrate, and attach volume.

Usually, disk bus is determined automatically from the device type or disk device, and the virtu-
alization type. However, disk bus can also be specified via a block device mapping or an image
property. See the disk_bus field in Block Device Mapping in Nova for more information about
specifying disk bus in a block device mapping, and see https://docs.openstack.org/glance/latest/

3.5. Reference Material 498

https://launchpad.net/bugs/1755890
https://docs.openstack.org/glance/latest/admin/useful-image-properties.html
https://docs.openstack.org/glance/latest/admin/useful-image-properties.html

Nova Documentation, Release 22.4.1.dev41

admin/useful-image-properties.html for more information about the hw_disk_bus image prop-
erty.

Operators changing the [compute]/max_disk_devices_to_attach on a compute ser-
vice that is hosting servers should be aware that it could cause rebuilds to fail, if the
maximum is decreased lower than the number of devices already attached to servers. For
example, if server A has 26 devices attached and an operators changes [compute]/
max_disk_devices_to_attach to 20, a request to rebuild server A will fail and go into
ERROR state because 26 devices are already attached and exceed the new configured maximum
of 20.

Operators setting [compute]/max_disk_devices_to_attach should also be aware that
during a cold migration, the configured maximum is only enforced in-place and the destination is
not checked before the move. This means if an operator has set a maximum of 26 on compute host
A and a maximum of 20 on compute host B, a cold migration of a server with 26 attached devices
from compute host A to compute host B will succeed. Then, once the server is on compute host
B, a subsequent request to rebuild the server will fail and go into ERROR state because 26 devices
are already attached and exceed the configured maximum of 20 on compute host B.

The configured maximum is not enforced on shelved offloaded servers, as they have no compute
host.

Warning: If this option is set to 0, the nova-compute service will fail to start, as 0 disk
devices is an invalid configuration that would prevent instances from being able to boot.

Possible values:

• -1 means unlimited

• Any integer >= 1 represents the maximum allowed. A value of 0 will cause the
nova-compute service to fail to start, as 0 disk devices is an invalid configuration that
would prevent instances from being able to boot.

provider_config_location

Type string

Default /etc/nova/provider_config/

Location of YAML files containing resource provider configuration data.

These files allow the operator to specify additional custom inventory and traits to assign to one or
more resource providers.

Additional documentation is available here:

https://docs.openstack.org/nova/latest/admin/managing-resource-providers.html

vmdk_allowed_types

Type list

Default ['streamOptimized', 'monolithicSparse']

A list of strings describing allowed VMDK create-type subformats that will be allowed. This is
recommended to only include single-file-with-sparse-header variants to avoid potential host file
exposure due to processing named extents. If this list is empty, then no form of VMDK image
will be allowed.

3.5. Reference Material 499

https://docs.openstack.org/glance/latest/admin/useful-image-properties.html
https://docs.openstack.org/glance/latest/admin/useful-image-properties.html
https://docs.openstack.org/nova/latest/admin/managing-resource-providers.html

Nova Documentation, Release 22.4.1.dev41

conductor

Options under this group are used to define Conductors communication, which manager should be act
as a proxy between computes and database, and finally, how many worker processes will be used.

workers

Type integer

Default <None>

Number of workers for OpenStack Conductor service. The default will be the number of CPUs
available.

console

Options under this group allow to tune the configuration of the console proxy service.

Note: in configuration of every compute is a console_host option, which allows to select the console
proxy service to connect to.

allowed_origins

Type list

Default []

Adds list of allowed origins to the console websocket proxy to allow connections from other origin
hostnames. Websocket proxy matches the host header with the origin header to prevent cross-site
requests. This list specifies if any there are values other than host are allowed in the origin header.

Possible values:

• A list where each element is an allowed origin hostnames, else an empty list

Table 35: Deprecated Variations
Group Name
DEFAULT console_allowed_origins

ssl_ciphers

Type string

Default <None>

OpenSSL cipher preference string that specifies what ciphers to allow for TLS connections from
clients. For example:

ssl_ciphers = "kEECDH+aECDSA+AES:kEECDH+AES+aRSA:kEDH+aRSA+AES"

See the man page for the OpenSSL ciphers command for details of the cipher preference string
format and allowed values:

https://www.openssl.org/docs/man1.1.0/man1/ciphers.html

Related options:

• [DEFAULT] cert

3.5. Reference Material 500

Nova Documentation, Release 22.4.1.dev41

• [DEFAULT] key

ssl_minimum_version

Type string

Default default

Valid Values default, tlsv1_1, tlsv1_2, tlsv1_3

Minimum allowed SSL/TLS protocol version.

Related options:

• [DEFAULT] cert

• [DEFAULT] key

Possible values

default Use the underlying system OpenSSL defaults

tlsv1_1 Require TLS v1.1 or greater for TLS connections

tlsv1_2 Require TLS v1.2 or greater for TLS connections

tlsv1_3 Require TLS v1.3 or greater for TLS connections

consoleauth

token_ttl

Type integer

Default 600

Minimum Value 0

The lifetime of a console auth token (in seconds).

A console auth token is used in authorizing console access for a user. Once the auth token time to
live count has elapsed, the token is considered expired. Expired tokens are then deleted.

Table 36: Deprecated Variations
Group Name
DEFAULT console_token_ttl

cors

allowed_origin

Type list

Default <None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

3.5. Reference Material 501

https://horizon.example.com
https://horizon.example.com

Nova Documentation, Release 22.4.1.dev41

allow_credentials

Type boolean

Default True

Indicate that the actual request can include user credentials

expose_headers

Type list

Default ['X-Auth-Token', 'X-Openstack-Request-Id',
'X-Subject-Token', 'X-Service-Token',
'X-OpenStack-Nova-API-Version', 'OpenStack-API-Version']

Indicate which headers are safe to expose to the API. Defaults to HTTP Simple Headers.

max_age

Type integer

Default 3600

Maximum cache age of CORS preflight requests.

allow_methods

Type list

Default ['GET', 'PUT', 'POST', 'DELETE', 'PATCH']

Indicate which methods can be used during the actual request.

allow_headers

Type list

Default ['X-Auth-Token', 'X-Openstack-Request-Id',
'X-Identity-Status', 'X-Roles', 'X-Service-Catalog',
'X-User-Id', 'X-Tenant-Id', 'X-OpenStack-Nova-API-Version',
'OpenStack-API-Version']

Indicate which header field names may be used during the actual request.

cyborg

Configuration options for Cyborg (accelerator as a service).

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

3.5. Reference Material 502

Nova Documentation, Release 22.4.1.dev41

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

Type boolean

Default False

Verify HTTPS connections.

timeout

Type integer

Default <None>

Timeout value for http requests

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

Type boolean

Default False

Log requests to multiple loggers.

service_type

Type string

Default accelerator

The default service_type for endpoint URL discovery.

service_name

Type string

Default <None>

The default service_name for endpoint URL discovery.

valid_interfaces

Type list

Default ['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

region_name

Type string

3.5. Reference Material 503

Nova Documentation, Release 22.4.1.dev41

Default <None>

The default region_name for endpoint URL discovery.

endpoint_override

Type string

Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

connect_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

status_code_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

database

sqlite_synchronous

Type boolean

Default True

If True, SQLite uses synchronous mode.

Table 37: Deprecated Variations
Group Name
DEFAULT sqlite_synchronous

3.5. Reference Material 504

Nova Documentation, Release 22.4.1.dev41

backend

Type string

Default sqlalchemy

The back end to use for the database.

Table 38: Deprecated Variations
Group Name
DEFAULT db_backend

connection

Type string

Default <None>

The SQLAlchemy connection string to use to connect to the database.

Table 39: Deprecated Variations
Group Name
DEFAULT sql_connection
DATABASE sql_connection
sql connection

slave_connection

Type string

Default <None>

The SQLAlchemy connection string to use to connect to the slave database.

mysql_sql_mode

Type string

Default TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_enable_ndb

Type boolean

Default False

If True, transparently enables support for handling MySQL Cluster (NDB).

connection_recycle_time

Type integer

Default 3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

3.5. Reference Material 505

Nova Documentation, Release 22.4.1.dev41

Table 40: Deprecated Variations
Group Name
DATABASE idle_timeout
database idle_timeout
DEFAULT sql_idle_timeout
DATABASE sql_idle_timeout
sql idle_timeout

max_pool_size

Type integer

Default 5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

Table 41: Deprecated Variations
Group Name
DEFAULT sql_max_pool_size
DATABASE sql_max_pool_size

max_retries

Type integer

Default 10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

Table 42: Deprecated Variations
Group Name
DEFAULT sql_max_retries
DATABASE sql_max_retries

retry_interval

Type integer

Default 10

Interval between retries of opening a SQL connection.

Table 43: Deprecated Variations
Group Name
DEFAULT sql_retry_interval
DATABASE reconnect_interval

max_overflow

Type integer

3.5. Reference Material 506

Nova Documentation, Release 22.4.1.dev41

Default 50

If set, use this value for max_overflow with SQLAlchemy.

Table 44: Deprecated Variations
Group Name
DEFAULT sql_max_overflow
DATABASE sqlalchemy_max_overflow

connection_debug

Type integer

Default 0

Minimum Value 0

Maximum Value 100

Verbosity of SQL debugging information: 0=None, 100=Everything.

Table 45: Deprecated Variations
Group Name
DEFAULT sql_connection_debug

connection_trace

Type boolean

Default False

Add Python stack traces to SQL as comment strings.

Table 46: Deprecated Variations
Group Name
DEFAULT sql_connection_trace

pool_timeout

Type integer

Default <None>

If set, use this value for pool_timeout with SQLAlchemy.

Table 47: Deprecated Variations
Group Name
DATABASE sqlalchemy_pool_timeout

use_db_reconnect

Type boolean

Default False

Enable the experimental use of database reconnect on connection lost.

3.5. Reference Material 507

Nova Documentation, Release 22.4.1.dev41

db_retry_interval

Type integer

Default 1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type boolean

Default True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

Type integer

Default 10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

Type integer

Default 20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters

Type string

Default ''

Optional URL parameters to append onto the connection URL at connect time; specify as
param1=value1¶m2=value2&

use_tpool

Type boolean

Default False

Enable the experimental use of thread pooling for all DB API calls

Table 48: Deprecated Variations
Group Name
DEFAULT dbapi_use_tpool

3.5. Reference Material 508

Nova Documentation, Release 22.4.1.dev41

devices

enabled_vgpu_types

Type list

Default []

The vGPU types enabled in the compute node.

Some pGPUs (e.g. NVIDIA GRID K1) support different vGPU types. User can use this option to
specify a list of enabled vGPU types that may be assigned to a guest instance.

If more than one single vGPU type is provided, then for each vGPU type an additional section,
[vgpu_$(VGPU_TYPE)], must be added to the configuration file. Each section then must be
configured with a single configuration option, device_addresses, which should be a list of
PCI addresses corresponding to the physical GPU(s) to assign to this type.

If one or more sections are missing (meaning that a specific type is not wanted to use for at least
one physical GPU) or if no device addresses are provided, then Nova will only use the first type
that was provided by [devices]/enabled_vgpu_types.

If the same PCI address is provided for two different types, nova-compute will return an In-
validLibvirtGPUConfig exception at restart.

An example is as the following:

[devices]
enabled_vgpu_types = nvidia-35, nvidia-36

[vgpu_nvidia-35]
device_addresses = 0000:84:00.0,0000:85:00.0

[vgpu_nvidia-36]
device_addresses = 0000:86:00.0

ephemeral_storage_encryption

enabled

Type boolean

Default False

Enables/disables LVM ephemeral storage encryption.

cipher

Type string

Default aes-xts-plain64

Cipher-mode string to be used.

The cipher and mode to be used to encrypt ephemeral storage. The set of cipher-mode combina-
tions available depends on kernel support. According to the dm-crypt documentation, the cipher
is expected to be in the format: <cipher>-<chainmode>-<ivmode>.

Possible values:

3.5. Reference Material 509

Nova Documentation, Release 22.4.1.dev41

• Any crypto option listed in /proc/crypto.

key_size

Type integer

Default 512

Minimum Value 1

Encryption key length in bits.

The bit length of the encryption key to be used to encrypt ephemeral storage. In XTS mode only
half of the bits are used for encryption key.

filter_scheduler

host_subset_size

Type integer

Default 1

Minimum Value 1

Size of subset of best hosts selected by scheduler.

New instances will be scheduled on a host chosen randomly from a subset of the N best hosts,
where N is the value set by this option.

Setting this to a value greater than 1 will reduce the chance that multiple scheduler processes
handling similar requests will select the same host, creating a potential race condition. By select-
ing a host randomly from the N hosts that best fit the request, the chance of a conflict is reduced.
However, the higher you set this value, the less optimal the chosen host may be for a given request.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

• An integer, where the integer corresponds to the size of a host subset. Any integer is valid,
although any value less than 1 will be treated as 1

Table 49: Deprecated Variations
Group Name
DEFAULT scheduler_host_subset_size

max_io_ops_per_host

Type integer

Default 8

The number of instances that can be actively performing IO on a host.

Instances performing IO includes those in the following states: build, resize, snapshot, migrate,
rescue, unshelve.

3.5. Reference Material 510

Nova Documentation, Release 22.4.1.dev41

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Also note that this setting only affects scheduling if the io_ops_filter
filter is enabled.

Possible values:

• An integer, where the integer corresponds to the max number of instances that can be actively
performing IO on any given host.

Table 50: Deprecated Variations
Group Name
DEFAULT max_io_ops_per_host

max_instances_per_host

Type integer

Default 50

Minimum Value 1

Maximum number of instances that can exist on a host.

If you need to limit the number of instances on any given host, set this option to the maximum
number of instances you want to allow. The NumInstancesFilter and AggregateNumInstancesFil-
ter will reject any host that has at least as many instances as this options value.

This option is only used by the FilterScheduler and its subclasses; if you use a different
scheduler, this option has no effect. Also note that this setting only affects scheduling if the
NumInstancesFilter or AggregateNumInstancesFilter filter is enabled.

Possible values:

• An integer, where the integer corresponds to the max instances that can be scheduled on a
host.

Table 51: Deprecated Variations
Group Name
DEFAULT max_instances_per_host

track_instance_changes

Type boolean

Default True

Enable querying of individual hosts for instance information.

The scheduler may need information about the instances on a host in order to evaluate its filters
and weighers. The most common need for this information is for the (anti-)affinity filters, which
need to choose a host based on the instances already running on a host.

If the configured filters and weighers do not need this information, disabling this option will
improve performance. It may also be disabled when the tracking overhead proves too heavy,
although this will cause classes requiring host usage data to query the database on each request
instead.

3.5. Reference Material 511

Nova Documentation, Release 22.4.1.dev41

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

NOTE: In a multi-cell (v2) setup where the cell MQ is separated from the top-level, computes
cannot directly communicate with the scheduler. Thus, this option cannot be enabled in that
scenario. See also the [workarounds]/disable_group_policy_check_upcall option.

Table 52: Deprecated Variations
Group Name
DEFAULT scheduler_tracks_instance_changes

available_filters

Type multi-valued

Default nova.scheduler.filters.all_filters

Filters that the scheduler can use.

An unordered list of the filter classes the nova scheduler may apply. Only the filters specified in
the enabled_filters option will be used, but any filter appearing in that option must also be included
in this list.

By default, this is set to all filters that are included with nova.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

• A list of zero or more strings, where each string corresponds to the name of a filter that may
be used for selecting a host

Related options:

• enabled_filters

Table 53: Deprecated Variations
Group Name
DEFAULT scheduler_available_filters

enabled_filters

Type list

Default ['AvailabilityZoneFilter', 'ComputeFilter',
'ComputeCapabilitiesFilter', 'ImagePropertiesFilter',
'ServerGroupAntiAffinityFilter', 'ServerGroupAffinityFilter']

Filters that the scheduler will use.

An ordered list of filter class names that will be used for filtering hosts. These filters will be
applied in the order they are listed so place your most restrictive filters first to make the filtering
process more efficient.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

3.5. Reference Material 512

Nova Documentation, Release 22.4.1.dev41

• A list of zero or more strings, where each string corresponds to the name of a filter to be
used for selecting a host

Related options:

• All of the filters in this option must be present in the available_filters option, or a Scheduler-
HostFilterNotFound exception will be raised.

Table 54: Deprecated Variations
Group Name
DEFAULT scheduler_default_filters

weight_classes

Type list

Default ['nova.scheduler.weights.all_weighers']

Weighers that the scheduler will use.

Only hosts which pass the filters are weighed. The weight for any host starts at 0, and the weighers
order these hosts by adding to or subtracting from the weight assigned by the previous weigher.
Weights may become negative. An instance will be scheduled to one of the N most-weighted
hosts, where N is scheduler_host_subset_size.

By default, this is set to all weighers that are included with Nova.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

• A list of zero or more strings, where each string corresponds to the name of a weigher that
will be used for selecting a host

Table 55: Deprecated Variations
Group Name
DEFAULT scheduler_weight_classes

ram_weight_multiplier

Type floating point

Default 1.0

RAM weight multipler ratio.

This option determines how hosts with more or less available RAM are weighed. A positive value
will result in the scheduler preferring hosts with more available RAM, and a negative number
will result in the scheduler preferring hosts with less available RAM. Another way to look at it is
that positive values for this option will tend to spread instances across many hosts, while negative
values will tend to fill up (stack) hosts as much as possible before scheduling to a less-used host.
The absolute value, whether positive or negative, controls how strong the RAM weigher is relative
to other weighers.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Also note that this setting only affects scheduling if the ram weigher is
enabled.

3.5. Reference Material 513

Nova Documentation, Release 22.4.1.dev41

Possible values:

• An integer or float value, where the value corresponds to the multipler ratio for this weigher.

Table 56: Deprecated Variations
Group Name
DEFAULT ram_weight_multiplier

cpu_weight_multiplier

Type floating point

Default 1.0

CPU weight multiplier ratio.

Multiplier used for weighting free vCPUs. Negative numbers indicate stacking rather than spread-
ing.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Also note that this setting only affects scheduling if the cpu weigher is
enabled.

Possible values:

• An integer or float value, where the value corresponds to the multipler ratio for this weigher.

Related options:

• filter_scheduler.weight_classes: This weigher must be added to list of en-
abled weight classes if the weight_classes setting is set to a non-default value.

disk_weight_multiplier

Type floating point

Default 1.0

Disk weight multipler ratio.

Multiplier used for weighing free disk space. Negative numbers mean to stack vs spread.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Also note that this setting only affects scheduling if the disk weigher is
enabled.

Possible values:

• An integer or float value, where the value corresponds to the multipler ratio for this weigher.

Table 57: Deprecated Variations
Group Name
DEFAULT disk_weight_multiplier

io_ops_weight_multiplier

Type floating point

Default -1.0

3.5. Reference Material 514

Nova Documentation, Release 22.4.1.dev41

IO operations weight multipler ratio.

This option determines how hosts with differing workloads are weighed. Negative values, such as
the default, will result in the scheduler preferring hosts with lighter workloads whereas positive
values will prefer hosts with heavier workloads. Another way to look at it is that positive values for
this option will tend to schedule instances onto hosts that are already busy, while negative values
will tend to distribute the workload across more hosts. The absolute value, whether positive or
negative, controls how strong the io_ops weigher is relative to other weighers.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Also note that this setting only affects scheduling if the io_ops weigher
is enabled.

Possible values:

• An integer or float value, where the value corresponds to the multipler ratio for this weigher.

Table 58: Deprecated Variations
Group Name
DEFAULT io_ops_weight_multiplier

pci_weight_multiplier

Type floating point

Default 1.0

Minimum Value 0.0

PCI device affinity weight multiplier.

The PCI device affinity weighter computes a weighting based on the number of PCI devices on
the host and the number of PCI devices requested by the instance. The NUMATopologyFilter
filter must be enabled for this to have any significance. For more information, refer to the filter
documentation:

https://docs.openstack.org/nova/latest/user/filter-scheduler.html

Possible values:

• A positive integer or float value, where the value corresponds to the multiplier ratio for this
weigher.

soft_affinity_weight_multiplier

Type floating point

Default 1.0

Minimum Value 0.0

Multiplier used for weighing hosts for group soft-affinity.

Possible values:

• A non-negative integer or float value, where the value corresponds to weight multiplier for
hosts with group soft affinity.

soft_anti_affinity_weight_multiplier

Type floating point

3.5. Reference Material 515

https://docs.openstack.org/nova/latest/user/filter-scheduler.html

Nova Documentation, Release 22.4.1.dev41

Default 1.0

Minimum Value 0.0

Multiplier used for weighing hosts for group soft-anti-affinity.

Possible values:

• A non-negative integer or float value, where the value corresponds to weight multiplier for
hosts with group soft anti-affinity.

build_failure_weight_multiplier

Type floating point

Default 1000000.0

Multiplier used for weighing hosts that have had recent build failures.

This option determines how much weight is placed on a compute node with recent build failures.
Build failures may indicate a failing, misconfigured, or otherwise ailing compute node, and avoid-
ing it during scheduling may be beneficial. The weight is inversely proportional to the number
of recent build failures the compute node has experienced. This value should be set to some high
value to offset weight given by other enabled weighers due to available resources. To disable
weighing compute hosts by the number of recent failures, set this to zero.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

• An integer or float value, where the value corresponds to the multiplier ratio for this weigher.

Related options:

• [compute]/consecutive_build_service_disable_threshold - Must be nonzero for a compute to
report data considered by this weigher.

cross_cell_move_weight_multiplier

Type floating point

Default 1000000.0

Multiplier used for weighing hosts during a cross-cell move.

This option determines how much weight is placed on a host which is within the same source cell
when moving a server, for example during cross-cell resize. By default, when moving an instance,
the scheduler will prefer hosts within the same cell since cross-cell move operations can be slower
and riskier due to the complicated nature of cross-cell migrations.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Similarly, if your cloud is not configured to support cross-cell migrations,
then this option has no effect.

The value of this configuration option can be overridden per host aggregate by setting the aggre-
gate metadata key with the same name (cross_cell_move_weight_multiplier).

Possible values:

• An integer or float value, where the value corresponds to the multiplier ratio for this weigher.
Positive values mean the weigher will prefer hosts within the same cell in which the instance

3.5. Reference Material 516

Nova Documentation, Release 22.4.1.dev41

is currently running. Negative values mean the weigher will prefer hosts in other cells from
which the instance is currently running.

shuffle_best_same_weighed_hosts

Type boolean

Default False

Enable spreading the instances between hosts with the same best weight.

Enabling it is beneficial for cases when host_subset_size is 1 (default), but there is a large number
of hosts with same maximal weight. This scenario is common in Ironic deployments where there
are typically many baremetal nodes with identical weights returned to the scheduler. In such case
enabling this option will reduce contention and chances for rescheduling events. At the same time
it will make the instance packing (even in unweighed case) less dense.

image_properties_default_architecture

Type string

Default <None>

Valid Values alpha, armv6, armv7l, armv7b, aarch64, cris, i686, ia64, lm32, m68k,
microblaze, microblazeel, mips, mipsel, mips64, mips64el, openrisc, parisc,
parisc64, ppc, ppcle, ppc64, ppc64le, ppcemb, s390, s390x, sh4, sh4eb, sparc,
sparc64, unicore32, x86_64, xtensa, xtensaeb

The default architecture to be used when using the image properties filter.

When using the ImagePropertiesFilter, it is possible that you want to define a default architecture
to make the user experience easier and avoid having something like x86_64 images landing on
aarch64 compute nodes because the user did not specify the hw_architecture property in Glance.

Possible values:

• CPU Architectures such as x86_64, aarch64, s390x.

isolated_images

Type list

Default []

List of UUIDs for images that can only be run on certain hosts.

If there is a need to restrict some images to only run on certain designated hosts, list those image
UUIDs here.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Also note that this setting only affects scheduling if the IsolatedHosts-
Filter filter is enabled.

Possible values:

• A list of UUID strings, where each string corresponds to the UUID of an image

Related options:

• scheduler/isolated_hosts

• scheduler/restrict_isolated_hosts_to_isolated_images

3.5. Reference Material 517

Nova Documentation, Release 22.4.1.dev41

Table 59: Deprecated Variations
Group Name
DEFAULT isolated_images

isolated_hosts

Type list

Default []

List of hosts that can only run certain images.

If there is a need to restrict some images to only run on certain designated hosts, list those host
names here.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Also note that this setting only affects scheduling if the IsolatedHosts-
Filter filter is enabled.

Possible values:

• A list of strings, where each string corresponds to the name of a host

Related options:

• scheduler/isolated_images

• scheduler/restrict_isolated_hosts_to_isolated_images

Table 60: Deprecated Variations
Group Name
DEFAULT isolated_hosts

restrict_isolated_hosts_to_isolated_images

Type boolean

Default True

Prevent non-isolated images from being built on isolated hosts.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect. Also note that this setting only affects scheduling if the IsolatedHosts-
Filter filter is enabled. Even then, this option doesnt affect the behavior of requests for isolated
images, which will always be restricted to isolated hosts.

Related options:

• scheduler/isolated_images

• scheduler/isolated_hosts

Table 61: Deprecated Variations
Group Name
DEFAULT restrict_isolated_hosts_to_isolated_images

aggregate_image_properties_isolation_namespace

3.5. Reference Material 518

Nova Documentation, Release 22.4.1.dev41

Type string

Default <None>

Image property namespace for use in the host aggregate.

Images and hosts can be configured so that certain images can only be scheduled to hosts in a
particular aggregate. This is done with metadata values set on the host aggregate that are identified
by beginning with the value of this option. If the host is part of an aggregate with such a metadata
key, the image in the request spec must have the value of that metadata in its properties in order
for the scheduler to consider the host as acceptable.

This option is only used by the FilterScheduler and its subclasses; if you use a different sched-
uler, this option has no effect. Also note that this setting only affects scheduling if the aggre-
gate_image_properties_isolation filter is enabled.

Possible values:

• A string, where the string corresponds to an image property namespace

Related options:

• aggregate_image_properties_isolation_separator

Table 62: Deprecated Variations
Group Name
DEFAULT aggregate_image_properties_isolation_namespace

aggregate_image_properties_isolation_separator

Type string

Default .

Separator character(s) for image property namespace and name.

When using the aggregate_image_properties_isolation filter, the relevant metadata keys are pre-
fixed with the namespace defined in the aggregate_image_properties_isolation_namespace con-
figuration option plus a separator. This option defines the separator to be used.

This option is only used by the FilterScheduler and its subclasses; if you use a different sched-
uler, this option has no effect. Also note that this setting only affects scheduling if the aggre-
gate_image_properties_isolation filter is enabled.

Possible values:

• A string, where the string corresponds to an image property namespace separator character

Related options:

• aggregate_image_properties_isolation_namespace

Table 63: Deprecated Variations
Group Name
DEFAULT aggregate_image_properties_isolation_separator

3.5. Reference Material 519

Nova Documentation, Release 22.4.1.dev41

glance

Configuration options for the Image service

api_servers

Type list

Default <None>

List of glance api servers endpoints available to nova.

https is used for ssl-based glance api servers.

NOTE: The preferred mechanism for endpoint discovery is via keystoneauth1 loading options.
Only use api_servers if you need multiple endpoints and are unable to use a load balancer for
some reason.

Possible values:

• A list of any fully qualified url of the form scheme://hostname:port[/path] (i.e.
http://10.0.1.0:9292 or https://my.glance.server/image).

Warning: This option is deprecated for removal since 21.0.0. Its value may be silently
ignored in the future.

Reason Support for image service configuration via standard keystoneauth1
Adapter options was added in the 17.0.0 Queens release. The api_servers
option was retained temporarily to allow consumers time to cut over to a
real load balancing solution.

num_retries

Type integer

Default 3

Minimum Value 0

Enable glance operation retries.

Specifies the number of retries when uploading / downloading an image to / from glance. 0 means
no retries.

allowed_direct_url_schemes

Type list

Default []

List of url schemes that can be directly accessed.

This option specifies a list of url schemes that can be downloaded directly via the direct_url. This
direct_URL can be fetched from Image metadata which can be used by nova to get the image
more efficiently. nova-compute could benefit from this by invoking a copy when it has access to
the same file system as glance.

Possible values:

• [file], Empty list (default)

3.5. Reference Material 520

Nova Documentation, Release 22.4.1.dev41

Warning: This option is deprecated for removal since 17.0.0. Its value may be silently
ignored in the future.

Reason This was originally added for the nova.image.download.file FileTrans-
fer extension which was removed in the 16.0.0 Pike release. The
nova.image.download.modules extension point is not maintained and there
is no indication of its use in production clouds.

verify_glance_signatures

Type boolean

Default False

Enable image signature verification.

nova uses the image signature metadata from glance and verifies the signature of a signed image
while downloading that image. If the image signature cannot be verified or if the image signature
metadata is either incomplete or unavailable, then nova will not boot the image and instead will
place the instance into an error state. This provides end users with stronger assurances of the
integrity of the image data they are using to create servers.

Related options:

• The options in the key_manager group, as the key_manager is used for the signature valida-
tion.

• Both enable_certificate_validation and default_trusted_certificate_ids below depend on this
option being enabled.

enable_certificate_validation

Type boolean

Default False

Enable certificate validation for image signature verification.

During image signature verification nova will first verify the validity of the images signing certifi-
cate using the set of trusted certificates associated with the instance. If certificate validation fails,
signature verification will not be performed and the instance will be placed into an error state.
This provides end users with stronger assurances that the image data is unmodified and trustwor-
thy. If left disabled, image signature verification can still occur but the end user will not have any
assurance that the signing certificate used to generate the image signature is still trustworthy.

Related options:

• This option only takes effect if verify_glance_signatures is enabled.

• The value of default_trusted_certificate_ids may be used when this option is enabled.

Warning: This option is deprecated for removal since 16.0.0. Its value may be silently
ignored in the future.

Reason This option is intended to ease the transition for deployments leveraging
image signature verification. The intended state long-term is for signature
verification and certificate validation to always happen together.

3.5. Reference Material 521

Nova Documentation, Release 22.4.1.dev41

default_trusted_certificate_ids

Type list

Default []

List of certificate IDs for certificates that should be trusted.

May be used as a default list of trusted certificate IDs for certificate validation. The value of this
option will be ignored if the user provides a list of trusted certificate IDs with an instance API
request. The value of this option will be persisted with the instance data if signature verification
and certificate validation are enabled and if the user did not provide an alternative list. If left
empty when certificate validation is enabled the user must provide a list of trusted certificate IDs
otherwise certificate validation will fail.

Related options:

• The value of this option may be used if both verify_glance_signatures and en-
able_certificate_validation are enabled.

enable_rbd_download

Type boolean

Default False

Enable download of Glance images directly via RBD.

Allow compute hosts to quickly download and cache images localy directly from Ceph rather
than slow dowloads from the Glance API. This can reduce download time for images in the ten to
hundreds of GBs from tens of minutes to tens of seconds, but requires a Ceph-based deployment
and access from the compute nodes to Ceph.

Related options:

• [glance] rbd_user

• [glance] rbd_connect_timeout

• [glance] rbd_pool

• [glance] rbd_ceph_conf

rbd_user

Type string

Default ''

The RADOS client name for accessing Glance images stored as rbd volumes.

Related options:

• This option is only used if [glance] enable_rbd_download is set to True.

rbd_connect_timeout

Type integer

Default 5

The RADOS client timeout in seconds when initially connecting to the cluster.

Related options:

3.5. Reference Material 522

Nova Documentation, Release 22.4.1.dev41

• This option is only used if [glance] enable_rbd_download is set to True.

rbd_pool

Type string

Default ''

The RADOS pool in which the Glance images are stored as rbd volumes.

Related options:

• This option is only used if [glance] enable_rbd_download is set to True.

rbd_ceph_conf

Type string

Default ''

Path to the ceph configuration file to use.

Related options:

• This option is only used if [glance] enable_rbd_download is set to True.

debug

Type boolean

Default False

Enable or disable debug logging with glanceclient.

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

Type boolean

Default False

Verify HTTPS connections.

timeout

3.5. Reference Material 523

Nova Documentation, Release 22.4.1.dev41

Type integer

Default <None>

Timeout value for http requests

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

Type boolean

Default False

Log requests to multiple loggers.

service_type

Type string

Default image

The default service_type for endpoint URL discovery.

service_name

Type string

Default <None>

The default service_name for endpoint URL discovery.

valid_interfaces

Type list

Default ['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

region_name

Type string

Default <None>

The default region_name for endpoint URL discovery.

endpoint_override

Type string

Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

connect_retries

Type integer

3.5. Reference Material 524

Nova Documentation, Release 22.4.1.dev41

Default <None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

status_code_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

guestfs

libguestfs is a set of tools for accessing and modifying virtual machine (VM) disk images. You can
use this for viewing and editing files inside guests, scripting changes to VMs, monitoring disk used/free
statistics, creating guests, P2V, V2V, performing backups, cloning VMs, building VMs, formatting disks
and resizing disks.

debug

Type boolean

Default False

Enable/disables guestfs logging.

This configures guestfs to debug messages and push them to OpenStack logging system. When
set to True, it traces libguestfs API calls and enable verbose debug messages. In order to use the
above feature, libguestfs package must be installed.

Related options:

Since libguestfs access and modifies VMs managed by libvirt, below options should be set to give
access to those VMs.

• libvirt.inject_key

• libvirt.inject_partition

• libvirt.inject_password

3.5. Reference Material 525

Nova Documentation, Release 22.4.1.dev41

healthcheck

path

Type string

Default /healthcheck

The path to respond to healtcheck requests on.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

detailed

Type boolean

Default False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

backends

Type list

Default []

Additional backends that can perform health checks and report that information back as part of a
request.

disable_by_file_path

Type string

Default <None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

disable_by_file_paths

Type list

Default []

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

3.5. Reference Material 526

Nova Documentation, Release 22.4.1.dev41

hyperv

The hyperv feature allows you to configure the Hyper-V hypervisor driver to be used within an Open-
Stack deployment.

dynamic_memory_ratio

Type floating point

Default 1.0

Dynamic memory ratio

Enables dynamic memory allocation (ballooning) when set to a value greater than 1. The value ex-
presses the ratio between the total RAM assigned to an instance and its startup RAM amount. For
example a ratio of 2.0 for an instance with 1024MB of RAM implies 512MB of RAM allocated
at startup.

Possible values:

• 1.0: Disables dynamic memory allocation (Default).

• Float values greater than 1.0: Enables allocation of total implied RAM divided by this value
for startup.

enable_instance_metrics_collection

Type boolean

Default False

Enable instance metrics collection

Enables metrics collections for an instance by using Hyper-Vs metric APIs. Collected data can be
retrieved by other apps and services, e.g.: Ceilometer.

instances_path_share

Type string

Default ''

Instances path share

The name of a Windows share mapped to the instances_path dir and used by the resize feature to
copy files to the target host. If left blank, an administrative share (hidden network share) will be
used, looking for the same instances_path used locally.

Possible values:

• : An administrative share will be used (Default).

• Name of a Windows share.

Related options:

• instances_path: The directory which will be used if this option here is left blank.

limit_cpu_features

Type boolean

Default False

3.5. Reference Material 527

Nova Documentation, Release 22.4.1.dev41

Limit CPU features

This flag is needed to support live migration to hosts with different CPU features and checked
during instance creation in order to limit the CPU features used by the instance.

mounted_disk_query_retry_count

Type integer

Default 10

Minimum Value 0

Mounted disk query retry count

The number of times to retry checking for a mounted disk. The query runs until the device can be
found or the retry count is reached.

Possible values:

• Positive integer values. Values greater than 1 is recommended (Default: 10).

Related options:

• Time interval between disk mount retries is declared with
mounted_disk_query_retry_interval option.

mounted_disk_query_retry_interval

Type integer

Default 5

Minimum Value 0

Mounted disk query retry interval

Interval between checks for a mounted disk, in seconds.

Possible values:

• Time in seconds (Default: 5).

Related options:

• This option is meaningful when the mounted_disk_query_retry_count is greater than 1.

• The retry loop runs with mounted_disk_query_retry_count and
mounted_disk_query_retry_interval configuration options.

power_state_check_timeframe

Type integer

Default 60

Minimum Value 0

Power state check timeframe

The timeframe to be checked for instance power state changes. This option is used to fetch the
state of the instance from Hyper-V through the WMI interface, within the specified timeframe.

Possible values:

• Timeframe in seconds (Default: 60).

3.5. Reference Material 528

Nova Documentation, Release 22.4.1.dev41

power_state_event_polling_interval

Type integer

Default 2

Minimum Value 0

Power state event polling interval

Instance power state change event polling frequency. Sets the listener interval for power state
events to the given value. This option enhances the internal lifecycle notifications of instances
that reboot themselves. It is unlikely that an operator has to change this value.

Possible values:

• Time in seconds (Default: 2).

qemu_img_cmd

Type string

Default qemu-img.exe

qemu-img command

qemu-img is required for some of the image related operations like converting between different
image types. You can get it from here: (http://qemu.weilnetz.de/) or you can install the Cloud-
base OpenStack Hyper-V Compute Driver (https://cloudbase.it/openstack-hyperv-driver/) which
automatically sets the proper path for this config option. You can either give the full path of
qemu-img.exe or set its path in the PATH environment variable and leave this option to the default
value.

Possible values:

• Name of the qemu-img executable, in case it is in the same directory as the nova-compute
service or its path is in the PATH environment variable (Default).

• Path of qemu-img command (DRIVELETTER:PATHTOQEMU-IMGCOMMAND).

Related options:

• If the config_drive_cdrom option is False, qemu-img will be used to convert the ISO to a
VHD, otherwise the config drive will remain an ISO. To use config drive with Hyper-V, you
must set the mkisofs_cmd value to the full path to an mkisofs.exe installation.

vswitch_name

Type string

Default <None>

External virtual switch name

The Hyper-V Virtual Switch is a software-based layer-2 Ethernet network switch that is available
with the installation of the Hyper-V server role. The switch includes programmatically managed
and extensible capabilities to connect virtual machines to both virtual networks and the physical
network. In addition, Hyper-V Virtual Switch provides policy enforcement for security, isolation,
and service levels. The vSwitch represented by this config option must be an external one (not
internal or private).

Possible values:

3.5. Reference Material 529

http://qemu.weilnetz.de/
https://cloudbase.it/openstack-hyperv-driver/

Nova Documentation, Release 22.4.1.dev41

• If not provided, the first of a list of available vswitches is used. This list is queried using
WQL.

• Virtual switch name.

wait_soft_reboot_seconds

Type integer

Default 60

Minimum Value 0

Wait soft reboot seconds

Number of seconds to wait for instance to shut down after soft reboot request is made. We fall
back to hard reboot if instance does not shutdown within this window.

Possible values:

• Time in seconds (Default: 60).

config_drive_cdrom

Type boolean

Default False

Mount config drive as a CD drive.

OpenStack can be configured to write instance metadata to a config drive, which is then attached
to the instance before it boots. The config drive can be attached as a disk drive (default) or as a
CD drive.

Related options:

• This option is meaningful with force_config_drive option set to True or when the
REST API call to create an instance will have --config-drive=True flag.

• config_drive_format option must be set to iso9660 in order to use CD drive as the
config drive image.

• To use config drive with Hyper-V, you must set the mkisofs_cmd value to the full path to
an mkisofs.exe installation. Additionally, you must set the qemu_img_cmd value to
the full path to an qemu-img command installation.

• You can configure the Compute service to always create a configuration drive by setting the
force_config_drive option to True.

config_drive_inject_password

Type boolean

Default False

Inject password to config drive.

When enabled, the admin password will be available from the config drive image.

Related options:

• This option is meaningful when used with other options that enable config drive usage with
Hyper-V, such as force_config_drive.

volume_attach_retry_count

3.5. Reference Material 530

Nova Documentation, Release 22.4.1.dev41

Type integer

Default 10

Minimum Value 0

Volume attach retry count

The number of times to retry attaching a volume. Volume attachment is retried until success or
the given retry count is reached.

Possible values:

• Positive integer values (Default: 10).

Related options:

• Time interval between attachment attempts is declared with volume_attach_retry_interval
option.

volume_attach_retry_interval

Type integer

Default 5

Minimum Value 0

Volume attach retry interval

Interval between volume attachment attempts, in seconds.

Possible values:

• Time in seconds (Default: 5).

Related options:

• This options is meaningful when volume_attach_retry_count is greater than 1.

• The retry loop runs with volume_attach_retry_count and volume_attach_retry_interval con-
figuration options.

enable_remotefx

Type boolean

Default False

Enable RemoteFX feature

This requires at least one DirectX 11 capable graphics adapter for Windows / Hyper-V Server
2012 R2 or newer and RDS-Virtualization feature has to be enabled.

Instances with RemoteFX can be requested with the following flavor extra specs:

os:resolution. Guest VM screen resolution size. Acceptable values:

1024x768, 1280x1024, 1600x1200, 1920x1200, 2560x1600, 3840x2160

3840x2160 is only available on Windows / Hyper-V Server 2016.

os:monitors. Guest VM number of monitors. Acceptable values:

3.5. Reference Material 531

Nova Documentation, Release 22.4.1.dev41

[1, 4] - Windows / Hyper-V Server 2012 R2
[1, 8] - Windows / Hyper-V Server 2016

os:vram. Guest VM VRAM amount. Only available on Windows / Hyper-V Server 2016. Ac-
ceptable values:

64, 128, 256, 512, 1024

use_multipath_io

Type boolean

Default False

Use multipath connections when attaching iSCSI or FC disks.

This requires the Multipath IO Windows feature to be enabled. MPIO must be configured to claim
such devices.

iscsi_initiator_list

Type list

Default []

List of iSCSI initiators that will be used for estabilishing iSCSI sessions.

If none are specified, the Microsoft iSCSI initiator service will choose the initiator.

image_cache

A collection of options specific to image caching.

manager_interval

Type integer

Default 2400

Minimum Value -1

Number of seconds to wait between runs of the image cache manager.

Note that when using shared storage for the [DEFAULT]/instances_path configu-
ration option across multiple nova-compute services, this periodic could process a large
number of instances. Similarly, using a compute driver that manages a cluster (like
vmwareapi.VMwareVCDriver) could result in processing a large number of instances. Therefore
you may need to adjust the time interval for the anticipated load, or only run on one nova-compute
service within a shared storage aggregate.

Possible values:

• 0: run at the default interval of 60 seconds (not recommended)

• -1: disable

• Any other value

Related options:

• [DEFAULT]/compute_driver

3.5. Reference Material 532

Nova Documentation, Release 22.4.1.dev41

• [DEFAULT]/instances_path

Table 64: Deprecated Variations
Group Name
DEFAULT image_cache_manager_interval

subdirectory_name

Type string

Default _base

Location of cached images.

This is NOT the full path - just a folder name relative to $instances_path. For per-compute-host
cached images, set to _base_$my_ip

Table 65: Deprecated Variations
Group Name
DEFAULT image_cache_subdirectory_name

remove_unused_base_images

Type boolean

Default True

Should unused base images be removed?

Table 66: Deprecated Variations
Group Name
DEFAULT remove_unused_base_images

remove_unused_original_minimum_age_seconds

Type integer

Default 86400

Unused unresized base images younger than this will not be removed.

Table 67: Deprecated Variations
Group Name
DEFAULT remove_unused_original_minimum_age_seconds

remove_unused_resized_minimum_age_seconds

Type integer

Default 3600

Unused resized base images younger than this will not be removed.

3.5. Reference Material 533

Nova Documentation, Release 22.4.1.dev41

Table 68: Deprecated Variations
Group Name
libvirt remove_unused_resized_minimum_age_seconds

precache_concurrency

Type integer

Default 1

Minimum Value 1

Maximum number of compute hosts to trigger image precaching in parallel.

When an image precache request is made, compute nodes will be contacted to initiate the down-
load. This number constrains the number of those that will happen in parallel. Higher numbers
will cause more computes to work in parallel and may result in reduced time to complete the
operation, but may also DDoS the image service. Lower numbers will result in more sequential
operation, lower image service load, but likely longer runtime to completion.

ironic

Configuration options for Ironic driver (Bare Metal). If using the Ironic driver following options
must be set: * auth_type * auth_url * project_name * username * password * project_domain_id or
project_domain_name * user_domain_id or user_domain_name

api_max_retries

Type integer

Default 60

Minimum Value 0

The number of times to retry when a request conflicts. If set to 0, only try once, no retries.

Related options:

• api_retry_interval

api_retry_interval

Type integer

Default 2

Minimum Value 0

The number of seconds to wait before retrying the request.

Related options:

• api_max_retries

serial_console_state_timeout

Type integer

Default 10

Minimum Value 0

3.5. Reference Material 534

Nova Documentation, Release 22.4.1.dev41

Timeout (seconds) to wait for node serial console state changed. Set to 0 to disable timeout.

partition_key

Type string

Default <None>

Mutable This option can be changed without restarting.

Case-insensitive key to limit the set of nodes that may be managed by this service to the set of
nodes in Ironic which have a matching conductor_group property. If unset, all available nodes
will be eligible to be managed by this service. Note that setting this to the empty string ("") will
match the default conductor group, and is different than leaving the option unset.

peer_list

Type list

Default []

Mutable This option can be changed without restarting.

List of hostnames for all nova-compute services (including this host) with this partition_key config
value. Nodes matching the partition_key value will be distributed between all services specified
here. If partition_key is unset, this option is ignored.

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

Type boolean

Default False

Verify HTTPS connections.

timeout

Type integer

Default <None>

Timeout value for http requests

3.5. Reference Material 535

Nova Documentation, Release 22.4.1.dev41

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

Type boolean

Default False

Log requests to multiple loggers.

auth_type

Type unknown type

Default <None>

Authentication type to load

Table 69: Deprecated Variations
Group Name
ironic auth_plugin

auth_section

Type unknown type

Default <None>

Config Section from which to load plugin specific options

auth_url

Type unknown type

Default <None>

Authentication URL

system_scope

Type unknown type

Default <None>

Scope for system operations

domain_id

Type unknown type

Default <None>

Domain ID to scope to

domain_name

Type unknown type

Default <None>

3.5. Reference Material 536

Nova Documentation, Release 22.4.1.dev41

Domain name to scope to

project_id

Type unknown type

Default <None>

Project ID to scope to

project_name

Type unknown type

Default <None>

Project name to scope to

project_domain_id

Type unknown type

Default <None>

Domain ID containing project

project_domain_name

Type unknown type

Default <None>

Domain name containing project

trust_id

Type unknown type

Default <None>

Trust ID

user_id

Type unknown type

Default <None>

User ID

username

Type unknown type

Default <None>

Username

Table 70: Deprecated Variations
Group Name
ironic user-name
ironic user_name

user_domain_id

3.5. Reference Material 537

Nova Documentation, Release 22.4.1.dev41

Type unknown type

Default <None>

Users domain id

user_domain_name

Type unknown type

Default <None>

Users domain name

password

Type unknown type

Default <None>

Users password

service_type

Type string

Default baremetal

The default service_type for endpoint URL discovery.

service_name

Type string

Default <None>

The default service_name for endpoint URL discovery.

valid_interfaces

Type list

Default ['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

region_name

Type string

Default <None>

The default region_name for endpoint URL discovery.

endpoint_override

Type string

Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

connect_retries

Type integer

3.5. Reference Material 538

Nova Documentation, Release 22.4.1.dev41

Default <None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

status_code_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

key_manager

fixed_key

Type string

Default <None>

Fixed key returned by key manager, specified in hex.

Possible values:

• Empty string or a key in hex value

Table 71: Deprecated Variations
Group Name
keymgr fixed_key

backend

Type string

Default barbican

Specify the key manager implementation. Options are barbican and vault. Default is barbican.
Will support the values earlier set using [key_manager]/api_class for some time.

Table 72: Deprecated Variations
Group Name
key_manager api_class

3.5. Reference Material 539

Nova Documentation, Release 22.4.1.dev41

auth_type

Type string

Default <None>

The type of authentication credential to create. Possible values are token, password, key-
stone_token, and keystone_password. Required if no context is passed to the credential factory.

token

Type string

Default <None>

Token for authentication. Required for token and keystone_token auth_type if no context is passed
to the credential factory.

username

Type string

Default <None>

Username for authentication. Required for password auth_type. Optional for the key-
stone_password auth_type.

password

Type string

Default <None>

Password for authentication. Required for password and keystone_password auth_type.

auth_url

Type string

Default <None>

Use this endpoint to connect to Keystone.

user_id

Type string

Default <None>

User ID for authentication. Optional for keystone_token and keystone_password auth_type.

user_domain_id

Type string

Default <None>

Users domain ID for authentication. Optional for keystone_token and keystone_password
auth_type.

user_domain_name

Type string

Default <None>

3.5. Reference Material 540

Nova Documentation, Release 22.4.1.dev41

Users domain name for authentication. Optional for keystone_token and keystone_password
auth_type.

trust_id

Type string

Default <None>

Trust ID for trust scoping. Optional for keystone_token and keystone_password auth_type.

domain_id

Type string

Default <None>

Domain ID for domain scoping. Optional for keystone_token and keystone_password auth_type.

domain_name

Type string

Default <None>

Domain name for domain scoping. Optional for keystone_token and keystone_password
auth_type.

project_id

Type string

Default <None>

Project ID for project scoping. Optional for keystone_token and keystone_password auth_type.

project_name

Type string

Default <None>

Project name for project scoping. Optional for keystone_token and keystone_password auth_type.

project_domain_id

Type string

Default <None>

Projects domain ID for project. Optional for keystone_token and keystone_password auth_type.

project_domain_name

Type string

Default <None>

Projects domain name for project. Optional for keystone_token and keystone_password
auth_type.

reauthenticate

Type boolean

Default True

3.5. Reference Material 541

Nova Documentation, Release 22.4.1.dev41

Allow fetching a new token if the current one is going to expire. Optional for keystone_token and
keystone_password auth_type.

keystone

Configuration options for the identity service

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

Type boolean

Default False

Verify HTTPS connections.

timeout

Type integer

Default <None>

Timeout value for http requests

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

Type boolean

Default False

Log requests to multiple loggers.

service_type

3.5. Reference Material 542

Nova Documentation, Release 22.4.1.dev41

Type string

Default identity

The default service_type for endpoint URL discovery.

service_name

Type string

Default <None>

The default service_name for endpoint URL discovery.

valid_interfaces

Type list

Default ['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

region_name

Type string

Default <None>

The default region_name for endpoint URL discovery.

endpoint_override

Type string

Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

connect_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

status_code_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

3.5. Reference Material 543

Nova Documentation, Release 22.4.1.dev41

Type floating point

Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

keystone_authtoken

www_authenticate_uri

Type string

Default <None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 73: Deprecated Variations
Group Name
keystone_authtoken auth_uri

auth_uri

Type string

Default <None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning: This option is deprecated for removal since Queens. Its value may be silently
ignored in the future.

Reason The auth_uri option is deprecated in favor of www_authenticate_uri and
will be removed in the S release.

auth_version

Type string

Default <None>

API version of the Identity API endpoint.

interface

3.5. Reference Material 544

Nova Documentation, Release 22.4.1.dev41

Type string

Default internal

Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.

delay_auth_decision

Type boolean

Default False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type integer

Default <None>

Request timeout value for communicating with Identity API server.

http_request_max_retries

Type integer

Default 3

How many times are we trying to reconnect when communicating with Identity API Server.

cache

Type string

Default <None>

Request environment key where the Swift cache object is stored. When auth_token middleware
is deployed with a Swift cache, use this option to have the middleware share a caching backend
with swift. Otherwise, use the memcached_servers option instead.

certfile

Type string

Default <None>

Required if identity server requires client certificate

keyfile

Type string

Default <None>

Required if identity server requires client certificate

cafile

Type string

Default <None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

3.5. Reference Material 545

Nova Documentation, Release 22.4.1.dev41

Type boolean

Default False

Verify HTTPS connections.

region_name

Type string

Default <None>

The region in which the identity server can be found.

memcached_servers

Type list

Default <None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 74: Deprecated Variations
Group Name
keystone_authtoken memcache_servers

token_cache_time

Type integer

Default 300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy

Type string

Default None

Valid Values None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key

Type string

Default <None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type integer

Default 300

3.5. Reference Material 546

Nova Documentation, Release 22.4.1.dev41

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type integer

Default 10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout

Type integer

Default 3

(Optional) Socket timeout in seconds for communicating with a memcached server.

memcache_pool_unused_timeout

Type integer

Default 60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout

Type integer

Default 10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool

Type boolean

Default False

(Optional) Use the advanced (eventlet safe) memcached client pool. The advanced pool will only
work under python 2.x.

include_service_catalog

Type boolean

Default True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type string

Default permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token
will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

3.5. Reference Material 547

Nova Documentation, Release 22.4.1.dev41

service_token_roles

Type list

Default ['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list must
be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required

Type boolean

Default False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the
service_token_roles check as valid. Setting this true will become the default in a future release
and should be enabled if possible.

service_type

Type string

Default <None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

auth_type

Type unknown type

Default <None>

Authentication type to load

Table 75: Deprecated Variations
Group Name
keystone_authtoken auth_plugin

auth_section

Type unknown type

Default <None>

Config Section from which to load plugin specific options

3.5. Reference Material 548

Nova Documentation, Release 22.4.1.dev41

libvirt

Libvirt options allows cloud administrator to configure related libvirt hypervisor driver to be used within
an OpenStack deployment.

Almost all of the libvirt config options are influence by virt_type config which describes the virtu-
alization type (or so called domain type) libvirt should use for specific features such as live migration,
snapshot.

rescue_image_id

Type string

Default <None>

The ID of the image to boot from to rescue data from a corrupted instance.

If the rescue REST API operation doesnt provide an ID of an image to use, the image which is
referenced by this ID is used. If this option is not set, the image from the instance is used.

Possible values:

• An ID of an image or nothing. If it points to an Amazon Machine Image (AMI), consider to
set the config options rescue_kernel_id and rescue_ramdisk_id too. If nothing
is set, the image of the instance is used.

Related options:

• rescue_kernel_id: If the chosen rescue image allows the separate definition of its
kernel disk, the value of this option is used, if specified. This is the case when Amazons
AMI/AKI/ARI image format is used for the rescue image.

• rescue_ramdisk_id: If the chosen rescue image allows the separate definition of its
RAM disk, the value of this option is used if, specified. This is the case when Amazons
AMI/AKI/ARI image format is used for the rescue image.

rescue_kernel_id

Type string

Default <None>

The ID of the kernel (AKI) image to use with the rescue image.

If the chosen rescue image allows the separate definition of its kernel disk, the value of this option
is used, if specified. This is the case when Amazons AMI/AKI/ARI image format is used for the
rescue image.

Possible values:

• An ID of an kernel image or nothing. If nothing is specified, the kernel disk from the instance
is used if it was launched with one.

Related options:

• rescue_image_id: If that option points to an image in Amazons AMI/AKI/ARI image
format, its useful to use rescue_kernel_id too.

rescue_ramdisk_id

Type string

3.5. Reference Material 549

Nova Documentation, Release 22.4.1.dev41

Default <None>

The ID of the RAM disk (ARI) image to use with the rescue image.

If the chosen rescue image allows the separate definition of its RAM disk, the value of this option
is used, if specified. This is the case when Amazons AMI/AKI/ARI image format is used for the
rescue image.

Possible values:

• An ID of a RAM disk image or nothing. If nothing is specified, the RAM disk from the
instance is used if it was launched with one.

Related options:

• rescue_image_id: If that option points to an image in Amazons AMI/AKI/ARI image
format, its useful to use rescue_ramdisk_id too.

virt_type

Type string

Default kvm

Valid Values kvm, lxc, qemu, uml, xen, parallels

Describes the virtualization type (or so called domain type) libvirt should use.

The choice of this type must match the underlying virtualization strategy you have chosen for this
host.

Related options:

• connection_uri: depends on this

• disk_prefix: depends on this

• cpu_mode: depends on this

• cpu_models: depends on this

connection_uri

Type string

Default ''

Overrides the default libvirt URI of the chosen virtualization type.

If set, Nova will use this URI to connect to libvirt.

Possible values:

• An URI like qemu:///system or xen+ssh://oirase/ for example. This is only
necessary if the URI differs to the commonly known URIs for the chosen virtualization type.

Related options:

• virt_type: Influences what is used as default value here.

inject_password

Type boolean

Default False

3.5. Reference Material 550

Nova Documentation, Release 22.4.1.dev41

Allow the injection of an admin password for instance only at create and rebuild process.

There is no agent needed within the image to do this. If libguestfs is available on the host, it will
be used. Otherwise nbd is used. The file system of the image will be mounted and the admin
password, which is provided in the REST API call will be injected as password for the root user.
If no root user is available, the instance wont be launched and an error is thrown. Be aware that
the injection is not possible when the instance gets launched from a volume.

Linux distribution guest only.

Possible values:

• True: Allows the injection.

• False: Disallows the injection. Any via the REST API provided admin password will be
silently ignored.

Related options:

• inject_partition: That option will decide about the discovery and usage of the file
system. It also can disable the injection at all.

inject_key

Type boolean

Default False

Allow the injection of an SSH key at boot time.

There is no agent needed within the image to do this. If libguestfs is available on the host, it will
be used. Otherwise nbd is used. The file system of the image will be mounted and the SSH key,
which is provided in the REST API call will be injected as SSH key for the root user and appended
to the authorized_keys of that user. The SELinux context will be set if necessary. Be aware
that the injection is not possible when the instance gets launched from a volume.

This config option will enable directly modifying the instance disk and does not affect what cloud-
init may do using data from config_drive option or the metadata service.

Linux distribution guest only.

Related options:

• inject_partition: That option will decide about the discovery and usage of the file
system. It also can disable the injection at all.

inject_partition

Type integer

Default -2

Minimum Value -2

Determines the way how the file system is chosen to inject data into it.

libguestfs will be used a first solution to inject data. If thats not available on the host, the image
will be locally mounted on the host as a fallback solution. If libguestfs is not able to determine
the root partition (because there are more or less than one root partition) or cannot mount the file
system it will result in an error and the instance wont be boot.

Possible values:

3.5. Reference Material 551

Nova Documentation, Release 22.4.1.dev41

• -2 => disable the injection of data.

• -1 => find the root partition with the file system to mount with libguestfs

• 0 => The image is not partitioned

• >0 => The number of the partition to use for the injection

Linux distribution guest only.

Related options:

• inject_key: If this option allows the injection of a SSH key it depends on value greater
or equal to -1 for inject_partition.

• inject_password: If this option allows the injection of an admin password it depends
on value greater or equal to -1 for inject_partition.

• guestfs You can enable the debug log level of libguestfs with this config option. A more
verbose output will help in debugging issues.

• virt_type: If you use lxc as virt_type it will be treated as a single partition image

use_usb_tablet

Type boolean

Default True

Enable a mouse cursor within a graphical VNC or SPICE sessions.

This will only be taken into account if the VM is fully virtualized and VNC and/or SPICE is
enabled. If the node doesnt support a graphical framebuffer, then it is valid to set this to False.

Related options:

• [vnc]enabled: If VNC is enabled, use_usb_tablet will have an effect.

• [spice]enabled + [spice].agent_enabled: If SPICE is enabled and the spice
agent is disabled, the config value of use_usb_tablet will have an effect.

Warning: This option is deprecated for removal since 14.0.0. Its value may be silently
ignored in the future.

Reason This option is being replaced by the pointer_model option.

live_migration_scheme

Type string

Default <None>

URI scheme used for live migration.

Override the default libvirt live migration scheme (which is dependent on virt_type). If this option
is set to None, nova will automatically choose a sensible default based on the hypervisor. It is not
recommended that you change this unless you are very sure that hypervisor supports a particular
scheme.

Related options:

• virt_type: This option is meaningful only when virt_type is set to kvm or qemu.

3.5. Reference Material 552

Nova Documentation, Release 22.4.1.dev41

• live_migration_uri: If live_migration_uri value is not None, the scheme
used for live migration is taken from live_migration_uri instead.

live_migration_inbound_addr

Type host address

Default <None>

Target used for live migration traffic.

If this option is set to None, the hostname of the migration target compute node will be used.

This option is useful in environments where the live-migration traffic can impact the network
plane significantly. A separate network for live-migration traffic can then use this config option
and avoids the impact on the management network.

Related options:

• live_migration_tunnelled: The live_migration_inbound_addr value is ignored if
tunneling is enabled.

live_migration_uri

Type string

Default <None>

Live migration target URI to use.

Override the default libvirt live migration target URI (which is dependent on virt_type). Any
included %s is replaced with the migration target hostname.

If this option is set to None (which is the default), Nova will automatically generate the
live_migration_uri value based on only 4 supported virt_type in following list:

• kvm: qemu+tcp://%s/system

• qemu: qemu+tcp://%s/system

• xen: xenmigr://%s/system

• parallels: parallels+tcp://%s/system

Related options:

• live_migration_inbound_addr: If live_migration_inbound_addr value
is not None and live_migration_tunnelled is False, the ip/hostname address of
target compute node is used instead of live_migration_uri as the uri for live migra-
tion.

• live_migration_scheme: If live_migration_uri is not set, the scheme used
for live migration is taken from live_migration_scheme instead.

Warning: This option is deprecated for removal since 15.0.0. Its value may be silently
ignored in the future.

Reason live_migration_uri is deprecated for removal in favor
of two other options that allow to change live migration
scheme and target URI: live_migration_scheme and
live_migration_inbound_addr respectively.

3.5. Reference Material 553

Nova Documentation, Release 22.4.1.dev41

live_migration_tunnelled

Type boolean

Default False

Enable tunnelled migration.

This option enables the tunnelled migration feature, where migration data is transported over the
libvirtd connection. If enabled, we use the VIR_MIGRATE_TUNNELLED migration flag, avoid-
ing the need to configure the network to allow direct hypervisor to hypervisor communication. If
False, use the native transport. If not set, Nova will choose a sensible default based on, for ex-
ample the availability of native encryption support in the hypervisor. Enabling this option will
definitely impact performance massively.

Note that this option is NOT compatible with use of block migration.

Related options:

• live_migration_inbound_addr: The live_migration_inbound_addr value is ig-
nored if tunneling is enabled.

live_migration_bandwidth

Type integer

Default 0

Maximum bandwidth(in MiB/s) to be used during migration.

If set to 0, the hypervisor will choose a suitable default. Some hypervisors do not support this
feature and will return an error if bandwidth is not 0. Please refer to the libvirt documentation for
further details.

live_migration_downtime

Type integer

Default 500

Minimum Value 100

Maximum permitted downtime, in milliseconds, for live migration switchover.

Will be rounded up to a minimum of 100ms. You can increase this value if you want to allow
live-migrations to complete faster, or avoid live-migration timeout errors by allowing the guest to
be paused for longer during the live-migration switch over.

Related options:

• live_migration_completion_timeout

live_migration_downtime_steps

Type integer

Default 10

Minimum Value 3

Number of incremental steps to reach max downtime value.

Will be rounded up to a minimum of 3 steps.

live_migration_downtime_delay

3.5. Reference Material 554

Nova Documentation, Release 22.4.1.dev41

Type integer

Default 75

Minimum Value 3

Time to wait, in seconds, between each step increase of the migration downtime.

Minimum delay is 3 seconds. Value is per GiB of guest RAM + disk to be transferred, with lower
bound of a minimum of 2 GiB per device.

live_migration_completion_timeout

Type integer

Default 800

Minimum Value 0

Mutable This option can be changed without restarting.

Time to wait, in seconds, for migration to successfully complete transferring data before aborting
the operation.

Value is per GiB of guest RAM + disk to be transferred, with lower bound of a minimum of 2 GiB.
Should usually be larger than downtime delay * downtime steps. Set to 0 to disable timeouts.

Related options:

• live_migration_downtime

• live_migration_downtime_steps

• live_migration_downtime_delay

live_migration_timeout_action

Type string

Default abort

Valid Values abort, force_complete

Mutable This option can be changed without restarting.

This option will be used to determine what action will be taken against a VM after
live_migration_completion_timeout expires. By default, the live migrate operation
will be aborted after completion timeout. If it is set to force_complete, the compute service
will either pause the VM or trigger post-copy depending on if post copy is enabled and available
(live_migration_permit_post_copy is set to True).

Related options:

• live_migration_completion_timeout

• live_migration_permit_post_copy

live_migration_permit_post_copy

Type boolean

Default False

This option allows nova to switch an on-going live migration to post-copy mode, i.e., switch the
active VM to the one on the destination node before the migration is complete, therefore ensuring

3.5. Reference Material 555

Nova Documentation, Release 22.4.1.dev41

an upper bound on the memory that needs to be transferred. Post-copy requires libvirt>=1.3.3 and
QEMU>=2.5.0.

When permitted, post-copy mode will be automatically activated if we reach
the timeout defined by live_migration_completion_timeout and
live_migration_timeout_action is set to force_complete. Note if you change to
no timeout or choose to use abort, i.e. live_migration_completion_timeout = 0,
then there will be no automatic switch to post-copy.

The live-migration force complete API also uses post-copy when permitted. If post-copy mode is
not available, force complete falls back to pausing the VM to ensure the live-migration operation
will complete.

When using post-copy mode, if the source and destination hosts lose network connectivity, the
VM being live-migrated will need to be rebooted. For more details, please see the Administration
guide.

Related options:

• live_migration_permit_auto_converge

• live_migration_timeout_action

live_migration_permit_auto_converge

Type boolean

Default False

This option allows nova to start live migration with auto converge on.

Auto converge throttles down CPU if a progress of on-going live migration is slow. Auto converge
will only be used if this flag is set to True and post copy is not permitted or post copy is unavailable
due to the version of libvirt and QEMU in use.

Related options:

• live_migration_permit_post_copy

snapshot_image_format

Type string

Default <None>

Valid Values raw, qcow2, vmdk, vdi

Determine the snapshot image format when sending to the image service.

If set, this decides what format is used when sending the snapshot to the image service. If not set,
defaults to same type as source image.

3.5. Reference Material 556

Nova Documentation, Release 22.4.1.dev41

Possible values

raw RAW disk format

qcow2 KVM default disk format

vmdk VMWare default disk format

vdi VirtualBox default disk format

live_migration_with_native_tls

Type boolean

Default False

Use QEMU-native TLS encryption when live migrating.

This option will allow both migration stream (guest RAM plus device state) and disk stream to be
transported over native TLS, i.e. TLS support built into QEMU.

Prerequisite: TLS environment is configured correctly on all relevant Compute nodes. This means,
Certificate Authority (CA), server, client certificates, their corresponding keys, and their file per-
misssions are in place, and are validated.

Notes:

• To have encryption for migration stream and disk stream (also called: block migra-
tion), live_migration_with_native_tls is the preferred config attribute instead
of live_migration_tunnelled.

• The live_migration_tunnelled will be deprecated in the long-term for two main
reasons: (a) it incurs a huge performance penalty; and (b) it is not compatible with block
migration. Therefore, if your compute nodes have at least libvirt 4.4.0 and QEMU 2.11.0, it
is strongly recommended to use live_migration_with_native_tls.

• The live_migration_tunnelled and live_migration_with_native_tls
should not be used at the same time.

• Unlike live_migration_tunnelled, the live_migration_with_native_tls
is compatible with block migration. That is, with this option, NBD stream, over which disks
are migrated to a target host, will be encrypted.

Related options:

live_migration_tunnelled: This transports migration stream (but not disk stream) over
libvirtd.

disk_prefix

Type string

Default <None>

Override the default disk prefix for the devices attached to an instance.

If set, this is used to identify a free disk device name for a bus.

Possible values:

3.5. Reference Material 557

Nova Documentation, Release 22.4.1.dev41

• Any prefix which will result in a valid disk device name like sda or hda for example. This is
only necessary if the device names differ to the commonly known device name prefixes for
a virtualization type such as: sd, xvd, uvd, vd.

Related options:

• virt_type: Influences which device type is used, which determines the default disk pre-
fix.

wait_soft_reboot_seconds

Type integer

Default 120

Number of seconds to wait for instance to shut down after soft reboot request is made. We fall
back to hard reboot if instance does not shutdown within this window.

cpu_mode

Type string

Default <None>

Valid Values host-model, host-passthrough, custom, none

Is used to set the CPU mode an instance should have.

If virt_type="kvm|qemu", it will default to host-model, otherwise it will default to
none.

Related options:

• cpu_models: This should be set ONLY when cpu_mode is set to custom. Otherwise,
it would result in an error and the instance launch will fail.

Possible values

host-model Clone the host CPU feature flags

host-passthrough Use the host CPU model exactly

custom Use the CPU model in [libvirt]cpu_models

none Dont set a specific CPU model. For instances with [libvirt] virt_type as
KVM/QEMU, the default CPU model from QEMU will be used, which provides a basic
set of CPU features that are compatible with most hosts

cpu_models

Type list

Default []

An ordered list of CPU models the host supports.

It is expected that the list is ordered so that the more common and less advanced CPU models are
listed earlier. Here is an example: SandyBridge,IvyBridge,Haswell,Broadwell, the
latter CPU models features is richer that the previous CPU model.

Possible values:

3.5. Reference Material 558

Nova Documentation, Release 22.4.1.dev41

• The named CPU models listed in /usr/share/libvirt/cpu_map.xml for libvirt
prior to version 4.7.0 or /usr/share/libvirt/cpu_map/*.xml for version 4.7.0
and higher.

Related options:

• cpu_mode: This should be set to custom ONLY when you want to configure (via
cpu_models) a specific named CPU model. Otherwise, it would result in an error and
the instance launch will fail.

• virt_type: Only the virtualization types kvm and qemu use this.

Note: Be careful to only specify models which can be fully supported in hardware.

Table 76: Deprecated Variations
Group Name
libvirt cpu_model

cpu_model_extra_flags

Type list

Default []

This allows specifying granular CPU feature flags when configuring CPU models. For example, to
explicitly specify the pcid (Process-Context ID, an Intel processor feature which is now required
to address the guest performance degradation as a result of applying the Meltdown CVE fixes to
certain Intel CPU models) flag to the IvyBridge virtual CPU model:

[libvirt]
cpu_mode = custom
cpu_models = IvyBridge
cpu_model_extra_flags = pcid

To specify multiple CPU flags (e.g. the Intel VMX to expose the virtualization extensions to the
guest, or pdpe1gb to configure 1GB huge pages for CPU models that do not provide it):

[libvirt]
cpu_mode = custom
cpu_models = Haswell-noTSX-IBRS
cpu_model_extra_flags = PCID, VMX, pdpe1gb

As it can be noticed from above, the cpu_model_extra_flags config attribute is case in-
sensitive. And specifying extra flags is valid in combination with all the three possible val-
ues for cpu_mode: custom (this also requires an explicit cpu_models to be specified),
host-model, or host-passthrough. A valid example for allowing extra CPU flags even
for host-passthroughmode is that sometimes QEMU may disable certain CPU features e.g.
Intels invtsc, Invariable Time Stamp Counter, CPU flag. And if you need to expose that CPU flag
to the Nova instance, the you need to explicitly ask for it.

The possible values for cpu_model_extra_flags depends on the CPU model in use. Re-
fer to /usr/share/libvirt/cpu_map.xml for libvirt prior to version 4.7.0 or /usr/
share/libvirt/cpu_map/*.xml thereafter for possible CPU feature flags for a given CPU
model.

3.5. Reference Material 559

Nova Documentation, Release 22.4.1.dev41

Note that when using this config attribute to set the PCID CPU flag with the custom CPU mode,
not all virtual (i.e. libvirt / QEMU) CPU models need it:

• The only virtual CPU models that include the PCID capability are Intel Haswell, Broadwell,
and Skylake variants.

• The libvirt / QEMU CPU models Nehalem, Westmere, SandyBridge, and IvyBridge will
not expose the PCID capability by default, even if the host CPUs by the same name include
it. I.e. PCID needs to be explicitly specified when using the said virtual CPU models.

The libvirt drivers default CPU mode, host-model, will do the right thing with respect to
handling PCID CPU flag for the guest assuming you are running updated processor microcode,
host and guest kernel, libvirt, and QEMU. The other mode, host-passthrough, checks if
PCID is available in the hardware, and if so directly passes it through to the Nova guests. Thus,
in context of PCID, with either of these CPU modes (host-model or host-passthrough),
there is no need to use the cpu_model_extra_flags.

Related options:

• cpu_mode

• cpu_models

snapshots_directory

Type string

Default $instances_path/snapshots

Location where libvirt driver will store snapshots before uploading them to image service

xen_hvmloader_path

Type string

Default /usr/lib/xen/boot/hvmloader

Location where the Xen hvmloader is kept

disk_cachemodes

Type list

Default []

Specific cache modes to use for different disk types.

For example: file=directsync,block=none,network=writeback

For local or direct-attached storage, it is recommended that you use writethrough (default) mode,
as it ensures data integrity and has acceptable I/O performance for applications running in the
guest, especially for read operations. However, caching mode none is recommended for remote
NFS storage, because direct I/O operations (O_DIRECT) perform better than synchronous I/O
operations (with O_SYNC). Caching mode none effectively turns all guest I/O operations into
direct I/O operations on the host, which is the NFS client in this environment.

Possible cache modes:

• default: It Depends For Nova-managed disks, none, if the host file system is capable
of Linuxs O_DIRECT semantics; otherwise writeback. For volume drivers, the de-
fault is driver-dependent: none for everything except for SMBFS and Virtuzzo (which use
writeback).

3.5. Reference Material 560

Nova Documentation, Release 22.4.1.dev41

• none: With caching mode set to none, the host page cache is disabled, but the disk write
cache is enabled for the guest. In this mode, the write performance in the guest is opti-
mal because write operations bypass the host page cache and go directly to the disk write
cache. If the disk write cache is battery-backed, or if the applications or storage stack in
the guest transfer data properly (either through fsync operations or file system barriers), then
data integrity can be ensured. However, because the host page cache is disabled, the read
performance in the guest would not be as good as in the modes where the host page cache
is enabled, such as writethrough mode. Shareable disk devices, like for a multi-attachable
block storage volume, will have their cache mode set to none regardless of configuration.

• writethrough: With caching set to writethrough mode, the host page cache is enabled, but
the disk write cache is disabled for the guest. Consequently, this caching mode ensures
data integrity even if the applications and storage stack in the guest do not transfer data to
permanent storage properly (either through fsync operations or file system barriers). Because
the host page cache is enabled in this mode, the read performance for applications running
in the guest is generally better. However, the write performance might be reduced because
the disk write cache is disabled.

• writeback: With caching set to writeback mode, both the host page cache and the disk write
cache are enabled for the guest. Because of this, the I/O performance for applications run-
ning in the guest is good, but the data is not protected in a power failure. As a result, this
caching mode is recommended only for temporary data where potential data loss is not a
concern. NOTE: Certain backend disk mechanisms may provide safe writeback cache se-
mantics. Specifically those that bypass the host page cache, such as QEMUs integrated
RBD driver. Ceph documentation recommends setting this to writeback for maximum per-
formance while maintaining data safety.

• directsync: Like writethrough, but it bypasses the host page cache.

• unsafe: Caching mode of unsafe ignores cache transfer operations completely. As its name
implies, this caching mode should be used only for temporary data where data loss is not a
concern. This mode can be useful for speeding up guest installations, but you should switch
to another caching mode in production environments.

rng_dev_path

Type string

Default /dev/urandom

The path to an RNG (Random Number Generator) device that will be used as the source of entropy
on the host. Since libvirt 1.3.4, any path (that returns random numbers when read) is accepted.
The recommended source of entropy is /dev/urandom it is non-blocking, therefore relatively
fast; and avoids the limitations of /dev/random, which is a legacy interface. For more details
(and comparision between different RNG sources), refer to the Usage section in the Linux kernel
API documentation for [u]random: http://man7.org/linux/man-pages/man4/urandom.4.html
and http://man7.org/linux/man-pages/man7/random.7.html.

hw_machine_type

Type list

Default <None>

For qemu or KVM guests, set this option to specify a default machine type per host ar-
chitecture. You can find a list of supported machine types in your environment by check-
ing the output of the virsh capabilities command. The format of the value for this

3.5. Reference Material 561

http://man7.org/linux/man-pages/man4/urandom.4.html
http://man7.org/linux/man-pages/man7/random.7.html

Nova Documentation, Release 22.4.1.dev41

config option is host-arch=machine-type. For example: x86_64=machinetype1,
armv7l=machinetype2.

sysinfo_serial

Type string

Default unique

Valid Values none, os, hardware, auto, unique

The data source used to the populate the host serial UUID exposed to guest in the virtual BIOS.
All choices except unique will change the serial when migrating the instance to another host.
Changing the choice of this option will also affect existing instances on this host once they are
stopped and started again. It is recommended to use the default choice (unique) since that will
not change when an instance is migrated. However, if you have a need for per-host serials in
addition to per-instance serial numbers, then consider restricting flavors via host aggregates.

Possible values

none A serial number entry is not added to the guest domain xml.

os A UUID serial number is generated from the host /etc/machine-id file.

hardware A UUID for the host hardware as reported by libvirt. This is typically from the host
SMBIOS data, unless it has been overridden in libvirtd.conf.

auto Uses the os source if possible, else hardware.

unique Uses instance UUID as the serial number.

mem_stats_period_seconds

Type integer

Default 10

A number of seconds to memory usage statistics period. Zero or negative value mean to disable
memory usage statistics.

uid_maps

Type list

Default []

List of uid targets and ranges.Syntax is guest-uid:host-uid:count. Maximum of 5 allowed.

gid_maps

Type list

Default []

List of guid targets and ranges.Syntax is guest-gid:host-gid:count. Maximum of 5 allowed.

realtime_scheduler_priority

Type integer

Default 1

3.5. Reference Material 562

Nova Documentation, Release 22.4.1.dev41

In a realtime host context vCPUs for guest will run in that scheduling priority. Priority depends
on the host kernel (usually 1-99)

enabled_perf_events

Type list

Default []

Performance events to monitor and collect statistics for.

This will allow you to specify a list of events to monitor low-level performance of guests, and
collect related statistics via the libvirt driver, which in turn uses the Linux kernels perf infras-
tructure. With this config attribute set, Nova will generate libvirt guest XML to monitor the
specified events.

For example, to monitor the count of CPU cycles (total/elapsed) and the count of cache misses,
enable them as follows:

[libvirt]
enabled_perf_events = cpu_clock, cache_misses

Possible values: A string list. The list of supported events can be found here. Note that Intel CMT
events - cmt, mbmbt and mbml - are unsupported by recent Linux kernel versions (4.14+) and
will be ignored by nova.

num_pcie_ports

Type integer

Default 0

Minimum Value 0

Maximum Value 28

The number of PCIe ports an instance will get.

Libvirt allows a custom number of PCIe ports (pcie-root-port controllers) a target instance will
get. Some will be used by default, rest will be available for hotplug use.

By default we have just 1-2 free ports which limits hotplug.

More info: https://github.com/qemu/qemu/blob/master/docs/pcie.txt

Due to QEMU limitations for aarch64/virt maximum value is set to 28.

Default value 0 moves calculating amount of ports to libvirt.

file_backed_memory

Type integer

Default 0

Minimum Value 0

Available capacity in MiB for file-backed memory.

Set to 0 to disable file-backed memory.

When enabled, instances will create memory files in the directory specified in /etc/
libvirt/qemu.confs memory_backing_dir option. The default location is /var/
lib/libvirt/qemu/ram.

3.5. Reference Material 563

https://libvirt.org/formatdomain.html#elementsPerf.
https://github.com/qemu/qemu/blob/master/docs/pcie.txt

Nova Documentation, Release 22.4.1.dev41

When enabled, the value defined for this option is reported as the node memory capacity. Compute
node system memory will be used as a cache for file-backed memory, via the kernels pagecache
mechanism.

Note: This feature is not compatible with hugepages.

Note: This feature is not compatible with memory overcommit.

Related options:

• virt_type must be set to kvm or qemu.

• ram_allocation_ratio must be set to 1.0.

num_memory_encrypted_guests

Type integer

Default <None>

Minimum Value 0

Maximum number of guests with encrypted memory which can run concurrently on this compute
host.

For now this is only relevant for AMD machines which support SEV (Secure Encrypted Virtu-
alization). Such machines have a limited number of slots in their memory controller for storing
encryption keys. Each running guest with encrypted memory will consume one of these slots.

The option may be reused for other equivalent technologies in the future. If the machine does not
support memory encryption, the option will be ignored and inventory will be set to 0.

If the machine does support memory encryption, for now a value of None means an effectively
unlimited inventory, i.e. no limit will be imposed by Nova on the number of SEV guests which
can be launched, even though the underlying hardware will enforce its own limit. However it
is expected that in the future, auto-detection of the inventory from the hardware will become
possible, at which point None will cause auto-detection to automatically impose the correct limit.

Note: It is recommended to read the deployment documentations section on this option before
deciding whether to configure this setting or leave it at the default.

Related options:

• libvirt.virt_type must be set to kvm.

• Its recommended to consider including x86_64=q35 in libvirt.
hw_machine_type; see Deploying SEV-capable infrastructure for more on this.

images_type

Type string

Default default

Valid Values raw, flat, qcow2, lvm, rbd, ploop, default

3.5. Reference Material 564

Nova Documentation, Release 22.4.1.dev41

VM Images format.

If default is specified, then use_cow_images flag is used instead of this one.

Related options:

• compute.use_cow_images

• images_volume_group

• [workarounds]/ensure_libvirt_rbd_instance_dir_cleanup

• compute.force_raw_images

images_volume_group

Type string

Default <None>

LVM Volume Group that is used for VM images, when you specify images_type=lvm

Related options:

• images_type

sparse_logical_volumes

Type boolean

Default False

Create sparse logical volumes (with virtualsize) if this flag is set to True.

Warning: This option is deprecated for removal since 18.0.0. Its value may be silently
ignored in the future.

Reason Sparse logical volumes is a feature that is not tested hence not supported.
LVM logical volumes are preallocated by default. If you want thin provi-
sioning, use Cinder thin-provisioned volumes.

images_rbd_pool

Type string

Default rbd

The RADOS pool in which rbd volumes are stored

images_rbd_ceph_conf

Type string

Default ''

Path to the ceph configuration file to use

images_rbd_glance_store_name

Type string

Default ''

3.5. Reference Material 565

Nova Documentation, Release 22.4.1.dev41

The name of the Glance store that represents the rbd cluster in use by this node. If set, this will
allow Nova to request that Glance copy an image from an existing non-local store into the one
named by this option before booting so that proper Copy-on-Write behavior is maintained.

Related options:

• images_type - must be set to rbd

• images_rbd_glance_copy_poll_interval - controls the status poll frequency

• images_rbd_glance_copy_timeout - controls the overall copy timeout

images_rbd_glance_copy_poll_interval

Type integer

Default 15

The interval in seconds with which to poll Glance after asking for it to copy an image to the local
rbd store. This affects how often we ask Glance to report on copy completion, and thus should
be short enough that we notice quickly, but not too aggressive that we generate undue load on the
Glance server.

Related options:

• images_type - must be set to rbd

• images_rbd_glance_store_name - must be set to a store name

images_rbd_glance_copy_timeout

Type integer

Default 600

The overall maximum time we will wait for Glance to complete an image copy to our local rbd
store. This should be long enough to allow large images to be copied over the network link
between our local store and the one where images typically reside. The downside of setting this
too long is just to catch the case where the image copy is stalled or proceeding too slowly to be
useful. Actual errors will be reported by Glance and noticed according to the poll interval.

Related options: * images_type - must be set to rbd * images_rbd_glance_store_name - must be
set to a store name * images_rbd_glance_copy_poll_interval - controls the failure time-to-notice

hw_disk_discard

Type string

Default <None>

Valid Values ignore, unmap

Discard option for nova managed disks.

Requires:

• Libvirt >= 1.0.6

• Qemu >= 1.5 (raw format)

• Qemu >= 1.6 (qcow2 format)

volume_clear

Type string

3.5. Reference Material 566

Nova Documentation, Release 22.4.1.dev41

Default zero

Valid Values zero, shred, none

Method used to wipe ephemeral disks when they are deleted. Only takes effect if LVM is set as
backing storage.

Related options:

• images_type - must be set to lvm

• volume_clear_size

Possible values

zero Overwrite volumes with zeroes

shred Overwrite volumes repeatedly

none Do not wipe deleted volumes

volume_clear_size

Type integer

Default 0

Minimum Value 0

Size of area in MiB, counting from the beginning of the allocated volume, that will be cleared
using method set in volume_clear option.

Possible values:

• 0 - clear whole volume

• >0 - clear specified amount of MiB

Related options:

• images_type - must be set to lvm

• volume_clear - must be set and the value must be different than none for this option to have
any impact

snapshot_compression

Type boolean

Default False

Enable snapshot compression for qcow2 images.

Note: you can set snapshot_image_format to qcow2 to force all snapshots to be in qcow2
format, independently from their original image type.

Related options:

• snapshot_image_format

use_virtio_for_bridges

Type boolean

3.5. Reference Material 567

Nova Documentation, Release 22.4.1.dev41

Default True

Use virtio for bridge interfaces with KVM/QEMU

volume_use_multipath

Type boolean

Default False

Use multipath connection of the iSCSI or FC volume

Volumes can be connected in the LibVirt as multipath devices. This will provide high availability
and fault tolerance.

Table 77: Deprecated Variations
Group Name
libvirt iscsi_use_multipath

num_volume_scan_tries

Type integer

Default 5

Number of times to scan given storage protocol to find volume.

Table 78: Deprecated Variations
Group Name
libvirt num_iscsi_scan_tries

num_aoe_discover_tries

Type integer

Default 3

Number of times to rediscover AoE target to find volume.

Nova provides support for block storage attaching to hosts via AOE (ATA over Ethernet). This
option allows the user to specify the maximum number of retry attempts that can be made to
discover the AoE device.

iscsi_iface

Type string

Default <None>

The iSCSI transport iface to use to connect to target in case offload support is desired.

Default format is of the form <transport_name>.<hwaddress> where <transport_name> is one
of (be2iscsi, bnx2i, cxgb3i, cxgb4i, qla4xxx, ocs) and <hwaddress> is the MAC address of the
interface and can be generated via the iscsiadm -m iface command. Do not confuse the iscsi_iface
parameter to be provided here with the actual transport name.

Table 79: Deprecated Variations
Group Name
libvirt iscsi_transport

3.5. Reference Material 568

Nova Documentation, Release 22.4.1.dev41

num_iser_scan_tries

Type integer

Default 5

Number of times to scan iSER target to find volume.

iSER is a server network protocol that extends iSCSI protocol to use Remote Direct Memory
Access (RDMA). This option allows the user to specify the maximum number of scan attempts
that can be made to find iSER volume.

iser_use_multipath

Type boolean

Default False

Use multipath connection of the iSER volume.

iSER volumes can be connected as multipath devices. This will provide high availability and fault
tolerance.

rbd_user

Type string

Default <None>

The RADOS client name for accessing rbd(RADOS Block Devices) volumes.

Libvirt will refer to this user when connecting and authenticating with the Ceph RBD server.

rbd_secret_uuid

Type string

Default <None>

The libvirt UUID of the secret for the rbd_user volumes.

rbd_connect_timeout

Type integer

Default 5

The RADOS client timeout in seconds when initially connecting to the cluster.

rbd_destroy_volume_retry_interval

Type integer

Default 5

Minimum Value 0

Number of seconds to wait between each consecutive retry to destroy a RBD volume.

Related options:

• [libvirt]/images_type = rbd

rbd_destroy_volume_retries

Type integer

3.5. Reference Material 569

Nova Documentation, Release 22.4.1.dev41

Default 12

Minimum Value 0

Number of retries to destroy a RBD volume.

Related options:

• [libvirt]/images_type = rbd

nfs_mount_point_base

Type string

Default $state_path/mnt

Directory where the NFS volume is mounted on the compute node. The default is mnt directory
of the location where novas Python module is installed.

NFS provides shared storage for the OpenStack Block Storage service.

Possible values:

• A string representing absolute path of mount point.

nfs_mount_options

Type string

Default <None>

Mount options passed to the NFS client. See section of the nfs man page for details.

Mount options controls the way the filesystem is mounted and how the NFS client behaves when
accessing files on this mount point.

Possible values:

• Any string representing mount options separated by commas.

• Example string: vers=3,lookupcache=pos

quobyte_mount_point_base

Type string

Default $state_path/mnt

Directory where the Quobyte volume is mounted on the compute node.

Nova supports Quobyte volume driver that enables storing Block Storage service volumes on a
Quobyte storage back end. This Option specifies the path of the directory where Quobyte volume
is mounted.

Possible values:

• A string representing absolute path of mount point.

quobyte_client_cfg

Type string

Default <None>

Path to a Quobyte Client configuration file.

smbfs_mount_point_base

3.5. Reference Material 570

Nova Documentation, Release 22.4.1.dev41

Type string

Default $state_path/mnt

Directory where the SMBFS shares are mounted on the compute node.

smbfs_mount_options

Type string

Default ''

Mount options passed to the SMBFS client.

Provide SMBFS options as a single string containing all parameters. See mount.cifs man page for
details. Note that the libvirt-qemu uid and gid must be specified.

remote_filesystem_transport

Type string

Default ssh

Valid Values ssh, rsync

libvirts transport method for remote file operations.

Because libvirt cannot use RPC to copy files over network to/from other compute nodes, other
method must be used for:

• creating directory on remote host

• creating file on remote host

• removing file from remote host

• copying file to remote host

vzstorage_mount_point_base

Type string

Default $state_path/mnt

Directory where the Virtuozzo Storage clusters are mounted on the compute node.

This option defines non-standard mountpoint for Vzstorage cluster.

Related options:

• vzstorage_mount_* group of parameters

vzstorage_mount_user

Type string

Default stack

Mount owner user name.

This option defines the owner user of Vzstorage cluster mountpoint.

Related options:

• vzstorage_mount_* group of parameters

vzstorage_mount_group

3.5. Reference Material 571

Nova Documentation, Release 22.4.1.dev41

Type string

Default qemu

Mount owner group name.

This option defines the owner group of Vzstorage cluster mountpoint.

Related options:

• vzstorage_mount_* group of parameters

vzstorage_mount_perms

Type string

Default 0770

Mount access mode.

This option defines the access bits of Vzstorage cluster mountpoint, in the format similar to one of
chmod(1) utility, like this: 0770. It consists of one to four digits ranging from 0 to 7, with missing
lead digits assumed to be 0s.

Related options:

• vzstorage_mount_* group of parameters

vzstorage_log_path

Type string

Default /var/log/vstorage/%(cluster_name)s/nova.log.gz

Path to vzstorage client log.

This option defines the log of cluster operations, it should include %(cluster_name)s template to
separate logs from multiple shares.

Related options:

• vzstorage_mount_opts may include more detailed logging options.

vzstorage_cache_path

Type string

Default <None>

Path to the SSD cache file.

You can attach an SSD drive to a client and configure the drive to store a local cache of frequently
accessed data. By having a local cache on a clients SSD drive, you can increase the overall cluster
performance by up to 10 and more times. WARNING! There is a lot of SSD models which are
not server grade and may loose arbitrary set of data changes on power loss. Such SSDs should
not be used in Vstorage and are dangerous as may lead to data corruptions and inconsistencies.
Please consult with the manual on which SSD models are known to be safe or verify it using
vstorage-hwflush-check(1) utility.

This option defines the path which should include %(cluster_name)s template to separate caches
from multiple shares.

Related options:

• vzstorage_mount_opts may include more detailed cache options.

3.5. Reference Material 572

Nova Documentation, Release 22.4.1.dev41

vzstorage_mount_opts

Type list

Default []

Extra mount options for pstorage-mount

For full description of them, see https://static.openvz.org/vz-man/man1/pstorage-mount.1.gz.html
Format is a python string representation of arguments list, like: [-v, -R, 500] Shouldnt include -c,
-l, -C, -u, -g and -m as those have explicit vzstorage_* options.

Related options:

• All other vzstorage_* options

rx_queue_size

Type unknown type

Default <None>

Valid Values 256, 512, 1024

Configure virtio rx queue size.

This option is only usable for virtio-net device with vhost and vhost-user backend. Available only
with QEMU/KVM. Requires libvirt v2.3 QEMU v2.7.

tx_queue_size

Type unknown type

Default <None>

Valid Values 256, 512, 1024

Configure virtio tx queue size.

This option is only usable for virtio-net device with vhost-user backend. Available only with
QEMU/KVM. Requires libvirt v3.7 QEMU v2.10.

max_queues

Type integer

Default <None>

Minimum Value 1

The maximum number of virtio queue pairs that can be enabled when creating a multiqueue guest.
The number of virtio queues allocated will be the lesser of the CPUs requested by the guest and
the max value defined. By default, this value is set to none meaning the legacy limits based on the
reported kernel major version will be used.

num_nvme_discover_tries

Type integer

Default 5

Number of times to rediscover NVMe target to find volume

3.5. Reference Material 573

https://static.openvz.org/vz-man/man1/pstorage-mount.1.gz.html

Nova Documentation, Release 22.4.1.dev41

Nova provides support for block storage attaching to hosts via NVMe (Non-Volatile Memory
Express). This option allows the user to specify the maximum number of retry attempts that can
be made to discover the NVMe device.

pmem_namespaces

Type list

Default []

Configure persistent memory(pmem) namespaces.

These namespaces must have been already created on the host. This config option is in the fol-
lowing format:

"$LABEL:$NSNAME[|$NSNAME][,$LABEL:$NSNAME[|$NSNAME]]"

• $NSNAME is the name of the pmem namespace.

• $LABEL represents one resource class, this is used to generate the resource class name
as CUSTOM_PMEM_NAMESPACE_$LABEL.

For example:

[libvirt]
pmem_namespaces=128G:ns0|ns1|ns2|ns3,262144MB:ns4|ns5,MEDIUM:ns6|ns7

swtpm_enabled

Type boolean

Default False

Enable emulated TPM (Trusted Platform Module) in guests.

swtpm_user

Type string

Default tss

User that swtpm binary runs as.

When using emulated TPM, the swtpm binary will run to emulate a TPM device. The user this
binary runs as depends on libvirt configuration, with tss being the default.

In order to support cold migration and resize, nova needs to know what user the swtpm binary is
running as in order to ensure that files get the proper ownership after being moved between nodes.

Related options:

• swtpm_group must also be set.

swtpm_group

Type string

Default tss

Group that swtpm binary runs as.

When using emulated TPM, the swtpm binary will run to emulate a TPM device. The user this
binary runs as depends on libvirt configuration, with tss being the default.

3.5. Reference Material 574

Nova Documentation, Release 22.4.1.dev41

In order to support cold migration and resize, nova needs to know what group the swtpm binary is
running as in order to ensure that files get the proper ownership after being moved between nodes.

Related options:

• swtpm_user must also be set.

metrics

Configuration options for metrics

Options under this group allow to adjust how values assigned to metrics are calculated.

weight_multiplier

Type floating point

Default 1.0

When using metrics to weight the suitability of a host, you can use this option to change how the
calculated weight influences the weight assigned to a host as follows:

• >1.0: increases the effect of the metric on overall weight

• 1.0: no change to the calculated weight

• >0.0,<1.0: reduces the effect of the metric on overall weight

• 0.0: the metric value is ignored, and the value of the weight_of_unavailable option is re-
turned instead

• >-1.0,<0.0: the effect is reduced and reversed

• -1.0: the effect is reversed

• <-1.0: the effect is increased proportionally and reversed

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

• An integer or float value, where the value corresponds to the multipler ratio for this weigher.

Related options:

• weight_of_unavailable

weight_setting

Type list

Default []

This setting specifies the metrics to be weighed and the relative ratios for each metric. This should
be a single string value, consisting of a series of one or more name=ratio pairs, separated by
commas, where name is the name of the metric to be weighed, and ratio is the relative weight for
that metric.

Note that if the ratio is set to 0, the metric value is ignored, and instead the weight will be set to
the value of the weight_of_unavailable option.

As an example, lets consider the case where this option is set to:

3.5. Reference Material 575

Nova Documentation, Release 22.4.1.dev41

name1=1.0, name2=-1.3

The final weight will be:

(name1.value * 1.0) + (name2.value * -1.3)

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

• A list of zero or more key/value pairs separated by commas, where the key is a string
representing the name of a metric and the value is a numeric weight for that metric. If
any value is set to 0, the value is ignored and the weight will be set to the value of the
weight_of_unavailable option.

Related options:

• weight_of_unavailable

required

Type boolean

Default True

This setting determines how any unavailable metrics are treated. If this option is set to True, any
hosts for which a metric is unavailable will raise an exception, so it is recommended to also use
the MetricFilter to filter out those hosts before weighing.

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

• True or False, where False ensures any metric being unavailable for a host will set the host
weight to weight_of_unavailable.

Related options:

• weight_of_unavailable

weight_of_unavailable

Type floating point

Default -10000.0

When any of the following conditions are met, this value will be used in place of any actual metric
value:

• One of the metrics named in weight_setting is not available for a host, and the value of
required is False

• The ratio specified for a metric in weight_setting is 0

• The weight_multiplier option is set to 0

This option is only used by the FilterScheduler and its subclasses; if you use a different scheduler,
this option has no effect.

Possible values:

• An integer or float value, where the value corresponds to the multipler ratio for this weigher.

3.5. Reference Material 576

Nova Documentation, Release 22.4.1.dev41

Related options:

• weight_setting

• required

• weight_multiplier

mks

Nova compute node uses WebMKS, a desktop sharing protocol to provide instance console access to
VMs created by VMware hypervisors.

Related options: Following options must be set to provide console access. * mksproxy_base_url *
enabled

mksproxy_base_url

Type URI

Default http://127.0.0.1:6090/

Location of MKS web console proxy

The URL in the response points to a WebMKS proxy which starts proxying between client and
corresponding vCenter server where instance runs. In order to use the web based console access,
WebMKS proxy should be installed and configured

Possible values:

• Must be a valid URL of the form:http://host:port/ or https://host:port/

enabled

Type boolean

Default False

Enables graphical console access for virtual machines.

neutron

Configuration options for neutron (network connectivity as a service).

ovs_bridge

Type string

Default br-int

Default name for the Open vSwitch integration bridge.

Specifies the name of an integration bridge interface used by OpenvSwitch. This option is only
used if Neutron does not specify the OVS bridge name in port binding responses.

default_floating_pool

Type string

Default nova

3.5. Reference Material 577

Nova Documentation, Release 22.4.1.dev41

Default name for the floating IP pool.

Specifies the name of floating IP pool used for allocating floating IPs. This option is only used if
Neutron does not specify the floating IP pool name in port binding reponses.

extension_sync_interval

Type integer

Default 600

Minimum Value 0

Integer value representing the number of seconds to wait before querying Neutron for extensions.
After this number of seconds the next time Nova needs to create a resource in Neutron it will
requery Neutron for the extensions that it has loaded. Setting value to 0 will refresh the extensions
with no wait.

physnets

Type list

Default []

List of physnets present on this host.

For each physnet listed, an additional section, [neutron_physnet_$PHYSNET], will be
added to the configuration file. Each section must be configured with a single configuration option,
numa_nodes, which should be a list of node IDs for all NUMA nodes this physnet is associated
with. For example:

[neutron]
physnets = foo, bar

[neutron_physnet_foo]
numa_nodes = 0

[neutron_physnet_bar]
numa_nodes = 0,1

Any physnet that is not listed using this option will be treated as having no particular NUMA node
affinity.

Tunnelled networks (VXLAN, GRE,) cannot be accounted for in this way and are instead config-
ured using the [neutron_tunnel] group. For example:

[neutron_tunnel]
numa_nodes = 1

Related options:

• [neutron_tunnel] numa_nodes can be used to configure NUMA affinity for all tun-
neled networks

• [neutron_physnet_$PHYSNET] numa_nodes must be configured for each value
of $PHYSNET specified by this option

http_retries

Type integer

3.5. Reference Material 578

Nova Documentation, Release 22.4.1.dev41

Default 3

Minimum Value 0

Number of times neutronclient should retry on any failed http call.

0 means connection is attempted only once. Setting it to any positive integer means that on failure
connection is retried that many times e.g. setting it to 3 means total attempts to connect will be 4.

Possible values:

• Any integer value. 0 means connection is attempted only once

service_metadata_proxy

Type boolean

Default False

When set to True, this option indicates that Neutron will be used to proxy metadata requests and
resolve instance ids. Otherwise, the instance ID must be passed to the metadata request in the
X-Instance-ID header.

Related options:

• metadata_proxy_shared_secret

metadata_proxy_shared_secret

Type string

Default ''

This option holds the shared secret string used to validate proxy requests to Neutron metadata
requests. In order to be used, the X-Metadata-Provider-Signature header must be supplied in the
request.

Related options:

• service_metadata_proxy

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

3.5. Reference Material 579

Nova Documentation, Release 22.4.1.dev41

Type boolean

Default False

Verify HTTPS connections.

timeout

Type integer

Default <None>

Timeout value for http requests

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

Type boolean

Default False

Log requests to multiple loggers.

auth_type

Type unknown type

Default <None>

Authentication type to load

Table 80: Deprecated Variations
Group Name
neutron auth_plugin

auth_section

Type unknown type

Default <None>

Config Section from which to load plugin specific options

auth_url

Type unknown type

Default <None>

Authentication URL

system_scope

Type unknown type

Default <None>

Scope for system operations

3.5. Reference Material 580

Nova Documentation, Release 22.4.1.dev41

domain_id

Type unknown type

Default <None>

Domain ID to scope to

domain_name

Type unknown type

Default <None>

Domain name to scope to

project_id

Type unknown type

Default <None>

Project ID to scope to

project_name

Type unknown type

Default <None>

Project name to scope to

project_domain_id

Type unknown type

Default <None>

Domain ID containing project

project_domain_name

Type unknown type

Default <None>

Domain name containing project

trust_id

Type unknown type

Default <None>

Trust ID

default_domain_id

Type unknown type

Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type unknown type

3.5. Reference Material 581

Nova Documentation, Release 22.4.1.dev41

Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

user_id

Type unknown type

Default <None>

User ID

username

Type unknown type

Default <None>

Username

Table 81: Deprecated Variations
Group Name
neutron user-name
neutron user_name

user_domain_id

Type unknown type

Default <None>

Users domain id

user_domain_name

Type unknown type

Default <None>

Users domain name

password

Type unknown type

Default <None>

Users password

tenant_id

Type unknown type

Default <None>

Tenant ID

tenant_name

Type unknown type

Default <None>

Tenant Name

3.5. Reference Material 582

Nova Documentation, Release 22.4.1.dev41

service_type

Type string

Default network

The default service_type for endpoint URL discovery.

service_name

Type string

Default <None>

The default service_name for endpoint URL discovery.

valid_interfaces

Type list

Default ['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

region_name

Type string

Default <None>

The default region_name for endpoint URL discovery.

endpoint_override

Type string

Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

connect_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

status_code_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

3.5. Reference Material 583

Nova Documentation, Release 22.4.1.dev41

status_code_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

notifications

Most of the actions in Nova which manipulate the system state generate notifications which are posted to
the messaging component (e.g. RabbitMQ) and can be consumed by any service outside the OpenStack.
More technical details at https://docs.openstack.org/nova/latest/reference/notifications.html

notify_on_state_change

Type string

Default <None>

Valid Values <None>, vm_state, vm_and_task_state

If set, send compute.instance.update notifications on instance state changes.

Please refer to https://docs.openstack.org/nova/latest/reference/notifications.html for additional
information on notifications.

Possible values

<None> no notifications

vm_state Notifications are sent with VM state transition information in the old_state and
state fields. The old_task_state and new_task_state fields will be set to the
current task_state of the instance

vm_and_task_state Notifications are sent with VM and task state transition information

Table 82: Deprecated Variations
Group Name
DEFAULT notify_on_state_change

default_level

Type string

Default INFO

Valid Values DEBUG, INFO, WARN, ERROR, CRITICAL

Default notification level for outgoing notifications.

Table 83: Deprecated Variations
Group Name
DEFAULT default_notification_level

3.5. Reference Material 584

https://docs.openstack.org/nova/latest/reference/notifications.html
https://docs.openstack.org/nova/latest/reference/notifications.html

Nova Documentation, Release 22.4.1.dev41

notification_format

Type string

Default unversioned

Valid Values both, versioned, unversioned

Specifies which notification format shall be emitted by nova.

The versioned notification interface are in feature parity with the legacy interface and the versioned
interface is actively developed so new consumers should used the versioned interface.

However, the legacy interface is heavily used by ceilometer and other mature OpenStack compo-
nents so it remains the default.

Note that notifications can be completely disabled by setting driver=noop in the
[oslo_messaging_notifications] group.

The list of versioned notifications is visible in https://docs.openstack.org/nova/latest/reference/
notifications.html

Possible values

both Both the legacy unversioned and the new versioned notifications are emitted

versioned Only the new versioned notifications are emitted

unversioned Only the legacy unversioned notifications are emitted

Table 84: Deprecated Variations
Group Name
DEFAULT notification_format

versioned_notifications_topics

Type list

Default ['versioned_notifications']

Specifies the topics for the versioned notifications issued by nova.

The default value is fine for most deployments and rarely needs to be changed. However, if you
have a third-party service that consumes versioned notifications, it might be worth getting a topic
for that service. Nova will send a message containing a versioned notification payload to each
topic queue in this list.

The list of versioned notifications is visible in https://docs.openstack.org/nova/latest/reference/
notifications.html

bdms_in_notifications

Type boolean

Default False

If enabled, include block device information in the versioned notification payload. Sending block
device information is disabled by default as providing that information can incur some overhead
on the system since the information may need to be loaded from the database.

3.5. Reference Material 585

https://docs.openstack.org/nova/latest/reference/notifications.html
https://docs.openstack.org/nova/latest/reference/notifications.html
https://docs.openstack.org/nova/latest/reference/notifications.html
https://docs.openstack.org/nova/latest/reference/notifications.html

Nova Documentation, Release 22.4.1.dev41

oslo_concurrency

disable_process_locking

Type boolean

Default False

Enables or disables inter-process locks.

Table 85: Deprecated Variations
Group Name
DEFAULT disable_process_locking

lock_path

Type string

Default <None>

Directory to use for lock files. For security, the specified directory should only be writable
by the user running the processes that need locking. Defaults to environment variable
OSLO_LOCK_PATH. If external locks are used, a lock path must be set.

Table 86: Deprecated Variations
Group Name
DEFAULT lock_path

oslo_messaging_amqp

container_name

Type string

Default <None>

Name for the AMQP container. must be globally unique. Defaults to a generated UUID

Table 87: Deprecated Variations
Group Name
amqp1 container_name

idle_timeout

Type integer

Default 0

Timeout for inactive connections (in seconds)

Table 88: Deprecated Variations
Group Name
amqp1 idle_timeout

3.5. Reference Material 586

Nova Documentation, Release 22.4.1.dev41

trace

Type boolean

Default False

Debug: dump AMQP frames to stdout

Table 89: Deprecated Variations
Group Name
amqp1 trace

ssl

Type boolean

Default False

Attempt to connect via SSL. If no other ssl-related parameters are given, it will use the systems
CA-bundle to verify the servers certificate.

ssl_ca_file

Type string

Default ''

CA certificate PEM file used to verify the servers certificate

Table 90: Deprecated Variations
Group Name
amqp1 ssl_ca_file

ssl_cert_file

Type string

Default ''

Self-identifying certificate PEM file for client authentication

Table 91: Deprecated Variations
Group Name
amqp1 ssl_cert_file

ssl_key_file

Type string

Default ''

Private key PEM file used to sign ssl_cert_file certificate (optional)

Table 92: Deprecated Variations
Group Name
amqp1 ssl_key_file

3.5. Reference Material 587

Nova Documentation, Release 22.4.1.dev41

ssl_key_password

Type string

Default <None>

Password for decrypting ssl_key_file (if encrypted)

Table 93: Deprecated Variations
Group Name
amqp1 ssl_key_password

ssl_verify_vhost

Type boolean

Default False

By default SSL checks that the name in the servers certificate matches the hostname in the trans-
port_url. In some configurations it may be preferable to use the virtual hostname instead, for
example if the server uses the Server Name Indication TLS extension (rfc6066) to provide a cer-
tificate per virtual host. Set ssl_verify_vhost to True if the servers SSL certificate uses the virtual
host name instead of the DNS name.

sasl_mechanisms

Type string

Default ''

Space separated list of acceptable SASL mechanisms

Table 94: Deprecated Variations
Group Name
amqp1 sasl_mechanisms

sasl_config_dir

Type string

Default ''

Path to directory that contains the SASL configuration

Table 95: Deprecated Variations
Group Name
amqp1 sasl_config_dir

sasl_config_name

Type string

Default ''

Name of configuration file (without .conf suffix)

3.5. Reference Material 588

Nova Documentation, Release 22.4.1.dev41

Table 96: Deprecated Variations
Group Name
amqp1 sasl_config_name

sasl_default_realm

Type string

Default ''

SASL realm to use if no realm present in username

connection_retry_interval

Type integer

Default 1

Minimum Value 1

Seconds to pause before attempting to re-connect.

connection_retry_backoff

Type integer

Default 2

Minimum Value 0

Increase the connection_retry_interval by this many seconds after each unsuccessful failover at-
tempt.

connection_retry_interval_max

Type integer

Default 30

Minimum Value 1

Maximum limit for connection_retry_interval + connection_retry_backoff

link_retry_delay

Type integer

Default 10

Minimum Value 1

Time to pause between re-connecting an AMQP 1.0 link that failed due to a recoverable error.

default_reply_retry

Type integer

Default 0

Minimum Value -1

The maximum number of attempts to re-send a reply message which failed due to a recoverable
error.

default_reply_timeout

3.5. Reference Material 589

Nova Documentation, Release 22.4.1.dev41

Type integer

Default 30

Minimum Value 5

The deadline for an rpc reply message delivery.

default_send_timeout

Type integer

Default 30

Minimum Value 5

The deadline for an rpc cast or call message delivery. Only used when caller does not provide a
timeout expiry.

default_notify_timeout

Type integer

Default 30

Minimum Value 5

The deadline for a sent notification message delivery. Only used when caller does not provide a
timeout expiry.

default_sender_link_timeout

Type integer

Default 600

Minimum Value 1

The duration to schedule a purge of idle sender links. Detach link after expiry.

addressing_mode

Type string

Default dynamic

Indicates the addressing mode used by the driver. Permitted values: legacy - use legacy non-
routable addressing routable - use routable addresses dynamic - use legacy addresses if the mes-
sage bus does not support routing otherwise use routable addressing

pseudo_vhost

Type boolean

Default True

Enable virtual host support for those message buses that do not natively support virtual hosting
(such as qpidd). When set to true the virtual host name will be added to all message bus addresses,
effectively creating a private subnet per virtual host. Set to False if the message bus supports
virtual hosting using the hostname field in the AMQP 1.0 Open performative as the name of the
virtual host.

server_request_prefix

Type string

3.5. Reference Material 590

Nova Documentation, Release 22.4.1.dev41

Default exclusive

address prefix used when sending to a specific server

Table 97: Deprecated Variations
Group Name
amqp1 server_request_prefix

broadcast_prefix

Type string

Default broadcast

address prefix used when broadcasting to all servers

Table 98: Deprecated Variations
Group Name
amqp1 broadcast_prefix

group_request_prefix

Type string

Default unicast

address prefix when sending to any server in group

Table 99: Deprecated Variations
Group Name
amqp1 group_request_prefix

rpc_address_prefix

Type string

Default openstack.org/om/rpc

Address prefix for all generated RPC addresses

notify_address_prefix

Type string

Default openstack.org/om/notify

Address prefix for all generated Notification addresses

multicast_address

Type string

Default multicast

Appended to the address prefix when sending a fanout message. Used by the message bus to
identify fanout messages.

unicast_address

3.5. Reference Material 591

Nova Documentation, Release 22.4.1.dev41

Type string

Default unicast

Appended to the address prefix when sending to a particular RPC/Notification server. Used by the
message bus to identify messages sent to a single destination.

anycast_address

Type string

Default anycast

Appended to the address prefix when sending to a group of consumers. Used by the message bus
to identify messages that should be delivered in a round-robin fashion across consumers.

default_notification_exchange

Type string

Default <None>

Exchange name used in notification addresses. Exchange name resolution precedence: Tar-
get.exchange if set else default_notification_exchange if set else control_exchange if set else no-
tify

default_rpc_exchange

Type string

Default <None>

Exchange name used in RPC addresses. Exchange name resolution precedence: Target.exchange
if set else default_rpc_exchange if set else control_exchange if set else rpc

reply_link_credit

Type integer

Default 200

Minimum Value 1

Window size for incoming RPC Reply messages.

rpc_server_credit

Type integer

Default 100

Minimum Value 1

Window size for incoming RPC Request messages

notify_server_credit

Type integer

Default 100

Minimum Value 1

Window size for incoming Notification messages

pre_settled

3.5. Reference Material 592

Nova Documentation, Release 22.4.1.dev41

Type multi-valued

Default rpc-cast

Default rpc-reply

Send messages of this type pre-settled. Pre-settled messages will not receive acknowledgement
from the peer. Note well: pre-settled messages may be silently discarded if the delivery fails.
Permitted values: rpc-call - send RPC Calls pre-settled rpc-reply- send RPC Replies pre-settled
rpc-cast - Send RPC Casts pre-settled notify - Send Notifications pre-settled

oslo_messaging_kafka

kafka_max_fetch_bytes

Type integer

Default 1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type floating point

Default 1.0

Default timeout(s) for Kafka consumers

pool_size

Type integer

Default 10

Pool Size for Kafka Consumers

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_min_size

Type integer

Default 2

The pool size limit for connections expiration policy

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_ttl

Type integer

3.5. Reference Material 593

Nova Documentation, Release 22.4.1.dev41

Default 1200

The time-to-live in sec of idle connections in the pool

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

consumer_group

Type string

Default oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type floating point

Default 0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

Type integer

Default 16384

Size of batch for the producer async send

compression_codec

Type string

Default none

Valid Values none, gzip, snappy, lz4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit

Type boolean

Default False

Enable asynchronous consumer commits

max_poll_records

Type integer

Default 500

The maximum number of records returned in a poll call

security_protocol

Type string

3.5. Reference Material 594

Nova Documentation, Release 22.4.1.dev41

Default PLAINTEXT

Valid Values PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type string

Default PLAIN

Mechanism when security protocol is SASL

ssl_cafile

Type string

Default ''

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type string

Default ''

Client certificate PEM file used for authentication.

ssl_client_key_file

Type string

Default ''

Client key PEM file used for authentication.

ssl_client_key_password

Type string

Default ''

Client key password file used for authentication.

oslo_messaging_notifications

driver

Type multi-valued

Default ''

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

Table 100: Deprecated Variations
Group Name
DEFAULT notification_driver

transport_url

3.5. Reference Material 595

Nova Documentation, Release 22.4.1.dev41

Type string

Default <None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 101: Deprecated Variations
Group Name
DEFAULT notification_transport_url

topics

Type list

Default ['notifications']

AMQP topic used for OpenStack notifications.

Table 102: Deprecated Variations
Group Name
rpc_notifier2 topics
DEFAULT notification_topics

retry

Type integer

Default -1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

oslo_messaging_rabbit

amqp_durable_queues

Type boolean

Default False

Use durable queues in AMQP.

amqp_auto_delete

Type boolean

Default False

Auto-delete queues in AMQP.

Table 103: Deprecated Variations
Group Name
DEFAULT amqp_auto_delete

ssl

3.5. Reference Material 596

Nova Documentation, Release 22.4.1.dev41

Type boolean

Default False

Connect over SSL.

Table 104: Deprecated Variations
Group Name
oslo_messaging_rabbit rabbit_use_ssl

ssl_version

Type string

Default ''

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 105: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_version

ssl_key_file

Type string

Default ''

SSL key file (valid only if SSL enabled).

Table 106: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_keyfile

ssl_cert_file

Type string

Default ''

SSL cert file (valid only if SSL enabled).

Table 107: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_certfile

ssl_ca_file

Type string

Default ''

SSL certification authority file (valid only if SSL enabled).

3.5. Reference Material 597

Nova Documentation, Release 22.4.1.dev41

Table 108: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_ssl_ca_certs

heartbeat_in_pthread

Type boolean

Default False

EXPERIMENTAL: Run the health check heartbeat thread through a native python thread. By
default if this option isnt provided the health check heartbeat will inherit the execution model
from the parent process. By example if the parent process have monkey patched the stdlib by
using eventlet/greenlet then the heartbeat will be run through a green thread.

kombu_reconnect_delay

Type floating point

Default 1.0

How long to wait before reconnecting in response to an AMQP consumer cancel notification.

Table 109: Deprecated Variations
Group Name
DEFAULT kombu_reconnect_delay

kombu_compression

Type string

Default <None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type integer

Default 60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 110: Deprecated Variations
Group Name
oslo_messaging_rabbit kombu_reconnect_timeout

kombu_failover_strategy

Type string

Default round-robin

Valid Values round-robin, shuffle

3.5. Reference Material 598

Nova Documentation, Release 22.4.1.dev41

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type string

Default AMQPLAIN

Valid Values PLAIN, AMQPLAIN, RABBIT-CR-DEMO

The RabbitMQ login method.

Table 111: Deprecated Variations
Group Name
DEFAULT rabbit_login_method

rabbit_retry_interval

Type integer

Default 1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type integer

Default 2

How long to backoff for between retries when connecting to RabbitMQ.

Table 112: Deprecated Variations
Group Name
DEFAULT rabbit_retry_backoff

rabbit_interval_max

Type integer

Default 30

Maximum interval of RabbitMQ connection retries. Default is 30 seconds.

rabbit_ha_queues

Type boolean

Default False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe
the RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-
policy argument when declaring a queue. If you just want to make sure that all queues (except
those with auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA
^(?!amq.).* {ha-mode: all}

3.5. Reference Material 599

Nova Documentation, Release 22.4.1.dev41

Table 113: Deprecated Variations
Group Name
DEFAULT rabbit_ha_queues

rabbit_transient_queues_ttl

Type integer

Default 1800

Minimum Value 1

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues.

rabbit_qos_prefetch_count

Type integer

Default 0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

Type integer

Default 60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate

Type integer

Default 2

How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

Type boolean

Default True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does
not exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to
sender to recover.This flag is deprecated and it will not be possible to deactivate this functionality
anymore

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Mandatory flag no longer deactivable.

enable_cancel_on_failover

3.5. Reference Material 600

Nova Documentation, Release 22.4.1.dev41

Type boolean

Default False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

oslo_middleware

max_request_body_size

Type integer

Default 114688

The maximum body size for each request, in bytes.

Table 114: Deprecated Variations
Group Name
DEFAULT osapi_max_request_body_size
DEFAULT max_request_body_size

secure_proxy_ssl_header

Type string

Default X-Forwarded-Proto

The HTTP Header that will be used to determine what the original request protocol scheme was,
even if it was hidden by a SSL termination proxy.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

enable_proxy_headers_parsing

Type boolean

Default False

Whether the application is behind a proxy or not. This determines if the middleware should parse
the headers or not.

oslo_policy

enforce_scope

Type boolean

Default False

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced.
If the scopes do not match, an InvalidScope exception will be raised. If False, a message
will be logged informing operators that policies are being invoked with mismatching scope.

3.5. Reference Material 601

Nova Documentation, Release 22.4.1.dev41

enforce_new_defaults

Type boolean

Default False

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token
is allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged
to enable this flag along with the enforce_scope flag so that you can get the benefits of new
defaults and scope_type together

policy_file

Type string

Default policy.yaml

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

Table 115: Deprecated Variations
Group Name
DEFAULT policy_file

policy_default_rule

Type string

Default default

Default rule. Enforced when a requested rule is not found.

Table 116: Deprecated Variations
Group Name
DEFAULT policy_default_rule

policy_dirs

Type multi-valued

Default policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

Table 117: Deprecated Variations
Group Name
DEFAULT policy_dirs

remote_content_type

Type string

Default application/x-www-form-urlencoded

3.5. Reference Material 602

Nova Documentation, Release 22.4.1.dev41

Valid Values application/x-www-form-urlencoded, application/json

Content Type to send and receive data for REST based policy check

remote_ssl_verify_server_crt

Type boolean

Default False

server identity verification for REST based policy check

remote_ssl_ca_crt_file

Type string

Default <None>

Absolute path to ca cert file for REST based policy check

remote_ssl_client_crt_file

Type string

Default <None>

Absolute path to client cert for REST based policy check

remote_ssl_client_key_file

Type string

Default <None>

Absolute path client key file REST based policy check

pci

alias

Type multi-valued

Default ''

An alias for a PCI passthrough device requirement.

This allows users to specify the alias in the extra specs for a flavor, without needing to repeat all
the PCI property requirements.

This should be configured for the nova-api service and, assuming you wish to use move oper-
ations, for each nova-compute service.

Possible Values:

• A dictionary of JSON values which describe the aliases. For example:

alias = {
"name": "QuickAssist",
"product_id": "0443",
"vendor_id": "8086",
"device_type": "type-PCI",
"numa_policy": "required"

}

3.5. Reference Material 603

Nova Documentation, Release 22.4.1.dev41

This defines an alias for the Intel QuickAssist card. (multi valued). Valid key values are :

name Name of the PCI alias.

product_id Product ID of the device in hexadecimal.

vendor_id Vendor ID of the device in hexadecimal.

device_type Type of PCI device. Valid values are: type-PCI, type-PF and
type-VF. Note that "device_type": "type-PF" must be specified if you
wish to passthrough a device that supports SR-IOV in its entirety.

numa_policy Required NUMA affinity of device. Valid values are: legacy,
preferred and required.

• Supports multiple aliases by repeating the option (not by specifying a list value):

alias = {
"name": "QuickAssist-1",
"product_id": "0443",
"vendor_id": "8086",
"device_type": "type-PCI",
"numa_policy": "required"

}
alias = {

"name": "QuickAssist-2",
"product_id": "0444",
"vendor_id": "8086",
"device_type": "type-PCI",
"numa_policy": "required"

}

Table 118: Deprecated Variations
Group Name
DEFAULT pci_alias

passthrough_whitelist

Type multi-valued

Default ''

White list of PCI devices available to VMs.

Possible values:

• A JSON dictionary which describe a whitelisted PCI device. It should take the following
format:

["vendor_id": "<id>",] ["product_id": "<id>",]
["address": "[[[[<domain>]:]<bus>]:][<slot>][.[<function>]]" |
"devname": "<name>",]
{"<tag>": "<tag_value>",}

Where [indicates zero or one occurrences, { indicates zero or multiple occurrences, and |
mutually exclusive options. Note that any missing fields are automatically wildcarded.

Valid key values are :

3.5. Reference Material 604

Nova Documentation, Release 22.4.1.dev41

vendor_id Vendor ID of the device in hexadecimal.

product_id Product ID of the device in hexadecimal.

address PCI address of the device. Both traditional glob style and regular expression
syntax is supported. Please note that the address fields are restricted to the following
maximum values:

– domain - 0xFFFF

– bus - 0xFF

– slot - 0x1F

– function - 0x7

devname Device name of the device (for e.g. interface name). Not all PCI devices have a
name.

<tag> Additional <tag> and <tag_value> used for matching PCI devices. Supported
<tag> values are :

– physical_network

– trusted

Valid examples are:

passthrough_whitelist = {"devname":"eth0",
"physical_network":"physnet"}

passthrough_whitelist = {"address":"*:0a:00.*"}
passthrough_whitelist = {"address":":0a:00.",

"physical_network":"physnet1"}
passthrough_whitelist = {"vendor_id":"1137",

"product_id":"0071"}
passthrough_whitelist = {"vendor_id":"1137",

"product_id":"0071",
"address": "0000:0a:00.1",
"physical_network":"physnet1"}

passthrough_whitelist = {"address":{"domain": ".*",
"bus": "02", "slot": "01",
"function": "[2-7]"},

"physical_network":"physnet1"}
passthrough_whitelist = {"address":{"domain": ".*",

"bus": "02", "slot": "0[1-2]",
"function": ".*"},

"physical_network":"physnet1"}
passthrough_whitelist = {"devname": "eth0", "physical_network":
↪→"physnet1",

"trusted": "true"}

The following are invalid, as they specify mutually exclusive options:

passthrough_whitelist = {"devname":"eth0",
"physical_network":"physnet",
"address":"*:0a:00.*"}

• A JSON list of JSON dictionaries corresponding to the above format. For example:

3.5. Reference Material 605

Nova Documentation, Release 22.4.1.dev41

passthrough_whitelist = [{"product_id":"0001", "vendor_id":"8086"}
↪→,

{"product_id":"0002", "vendor_id":"8086"}
↪→]

Table 119: Deprecated Variations
Group Name
DEFAULT pci_passthrough_whitelist

placement

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

Type boolean

Default False

Verify HTTPS connections.

timeout

Type integer

Default <None>

Timeout value for http requests

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

3.5. Reference Material 606

Nova Documentation, Release 22.4.1.dev41

Type boolean

Default False

Log requests to multiple loggers.

auth_type

Type unknown type

Default <None>

Authentication type to load

Table 120: Deprecated Variations
Group Name
placement auth_plugin

auth_section

Type unknown type

Default <None>

Config Section from which to load plugin specific options

auth_url

Type unknown type

Default <None>

Authentication URL

system_scope

Type unknown type

Default <None>

Scope for system operations

domain_id

Type unknown type

Default <None>

Domain ID to scope to

domain_name

Type unknown type

Default <None>

Domain name to scope to

project_id

Type unknown type

Default <None>

Project ID to scope to

3.5. Reference Material 607

Nova Documentation, Release 22.4.1.dev41

project_name

Type unknown type

Default <None>

Project name to scope to

project_domain_id

Type unknown type

Default <None>

Domain ID containing project

project_domain_name

Type unknown type

Default <None>

Domain name containing project

trust_id

Type unknown type

Default <None>

Trust ID

default_domain_id

Type unknown type

Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type unknown type

Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

user_id

Type unknown type

Default <None>

User ID

username

Type unknown type

Default <None>

3.5. Reference Material 608

Nova Documentation, Release 22.4.1.dev41

Username

Table 121: Deprecated Variations
Group Name
placement user-name
placement user_name

user_domain_id

Type unknown type

Default <None>

Users domain id

user_domain_name

Type unknown type

Default <None>

Users domain name

password

Type unknown type

Default <None>

Users password

tenant_id

Type unknown type

Default <None>

Tenant ID

tenant_name

Type unknown type

Default <None>

Tenant Name

service_type

Type string

Default placement

The default service_type for endpoint URL discovery.

service_name

Type string

Default <None>

The default service_name for endpoint URL discovery.

valid_interfaces

3.5. Reference Material 609

Nova Documentation, Release 22.4.1.dev41

Type list

Default ['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

region_name

Type string

Default <None>

The default region_name for endpoint URL discovery.

endpoint_override

Type string

Default <None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint
should be specified here; to request a particular API version, use the version, min-version, and/or
max-version options.

connect_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

status_code_retries

Type integer

Default <None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type floating point

Default <None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

3.5. Reference Material 610

Nova Documentation, Release 22.4.1.dev41

powervm

PowerVM options allow cloud administrators to configure how OpenStack will work with the PowerVM
hypervisor.

proc_units_factor

Type floating point

Default 0.1

Minimum Value 0.05

Maximum Value 1

Factor used to calculate the amount of physical processor compute power given to each vCPU.
E.g. A value of 1.0 means a whole physical processor, whereas 0.05 means 1/20th of a physical
processor.

disk_driver

Type string

Default localdisk

Valid Values localdisk, ssp

The disk driver to use for PowerVM disks. PowerVM provides support for localdisk and Pow-
erVM Shared Storage Pool disk drivers.

Related options:

• volume_group_name - required when using localdisk

volume_group_name

Type string

Default ''

Volume Group to use for block device operations. If disk_driver is localdisk, then this attribute
must be specified. It is strongly recommended NOT to use rootvg since that is used by the man-
agement partition and filling it will cause failures.

privsep

Configuration options for the oslo.privsep daemon. Note that this group name can be changed by the
consuming service. Check the services docs to see if this is the case.

user

Type string

Default <None>

User that the privsep daemon should run as.

group

Type string

Default <None>

3.5. Reference Material 611

Nova Documentation, Release 22.4.1.dev41

Group that the privsep daemon should run as.

capabilities

Type unknown type

Default []

List of Linux capabilities retained by the privsep daemon.

thread_pool_size

Type integer

Default multiprocessing.cpu_count()

Minimum Value 1

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

The number of threads available for privsep to concurrently run processes. Defaults to the number
of CPU cores in the system.

helper_command

Type string

Default <None>

Command to invoke to start the privsep daemon if not using the fork method. If not specified,
a default is generated using sudo privsep-helper and arguments designed to recreate the current
configuration. This command must accept suitable privsep_context and privsep_sock_path argu-
ments.

profiler

enabled

Type boolean

Default False

Enable the profiling for all services on this node.

Default value is False (fully disable the profiling feature).

Possible values:

• True: Enables the feature

• False: Disables the feature. The profiling cannot be started via this project operations. If the
profiling is triggered by another project, this project part will be empty.

Table 122: Deprecated Variations
Group Name
profiler profiler_enabled

trace_sqlalchemy

Type boolean

3.5. Reference Material 612

Nova Documentation, Release 22.4.1.dev41

Default False

Enable SQL requests profiling in services.

Default value is False (SQL requests wont be traced).

Possible values:

• True: Enables SQL requests profiling. Each SQL query will be part of the trace and can the
be analyzed by how much time was spent for that.

• False: Disables SQL requests profiling. The spent time is only shown on a higher level of
operations. Single SQL queries cannot be analyzed this way.

hmac_keys

Type string

Default SECRET_KEY

Secret key(s) to use for encrypting context data for performance profiling.

This string value should have the following format: <key1>[,<key2>,<keyn>], where each key is
some random string. A user who triggers the profiling via the REST API has to set one of these
keys in the headers of the REST API call to include profiling results of this node for this particular
project.

Both enabled flag and hmac_keys config options should be set to enable profiling. Also, to gener-
ate correct profiling information across all services at least one key needs to be consistent between
OpenStack projects. This ensures it can be used from client side to generate the trace, containing
information from all possible resources.

connection_string

Type string

Default messaging://

Connection string for a notifier backend.

Default value is messaging:// which sets the notifier to oslo_messaging.

Examples of possible values:

• messaging:// - use oslo_messaging driver for sending spans.

• redis://127.0.0.1:6379 - use redis driver for sending spans.

• mongodb://127.0.0.1:27017 - use mongodb driver for sending spans.

• elasticsearch://127.0.0.1:9200 - use elasticsearch driver for sending spans.

• jaeger://127.0.0.1:6831 - use jaeger tracing as driver for sending spans.

es_doc_type

Type string

Default notification

Document type for notification indexing in elasticsearch.

es_scroll_time

Type string

3.5. Reference Material 613

Nova Documentation, Release 22.4.1.dev41

Default 2m

This parameter is a time value parameter (for example: es_scroll_time=2m), indicating for how
long the nodes that participate in the search will maintain relevant resources in order to continue
and support it.

es_scroll_size

Type integer

Default 10000

Elasticsearch splits large requests in batches. This parameter defines maximum size of each batch
(for example: es_scroll_size=10000).

socket_timeout

Type floating point

Default 0.1

Redissentinel provides a timeout option on the connections. This parameter defines that timeout
(for example: socket_timeout=0.1).

sentinel_service_name

Type string

Default mymaster

Redissentinel uses a service name to identify a master redis service. This parameter defines the
name (for example: sentinal_service_name=mymaster).

filter_error_trace

Type boolean

Default False

Enable filter traces that contain error/exception to a separated place.

Default value is set to False.

Possible values:

• True: Enable filter traces that contain error/exception.

• False: Disable the filter.

quota

Quota options allow to manage quotas in openstack deployment.

instances

Type integer

Default 10

Minimum Value -1

The number of instances allowed per project.

Possible Values

3.5. Reference Material 614

Nova Documentation, Release 22.4.1.dev41

• A positive integer or 0.

• -1 to disable the quota.

Table 123: Deprecated Variations
Group Name
DEFAULT quota_instances

cores

Type integer

Default 20

Minimum Value -1

The number of instance cores or vCPUs allowed per project.

Possible values:

• A positive integer or 0.

• -1 to disable the quota.

Table 124: Deprecated Variations
Group Name
DEFAULT quota_cores

ram

Type integer

Default 51200

Minimum Value -1

The number of megabytes of instance RAM allowed per project.

Possible values:

• A positive integer or 0.

• -1 to disable the quota.

Table 125: Deprecated Variations
Group Name
DEFAULT quota_ram

metadata_items

Type integer

Default 128

Minimum Value -1

The number of metadata items allowed per instance.

3.5. Reference Material 615

Nova Documentation, Release 22.4.1.dev41

Users can associate metadata with an instance during instance creation. This metadata takes the
form of key-value pairs.

Possible values:

• A positive integer or 0.

• -1 to disable the quota.

Table 126: Deprecated Variations
Group Name
DEFAULT quota_metadata_items

injected_files

Type integer

Default 5

Minimum Value -1

The number of injected files allowed.

File injection allows users to customize the personality of an instance by injecting data into it
upon boot. Only text file injection is permitted: binary or ZIP files are not accepted. During
file injection, any existing files that match specified files are renamed to include .bak extension
appended with a timestamp.

Possible values:

• A positive integer or 0.

• -1 to disable the quota.

Table 127: Deprecated Variations
Group Name
DEFAULT quota_injected_files

injected_file_content_bytes

Type integer

Default 10240

Minimum Value -1

The number of bytes allowed per injected file.

Possible values:

• A positive integer or 0.

• -1 to disable the quota.

Table 128: Deprecated Variations
Group Name
DEFAULT quota_injected_file_content_bytes

3.5. Reference Material 616

Nova Documentation, Release 22.4.1.dev41

injected_file_path_length

Type integer

Default 255

Minimum Value -1

The maximum allowed injected file path length.

Possible values:

• A positive integer or 0.

• -1 to disable the quota.

Table 129: Deprecated Variations
Group Name
DEFAULT quota_injected_file_path_length

key_pairs

Type integer

Default 100

Minimum Value -1

The maximum number of key pairs allowed per user.

Users can create at least one key pair for each project and use the key pair for multiple instances
that belong to that project.

Possible values:

• A positive integer or 0.

• -1 to disable the quota.

Table 130: Deprecated Variations
Group Name
DEFAULT quota_key_pairs

server_groups

Type integer

Default 10

Minimum Value -1

The maxiumum number of server groups per project.

Server groups are used to control the affinity and anti-affinity scheduling policy for a group of
servers or instances. Reducing the quota will not affect any existing group, but new servers will
not be allowed into groups that have become over quota.

Possible values:

• A positive integer or 0.

3.5. Reference Material 617

Nova Documentation, Release 22.4.1.dev41

• -1 to disable the quota.

Table 131: Deprecated Variations
Group Name
DEFAULT quota_server_groups

server_group_members

Type integer

Default 10

Minimum Value -1

The maximum number of servers per server group.

Possible values:

• A positive integer or 0.

• -1 to disable the quota.

Table 132: Deprecated Variations
Group Name
DEFAULT quota_server_group_members

driver

Type string

Default nova.quota.DbQuotaDriver

Valid Values nova.quota.DbQuotaDriver, nova.quota.NoopQuotaDriver

Provides abstraction for quota checks. Users can configure a specific driver to use for quota
checks.

Possible values

nova.quota.DbQuotaDriver Stores quota limit information in the database and relies on the
quota_* configuration options for default quota limit values. Counts quota usage on-
demand.

nova.quota.NoopQuotaDriver Ignores quota and treats all resources as unlimited.

recheck_quota

Type boolean

Default True

Recheck quota after resource creation to prevent allowing quota to be exceeded.

This defaults to True (recheck quota after resource creation) but can be set to False to avoid addi-
tional load if allowing quota to be exceeded because of racing requests is considered acceptable.
For example, when set to False, if a user makes highly parallel REST API requests to create
servers, it will be possible for them to create more servers than their allowed quota during the

3.5. Reference Material 618

Nova Documentation, Release 22.4.1.dev41

race. If their quota is 10 servers, they might be able to create 50 during the burst. After the burst,
they will not be able to create any more servers but they will be able to keep their 50 servers until
they delete them.

The initial quota check is done before resources are created, so if multiple parallel requests arrive
at the same time, all could pass the quota check and create resources, potentially exceeding quota.
When recheck_quota is True, quota will be checked a second time after resources have been
created and if the resource is over quota, it will be deleted and OverQuota will be raised, usually
resulting in a 403 response to the REST API user. This makes it impossible for a user to exceed
their quota with the caveat that it will, however, be possible for a REST API user to be rejected
with a 403 response in the event of a collision close to reaching their quota limit, even if the user
has enough quota available when they made the request.

count_usage_from_placement

Type boolean

Default False

Enable the counting of quota usage from the placement service.

Starting in Train, it is possible to count quota usage for cores and ram from the placement service
and instances from the API database instead of counting from cell databases.

This works well if there is only one Nova deployment running per placement deployment. How-
ever, if an operator is running more than one Nova deployment sharing a placement deployment,
they should not set this option to True because currently the placement service has no way to
partition resource providers per Nova deployment. When this option is left as the default or set
to False, Nova will use the legacy counting method to count quota usage for instances, cores, and
ram from its cell databases.

Note that quota usage behavior related to resizes will be affected if this option is set to True.
Placement resource allocations are claimed on the destination while holding allocations on the
source during a resize, until the resize is confirmed or reverted. During this time, when the server
is in VERIFY_RESIZE state, quota usage will reflect resource consumption on both the source
and the destination. This can be beneficial as it reserves space for a revert of a downsize, but it
also means quota usage will be inflated until a resize is confirmed or reverted.

Behavior will also be different for unscheduled servers in ERROR state. A server in ERROR state
that has never been scheduled to a compute host will not have placement allocations, so it will not
consume quota usage for cores and ram.

Behavior will be different for servers in SHELVED_OFFLOADED state. A server in
SHELVED_OFFLOADED state will not have placement allocations, so it will not consume quota
usage for cores and ram. Note that because of this, it will be possible for a request to unshelve a
server to be rejected if the user does not have enough quota available to support the cores and ram
needed by the server to be unshelved.

The populate_queued_for_delete and populate_user_id online data migrations
must be completed before usage can be counted from placement. Until the data migration is
complete, the system will fall back to legacy quota usage counting from cell databases depending
on the result of an EXISTS database query during each quota check, if this configuration option
is set to True. Operators who want to avoid the performance hit from the EXISTS queries should
wait to set this configuration option to True until after they have completed their online data
migrations via nova-manage db online_data_migrations.

3.5. Reference Material 619

Nova Documentation, Release 22.4.1.dev41

rdp

Options under this group enable and configure Remote Desktop Protocol (RDP) related features.

This group is only relevant to Hyper-V users.

enabled

Type boolean

Default False

Enable Remote Desktop Protocol (RDP) related features.

Hyper-V, unlike the majority of the hypervisors employed on Nova compute nodes, uses RDP
instead of VNC and SPICE as a desktop sharing protocol to provide instance console access. This
option enables RDP for graphical console access for virtual machines created by Hyper-V.

Note: RDP should only be enabled on compute nodes that support the Hyper-V virtualization
platform.

Related options:

• compute_driver: Must be hyperv.

html5_proxy_base_url

Type URI

Default http://127.0.0.1:6083/

The URL an end user would use to connect to the RDP HTML5 console proxy. The console
proxy service is called with this token-embedded URL and establishes the connection to the proper
instance.

An RDP HTML5 console proxy service will need to be configured to listen on the address config-
ured here. Typically the console proxy service would be run on a controller node. The localhost
address used as default would only work in a single node environment i.e. devstack.

An RDP HTML5 proxy allows a user to access via the web the text or graphical console of
any Windows server or workstation using RDP. RDP HTML5 console proxy services include
FreeRDP, wsgate. See https://github.com/FreeRDP/FreeRDP-WebConnect

Possible values:

• <scheme>://<ip-address>:<port-number>/

The scheme must be identical to the scheme configured for the RDP HTML5 console proxy
service. It is http or https.

The IP address must be identical to the address on which the RDP HTML5 console proxy
service is listening.

The port must be identical to the port on which the RDP HTML5 console proxy service is
listening.

Related options:

• rdp.enabled: Must be set to True for html5_proxy_base_url to be effective.

3.5. Reference Material 620

https://github.com/FreeRDP/FreeRDP-WebConnect

Nova Documentation, Release 22.4.1.dev41

remote_debug

host

Type host address

Default <None>

Debug host (IP or name) to connect to.

This command line parameter is used when you want to connect to a nova service via a debugger
running on a different host.

Note that using the remote debug option changes how nova uses the eventlet library to support
async IO. This could result in failures that do not occur under normal operation. Use at your own
risk.

Possible Values:

• IP address of a remote host as a command line parameter to a nova service. For example:

nova-compute --config-file /etc/nova/nova.conf --remote_
↪→debug-host <IP address of the debugger>

port

Type port number

Default <None>

Minimum Value 0

Maximum Value 65535

Debug port to connect to.

This command line parameter allows you to specify the port you want to use to connect to a nova
service via a debugger running on different host.

Note that using the remote debug option changes how nova uses the eventlet library to support
async IO. This could result in failures that do not occur under normal operation. Use at your own
risk.

Possible Values:

• Port number you want to use as a command line parameter to a nova service. For example:

nova-compute --config-file /etc/nova/nova.conf --remote_
↪→debug-host <IP address of the debugger> --remote_debug-
↪→port <port debugger is listening on>.

3.5. Reference Material 621

Nova Documentation, Release 22.4.1.dev41

scheduler

driver

Type string

Default filter_scheduler

The class of the driver used by the scheduler. This should be chosen from one of the entrypoints
under the namespace nova.scheduler.driver of file setup.cfg. If nothing is specified in this option,
the filter_scheduler is used.

Possible values:

• Any of the drivers included in Nova:

– filter_scheduler

• You may also set this to the entry point name of a custom scheduler driver, but you will be
responsible for creating and maintaining it in your setup.cfg file.

Related options:

• workers

Table 133: Deprecated Variations
Group Name
DEFAULT scheduler_driver

Warning: This option is deprecated for removal since 21.0.0. Its value may be silently
ignored in the future.

Reason nova no longer provides any in-tree filters except for the filter_scheduler
scheduler. This filter is considered flexible and pluggable enough for all use
cases and can be extended through the use of custom, out-of-tree filters and
weighers along with powerful, in-tree filters like the AggregateInstanceEx-
traSpecsFilter and ComputeCapabilitiesFilter filters.

periodic_task_interval

Type integer

Default 60

Periodic task interval.

This value controls how often (in seconds) to run periodic tasks in the scheduler. The specific
tasks that are run for each period are determined by the particular scheduler being used. Currently
there are no in-tree scheduler driver that use this option.

If this is larger than the nova-service service_down_time setting, the ComputeFilter (if enabled)
may think the compute service is down. As each scheduler can work a little differently than the
others, be sure to test this with your selected scheduler.

Possible values:

3.5. Reference Material 622

Nova Documentation, Release 22.4.1.dev41

• An integer, where the integer corresponds to periodic task interval in seconds. 0 uses the
default interval (60 seconds). A negative value disables periodic tasks.

Related options:

• nova-service service_down_time

max_attempts

Type integer

Default 3

Minimum Value 1

This is the maximum number of attempts that will be made for a given instance build/move oper-
ation. It limits the number of alternate hosts returned by the scheduler. When that list of hosts is
exhausted, a MaxRetriesExceeded exception is raised and the instance is set to an error state.

Possible values:

• A positive integer, where the integer corresponds to the max number of attempts that can be
made when building or moving an instance.

Table 134: Deprecated Variations
Group Name
DEFAULT scheduler_max_attempts

discover_hosts_in_cells_interval

Type integer

Default -1

Minimum Value -1

Periodic task interval.

This value controls how often (in seconds) the scheduler should attempt to discover new hosts that
have been added to cells. If negative (the default), no automatic discovery will occur.

Deployments where compute nodes come and go frequently may want this enabled, where others
may prefer to manually discover hosts when one is added to avoid any overhead from constantly
checking. If enabled, every time this runs, we will select any unmapped hosts out of each cell
database on every run.

max_placement_results

Type integer

Default 1000

Minimum Value 1

This setting determines the maximum limit on results received from the placement service dur-
ing a scheduling operation. It effectively limits the number of hosts that may be considered for
scheduling requests that match a large number of candidates.

A value of 1 (the minimum) will effectively defer scheduling to the placement service strictly on
will it fit grounds. A higher value will put an upper cap on the number of results the scheduler
will consider during the filtering and weighing process. Large deployments may need to set this

3.5. Reference Material 623

Nova Documentation, Release 22.4.1.dev41

lower than the total number of hosts available to limit memory consumption, network traffic, etc.
of the scheduler.

This option is only used by the FilterScheduler; if you use a different scheduler, this option has no
effect.

workers

Type integer

Default <None>

Minimum Value 0

Number of workers for the nova-scheduler service. The default will be the number of CPUs
available if using the filter_scheduler scheduler driver, otherwise the default will be 1.

limit_tenants_to_placement_aggregate

Type boolean

Default False

This setting causes the scheduler to look up a host aggregate with the metadata key of fil-
ter_tenant_id set to the project of an incoming request, and request results from placement be
limited to that aggregate. Multiple tenants may be added to a single aggregate by appending a
serial number to the key, such as filter_tenant_id:123.

The matching aggregate UUID must be mirrored in placement for proper operation. If no host
aggregate with the tenant id is found, or that aggregate does not match one in placement, the
result will be the same as not finding any suitable hosts for the request.

See also the placement_aggregate_required_for_tenants option.

placement_aggregate_required_for_tenants

Type boolean

Default False

This setting, when limit_tenants_to_placement_aggregate=True, will control whether or not a ten-
ant with no aggregate affinity will be allowed to schedule to any available node. If aggregates are
used to limit some tenants but not all, then this should be False. If all tenants should be confined
via aggregate, then this should be True to prevent them from receiving unrestricted scheduling to
any available node.

See also the limit_tenants_to_placement_aggregate option.

query_placement_for_availability_zone

Type boolean

Default False

This setting causes the scheduler to look up a host aggregate with the metadata key of availabil-
ity_zone set to the value provided by an incoming request, and request results from placement be
limited to that aggregate.

The matching aggregate UUID must be mirrored in placement for proper operation. If no host ag-
gregate with the availability_zone key is found, or that aggregate does not match one in placement,
the result will be the same as not finding any suitable hosts.

3.5. Reference Material 624

Nova Documentation, Release 22.4.1.dev41

Note that if you enable this flag, you can disable the (less efficient) AvailabilityZoneFilter in the
scheduler.

query_placement_for_image_type_support

Type boolean

Default False

This setting causes the scheduler to ask placement only for compute hosts that support the
disk_format of the image used in the request.

enable_isolated_aggregate_filtering

Type boolean

Default False

This setting allows the scheduler to restrict hosts in aggregates based on matching required traits
in the aggregate metadata and the instance flavor/image. If an aggregate is configured with a
property with key trait:$TRAIT_NAME and value required, the instance flavor extra_specs
and/or image metadata must also contain trait:$TRAIT_NAME=required to be eligible to
be scheduled to hosts in that aggregate. More technical details at https://docs.openstack.org/nova/
latest/reference/isolate-aggregates.html

image_metadata_prefilter

Type boolean

Default False

This setting causes the scheduler to transform well known image metadata properties into place-
ment required traits to filter host based on image metadata. This feature requires host support and
is currently supported by the following compute drivers:

• libvirt.LibvirtDriver (since Ussuri (21.0.0))

serial_console

The serial console feature allows you to connect to a guest in case a graphical console like VNC, RDP
or SPICE is not available. This is only currently supported for the libvirt, Ironic and hyper-v drivers.

enabled

Type boolean

Default False

Enable the serial console feature.

In order to use this feature, the service nova-serialproxy needs to run. This service is
typically executed on the controller node.

port_range

Type string

Default 10000:20000

A range of TCP ports a guest can use for its backend.

3.5. Reference Material 625

https://docs.openstack.org/nova/latest/reference/isolate-aggregates.html
https://docs.openstack.org/nova/latest/reference/isolate-aggregates.html

Nova Documentation, Release 22.4.1.dev41

Each instance which gets created will use one port out of this range. If the range is not big enough
to provide another port for an new instance, this instance wont get launched.

Possible values:

• Each string which passes the regex ^\d+:\d+$ For example 10000:20000. Be sure that
the first port number is lower than the second port number and that both are in range from 0
to 65535.

base_url

Type URI

Default ws://127.0.0.1:6083/

The URL an end user would use to connect to the nova-serialproxy service.

The nova-serialproxy service is called with this token enriched URL and establishes the
connection to the proper instance.

Related options:

• The IP address must be identical to the address to which the nova-serialproxy service
is listening (see option serialproxy_host in this section).

• The port must be the same as in the option serialproxy_port of this section.

• If you choose to use a secured websocket connection, then start this option with wss://
instead of the unsecured ws://. The options cert and key in the [DEFAULT] section
have to be set for that.

proxyclient_address

Type string

Default 127.0.0.1

The IP address to which proxy clients (like nova-serialproxy) should connect to get the
serial console of an instance.

This is typically the IP address of the host of a nova-compute service.

serialproxy_host

Type string

Default 0.0.0.0

The IP address which is used by the nova-serialproxy service to listen for incoming re-
quests.

The nova-serialproxy service listens on this IP address for incoming connection requests
to instances which expose serial console.

Related options:

• Ensure that this is the same IP address which is defined in the option base_url of this
section or use 0.0.0.0 to listen on all addresses.

serialproxy_port

Type port number

Default 6083

3.5. Reference Material 626

Nova Documentation, Release 22.4.1.dev41

Minimum Value 0

Maximum Value 65535

The port number which is used by the nova-serialproxy service to listen for incoming
requests.

The nova-serialproxy service listens on this port number for incoming connection requests
to instances which expose serial console.

Related options:

• Ensure that this is the same port number which is defined in the option base_url of this
section.

service_user

Configuration options for service to service authentication using a service token. These options allow
sending a service token along with the users token when contacting external REST APIs.

send_service_user_token

Type boolean

Default False

When True, if sending a user token to a REST API, also send a service token.

Nova often reuses the user token provided to the nova-api to talk to other REST APIs, such as
Cinder, Glance and Neutron. It is possible that while the user token was valid when the request
was made to Nova, the token may expire before it reaches the other service. To avoid any failures,
and to make it clear it is Nova calling the service on the users behalf, we include a service token
along with the user token. Should the users token have expired, a valid service token ensures the
REST API request will still be accepted by the keystone middleware.

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

Type boolean

3.5. Reference Material 627

Nova Documentation, Release 22.4.1.dev41

Default False

Verify HTTPS connections.

timeout

Type integer

Default <None>

Timeout value for http requests

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

Type boolean

Default False

Log requests to multiple loggers.

auth_type

Type unknown type

Default <None>

Authentication type to load

Table 135: Deprecated Variations
Group Name
service_user auth_plugin

auth_section

Type unknown type

Default <None>

Config Section from which to load plugin specific options

auth_url

Type unknown type

Default <None>

Authentication URL

system_scope

Type unknown type

Default <None>

Scope for system operations

domain_id

3.5. Reference Material 628

Nova Documentation, Release 22.4.1.dev41

Type unknown type

Default <None>

Domain ID to scope to

domain_name

Type unknown type

Default <None>

Domain name to scope to

project_id

Type unknown type

Default <None>

Project ID to scope to

project_name

Type unknown type

Default <None>

Project name to scope to

project_domain_id

Type unknown type

Default <None>

Domain ID containing project

project_domain_name

Type unknown type

Default <None>

Domain name containing project

trust_id

Type unknown type

Default <None>

Trust ID

default_domain_id

Type unknown type

Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type unknown type

Default <None>

3.5. Reference Material 629

Nova Documentation, Release 22.4.1.dev41

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

user_id

Type unknown type

Default <None>

User ID

username

Type unknown type

Default <None>

Username

Table 136: Deprecated Variations
Group Name
service_user user-name
service_user user_name

user_domain_id

Type unknown type

Default <None>

Users domain id

user_domain_name

Type unknown type

Default <None>

Users domain name

password

Type unknown type

Default <None>

Users password

tenant_id

Type unknown type

Default <None>

Tenant ID

tenant_name

Type unknown type

Default <None>

Tenant Name

3.5. Reference Material 630

Nova Documentation, Release 22.4.1.dev41

spice

SPICE console feature allows you to connect to a guest virtual machine. SPICE is a replacement for
fairly limited VNC protocol.

Following requirements must be met in order to use SPICE:

• Virtualization driver must be libvirt

• spice.enabled set to True

• vnc.enabled set to False

• update html5proxy_base_url

• update server_proxyclient_address

enabled

Type boolean

Default False

Enable SPICE related features.

Related options:

• VNC must be explicitly disabled to get access to the SPICE console. Set the enabled option
to False in the [vnc] section to disable the VNC console.

agent_enabled

Type boolean

Default True

Enable the SPICE guest agent support on the instances.

The Spice agent works with the Spice protocol to offer a better guest console experience. However,
the Spice console can still be used without the Spice Agent. With the Spice agent installed the
following features are enabled:

• Copy & Paste of text and images between the guest and client machine

• Automatic adjustment of resolution when the client screen changes - e.g. if you make the
Spice console full screen the guest resolution will adjust to match it rather than letterboxing.

• Better mouse integration - The mouse can be captured and released without needing to click
inside the console or press keys to release it. The performance of mouse movement is also
improved.

html5proxy_base_url

Type URI

Default http://127.0.0.1:6082/spice_auto.html

Location of the SPICE HTML5 console proxy.

End user would use this URL to connect to the nova-spicehtml5proxy‘ service. This service will
forward request to the console of an instance.

In order to use SPICE console, the service nova-spicehtml5proxy should be running. This
service is typically launched on the controller node.

3.5. Reference Material 631

Nova Documentation, Release 22.4.1.dev41

Possible values:

• Must be a valid URL of the form: http://host:port/spice_auto.html where
host is the node running nova-spicehtml5proxy and the port is typically 6082. Con-
sider not using default value as it is not well defined for any real deployment.

Related options:

• This option depends on html5proxy_host and html5proxy_port options. The
access URL returned by the compute node must have the host and port where the
nova-spicehtml5proxy service is listening.

server_listen

Type string

Default 127.0.0.1

The address where the SPICE server running on the instances should listen.

Typically, the nova-spicehtml5proxy proxy client runs on the controller node and connects
over the private network to this address on the compute node(s).

Possible values:

• IP address to listen on.

server_proxyclient_address

Type string

Default 127.0.0.1

The address used by nova-spicehtml5proxy client to connect to instance console.

Typically, the nova-spicehtml5proxy proxy client runs on the controller node and connects
over the private network to this address on the compute node(s).

Possible values:

• Any valid IP address on the compute node.

Related options:

• This option depends on the server_listen option. The proxy client must be able to
access the address specified in server_listen using the value of this option.

html5proxy_host

Type host address

Default 0.0.0.0

IP address or a hostname on which the nova-spicehtml5proxy service listens for incoming
requests.

Related options:

• This option depends on the html5proxy_base_url option. The
nova-spicehtml5proxy service must be listening on a host that is accessible
from the HTML5 client.

html5proxy_port

Type port number

3.5. Reference Material 632

Nova Documentation, Release 22.4.1.dev41

Default 6082

Minimum Value 0

Maximum Value 65535

Port on which the nova-spicehtml5proxy service listens for incoming requests.

Related options:

• This option depends on the html5proxy_base_url option. The
nova-spicehtml5proxy service must be listening on a port that is accessible
from the HTML5 client.

upgrade_levels

upgrade_levels options are used to set version cap for RPC messages sent between different nova ser-
vices.

By default all services send messages using the latest version they know about.

The compute upgrade level is an important part of rolling upgrades where old and new nova-compute
services run side by side.

The other options can largely be ignored, and are only kept to help with a possible future backport issue.

compute

Type string

Default <None>

Compute RPC API version cap.

By default, we always send messages using the most recent version the client knows about.

Where you have old and new compute services running, you should set this to the lowest deployed
version. This is to guarantee that all services never send messages that one of the compute nodes
cant understand. Note that we only support upgrading from release N to release N+1.

Set this option to auto if you want to let the compute RPC module automatically determine what
version to use based on the service versions in the deployment.

Possible values:

• By default send the latest version the client knows about

• auto: Automatically determines what version to use based on the service versions in the
deployment.

• A string representing a version number in the format N.N; for example, possible values
might be 1.12 or 2.0.

• An OpenStack release name, in lower case, such as mitaka or liberty.

cert

Type string

Default <None>

3.5. Reference Material 633

Nova Documentation, Release 22.4.1.dev41

Cert RPC API version cap.

Possible values:

• By default send the latest version the client knows about

• A string representing a version number in the format N.N; for example, possible values
might be 1.12 or 2.0.

• An OpenStack release name, in lower case, such as mitaka or liberty.

Warning: This option is deprecated for removal since 18.0.0. Its value may be silently
ignored in the future.

Reason The nova-cert service was removed in 16.0.0 (Pike) so this option is no
longer used.

scheduler

Type string

Default <None>

Scheduler RPC API version cap.

Possible values:

• By default send the latest version the client knows about

• A string representing a version number in the format N.N; for example, possible values
might be 1.12 or 2.0.

• An OpenStack release name, in lower case, such as mitaka or liberty.

conductor

Type string

Default <None>

Conductor RPC API version cap.

Possible values:

• By default send the latest version the client knows about

• A string representing a version number in the format N.N; for example, possible values
might be 1.12 or 2.0.

• An OpenStack release name, in lower case, such as mitaka or liberty.

baseapi

Type string

Default <None>

Base API RPC API version cap.

Possible values:

• By default send the latest version the client knows about

3.5. Reference Material 634

Nova Documentation, Release 22.4.1.dev41

• A string representing a version number in the format N.N; for example, possible values
might be 1.12 or 2.0.

• An OpenStack release name, in lower case, such as mitaka or liberty.

vault

root_token_id

Type string

Default <None>

root token for vault

approle_role_id

Type string

Default <None>

AppRole role_id for authentication with vault

approle_secret_id

Type string

Default <None>

AppRole secret_id for authentication with vault

kv_mountpoint

Type string

Default secret

Mountpoint of KV store in Vault to use, for example: secret

kv_version

Type integer

Default 2

Version of KV store in Vault to use, for example: 2

vault_url

Type string

Default http://127.0.0.1:8200

Use this endpoint to connect to Vault, for example: http://127.0.0.1:8200

ssl_ca_crt_file

Type string

Default <None>

Absolute path to ca cert file

use_ssl

3.5. Reference Material 635

http://127.0.0.1:8200

Nova Documentation, Release 22.4.1.dev41

Type boolean

Default False

SSL Enabled/Disabled

vendordata_dynamic_auth

Options within this group control the authentication of the vendordata subsystem of the metadata API
server (and config drive) with external systems.

cafile

Type string

Default <None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type string

Default <None>

PEM encoded client certificate cert file

keyfile

Type string

Default <None>

PEM encoded client certificate key file

insecure

Type boolean

Default False

Verify HTTPS connections.

timeout

Type integer

Default <None>

Timeout value for http requests

collect_timing

Type boolean

Default False

Collect per-API call timing information.

split_loggers

Type boolean

Default False

3.5. Reference Material 636

Nova Documentation, Release 22.4.1.dev41

Log requests to multiple loggers.

auth_type

Type unknown type

Default <None>

Authentication type to load

Table 137: Deprecated Variations
Group Name
vendordata_dynamic_auth auth_plugin

auth_section

Type unknown type

Default <None>

Config Section from which to load plugin specific options

auth_url

Type unknown type

Default <None>

Authentication URL

system_scope

Type unknown type

Default <None>

Scope for system operations

domain_id

Type unknown type

Default <None>

Domain ID to scope to

domain_name

Type unknown type

Default <None>

Domain name to scope to

project_id

Type unknown type

Default <None>

Project ID to scope to

project_name

Type unknown type

3.5. Reference Material 637

Nova Documentation, Release 22.4.1.dev41

Default <None>

Project name to scope to

project_domain_id

Type unknown type

Default <None>

Domain ID containing project

project_domain_name

Type unknown type

Default <None>

Domain name containing project

trust_id

Type unknown type

Default <None>

Trust ID

default_domain_id

Type unknown type

Default <None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type unknown type

Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

user_id

Type unknown type

Default <None>

User ID

username

Type unknown type

Default <None>

Username

3.5. Reference Material 638

Nova Documentation, Release 22.4.1.dev41

Table 138: Deprecated Variations
Group Name
vendordata_dynamic_auth user-name
vendordata_dynamic_auth user_name

user_domain_id

Type unknown type

Default <None>

Users domain id

user_domain_name

Type unknown type

Default <None>

Users domain name

password

Type unknown type

Default <None>

Users password

tenant_id

Type unknown type

Default <None>

Tenant ID

tenant_name

Type unknown type

Default <None>

Tenant Name

vmware

Related options: Following options must be set in order to launch VMware-based virtual machines.

• compute_driver: Must use vmwareapi.VMwareVCDriver.

• vmware.host_username

• vmware.host_password

• vmware.cluster_name

integration_bridge

Type string

Default <None>

3.5. Reference Material 639

Nova Documentation, Release 22.4.1.dev41

This option should be configured only when using the NSX-MH Neutron plugin. This is the name
of the integration bridge on the ESXi server or host. This should not be set for any other Neutron
plugin. Hence the default value is not set.

Possible values:

• Any valid string representing the name of the integration bridge

console_delay_seconds

Type integer

Default <None>

Minimum Value 0

Set this value if affected by an increased network latency causing repeated characters when typing
in a remote console.

serial_port_service_uri

Type string

Default <None>

Identifies the remote system where the serial port traffic will be sent.

This option adds a virtual serial port which sends console output to a configurable service URI.
At the service URI address there will be virtual serial port concentrator that will collect console
logs. If this is not set, no serial ports will be added to the created VMs.

Possible values:

• Any valid URI

serial_port_proxy_uri

Type URI

Default <None>

Identifies a proxy service that provides network access to the serial_port_service_uri.

Possible values:

• Any valid URI (The scheme is telnet or telnets.)

Related options: This option is ignored if serial_port_service_uri is not specified. * se-
rial_port_service_uri

serial_log_dir

Type string

Default /opt/vmware/vspc

Specifies the directory where the Virtual Serial Port Concentrator is storing console log files. It
should match the serial_log_dir config value of VSPC.

host_ip

Type host address

Default <None>

Hostname or IP address for connection to VMware vCenter host.

3.5. Reference Material 640

Nova Documentation, Release 22.4.1.dev41

host_port

Type port number

Default 443

Minimum Value 0

Maximum Value 65535

Port for connection to VMware vCenter host.

host_username

Type string

Default <None>

Username for connection to VMware vCenter host.

host_password

Type string

Default <None>

Password for connection to VMware vCenter host.

ca_file

Type string

Default <None>

Specifies the CA bundle file to be used in verifying the vCenter server certificate.

insecure

Type boolean

Default False

If true, the vCenter server certificate is not verified. If false, then the default CA truststore is used
for verification.

Related options: * ca_file: This option is ignored if ca_file is set.

cluster_name

Type string

Default <None>

Name of a VMware Cluster ComputeResource.

datastore_regex

Type string

Default <None>

Regular expression pattern to match the name of datastore.

The datastore_regex setting specifies the datastores to use with Compute. For example, datas-
tore_regex=nas.* selects all the data stores that have a name starting with nas.

NOTE: If no regex is given, it just picks the datastore with the most freespace.

3.5. Reference Material 641

Nova Documentation, Release 22.4.1.dev41

Possible values:

• Any matching regular expression to a datastore must be given

task_poll_interval

Type floating point

Default 0.5

Time interval in seconds to poll remote tasks invoked on VMware VC server.

api_retry_count

Type integer

Default 10

Minimum Value 0

Number of times VMware vCenter server API must be retried on connection failures, e.g. socket
error, etc.

vnc_port

Type port number

Default 5900

Minimum Value 0

Maximum Value 65535

This option specifies VNC starting port.

Every VM created by ESX host has an option of enabling VNC client for remote connection.
Above option vnc_port helps you to set default starting port for the VNC client.

Possible values:

• Any valid port number within 5900 -(5900 + vnc_port_total)

Related options: Below options should be set to enable VNC client. * vnc.enabled = True *
vnc_port_total

vnc_port_total

Type integer

Default 10000

Minimum Value 0

Total number of VNC ports.

vnc_keymap

Type string

Default en-us

Keymap for VNC.

The keyboard mapping (keymap) determines which keyboard layout a VNC session should use
by default.

Possible values:

3.5. Reference Material 642

Nova Documentation, Release 22.4.1.dev41

• A keyboard layout which is supported by the underlying hypervisor on this node. This is
usually an IETF language tag (for example en-us).

use_linked_clone

Type boolean

Default True

This option enables/disables the use of linked clone.

The ESX hypervisor requires a copy of the VMDK file in order to boot up a virtual machine.
The compute driver must download the VMDK via HTTP from the OpenStack Image service to a
datastore that is visible to the hypervisor and cache it. Subsequent virtual machines that need the
VMDK use the cached version and dont have to copy the file again from the OpenStack Image
service.

If set to false, even with a cached VMDK, there is still a copy operation from the cache location
to the hypervisor file directory in the shared datastore. If set to true, the above copy operation is
avoided as it creates copy of the virtual machine that shares virtual disks with its parent VM.

connection_pool_size

Type integer

Default 10

Minimum Value 10

This option sets the http connection pool size

The connection pool size is the maximum number of connections from nova to vSphere. It should
only be increased if there are warnings indicating that the connection pool is full, otherwise, the
default should suffice.

pbm_enabled

Type boolean

Default False

This option enables or disables storage policy based placement of instances.

Related options:

• pbm_default_policy

pbm_wsdl_location

Type string

Default <None>

This option specifies the PBM service WSDL file location URL.

Setting this will disable storage policy based placement of instances.

Possible values:

• Any valid file path e.g file:///opt/SDK/spbm/wsdl/pbmService.wsdl

pbm_default_policy

Type string

3.5. Reference Material 643

file:///opt/SDK/spbm/wsdl/pbmService.wsdl

Nova Documentation, Release 22.4.1.dev41

Default <None>

This option specifies the default policy to be used.

If pbm_enabled is set and there is no defined storage policy for the specific request, then this
policy will be used.

Possible values:

• Any valid storage policy such as VSAN default storage policy

Related options:

• pbm_enabled

maximum_objects

Type integer

Default 100

Minimum Value 0

This option specifies the limit on the maximum number of objects to return in a single result.

A positive value will cause the operation to suspend the retrieval when the count of objects reaches
the specified limit. The server may still limit the count to something less than the configured value.
Any remaining objects may be retrieved with additional requests.

cache_prefix

Type string

Default <None>

This option adds a prefix to the folder where cached images are stored

This is not the full path - just a folder prefix. This should only be used when a datastore cache is
shared between compute nodes.

Note: This should only be used when the compute nodes are running on same host or they have a
shared file system.

Possible values:

• Any string representing the cache prefix to the folder

vnc

Virtual Network Computer (VNC) can be used to provide remote desktop console access to instances
for tenants and/or administrators.

enabled

Type boolean

Default True

Enable VNC related features.

Guests will get created with graphical devices to support this. Clients (for example Horizon) can
then establish a VNC connection to the guest.

3.5. Reference Material 644

Nova Documentation, Release 22.4.1.dev41

Table 139: Deprecated Variations
Group Name
DEFAULT vnc_enabled

server_listen

Type host address

Default 127.0.0.1

The IP address or hostname on which an instance should listen to for incoming VNC connection
requests on this node.

Table 140: Deprecated Variations
Group Name
DEFAULT vncserver_listen
vnc vncserver_listen

server_proxyclient_address

Type host address

Default 127.0.0.1

Private, internal IP address or hostname of VNC console proxy.

The VNC proxy is an OpenStack component that enables compute service users to access their
instances through VNC clients.

This option sets the private address to which proxy clients, such as nova-novncproxy, should
connect to.

Table 141: Deprecated Variations
Group Name
DEFAULT vncserver_proxyclient_address
vnc vncserver_proxyclient_address

novncproxy_base_url

Type URI

Default http://127.0.0.1:6080/vnc_auto.html

Public address of noVNC VNC console proxy.

The VNC proxy is an OpenStack component that enables compute service users to access their
instances through VNC clients. noVNC provides VNC support through a websocket-based client.

This option sets the public base URL to which client systems will connect. noVNC clients can
use this address to connect to the noVNC instance and, by extension, the VNC sessions.

If using noVNC >= 1.0.0, you should use vnc_lite.html instead of vnc_auto.html.

Related options:

• novncproxy_host

3.5. Reference Material 645

Nova Documentation, Release 22.4.1.dev41

• novncproxy_port

Table 142: Deprecated Variations
Group Name
DEFAULT novncproxy_base_url

novncproxy_host

Type string

Default 0.0.0.0

IP address that the noVNC console proxy should bind to.

The VNC proxy is an OpenStack component that enables compute service users to access their
instances through VNC clients. noVNC provides VNC support through a websocket-based client.

This option sets the private address to which the noVNC console proxy service should bind to.

Related options:

• novncproxy_port

• novncproxy_base_url

Table 143: Deprecated Variations
Group Name
DEFAULT novncproxy_host

novncproxy_port

Type port number

Default 6080

Minimum Value 0

Maximum Value 65535

Port that the noVNC console proxy should bind to.

The VNC proxy is an OpenStack component that enables compute service users to access their
instances through VNC clients. noVNC provides VNC support through a websocket-based client.

This option sets the private port to which the noVNC console proxy service should bind to.

Related options:

• novncproxy_host

• novncproxy_base_url

Table 144: Deprecated Variations
Group Name
DEFAULT novncproxy_port

auth_schemes

Type list

3.5. Reference Material 646

Nova Documentation, Release 22.4.1.dev41

Default ['none']

The authentication schemes to use with the compute node.

Control what RFB authentication schemes are permitted for connections between the proxy and
the compute host. If multiple schemes are enabled, the first matching scheme will be used, thus
the strongest schemes should be listed first.

Related options:

• [vnc]vencrypt_client_key, [vnc]vencrypt_client_cert: must also be set

vencrypt_client_key

Type string

Default <None>

The path to the client certificate PEM file (for x509)

The fully qualified path to a PEM file containing the private key which the VNC proxy server
presents to the compute node during VNC authentication.

Related options:

• vnc.auth_schemes: must include vencrypt

• vnc.vencrypt_client_cert: must also be set

vencrypt_client_cert

Type string

Default <None>

The path to the client key file (for x509)

The fully qualified path to a PEM file containing the x509 certificate which the VNC proxy server
presents to the compute node during VNC authentication.

Realted options:

• vnc.auth_schemes: must include vencrypt

• vnc.vencrypt_client_key: must also be set

vencrypt_ca_certs

Type string

Default <None>

The path to the CA certificate PEM file

The fully qualified path to a PEM file containing one or more x509 certificates for the certificate
authorities used by the compute node VNC server.

Related options:

• vnc.auth_schemes: must include vencrypt

3.5. Reference Material 647

Nova Documentation, Release 22.4.1.dev41

workarounds

A collection of workarounds used to mitigate bugs or issues found in system tools (e.g. Libvirt or
QEMU) or Nova itself under certain conditions. These should only be enabled in exceptional circum-
stances. All options are linked against bug IDs, where more information on the issue can be found.

disable_rootwrap

Type boolean

Default False

Use sudo instead of rootwrap.

Allow fallback to sudo for performance reasons.

For more information, refer to the bug report:

https://bugs.launchpad.net/nova/+bug/1415106

Possible values:

• True: Use sudo instead of rootwrap

• False: Use rootwrap as usual

Interdependencies to other options:

• Any options that affect rootwrap will be ignored.

disable_libvirt_livesnapshot

Type boolean

Default False

Disable live snapshots when using the libvirt driver.

Live snapshots allow the snapshot of the disk to happen without an interruption to the guest, using
coordination with a guest agent to quiesce the filesystem.

When using libvirt 1.2.2 live snapshots fail intermittently under load (likely related to concurrent
libvirt/qemu operations). This config option provides a mechanism to disable live snapshot, in
favor of cold snapshot, while this is resolved. Cold snapshot causes an instance outage while the
guest is going through the snapshotting process.

For more information, refer to the bug report:

https://bugs.launchpad.net/nova/+bug/1334398

Possible values:

• True: Live snapshot is disabled when using libvirt

• False: Live snapshots are always used when snapshotting (as long as there is a new enough
libvirt and the backend storage supports it)

Warning: This option is deprecated for removal since 19.0.0. Its value may be silently
ignored in the future.

3.5. Reference Material 648

https://bugs.launchpad.net/nova/+bug/1415106
https://bugs.launchpad.net/nova/+bug/1334398

Nova Documentation, Release 22.4.1.dev41

Reason This option was added to work around issues with libvirt 1.2.2. We no
longer support this version of libvirt, which means this workaround is no
longer necessary. It will be removed in a future release.

handle_virt_lifecycle_events

Type boolean

Default True

Enable handling of events emitted from compute drivers.

Many compute drivers emit lifecycle events, which are events that occur when, for example, an
instance is starting or stopping. If the instance is going through task state changes due to an API
operation, like resize, the events are ignored.

This is an advanced feature which allows the hypervisor to signal to the compute service that
an unexpected state change has occurred in an instance and that the instance can be shutdown
automatically. Unfortunately, this can race in some conditions, for example in reboot operations
or when the compute service or when host is rebooted (planned or due to an outage). If such races
are common, then it is advisable to disable this feature.

Care should be taken when this feature is disabled and sync_power_state_interval is set to a neg-
ative value. In this case, any instances that get out of sync between the hypervisor and the Nova
database will have to be synchronized manually.

For more information, refer to the bug report: https://bugs.launchpad.net/bugs/1444630

Interdependencies to other options:

• If sync_power_state_interval is negative and this feature is disabled, then in-
stances that get out of sync between the hypervisor and the Nova database will have to
be synchronized manually.

disable_group_policy_check_upcall

Type boolean

Default False

Disable the server group policy check upcall in compute.

In order to detect races with server group affinity policy, the compute service attempts to vali-
date that the policy was not violated by the scheduler. It does this by making an upcall to the
API database to list the instances in the server group for one that it is booting, which violates
our api/cell isolation goals. Eventually this will be solved by proper affinity guarantees in the
scheduler and placement service, but until then, this late check is needed to ensure proper affinity
policy.

Operators that desire api/cell isolation over this check should enable this flag, which will avoid
making that upcall from compute.

Related options:

• [filter_scheduler]/track_instance_changes also relies on upcalls from the compute service to
the scheduler service.

enable_numa_live_migration

3.5. Reference Material 649

https://bugs.launchpad.net/bugs/1444630

Nova Documentation, Release 22.4.1.dev41

Type boolean

Default False

Enable live migration of instances with NUMA topologies.

Live migration of instances with NUMA topologies when using the libvirt driver is only sup-
ported in deployments that have been fully upgraded to Train. In previous versions, or in mixed
Stein/Train deployments with a rolling upgrade in progress, live migration of instances with
NUMA topologies is disabled by default when using the libvirt driver. This includes live mi-
gration of instances with CPU pinning or hugepages. CPU pinning and huge page information
for such instances is not currently re-calculated, as noted in bug #1289064. This means that if
instances were already present on the destination host, the migrated instance could be placed on
the same dedicated cores as these instances or use hugepages allocated for another instance. Alter-
nately, if the host platforms were not homogeneous, the instance could be assigned to non-existent
cores or be inadvertently split across host NUMA nodes.

Despite these known issues, there may be cases where live migration is necessary. By enabling
this option, operators that are aware of the issues and are willing to manually work around them
can enable live migration support for these instances.

Related options:

• compute_driver: Only the libvirt driver is affected.

Warning: This option is deprecated for removal since 20.0.0. Its value may be silently
ignored in the future.

Reason This option was added to mitigate known issues when live migrating
instances with a NUMA topology with the libvirt driver. Those issues are
resolved in Train. Clouds using the libvirt driver and fully upgraded to Train
support NUMA-aware live migration. This option will be removed in a
future release.

ensure_libvirt_rbd_instance_dir_cleanup

Type boolean

Default False

Ensure the instance directory is removed during clean up when using rbd.

When enabled this workaround will ensure that the instance directory is always removed during
cleanup on hosts using [libvirt]/images_type=rbd. This avoids the following bugs with
evacuation and revert resize clean up that lead to the instance directory remaining on the host:

https://bugs.launchpad.net/nova/+bug/1414895

https://bugs.launchpad.net/nova/+bug/1761062

Both of these bugs can then result in DestinationDiskExists errors being raised if the
instances ever attempt to return to the host.

Warning: Operators will need to ensure that the instance directory itself, specified by
[DEFAULT]/instances_path, is not shared between computes before enabling this

3.5. Reference Material 650

https://bugs.launchpad.net/nova/+bug/1289064
https://bugs.launchpad.net/nova/+bug/1414895
https://bugs.launchpad.net/nova/+bug/1761062

Nova Documentation, Release 22.4.1.dev41

workaround otherwise the console.log, kernels, ramdisks and any additional files being used
by the running instance will be lost.

Related options:

• compute_driver (libvirt)

• [libvirt]/images_type (rbd)

• instances_path

disable_fallback_pcpu_query

Type boolean

Default False

Disable fallback request for VCPU allocations when using pinned instances.

Starting in Train, compute nodes using the libvirt virt driver can report PCPU inventory and will
use this for pinned instances. The scheduler will automatically translate requests using the legacy
CPU pinning-related flavor extra specs, hw:cpu_policy and hw:cpu_thread_policy,
their image metadata property equivalents, and the emulator threads pinning flavor extra spec,
hw:emulator_threads_policy, to new placement requests. However, compute nodes re-
quire additional configuration in order to report PCPU inventory and this configuration may not
be present immediately after an upgrade. To ensure pinned instances can be created without
this additional configuration, the scheduler will make a second request to placement for old-style
VCPU-based allocations and fallback to these allocation candidates if necessary. This has a slight
performance impact and is not necessary on new or upgraded deployments where the new con-
figuration has been set on all hosts. By setting this option, the second lookup is disabled and the
scheduler will only request PCPU-based allocations.

Warning: This option is deprecated for removal since 20.0.0. Its value may be silently
ignored in the future.

never_download_image_if_on_rbd

Type boolean

Default False

When booting from an image on a ceph-backed compute node, if the image does not already
reside on the ceph cluster (as would be the case if glance is also using the same cluster), nova will
download the image from glance and upload it to ceph itself. If using multiple ceph clusters, this
may cause nova to unintentionally duplicate the image in a non-COW-able way in the local ceph
deployment, wasting space.

For more information, refer to the bug report:

https://bugs.launchpad.net/nova/+bug/1858877

Enabling this option will cause nova to refuse to boot an instance if it would require downloading
the image from glance and uploading it to ceph itself.

Related options:

3.5. Reference Material 651

https://bugs.launchpad.net/nova/+bug/1858877

Nova Documentation, Release 22.4.1.dev41

• compute_driver (libvirt)

• [libvirt]/images_type (rbd)

disable_native_luksv1

Type boolean

Default False

When attaching encrypted LUKSv1 Cinder volumes to instances the Libvirt driver configures the
encrypted disks to be natively decrypted by QEMU.

A performance issue has been discovered in the libgcrypt library used by QEMU that serverly
limits the I/O performance in this scenario.

For more information please refer to the following bug report:

RFE: hardware accelerated AES-XTS mode https://bugzilla.redhat.com/show_bug.cgi?id=
1762765

Enabling this workaround option will cause Nova to use the legacy dm-crypt based os-brick en-
cryptor to decrypt the LUKSv1 volume.

Note that enabling this option while using volumes that do not provide a host block device
such as Ceph will result in a failure to boot from or attach the volume to an instance. See the
[workarounds]/rbd_block_device option for a way to avoid this for RBD.

Related options:

• compute_driver (libvirt)

• rbd_block_device (workarounds)

rbd_volume_local_attach

Type boolean

Default False

Attach RBD Cinder volumes to the compute as host block devices.

When enabled this option instructs os-brick to connect RBD volumes locally on the compute host
as block devices instead of natively through QEMU.

This workaround does not currently support extending attached volumes.

This can be used with the disable_native_luksv1 workaround configuration option to avoid the
recently discovered performance issues found within the libgcrypt library.

This workaround is temporary and will be removed during the W release once all impacted distri-
butions have been able to update their versions of the libgcrypt library.

Related options:

• compute_driver (libvirt)

• disable_qemu_native_luksv1 (workarounds)

reserve_disk_resource_for_image_cache

Type boolean

Default False

3.5. Reference Material 652

https://bugzilla.redhat.com/show_bug.cgi?id=1762765
https://bugzilla.redhat.com/show_bug.cgi?id=1762765

Nova Documentation, Release 22.4.1.dev41

If it is set to True then the libvirt driver will reserve DISK_GB resource for the images stored
in the image cache. If the DEFAULT.instances_path is on different disk partition than the
image cache directory then the driver will not reserve resource for the cache.

Such disk reservation is done by a periodic task in the resource tracker that runs every
update_resources_interval seconds. So the reservation is not updated immediately
when an image is cached.

Related options:

• DEFAULT.instances_path

• image_cache.subdirectory_name

• update_resources_interval

wait_for_vif_plugged_event_during_hard_reboot

Type list

Default []

The libvirt virt driver implements power on and hard reboot by tearing down every vif of the
instance being rebooted then plug them again. By default nova does not wait for network-vif-
plugged event from neutron before it lets the instance run. This can cause the instance to requests
the IP via DHCP before the neutron backend has a chance to set up the networking backend after
the vif plug.

This flag defines which vifs nova expects network-vif-plugged events from during hard reboot.
The possible values are neutron port vnic types:

• normal

• direct

• macvtap

• baremetal

• direct-physical

• virtio-forwarder

• smart-nic

Adding a vnic_type to this configuration makes Nova wait for a network-vif-plugged event
for each of the instances vifs having the specific vnic_type before unpausing the instance,
similarly to how new instance creation works.

Please note that not all neutron networking backends send plug time events, for certain
vnic_type therefore this config is empty by default.

The ml2/ovs and the networking-odl backends are known to send plug time events for ports with
normal vnic_type so it is safe to add normal to this config if you are using only those
backends in the compute host.

The neutron in-tree SRIOV backend does not reliably send network-vif-plugged event dur-
ing plug time for ports with direct vnic_type and never sends that event for port with
direct-physical vnic_type during plug time. For other vnic_type and backend pairs,
please consult the developers of the backend.

Related options:

3.5. Reference Material 653

Nova Documentation, Release 22.4.1.dev41

• DEFAULT.vif_plugging_timeout

enable_qemu_monitor_announce_self

Type boolean

Default False

If it is set to True the libvirt driver will try as a best effort to send the announce-self command to
the QEMU monitor so that it generates RARP frames to update network switches in the post live
migration phase on the destination.

Please note that this causes the domain to be considered tainted by libvirt.

Related options:

• DEFAULT.compute_driver (libvirt)

wsgi

Options under this group are used to configure WSGI (Web Server Gateway Interface). WSGI is used
to serve API requests.

api_paste_config

Type string

Default api-paste.ini

This option represents a file name for the paste.deploy config for nova-api.

Possible values:

• A string representing file name for the paste.deploy config.

Table 145: Deprecated Variations
Group Name
DEFAULT api_paste_config

wsgi_log_format

Type string

Default %(client_ip)s "%(request_line)s" status:
%(status_code)s len: %(body_length)s time:
%(wall_seconds).7f

It represents a python format string that is used as the template to generate log lines. The follow-
ing values can be formatted into it: client_ip, date_time, request_line, status_code, body_length,
wall_seconds.

This option is used for building custom request loglines when running nova-api under eventlet. If
used under uwsgi or apache, this option has no effect.

Possible values:

• %(client_ip)s %(request_line)s status: %(status_code)s len: %(body_length)s time:
%(wall_seconds).7f (default)

• Any formatted string formed by specific values.

3.5. Reference Material 654

Nova Documentation, Release 22.4.1.dev41

Table 146: Deprecated Variations
Group Name
DEFAULT wsgi_log_format

Warning: This option is deprecated for removal since 16.0.0. Its value may be silently
ignored in the future.

Reason This option only works when running nova-api under eventlet, and en-
codes very eventlet specific pieces of information. Starting in Pike the pre-
ferred model for running nova-api is under uwsgi or apache mod_wsgi.

secure_proxy_ssl_header

Type string

Default <None>

This option specifies the HTTP header used to determine the protocol scheme for the original
request, even if it was removed by a SSL terminating proxy.

Possible values:

• None (default) - the request scheme is not influenced by any HTTP headers

• Valid HTTP header, like HTTP_X_FORWARDED_PROTO

WARNING: Do not set this unless you know what you are doing.

Make sure ALL of the following are true before setting this (assuming the values from the example
above):

• Your API is behind a proxy.

• Your proxy strips the X-Forwarded-Proto header from all incoming requests. In other words,
if end users include that header in their requests, the proxy will discard it.

• Your proxy sets the X-Forwarded-Proto header and sends it to API, but only for requests that
originally come in via HTTPS.

If any of those are not true, you should keep this setting set to None.

Table 147: Deprecated Variations
Group Name
DEFAULT secure_proxy_ssl_header

ssl_ca_file

Type string

Default <None>

This option allows setting path to the CA certificate file that should be used to verify connecting
clients.

Possible values:

• String representing path to the CA certificate file.

3.5. Reference Material 655

Nova Documentation, Release 22.4.1.dev41

Related options:

• enabled_ssl_apis

Table 148: Deprecated Variations
Group Name
DEFAULT ssl_ca_file

ssl_cert_file

Type string

Default <None>

This option allows setting path to the SSL certificate of API server.

Possible values:

• String representing path to the SSL certificate.

Related options:

• enabled_ssl_apis

Table 149: Deprecated Variations
Group Name
DEFAULT ssl_cert_file

ssl_key_file

Type string

Default <None>

This option specifies the path to the file where SSL private key of API server is stored when SSL
is in effect.

Possible values:

• String representing path to the SSL private key.

Related options:

• enabled_ssl_apis

Table 150: Deprecated Variations
Group Name
DEFAULT ssl_key_file

tcp_keepidle

Type integer

Default 600

Minimum Value 0

3.5. Reference Material 656

Nova Documentation, Release 22.4.1.dev41

This option sets the value of TCP_KEEPIDLE in seconds for each server socket. It specifies the
duration of time to keep connection active. TCP generates a KEEPALIVE transmission for an
application that requests to keep connection active. Not supported on OS X.

Related options:

• keep_alive

Table 151: Deprecated Variations
Group Name
DEFAULT tcp_keepidle

default_pool_size

Type integer

Default 1000

Minimum Value 0

This option specifies the size of the pool of greenthreads used by wsgi. It is possible to limit the
number of concurrent connections using this option.

Table 152: Deprecated Variations
Group Name
DEFAULT wsgi_default_pool_size

max_header_line

Type integer

Default 16384

Minimum Value 0

This option specifies the maximum line size of message headers to be accepted. max_header_line
may need to be increased when using large tokens (typically those generated by the Keystone v3
API with big service catalogs).

Since TCP is a stream based protocol, in order to reuse a connection, the HTTP has to have a way
to indicate the end of the previous response and beginning of the next. Hence, in a keep_alive
case, all messages must have a self-defined message length.

Table 153: Deprecated Variations
Group Name
DEFAULT max_header_line

keep_alive

Type boolean

Default True

This option allows using the same TCP connection to send and receive multiple HTTP re-
quests/responses, as opposed to opening a new one for every single request/response pair. HTTP
keep-alive indicates HTTP connection reuse.

3.5. Reference Material 657

Nova Documentation, Release 22.4.1.dev41

Possible values:

• True : reuse HTTP connection.

• False : closes the client socket connection explicitly.

Related options:

• tcp_keepidle

Table 154: Deprecated Variations
Group Name
DEFAULT wsgi_keep_alive

client_socket_timeout

Type integer

Default 900

Minimum Value 0

This option specifies the timeout for client connections socket operations. If an incoming con-
nection is idle for this number of seconds it will be closed. It indicates timeout on individual
read/writes on the socket connection. To wait forever set to 0.

Table 155: Deprecated Variations
Group Name
DEFAULT client_socket_timeout

zvm

zvm options allows cloud administrator to configure related z/VM hypervisor driver to be used within
an OpenStack deployment.

zVM options are used when the compute_driver is set to use zVM (compute_driver=zvm.ZVMDriver)

cloud_connector_url

Type URI

Default http://zvm.example.org:8080/

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

URL to be used to communicate with z/VM Cloud Connector.

ca_file

Type string

Default <None>

CA certificate file to be verified in httpd server with TLS enabled

A string, it must be a path to a CA bundle to use.

image_tmp_path

3.5. Reference Material 658

Nova Documentation, Release 22.4.1.dev41

Type string

Default $state_path/images

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

The path at which images will be stored (snapshot, deploy, etc).

Images used for deploy and images captured via snapshot need to be stored on the local disk of
the compute host. This configuration identifies the directory location.

Possible values: A file system path on the host running the compute service.

reachable_timeout

Type integer

Default 300

Timeout (seconds) to wait for an instance to start.

The z/VM driver relies on communication between the instance and cloud connector. After an
instance is created, it must have enough time to wait for all the network info to be written into
the user directory. The driver will keep rechecking network status to the instance with the timeout
value, If setting network failed, it will notify the user that starting the instance failed and put the
instance in ERROR state. The underlying z/VM guest will then be deleted.

Possible Values: Any positive integer. Recommended to be at least 300 seconds (5 minutes), but
it will vary depending on instance and system load. A value of 0 is used for debug. In this
case the underlying z/VM guest will not be deleted when the instance is marked in ERROR
state.

3.5.2.2 Policy

Nova, like most OpenStack projects, uses a policy language to restrict permissions on REST API actions.

• Policy Concepts: Starting in the Ussuri release, Nova API policy defines new default roles with
system scope capabilities. These new changes improve the security level and manageability of
Nova API as they are richer in terms of handling access at system and project level token with
Read and Write roles.

Understanding Nova Policies

Warning: JSON formatted policy file is deprecated since Nova 22.0.0(Victoria). Use YAML
formatted file. Use oslopolicy-convert-json-to-yaml tool to convert the existing JSON to YAML
formatted policy file in backward compatible way.

Nova supports a rich policy system that has evolved significantly over its lifetime. Initially, this took the
form of a large, mostly hand-written policy.yaml file but, starting in the Newton (14.0.0) release,
policy defaults have been defined in the codebase, requiring the policy.yaml file only to override
these defaults.

3.5. Reference Material 659

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Nova Documentation, Release 22.4.1.dev41

In the Ussuri (21.0.0) release, further work was undertaken to address some issues that had been identi-
fied:

1. No global vs project admin. The admin_only role is used for the global admin that is able to
make almost any change to Nova, and see all details of the Nova system. The rule passes for any
user with an admin role, it doesnt matter which project is used.

2. No read-only roles. Since several APIs tend to share a single policy rule for read and write actions,
they did not provide the granularity necessary for read-only access roles.

3. The admin_or_owner role did not work as expected. For most APIs with admin_or_owner,
the project authentication happened in a separate component than API in Nova that did not honor
changes to policy. As a result, policy could not override hard-coded in-project checks.

Keystone comes with admin, member and reader roles by default. Please refer to this document for
more information about these new defaults. In addition, keystone supports a new system scope concept
that makes it easier to protect deployment level resources from project or system level resources. Please
refer to this document and system scope specification to understand the scope concept.

In the Nova 21.0.0 (Ussuri) release, Nova policies implemented the scope concept and default roles
provided by keystone (admin, member, and reader). Using common roles from keystone reduces the
likelihood of similar, but different, roles implemented across projects or deployments (e.g., a role called
observer versus reader versus auditor). With the help of the new defaults it is easier to under-
stand who can do what across projects, reduces divergence, and increases interoperability.

The below sections explain how these new defaults in the Nova can solve the first two issues mentioned
above and extend more functionality to end users in a safe and secure way.

More information is provided in the nova specification.

Scope

OpenStack Keystone supports different scopes in tokens. These are described here. Token scopes rep-
resent the layer of authorization. Policy scope_types represent the layer of authorization required to
access an API.

Note: The scope_type of each policy is hardcoded and is not overridable via the policy file.

Nova policies have implemented the scope concept by defining the scope_type in policies. To
know each policys scope_type, please refer to the Policy Reference and look for Scope Types
or Intended scope(s) in Policy Sample File as shown in below examples.

system scope

Policies with a scope_type of systemmeans a user with a system-scoped token has permission
to access the resource. This can be seen as a global role. All the system-level operations policies have
defaulted to scope_type of ['system'].

For example, consider the GET /os-hypervisors API.

List all hypervisors.
GET /os-hypervisors

(continues on next page)

3.5. Reference Material 660

https://docs.openstack.org/keystone/victoria//admin/service-api-protection.html
https://docs.openstack.org/keystone/victoria//admin/tokens-overview.html#authorization-scopes
https://specs.openstack.org/openstack/keystone-specs/specs/keystone/queens/system-scope.html
https://specs.openstack.org/openstack/nova-specs/specs/ussuri/approved/policy-defaults-refresh.html
https://docs.openstack.org/keystone/victoria//admin/tokens-overview.html#authorization-scopes

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

Intended scope(s): system
#"os_compute_api:os-hypervisors:list": "rule:system_reader_api"

project scope

Policies with a scope_type of project means a user with a project-scoped token has per-
mission to access the resource. Project-level only operations policies are defaulted to scope_type of
['project'].

For example, consider the POST /os-server-groups API.

Create a new server group
POST /os-server-groups
Intended scope(s): project
#"os_compute_api:os-server-groups:create": "rule:project_member_api"

system and project scope

Policies with a scope_type of system and project means a user with a system-scoped
or project-scoped token has permission to access the resource. All the system and project level
operations policies have defaulted to scope_type of ['system', 'project'].

For example, consider the POST /servers/{server_id}/action (os-migrateLive)
API.

Live migrate a server to a new host without a reboot
POST /servers/{server_id}/action (os-migrateLive)
Intended scope(s): system, project
#"os_compute_api:os-migrate-server:migrate_live": "rule:system_admin_api"

These scope types provide a way to differentiate between system-level and project-level access roles.
You can control the information with scope of the users. This means you can control that none of the
project level role can get the hypervisor information.

Policy scope is disabled by default to allow operators to migrate from the old policy enforcement system
in a graceful way. This can be enabled by configuring the oslo_policy.enforce_scope option
to True.

Note: [oslo_policy] enforce_scope=True

3.5. Reference Material 661

Nova Documentation, Release 22.4.1.dev41

Roles

You can refer to this document to know about all available defaults from Keystone.

Along with the scope_type feature, Nova policy defines new defaults for each policy.

reader

This provides read-only access to the resources within the system or project. Nova policies are
defaulted to below rules:

system_reader_api
Default

role:reader and system_scope:all

system_or_project_reader
Default

(rule:system_reader_api) or (role:reader and project_id:%(project_
↪→id)s)

member

This role is to perform the project level write operation with combination to the system admin. Nova
policies are defaulted to below rules:

project_member_api
Default

role:member and project_id:%(project_id)s

system_admin_or_owner
Default

(role:admin and system_scope:all) or (role:member and project_id:
↪→%(project_id)s)

admin

This role is to perform the admin level write operation at system as well as at project-level operations.
Nova policies are defaulted to below rules:

system_admin_api
Default

role:admin and system_scope:all

project_admin_api
Default

role:admin and project_id:%(project_id)s

system_admin_or_owner
Default

(role:admin and system_scope:all) or (role:member and project_id:
↪→%(project_id)s)

With these new defaults, you can solve the problem of:

3.5. Reference Material 662

https://docs.openstack.org/keystone/victoria//admin/service-api-protection.html

Nova Documentation, Release 22.4.1.dev41

1. Providing the read-only access to the user. Polices are made more granular and defaulted to reader
rules. For exmaple: If you need to let someone audit your deployment for security purposes.

2. Customize the policy in better way. For example, you will be able to provide access to project
level user to perform live migration for their server or any other project with their token.

Backward Compatibility

Backward compatibility with versions prior to 21.0.0 (Ussuri) is maintained by supporting the old de-
faults and disabling the scope_type feature by default. This means the old defaults and deployments
that use them will keep working as-is. However, we encourage every deployment to switch to new pol-
icy. scope_type will be enabled by default and the old defaults will be removed starting in the 23.0.0
(W) release.

To implement the new default reader roles, some policies needed to become granular. They have been
renamed, with the old names still supported for backwards compatibility.

Migration Plan

To have a graceful migration, Nova provides two flags to switch to the new policy completely. You do
not need to overwrite the policy file to adopt the new policy defaults.

Here is step wise guide for migration:

1. Create scoped token:

You need to create the new token with scope knowledge via below CLI:

• Create System Scoped Token.

• Create Project Scoped Token.

2. Create new default roles in keystone if not done:

If you do not have new defaults in Keystone then you can create and re-run the Keystone Bootstrap.
Keystone added this support in 14.0.0 (Rocky) release.

3. Enable Scope Checks

The oslo_policy.enforce_scope flag is to enable the scope_type features. The scope
of the token used in the request is always compared to the scope_type of the policy. If the
scopes do not match, one of two things can happen. If oslo_policy.enforce_scope is
True, the request will be rejected. If oslo_policy.enforce_scope is False, an warning
will be logged, but the request will be accepted (assuming the rest of the policy passes). The
default value of this flag is False.

Note: Before you enable this flag, you need to audit your users and make sure everyone who
needs system-level access has a system role assignment in keystone.

4. Enable new defaults

The oslo_policy.enforce_new_defaults flag switches the policy to new defaults-only.
This flag controls whether or not to use old deprecated defaults when evaluating policies. If True,
the old deprecated defaults are not evaluated. This means if any existing token is allowed for old

3.5. Reference Material 663

https://docs.openstack.org/keystone/victoria//admin/tokens-overview.html#operation_create_system_token
https://docs.openstack.org/keystone/victoria//admin/tokens-overview.html#operation_create_project_scoped_token
https://docs.openstack.org/keystone/victoria//admin/bootstrap.html

Nova Documentation, Release 22.4.1.dev41

defaults but is disallowed for new defaults, it will be rejected. The default value of this flag is
False.

Note: Before you enable this flag, you need to educate users about the different roles they need
to use to continue using Nova APIs.

5. Check for deprecated policies

A few policies were made more granular to implement the reader roles. New policy names are
available to use. If old policy names which are renamed are overwritten in policy file, then warning
will be logged. Please migrate those policies to new policy names.

We expect all deployments to migrate to new policy by 23.0.0 release so that we can remove the support
of old policies.

• Policy Reference: A complete reference of all policy points in nova and what they impact.

Nova Policies

The following is an overview of all available policies in Nova.

Warning: JSON formatted policy file is deprecated since Nova 22.0.0(Victoria). Use YAML
formatted file. Use oslopolicy-convert-json-to-yaml tool to convert the existing JSON to YAML
formatted policy file in backward compatible way.

nova

context_is_admin

Default role:admin

Decides what is required for the is_admin:True check to succeed.

admin_or_owner

Default is_admin:True or project_id:%(project_id)s

Default rule for most non-Admin APIs.

admin_api

Default is_admin:True

Default rule for most Admin APIs.

system_admin_api

Default role:admin and system_scope:all

Default rule for System Admin APIs.

system_reader_api

Default role:reader and system_scope:all

3.5. Reference Material 664

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Nova Documentation, Release 22.4.1.dev41

Default rule for System level read only APIs.

project_admin_api

Default role:admin and project_id:%(project_id)s

Default rule for Project level admin APIs.

project_member_api

Default role:member and project_id:%(project_id)s

Default rule for Project level non admin APIs.

project_reader_api

Default role:reader and project_id:%(project_id)s

Default rule for Project level read only APIs.

system_admin_or_owner

Default rule:system_admin_api or rule:project_member_api

Default rule for System admin+owner APIs.

system_or_project_reader

Default rule:system_reader_api or rule:project_reader_api

Default rule for System+Project read only APIs.

os_compute_api:os-admin-actions:reset_state

Default rule:system_admin_api

Operations

• POST /servers/{server_id}/action (os-resetState)

Scope Types

• system

• project

Reset the state of a given server

os_compute_api:os-admin-actions:inject_network_info

Default rule:system_admin_api

Operations

• POST /servers/{server_id}/action
(injectNetworkInfo)

Scope Types

• system

• project

Inject network information into the server

os_compute_api:os-admin-actions:reset_network

Default rule:system_admin_api

3.5. Reference Material 665

Nova Documentation, Release 22.4.1.dev41

Operations

• POST /servers/{server_id}/action (resetNetwork)

Scope Types

• system

• project

Reset networking on a server

os_compute_api:os-admin-password

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (changePassword)

Scope Types

• system

• project

Change the administrative password for a server

os_compute_api:os-agents:list

Default rule:system_reader_api

Operations

• GET /os-agents

Scope Types

• system

List guest agent builds This is XenAPI driver specific. It is used to force the upgrade of the
XenAPI guest agent on instance boot.

os_compute_api:os-agents:create

Default rule:system_admin_api

Operations

• POST /os-agents

Scope Types

• system

Create guest agent builds This is XenAPI driver specific. It is used to force the upgrade of the
XenAPI guest agent on instance boot.

os_compute_api:os-agents:update

Default rule:system_admin_api

Operations

• PUT /os-agents/{agent_build_id}

Scope Types

3.5. Reference Material 666

Nova Documentation, Release 22.4.1.dev41

• system

Update guest agent builds This is XenAPI driver specific. It is used to force the upgrade of the
XenAPI guest agent on instance boot.

os_compute_api:os-agents:delete

Default rule:system_admin_api

Operations

• DELETE /os-agents/{agent_build_id}

Scope Types

• system

Delete guest agent builds This is XenAPI driver specific. It is used to force the upgrade of the
XenAPI guest agent on instance boot.

os_compute_api:os-aggregates:set_metadata

Default rule:system_admin_api

Operations

• POST /os-aggregates/{aggregate_id}/action
(set_metadata)

Scope Types

• system

Create or replace metadata for an aggregate

os_compute_api:os-aggregates:add_host

Default rule:system_admin_api

Operations

• POST /os-aggregates/{aggregate_id}/action
(add_host)

Scope Types

• system

Add a host to an aggregate

os_compute_api:os-aggregates:create

Default rule:system_admin_api

Operations

• POST /os-aggregates

Scope Types

• system

Create an aggregate

os_compute_api:os-aggregates:remove_host

Default rule:system_admin_api

3.5. Reference Material 667

Nova Documentation, Release 22.4.1.dev41

Operations

• POST /os-aggregates/{aggregate_id}/action
(remove_host)

Scope Types

• system

Remove a host from an aggregate

os_compute_api:os-aggregates:update

Default rule:system_admin_api

Operations

• PUT /os-aggregates/{aggregate_id}

Scope Types

• system

Update name and/or availability zone for an aggregate

os_compute_api:os-aggregates:index

Default rule:system_reader_api

Operations

• GET /os-aggregates

Scope Types

• system

List all aggregates

os_compute_api:os-aggregates:delete

Default rule:system_admin_api

Operations

• DELETE /os-aggregates/{aggregate_id}

Scope Types

• system

Delete an aggregate

os_compute_api:os-aggregates:show

Default rule:system_reader_api

Operations

• GET /os-aggregates/{aggregate_id}

Scope Types

• system

Show details for an aggregate

compute:aggregates:images

3.5. Reference Material 668

Nova Documentation, Release 22.4.1.dev41

Default rule:system_admin_api

Operations

• POST /os-aggregates/{aggregate_id}/images

Scope Types

• system

Request image caching for an aggregate

os_compute_api:os-assisted-volume-snapshots:create

Default rule:system_admin_api

Operations

• POST /os-assisted-volume-snapshots

Scope Types

• system

Create an assisted volume snapshot

os_compute_api:os-assisted-volume-snapshots:delete

Default rule:system_admin_api

Operations

• DELETE /os-assisted-volume-snapshots/{snapshot_id}

Scope Types

• system

Delete an assisted volume snapshot

os_compute_api:os-attach-interfaces:list

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/os-interface

Scope Types

• system

• project

List port interfaces attached to a server

os_compute_api:os-attach-interfaces:show

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/os-interface/{port_id}

Scope Types

• system

3.5. Reference Material 669

Nova Documentation, Release 22.4.1.dev41

• project

Show details of a port interface attached to a server

os_compute_api:os-attach-interfaces:create

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/os-interface

Scope Types

• system

• project

Attach an interface to a server

os_compute_api:os-attach-interfaces:delete

Default rule:system_admin_or_owner

Operations

• DELETE /servers/{server_id}/os-interface/{port_id}

Scope Types

• system

• project

Detach an interface from a server

os_compute_api:os-availability-zone:list

Default @

Operations

• GET /os-availability-zone

Scope Types

• system

• project

List availability zone information without host information

os_compute_api:os-availability-zone:detail

Default rule:system_reader_api

Operations

• GET /os-availability-zone/detail

Scope Types

• system

List detailed availability zone information with host information

os_compute_api:os-baremetal-nodes:list

3.5. Reference Material 670

Nova Documentation, Release 22.4.1.dev41

Default rule:system_reader_api

Operations

• GET /os-baremetal-nodes

Scope Types

• system

List and show details of bare metal nodes.

These APIs are proxy calls to the Ironic service and are deprecated.

os_compute_api:os-baremetal-nodes:show

Default rule:system_reader_api

Operations

• GET /os-baremetal-nodes/{node_id}

Scope Types

• system

Show action details for a server.

os_compute_api:os-console-auth-tokens

Default rule:system_reader_api

Operations

• GET /os-console-auth-tokens/{console_token}

Scope Types

• system

Show console connection information for a given console authentication token

os_compute_api:os-console-output

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action
(os-getConsoleOutput)

Scope Types

• system

• project

Show console output for a server

os_compute_api:os-create-backup

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (createBackup)

Scope Types

3.5. Reference Material 671

Nova Documentation, Release 22.4.1.dev41

• system

• project

Create a back up of a server

os_compute_api:os-deferred-delete:restore

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (restore)

Scope Types

• system

• project

Restore a soft deleted server

os_compute_api:os-deferred-delete:force

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (forceDelete)

Scope Types

• system

• project

Force delete a server before deferred cleanup

os_compute_api:os-evacuate

Default rule:system_admin_api

Operations

• POST /servers/{server_id}/action (evacuate)

Scope Types

• system

• project

Evacuate a server from a failed host to a new host

os_compute_api:os-extended-server-attributes

Default rule:system_admin_api

Operations

• GET /servers/{id}

• GET /servers/detail

• PUT /servers/{server_id}

• POST /servers/{server_id}/action (rebuild)

3.5. Reference Material 672

Nova Documentation, Release 22.4.1.dev41

Scope Types

• system

• project

Return extended attributes for server.

This rule will control the visibility for a set of servers attributes:

• OS-EXT-SRV-ATTR:host

• OS-EXT-SRV-ATTR:instance_name

• OS-EXT-SRV-ATTR:reservation_id (since microversion 2.3)

• OS-EXT-SRV-ATTR:launch_index (since microversion 2.3)

• OS-EXT-SRV-ATTR:hostname (since microversion 2.3)

• OS-EXT-SRV-ATTR:kernel_id (since microversion 2.3)

• OS-EXT-SRV-ATTR:ramdisk_id (since microversion 2.3)

• OS-EXT-SRV-ATTR:root_device_name (since microversion 2.3)

• OS-EXT-SRV-ATTR:user_data (since microversion 2.3)

Microvision 2.75 added the above attributes in the PUT /servers/{server_id} and POST
/servers/{server_id}/action (rebuild) API responses which are also controlled
by this policy rule, like the GET /servers* APIs.

os_compute_api:extensions

Default @

Operations

• GET /extensions

• GET /extensions/{alias}

Scope Types

• system

• project

List available extensions and show information for an extension by alias

os_compute_api:os-flavor-access:add_tenant_access

Default rule:system_admin_api

Operations

• POST /flavors/{flavor_id}/action (addTenantAccess)

Scope Types

• system

Add flavor access to a tenant

os_compute_api:os-flavor-access:remove_tenant_access

Default rule:system_admin_api

3.5. Reference Material 673

Nova Documentation, Release 22.4.1.dev41

Operations

• POST /flavors/{flavor_id}/action
(removeTenantAccess)

Scope Types

• system

Remove flavor access from a tenant

os_compute_api:os-flavor-access

Default rule:system_reader_api

Operations

• GET /flavors/{flavor_id}/os-flavor-access

Scope Types

• system

List flavor access information

Allows access to the full list of tenants that have access to a flavor via an os-flavor-access API.

os_compute_api:os-flavor-extra-specs:show

Default rule:system_or_project_reader

Operations

• GET /flavors/{flavor_id}/os-extra_specs/
{flavor_extra_spec_key}

Scope Types

• system

• project

Show an extra spec for a flavor

os_compute_api:os-flavor-extra-specs:create

Default rule:system_admin_api

Operations

• POST /flavors/{flavor_id}/os-extra_specs/

Scope Types

• system

Create extra specs for a flavor

os_compute_api:os-flavor-extra-specs:update

Default rule:system_admin_api

Operations

• PUT /flavors/{flavor_id}/os-extra_specs/
{flavor_extra_spec_key}

3.5. Reference Material 674

Nova Documentation, Release 22.4.1.dev41

Scope Types

• system

Update an extra spec for a flavor

os_compute_api:os-flavor-extra-specs:delete

Default rule:system_admin_api

Operations

• DELETE /flavors/{flavor_id}/os-extra_specs/
{flavor_extra_spec_key}

Scope Types

• system

Delete an extra spec for a flavor

os_compute_api:os-flavor-extra-specs:index

Default rule:system_or_project_reader

Operations

• GET /flavors/{flavor_id}/os-extra_specs/

• GET /servers/detail

• GET /servers/{server_id}

• PUT /servers/{server_id}

• POST /servers/{server_id}/action (rebuild)

• POST /flavors

• GET /flavors/detail

• GET /flavors/{flavor_id}

• PUT /flavors/{flavor_id}

Scope Types

• system

• project

List extra specs for a flavor. Starting with microversion 2.47, the flavor used for a server is also
returned in the response when showing server details, updating a server or rebuilding a server.
Starting with microversion 2.61, extra specs may be returned in responses for the flavor resource.

os_compute_api:os-flavor-manage:create

Default rule:system_admin_api

Operations

• POST /flavors

Scope Types

• system

3.5. Reference Material 675

Nova Documentation, Release 22.4.1.dev41

Create a flavor

os_compute_api:os-flavor-manage:update

Default rule:system_admin_api

Operations

• PUT /flavors/{flavor_id}

Scope Types

• system

Update a flavor

os_compute_api:os-flavor-manage:delete

Default rule:system_admin_api

Operations

• DELETE /flavors/{flavor_id}

Scope Types

• system

Delete a flavor

os_compute_api:os-floating-ip-pools

Default @

Operations

• GET /os-floating-ip-pools

Scope Types

• system

• project

List floating IP pools. This API is deprecated.

os_compute_api:os-floating-ips:add

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (addFloatingIp)

Scope Types

• system

• project

Associate floating IPs to server. This API is deprecated.

os_compute_api:os-floating-ips:remove

Default rule:system_admin_or_owner

Operations

3.5. Reference Material 676

Nova Documentation, Release 22.4.1.dev41

• POST /servers/{server_id}/action (removeFloatingIp)

Scope Types

• system

• project

Disassociate floating IPs to server. This API is deprecated.

os_compute_api:os-floating-ips:list

Default rule:system_or_project_reader

Operations

• GET /os-floating-ips

Scope Types

• system

• project

List floating IPs. This API is deprecated.

os_compute_api:os-floating-ips:create

Default rule:system_admin_or_owner

Operations

• POST /os-floating-ips

Scope Types

• system

• project

Create floating IPs. This API is deprecated.

os_compute_api:os-floating-ips:show

Default rule:system_or_project_reader

Operations

• GET /os-floating-ips/{floating_ip_id}

Scope Types

• system

• project

Show floating IPs. This API is deprecated.

os_compute_api:os-floating-ips:delete

Default rule:system_admin_or_owner

Operations

• DELETE /os-floating-ips/{floating_ip_id}

Scope Types

3.5. Reference Material 677

Nova Documentation, Release 22.4.1.dev41

• system

• project

Delete floating IPs. This API is deprecated.

os_compute_api:os-hosts:list

Default rule:system_reader_api

Operations

• GET /os-hosts

Scope Types

• system

List physical hosts.

This API is deprecated in favor of os-hypervisors and os-services.

os_compute_api:os-hosts:show

Default rule:system_reader_api

Operations

• GET /os-hosts/{host_name}

Scope Types

• system

Show physical host.

This API is deprecated in favor of os-hypervisors and os-services.

os_compute_api:os-hosts:update

Default rule:system_admin_api

Operations

• PUT /os-hosts/{host_name}

Scope Types

• system

Update physical host.

This API is deprecated in favor of os-hypervisors and os-services.

os_compute_api:os-hosts:reboot

Default rule:system_admin_api

Operations

• GET /os-hosts/{host_name}/reboot

Scope Types

• system

3.5. Reference Material 678

Nova Documentation, Release 22.4.1.dev41

Reboot physical host.

This API is deprecated in favor of os-hypervisors and os-services.

os_compute_api:os-hosts:shutdown

Default rule:system_admin_api

Operations

• GET /os-hosts/{host_name}/shutdown

Scope Types

• system

Shutdown physical host.

This API is deprecated in favor of os-hypervisors and os-services.

os_compute_api:os-hosts:start

Default rule:system_admin_api

Operations

• GET /os-hosts/{host_name}/startup

Scope Types

• system

Start physical host.

This API is deprecated in favor of os-hypervisors and os-services.

os_compute_api:os-hypervisors:list

Default rule:system_reader_api

Operations

• GET /os-hypervisors

Scope Types

• system

List all hypervisors.

os_compute_api:os-hypervisors:list-detail

Default rule:system_reader_api

Operations

• GET /os-hypervisors/details

Scope Types

• system

List all hypervisors with details

os_compute_api:os-hypervisors:statistics

Default rule:system_reader_api

3.5. Reference Material 679

Nova Documentation, Release 22.4.1.dev41

Operations

• GET /os-hypervisors/statistics

Scope Types

• system

Show summary statistics for all hypervisors over all compute nodes.

os_compute_api:os-hypervisors:show

Default rule:system_reader_api

Operations

• GET /os-hypervisors/{hypervisor_id}

Scope Types

• system

Show details for a hypervisor.

os_compute_api:os-hypervisors:uptime

Default rule:system_reader_api

Operations

• GET /os-hypervisors/{hypervisor_id}/uptime

Scope Types

• system

Show the uptime of a hypervisor.

os_compute_api:os-hypervisors:search

Default rule:system_reader_api

Operations

• GET /os-hypervisors/{hypervisor_hostname_pattern}/
search

Scope Types

• system

Search hypervisor by hypervisor_hostname pattern.

os_compute_api:os-hypervisors:servers

Default rule:system_reader_api

Operations

• GET /os-hypervisors/{hypervisor_hostname_pattern}/
servers

Scope Types

• system

List all servers on hypervisors that can match the provided hypervisor_hostname pattern.

3.5. Reference Material 680

Nova Documentation, Release 22.4.1.dev41

os_compute_api:os-instance-actions:events:details

Default rule:system_reader_api

Operations

• GET /servers/{server_id}/os-instance-actions/
{request_id}

Scope Types

• system

• project

Add details key in action events for a server.

This check is performed only after the check os_compute_api:os-instance-actions:show passes.
Beginning with Microversion 2.84, new field details is exposed via API which can have more
details about event failure. That field is controlled by this policy which is system reader by de-
fault. Making the details field visible to the non-admin user helps to understand the nature of the
problem (i.e. if the action can be retried), but in the other hand it might leak information about the
deployment (e.g. the type of the hypervisor).

os_compute_api:os-instance-actions:events

Default rule:system_reader_api

Operations

• GET /servers/{server_id}/os-instance-actions/
{request_id}

Scope Types

• system

• project

Add events details in action details for a server. This check is performed only after the check
os_compute_api:os-instance-actions:show passes. Beginning with Microversion 2.51, events de-
tails are always included; traceback information is provided per event if policy enforcement
passes. Beginning with Microversion 2.62, each event includes a hashed host identifier and, if
policy enforcement passes, the name of the host.

os_compute_api:os-instance-actions:list

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/os-instance-actions

Scope Types

• system

• project

List actions for a server.

os_compute_api:os-instance-actions:show

Default rule:system_or_project_reader

3.5. Reference Material 681

Nova Documentation, Release 22.4.1.dev41

Operations

• GET /servers/{server_id}/os-instance-actions/
{request_id}

Scope Types

• system

• project

Show action details for a server.

os_compute_api:os-instance-usage-audit-log:list

Default rule:system_reader_api

Operations

• GET /os-instance_usage_audit_log

Scope Types

• system

List all usage audits.

os_compute_api:os-instance-usage-audit-log:show

Default rule:system_reader_api

Operations

• GET /os-instance_usage_audit_log/{before_timestamp}

Scope Types

• system

List all usage audits occurred before a specified time for all servers on all compute hosts where
usage auditing is configured

os_compute_api:ips:show

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/ips/{network_label}

Scope Types

• system

• project

Show IP addresses details for a network label of a server

os_compute_api:ips:index

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/ips

Scope Types

3.5. Reference Material 682

Nova Documentation, Release 22.4.1.dev41

• system

• project

List IP addresses that are assigned to a server

os_compute_api:os-keypairs:index

Default (rule:system_reader_api) or user_id:%(user_id)s

Operations

• GET /os-keypairs

Scope Types

• system

• project

List all keypairs

os_compute_api:os-keypairs:create

Default (rule:system_admin_api) or user_id:%(user_id)s

Operations

• POST /os-keypairs

Scope Types

• system

• project

Create a keypair

os_compute_api:os-keypairs:delete

Default (rule:system_admin_api) or user_id:%(user_id)s

Operations

• DELETE /os-keypairs/{keypair_name}

Scope Types

• system

• project

Delete a keypair

os_compute_api:os-keypairs:show

Default (rule:system_reader_api) or user_id:%(user_id)s

Operations

• GET /os-keypairs/{keypair_name}

Scope Types

• system

• project

3.5. Reference Material 683

Nova Documentation, Release 22.4.1.dev41

Show details of a keypair

os_compute_api:limits

Default @

Operations

• GET /limits

Scope Types

• system

• project

Show rate and absolute limits for the current user project

os_compute_api:limits:other_project

Default rule:system_reader_api

Operations

• GET /limits

Scope Types

• system

Show rate and absolute limits of other project.

This policy only checks if the user has access to the requested project limits. And this check is
performed only after the check os_compute_api:limits passes

os_compute_api:os-lock-server:lock

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (lock)

Scope Types

• system

• project

Lock a server

os_compute_api:os-lock-server:unlock

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (unlock)

Scope Types

• system

• project

Unlock a server

os_compute_api:os-lock-server:unlock:unlock_override

3.5. Reference Material 684

Nova Documentation, Release 22.4.1.dev41

Default rule:system_admin_api

Operations

• POST /servers/{server_id}/action (unlock)

Scope Types

• system

• project

Unlock a server, regardless who locked the server.

This check is performed only after the check os_compute_api:os-lock-server:unlock passes

os_compute_api:os-migrate-server:migrate

Default rule:system_admin_api

Operations

• POST /servers/{server_id}/action (migrate)

Scope Types

• system

• project

Cold migrate a server to a host

os_compute_api:os-migrate-server:migrate_live

Default rule:system_admin_api

Operations

• POST /servers/{server_id}/action (os-migrateLive)

Scope Types

• system

• project

Live migrate a server to a new host without a reboot

os_compute_api:os-migrations:index

Default rule:system_reader_api

Operations

• GET /os-migrations

Scope Types

• system

List migrations

os_compute_api:os-multinic:add

Default rule:system_admin_or_owner

Operations

3.5. Reference Material 685

Nova Documentation, Release 22.4.1.dev41

• POST /servers/{server_id}/action (addFixedIp)

Scope Types

• system

• project

Add a fixed IP address to a server.

This API is proxy calls to the Network service. This is deprecated.

os_compute_api:os-multinic:remove

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (removeFixedIp)

Scope Types

• system

• project

Remove a fixed IP address from a server.

This API is proxy calls to the Network service. This is deprecated.

os_compute_api:os-networks:list

Default rule:system_or_project_reader

Operations

• GET /os-networks

Scope Types

• system

• project

List networks for the project.

This API is proxy calls to the Network service. This is deprecated.

os_compute_api:os-networks:show

Default rule:system_or_project_reader

Operations

• GET /os-networks/{network_id}

Scope Types

• system

• project

Show network details.

This API is proxy calls to the Network service. This is deprecated.

os_compute_api:os-pause-server:pause

3.5. Reference Material 686

Nova Documentation, Release 22.4.1.dev41

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (pause)

Scope Types

• system

• project

Pause a server

os_compute_api:os-pause-server:unpause

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (unpause)

Scope Types

• system

• project

Unpause a paused server

os_compute_api:os-quota-class-sets:show

Default rule:system_reader_api

Operations

• GET /os-quota-class-sets/{quota_class}

Scope Types

• system

List quotas for specific quota classs

os_compute_api:os-quota-class-sets:update

Default rule:system_admin_api

Operations

• PUT /os-quota-class-sets/{quota_class}

Scope Types

• system

Update quotas for specific quota class

os_compute_api:os-quota-sets:update

Default rule:system_admin_api

Operations

• PUT /os-quota-sets/{tenant_id}

Scope Types

3.5. Reference Material 687

Nova Documentation, Release 22.4.1.dev41

• system

Update the quotas

os_compute_api:os-quota-sets:defaults

Default @

Operations

• GET /os-quota-sets/{tenant_id}/defaults

Scope Types

• system

• project

List default quotas

os_compute_api:os-quota-sets:show

Default rule:system_or_project_reader

Operations

• GET /os-quota-sets/{tenant_id}

Scope Types

• system

• project

Show a quota

os_compute_api:os-quota-sets:delete

Default rule:system_admin_api

Operations

• DELETE /os-quota-sets/{tenant_id}

Scope Types

• system

Revert quotas to defaults

os_compute_api:os-quota-sets:detail

Default rule:system_or_project_reader

Operations

• GET /os-quota-sets/{tenant_id}/detail

Scope Types

• system

• project

Show the detail of quota

os_compute_api:os-remote-consoles

3.5. Reference Material 688

Nova Documentation, Release 22.4.1.dev41

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (os-getRDPConsole)

• POST /servers/{server_id}/action
(os-getSerialConsole)

• POST /servers/{server_id}/action
(os-getSPICEConsole)

• POST /servers/{server_id}/action (os-getVNCConsole)

• POST /servers/{server_id}/remote-consoles

Scope Types

• system

• project

Generate a URL to access remove server console.

This policy is for POST /remote-consoles API and below Server actions APIs are depre-
cated:

• os-getRDPConsole

• os-getSerialConsole

• os-getSPICEConsole

• os-getVNCConsole.

os_compute_api:os-rescue

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (rescue)

Scope Types

• system

• project

Rescue a server

os_compute_api:os-unrescue

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (unrescue)

Scope Types

• system

• project

Unrescue a server

3.5. Reference Material 689

Nova Documentation, Release 22.4.1.dev41

os_compute_api:os-security-groups:get

Default rule:system_or_project_reader

Operations

• GET /os-security-groups

Scope Types

• system

• project

List security groups. This API is deprecated.

os_compute_api:os-security-groups:show

Default rule:system_or_project_reader

Operations

• GET /os-security-groups/{security_group_id}

Scope Types

• system

• project

Show security group. This API is deprecated.

os_compute_api:os-security-groups:create

Default rule:system_admin_or_owner

Operations

• POST /os-security-groups

Scope Types

• system

• project

Create security group. This API is deprecated.

os_compute_api:os-security-groups:update

Default rule:system_admin_or_owner

Operations

• PUT /os-security-groups/{security_group_id}

Scope Types

• system

• project

Update security group. This API is deprecated.

os_compute_api:os-security-groups:delete

Default rule:system_admin_or_owner

3.5. Reference Material 690

Nova Documentation, Release 22.4.1.dev41

Operations

• DELETE /os-security-groups/{security_group_id}

Scope Types

• system

• project

Delete security group. This API is deprecated.

os_compute_api:os-security-groups:rule:create

Default rule:system_admin_or_owner

Operations

• POST /os-security-group-rules

Scope Types

• system

• project

Create security group Rule. This API is deprecated.

os_compute_api:os-security-groups:rule:delete

Default rule:system_admin_or_owner

Operations

• DELETE /os-security-group-rules/{security_group_id}

Scope Types

• system

• project

Delete security group Rule. This API is deprecated.

os_compute_api:os-security-groups:list

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/os-security-groups

Scope Types

• system

• project

List security groups of server.

os_compute_api:os-security-groups:add

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (addSecurityGroup)

3.5. Reference Material 691

Nova Documentation, Release 22.4.1.dev41

Scope Types

• system

• project

Add security groups to server.

os_compute_api:os-security-groups:remove

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action
(removeSecurityGroup)

Scope Types

• system

• project

Remove security groups from server.

os_compute_api:os-server-diagnostics

Default rule:system_admin_api

Operations

• GET /servers/{server_id}/diagnostics

Scope Types

• system

• project

Show the usage data for a server

os_compute_api:os-server-external-events:create

Default rule:system_admin_api

Operations

• POST /os-server-external-events

Scope Types

• system

Create one or more external events

os_compute_api:os-server-groups:create

Default rule:project_member_api

Operations

• POST /os-server-groups

Scope Types

• project

Create a new server group

3.5. Reference Material 692

Nova Documentation, Release 22.4.1.dev41

os_compute_api:os-server-groups:delete

Default rule:system_admin_or_owner

Operations

• DELETE /os-server-groups/{server_group_id}

Scope Types

• system

• project

Delete a server group

os_compute_api:os-server-groups:index

Default rule:system_or_project_reader

Operations

• GET /os-server-groups

Scope Types

• system

• project

List all server groups

os_compute_api:os-server-groups:index:all_projects

Default rule:system_reader_api

Operations

• GET /os-server-groups

Scope Types

• system

List all server groups for all projects

os_compute_api:os-server-groups:show

Default rule:system_or_project_reader

Operations

• GET /os-server-groups/{server_group_id}

Scope Types

• system

• project

Show details of a server group

os_compute_api:server-metadata:index

Default rule:system_or_project_reader

Operations

3.5. Reference Material 693

Nova Documentation, Release 22.4.1.dev41

• GET /servers/{server_id}/metadata

Scope Types

• system

• project

List all metadata of a server

os_compute_api:server-metadata:show

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/metadata/{key}

Scope Types

• system

• project

Show metadata for a server

os_compute_api:server-metadata:create

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/metadata

Scope Types

• system

• project

Create metadata for a server

os_compute_api:server-metadata:update_all

Default rule:system_admin_or_owner

Operations

• PUT /servers/{server_id}/metadata

Scope Types

• system

• project

Replace metadata for a server

os_compute_api:server-metadata:update

Default rule:system_admin_or_owner

Operations

• PUT /servers/{server_id}/metadata/{key}

Scope Types

3.5. Reference Material 694

Nova Documentation, Release 22.4.1.dev41

• system

• project

Update metadata from a server

os_compute_api:server-metadata:delete

Default rule:system_admin_or_owner

Operations

• DELETE /servers/{server_id}/metadata/{key}

Scope Types

• system

• project

Delete metadata from a server

os_compute_api:os-server-password:show

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/os-server-password

Scope Types

• system

• project

Show the encrypted administrative password of a server

os_compute_api:os-server-password:clear

Default rule:system_admin_or_owner

Operations

• DELETE /servers/{server_id}/os-server-password

Scope Types

• system

• project

Clear the encrypted administrative password of a server

os_compute_api:os-server-tags:delete_all

Default rule:system_admin_or_owner

Operations

• DELETE /servers/{server_id}/tags

Scope Types

• system

• project

3.5. Reference Material 695

Nova Documentation, Release 22.4.1.dev41

Delete all the server tags

os_compute_api:os-server-tags:index

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/tags

Scope Types

• system

• project

List all tags for given server

os_compute_api:os-server-tags:update_all

Default rule:system_admin_or_owner

Operations

• PUT /servers/{server_id}/tags

Scope Types

• system

• project

Replace all tags on specified server with the new set of tags.

os_compute_api:os-server-tags:delete

Default rule:system_admin_or_owner

Operations

• DELETE /servers/{server_id}/tags/{tag}

Scope Types

• system

• project

Delete a single tag from the specified server

os_compute_api:os-server-tags:update

Default rule:system_admin_or_owner

Operations

• PUT /servers/{server_id}/tags/{tag}

Scope Types

• system

• project

Add a single tag to the server if server has no specified tag

os_compute_api:os-server-tags:show

3.5. Reference Material 696

Nova Documentation, Release 22.4.1.dev41

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/tags/{tag}

Scope Types

• system

• project

Check tag existence on the server.

compute:server:topology:index

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/topology

Scope Types

• system

• project

Show the NUMA topology data for a server

compute:server:topology:host:index

Default rule:system_reader_api

Operations

• GET /servers/{server_id}/topology

Scope Types

• system

Show the NUMA topology data for a server with host NUMA ID and CPU pinning information

os_compute_api:servers:index

Default rule:system_or_project_reader

Operations

• GET /servers

Scope Types

• system

• project

List all servers

os_compute_api:servers:detail

Default rule:system_or_project_reader

Operations

• GET /servers/detail

3.5. Reference Material 697

Nova Documentation, Release 22.4.1.dev41

Scope Types

• system

• project

List all servers with detailed information

os_compute_api:servers:index:get_all_tenants

Default rule:system_reader_api

Operations

• GET /servers

Scope Types

• system

List all servers for all projects

os_compute_api:servers:detail:get_all_tenants

Default rule:system_reader_api

Operations

• GET /servers/detail

Scope Types

• system

List all servers with detailed information for all projects

os_compute_api:servers:allow_all_filters

Default rule:system_reader_api

Operations

• GET /servers

• GET /servers/detail

Scope Types

• system

Allow all filters when listing servers

os_compute_api:servers:show

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}

Scope Types

• system

• project

Show a server

3.5. Reference Material 698

Nova Documentation, Release 22.4.1.dev41

os_compute_api:servers:show:host_status

Default rule:system_admin_api

Operations

• GET /servers/{server_id}

• GET /servers/detail

• PUT /servers/{server_id}

• POST /servers/{server_id}/action (rebuild)

Scope Types

• system

• project

Show a server with additional host status information.

This means host_status will be shown irrespective of status value.
If showing only host_status UNKNOWN is desired, use the
os_compute_api:servers:show:host_status:unknown-only policy rule.

Microvision 2.75 added the host_status attribute in the PUT /servers/{server_id}
and POST /servers/{server_id}/action (rebuild) API responses which are also
controlled by this policy rule, like the GET /servers* APIs.

os_compute_api:servers:show:host_status:unknown-only

Default rule:system_admin_api

Operations

• GET /servers/{server_id}

• GET /servers/detail

• PUT /servers/{server_id}

• POST /servers/{server_id}/action (rebuild)

Scope Types

• system

• project

Show a server with additional host status information, only if host status is UNKNOWN.

This policy rule will only be enforced when the os_compute_api:servers:show:host_status
policy rule does not pass for the request. An example policy configuration could be where the
os_compute_api:servers:show:host_status rule is set to allow admin-only and the
os_compute_api:servers:show:host_status:unknown-only rule is set to allow
everyone.

os_compute_api:servers:create

Default rule:project_member_api

Operations

• POST /servers

3.5. Reference Material 699

Nova Documentation, Release 22.4.1.dev41

Scope Types

• project

Create a server

os_compute_api:servers:create:forced_host

Default rule:project_admin_api

Operations

• POST /servers

Scope Types

• system

• project

Create a server on the specified host and/or node.

In this case, the server is forced to launch on the specified host and/or node by bypassing the sched-
uler filters unlike the compute:servers:create:requested_destination rule.

compute:servers:create:requested_destination

Default rule:project_admin_api

Operations

• POST /servers

Scope Types

• system

• project

Create a server on the requested compute service host and/or hypervisor_hostname.

In this case, the requested host and/or hypervisor_hostname is validated by the scheduler filters
unlike the os_compute_api:servers:create:forced_host rule.

os_compute_api:servers:create:attach_volume

Default rule:project_member_api

Operations

• POST /servers

Scope Types

• project

Create a server with the requested volume attached to it

os_compute_api:servers:create:attach_network

Default rule:project_member_api

Operations

• POST /servers

Scope Types

3.5. Reference Material 700

Nova Documentation, Release 22.4.1.dev41

• project

Create a server with the requested network attached to it

os_compute_api:servers:create:trusted_certs

Default rule:project_member_api

Operations

• POST /servers

Scope Types

• project

Create a server with trusted image certificate IDs

os_compute_api:servers:create:zero_disk_flavor

Default rule:project_admin_api

Operations

• POST /servers

Scope Types

• system

• project

This rule controls the compute API validation behavior of creating a server with a flavor that has
0 disk, indicating the server should be volume-backed.

For a flavor with disk=0, the root disk will be set to exactly the size of the image used to deploy
the instance. However, in this case the filter_scheduler cannot select the compute host based on
the virtual image size. Therefore, 0 should only be used for volume booted instances or for testing
purposes.

WARNING: It is a potential security exposure to enable this policy rule if users can upload their
own images since repeated attempts to create a disk=0 flavor instance with a large image can
exhaust the local disk of the compute (or shared storage cluster). See bug https://bugs.launchpad.
net/nova/+bug/1739646 for details.

network:attach_external_network

Default rule:project_admin_api

Operations

• POST /servers

• POST /servers/{server_id}/os-interface

Scope Types

• system

• project

Attach an unshared external network to a server

os_compute_api:servers:delete

Default rule:system_admin_or_owner

3.5. Reference Material 701

https://bugs.launchpad.net/nova/+bug/1739646
https://bugs.launchpad.net/nova/+bug/1739646

Nova Documentation, Release 22.4.1.dev41

Operations

• DELETE /servers/{server_id}

Scope Types

• system

• project

Delete a server

os_compute_api:servers:update

Default rule:system_admin_or_owner

Operations

• PUT /servers/{server_id}

Scope Types

• system

• project

Update a server

os_compute_api:servers:confirm_resize

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (confirmResize)

Scope Types

• system

• project

Confirm a server resize

os_compute_api:servers:revert_resize

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (revertResize)

Scope Types

• system

• project

Revert a server resize

os_compute_api:servers:reboot

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (reboot)

3.5. Reference Material 702

Nova Documentation, Release 22.4.1.dev41

Scope Types

• system

• project

Reboot a server

os_compute_api:servers:resize

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (resize)

Scope Types

• system

• project

Resize a server

compute:servers:resize:cross_cell

Default !

Operations

• POST /servers/{server_id}/action (resize)

Scope Types

• system

• project

Resize a server across cells. By default, this is disabled for all users and recommended to be tested
in a deployment for admin users before opening it up to non-admin users. Resizing within a cell
is the default preferred behavior even if this is enabled.

os_compute_api:servers:rebuild

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (rebuild)

Scope Types

• system

• project

Rebuild a server

os_compute_api:servers:rebuild:trusted_certs

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (rebuild)

Scope Types

3.5. Reference Material 703

Nova Documentation, Release 22.4.1.dev41

• system

• project

Rebuild a server with trusted image certificate IDs

os_compute_api:servers:create_image

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (createImage)

Scope Types

• system

• project

Create an image from a server

os_compute_api:servers:create_image:allow_volume_backed

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (createImage)

Scope Types

• system

• project

Create an image from a volume backed server

os_compute_api:servers:start

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (os-start)

Scope Types

• system

• project

Start a server

os_compute_api:servers:stop

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (os-stop)

Scope Types

• system

• project

3.5. Reference Material 704

Nova Documentation, Release 22.4.1.dev41

Stop a server

os_compute_api:servers:trigger_crash_dump

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action
(trigger_crash_dump)

Scope Types

• system

• project

Trigger crash dump in a server

os_compute_api:servers:migrations:show

Default rule:system_reader_api

Operations

• GET /servers/{server_id}/migrations/{migration_id}

Scope Types

• system

• project

Show details for an in-progress live migration for a given server

os_compute_api:servers:migrations:force_complete

Default rule:system_admin_api

Operations

• POST /servers/{server_id}/migrations/
{migration_id}/action (force_complete)

Scope Types

• system

• project

Force an in-progress live migration for a given server to complete

os_compute_api:servers:migrations:delete

Default rule:system_admin_api

Operations

• DELETE /servers/{server_id}/migrations/
{migration_id}

Scope Types

• system

• project

3.5. Reference Material 705

Nova Documentation, Release 22.4.1.dev41

Delete(Abort) an in-progress live migration

os_compute_api:servers:migrations:index

Default rule:system_reader_api

Operations

• GET /servers/{server_id}/migrations

Scope Types

• system

• project

Lists in-progress live migrations for a given server

os_compute_api:os-services:list

Default rule:system_reader_api

Operations

• GET /os-services

Scope Types

• system

List all running Compute services in a region.

os_compute_api:os-services:update

Default rule:system_admin_api

Operations

• PUT /os-services/{service_id}

Scope Types

• system

Update a Compute service.

os_compute_api:os-services:delete

Default rule:system_admin_api

Operations

• DELETE /os-services/{service_id}

Scope Types

• system

Delete a Compute service.

os_compute_api:os-shelve:shelve

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (shelve)

3.5. Reference Material 706

Nova Documentation, Release 22.4.1.dev41

Scope Types

• system

• project

Shelve server

os_compute_api:os-shelve:unshelve

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (unshelve)

Scope Types

• system

• project

Unshelve (restore) shelved server

os_compute_api:os-shelve:shelve_offload

Default rule:system_admin_api

Operations

• POST /servers/{server_id}/action (shelveOffload)

Scope Types

• system

• project

Shelf-offload (remove) server

os_compute_api:os-simple-tenant-usage:show

Default rule:system_or_project_reader

Operations

• GET /os-simple-tenant-usage/{tenant_id}

Scope Types

• system

• project

Show usage statistics for a specific tenant

os_compute_api:os-simple-tenant-usage:list

Default rule:system_reader_api

Operations

• GET /os-simple-tenant-usage

Scope Types

• system

3.5. Reference Material 707

Nova Documentation, Release 22.4.1.dev41

List per tenant usage statistics for all tenants

os_compute_api:os-suspend-server:resume

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (resume)

Scope Types

• system

• project

Resume suspended server

os_compute_api:os-suspend-server:suspend

Default rule:system_admin_or_owner

Operations

• POST /servers/{server_id}/action (suspend)

Scope Types

• system

• project

Suspend server

os_compute_api:os-tenant-networks:list

Default rule:system_or_project_reader

Operations

• GET /os-tenant-networks

Scope Types

• system

• project

List project networks.

This API is proxy calls to the Network service. This is deprecated.

os_compute_api:os-tenant-networks:show

Default rule:system_or_project_reader

Operations

• GET /os-tenant-networks/{network_id}

Scope Types

• system

• project

3.5. Reference Material 708

Nova Documentation, Release 22.4.1.dev41

Show project network details.

This API is proxy calls to the Network service. This is deprecated.

os_compute_api:os-volumes:list

Default rule:system_or_project_reader

Operations

• GET /os-volumes

Scope Types

• system

• project

List volumes.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:create

Default rule:system_admin_or_owner

Operations

• POST /os-volumes

Scope Types

• system

• project

Create volume.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:detail

Default rule:system_or_project_reader

Operations

• GET /os-volumes/detail

Scope Types

• system

• project

List volumes detail.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:show

Default rule:system_or_project_reader

Operations

• GET /os-volumes/{volume_id}

Scope Types

3.5. Reference Material 709

Nova Documentation, Release 22.4.1.dev41

• system

• project

Show volume.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:delete

Default rule:system_admin_or_owner

Operations

• DELETE /os-volumes/{volume_id}

Scope Types

• system

• project

Delete volume.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:snapshots:list

Default rule:system_or_project_reader

Operations

• GET /os-snapshots

Scope Types

• system

• project

List snapshots.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:snapshots:create

Default rule:system_admin_or_owner

Operations

• POST /os-snapshots

Scope Types

• system

• project

Create snapshots.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:snapshots:detail

Default rule:system_or_project_reader

Operations

3.5. Reference Material 710

Nova Documentation, Release 22.4.1.dev41

• GET /os-snapshots/detail

Scope Types

• system

• project

List snapshots details.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:snapshots:show

Default rule:system_or_project_reader

Operations

• GET /os-snapshots/{snapshot_id}

Scope Types

• system

• project

Show snapshot.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes:snapshots:delete

Default rule:system_admin_or_owner

Operations

• DELETE /os-snapshots/{snapshot_id}

Scope Types

• system

• project

Delete snapshot.

This API is a proxy call to the Volume service. It is deprecated.

os_compute_api:os-volumes-attachments:index

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/os-volume_attachments

Scope Types

• system

• project

List volume attachments for an instance

os_compute_api:os-volumes-attachments:create

Default rule:system_admin_or_owner

3.5. Reference Material 711

Nova Documentation, Release 22.4.1.dev41

Operations

• POST /servers/{server_id}/os-volume_attachments

Scope Types

• system

• project

Attach a volume to an instance

os_compute_api:os-volumes-attachments:show

Default rule:system_or_project_reader

Operations

• GET /servers/{server_id}/os-volume_attachments/
{volume_id}

Scope Types

• system

• project

Show details of a volume attachment

os_compute_api:os-volumes-attachments:update

Default rule:system_admin_or_owner

Operations

• PUT /servers/{server_id}/os-volume_attachments/
{volume_id}

Scope Types

• system

• project

Update a volume attachment. New update policy about swap + update request (which is possible
only >2.85) only <swap policy> is checked. We expect <swap policy> to be always superset of
this policy permission.

os_compute_api:os-volumes-attachments:swap

Default rule:system_admin_api

Operations

• PUT /servers/{server_id}/os-volume_attachments/
{volume_id}

Scope Types

• system

Update a volume attachment with a different volumeId

os_compute_api:os-volumes-attachments:delete

Default rule:system_admin_or_owner

3.5. Reference Material 712

Nova Documentation, Release 22.4.1.dev41

Operations

• DELETE /servers/{server_id}/os-volume_attachments/
{volume_id}

Scope Types

• system

• project

Detach a volume from an instance

3.5.2.3 Extra Specs

Nova uses flavor extra specs as a way to provide additional information to instances beyond basic in-
formation like amount of RAM or disk. This information can range from hints for the scheduler to
hypervisor-specific configuration instructions for the instance.

• Extra Spec Reference: A complete reference for all extra specs currently recognized and supported
by nova.

Extra Specs

The following is an overview of all extra specs recognized by nova in its default configuration.

Note: Other services and virt drivers may provide additional extra specs not listed here. In addition, it
is possible to register your own extra specs. For more information on the latter, refer to Filter Scheduler.

Placement

The following extra specs are used during scheduling to modify the request sent to placement.

resources

The following extra specs are used to request an amount of the specified resource from placement when
scheduling. All extra specs expect an integer value.

Note: Not all of the resource types listed below are supported by all virt drivers.

resources{group}:VCPU

Type int

The amount of resource VCPU requested.

resources{group}:MEMORY_MB

Type int

The amount of resource MEMORY_MB requested.

3.5. Reference Material 713

Nova Documentation, Release 22.4.1.dev41

resources{group}:DISK_GB

Type int

The amount of resource DISK_GB requested.

resources{group}:PCI_DEVICE

Type int

The amount of resource PCI_DEVICE requested.

resources{group}:SRIOV_NET_VF

Type int

The amount of resource SRIOV_NET_VF requested.

resources{group}:NUMA_SOCKET

Type int

The amount of resource NUMA_SOCKET requested.

resources{group}:NUMA_CORE

Type int

The amount of resource NUMA_CORE requested.

resources{group}:NUMA_THREAD

Type int

The amount of resource NUMA_THREAD requested.

resources{group}:NUMA_MEMORY_MB

Type int

The amount of resource NUMA_MEMORY_MB requested.

resources{group}:IPV4_ADDRESS

Type int

The amount of resource IPV4_ADDRESS requested.

resources{group}:VGPU

Type int

The amount of resource VGPU requested.

resources{group}:VGPU_DISPLAY_HEAD

Type int

The amount of resource VGPU_DISPLAY_HEAD requested.

resources{group}:NET_BW_EGR_KILOBIT_PER_SEC

Type int

The amount of resource NET_BW_EGR_KILOBIT_PER_SEC requested.

resources{group}:NET_BW_IGR_KILOBIT_PER_SEC

3.5. Reference Material 714

Nova Documentation, Release 22.4.1.dev41

Type int

The amount of resource NET_BW_IGR_KILOBIT_PER_SEC requested.

resources{group}:PCPU

Type int

The amount of resource PCPU requested.

resources{group}:MEM_ENCRYPTION_CONTEXT

Type int

The amount of resource MEM_ENCRYPTION_CONTEXT requested.

resources{group}:FPGA

Type int

The amount of resource FPGA requested.

resources{group}:PGPU

Type int

The amount of resource PGPU requested.

resources{group}:CUSTOM_{resource}

Type int

The amount of resource CUSTOM_{resource} requested.

trait

The following extra specs are used to request a specified trait from placement when scheduling. All
extra specs expect one of the following values:

• required

• forbidden

Note: Not all of the traits listed below are supported by all virt drivers.

trait{group}:COMPUTE_DEVICE_TAGGING

Type str

Require or forbid trait COMPUTE_DEVICE_TAGGING.

trait{group}:COMPUTE_NODE

Type str

Require or forbid trait COMPUTE_NODE.

trait{group}:COMPUTE_TRUSTED_CERTS

Type str

Require or forbid trait COMPUTE_TRUSTED_CERTS.

3.5. Reference Material 715

Nova Documentation, Release 22.4.1.dev41

trait{group}:COMPUTE_SAME_HOST_COLD_MIGRATE

Type str

Require or forbid trait COMPUTE_SAME_HOST_COLD_MIGRATE.

trait{group}:COMPUTE_RESCUE_BFV

Type str

Require or forbid trait COMPUTE_RESCUE_BFV.

trait{group}:COMPUTE_ACCELERATORS

Type str

Require or forbid trait COMPUTE_ACCELERATORS.

trait{group}:COMPUTE_GRAPHICS_MODEL_CIRRUS

Type str

Require or forbid trait COMPUTE_GRAPHICS_MODEL_CIRRUS.

trait{group}:COMPUTE_GRAPHICS_MODEL_GOP

Type str

Require or forbid trait COMPUTE_GRAPHICS_MODEL_GOP.

trait{group}:COMPUTE_GRAPHICS_MODEL_NONE

Type str

Require or forbid trait COMPUTE_GRAPHICS_MODEL_NONE.

trait{group}:COMPUTE_GRAPHICS_MODEL_QXL

Type str

Require or forbid trait COMPUTE_GRAPHICS_MODEL_QXL.

trait{group}:COMPUTE_GRAPHICS_MODEL_VGA

Type str

Require or forbid trait COMPUTE_GRAPHICS_MODEL_VGA.

trait{group}:COMPUTE_GRAPHICS_MODEL_VIRTIO

Type str

Require or forbid trait COMPUTE_GRAPHICS_MODEL_VIRTIO.

trait{group}:COMPUTE_GRAPHICS_MODEL_VMVGA

Type str

Require or forbid trait COMPUTE_GRAPHICS_MODEL_VMVGA.

trait{group}:COMPUTE_GRAPHICS_MODEL_XEN

Type str

Require or forbid trait COMPUTE_GRAPHICS_MODEL_XEN.

trait{group}:COMPUTE_IMAGE_TYPE_AKI

3.5. Reference Material 716

Nova Documentation, Release 22.4.1.dev41

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_AKI.

trait{group}:COMPUTE_IMAGE_TYPE_AMI

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_AMI.

trait{group}:COMPUTE_IMAGE_TYPE_ARI

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_ARI.

trait{group}:COMPUTE_IMAGE_TYPE_ISO

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_ISO.

trait{group}:COMPUTE_IMAGE_TYPE_QCOW2

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_QCOW2.

trait{group}:COMPUTE_IMAGE_TYPE_RAW

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_RAW.

trait{group}:COMPUTE_IMAGE_TYPE_VDI

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_VDI.

trait{group}:COMPUTE_IMAGE_TYPE_VHD

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_VHD.

trait{group}:COMPUTE_IMAGE_TYPE_VHDX

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_VHDX.

trait{group}:COMPUTE_IMAGE_TYPE_VMDK

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_VMDK.

trait{group}:COMPUTE_IMAGE_TYPE_PLOOP

Type str

Require or forbid trait COMPUTE_IMAGE_TYPE_PLOOP.

trait{group}:COMPUTE_MIGRATE_AUTO_CONVERGE

Type str

3.5. Reference Material 717

Nova Documentation, Release 22.4.1.dev41

Require or forbid trait COMPUTE_MIGRATE_AUTO_CONVERGE.

trait{group}:COMPUTE_MIGRATE_POST_COPY

Type str

Require or forbid trait COMPUTE_MIGRATE_POST_COPY.

trait{group}:COMPUTE_NET_ATTACH_INTERFACE

Type str

Require or forbid trait COMPUTE_NET_ATTACH_INTERFACE.

trait{group}:COMPUTE_NET_ATTACH_INTERFACE_WITH_TAG

Type str

Require or forbid trait COMPUTE_NET_ATTACH_INTERFACE_WITH_TAG.

trait{group}:COMPUTE_NET_VIF_MODEL_E1000

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_E1000.

trait{group}:COMPUTE_NET_VIF_MODEL_E1000E

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_E1000E.

trait{group}:COMPUTE_NET_VIF_MODEL_LAN9118

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_LAN9118.

trait{group}:COMPUTE_NET_VIF_MODEL_NETFRONT

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_NETFRONT.

trait{group}:COMPUTE_NET_VIF_MODEL_NE2K_PCI

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_NE2K_PCI.

trait{group}:COMPUTE_NET_VIF_MODEL_PCNET

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_PCNET.

trait{group}:COMPUTE_NET_VIF_MODEL_RTL8139

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_RTL8139.

trait{group}:COMPUTE_NET_VIF_MODEL_SPAPR_VLAN

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_SPAPR_VLAN.

3.5. Reference Material 718

Nova Documentation, Release 22.4.1.dev41

trait{group}:COMPUTE_NET_VIF_MODEL_SRIOV

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_SRIOV.

trait{group}:COMPUTE_NET_VIF_MODEL_VIRTIO

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_VIRTIO.

trait{group}:COMPUTE_NET_VIF_MODEL_VMXNET

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_VMXNET.

trait{group}:COMPUTE_NET_VIF_MODEL_VMXNET3

Type str

Require or forbid trait COMPUTE_NET_VIF_MODEL_VMXNET3.

trait{group}:COMPUTE_SECURITY_TPM_1_2

Type str

Require or forbid trait COMPUTE_SECURITY_TPM_1_2.

trait{group}:COMPUTE_SECURITY_TPM_2_0

Type str

Require or forbid trait COMPUTE_SECURITY_TPM_2_0.

trait{group}:COMPUTE_STATUS_DISABLED

Type str

Require or forbid trait COMPUTE_STATUS_DISABLED.

trait{group}:COMPUTE_STORAGE_BUS_FDC

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_FDC.

trait{group}:COMPUTE_STORAGE_BUS_IDE

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_IDE.

trait{group}:COMPUTE_STORAGE_BUS_LXC

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_LXC.

trait{group}:COMPUTE_STORAGE_BUS_SATA

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_SATA.

trait{group}:COMPUTE_STORAGE_BUS_SCSI

3.5. Reference Material 719

Nova Documentation, Release 22.4.1.dev41

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_SCSI.

trait{group}:COMPUTE_STORAGE_BUS_USB

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_USB.

trait{group}:COMPUTE_STORAGE_BUS_VIRTIO

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_VIRTIO.

trait{group}:COMPUTE_STORAGE_BUS_UML

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_UML.

trait{group}:COMPUTE_STORAGE_BUS_XEN

Type str

Require or forbid trait COMPUTE_STORAGE_BUS_XEN.

trait{group}:COMPUTE_VOLUME_ATTACH

Type str

Require or forbid trait COMPUTE_VOLUME_ATTACH.

trait{group}:COMPUTE_VOLUME_ATTACH_WITH_TAG

Type str

Require or forbid trait COMPUTE_VOLUME_ATTACH_WITH_TAG.

trait{group}:COMPUTE_VOLUME_EXTEND

Type str

Require or forbid trait COMPUTE_VOLUME_EXTEND.

trait{group}:COMPUTE_VOLUME_MULTI_ATTACH

Type str

Require or forbid trait COMPUTE_VOLUME_MULTI_ATTACH.

trait{group}:HW_CPU_HYPERTHREADING

Type str

Require or forbid trait HW_CPU_HYPERTHREADING.

trait{group}:HW_CPU_AARCH64_FP

Type str

Require or forbid trait HW_CPU_AARCH64_FP.

trait{group}:HW_CPU_AARCH64_ASIMD

Type str

3.5. Reference Material 720

Nova Documentation, Release 22.4.1.dev41

Require or forbid trait HW_CPU_AARCH64_ASIMD.

trait{group}:HW_CPU_AARCH64_EVTSTRM

Type str

Require or forbid trait HW_CPU_AARCH64_EVTSTRM.

trait{group}:HW_CPU_AARCH64_AES

Type str

Require or forbid trait HW_CPU_AARCH64_AES.

trait{group}:HW_CPU_AARCH64_PMULL

Type str

Require or forbid trait HW_CPU_AARCH64_PMULL.

trait{group}:HW_CPU_AARCH64_SHA1

Type str

Require or forbid trait HW_CPU_AARCH64_SHA1.

trait{group}:HW_CPU_AARCH64_SHA2

Type str

Require or forbid trait HW_CPU_AARCH64_SHA2.

trait{group}:HW_CPU_AARCH64_CRC32

Type str

Require or forbid trait HW_CPU_AARCH64_CRC32.

trait{group}:HW_CPU_AARCH64_FPHP

Type str

Require or forbid trait HW_CPU_AARCH64_FPHP.

trait{group}:HW_CPU_AARCH64_ASIMDHP

Type str

Require or forbid trait HW_CPU_AARCH64_ASIMDHP.

trait{group}:HW_CPU_AARCH64_ASIMDRDM

Type str

Require or forbid trait HW_CPU_AARCH64_ASIMDRDM.

trait{group}:HW_CPU_AARCH64_ATOMICS

Type str

Require or forbid trait HW_CPU_AARCH64_ATOMICS.

trait{group}:HW_CPU_AARCH64_JSCVT

Type str

Require or forbid trait HW_CPU_AARCH64_JSCVT.

3.5. Reference Material 721

Nova Documentation, Release 22.4.1.dev41

trait{group}:HW_CPU_AARCH64_FCMA

Type str

Require or forbid trait HW_CPU_AARCH64_FCMA.

trait{group}:HW_CPU_AARCH64_LRCPC

Type str

Require or forbid trait HW_CPU_AARCH64_LRCPC.

trait{group}:HW_CPU_AARCH64_DCPOP

Type str

Require or forbid trait HW_CPU_AARCH64_DCPOP.

trait{group}:HW_CPU_AARCH64_SHA3

Type str

Require or forbid trait HW_CPU_AARCH64_SHA3.

trait{group}:HW_CPU_AARCH64_SM3

Type str

Require or forbid trait HW_CPU_AARCH64_SM3.

trait{group}:HW_CPU_AARCH64_SM4

Type str

Require or forbid trait HW_CPU_AARCH64_SM4.

trait{group}:HW_CPU_AARCH64_ASIMDDP

Type str

Require or forbid trait HW_CPU_AARCH64_ASIMDDP.

trait{group}:HW_CPU_AARCH64_SHA512

Type str

Require or forbid trait HW_CPU_AARCH64_SHA512.

trait{group}:HW_CPU_AARCH64_SVE

Type str

Require or forbid trait HW_CPU_AARCH64_SVE.

trait{group}:HW_CPU_AARCH64_CPUID

Type str

Require or forbid trait HW_CPU_AARCH64_CPUID.

trait{group}:HW_CPU_AMD_SEV

Type str

Require or forbid trait HW_CPU_AMD_SEV.

trait{group}:HW_CPU_PPC64LE_POWER8

3.5. Reference Material 722

Nova Documentation, Release 22.4.1.dev41

Type str

Require or forbid trait HW_CPU_PPC64LE_POWER8.

trait{group}:HW_CPU_PPC64LE_POWER9

Type str

Require or forbid trait HW_CPU_PPC64LE_POWER9.

trait{group}:HW_CPU_X86_AVX

Type str

Require or forbid trait HW_CPU_X86_AVX.

trait{group}:HW_CPU_X86_AVX2

Type str

Require or forbid trait HW_CPU_X86_AVX2.

trait{group}:HW_CPU_X86_CLMUL

Type str

Require or forbid trait HW_CPU_X86_CLMUL.

trait{group}:HW_CPU_X86_FMA3

Type str

Require or forbid trait HW_CPU_X86_FMA3.

trait{group}:HW_CPU_X86_FMA4

Type str

Require or forbid trait HW_CPU_X86_FMA4.

trait{group}:HW_CPU_X86_F16C

Type str

Require or forbid trait HW_CPU_X86_F16C.

trait{group}:HW_CPU_X86_MMX

Type str

Require or forbid trait HW_CPU_X86_MMX.

trait{group}:HW_CPU_X86_SSE

Type str

Require or forbid trait HW_CPU_X86_SSE.

trait{group}:HW_CPU_X86_SSE2

Type str

Require or forbid trait HW_CPU_X86_SSE2.

trait{group}:HW_CPU_X86_SSE3

Type str

3.5. Reference Material 723

Nova Documentation, Release 22.4.1.dev41

Require or forbid trait HW_CPU_X86_SSE3.

trait{group}:HW_CPU_X86_SSSE3

Type str

Require or forbid trait HW_CPU_X86_SSSE3.

trait{group}:HW_CPU_X86_SSE41

Type str

Require or forbid trait HW_CPU_X86_SSE41.

trait{group}:HW_CPU_X86_SSE42

Type str

Require or forbid trait HW_CPU_X86_SSE42.

trait{group}:HW_CPU_X86_SSE4A

Type str

Require or forbid trait HW_CPU_X86_SSE4A.

trait{group}:HW_CPU_X86_XOP

Type str

Require or forbid trait HW_CPU_X86_XOP.

trait{group}:HW_CPU_X86_3DNOW

Type str

Require or forbid trait HW_CPU_X86_3DNOW.

trait{group}:HW_CPU_X86_AVX512F

Type str

Require or forbid trait HW_CPU_X86_AVX512F.

trait{group}:HW_CPU_X86_AVX512CD

Type str

Require or forbid trait HW_CPU_X86_AVX512CD.

trait{group}:HW_CPU_X86_AVX512PF

Type str

Require or forbid trait HW_CPU_X86_AVX512PF.

trait{group}:HW_CPU_X86_AVX512ER

Type str

Require or forbid trait HW_CPU_X86_AVX512ER.

trait{group}:HW_CPU_X86_AVX512VL

Type str

Require or forbid trait HW_CPU_X86_AVX512VL.

3.5. Reference Material 724

Nova Documentation, Release 22.4.1.dev41

trait{group}:HW_CPU_X86_AVX512BW

Type str

Require or forbid trait HW_CPU_X86_AVX512BW.

trait{group}:HW_CPU_X86_AVX512DQ

Type str

Require or forbid trait HW_CPU_X86_AVX512DQ.

trait{group}:HW_CPU_X86_AVX512VNNI

Type str

Require or forbid trait HW_CPU_X86_AVX512VNNI.

trait{group}:HW_CPU_X86_AVX512VBMI

Type str

Require or forbid trait HW_CPU_X86_AVX512VBMI.

trait{group}:HW_CPU_X86_AVX512IFMA

Type str

Require or forbid trait HW_CPU_X86_AVX512IFMA.

trait{group}:HW_CPU_X86_AVX512VBMI2

Type str

Require or forbid trait HW_CPU_X86_AVX512VBMI2.

trait{group}:HW_CPU_X86_AVX512BITALG

Type str

Require or forbid trait HW_CPU_X86_AVX512BITALG.

trait{group}:HW_CPU_X86_AVX512VAES

Type str

Require or forbid trait HW_CPU_X86_AVX512VAES.

trait{group}:HW_CPU_X86_AVX512GFNI

Type str

Require or forbid trait HW_CPU_X86_AVX512GFNI.

trait{group}:HW_CPU_X86_AVX512VPCLMULQDQ

Type str

Require or forbid trait HW_CPU_X86_AVX512VPCLMULQDQ.

trait{group}:HW_CPU_X86_AVX512VPOPCNTDQ

Type str

Require or forbid trait HW_CPU_X86_AVX512VPOPCNTDQ.

trait{group}:HW_CPU_X86_ABM

3.5. Reference Material 725

Nova Documentation, Release 22.4.1.dev41

Type str

Require or forbid trait HW_CPU_X86_ABM.

trait{group}:HW_CPU_X86_BMI

Type str

Require or forbid trait HW_CPU_X86_BMI.

trait{group}:HW_CPU_X86_BMI2

Type str

Require or forbid trait HW_CPU_X86_BMI2.

trait{group}:HW_CPU_X86_TBM

Type str

Require or forbid trait HW_CPU_X86_TBM.

trait{group}:HW_CPU_X86_AESNI

Type str

Require or forbid trait HW_CPU_X86_AESNI.

trait{group}:HW_CPU_X86_SHA

Type str

Require or forbid trait HW_CPU_X86_SHA.

trait{group}:HW_CPU_X86_MPX

Type str

Require or forbid trait HW_CPU_X86_MPX.

trait{group}:HW_CPU_X86_SGX

Type str

Require or forbid trait HW_CPU_X86_SGX.

trait{group}:HW_CPU_X86_TSX

Type str

Require or forbid trait HW_CPU_X86_TSX.

trait{group}:HW_CPU_X86_ASF

Type str

Require or forbid trait HW_CPU_X86_ASF.

trait{group}:HW_CPU_X86_VMX

Type str

Require or forbid trait HW_CPU_X86_VMX.

trait{group}:HW_CPU_X86_SVM

Type str

3.5. Reference Material 726

Nova Documentation, Release 22.4.1.dev41

Require or forbid trait HW_CPU_X86_SVM.

trait{group}:HW_CPU_X86_PDPE1GB

Type str

Require or forbid trait HW_CPU_X86_PDPE1GB.

trait{group}:HW_CPU_X86_STIBP

Type str

Require or forbid trait HW_CPU_X86_STIBP.

trait{group}:HW_CPU_X86_AMD_SEV

Type str

Require or forbid trait HW_CPU_X86_AMD_SEV.

trait{group}:HW_CPU_X86_AMD_SVM

Type str

Require or forbid trait HW_CPU_X86_AMD_SVM.

trait{group}:HW_CPU_X86_AMD_IBPB

Type str

Require or forbid trait HW_CPU_X86_AMD_IBPB.

trait{group}:HW_CPU_X86_AMD_NO_SSB

Type str

Require or forbid trait HW_CPU_X86_AMD_NO_SSB.

trait{group}:HW_CPU_X86_AMD_SSBD

Type str

Require or forbid trait HW_CPU_X86_AMD_SSBD.

trait{group}:HW_CPU_X86_AMD_VIRT_SSBD

Type str

Require or forbid trait HW_CPU_X86_AMD_VIRT_SSBD.

trait{group}:HW_CPU_X86_INTEL_MD_CLEAR

Type str

Require or forbid trait HW_CPU_X86_INTEL_MD_CLEAR.

trait{group}:HW_CPU_X86_INTEL_PCID

Type str

Require or forbid trait HW_CPU_X86_INTEL_PCID.

trait{group}:HW_CPU_X86_INTEL_SPEC_CTRL

Type str

Require or forbid trait HW_CPU_X86_INTEL_SPEC_CTRL.

3.5. Reference Material 727

Nova Documentation, Release 22.4.1.dev41

trait{group}:HW_CPU_X86_INTEL_SSBD

Type str

Require or forbid trait HW_CPU_X86_INTEL_SSBD.

trait{group}:HW_CPU_X86_INTEL_VMX

Type str

Require or forbid trait HW_CPU_X86_INTEL_VMX.

trait{group}:HW_GPU_API_DIRECTX_V10

Type str

Require or forbid trait HW_GPU_API_DIRECTX_V10.

trait{group}:HW_GPU_API_DIRECTX_V11

Type str

Require or forbid trait HW_GPU_API_DIRECTX_V11.

trait{group}:HW_GPU_API_DIRECTX_V12

Type str

Require or forbid trait HW_GPU_API_DIRECTX_V12.

trait{group}:HW_GPU_API_DIRECT2D

Type str

Require or forbid trait HW_GPU_API_DIRECT2D.

trait{group}:HW_GPU_API_DIRECT3D_V6_0

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V6_0.

trait{group}:HW_GPU_API_DIRECT3D_V7_0

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V7_0.

trait{group}:HW_GPU_API_DIRECT3D_V8_0

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V8_0.

trait{group}:HW_GPU_API_DIRECT3D_V8_1

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V8_1.

trait{group}:HW_GPU_API_DIRECT3D_V9_0

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V9_0.

trait{group}:HW_GPU_API_DIRECT3D_V9_0B

3.5. Reference Material 728

Nova Documentation, Release 22.4.1.dev41

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V9_0B.

trait{group}:HW_GPU_API_DIRECT3D_V9_0C

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V9_0C.

trait{group}:HW_GPU_API_DIRECT3D_V9_0L

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V9_0L.

trait{group}:HW_GPU_API_DIRECT3D_V10_0

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V10_0.

trait{group}:HW_GPU_API_DIRECT3D_V10_1

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V10_1.

trait{group}:HW_GPU_API_DIRECT3D_V11_0

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V11_0.

trait{group}:HW_GPU_API_DIRECT3D_V11_1

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V11_1.

trait{group}:HW_GPU_API_DIRECT3D_V11_2

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V11_2.

trait{group}:HW_GPU_API_DIRECT3D_V11_3

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V11_3.

trait{group}:HW_GPU_API_DIRECT3D_V12_0

Type str

Require or forbid trait HW_GPU_API_DIRECT3D_V12_0.

trait{group}:HW_GPU_API_VULKAN

Type str

Require or forbid trait HW_GPU_API_VULKAN.

trait{group}:HW_GPU_API_DXVA

Type str

3.5. Reference Material 729

Nova Documentation, Release 22.4.1.dev41

Require or forbid trait HW_GPU_API_DXVA.

trait{group}:HW_GPU_API_OPENCL_V1_0

Type str

Require or forbid trait HW_GPU_API_OPENCL_V1_0.

trait{group}:HW_GPU_API_OPENCL_V1_1

Type str

Require or forbid trait HW_GPU_API_OPENCL_V1_1.

trait{group}:HW_GPU_API_OPENCL_V1_2

Type str

Require or forbid trait HW_GPU_API_OPENCL_V1_2.

trait{group}:HW_GPU_API_OPENCL_V2_0

Type str

Require or forbid trait HW_GPU_API_OPENCL_V2_0.

trait{group}:HW_GPU_API_OPENCL_V2_1

Type str

Require or forbid trait HW_GPU_API_OPENCL_V2_1.

trait{group}:HW_GPU_API_OPENCL_V2_2

Type str

Require or forbid trait HW_GPU_API_OPENCL_V2_2.

trait{group}:HW_GPU_API_OPENGL_V1_1

Type str

Require or forbid trait HW_GPU_API_OPENGL_V1_1.

trait{group}:HW_GPU_API_OPENGL_V1_2

Type str

Require or forbid trait HW_GPU_API_OPENGL_V1_2.

trait{group}:HW_GPU_API_OPENGL_V1_3

Type str

Require or forbid trait HW_GPU_API_OPENGL_V1_3.

trait{group}:HW_GPU_API_OPENGL_V1_4

Type str

Require or forbid trait HW_GPU_API_OPENGL_V1_4.

trait{group}:HW_GPU_API_OPENGL_V1_5

Type str

Require or forbid trait HW_GPU_API_OPENGL_V1_5.

3.5. Reference Material 730

Nova Documentation, Release 22.4.1.dev41

trait{group}:HW_GPU_API_OPENGL_V2_0

Type str

Require or forbid trait HW_GPU_API_OPENGL_V2_0.

trait{group}:HW_GPU_API_OPENGL_V2_1

Type str

Require or forbid trait HW_GPU_API_OPENGL_V2_1.

trait{group}:HW_GPU_API_OPENGL_V3_0

Type str

Require or forbid trait HW_GPU_API_OPENGL_V3_0.

trait{group}:HW_GPU_API_OPENGL_V3_1

Type str

Require or forbid trait HW_GPU_API_OPENGL_V3_1.

trait{group}:HW_GPU_API_OPENGL_V3_2

Type str

Require or forbid trait HW_GPU_API_OPENGL_V3_2.

trait{group}:HW_GPU_API_OPENGL_V3_3

Type str

Require or forbid trait HW_GPU_API_OPENGL_V3_3.

trait{group}:HW_GPU_API_OPENGL_V4_0

Type str

Require or forbid trait HW_GPU_API_OPENGL_V4_0.

trait{group}:HW_GPU_API_OPENGL_V4_1

Type str

Require or forbid trait HW_GPU_API_OPENGL_V4_1.

trait{group}:HW_GPU_API_OPENGL_V4_2

Type str

Require or forbid trait HW_GPU_API_OPENGL_V4_2.

trait{group}:HW_GPU_API_OPENGL_V4_3

Type str

Require or forbid trait HW_GPU_API_OPENGL_V4_3.

trait{group}:HW_GPU_API_OPENGL_V4_4

Type str

Require or forbid trait HW_GPU_API_OPENGL_V4_4.

trait{group}:HW_GPU_API_OPENGL_V4_5

3.5. Reference Material 731

Nova Documentation, Release 22.4.1.dev41

Type str

Require or forbid trait HW_GPU_API_OPENGL_V4_5.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V1_0

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V1_0.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V1_1

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V1_1.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V1_2

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V1_2.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V1_3

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V1_3.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V2_0

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V2_0.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V2_1

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V2_1.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V3_0

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V3_0.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V3_2

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V3_2.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V3_5

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V3_5.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V3_7

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V3_7.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V5_0

Type str

3.5. Reference Material 732

Nova Documentation, Release 22.4.1.dev41

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V5_0.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V5_2

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V5_2.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V5_3

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V5_3.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V6_0

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V6_0.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V6_1

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V6_1.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V6_2

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V6_2.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V7_0

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V7_0.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V7_1

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V7_1.

trait{group}:HW_GPU_CUDA_COMPUTE_CAPABILITY_V7_2

Type str

Require or forbid trait HW_GPU_CUDA_COMPUTE_CAPABILITY_V7_2.

trait{group}:HW_GPU_CUDA_SDK_V6_5

Type str

Require or forbid trait HW_GPU_CUDA_SDK_V6_5.

trait{group}:HW_GPU_CUDA_SDK_V7_5

Type str

Require or forbid trait HW_GPU_CUDA_SDK_V7_5.

trait{group}:HW_GPU_CUDA_SDK_V8_0

Type str

Require or forbid trait HW_GPU_CUDA_SDK_V8_0.

3.5. Reference Material 733

Nova Documentation, Release 22.4.1.dev41

trait{group}:HW_GPU_CUDA_SDK_V9_0

Type str

Require or forbid trait HW_GPU_CUDA_SDK_V9_0.

trait{group}:HW_GPU_CUDA_SDK_V9_1

Type str

Require or forbid trait HW_GPU_CUDA_SDK_V9_1.

trait{group}:HW_GPU_CUDA_SDK_V9_2

Type str

Require or forbid trait HW_GPU_CUDA_SDK_V9_2.

trait{group}:HW_GPU_CUDA_SDK_V10_0

Type str

Require or forbid trait HW_GPU_CUDA_SDK_V10_0.

trait{group}:HW_GPU_MAX_DISPLAY_HEADS_1

Type str

Require or forbid trait HW_GPU_MAX_DISPLAY_HEADS_1.

trait{group}:HW_GPU_MAX_DISPLAY_HEADS_2

Type str

Require or forbid trait HW_GPU_MAX_DISPLAY_HEADS_2.

trait{group}:HW_GPU_MAX_DISPLAY_HEADS_4

Type str

Require or forbid trait HW_GPU_MAX_DISPLAY_HEADS_4.

trait{group}:HW_GPU_MAX_DISPLAY_HEADS_6

Type str

Require or forbid trait HW_GPU_MAX_DISPLAY_HEADS_6.

trait{group}:HW_GPU_MAX_DISPLAY_HEADS_8

Type str

Require or forbid trait HW_GPU_MAX_DISPLAY_HEADS_8.

trait{group}:HW_GPU_RESOLUTION_W320H240

Type str

Require or forbid trait HW_GPU_RESOLUTION_W320H240.

trait{group}:HW_GPU_RESOLUTION_W640H480

Type str

Require or forbid trait HW_GPU_RESOLUTION_W640H480.

trait{group}:HW_GPU_RESOLUTION_W800H600

3.5. Reference Material 734

Nova Documentation, Release 22.4.1.dev41

Type str

Require or forbid trait HW_GPU_RESOLUTION_W800H600.

trait{group}:HW_GPU_RESOLUTION_W1024H600

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1024H600.

trait{group}:HW_GPU_RESOLUTION_W1024H768

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1024H768.

trait{group}:HW_GPU_RESOLUTION_W1152H864

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1152H864.

trait{group}:HW_GPU_RESOLUTION_W1280H720

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1280H720.

trait{group}:HW_GPU_RESOLUTION_W1280H768

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1280H768.

trait{group}:HW_GPU_RESOLUTION_W1280H800

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1280H800.

trait{group}:HW_GPU_RESOLUTION_W1280H1024

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1280H1024.

trait{group}:HW_GPU_RESOLUTION_W1360H768

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1360H768.

trait{group}:HW_GPU_RESOLUTION_W1366H768

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1366H768.

trait{group}:HW_GPU_RESOLUTION_W1440H900

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1440H900.

trait{group}:HW_GPU_RESOLUTION_W1600H900

Type str

3.5. Reference Material 735

Nova Documentation, Release 22.4.1.dev41

Require or forbid trait HW_GPU_RESOLUTION_W1600H900.

trait{group}:HW_GPU_RESOLUTION_W1600H1200

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1600H1200.

trait{group}:HW_GPU_RESOLUTION_W1680H1050

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1680H1050.

trait{group}:HW_GPU_RESOLUTION_W1920H1080

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1920H1080.

trait{group}:HW_GPU_RESOLUTION_W1920H1200

Type str

Require or forbid trait HW_GPU_RESOLUTION_W1920H1200.

trait{group}:HW_GPU_RESOLUTION_W2560H1440

Type str

Require or forbid trait HW_GPU_RESOLUTION_W2560H1440.

trait{group}:HW_GPU_RESOLUTION_W2560H1600

Type str

Require or forbid trait HW_GPU_RESOLUTION_W2560H1600.

trait{group}:HW_GPU_RESOLUTION_W3840H2160

Type str

Require or forbid trait HW_GPU_RESOLUTION_W3840H2160.

trait{group}:HW_GPU_RESOLUTION_W7680H4320

Type str

Require or forbid trait HW_GPU_RESOLUTION_W7680H4320.

trait{group}:HW_NIC_SRIOV

Type str

Require or forbid trait HW_NIC_SRIOV.

trait{group}:HW_NIC_MULTIQUEUE

Type str

Require or forbid trait HW_NIC_MULTIQUEUE.

trait{group}:HW_NIC_VMDQ

Type str

Require or forbid trait HW_NIC_VMDQ.

3.5. Reference Material 736

Nova Documentation, Release 22.4.1.dev41

trait{group}:HW_NIC_PROGRAMMABLE_PIPELINE

Type str

Require or forbid trait HW_NIC_PROGRAMMABLE_PIPELINE.

trait{group}:HW_NIC_ACCEL_SSL

Type str

Require or forbid trait HW_NIC_ACCEL_SSL.

trait{group}:HW_NIC_ACCEL_IPSEC

Type str

Require or forbid trait HW_NIC_ACCEL_IPSEC.

trait{group}:HW_NIC_ACCEL_TLS

Type str

Require or forbid trait HW_NIC_ACCEL_TLS.

trait{group}:HW_NIC_ACCEL_DIFFIEH

Type str

Require or forbid trait HW_NIC_ACCEL_DIFFIEH.

trait{group}:HW_NIC_ACCEL_RSA

Type str

Require or forbid trait HW_NIC_ACCEL_RSA.

trait{group}:HW_NIC_ACCEL_ECC

Type str

Require or forbid trait HW_NIC_ACCEL_ECC.

trait{group}:HW_NIC_ACCEL_LZS

Type str

Require or forbid trait HW_NIC_ACCEL_LZS.

trait{group}:HW_NIC_ACCEL_DEFLATE

Type str

Require or forbid trait HW_NIC_ACCEL_DEFLATE.

trait{group}:HW_NIC_DCB_PFC

Type str

Require or forbid trait HW_NIC_DCB_PFC.

trait{group}:HW_NIC_DCB_ETS

Type str

Require or forbid trait HW_NIC_DCB_ETS.

trait{group}:HW_NIC_DCB_QCN

3.5. Reference Material 737

Nova Documentation, Release 22.4.1.dev41

Type str

Require or forbid trait HW_NIC_DCB_QCN.

trait{group}:HW_NIC_OFFLOAD_TSO

Type str

Require or forbid trait HW_NIC_OFFLOAD_TSO.

trait{group}:HW_NIC_OFFLOAD_GRO

Type str

Require or forbid trait HW_NIC_OFFLOAD_GRO.

trait{group}:HW_NIC_OFFLOAD_GSO

Type str

Require or forbid trait HW_NIC_OFFLOAD_GSO.

trait{group}:HW_NIC_OFFLOAD_UFO

Type str

Require or forbid trait HW_NIC_OFFLOAD_UFO.

trait{group}:HW_NIC_OFFLOAD_LRO

Type str

Require or forbid trait HW_NIC_OFFLOAD_LRO.

trait{group}:HW_NIC_OFFLOAD_LSO

Type str

Require or forbid trait HW_NIC_OFFLOAD_LSO.

trait{group}:HW_NIC_OFFLOAD_TCS

Type str

Require or forbid trait HW_NIC_OFFLOAD_TCS.

trait{group}:HW_NIC_OFFLOAD_UCS

Type str

Require or forbid trait HW_NIC_OFFLOAD_UCS.

trait{group}:HW_NIC_OFFLOAD_SCS

Type str

Require or forbid trait HW_NIC_OFFLOAD_SCS.

trait{group}:HW_NIC_OFFLOAD_L2CRC

Type str

Require or forbid trait HW_NIC_OFFLOAD_L2CRC.

trait{group}:HW_NIC_OFFLOAD_FDF

Type str

3.5. Reference Material 738

Nova Documentation, Release 22.4.1.dev41

Require or forbid trait HW_NIC_OFFLOAD_FDF.

trait{group}:HW_NIC_OFFLOAD_RXVLAN

Type str

Require or forbid trait HW_NIC_OFFLOAD_RXVLAN.

trait{group}:HW_NIC_OFFLOAD_TXVLAN

Type str

Require or forbid trait HW_NIC_OFFLOAD_TXVLAN.

trait{group}:HW_NIC_OFFLOAD_VXLAN

Type str

Require or forbid trait HW_NIC_OFFLOAD_VXLAN.

trait{group}:HW_NIC_OFFLOAD_GRE

Type str

Require or forbid trait HW_NIC_OFFLOAD_GRE.

trait{group}:HW_NIC_OFFLOAD_GENEVE

Type str

Require or forbid trait HW_NIC_OFFLOAD_GENEVE.

trait{group}:HW_NIC_OFFLOAD_TXUDP

Type str

Require or forbid trait HW_NIC_OFFLOAD_TXUDP.

trait{group}:HW_NIC_OFFLOAD_QINQ

Type str

Require or forbid trait HW_NIC_OFFLOAD_QINQ.

trait{group}:HW_NIC_OFFLOAD_RDMA

Type str

Require or forbid trait HW_NIC_OFFLOAD_RDMA.

trait{group}:HW_NIC_OFFLOAD_RXHASH

Type str

Require or forbid trait HW_NIC_OFFLOAD_RXHASH.

trait{group}:HW_NIC_OFFLOAD_RX

Type str

Require or forbid trait HW_NIC_OFFLOAD_RX.

trait{group}:HW_NIC_OFFLOAD_TX

Type str

Require or forbid trait HW_NIC_OFFLOAD_TX.

3.5. Reference Material 739

Nova Documentation, Release 22.4.1.dev41

trait{group}:HW_NIC_OFFLOAD_SG

Type str

Require or forbid trait HW_NIC_OFFLOAD_SG.

trait{group}:HW_NIC_OFFLOAD_SWITCHDEV

Type str

Require or forbid trait HW_NIC_OFFLOAD_SWITCHDEV.

trait{group}:HW_NIC_SRIOV_QOS_TX

Type str

Require or forbid trait HW_NIC_SRIOV_QOS_TX.

trait{group}:HW_NIC_SRIOV_QOS_RX

Type str

Require or forbid trait HW_NIC_SRIOV_QOS_RX.

trait{group}:HW_NIC_SRIOV_MULTIQUEUE

Type str

Require or forbid trait HW_NIC_SRIOV_MULTIQUEUE.

trait{group}:HW_NIC_SRIOV_TRUSTED

Type str

Require or forbid trait HW_NIC_SRIOV_TRUSTED.

trait{group}:HW_NUMA_ROOT

Type str

Require or forbid trait HW_NUMA_ROOT.

trait{group}:MISC_SHARES_VIA_AGGREGATE

Type str

Require or forbid trait MISC_SHARES_VIA_AGGREGATE.

trait{group}:STORAGE_DISK_HDD

Type str

Require or forbid trait STORAGE_DISK_HDD.

trait{group}:STORAGE_DISK_SSD

Type str

Require or forbid trait STORAGE_DISK_SSD.

trait{group}:CUSTOM_{trait}

Type str

Require or forbid trait CUSTOM_{trait}.

3.5. Reference Material 740

Nova Documentation, Release 22.4.1.dev41

Scheduler Filters

The following extra specs are specific to various in-tree scheduler filters.

aggregate_instance_extra_specs

The following extra specs are used to specify metadata that must be present on the aggregate of a host.
If this metadata is not present or does not match the expected value, the aggregate and all hosts within
in will be rejected.

Requires the AggregateInstanceExtraSpecsFilter scheduler filter.

aggregate_instance_extra_specs:{key}

Type str

Specify metadata that must be present on the aggregate of a host. If this metadata is not present,
the host will be rejected. Requires the AggregateInstanceExtraSpecsFilter scheduler
filter.

The value can be one of the following:

• = (equal to or greater than as a number; same as vcpus case)

• == (equal to as a number)

• != (not equal to as a number)

• >= (greater than or equal to as a number)

• <= (less than or equal to as a number)

• s== (equal to as a string)

• s!= (not equal to as a string)

• s>= (greater than or equal to as a string)

• s> (greater than as a string)

• s<= (less than or equal to as a string)

• s< (less than as a string)

• <in> (substring)

• <all-in> (all elements contained in collection)

• <or> (find one of these)

• A specific value, e.g. true, 123, testing

3.5. Reference Material 741

Nova Documentation, Release 22.4.1.dev41

capabilities

The following extra specs are used to specify a host capability that must be provided by the host compute
service. If this capability is not present or does not match the expected value, the host will be rejected.

Requires the ComputeCapabilitiesFilter scheduler filter.

All extra specs expect similar types of values:

• = (equal to or greater than as a number; same as vcpus case)

• == (equal to as a number)

• != (not equal to as a number)

• >= (greater than or equal to as a number)

• <= (less than or equal to as a number)

• s== (equal to as a string)

• s!= (not equal to as a string)

• s>= (greater than or equal to as a string)

• s> (greater than as a string)

• s<= (less than or equal to as a string)

• s< (less than as a string)

• <in> (substring)

• <all-in> (all elements contained in collection)

• <or> (find one of these)

• A specific value, e.g. true, 123, testing

Examples are: >= 5, s== 2.1.0, <in> gcc, <all-in> aes mmx, and <or> fpu <or>
gpu

Note: Not all operators will apply to all types of values. For example, the == operator should not be
used for a string value - use s== instead.

capabilities:id

Type str

Specify that the id capability provided by the host compute service satisfy the provided filter value.
Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:uuid

Type str

Specify that the uuid capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:service_id

Type str

3.5. Reference Material 742

Nova Documentation, Release 22.4.1.dev41

Specify that the service_id capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:host

Type str

Specify that the host capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:vcpus

Type str

Specify that the vcpus capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:memory_mb

Type str

Specify that the memory_mb capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:local_gb

Type str

Specify that the local_gb capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:vcpus_used

Type str

Specify that the vcpus_used capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:memory_mb_used

Type str

Specify that the memory_mb_used capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:local_gb_used

Type str

Specify that the local_gb_used capability provided by the host compute service satisfy the pro-
vided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:hypervisor_type

Type str

Specify that the hypervisor_type capability provided by the host compute service satisfy the pro-
vided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:hypervisor_version

Type str

Specify that the hypervisor_version capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

3.5. Reference Material 743

Nova Documentation, Release 22.4.1.dev41

capabilities:hypervisor_hostname

Type str

Specify that the hypervisor_hostname capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:free_ram_mb

Type str

Specify that the free_ram_mb capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:free_disk_gb

Type str

Specify that the free_disk_gb capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:current_workload

Type str

Specify that the current_workload capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:running_vms

Type str

Specify that the running_vms capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:disk_available_least

Type str

Specify that the disk_available_least capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:host_ip

Type str

Specify that the host_ip capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:mapped

Type str

Specify that the mapped capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:cpu_allocation_ratio

Type str

Specify that the cpu_allocation_ratio capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:ram_allocation_ratio

3.5. Reference Material 744

Nova Documentation, Release 22.4.1.dev41

Type str

Specify that the ram_allocation_ratio capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:disk_allocation_ratio

Type str

Specify that the disk_allocation_ratio capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:total_usable_ram_mb

Type str

Specify that the total_usable_ram_mb capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:total_usable_disk_gb

Type str

Specify that the total_usable_disk_gb capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:disk_mb_used

Type str

Specify that the disk_mb_used capability provided by the host compute service satisfy the pro-
vided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:free_disk_mb

Type str

Specify that the free_disk_mb capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:vcpus_total

Type str

Specify that the vcpus_total capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:num_instances

Type str

Specify that the num_instances capability provided by the host compute service satisfy the pro-
vided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:num_io_ops

Type str

Specify that the num_io_ops capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:failed_builds

Type str

3.5. Reference Material 745

Nova Documentation, Release 22.4.1.dev41

Specify that the failed_builds capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:aggregates

Type str

Specify that the aggregates capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:cell_uuid

Type str

Specify that the cell_uuid capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:updated

Type str

Specify that the updated capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:cpu_info{filter}

Type str

Specify that the cpu_info capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:metrics{filter}

Type str

Specify that the metrics capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:stats{filter}

Type str

Specify that the stats capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:numa_topology{filter}

Type str

Specify that the numa_topology capability provided by the host compute service satisfy the pro-
vided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:supported_hv_specs{filter}

Type str

Specify that the supported_hv_specs capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:pci_device_pools{filter}

Type str

Specify that the pci_device_pools capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

3.5. Reference Material 746

Nova Documentation, Release 22.4.1.dev41

capabilities:nodename{filter}

Type str

Specify that the nodename capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:pci_stats{filter}

Type str

Specify that the pci_stats capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:supported_instances{filter}

Type str

Specify that the supported_instances capability provided by the host compute service satisfy the
provided filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:limits{filter}

Type str

Specify that the limits capability provided by the host compute service satisfy the provided filter
value. Requires the ComputeCapabilitiesFilter scheduler filter.

capabilities:instances{filter}

Type str

Specify that the instances capability provided by the host compute service satisfy the provided
filter value. Requires the ComputeCapabilitiesFilter scheduler filter.

Virt driver

The following extra specs are used as hints to configure internals of a instance, from the bus used for
paravirtualized devices to the amount of a physical device to passthrough to the instance. Most of these
are virt driver-specific.

quota

The following extra specs are used to configure quotas for various paravirtualized devices.

They are only supported by the libvirt virt driver.

quota:cpu_limit

Type int

The limit for cpu. Only supported by the VMWare virt driver.

quota:cpu_reservation

Type int

The reservation for cpu. Only supported by the VMWare virt driver.

quota:cpu_shares_level

3.5. Reference Material 747

Nova Documentation, Release 22.4.1.dev41

Type str

The shares level for cpu. Only supported by the VMWare virt driver.

quota:cpu_shares_share

Type int

The shares share for cpu. Only supported by the VMWare virt driver.

quota:memory_limit

Type int

The limit for memory. Only supported by the VMWare virt driver.

quota:memory_reservation

Type int

The reservation for memory. Only supported by the VMWare virt driver.

quota:memory_shares_level

Type str

The shares level for memory. Only supported by the VMWare virt driver.

quota:memory_shares_share

Type int

The shares share for memory. Only supported by the VMWare virt driver.

quota:disk_io_limit

Type int

The limit for disk_io. Only supported by the VMWare virt driver.

quota:disk_io_reservation

Type int

The reservation for disk_io. Only supported by the VMWare virt driver.

quota:disk_io_shares_level

Type str

The shares level for disk_io. Only supported by the VMWare virt driver.

quota:disk_io_shares_share

Type int

The shares share for disk_io. Only supported by the VMWare virt driver.

quota:vif_limit

Type int

The limit for vif. Only supported by the VMWare virt driver.

quota:vif_reservation

Type int

3.5. Reference Material 748

Nova Documentation, Release 22.4.1.dev41

The reservation for vif. Only supported by the VMWare virt driver.

quota:vif_shares_level

Type str

The shares level for vif. Only supported by the VMWare virt driver.

quota:vif_shares_share

Type int

The shares share for vif. Only supported by the VMWare virt driver.

quota:cpu_shares

Type int

Min 0

The quota shares for CPU. Only supported by the libvirt virt driver.

quota:cpu_period

Type int

Min 0

The quota period for CPU. Only supported by the libvirt virt driver.

quota:cpu_quota

Type int

Min 0

The quota quota for CPU. Only supported by the libvirt virt driver.

quota:disk_read_bytes_sec

Type int

Min 0

The quota read bytes for disk. Only supported by the libvirt virt driver.

quota:disk_read_iops_sec

Type int

Min 0

The quota read iops for disk. Only supported by the libvirt virt driver.

quota:disk_write_bytes_sec

Type int

Min 0

The quota write bytes for disk. Only supported by the libvirt virt driver.

quota:disk_write_iops_sec

Type int

Min 0

3.5. Reference Material 749

Nova Documentation, Release 22.4.1.dev41

The quota write iops for disk. Only supported by the libvirt virt driver.

quota:disk_total_bytes_sec

Type int

Min 0

The quota total bytes for disk. Only supported by the libvirt virt driver.

quota:disk_total_iops_sec

Type int

Min 0

The quota total iops for disk. Only supported by the libvirt virt driver.

quota:vif_inbound_average

Type int

Min 0

The quota inbound average for VIF. Only supported by the libvirt virt driver.

quota:vif_inbound_peak

Type int

Min 0

The quota inbound peak for VIF. Only supported by the libvirt virt driver.

quota:vif_inbound_burst

Type int

Min 0

The quota inbound burst for VIF. Only supported by the libvirt virt driver.

quota:vif_outbound_average

Type int

Min 0

The quota outbound average for VIF. Only supported by the libvirt virt driver.

quota:vif_outbound_peak

Type int

Min 0

The quota outbound peak for VIF. Only supported by the libvirt virt driver.

quota:vif_outbound_burst

Type int

Min 0

The quota outbound burst for VIF. Only supported by the libvirt virt driver.

3.5. Reference Material 750

Nova Documentation, Release 22.4.1.dev41

accel

The following extra specs are used to configure attachment of various accelerators to an instance. For
more information, refer to the Cyborg documentation.

They are only supported by the libvirt virt driver.

accel:device_profile

Type str

The name of a device profile to configure for the instance. A device profile may be viewed as a
flavor for devices.

pci_passthrough

The following extra specs are used to configure passthrough of a host PCI device to an instance. This
requires prior host configuration. For more information, refer to Attaching physical PCI devices to
guests.

They are only supported by the libvirt virt driver.

pci_passthrough:alias

Type str

Specify the number of $alias PCI device(s) to attach to the instance. Must be of format
$alias:$number. Use commas to specify multiple values.

hw

The following extra specs are used to configure various attributes of instances. Some of the extra specs
act as feature flags, while others tweak for example the guest-visible CPU topology of the instance.

Except where otherwise stated, they are only supported by the libvirt virt driver.

hw:cpu_realtime

Type bool

Determine whether realtime mode should be enabled for the instance or not. Only supported by
the libvirt driver.

hw:cpu_realtime_mask

Type str

A exclusion mask of CPUs that should not be enabled for realtime.

hw:hide_hypervisor_id

Type bool

Determine whether the hypervisor ID should be hidden from the guest. Only supported by the
libvirt driver.

hw:cpu_policy

Type str

3.5. Reference Material 751

https://docs.openstack.org/cyborg/victoria/

Nova Documentation, Release 22.4.1.dev41

The policy to apply when determining what host CPUs the guest CPUs can run on. If shared
(default), guest CPUs can be overallocated but cannot float across host cores. If dedicated,
guest CPUs cannot be overallocated but are individually pinned to their own host core. mixed is
a policy with which the guest is mixing the overallocated and pinned guest CPUs.

hw:cpu_thread_policy

Type str

The policy to apply when determining whether the destination host can have hardware threads
enabled or not. If prefer (default), hosts with hardware threads will be preferred. If require,
hosts with hardware threads will be required. If isolate, hosts with hardware threads will be
forbidden.

hw:emulator_threads_policy

Type str

The policy to apply when determining whether emulator threads should be offloaded to a separate
isolated core or to a pool of shared cores. If share, emulator overhead threads will be offloaded
to a pool of shared cores. If isolate, emulator overhead threads will be offloaded to their own
core.

hw:cpu_dedicated_mask

Type str

A mapping of guest CPUs to be pinned to host CPUs for an instance with a mixed CPU policy.
For guest CPUs which are not in this mapping it will float across host cores.

hw:mem_page_size

Type str

The size of memory pages to allocate to the guest with. Can be one of the three alias - large,
small or any, - or an actual size. Only supported by the libvirt virt driver.

hw:numa_nodes

Type int

Min 1

The number of virtual NUMA nodes to allocate to configure the guest with. Each virtual NUMA
node will be mapped to a unique host NUMA node. Only supported by the libvirt virt driver.

hw:numa_cpus.{id}

Type str

A mapping of guest CPUs to the guest NUMA node identified by {id}. This can be used to
provide asymmetric CPU-NUMA allocation and is necessary where the number of guest NUMA
nodes is not a factor of the number of guest CPUs.

hw:numa_mem.{id}

Type int

Min 1

A mapping of guest memory to the guest NUMA node identified by {id}. This can be used
to provide asymmetric memory-NUMA allocation and is necessary where the number of guest
NUMA nodes is not a factor of the total guest memory.

3.5. Reference Material 752

Nova Documentation, Release 22.4.1.dev41

hw:pci_numa_affinity_policy

Type str

The NUMA affinity policy of any PCI passthrough devices or SR-IOV network interfaces attached
to the instance.

hw:cpu_sockets

Type int

Min 1

The number of virtual CPU threads to emulate in the guest CPU topology.

hw:cpu_cores

Type int

Min 1

The number of virtual CPU cores to emulate per socket in the guest CPU topology.

hw:cpu_threads

Type int

Min 1

The number of virtual CPU threads to emulate per core in the guest CPU topology.

hw:max_cpu_sockets

Type int

Min 1

The max number of virtual CPU threads to emulate in the guest CPU topology. This is used
to limit the topologies that can be requested by an image and will be used to validate the
hw_cpu_sockets image metadata property.

hw:max_cpu_cores

Type int

Min 1

The max number of virtual CPU cores to emulate per socket in the guest CPU topology. This is
used to limit the topologies that can be requested by an image and will be used to validate the
hw_cpu_cores image metadata property.

hw:max_cpu_threads

Type int

Min 1

The max number of virtual CPU threads to emulate per core in the guest CPU topology. This is
used to limit the topologies that can be requested by an image and will be used to validate the
hw_cpu_threads image metadata property.

hw:boot_menu

Type bool

Whether to show a boot menu when booting the guest.

3.5. Reference Material 753

Nova Documentation, Release 22.4.1.dev41

hw:mem_encryption

Type bool

Whether to enable memory encryption for the guest. Only supported by the libvirt driver on hosts
with AMD SEV support.

hw:pmem

Type str

A comma-separated list of $LABELs defined in config for vPMEM devices.

hw:pmu

Type bool

Whether to enable the Performance Monitory Unit (PMU) for the guest. Only supported by the
libvirt driver.

hw:serial_port_count

Type int

Min 0

The number of serial ports to allocate to the guest. Only supported by the libvirt virt driver.

hw:tpm_model

Type str

The model of the attached TPM device.

hw:tpm_version

Type str

The TPM version. Required if requesting a vTPM via the hw:tpm_model extra spec or equivalent
image metadata property.

hw:watchdog_action

Type str

The action to take when the watchdog timer is kicked. Only supported by the libvirt virt driver.

hw_rng

The following extra specs are used to configure a random number generator for an instance.

They are only supported by the libvirt virt driver.

hw_rng:allowed

Type bool

Whether to disable configuration of a random number generator in their image. Before 21.0.0
(Ussuri), random number generators were not enabled by default so this was used to determine
whether to enable configuration.

hw_rng:rate_bytes

Type int

3.5. Reference Material 754

Nova Documentation, Release 22.4.1.dev41

Min 0

The allowed amount of bytes for the guest to read from the hosts entropy per period.

hw_rng:rate_period

Type int

Min 0

The duration of a read period in seconds.

hw_video

The following extra specs are used to configure attributes of the default guest video device.

They are only supported by the libvirt virt driver.

hw_video:ram_max_mb

Type int

Min 0

The maximum amount of memory the user can request using the hw_video_ram image meta-
data property, which represents the video memory that the guest OS will see. This has no effect
for vGPUs.

os

The following extra specs are used to configure various attributes of instances when using the HyperV
virt driver.

They are only supported by the HyperV virt driver.

os:secure_boot

Type str

Determine whether secure boot is enabled or not. Currently only supported by the HyperV driver.

os:resolution

Type str

Guest VM screen resolution size. Only supported by the HyperV driver.

os:monitors

Type int

Min 1

Max 8

Guest VM number of monitors. Only supported by the HyperV driver.

os:vram

Type str

Guest VM VRAM amount. Only supported by the HyperV driver.

3.5. Reference Material 755

Nova Documentation, Release 22.4.1.dev41

powervm

The following extra specs are used to configure various attributes of instances when using the PowerVM
virt driver.

They are only supported by the PowerVM virt driver.

powervm:min_mem

Type int

Min 256

Minimum memory (MB). If you do not specify the value, the value is defaulted to the value for
memory_mb.

powervm:max_mem

Type int

Min 256

Maximum memory (MB). If you do not specify the value, the value is defaulted to the value for
memory_mb.

powervm:min_vcpu

Type int

Min 1

Minimum virtual processors. Minimum resource that is required for LPAR to boot is 1. The
maximum value can be equal to the value, which is set to vCPUs. If you specify the value of the
attribute, you must also specify value of powervm:max_vcpu. Defaults to value set for vCPUs.

powervm:max_vcpu

Type int

Min 1

Minimum virtual processors. Minimum resource that is required for LPAR to boot is 1. The
maximum value can be equal to the value, which is set to vCPUs. If you specify the value of the
attribute, you must also specify value of powervm:max_vcpu. Defaults to value set for vCPUs.

powervm:proc_units

Type str

The wanted proc_units. The value for the attribute cannot be less than 1/10 of the value that
is specified for Virtual CPUs (vCPUs) for hosts with firmware level 7.5 or earlier and 1/20 of the
value that is specified for vCPUs for hosts with firmware level 7.6 or later. If the value is not
specified during deployment, it is defaulted to vCPUs * 0.5.

powervm:min_proc_units

Type str

Minimum proc_units. The minimum value for the attribute is 0.1 for hosts with firmware
level 7.5 or earlier and 0.05 for hosts with firmware level 7.6 or later. The maximum
value must be equal to the maximum value of powervm:proc_units. If you specify the
attribute, you must also specify powervm:proc_units, powervm:max_proc_units,

3.5. Reference Material 756

Nova Documentation, Release 22.4.1.dev41

powervm:min_vcpu, powervm:max_vcpu‘, and powervm:dedicated_proc. Set the
powervm:dedicated_proc to false. The value for the attribute cannot be less than 1/10
of the value that is specified for powervm:min_vcpu for hosts with firmware level 7.5 or earlier
and 1/20 of the value that is specified for powervm:min_vcpu for hosts with firmware level
7.6 or later. If you do not specify the value of the attribute during deployment, it is defaulted to
equal the value of powervm:proc_units.

powervm:max_proc_units

Type str

Maximum proc_units. The minimum value can be equal to “ powervm:proc_units.
The maximum value for the attribute cannot be more than the value of the host
for maximum allowed processors per partition. If you specify this attribute,
you must also specify powervm:proc_units, powervm:min_proc_units,
powervm:min_vcpu, powervm:max_vcpu, and powervm:dedicated_proc. Set the
powervm:dedicated_proc to false. The value for the attribute cannot be less than 1/10 of
the value that is specified for powervm:max_vcpu for hosts with firmware level 7.5 or earlier and
1/20 of the value that is specified for powervm:max_vcpu for hosts with firmware level 7.6 or
later. If you do not specify the value of the attribute during deployment, the value is defaulted to
equal the value of powervm:proc_units.

powervm:dedicated_proc

Type bool

Use dedicated processors. The attribute defaults to false.

powervm:shared_weight

Type int

Min 0

Max 255

Shared processor weight. When powervm:dedicated_proc is set to true and
powervm:uncapped is also set to true, the value of the attribute defaults to 128.

powervm:availability_priority

Type int

Min 0

Max 255

Availability priority. The attribute priority of the server if there is a processor failure and there are
not enough resources for all servers. VIOS and i5 need to remain high priority default of 191. The
value of the attribute defaults to 128.

powervm:uncapped

Type bool

LPAR can use unused processor cycles that are beyond or exceed the wanted setting of the at-
tribute. This attribute is supported only when powervm:dedicated_proc is set to false.
When powervm:dedicated_proc is set to false, powervm:uncapped defaults to true.

powervm:dedicated_sharing_mode

Type str

3.5. Reference Material 757

Nova Documentation, Release 22.4.1.dev41

Sharing mode for dedicated processors. The attribute is supported only when
powervm:dedicated_proc is set to true.

powervm:processor_compatibility

Type str

A processor compatibility mode is a value that is assigned to a logical partition by the hypervisor
that specifies the processor environment in which the logical partition can successfully operate.

powervm:shared_proc_pool_name

Type str

Specifies the shared processor pool to be targeted during deployment of a virtual machine.

powervm:srr_capability

Type bool

If the value of simplified remote restart capability is set to true for the LPAR, you can remote
restart the LPAR to supported CEC or host when the source CEC or host is down. The attribute
defaults to false.

vmware

The following extra specs are used to configure various attributes of instances when using the VMWare
virt driver.

They are only supported by the VMWare virt driver.

vmware:hw_version

Type str

Specify the hardware version used to create images. In an environment with different host ver-
sions, you can use this parameter to place instances on the correct hosts.

vmware:storage_policy

Type str

Specify the storage policy used for new instances. If Storage Policy-Based Management (SPBM)
is not enabled, this parameter is ignored.

Others (uncategorized)

The following extra specs are not part of a group.

hide_hypervisor_id

Type bool

Determine whether the hypervisor ID should be hidden from the guest. Only supported by the lib-
virt driver. This extra spec is not compatible with the AggregateInstanceExtraSpecsFilter sched-
uler filter. The hw:hide_hypervisor_id extra spec should be used instead.

3.5. Reference Material 758

Nova Documentation, Release 22.4.1.dev41

Warning: This extra spec has been deprecated and should not be used.

group_policy

Type str

The group policy to apply when using the granular resource request syntax.

3.5. Reference Material 759

CHAPTER

FOUR

FOR CONTRIBUTORS

• So You Want to Contribute: If you are a new contributor this should help you to start contributing
to Nova.

• Contributor Documentation: If you are new to Nova, this should help you start to understand what
Nova actually does, and why.

• Technical Reference Deep Dives: There are also a number of technical references on both current
and future looking parts of our architecture. These are collected here.

4.1 Contributor Documentation

Contributing to nova gives you the power to help add features, fix bugs, enhance documentation, and
increase testing. Contributions of any type are valuable, and part of what keeps the project going. Here
are a list of resources to get your started.

4.1.1 Basic Information

4.1.1.1 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with nova.

Communication

How to get (more) involved with Nova

760

https://docs.openstack.org/contributors/

Nova Documentation, Release 22.4.1.dev41

Contacting the Core Team

The overall structure of the Nova team is documented on the wiki.

New Feature Planning

If you want to propose a new feature please read the Blueprints, Specs and Priorities page.

Task Tracking

We track our tasks in Launchpad.

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad. More info
about Launchpad usage can be found on OpenStack docs page.

Getting Your Patch Merged

All changes proposed to the Nova requires two Code-Review +2 votes from Nova core reviewers
before one of the core reviewers can approve patch by giving Workflow +1 vote. More detailed
guidelines for reviewers of Nova patches are available at Code Review Guide for Nova.

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

For the Nova specific duties you can read the Nova PTL guide Chronological PTL guide

4.1.2 Getting Started

• How to get (more) involved with Nova: Overview of engaging in the project

• Development Quickstart: Get your computer setup to contribute

4.1. Contributor Documentation 761

https://wiki.openstack.org/wiki/Nova#People
https://bugs.launchpad.net/nova
https://bugs.launchpad.net/nova/+filebug
https://docs.openstack.org/contributors/common/task-tracking.html#launchpad
https://docs.openstack.org/project-team-guide/ptl.html

Nova Documentation, Release 22.4.1.dev41

4.1.2.1 How to get (more) involved with Nova

So you want to get more involved with Nova? Or you are new to Nova and wondering where to start?

We are working on building easy ways for you to get help and ideas on how to learn more about Nova
and how the Nova community works.

Any questions, please ask! If you are unsure who to ask, then please contact the PTL.

How do I get started?

There are quite a few global docs on this:

• https://docs.openstack.org/contributors/

• https://www.openstack.org/community/

• https://www.openstack.org/assets/welcome-guide/OpenStackWelcomeGuide.pdf

• https://wiki.openstack.org/wiki/How_To_Contribute

There is more general info, non Nova specific info here:

• https://wiki.openstack.org/wiki/Mentoring

• https://docs.openstack.org/upstream-training/

What should I work on?

So you are starting out your Nova journey, where is a good place to start?

If youd like to learn how Nova works before changing anything (good idea!), we recommend looking
for reviews with -1s and -2s and seeing why they got downvoted. There is also the Code Review Guide
for Nova. Once you have some understanding, start reviewing patches. Its OK to ask people to explain
things you dont understand. Its also OK to see some potential problems but put a +0.

Once youre ready to write code, take a look at some of the work already marked as low-hanging fruit:

• https://bugs.launchpad.net/nova/+bugs?field.tag=low-hanging-fruit

How do I get my feature in?

The best way of getting your feature in is well it depends.

First concentrate on solving your problem and/or use case, dont fixate on getting the code you have
working merged. Its likely things will need significant re-work after you discuss how your needs match
up with all the existing ways Nova is currently being used. The good news, is this process should leave
you with a feature thats more flexible and doesnt lock you into your current way of thinking.

A key part of getting code merged, is helping with reviewing other peoples code. Great reviews of
others code will help free up more core reviewer time to look at your own patches. In addition, you will
understand how the review is thinking when they review your code.

Also, work out if any on going efforts are blocking your feature and helping out speeding those up. The
spec review process should help with this effort.

For more details on our process, please see: Nova team process.

4.1. Contributor Documentation 762

https://wiki.openstack.org/wiki/Nova#People
https://docs.openstack.org/contributors/
https://www.openstack.org/community/
https://www.openstack.org/assets/welcome-guide/OpenStackWelcomeGuide.pdf
https://wiki.openstack.org/wiki/How_To_Contribute
https://wiki.openstack.org/wiki/Mentoring
https://docs.openstack.org/upstream-training/
https://bugs.launchpad.net/nova/+bugs?field.tag=low-hanging-fruit

Nova Documentation, Release 22.4.1.dev41

What is expected of a good contributor?

TODO - need more info on this

Top Tips for working with the Nova community

Here are some top tips around engaging with the Nova community:

• IRC

– we talk a lot in #openstack-nova

– do ask us questions in there, and we will try to help you

– not sure about asking questions? feel free to listen in around other peoples questions

– we recommend you setup an IRC bouncer: https://docs.openstack.org/contributors/common/
irc.html

• Email

– Use the [nova] tag in the mailing lists

– Filtering on [nova] and [all] can help tame the list

• Be Open

– i.e. dont review your teams code in private, do it publicly in gerrit

– i.e. be ready to talk about openly about problems you are having, not theoretical issues

– that way you can start to gain the trust of the wider community

• Got a problem? Please ask!

– Please raise any problems and ask questions early

– we want to help you before you are frustrated or annoyed

– unsure who to ask? Just ask in IRC, or check out the list of Nova people.

• Talk about problems first, then solutions

– Nova is a big project. At first, it can be hard to see the big picture

– Dont think about merging your patch, instead think about solving your problem

– conversations are more productive that way

• Its not the decision thats important, its the reason behind it thats important

– Dont like the way the community is going?

– Please ask why we were going that way, and please engage with the debate

– If you dont, we are unable to learn from what you have to offer

• No one will decide, this is stuck, who can help me?

– its rare, but it happens

– its the Nova PTLs job to help you

– but if you dont ask, its hard for them to help you

4.1. Contributor Documentation 763

https://docs.openstack.org/contributors/common/irc.html
https://docs.openstack.org/contributors/common/irc.html
https://wiki.openstack.org/wiki/Nova#People
https://wiki.openstack.org/wiki/Nova#People

Nova Documentation, Release 22.4.1.dev41

Process

It can feel like you are faced with a wall of process. We are a big community, to make sure the right
communication happens, we do use a minimal amount of process.

If you find something that doesnt make sense, please:

• ask questions to find out *why* it happens

• if you know of a better way to do it, please speak up

• one better way might be to remove the process if it no longer helps

To learn more about Novas process, please read Nova team process.

Why bother with any process?

Why is it worth creating a bug or blueprint to track your code review? This may seem like silly process,
but there is usually a good reason behind it.

We have lots of code to review, and we have tools to try and get to really important code reviews first. If
yours is really important, but not picked up by our tools, its possible you just get lost in the bottom of a
big queue.

If you have a bug fix, you have done loads of work to identify the issue, and test out your fix, and submit
it. By adding a bug report, you are making it easier for other folks who hit the same problem to find
your work, possibly saving them the hours of pain you went through. With any luck that gives all those
people the time to fix different bugs, all that might have affected you, if you had not given them the time
go fix it.

Its similar with blueprints. You have worked out how to scratch your itch, lets tell others about that
great new feature you have added, so they can use that. Also, it stops someone with a similar idea going
through all the pain of creating a feature only to find you already have that feature ready and up for
review, or merged into the latest release.

Hopefully this gives you an idea why we have applied a small layer of process to what we are doing.
Having said all this, we need to unlearn old habits to move forward, there may be better ways to do
things, and we are open to trying them. Please help be part of the solution.

Why do code reviews if I am not in nova-core?

Code reviews are the life blood of the Nova developer community.

There is a good discussion on how you do good reviews, and how anyone can be a reviewer: http:
//docs.openstack.org/infra/manual/developers.html#peer-review

In the draft process guide, I discuss how doing reviews can help get your code merged faster: Nova team
process.

Lets look at some of the top reasons why participating with code reviews really helps you:

• Doing more reviews, and seeing what other reviewers notice, will help you better understand what
is expected of code that gets merged into master.

• Having more non-core people do great reviews, leaves less review work for the core reviewers to
do, so we are able get more code merged.

4.1. Contributor Documentation 764

http://docs.openstack.org/infra/manual/developers.html#peer-review
http://docs.openstack.org/infra/manual/developers.html#peer-review

Nova Documentation, Release 22.4.1.dev41

• Empathy is one of the keys to a happy community. If you are used to doing code reviews, you will
better understand the comments you get when people review your code. As you do more code
reviews, and see what others notice, you will get a better idea of what people are looking for when
then apply a +2 to your code.

• If you do quality reviews, youll be noticed and its more likely youll get reciprocal eyes on your
reviews.

What are the most useful types of code review comments? Well here are a few to the top ones:

• Fundamental flaws are the biggest thing to spot. Does the patch break a whole set of existing
users, or an existing feature?

• Consistency of behaviour is really important. Does this bit of code do things differently to where
similar things happen else where in Nova?

• Is the code easy to maintain, well tested and easy to read? Code is read order of magnitude times
more than it is written, so optimise for the reader of the code, not the writer.

• TODO - what others should go here?

Lets look at some problems people hit when starting out doing code reviews:

• My +1 doesnt mean anything, why should I bother?

– So your +1 really does help. Some really useful -1 votes that lead to a +1 vote helps get code
into a position

• When to use -1 vs 0 vs +1

– Please see the guidelines here: http://docs.openstack.org/infra/manual/developers.html#
peer-review

• I have already reviewed this code internally, no point in adding a +1 externally?

– Please talk to your company about doing all code reviews in the public, that is a much better
way to get involved. showing how the code has evolved upstream, is much better than trying
to perfect code internally, before uploading for public review. You can use Draft mode, and
mark things as WIP if you prefer, but please do the reviews upstream.

• Where do I start? What should I review?

– There are various tools, but a good place to start is: https://etherpad.openstack.org/p/
nova-runways-victoria

– Depending on the time in the cycle, its worth looking at NeedsCodeReview blueprints: https:
//blueprints.launchpad.net/nova/

– Custom Gerrit review dashboards often provide a more manageable view of the outstanding
reviews, and help focus your efforts:

* Nova Review Inbox: https://goo.gl/1vTS0Z

* Small Bug Fixes: http://ow.ly/WAw1J

– Maybe take a look at things you want to see merged, bug fixes and features, or little code
fixes

– Look for things that have been waiting a long time for a review: https://review.opendev.org/
#/q/project:openstack/nova+status:open+age:2weeks

– If you get through the above lists, try other tools, such as: http://status.openstack.org/reviews

4.1. Contributor Documentation 765

http://docs.openstack.org/infra/manual/developers.html#peer-review
http://docs.openstack.org/infra/manual/developers.html#peer-review
https://etherpad.openstack.org/p/nova-runways-victoria
https://etherpad.openstack.org/p/nova-runways-victoria
https://blueprints.launchpad.net/nova/
https://blueprints.launchpad.net/nova/
https://goo.gl/1vTS0Z
http://ow.ly/WAw1J
https://review.opendev.org/#/q/project:openstack/nova+status:open+age:2weeks
https://review.opendev.org/#/q/project:openstack/nova+status:open+age:2weeks
http://status.openstack.org/reviews

Nova Documentation, Release 22.4.1.dev41

How to do great code reviews?

http://docs.openstack.org/infra/manual/developers.html#peer-review

For more tips, please see: Why do code reviews if I am not in nova-core?

How do I become nova-core?

You dont have to be nova-core to be a valued member of the Nova community. There are many, many
ways you can help. Every quality review that helps someone get their patch closer to being ready to
merge helps everyone get their code merged faster.

The first step to becoming nova-core is learning how to be an active member of the Nova community,
including learning how to do great code reviews. For more details see: https://wiki.openstack.org/wiki/
Nova/CoreTeam#Membership_Expectations

If you feel like you have the time to commit to all the nova-core membership expectations, reach out to
the Nova PTL who will be able to find you an existing member of nova-core to help mentor you. If all
goes well, and you seem like a good candidate, your mentor will contact the rest of the nova-core team
to ask them to start looking at your reviews, so they are able to vote for you, if you get nominated for
join nova-core.

We encourage all mentoring, where possible, to occur on #openstack-nova so everyone can learn and
benefit from your discussions.

The above mentoring is available to every one who wants to learn how to better code reviews, even if you
dont ever want to commit to becoming nova-core. If you already have a mentor, thats great, the process
is only there for folks who are still trying to find a mentor. Being admitted to the mentoring program
no way guarantees you will become a member of nova-core eventually, its here to help you improve,
and help you have the sort of involvement and conversations that can lead to becoming a member of
nova-core.

How to do great nova-spec reviews?

https://specs.openstack.org/openstack/nova-specs/specs/victoria/template.html

Blueprints, Specs and Priorities.

Spec reviews are always a step ahead of the normal code reviews. Follow the above links for some great
information on specs/reviews.

The following could be some important tips:

1. The specs are published as html documents. Ensure that the author has a proper render of the same
via the .rst file.

2. More often than not, its important to know that there are no overlaps across multiple specs.

3. Ensure that a proper dependency of the spec is identified. For example - a user desired feature that
requires a proper base enablement should be a dependent spec.

4. Ask for clarity on changes that appear ambiguous to you.

5. Every release nova gets a huge set of spec proposals and thats a huge task for the limited set of nova
cores to complete. Helping the cores with additional reviews is always a great thing.

4.1. Contributor Documentation 766

http://docs.openstack.org/infra/manual/developers.html#peer-review
https://wiki.openstack.org/wiki/Nova/CoreTeam#Membership_Expectations
https://wiki.openstack.org/wiki/Nova/CoreTeam#Membership_Expectations
https://specs.openstack.org/openstack/nova-specs/specs/victoria/template.html

Nova Documentation, Release 22.4.1.dev41

How to do great bug triage?

https://wiki.openstack.org/wiki/Nova/BugTriage

Sylvain Bauza and Stephen Finucane gave a nice presentation on this topic at the Queens summit in
Sydney.

How to step up into a project leadership role?

There are many ways to help lead the Nova project:

• Mentoring efforts, and getting started tips: https://wiki.openstack.org/wiki/Nova/Mentoring

• Info on process, with a focus on how you can go from an idea to getting code merged Nova: Nova
team process

• Consider leading an existing Nova subteam or forming a new one.

• Consider becoming a Bug tag owner.

• Contact the PTL about becoming a Czar Nova People.

4.1.2.2 Development Quickstart

This page describes how to setup and use a working Python development environment that can be used
in developing nova on Ubuntu, Fedora or Mac OS X. These instructions assume youre already familiar
with git.

Following these instructions will allow you to build the documentation and run the nova unit tests. If
you want to be able to run nova (i.e., launch VM instances), you will also need to either manually or
by letting DevStack do it for you install libvirt and at least one of the supported hypervisors. Running
nova is currently only supported on Linux, although you can run the unit tests on Mac OS X.

Note: For how to contribute to Nova, see HowToContribute. Nova uses the Gerrit code review system,
GerritWorkflow.

Setup

There are two ways to create a development environment: using DevStack, or explicitly installing and
cloning just what you need.

4.1. Contributor Documentation 767

https://wiki.openstack.org/wiki/Nova/BugTriage
https://www.openstack.org/videos/sydney-2017/upstream-bug-triage-the-hidden-gem
https://wiki.openstack.org/wiki/Nova/Mentoring
https://wiki.openstack.org/wiki/Nova#Nova_subteams
https://wiki.openstack.org/wiki/Nova/BugTriage#Tag_Owner_List
https://wiki.openstack.org/wiki/Nova#People
http://wiki.openstack.org/HypervisorSupportMatrix
http://docs.openstack.org/infra/manual/developers.html
http://docs.openstack.org/infra/manual/developers.html#development-workflow

Nova Documentation, Release 22.4.1.dev41

Using DevStack

See Devstack Documentation. If you would like to use Vagrant, there is a Vagrant for DevStack.

Explicit Install/Clone

DevStack installs a complete OpenStack environment. Alternatively, you can explicitly install and clone
just what you need for Nova development.

Getting the code

Grab the code from git:

git clone https://opendev.org/openstack/nova
cd nova

Linux Systems

The first step of this process is to install the system (not Python) packages that are required. Following
are instructions on how to do this on Linux and on the Mac.

Note: This section is tested for Nova on Ubuntu (14.04-64) and Fedora-based (RHEL 6.1) distributions.
Feel free to add notes and change according to your experiences or operating system.

Install the prerequisite packages listed in the bindep.txt file.

On Debian-based distributions (e.g., Debian/Mint/Ubuntu):

sudo apt-get install python-pip
sudo pip install tox
tox -e bindep
sudo apt-get install <indicated missing package names>

On Fedora-based distributions (e.g., Fedora/RHEL/CentOS/Scientific Linux):

sudo yum install python-pip
sudo pip install tox
tox -e bindep
sudo yum install <indicated missing package names>

On openSUSE-based distributions (SLES, openSUSE Leap / Tumbleweed):

sudo zypper in python-pip
sudo pip install tox
tox -e bindep
sudo zypper in <indicated missing package names>

4.1. Contributor Documentation 768

http://docs.openstack.org/developer/devstack/
https://github.com/openstack-dev/devstack-vagrant/blob/master/README.md

Nova Documentation, Release 22.4.1.dev41

Mac OS X Systems

Install virtualenv:

sudo easy_install virtualenv

Check the version of OpenSSL you have installed:

openssl version

The stock version of OpenSSL that ships with Mac OS X 10.6 (OpenSSL 0.9.8l) or Mac OS X 10.7
(OpenSSL 0.9.8r) or Mac OS X 10.10.3 (OpenSSL 0.9.8zc) works fine with nova. OpenSSL versions
from brew like OpenSSL 1.0.1k work fine as well.

Brew is very useful for installing dependencies. As a minimum for running tests, install the following:

brew install python3 postgres
python3 -mpip install tox

Building the Documentation

Install the prerequisite packages: graphviz

To do a full documentation build, issue the following command while the nova directory is current.

tox -edocs

That will create a Python virtual environment, install the needed Python prerequisites in that environ-
ment, and build all the documentation in that environment.

Running unit tests

See Running Python Unit Tests.

Note that some unit and functional tests use a database. See the file tools/test-setup.sh on how
the databases are set up in the OpenStack CI environment and replicate it in your test environment.

Using the pre-commit hook

Nova makes use of the pre-commit framework to allow running of some linters on each commit. This
must be enabled locally to function:

$ pip install --user pre-commit
$ pre-commit install --allow-missing-config

4.1. Contributor Documentation 769

https://docs.openstack.org/project-team-guide/project-setup/python.html#running-python-unit-tests
https://pre-commit.com/

Nova Documentation, Release 22.4.1.dev41

Using a remote debugger

Some modern IDE such as pycharm (commercial) or Eclipse (open source) support remote debugging.
In order to run nova with remote debugging, start the nova process with the following parameters:

--remote_debug-host <host IP where the debugger is running>
--remote_debug-port <port it is listening on>

Before you start your nova process, start the remote debugger using the instructions for that debugger:

• For pycharm - http://blog.jetbrains.com/pycharm/2010/12/python-remote-debug-with-pycharm/

• For Eclipse - http://pydev.org/manual_adv_remote_debugger.html

More detailed instructions are located here - https://wiki.openstack.org/wiki/Nova/RemoteDebugging

Using fake computes for tests

The number of instances supported by fake computes is not limited by physical constraints. It allows you
to perform stress tests on a deployment with few resources (typically a laptop). Take care to avoid using
scheduler filters that will limit the number of instances per compute, such as NumInstancesFilter.

Fake computes can also be used in multi hypervisor-type deployments in order to take advantage of fake
and real computes during tests:

• create many fake instances for stress tests

• create some real instances for functional tests

Fake computes can be used for testing Nova itself but also applications on top of it.

4.1.3 Nova Process

The nova community is a large community. We have lots of users, and they all have a lot of expectations
around upgrade and backwards compatibility. For example, having a good stable API, with discoverable
versions and capabilities is important for maintaining the strong ecosystem around nova.

Our process is always evolving, just as nova and the community around nova evolves over time. If there
are things that seem strange, or you have ideas on how to improve things, please bring them forward on
IRC or the openstack-discuss mailing list, so we continue to improve how the nova community operates.

This section looks at the processes and why. The main aim behind all the process is to aid communi-
cation between all members of the nova community, while keeping users happy and keeping developers
productive.

• Scope of the Nova project: The focus is on features and bug fixes that make nova work better
within this scope

• Development policies: General guidelines about whats supported

• Nova team process: The processes we follow around feature and bug submission, including how
the release calendar works, and the freezes we go under

• Blueprints, Specs and Priorities: An overview of our tracking artifacts.

• Chronological PTL guide: A chronological PTL reference guide

4.1. Contributor Documentation 770

http://blog.jetbrains.com/pycharm/2010/12/python-remote-debug-with-pycharm/
http://pydev.org/manual_adv_remote_debugger.html
https://wiki.openstack.org/wiki/Nova/RemoteDebugging

Nova Documentation, Release 22.4.1.dev41

4.1.3.1 Scope of the Nova project

Nova is focusing on doing an awesome job of its core mission. This document aims to clarify that core
mission.

This is a living document to help record where we agree about what Nova should and should not be
doing, and why. Please treat this as a discussion of interesting, and hopefully useful, examples. It is not
intended to be an exhaustive policy statement.

Mission

Our mission statement starts with:

To implement services and associated libraries to provide massively scalable, on demand,
self service access to compute resources.

Our official mission statement also includes the following examples of compute resources: bare metal,
virtual machines, and containers. For the full official mission statement see: https://governance.
openstack.org/tc/reference/projects/nova.html#mission

This document aims to help clarify what the mission statement means.

Compute Resources

Nova is all about access to compute resources. This section looks at the types of compute resource Nova
works with.

Virtual Servers

Nova was originally focused purely on providing access to virtual servers running on a variety of dif-
ferent hypervisors. The majority of users use Nova only to provide access to virtual servers from a
single hypervisor, however, its possible to have a Nova deployment include multiple different types of
hypervisors, while at the same time offering containers and bare metal servers.

Containers

The Nova API is not a good fit for a lot of container use cases. The Magnum project intends to deliver a
good container experience built on top of Nova.

Nova allows you to use containers in a similar way to how you would use on demand virtual machines.
We want to maintain this distinction, so we maintain the integrity and usefulness of the existing Nova
API.

For example, Nova is not designed to spin up new containers for every apache request, nor do we plan
to control what goes on inside containers. They get the same metadata provided to them as virtual
machines, to do with as they see fit.

4.1. Contributor Documentation 771

https://governance.openstack.org/tc/reference/projects/nova.html#mission
https://governance.openstack.org/tc/reference/projects/nova.html#mission

Nova Documentation, Release 22.4.1.dev41

Bare Metal Servers

Ironic project has been pioneering the idea of treating physical machines in a similar way to on demand
virtual machines.

Novas driver is able to allow a multi-tenant cloud style use of Ironic controlled resources.

While currently there are operations that are a fundamental part of our virtual machine abstraction that
are not currently available in ironic, such as attaching iSCSI volumes, it does not fundamentally change
the semantics of our API, and as such is a suitable Nova driver. Moreover, it is expected that gap with
shrink over time.

Driver Parity

Our goal for the Nova API is to provide a consistent abstraction to access on demand compute resources.
We are not aiming to expose all features of all hypervisors. Where the details of the underlying hyper-
visor leak through our APIs, we have failed in this goal, and we must work towards better abstractions
that are more interoperable. This is one reason why we put so much emphasis on the use of Tempest in
third party CI systems.

The key tenet of driver parity is that if a feature is supported in a driver, it must feel the same to users,
as if they where using any of the other drivers that also support that feature. The exception is that, if
possible for widely different performance characteristics, but the effect of that API call must be identical.

Following on from that, should a feature only be added to one of the drivers, we must make every effort
to ensure another driver could be implemented to match that behavior.

It is important that drivers support enough features, so the API actually provides a consistent abstraction.
For example, being unable to create a server or delete a server would severely undermine that goal. In
fact, Nova only ever manages resources it creates.

Upgrades

Nova is widely used in production. As such we need to respect the needs of our existing users. At the
same time we need evolve the current code base, including both adding and removing features.

This section outlines how we expect people to upgrade, and what we do to help existing users that
upgrade in the way we expect.

Upgrade expectations

Our upgrade plan is to concentrate on upgrades from N-1 to the Nth release. So for someone running
juno, they would have to upgrade to kilo before upgrading to liberty. This is designed to balance the need
for a smooth upgrade, against having to keep maintaining the compatibility code to make that upgrade
possible. We talk about this approach as users consuming the stable branch.

In addition, we also support users upgrading from the master branch, technically, between any two
commits within the same release cycle. In certain cases, when crossing release boundaries, you must
upgrade to the stable branch, before upgrading to the tip of master. This is to support those that are doing
some level of Continuous Deployment from the tip of master into production. Many of the public cloud
provides running OpenStack use this approach so they are able to get access to bug fixes and features
they work on into production sooner.

4.1. Contributor Documentation 772

https://www.openstack.org/brand/interop/

Nova Documentation, Release 22.4.1.dev41

This becomes important when you consider reverting a commit that turns out to have been bad idea. We
have to assume any public API change may have already been deployed into production, and as such
cannot be reverted. In a similar way, a database migration may have been deployed.

Any commit that will affect an upgrade gets the UpgradeImpact tag added to the commit message, so
there is no requirement to wait for release notes.

Dont break existing users

As a community we are aiming towards a smooth upgrade process, where users must be unaware you
have just upgraded your deployment, except that there might be additional feature available and im-
proved stability and performance of some existing features.

We dont ever want to remove features our users rely on. Sometimes we need to migrate users to a new
implementation of that feature, which may require extra steps by the deployer, but the end users must
be unaffected by such changes. However there are times when some features become a problem to
maintain, and fall into disrepair. We aim to be honest with our users and highlight the issues we have, so
we are in a position to find help to fix that situation. Ideally we are able to rework the feature so it can
be maintained, but in some rare cases, the feature no longer works, is not tested, and no one is stepping
forward to maintain that feature, the best option can be to remove that feature.

When we remove features, we need to warn users by first marking those features as deprecated, before
we finally remove the feature. The idea is to get feedback on how important the feature is to our user
base. Where a feature is important we work with the whole community to find a path forward for those
users.

API Scope

Nova aims to provide a highly interoperable and stable REST API for our users to get self-service access
to compute resources.

No more API Proxies

Nova API current has some APIs that are now (in kilo) mostly just a proxy to other OpenStack services.
If it were possible to remove a public API, these are some we might start with. As such, we dont want
to add any more.

The first example is the API that is a proxy to the Glance v1 API. As Glance moves to deprecate its v1
API, we need to translate calls from the old v1 API we expose, to Glances v2 API.

The next API to mention is the networking APIs, in particular the security groups API. Most of these
APIs exist from when nova-network existed and the proxies were added during the transition. How-
ever, security groups has a much richer Neutron API, and if you use both Nova API and Neutron API,
the mismatch can lead to some very unexpected results, in certain cases.

Our intention is to avoid adding to the problems we already have in this area.

4.1. Contributor Documentation 773

Nova Documentation, Release 22.4.1.dev41

No more Orchestration

Nova is a low level infrastructure API. It is plumbing upon which richer ideas can be built. Heat and
Magnum being great examples of that.

While we have some APIs that could be considered orchestration, and we must continue to maintain
those, we do not intend to add any more APIs that do orchestration.

Third Party APIs

Nova aims to focus on making a great API that is highly interoperable across all Nova deployments.

We have historically done a very poor job of implementing and maintaining compatibility with third
party APIs inside the Nova tree.

As such, all new efforts should instead focus on external projects that provide third party compatibility
on top of the Nova API. Where needed, we will work with those projects to extend the Nova API such
that its possible to add that functionality on top of the Nova API. However, we do not intend to add API
calls for those services to persist third party API specific information in the Nova database. Instead we
want to focus on additions that enhance the existing Nova API.

Scalability

Our mission includes the text massively scalable. Lets discuss what that means.

Nova has three main axes of scale: Number of API requests, number of compute nodes and number of
active instances. In many cases the number of compute nodes and active instances are so closely related,
you rarely need to consider those separately. There are other items, such as the number of tenants, and
the number of instances per tenant. But, again, these are very rarely the key scale issue. Its possible to
have a small cloud with lots of requests for very short lived VMs, or a large cloud with lots of longer
lived VMs. These need to scale out different components of the Nova system to reach their required
level of scale.

Ideally all Nova components are either scaled out to match the number of API requests and build re-
quests, or scaled out to match the number of running servers. If we create components that have their
load increased relative to both of these items, we can run into inefficiencies or resource contention.
Although it is possible to make that work in some cases, this should always be considered.

We intend Nova to be usable for both small and massive deployments. Where small involves 1-10
hypervisors and massive deployments are single regions with greater than 10,000 hypervisors. That
should be seen as our current goal, not an upper limit.

There are some features that would not scale well for either the small scale or the very large scale.
Ideally we would not accept these features, but if there is a strong case to add such features, we must
work hard to ensure you can run without that feature at the scale you are required to run.

4.1. Contributor Documentation 774

Nova Documentation, Release 22.4.1.dev41

IaaS not Batch Processing

Currently Nova focuses on providing on-demand compute resources in the style of classic Infrastructure-
as-a-service clouds. A large pool of compute resources that people can consume in a self-service way.

Nova is not currently optimized for dealing with a larger number of requests for compute resources
compared with the amount of compute resources currently available. We generally assume that a level
of spare capacity is maintained for future requests. This is needed for users who want to quickly scale
out, and extra capacity becomes available again as users scale in. While spare capacity is also not
required, we are not optimizing for a system that aims to run at 100% capacity at all times. As such
our quota system is more focused on limiting the current level of resource usage, rather than ensuring a
fair balance of resources between all incoming requests. This doesnt exclude adding features to support
making a better use of spare capacity, such as spot instances.

There have been discussions around how to change Nova to work better for batch job processing. But
the current focus is on how to layer such an abstraction on top of the basic primitives Nova currently
provides, possibly adding additional APIs where that makes good sense. Should this turn out to be
impractical, we may have to revise our approach.

Deployment and Packaging

Nova does not plan on creating its own packaging or deployment systems.

Our CI infrastructure is powered by Devstack. This can also be used by developers to test their work on
a full deployment of Nova.

We do not develop any deployment or packaging for production deployments. Being widely adopted by
many distributions and commercial products, we instead choose to work with all those parties to ensure
they are able to effectively package and deploy Nova.

4.1.3.2 Development policies

Out Of Tree Support

While nova has many entrypoints and other places in the code that allow for wiring in out of tree code,
upstream doesnt actively make any guarantees about these extensibility points; we dont support them,
make any guarantees about compatibility, stability, etc.

Furthermore, hooks and extension points in the code impede efforts in Nova to support interoperability
between OpenStack clouds. Therefore an effort is being made to systematically deprecate and remove
hooks, extension points, and classloading of managers and other services.

4.1. Contributor Documentation 775

Nova Documentation, Release 22.4.1.dev41

Public Contractual APIs

Although nova has many internal APIs, they are not all public contractual APIs. Below is a link of our
public contractual APIs:

• https://docs.openstack.org/api-ref/compute/

Anything not in this list is considered private, not to be used outside of nova, and should not be consid-
ered stable.

REST APIs

Follow the guidelines set in: https://wiki.openstack.org/wiki/APIChangeGuidelines

The canonical source for REST API behavior is the code not documentation. Documentation is manually
generated after the code by folks looking at the code and writing up what they think it does, and it is
very easy to get this wrong.

This policy is in place to prevent us from making backwards incompatible changes to REST APIs.

Patches and Reviews

Merging a patch requires a non-trivial amount of reviewer resources. As a patch author, you should try
to offset the reviewer resources spent on your patch by reviewing other patches. If no one does this, the
review team (cores and otherwise) become spread too thin.

For review guidelines see: Code Review Guide for Nova

Reverts for Retrospective Vetos

Sometimes our simple 2 +2s approval policy will result in errors. These errors might be a bug that was
missed, or equally importantly, it might be that other cores feel that there is a need for more discussion
on the implementation of a given piece of code.

Rather than an enforced time-based solution - for example, a patch couldnt be merged until it has been up
for review for 3 days - we have chosen an honor-based system where core reviewers would not approve
potentially contentious patches until the proposal had been sufficiently socialized and everyone had a
chance to raise any concerns.

Recognising that mistakes can happen, we also have a policy where contentious patches which were
quickly approved should be reverted so that the discussion around the proposal can continue as if the
patch had never been merged in the first place. In such a situation, the procedure is:

0. The commit to be reverted must not have been released.

1. The core team member who has a -2 worthy objection should propose a revert, stating the specific
concerns that they feel need addressing.

2. Any subsequent patches depending on the to-be-reverted patch may need to be reverted also.

3. Other core team members should quickly approve the revert. No detailed debate should be needed
at this point. A -2 vote on a revert is strongly discouraged, because it effectively blocks the right
of cores approving the revert from -2 voting on the original patch.

4.1. Contributor Documentation 776

https://docs.openstack.org/api-ref/compute/
https://wiki.openstack.org/wiki/APIChangeGuidelines
https://lists.launchpad.net/openstack/msg08574.html

Nova Documentation, Release 22.4.1.dev41

4. The original patch submitter should re-submit the change, with a reference to the original patch
and the revert.

5. The original reviewers of the patch should restore their votes and attempt to summarize their
previous reasons for their votes.

6. The patch should not be re-approved until the concerns of the people proposing the revert are
worked through. A mailing list discussion or design spec might be the best way to achieve this.

Metrics Gathering

Nova currently has a monitor plugin to gather CPU metrics on compute nodes. This feeds into the
MetricsFilter and MetricsWeigher in the scheduler. The CPU metrics monitor is only implemented for
the libvirt compute driver. External projects like Ceilometer and Watcher consume these metrics.

Over time people have tried to add new monitor plugins for things like memory bandwidth. There have
also been attempts to expose these monitors over CLI, the REST API, and notifications.

At the Newton midcycle it was decided that Nova does a poor job as a metrics gathering tool, especially
as its incomplete, not tested, and there are numerous other tools available to get this information as their
primary function.

Therefore, there is a freeze on adding new metrics monitoring plugins which also includes exposing
existing monitored metrics outside of Nova, like with the nova-manage CLI, the REST API, or the
notification bus. Long-term, metrics gathering will likely be deprecated within Nova. Since there is
not yet a clear replacement, the deprecation is open-ended, but serves as a signal that new deployments
should not rely on the metrics that Nova gathers and should instead focus their efforts on alternative
solutions for placement.

Continuous Delivery Mentality

Nova generally tries to subscribe to a philosophy of anything we merge today can be in production today,
and people can continuously deliver Nova.

In practice this means we should not merge code that will not work until some later change is merged,
because that later change may never come, or not come in the same release cycle, or may be substantially
different from what was originally intended. For example, if patch A uses code that is not available until
patch D later in the series.

The strategy for dealing with this in particularly long and complicated series of changes is to start from
the bottom with code that is no-op until it is turned on at the top of the stack, generally with some feature
flag, policy rule, API microversion, etc. So in the example above, the code from patch D should come
before patch A even if nothing is using it yet, but things will build on it. Realistically this means if you
are working on a feature that touches most of the Nova stack, i.e. compute driver/service through to API,
you will work on the compute driver/service code first, then conductor and/or scheduler, and finally the
API. An extreme example of this can be found by reading the code review guide for the cross-cell resize
feature.

Even if this philosophy is not the reality of how the vast majority of OpenStack deployments consume
Nova, it is a development philosophy to try and avoid merging broken code.

4.1. Contributor Documentation 777

https://docs.openstack.org/ceilometer/victoria/
https://docs.openstack.org/watcher/victoria/
http://lists.openstack.org/pipermail/openstack-dev/2016-August/100600.html
http://lists.openstack.org/pipermail/openstack-discuss/2019-May/006366.html
http://lists.openstack.org/pipermail/openstack-discuss/2019-May/006366.html

Nova Documentation, Release 22.4.1.dev41

4.1.3.3 Nova team process

Nova is always evolving its processes, but its important to explain why we have them: so we can all
work to ensure that the interactions we need to happen do happen. The process exists to make productive
communication between all members of our community easier.

OpenStack Wide Patterns

Nova follows most of the generally adopted norms for OpenStack projects. You can get more details
here:

• https://docs.openstack.org/infra/manual/developers.html

• https://docs.openstack.org/project-team-guide/

If you are new to Nova, please read this first: How to get (more) involved with Nova.

Dates overview

For Victoria, please see: https://wiki.openstack.org/wiki/Nova/Victoria_Release_Schedule

Note: Throughout this document any link which references the name of a release cycle in the link can
usually be changed to the name of the current cycle to get up to date information.

Feature Freeze

Feature freeze primarily provides a window of time to help the horizontal teams prepare their items for
release, while giving developers time to focus on stabilising what is currently in master, and encouraging
users and packagers to perform tests (automated, and manual) on the release, to spot any major bugs.

The Nova release process is aligned with the development cycle schedule used by many OpenStack
projects, including the following steps.

• Feature Proposal Freeze

– make sure all code is up for review

– so we can optimise for completed features, not lots of half completed features

• Feature Freeze

– make sure all feature code is merged

• String Freeze

– give translators time to translate all our strings

Note: debug logs are no longer translated

• Dependency Freeze

– time to co-ordinate the final list of dependencies, and give packagers time to package them

4.1. Contributor Documentation 778

https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/project-team-guide/
https://wiki.openstack.org/wiki/Nova/Victoria_Release_Schedule
https://docs.openstack.org/project-team-guide/release-management.html#typical-development-cycle-schedule

Nova Documentation, Release 22.4.1.dev41

– generally it is also quite destabilising to take upgrades (beyond bug fixes) this late

As with all processes here, there are exceptions. The exceptions at this stage need to be discussed with
the horizontal teams that might be affected by changes beyond this point, and as such are discussed with
one of the OpenStack release managers.

Spec and Blueprint Approval Freeze

This is a (mostly) Nova specific process.

Why we have a Spec Freeze:

• specs take a long time to review and reviewing specs throughout the cycle distracts from code
reviews

• keeping specs open and being slow at reviewing them (or just ignoring them) annoys the spec
submitters

• we generally have more code submitted that we can review, this time bounding is a useful way to
limit the number of submissions

By the freeze date, we expect all blueprints that will be approved for the cycle to be listed on
launchpad and all relevant specs to be merged. For Victoria, blueprints can be found at https:
//blueprints.launchpad.net/nova/victoria and specs at https://specs.openstack.org/openstack/nova-specs/
specs/victoria/index.html

Starting with Liberty, we are keeping a backlog open for submission at all times.

Note: The focus is on accepting and agreeing problem statements as being in scope, rather than queue-
ing up work items for the next release. We are still working on a new lightweight process to get out
of the backlog and approved for a particular release. For more details on backlog specs, please see:
http://specs.openstack.org/openstack/nova-specs/specs/backlog/index.html

There can be exceptions, usually its an urgent feature request that comes up after the initial deadline.
These will generally be discussed at the weekly Nova meeting, by adding the spec or blueprint to discuss
in the appropriate place in the meeting agenda here (ideally make yourself available to discuss the
blueprint, or alternatively make your case on the ML before the meeting): https://wiki.openstack.org/
wiki/Meetings/Nova#Agenda_for_next_meeting

String Freeze

String Freeze provides an opportunity for translators to translate user-visible messages to a variety of
languages. By not changing strings after the date of the string freeze, the job of the translators is made
a bit easier. For more information on string and other OpenStack-wide release processes see the release
management docs.

4.1. Contributor Documentation 779

https://blueprints.launchpad.net/nova/victoria
https://blueprints.launchpad.net/nova/victoria
https://specs.openstack.org/openstack/nova-specs/specs/victoria/index.html
https://specs.openstack.org/openstack/nova-specs/specs/victoria/index.html
http://specs.openstack.org/openstack/nova-specs/specs/backlog/index.html
https://wiki.openstack.org/wiki/Meetings/Nova#Agenda_for_next_meeting
https://wiki.openstack.org/wiki/Meetings/Nova#Agenda_for_next_meeting
http://docs.openstack.org/project-team-guide/release-management.html
http://docs.openstack.org/project-team-guide/release-management.html

Nova Documentation, Release 22.4.1.dev41

How do I get my code merged?

OK, so you are new to Nova, and you have been given a feature to implement. How do I make that
happen?

You can get most of your questions answered here:

• https://docs.openstack.org/infra/manual/developers.html

But lets put a Nova specific twist on things

4.1. Contributor Documentation 780

https://docs.openstack.org/infra/manual/developers.html

Nova Documentation, Release 22.4.1.dev41

Overview

launchpad

create a bug create a blueprint create a blueprint

End states

out of scopecode merged

bug fix?

idea

REST API change?

submit spec for review

a feature?

spec merged

blueprint approved for release

spec required?

add link on nova meeting agenda

blueprint hit by feature freeze

re-submit for next release

blueprint unapproved

apply procedural -2

upload code for review

remove procedural -2

review blueprint in nova meeting

no

yes

4.1. Contributor Documentation 781

Nova Documentation, Release 22.4.1.dev41

Where do you track bugs?

We track bugs here:

• https://bugs.launchpad.net/nova

If you fix an issue, please raise a bug so others who spot that issue can find the fix you kindly created for
them.

Also before submitting your patch its worth checking to see if someone has already fixed it for you
(Launchpad helps you with that, at little, when you create the bug report).

When do I need a blueprint vs a spec?

For more details refer to Blueprints, Specs and Priorities.

To understand this question, we need to understand why blueprints and specs are useful.

But here is the rough idea:

• if it needs a spec, it will need a blueprint.

• if its an API change, it needs a spec.

• if its a single small patch that touches a small amount of code, with limited deployer and doc
impact, it probably doesnt need a spec.

If you are unsure, please ask the PTL on IRC, or one of the other nova-drivers.

How do I get my blueprint approved?

So you need your blueprint approved? Here is how:

• if you dont need a spec, please add a link to your blueprint to the agenda for the next nova meeting:
https://wiki.openstack.org/wiki/Meetings/Nova

– be sure your blueprint description has enough context for the review in that meeting.

• if you need a spec, then please submit a nova-spec for review, see: https://docs.openstack.org/
infra/manual/developers.html

Got any more questions? Contact the PTL or one of the other nova-specs-core who are awake at the
same time as you. IRC is best as you will often get an immediate response, if they are too busy send
him/her an email.

How do I get a procedural -2 removed from my patch?

When feature freeze hits, any patches for blueprints that are still in review get a procedural -2 to stop
them merging. In Nova a blueprint is only approved for a single release. To have the -2 removed, you
need to get the blueprint approved for the current release (see How do I get my blueprint approved?).

4.1. Contributor Documentation 782

https://bugs.launchpad.net/nova
https://governance.openstack.org/tc/reference/projects/nova.html
https://wiki.openstack.org/wiki/Meetings/Nova
https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html
https://governance.openstack.org/tc/reference/projects/nova.html

Nova Documentation, Release 22.4.1.dev41

Why are the reviewers being mean to me?

Code reviews take intense concentration and a lot of time. This tends to lead to terse responses with very
little preamble or nicety. That said, theres no excuse for being actively rude or mean. OpenStack has
a Code of Conduct (https://www.openstack.org/legal/community-code-of-conduct/) and if you feel this
has been breached please raise the matter privately. Either with the relevant parties, the PTL or failing
those, the OpenStack Foundation.

That said, there are many objective reasons for applying a -1 or -2 to a patch:

• Firstly and simply, patches must address their intended purpose successfully.

• Patches must not have negative side-effects like wiping the database or causing a functional re-
gression. Usually removing anything, however tiny, requires a deprecation warning be issued for
a cycle.

• Code must be maintainable, that is it must adhere to coding standards and be as readable as
possible for an average OpenStack developer (we acknowledge that this person is not easy to
define).

• Patches must respect the direction of the project, for example they should not make approved
specs substantially more difficult to implement.

• Release coordinators need the correct process to be followed so scope can be tracked accurately.
Bug fixes require bugs, features require blueprints and all but the simplest features require specs.
If there is a blueprint, it must be approved for the release/milestone the patch is attempting to
merge into.

Please particularly bear in mind that a -2 does not mean never ever nor does it mean your idea is bad
and you are dumb. It simply means do not merge today. You may need to wait some time, rethink your
approach or even revisit the problem definition but there is almost always some way forward. The core
who applied the -2 should tell you what you need to do.

My code review seems stuck, what can I do?

First and foremost - address any -1s and -2s! The review load on Nova is high enough that patches with
negative reviews often get filtered out entirely. A few tips:

• Be precise. Ensure youre not talking at cross purposes.

• Try to understand where the reviewer is coming from. They may have a very different perspective
and/or use-case to you.

• If you dont understand the problem, ask them to explain - this is common and helpful behaviour.

• Be positive. Everyones patches have issues, including core reviewers. No-one cares once the
issues are fixed.

• Try not to flip-flop. When two reviewers are pulling you in different directions, stop pushing code
and negotiate the best way forward.

• If the reviewer does not respond to replies left on the patchset, reach out to them on IRC or
email. If they still dont respond, you can try to ask their colleagues if theyre on holiday (or simply
wait). Finally, you can ask for mediation in the Nova meeting by adding it to the agenda (https:
//wiki.openstack.org/wiki/Meetings/Nova). This is also what you should do if you are unable to
negotiate a resolution to an issue.

4.1. Contributor Documentation 783

https://www.openstack.org/legal/community-code-of-conduct/
https://governance.openstack.org/tc/reference/projects/nova.html
https://wiki.openstack.org/wiki/Meetings/Nova
https://wiki.openstack.org/wiki/Meetings/Nova

Nova Documentation, Release 22.4.1.dev41

Secondly, Nova is a big project, look for things that have been waiting a long time for a review: https:
//review.opendev.org/#/q/project:openstack/nova+status:open+age:2weeks

Eventually you should get some +1s from people working through the review queue. Expect to get -1s
as well. You can ask for reviews within your company, 1-2 are useful (not more), especially if those
reviewers are known to give good reviews. You can spend some time while you wait reviewing other
peoples code - they may reciprocate and you may learn something (Why do code reviews when Im not
core?).

If youve waited an appropriate amount of time and you havent had any +1s, you can ask on IRC for
reviews. Please dont ask for core review straight away, especially not directly (IRC or email). Core
reviewer time is very valuable and gaining some +1s is a good way to show your patch meets basic
quality standards.

Once you have a few +1s, be patient. Remember the average wait times. You can ask for reviews each
week in IRC, it helps to ask when cores are awake.

Bugs

It helps to apply correct tracking information.

• Put Closes-Bug, Partial-Bug or Related-Bug in the commit message tags as necessary.

• If you have to raise a bug in Launchpad first, do it - this helps someone else find your fix.

• Make sure the bug has the correct priority and tag set.

Features

Again, it helps to apply correct tracking information. For blueprint-only features:

• Put your blueprint in the commit message, EG blueprint simple-feature.

• Mark the blueprint as NeedsCodeReview if you are finished.

• Maintain the whiteboard on the blueprint so its easy to understand which patches need reviews.

• Use a single topic for all related patches. All patches for one blueprint should share a topic.

For blueprint and spec features, do everything for blueprint-only features and also:

• Ensure your spec is approved for the current release cycle.

If your code is a project or subteam priority, the cores interested in that priority might not mind a ping
after it has sat with +1s for a week. If you abuse this privilege, youll lose respect.

If its not a priority, your blueprint/spec has been approved for the cycle and you have been patient, you
can raise it during the Nova meeting. The outcome may be that your spec gets unapproved for the cycle,
so that priority items can take focus. If this happens to you, sorry - it should not have been approved
in the first place, Nova team bit off more than they could chew, it is their mistake not yours. You can
re-propose it for the next cycle.

If its not a priority and your spec has not been approved, your code will not merge this cycle. Please
re-propose your spec for the next cycle.

4.1. Contributor Documentation 784

https://review.opendev.org/#/q/project:openstack/nova+status:open+age:2weeks
https://review.opendev.org/#/q/project:openstack/nova+status:open+age:2weeks
https://wiki.openstack.org/wiki/BugTriage#Task_2:_Prioritize_confirmed_bugs_.28bug_supervisors.29
https://wiki.openstack.org/wiki/Nova/BugTriage#Tags

Nova Documentation, Release 22.4.1.dev41

Nova Process Mission

This section takes a high level look at the guiding principles behind the Nova process.

Open

Our mission is to have:

• Open Source

• Open Design

• Open Development

• Open Community

We have to work out how to keep communication open in all areas. We need to be welcoming and
mentor new people, and make it easy for them to pickup the knowledge they need to get involved with
OpenStack. For more info on Open, please see: https://wiki.openstack.org/wiki/Open

Interoperable API, supporting a vibrant ecosystem

An interoperable API that gives users on-demand access to compute resources is at the heart of novas
mission.

Nova has a vibrant ecosystem of tools built on top of the current Nova API. All features should be
designed to work with all technology combinations, so the feature can be adopted by our ecosystem. If
a new feature is not adopted by the ecosystem, it will make it hard for your users to make use of those
features, defeating most of the reason to add the feature in the first place. The microversion system
allows users to isolate themselves

This is a very different aim to being pluggable or wanting to expose all capabilities to end users. At
the same time, it is not just a lowest common denominator set of APIs. It should be discoverable
which features are available, and while no implementation details should leak to the end users, purely
admin concepts may need to understand technology specific details that back the interoperable and more
abstract concepts that are exposed to the end user. This is a hard goal, and one area we currently dont do
well is isolating image creators from these technology specific details.

Smooth Upgrades

As part of our mission for a vibrant ecosystem around our APIs, we want to make it easy for those
deploying Nova to upgrade with minimal impact to their users. Here is the scope of Novas upgrade
support:

• upgrade from any commit, to any future commit, within the same major release

• only support upgrades between N and N+1 major versions, to reduce technical debt relating to
upgrades

Here are some of the things we require developers to do, to help with upgrades:

• when replacing an existing feature or configuration option, make it clear how to transition to any
replacement

4.1. Contributor Documentation 785

https://wiki.openstack.org/wiki/Open

Nova Documentation, Release 22.4.1.dev41

• deprecate configuration options and features before removing them

– i.e. continue to support and test features for at least one release before they are removed

– this gives time for operator feedback on any removals

• End User API will always be kept backwards compatible

Interaction goals

When thinking about the importance of process, we should take a look at: http://agilemanifesto.org

With that in mind, lets look at how we want different members of the community to interact. Lets start
with looking at issues we have tried to resolve in the past (currently in no particular order). We must:

• have a way for everyone to review blueprints and designs, including allowing for input from
operators and all types of users (keep it open)

• take care to not expand Novas scope any more than absolutely necessary

• ensure we get sufficient focus on the core of Nova so that we can maintain or improve the stability
and flexibility of the overall codebase

• support any API we release approximately forever. We currently release every commit, so were
motivated to get the API right the first time

• avoid low priority blueprints that slow work on high priority work, without blocking those forever

• focus on a consistent experience for our users, rather than ease of development

• optimise for completed blueprints, rather than more half completed blueprints, so we get maxi-
mum value for our users out of our review bandwidth

• focus efforts on a subset of patches to allow our core reviewers to be more productive

• set realistic expectations on what can be reviewed in a particular cycle, to avoid sitting in an
expensive rebase loop

• be aware of users that do not work on the project full time

• be aware of users that are only able to work on the project at certain times that may not align with
the overall community cadence

• discuss designs for non-trivial work before implementing it, to avoid the expense of late-breaking
design issues

FAQs

Why bother with all this process?

We are a large community, spread across multiple timezones, working with several horizontal teams.
Good communication is a challenge and the processes we have are mostly there to try and help fix some
communication challenges.

If you have a problem with a process, please engage with the community, discover the reasons behind
our current process, and help fix the issues you are experiencing.

4.1. Contributor Documentation 786

http://agilemanifesto.org

Nova Documentation, Release 22.4.1.dev41

Why dont you remove old process?

We do! For example, in Liberty we stopped trying to predict the milestones when a feature will land.

As we evolve, it is important to unlearn new habits and explore if things get better if we choose to
optimise for a different set of issues.

Why are specs useful?

Spec reviews allow anyone to step up and contribute to reviews, just like with code. Before we used
gerrit, it was a very messy review process, that felt very closed to most people involved in that process.

As Nova has grown in size, it can be hard to work out how to modify Nova to meet your needs. Specs
are a great way of having that discussion with the wider Nova community.

For Nova to be a success, we need to ensure we dont break our existing users. The spec template helps
focus the mind on the impact your change might have on existing users and gives an opportunity to
discuss the best way to deal with those issues.

However, there are some pitfalls with the process. Here are some top tips to avoid them:

• keep it simple. Shorter, simpler, more decomposed specs are quicker to review and merge much
quicker (just like code patches).

• specs can help with documentation but they are only intended to document the design discussion
rather than document the final code.

• dont add details that are best reviewed in code, its better to leave those things for the code review.

If we have specs, why still have blueprints?

We use specs to record the design agreement, we use blueprints to track progress on the implementation
of the spec.

Currently, in Nova, specs are only approved for one release, and must be re-submitted for each release
you want to merge the spec, although that is currently under review.

Why do we have priorities?

To be clear, there is no nova dev team manager, we are an open team of professional software developers,
that all work for a variety of (mostly competing) companies that collaborate to ensure the Nova project
is a success.

Over time, a lot of technical debt has accumulated, because there was a lack of collective ownership to
solve those cross-cutting concerns. Before the Kilo release, it was noted that progress felt much slower,
because we were unable to get appropriate attention on the architectural evolution of Nova. This was
important, partly for major concerns like upgrades and stability. We agreed its something we all care
about and it needs to be given priority to ensure that these things get fixed.

Since Kilo, priorities have been discussed at the summit. This turns in to a spec review which eventually
means we get a list of priorities here: http://specs.openstack.org/openstack/nova-specs/#priorities

4.1. Contributor Documentation 787

http://specs.openstack.org/openstack/nova-specs/#priorities

Nova Documentation, Release 22.4.1.dev41

Allocating our finite review bandwidth to these efforts means we have to limit the reviews we do on
non-priority items. This is mostly why we now have the non-priority Feature Freeze. For more on this,
see below.

Blocking a priority effort is one of the few widely acceptable reasons to block someone adding a feature.
One of the great advantages of being more explicit about that relationship is that people can step up to
help review and/or implement the work that is needed to unblock the feature they want to get landed.
This is a key part of being an Open community.

Why is there a Feature Freeze (and String Freeze) in Nova?

The main reason Nova has a feature freeze is that it allows people working on docs and translations to
sync up with the latest code. Traditionally this happens at the same time across multiple projects, so the
docs are synced between what used to be called the integrated release.

We also use this time period as an excuse to focus our development efforts on bug fixes, ideally lower
risk bug fixes, and improving test coverage.

In theory, with a waterfall hat on, this would be a time for testing and stabilisation of the product.
In Nova we have a much stronger focus on keeping every commit stable, by making use of extensive
continuous testing. In reality, we frequently see the biggest influx of fixes in the few weeks after the
release, as distributions do final testing of the released code.

It is hoped that the work on Feature Classification will lead us to better understand the levels of testing
of different Nova features, so we will be able to reduce and dependency between Feature Freeze and
regression testing. It is also likely that the move away from integrated releases will help find a more
developer friendly approach to keep the docs and translations in sync.

Why is there a non-priority Feature Freeze in Nova?

We have already discussed why we have priority features.

The rate at which code can be merged to Nova is primarily constrained by the amount of time able to
be spent reviewing code. Given this, earmarking review time for priority items means depriving it from
non-priority items.

The simplest way to make space for the priority features is to stop reviewing and merging non-priority
features for a whole milestone. The idea being developers should focus on bug fixes and priority features
during that milestone, rather than working on non-priority features.

A known limitation of this approach is developer frustration. Many developers are not being given
permission to review code, work on bug fixes or work on priority features, and so feel very unproductive
upstream. An alternative approach of slots or runways has been considered, that uses a kanban style
approach to regulate the influx of work onto the review queue. We are yet to get agreement on a more
balanced approach, so the existing system is being continued to ensure priority items are more likely to
get the attention they require.

4.1. Contributor Documentation 788

Nova Documentation, Release 22.4.1.dev41

Why do you still use Launchpad?

We are actively looking for an alternative to Launchpads bugs and blueprints.

Originally the idea was to create Storyboard. However development stalled for a while so interest waned.
The project has become more active recently so it may be worth looking again: https://storyboard.
openstack.org/#!/page/about

When should I submit my spec?

Ideally we want to get all specs for a release merged before the summit. For things that we cant get
agreement on, we can then discuss those at the summit. There will always be ideas that come up at the
summit and need to be finalised after the summit. This causes a rush which is best avoided.

How can I get my code merged faster?

So no-one is coming to review your code, how do you speed up that process?

Firstly, make sure you are following the above process. If its a feature, make sure you have an approved
blueprint. If its a bug, make sure it is triaged, has its priority set correctly, it has the correct bug tag
and is marked as in progress. If the blueprint has all the code up for review, change it from Started into
NeedsCodeReview so people know only reviews are blocking you, make sure it hasnt accidentally got
marked as implemented.

Secondly, if you have a negative review (-1 or -2) and you responded to that in a comment or uploading
a new change with some updates, but that reviewer hasnt come back for over a week, its probably a good
time to reach out to the reviewer on IRC (or via email) to see if they could look again now you have ad-
dressed their comments. If you cant get agreement, and your review gets stuck (i.e. requires mediation),
you can raise your patch during the Nova meeting and we will try to resolve any disagreement.

Thirdly, is it in merge conflict with master or are any of the CI tests failing? Particularly any third-party
CI tests that are relevant to the code you are changing. If youre fixing something that only occasionally
failed before, maybe recheck a few times to prove the tests stay passing. Without green tests, reviewers
tend to move on and look at the other patches that have the tests passing.

OK, so you have followed all the process (i.e. your patches are getting advertised via the projects
tracking mechanisms), and your patches either have no reviews, or only positive reviews. Now what?

Have you considered reviewing other peoples patches? Firstly, participating in the review process is the
best way for you to understand what reviewers are wanting to see in the code you are submitting. As
you get more practiced at reviewing it will help you to write merge-ready code. Secondly, if you help
review other peoples code and help get their patches ready for the core reviewers to add a +2, it will free
up a lot of non-core and core reviewer time, so they are more likely to get time to review your code. For
more details, please see: Why do code reviews when Im not core?

Please note, I am not recommending you go to ask people on IRC or via email for reviews. Please try
to get your code reviewed using the above process first. In many cases multiple direct pings generate
frustration on both sides and that tends to be counter productive.

Now you have got your code merged, lets make sure you dont need to fix this bug again. The fact the
bug exists means there is a gap in our testing. Your patch should have included some good unit tests
to stop the bug coming back. But dont stop there, maybe its time to add tempest tests, to make sure
your use case keeps working? Maybe you need to set up a third party CI so your combination of drivers

4.1. Contributor Documentation 789

https://storyboard.openstack.org/#!/page/about
https://storyboard.openstack.org/#!/page/about

Nova Documentation, Release 22.4.1.dev41

will keep working? Getting that extra testing in place should stop a whole heap of bugs, again giving
reviewers more time to get to the issues or features you want to add in the future.

Process Evolution Ideas

We are always evolving our process as we try to improve and adapt to the changing shape of the com-
munity. Here we discuss some of the ideas, along with their pros and cons.

Splitting out the virt drivers (or other bits of code)

Currently, Nova doesnt have strong enough interfaces to split out the virt drivers, scheduler or REST
API. This is seen as the key blocker. Lets look at both sides of the debate here.

Reasons for the split:

• can have separate core teams for each repo

– this leads to quicker turn around times, largely due to focused teams

• splitting out things from core means less knowledge required to become core in a specific area

Reasons against the split:

• loss of interoperability between drivers

– this is a core part of Novas mission, to have a single API across all deployments, and a strong
ecosystem of tools and apps built on that

– we can overcome some of this with stronger interfaces and functional tests

• new features often need changes in the API and virt driver anyway

– the new depends-on can make these cross-repo dependencies easier

• loss of code style consistency across the code base

• fear of fragmenting the nova community, leaving few to work on the core of the project

• could work in subteams within the main tree

TODO - need to complete analysis

Subteam recommendation as a +2

There are groups of people with great knowledge of particular bits of the code base. It may be a good
idea to give their recommendation of a merge greater strength. In addition, having the subteam focus
review efforts on a subset of patches should help concentrate the nova-core reviews they get, and increase
the velocity of getting code merged.

Ideally this would be done with gerrit user tags. There are some investigations by sdague in how feasible
it would be to add tags to gerrit.

4.1. Contributor Documentation 790

Nova Documentation, Release 22.4.1.dev41

Stop having to submit a spec for each release

As mentioned above, we use blueprints for tracking, and specs to record design decisions. Targeting
specs to a specific release is a heavyweight solution and blurs the lines between specs and blueprints. At
the same time, we dont want to lose the opportunity to revise existing blueprints. Maybe there is a better
balance?

What about this kind of process:

• backlog has these folders:

– backlog/incomplete - merge a partial spec

– backlog/complete - merge complete specs (remove tracking details, such as assignee part of
the template)

– ?? backlog/expired - specs are moved here from incomplete or complete when no longer
seem to be given attention (after 1 year, by default)

– /implemented - when a spec is complete it gets moved into the release directory and possibly
updated to reflect what actually happened

– there will no longer be a per-release approved spec list

To get your blueprint approved:

• add it to the next nova meeting

– if a spec is required, update the URL to point to the spec merged in a spec to the blueprint

– ensure there is an assignee in the blueprint

• a day before the meeting, a note is sent to the ML to review the list before the meeting

• discuss any final objections in the nova-meeting

– this may result in a request to refine the spec, if things have changed since it was merged

• trivial cases can be approved in advance by a nova-driver, so not all folks need to go through the
meeting

This still needs more thought, but should decouple the spec review from the release process. It is also
more compatible with a runway style system, that might be less focused on milestones.

Runways

Runways are a form of Kanban, where we look at optimising the flow through the system, by ensuring
we focus our efforts on reviewing a specific subset of patches.

The idea goes something like this:

• define some states, such as: design backlog, design review, code backlog, code review, test+doc
backlog, complete

• blueprints must be in one of the above state

– large or high priority bugs may also occupy a code review slot

• core reviewer member moves item between the slots

– must not violate the rules on the number of items in each state

4.1. Contributor Documentation 791

Nova Documentation, Release 22.4.1.dev41

– states have a limited number of slots, to ensure focus

– certain percentage of slots are dedicated to priorities, depending on point in the cycle, and
the type of the cycle, etc

Reasons for:

• more focused review effort, get more things merged more quickly

• more upfront about when your code is likely to get reviewed

• smooth out current lumpy non-priority feature freeze system

Reasons against:

• feels like more process overhead

• control is too centralised

Replacing Milestones with SemVer Releases

You can deploy any commit of Nova and upgrade to a later commit in that same release. Making our
milestones versioned more like an official release would help signal to our users that people can use the
milestones in production, and get a level of upgrade support.

It could go something like this:

• 14.0.0 is milestone 1

• 14.0.1 is milestone 2 (maybe, because we add features, it should be 14.1.0?)

• 14.0.2 is milestone 3

• we might do other releases (once a critical bug is fixed?), as it makes sense, but we will always be
the time bound ones

• 14.0.3 two weeks after milestone 3, adds only bug fixes (and updates to RPC versions?)

– maybe a stable branch is created at this point?

• 14.1.0 adds updated translations and co-ordinated docs

– this is released from the stable branch?

• 15.0.0 is the next milestone, in the following cycle

– not the bump of the major version to signal an upgrade incompatibility with 13.x

We are currently watching Ironic to see how their use of semver goes, and see what lessons need to be
learnt before we look to maybe apply this technique during M.

4.1. Contributor Documentation 792

Nova Documentation, Release 22.4.1.dev41

Feature Classification

This is a look at moving forward the support matrix effort.

The things we need to cover:

• note what is tested, and how often that test passes (via 3rd party CI, or otherwise)

– link to current test results for stable and master (time since last pass, recent pass rate, etc)

– TODO - sync with jogo on his third party CI audit and getting trends, ask infra

• include experimental features (untested feature)

• get better at the impact of volume drivers and network drivers on available features (not just
hypervisor drivers)

Main benefits:

• users get a clear picture of what is known to work

• be clear about when experimental features are removed, if no tests are added

• allows a way to add experimental things into Nova, and track either their removal or maturation

4.1.3.4 Blueprints, Specs and Priorities

Like most OpenStack projects, Nova uses blueprints and specifications (specs) to track new features, but
not all blueprints require a spec. This document covers when a spec is needed.

Note: Novas specs live at: specs.openstack.org

Specs

A spec is needed for any feature that requires a design discussion. All features need a blueprint but not
all blueprints require a spec.

If a new feature is straightforward enough that it doesnt need any design discussion, then no spec is
required. In order to provide the sort of documentation that would otherwise be provided via a spec, the
commit message should include a DocImpact flag and a thorough description of the feature from a
user/operator perspective.

Guidelines for when a feature doesnt need a spec.

• Is the feature a single self contained change?

– If the feature touches code all over the place, it probably should have a design discussion.

– If the feature is big enough that it needs more than one commit, it probably should have a
design discussion.

• Not an API change.

– API changes always require a design discussion.

4.1. Contributor Documentation 793

http://docs.openstack.org/infra/manual/developers.html#working-on-specifications-and-blueprints
http://specs.openstack.org/openstack/nova-specs/

Nova Documentation, Release 22.4.1.dev41

When a blueprint does not require a spec it still needs to be approved before the code which implements
the blueprint is merged. Specless blueprints are discussed and potentially approved during the Open
Discussion portion of the weekly nova IRC meeting. See trivial specifications for more details.

Project Priorities

• Pick several project priority themes, in the form of use cases, to help us prioritize work

– Generate list of improvement blueprints based on the themes

– Produce rough draft of list going into summit and finalize the list at the summit

– Publish list of project priorities and look for volunteers to work on them

• Update spec template to include

– Specific use cases

– State if the spec is project priority or not

• Keep an up to date list of project priority blueprints that need code review in an etherpad.

• Consumers of project priority and project priority blueprint lists:

– Reviewers looking for direction of where to spend their blueprint review time. If a large
subset of nova-core doesnt use the project priorities it means the core team is not aligned
properly and should revisit the list of project priorities

– The blueprint approval team, to help find the right balance of blueprints

– Contributors looking for something to work on

– People looking for what they can expect in the next release

4.1.3.5 Chronological PTL guide

This is just a reference guide that a PTL may use as an aid, if they choose.

New PTL

• Update the nova meeting chair

– https://github.com/openstack-infra/irc-meetings/blob/master/meetings/nova-team-meeting.
yaml

• Update the team wiki

– https://wiki.openstack.org/wiki/Nova#People

• Get acquainted with the release schedule

– Example: https://wiki.openstack.org/wiki/Nova/Stein_Release_Schedule

4.1. Contributor Documentation 794

http://eavesdrop.openstack.org/#Nova_Team_Meeting
https://specs.openstack.org/openstack/nova-specs/readme.html#trivial-specifications
https://github.com/openstack-infra/irc-meetings/blob/master/meetings/nova-team-meeting.yaml
https://github.com/openstack-infra/irc-meetings/blob/master/meetings/nova-team-meeting.yaml
https://wiki.openstack.org/wiki/Nova#People
https://wiki.openstack.org/wiki/Nova/Stein_Release_Schedule

Nova Documentation, Release 22.4.1.dev41

Project Team Gathering

• Create PTG planning etherpad, retrospective etherpad and alert about it in nova meeting and dev
mailing list

– Example: https://etherpad.openstack.org/p/nova-ptg-stein

• Run sessions at the PTG

• Have a priorities discussion at the PTG

– Example: https://etherpad.openstack.org/p/nova-ptg-stein-priorities

• Sign up for group photo at the PTG (if applicable)

• Open review runways for the cycle

– Example: https://etherpad.openstack.org/p/nova-runways-stein

After PTG

• Send PTG session summaries to the dev mailing list

• Make sure the cycle priorities spec gets reviewed and merged

– Example: https://specs.openstack.org/openstack/nova-specs/priorities/stein-priorities.html

• Run the count-blueprints script daily to gather data for the cycle burndown chart

A few weeks before milestone 1

• Plan a spec review day

• Periodically check the series goals others have proposed in the Set series goals link:

– Example: https://blueprints.launchpad.net/nova/stein/+setgoals

Milestone 1

• Do milestone release of nova and python-novaclient (in launchpad only)

– This is launchpad bookkeeping only. With the latest release team changes, projects no longer
do milestone releases. See: https://releases.openstack.org/reference/release_models.html#
cycle-with-milestones-legacy

– For nova, set the launchpad milestone release as released with the date

• Release other libraries if there are significant enough changes since last release. When releasing
the first version of a library for the cycle, bump the minor version to leave room for future stable
branch releases

– os-vif

• Release stable branches of nova

– git checkout <stable branch>

– git log --no-merges <last tag>..

4.1. Contributor Documentation 795

https://etherpad.openstack.org/p/nova-ptg-stein
https://etherpad.openstack.org/p/nova-ptg-stein-priorities
https://etherpad.openstack.org/p/nova-runways-stein
https://specs.openstack.org/openstack/nova-specs/priorities/stein-priorities.html
https://blueprints.launchpad.net/nova/stein/+setgoals
https://releases.openstack.org/reference/release_models.html#cycle-with-milestones-legacy
https://releases.openstack.org/reference/release_models.html#cycle-with-milestones-legacy

Nova Documentation, Release 22.4.1.dev41

* Examine commits that will go into the release and use it to decide whether the release
is a major, minor, or revision bump according to semver

– Then, propose the release with version according to semver x.y.z

* X - backward-incompatible changes

* Y - features

* Z - bug fixes

– Use the new-release command to generate the release

* https://releases.openstack.org/reference/using.html#using-new-release-command

Summit

• Prepare the project update presentation. Enlist help of others

• Prepare the on-boarding session materials. Enlist help of others

A few weeks before milestone 2

• Plan a spec review day (optional)

• Periodically check the series goals others have proposed in the Set series goals link:

– Example: https://blueprints.launchpad.net/nova/stein/+setgoals

Milestone 2

• Spec freeze

• Release nova and python-novaclient

• Release other libraries as needed

• Stable branch releases of nova

• For nova, set the launchpad milestone release as released with the date

Shortly after spec freeze

• Create a blueprint status etherpad to help track, especially non-priority blueprint work, to help
things get done by Feature Freeze (FF). Example:

– https://etherpad.openstack.org/p/nova-stein-blueprint-status

• Create or review a patch to add the next releases specs directory so people can propose specs for
next release after spec freeze for current release

4.1. Contributor Documentation 796

https://releases.openstack.org/reference/using.html#using-new-release-command
https://blueprints.launchpad.net/nova/stein/+setgoals
https://etherpad.openstack.org/p/nova-stein-blueprint-status

Nova Documentation, Release 22.4.1.dev41

Non-client library release freeze

• Final release for os-vif

Milestone 3

• Feature freeze day

• Client library freeze, release python-novaclient

• Close out all blueprints, including catch all blueprints like mox, versioned notifications

• Stable branch releases of nova

• For nova, set the launchpad milestone release as released with the date

Week following milestone 3

• Consider announcing the FFE (feature freeze exception process) to have people propose FFE
requests to a special etherpad where they will be reviewed and possibly sponsored:

– https://docs.openstack.org/nova/latest/contributor/process.html#non-priority-feature-freeze

Note: if there is only a short time between FF and RC1 (lately its been 2 weeks), then the only
likely candidates will be low-risk things that are almost done

A few weeks before RC

• Make a RC1 todos etherpad and tag bugs as <release>-rc-potential and keep track of
them, example:

– https://etherpad.openstack.org/p/nova-stein-rc-potential

• Go through the bug list and identify any rc-potential bugs and tag them

RC

• Do steps described on the release checklist wiki:

– https://wiki.openstack.org/wiki/Nova/ReleaseChecklist

• If we want to drop backward-compat RPC code, we have to do a major RPC version bump and
coordinate it just before the major release:

– https://wiki.openstack.org/wiki/RpcMajorVersionUpdates

– Example: https://review.opendev.org/541035

• Merge latest translations means translation patches

– Check for translations with:

4.1. Contributor Documentation 797

https://docs.openstack.org/nova/latest/contributor/process.html#non-priority-feature-freeze
https://etherpad.openstack.org/p/nova-stein-rc-potential
https://wiki.openstack.org/wiki/Nova/ReleaseChecklist
https://wiki.openstack.org/wiki/RpcMajorVersionUpdates
https://review.opendev.org/541035

Nova Documentation, Release 22.4.1.dev41

* https://review.opendev.org/#/q/status:open+project:openstack/nova+branch:
master+topic:zanata/translations

• Should NOT plan to have more than one RC if possible. RC2 should only happen if there was a
mistake and something was missed for RC, or a new regression was discovered

• Do the RPC version aliases just before RC1 if no further RCs are planned. Else do
them at RC2. In the past, we used to update all service version aliases (example: https:
//review.opendev.org/230132) but since we really only support compute being backlevel/old
during a rolling upgrade, we only need to update the compute service alias, see related
IRC discussion: http://eavesdrop.openstack.org/irclogs/%23openstack-nova/%23openstack-nova.
2018-08-08.log.html#t2018-08-08T17:13:45

– Example: https://review.opendev.org/642599

– More detail on how version aliases work: https://docs.openstack.org/nova/latest/
configuration/config.html#upgrade-levels

• Write the reno prelude for the release GA

– Example: https://review.opendev.org/644412

• Write the cycle-highlights in marketing-friendly sentences and propose to the openstack/releases
repo. Usually based on reno prelude but made more readable and friendly

– Example: https://review.opendev.org/644697

Immediately after RC

• Look for bot proposed changes to reno and stable/<cycle>

• Follow the post-release checklist

– https://wiki.openstack.org/wiki/Nova/ReleaseChecklist

– Add database migration placeholders

* Example: https://review.opendev.org/650964

– Drop old RPC compat code (if there was a RPC major version bump)

* Example: https://review.opendev.org/543580

– Bump the oldest supported compute service version * https://review.opendev.org/#/c/
738482/

• Create the launchpad series for the next cycle

• Set the development focus of the project to the new cycle series

• Set the status of the new series to active development

• Set the last series status to current stable branch release

• Set the previous to last series status to supported

• Repeat launchpad steps ^ for python-novaclient

• Register milestones in launchpad for the new cycle based on the new cycle release schedule

• Make sure the specs directory for the next cycle gets created so people can start proposing new
specs

4.1. Contributor Documentation 798

https://review.opendev.org/#/q/status:open+project:openstack/nova+branch:master+topic:zanata/translations
https://review.opendev.org/#/q/status:open+project:openstack/nova+branch:master+topic:zanata/translations
https://review.opendev.org/230132
https://review.opendev.org/230132
http://eavesdrop.openstack.org/irclogs/%23openstack-nova/%23openstack-nova.2018-08-08.log.html#t2018-08-08T17:13:45
http://eavesdrop.openstack.org/irclogs/%23openstack-nova/%23openstack-nova.2018-08-08.log.html#t2018-08-08T17:13:45
https://review.opendev.org/642599
https://docs.openstack.org/nova/latest/configuration/config.html#upgrade-levels
https://docs.openstack.org/nova/latest/configuration/config.html#upgrade-levels
https://review.opendev.org/644412
https://review.opendev.org/644697
https://wiki.openstack.org/wiki/Nova/ReleaseChecklist
https://review.opendev.org/650964
https://review.opendev.org/543580
https://review.opendev.org/#/c/738482/
https://review.opendev.org/#/c/738482/

Nova Documentation, Release 22.4.1.dev41

• Make sure to move implemented specs from the previous release

– Use tox -e move-implemented-specs <release>

– Also remove template from doc/source/specs/<release>/index.rst

– Also delete template file doc/source/specs/<release>/template.rst

• Create new release wiki:

– Example: https://wiki.openstack.org/wiki/Nova/Train_Release_Schedule

Miscellaneous Notes

How to approve a launchpad blueprint

• Set the approver as the person who +W the spec, or set to self if its specless

• Set the Direction => Approved and Definition => Approved and make sure the Series goal is set
to the current release. If code is already proposed, set Implementation => Needs Code Review

• Add a comment to the Whiteboard explaining the approval, with a date (launchpad does not record
approval dates). For example: We discussed this in the team meeting and agreed to approve this
for <release>. <nick> <YYYYMMDD>

How to complete a launchpad blueprint

• Set Implementation => Implemented. The completion date will be recorded by launchpad

4.1.4 Reviewing

• Release Notes: When we need a release note for a contribution.

• Code Review Guide for Nova: Important cheat sheet for whats important when doing code review
in Nova, especially some things that are hard to test for, but need human eyes.

• Internationalization: What we require for i18n in patches

• Documentation Guidelines: Guidelines for handling documentation contributions

4.1.4.1 Release Notes

What is reno ?

Nova uses reno for providing release notes in-tree. That means that a patch can include a reno file or a
series can have a follow-on change containing that file explaining what the impact is.

A reno file is a YAML file written in the releasenotes/notes tree which is generated using the
reno tool this way:

$ tox -e venv -- reno new <name-your-file>

4.1. Contributor Documentation 799

https://wiki.openstack.org/wiki/Nova/Train_Release_Schedule
https://docs.openstack.org/reno/latest/

Nova Documentation, Release 22.4.1.dev41

where usually <name-your-file> can be bp-<blueprint_name> for a blueprint or
bug-XXXXXX for a bugfix.

Refer to the reno documentation for more information.

When a release note is needed

A release note is required anytime a reno section is needed. Below are some examples for each section.
Any sections that would be blank should be left out of the note file entirely. If no section is needed, then
you know you dont need to provide a release note :-)

• upgrade

– The patch has an UpgradeImpact tag

– A DB change needs some deployer modification (like a migration)

– A configuration option change (deprecation, removal or modified default)

– some specific changes that have a DocImpact tag but require further action from an
deployer perspective

– any patch that requires an action from the deployer in general

• security

– If the patch fixes a known vulnerability

• features

– If the patch has an APIImpact tag

– For nova-manage and python-novaclient changes, if it adds or changes a new command,
including adding new options to existing commands

– not all blueprints in general, just the ones impacting a Development policies

– a new virt driver is provided or an existing driver impacts the HypervisorSupportMatrix

• critical

– Bugfixes categorized as Critical in Launchpad impacting users

• fixes

– No clear definition of such bugfixes. Hairy long-standing bugs with high importance
that have been fixed are good candidates though.

Three sections are left intentionally unexplained (prelude, issues and other). Those are targeted
to be filled in close to the release time for providing details about the soon-ish release. Dont use them
unless you know exactly what you are doing.

4.1. Contributor Documentation 800

https://docs.openstack.org/reno/latest/user/index.html
http://docs.openstack.org/infra/manual/developers.html#peer-review
http://docs.openstack.org/infra/manual/developers.html#peer-review
http://docs.openstack.org/infra/manual/developers.html#peer-review

Nova Documentation, Release 22.4.1.dev41

4.1.4.2 Code Review Guide for Nova

OpenStack has a general set of code review guidelines: https://docs.openstack.org/infra/manual/
developers.html#peer-review

What follows is a very terse set of points for reviewers to consider when looking at nova code. These are
things that are important for the continued smooth operation of Nova, but that tend to be carried as tribal
knowledge instead of being written down. It is an attempt to boil down some of those things into nearly
checklist format. Further explanation about why some of these things are important belongs elsewhere
and should be linked from here.

Upgrade-Related Concerns

RPC API Versions

• If an RPC method is modified, the following needs to happen:

– The manager-side (example: compute/manager) needs a version bump

– The manager-side method needs to tolerate older calls as well as newer calls

– Arguments can be added as long as they are optional. Arguments cannot be removed or
changed in an incompatible way.

– The RPC client code (example: compute/rpcapi.py) needs to be able to honor a pin for
the older version (see self.client.can_send_version() calls). If we are pinned at 1.5, but the
version requirement for a method is 1.7, we need to be able to formulate the call at version
1.5.

– Methods can drop compatibility with older versions when we bump a major version.

• RPC methods can be deprecated by removing the client (example: compute/rpcapi.py) implemen-
tation. However, the manager method must continue to exist until the major version of the API is
bumped.

Object Versions

• If a tracked attribute (i.e. listed in fields) or remotable method is added, or a method is changed,
the object version must be bumped. Changes for methods follow the same rules as above for
regular RPC methods. We have tests to try to catch these changes, which remind you to bump the
version and then correct the version-hash in the tests.

• Field types cannot be changed. If absolutely required, create a new attribute and deprecate the old
one. Ideally, support converting the old attribute to the new one with an obj_load_attr() handler.
There are some exceptional cases where changing the type can be allowed, but care must be taken
to ensure it does not affect the wireline API.

• New attributes should be removed from the primitive in obj_make_compatible() if the attribute
was added after the target version.

• Remotable methods should not return unversioned structures wherever possible. They should
return objects or simple values as the return types are not (and cannot) be checked by the hash
tests.

4.1. Contributor Documentation 801

https://docs.openstack.org/infra/manual/developers.html#peer-review
https://docs.openstack.org/infra/manual/developers.html#peer-review

Nova Documentation, Release 22.4.1.dev41

• Remotable methods should not take complex structures as arguments. These cannot be verified
by the hash tests, and thus are subject to drift. Either construct an object and pass that, or pass all
the simple values required to make the call.

• Changes to an object as described above will cause a hash to change in TestObjectVersions. This
is a reminder to the developer and the reviewer that the version needs to be bumped. There are
times when we need to make a change to an object without bumping its version, but those cases
are only where the hash logic detects a change that is not actually a compatibility issue and must
be handled carefully.

Database Schema

• Changes to the database schema must generally be additive-only. This means you can add
columns, but you cant drop or alter a column. We have some hacky tests to try to catch these
things, but they are fragile. Extreme reviewer attention to non-online alterations to the DB schema
will help us avoid disaster.

• Dropping things from the schema is a thing we need to be extremely careful about, making sure
that the column has not been used (even present in one of our models) for at least a release.

• Data migrations must not be present in schema migrations. If data needs to be converted to
another format, or moved from one place to another, then that must be done while the database
server remains online. Generally, this can and should be hidden within the object layer so that an
object can load from either the old or new location, and save to the new one.

• Multiple Cells v2 cells are supported started in the Pike release. As such, any online data migra-
tions that move data from a cell database to the API database must be multi-cell aware.

REST API

When making a change to the nova API, we should always follow the API WG guidelines rather than
going for local consistency. Developers and reviewers should read all of the guidelines, but they are very
long. So here are some key points:

• Terms

– project should be used in the REST API instead of tenant.

– server should be used in the REST API instead of instance.

– compute should be used in the REST API instead of nova.

• Naming Conventions

– URL should not include underscores; use hyphens (-) instead.

– The field names contained in a request/response body should use snake_case style, not
CamelCase or Mixed_Case style.

• HTTP Response Codes

– Synchronous resource creation: 201 Created

– Asynchronous resource creation: 202 Accepted

– Synchronous resource deletion: 204 No Content

4.1. Contributor Documentation 802

https://specs.openstack.org/openstack/api-wg/
https://specs.openstack.org/openstack/api-wg/guidelines/terms.html
https://specs.openstack.org/openstack/api-wg/guidelines/naming.html
http://specs.openstack.org/openstack/api-wg/guidelines/http/response-codes.html

Nova Documentation, Release 22.4.1.dev41

– For all other successful operations: 200 OK

Config Options

Location

The central place where all config options should reside is the /nova/conf/ package. Options that
are in named sections of nova.conf, such as [serial_console], should be in their own module.
Options that are in the [DEFAULT] section should be placed in modules that represent a natural group-
ing. For example, all of the options that affect the scheduler would be in the scheduler.py file, and
all the networking options would be moved to network.py.

Implementation

A config option should be checked for:

• A short description which explains what it does. If it is a unit (e.g. timeouts or so) describe the
unit which is used (seconds, megabyte, mebibyte,).

• A long description which explains the impact and scope. The operators should know the expected
change in the behavior of Nova if they tweak this.

• Descriptions/Validations for the possible values.

– If this is an option with numeric values (int, float), describe the edge cases (like the min
value, max value, 0, -1).

– If this is a DictOpt, describe the allowed keys.

– If this is a StrOpt, list any possible regex validations, or provide a list of acceptable and/or
prohibited values.

Previously used sections which explained which services consume a specific config option and which
options are related to each other got dropped because they are too hard to maintain: http://lists.openstack.
org/pipermail/openstack-dev/2016-May/095538.html

Third Party Tests

Any change that is not tested well by the Jenkins check jobs must have a recent +1 vote from an ap-
propriate third party test (or tests) on the latest patchset, before a core reviewer is allowed to make a +2
vote.

4.1. Contributor Documentation 803

http://lists.openstack.org/pipermail/openstack-dev/2016-May/095538.html
http://lists.openstack.org/pipermail/openstack-dev/2016-May/095538.html

Nova Documentation, Release 22.4.1.dev41

Virt drivers

At a minimum, we must ensure that any technology specific code has a +1 from the relevant
third party test, on the latest patchset, before a +2 vote can be applied. Specifically, changes to
nova/virt/driver/<NNNN> need a +1 vote from the respective third party CI. For example, if you change
something in the Hyper-V virt driver, you must wait for a +1 from the Hyper-V CI on the latest patchset,
before you can give that patch set a +2 vote.

This is important to ensure:

• We keep those drivers stable

• We dont break that third party CI

Notes

Please note:

• Long term, we should ensure that any patch a third party CI is allowed to vote on, can be blocked
from merging by that third party CI. But we need a lot more work to make something like that
feasible, hence the proposed compromise.

• While its possible to break a virt driver CI system by changing code that is outside the virt drivers,
this policy is not focusing on fixing that. A third party test failure should always be investigated,
but the failure of a third party test to report in a timely manner should not block others.

• We are only talking about the testing of in-tree code. Please note the only public API is our REST
API, see: Development policies

Should I run the experimental queue jobs on this change?

Because we cant run all CI jobs in the check and gate pipelines, some jobs can be executed on demand,
thanks to the experimental pipeline. To run the experimental jobs, you need to comment your Gerrit
review with check experimental.

The experimental jobs aim to test specific features, such as LXC containers or DVR with multiple nodes.
Also, it might be useful to run them when we want to test backward compatibility with tools that deploy
OpenStack outside Devstack (e.g. TripleO, etc). They can produce a non-voting feedback of whether
the system continues to work when we deprecate or remove some options or features in Nova.

The experimental queue can also be used to test that new CI jobs are correct before making them voting.

Database Schema

• Use the utf8 charset only where necessary. Some string fields, such as hex-stringified UUID
values, MD5 fingerprints, SHA1 hashes or base64-encoded data, are always interpreted using
ASCII encoding. A hex-stringified UUID value in latin1 is 1/3 the size of the same field in
utf8, impacting performance without bringing any benefit. If there are no string type columns
in the table, or the string type columns contain only the data described above, then stick with
latin1.

4.1. Contributor Documentation 804

Nova Documentation, Release 22.4.1.dev41

Microversion API

If a new microversion API is added, the following needs to happen:

• A new patch for the microversion API change in python-novaclient side should be submitted
before the microversion change in Nova is merged. See Adding support for a new microversion
in python-novaclient for more details.

• If the microversion changes the response schema, a new schema and test for the microversion must
be added to Tempest. The microversion change in Nova should not be merged until the Tempest
test is submitted and at least passing; it does not need to be merged yet as long as it is testing the
Nova change via Depends-On. The Nova microversion change commit message should reference
the Change-Id of the Tempest test for reviewers to identify it.

Notifications

• Every new notification type shall use the new versioned notification infrastructure documented in
Notifications in Nova

Release Notes

A release note is required on changes that have upgrade impact, security impact, introduce a new feature,
fix Critical bugs, or fix long-standing bugs with high importance. See Release Notes for details on how
to create a release note, each available section and the type of content required.

4.1.4.3 Internationalization

Nova uses the oslo.i18n library to support internationalization. The oslo.i18n library is built on top of
gettext and provides functions that are used to enable user-facing strings such as log messages to appear
in the appropriate language in different locales.

Nova exposes the oslo.i18n library support via the nova/i18n.py integration module. This module
provides the functions needed to wrap translatable strings. It provides the _() wrapper for general user-
facing messages (such as ones that end up in command line responses, or responses over the network).

One upon a time there was an effort to translate log messages in OpenStack projects. But starting with
the Ocata release these are no longer being supported. Log messages should not be translated.

You should use the basic wrapper _() for strings which are not log messages that are expected to get to
an end user:

raise nova.SomeException(_('Invalid service catalogue'))

Do not use locals() for formatting messages because:

1. It is not as clear as using explicit dicts.

2. It could produce hidden errors during refactoring.

3. Changing the name of a variable causes a change in the message.

4. It creates a lot of otherwise unused variables.

4.1. Contributor Documentation 805

https://docs.openstack.org/python-novaclient/victoria/contributor/microversions
https://docs.openstack.org/oslo.i18n/victoria/
http://docs.python.org/library/gettext.html

Nova Documentation, Release 22.4.1.dev41

If you do not follow the project conventions, your code may cause hacking checks to fail.

The _() function can be imported with

from nova.i18n import _

4.1.4.4 Documentation Guidelines

These are some basic guidelines for contributing to documentation in nova.

Review Guidelines

Documentation-only patches differ from code patches in a few ways.

• They are often written by users / operators that arent plugged into daily cycles of nova or on IRC

• Outstanding patches are far more likely to trigger merge conflict in Git than code patches

• There may be wide variation on points of view of what the best or clearest way is to say a thing

This all can lead to a large number of practical documentation improvements stalling out because the
author submitted the fix, and does not have the time to merge conflict chase or is used to the Gerrit
follow up model.

As such, documentation patches should be evaluated in the basic context of does this make things better
than the current tree. Patches are cheap, it can always be further enhanced in future patches.

Typo / trivial documentation only fixes should get approved with a single +2.

How users consume docs

The current primary target for all documentation in nova is the web. While it is theoretically possible to
generate PDF versions of the content, the tree is not currently well structured for that, and its not clear
there is an audience for that.

The main nova docs tree doc/source is published per release, so there will be copies of all of this as
both the latest URL (which is master), and for every stable release (e.g. pike).

Note: This raises an interesting and unexplored question about whether we want all of doc/source
published with stable branches that will be stale and unimproved as we address content in latest.

The api-ref and api-guide publish only from master to a single site on docs.openstack.org. As
such, they are effectively branchless.

4.1. Contributor Documentation 806

Nova Documentation, Release 22.4.1.dev41

Guidelines for consumable docs

• Give users context before following a link

Most users exploring our documentation will be trying to learn about our software. Entry and
subpages that provide links to in depth topics need to provide some basic context about why
someone would need to know about a filter scheduler before following the link named
filter scheduler.

Providing these summaries helps the new consumer come up to speed more quickly.

• Doc moves require .htaccess redirects

If a file is moved in a documentation source tree, we should be aware that it might be linked from
external sources, and is now a 404 Not Found error for real users.

All doc moves should include an entry in doc/source/_extra/.htaccess to redirect from
the old page to the new page.

• Images are good, please provide source

An image is worth a 1000 words, but can go stale pretty quickly. We ideally want png files for
display on the web, but thats a non modifiable format. For any new diagram contributions we
should also get some kind of source format (svg is ideal as it can be modified with open tools)
along with png formats.

Long Term TODOs

• Sort out our toctree / sidebar navigation

During the bulk import of the install, admin, config guides we started with a unified toctree, which
was a ton of entries, and made the navigation sidebar in Nova incredibly confusing. The short term
fix was to just make that almost entirely hidden and rely on structured landing and sub pages.

Long term it would be good to reconcile the toctree / sidebar into something that feels coherent.

4.1.5 Testing

Because Python is a dynamic language, code that is not tested might not even be Python code. All new
code needs to be validated somehow.

• Test Strategy: An overview of our test taxonomy and the kinds of testing we do and expect.

• Testing Guides: There are also specific testing guides for features that are hard to test in our gate.

– Testing NUMA related hardware setup with libvirt

– Testing Serial Console

– Testing Zero Downtime Upgrade Process

– Testing Down Cells

• Profiling Guides: These are guides to profiling nova.

– Profiling With Eventlet

4.1. Contributor Documentation 807

Nova Documentation, Release 22.4.1.dev41

4.1.5.1 Test Strategy

A key part of the four opens is ensuring the OpenStack delivers well-tested and usable software. For
more details see: http://docs.openstack.org/project-team-guide/introduction.html#the-four-opens

Experience has shown that untested features are frequently broken, in part due to the velocity of upstream
changes. As we aim to ensure we keep all features working across upgrades, we must aim to test all
features.

Reporting Test Coverage

For details on plans to report the current test coverage, refer to Feature Classification.

Running tests and reporting results

Running tests locally

Please see https://opendev.org/openstack/nova/src/branch/master/HACKING.rst#running-tests

Voting in Gerrit

On every review in gerrit, check tests are run on very patch set, and are able to report a +1 or -1 vote.
For more details, please see: http://docs.openstack.org/infra/manual/developers.html#automated-testing

Before merging any code, there is an integrate gate test queue, to ensure master is always passing all
tests. For more details, please see: http://docs.openstack.org/infra/zuul/user/gating.html

Infra vs Third-Party

Tests that use fully open source components are generally run by the OpenStack Infra teams. Test setups
that use non-open technology must be run outside of that infrastructure, but should still report their
results upstream.

For more details, please see: http://docs.openstack.org/infra/system-config/third_party.html

Ad-hoc testing

It is particularly common for people to run ad-hoc tests on each released milestone, such as RC1, to stop
regressions. While these efforts can help stabilize the release, as a community we have a much stronger
preference for continuous integration testing. Partly this is because we encourage users to deploy master,
and we generally have to assume that any upstream commit may already been deployed in production.

4.1. Contributor Documentation 808

http://docs.openstack.org/project-team-guide/introduction.html#the-four-opens
https://opendev.org/openstack/nova/src/branch/master/HACKING.rst#running-tests
http://docs.openstack.org/infra/manual/developers.html#automated-testing
http://docs.openstack.org/infra/zuul/user/gating.html
http://docs.openstack.org/infra/system-config/third_party.html

Nova Documentation, Release 22.4.1.dev41

Types of tests

Unit tests

Unit tests help document and enforce the contract for each component. Without good unit test coverage
it is hard to continue to quickly evolve the codebase. The correct level of unit test coverage is very
subjective, and as such we are not aiming for a particular percentage of coverage, rather we are aiming
for good coverage. Generally, every code change should have a related unit test: https://opendev.org/
openstack/nova/src/branch/master/HACKING.rst#creating-unit-tests

Integration tests

Today, our integration tests involve running the Tempest test suite on a variety of Nova deployment
scenarios. The integration job setup is defined in the .zuul.yaml file in the root of the nova repository.
Jobs are restricted by queue:

• check: jobs in this queue automatically run on all proposed changes even with non-voting jobs

• gate: jobs in this queue automatically run on all approved changes (voting jobs only)

• experimental: jobs in this queue are non-voting and run on-demand by leaving a review
comment on the change of check experimental

In addition, we have third parties running the tests on their preferred Nova deployment scenario.

Functional tests

Nova has a set of in-tree functional tests that focus on things that are out of scope for tempest testing
and unit testing. Tempest tests run against a full live OpenStack deployment, generally deployed using
devstack. At the other extreme, unit tests typically use mock to test a unit of code in isolation. Functional
tests dont run an entire stack, they are isolated to nova code, and have no reliance on external services.
They do have a WSGI app, nova services and a database, with minimal stubbing of nova internals.

Interoperability tests

The DefCore committee maintains a list that contains a subset of Tempest tests. These are used to verify
if a particular Nova deployments API responds as expected. For more details, see: https://opendev.org/
osf/interop

4.1.5.2 Testing NUMA related hardware setup with libvirt

This page describes how to test the libvirt drivers handling of the NUMA placement, large page allo-
cation and CPU pinning features. It relies on setting up a virtual machine as the test environment and
requires support for nested virtualization since plain QEMU is not sufficiently functional. The virtual
machine will itself be given NUMA topology, so it can then act as a virtual host for testing purposes.

4.1. Contributor Documentation 809

https://opendev.org/openstack/nova/src/branch/master/HACKING.rst#creating-unit-tests
https://opendev.org/openstack/nova/src/branch/master/HACKING.rst#creating-unit-tests
https://opendev.org/osf/interop
https://opendev.org/osf/interop

Nova Documentation, Release 22.4.1.dev41

Provisioning a virtual machine for testing

The entire test process will take place inside a large virtual machine running Fedora 24. The instructions
should work for any other Linux distribution which includes libvirt >= 1.2.9 and QEMU >= 2.1.2

The tests will require support for nested KVM, which is not enabled by default on hypervisor hosts. It
must be explicitly turned on in the host when loading the kvm-intel/kvm-amd kernel modules.

On Intel hosts verify it with

cat /sys/module/kvm_intel/parameters/nested
N

rmmod kvm-intel
echo "options kvm-intel nested=y" > /etc/modprobe.d/dist.conf
modprobe kvm-intel

cat /sys/module/kvm_intel/parameters/nested
Y

While on AMD hosts verify it with

cat /sys/module/kvm_amd/parameters/nested
0

rmmod kvm-amd
echo "options kvm-amd nested=1" > /etc/modprobe.d/dist.conf
modprobe kvm-amd

cat /sys/module/kvm_amd/parameters/nested
1

The virt-install command below shows how to provision a basic Fedora 24 x86_64 guest with 8 virtual
CPUs, 8 GB of RAM and 20 GB of disk space:

cd /var/lib/libvirt/images
wget https://download.fedoraproject.org/pub/fedora/linux/releases/29/
↪→Server/x86_64/iso/Fedora-Server-netinst-x86_64-29-1.2.iso

virt-install \
--name f29x86_64 \
--ram 8000 \
--vcpus 8 \
--file /var/lib/libvirt/images/f29x86_64.img \
--file-size 20
--cdrom /var/lib/libvirt/images/Fedora-Server-netinst-x86_64-24-1.2.iso

↪→\
--os-variant fedora23

When the virt-viewer application displays the installer, follow the defaults for the installation with a
couple of exceptions:

• The automatic disk partition setup can be optionally tweaked to reduce the swap space allocated.
No more than 500MB is required, freeing up an extra 1.5 GB for the root disk

• Select Minimal install when asked for the installation type since a desktop environment is not
required

4.1. Contributor Documentation 810

Nova Documentation, Release 22.4.1.dev41

• When creating a user account be sure to select the option Make this user administrator so it gets
sudo rights

Once the installation process has completed, the virtual machine will reboot into the final operating
system. It is now ready to deploy an OpenStack development environment.

Setting up a devstack environment

For later ease of use, copy your SSH public key into the virtual machine:

ssh-copy-id <IP of VM>

Now login to the virtual machine:

ssh <IP of VM>

The Fedora minimal install does not contain git. Install git and clone the devstack repo:

$ sudo dnf install git
$ git clone https://opendev.org/openstack/devstack
$ cd devstack

At this point a fairly standard devstack setup can be done with one exception: we should enable the
NUMATopologyFilter filter, which we will use later. For example:

$ cat >>local.conf <<EOF
[[local|localrc]]
DATA_DIR=$DEST/data
SERVICE_DIR=$DEST/status

LOGFILE=$DATA_DIR/logs/stack.log
VERBOSE=True

disable_service n-net
enable_service neutron q-svc q-dhcp q-l3 q-meta q-agt

MYSQL_PASSWORD=123456
DATABASE_PASSWORD=123456
SERVICE_TOKEN=123456
SERVICE_PASSWORD=123456
ADMIN_PASSWORD=123456
RABBIT_PASSWORD=123456

[[post-config|$NOVA_CONF]]
[filter_scheduler]
enabled_filters=ComputeFilter,AvailabilityZoneFilter,
↪→ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter,
↪→NUMATopologyFilter
EOF
$ FORCE=yes ./stack.sh

Unfortunately while devstack starts various system services and changes various system settings it
doesnt make the changes persistent. Fix that now to avoid later surprises after reboots:

4.1. Contributor Documentation 811

Nova Documentation, Release 22.4.1.dev41

$ sudo systemctl enable mariadb.service
$ sudo systemctl enable rabbitmq-server.service
$ sudo systemctl enable httpd.service

$ sudo vi /etc/sysconfig/selinux
SELINUX=permissive

Testing basis non-NUMA usage

First to confirm weve not done anything unusual to the traditional operation of nova libvirt guests boot
a tiny instance:

$. openrc admin
$ openstack server create --image cirros-0.4.0-x86_64-disk --flavor m1.
↪→tiny \

cirros1

The host will be reporting NUMA topology, but there should only be a single NUMA cell this point. We
can validate this by querying the nova database. For example (with object versioning fields removed):

$ mysql -u root -p123456 nova_cell1
MariaDB [nova]> select numa_topology from compute_nodes;
+--
↪→--+
| numa_topology
↪→ |
+--
↪→--+
| {
| "nova_object.name": "NUMATopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.2",
| "nova_object.data": {
| "cells": [{
| "nova_object.name": "NUMACell",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.4",
| "nova_object.data": {
| "id": 0,
| "cpuset": [0, 1, 2, 3, 4, 5, 6, 7],
| "pcpuset": [0, 1, 2, 3, 4, 5, 6, 7],
| "memory": 7975,
| "cpu_usage": 0,
| "memory_usage": 0,
| "pinned_cpus": [],
| "siblings": [
| [0],
| [1],
| [2],
| [3],
| [4],
| [5],
| [6],
| [7]

(continues on next page)

4.1. Contributor Documentation 812

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

|],
| "mempages": [{
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 4,
| "total": 2041795,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["size_kb", "total", "reserved
↪→", "used"]
| }, {
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 2048,
| "total": 0,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["size_kb", "total", "reserved
↪→", "used"]
| }, {
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 1048576,
| "total": 0,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["size_kb", "total", "reserved
↪→", "used"]
| }],
| "network_metadata": {
| "nova_object.name": "NetworkMetadata",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.0",
| "nova_object.data": {
| "physnets": [],
| "tunneled": false
| },
| "nova_object.changes": ["tunneled", "physnets"]
| }
| },
| "nova_object.changes": ["pinned_cpus", "memory_usage",
↪→"siblings", "mempages", "memory", "id", "network_metadata", "cpuset",
↪→"cpu_usage", "pcpuset"]
| }]
| },
| "nova_object.changes": ["cells"]
| }

(continues on next page)

4.1. Contributor Documentation 813

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

+--
↪→--+

Meanwhile, the guest instance should not have any NUMA configuration recorded:

MariaDB [nova]> select numa_topology from instance_extra;
+---------------+
| numa_topology |
+---------------+
| NULL |
+---------------+

Reconfiguring the test instance to have NUMA topology

Now that devstack is proved operational, it is time to configure some NUMA topology for the test VM,
so that it can be used to verify the OpenStack NUMA support. To do the changes, the VM instance that
is running devstack must be shut down:

$ sudo shutdown -h now

And now back on the physical host edit the guest config as root:

$ sudo virsh edit f29x86_64

The first thing is to change the <cpu> block to do passthrough of the host CPU. In particular this exposes
the SVM or VMX feature bits to the guest so that Nested KVM can work. At the same time we want
to define the NUMA topology of the guest. To make things interesting were going to give the guest an
asymmetric topology with 4 CPUS and 4 GBs of RAM in the first NUMA node and 2 CPUs and 2 GB
of RAM in the second and third NUMA nodes. So modify the guest XML to include the following CPU
XML:

<cpu mode='host-passthrough'>
<numa>

<cell id='0' cpus='0-3' memory='4096000'/>
<cell id='1' cpus='4-5' memory='2048000'/>
<cell id='2' cpus='6-7' memory='2048000'/>

</numa>
</cpu>

Now start the guest again:

virsh start f29x86_64

and login back in:

ssh <IP of VM>

Before starting OpenStack services again, it is necessary to explicitly set the libvirt virtualization type
to KVM, so that guests can take advantage of nested KVM:

$ sudo sed -i 's/virt_type = qemu/virt_type = kvm/g' /etc/nova/nova.conf

With that done, OpenStack can be started again:

4.1. Contributor Documentation 814

Nova Documentation, Release 22.4.1.dev41

$ cd devstack
$./stack.sh

The first thing is to check that the compute node picked up the new NUMA topology setup for the guest:

$ mysql -u root -p123456 nova_cell1
MariaDB [nova]> select numa_topology from compute_nodes;
+--
↪→--+
| numa_topology
↪→ |
+--
↪→--+
| {
| "nova_object.name": "NUMATopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.2",
| "nova_object.data": {
| "cells": [{
| "nova_object.name": "NUMACell",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.4",
| "nova_object.data": {
| "id": 0,
| "cpuset": [0, 1, 2, 3],
| "pcpuset": [0, 1, 2, 3],
| "memory": 3966,
| "cpu_usage": 0,
| "memory_usage": 0,
| "pinned_cpus": [],
| "siblings": [
| [2],
| [0],
| [3],
| [1]
|],
| "mempages": [{
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 4,
| "total": 1015418,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }, {
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 2048,
| "total": 0,
| "used": 0,

(continues on next page)

4.1. Contributor Documentation 815

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| "reserved": 0
| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }, {
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 1048576,
| "total": 0,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }],
| "network_metadata": {
| "nova_object.name": "NetworkMetadata",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.0",
| "nova_object.data": {
| "physnets": [],
| "tunneled": false
| },
| "nova_object.changes": ["physnets", "tunneled"]
| }
| },
| "nova_object.changes": ["pinned_cpus", "siblings", "memory",
↪→"id", "cpuset", "network_metadata", "pcpuset", "mempages", "cpu_usage",
↪→"memory_usage"]
| }, {
| "nova_object.name": "NUMACell",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.4",
| "nova_object.data": {
| "id": 1,
| "cpuset": [4, 5],
| "pcpuset": [4, 5],
| "memory": 1994,
| "cpu_usage": 0,
| "memory_usage": 0,
| "pinned_cpus": [],
| "siblings": [
| [5],
| [4]
|],
| "mempages": [{
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 4,
| "total": 510562,
| "used": 0,
| "reserved": 0

(continues on next page)

4.1. Contributor Documentation 816

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }, {
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 2048,
| "total": 0,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }, {
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 1048576,
| "total": 0,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }],
| "network_metadata": {
| "nova_object.name": "NetworkMetadata",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.0",
| "nova_object.data": {
| "physnets": [],
| "tunneled": false
| },
| "nova_object.changes": ["physnets", "tunneled"]
| }
| },
| "nova_object.changes": ["pinned_cpus", "siblings", "memory",
↪→"id", "cpuset", "network_metadata", "pcpuset", "mempages", "cpu_usage",
↪→"memory_usage"]
| }, {
| "nova_object.name": "NUMACell",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.4",
| "nova_object.data": {
| "id": 2,
| "cpuset": [6, 7],
| "pcpuset": [6, 7],
| "memory": 2014,
| "cpu_usage": 0,
| "memory_usage": 0,
| "pinned_cpus": [],
| "siblings": [
| [7],

(continues on next page)

4.1. Contributor Documentation 817

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| [6]
|],
| "mempages": [{
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 4,
| "total": 515727,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }, {
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 2048,
| "total": 0,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }, {
| "nova_object.name": "NUMAPagesTopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.1",
| "nova_object.data": {
| "size_kb": 1048576,
| "total": 0,
| "used": 0,
| "reserved": 0
| },
| "nova_object.changes": ["total", "size_kb", "used",
↪→"reserved"]
| }],
| "network_metadata": {
| "nova_object.name": "NetworkMetadata",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.0",
| "nova_object.data": {
| "physnets": [],
| "tunneled": false
| },
| "nova_object.changes": ["physnets", "tunneled"]
| }
| },
| "nova_object.changes": ["pinned_cpus", "siblings", "memory",
↪→"id", "cpuset", "network_metadata", "pcpuset", "mempages", "cpu_usage",
↪→"memory_usage"]
| }]
| },
| "nova_object.changes": ["cells"]

(continues on next page)

4.1. Contributor Documentation 818

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

+--
↪→--+

This indeed shows that there are now 3 NUMA nodes for the host machine, the first with 4 GB of RAM
and 4 CPUs, and others with 2 GB of RAM and 2 CPUs each.

Testing instance boot with no NUMA topology requested

For the sake of backwards compatibility, if the NUMA filter is enabled, but the flavor/image does not
have any NUMA settings requested, it should be assumed that the guest will have a single NUMA node.
The guest should be locked to a single host NUMA node too. Boot a guest with the m1.tiny flavor to test
this condition:

$. openrc admin admin
$ openstack server create --image cirros-0.4.0-x86_64-disk --flavor m1.
↪→tiny \

cirros1

Now look at the libvirt guest XML:

$ sudo virsh list
Id Name State

--
1 instance-00000001 running

$ sudo virsh dumpxml instance-00000001
...
<vcpu placement='static'>1</vcpu>
...

This example shows that there is no explicit NUMA topology listed in the guest XML.

Testing instance boot with 1 NUMA cell requested

Moving forward a little, explicitly tell nova that the NUMA topology for the guest should have a single
NUMA node. This should operate in an identical manner to the default behavior where no NUMA policy
is set. To define the topology we will create a new flavor:

$ openstack flavor create --ram 1024 --disk 1 --vcpus 4 m1.numa
$ openstack flavor set --property hw:numa_nodes=1 m1.numa
$ openstack flavor show m1.numa

Now boot the guest using this new flavor:

$ openstack server create --image cirros-0.4.0-x86_64-disk --flavor m1.
↪→numa \

cirros2

Looking at the resulting guest XML from libvirt:

$ sudo virsh list
Id Name State

(continues on next page)

4.1. Contributor Documentation 819

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

--
1 instance-00000001 running
2 instance-00000002 running

$ sudo virsh dumpxml instance-00000002
...
<vcpu placement='static'>4</vcpu>
<cputune>

<vcpupin vcpu='0' cpuset='0-3'/>
<vcpupin vcpu='1' cpuset='0-3'/>
<vcpupin vcpu='2' cpuset='0-3'/>
<vcpupin vcpu='3' cpuset='0-3'/>
<emulatorpin cpuset='0-3'/>

</cputune>
...
<cpu>

<topology sockets='4' cores='1' threads='1'/>
<numa>

<cell id='0' cpus='0-3' memory='1048576'/>
</numa>

</cpu>
...
<numatune>

<memory mode='strict' nodeset='0'/>
<memnode cellid='0' mode='strict' nodeset='0'/>

</numatune>

The XML shows:

• Each guest CPU has been pinned to the physical CPUs associated with a particular NUMA node

• The emulator threads have been pinned to the union of all physical CPUs in the host NUMA node
that the guest is placed on

• The guest has been given a virtual NUMA topology with a single node holding all RAM and
CPUs

• The guest NUMA node has been strictly pinned to a host NUMA node.

As a further sanity test, check what nova recorded for the instance in the database. This should match
the <numatune> information:

$ mysql -u root -p123456 nova_cell1
MariaDB [nova]> select numa_topology from instance_extra;
+--
↪→--+
| numa_topology
↪→ |
+--
↪→--+
| {
| "nova_object.name": "InstanceNUMATopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.3",
| "nova_object.data": {
| "cells": [{
| "nova_object.name": "InstanceNUMACell",
| "nova_object.namespace": "nova",

(continues on next page)

4.1. Contributor Documentation 820

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| "nova_object.version": "1.4",
| "nova_object.data": {
| "id": 0,
| "cpuset": [0, 1, 2, 3],
| "memory": 1024,
| "pagesize": null,
| "cpu_pinning_raw": null,
| "cpu_policy": null,
| "cpu_thread_policy": null,
| "cpuset_reserved": null
| },
| "nova_object.changes": ["id"]
| }],
| "emulator_threads_policy": null
| },
| "nova_object.changes": ["cells", "emulator_threads_policy"]
| }
+--
↪→--+

Delete this instance:

$ openstack server delete cirros2

Testing instance boot with 2 NUMA cells requested

Now getting more advanced we tell nova that the guest will have two NUMA nodes. To define the
topology we will change the previously defined flavor:

$ openstack flavor set --property hw:numa_nodes=2 m1.numa
$ openstack flavor show m1.numa

Now boot the guest using this changed flavor:

$ openstack server create --image cirros-0.4.0-x86_64-disk --flavor m1.
↪→numa \

cirros2

Looking at the resulting guest XML from libvirt:

$ sudo virsh list
Id Name State

--
1 instance-00000001 running
3 instance-00000003 running

$ sudo virsh dumpxml instance-00000003
...
<vcpu placement='static'>4</vcpu>
<cputune>

<vcpupin vcpu='0' cpuset='0-3'/>
<vcpupin vcpu='1' cpuset='0-3'/>
<vcpupin vcpu='2' cpuset='4-5'/>
<vcpupin vcpu='3' cpuset='4-5'/>

(continues on next page)

4.1. Contributor Documentation 821

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

<emulatorpin cpuset='0-5'/>
</cputune>
...
<cpu>

<topology sockets='4' cores='1' threads='1'/>
<numa>

<cell id='0' cpus='0-1' memory='524288'/>
<cell id='1' cpus='2-3' memory='524288'/>

</numa>
</cpu>
...
<numatune>

<memory mode='strict' nodeset='0-1'/>
<memnode cellid='0' mode='strict' nodeset='0'/>
<memnode cellid='1' mode='strict' nodeset='1'/>

</numatune>

The XML shows:

• Each guest CPU has been pinned to the physical CPUs associated with particular NUMA nodes

• The emulator threads have been pinned to the union of all physical CPUs in the host NUMA nodes
that the guest is placed on

• The guest has been given a virtual NUMA topology with two nodes, each holding half the RAM
and CPUs

• The guest NUMA nodes have been strictly pinned to different host NUMA node

As a further sanity test, check what nova recorded for the instance in the database. This should match
the <numatune> information:

MariaDB [nova]> select numa_topology from instance_extra;
+--
↪→--+
| numa_topology
↪→ |
+--
↪→--+
| {
| "nova_object.name": "InstanceNUMATopology",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.3",
| "nova_object.data": {
| "cells": [{
| "nova_object.name": "InstanceNUMACell",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.4",
| "nova_object.data": {
| "id": 0,
| "cpuset": [0, 1],
| "memory": 512,
| "pagesize": null,
| "cpu_pinning_raw": null,
| "cpu_policy": null,
| "cpu_thread_policy": null,
| "cpuset_reserved": null

(continues on next page)

4.1. Contributor Documentation 822

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| },
| "nova_object.changes": ["id"]
| }, {
| "nova_object.name": "InstanceNUMACell",
| "nova_object.namespace": "nova",
| "nova_object.version": "1.4",
| "nova_object.data": {
| "id": 1,
| "cpuset": [2, 3],
| "memory": 512,
| "pagesize": null,
| "cpu_pinning_raw": null,
| "cpu_policy": null,
| "cpu_thread_policy": null,
| "cpuset_reserved": null
| },
| "nova_object.changes": ["id"]
| }],
| "emulator_threads_policy": null
| },
| "nova_object.changes": ["cells", "emulator_threads_policy"]
| }
+--
↪→--+

4.1.5.3 Testing Serial Console

The main aim of this feature is exposing an interactive web-based serial consoles through a web-socket
proxy. This page describes how to test it from a devstack environment.

Setting up a devstack environment

For instructions on how to setup devstack with serial console support enabled see this guide.

Testing the API

Starting a new instance.

cd devstack && . openrc
nova boot --flavor 1 --image cirros-0.3.2-x86_64-uec cirros1

Nova provides a command nova get-serial-console which will returns a URL with a valid token to
connect to the serial console of VMs.

nova get-serial-console cirros1
+--------+---
↪→+
| Type | Url
↪→|
+--------+---
↪→+

(continues on next page)

4.1. Contributor Documentation 823

https://docs.openstack.org/devstack/latest/guides/nova.html#nova-serialproxy

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

| serial | ws://127.0.0.1:6083/?token=5f7854b7-bf3a-41eb-857a-43fc33f0b1ec
↪→|
+--------+---
↪→+

Currently nova does not provide any client able to connect from an interactive console through a web-
socket. A simple client for test purpose can be written with few lines of Python.

sudo easy_install ws4py || sudo pip install ws4py
cat >> client.py <<EOF
import sys
from ws4py.client.threadedclient import WebSocketClient
class LazyClient(WebSocketClient):

def run(self):
try:

while not self.terminated:
try:

b = self.sock.recv(4096)
sys.stdout.write(b)
sys.stdout.flush()

except: # socket error expected
pass

finally:
self.terminate()

if __name__ == '__main__':
if len(sys.argv) != 2 or not sys.argv[1].startswith("ws"):

print "Usage %s: Please use websocket url"
print "Example: ws://127.0.0.1:6083/?token=xxx"
exit(1)

try:
ws = LazyClient(sys.argv[1], protocols=['binary'])
ws.connect()
while True:

keyboard event...
c = sys.stdin.read(1)
if c:

ws.send(c)
ws.run_forever()

except KeyboardInterrupt:
ws.close()

EOF

python client.py ws://127.0.0.1:6083/?token=5f7854b7-bf3a-41eb-857a-
↪→43fc33f0b1ec
<enter>
cirros1 login

4.1. Contributor Documentation 824

Nova Documentation, Release 22.4.1.dev41

4.1.5.4 Testing Zero Downtime Upgrade Process

Zero Downtime upgrade eliminates any disruption to nova API service during upgrade.

Nova API services are upgraded at the end. The basic idea of the zero downtime upgrade process is to
have the connections drain from the old API before being upgraded. In this process, new connections
go to the new API nodes while old connections slowly drain from the old nodes. This ensures that the
user sees the max_supported API version as a monotonically increasing number. There might be some
performance degradation during the process due to slow HTTP responses and delayed request handling,
but there is no API downtime.

This page describes how to test the zero downtime upgrade process.

Environment

• Multinode devstack environment with 2 nodes:

– controller - All services (N release)

– compute-api - Only n-cpu and n-api services (N release)

• Highly available load balancer (HAProxy) on top of the n-api services. This is required for zero
downtime upgrade as it allows one n-api service to run while we upgrade the other. See instruc-
tions to setup HAProxy below.

Instructions to setup HAProxy

Install HAProxy and Keepalived on both nodes.

apt-get install haproxy keepalived

Let the kernel know that we intend to bind additional IP addresses that wont be defined in the interfaces
file. To do this, edit /etc/sysctl.conf and add the following line:

net.ipv4.ip_nonlocal_bind=1

Make this take effect without rebooting.

sysctl -p

Configure HAProxy to add backend servers and assign virtual IP to the frontend. On both nodes add the
below HAProxy config:

cd /etc/haproxy
cat >> haproxy.cfg <<EOF

global
chroot /var/lib/haproxy
user haproxy
group haproxy
daemon
log 192.168.0.88 local0
pidfile /var/run/haproxy.pid
stats socket /var/run/haproxy.sock mode 600 level admin

(continues on next page)

4.1. Contributor Documentation 825

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

stats timeout 2m
maxconn 4000

defaults
log global
maxconn 8000
mode http
option redispatch
retries 3
stats enable
timeout http-request 10s
timeout queue 1m
timeout connect 10s
timeout client 1m
timeout server 1m
timeout check 10s

frontend nova-api-vip
bind 192.168.0.95:8282 <<ha proxy virtual ip>>
default_backend nova-api

backend nova-api
balance roundrobin
option tcplog
server controller 192.168.0.88:8774 check
server apicomp 192.168.0.89:8774 check

EOF

Note: Just change the IP for log in the global section on each node.

On both nodes add keepalived.conf:

cd /etc/keepalived
cat >> keepalived.conf <<EOF

global_defs {
router_id controller

}
vrrp_script haproxy {

script "killall -0 haproxy"
interval 2
weight 2

}
vrrp_instance 50 {

virtual_router_id 50
advert_int 1
priority 101
state MASTER
interface eth0
virtual_ipaddress {

192.168.0.95 dev eth0
}
track_script {

(continues on next page)

4.1. Contributor Documentation 826

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

haproxy
}

}

EOF

Note: Change priority on node2 to 100 (or vice-versa). Add HAProxy virtual IP.

Restart keepalived service.

service keepalived restart

Add ENABLED=1 in /etc/default/haproxy and then restart HAProxy service.

service haproxy restart

When both the services have restarted, node with the highest priority for keepalived claims the virtual
IP. You can check which node claimed the virtual IP using:

ip a

Zero Downtime upgrade process

General rolling upgrade process: Minimal Downtime Upgrade Process.

Before Upgrade

• Change nova-api endpoint in keystone to point to the HAProxy virtual IP.

• Run tempest tests

• Check if n-api services on both nodes are serving the requests.

Before maintenance window

• Start the upgrade process with controller node.

• Follow the steps from the general rolling upgrade process to install new code and sync the db for
schema changes.

4.1. Contributor Documentation 827

Nova Documentation, Release 22.4.1.dev41

During maintenance window

• Set compute option in upgrade_levels to auto in nova.conf.

[upgrade_levels]
compute = auto

• Starting with n-cond restart all services except n-api and n-cpu.

• In small batches gracefully shutdown nova-cpu, then start n-cpu service with new version of the
code.

• Run tempest tests.

• Drain connections on n-api while the tempest tests are running. HAProxy allows you to drain the
connections by setting weight to zero:

echo "set weight nova-api/<<server>> 0" | sudo socat /var/run/
↪→haproxy.sock stdio

• OR disable service using:

echo "disable server nova-api/<<server>>" | sudo socat /var/run/
↪→haproxy.sock stdio

• This allows the current node to complete all the pending requests. When this is being upgraded,
other api node serves the requests. This way we can achieve zero downtime.

• Restart n-api service and enable n-api using the command:

echo "enable server nova-api/<<server>>" | sudo socat /var/run/
↪→haproxy.sock stdio

• Drain connections from other old api node in the same way and upgrade.

• No tempest tests should fail since there is no API downtime.

After maintenance window

• Follow the steps from general rolling upgrade process to clear any cached service version data and
complete all online data migrations.

4.1.5.5 Testing Down Cells

This document describes how to recreate a down-cell scenario in a single-node devstack environment.
This can be useful for testing the reliability of the controller services when a cell in the deployment is
down.

4.1. Contributor Documentation 828

Nova Documentation, Release 22.4.1.dev41

Setup

DevStack config

This guide is based on a devstack install from the Train release using an Ubuntu Bionic 18.04 VM with
8 VCPU, 8 GB RAM and 200 GB of disk following the All-In-One Single Machine guide.

The following minimal local.conf was used:

[[local|localrc]]
Define passwords
OS_PASSWORD=openstack1
SERVICE_TOKEN=$OS_PASSWORD
ADMIN_PASSWORD=$OS_PASSWORD
MYSQL_PASSWORD=$OS_PASSWORD
RABBIT_PASSWORD=$OS_PASSWORD
SERVICE_PASSWORD=$OS_PASSWORD
Logging config
LOGFILE=$DEST/logs/stack.sh.log
LOGDAYS=2
Disable non-essential services
disable_service horizon tempest

Populate cell1

Create a test server first so there is something in cell1:

$ source openrc admin admin
$ IMAGE=$(openstack image list -f value -c ID)
$ openstack server create --wait --flavor m1.tiny --image $IMAGE cell1-
↪→server

Take down cell1

Break the connection to the cell1 database by changing the database_connection URL, in this
case with an invalid host IP:

mysql> select database_connection from cell_mappings where name='cell1';
+---+
| database_connection |
+---+
| mysql+pymysql://root:openstack1@127.0.0.1/nova_cell1?charset=utf8 |
+---+
1 row in set (0.00 sec)

mysql> update cell_mappings set database_connection='mysql+pymysql://
↪→root:openstack1@192.0.0.1/nova_cell1?charset=utf8' where name='cell1';
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

4.1. Contributor Documentation 829

https://docs.openstack.org/devstack/latest/guides/single-machine.html

Nova Documentation, Release 22.4.1.dev41

Update controller services

Prepare the controller services for the down cell. See Handling cell failures for details.

Modify nova.conf

Configure the API to avoid long timeouts and slow start times due to bug 1815697 by modifying /etc/
nova/nova.conf:

[database]
...
max_retries = 1
retry_interval = 1

[upgrade_levels]
...
compute = stein # N-1 from train release, just something other than "auto"

Restart services

Note: It is useful to tail the n-api service logs in another screen to watch for errors / warnings in the
logs due to down cells:

$ sudo journalctl -f -a -u devstack@n-api.service

Restart controller services to flush the cell cache:

$ sudo systemctl restart devstack@n-api.service devstack@n-super-cond.
↪→service devstack@n-sch.service

Test cases

1. Try to create a server which should fail and go to cell0.

$ openstack server create --wait --flavor m1.tiny --image $IMAGE
↪→cell0-server

You can expect to see errors like this in the n-api logs:

Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context [None req-fdaff415-48b9-44a7-b4c3-015214e80b90 None None]
↪→Error gathering result from cell 4f495a21-294a-4051-9a3d-
↪→8b34a250bbb4: DBConnectionError: (pymysql.err.OperationalError)
↪→(2003, "Can't connect to MySQL server on u'192.0.0.1' ([Errno 101]
↪→ENETUNREACH)") (Background on this error at: http://sqlalche.me/e/
↪→e3q8)
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context Traceback (most recent call last):

(continues on next page)

4.1. Contributor Documentation 830

https://bugs.launchpad.net/nova/+bug/1815697

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/opt/stack/nova/nova/context.py", line 441, in
↪→gather_result
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context result = fn(cctxt, *args, **kwargs)
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/opt/stack/nova/nova/db/sqlalchemy/api.py", line
↪→211, in wrapper
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context with reader_mode.using(context):
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/lib/python2.7/contextlib.py", line 17, in __
↪→enter__
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context return self.gen.next()
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/local/lib/python2.7/dist-packages/oslo_db/
↪→sqlalchemy/enginefacade.py", line 1061, in _transaction_scope
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context context=context) as resource:
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/lib/python2.7/contextlib.py", line 17, in __
↪→enter__
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context return self.gen.next()
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/local/lib/python2.7/dist-packages/oslo_db/
↪→sqlalchemy/enginefacade.py", line 659, in _session
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context bind=self.connection, mode=self.mode)
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/local/lib/python2.7/dist-packages/oslo_db/
↪→sqlalchemy/enginefacade.py", line 418, in _create_session
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context self._start()
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/local/lib/python2.7/dist-packages/oslo_db/
↪→sqlalchemy/enginefacade.py", line 510, in _start
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context engine_args, maker_args)
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/local/lib/python2.7/dist-packages/oslo_db/
↪→sqlalchemy/enginefacade.py", line 534, in _setup_for_connection
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context sql_connection=sql_connection, **engine_kwargs)
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/local/lib/python2.7/dist-packages/
↪→debtcollector/renames.py", line 43, in decorator
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context return wrapped(*args, **kwargs)
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/local/lib/python2.7/dist-packages/oslo_db/
↪→sqlalchemy/engines.py", line 201, in create_engine
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context test_conn = _test_connection(engine, max_retries, retry_
↪→interval)

(continues on next page)

4.1. Contributor Documentation 831

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "/usr/local/lib/python2.7/dist-packages/oslo_db/
↪→sqlalchemy/engines.py", line 387, in _test_connection
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context six.reraise(type(de_ref), de_ref)
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context File "<string>", line 3, in reraise
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context DBConnectionError: (pymysql.err.OperationalError) (2003,
↪→"Can't connect to MySQL server on u'192.0.0.1' ([Errno 101]
↪→ENETUNREACH)") (Background on this error at: http://sqlalche.me/e/
↪→e3q8)
Apr 04 20:48:22 train devstack@n-api.service[10884]: ERROR nova.
↪→context
Apr 04 20:48:22 train devstack@n-api.service[10884]: WARNING nova.
↪→objects.service [None req-1cf4bf5c-2f74-4be0-a18d-51ff81df57dd
↪→admin admin] Failed to get minimum service version for cell
↪→4f495a21-294a-4051-9a3d-8b34a250bbb4

2. List servers with the 2.69 microversion for down cells.

Note: Requires python-openstackclient >= 3.18.0 for v2.69 support.

The server in cell1 (which is down) will show up with status UNKNOWN:

$ openstack --os-compute-api-version 2.69 server list
+--------------------------------------+--------------+---------+-----
↪→-----+--------------------------+--------+
| ID | Name | Status |
↪→Networks | Image | Flavor |
+--------------------------------------+--------------+---------+-----
↪→-----+--------------------------+--------+
| 8e90f1f0-e8dd-4783-8bb3-ec8d594e60f1 | | UNKNOWN |
↪→ | | |
| afd45d84-2bd7-4e49-9dff-93359f742bc1 | cell0-server | ERROR |
↪→ | cirros-0.4.0-x86_64-disk | |
+--------------------------------------+--------------+---------+-----
↪→-----+--------------------------+--------+

3. Using v2.1 the UNKNOWN server is filtered out by default due to api.
list_records_by_skipping_down_cells:

$ openstack --os-compute-api-version 2.1 server list
+--------------------------------------+--------------+--------+------
↪→----+--------------------------+---------+
| ID | Name | Status |
↪→Networks | Image | Flavor |
+--------------------------------------+--------------+--------+------
↪→----+--------------------------+---------+
| afd45d84-2bd7-4e49-9dff-93359f742bc1 | cell0-server | ERROR |
↪→ | cirros-0.4.0-x86_64-disk | m1.tiny |
+--------------------------------------+--------------+--------+------
↪→----+--------------------------+---------+

4. Configure nova-api with list_records_by_skipping_down_cells=False

4.1. Contributor Documentation 832

Nova Documentation, Release 22.4.1.dev41

[api]
list_records_by_skipping_down_cells = False

5. Restart nova-api and then listing servers should fail:

$ sudo systemctl restart devstack@n-api.service
$ openstack --os-compute-api-version 2.1 server list
Unexpected API Error. Please report this at http://bugs.launchpad.net/
↪→nova/ and attach the Nova API log if possible.
<class 'nova.exception.NovaException'> (HTTP 500) (Request-ID: req-
↪→e2264d67-5b6c-4f17-ae3d-16c7562f1b69)

6. Try listing compute services with a down cell.

The services from the down cell are skipped:

$ openstack --os-compute-api-version 2.1 compute service list
+----+------------------+-------+----------+---------+-------+--------
↪→--------------------+
| ID | Binary | Host | Zone | Status | State |
↪→Updated At |
+----+------------------+-------+----------+---------+-------+--------
↪→--------------------+
| 2 | nova-scheduler | train | internal | enabled | up | 2019-
↪→04-04T21:12:47.000000 |
| 6 | nova-consoleauth | train | internal | enabled | up | 2019-
↪→04-04T21:12:38.000000 |
| 7 | nova-conductor | train | internal | enabled | up | 2019-
↪→04-04T21:12:47.000000 |
+----+------------------+-------+----------+---------+-------+--------
↪→--------------------+

With 2.69 the nova-compute service from cell1 is shown with status UNKNOWN:

$ openstack --os-compute-api-version 2.69 compute service list
+--------------------------------------+------------------+-------+---
↪→-------+---------+-------+----------------------------+
| ID | Binary | Host |
↪→Zone | Status | State | Updated At |
+--------------------------------------+------------------+-------+---
↪→-------+---------+-------+----------------------------+
| f68a96d9-d994-4122-a8f9-1b0f68ed69c2 | nova-scheduler | train |
↪→internal | enabled | up | 2019-04-04T21:13:47.000000 |
| 70cd668a-6d60-4a9a-ad83-f863920d4c44 | nova-consoleauth | train |
↪→internal | enabled | up | 2019-04-04T21:13:38.000000 |
| ca88f023-1de4-49e0-90b0-581e16bebaed | nova-conductor | train |
↪→internal | enabled | up | 2019-04-04T21:13:47.000000 |
| | nova-compute | train |
↪→ | UNKNOWN | | |
+--------------------------------------+------------------+-------+---
↪→-------+---------+-------+----------------------------+

4.1. Contributor Documentation 833

Nova Documentation, Release 22.4.1.dev41

Future

This guide could be expanded for having multiple non-cell0 cells where one cell is down while the
other is available and go through scenarios where the down cell is marked as disabled to take it out of
scheduling consideration.

4.1.5.6 Profiling With Eventlet

When performance of one of the Nova services is worse than expected, and other sorts of analysis do
not lead to candidate fixes, profiling is an excellent tool for producing detailed analysis of what methods
in the code are called the most and which consume the most time.

Because most Nova services use eventlet, the standard profiling tool provided with Python, cProfile,
will not work. Something is required to keep track of changing tasks. Thankfully eventlet comes with
eventlet.green.profile.Profile, a mostly undocumented class that provides a similar (but
not identical) API to the one provided by Pythons Profile while outputting the same format.

Note: The eventlet Profile outputs the prof format produced by profile, which is not the same
as that output by cProfile. Some analysis tools (for example, SnakeViz) only read the latter so the
options for analyzing eventlet profiling are not always deluxe (see below).

Setup

This guide assumes the Nova service being profiled is running devstack, but that is not necessary. What
is necessary is that the code associated with the service can be changed and the service restarted, in
place.

Profiling the entire service will produce mostly noise and the output will be confusing because different
tasks will operate during the profile run. It is better to begin the process with a candidate task or method
within the service that can be associated with an identifier. For example, select_destinations in
the FilterScheduler can be associated with the list of instance_uuids passed to it and it runs
only once for that set of instance uuids.

The process for profiling is:

1. Identify the method to be profiled.

2. Populate the environment with sufficient resources to exercise the code. For example you may
wish to use the FakeVirtDriver to have nova aware of multiple nova-compute processes. Or
you may wish to launch many instances if you are evaluating a method that loops over instances.

3. At the start of that method, change the code to instantiate a Profile object and start() it.

4. At the end of that method, change the code to stop() profiling and write the data (with
dump_stats()) to a reasonable location.

5. Restart the service.

6. Cause the method being evaluated to run.

7. Analyze the profile data with the pstats module.

4.1. Contributor Documentation 834

https://eventlet.net/
https://docs.python.org/3/library/profile.html
https://jiffyclub.github.io/snakeviz/
https://docs.openstack.org/devstack/latest/guides/nova.html#fake-virt-driver
https://docs.python.org/3/library/profile.html#pstats.Stats

Nova Documentation, Release 22.4.1.dev41

Note: stop() and start() are two of the ways in which the eventlet Profile API differs from
the stdlib. There the methods are enable() and disable().

Example

For this example we will analyze select_destinations in the FilterScheduler. A known
problem is that it does excessive work when presented with too many candidate results from the Place-
ment service. Wed like to know why.

Well configure and run devstack with FakeVirtDriver so there are several candidate hypervisors (the
following local.conf is also useful for other profiling and benchmarking scenarios so not all changes
are relevant here):

[[local|localrc]]
ADMIN_PASSWORD=secret
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
VIRT_DRIVER=fake
You may use different numbers of fake computes, but be careful: 100 will
completely overwhelm a 16GB, 16VPCU server. In the test profiles below a
value of 50 was used, on a 16GB, 16VCPU server.
NUMBER_FAKE_NOVA_COMPUTE=25
disable_service cinder
disable_service horizon
disable_service dstat
disable_service tempest

[[post-config|$NOVA_CONF]]
rpc_response_timeout = 300

Disable filtering entirely. For some profiling this will not be what you
want.
[filter_scheduler]
enabled_filters = '""'
Send only one type of notifications to avoid notification overhead.
[notifications]
notification_format = unversioned

Change the code in nova/scheduler/filter_scheduler.py as follows:

diff --git a/nova/scheduler/filter_scheduler.py b/nova/scheduler/filter_
↪→scheduler.py
index 672f23077e..cb0f87fe48 100644
--- a/nova/scheduler/filter_scheduler.py
+++ b/nova/scheduler/filter_scheduler.py
@@ -49,92 +49,99 @@ class FilterScheduler(driver.Scheduler):

def select_destinations(self, context, spec_obj, instance_uuids,
alloc_reqs_by_rp_uuid, provider_summaries,
allocation_request_version=None, return_alternates=False):

"""Returns a list of lists of Selection objects, which represent
↪→the

hosts and (optionally) alternates for each instance.

(continues on next page)

4.1. Contributor Documentation 835

https://docs.openstack.org/devstack/latest/
https://docs.openstack.org/devstack/latest/guides/nova.html#fake-virt-driver

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

:param context: The RequestContext object
:param spec_obj: The RequestSpec object
:param instance_uuids: List of UUIDs, one for each value of the

↪→spec
object's num_instances attribute

:param alloc_reqs_by_rp_uuid: Optional dict, keyed by resource
↪→provider

UUID, of the allocation_requests
↪→that may

be used to claim resources against
matched hosts. If None, indicates

↪→either
the placement API wasn't reachable

↪→or
that there were no allocation_

↪→requests
returned by the placement API. If

↪→the
latter, the provider_summaries will

↪→be an
empty dict, not None.

:param provider_summaries: Optional dict, keyed by resource
↪→provider

UUID, of information that will be used
↪→by

the filters/weighers in selecting
↪→matching

hosts for a request. If None,
↪→indicates that

the scheduler driver should grab all
↪→compute

node information locally and that the
Placement API is not used. If an empty

↪→dict,
indicates the Placement API returned no
potential matches for the requested
resources.

:param allocation_request_version: The microversion used to
↪→request the

allocations.
:param return_alternates: When True, zero or more alternate hosts

↪→are
returned with each selected host. The

↪→number
of alternates is determined by the
configuration option
`CONF.scheduler.max_attempts`.

"""
+ from eventlet.green import profile
+ pr = profile.Profile()
+ pr.start()
+

self.notifier.info(
context, 'scheduler.select_destinations.start',
dict(request_spec=spec_obj.to_legacy_request_spec_dict()))

(continues on next page)

4.1. Contributor Documentation 836

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

compute_utils.notify_about_scheduler_action(
context=context, request_spec=spec_obj,
action=fields_obj.NotificationAction.SELECT_DESTINATIONS,
phase=fields_obj.NotificationPhase.START)

host_selections = self._schedule(context, spec_obj, instance_
↪→uuids,

alloc_reqs_by_rp_uuid, provider_summaries,
allocation_request_version, return_alternates)

self.notifier.info(
context, 'scheduler.select_destinations.end',
dict(request_spec=spec_obj.to_legacy_request_spec_dict()))

compute_utils.notify_about_scheduler_action(
context=context, request_spec=spec_obj,
action=fields_obj.NotificationAction.SELECT_DESTINATIONS,
phase=fields_obj.NotificationPhase.END)

+ pr.stop()
+ pr.dump_stats('/tmp/select_destinations/%s.prof' % ':'.
↪→join(instance_uuids))
+

return host_selections

Make a /tmp/select_destinations directory that is writable by the user nova-scheduler will
run as. This is where the profile output will go.

Restart the scheduler service. Note that systemctl restart may not kill things sufficiently dead,
so:

sudo systemctl stop devstack@n-sch
sleep 5
sudo systemctl start devstack@n-sch

Create a server (which will call select_destinations):

openstack server create --image cirros-0.4.0-x86_64-disk --flavor c1 x1

In /tmp/select_destinations there should be a file with a name using the uuid of the created
server with a .prof extension.

Change to that directory and view the profile using the pstats interactive mode:

python3 -m pstats ef044142-f3b8-409d-9af6-c60cea39b273.prof

Note: The major version of python used to analyze the profile data must be the same as the version
used to run the process being profiled.

Sort stats by their cumulative time:

ef044142-f3b8-409d-9af6-c60cea39b273.prof% sort cumtime
ef044142-f3b8-409d-9af6-c60cea39b273.prof% stats 10
Tue Aug 6 17:17:56 2019 ef044142-f3b8-409d-9af6-c60cea39b273.prof

603477 function calls (587772 primitive calls) in 2.294 seconds

(continues on next page)

4.1. Contributor Documentation 837

https://www.stefaanlippens.net/python_profiling_with_pstats_interactive_mode/

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

Ordered by: cumulative time
List reduced from 2484 to 10 due to restriction <10>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 1.957 1.957 profile:0(start)
1 0.000 0.000 1.911 1.911 /mnt/share/opt/stack/nova/

↪→nova/scheduler/filter_scheduler.py:113(_schedule)
1 0.000 0.000 1.834 1.834 /mnt/share/opt/stack/nova/

↪→nova/scheduler/filter_scheduler.py:485(_get_all_host_states)
1 0.000 0.000 1.834 1.834 /mnt/share/opt/stack/nova/

↪→nova/scheduler/host_manager.py:757(get_host_states_by_uuids)
1 0.004 0.004 1.818 1.818 /mnt/share/opt/stack/nova/

↪→nova/scheduler/host_manager.py:777(_get_host_states)
104/103 0.001 0.000 1.409 0.014 /usr/local/lib/python3.6/

↪→dist-packages/oslo_versionedobjects/base.py:170(wrapper)
50 0.001 0.000 1.290 0.026 /mnt/share/opt/stack/nova/

↪→nova/scheduler/host_manager.py:836(_get_instance_info)
50 0.001 0.000 1.289 0.026 /mnt/share/opt/stack/nova/

↪→nova/scheduler/host_manager.py:820(_get_instances_by_host)
103 0.001 0.000 0.890 0.009 /usr/local/lib/python3.6/

↪→dist-packages/sqlalchemy/orm/query.py:3325(__iter__)
50 0.001 0.000 0.776 0.016 /mnt/share/opt/stack/nova/

↪→nova/objects/host_mapping.py:99(get_by_host)

From this we can make a couple of useful inferences about get_by_host:

• It is called once for each of the 50 FakeVirtDriver hypervisors configured for these tests.

• It (and the methods it calls internally) consumes about 40% of the entire time spent running (0.
776 / 1.957) the select_destinations method (indicated by profile:0(start),
above).

Several other sort modes can be used. List those that are available by entering sort without arguments.

Caveats

Real world use indicates that the eventlet profiler is not perfect. There are situations where it will not
always track switches between greenlets as well as it could. This can result in profile data that does not
make sense or random slowdowns in the system being profiled. There is no one size fits all solution to
these issues; profiling eventlet services is more an art than science. However, this section tries to provide
a (hopefully) growing body of advice on what to do to work around problems.

General Advice

• Try to profile chunks of code that operate mostly within one module or class and do not have many
collaborators. The more convoluted the path through the code, the more confused the profiler gets.

• Similarly, where possible avoid profiling code that will trigger many greenlet context switches;
either specific spawns, or multiple types of I/O. Instead, narrow the focus of the profiler.

• If possible, avoid RPC.

4.1. Contributor Documentation 838

Nova Documentation, Release 22.4.1.dev41

In nova-compute

The creation of this caveat section was inspired by issues experienced while profiling nova-compute.
The nova-compute process is not allowed to speak with a database server directly. Instead communi-
cation is mediated through the conductor, communication happening via oslo.versionedobjects
and remote calls. Profiling methods such as update_available_resource in the Resource-
Tracker, which needs information from the database, results in profile data that can be analyzed but
is incorrect and misleading.

This can be worked around by temporarily changing nova-compute to allow it to speak to the
database directly:

diff --git a/nova/cmd/compute.py b/nova/cmd/compute.py
index 01fd20de2e..655d503158 100644
--- a/nova/cmd/compute.py
+++ b/nova/cmd/compute.py
@@ -50,8 +50,10 @@ def main():

gmr.TextGuruMeditation.setup_autorun(version, conf=CONF)

- cmd_common.block_db_access('nova-compute')
- objects_base.NovaObject.indirection_api = conductor_rpcapi.
↪→ConductorAPI()
+ # Temporarily allow access to the database. You must update the
↪→config file
+ # used by this process to set [database]/connection to the cell1
↪→database.
+ # cmd_common.block_db_access('nova-compute')
+ # objects_base.NovaObject.indirection_api = conductor_rpcapi.
↪→ConductorAPI()

objects.Service.enable_min_version_cache()
server = service.Service.create(binary='nova-compute',

topic=compute_rpcapi.RPC_TOPIC)

The configuration file used by the nova-compute process must also be updated to ensure that it
contains a setting for the relevant database:

[database]
connection = mysql+pymysql://root:secret@127.0.0.1/nova_cell1?charset=utf8

In a single node devstack setup nova_cell1 is the right choice. The connection string will vary in
other setups.

Once these changes are made, along with the profiler changes indicated in the example above,
nova-compute can be restarted and with luck some useful profiling data will emerge.

4.1. Contributor Documentation 839

Nova Documentation, Release 22.4.1.dev41

4.1.6 The Nova API

Because we have many consumers of our API, were extremely careful about changes done to the API,
as the impact can be very wide.

• Extending the API: How the code is structured inside the API layer

• Adding a Method to the OpenStack API: (needs update)

• API Microversions: How the API is (micro)versioned and what you need to do when adding an
API exposed feature that needs a new microversion.

• API reference guideline: The guideline to write the API reference.

4.1.6.1 Extending the API

Background

Nova has v2.1 API frameworks which supports microversions.

This document covers how to add API for the v2.1 API framework. A microversions specific document
covers the details around what is required for the microversions part.

The v2.1 API framework is under nova/api and each API is implemented in nova/api/
openstack/compute.

Note that any change to the Nova API to be merged will first require a spec be approved first. See here
for the appropriate repository. For guidance on the design of the API please refer to the OpenStack API
WG

Basic API Controller

API controller includes the implementation of API methods for a resource.

A very basic controller of a v2.1 API:

"""Basic Controller"""

from nova.api.openstack.compute.schemas import xyz
from nova.api.openstack import extensions
from nova.api.openstack import wsgi
from nova.api import validation

class BasicController(wsgi.Controller):

Define support for GET on a collection
def index(self, req):

data = {'param': 'val'}
return data

Define support for POST on a collection
@extensions.expected_errors((400, 409))
@validation.schema(xyz.create)
@wsgi.response(201)
def create(self, req, body):

(continues on next page)

4.1. Contributor Documentation 840

https://opendev.org/openstack/nova-specs
https://wiki.openstack.org/wiki/API_Working_Group
https://wiki.openstack.org/wiki/API_Working_Group

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

write_body_here = ok
return response_body

Defining support for other RESTFul methods based on resource.

See servers.py for ref.

All of the controller modules should live in the nova/api/openstack/compute directory.

URL Mapping to API

The URL mapping is based on the plain list which routes the API request to appropriate controller
and method. Each API needs to add its route information in nova/api/openstack/compute/
routes.py.

A basic skeleton of URL mapping in routers.py:

"""URL Mapping Router List"""

import functools

import nova.api.openstack
from nova.api.openstack.compute import basic_api

Create a controller object
basic_controller = functools.partial(

_create_controller, basic_api.BasicController, [], [])

Routing list structure:
(
('Route path': {
'HTTP method: [
'Controller',
'The method of controller is used to handle this route'
],
...
}),
...
)
ROUTE_LIST = (

.

.

.
('/basic', {

'GET': [basic_controller, 'index'],
'POST': [basic_controller, 'create']

}),
.
.
.

)

Complete routing list can be found in routes.py.

4.1. Contributor Documentation 841

https://opendev.org/openstack/nova/src/branch/master/nova/api/openstack/compute/servers.py
https://opendev.org/openstack/nova/src/branch/master/nova/api/openstack/compute/routes.py

Nova Documentation, Release 22.4.1.dev41

Policy

For more info about policy, see policies, Also look at the context.can(...) call in existing API
controllers.

Modularity

The Nova REST API is separated into different controllers in the directory nova/api/openstack/compute/

Because microversions are supported in the Nova REST API, the API can be extended without any new
controller. But for code readability, the Nova REST API code still needs modularity. Here are rules for
how to separate modules:

• You are adding a new resource The new resource should be in standalone module. There isnt any
reason to put different resources in a single module.

• Add sub-resource for existing resource To prevent an existing resource module becoming over-
inflated, the sub-resource should be implemented in a separate module.

• Add extended attributes for existing resource In normally, the extended attributes is part of existing
resources data model too. So this can be added into existing resource module directly and lightly.
To avoid namespace complexity, we should avoid to add extended attributes in existing extended
models. New extended attributes neednt any namespace prefix anymore.

JSON-Schema

The v2.1 API validates a REST request body with JSON-Schema library. Valid body formats are defined
with JSON-Schema in the directory nova/api/openstack/compute/schemas. Each definition is used at the
corresponding method with the validation.schema decorator like:

@validation.schema(schema.update_something)
def update(self, req, id, body):

....

Similarly to controller modularity, JSON-Schema definitions can be added in same or separate JSON-
Schema module.

The following are the combinations of extensible API and method name which returns additional JSON-
Schema parameters:

• Create a server API - get_server_create_schema()

For example, keypairs extension(Keypairs class) contains the method get_server_create_schema() which
returns:

{
'key_name': parameter_types.name,

}

then the parameter key_name is allowed on Create a server API.

4.1. Contributor Documentation 842

Nova Documentation, Release 22.4.1.dev41

Note: Currently only create schema are implemented in modular way. Final goal is to merge them all
and define the concluded process in this doc.

These are essentially hooks into the servers controller which allow other controller to modify behaviour
without having to modify servers.py. In the past not having this capability led to very large chunks of
unrelated code being added to servers.py which was difficult to maintain.

Unit Tests

Unit tests for the API can be found under path nova/tests/unit/api/openstack/compute/.
Unit tests for the API are generally negative scenario tests, because the positive scenarios are tested with
functional API samples tests.

Negative tests would include such things as:

• Request schema validation failures, for both the request body and query parameters

• HTTPNotFound or other >=400 response code failures

Functional tests and API Samples

All functional API changes, including new microversions - especially if there are new request or response
parameters, should have new functional API samples tests.

The API samples tests are made of two parts:

• The API sample for the reference docs. These are found under path doc/api_samples/.
There is typically one directory per API controller with subdirectories per microversion for that
API controller. The unversioned samples are used for the base v2.0 / v2.1 APIs.

• Corresponding API sample templates found under path nova/tests/functional/
api_sample_tests/api_samples. These have a similar structure to the API reference
docs samples, except the format of the sample can include substitution variables filled in by the
tests where necessary, for example, to substitute things that change per test run, like a server
UUID.

The actual functional tests are found under path nova/tests/functional/
api_sample_tests/. Most, if not all, API samples tests extend the ApiSampleTestBaseV21
class which extends ApiSampleTestBase. These base classes provide the framework for making a
request using an API reference doc sample and validating the response using the corresponding template
file, along with any variable substitutions that need to be made.

Note that it is possible to automatically generate the API reference doc samples using the templates by
simply running the tests using tox -r -e api-samples. This relies, of course, upon the test and
templates being correct for the test to pass, which may take some iteration.

In general, if you are adding a new microversion to an existing API controller, it is easiest to simply
copy an existing test and modify it for the new microversion and the new samples/templates.

The functional API samples tests are not the simplest thing in the world to get used to, and can be very
frustrating at times when they fail in not obvious ways. If you need help debugging a functional API
sample test failure, feel free to post your work-in-progress change for review and ask for help in the
openstack-nova freenode IRC channel.

4.1. Contributor Documentation 843

Nova Documentation, Release 22.4.1.dev41

Documentation

All API changes must also include updates to the compute API reference, which can be found under
path api-ref/source/.

Things to consider here include:

• Adding new request and/or response parameters with a new microversion

• Marking existing parameters as deprecated in a new microversion

More information on the compute API reference format and conventions can be found in the API refer-
ence guideline.

For more detailed documentation of certain aspects of the API, consider writing something into the
compute API guide found under path api-guide/source/.

Deprecating APIs

Compute REST API routes may be deprecated by capping a method or functionality using microver-
sions. For example, the 2.36 microversion deprecated several compute REST API routes which only
worked when using the since-removed nova-network service or are proxies to other external ser-
vices like cinder, neutron, etc.

The point of deprecating with microversions is users can still get the same functionality at a lower
microversion but there is at least some way to signal to users that they should stop using the REST API.

The general steps for deprecating a REST API are:

• Set a maximum allowed microversion for the route. Requests beyond that microversion on that
route will result in a 404 HTTPNotFound error.

• Update the Compute API reference documentation to indicate the route is deprecated and move it
to the bottom of the list with the other deprecated APIs.

• Deprecate, and eventually remove, related CLI / SDK functionality in other projects like python-
novaclient.

Removing deprecated APIs

Nova tries to maintain backward compatibility with all REST APIs as much as possible, but when
enough time has lapsed, there are few (if any) users or there are supported alternatives, the underlying
service code that supports a deprecated REST API, like in the case of nova-network, is removed and
the REST API must also be effectively removed.

The general steps for removing support for a deprecated REST API are:

• The route mapping will remain but all methods will return a 410 HTTPGone error response.
This is slightly different then the 404 HTTPNotFound error response a user will get for trying
to use a microversion that does not support a deprecated API. 410 means the resource is gone and
not coming back, which is more appropriate when the API is fully removed and will not work at
any microversion.

• Related configuration options, policy rules, and schema validation are removed.

4.1. Contributor Documentation 844

https://opendev.org/openstack/nova/src/branch/master/nova/api/openstack/compute/routes.py

Nova Documentation, Release 22.4.1.dev41

• The API reference documentation should be updated to move the documentation for the removed
API to the Obsolete APIs section and mention in which release the API was removed.

• Unit tests can be removed.

• API sample functional tests can be changed to assert the 410 response behavior, but can otherwise
be mostly gutted. Related *.tpl files for the API sample functional tests can be deleted since they
will not be used.

• An upgrade release note should be added to mention the REST API routes that were removed
along with any related configuration options that were also removed.

Here is an example of the above steps: https://review.opendev.org/567682/

Todo: This should be merged into contributor/api

4.1.6.2 Adding a Method to the OpenStack API

The interface is a mostly RESTful API. REST stands for Representational State Transfer and provides
an architecture style for distributed systems using HTTP for transport. Figure out a way to express your
request and response in terms of resources that are being created, modified, read, or destroyed.

Routing

To map URLs to controllers+actions, OpenStack uses the Routes package, a clone of Rails routes for
Python implementations. See http://routes.readthedocs.io/en/latest/ for more information.

URLs are mapped to action methods on controller classes in nova/api/openstack/__init__/
ApiRouter.__init__ .

See http://routes.readthedocs.io/en/latest/modules/mapper.html for all syntax, but youll probably just need these two:

• mapper.connect() lets you map a single URL to a single action on a controller.

• mapper.resource() connects many standard URLs to actions on a controller.

Controllers and actions

Controllers live in nova/api/openstack, and inherit from nova.wsgi.Controller.

See nova/api/openstack/compute/servers.py for an example.

Action methods take parameters that are sucked out of the URL by mapper.connect() or .resource(). The
first two parameters are self and the WebOb request, from which you can get the req.environ, req.body,
req.headers, etc.

4.1. Contributor Documentation 845

https://docs.openstack.org/api-ref/compute/#obsolete-apis
https://review.opendev.org/567682/
http://routes.readthedocs.io/en/latest/
http://routes.readthedocs.io/en/latest/modules/mapper.html

Nova Documentation, Release 22.4.1.dev41

Serialization

Actions return a dictionary, and wsgi.Controller serializes that to JSON.

Faults

If you need to return a non-200, you should return faults.Fault(webob.exc.HTTPNotFound()) replacing
the exception as appropriate.

4.1.6.3 API Microversions

Background

Nova uses a framework we call API Microversions for allowing changes to the API while preserving
backward compatibility. The basic idea is that a user has to explicitly ask for their request to be treated
with a particular version of the API. So breaking changes can be added to the API without breaking users
who dont specifically ask for it. This is done with an HTTP header OpenStack-API-Version
which has as its value a string containing the name of the service, compute, and a monotonically
increasing semantic version number starting from 2.1. The full form of the header takes the form:

OpenStack-API-Version: compute 2.1

If a user makes a request without specifying a version, they will get the DEFAULT_API_VERSION as
defined in nova/api/openstack/wsgi.py. This value is currently 2.1 and is expected to remain
so for quite a long time.

There is a special value latest which can be specified, which will allow a client to always receive the
most recent version of API responses from the server.

Warning: The latest value is mostly meant for integration testing and would be dangerous to
rely on in client code since Nova microversions are not following semver and therefore backward
compatibility is not guaranteed. Clients, like python-novaclient, should always require a specific
microversion but limit what is acceptable to the version range that it understands at the time.

Warning: To maintain compatibility, an earlier form of the microversion header is acceptable. It
takes the form:
X-OpenStack-Nova-API-Version: 2.1

This form will continue to be supported until the DEFAULT_API_VERSION is raised to version
2.27 or higher.

Clients accessing deployments of the Nova API which are not yet providing microversion 2.27
must use the older form.

For full details please read the Kilo spec for microversions and Microversion Specification.

4.1. Contributor Documentation 846

https://opendev.org/openstack/nova-specs/src/branch/master/specs/kilo/implemented/api-microversions.rst
http://specs.openstack.org/openstack/api-wg/guidelines/microversion_specification.html

Nova Documentation, Release 22.4.1.dev41

When do I need a new Microversion?

A microversion is needed when the contract to the user is changed. The user contract covers many kinds
of information such as:

• the Request

– the list of resource urls which exist on the server

Example: adding a new servers/{ID}/foo which didnt exist in a previous version of the code

– the list of query parameters that are valid on urls

Example: adding a new parameter is_yellow servers/{ID}?is_yellow=True

– the list of query parameter values for non free form fields

Example: parameter filter_by takes a small set of constants/enums A, B, C. Adding support
for new enum D.

– new headers accepted on a request

– the list of attributes and data structures accepted.

Example: adding a new attribute locked: True/False to the request body

However, the attribute os.scheduler_hints of the create a server API is an exception
to this. A new scheduler which adds a new attribute to os:scheduler_hints doesnt
require a new microversion, because available schedulers depend on cloud environments,
and we accept customized schedulers as a rule.

• the Response

– the list of attributes and data structures returned

Example: adding a new attribute locked: True/False to the output of servers/{ID}

– the allowed values of non free form fields

Example: adding a new allowed status to servers/{ID}

– the list of status codes allowed for a particular request

Example: an API previously could return 200, 400, 403, 404 and the change would make
the API now also be allowed to return 409.

See2 for the 400, 403, 404 and 415 cases.

– changing a status code on a particular response

Example: changing the return code of an API from 501 to 400.
2 The exception to not needing a microversion when returning a previously unspecified error code is the 400, 403, 404

and 415 cases. This is considered OK to return even if previously unspecified in the code since its implied given keystone
authentication can fail with a 403 and API validation can fail with a 400 for invalid json request body. Request to url/resource
that does not exist always fails with 404. Invalid content types are handled before API methods are called which results in a
415.

Note: When in doubt about whether or not a microversion is required for changing an error response code, consult
the Nova API subteam.

4.1. Contributor Documentation 847

https://wiki.openstack.org/wiki/Meetings/NovaAPI

Nova Documentation, Release 22.4.1.dev41

Note: Fixing a bug so that a 400+ code is returned rather than a 500 or 503 does not require
a microversion change. Its assumed that clients are not expected to handle a 500 or 503
response and therefore should not need to opt-in to microversion changes that fixes a 500
or 503 response from happening. According to the OpenStack API Working Group, a 500
Internal Server Error should not be returned to the user for failures due to user error that
can be fixed by changing the request on the client side. See1.

– new headers returned on a response

The following flow chart attempts to walk through the process of do we need a microversion.
1 When fixing 500 errors that previously caused stack traces, try to map the new error into the existing set of errors that

API call could previously return (400 if nothing else is appropriate). Changing the set of allowed status codes from a request
is changing the contract, and should be part of a microversion (except in2).

The reason why we are so strict on contract is that wed like application writers to be able to know, for sure, what the
contract is at every microversion in Nova. If they do not, they will need to write conditional code in their application to handle
ambiguities.

When in doubt, consider application authors. If it would work with no client side changes on both Nova versions, you
probably dont need a microversion. If, on the other hand, there is any ambiguity, a microversion is probably needed.

4.1. Contributor Documentation 848

Nova Documentation, Release 22.4.1.dev41

Do I need a microversion?

Did we silently
fail to do what is asked?

Did we return a 500
before?

 no

No microversion needed, it's
a bug

yes

Are we changing what
 status code is returned?

 no

yes [1]

Did we add or remove an
 attribute to a payload?

 no

Yes, you need a microversion

yes

Did we add or remove
 an accepted query string parameter or value?

 no

yes

Did we add or remove a
resource url?

 no

yes

No microversion needed

 no

yes

Footnotes

When a microversion is not needed

A microversion is not needed in the following situation:

• the response

– Changing the error message without changing the response code does not require a new
microversion.

– Removing an inapplicable HTTP header, for example, suppose the Retry-After HTTP header
is being returned with a 4xx code. This header should only be returned with a 503 or 3xx
response, so it may be removed without bumping the microversion.

– An obvious regression bug in an admin-only API where the bug can still be fixed upstream on
active stable branches. Admin-only APIs are less of a concern for interoperability and gen-
erally a regression in behavior can be dealt with as a bug fix when the documentation clearly

4.1. Contributor Documentation 849

Nova Documentation, Release 22.4.1.dev41

shows the API behavior was unexpectedly regressed. See3 for an example. Intentional be-
havior changes to an admin-only API do require a microversion, like the 2.53 microversion
for example.

Footnotes

In Code

In nova/api/openstack/wsgi.pywe define an @api_version decorator which is intended to
be used on top-level Controller methods. It is not appropriate for lower-level methods. Some examples:

Adding a new API method

In the controller class:

@wsgi.Controller.api_version("2.4")
def my_api_method(self, req, id):

....

This method would only be available if the caller had specified an OpenStack-API-Version of >=
2.4. If they had specified a lower version (or not specified it and received the default of 2.1) the server
would respond with HTTP/404.

Removing an API method

In the controller class:

@wsgi.Controller.api_version("2.1", "2.4")
def my_api_method(self, req, id):

....

This method would only be available if the caller had specified an OpenStack-API-Version of <=
2.4. If 2.5 or later is specified the server will respond with HTTP/404.

Changing a methods behavior

In the controller class:

@wsgi.Controller.api_version("2.1", "2.3")
def my_api_method(self, req, id):

.... method_1 ...

@wsgi.Controller.api_version("2.4") # noqa
def my_api_method(self, req, id):

.... method_2 ...

If a caller specified 2.1, 2.2 or 2.3 (or received the default of 2.1) they would see the result from
method_1, 2.4 or later method_2.

3 https://review.opendev.org/#/c/523194/

4.1. Contributor Documentation 850

https://review.opendev.org/#/c/523194/

Nova Documentation, Release 22.4.1.dev41

It is vital that the two methods have the same name, so the second of them will need # noqa to
avoid failing flake8s F811 rule. The two methods may be different in any kind of semantics (schema
validation, return values, response codes, etc)

A change in schema only

If there is no change to the method, only to the schema that is used for validation, you can add a version
range to the validation.schema decorator:

@wsgi.Controller.api_version("2.1")
@validation.schema(dummy_schema.dummy, "2.3", "2.8")
@validation.schema(dummy_schema.dummy2, "2.9")
def update(self, req, id, body):

....

This method will be available from version 2.1, validated according to dummy_schema.dummy from
2.3 to 2.8, and validated according to dummy_schema.dummy2 from 2.9 onward.

When not using decorators

When you dont want to use the @api_version decorator on a method or you want to change behavior
within a method (say it leads to simpler or simply a lot less code) you can directly test for the requested
version with a method as long as you have access to the api request object (commonly called req).
Every API method has an api_version_request object attached to the req object and that can be used to
modify behavior based on its value:

def index(self, req):
<common code>

req_version = req.api_version_request
req1_min = api_version_request.APIVersionRequest("2.1")
req1_max = api_version_request.APIVersionRequest("2.5")
req2_min = api_version_request.APIVersionRequest("2.6")
req2_max = api_version_request.APIVersionRequest("2.10")

if req_version.matches(req1_min, req1_max):
....stuff....

elif req_version.matches(req2min, req2_max):
....other stuff....

elif req_version > api_version_request.APIVersionRequest("2.10"):
....more stuff.....

<common code>

The first argument to the matches method is the minimum acceptable version and the second is maximum
acceptable version. A specified version can be null:

null_version = APIVersionRequest()

If the minimum version specified is null then there is no restriction on the minimum version, and likewise
if the maximum version is null there is no restriction the maximum version. Alternatively a one sided
comparison can be used as in the example above.

4.1. Contributor Documentation 851

Nova Documentation, Release 22.4.1.dev41

Other necessary changes

If you are adding a patch which adds a new microversion, it is necessary to add changes to other places
which describe your change:

• Update REST_API_VERSION_HISTORY in nova/api/openstack/
api_version_request.py

• Update _MAX_API_VERSION in nova/api/openstack/api_version_request.py

• Add a verbose description to nova/api/openstack/compute/
rest_api_version_history.rst.

• Add a release note with a features section announcing the new or changed feature and the
microversion.

• Update the expected versions in affected tests, for example in nova/tests/unit/api/
openstack/compute/test_versions.py.

• Update the get versions api sample file: doc/api_samples/versions/
versions-get-resp.json and doc/api_samples/versions/
v21-version-get-resp.json.

• Make a new commit to python-novaclient and update corresponding files to enable the newly
added microversion API. See Adding support for a new microversion in python-novaclient for
more details.

• If the microversion changes the response schema, a new schema and test for the microversion
must be added to Tempest.

• If applicable, add Functional sample tests under nova/tests/functional/
api_sample_tests. Also, add JSON examples to doc/api_samples directory
which can be generated automatically via tox env api-samples or run test with env var
GENERATE_SAMPLES True.

• Update the API Reference documentation as appropriate. The source is located under api-
ref/source/.

• If the microversion changes servers related APIs, update the api-guide/source/
server_concepts.rst accordingly.

Allocating a microversion

If you are adding a patch which adds a new microversion, it is necessary to allocate the next microversion
number. Except under extremely unusual circumstances and this would have been mentioned in the nova
spec for the change, the minor number of _MAX_API_VERSION will be incremented. This will also
be the new microversion number for the API change.

It is possible that multiple microversion patches would be proposed in parallel and the microversions
would conflict between patches. This will cause a merge conflict. We dont reserve a microver-
sion for each patch in advance as we dont know the final merge order. Developers may need over
time to rebase their patch calculating a new version number as above based on the updated value of
_MAX_API_VERSION.

4.1. Contributor Documentation 852

https://docs.openstack.org/python-novaclient/victoria/contributor/microversions
https://docs.openstack.org/api-ref/compute/

Nova Documentation, Release 22.4.1.dev41

Testing Microversioned API Methods

Testing a microversioned API method is very similar to a normal controller method test, you just need
to add the OpenStack-API-Version header, for example:

req = fakes.HTTPRequest.blank('/testable/url/endpoint')
req.headers = {'OpenStack-API-Version': 'compute 2.28'}
req.api_version_request = api_version.APIVersionRequest('2.6')

controller = controller.TestableController()

res = controller.index(req)
... assertions about the response ...

For many examples of testing, the canonical examples are in nova/tests/unit/api/
openstack/compute/test_microversions.py.

4.1.6.4 API reference guideline

The API reference should be updated when compute APIs are modified (microversion is bumped, etc.).
This page describes the guideline for updating the API reference.

API reference

• Compute API reference

The guideline to write the API reference

The API reference consists of the following files.

Compute API reference

• API reference text: api-ref/source/*.inc

• Parameter definition: api-ref/source/parameters.yaml

• JSON request/response samples: doc/api_samples/*

Structure of inc file

Each REST API is described in the text file (*.inc). The structure of inc file is as follows:

• Title (Resource name)

– Introductory text and context

The introductory text and the context for the resource in question should be added. This
might include links to the API Concept guide, or building other supporting documents to
explain a concept (like versioning).

– API Name

4.1. Contributor Documentation 853

https://docs.openstack.org/api-ref/compute/

Nova Documentation, Release 22.4.1.dev41

* REST Method

· URL

· Description

See the Description section for more details.

· Response codes

· Request

· Parameters

· JSON request body example (if exists)

· Response

· Parameters

· JSON response body example (if exists)

– API Name (Next)

*

REST Method

The guideline for describing HTTP methods is described in this section. All supported methods by
resource should be listed in the API reference.

The order of methods

Methods have to be sorted by each URI in the following order:

1. GET

2. POST

3. PUT

4. PATCH (unused by Nova)

5. DELETE

And sorted from broadest to narrowest. So for /severs it would be:

1. GET /servers

2. POST /servers

3. GET /servers/details

4. GET /servers/{server_id}

5. PUT /servers/{server_id}

6. DELETE /servers/{server_id}

4.1. Contributor Documentation 854

Nova Documentation, Release 22.4.1.dev41

Method titles spelling and case

The spelling and the case of method names in the title have to match what is in the code. For instance,
the title for the section on method Get Rdp Console should be Get Rdp Console (os-getRDPConsole
Action) NOT Get Rdp Console (Os-Getrdpconsole Action)

Description

The following items should be described in each API. Or links to the pages describing them should be
added.

• The purpose of the API(s)

– e.g. Lists, creates, shows details for, updates, and deletes servers.

– e.g. Creates a server.

• Microversion

– Deprecated

* Warning

* Microversion to start deprecation

* Alternatives (superseded ways) and their links (if document is available)

– Added

* Microversion in which the API has been added

– Changed behavior

* Microversion to change behavior

* Explanation of the behavior

– Changed HTTP response codes

* Microversion to change the response code

* Explanation of the response code

• Warning if direct use is not recommended

– e.g. This is an admin level service API only designed to be used by other OpenStack services.
The point of this API is to coordinate between Nova and Neutron, Nova and Cinder (and
potentially future services) on activities they both need to be involved in, such as network
hotplugging. Unless you are writing Neutron or Cinder code you should not be using this
API.

• Explanation about statuses of resource in question

– e.g. The server status.

* ACTIVE. The server is active.

• Supplementary explanation for parameters

– Examples of query parameters

– Parameters that are not specified at the same time

4.1. Contributor Documentation 855

Nova Documentation, Release 22.4.1.dev41

– Values that cannot be specified.

* e.g. A destination host is the same host.

• Behavior

– Config options to change the behavior and the effect

– Effect to resource status

* Ephemeral disks, attached volumes, attached network ports and others

* Data loss or preserve contents

– Scheduler

* Whether the scheduler choose a destination host or not

• Sort order of response results

– Describe sorting order of response results if the API implements the order (e.g. The response
is sorted by created_at and id in descending order by default)

• Policy

– Default policy (the admin only, the admin or the owner)

– How to change the policy

• Preconditions

– Server status

– Task state

– Policy for locked servers

– Quota

– Limited support

* e.g. Only qcow2 is supported

– Compute driver support

* If very few compute drivers support the operation, add a warning and a link to the
support matrix of virt driver.

– Cases that are not supported

* e.g. A volume-backed server

• Postconditions

– If the operation is asynchronous, it should be Asynchronous postconditions.

– Describe what status/state resource in question becomes by the operation

* Server status

* Task state

* Path of output file

• Troubleshooting

4.1. Contributor Documentation 856

Nova Documentation, Release 22.4.1.dev41

– e.g. If the server status remains BUILDING or shows another error status, the request failed.
Ensure you meet the preconditions then investigate the compute node.

• Related operations

– Operations to be paired

* e.g. Start and stop

– Subsequent operation

* e.g. Confirm resize after Resize operation

• Performance

– e.g. The progress of this operation depends on the location of the requested image, network
I/O, host load, selected flavor, and other factors.

• Progress

– How to get progress of the operation if the operation is asynchronous.

• Restrictions

– Range that ID is unique

* e.g. HostId is unique per account and is not globally unique.

• How to avoid errors

– e.g. The server to get console log from should set export LC_ALL=en_US.UTF-8 in
order to avoid incorrect unicode error.

• Reference

– Links to the API Concept guide, or building other supporting documents to explain a concept
(like versioning).

• Other notices

Response codes

The normal response codes (20x) and error response codes have to be listed. The order of response
codes should be in ascending order. The description of typical error response codes are as follows:

Table 1: Error response codes
Response codes Description
400 badRequest(400)
401 unauthorized(401)
403 forbidden(403)
404 itemNotFound(404)
409 conflict(409)
410 gone(410)
501 notImplemented(501)
503 serviceUnavailable(503)

In addition, the following explanations should be described.

4.1. Contributor Documentation 857

Nova Documentation, Release 22.4.1.dev41

• Conditions under which each normal response code is returned (If there are multiple normal re-
sponse codes.)

• Conditions under which each error response code is returned

Parameters

Parameters need to be defined by 2 subsections. The one is in the Request subsection, the other is in
the Response subsection. The queries, request headers and attributes go in the Request subsection and
response headers and attributes go in the Response subsection.

The order of parameters in each API

The request and response parameters have to be listed in the following order in each API in the text file.

1. Header

2. Path

3. Query

4. Body

a. Top level object (i.e. server)

b. Required fields

c. Optional fields

d. Parameters added in microversions (by the microversion they were added)

Parameter type

The parameters are defined in the parameter file (parameters.yaml). The type of parameters have
to be one of followings:

• array

It is a list.

• boolean

• float

• integer

• none

The value is always null in a response or should be null in a request.

• object

The value is dict.

• string

If the value can be specified by multiple types, specify one type in the file and mention the other
types in the description.

4.1. Contributor Documentation 858

Nova Documentation, Release 22.4.1.dev41

Required or optional

In the parameter file, define the required field in each parameter.

true The parameter must be specified in the request, or the parameter always appears in
the response.

false It is not always necessary to specify the parameter in the request, or the parameter does
not appear in the response in some cases. e.g. A config option defines whether the
parameter appears in the response or not. A parameter appears when administrators
call but does not appear when non-admin users call.

If a parameter must be specified in the request or always appears in the response in the micoversion
added or later, the parameter must be defined as required (true).

Microversion

If a parameter is available starting from a microversion, the microversion must be described by
min_version in the parameter file. However, if the minimum microversion is the same as a mi-
croversion that the API itself is added, it is not necessary to describe the microversion.

For example:

aggregate_uuid:
description: |

The UUID of the host aggregate.
in: body
required: true
type: string
min_version: 2.41

This example describes that aggregate_uuid is available starting from microversion 2.41.

If a parameter is available up to a microversion, the microversion must be described by max_version
in the parameter file.

For example:

security_group_rules:
description: |

The number of allowed rules for each security group.
in: body
required: false
type: integer
max_version: 2.35

This example describes that security_group_rules is available up to microversion 2.35 (and has
been removed since microversion 2.36).

4.1. Contributor Documentation 859

Nova Documentation, Release 22.4.1.dev41

The order of parameters in the parameter file

The order of parameters in the parameter file has to be kept as follows:

1. By in type

a. Header

b. Path

c. Query

d. Body

2. Then alphabetical by name

Example

One or more examples should be provided for operations whose request and/or response contains a
payload. The example should describe what the operation is attempting to do and provide a sample
payload for the request and/or response as appropriate. Sample files should be created in the doc/
api_samples directory and inlined by inclusion.

When an operation has no payload in the response, a suitable message should be included. For example:

There is no body content for the response of a successful DELETE query.

Examples for multiple microversions should be included in ascending microversion order.

Reference

• Verifying the Nova API Ref

• The description for Parameters whose values are null

• The definition of Optional parameter

• How to document your OpenStack API service

4.1.7 Nova Major Subsystems

Major subsystems in nova have different needs. If you are contributing to one of these please read the
reference guide before diving in.

• Move operations

– Evacuate vs Rebuild: Describes the differences between the often-confused evacuate and
rebuild operations.

– Resize and cold migrate: Describes the differences and similarities between resize and cold
migrate operations.

4.1. Contributor Documentation 860

https://wiki.openstack.org/wiki/NovaAPIRef
http://lists.openstack.org/pipermail/openstack-dev/2017-January/109868.html
http://lists.openstack.org/pipermail/openstack-dev/2017-July/119239.html
https://docs.openstack.org/doc-contrib-guide/api-guides.html#how-to-document-your-openstack-api-service

Nova Documentation, Release 22.4.1.dev41

4.1.7.1 Evacuate vs Rebuild

The evacuate API and rebuild API are commonly confused in nova because the internal conductor code
and compute code use the same methods called rebuild_instance. This document explains some
of the differences in what happens between an evacuate and rebuild operation.

High level

Evacuate is an operation performed by an administrator when a compute service or host is encountering
some problem, goes down and needs to be fenced from the network. The servers that were running on
that compute host can be rebuilt on a different host using the same image. If the source and destination
hosts are running on shared storage then the root disk image of the servers can be retained otherwise
the root disk image (if not using a volume-backed server) will be lost. This is one example of why it
is important to attach data volumes to a server to store application data and leave the root disk for the
operating system since data volumes will be re-attached to the server as part of the evacuate process.

Rebuild is an operation which can be performed by a non-administrative owner of the server (the user)
performed on the same compute host to change certain aspects of the server, most notably using a dif-
ferent image. Note that the image does not have to change and in the case of volume-backed servers the
image currently cannot change. Other attributes of the server can be changed as well such as key_name
and user_data. See the rebuild API reference for full usage details. When a user rebuilds a server
they want to change it which requires re-spawning the guest in the hypervisor but retain the UUID,
volumes and ports attached to the server. For a non-volume-backed server the root disk image is rebuilt.

Scheduling

Evacuate always schedules the server to another host and rebuild always occurs on the same host.

Note that when rebuilding with a different image, the request is run through the scheduler to ensure the
new image is still valid for the current compute host.

Image

As noted above, the image that the server uses during an evacuate operation does not change. The image
used to rebuild a server may change but does not have to and in the case of volume-backed servers cannot
change.

Resource claims

The compute service ResourceTracker has a claims operation which is used to ensure resources
are available before building a server on the host. The scheduler performs the initial filtering of hosts to
ensure a server can be built on a given host and the compute claim is essentially meant as a secondary
check to prevent races when the scheduler has out of date information or when there are concurrent build
requests going to the same host.

During an evacuate operation there is a rebuild claim since the server is being re-built on a different host.

During a rebuild operation, since the flavor does not change, there is no claim made since the host does
not change.

4.1. Contributor Documentation 861

https://docs.openstack.org/api-ref/compute/#evacuate-server-evacuate-action
https://docs.openstack.org/api-ref/compute/#rebuild-server-rebuild-action
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/conductor/manager.py#L944
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/manager.py#L3052
https://specs.openstack.org/openstack/nova-specs/specs/train/approved/volume-backed-server-rebuild.html
https://docs.openstack.org/api-ref/compute/#rebuild-server-rebuild-action
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/api.py#L3414
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/claims.py
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/manager.py#L3104
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/manager.py#L3108

Nova Documentation, Release 22.4.1.dev41

Allocations

Since the 16.0.0 (Pike) release, the scheduler uses the placement service to filter compute nodes (re-
source providers) based on information in the flavor and image used to build the server. Once the
scheduler runs through its filters and weighers and picks a host, resource class allocations are atomically
consumed in placement with the server as the consumer.

During an evacuate operation, the allocations held by the server consumer against the source compute
node resource provider are left intact since the source compute service is down. Note that migration-
based allocations, which were introduced in the 17.0.0 (Queens) release, do not apply to evacuate op-
erations but only resize, cold migrate and live migrate. So once a server is successfully evacuated to
a different host, the placement service will track allocations for that server against both the source and
destination compute node resource providers. If the source compute service is restarted after being
evacuated and fixed, the compute service will delete the old allocations held by the evacuated servers.

During a rebuild operation, since neither the host nor flavor changes, the server allocations remain intact.

4.1.7.2 Resize and cold migrate

The resize API and cold migrate API are commonly confused in nova because the internal API code,
conductor code and compute code use the same methods. This document explains some of the differ-
ences in what happens between a resize and cold migrate operation.

For the most part this document describes same-cell resize. For details on cross-cell resize, refer to
Cross-cell resize.

High level

Cold migrate is an operation performed by an administrator to power off and move a server from one
host to a different host using the same flavor. Volumes and network interfaces are disconnected from
the source host and connected on the destination host. The type of file system between the hosts and
image backend determine if the server files and disks have to be copied. If copy is necessary then root
and ephemeral disks are copied and swap disks are re-created.

Resize is an operation which can be performed by a non-administrative owner of the server (the user)
with a different flavor. The new flavor can change certain aspects of the server such as the number
of CPUS, RAM and disk size. Otherwise for the most part the internal details are the same as a cold
migration.

Scheduling

Depending on how the API is configured for allow_resize_to_same_host, the server may be
able to be resized on the current host. All compute drivers support resizing to the same host but only the
vCenter driver supports cold migrating to the same host. Enabling resize to the same host is necessary
for features such as strict affinity server groups where there are more than one server in the same affinity
group.

Starting with microversion 2.56 an administrator can specify a destination host for the cold migrate
operation. Resize does not allow specifying a destination host.

4.1. Contributor Documentation 862

https://docs.openstack.org/placement/latest/
https://docs.openstack.org/api-ref/placement/#allocations
https://specs.openstack.org/openstack/nova-specs/specs/queens/implemented/migration-allocations.html
https://specs.openstack.org/openstack/nova-specs/specs/queens/implemented/migration-allocations.html
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/manager.py#L627
https://docs.openstack.org/api-ref/compute/#resize-server-resize-action
https://docs.openstack.org/api-ref/compute/#migrate-server-migrate-action
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/api.py#L3568
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/conductor/manager.py#L297
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/manager.py#L4445
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#id52

Nova Documentation, Release 22.4.1.dev41

Flavor

As noted above, with resize the flavor must change and with cold migrate the flavor will not change.

Resource claims

Both resize and cold migration perform a resize claim on the destination node. Historically the resize
claim was meant as a safety check on the selected node to work around race conditions in the scheduler.
Since the scheduler started atomically claiming VCPU, MEMORY_MB and DISK_GB allocations using
Placement the role of the resize claim has been reduced to detecting the same conditions but for resources
like PCI devices and NUMA topology which, at least as of the 20.0.0 (Train) release, are not modeled
in Placement and as such are not atomic.

If this claim fails, the operation can be rescheduled to an alternative host, if there are any. The number
of possible alternative hosts is determined by the scheduler.max_attempts configuration option.

Allocations

Since the 16.0.0 (Pike) release, the scheduler uses the placement service to filter compute nodes (re-
source providers) based on information in the flavor and image used to build the server. Once the
scheduler runs through its filters and weighers and picks a host, resource class allocations are atomically
consumed in placement with the server as the consumer.

During both resize and cold migrate operations, the allocations held by the server consumer against
the source compute node resource provider are moved to a migration record and the scheduler will
create allocations, held by the instance consumer, on the selected destination compute node resource
provider. This is commonly referred to as migration-based allocations which were introduced in the
17.0.0 (Queens) release.

If the operation is successful and confirmed, the source node allocations held by the migration record
are dropped. If the operation fails or is reverted, the source compute node resource provider allocations
held by the migration record are reverted back to the instance consumer and the allocations against the
destination compute node resource provider are dropped.

Summary of differences

Resize Cold migrate
New flavor Yes No
Autho-
rization
(default)

Admin or owner (user)
Policy rule:
os_compute_api:servers:resize

Admin only
Policy rule:
os_compute_api:os-migrate-server:migrate

Same host Maybe Only vCenter
Can specify
target host

No Yes (microversion >= 2.56)

4.1. Contributor Documentation 863

https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/resource_tracker.py#L248
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/scheduler/filter_scheduler.py#L239
https://docs.openstack.org/placement/latest/
https://docs.openstack.org/api-ref/placement/#allocations
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/conductor/tasks/migrate.py#L28
https://docs.openstack.org/api-ref/compute/#migrations-os-migrations
https://specs.openstack.org/openstack/nova-specs/specs/queens/implemented/migration-allocations.html
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/manager.py#L4048
https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/manager.py#L4233

Nova Documentation, Release 22.4.1.dev41

Sequence Diagrams

The following diagrams are current as of the 21.0.0 (Ussuri) release.

Resize

This is the sequence of calls to get the server to VERIFY_RESIZE status.

Confirm resize

This is the sequence of calls when confirming or deleting a server in VERIFY_RESIZE status.

Note that in the below diagram, if confirming a resize while deleting a server the API synchronously
calls the source compute service.

Revert resize

This is the sequence of calls when reverting a server in VERIFY_RESIZE status.

4.1. Contributor Documentation 864

https://opendev.org/openstack/nova/src/tag/19.0.0/nova/compute/api.py#L2135

Nova Documentation, Release 22.4.1.dev41

4.2 Technical Reference Deep Dives

The nova project is large, and there are lots of complicated parts in it where it helps to have an overview
to understand how the internals of a particular part work.

4.2.1 Internals

The following is a dive into some of the internals in nova.

• AMQP and Nova: How nova uses AMQP as an RPC transport

• Scheduling: The workflow through the scheduling process

• Scheduler hints versus flavor extra specs: The similarities and differences between flavor extra
specs and scheduler hints.

• Live Migration: The live migration flow

• Services, Managers and Drivers: Module descriptions for some of the key modules used in start-
ing / running services

• Virtual Machine States and Transitions: Cheat sheet for understanding the life cycle of compute
instances

• Threading model: The concurrency model used in nova, which is based on eventlet, and may not
be familiar to everyone.

• Notifications in Nova: How the notifications subsystem works in nova, and considerations when
adding notifications.

• ComputeDriver.update_provider_tree: A detailed explanation of the ComputeDriver.
update_provider_tree method.

• Upgrade checks: A guide to writing automated upgrade checks.

• Conductor as a place for orchestrating tasks

Todo: Need something about versioned objects and how they fit in with conductor as an object back-
porter during upgrades.

• Filtering hosts by isolating aggregates: Describes how the placement filter works in nova to isolate
groups of hosts.

4.2.1.1 AMQP and Nova

AMQP is the messaging technology chosen by the OpenStack cloud. The AMQP broker, default to
Rabbitmq, sits between any two Nova components and allows them to communicate in a loosely coupled
fashion. More precisely, Nova components (the compute fabric of OpenStack) use Remote Procedure
Calls (RPC hereinafter) to communicate to one another; however such a paradigm is built atop the
publish/subscribe paradigm so that the following benefits can be achieved:

• Decoupling between client and servant (such as the client does not need to know where the ser-
vants reference is).

4.2. Technical Reference Deep Dives 865

Nova Documentation, Release 22.4.1.dev41

• Full a-synchronism between client and servant (such as the client does not need the servant to run
at the same time of the remote call).

• Random balancing of remote calls (such as if more servants are up and running, one-way calls are
transparently dispatched to the first available servant).

Nova uses direct, fanout, and topic-based exchanges. The architecture looks like the one depicted in the
figure below:

Nova implements RPC (both request+response, and one-way, respectively nicknamed rpc.call and
rpc.cast) over AMQP by providing an adapter class which take cares of marshaling and unmarshal-
ing of messages into function calls. Each Nova service (for example Compute, Scheduler, etc.) create
two queues at the initialization time, one which accepts messages with routing keys NODE-TYPE.
NODE-ID (for example compute.hostname) and another, which accepts messages with routing
keys as generic NODE-TYPE (for example compute). The former is used specifically when Nova-API
needs to redirect commands to a specific node like openstack server delete $instance. In
this case, only the compute node whose hosts hypervisor is running the virtual machine can kill the in-
stance. The API acts as a consumer when RPC calls are request/response, otherwise it acts as a publisher
only.

Nova RPC Mappings

The figure below shows the internals of a message broker node (referred to as a RabbitMQ node in the
diagrams) when a single instance is deployed and shared in an OpenStack cloud. Every Nova component
connects to the message broker and, depending on its personality (for example a compute node or a
network node), may use the queue either as an Invoker (such as API or Scheduler) or a Worker (such as
Compute or Network). Invokers and Workers do not actually exist in the Nova object model, but we are
going to use them as an abstraction for sake of clarity. An Invoker is a component that sends messages
in the queuing system via two operations: 1) rpc.call and ii) rpc.cast; a Worker is a component
that receives messages from the queuing system and reply accordingly to rpc.call operations.

Figure 2 shows the following internal elements:

Topic Publisher A Topic Publisher comes to life when an rpc.call or an rpc.cast operation is
executed; this object is instantiated and used to push a message to the queuing system. Every pub-
lisher connects always to the same topic-based exchange; its life-cycle is limited to the message

4.2. Technical Reference Deep Dives 866

Nova Documentation, Release 22.4.1.dev41

delivery.

Direct Consumer A Direct Consumer comes to life if (and only if) an rpc.call operation is exe-
cuted; this object is instantiated and used to receive a response message from the queuing system.
Every consumer connects to a unique direct-based exchange via a unique exclusive queue; its life-
cycle is limited to the message delivery; the exchange and queue identifiers are determined by a
UUID generator, and are marshaled in the message sent by the Topic Publisher (only rpc.call
operations).

Topic Consumer A Topic Consumer comes to life as soon as a Worker is instantiated and exists
throughout its life-cycle; this object is used to receive messages from the queue and it invokes
the appropriate action as defined by the Worker role. A Topic Consumer connects to the same
topic-based exchange either via a shared queue or via a unique exclusive queue. Every Worker
has two topic consumers, one that is addressed only during rpc.cast operations (and it con-
nects to a shared queue whose exchange key is topic) and the other that is addressed only during
rpc.call operations (and it connects to a unique queue whose exchange key is topic.host).

Direct Publisher A Direct Publisher comes to life only during rpc.call operations and it is instan-
tiated to return the message required by the request/response operation. The object connects to a
direct-based exchange whose identity is dictated by the incoming message.

Topic Exchange The Exchange is a routing table that exists in the context of a virtual host (the multi-
tenancy mechanism provided by RabbitMQ etc); its type (such as topic vs. direct) determines the
routing policy; a message broker node will have only one topic-based exchange for every topic in
Nova.

Direct Exchange This is a routing table that is created during rpc.call operations; there are many
instances of this kind of exchange throughout the life-cycle of a message broker node, one for
each rpc.call invoked.

Queue Element A Queue is a message bucket. Messages are kept in the queue until a Consumer (either
Topic or Direct Consumer) connects to the queue and fetch it. Queues can be shared or can
be exclusive. Queues whose routing key is topic are shared amongst Workers of the same
personality.

4.2. Technical Reference Deep Dives 867

Nova Documentation, Release 22.4.1.dev41

RPC Calls

The diagram below shows the message flow during an rpc.call operation:

1. A Topic Publisher is instantiated to send the message request to the queuing system; immedi-
ately before the publishing operation, a Direct Consumer is instantiated to wait for the response
message.

2. Once the message is dispatched by the exchange, it is fetched by the Topic Consumer dictated by
the routing key (such as topic.host) and passed to the Worker in charge of the task.

3. Once the task is completed, a Direct Publisher is allocated to send the response message to the
queuing system.

4. Once the message is dispatched by the exchange, it is fetched by the Direct Consumer dictated by
the routing key (such as msg_id) and passed to the Invoker.

RPC Casts

The diagram below shows the message flow during an rpc.cast operation:

1. A Topic Publisher is instantiated to send the message request to the queuing system.

2. Once the message is dispatched by the exchange, it is fetched by the Topic Consumer dictated by
the routing key (such as topic) and passed to the Worker in charge of the task.

AMQP Broker Load

At any given time the load of a message broker node running RabbitMQ etc is function of the following
parameters:

Throughput of API calls The number of API calls (more precisely rpc.call ops) being served by
the OpenStack cloud dictates the number of direct-based exchanges, related queues and direct
consumers connected to them.

4.2. Technical Reference Deep Dives 868

Nova Documentation, Release 22.4.1.dev41

Number of Workers There is one queue shared amongst workers with the same personality; however
there are as many exclusive queues as the number of workers; the number of workers dictates also
the number of routing keys within the topic-based exchange, which is shared amongst all workers.

The figure below shows the status of a RabbitMQ node after Nova components bootstrap in a test envi-
ronment. Exchanges and queues being created by Nova components are:

• Exchanges

1. nova (topic exchange)

• Queues

1. compute.phantom (phantom is hostname)

2. compute

3. network.phantom (phantom is hostname)

4. network

5. scheduler.phantom (phantom is hostname)

6. scheduler

RabbitMQ Gotchas

Nova uses Kombu to connect to the RabbitMQ environment. Kombu is a Python library that in turn
uses AMQPLib, a library that implements the standard AMQP 0.8 at the time of writing. When using
Kombu, Invokers and Workers need the following parameters in order to instantiate a Connection object
that connects to the RabbitMQ server (please note that most of the following material can be also found
in the Kombu documentation; it has been summarized and revised here for sake of clarity):

hostname The hostname to the AMQP server.

userid A valid username used to authenticate to the server.

password The password used to authenticate to the server.

4.2. Technical Reference Deep Dives 869

Nova Documentation, Release 22.4.1.dev41

virtual_host The name of the virtual host to work with. This virtual host must exist on the server,
and the user must have access to it. Default is /.

port The port of the AMQP server. Default is 5672 (amqp).

The following parameters are default:

insist Insist on connecting to a server. In a configuration with multiple load-sharing servers, the
Insist option tells the server that the client is insisting on a connection to the specified server.
Default is False.

connect_timeout The timeout in seconds before the client gives up connecting to the server. The
default is no timeout.

ssl Use SSL to connect to the server. The default is False.

More precisely Consumers need the following parameters:

connection The above mentioned Connection object.

queue Name of the queue.

exchange Name of the exchange the queue binds to.

routing_key The interpretation of the routing key depends on the value of the exchange_type
attribute.

Direct exchange If the routing key property of the message and the routing_key attribute of
the queue are identical, then the message is forwarded to the queue.

Fanout exchange Messages are forwarded to the queues bound the exchange, even if the binding
does not have a key.

Topic exchange If the routing key property of the message matches the routing key of the key
according to a primitive pattern matching scheme, then the message is forwarded to the
queue. The message routing key then consists of words separated by dots (., like domain
names), and two special characters are available; star (*) and hash (#). The star matches
any word, and the hash matches zero or more words. For example .stock.# matches the
routing keys usd.stock and eur.stock.db but not stock.nasdaq.

durable This flag determines the durability of both exchanges and queues; durable exchanges and
queues remain active when a RabbitMQ server restarts. Non-durable exchanges/queues (transient
exchanges/queues) are purged when a server restarts. It is worth noting that AMQP specifies that
durable queues cannot bind to transient exchanges. Default is True.

auto_delete If set, the exchange is deleted when all queues have finished using it. Default is False.

exclusive Exclusive queues (such as non-shared) may only be consumed from by the current con-
nection. When exclusive is on, this also implies auto_delete. Default is False.

exchange_type AMQP defines several default exchange types (routing algorithms) that covers most
of the common messaging use cases.

auto_ack Acknowledgment is handled automatically once messages are received. By default
auto_ack is set to False, and the receiver is required to manually handle acknowledgment.

no_ack It disable acknowledgment on the server-side. This is different from auto_ack in that ac-
knowledgment is turned off altogether. This functionality increases performance but at the cost of
reliability. Messages can get lost if a client dies before it can deliver them to the application.

4.2. Technical Reference Deep Dives 870

Nova Documentation, Release 22.4.1.dev41

auto_declare If this is True and the exchange name is set, the exchange will be automatically
declared at instantiation. Auto declare is on by default.

Publishers specify most the parameters of Consumers (such as they do not specify a queue name), but
they can also specify the following:

delivery_mode The default delivery mode used for messages. The value is an integer. The follow-
ing delivery modes are supported by RabbitMQ:

1 (transient) The message is transient. Which means it is stored in memory only, and is lost if
the server dies or restarts.

2 (persistent) The message is persistent. Which means the message is stored both in-memory,
and on disk, and therefore preserved if the server dies or restarts.

The default value is 2 (persistent). During a send operation, Publishers can override the delivery mode
of messages so that, for example, transient messages can be sent over a durable queue.

4.2.1.2 Scheduling

This is an overview of how scheduling works in nova from Pike onwards. For information on the
scheduler itself, refer to Filter Scheduler. For an overview of why weve changed how the scheduler
works, refer to Scheduler Evolution.

Overview

The scheduling process is described below.

Note: This is current as of the 16.0.0 Pike release. Any mention of alternative hosts passed between
the scheduler and conductor(s) is future work.

4.2. Technical Reference Deep Dives 871

Nova Documentation, Release 22.4.1.dev41

4.2. Technical Reference Deep Dives 872

Nova Documentation, Release 22.4.1.dev41

As the above diagram illustrates, scheduling works like so:

1. Scheduler gets a request spec from the super conductor, containing resource requirements. The
super conductor operates at the top level of a deployment, as contrasted with the cell conductor,
which operates within a particular cell.

2. Scheduler sends those requirements to placement.

3. Placement runs a query to determine the resource providers (in this case, compute nodes) that can
satisfy those requirements.

4. Placement then constructs a data structure for each compute node as documented in the spec. The
data structure contains summaries of the matching resource provider information for each compute
node, along with the AllocationRequest that will be used to claim the requested resources if that
compute node is selected.

5. Placement returns this data structure to the Scheduler.

6. The Scheduler creates HostState objects for each compute node contained in the provider sum-
maries. These HostState objects contain the information about the host that will be used for
subsequent filtering and weighing.

7. Since the request spec can specify one or more instances to be scheduled. The Scheduler repeats
the next several steps for each requested instance.

8. Scheduler runs these HostState objects through the filters and weighers to further refine and rank
the hosts to match the request.

9. Scheduler then selects the HostState at the top of the ranked list, and determines its matching
AllocationRequest from the data returned by Placement. It uses that AllocationRequest as the
body of the request sent to Placement to claim the resources.

10. If the claim is not successful, that indicates that another process has consumed those resources,
and the host is no longer able to satisfy the request. In that event, the Scheduler moves on to the
next host in the list, repeating the process until it is able to successfully claim the resources.

11. Once the Scheduler has found a host for which a successful claim has been made, it needs to select
a number of alternate hosts. These are hosts from the ranked list that are in the same cell as the
selected host, which can be used by the cell conductor in the event that the build on the selected
host fails for some reason. The number of alternates is determined by the configuration option
scheduler.max_attempts.

12. Scheduler creates two list structures for each requested instance: one for the hosts (selected +
alternates), and the other for their matching AllocationRequests.

13. To create the alternates, Scheduler determines the cell of the selected host. It then iterates through
the ranked list of HostState objects to find a number of additional hosts in that same cell. It adds
those hosts to the host list, and their AllocationRequest to the allocation list.

14. Once those lists are created, the Scheduler has completed what it needs to do for a requested
instance.

15. Scheduler repeats this process for any additional requested instances. When all instances have
been scheduled, it creates a 2-tuple to return to the super conductor, with the first element of the
tuple being a list of lists of hosts, and the second being a list of lists of the AllocationRequests.

16. Scheduler returns that 2-tuple to the super conductor.

17. For each requested instance, the super conductor determines the cell of the selected host. It then
sends a 2-tuple of ([hosts], [AllocationRequests]) for that instance to the target cell conductor.

4.2. Technical Reference Deep Dives 873

https://specs.openstack.org/openstack/nova-specs/specs/pike/approved/placement-allocation-requests.html

Nova Documentation, Release 22.4.1.dev41

18. Target cell conductor tries to build the instance on the selected host. If it fails, it uses the Al-
locationRequest data for that host to unclaim the resources for the selected host. It then iterates
through the list of alternates by first attempting to claim the resources, and if successful, building
the instance on that host. Only when all alternates fail does the build request fail.

4.2.1.3 Scheduler hints versus flavor extra specs

People deploying and working on Nova often have questions about flavor extra specs and scheduler hints
and what role they play in scheduling decisions, and which is a better choice for exposing capability to
an end user of the cloud. There are several things to consider and it can get complicated. This document
attempts to explain at a high level some of the major differences and drawbacks with both flavor extra
specs and scheduler hints.

Extra Specs

In general flavor extra specs are specific to the cloud and how it is organized for capabilities, and should
be abstracted from the end user. Extra specs are tied to host aggregates and a lot of them also define how
a guest is created in the hypervisor, for example what the watchdog action is for a VM. Extra specs are
also generally interchangeable with image properties when it comes to VM behavior, like the watchdog
example. How that is presented to the user is via the name of the flavor, or documentation specifically
for that deployment, e.g. instructions telling a user how to setup a baremetal instance.

Scheduler Hints

Scheduler hints, also known simply as hints, can be specified during server creation to influence the
placement of the server by the scheduler depending on which scheduler filters are enabled. Hints are
mapped to specific filters. For example, the ServerGroupAntiAffinityFilter scheduler filter
is used with the group scheduler hint to indicate that the server being created should be a member
of the specified anti-affinity group and the filter should place that server on a compute host which is
different from all other current members of the group.

Hints are not more dynamic than flavor extra specs. The end user specifies a flavor and optionally a hint
when creating a server, but ultimately what they can specify is static and defined by the deployment.

Similarities

• Both scheduler hints and flavor extra specs can be used by scheduler filters.

• Both are totally customizable, meaning there is no whitelist within Nova of acceptable hints or
extra specs, unlike image properties1.

• An end user cannot achieve a new behavior without deployer consent, i.e. even
if the end user specifies the group hint, if the deployer did not configure the
ServerGroupAntiAffinityFilter the end user cannot have the anti-affinity be-
havior.

1 https://opendev.org/openstack/nova/src/commit/fbe6f77bc1cb41f5d6cfc24ece54d3413f997aab/nova/objects/image_
meta.py#L225

4.2. Technical Reference Deep Dives 874

https://docs.openstack.org/glance/latest/admin/useful-image-properties.html
https://opendev.org/openstack/nova/src/commit/fbe6f77bc1cb41f5d6cfc24ece54d3413f997aab/nova/objects/image_meta.py#L225
https://opendev.org/openstack/nova/src/commit/fbe6f77bc1cb41f5d6cfc24ece54d3413f997aab/nova/objects/image_meta.py#L225

Nova Documentation, Release 22.4.1.dev41

Differences

• A servers host location and/or behavior can change when resized with a flavor that has different
extra specs from those used to create the server. Scheduler hints can only be specified during
server creation, not during resize or any other move operation, but the original hints are still
applied during the move operation.

• The flavor extra specs used to create (or resize) a server can be retrieved from the compute API
using the 2.47 microversion. As of the 19.0.0 Stein release, there is currently no way from the
compute API to retrieve the scheduler hints used to create a server.

Note: Exposing the hints used to create a server has been proposed2. Without this, it is possible
to workaround the limitation by doing things such as including the scheduler hint in the server
metadata so it can be retrieved via server metadata later.

• In the case of hints the end user can decide not to include a hint. On the other hand the end user
cannot create a new flavor (by default policy) to avoid passing a flavor with an extra spec - the
deployer controls the flavors.

Discoverability

When it comes to discoverability, by the default os_compute_api:os-flavor-extra-specs:index
policy rule, flavor extra specs are more discoverable by the end user since they can list them for a flavor.
However, one should not expect an average end user to understand what different extra specs mean as
they are just a key/value pair. There is some documentation for some standard extra specs though3.
However, that is not an exhaustive list and it does not include anything that different deployments would
define for things like linking a flavor to a set of host aggregates, for example, when creating flavors for
baremetal instances, or what the chosen hypervisor driver might support for flavor extra specs.

Scheduler hints are less discoverable from an end user perspective than extra specs. There are some
standard hints defined in the API request schema4. However:

1. Those hints are tied to scheduler filters and the scheduler filters are configurable per deployment,
so for example the JsonFilter might not be enabled (it is not enabled by default), so the
query hint would not do anything.

2. Scheduler hints are not restricted to just what is in that schema in the upstream nova code because
of the additionalProperties: True entry in the schema. This allows deployments to
define their own hints outside of that API request schema for their own custom scheduler filters
which are not part of the upstream nova code.

2 https://review.opendev.org/#/c/440580/
3 https://docs.openstack.org/nova/latest/user/flavors.html#extra-specs
4 https://opendev.org/openstack/nova/src/commit/fbe6f77bc1cb41f5d6cfc24ece54d3413f997aab/nova/api/openstack/

compute/schemas/scheduler_hints.py

4.2. Technical Reference Deep Dives 875

https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#id42
https://review.opendev.org/#/c/440580/
https://docs.openstack.org/nova/latest/user/flavors.html#extra-specs
https://opendev.org/openstack/nova/src/commit/fbe6f77bc1cb41f5d6cfc24ece54d3413f997aab/nova/api/openstack/compute/schemas/scheduler_hints.py
https://opendev.org/openstack/nova/src/commit/fbe6f77bc1cb41f5d6cfc24ece54d3413f997aab/nova/api/openstack/compute/schemas/scheduler_hints.py

Nova Documentation, Release 22.4.1.dev41

Interoperability

The only way an end user can really use scheduler hints is based on documentation (or GUIs/SDKs) that
a specific cloud deployment provides for their setup. So if CloudA defines a custom scheduler filter X
and a hint for that filter in their documentation, an end user application can only run with that hint on
that cloud and expect it to work as documented. If the user moves their application to CloudB which
does not have that scheduler filter or hint, they will get different behavior.

So obviously both flavor extra specs and scheduler hints are not interoperable.

Which to use?

When it comes to defining a custom scheduler filter, you could use a hint or an extra spec. If you need
a flavor extra spec anyway for some behavior in the hypervisor when creating the guest, or to be able
to retrieve the original flavor extra specs used to create a guest later, then you might as well just use
the extra spec. If you do not need that, then a scheduler hint may be an obvious choice, from an end
user perspective, for exposing a certain scheduling behavior but it must be well documented and the end
user should realize that hint might not be available in other clouds, and they do not have a good way
of finding that out either. Long-term, flavor extra specs are likely to be more standardized than hints so
ultimately extra specs are the recommended choice.

4.2. Technical Reference Deep Dives 876

Nova Documentation, Release 22.4.1.dev41

Footnotes

4.2.1.4 Live Migration

4.2.1.5 Services, Managers and Drivers

The responsibilities of Services, Managers, and Drivers, can be a bit confusing to people that are new
to nova. This document attempts to outline the division of responsibilities to make understanding the
system a little bit easier.

Currently, Managers and Drivers are specified by flags and loaded using utils.load_object(). This method
allows for them to be implemented as singletons, classes, modules or objects. As long as the path
specified by the flag leads to an object (or a callable that returns an object) that responds to getattr, it
should work as a manager or driver.

4.2. Technical Reference Deep Dives 877

Nova Documentation, Release 22.4.1.dev41

The nova.service Module

Generic Node base class for all workers that run on hosts.

class nova.service.Service(host, binary, topic, manager, report_interval=None, pe-
riodic_enable=None, periodic_fuzzy_delay=None, peri-
odic_interval_max=None, *args, **kwargs)

Bases: oslo_service.service.Service

Service object for binaries running on hosts.

A service takes a manager and enables rpc by listening to queues based on topic. It also periodi-
cally runs tasks on the manager and reports its state to the database services table.

basic_config_check()
Perform basic config checks before starting processing.

classmethod create(host=None, binary=None, topic=None, manager=None,
report_interval=None, periodic_enable=None, peri-
odic_fuzzy_delay=None, periodic_interval_max=None)

Instantiates class and passes back application object.

Parameters

• host defaults to CONF.host

• binary defaults to basename of executable

• topic defaults to bin_name - nova- part

• manager defaults to CONF.<topic>_manager

• report_interval defaults to CONF.report_interval

• periodic_enable defaults to CONF.periodic_enable

• periodic_fuzzy_delay defaults to CONF.periodic_fuzzy_delay

• periodic_interval_max if set, the max time to wait between runs

kill()
Destroy the service object in the datastore.

NOTE: Although this method is not used anywhere else than tests, it is convenient to have it
here, so the tests might easily and in clean way stop and remove the service_ref.

periodic_tasks(raise_on_error=False)
Tasks to be run at a periodic interval.

reset()
reset the service.

start()
Start the service.

This includes starting an RPC service, initializing periodic tasks, etc.

stop()
stop the service and clean up.

class nova.service.WSGIService(name, loader=None, use_ssl=False,
max_url_len=None)

Bases: oslo_service.service.Service

4.2. Technical Reference Deep Dives 878

Nova Documentation, Release 22.4.1.dev41

Provides ability to launch API from a paste configuration.

reset()
Reset the following:

• server greenpool size to default

• service version cache

• cell cache holding database transaction context managers

Returns None

start()
Start serving this service using loaded configuration.

Also, retrieve updated port number in case 0 was passed in, which indicates a random port
should be used.

Returns None

stop()
Stop serving this API.

Returns None

wait()
Wait for the service to stop serving this API.

Returns None

nova.service.process_launcher()

nova.service.serve(server, workers=None)

nova.service.setup_profiler(binary, host)

nova.service.wait()

The nova.manager Module

Base Manager class.

Managers are responsible for a certain aspect of the system. It is a logical grouping of code relating to a
portion of the system. In general other components should be using the manager to make changes to the
components that it is responsible for.

For example, other components that need to deal with volumes in some way, should do so by calling
methods on the VolumeManager instead of directly changing fields in the database. This allows us to
keep all of the code relating to volumes in the same place.

We have adopted a basic strategy of Smart managers and dumb data, which means rather than attaching
methods to data objects, components should call manager methods that act on the data.

Methods on managers that can be executed locally should be called directly. If a particular method must
execute on a remote host, this should be done via rpc to the service that wraps the manager

Managers should be responsible for most of the db access, and non-implementation specific data. Any-
thing implementation specific that cant be generalized should be done by the Driver.

4.2. Technical Reference Deep Dives 879

Nova Documentation, Release 22.4.1.dev41

In general, we prefer to have one manager with multiple drivers for different implementations, but
sometimes it makes sense to have multiple managers. You can think of it this way: Abstract different
overall strategies at the manager level(FlatNetwork vs VlanNetwork), and different implementations at
the driver level(LinuxNetDriver vs CiscoNetDriver).

Managers will often provide methods for initial setup of a host or periodic tasks to a wrapping service.

This module provides Manager, a base class for managers.

class nova.manager.Manager(host=None, service_name=’undefined’)
Bases: nova.db.base.Base, nova.manager.PeriodicTasks

cleanup_host()
Hook to do cleanup work when the service shuts down.

Child classes should override this method.

init_host()
Hook to do additional manager initialization when one requests the service be started. This
is called before any service record is created.

Child classes should override this method.

periodic_tasks(context, raise_on_error=False)
Tasks to be run at a periodic interval.

post_start_hook()
Hook to provide the manager the ability to do additional start-up work immediately after a
service creates RPC consumers and starts running.

Child classes should override this method.

pre_start_hook()
Hook to provide the manager the ability to do additional start-up work before any RPC
queues/consumers are created. This is called after other initialization has succeeded and a
service record is created.

Child classes should override this method.

reset()
Hook called on SIGHUP to signal the manager to re-read any dynamic configuration or do
any reconfiguration tasks.

class nova.manager.ManagerMeta(names, bases, dict_)
Bases: nova.profiler.get_traced_meta.<locals>.NoopMeta,
oslo_service.periodic_task._PeriodicTasksMeta

Metaclass to trace all children of a specific class.

This metaclass wraps every public method (not starting with _ or __) of the class using it. All
children classes of the class using ManagerMeta will be profiled as well.

Adding this metaclass requires that the __trace_args__ attribute be added to the class we want to
modify. That attribute is a dictionary with one mandatory key: name. name defines the name of
the action to be traced (for example, wsgi, rpc, db).

The OSprofiler-based tracing, although, will only happen if profiler instance was initiated some-
where before in the thread, that can only happen if profiling is enabled in nova.conf and the API
call to Nova API contained specific headers.

4.2. Technical Reference Deep Dives 880

Nova Documentation, Release 22.4.1.dev41

class nova.manager.PeriodicTasks
Bases: oslo_service.periodic_task.PeriodicTasks

Implementation-Specific Drivers

A manager will generally load a driver for some of its tasks. The driver is responsible for specific
implementation details. Anything running shell commands on a host, or dealing with other non-python
code should probably be happening in a driver.

Drivers should not touch the database as the database management is done inside nova-conductor.

It usually makes sense to define an Abstract Base Class for the specific driver (i.e. VolumeDriver), to
define the methods that a different driver would need to implement.

4.2.1.6 Virtual Machine States and Transitions

The following diagrams and tables show the required virtual machine (VM) states and task states for
various commands issued by the user.

Allowed State Transitions

All states are allowed to transition to DELETED and ERROR.

BUILDING

ACTIVE

PAUSED SUSPENDED STOPPED

RESCUED RESIZED

SOFT_DELETED

SHELVED

SHELVED_OFFLOADED

DELETED ERROR

4.2. Technical Reference Deep Dives 881

Nova Documentation, Release 22.4.1.dev41

Requirements for Commands

Command Reqd VM States Reqd Task
States

Target State

pause Active, Shutoff, Rescued Resize Verify, un-
set

Paused

unpause Paused N/A Active
suspend Active, Shutoff N/A Suspended
resume Suspended N/A Active
rescue Active, Shutoff Resize Verify, un-

set
Rescued

unrescue Rescued N/A Active
set admin pass-
word

Active N/A Active

rebuild Active, Shutoff Resize Verify, un-
set

Active, Shut-
off

force delete Soft Deleted N/A Deleted
restore Soft Deleted N/A Active
soft delete Active, Shutoff, Error N/A Soft Deleted
delete Active, Shutoff, Building, Rescued, Er-

ror
N/A Deleted

backup Active, Shutoff N/A Active, Shut-
off

snapshot Active, Shutoff N/A Active, Shut-
off

start Shutoff, Stopped N/A Active
stop Active, Shutoff, Rescued Resize Verify, un-

set
Stopped

reboot Active, Shutoff, Rescued Resize Verify, un-
set

Active

resize Active, Shutoff Resize Verify, un-
set

Resized

revert resize Active, Shutoff Resize Verify, un-
set

Active

confirm resize Active, Shutoff Resize Verify, un-
set

Active

4.2. Technical Reference Deep Dives 882

Nova Documentation, Release 22.4.1.dev41

VM states and Possible Commands

VM
State

Commands

Paused unpause
Sus-
pended

resume

Active set admin password, suspend, pause, rescue, rebuild, soft delete, delete, backup, snapshot,
stop, reboot, resize, revert resize, confirm resize

Shutoff suspend, pause, rescue, rebuild, soft delete, delete, backup, start, snapshot, stop, reboot,
resize, revert resize, confirm resize

Res-
cued

unrescue, pause

Stopped rescue, delete, start
Soft
Deleted

force delete, restore

Error soft delete, delete
Build-
ing

delete

Res-
cued

delete, stop, reboot

Create Instance States

The following diagram shows the sequence of VM states, task states, and power states when a new VM
instance is created.

4.2. Technical Reference Deep Dives 883

Nova Documentation, Release 22.4.1.dev41

Compute.api Compute.manager

VM: Building
Task: Scheduling
Power: No State

VM: Building
Task: None

VM: Building
Task: Networking

VM: Building
Task: Block_Device_Mapping

VM: Building
Task: Spawning

VM: Active
Task: None

create_db_entry_for_new_instance

_start_building

_allocate_network

_prep_block_device

_spawn

4.2.1.7 Threading model

All OpenStack services use green thread model of threading, implemented through using the Python
eventlet and greenlet libraries.

Green threads use a cooperative model of threading: thread context switches can only occur when spe-
cific eventlet or greenlet library calls are made (e.g., sleep, certain I/O calls). From the operating systems
point of view, each OpenStack service runs in a single thread.

The use of green threads reduces the likelihood of race conditions, but does not completely eliminate
them. In some cases, you may need to use the @lockutils.synchronized(...) decorator to
avoid races.

In addition, since there is only one operating system thread, a call that blocks that main thread will block
the entire process.

4.2. Technical Reference Deep Dives 884

http://eventlet.net/
http://packages.python.org/greenlet/

Nova Documentation, Release 22.4.1.dev41

Yielding the thread in long-running tasks

If a code path takes a long time to execute and does not contain any methods that trigger an eventlet
context switch, the long-running thread will block any pending threads.

This scenario can be avoided by adding calls to the eventlet sleep method in the long-running code path.
The sleep call will trigger a context switch if there are pending threads, and using an argument of 0 will
avoid introducing delays in the case that there is only a single green thread:

from eventlet import greenthread
...
greenthread.sleep(0)

In current code, time.sleep(0) does the same thing as greenthread.sleep(0) if time module is patched
through eventlet.monkey_patch(). To be explicit, we recommend contributors use greenthread.
sleep() instead of time.sleep().

MySQL access and eventlet

There are some MySQL DB API drivers for oslo.db, like PyMySQL, MySQL-python etc. PyMySQL
is the default MySQL DB API driver for oslo.db, and it works well with eventlet. MySQL-python uses
an external C library for accessing the MySQL database. Since eventlet cannot use monkey-patching to
intercept blocking calls in a C library, so queries to the MySQL database will block the main thread of
a service.

The Diablo release contained a thread-pooling implementation that did not block, but this implementa-
tion resulted in a bug and was removed.

See this mailing list thread for a discussion of this issue, including a discussion of the impact on perfor-
mance.

4.2.1.8 Notifications in Nova

Similarly to other OpenStack services Nova emits notifications to the message bus with the Notifier class
provided by oslo.messaging. From the notification consumer point of view a notification consists of two
parts: an envelope with a fixed structure defined by oslo.messaging and a payload defined by the service
emitting the notification. The envelope format is the following:

{
"priority": <string, selected from a predefined list by the sender>,
"event_type": <string, defined by the sender>,
"timestamp": <string, the isotime of when the notification emitted>,
"publisher_id": <string, defined by the sender>,
"message_id": <uuid, generated by oslo>,
"payload": <json serialized dict, defined by the sender>

}

Notifications can be completely disabled by setting the following in your nova configuration file:

[oslo_messaging_notifications]
driver = noop

4.2. Technical Reference Deep Dives 885

https://wiki.openstack.org/wiki/PyMySQL_evaluation
https://bugs.launchpad.net/nova/+bug/838581
https://lists.launchpad.net/openstack/msg08118.html
https://lists.launchpad.net/openstack/msg08217.html
https://lists.launchpad.net/openstack/msg08217.html
https://docs.openstack.org/oslo.messaging/victoria/reference/notifier.html

Nova Documentation, Release 22.4.1.dev41

There are two types of notifications in Nova: legacy notifications which have an unversioned payload
and newer notifications which have a versioned payload.

Unversioned notifications

Nova code uses the nova.rpc.get_notifier call to get a configured oslo.messaging Notifier object and
it uses the oslo provided functions on the Notifier object to emit notifications. The configura-
tion of the returned Notifier object depends on the parameters of the get_notifier call and the value
of the oslo.messaging configuration options driver and topics. There are notification config-
uration options in Nova which are specific for certain notification types like notifications.
notify_on_state_change, notifications.default_level, etc.

The structure of the payload of the unversioned notifications is defined in the code that emits the notifi-
cation and no documentation or enforced backward compatibility contract exists for that format.

Versioned notifications

The versioned notification concept is created to fix the shortcomings of the unversioned notifications.
The envelope structure of the emitted notification is the same as in the unversioned notification case as
it is provided by oslo.messaging. However the payload is not a free form dictionary but a serialized oslo
versionedobjects object.

For example the wire format of the service.update notification looks like the following:

{
"priority":"INFO",
"payload":{

"nova_object.namespace":"nova",
"nova_object.name":"ServiceStatusPayload",
"nova_object.version":"1.0",
"nova_object.data":{

"host":"host1",
"disabled":false,
"last_seen_up":null,
"binary":"nova-compute",
"topic":"compute",
"disabled_reason":null,
"report_count":1,
"forced_down":false,
"version":2

}
},
"event_type":"service.update",
"publisher_id":"nova-compute:host1"

}

The serialized oslo versionedobject as a payload provides a version number to the consumer so the
consumer can detect if the structure of the payload is changed. Nova provides the following contract
regarding the versioned notification payload:

• the payload version defined by the nova_object.version field of the payload will be in-
creased if and only if the syntax or the semantics of the nova_object.data field of the pay-
load is changed.

4.2. Technical Reference Deep Dives 886

https://docs.openstack.org/oslo.versionedobjects/victoria/
https://docs.openstack.org/oslo.versionedobjects/victoria/

Nova Documentation, Release 22.4.1.dev41

• a minor version bump indicates a backward compatible change which means that only new fields
are added to the payload so a well written consumer can still consume the new payload without
any change.

• a major version bump indicates a backward incompatible change of the payload which can mean
removed fields, type change, etc in the payload.

• there is an additional field nova_object.name for every payload besides nova_object.data and
nova_object.version. This field contains the name of the nova internal representation of the pay-
load type. Client code should not depend on this name.

There is a Nova configuration parameter notifications.notification_format that can be
used to specify which notifications are emitted by Nova.

The versioned notifications are emitted to a different topic than the legacy notifications. By de-
fault they are emitted to versioned_notifications but it is configurable in the nova.conf with the
notifications.versioned_notifications_topics config option.

A presentation from the Train summit goes over the background and usage of versioned notifications,
and provides a demo.

How to add a new versioned notification

To support the above contract from the Nova code every versioned notification is modeled with oslo
versionedobjects. Every versioned notification class shall inherit from the nova.notifications.
objects.base.NotificationBase which already defines three mandatory fields of the noti-
fication event_type, publisher and priority. The new notification class shall add a new
field payload with an appropriate payload type. The payload object of the notifications shall in-
herit from the nova.notifications.objects.base.NotificationPayloadBase class
and shall define the fields of the payload as versionedobject fields. The base classes are described in the
following section.

The nova.notifications.objects.base module

class nova.notifications.objects.base.EventType(object, action,
phase=None)

Bases: nova.notifications.objects.base.NotificationObject

to_notification_event_type_field()
Serialize the object to the wire format.

class nova.notifications.objects.base.NotificationBase(**kwargs)
Bases: nova.notifications.objects.base.NotificationObject

Base class for versioned notifications.

Every subclass shall define a payload field.

emit(context)
Send the notification.

class nova.notifications.objects.base.NotificationObject(**kwargs)
Bases: nova.objects.base.NovaObject

Base class for every notification related versioned object.

4.2. Technical Reference Deep Dives 887

https://www.openstack.org/videos/summits/denver-2019/nova-versioned-notifications-the-result-of-a-3-year-journey

Nova Documentation, Release 22.4.1.dev41

class nova.notifications.objects.base.NotificationPayloadBase
Bases: nova.notifications.objects.base.NotificationObject

Base class for the payload of versioned notifications.

populate_schema(set_none=True, **kwargs)
Populate the object based on the SCHEMA and the source objects

Parameters kwargs A dict contains the source object at the key defined in the
SCHEMA

class nova.notifications.objects.base.NotificationPublisher(host,
source)

Bases: nova.notifications.objects.base.NotificationObject

nova.notifications.objects.base.notification_sample(sample)
Class decorator to attach the notification sample information to the notification object for docu-
mentation generation purposes.

Parameters sample the path of the sample json file relative to the
doc/notification_samples/ directory in the nova repository root.

Please note that the notification objects shall not be registered to the NovaObjectRegistry to avoid mixing
nova internal objects with the notification objects. Instead of that use the register_notification decorator
on every concrete notification object.

The following code example defines the necessary model classes for a new notification myobject.
update:

@notification.notification_sample('myobject-update.json')
@object_base.NovaObjectRegistry.register.register_notification
class MyObjectNotification(notification.NotificationBase):

Version 1.0: Initial version
VERSION = '1.0'

fields = {
'payload': fields.ObjectField('MyObjectUpdatePayload')

}

@object_base.NovaObjectRegistry.register.register_notification
class MyObjectUpdatePayload(notification.NotificationPayloadBase):

Version 1.0: Initial version
VERSION = '1.0'
fields = {

'some_data': fields.StringField(),
'another_data': fields.StringField(),

}

After that the notification can be populated and emitted with the following code:

payload = MyObjectUpdatePayload(some_data="foo", another_data="bar")
MyObjectNotification(

publisher=notification.NotificationPublisher.from_service_obj(
<nova.objects.service.Service instance that emits the notification>

↪→),
event_type=notification.EventType(

object='myobject',

(continues on next page)

4.2. Technical Reference Deep Dives 888

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

action=fields.NotificationAction.UPDATE),
priority=fields.NotificationPriority.INFO,
payload=payload).emit(context)

The above code will generate the following notification on the wire:

{
"priority":"INFO",
"payload":{

"nova_object.namespace":"nova",
"nova_object.name":"MyObjectUpdatePayload",
"nova_object.version":"1.0",
"nova_object.data":{

"some_data":"foo",
"another_data":"bar",

}
},
"event_type":"myobject.update",
"publisher_id":"<the name of the service>:<the host where the service

↪→runs>"
}

There is a possibility to reuse an existing versionedobject as notification payload by adding a SCHEMA
field for the payload class that defines a mapping between the fields of existing objects and the fields
of the new payload object. For example the service.status notification reuses the existing nova.
objects.service.Service object when defines the notifications payload:

@notification.notification_sample('service-update.json')
@object_base.NovaObjectRegistry.register.register_notification
class ServiceStatusNotification(notification.NotificationBase):

Version 1.0: Initial version
VERSION = '1.0'

fields = {
'payload': fields.ObjectField('ServiceStatusPayload')

}

@object_base.NovaObjectRegistry.register.register_notification
class ServiceStatusPayload(notification.NotificationPayloadBase):

SCHEMA = {
'host': ('service', 'host'),
'binary': ('service', 'binary'),
'topic': ('service', 'topic'),
'report_count': ('service', 'report_count'),
'disabled': ('service', 'disabled'),
'disabled_reason': ('service', 'disabled_reason'),
'availability_zone': ('service', 'availability_zone'),
'last_seen_up': ('service', 'last_seen_up'),
'forced_down': ('service', 'forced_down'),
'version': ('service', 'version')

}
Version 1.0: Initial version
VERSION = '1.0'
fields = {

'host': fields.StringField(nullable=True),
(continues on next page)

4.2. Technical Reference Deep Dives 889

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

'binary': fields.StringField(nullable=True),
'topic': fields.StringField(nullable=True),
'report_count': fields.IntegerField(),
'disabled': fields.BooleanField(),
'disabled_reason': fields.StringField(nullable=True),
'availability_zone': fields.StringField(nullable=True),
'last_seen_up': fields.DateTimeField(nullable=True),
'forced_down': fields.BooleanField(),
'version': fields.IntegerField(),

}

def populate_schema(self, service):
super(ServiceStatusPayload, self).populate_schema(service=service)

If the SCHEMA field is defined then the payload object needs to be populated with the
populate_schema call before it can be emitted:

payload = ServiceStatusPayload()
payload.populate_schema(service=<nova.object.service.Service object>)
ServiceStatusNotification(

publisher=notification.NotificationPublisher.from_service_obj(
<nova.object.service.Service object>),

event_type=notification.EventType(
object='service',
action=fields.NotificationAction.UPDATE),

priority=fields.NotificationPriority.INFO,
payload=payload).emit(context)

The above code will emit the already shown notification on the wire.

Every item in the SCHEMA has the syntax of:

<payload field name which needs to be filled>:
(<name of the parameter of the populate_schema call>,
<the name of a field of the parameter object>)

The mapping defined in the SCHEMA field has the following semantics. When the populate_schema
function is called the content of the SCHEMA field is enumerated and the value of the field of the pointed
parameter object is copied to the requested payload field. So in the above example the host field of the
payload object is populated from the value of the host field of the service object that is passed as a
parameter to the populate_schema call.

A notification payload object can reuse fields from multiple existing objects. Also a notification can
have both new and reused fields in its payload.

Note that the notifications publisher instance can be created two different ways. It can be created
by instantiating the NotificationPublisher object with a host and a source string pa-
rameter or it can be generated from a Service object by calling NotificationPublisher.
from_service_obj function.

Versioned notifications shall have a sample file stored under doc/sample_notifications di-
rectory and the notification object shall be decorated with the notification_sample dec-
orator. For example the service.update notification has a sample file stored in doc/
sample_notifications/service-update.json and the ServiceUpdateNotification class is
decorated accordingly.

4.2. Technical Reference Deep Dives 890

Nova Documentation, Release 22.4.1.dev41

Notification payload classes can use inheritance to avoid duplicating common payload fragments in nova
code. However the leaf classes used directly in a notification should be created with care to avoid future
needs of adding extra level of inheritance that changes the name of the leaf class as that name is present
in the payload class. If this cannot be avoided and the only change is the renaming then the version of
the new payload shall be the same as the old payload was before the rename. See1 as an example. If the
renaming involves any other changes on the payload (e.g. adding new fields) then the version of the new
payload shall be higher than the old payload was. See2 as an example.

What should be in the notification payload

This is just a guideline. You should always consider the actual use case that requires the notification.

• Always include the identifier (e.g. uuid) of the entity that can be used to query the whole entity
over the REST API so that the consumer can get more information about the entity.

• You should consider including those fields that are related to the event you are sending the notifi-
cation about. For example if a change of a field of the entity triggers an update notification then
you should include the field to the payload.

• An update notification should contain information about what part of the entity is changed. Either
by filling the nova_object.changes part of the payload (note that it is not supported by the noti-
fication framework currently) or sending both the old state and the new state of the entity in the
payload.

• You should never include a nova internal object in the payload. Create a new object and use the
SCHEMA field to map the internal object to the notification payload. This way the evolution of
the internal object model can be decoupled from the evolution of the notification payload.

Important: This does not mean that every field from internal objects should be mirrored in the
notification payload objects. Think about what is actually needed by a consumer before adding
it to a payload. When in doubt, if no one is requesting specific information in notifications, then
leave it out until someone asks for it.

• The delete notification should contain the same information as the create or update notifications.
This makes it possible for the consumer to listen only to the delete notifications but still filter on
some fields of the entity (e.g. project_id).

What should NOT be in the notification payload

• Generally anything that contains sensitive information about the internals of the nova deployment,
for example fields that contain access credentials to a cell database or message queue (see bug
1823104).

1 https://review.opendev.org/#/c/463001/
2 https://review.opendev.org/#/c/453077/

4.2. Technical Reference Deep Dives 891

https://bugs.launchpad.net/nova/+bug/1823104
https://bugs.launchpad.net/nova/+bug/1823104
https://review.opendev.org/#/c/463001/
https://review.opendev.org/#/c/453077/

Nova Documentation, Release 22.4.1.dev41

Existing versioned notifications

Note: Versioned notifications are added in each release, so the samples represented below may not
necessarily be in an older version of nova. Ensure you are looking at the correct version of the docu-
mentation for the release you are using.

Event type Notification class Payload class Sample
aggregate.cache_images.progress AggregateCacheNotification AggregateCachePayload
aggregate.add_host.end AggregateNotification AggregatePayload
aggregate.add_host.start AggregateNotification AggregatePayload
aggregate.cache_images.end AggregateNotification AggregatePayload
aggregate.cache_images.start AggregateNotification AggregatePayload
aggregate.create.end AggregateNotification AggregatePayload
aggregate.create.start AggregateNotification AggregatePayload
aggregate.delete.end AggregateNotification AggregatePayload
aggregate.delete.start AggregateNotification AggregatePayload
aggregate.remove_host.end AggregateNotification AggregatePayload
aggregate.remove_host.start AggregateNotification AggregatePayload
aggregate.update_metadata.end AggregateNotification AggregatePayload
aggregate.update_metadata.start AggregateNotification AggregatePayload
aggregate.update_prop.end AggregateNotification AggregatePayload
aggregate.update_prop.start AggregateNotification AggregatePayload
compute_task.build_instances.error ComputeTaskNotification ComputeTaskPayload
compute_task.migrate_server.error ComputeTaskNotification ComputeTaskPayload
compute_task.rebuild_server.error ComputeTaskNotification ComputeTaskPayload
compute.exception ExceptionNotification ExceptionPayload
flavor.create FlavorNotification FlavorPayload
flavor.delete FlavorNotification FlavorPayload
flavor.update FlavorNotification FlavorPayload
instance.delete.end InstanceActionNotification InstanceActionPayload
instance.delete.start InstanceActionNotification InstanceActionPayload
instance.evacuate InstanceActionNotification InstanceActionPayload
instance.interface_attach.end InstanceActionNotification InstanceActionPayload
instance.interface_attach.error InstanceActionNotification InstanceActionPayload
instance.interface_attach.start InstanceActionNotification InstanceActionPayload
instance.interface_detach.end InstanceActionNotification InstanceActionPayload
instance.interface_detach.start InstanceActionNotification InstanceActionPayload
instance.live_migration_abort.end InstanceActionNotification InstanceActionPayload
instance.live_migration_abort.start InstanceActionNotification InstanceActionPayload
instance.live_migration_force_complete.end InstanceActionNotification InstanceActionPayload
instance.live_migration_force_complete.start InstanceActionNotification InstanceActionPayload
instance.live_migration_post.end InstanceActionNotification InstanceActionPayload
instance.live_migration_post.start InstanceActionNotification InstanceActionPayload
instance.live_migration_post_dest.end InstanceActionNotification InstanceActionPayload
instance.live_migration_post_dest.start InstanceActionNotification InstanceActionPayload
instance.live_migration_pre.end InstanceActionNotification InstanceActionPayload

continues on next page

4.2. Technical Reference Deep Dives 892

Nova Documentation, Release 22.4.1.dev41

Table 2 – continued from previous page
instance.live_migration_pre.start InstanceActionNotification InstanceActionPayload
instance.live_migration_rollback.end InstanceActionNotification InstanceActionPayload
instance.live_migration_rollback.start InstanceActionNotification InstanceActionPayload
instance.live_migration_rollback_dest.end InstanceActionNotification InstanceActionPayload
instance.live_migration_rollback_dest.start InstanceActionNotification InstanceActionPayload
instance.lock InstanceActionNotification InstanceActionPayload
instance.pause.end InstanceActionNotification InstanceActionPayload
instance.pause.start InstanceActionNotification InstanceActionPayload
instance.power_off.end InstanceActionNotification InstanceActionPayload
instance.power_off.start InstanceActionNotification InstanceActionPayload
instance.power_on.end InstanceActionNotification InstanceActionPayload
instance.power_on.start InstanceActionNotification InstanceActionPayload
instance.reboot.end InstanceActionNotification InstanceActionPayload
instance.reboot.error InstanceActionNotification InstanceActionPayload
instance.reboot.start InstanceActionNotification InstanceActionPayload
instance.resize.end InstanceActionNotification InstanceActionPayload
instance.resize.error InstanceActionNotification InstanceActionPayload
instance.resize.start InstanceActionNotification InstanceActionPayload
instance.resize_confirm.end InstanceActionNotification InstanceActionPayload
instance.resize_confirm.start InstanceActionNotification InstanceActionPayload
instance.resize_finish.end InstanceActionNotification InstanceActionPayload
instance.resize_finish.start InstanceActionNotification InstanceActionPayload
instance.resize_revert.end InstanceActionNotification InstanceActionPayload
instance.resize_revert.start InstanceActionNotification InstanceActionPayload
instance.restore.end InstanceActionNotification InstanceActionPayload
instance.restore.start InstanceActionNotification InstanceActionPayload
instance.resume.end InstanceActionNotification InstanceActionPayload
instance.resume.start InstanceActionNotification InstanceActionPayload
instance.shelve.end InstanceActionNotification InstanceActionPayload
instance.shelve.start InstanceActionNotification InstanceActionPayload
instance.shelve_offload.end InstanceActionNotification InstanceActionPayload
instance.shelve_offload.start InstanceActionNotification InstanceActionPayload
instance.shutdown.end InstanceActionNotification InstanceActionPayload
instance.shutdown.start InstanceActionNotification InstanceActionPayload
instance.soft_delete.end InstanceActionNotification InstanceActionPayload
instance.soft_delete.start InstanceActionNotification InstanceActionPayload
instance.suspend.end InstanceActionNotification InstanceActionPayload
instance.suspend.start InstanceActionNotification InstanceActionPayload
instance.trigger_crash_dump.end InstanceActionNotification InstanceActionPayload
instance.trigger_crash_dump.start InstanceActionNotification InstanceActionPayload
instance.unlock InstanceActionNotification InstanceActionPayload
instance.unpause.end InstanceActionNotification InstanceActionPayload
instance.unpause.start InstanceActionNotification InstanceActionPayload
instance.unrescue.end InstanceActionNotification InstanceActionPayload
instance.unrescue.start InstanceActionNotification InstanceActionPayload
instance.unshelve.end InstanceActionNotification InstanceActionPayload
instance.unshelve.start InstanceActionNotification InstanceActionPayload
instance.rebuild.end InstanceActionRebuildNotification InstanceActionRebuildPayload

continues on next page

4.2. Technical Reference Deep Dives 893

Nova Documentation, Release 22.4.1.dev41

Table 2 – continued from previous page
instance.rebuild.error InstanceActionRebuildNotification InstanceActionRebuildPayload
instance.rebuild.start InstanceActionRebuildNotification InstanceActionRebuildPayload
instance.rebuild_scheduled InstanceActionRebuildNotification InstanceActionRebuildPayload
instance.rescue.end InstanceActionRescueNotification InstanceActionRescuePayload
instance.rescue.start InstanceActionRescueNotification InstanceActionRescuePayload
instance.resize_prep.end InstanceActionResizePrepNotification InstanceActionResizePrepPayload
instance.resize_prep.start InstanceActionResizePrepNotification InstanceActionResizePrepPayload
instance.snapshot.end InstanceActionSnapshotNotification InstanceActionSnapshotPayload
instance.snapshot.start InstanceActionSnapshotNotification InstanceActionSnapshotPayload
instance.volume_attach.end InstanceActionVolumeNotification InstanceActionVolumePayload
instance.volume_attach.error InstanceActionVolumeNotification InstanceActionVolumePayload
instance.volume_attach.start InstanceActionVolumeNotification InstanceActionVolumePayload
instance.volume_detach.end InstanceActionVolumeNotification InstanceActionVolumePayload
instance.volume_detach.start InstanceActionVolumeNotification InstanceActionVolumePayload
instance.volume_swap.end InstanceActionVolumeSwapNotification InstanceActionVolumeSwapPayload
instance.volume_swap.error InstanceActionVolumeSwapNotification InstanceActionVolumeSwapPayload
instance.volume_swap.start InstanceActionVolumeSwapNotification InstanceActionVolumeSwapPayload
instance.create.end InstanceCreateNotification InstanceCreatePayload
instance.create.error InstanceCreateNotification InstanceCreatePayload
instance.create.start InstanceCreateNotification InstanceCreatePayload
instance.exists InstanceExistsNotification InstanceExistsPayload
instance.update InstanceUpdateNotification InstanceUpdatePayload
keypair.create.end KeypairNotification KeypairPayload
keypair.create.start KeypairNotification KeypairPayload
keypair.delete.end KeypairNotification KeypairPayload
keypair.delete.start KeypairNotification KeypairPayload
keypair.import.end KeypairNotification KeypairPayload
keypair.import.start KeypairNotification KeypairPayload
libvirt.connect.error LibvirtErrorNotification LibvirtErrorPayload
metrics.update MetricsNotification MetricsPayload
scheduler.select_destinations.end SelectDestinationsNotification RequestSpecPayload
scheduler.select_destinations.start SelectDestinationsNotification RequestSpecPayload
server_group.add_member ServerGroupNotification ServerGroupPayload
server_group.create ServerGroupNotification ServerGroupPayload
server_group.delete ServerGroupNotification ServerGroupPayload
service.create ServiceStatusNotification ServiceStatusPayload
service.delete ServiceStatusNotification ServiceStatusPayload
service.update ServiceStatusNotification ServiceStatusPayload
volume.usage VolumeUsageNotification VolumeUsagePayload

4.2. Technical Reference Deep Dives 894

Nova Documentation, Release 22.4.1.dev41

4.2.1.9 ComputeDriver.update_provider_tree

This provides details on the ComputeDriver abstract method update_provider_tree for de-
velopers implementing this method in their own virt drivers.

Background

In the movement towards using placement for scheduling and resource management, the virt driver
method get_available_resource was initially superseded by get_inventory (now gone),
whereby the driver could specify its inventory in terms understood by placement. In Queens, a
get_traits driver method was added. But get_inventory was limited to expressing only in-
ventory (not traits or aggregates). And both of these methods were limited to the resource provider
corresponding to the compute node.

Developments such as Nested Resource Providers necessitate the ability for the virt driver to have deeper
control over what the resource tracker configures in placement on behalf of the compute node. This need
is filled by the virt driver method update_provider_tree and its consumption by the resource
tracker, allowing full control over the placement representation of the compute node and its associated
providers.

The Method

update_provider_tree accepts the following parameters:

• A nova.compute.provider_tree.ProviderTree object representing all the providers
in the tree associated with the compute node, and any sharing providers (those with the
MISC_SHARES_VIA_AGGREGATE trait) associated via aggregate with any of those providers
(but not their tree- or aggregate-associated providers), as currently known by placement. This
object is fully owned by the update_provider_tree method, and can therefore be modified
without locking/concurrency considerations. In other words, the parameter is passed by refer-
ence with the expectation that the virt driver will modify the object. Note, however, that it may
contain providers not directly owned/controlled by the compute host. Care must be taken not to
remove or modify such providers inadvertently. In addition, providers may be associated with
traits and/or aggregates maintained by outside agents. The update_provider_tree method
must therefore also be careful only to add/remove traits/aggregates it explicitly controls.

• String name of the compute node (i.e. ComputeNode.hypervisor_hostname) for which
the caller is requesting updated provider information. Drivers may use this to help identify the
compute node provider in the ProviderTree. Drivers managing more than one node (e.g. ironic)
may also use it as a cue to indicate which node is being processed by the caller.

• Dictionary of allocations data of the form:

{ $CONSUMER_UUID: {
The shape of each "allocations" dict below is identical
to the return from GET /allocations/{consumer_uuid}
"allocations": {

$RP_UUID: {
"generation": $RP_GEN,
"resources": {

$RESOURCE_CLASS: $AMOUNT,
...

(continues on next page)

4.2. Technical Reference Deep Dives 895

Nova Documentation, Release 22.4.1.dev41

(continued from previous page)

},
},
...

},
"project_id": $PROJ_ID,
"user_id": $USER_ID,
"consumer_generation": $CONSUMER_GEN,

},
...

}

If None, and the method determines that any inventory needs to be moved (from one provider
to another and/or to a different resource class), the ReshapeNeeded exception must be raised.
Otherwise, this dict must be edited in place to indicate the desired final state of allocations. Drivers
should only edit allocation records for providers whose inventories are being affected by the re-
shape operation. For more information about the reshape operation, refer to the spec.

The virt driver is expected to update the ProviderTree object with current resource provider and inventory
information. When the method returns, the ProviderTree should represent the correct hierarchy of nested
resource providers associated with this compute node, as well as the inventory, aggregates, and traits
associated with those resource providers.

Note: Despite the name, a ProviderTree instance may in fact contain more than one tree. For purposes
of this specification, the ProviderTree passed to update_provider_tree will contain:

• the entire tree associated with the compute node; and

• any sharing providers (those with the MISC_SHARES_VIA_AGGREGATE trait) which are asso-
ciated via aggregate with any of the providers in the compute nodes tree. The sharing providers
will be presented as lone roots in the ProviderTree, even if they happen to be part of a tree them-
selves.

Consider the example below. SSP is a shared storage provider and BW1 and BW2 are shared bandwidth
providers; all three have the MISC_SHARES_VIA_AGGREGATE trait:

CN1 SHR_ROOT CN2
/ \ agg1 / /\ agg1 / \

NUMA1 NUMA2--------SSP--/--\-----------NUMA1 NUMA2
/ \ / \ / \ / \ / \

PF1 PF2 PF3 PF4--------BW1 BW2------PF1 PF2 PF3 PF4
agg2 agg3

When update_provider_tree is invoked for CN1, it is passed a ProviderTree containing:

CN1 (root)
/ \ agg1

NUMA1 NUMA2-------SSP (root)
/ \ / \

PF1 PF2 PF3 PF4------BW1 (root)
agg2

Driver implementations of update_provider_tree are expected to use public ProviderTree
methods to effect changes to the provider tree passed in. Some of the methods which may be useful are
as follows:

4.2. Technical Reference Deep Dives 896

http://specs.openstack.org/openstack/nova-specs/specs/stein/approved/reshape-provider-tree.html

Nova Documentation, Release 22.4.1.dev41

• new_root: Add a new root provider to the tree.

• new_child: Add a new child under an existing provider.

• data: Access information (name, UUID, parent, inventory, traits, aggregates) about a provider
in the tree.

• remove: Remove a provider and its descendants from the tree. Use caution in multiple-
ownership scenarios.

• update_inventory: Set the inventory for a provider.

• add_traits, remove_traits: Set/unset virt-owned traits for a provider.

• add_aggregates, remove_aggregates: Set/unset virt-owned aggregate associations for
a provider.

Note: There is no supported mechanism for update_provider_tree to effect changes to alloca-
tions. This is intentional: in Nova, allocations are managed exclusively outside of virt. (Usually by the
scheduler; sometimes - e.g. for migrations - by the conductor.)

Porting from get_inventory

Virt driver developers wishing to move from get_inventory to update_provider_tree
should use the ProviderTree.update_inventory method, specifying the compute node as the
provider and the same inventory as returned by get_inventory. For example:

def get_inventory(self, nodename):
inv_data = {

'VCPU': { ... },
'MEMORY_MB': { ... },
'DISK_GB': { ... },

}
return inv_data

would become:

def update_provider_tree(self, provider_tree, nodename, allocations=None):
inv_data = {

'VCPU': { ... },
'MEMORY_MB': { ... },
'DISK_GB': { ... },

}
provider_tree.update_inventory(nodename, inv_data)

When reporting inventory for the standard resource classes VCPU, MEMORY_MB and DISK_GB, imple-
mentors of update_provider_tree may need to set the allocation_ratio and reserved
values in the inv_data dict based on configuration to reflect changes on the compute for allocation
ratios and reserved resource amounts back to the placement service.

4.2. Technical Reference Deep Dives 897

Nova Documentation, Release 22.4.1.dev41

Porting from get_traits

To replace get_traits, developers should use the ProviderTree.add_traits method, speci-
fying the compute node as the provider and the same traits as returned by get_traits. For example:

def get_traits(self, nodename):
traits = ['HW_CPU_X86_AVX', 'HW_CPU_X86_AVX2', 'CUSTOM_GOLD']
return traits

would become:

def update_provider_tree(self, provider_tree, nodename, allocations=None):
provider_tree.add_traits(

nodename, 'HW_CPU_X86_AVX', 'HW_CPU_X86_AVX2', 'CUSTOM_GOLD')

Taxonomy of traits and capabilities

There are various types of traits:

• Some are standard (registered in os-traits); others are custom.

• Some are owned by the compute service; others can be managed by operators.

• Some come from driver-supported capabilities, via a mechanism which was introduced to convert
them to standard traits on the compute node resource provider. This mechanism is documented in
the configuration guide.

This diagram may shed further light on how these traits relate to each other and how they are managed.

4.2.1.10 Upgrade checks

Nova provides automated upgrade check tooling to assist deployment tools in verifying critical parts
of the deployment, especially when it comes to major changes during upgrades that require operator
intervention.

This guide covers the background on novas upgrade check tooling, how it is used, and what to look for
in writing new checks.

Background

Nova has historically supported offline database schema migrations (nova-manage db sync) and
online data migrations during upgrades.

The nova-status upgrade check command was introduced in the 15.0.0 Ocata release to aid
in the verification of two major required changes in that release, namely Placement and Cells v2.

Integration with the Placement service and deploying Cells v2 was optional starting in the 14.0.0 Newton
release and made required in the Ocata release. The nova team working on these changes knew that
there were required deployment changes to successfully upgrade to Ocata. In addition, the required
deployment changes were not things that could simply be verified in a database migration script, e.g. a
migration script should not make REST API calls to Placement.

4.2. Technical Reference Deep Dives 898

https://docs.openstack.org/os-traits/latest/
https://review.opendev.org/538498

Nova Documentation, Release 22.4.1.dev41

4.2. Technical Reference Deep Dives 899

Nova Documentation, Release 22.4.1.dev41

So nova-status upgrade check was written to provide an automated pre-flight check to verify
that required deployment steps were performed prior to upgrading to Ocata.

Reference the Ocata changes for implementation details.

Guidelines

• The checks should be able to run within a virtual environment or container. All that is required is
a full configuration file, similar to running other nova-manage type administration commands.
In the case of nova, this means having api_database, placement, etc sections configured.

• Candidates for automated upgrade checks are things in a projects upgrade release notes which can
be verified via the database. For example, when upgrading to Cells v2 in Ocata, one required step
was creating cell mappings for cell0 and cell1. This can easily be verified by checking the
contents of the cell_mappings table in the nova_api database.

• Checks will query the database(s) and potentially REST APIs (depending on the check) but should
not expect to run RPC calls. For example, a check should not require that the nova-compute
service is running on a particular host.

• Checks are typically meant to be run before re-starting and upgrading to new service code, which
is how grenade uses them, but they can also be run as a post-install verify step which is how
openstack-ansible also uses them. The high-level set of upgrade steps for upgrading nova in
grenade is:

– Install new code

– Sync the database schema for new models (nova-manage api_db sync;
nova-manage db sync)

– Run the online data migrations (nova-manage db online_data_migrations)

– Run the upgrade check (nova-status upgrade check)

– Restart services with new code

• Checks must be idempotent so they can be run repeatedly and the results are always based on the
latest data. This allows an operator to run the checks, fix any issues reported, and then iterate until
the status check no longer reports any issues.

• Checks which cannot easily, or should not, be run within offline database migrations are a
good candidate for these CLI-driven checks. For example, instances records are in the cell
database and for each instance there should be a corresponding request_specs table entry in
the nova_api database. A nova-manage db online_data_migrations routine was
added in the Newton release to back-fill request specs for existing instances, and in Rocky an
upgrade check was added to make sure all non-deleted instances have a request spec so compat-
ibility code can be removed in Stein. In older releases of nova we would have added a blocker
migration as part of the database schema migrations to make sure the online data migrations had
been completed before the upgrade could proceed.

Note: Usage of nova-status upgrade check does not preclude the need for blocker
migrations within a given database, but in the case of request specs the check spans multiple
databases and was a better fit for the nova-status tooling.

• All checks should have an accompanying upgrade release note.

4.2. Technical Reference Deep Dives 900

https://review.opendev.org/#/q/topic:bp/resource-providers-scheduler-db-filters+status:merged+file:%255Enova/cmd/status.py
https://github.com/openstack-dev/grenade/blob/dc7f4a4ba/projects/60_nova/upgrade.sh#L96
https://review.opendev.org/#/c/575125/
https://review.opendev.org/#/c/581813/
https://review.opendev.org/#/c/289450/
https://review.opendev.org/#/c/289450/

Nova Documentation, Release 22.4.1.dev41

Structure

There is no graph logic for checks, meaning each check is meant to be run independently of other checks
in the same set. For example, a project could have five checks which run serially but that does not mean
the second check in the set depends on the results of the first check in the set, or the third check depends
on the second, and so on.

The base framework is fairly simple as can be seen from the initial change. Each check is registered in
the _upgrade_checks variable and the check method executes each check and records the result.
The most severe result is recorded for the final return code.

There are one of three possible results per check:

• Success: All upgrade readiness checks passed successfully and there is nothing to do.

• Warning: At least one check encountered an issue and requires further investigation. This is
considered a warning but the upgrade may be OK.

• Failure: There was an upgrade status check failure that needs to be investigated. This should
be considered something that stops an upgrade.

The UpgradeCheckResult object provides for adding details when there is a warning or failure
result which generally should refer to how to resolve the failure, e.g. maybe nova-manage db
online_data_migrations is incomplete and needs to be run again.

Using the cells v2 check as an example, there are really two checks involved:

1. Do the cell0 and cell1 mappings exist?

2. Do host mappings exist in the API database if there are compute node records in the cell database?

Failing either check results in a Failure status for that check and return code of 2 for the overall run.

The initial placement check provides an example of a warning response. In that check, if there are
fewer resource providers in Placement than there are compute nodes in the cell database(s), the deploy-
ment may be underutilized because the nova-scheduler is using the Placement service to determine
candidate hosts for scheduling.

Warning results are good for cases where scenarios are known to run through a rolling upgrade process,
e.g. nova-compute being configured to report resource provider information into the Placement
service. These are things that should be investigated and completed at some point, but might not cause
any immediate failures.

The results feed into a standard output for the checks:

$ nova-status upgrade check
+--+
| Upgrade Check Results |
+--+
| Check: Cells v2 |
| Result: Success |
| Details: None |
+--+
| Check: Placement API |
| Result: Failure |
| Details: There is no placement-api endpoint in the |
| service catalog. |
+--+

4.2. Technical Reference Deep Dives 901

https://review.opendev.org/#/c/411517/
https://review.opendev.org/#/c/411525/
https://review.opendev.org/#/c/413250/

Nova Documentation, Release 22.4.1.dev41

Note: Long-term the framework for upgrade checks will come from the oslo.upgradecheck library.

Other

Documentation

Each check should be documented in the history section of the CLI guide and have a release note. This is
important since the checks can be run in an isolated environment apart from the actual deployed version
of the code and since the checks should be idempotent, the history / change log is good for knowing
what is being validated.

Backports

Sometimes upgrade checks can be backported to aid in pre-empting bugs on stable branches. For exam-
ple, a check was added for bug 1759316 in Rocky which was also backported to stable/queens in case
anyone upgrading from Pike to Queens would hit the same issue. Backportable checks are generally
only made for latent bugs since someone who has already passed checks and upgraded to a given stable
branch should not start failing after a patch release on that same branch. For this reason, any check being
backported should have a release note with it.

Other projects

A community-wide goal for the Stein release is adding the same type of $PROJECT-status
upgrade check tooling to other projects to ease in upgrading OpenStack across the board. So while
the guidelines in this document are primarily specific to nova, they should apply generically to other
projects wishing to incorporate the same tooling.

FAQs

1. How is the nova-status upgrade script packaged and deployed?

There is a console_scripts entry for nova-status in the setup.cfg file.

2. Why are there multiple parts to the command structure, i.e. upgrade and check?

This is an artifact of how the nova-manage command is structured which has categories of
sub-commands, like nova-manage db is a sub-category made up of other sub-commands like
nova-manage db sync. The nova-status upgrade check command was written in
the same way for consistency and extensibility if other sub-commands need to be added later.

3. Where should the documentation live for projects other than nova?

As part of the standard OpenStack project documentation guidelines the command should be
documented under doc/source/cli in each project repo.

4. Why is the upgrade check command not part of the standard python-*client CLIs?

4.2. Technical Reference Deep Dives 902

http://opendev.org/openstack/oslo.upgradecheck/
https://bugs.launchpad.net/nova/+bug/1759316
https://governance.openstack.org/tc/goals/stein/upgrade-checkers.html
https://docs.openstack.org/doc-contrib-guide/project-guides.html

Nova Documentation, Release 22.4.1.dev41

The nova-status command was modeled after the nova-manage command which is meant
to be admin-only and has direct access to the database, unlike other CLI packages like python-
novaclient which requires a token and communicates with nova over the REST API. Because of
this, it is also possible to write commands in nova-manage and nova-status that can work
while the API service is down for maintenance.

5. Can upgrade checks only be for N-1 to N version upgrades?

No, not necessarily. The upgrade checks are also an essential part of fast-forward upgrades to
make sure that as you roll through each release performing schema (data model) updates and data
migrations that you are also completing all of the necessary changes. For example, if you are
fast forward upgrading from Ocata to Rocky, something could have been added, deprecated or
removed in Pike or Queens and a pre-upgrade check is a way to make sure the necessary steps
were taking while upgrading through those releases before restarting the Rocky code at the end.

4.2.1.11 Conductor as a place for orchestrating tasks

In addition to its roles as a database proxy and object backporter the conductor service also serves
as a centralized place to manage the execution of workflows which involve the scheduler. Rebuild,
resize/migrate, and building an instance are managed here. This was done in order to have a better
separation of responsibilities between what compute nodes should handle and what the scheduler should
handle, and to clean up the path of execution. Conductor was chosen because in order to query the
scheduler in a synchronous manner it needed to happen after the API had returned a response otherwise
API response times would increase. And changing the scheduler call from asynchronous to synchronous
helped to clean up the code.

To illustrate this the old process for building an instance was:

• API receives request to build an instance.

• API sends an RPC cast to the scheduler to pick a compute.

• Scheduler sends an RPC cast to the compute to build the instance, which means the scheduler
needs to be able to communicate with all computes.

– If the build succeeds it stops here.

– If the build fails then the compute decides if the max number of scheduler retries has been
hit. If so the build stops there.

* If the build should be rescheduled the compute sends an RPC cast to the scheduler in
order to pick another compute.

This was overly complicated and meant that the logic for scheduling/rescheduling was distributed
throughout the code. The answer to this was to change to process to be the following:

• API receives request to build an instance.

• API sends an RPC cast to the conductor to build an instance. (or runs locally if conductor is
configured to use local_mode)

• Conductor sends an RPC call to the scheduler to pick a compute and waits for the response. If
there is a scheduler fail it stops the build at the conductor.

• Conductor sends an RPC cast to the compute to build the instance.

– If the build succeeds it stops here.

4.2. Technical Reference Deep Dives 903

https://wiki.openstack.org/wiki/Fast_forward_upgrades

Nova Documentation, Release 22.4.1.dev41

– If the build fails then compute sends an RPC cast to conductor to build an instance. This is
the same RPC message that was sent by the API.

This new process means the scheduler only deals with scheduling, the compute only deals with building
an instance, and the conductor manages the workflow. The code is now cleaner in the scheduler and
computes.

4.2.1.12 Filtering hosts by isolating aggregates

Background

I want to set up an aggregate ABC with hosts that allow you to run only certain licensed images. I could
tag the aggregate with metadata such as <LICENSED=WINDOWS>. Then if I boot an instance with an
image containing the property <LICENSED=WINDOWS>, it will land on one of the hosts in aggregate
ABC. But if the user creates a new image which does not include <LICENSED=WINDOWS> metadata,
an instance booted with that image could still land on a host in aggregate ABC as reported in launchpad
bug 1677217. The AggregateImagePropertiesIsolation scheduler filter passes even though the aggregate
metadata <LICENSED=WINDOWS> is not present in the image properties.

Solution

The above problem is addressed by blueprint placement-req-filter-forbidden-aggregates which was im-
plemented in the 20.0.0 Train release.

The following example assumes you have configured aggregate ABC and added hosts HOST1 and
HOST2 to it in Nova, and that you want to isolate those hosts to run only instances requiring Windows
licensing.

1. Set the scheduler.enable_isolated_aggregate_filtering config option to
true in nova.conf and restart the nova-scheduler service.

2. Add trait CUSTOM_LICENSED_WINDOWS to the resource providers for HOST1 and HOST2 in
the Placement service.

First create the CUSTOM_LICENSED_WINDOWS trait

openstack --os-placement-api-version 1.6 trait create CUSTOM_
↪→LICENSED_WINDOWS

Assume <HOST1_UUID> is the UUID of HOST1, which is the same as its resource provider
UUID.

Start to build the command line by first collecting existing traits for HOST1

traits=$(openstack --os-placement-api-version 1.6 resource provider
↪→trait list -f value <HOST1_UUID> | sed 's/^/--trait /')

Replace HOST1s traits, adding CUSTOM_LICENSED_WINDOWS

openstack --os-placement-api-version 1.6 resource provider trait
↪→set $traits --trait CUSTOM_LICENSED_WINDOWS <HOST1_UUID>

Repeat the above steps for HOST2.

4.2. Technical Reference Deep Dives 904

https://bugs.launchpad.net/nova/+bug/1677217
https://specs.openstack.org/openstack/nova-specs/specs/train/approved/placement-req-filter-forbidden-aggregates.html

Nova Documentation, Release 22.4.1.dev41

3. Add the trait:CUSTOM_LICENSED_WINDOWS=required metadata property to aggregate
ABC.

openstack --os-compute-api-version 2.53 aggregate set --property
↪→trait:CUSTOM_LICENSED_WINDOWS=required ABC

As before, any instance spawned with a flavor or image containing
trait:CUSTOM_LICENSED_WINDOWS=required will land on HOST1 or HOST2 because
those hosts expose that trait.

However, now that the isolate_aggregates request filter is configured, any instance whose flavor
or image does not contain trait:CUSTOM_LICENSED_WINDOWS=required will not land on
HOST1 or HOST2 because aggregate ABC requires that trait.

The above example uses a CUSTOM_LICENSED_WINDOWS trait, but you can use any custom or stan-
dard trait in a similar fashion.

The filter supports the use of multiple traits across multiple aggregates. The combination of flavor and
image metadata must require all of the traits configured on the aggregate in order to pass.

4.2.2 Debugging

• Guru Meditation Reports: Inspired by Amiga, a way to trigger a very comprehensive dump of a
running service for deep debugging.

4.2.2.1 Guru Meditation Reports

Nova contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Nova executable. This report is called a Guru Meditation Report (GMR for short).

Generating a GMR

A GMR can be generated by sending the USR2 signal to any Nova process with support (see below).
The GMR will then be outputted standard error for that particular process.

For example, suppose that nova-api has process id 8675, and was run with 2>/var/log/nova/
nova-api-err.log. Then, kill -USR2 8675 will trigger the Guru Meditation report to be
printed to /var/log/nova/nova-api-err.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However,
the base GMR consists of several sections:

Package Shows information about the package to which this process belongs, including version infor-
mation

Threads Shows stack traces and thread ids for each of the threads within this process

Green Threads Shows stack traces for each of the green threads within this process (green threads dont
have thread ids)

4.2. Technical Reference Deep Dives 905

https://docs.openstack.org/os-traits/latest/
https://docs.openstack.org/os-traits/latest/

Nova Documentation, Release 22.4.1.dev41

Configuration Lists all the configuration options currently accessible via the CONF object for the cur-
rent process

Adding Support for GMRs to New Executables

Adding support for a GMR to a given executable is fairly easy.

First import the module, as well as the Nova version module:

from oslo_reports import guru_meditation_report as gmr
from nova import version

Then, register any additional sections (optional):

TextGuruMeditation.register_section('Some Special Section',
some_section_generator)

Finally (under main), before running the main loop of the executable (usually service.
server(server) or something similar), register the GMR hook:

TextGuruMeditation.setup_autorun(version)

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the inline documentation under oslo.reports

4.2.3 Forward Looking Plans

The following section includes documents that describe the overall plan behind groups of nova-specs.
Most of these cover items relating to the evolution of various parts of novas architecture. Once the work
is complete, these documents will move into the Internals section.

If you want to get involved in shaping the future of novas architecture, these are a great place to start
reading up on the current plans.

• Cells: How cells v2 is evolving

• REST API Policy Enforcement: How we want policy checks on API actions to work in the future

• Nova Stable REST API: What stable api means to nova

• Scheduler Evolution: Motivation behind the scheduler / placement evolution

4.2. Technical Reference Deep Dives 906

Nova Documentation, Release 22.4.1.dev41

4.2.3.1 Cells

Before reading further, there is a nice overview presentation that Andrew Laski gave at the Austin
(Newton) summit which is worth watching.

Cells V2

• Newton Summit Video - Nova Cells V2: Whats Going On?

• Pike Summit Video - Scaling Nova: How CellsV2 Affects Your Deployment

• Queens Summit Video - Add Cellsv2 to your existing Nova deployment

• Rocky Summit Video - Moving from CellsV1 to CellsV2 at CERN

• Stein Summit Video - Scaling Nova with CellsV2: The Nova Developer and the CERN Operator
perspective

Manifesto

Proposal

Right now, when a request hits the Nova API for a particular instance, the instance information is fetched
from the database, which contains the hostname of the compute node on which the instance currently
lives. If the request needs to take action on the instance (which is most of them), the hostname is used to
calculate the name of a queue, and a message is written there which finds its way to the proper compute
node.

The meat of this proposal is changing the above hostname lookup into two parts that yield three pieces
of information instead of one. Basically, instead of merely looking up the name of the compute node
on which an instance lives, we will also obtain database and queue connection information. Thus, when
asked to take action on instance $foo, we will:

1. Lookup the three-tuple of (database, queue, hostname) for that instance

2. Connect to that database and fetch the instance record

3. Connect to the queue and send the message to the proper hostname queue

The above differs from the current organization in two ways. First, we need to do two database lookups
before we know where the instance lives. Second, we need to demand-connect to the appropriate
database and queue. Both of these have performance implications, but we believe we can mitigate
the impacts through the use of things like a memcache of instance mapping information and pooling of
connections to database and queue systems. The number of cells will always be much smaller than the
number of instances.

There are availability implications with this change since something like a nova list which might query
multiple cells could end up with a partial result if there is a database failure in a cell. See CellsV2
Management for knowing more about the recommended practices under such situations. A database
failure within a cell would cause larger issues than a partial list result so the expectation is that it would
be addressed quickly and cellsv2 will handle it by indicating in the response that the data may not be
complete.

Since this is very similar to what we have with current cells, in terms of organization of resources, we
have decided to call this cellsv2 for disambiguation.

4.2. Technical Reference Deep Dives 907

https://www.openstack.org/videos/summits/austin-2016/nova-cells-v2-whats-going-on
https://www.openstack.org/videos/austin-2016/nova-cells-v2-whats-going-on
https://www.openstack.org/videos/boston-2017/scaling-nova-how-cellsv2-affects-your-deployment
https://www.openstack.org/videos/sydney-2017/adding-cellsv2-to-your-existing-nova-deployment
https://www.openstack.org/videos/summits/vancouver-2018/moving-from-cellsv1-to-cellsv2-at-cern
https://www.openstack.org/videos/summits/berlin-2018/scaling-nova-with-cellsv2-the-nova-developer-and-the-cern-operator-perspective
https://www.openstack.org/videos/summits/berlin-2018/scaling-nova-with-cellsv2-the-nova-developer-and-the-cern-operator-perspective

Nova Documentation, Release 22.4.1.dev41

After this work is complete there will no longer be a no cells deployment. The default installation of
Nova will be a single cell setup.

Benefits

The benefits of this new organization are:

• Native sharding of the database and queue as a first-class-feature in nova. All of the code paths
will go through the lookup procedure and thus we wont have the same feature parity issues as we
do with current cells.

• No high-level replication of all the cell databases at the top. The API will need a database of its
own for things like the instance index, but it will not need to replicate all the data at the top level.

• It draws a clear line between global and local data elements. Things like flavors and keypairs
are clearly global concepts that need only live at the top level. Providing this separation allows
compute nodes to become even more stateless and insulated from things like deleted/changed
global data.

• Existing non-cells users will suddenly gain the ability to spawn a new cell from their existing de-
ployment without changing their architecture. Simply adding information about the new database
and queue systems to the new index will allow them to consume those resources.

• Existing cells users will need to fill out the cells mapping index, shutdown their existing cells
synchronization service, and ultimately clean up their top level database. However, since the high-
level organization is not substantially different, they will not have to re-architect their systems to
move to cellsv2.

• Adding new sets of hosts as a new cell allows them to be plugged into a deployment and tested
before allowing builds to be scheduled to them.

Database split

As mentioned above there is a split between global data and data that is local to a cell.

The following is a breakdown of what data can uncontroversially considered global versus local to a
cell. Missing data will be filled in as consensus is reached on the data that is more difficult to cleanly
place. The missing data is mostly concerned with scheduling and networking.

Global (API-level) Tables

instance_types instance_type_projects instance_type_extra_specs quotas project_user_quotas
quota_classes quota_usages security_groups security_group_rules security_group_default_rules
provider_fw_rules key_pairs migrations networks tags

4.2. Technical Reference Deep Dives 908

Nova Documentation, Release 22.4.1.dev41

Cell-level Tables

instances instance_info_caches instance_extra instance_metadata instance_system_metadata
instance_faults instance_actions instance_actions_events instance_id_mappings pci_devices
block_device_mapping virtual_interfaces

Setup of Cells V2

Overview

As more of the CellsV2 implementation is finished, all operators are required to make changes to their
deployment. For all deployments (even those that only intend to have one cell), these changes are
configuration-related, both in the main nova configuration file as well as some extra records in the
databases.

All nova deployments must now have the following databases available and configured:

1. The API database

2. One special cell database called cell0

3. One (or eventually more) cell databases

Thus, a small nova deployment will have an API database, a cell0, and what we will call here a cell1
database. High-level tracking information is kept in the API database. Instances that are never scheduled
are relegated to the cell0 database, which is effectively a graveyard of instances that failed to start. All
successful/running instances are stored in cell1.

Note: Since Nova services make use of both configuration file and some databases records, starting or
restarting those services with an incomplete configuration could lead to an incorrect deployment. Please
only restart the services once you are done with the described steps below.

First Time Setup

Since there is only one API database, the connection information for it is stored in the nova.conf file.

[api_database]
connection = mysql+pymysql://root:secretmysql@dbserver/nova_api?
↪→charset=utf8

Since there may be multiple cell databases (and in fact everyone will have cell0 and cell1 at a minimum),
connection info for these is stored in the API database. Thus, you must have connection information in
your config file for the API database before continuing to the steps below, so that nova-manage can find
your other databases.

The following examples show the full expanded command line usage of the setup commands. This is
to make it easier to visualize which of the various URLs are used by each of the commands. However,
you should be able to put all of that in the config file and nova-manage will use those values. If need
be, you can create separate config files and pass them as nova-manage config-file foo.conf to control the
behavior without specifying things on the command lines.

4.2. Technical Reference Deep Dives 909

Nova Documentation, Release 22.4.1.dev41

The commands below use the API database so remember to run nova-manage api_db sync first.

First we will create the necessary records for the cell0 database. To do that we use nova-manage like
this:

nova-manage cell_v2 map_cell0 --database_connection \
mysql+pymysql://root:secretmysql@dbserver/nova_cell0?charset=utf8

Note: If you dont specify database_connection then nova-manage will use the [database]/connection
value from your config file, and mangle the database name to have a _cell0 suffix.

Warning: If your databases are on separate hosts then you should specify database_connection or
make certain that the nova.conf being used has the [database]/connection value pointing to the same
user/password/host that will work for the cell0 database. If the cell0 mapping was created incorrectly,
it can be deleted using the nova-manage cell_v2 delete_cell command and then run map_cell0 again
with the proper database connection value.

Since no hosts are ever in cell0, nothing further is required for its setup. Note that all deployments only
ever have one cell0, as it is special, so once you have done this step you never need to do it again, even
if you add more regular cells.

Now, we must create another cell which will be our first regular cell, which has actual compute hosts in
it, and to which instances can actually be scheduled. First, we create the cell record like this:

nova-manage cell_v2 create_cell --verbose --name cell1 \
--database_connection mysql+pymysql://root:secretmysql@127.0.0.1/nova?

↪→charset=utf8
--transport-url rabbit://stackrabbit:secretrabbit@mqserver:5672/

Note: If you dont specify the database and transport urls then nova-manage will use the
[database]/connection and [DEFAULT]/transport_url values from the config file.

Note: At this point, the API database can now find the cell database, and further commands will attempt
to look inside. If this is a completely fresh database (such as if youre adding a cell, or if this is a new
deployment), then you will need to run nova-manage db sync on it to initialize the schema.

The nova-manage cell_v2 create_cell command will print the UUID of the newly-created cell if verbose
is passed, which is useful if you need to run commands like discover_hosts targeted at a specific cell.

Now we have a cell, but no hosts are in it which means the scheduler will never actually place instances
there. The next step is to scan the database for compute node records and add them into the cell we just
created. For this step, you must have had a compute node started such that it registers itself as a running
service. Once that has happened, you can scan and add it to the cell:

nova-manage cell_v2 discover_hosts

This command will connect to any databases for which you have created cells (as above), look for hosts
that have registered themselves there, and map those hosts in the API database so that they are visible

4.2. Technical Reference Deep Dives 910

Nova Documentation, Release 22.4.1.dev41

to the scheduler as available targets for instances. Any time you add more compute hosts to a cell, you
need to re-run this command to map them from the top-level so they can be utilized.

Template URLs in Cell Mappings

Starting in the Rocky release, the URLs provided in the cell mappings for
--database_connection and --transport-url can contain variables which are evaluated
each time they are loaded from the database, and the values of which are taken from the corresponding
base options in the hosts configuration file. The base URL is parsed and the following elements may
be substituted into the cell mapping URL (using rabbit://bob:s3kret@myhost:123/nova?
sync=true#extra):

Table 3: Cell Mapping URL Variables
Variable Meaning Part of exam-

ple URL
scheme The part before the :// rabbit
username The username part of the credentials bob
password The password part of the credentials s3kret
hostname The hostname or address myhost
port The port number (must be specified) 123
path The path part of the URL (without leading slash) nova
query The full query string arguments (without leading question

mark)
sync=true

fragment Everything after the first hash mark extra

Variables are provided in curly brackets, like {username}. A simple template of rabbit:/
/{username}:{password}@otherhost/{path} will generate a full URL of rabbit://
bob:s3kret@otherhost/nova when used with the above example.

Note: The [database]/connection and [DEFAULT]/transport_url values are not
reloaded from the configuration file during a SIGHUP, which means that a full service restart will be
required to notice changes in a cell mapping record if variables are changed.

Note: The [DEFAULT]/transport_url option can contain an extended syntax for the netloc part
of the url (i.e. userA:passwordA@hostA:portA,userB:passwordB:hostB:portB). In this case, substitions
of the form username1, username2, etc will be honored and can be used in the template URL.

The templating of these URLs may be helpful in order to provide each service host with its own creden-
tials for, say, the database. Without templating, all hosts will use the same URL (and thus credentials)
for accessing services like the database and message queue. By using a URL with a template that results
in the credentials being taken from the host-local configuration file, each host will use different values
for those connections.

Assuming you have two service hosts that are normally configured with the cell0 database as their
primary connection, their (abbreviated) configurations would look like this:

[database]
connection = mysql+pymysql://service1:foo@myapidbhost/nova_cell0

4.2. Technical Reference Deep Dives 911

Nova Documentation, Release 22.4.1.dev41

and:

[database]
connection = mysql+pymysql://service2:bar@myapidbhost/nova_cell0

Without cell mapping template URLs, they would still use the same credentials (as stored in the map-
ping) to connect to the cell databases. However, consider template URLs like the following:

mysql+pymysql://{username}:{password}@mycell1dbhost/nova

and:

mysql+pymysql://{username}:{password}@mycell2dbhost/nova

Using the first service and cell1 mapping, the calculated URL that will actually be used for connecting
to that database will be:

mysql+pymysql://service1:foo@mycell1dbhost/nova

References

• nova-manage man page

Step-By-Step for Common Use Cases

The following are step-by-step examples for common use cases setting up Cells V2. This is intended as
a quick reference that puts together everything explained in Setup of Cells V2. It is assumed that you
have followed all other install steps for Nova and are setting up Cells V2 specifically at this point.

Fresh Install

You are installing Nova for the first time and have no compute hosts in the database yet. This will set up
a single cell Nova deployment.

1. Reminder: You should have already created and synced the Nova API database by creating a
database, configuring its connection in the [api_database]/connection setting in the
Nova configuration file, and running nova-manage api_db sync.

2. Create a database for cell0. If you are going to pass the database connection url on the command
line in step 3, you can name the cell0 database whatever you want. If you are not going to pass
the database url on the command line in step 3, you need to name the cell0 database based on the
name of your existing Nova database: <Nova database name>_cell0. For example, if your Nova
database is named nova, then your cell0 database should be named nova_cell0.

3. Run the map_cell0 command to create and map cell0:

nova-manage cell_v2 map_cell0 \
--database_connection <database connection url>

The database connection url is generated based on the [database]/connection setting in
the Nova configuration file if not specified on the command line.

4.2. Technical Reference Deep Dives 912

Nova Documentation, Release 22.4.1.dev41

4. Run nova-manage db sync to populate the cell0 database with a schema. The db sync
command reads the database connection for cell0 that was created in step 3.

5. Run the create_cell command to create the single cell which will contain your compute
hosts:

nova-manage cell_v2 create_cell --name <name> \
--transport-url <transport url for message queue> \
--database_connection <database connection url>

The transport url is taken from the [DEFAULT]/transport_url setting in the Nova configu-
ration file if not specified on the command line. The database url is taken from the [database]/
connection setting in the Nova configuration file if not specified on the command line.

6. Configure your compute host(s), making sure [DEFAULT]/transport_url matches the
transport URL for the cell created in step 5, and start the nova-compute service. Before step
7, make sure you have compute hosts in the database by running:

nova service-list --binary nova-compute

7. Run the discover_hosts command to map compute hosts to the single cell by running:

nova-manage cell_v2 discover_hosts

The command will search for compute hosts in the database of the cell you created in step 5 and
map them to the cell. You can also configure a periodic task to have Nova discover new hosts
automatically by setting the [scheduler]/discover_hosts_in_cells_interval to
a time interval in seconds. The periodic task is run by the nova-scheduler service, so you must be
sure to configure it on all of your nova-scheduler hosts.

Note: Remember: In the future, whenever you add new compute hosts, you will need to run the
discover_hosts command after starting them to map them to the cell if you did not configure the
automatic host discovery in step 7.

Upgrade (minimal)

You are upgrading an existing Nova install and have compute hosts in the database. This will set up a
single cell Nova deployment.

1. If you havent already created a cell0 database in a prior release, create a database for cell0 with
a name based on the name of your Nova database: <Nova database name>_cell0. If your Nova
database is named nova, then your cell0 database should be named nova_cell0.

Warning: In Newton, the simple_cell_setup command expects the name of the cell0
database to be based on the name of the Nova API database: <Nova API database name>_cell0
and the database connection url is taken from the [api_database]/connection setting in
the Nova configuration file.

2. Run the simple_cell_setup command to create and map cell0, create and map the single
cell, and map existing compute hosts and instances to the single cell:

4.2. Technical Reference Deep Dives 913

Nova Documentation, Release 22.4.1.dev41

nova-manage cell_v2 simple_cell_setup \
--transport-url <transport url for message queue>

The transport url is taken from the [DEFAULT]/transport_url setting in the Nova config-
uration file if not specified on the command line. The database connection url will be generated
based on the [database]/connection setting in the Nova configuration file.

Note: Remember: In the future, whenever you add new compute hosts, you will need to run the
discover_hosts command after starting them to map them to the cell. You can also config-
ure a periodic task to have Nova discover new hosts automatically by setting the [scheduler]/
discover_hosts_in_cells_interval to a time interval in seconds. The periodic task is run
by the nova-scheduler service, so you must be sure to configure it on all of your nova-scheduler hosts.

Upgrade with Cells V1

Todo: This needs to be removed but Adding a new cell to an existing deployment is still using it.

You are upgrading an existing Nova install that has Cells V1 enabled and have compute hosts in your
databases. This will set up a multiple cell Nova deployment. At this time, it is recommended to keep
Cells V1 enabled during and after the upgrade as multiple Cells V2 cell support is not fully finished
and may not work properly in all scenarios. These upgrade steps will help ensure a simple cutover from
Cells V1 to Cells V2 in the future.

Note: There is a Rocky summit video from CERN about how they did their upgrade from cells v1 to
v2 here:

https://www.openstack.org/videos/vancouver-2018/moving-from-cellsv1-to-cellsv2-at-cern

1. If you havent already created a cell0 database in a prior release, create a database for cell0. If you
are going to pass the database connection url on the command line in step 2, you can name the
cell0 database whatever you want. If you are not going to pass the database url on the command
line in step 2, you need to name the cell0 database based on the name of your existing Nova
database: <Nova database name>_cell0. For example, if your Nova database is named nova,
then your cell0 database should be named nova_cell0.

2. Run the map_cell0 command to create and map cell0:

nova-manage cell_v2 map_cell0 \
--database_connection <database connection url>

The database connection url is generated based on the [database]/connection setting in
the Nova configuration file if not specified on the command line.

3. Run nova-manage db sync to populate the cell0 database with a schema. The db sync
command reads the database connection for cell0 that was created in step 2.

4. Run the create_cell command to create cells which will contain your compute hosts:

4.2. Technical Reference Deep Dives 914

https://www.openstack.org/videos/vancouver-2018/moving-from-cellsv1-to-cellsv2-at-cern

Nova Documentation, Release 22.4.1.dev41

nova-manage cell_v2 create_cell --name <cell name> \
--transport-url <transport url for message queue> \
--database_connection <database connection url>

You will need to repeat this step for each cell in your deployment. Your existing cell database will
be re-used this simply informs the top-level API database about your existing cell databases.

It is a good idea to specify a name for the new cell you create so you can easily look up cell uuids
with the list_cells command later if needed.

The transport url is taken from the [DEFAULT]/transport_url setting in the Nova configu-
ration file if not specified on the command line. The database url is taken from the [database]/
connection setting in the Nova configuration file if not specified on the command line. If you
are not going to specify --database_connection and --transport-url on the com-
mand line, be sure to specify your existing cell Nova configuration file:

nova-manage --config-file <cell nova.conf> cell_v2 create_cell \
--name <cell name>

5. Run the discover_hosts command to map compute hosts to cells:

nova-manage cell_v2 discover_hosts --cell_uuid <cell uuid>

You will need to repeat this step for each cell in your deployment unless you omit
the --cell_uuid option. If the cell uuid is not specified on the command line,
discover_hosts will search for compute hosts in each cell database and map them to the
corresponding cell. You can use the list_cells command to look up cell uuids if you are
going to specify --cell_uuid.

You can also configure a periodic task to have Nova discover new hosts automatically by set-
ting the [scheduler]/discover_hosts_in_cells_interval to a time interval in
seconds. The periodic task is run by the nova-scheduler service, so you must be sure to configure
it on all of your nova-scheduler hosts.

6. Run the map_instances command to map instances to cells:

nova-manage cell_v2 map_instances --cell_uuid <cell uuid> \
--max-count <max count>

You will need to repeat this step for each cell in your deployment. You can use the list_cells
command to look up cell uuids.

The --max-count option can be specified if you would like to limit the number of instances to
map in a single run. If --max-count is not specified, all instances will be mapped. Repeated
runs of the command will start from where the last run finished so it is not necessary to increase
--max-count to finish. An exit code of 0 indicates that all instances have been mapped. An
exit code of 1 indicates that there are remaining instances that need to be mapped.

Note: Remember: In the future, whenever you add new compute hosts, you will need to run the
discover_hosts command after starting them to map them to a cell if you did not configure the
automatic host discovery in step 5.

4.2. Technical Reference Deep Dives 915

Nova Documentation, Release 22.4.1.dev41

Adding a new cell to an existing deployment

To expand your deployment with a new cell, first follow the usual steps for standing up a new Cells V1
cell. After that is finished, follow step 4 in Upgrade with Cells V1 to create a new Cells V2 cell for it. If
you have added new compute hosts for the new cell, you will also need to run the discover_hosts
command after starting them to map them to the new cell if you did not configure the automatic host
discovery as described in step 5 in Upgrade with Cells V1.

References

• nova-manage man page

FAQs

1. How do I find out which hosts are bound to which cell?

There are a couple of ways to do this.

1. Run nova-manage --config-file <cell config> host list. This will
only lists hosts in the provided cell nova.conf.

Deprecated since version 16.0.0: The nova-manage host list command is depre-
cated as of the 16.0.0 Pike release.

2. Run nova-manage cell_v2 discover_hosts --verbose. This does not pro-
duce a report but if you are trying to determine if a host is in a cell you can run this and
it will report any hosts that are not yet mapped to a cell and map them. This command is
idempotent.

3. Run nova-manage cell_v2 list_hosts. This will list hosts in all cells. If you
want to list hosts in a specific cell, you can run nova-manage cell_v2 list_hosts
--cell_uuid <cell_uuid>.

2. I updated the database_connection and/or transport_url in a cell using the nova-manage
cell_v2 update_cell command but the API is still trying to use the old settings.

The cell mappings are cached in the nova-api service worker so you will need to restart the worker
process to rebuild the cache. Note that there is another global cache tied to request contexts, which
is used in the nova-conductor and nova-scheduler services, so you might need to do the same if
you are having the same issue in those services. As of the 16.0.0 Pike release there is no timer on
the cache or hook to refresh the cache using a SIGHUP to the service.

3. I have upgraded from Newton to Ocata and I can list instances but I get a 404 NotFound error
when I try to get details on a specific instance.

Instances need to be mapped to cells so the API knows which cell an instance lives in. When
upgrading, the nova-manage cell_v2 simple_cell_setup command will automat-
ically map the instances to the single cell which is backed by the existing nova database.
If you have already upgraded and did not use the simple_cell_setup command, you
can run the nova-manage cell_v2 map_instances --cell_uuid <cell_uuid>
command to map all instances in the given cell. See the Nova Cells v2 man page for details on
command usage.

4.2. Technical Reference Deep Dives 916

Nova Documentation, Release 22.4.1.dev41

4. Should I change any of the [cells] configuration options for Cells v2?

NO. Those options are for Cells v1 usage only and are not used at all for Cells v2. That includes
the nova-cells service - it has nothing to do with Cells v2.

5. Can I create a cell but have it disabled from scheduling?

Yes. It is possible to create a pre-disabled cell such that it does not become a candidate for schedul-
ing new VMs. This can be done by running the nova-manage cell_v2 create_cell
command with the --disabled option.

6. How can I disable a cell so that the new server create requests do not go to it while I perform
maintenance?

Existing cells can be disabled by running nova-manage cell_v2 update_cell
--cell_uuid <cell_uuid> --disable and can be re-enabled once the mainte-
nance period is over by running nova-manage cell_v2 update_cell --cell_uuid
<cell_uuid> --enable

7. I disabled (or enabled) a cell using the nova-manage cell_v2 update_cell or I cre-
ated a new (pre-disabled) cell(mapping) using the nova-manage cell_v2 create_cell
command but the scheduler is still using the old settings.

The cell mappings are cached in the scheduler worker so you will either need to restart the sched-
uler process to refresh the cache, or send a SIGHUP signal to the scheduler by which it will
automatically refresh the cells cache and the changes will take effect.

8. Why was the cells REST API not implemented for CellsV2? Why are there no CRUD operations
for cells in the API?

One of the deployment challenges that CellsV1 had was the requirement for the API and control
services to be up before a new cell could be deployed. This was not a problem for large-scale
public clouds that never shut down, but is not a reasonable requirement for smaller clouds that
do offline upgrades and/or clouds which could be taken completely offline by something like a
power outage. Initial devstack and gate testing for CellsV1 was delayed by the need to engineer a
solution for bringing the services partially online in order to deploy the rest, and this continues to
be a gap for other deployment tools. Consider also the FFU case where the control plane needs to
be down for a multi-release upgrade window where changes to cell records have to be made. This
would be quite a bit harder if the way those changes are made is via the API, which must remain
down during the process.

Further, there is a long-term goal to move cell configuration (i.e. cell_mappings and the associated
URLs and credentials) into config and get away from the need to store and provision those things
in the database. Obviously a CRUD interface in the API would prevent us from making that move.

9. Why are cells not exposed as a grouping mechanism in the API for listing services, instances, and
other resources?

Early in the design of CellsV2 we set a goal to not let the cell concept leak out of the API,
even for operators. Aggregates are the way nova supports grouping of hosts for a variety of
reasons, and aggregates can cut across cells, and/or be aligned with them if desired. If we were
to support cells as another grouping mechanism, we would likely end up having to implement
many of the same features for them as aggregates, such as scheduler features, metadata, and
other searching/filtering operations. Since aggregates are how Nova supports grouping, we expect
operators to use aggregates any time they need to refer to a cell as a group of hosts from the API,
and leave actual cells as a purely architectural detail.

4.2. Technical Reference Deep Dives 917

Nova Documentation, Release 22.4.1.dev41

The need to filter instances by cell in the API can and should be solved by adding a generic
by-aggregate filter, which would allow listing instances on hosts contained within any aggregate,
including one that matches the cell boundaries if so desired.

10. Why are the API responses for GET /servers, GET /servers/detail, GET /
servers/{server_id} and GET /os-services missing some information for certain
cells at certain times? Why do I see the status as UNKNOWN for the servers in those cells at
those times when I run openstack server list or openstack server show?

Starting from microversion 2.69 the API responses of GET /servers, GET /servers/
detail, GET /servers/{server_id} and GET /os-services may contain missing
keys during down cell situations. See the Handling Down Cells section of the Compute API guide
for more information on the partial constructs.

For administrative considerations, see Handling cell failures.

4.2.3.2 REST API Policy Enforcement

The following describes some of the shortcomings in how policy is used and enforced in nova, along
with some benefits of fixing those issues. Each issue has a section dedicated to describing the underlying
cause and historical context in greater detail.

Problems with current system

The following is a list of issues with the existing policy enforcement system:

• Testing default policies

• Mismatched authorization

• Inconsistent naming

• Incorporating default roles

• Compartmentalized policy enforcement

• Refactoring hard-coded permission checks

• Granular policy checks

Addressing the list above helps operators by:

1. Providing them with flexible and useful defaults

2. Reducing the likelihood of writing and maintaining custom policies

3. Improving interoperability between deployments

4. Increasing RBAC confidence through first-class testing and verification

5. Reducing complexity by using consistent policy naming conventions

6. Exposing more functionality to end-users, safely, making the entire nova API more self-
serviceable resulting in less operational overhead for operators to do things on behalf of users

Additionally, the following is a list of benefits to contributors:

1. Reduce developer maintenance and cost by isolating policy enforcement into a single layer

2. Reduce complexity by using consistent policy naming conventions

4.2. Technical Reference Deep Dives 918

https://docs.openstack.org/api-guide/compute/down_cells.html

Nova Documentation, Release 22.4.1.dev41

3. Increased confidence in RBAC refactoring through exhaustive testing that prevents regressions
before they merge

Testing default policies

Testing default policies is important in protecting against authoritative regression. Authoritative regres-
sion is when a change accidentally allows someone to do something or see something they shouldnt.
It can also be when a change accidentally restricts a user from doing something they used to have the
authorization to perform. This testing is especially useful prior to refactoring large parts of the policy
system. For example, this level of testing would be invaluable prior to pulling policy enforcement logic
from the database layer up to the API layer.

Testing documentation exists that describes the process for developing these types of tests.

Mismatched authorization

The compute API is rich in functionality and has grown to manage both physical and virtual hardware.
Some APIs were meant to assist operators while others were specific to end users. Historically, nova
used project-scoped tokens to protect almost every API, regardless of the intended user. Using project-
scoped tokens to authorize requests for system-level APIs makes for undesirable user-experience and is
prone to overloading roles. For example, to prevent every user from accessing hardware level APIs that
would otherwise violate tenancy requires operators to create a system-admin or super-admin
role, then rewrite those system-level policies to incorporate that role. This means users with that special
role on a project could access system-level resources that arent even tracked against projects (hypervisor
information is an example of system-specific information.)

As of the Queens release, keystone supports a scope type dedicated to easing this problem, called system
scope. Consuming system scope across the compute API results in fewer overloaded roles, less special-
ized authorization logic in code, and simpler policies that expose more functionality to users without
violating tenancy. Please refer to keystones authorization scopes documentation to learn more about
scopes and how to use them effectively.

Inconsistent naming

Inconsistent conventions for policy names are scattered across most OpenStack services, nova included.
Recently, there was an effort that introduced a convention that factored in service names, resources,
and use cases. This new convention is applicable to nova policy names. The convention is formally
documented in oslo.policy and we can use policy deprecation tooling to gracefully rename policies.

Incorporating default roles

Up until the Rocky release, keystone only ensured a single role called admin was available to the
deployment upon installation. In Rocky, this support was expanded to include member and reader
roles as first-class citizens during keystones installation. This allows service developers to rely on these
roles and include them in their default policy definitions. Standardizing on a set of role names for default
policies increases interoperability between deployments and decreases operator overhead.

You can find more information on default roles in the keystone specification or developer documentation.

4.2. Technical Reference Deep Dives 919

https://docs.openstack.org/keystone/latest/contributor/services.html#ruthless-testing
https://docs.openstack.org/keystone/latest/contributor/services.html#authorization-scopes
https://docs.openstack.org/oslo.policy/latest/user/usage.html#naming-policies
https://docs.openstack.org/oslo.policy/latest/reference/api/oslo_policy.policy.html#oslo_policy.policy.DeprecatedRule
http://specs.openstack.org/openstack/keystone-specs/specs/keystone/rocky/define-default-roles.html
https://docs.openstack.org/keystone/latest/contributor/services.html#reusable-default-roles

Nova Documentation, Release 22.4.1.dev41

Compartmentalized policy enforcement

Policy logic and processing is inherently sensitive and often complicated. It is sensitive in that coding
mistakes can lead to security vulnerabilities. It is complicated in the resources and APIs it needs to
protect and the vast number of use cases it needs to support. These reasons make a case for isolating
policy enforcement and processing into a compartmentalized space, as opposed to policy logic bleeding
through to different layers of nova. Not having all policy logic in a single place makes evolving the
policy enforcement system arduous and makes the policy system itself fragile.

Currently, the database and API components of nova contain policy logic. At some point, we should
refactor these systems into a single component that is easier to maintain. Before we do this, we should
consider approaches for bolstering testing coverage, which ensures we are aware of or prevent policy
regressions. There are examples and documentation in API protection testing guides.

Refactoring hard-coded permission checks

The policy system in nova is designed to be configurable. Despite this design, there are some APIs
that have hard-coded checks for specific roles. This makes configuration impossible, misleading, and
frustrating for operators. Instead, we can remove hard-coded policies and ensure a configuration-driven
approach, which reduces technical debt, increases consistency, and provides better user-experience for
operators. Additionally, moving hard-coded checks into first-class policy rules let us use existing policy
tooling to deprecate, document, and evolve policies.

Granular policy checks

Policies should be as granular as possible to ensure consistency and reasonable defaults. Using a single
policy to protect CRUD for an entire API is restrictive because it prevents us from using default roles
to make delegation to that API flexible. For example, a policy for compute:foobar could be bro-
ken into compute:foobar:create, compute:foobar:update, compute:foobar:list,
compute:foobar:get, and compute:foobar:delete. Breaking policies down this way al-
lows us to set read-only policies for readable operations or use another default role for creation and
management of foobar resources. The oslo.policy library has examples that show how to do this using
deprecated policy rules.

4.2. Technical Reference Deep Dives 920

https://docs.openstack.org/keystone/latest/contributor/services.html#ruthless-testing
https://docs.openstack.org/oslo.policy/latest/reference/api/oslo_policy.policy.html#oslo_policy.policy.DeprecatedRule

Nova Documentation, Release 22.4.1.dev41

4.2.3.3 Nova Stable REST API

This document describes both the current state of the Nova REST API as of the Pike release and also
attempts to describe how the Nova team evolved the REST APIs implementation over time and removed
some of the cruft that has crept in over the years.

Background

Nova used to include two distinct frameworks for exposing REST API functionality. Older code is
called the v2 API and existed in the /nova/api/openstack/compute/legacy_v2/ directory. This code tree
was totally removed during Netwon release time frame (14.0.0 and later). Newer code is called the v2.1
API and exists in the /nova/api/openstack/compute directory.

The v2 API is the old Nova REST API. It is mostly replaced by v2.1 API.

The v2.1 API is the new Nova REST API with a set of improvements which includes Microversion
and standardized validation of inputs using JSON-Schema. Also the v2.1 API is totally backwards
compatible with the v2 API (That is the reason we call it as v2.1 API).

Current Stable API

• Nova v2.1 API + Microversion (v2.1 APIs are backward-compatible with v2 API, but more strict
validation)

• /v2 & /v2.1 endpoint supported

• v2 compatible mode for old v2 users

Evolution of Nova REST API

4.2. Technical Reference Deep Dives 921

https://docs.openstack.org/api-guide/compute/microversions.html

Nova Documentation, Release 22.4.1.dev41

Nova v2 API + Extensions

Nova used to have v2 API. In v2 API, there was a concept called extension. An operator can use it to
enable/disable part of Nova REST API based on requirements. An end user may query the /extensions
API to discover what API functionality is supported by the Nova deployment.

Unfortunately, because v2 API extensions could be enabled or disabled from one deployment to another
as well as custom API extensions added to one deployment and not another it was impossible for an
end user to know what the OpenStack Compute API actually included. No two OpenStack deployments
were consistent, which made cloud interoperability impossible.

In the Newton release, stevedore loading of API extension plugins was deprecated and marked for re-
moval.

In the Newton release, v2 API code base has been removed and /v2 endpoints were directed to v2.1 code
base.

v2 API compatibility mode based on v2.1 API

v2.1 API is exactly same as v2 API except strong input validation with no additional request parameter
allowed and Microversion feature. Since Newton, /v2 endpoint also started using v2.1 API implemen-
tation. But to keep the backward compatibility of v2 API, /v2 endpoint should not return error on
additional request parameter or any new headers for Microversion. v2 API must be same as it has been
since starting.

To achieve that behavior legacy v2 compatibility mode has been introduced. v2 compatibility mode is
based on v2.1 implementation with below difference:

• Skip additionalProperties checks in request body

• Ignore Microversion headers in request

• No Microversion headers in response

Nova v2.1 API + Microversion

In the Kilo release, nova v2.1 API has been released. v2.1 API is supposed to be backward compatible
with v2 API with strong input validation using JSON Schema.

v2.1 API comes up with microversion concept which is a way to version the API changes. Each new
feature or modification in API has to done via microversion bump.

API extensions concept was deprecated from the v2.1 API, are no longer needed to evolve the REST
API, and no new API functionality should use the API extension classes to implement new functionality.
Instead, new API functionality should be added via microversion concept and use the microversioning
decorators to add or change the REST API.

v2.1 API had plugin framework which was using stevedore to load Nova REST API extensions instead
of old V2 handcrafted extension load mechanism. There was an argument that the plugin framework
supported extensibility in the Nova API to allow deployers to publish custom API resources.

In the Newton release, config options of blacklist and whitelist extensions and stevedore things were
deprecated and marked for removal.

4.2. Technical Reference Deep Dives 922

Nova Documentation, Release 22.4.1.dev41

In Pike, stevedore based plugin framework has been removed and url mapping is done with plain router
list. There is no more dynamic magic of detecting API implementation for url. See Extending the API
for more information.

The /extensions API exposed the list of enabled API functions to users by GET method. However as the
above, new API extensions should not be added to the list of this API. The /extensions API is frozen in
Nova V2.1 API and is deprecated.

Things which are History now

As of the Pike release, many deprecated things have been removed and became history in Nova API
world:

• v2 legacy framework

• API extensions concept

• stevedore magic to load the extension/plugin dynamically

• Configurable way to enable/disable APIs extensions

4.2.3.4 Scheduler Evolution

Evolving the scheduler has been a priority item over several releases: http://specs.openstack.org/
openstack/nova-specs/#priorities

The scheduler has become tightly coupled with the rest of nova, limiting its capabilities, accuracy, flex-
ibility and maintainability. The goal of scheduler evolution is to bring about a better separation of
concerns between scheduling functionality and the rest of nova.

Once this effort has completed, its conceivable that the nova-scheduler could become a separate git repo,
outside of nova but within the compute project. This is not the current focus.

Problem Use Cases

Many users are wanting to do more advanced things with the scheduler, but the current architecture is
not ready to support those use cases in a maintainable way. A few examples will help to illustrate where
the scheduler falls short:

Cross Project Affinity

It can be desirable, when booting from a volume, to use a compute node that is close to the shared storage
where that volume is. Similarly, for the sake of performance, it can be desirable to use a compute node
that is in a particular location in relation to a pre-created port.

4.2. Technical Reference Deep Dives 923

https://docs.openstack.org/api-ref/compute/#extensions-extensions-deprecated
http://specs.openstack.org/openstack/nova-specs/#priorities
http://specs.openstack.org/openstack/nova-specs/#priorities

Nova Documentation, Release 22.4.1.dev41

Filter Scheduler Alternatives

For certain use cases, radically different schedulers may perform much better than the filter scheduler.
We should not block this innovation. It is unreasonable to assume a single scheduler will work for all
use cases.

However, to enable this kind of innovation in a maintainable way, a single strong scheduler interface is
required.

Project Scale issues

There are many interesting ideas for new schedulers, like the solver scheduler, and frequent requests to
add new filters and weights to the scheduling system. The current nova team does not have the bandwidth
to deal with all these requests. A dedicated scheduler team could work on these items independently of
the rest of nova.

The tight coupling that currently exists makes it impossible to work on the scheduler in isolation. A
stable interface is required before the code can be split out.

Key areas we are evolving

Here we discuss, at a high level, areas that are being addressed as part of the scheduler evolution work.

Versioning Scheduler Placement Interfaces

At the start of kilo, the scheduler is passed a set of dictionaries across a versioned RPC interface. The
dictionaries can create problems with the backwards compatibility needed for live-upgrades.

Luckily we already have the oslo.versionedobjects infrastructure we can use to model this data in a way
that can be versioned across releases.

This effort is mostly focusing around the request_spec. See, for example, this spec.

Sending host and node stats to the scheduler

Periodically nova-compute updates the scheduler state stored in the database.

We need a good way to model the data that is being sent from the compute nodes into the scheduler, so
over time, the scheduler can move to having its own database.

This is linked to the work on the resource tracker.

4.2. Technical Reference Deep Dives 924

http://specs.openstack.org/openstack/nova-specs/specs/kilo/approved/sched-select-destinations-use-request-spec-object.html

Nova Documentation, Release 22.4.1.dev41

Updating the Scheduler about other data

Over time, its possible that we need to send cinder and neutron data, so the scheduler can use that data
to help pick a nova-compute host.

Resource Tracker

The recent work to add support for NUMA and PCI pass through have shown we have no good pattern
to extend the resource tracker. Ideally we want to keep the innovation inside the nova tree, but we also
need it to be easier.

This is very related to the effort to re-think how we model resources, as covered by discussion about
resource providers.

Parallelism and Concurrency

The current design of the nova-scheduler is very racy, and can lead to excessive numbers of build retries
before the correct host is found. The recent NUMA features are particularly impacted by how the sched-
uler works. All this has lead to many people running only a single nova-scheduler process configured to
use a very small greenthread pool.

The work on cells v2 will mean that we soon need the scheduler to scale for much larger problems. The
current scheduler works best with less than 1k nodes but we will need the scheduler to work with at least
10k nodes.

Various ideas have been discussed to reduce races when running multiple nova-scheduler processes. One
idea is to use two-phase commit style resource tracker claims. Another idea involves using incremental
updates so it is more efficient to keep the schedulers state up to date, potentially using Kafka.

For more details, see the backlog spec that describes more of the details around this problem.

4.2.4 Additional Information

• Glossary: A quick reference guide to some of the terms you might encounter working on or using
nova.

4.2.4.1 Glossary

Availability Zone Availability zones are a logical subdivision of cloud block storage, compute and
network services. They provide a way for cloud operators to logically segment their compute
based on arbitrary factors like location (country, datacenter, rack), network layout and/or power
source.

For more information, refer to Host aggregates.

Boot From Volume A server that is created with a Block Device Mapping with boot_index=0 and
destination_type=volume. The root volume can already exist when the server is created
or be created by the compute service as part of the server creation. Note that a server can have
volumes attached and not be boot-from-volume. A boot from volume server has an empty ()
image parameter in GET /servers/{server_id} responses.

4.2. Technical Reference Deep Dives 925

https://blueprints.launchpad.net/nova/+spec/resource-providers
http://specs.openstack.org/openstack/nova-specs/specs/backlog/approved/parallel-scheduler.html

Nova Documentation, Release 22.4.1.dev41

Cross-Cell Resize A resize (or cold migrate) operation where the source and destination compute hosts
are mapped to different cells. By default, resize and cold migrate operations occur within the same
cell.

For more information, refer to Cross-cell resize.

Host Aggregate Host aggregates can be regarded as a mechanism to further partition an Availability
Zone; while availability zones are visible to users, host aggregates are only visible to administra-
tors. Host aggregates provide a mechanism to allow administrators to assign key-value pairs to
groups of machines. Each node can have multiple aggregates, each aggregate can have multiple
key-value pairs, and the same key-value pair can be assigned to multiple aggregates.

For more information, refer to Host aggregates.

Same-Cell Resize A resize (or cold migrate) operation where the source and destination compute hosts
are mapped to the same cell. Also commonly referred to as standard resize or simply resize. By
default, resize and cold migrate operations occur within the same cell.

For more information, refer to Resize and cold migrate.

4.2. Technical Reference Deep Dives 926

INDEX

Symbols
--config-dir DIR

nova-manage command line
option, 414

--config-file PATH
nova-manage command line

option, 414
--debug

nova-manage command line
option, 414

--help
nova-manage command line

option, 414
--log_config PATH

nova-manage command line
option, 414

--log-config PATH
nova-manage command line

option, 414
--log-config-append PATH

nova-manage command line
option, 414

--log-date-format DATE_FORMAT
nova-manage command line

option, 415
--log-dir LOG_DIR

nova-manage command line
option, 415

--log-file PATH
nova-manage command line

option, 415
--logdir LOG_DIR

nova-manage command line
option, 415

--logfile PATH
nova-manage command line

option, 415
--nodebug

nova-manage command line
option, 415

--nopost-mortem

nova-manage command line
option, 415

--nouse-journal
nova-manage command line

option, 415
--nouse-json

nova-manage command line
option, 415

--nouse-syslog
nova-manage command line

option, 415
--nowatch-log-file

nova-manage command line
option, 415

--post-mortem
nova-manage command line

option, 415
--syslog-log-facility

SYSLOG_LOG_FACILITY
nova-manage command line

option, 415
--use-journal

nova-manage command line
option, 415

--use-json
nova-manage command line

option, 415
--use-syslog

nova-manage command line
option, 415

--version
nova-manage command line

option, 415
--watch-log-file

nova-manage command line
option, 415

-d
nova-manage command line

option, 414
-h

nova-manage command line

927

Nova Documentation, Release 22.4.1.dev41

option, 414

A
Availability Zone, 925

B
Boot From Volume, 925

C
Cross-Cell Resize, 926

H
Host Aggregate, 926

N
nova-manage command line option

--config-dir DIR, 414
--config-file PATH, 414
--debug, 414
--help, 414
--log_config PATH, 414
--log-config PATH, 414
--log-config-append PATH, 414
--log-date-format DATE_FORMAT,

415
--log-dir LOG_DIR, 415
--log-file PATH, 415
--logdir LOG_DIR, 415
--logfile PATH, 415
--nodebug, 415
--nopost-mortem, 415
--nouse-journal, 415
--nouse-json, 415
--nouse-syslog, 415
--nowatch-log-file, 415
--post-mortem, 415
--syslog-log-facility

SYSLOG_LOG_FACILITY, 415
--use-journal, 415
--use-json, 415
--use-syslog, 415
--version, 415
--watch-log-file, 415
-d, 414
-h, 414

S
Same-Cell Resize, 926

Index 928

	What is nova?
	For End Users
	User Documentation
	End user guide
	Availability zones
	Launch instances
	Metadata
	Manage IP addresses
	Image Signature Certificate Validation
	Resize an instance
	Reboot an instance
	Rescue an instance
	Block Device Mapping in Nova
	REST API Version History

	Architecture Overview
	Deployment Considerations
	Maintenance

	Tools for using Nova
	Writing to the API

	For Operators
	Architecture Overview
	Nova System Architecture
	Components

	Installation
	Compute service
	Overview
	Compute service overview
	Install and configure controller node
	Install and configure a compute node
	Verify operation

	Deployment Considerations
	Feature Classification
	Aims
	General Purpose Cloud Features
	NFV Cloud Features
	HPC Cloud Features
	Notes on Concepts

	Feature Support Matrix
	Cells Layout (v2)
	Concepts
	Service Layout

	Using WSGI with Nova

	Maintenance
	Compute
	Overview
	Advanced configuration
	Additional guides

	Flavors
	Overview

	Upgrades
	Minimal Downtime Upgrade Process
	Current Database Upgrade Types
	Concepts
	Testing

	Quotas
	Types of quota
	Usage

	Filter Scheduler
	Filtering
	Configuring Filters
	Writing Your Own Filter
	Weights

	Reference Material
	Command-line Utilities
	Nova Management Commands
	Service Daemons
	WSGI Services
	Additional Tools

	Configuration Guide
	Configuration
	Policy
	Extra Specs

	For Contributors
	Contributor Documentation
	Basic Information
	So You Want to Contribute…

	Getting Started
	How to get (more) involved with Nova
	Development Quickstart

	Nova Process
	Scope of the Nova project
	Development policies
	Nova team process
	Blueprints, Specs and Priorities
	Chronological PTL guide

	Reviewing
	Release Notes
	Code Review Guide for Nova
	Internationalization
	Documentation Guidelines

	Testing
	Test Strategy
	Testing NUMA related hardware setup with libvirt
	Testing Serial Console
	Testing Zero Downtime Upgrade Process
	Testing Down Cells
	Profiling With Eventlet

	The Nova API
	Extending the API
	Adding a Method to the OpenStack API
	API Microversions
	API reference guideline

	Nova Major Subsystems
	Evacuate vs Rebuild
	Resize and cold migrate

	Technical Reference Deep Dives
	Internals
	AMQP and Nova
	Scheduling
	Scheduler hints versus flavor extra specs
	Live Migration
	Services, Managers and Drivers
	Virtual Machine States and Transitions
	Threading model
	Notifications in Nova
	ComputeDriver.update_provider_tree
	Upgrade checks
	Conductor as a place for orchestrating tasks
	Filtering hosts by isolating aggregates

	Debugging
	Guru Meditation Reports

	Forward Looking Plans
	Cells
	REST API Policy Enforcement
	Nova Stable REST API
	Scheduler Evolution

	Additional Information
	Glossary

	Index

