Nova Documentation
Release 25.3.1.dev38

OpenStack Foundation

Sep 16, 2024

CONTENTS

1 Whatis nova? 1
2 For End Users 2
2.1 User Documentation e 2
2.1.1 Enduserguide e 2
2.1.1.1 Availabilityzones 2

2.1.1.2 Launchinstances. 3

21,13 Metadata L. e e 21

2.1.14 ManageIPaddresses L o 29

2.1.1.5 Image Signature Certificate Validation 32

2.1.1.6 Resizeaninstance 46

2.1.1.7 Rebootaninstanceo 47

2.1.1.8 Rescueaninstance it i i e e 48

2.1.1.9 Block Device MappinginNova 49

2.1.1.10 REST API VersionHistory 53

2.2 Toolsforusing Nova e e e 74
2.3 Writingtothe APL e 75
3 For Operators 76
3.1 Architecture Overview L e e 76
3.1.1 Nova System Architecture 76
31,11 Components . . . v v et e e e e e e e e e e e e e e e 76

3.1.1.2 Hypervisors e 78

3.1.1.3 Projects,users,androles 78

3.1.1.4 Blockstorage 79

3.1.1.5 Buildingblocks 80

3.1.1.6 Novaservice architecture 81

32 Installation e e e 82
321 Compute SEIVICE . . . v v v v i e e e e e e e e e e e e e e e e e e 82
3211 Overview o e e 82

3.2.1.2 Compute Service OVerview v vttt 87

3.2.1.3 Install and configure controllernode 89

3.2.1.4 Install and configure acomputenode 108

3.2.1.5 Verifyoperationo 122

3.3 Deployment Considerations it 124
3.3.1 Feature Classification 125
3311 AImS . .. 125

3.3.1.2 General Purpose Cloud Features 125

33.13 NFVCloudFeatures 134

3.3.14 HPCCloud Features e, 136

33.1.5 NotesonConcepts v v v v v vt i e e e e 137

3.3.2 Feature Support Matrix 139
333 Cells (V2) . . o oo e e e 165
3330 OVerviewo 165
3332 Servicelayout 166
3.3.3.3 Databaselayout 168
3334 Usage . . . oo i e e 169
3335 Design e e 174
3.33.6 Comparison withcellsvl 174
3337 CaveatS. e e e 175
3.3.3.8 Handling cell failures 178
3339 FAQs . . . o e 179
3.33.10 References 181

334 Using WSGIwithNova 181
34 Maintenance i e e e e e e e e e e e e e e 182
34.1 Admin Documentation Lo 182
34011 Overview o o e e e e e e e e e 182

3.4.1.2 Deployment Considerations 183
3.4.1.3 Basicconfiguration 241
3.4.1.4 Advanced configuration Lo 334
3415 Maintenance i e e e e e e 398

342 Flavors e e e e e 434
3420 Overview o e 434

343 QUOLAS e e e e e e e e e 438
343.1 Typesofquota 438
3432 USage i e e e e e e e e e 439

3.5 Reference Material L 441
3.5.1 Command-line Utilities 442
3.5.1.1 Nova Management Commands 442
3.5.1.2 Service Daemons o 472
3.5.1.3 WSGI Services oo 491
3.5.1.4 Additional Tools 496

3.5.2 Configuration Guide 497
3.5.2.1 Configuration e 497

3522 Policy 743
3523 EXraSpecs oo i i e e e 792

4 For Contributors 855
4.1 Contributor Documentation e 855
4.1.1 BasicInformation L 855
4.1.1.1 So You Want to Contribute 855

4.1.2 Getting Started 856
4.1.2.1 How to get (more) involved withNova 857
4.1.2.2 Development Quickstart, 862

4.13 NovaProcess i 865
4.1.3.1 Scopeofthe Novaproject, 866
4.1.3.2 Developmentpolicies 870
4.1.33 NOvateam ProCess . . . v v v v v v v v v vt e e e e e e e e 873
4.1.3.4 Blueprints, Specs and Priorities 0., 889
4.1.3.5 Chronological PTL guide 890

4.2

Index

4.1.4 Reviewing e e 895
4.1.4.1 Release Notes oot vttt 896
4.1.4.2 Code Review Guide forNova 897
4.1.4.3 Internationalization, 901
4.1.44 Documentation Guidelines 902

4.1.5 Testing e e e e e e 903
4.1.5.1 TestStrategy v v v i e e e e e 904
4.1.5.2 Testing NUMA related hardware setup with libvirt 905
4.1.5.3 Testing SerialConsole 920
4.1.5.4 Testing Zero Downtime Upgrade Process 922
4.1.5.5 TestingDownCells 926
4.1.5.6 Profiling WithEventlet 931

41.6 TheNovaAPL. e 936
4.1.6.1 Extendingthe API 936
4.1.6.2 Adding a Method to the OpenStack API 942
4.1.6.3 APIMicroversions e 942
4.1.6.4 APIreference guideline 949

4.1.7 NovaMajor SubSystems v v vt e e e e 957
4.177.1 EvacuatevsRebuild o o oL 957
4.1.7.2 Resizeandcoldmigrate 959

Technical Reference Deep Dives 961

421 Internals 961
4211 AMQPandNova e 962
42.1.2 Scheduling 968
4.2.1.3 Scheduler hints versus flavor extraspecs 971
4214 LiveMigration 974
42.1.5 Services, Managers and Drivers 974
4.2.1.6 Virtual Machine States and Transitions 978
42.1.7 Threadingmodel 981
4.2.1.8 NotificationsinNova 982
4.2.1.9 Database migrations 992
4.2.1.10 ComputeDriver.update_provider_tree 994
42.1.11 Upgradechecks 998
4.2.1.12 Conductor as a place for orchestrating tasks 1003
4.2.1.13 Filtering hosts by isolating aggregates 1004
4.2.1.14 Attaching Volumes 1005
4.2.1.15 Driver BDM Data Structures, 1006
4.2.1.16 Libvirt virt driver OS distribution support matrix 1009

422 Debugging e 1012
42.2.1 GuruMeditation Reports, 1013

423 Forward LookingPlans 1014
4.2.3.1 REST API Policy Enforcement 1014
4232 NovaStable RESTAPI 1017
4233 SchedulerEvolution, 1019

424 Additional Information L L o 1021
42401 Glossary e e e e e e e 1022

1023

CHAPTER
ONE

WHAT IS NOVA?

Nova is the OpenStack project that provides a way to provision compute instances (aka virtual servers).
Nova supports creating virtual machines, baremetal servers (through the use of ironic), and has limited
support for system containers. Nova runs as a set of daemons on top of existing Linux servers to provide
that service.

It requires the following additional OpenStack services for basic function:
» Keystone: This provides identity and authentication for all OpenStack services.

* Glance: This provides the compute image repository. All compute instances launch from glance
images.
e Neutron: This is responsible for provisioning the virtual or physical networks that compute in-

stances connect to on boot.

* Placement: This is responsible for tracking inventory of resources available in a cloud and assisting
in choosing which provider of those resources will be used when creating a virtual machine.

It can also integrate with other services to include: persistent block storage, encrypted disks, and
baremetal compute instances.

https://docs.openstack.org/keystone/yoga/
https://docs.openstack.org/glance/yoga/
https://docs.openstack.org/neutron/yoga/
https://docs.openstack.org/placement/yoga/

CHAPTER
TWO

FOR END USERS

As an end user of nova, youll use nova to create and manage servers with either tools or the API directly.

2.1 User Documentation

The OpenStack Compute service allows you to control an Infrastructure-as-a-Service (IaaS) cloud com-
puting platform. It gives you control over instances and networks, and allows you to manage access to
the cloud through users and projects.

Compute does not include virtualization software. Instead, it defines drivers that interact with underlying
virtualization mechanisms that run on your host operating system, and exposes functionality over a web-
based APIL.

2.1.1 End user guide
2.1.1.1 Availability zones

Auvailability Zones are an end-user visible logical abstraction for partitioning a cloud without knowing
the physical infrastructure. Availability zones can be used to partition a cloud on arbitrary factors, such
as location (country, datacenter, rack), network layout and/or power source. Because of the flexibility,
the names and purposes of availability zones can vary massively between clouds.

In addition, other services, such as the networking service and the block storage service, also provide
an availability zone feature. However, the implementation of these features differs vastly between these
different services. Consult the documentation for these other services for more information on their
implementation of this feature.

Usage

Availability zones can only be created and configured by an admin but they can be used by an end-user
when creating an instance. For example:

openstack server create --availability-zone ZONE ... SERVER

It is also possible to specify a destination host and/or node using this command; however, this is an
admin-only operation by default. For more information, see Using availability zones to select hosts.

https://docs.openstack.org/neutron/yoga/
https://docs.openstack.org/cinder/yoga/

Nova Documentation, Release 25.3.1.dev38

2.1.1.2 Launch instances

Instances are virtual machines that run inside the cloud.

Before you can launch an instance, gather the following parameters:

The instance source can be an image, snapshot, or block storage volume that contains an image
or snapshot.

A name for your instance.

The flavor for your instance, which defines the compute, memory, and storage capacity of nova
computing instances. A flavor is an available hardware configuration for a server. It defines the
size of a virtual server that can be launched.

Any user data files. A user data file is a special key in the metadata service that holds a file that
cloud-aware applications in the guest instance can access. For example, one application that uses
user data is the cloud-init system, which is an open-source package from Ubuntu that is available
on various Linux distributions and that handles early initialization of a cloud instance.

Access and security credentials, which include one or both of the following credentials:

— A key pair for your instance, which are SSH credentials that are injected into images when
they are launched. For the key pair to be successfully injected, the image must contain the
cloud-init package. Create at least one key pair for each project. If you already have
generated a key pair with an external tool, you can import it into OpenStack. You can use the
key pair for multiple instances that belong to that project.

— A security group that defines which incoming network traffic is forwarded to instances.
Security groups hold a set of firewall policies, known as security group rules.

If needed, you can assign a floating (public) IP address to a running instance to make it accessible
from outside the cloud. See Manage IP addresses.

You can also attach a block storage device, or volume, for persistent storage.

Note: Instances that use the default security group cannot, by default, be accessed from any IP address
outside of the cloud. If you want those IP addresses to access the instances, you must modify the rules
for the default security group.

After you gather the parameters that you need to launch an instance, you can launch it from an image
or a volume. You can launch an instance directly from one of the available OpenStack images or from
an image that you have copied to a persistent volume. The OpenStack Image service provides a pool of
images that are accessible to members of different projects.

Gather parameters to launch an instance

Before you begin, source the OpenStack RC file.

1. Create a flavor.

Creating a flavor is typically only available to administrators of a cloud because this has implica-
tions for scheduling efficiently in the cloud.

2.1.

User Documentation 3

https://help.ubuntu.com/community/CloudInit

Nova Documentation, Release 25.3.1.dev38

openstack flavor create --ram 512 --disk 1 --vcpus 1 ml.tiny

2. List the available flavors.

openstack flavor list

Note the ID of the flavor that you want to use for your instance:

1 512 1 0 1
2 20438 20 0 1
3 4096 40 0 2
4 8192 80 0 4
5 16384 160 0 8

3. List the available images.

openstack image list

Note the ID of the image from which you want to boot your instance:

397e713 4186 6126863 0.3.5 o
3406 4061 0.3.5 o
3 2332-4814-9 7 0.3.5 o

You can also filter the image list by using grep to find a specific image, as follows:

openstack image list | grep

4. List the available security groups.

openstack security group list

2.1. User Documentation 4

Nova Documentation, Release 25.3.1.dev38

Note: If you are an admin user, this command will list groups for all tenants.

Note the ID of the security group that you want to use for your instance:

0981-4527-8561-93 o
—~| 5669
83el-4825-86 14 o

If you have not created any security groups, you can assign the instance to only the default security
group.

You can view rules for a specified security group:

openstack security group rule list default

5. List the available key pairs, and note the key pair name that you use for SSH access.

openstack keypair list

Launch an instance

You can launch an instance from various sources.

Launch an instance from an image

Follow the steps below to launch an instance from an image.

1. After you gather required parameters, run the following command to launch an instance. Specify
the server name, flavor ID, and image ID.

openstack server create --flavor FLAVOR_ID --image IMAGE_ID --key-name.

—KEY_NAME
--user-data USER_DATA_FILE --security-group SEC_GROUP_NAME --property..
. VALUE

INSTANCE_NAME

Optionally, you can provide a key name for access control and a security group for security. You
can also include metadata key and value pairs. For example, you can add a description for your
server by providing the --property description="My Server" parameter.

2.1. User Documentation 5

Nova Documentation, Release 25.3.1.dev38

You can pass user data in a local file at instance launch by using the --user-data
USER-DATA-FILE parameter.

Important: If you boot an instance with an INSTANCE_NAME greater than 63 characters,
Compute truncates it automatically when turning it into a host name to ensure the correct work of
dnsmasq. The corresponding warning is written into the neutron-dnsmasq.log file.

The following command launches the MyCirrosServer instance with them1.small flavor (ID of
1), cirros-0.3.2-x86_64-uec image (ID of 397e713c-b95b-4186-ad46-6126863eada9),
default security group, KeyPair01 key, and a user data file called cloudinit. file:

openstack server create --flavor 1 --image 397e713c-b95b-4186-ad46-
-»6126863ea0a9

--security-group default --key-name KeyPair®1 --user-data cloudinit.
—file

myCirrosServer

Depending on the parameters that you provide, the command returns a list of server properties.

—

= (continues on next page)

2.1. User Documentation 6

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

—

A status of BUILD indicates that the instance has started, but is not yet online.

A status of ACTIVE indicates that the instance is active.

2. Copy the server ID value from the id field in the output. Use the ID to get server details or to

delete your server.

3. Copy the administrative password value from the adminPass field. Use the password to log in to

your server.

4. Check if the instance is online.

2.1.

User Documentation

Nova Documentation, Release 25.3.1.dev38

openstack server list

The list shows the ID, name, status, and private (and if assigned, public) IP addresses for all in-
stances in the project to which you belong:

If the status for the instance is ACTIVE, the instance is online.

5. To view the available options for the openstack server listcommand, run the following com-

mand:

openstack help server list

Note: If you did not provide a key pair, security groups, or rules, you can access the instance only
from inside the cloud through VNC. Even pinging the instance is not possible.

Launch an instance from a volume

You can boot instances from a volume instead of an image.

To complete these tasks, use these parameters on the openstack server create command:

Task

openstack server cre-
ate parameter(s)

Information

Boot an instance from an image
and attach a non-bootable vol-
ume.

--block-device

Boot instance from image and attach non-
bootable volume

Create a volume from an image

--boot-from-volume

Boot instance from volume

and boot an instance from that | and --image;
volume. --block-device
Boot from an existing source | --volume or | Boot instance from volume
image, volume, or snapshot. --snapshot;
--block-device
Attach a swap disk to an in- | --swap Attach swap or ephemeral disk to an in-
stance. stance
Attach an ephemeral disk to an | --ephemeral Attach swap or ephemeral disk to an in-

instance.

Stance

2.1. User Documentation

Nova Documentation, Release 25.3.1.dev38

Note: To attach a volume to a running instance, refer to the Cinder documentation.

Note: The maximum limit on the number of disk devices allowed to attach to a single server is config-
urable with the option compute.max_disk_devices_to_attach.

Boot instance from image and attach non-bootable volume

You can create a non-bootable volume and attach that volume to an instance that you boot from an image.

To create a non-bootable volume, do not create it from an image. The volume must be entirely empty
with no partition table and no file system.

1. Create a non-bootable volume.

openstack volume create --size 8 test-volume

2. List volumes and confirm that it is in the available state.

openstack volume list

(continues on next page)

2.1. User Documentation 9

https://docs.openstack.org/cinder/yoga/cli/cli-manage-volumes.html#attach-a-volume-to-an-instance

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

—

. Create an instance, specifying the volume as a block device to attach.

openstack server create
--flavor --image --network
--block-device 006efd7a-48a8-4c75-bafb-6b483199d284, source_
—type volume,destination_type volume
--wait test-server

—

(continues on next page)

2.1.

User Documentation 10

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

—

4. List volumes once again to ensure the status has changed to in-use and the volume is correctly
reporting the attachment.

openstack volume list

2.1. User Documentation 11

Nova Documentation, Release 25.3.1.dev38

Boot instance from volume

You can create a bootable volume from an existing image, volume, or snapshot. This procedure shows
you how to create a volume from an image and use the volume to boot an instance.

1. List available images, noting the ID of the image that you wish to use.

openstack image list

2. Create an instance, using the chosen image and requesting boot from volume behavior.

openstack server create
--flavor --network
--image 44d317a3-6183-4063-868b-aa0728576f5f --boot-from-volume 10
--wait test-server

(continues on next page)

2.1. User Documentation 12

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

—

Note: Volumes created in this manner will not be deleted when the server is deleted and will need
to be manually deleted afterwards. If you wish to change this behavior, you will need to pre-create
the volume manually as discussed below.

3. List volumes to ensure a new volume has been created and that its status is in-use and the volume

2.1. User Documentation 13

Nova Documentation, Release 25.3.1.dev38

is correctly reporting the attachment.

openstack volume list

openstack server volume list test-server

Rather than relying on nova to create the volume from the image, it is also possible to pre-create the
volume before creating the instance. This can be useful when you want more control over the created
volume, such as enabling encryption.

1. List available images, noting the ID of the image that you wish to use.

openstack image list

2. Create a bootable volume from the chosen image.

Cinder makes a volume bootable when --image parameter is passed.

openstack volume create
--image 44d317a3-6183-4063-868b-aa®728576f5f --size 10
test-volume

(continues on next page)

2.1. User Documentation 14

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Note: If you want to create a volume to a specific storage backend, you need to use an image which
has the cinder_img_volume_type property. For more information, refer to the cinder docs.

Note: A bootable encrypted volume can also be created by adding the fype EN-
CRYPTED_VOLUME_TYPE parameter to the volume create command. For example:

openstack volume create
--type ENCRYPTED_VOLUME_TYPE --image IMAGE --size SIZE
test-volume

This requires an encrypted volume type which must be created ahead of time by an admin. Refer
to the horizon documentation. for more information.

3. Create an instance, specifying the volume as the boot device.

openstack server create
--flavor --network
--volume 9c7£68d4-4d84-4cle-83af-b8c6a56ad®Bds5
--wait test-server

(continues on next page)

2.1. User Documentation 15

https://docs.openstack.org/cinder/yoga//cli/cli-manage-volumes.html#volume-types
https://docs.openstack.org/horizon/yoga/admin/manage-volumes.html#create-an-encrypted-volume-type

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

_

(continues on next page)

2.1. User Documentation 16

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

—

Note: The example here uses the --volume option for simplicity. The --block-device option
could also be used for more granular control over the parameters. See the openstack server create
documentation for details.

4. List volumes once again to ensure the status has changed to in-use and the volume is correctly
reporting the attachment.

openstack volume list

openstack server volume list test-server

2.1. User Documentation 17

https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/server.html#server-create

Nova Documentation, Release 25.3.1.dev38

Attach swap or ephemeral disk to an instance

Use the --swap option of the openstack server command to attach a swap disk on boot or the
--ephemeral option to attach an ephemeral disk on boot. The latter can be specified multiple times.
When you terminate the instance, both disks are deleted.

Boot an instance with a 512 MB swap disk and 2 GB ephemeral disk.

openstack server create
--flavor FLAVOR --image IMAGE --network NETWORK
--ephemeral 2 --swap 512

Note: The flavor defines the maximum swap and ephemeral disk size. You cannot exceed these maxi-
mum values.

Launch an instance using ISO image
Boot an instance from an ISO image

OpenStack supports booting instances using ISO images. But before you make such instances functional,
use the openstack server create command with the following parameters to boot an instance:

openstack server create --image ubuntu-14.04.2-server-amd64.iso
--nic net-id =~ NETWORK_UUID
--flavor 2 INSTANCE_NAME

(continues on next page)

2.1. User Documentation 18

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

[}

In this command, ubuntu-14.04.2-server-amd64.iso is the ISO image, and INSTANCE_NANE is the
name of the new instance. NETWORK_UUID is a valid network id in your system.

Create a bootable volume for the instance to reside on after shutdown.

1. Create the volume:

2.1. User Documentation 19

Nova Documentation, Release 25.3.1.dev38

openstack volume create
--size <SIZE_IN_GB>
--bootable VOLUME_NAME

2. Attach the instance to the volume:

openstack server add volume

Note: You need the Block Storage service to preserve the instance after shutdown. The
--block-device argument, used with the legacy nova boot, will not work with the OpenStack
openstack server create command. Instead, the openstack volume create and openstack
server add volume commands create persistent storage.

After the instance is successfully launched, connect to the instance using a remote console and follow
the instructions to install the system as using ISO images on regular computers. When the installation is
finished and system is rebooted, the instance asks you again to install the operating system, which means
your instance is not usable. If you have problems with image creation, please check the Virtual Machine
Image Guide for reference.

Make the instances booted from ISO image functional

Now complete the following steps to make your instances created using ISO image actually functional.

1. Delete the instance using the following command.

openstack server delete INSTANCE_NAME

2. After you delete the instance, the system you have just installed using your ISO image remains,
because the parameter shutdown=preserve was set, so run the following command.

openstack volume list

You get a list with all the volumes in your system. In this list, you can find the volume that is
attached to your ISO created instance, with the false bootable property.

2.1. User Documentation 20

https://docs.openstack.org/image-guide/create-images-manually.html
https://docs.openstack.org/image-guide/create-images-manually.html

Nova Documentation, Release 25.3.1.dev38

3. Upload the volume to glance.

openstack image create --volume SOURCE_VOLUME IMAGE_NAME
openstack image list

The SOURCE_VOLUME is the UUID or a name of the volume that is attached to your ISO created
instance, and the IMAGE_NAUME is the name that you give to your new image.

4. After the image is successfully uploaded, you can use the new image to boot instances.

The instances launched using this image contain the system that you have just installed using the
ISO image.

2.1.1.3 Metadata

Nova presents configuration information to instances it starts via a mechanism called metadata. These
mechanisms are widely used via helpers such as cloud-init to specify things like the root password the
instance should use.

This metadata is made available via either a config drive or the metadata service and can be somewhat
customised by the user using the user data feature. This guide provides an overview of these features
along with a summary of the types of metadata available.

Types of metadata

There are three separate groups of users who need to be able to specify metadata for an instance.

User provided data

The user who booted the instance can pass metadata to the instance in several ways. For authentication
keypairs, the keypairs functionality of the nova API can be used to upload a key and then specify that key
during the nova boot API request. For less structured data, a small opaque blob of data may be passed
via the user data feature of the nova API. Examples of such unstructured data would be the puppet role
that the instance should use, or the HTTP address of a server from which to fetch post-boot configuration
information.

2.1. User Documentation 21

https://cloudinit.readthedocs.io/en/latest/

Nova Documentation, Release 25.3.1.dev38

Nova provided data

Nova itself needs to pass information to the instance via its internal implementation of the metadata
system. Such information includes the requested hostname for the instance and the availability zone the
instance is in. This happens by default and requires no configuration by the user or deployer.

Nova provides both an OpenStack metadata API and an EC2-compatible API. Both the OpenStack meta-
data and EC2-compatible APIs are versioned by date. These are described later.

Deployer provided data

A deployer of OpenStack may need to pass data to an instance. It is also possible that this data is not
known to the user starting the instance. An example might be a cryptographic token to be used to register
the instance with Active Directory post boot the user starting the instance should not have access to
Active Directory to create this token, but the nova deployment might have permissions to generate the
token on the users behalf. This is possible using the vendordata feature, which must be configured by
your cloud operator.

The metadata service

Note: This section provides end user information about the metadata service. For deployment informa-
tion about the metadata service, refer to the admin guide.

The metadata service provides a way for instances to retrieve instance-specific data via a REST APIL.
Instances access this service at 169.254.169.254 or at fe80: :a9fe:a9fe. All types of metadata, be
it user-, nova- or vendor-provided, can be accessed via this service.

Changed in version 22.0.0: Starting with the Victoria release the metadata service is accessible over IPv6
at the link-local address fe80: :a9fe:a9fe.

Note: As with all IPv6 link-local addresses, the metadata IPv6 address is not complete without a zone
identifier (in a Linux guest that is usually the interface name concatenated after a percent sign). Please
also note that in URLs you should URL-encode the percent sign itself. For example, assuming that the
primary network interface in the guest is ens2 substitute http://[fe80::a9fe:a9fe%25ens2]:80/
... forhttp://169.254.169.254/. ...

Using the metadata service

To retrieve a list of supported versions for the OpenStack metadata API, make a GET request to http:/
/169.254.169.254/openstack, which will return a list of directories:

curl http://169.254.169.254/openstack

(continues on next page)

2.1. User Documentation 22

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Refer to OpenStack format metadata for information on the contents and structure of these directories.

To list supported versions for the EC2-compatible metadata API, make a GET request to http://169.
254.169.254, which will, once again, return a list of directories:

curl http://169.254.169.254

Refer to EC2-compatible metadata for information on the contents and structure of these directories.

Config drives

Note: This section provides end user information about config drives. For deployment information
about the config drive feature, refer to the admin guide.

Config drives are special drives that are attached to an instance when it boots. The instance can mount
this drive and read files from it to get information that is normally available through the metadata service.

One use case for using the config drive is to pass a networking configuration when you do not use DHCP
to assign IP addresses to instances. For example, you might pass the IP address configuration for the
instance through the config drive, which the instance can mount and access before you configure the
network settings for the instance.

Using the config drive

To enable the config drive for an instance, pass the --config-drive true parameter to the openstack
server create command.

The following example enables the config drive and passes a user data file and two key/value metadata
pairs, all of which are accessible from the config drive:

2.1. User Documentation 23

Nova Documentation, Release 25.3.1.dev38

openstack server create --config-drive true --image my-image-name
--flavor 1 --key-name mykey --user-data ./my-user-data.txt
--property webservers --property false MYINSTANCE

Note: The Compute service can be configured to always create a config drive. For more information,
refer to the admin guide.

If your guest operating system supports accessing disk by label, you can mount the config drive as the /
dev/disk/by-label/configurationDriveVolumeLabel device. In the following example, the con-
fig drive has the config-2 volume label:

mkdir -p /mnt/config
mount /dev/disk/by-label/config-2 /mnt/config

If your guest operating system does not use udev, the /dev/disk/by-1label directory is not present.
You can use the blkid command to identify the block device that corresponds to the config drive. For
example:

blkid -t -odevice

Once identified, you can mount the device:

mkdir -p /mnt/config
mount /dev/vdb /mnt/config

Once mounted, you can examine the contents of the config drive:

cd /mnt/config
find . -maxdepth 2

The files that appear on the config drive depend on the arguments that you pass to the openstack server
create command. The format of this directory is the same as that provided by the metadata service,
with the exception that the EC2-compatible metadata is now located in the ec2 directory instead of the
root (/) directory. Refer to the OpenStack format metadata and EC2-compatible metadata sections for
information about the format of the files and subdirectories within these directories.

2.1. User Documentation 24

Nova Documentation, Release 25.3.1.dev38

Nova metadata

As noted previously, nova provides its metadata in two formats: OpenStack format and EC2-compatible
format.

OpenStack format metadata

Changed in version 12.0.0: Support for network metadata was added in the Liberty release.

Metadata from the OpenStack API is distributed in JSON format. There are two files provided for
each version: meta_data. json and network_data.json. The meta_data. json file contains nova-
specific information, while the network_data. json file contains information retrieved from neutron.
For example:

curl http://169.254.169.254/openstack/2018-08-27/meta_data. json

"random_seed"
"availability_zone"
Ilkeysll

"data"

"type"
llnamell

"hostname"
"launch_index": 0
"meta"
"priority"
"role"

"devices"

n type n
Ilbus n
"address"

mac
"tagS"

n type n
"bus"”
"address"
"serial"
"path"
"tags"

"project_id"

(continues on next page)

2.1. User Documentation 25

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

curl http://169.254.169.254/openstack/2018-08-27/network_data. json

:Download network_data.json JSON schema.

EC2-compatible metadata

The EC2-compatible API is compatible with version 2009-04-04 of the Amazon EC2 metadata service
This means that virtual machine images designed for EC2 will work properly with OpenStack.

The EC2 API exposes a separate URL for each metadata element. Retrieve a listing of these elements by
making a GET query to http://169.254.169.254/2009-04-04/meta-data/. For example:

curl http://169.254.169.254/2009-04-04/meta-data/

(continues on next page)

2.1. User Documentation 26

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

curl http://169.254.169.254/2009-04-04/meta-data/block-device-mapping/

curl http://169.254.169.254/2009-04-04/meta-data/placement/

curl http://169.254.169.254/2009-04-04/meta-data/public-keys/

Instances can retrieve the public SSH key (identified by keypair name when a user requests a new instance)
by making a GET request to http://169.254.169.254/2009-04-04/meta-data/public-keys/
0/openssh-key:

curl http://169.254.169.254/2009-04-04/meta-data/public-keys/0/openssh-key

User data

User data is a blob of data that the user can specify when they launch an instance. The instance can
access this data through the metadata service or config drive. Commonly used to pass a shell script that
the instance runs on boot.

For example, one application that uses user data is the cloud-init system, which is an open-source package
from Ubuntu that is available on various Linux distributions and which handles early initialization of a
cloud instance.

You can place user data in a local file and pass it through the --user-data <user-data-file> pa-
rameter at instance creation.

openstack server create --image ubuntu-cloudimage --flavor 1
--user-data mydata.file VM_INSTANCE

2.1. User Documentation 27

https://help.ubuntu.com/community/CloudInit

Nova Documentation, Release 25.3.1.dev38

Note: The provided user data should not be base64-encoded, as it will be automatically encoded in
order to pass valid input to the REST API, which has a limit of 65535 bytes after encoding.

Once booted, you can access this data from the instance using either the metadata service or the config
drive. To access it via the metadata service, make a GET request to either http://169.254.169.254/
openstack/{version}/user_data (OpenStack API) or http://169.254.169.254/{version}/
user-data (EC2-compatible API). For example:

curl http://169.254.169.254/openstack/2018-08-27/user_data

echo

Vendordata

Note: This section provides end user information about the vendordata feature. For deployment infor-
mation about this feature, refer to the admin guide.

Changed in version 14.0.0: Support for dynamic vendor data was added in the Newton release.

Where configured, instances can retrieve vendor-specific data from the metadata service or con-
fig drive. To access it via the metadata service, make a GET request to either http://
169.254.169.254/openstack/{version}/vendor_data.json or http://169.254.169.254/
openstack/{version}/vendor_data2. json, depending on the deployment. For example:

curl http://169.254.169.254/openstack/2018-08-27/vendor_data2. json

Note: The presence and contents of this file will vary from deployment to deployment.

2.1. User Documentation 28

Nova Documentation, Release 25.3.1.dev38

General guidelines

* Do not rely on the presence of the EC2 metadata in the metadata API or config drive, because this
content might be removed in a future release. For example, do not rely on files in the ec2 directory.

* When you create images that access metadata service or config drive data and multiple directories
are under the openstack directory, always select the highest API version by date that your con-
sumer supports. For example, if your guest image supports the 2012-03-05, 2012-08-05, and
2013-04-13 versions, try 2013-04-13 first and fall back to a previous version if 2013-04-13 is
not present.

2.1.1.4 Manage IP addresses

Each instance has a private, fixed IP address and can also have a public, or floating IP address. Private
IP addresses are used for communication between instances, and public addresses are used for commu-
nication with networks outside the cloud, including the Internet.

When you launch an instance, it is automatically assigned a private IP address that stays the same until
you explicitly terminate the instance. Rebooting an instance has no effect on the private IP address.

A pool of floating IP addresses, configured by the cloud administrator, is available in OpenStack Com-
pute. The project quota defines the maximum number of floating IP addresses that you can allocate to
the project. After you allocate a floating IP address to a project, you can:

* Associate the floating IP address with an instance of the project.
 Disassociate a floating IP address from an instance in the project.
* Delete a floating IP from the project which automatically deletes that IPs associations.

Use the openstack commands to manage floating IP addresses.

List floating IP address information

To list all pools that provide floating IP addresses, run:

openstack floating ip pool list

Note: If this list is empty, the cloud administrator must configure a pool of floating IP addresses.

To list all floating IP addresses that are allocated to the current project, run:

openstack floating ip list

(continues on next page)

2.1. User Documentation 29

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

[}

For each floating IP address that is allocated to the current project, the command outputs the floating
IP address, the ID for the instance to which the floating IP address is assigned, the associated fixed IP
address, and the pool from which the floating IP address was allocated.

Associate floating IP addresses

You can assign a floating IP address to a project and to an instance.

1. Run the following command to allocate a floating IP address to the current project. By default,
the floating IP address is allocated from the public pool. The command outputs the allocated IP
address:

openstack floating ip create public

2. List all project instances with which a floating IP address could be associated.

openstack server list

(continues on next page)

2.1. User Documentation 30

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

[}

Note the server ID to use.

3. List ports associated with the selected server.

openstack port list --device-id SERVER_ID

Note the port ID to use.

4. Associate an IP address with an instance in the project, as follows:

openstack floating ip set --port PORT_ID FLOATING_IP_ADDRESS

For example:

openstack floating ip set --port 40e9dea9-f457-458f-bc46-6f4ebea3c268.
—172.24.4.225

The instance is now associated with two IP addresses:

openstack server list

(continues on next page)

2.1. User Documentation 31

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

After you associate the IP address and configure security group rules for the instance, the instance
is publicly available at the floating IP address.

Disassociate floating IP addresses

To disassociate a floating IP address from an instance:

openstack floating ip unset --port FLOATING_IP_ADDRESS

To remove the floating IP address from a project:

openstack floating ip delete FLOATING_IP_ADDRESS

The IP address is returned to the pool of IP addresses that is available for all projects. If the IP address
is still associated with a running instance, it is automatically disassociated from that instance.

2.1.1.5 Image Signature Certificate Validation

Nova can determine if the certificate used to generate and verify the signature of a signed image (see
Glance Image Signature Verification documentation) is trusted by the user. This feature is called certifi-
cate validation and can be applied to the creation or rebuild of an instance.

Certificate validation is meant to be performed jointly with image signature verification but each fea-
ture has its own Nova configuration option, to be specified in the [glance] section of the nova.conf
configuration file. To enable certificate validation, set glance. enable_certificate_validation to
True. To enable signature validation, set glance.verify_glance_signatures to True. Conversely,
to disable either of these features, set their option to False or do not include the option in the Nova
configurations at all.

Certificate validation operates in concert with signature validation in Cursive. It takes in a list of trusted
certificate IDs and verifies that the certificate used to sign the image being booted is cryptographically
linked to at least one of the provided trusted certificates. This provides the user with confidence in the
identity and integrity of the image being booted.

Certificate validation will only be performed if image signature validation is enabled. ~How-
ever, the presence of trusted certificate IDs overrides the enable_certificate_validation and
verify_glance_signatures settings. In other words, if a list of trusted certificate IDs is provided
to the instance create or rebuild commands, signature verification and certificate validation will be per-
formed, regardless of their settings in the Nova configurations. See Using Signature Verification for
details.

2.1. User Documentation 32

https://docs.openstack.org/glance/latest/user/signature.html
http://opendev.org/x/cursive/

Nova Documentation, Release 25.3.1.dev38

Note: Certificate validation configuration options must be specified in the Nova configuration file that
controls the nova-osapi_compute and nova-compute services, as opposed to other Nova services
(conductor, scheduler, etc.).

Requirements

Key manager that is a backend to the Castellan Interface. Possible key managers are:

e Barbican

e Vault

Limitations

As of the 18.0.0 Rocky release, only the libvirt compute driver supports trusted image certification
validation. The feature is not, however, driver specific so other drivers should be able to support
this feature over time. See the feature support matrix for information on which drivers support the
feature at any given release.

As of the 18.0.0 Rocky release, image signature and trusted image certification validation is not
supported with the Libvirt compute driver when using the rbd image backend ([libvirt]/
images_type=rbd) and RAW formatted images. This is due to the images being cloned directly in
the RBD backend avoiding calls to download and verify on the compute.

As of the 18.0.0 Rocky release, trusted image certification validation is not supported with volume-
backed (boot from volume) instances. The block storage service support may be available in a future
release:

https://blueprints.launchpad.net/cinder/+spec/certificate-validate

Trusted image certification support can be controlled via policy configuration if it needs
to be disabled. See the os_compute_api:servers:create:trusted_certs and
os_compute_api:servers:rebuild:trusted_certs policy rules.

Configuration

Nova will use the key manager defined by the Castellan key manager interface, which is the Barbican key
manager by default. To use a different key manager, update the backend value in the [key_manager]
group of the nova configuration file. For example:

Note: If these lines do not exist, then simply add them to the end of the file.

2.1.

User Documentation 33

https://docs.openstack.org/castellan/latest/
https://docs.openstack.org/barbican/latest/contributor/devstack.html
https://www.vaultproject.io/
https://docs.openstack.org/nova/latest/user/support-matrix.html#operation_trusted_certs
https://blueprints.launchpad.net/cinder/+spec/certificate-validate
https://docs.openstack.org/nova/latest/configuration/policy.html

Nova Documentation, Release 25.3.1.dev38

Using Signature Verification

An image will need a few properties for signature verification to be enabled:
img_signature Signature of your image. Signature restrictions are:
* 255 character limit
img_signature_hash_method Method used to hash your signature. Possible hash methods are:
* SHA-224
* SHA-256
* SHA-384
* SHA-512
img_signature_key_type Key type used for your image. Possible key types are:
* RSA-PSS
* DSA
* ECC-CURVES

SECT571K1
SECT409K1
SECT571R1
SECT409R1
SECP521R1
SECP384R1

img_signature_certificate_uuid UUID of the certificate that you uploaded to the key manager.
Possible certificate types are:

* X_509

Using Certificate Validation

Certificate validation is triggered by one of two ways:

1. The Nova configuration options verify_glance_signatures and
enable_certificate_validation are both set to True:

2. A list of trusted certificate IDs is provided by one of three ways:

Note: The command line support is pending changes https://review.opendev.org/#/c/500396/ and
https://review.opendev.org/#/c/501926/ to python-novaclient and python-openstackclient, respec-
tively.

2.1. User Documentation 34

https://review.opendev.org/#/c/500396/
https://review.opendev.org/#/c/501926/

Nova Documentation, Release 25.3.1.dev38

Environment Variable Use the environment variable OS_TRUSTED_IMAGE_CERTIFICATE_IDS
to define a comma-delimited list of trusted certificate IDs. For example:

export 79a6ad17-3298-4e55-8b3a-
—1672dd93c40£,b20£5600-3c9d-4af5-8£37-3110d£3533a0

Command-Line Flag If booting or rebuilding an instance using the nova commands, use the
--trusted-image-certificate-id flag to define a single trusted certificate ID. The flag
may be used multiple times to specify multiple trusted certificate IDs. For example:

nova boot myInstanceName
--flavor 1
--image myImageld
--trusted-image-certificate-id 79a6ad17-3298-4e55-8b3a-
—1672dd93c40f
--trusted-image-certificate-id b20£5600-3c9d-4af5-8£37-
—3110d£3533a0

If booting or rebuilding an instance using the openstack server commands, use the
--trusted-image-certificate-id flag to define a single trusted certificate ID. The flag
may be used multiple times to specify multiple trusted certificate IDs. For example:

openstack --os-compute-api-version 2.63 server create.
—myInstanceName
--flavor 1
--image myImageld
--nic net-id f£d25c0b2-b36b-45a8-82e4-ab52516289e5
--trusted-image-certificate-id 79a6ad17-3298-4e55-8b3a-

—1672dd93c40f
--trusted-image-certificate-id b20£f5600-3c9d-4af5-8£37-
—3110d£3533a0
Nova Configuration Option Use the Nova configuration option glance.

default_trusted_certificate_ids to define a comma-delimited list of trusted
certificate IDs. This configuration value is only used if verify_glance_signatures and
enable_certificate_validation options are set to True, and the trusted certificate IDs
are not specified anywhere else. For example:

79 3298 4e55-8 1672
- 3 4 8 3110

Example Usage

For these instructions, we will construct a 4-certificate chain to illustrate that it is possible to have a single
trusted root certificate. We will upload all four certificates to Barbican. Then, we will sign an image and
upload it to Glance, which will illustrate image signature verification. Finally, we will boot the signed
image from Glance to show that certificate validation is enforced.

2.1. User Documentation 35

Nova Documentation, Release 25.3.1.dev38

Enable certificate validation

Enable image signature verification and certificate validation by setting both of their Nova configuration
options to True:

Create a certificate chain

As mentioned above, we will construct a 4-certificate chain to illustrate that it is possible to have a
single trusted root certificate. Before we begin to build our certificate chain, we must first create files for
OpenSSL to use for indexing and serial number tracking:

touch index.txt
echo > serial.txt

Create a certificate configuration file

For these instructions, we will create a single configuration file called ca.conf, which contains various
sections that we can specify for use on the command-line during certificate requests and generation.

Note that this certificate will be able to sign other certificates because it is a certificate authority. Also
note the root CAs unique common name (root). The intermediate certificates common names will be
specified on the command-line when generating the corresponding certificate requests.

ca.conf:

(continues on next page)

2.1. User Documentation 36

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

1000

Generate the certificate authority (CA) and corresponding private key

For these instructions, we will save the certificate as cert_ca.pem and the private key as key_ca.pem.
This certificate will be a self-signed root certificate authority (CA) that can sign other CAs and non-CA
certificates.

openssl req
-x509
-nodes
-newkey rsa:1024
-config ca.conf
-keyout key_ca.pem
-out cert_ca.pem

2.1. User Documentation 37

Nova Documentation, Release 25.3.1.dev38

Create the first intermediate certificate

Create a certificate request for the first intermediate certificate. For these instructions, we will save the
certificate request as cert_intermeidate_a.csr and the private key as key_intermediate_a.pem.

openssl req
-nodes
-newkey rsa:2048
-subj
-keyout key_intermediate_a.pem
-out cert_intermediate_a.csr

Generate the first intermediate certificate by signing its certificate request with the CA. For these instruc-
tions we will save the certificate as cert_intermediate_a.pem.

openssl ca
-config ca.conf
-extensions intermediate_cert_extensions
-cert cert_ca.pem
-keyfile key_ca.pem
-out cert_intermediate_a.pem
-infiles cert_intermediate_a.csr

2.1. User Documentation 38

Nova Documentation, Release 25.3.1.dev38

Create the second intermediate certificate

Create a certificate request for the second intermediate certificate. For these instructions, we will save the
certificate request as cert_intermeidate_b.csr and the private key as key_intermediate_b.pem.

openssl req
-nodes
-newkey rsa:2048
-subj
-keyout key_intermediate_b.pem
-out cert_intermediate_b.csr

Generate the second intermediate certificate by signing its certificate request with the first intermediate
certificate. For these instructions we will save the certificate as cert_intermediate_b.pem.

openssl ca
-config ca.conf
-extensions intermediate_cert_extensions
-cert cert_intermediate_a.pem
-keyfile key_intermediate_a.pem
-out cert_intermediate_b.pem
-infiles cert_intermediate_b.csr

2.1. User Documentation 39

Nova Documentation, Release 25.3.1.dev38

Create the client certificate

Create a certificate request for the client certificate. For these instructions, we will save the certificate
request as cert_client.csr and the private key as key_client.pem.

openssl req
-nodes
-newkey rsa:2048
-subj
-keyout key_client.pem
-out cert_client.csr

Generate the client certificate by signing its certificate request with the second intermediate certificate.
For these instructions we will save the certificate as cert_client.pem.

openssl ca
-config ca.conf
-extensions client_cert_extensions
-cert cert_intermediate_b.pem
-keyfile key_intermediate_b.pem
-out cert_client.pem
-infiles cert_client.csr

2.1. User Documentation 40

Nova Documentation, Release 25.3.1.dev38

Upload the generated certificates to the key manager

In order interact with the key manager, the user needs to have a creator role.

To list all users with a creator role, run the following command as an admin:

openstack role assignment list --role creator --names

To give the demo user a creator role in the demo project, run the following command as an admin:

openstack role add --user demo --project demo creator

Note: This command provides no output. If the command fails, the user will see a 4xx Client error
indicating that Secret creation attempt not allowed and to please review your user/project privileges.

Note: The following openstack secret commands require that the python-barbicanclient package is

installed.

openstack secret store
--name CA
--algorithm RSA
--expiration 2018-06-29
--secret-type certificate
--payload-content-type
--payload-content-encoding base64
--payload base64 cert_ca.pem

openstack secret store
--name IntermediateA
--algorithm RSA
--expiration 2018-06-29
--secret-type certificate
--payload-content-type

(continues on next page)

2.1. User Documentation

41

https://pypi.org/project/python-barbicanclient/

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

--payload-content-encoding base64
--payload base64 cert_intermediate_a.pem

openstack secret store
--name IntermediateB
--algorithm RSA
--expiration 2018-06-29
--secret-type certificate
--payload-content-type
--payload-content-encoding base64
--payload base64 cert_intermediate_b.pem

openstack secret store
--name Client
--algorithm RSA
--expiration 2018-06-29
--secret-type certificate
--payload-content-type
--payload-content-encoding base64
--payload base64 cert_client.pem

The responses should look something like this:

(continues on next page)

2.1. User Documentation 42

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Save off the certificate UUIDs (found in the secret href):

8fbcce5d-d646-4295-ba8a-269fc9451eeb
Ob5d2c72-12cc-4ba6-a8d7-3££f5cc1d8cb8
674736e3-£25c-405c-8362-bbf991elcela
125e6199-2de4-46e3-b091-8e2401e£f0d63

Create a signed image

For these instructions, we will download a small CirrOS image:

wget -nc -0 cirros.tar.gz http://download.cirros-cloud.net/0.3.5/cirros-0.3.
—5-source.tar.gz

Sign the image with the generated client private key:

openssl dgst
-sha256
-sign key_client.pem
-sigopt rsa_padding_mode:pss
-out cirros.self_signed.signature
cirros.tar.gz

Note: This command provides no output.

Save off the base64 encoded signature:

base64 -w 0 cirros.self_signed.signature

Upload the signed image to Glance:

2.1. User Documentation 43

Nova Documentation, Release 25.3.1.dev38

openstack image create
--public
--container-format bare
--disk-format qcow2
--property
--property
--property
--property
--file cirros.tar.gz
cirros_client_signedImage

— (continues on next page)

2.1. User Documentation 44

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

[}

Note: Creating the image can fail if validation does not succeed. This will cause the image to be deleted
and the Glance log to report that Signature verification failed for the given image ID.

Boot the signed image

Boot the signed image without specifying trusted certificate IDs:

nova boot myInstance
--flavor ml.tiny
--image cirros_client_signedImage

Note: The instance should fail to boot because certificate validation fails when the feature is enabled
but no trusted image certificates are provided. The Nova log output should indicate that Image signature

2.1. User Documentation 45

Nova Documentation, Release 25.3.1.dev38

certificate validation failed because Certificate chain building failed.

Boot the signed image with trusted certificate IDs:

nova boot myInstance
--flavor ml.tiny
--image cirros_client_signedImage
--trusted-image-certificate-id ,
--trusted-image-certificate-id

Note: The instance should successfully boot and certificate validation should succeed. The Nova log
output should indicate that Image signature certificate validation succeeded.

Other Links

https://etherpad.openstack.org/p/mitaka-glance-image-signing-instructions

https://etherpad.openstack.org/p/queens-nova-certificate-validation

https://wiki.openstack.org/wiki/OpsGuide/User-Facing_Operations

* http://specs.openstack.org/openstack/nova-specs/specs/rocky/approved/
nova-validate-certificates.html

2.1.1.6 Resize an instance

You can change the size of an instance by changing its flavor. This rebuilds the instance and therefore
results in a restart.

To list the VMs you want to resize, run:

openstack server list

Once you have the name or UUID of the server you wish to resize, resize it using the openstack server
resize command:

openstack server resize --flavor FLAVOR SERVER

Note: By default, the openstack server resizecommand gives the guest operating system a chance
to perform a controlled shutdown before the instance is powered off and the instance is resized. This
behavior can be configured by the administrator but it can also be overridden on a per image basis using
the os_shutdown_timeout image metadata setting. This allows different types of operating systems to
specify how much time they need to shut down cleanly. See Useful image properties for details.

Resizing can take some time. During this time, the instance status will be RESIZE:

2.1. User Documentation 46

https://etherpad.openstack.org/p/mitaka-glance-image-signing-instructions
https://etherpad.openstack.org/p/queens-nova-certificate-validation
https://wiki.openstack.org/wiki/OpsGuide/User-Facing_Operations
http://specs.openstack.org/openstack/nova-specs/specs/rocky/approved/nova-validate-certificates.html
http://specs.openstack.org/openstack/nova-specs/specs/rocky/approved/nova-validate-certificates.html
https://docs.openstack.org/glance/yoga/admin/useful-image-properties

Nova Documentation, Release 25.3.1.dev38

openstack server list

When the resize completes, the instance status will be VERIFY_RESIZE. You can now confirm the resize
to change the status to ACTIVE:

openstack server resize confirm SERVER

Note: The resized server may be automatically confirmed based on the administrators configuration of
the deployment.

If the resize does not work as expected, you can revert the resize. This will revert the instance to the old
flavor and change the status to ACTIVE:

openstack server resize revert SERVER

2.1.1.7 Reboot an instance

You can soft or hard reboot a running instance. A soft reboot attempts a graceful shut down and restart
of the instance. A hard reboot power cycles the instance.

To reboot a server, use the openstack server reboot command:

openstack server reboot SERVER

By default, when you reboot an instance it is a soft reboot. To perform a hard reboot, pass the --hard
parameter as follows:

openstack server reboot --hard SERVER

It is also possible to reboot a running instance into rescue mode. For example, this operation may be
required if a filesystem of an instance becomes corrupted with prolonged use. See Rescue an instance
for more details.

2.1. User Documentation 47

Nova Documentation, Release 25.3.1.dev38

2.1.1.8 Rescue an instance

Instance rescue provides a mechanism for access, even if an image renders the instance inaccessible. Two
rescue modes are currently provided.

Instance rescue

By default the instance is booted from the provided rescue image or a fresh copy of the original instance
image if a rescue image is not provided. The root disk and optional regenerated config drive are also
attached to the instance for data recovery.

Note: Rescuing a volume-backed instance is not supported with this mode.

Stable device instance rescue

As of 21.0.0 (Ussuri) an additional stable device rescue mode is available. This mode now supports the
rescue of volume-backed instances.

This mode keeps all devices both local and remote attached in their original order to the instance during
the rescue while booting from the provided rescue image. This mode is enabled and controlled by the
presence of hw_rescue_device or hw_rescue_bus image properties on the provided rescue image.

As their names suggest these properties control the rescue device type (cdrom, disk or £loppy) and bus
type (scsi, virtio, ide, or usb) used when attaching the rescue image to the instance.

Support for each combination of the hw_rescue_device and hw_rescue_bus image properties is de-
pendent on the underlying hypervisor and platform being used. For example the IDE bus is not available
on POWER KVM based compute hosts.

Note: This mode is only supported when using the Libvirt virt driver.

This mode is not supported when using the LXC hypervisor as enabled by the Iibvirt.virt_type
configurable on the computes.

Usage

Note: Pause, suspend, and stop operations are not allowed when an instance is running in rescue mode, as
triggering these actions causes the loss of the original instance state and makes it impossible to unrescue
the instance.

To perform an instance rescue, use the openstack server rescue command:

openstack server rescue SERVER

2.1. User Documentation 48

Nova Documentation, Release 25.3.1.dev38

Note: On running the openstack server rescue command, an instance performs a soft shutdown
first. This means that the guest operating system has a chance to perform a controlled shutdown before
the instance is powered off. The shutdown behavior is configured by the shutdown_timeout parameter
that can be set in the nova. conf file. Its value stands for the overall period (in seconds) a guest operating
system is allowed to complete the shutdown.

The timeout value can be overridden on a per image basis by means of os_shutdown_timeout that is
an image metadata setting allowing different types of operating systems to specify how much time they
need to shut down cleanly.

To rescue an instance that boots from a volume you need to use the 2.87 microversion or later.

openstack --os-compute-api-version 2.87 server rescue SERVER

If you want to rescue an instance with a specific image, rather than the default one, use the --image
parameter:

openstack server rescue --image IMAGE_ID SERVER

To restart the instance from the normal boot disk, run the following command:

openstack server unrescue SERVER

2.1.1.9 Block Device Mapping in Nova

Nova has a concept of block devices that can be exposed to cloud instances. There are several types of
block devices an instance can have (we will go into more details about this later in this document), and
which ones are available depends on a particular deployment and the usage limitations set for tenants and
users. Block device mapping is a way to organize and keep data about all of the block devices an instance
has.

When we talk about block device mapping, we usually refer to one of two things
1. API/CLI structure and syntax for specifying block devices for an instance boot request

2. The data structure internal to Nova that is used for recording and keeping, which is ultimately per-
sisted in the block_device_mapping table. However, Nova internally has several slightly different
formats for representing the same data. All of them are documented in the code and or presented
by a distinct set of classes, but not knowing that they exist might trip up people reading the code.
So in addition to BlockDeviceMapping' objects that mirror the database schema, we have:

2.1 The API format - this is the set of raw key-value pairs received from the API client, and is
almost immediately transformed into the object; however, some validations are done using this
format. We will refer to this format as the API BDMs from now on.

2.2 The virt driver format - this is the format defined by the classes in :mod: nova.virt.block_device.
This format is used and expected by the code in the various virt drivers. These classes, in addition
to exposing a different format (mimicking the Python dict interface), also provide a place to bundle
some functionality common to certain types of block devices (for example attaching volumes which

! In addition to the BlockDeviceMapping Nova object, we also have the BlockDeviceDict class in :mod: nova.block_device
module. This class handles transforming and validating the API BDM format.

2.1. User Documentation 49

Nova Documentation, Release 25.3.1.dev38

has to interact with both Cinder and the virt driver code). We will refer to this format as Driver
BDMs from now on.

For more details on this please refer to the Driver BDM Data Structures refernce document.

Note: The maximum limit on the number of disk devices allowed to attach to a single server is config-
urable with the option compute.max_disk_devices_to_attach.

API BDM data format and its history

In the early days of Nova, block device mapping general structure closely mirrored that of the EC2 API.
During the Havana release of Nova, block device handling code, and in turn the block device mapping
structure, had work done on improving the generality and usefulness. These improvements included
exposing additional details and features in the API. In order to facilitate this, a new extension was added
to the v2 API called BlockDeviceMappingV2Boot”, that added an additional block_device_mapping_v2
field to the instance boot API request.

Block device mapping v1 (aka legacy)

This was the original format that supported only cinder volumes (similar to how EC2 block devices
support only EBS volumes). Every entry was keyed by device name (we will discuss why this was
problematic in its own section later on this page), and would accept only:

» UUID of the Cinder volume or snapshot

* Type field - used only to distinguish between volumes and Cinder volume snapshots
* Optional size field

* Optional delete_on_termination flag

While all of Nova internal code only uses and stores the new data structure, we still need to handle API
requests that use the legacy format. This is handled by the Nova API service on every request. As we will
see later, since block device mapping information can also be stored in the image metadata in Glance,
this is another place where we need to handle the v1 format. The code to handle legacy conversions is
part of the :mod: nova.block_device module.

Intermezzo - problem with device names

Using device names as the primary per-instance identifier, and exposing them in the API, is problematic
for Nova mostly because several hypervisors Nova supports with its drivers cant guarantee that the device
names the guest OS assigns are the ones the user requested from Nova. Exposing such a detail in the
public API of Nova is obviously not ideal, but it needed to stay for backwards compatibility. It is also
required for some (slightly obscure) features around overloading a block device in a Glance image when
booting an instance”.

2 This work predates API microversions and thus the only way to add it was by means of an API extension.
3 This is a feature that the EC2 API offers as well and has been in Nova for a long time, although it has been broken in
several releases. More info can be found on this bug <https://launchpad.net/bugs/1370250>

2.1. User Documentation 50

Nova Documentation, Release 25.3.1.dev38

The plan for fixing this was to allow users to not specify the device name of a block device, and Nova
will determine it (with the help of the virt driver), so that it can still be discovered through the API and
used when necessary, like for the features mentioned above (and preferably only then).

Another use for specifying the device name was to allow the boot from volume functionality, by speci-
fying a device name that matches the root device name for the instance (usually /dev/vda).

Currently (mid Liberty) users are discouraged from specifying device names for all calls requiring or
allowing block device mapping, except when trying to override the image block device mapping on
instance boot, and it will likely remain like that in the future. Libvirt device driver will outright override
any device names passed with its own values.

Block device mapping v2

New format was introduced in an attempt to solve issues with the original block device mapping format
discussed above, and also to allow for more flexibility and addition of features that were not possible with
the simple format we had.

New block device mapping is a list of dictionaries containing the following fields (in addition to the ones
that were already there):

* source_type - this can have one of the following values:

- image

volume

snapshot
— blank

* destination_type - this can have one of the following values:
— local
— volume

* guest_format - Tells Nova how/if to format the device prior to attaching, should be only used with
blank local images. Denotes a swap disk if the value is swap.

* device_name - See the previous section for a more in depth explanation of this - currently best left
empty (not specified that is), unless the user wants to override the existing device specified in the
image metadata. In case of Libvirt, even when passed in with the purpose of overriding the existing
image metadata, final set of device names for the instance may still get changed by the driver.

* disk_bus and device_type - low level details that some hypervisors (currently only libvirt) may
support. Some example disk_bus values can be: ide, usb, virtio, scsi, while device_type may be
disk, cdrom, floppy, lun. This is not an exhaustive list as it depends on the virtualization driver,
and may change as more support is added. Leaving these empty is the most common thing to do.

* boot_index - Defines the order in which a hypervisor will try devices when attempting to boot the
guest from storage. Each device which is capable of being used as boot device should be given a
unique boot index, starting from 0 in ascending order. Some hypervisors may not support booting
from multiple devices, so will only consider the device with boot index of 0. Some hypervisors
will support booting from multiple devices, but only if they are of different types - eg a disk and
CD-ROM. Setting a negative value or None indicates that the device should not be used for booting.
The simplest usage is to set it to 0 for the boot device and leave it as None for any other devices.

2.1. User Documentation 51

Nova Documentation, Release 25.3.1.dev38

* volume_type - Added in microversion 2.67 to the servers create API to support specify-

ing volume type when booting instances. When we snapshot a volume-backed server, the
block_device_mapping_v2 image metadata will include the volume_type from the BDM record
so if the user then creates another server from that snapshot, the volume that nova creates from that
snapshot will use the same volume_type. If a user wishes to change that volume type in the image
metadata, they can do so via the image API.

Valid source / destination combinations

Combination of the source_type and destination_type will define the kind of block device the
entry is referring to. The following combinations are supported:

* image -> local - this is only currently reserved for the entry referring to the Glance image that the

instance is being booted with (it should also be marked as a boot device). It is also worth noting
that an API request that specifies this, also has to provide the same Glance uuid as the image_ref
parameter to the boot request (this is done for backwards compatibility and may be changed in the
future). This functionality might be extended to specify additional Glance images to be attached
to an instance after boot (similar to kernel/ramdisk images) but this functionality is not supported
by any of the current drivers.

volume -> volume - this is just a Cinder volume to be attached to the instance. It can be marked as
a boot device.

snapshot -> volume - this works exactly as passing type=snap does. It would create a volume from
a Cinder volume snapshot and attach that volume to the instance. Can be marked bootable.

image -> volume - As one would imagine, this would download a Glance image to a cinder volume
and attach it to an instance. Can also be marked as bootable. This is really only a shortcut for
creating a volume out of an image before booting an instance with the newly created volume.

blank -> volume - Creates a blank Cinder volume and attaches it. This will also require the volume
size to be set.

blank -> local - Depending on the guest_format field (see below), this will either mean an
ephemeral blank disk on hypervisor local storage, or a swap disk (instances can have only one
of those).

Nova will not allow mixing of BDMv1 and BDMV?2 in a single request, and will do basic validation to
make sure that the requested block device mapping is valid before accepting a boot request.

FAQs

1. Is it possible to configure nova to automatically use cinder to back all root disks with volumes?

No, there is nothing automatic within nova that converts a non-boot-from-volume request to convert
the image to a root volume. Several ideas have been discussed over time which are captured in the
spec for volume-backed flavors. However, if you wish to force users to always create volume-
backed servers, you can configure the API service by setting max_local_block_devices to 0.
This will result in any non-boot-from-volume server create request to fail with a 400 response.

2.1.

User Documentation 52

https://review.opendev.org/511965/

Nova Documentation, Release 25.3.1.dev38

2.1.1.10 REST API Version History

This documents the changes made to the REST API with every microversion change. The description
for each version should be a verbose one which has enough information to be suitable for use in user
documentation.

2.1

This is the initial version of the v2.1 API which supports microversions. The V2.1 API is from the REST
API users point of view exactly the same as v2.0 except with strong input validation.

A user can specify a header in the API request:

where <version> is any valid api version for this APIL.

If no version is specified then the API will behave as if a version request of v2.1 was requested.

2.2

Added Keypair type.

A user can request the creation of a certain type of keypair (ssh or x509) in the os-keypairs plugin
If no keypair type is specified, then the default ssh type of keypair is created.

Fixes status code for os-keypairs create method from 200 to 201

Fixes status code for os-keypairs delete method from 202 to 204

2.3 (Maximum in Kilo)

Exposed additional attributes in os-extended-server-attributes: reservation_id,
launch_index, ramdisk_id, kernel_id, hostname, root_device_name, userdata.

Exposed delete_on_termination for volumes_attached in os-extended-volumes.

This change is required for the extraction of EC2 API into a standalone service. It exposes necessary
properties absent in public nova APIs yet. Add info for Standalone EC2 API to cut access to Nova DB.

2.4

Show the reserved status on a FixedIP object in the os-fixed-ips API extension. The extension
allows one to reserve and unreserve a fixed IP but the show method does not report the current status.

2.1. User Documentation 53

Nova Documentation, Release 25.3.1.dev38

2.5

Before version 2.5, the command nova list --ip6 xxx returns all servers for non-admins, as the filter
option is silently discarded. There is no reason to treat ip6 different from ip, though, so we just add this
option to the allowed list.

2.6

A new API for getting remote console is added:

Example response:

The old APIs os-getVNCConsole, os-getSPICEConsole, os-getSerialConsole and
os-getRDPConsole are removed.

2.7

Check the is_public attribute of a flavor before adding tenant access to it. Reject the request with
HTTPConflict error.

2.8

Add mks protocol and webmks type for remote consoles.

2.1. User Documentation 54

Nova Documentation, Release 25.3.1.dev38

2.9

Add a new locked attribute to the detailed view, update, and rebuild action. locked will be true if
anyone is currently holding a lock on the server, false otherwise.

2.10

Added user_id parameter to os-keypairs plugin, as well as a new property in the request body, for
the create operation.

Administrators will be able to list, get details and delete keypairs owned by users other than themselves
and to create new keypairs on behalf of their users.

2.11

Exposed attribute forced_down for os-services. Added ability to change the forced_down attribute
by calling an update.

2.12 (Maximum in Liberty)

Exposes VIF net_id attribute in os-virtual-interfaces. User will be able to get Virtual Interfaces
net_id in Virtual Interfaces list and can determine in which network a Virtual Interface is plugged into.

2.13

Add information project_id and user_id to os-server-groups API response data.

214

Remove onSharedStorage parameter from servers evacuate action. Nova will automatically detect if
the instance is on shared storage.

adminPass is removed from the response body. The user can get the password with the servers
os-server-password action.

2.15

From this version of the API users can choose soft-affinity and soft-anti-affinity rules too for server-
groups.

2.1. User Documentation 55

Nova Documentation, Release 25.3.1.dev38

2.16

Exposes new host_status attribute for servers/detail and servers/{server_id}. Ability to get nova-
compute status when querying servers. By default, this is only exposed to cloud administrators.

2.17

Add a new API for triggering crash dump in an instance. Different operation systems in instance may
need different configurations to trigger crash dump.

2.18

Establishes a set of routes that makes project_id an optional construct in v2.1.

2.19

Allow the user to set and get the server description. The user will be able to set the description when
creating, rebuilding, or updating a server, and get the description as part of the server details.

2.20

From this version of the API user can call detach and attach volumes for instances which are in shelved
and shelved_offloaded state.

2.21

The os-instance-actions API now returns information from deleted instances.

2.22

A new resource, servers:migrations, is added. A new API to force live migration to complete added:

id

2.1. User Documentation 56

Nova Documentation, Release 25.3.1.dev38

2.23

From this version of the API users can get the migration summary list by index API or the information of
a specific migration by get API. Add migration_type forold /os-migrations API, also add ref link
to the /servers/{uuid}/migrations/{id} for it when the migration is an in-progress live-migration.

2.24

A new API call to cancel a running live migration:

id

2.25 (Maximum in Mitaka)

Modify input parameter for os-migrateLive. The block_migration field now supports an auto
value and the disk_over_commit flag is removed.

2.26

Added support of server tags.

A user can create, update, delete or check existence of simple string tags for servers by the
os-server-tags plugin.

Tags have the following schema restrictions:
* Tag is a Unicode bytestring no longer than 60 characters.
* Tag is a non-empty string.
* /is not allowed to be in a tag name
* Comma is not allowed to be in a tag name in order to simplify requests that specify lists of tags
* All other characters are allowed to be in a tag name
* Each server can have up to 50 tags.
The resource point for these operations is /servers/<server_id>/tags.

A user can add a single tag to the server by making a PUT request to /servers/<server_id>/tags/
<tag>.

where <tag> is any valid tag name.

A user can replace all current server tags to the new set of tags by making a PUT request to the /servers/
<server_id>/tags. The new set of tags must be specified in request body. This set must be in list tags.

A user can remove specified tag from the server by making a DELETE request to /servers/
<server_id>/tags/<tag>.

where <tag> is tag name which user wants to remove.

A user can remove all tags from the server by making a DELETE request to the /servers/<server_id>/
tags.

2.1. User Documentation 57

Nova Documentation, Release 25.3.1.dev38

A user can get a set of server tags with information about server by making a GET request to /servers/
<server_id>.

Request returns dictionary with information about specified server, including list tags:

A user can get only a set of server tags by making a GET request to /servers/<server_id>/tags.

Response

A user can check if a tag exists or not on a server by making a GET request to /servers/{server_id}/
tags/{tag}.

Request returns 204 No Content if tag exist on a server or 404 Not Found if tag doesnt exist on a
Sserver.

A user can filter servers in GET /servers request by new filters:
* tags
* tags-any
* not-tags
* not-tags-any

These filters can be combined. Also user can use more than one string tags for each filter. In this case
string tags for each filter must be separated by comma. For example:

GET /servers?tags=red&tags-any=green,orange

2.27

Added support for the new form of microversion headers described in the Microversion Specification.
Both the original form of header and the new form is supported.

2.28

Nova API hypervisor.cpu_info change from string to JSON object.

From this version of the API the hypervisors cpu_info field will be returned as JSON object (not string)
by sending GET request to the /v2.1/0os-hypervisors/{hypervisor_id}.

2.1. User Documentation 58

http://specs.openstack.org/openstack/api-wg/guidelines/microversion_specification.html

Nova Documentation, Release 25.3.1.dev38

2.29

Updates the POST request body for the evacuate action to include the optional force boolean field
defaulted to False. Also changes the evacuate action behaviour when providing a host string field by
calling the nova scheduler to verify the provided host unless the force attribute is set.

2.30

Updates the POST request body for the 1ive-migrate action to include the optional force boolean
field defaulted to False. Also changes the live-migrate action behaviour when providing a host string
field by calling the nova scheduler to verify the provided host unless the force attribute is set.

2.31

Fix os-console-auth-tokens to return connection info for all types of tokens, not just RDP.

2.32

Adds an optional, arbitrary tag item to the networks item in the server boot request body. In addition,
every item in the block_device_mapping_v2 array can also have an optional, arbitrary tag item. These
tags are used to identify virtual device metadata, as exposed in the metadata API and on the config drive.
For example, a network interface on the virtual PCI bus tagged with nicl will appear in the metadata
along with its bus (PCI), bus address (ex: 0000:00:02.0), MAC address, and tag (nicl).

Note: A bug has caused the tag attribute to no longer be accepted for networks starting with version 2.37
and for block_device_mapping_v2 starting with version 2.33. In other words, networks could only be
tagged between versions 2.32 and 2.36 inclusively and block devices only in version 2.32. As of version
2.42 the tag attribute has been restored and both networks and block devices can be tagged again.

2.33

Support pagination for hypervisor by accepting limit and marker from the GET API request:

GET /v2.1/{tenant_id}/os-hypervisors?marker={hypervisor_id}&limit={limit}

In the context of device tagging at server create time, 2.33 also removes the tag attribute from
block_device_mapping_v?2. This is a bug that is fixed in 2.42, in which the tag attribute is reintroduced.

2.1. User Documentation 59

Nova Documentation, Release 25.3.1.dev38

2.34

Checks in os-migratelive before live-migration actually starts are now made in background.
os-migrateLive is not throwing 400 Bad Request if pre-live-migration checks fail.

2.35

Added pagination support for keypairs.

Optional parameters limit and marker were added to GET /os-keypairs request, the default sort_key was
changed to name field as ASC order, the generic request format is:

GET /os-keypairs?limit={limit}&marker={kp_name}

2.36

All the APIs which proxy to another service were deprecated in this version, also the fping APIL. Those
APIs will return 404 with Microversion 2.36. The network related quotas and limits are removed from
API also. The deprecated API endpoints as below:

Note: A regression was introduced in this microversion which broke the force parameter in the PUT
/os-quota-sets APIL The fix will have to be applied to restore this functionality.

Changed in version 18.0.0: The os-£fping API was completely removed in the 18.0.0 (Rocky) release.
On deployments newer than this, the API will return HTTP 410 (Gone) regardless of the requested mi-
croversion.

Changed in version 21.0.0: The os-security-group-default-rules API was completely removed
in the 21.0.0 (Ussuri) release. On deployments newer than this, the APIs will return HTTP 410 (Gone)
regardless of the requested microversion.

Changed in version 21.0.0: The os-networks API was partially removed in the 21.0.0 (Ussuri) release.
On deployments newer than this, some endpoints of the API will return HTTP 410 (Gone) regardless of

2.1. User Documentation 60

https://bugs.launchpad.net/nova/+bug/1733886

Nova Documentation, Release 25.3.1.dev38

the requested microversion.

Changed in version 21.0.0: The os-tenant-networks API was partially removed in the 21.0.0 (Ussuri)
release. On deployments newer than this, some endpoints of the API will return HTTP 410 (Gone)
regardless of the requested microversion.

2.37

Added support for automatic allocation of networking, also known as Get Me a Network. With this
microversion, when requesting the creation of a new server (or servers) the networks entry in the server
portion of the request body is required. The networks object in the request can either be a list or an enum
with values:

1. none which means no networking will be allocated for the created server(s).

2. auto which means either a network that is already available to the project will be used, or if one
does not exist, will be automatically created for the project. Automatic network allocation for a
project only happens once for a project. Subsequent requests using auto for the same project will
reuse the network that was previously allocated.

Also, the uuid field in the networks object in the server create request is now strictly enforced to be in
UUID format.

In the context of device tagging at server create time, 2.37 also removes the tag attribute from networks.
This is a bug that is fixed in 2.42, in which the tag attribute is reintroduced.

2.38 (Maximum in Newton)

Before version 2.38, the command nova list --status invalid_status was returning empty list
for non admin user and 500 InternalServerError for admin user. As there are sufficient statuses defined
already, any invalid status should not be accepted. From this version of the API admin as well as non
admin user will get 400 HTTPBadRequest if invalid status is passed to nova list command.

2.39

Deprecates image-metadata proxy API that is just a proxy for Glance API to operate the image meta-
data. Also removes the extra quota enforcement with Nova metadata quota (quota checks for createIm-
age and createBackup actions in Nova were removed). After this version Glance configuration option
image_property_quota should be used to control the quota of image metadatas. Also, removes the max-
ImageMeta field from os-limits API response.

2.40

Optional query parameters 1imit and marker were added to the os-simple-tenant-usage endpoints
for pagination. If a limit isnt provided, the configurable max_1imit will be used which currently defaults
to 1000.

GET /os-simple-tenant-usage?limit={limit}&marker={instance_uuid}
GET /os-simple-tenant-usage/{tenant_id}?limit={limit}&marker={instance_uuid}

2.1. User Documentation 61

Nova Documentation, Release 25.3.1.dev38

A tenants usage statistics may span multiple pages when the number of instances exceeds limit, and API
consumers will need to stitch together the aggregate results if they still want totals for all instances in a
specific time window, grouped by tenant.

Older versions of the os-simple-tenant-usage endpoints will not accept these new paging query
parameters, but they will start to silently limit by max_limit to encourage the adoption of this new
microversion, and circumvent the existing possibility of DoS-like usage requests when there are thousands
of instances.

2.41

The uuid attribute of an aggregate is now returned from calls to the /os-aggregates endpoint. This attribute
is auto-generated upon creation of an aggregate. The os-aggregates API resource endpoint remains an
administrator-only API.

2.42 (Maximum in Ocata)

In the context of device tagging at server create time, a bug has caused the tag attribute to no longer be
accepted for networks starting with version 2.37 and for block_device_mapping_v?2 starting with version
2.33. Microversion 2.42 restores the tag parameter to both networks and block_device_mapping_v2,
allowing networks and block devices to be tagged again.

2.43

The os-hosts APl is deprecated as of the 2.43 microversion. Requests made with microversion >= 2.43
will result in a 404 error. To list and show host details, use the os-hypervisors API. To enable or
disable a service, use the os-services API. There is no replacement for the shutdown, startup, reboot,
or maintenance_mode actions as those are system-level operations which should be outside of the control
of the compute service.

2.44

The following APIs which are considered as proxies of Neutron networking API, are deprecated and will
result in a 404 error response in new Microversion:

(continues on next page)

2.1. User Documentation 62

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Those server actions can be replaced by calling the Neutron API directly.

The nova-network specific API to query the servers interfaces is deprecated:

To query attached neutron interfaces for a specific server, the API GET /servers/{server_uuid}/os-
interface can be used.

2.45

The createImage and createBackup server action APIs no longer return a Location header in the
response for the snapshot image, they now return a json dict in the response body with an image_id key
and uuid value.

2.46

The request_id created for every inbound request is now returned in X-OpenStack-Request-ID in ad-
dition to X-Compute-Request-ID to be consistent with the rest of OpenStack. This is a signaling only
microversion, as these header settings happen well before microversion processing.

2.47

Replace the flavor name/ref with the actual flavor details from the embedded flavor object when dis-
playing server details. Requests made with microversion >= 2.47 will no longer return the flavor ID/link
but instead will return a subset of the flavor details. If the user is prevented by policy from indexing
extra-specs, then the extra_specs field will not be included in the flavor information.

2.48

Before version 2.48, VM diagnostics response was just a blob of data returned by each hypervisor. From
this version VM diagnostics response is standardized. It has a set of fields which each hypervisor will try
to fill. If a hypervisor driver is unable to provide a specific field then this field will be reported as None.

2.1. User Documentation 63

Nova Documentation, Release 25.3.1.dev38

2.49

Continuing from device role tagging at server create time introduced in version 2.32 and later fixed in
2.42, microversion 2.49 allows the attachment of network interfaces and volumes with an optional tag
parameter. This tag is used to identify the virtual devices in the guest and is exposed in the metadata APL.
Because the config drive cannot be updated while the guest is running, it will only contain metadata of
devices that were tagged at boot time. Any changes made to devices while the instance is running - be it
detaching a tagged device or performing a tagged device attachment - will not be reflected in the config
drive.

Tagged volume attachment is not supported for shelved-offloaded instances.

2.50

The server_groups and server_group_members keys are exposed in GET & PUT
os-quota-class-sets APIs Response body. Networks related quotas have been filtered out
from os-quota-class. Below quotas are filtered out and not available in os-quota-class-sets APIs
from this microversion onwards.

* fixed_ips

* floating_ips

* networks,

* security_group_rules

* security_groups

2.51

There are two changes for the 2.51 microversion:

* Add volume-extended event name to the os-server-external-events API This will be
used by the Block Storage service when extending the size of an attached volume. This signals the
Compute service to perform any necessary actions on the compute host or hypervisor to adjust for
the new volume block device size.

* Expose the events field in the response body for the GET /servers/{server_id}/
os-instance-actions/{request_id} API. This is useful for API users to monitor when a
volume extend operation completes for the given server instance. By default only users with the
administrator role will be able to see event traceback details.

2.52

Adds support for applying tags when creating a server. The tag schema is the same as in the 2.26 mi-
croversion.

2.1. User Documentation 64

Nova Documentation, Release 25.3.1.dev38

2.53 (Maximum in Pike)

os-services

Services are now identified by uuid instead of database id to ensure uniqueness across cells. This mi-
croversion brings the following changes:

GET /os-services returns a uuid in the id field of the response
DELETE /os-services/{service_uuid} requires a service uuid in the path
The following APIs have been superseded by PUT /os-services/{service_uuid}/:
— PUT /os-services/disable
— PUT /os-services/disable-log-reason
— PUT /os-services/enable
— PUT /os-services/force-down
PUT /os-services/{service_uuid} takes the following fields in the body:
— status - can be either enabled or disabled to enable or disable the given service

— disabled_reason - specify with status=disabled to log a reason for why the service is dis-
abled

— forced_down - boolean indicating if the service was forced down by an external service

PUT /os-services/{service_uuid} will now return a full service resource representation like
in a GET response

os-hypervisors

Hypervisors are now identified by uuid instead of database id to ensure uniqueness across cells. This
microversion brings the following changes:

GET /os-hypervisors/{hypervisor_hostname_pattern}/search is deprecated
and replaced with the hypervisor_hostname_pattern query parameter on the
GET /os-hypervisors and GET /os-hypervisors/detail APIs. Paging with

hypervisor_hostname_pattern is not supported.

GET /os-hypervisors/{hypervisor_hostname_pattern}/servers is deprecated and re-
placed with the with_servers query parameter on the GET /os-hypervisors and GET /
os-hypervisors/detail APIs.

GET /os-hypervisors/{hypervisor_id} supports the with_servers query parameter to in-
clude hosted server details in the response.

GET /os-hypervisors/{hypervisor_id} and GET /os-hypervisors/
{hypervisor_id}/uptime APIs now take a uuid value for the {hypervisor_id} path
parameter.

The GET /os-hypervisors and GET /os-hypervisors/detail APIs will now use a uuid
marker for paging across cells.

The following APIs will now return a uuid value for the hypervisor id and optionally service id
fields in the response:

— GET /os-hypervisors

2.1.

User Documentation 65

Nova Documentation, Release 25.3.1.dev38

— GET /os-hypervisors/detail
— GET /os-hypervisors/{hypervisor_id}

— GET /os-hypervisors/{hypervisor_id}/uptime

2.54

Allow the user to set the server key pair while rebuilding.

2.55

Adds a description field to the flavor resource in the following APIs:
* GET /flavors
* GET /flavors/detail

GET /flavors/{flavor_id}

POST /flavors
e PUT /flavors/{flavor_id}

The embedded flavor description will not be included in server representations.

2.56

Updates the POST request body for the migrate action to include the optional host string field defaulted
tonull. If host is set the migrate action verifies the provided host with the nova scheduler and uses it
as the destination for the migration.

2.57

The 2.57 microversion makes the following changes:
* The personality parameter is removed from the server create and rebuild APIs.
* The user_data parameter is added to the server rebuild API.

e The maxPersonality and maxPersonalitySize limits are excluded from the GET /limits
API response.

e The injected_files, injected_file_content_bytes and injected_file_path_bytes
quotas are removed from the os-quota-sets and os-quota-class-sets APIs.

2.1. User Documentation 66

Nova Documentation, Release 25.3.1.dev38

2.58

Add pagination support and changes-since filter for os-instance-actions API. Users can now use
limit and marker to perform paginated query when listing instance actions. Users can also use
changes-since filter to filter the results based on the last time the instance action was updated.

2.59

Added pagination support for migrations, there are four changes:

* Add pagination support and changes-since filter for os-migrations API. Users can now use
limit and marker to perform paginate query when listing migrations.

» Users can also use changes-since filter to filter the results based on the last time the migration
record was updated.

e GET /os-migrations, GET /servers/{server_id}/migrations/{migration_id} and
GET /servers/{server_id}/migrations will now return a uuid value in addition to the mi-
grations id in the response.

* The query parameter schema of the GET /os-migrations API no longer allows additional prop-
erties.

2.60 (Maximum in Queens)

From this version of the API users can attach a multiattach capable volume to multiple instances. The
API request for creating the additional attachments is the same. The chosen virt driver and the volume
back end has to support the functionality as well.

2.61

Exposes flavor extra_specs in the flavor representation. Now users can see the flavor extra-specs in flavor
APIs response and do not need to call GET /flavors/{flavor_id}/os-extra_specs APIL If the
user is prevented by policy from indexing extra-specs, then the extra_specs field will not be included
in the flavor information. Flavor extra_specs will be included in Response body of the following APIs:

* GET /flavors/detail

e GET /flavors/{flavor_id}
e POST /flavors

* PUT /flavors/{flavor_id}

2.1. User Documentation 67

Nova Documentation, Release 25.3.1.dev38

2.62

Adds host (hostname) and hostId (an obfuscated hashed host id string) fields to the instance action GET
/servers/{server_id}/os-instance-actions/{req_id} APIL The display of the newly added
host field will be controlled via policy rule os_compute_api:os-instance-actions:events,
which is the same policy used for the events.traceback field. If the user is prevented by policy,
only hostId will be displayed.

2.63

Adds support for the trusted_image_certificates parameter, which is used to define a list of trusted
certificate IDs that can be used during image signature verification and certificate validation. The list is
restricted to a maximum of 50 IDs. Note that trusted_image_certificates is not supported with
volume-backed servers.

The trusted_image_certificates request parameter can be passed to the server create and rebuild
APIs:

* POST /servers
e POST /servers/{server_id}/action (rebuild)
The trusted_image_certificates parameter will be in the response body of the following APIs:
* GET /servers/detail
* GET /servers/{server_id}
* PUT /servers/{server_id}

e POST /servers/{server_id}/action (rebuild)

2.64

Enable users to define the policy rules on server group policy to meet more advanced policy requirement.
This microversion brings the following changes in server group APIs:

* Add policy and rules fields in the request of POST /os-server-groups. The policy rep-
resents the name of policy. The rules field, which is a dict, can be applied to the policy, which
currently only support max_server_per_host for anti-affinity policy.

* The policy and rules fields will be returned in response body of POST, GET /
os-server-groups API and GET /os-server-groups/{server_group_id} APL

* The policies and metadata fields have been removed from the response body of POST, GET
/os-server-groups API and GET /os-server-groups/{server_group_id} APL

2.1. User Documentation 68

Nova Documentation, Release 25.3.1.dev38

2.65 (Maximum in Rocky)

Add support for abort live migrations in queued and preparing status for API DELETE /servers/
{server_id}/migrations/{migration_id}.

2.66

The changes-before filter can be included as a request parameter of the following APIs to filter by
changes before or equal to the resource updated_at time:

e GET /servers
e GET /servers/detail
e GET /servers/{server_id}/os-instance-actions

e GET /os-migrations

2.67

Adds the volume_type parameter to block_device_mapping_v2, which can be used to specify cinder
volume_type when creating a server.

2.68

Remove support for forced live migration and evacuate server actions.

2.69

Add support for returning minimal constructs for GET /servers, GET /servers/detail, GET /
servers/{server_id} and GET /os-services when there is a transient unavailability condition in
the deployment like an infrastructure failure. Starting from this microversion, the responses from the
down part of the infrastructure for the above four requests will have missing key values to make it more
resilient. The response body will only have a minimal set of information obtained from the available
information in the API database for the down cells. See handling down cells for more information.

2.70

Exposes virtual device tags for volume attachments and virtual interfaces (ports). A tag parameter is
added to the response body for the following APIs:

Volumes
e GET /servers/{server_id}/os-volume_attachments (list)
* GET /servers/{server_id}/os-volume_attachments/{volume_id} (show)
* POST /servers/{server_id}/os-volume_attachments (attach)

Ports

2.1. User Documentation 69

https://docs.openstack.org/api-guide/compute/down_cells.html

Nova Documentation, Release 25.3.1.dev38

¢ GET /servers/{server_id}/os-interface (list)
* GET /servers/{server_id}/os-interface/{port_id} (show)

* POST /servers/{server_id}/os-interface (attach)

2.711

The server_groups parameter will be in the response body of the following APIs to list the server
groups to which the server belongs:

e GET /servers/{server_id}
e PUT /servers/{server_id}

e POST /servers/{server_id}/action (rebuild)

2.72 (Maximum in Stein)

API microversion 2.72 adds support for creating servers with neutron ports that has resource request, e.g.
neutron ports with QoS minimum bandwidth rule. Deleting servers with such ports have already been
handled properly as well as detaching these type of ports.

API limitations:
* Creating servers with Neutron networks having QoS minimum bandwidth rule is not supported.
 Attaching Neutron ports and networks having QoS minimum bandwidth rule is not supported.

* Moving (resizing, migrating, live-migrating, evacuating, unshelving after shelve offload) servers
with ports having resource request is not yet supported.

2.73

API microversion 2.73 adds support for specifying a reason when locking the server and exposes this in-
formation via GET /servers/detail, GET /servers/{server_id}, PUT servers/{server_id}
and POST /servers/{server_id}/action where the action is rebuild. It also supports locked as a
filter/sort parameter for GET /servers/detail and GET /servers.

2.74

API microversion 2.74 adds support for specifying optional host and/or hypervisor_hostname pa-
rameters in the request body of POST /servers. These request a specific destination host/node to boot
the requested server. These parameters are mutually exclusive with the special availability_zone
format of zone:host:node. Unlike zone:host:node, the host and/or hypervisor_hostname
parameters still allow scheduler filters to be run. If the requested host/node is unavailable or
otherwise unsuitable, earlier failure will be raised. There will be also a new policy named
compute:servers:create:requested_destination. By default, it can be specified by adminis-
trators only.

2.1. User Documentation 70

https://docs.openstack.org/neutron/latest/admin/config-qos-min-bw.html

Nova Documentation, Release 25.3.1.dev38

2.75

Multiple API cleanups are done in API microversion 2.75:
* 400 error response for an unknown parameter in the querystring or request body.

* Make the server representation consistent among GET, PUT and rebuild server API responses.
PUT /servers/{server_id} and POST /servers/{server_id}/action {rebuild} API
responses are modified to add all the missing fields which are returned by GET /servers/
{server_id}.

* Change the default return value of the swap field from the empty string to O (integer) in flavor
APIs.

* Always return the servers field in the response of the GET /os-hypervisors, GET /
os-hypervisors/detail and GET /os-hypervisors/{hypervisor_id} APIs even when
there are no servers on a hypervisor.

2.76

Adds power-update event name to os-server-external-events APl The changes to the power
state of an instance caused by this event can be viewed through GET /servers/{server_id}/
os-instance-actions and GET /servers/{server_id}/os-instance-actions/
{request_id}.

2.77

API microversion 2.77 adds support for specifying availability zone when unshelving a shelved offloaded
server.

2.78

Add server sub-resource topology to show server NUMA information.
* GET /servers/{server_id}/topology

The default behavior is configurable using two new policies:
e compute:server:topology:index

e compute:server:topology:host:index

2.79 (Maximum in Train)

API microversion 2.79 adds support for specifying the delete_on_termination field in the request
body when attaching a volume to a server, to support configuring whether to delete the data volume when
the server is destroyed. Also, delete_on_termination is added to the GET responses when showing
attached volumes, and the delete_on_termination field is contained in the POST API response body
when attaching a volume.

The affected APIs are as follows:

2.1. User Documentation 71

Nova Documentation, Release 25.3.1.dev38

e POST /servers/{server_id}/os-volume_attachments
e GET /servers/{server_id}/os-volume_attachments

e GET /servers/{server_id}/os-volume_attachments/{volume_id}

2.80

Microversion 2.80 changes the list migrations APIs and the os-migrations APIL.
Expose the user_id and project_id fields in the following APIs:

* GET /os-migrations

e GET /servers/{server_id}/migrations

* GET /servers/{server_id}/migrations/{migration_id}

The GET /os-migrations API will also have optional user_id and project_id query parameters
for filtering migrations by user and/or project, for example:

* GET /os-migrations?user_id=ef9d34b4-45d0-4530-871b-3fb535988394
* GET /os-migrations?project_id=011lee9f4-8f16-4c38-8633-a254d420£fd54
* GET /os-migrations?user_id=ef9d34b4-45d0-4530-871b-3fb535988394&project_id=011ee9f4-81]

2.81

Adds support for image cache management by aggregate by adding POST /os-aggregates/
{aggregate_id}/images.

2.82

Adds accelerator-request-bound event to os-server-external-events API. This event is sent
by Cyborg to indicate completion of the binding event for one accelerator request (ARQ) associated with
an instance.

2.83

Allow the following filter parameters for GET /servers/detail and GET /servers for non-admin :
e availability_zone
e config_drive
* key_name
e created_at
* launched_at
* terminated_at
* power_state

e task_state

2.1. User Documentation 72

Nova Documentation, Release 25.3.1.dev38

* vm_state
* progress

e user_id

2.84

The GET /servers/{server_id}/os-instance-actions/{request_id} API returns a details
parameter for each failed event with a fault message, similar to the server fault.message parameter in
GET /servers/{server_id} for a server with status ERROR.

2.85

Adds the ability to specify delete_on_termination in the PUT /servers/{server_id}/
os-volume_attachments/{volume_id} API, which allows changing the behavior of volume deletion
on instance deletion.

2.86

Add support for validation of known extra specs. This is enabled by default for the following APIs:
e POST /flavors/{flavor_id}/os-extra_specs
e PUT /flavors/{flavor_id}/os-extra_specs/{id}

Validation is only used for recognized extra spec namespaces, currently: accel,
aggregate_instance_extra_specs, capabilities, hw, hw_rng, hw_video, 0s,
pci_passthrough, powervm, quota, resources, trait, and vmware.

2.87 (Maximum in Ussuri and Victoria)

Adds support for rescuing boot from volume instances when the compute host reports the
COMPUTE_BFV_RESCUE capability trait.

2.88 (Maximum in Wallaby)

The following fields are no longer included in responses for the GET /os-hypervisors/detail and
GET /os-hypervisors/{hypervisor_id} APIs:

* current_workload
e cpu_info

* vcpus

e vcpus_used

* free_disk_gb

e local_gb

e local_gb_used

2.1. User Documentation 73

Nova Documentation, Release 25.3.1.dev38

e disk_available_least
e free_ram_mb

e memory_mb

* memory_mb_used

e running_vms

These fields were removed as the information they provided were frequently misleading or outright
wrong, and many can be better queried from placement.

In addition, the GET /os-hypervisors/statistics API, which provided a summary view with just
the fields listed above, has been removed entirely and will now raise a HTTP 404 with microversion 2.88
or greater.

Finally, the GET /os-hypervisors/{hypervisor}/uptime API, which provided a similar response
to the GET /os-hypervisors/detail and GET /os-hypervisors/{hypervisor_id} APIs but
with an additional uptime field, has been removed in favour of including this field in the primary GET
/os-hypervisors/detail and GET /os-hypervisors/{hypervisor_id} APIs.

2.89

attachment_id and bdm_uuid are now included in the responses for GET /servers/{server_id}/
os-volume_attachments and GET /servers/{server_id}/os-volume_attachments/
{volume_id}. Additionally the id field is dropped from the response as it duplicates the volumeId
field.

2.90 (Maximum in Xena and Yoga)

The POST /servers (create server), PUT /servers/{id} (update server) and POST /servers/
{server_id}/action (rebuild) (rebuild server) APIs now accept a hostname parameter, allowing
users to configure a hostname when creating the instance. When specified, this will replace the auto-
generated hostname based on the display name.

In addition, the OS-EXT-SRV-ATTR :hostname field for all server responses is now visible to all users.
Previously this was an admin-only field.

2.2 Tools for using Nova

* Horizon: The official web UI for the OpenStack Project.

* OpenStack Client: The official CLI for OpenStack Projects. You should use this as your CLI for
most things, it includes not just nova commands but also commands for most of the projects in
OpenStack.

* Nova Client: For some very advanced features (or administrative commands) of nova you may
need to use nova client. It is still supported, but the openstack cli is recommended.

2.2. Tools for using Nova 74

https://docs.openstack.org/horizon/yoga/user/launch-instances.html
https://docs.openstack.org/python-openstackclient/yoga/
https://docs.openstack.org/python-novaclient/yoga/user/shell.html

Nova Documentation, Release 25.3.1.dev38

2.3

Writing to the API

All end user (and some administrative) features of nova are exposed via a REST API, which can be used
to build more complicated logic or automation with nova. This can be consumed directly, or via various
SDKs. The following resources will help you get started with consuming the API directly.

Compute API Guide: The concept guide for the API. This helps lay out the concepts behind the
API to make consuming the API reference easier.

Compute API Reference: The complete reference for the compute API, including all methods and
request / response parameters and their meaning.

Compute API Microversion History: The compute API evolves over time through Microversions.
This provides the history of all those changes. Consider it a whats new in the compute API.

Block Device Mapping: One of the trickier parts to understand is the Block Device Mapping pa-
rameters used to connect specific block devices to computes. This deserves its own deep dive.

Metadata: Provide information to the guest instance when it is created.

Nova can be configured to emit notifications over RPC.

Versioned Notifications: This provides the list of existing versioned notifications with sample pay-
loads.

Other end-user guides can be found under User Documentation.

2.3. Writing to the API 75

https://docs.openstack.org/api-guide/compute/
https://docs.openstack.org/api-ref/compute/
https://docs.openstack.org/api-guide/compute/microversions.html

CHAPTER
THREE

FOR OPERATORS

3.1 Architecture Overview

* Nova architecture: An overview of how all the parts in nova fit together.

3.1.1 Nova System Architecture

Nova comprises multiple server processes, each performing different functions. The user-facing interface
isaREST API, while internally Nova components communicate via an RPC message passing mechanism.

The API servers process REST requests, which typically involve database reads/writes, optionally send-
ing RPC messages to other Nova services, and generating responses to the REST calls. RPC messaging
is done via the oslo.messaging library, an abstraction on top of message queues. Nova uses a messaging-
based, shared nothing architecture and most of the major nova components can be run on multiple servers,
and have a manager that is listening for RPC messages. The one major exception is the compute service,
where a single process runs on the hypervisor it is managing (except when using the VMware or Ironic
drivers). The manager also, optionally, has periodic tasks. For more details on our RPC system, refer to
AMQP and Nova.

Nova uses traditional SQL databases to store information. These are (logically) shared between multiple
components. To aid upgrade, the database is accessed through an object layer that ensures an upgraded
control plane can still communicate with a compute nodes running the previous release. To make this
possible, services running on the compute node proxy database requests over RPC to a central manager
called the conductor.

To horizontally expand Nova deployments, we have a deployment sharding concept called cells. All
deployments contain at least one cell. For more information, refer to Cells (v2).

3.1.1.1 Components

Below you will find a helpful explanation of the key components of a typical Nova deployment.

76

Nova Documentation, Release 25.3.1.dev38

External service

D Nova service
E—

oslo.messaging

------ » DB
—--)» HTTP
1
____\.
-—
~.
s I o T
\~.
A A
P \:
/x/ I V.
’ I..
7
Glance &
Conductor Scheduler Cinder
AN I i
~\ ‘F
\‘\ \~ r
‘\\ Compute Placement
\s
\~
~\.
~—

S ——r——

* DB: SQL database for data storage.

* API: Component that receives HT TP requests, converts commands and communicates with other
components via the oslo.messaging queue or HTTP.

* Scheduler: Decides which host gets each instance.
* Compute: Manages communication with hypervisor and virtual machines.

* Conductor: Handles requests that need coordination (build/resize), acts as a database proxy, or
handles object conversions.

* :placement-doc:‘Placement <>¢: Tracks resource provider inventories and usages.

While all services are designed to be horizontally scalable, you should have significantly more computes
than anything else.

3.1. Architecture Overview 77

Nova Documentation, Release 25.3.1.dev38

3.1.1.2 Hypervisors

Nova controls hypervisors through an API server. Selecting the best hypervisor to use can be difficult,
and you must take budget, resource constraints, supported features, and required technical specifications
into account. However, the majority of OpenStack development is done on systems using KVM-based
hypervisors. For a detailed list of features and support across different hypervisors, see Feature Support
Matrix.

You can also orchestrate clouds using multiple hypervisors in different availability zones. Nova supports
the following hypervisors:

* Baremetal

* Hyper-V

» Kernel-based Virtual Machine (KVM)
e Linux Containers (LXC)

* PowerVM

¢ Quick Emulator (QEMU)

* Virtuozzo

* VMware vSphere

* zVM

For more information about hypervisors, see Hypervisors section in the Nova Configuration Reference.

3.1.1.3 Projects, users, and roles

To begin using Nova, you must create a user with the Identity service.

The Nova system is designed to be used by different consumers in the form of projects on a shared system,
and role-based access assignments. Roles control the actions that a user is allowed to perform.

Projects are isolated resource containers that form the principal organizational structure within the Nova
service. They typically consist of networks, volumes, instances, images, keys, and users. A user can
specify the project by appending project_id to their access key.

For projects, you can use quota controls to limit the number of processor cores and the amount of RAM
that can be allocated. Other projects also allow quotas on their own resources. For example, neutron
allows you to manage the amount of networks that can be created within a project.

Roles control the actions a user is allowed to perform. By default, most actions do not require a particular
role, but you can configure them by editing the policy.yaml file for user roles. For example, a rule can
be defined so that a user must have the admin role in order to be able to allocate a public IP address.

A project limits users access to particular images. Each user is assigned a user name and password.
Keypairs granting access to an instance are enabled for each user, but quotas are set, so that each project
can control resource consumption across available hardware resources.

Note: Earlier versions of OpenStack used the term tenant instead of project. Because of this legacy
terminology, some command-line tools use --tenant_id where you would normally expect to enter a
project ID.

3.1. Architecture Overview 78

https://docs.openstack.org/ironic/yoga/
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://www.linux-kvm.org/page/Main_Page
https://linuxcontainers.org
https://www.ibm.com/us-en/marketplace/ibm-powervm
https://wiki.qemu.org/Manual
https://www.virtuozzo.com/products/vz7.html
https://www.vmware.com/support/vsphere-hypervisor.html
https://www.ibm.com/it-infrastructure/z/zvm
https://docs.openstack.org/keystone/yoga/
https://docs.openstack.org/neutron/yoga//admin/ops-quotas.html

Nova Documentation, Release 25.3.1.dev38

3.1.1.4 Block storage

OpenStack provides two classes of block storage: storage that is provisioned by Nova itself, and storage
that is managed by the block storage service, Cinder.

Nova-provisioned block storage

Nova provides the ability to create a root disk and an optional ephemeral volume. The root disk will
always be present unless the instance is a Boot From Volume instance.

The root disk is associated with an instance, and exists only for the life of this very instance. Generally,
it is used to store an instances root file system, persists across the guest operating system reboots, and is
removed on an instance deletion. The amount of the root ephemeral volume is defined by the flavor of
an instance.

In addition to the root volume, flavors can provide an additional ephemeral block device. It is represented
as araw block device with no partition table or file system. A cloud-aware operating system can discover,
format, and mount such a storage device. Nova defines the default file system for different operating
systems as ext4 for Linux distributions, VFAT for non-Linux and non-Windows operating systems, and
NTEFS for Windows. However, it is possible to configure other filesystem types.

Note: For example, the cloud-init package included into an Ubuntus stock cloud image, by default,
formats this space as an ext4 file system and mounts it on /mnt. This is a cloud-init feature, and is not
an OpenStack mechanism. OpenStack only provisions the raw storage.

Cinder-provisioned block storage

The OpenStack Block Storage service, Cinder, provides persistent volumes hat are represented by a per-
sistent virtualized block device independent of any particular instance.

Persistent volumes can be accessed by a single instance or attached to multiple instances. This type of
configuration requires a traditional network file system to allow multiple instances accessing the persistent
volume. It also requires a traditional network file system like NFS, CIFS, or a cluster file system such as
Ceph. These systems can be built within an OpenStack cluster, or provisioned outside of it, but OpenStack
software does not provide these features.

You can configure a persistent volume as bootable and use it to provide a persistent virtual instance similar
to the traditional non-cloud-based virtualization system. It is still possible for the resulting instance to
keep ephemeral storage, depending on the flavor selected. In this case, the root file system can be on the
persistent volume, and its state is maintained, even if the instance is shut down. For more information
about this type of configuration, see Introduction to the Block Storage service.

3.1. Architecture Overview 79

https://docs.openstack.org/cinder/yoga/configuration/block-storage/block-storage-overview.html

Nova Documentation, Release 25.3.1.dev38

3.1.1.5 Building blocks

In OpenStack the base operating system is usually copied from an image stored in the OpenStack Image
service, glance. This is the most common case and results in an ephemeral instance that starts from a
known template state and loses all accumulated states on virtual machine deletion. It is also possible to
put an operating system on a persistent volume in the OpenStack Block Storage service. This gives a
more traditional persistent system that accumulates states which are preserved on the OpenStack Block
Storage volume across the deletion and re-creation of the virtual machine. To get a list of available images
on your system, run:

openstack image list

The displayed image attributes are:

ID Automatically generated UUID of the image

Name Free form, human-readable name for image

Status The status of the image. Images marked ACTIVE are available for use.

Server For images that are created as snapshots of running instances, this is the UUID of the instance
the snapshot derives from. For uploaded images, this field is blank.

Virtual hardware templates are called flavors. By default, these are configurable by admin users,
however, that behavior can be changed by redefining the access controls policy.yaml on the nova-api
server. For more information, refer to Nova Policies.

For a list of flavors that are available on your system:

openstack flavor list

3.1. Architecture Overview 80

Nova Documentation, Release 25.3.1.dev38

3.1.1.6 Nova service architecture

These basic categories describe the service architecture and information about the cloud controller.

API server

At the heart of the cloud framework is an API server, which makes command and control of the hyper-
visor, storage, and networking programmatically available to users.

The API endpoints are basic HTTP web services which handle authentication, authorization, and basic
command and control functions using various API interfaces under the Amazon, Rackspace, and related
models. This enables API compatibility with multiple existing tool sets created for interaction with
offerings from other vendors. This broad compatibility prevents vendor lock-in.

Message queue

A messaging queue brokers the interaction between compute nodes (processing), the networking con-
trollers (software which controls network infrastructure), API endpoints, the scheduler (determines which
physical hardware to allocate to a virtual resource), and similar components. Communication to and from
the cloud controller is handled by HTTP requests through multiple API endpoints.

A typical message passing event begins with the API server receiving a request from a user. The API
server authenticates the user and ensures that they are permitted to issue the subject command. The
availability of objects implicated in the request is evaluated and, if available, the request is routed to the
queuing engine for the relevant workers. Workers continually listen to the queue based on their role, and
occasionally their type host name. When an applicable work request arrives on the queue, the worker
takes assignment of the task and begins executing it. Upon completion, a response is dispatched to the
queue which is received by the API server and relayed to the originating user. Database entries are
queried, added, or removed as necessary during the process.

Compute worker
Compute workers manage computing instances on host machines. The API dispatches commands to
compute workers to complete these tasks:

* Run instances

¢ Delete instances (Terminate instances)

* Reboot instances

* Attach volumes

* Detach volumes

* Get console output

3.1. Architecture Overview 81

Nova Documentation, Release 25.3.1.dev38

Network Controller

The Network Controller manages the networking resources on host machines. The API server dispatches
commands through the message queue, which are subsequently processed by Network Controllers. Spe-
cific operations include:

* Allocating fixed IP addresses
* Configuring VLANS for projects

* Configuring networks for compute nodes

3.2 Installation

The detailed install guide for nova. A functioning nova will also require having installed keystone, glance,
neutron, and placement. Ensure that you follow their install guides first.

3.2.1 Compute service
3.2.1.1 Overview

The OpenStack project is an open source cloud computing platform that supports all types of cloud
environments. The project aims for simple implementation, massive scalability, and a rich set of features.
Cloud computing experts from around the world contribute to the project.

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a variety of complementary
services. Each service offers an Application Programming Interface (API) that facilitates this integration.

This guide covers step-by-step deployment of the major OpenStack services using a functional example
architecture suitable for new users of OpenStack with sufficient Linux experience. This guide is not
intended to be used for production system installations, but to create a minimum proof-of-concept for the
purpose of learning about OpenStack.

After becoming familiar with basic installation, configuration, operation, and troubleshooting of these
OpenStack services, you should consider the following steps toward deployment using a production ar-
chitecture:

* Determine and implement the necessary core and optional services to meet performance and re-
dundancy requirements.

* Increase security using methods such as firewalls, encryption, and service policies.

* Implement a deployment tool such as Ansible, Chef, Puppet, or Salt to automate deployment and
management of the production environment.

3.2. Installation 82

https://docs.openstack.org/keystone/yoga/install/
https://docs.openstack.org/glance/yoga/install/
https://docs.openstack.org/neutron/yoga/install/
https://docs.openstack.org/placement/yoga/install/

Nova Documentation, Release 25.3.1.dev38

Example architecture

The example architecture requires at least two nodes (hosts) to launch a basic virtual machine (VM) or
instance. Optional services such as Block Storage and Object Storage require additional nodes.

Important: The example architecture used in this guide is a minimum configuration, and is not intended
for production system installations. It is designed to provide a minimum proof-of-concept for the purpose
of learning about OpenStack. For information on creating architectures for specific use cases, or how to
determine which architecture is required, see the Architecture Design Guide.

Warning: Once a cloud has been deployed, changing the host name of any node in the deployment
is not supported. In some cases, it may be possible to remove a node from the deployment, and add
it again under a different host name. Renaming a node in situ will result in problems that will require
multiple manual fixes.

This example architecture differs from a minimal production architecture as follows:
» Networking agents reside on the controller node instead of one or more dedicated network nodes.

* Overlay (tunnel) traffic for self-service networks traverses the management network instead of a
dedicated network.

For more information on production architectures, see the Architecture Design Guide, OpenStack Oper-
ations Guide, and OpenStack Networking Guide.

Controller

The controller node runs the Identity service, Image service, management portions of Compute, manage-
ment portion of Networking, various Networking agents, and the Dashboard. It also includes supporting
services such as an SQL database, message queue, and Network Time Protocol (NTP).

Optionally, the controller node runs portions of the Block Storage, Object Storage, Orchestration, and
Telemetry services.

The controller node requires a minimum of two network interfaces.

Compute

The compute node runs the hypervisor portion of Compute that operates instances. By default, Compute
uses the kernel-based VM (KVM) hypervisor. The compute node also runs a Networking service agent
that connects instances to virtual networks and provides firewalling services to instances via security
groups.

You can deploy more than one compute node. Each node requires a minimum of two network interfaces.

3.2. Installation 83

https://docs.openstack.org/arch-design/
https://docs.openstack.org/arch-design/
https://wiki.openstack.org/wiki/OpsGuide
https://wiki.openstack.org/wiki/OpsGuide
https://docs.openstack.org/ocata/networking-guide/

Nova Documentation, Release 25.3.1.dev38

Hardware Requirements

Controller Node

7 ™

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

ge

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
1 1 ! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1 storage NIC :
1 1
| : 1 :
1 1 ! 1
1 1 : 1
1
1Y).I 1 |

Fig. 1: Hardware requirements

i —— -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

NIC

o

3.2. Installation

84

Nova Documentation, Release 25.3.1.dev38

Block Storage

The optional Block Storage node contains the disks that the Block Storage and Shared File System ser-
vices provision for instances.

For simplicity, service traffic between compute nodes and this node uses the management network. Pro-
duction environments should implement a separate storage network to increase performance and security.

You can deploy more than one block storage node. Each node requires a minimum of one network
interface.

Object Storage

The optional Object Storage node contain the disks that the Object Storage service uses for storing ac-
counts, containers, and objects.

For simplicity, service traffic between compute nodes and this node uses the management network. Pro-
duction environments should implement a separate storage network to increase performance and security.

This service requires two nodes. Each node requires a minimum of one network interface. You can
deploy more than two object storage nodes.

Networking

Choose one of the following virtual networking options.

Networking Option 1: Provider networks

The provider networks option deploys the OpenStack Networking service in the simplest way possible
with primarily layer-2 (bridging/switching) services and VLAN segmentation of networks. Essentially,
it bridges virtual networks to physical networks and relies on physical network infrastructure for layer-3
(routing) services. Additionally, a DHCP<Dynamic Host Configuration Protocol (DHCP) service pro-
vides IP address information to instances.

The OpenStack user requires more information about the underlying network infrastructure to create a
virtual network to exactly match the infrastructure.

Warning: This option lacks support for self-service (private) networks, layer-3 (routing) ser-
vices, and advanced services such as Load-Balancer-as-a-Service (LBaaS) and FireWall-as-a-Service
(FWaaS). Consider the self-service networks option below if you desire these features.

3.2. Installation 85

Nova Documentation, Release 25.3.1.dev38

Networking Option 1: Provider Networks
Service Layout

e ' ' TS \
1
Controller Node Compute i Block Storage !
!
. A B 1
[SQL Database J [MNetworking ! Block Storage J p Nodes . : Nodes :
Service Management Management 1 i
/ s KVM Hypervisor 1 15CS1 chlrget :
P -~ - e ~ I Service |
1 NodQL chltabase Net‘workmg] Orchestration - ~ : 1
- Service ML2 Plug-in Iy Compute . Block Storage I
P————————c ~ L P) 1 Volume Service :
Linux Network ! Object Storage | — |
Message Queue Utiliti P Servi 1, — ~
IS AL b el Linux Network 1| Shared File System 1 |
~ pr—— e ~ Utilities 1 Service ! 1
[Network Time [Networking Shared File Systen‘j —— : !
: ; . - 0 = I
Service y Linux Bridge Agent Iy Management Networking i Telemetry 1
~ \ e mmmm———— ~ Linux Bridge Agent : Agent 1
\dentity Networking || Database S— | Seeeeeeee/ ’
DHCP Agent ‘*—. Management TEIemeT.I'Y 1
~ la-—-l— ————— -~ Agent P =
9 Networking Telemetry J \ H I
[Image Service y [Metadata Agent I Management I DbJECt 1
e > | Storage Nodes |
Compute : Telemetry i : 1
Management Agent(s) 1 Object Storage 1
\ / J : Account Service :
_
L |
1 Object Storage 1
C] Core component | L Container Service |
ﬁ
| —
: Object Storage :
T T T 3 \ Object Service 1
1 1 H N\ H)
) K Optional component N -

3.2. Installation

86

Nova Documentation, Release 25.3.1.dev38

Networking Option 2: Self-service networks

The self-service networks option augments the provider networks option with layer-3 (routing) services
that enable self-service networks using overlay segmentation methods such as Virtual Extensible LAN
(VXLAN). Essentially, it routes virtual networks to physical networks using Network Address Transla-
tion (NAT). Additionally, this option provides the foundation for advanced services such as LBaaS and
FWaaS.

The OpenStack user can create virtual networks without the knowledge of underlying infrastructure on
the data network. This can also include VLAN networks if the layer-2 plug-in is configured accordingly.

Networking Option 2: Self-Service Networks
Service Layout

—— -

Agent

A
1

Metworking Telemetry S

Object

I
Image Service DHCP Agent \ Management _jl

Storage Nodes

()
()
==
()
()

s ™ s ™ FTTTTETTTTT ~y
]
Controller Node Compute 1 Block Storage !
]
R e S - 1
[SQL Database J [Metworking] l Block Storage : Nodes : Nodes 1
Service Management Management l 1 : !
_________ = \ y—— _g_ sy _J KVM Hypervisor I ISiir:?geget :
- ~ - -~ |
I | i I \ 1
| el De_utabase | Nemorkmg | Orchestration | : 1
\ Service J l ML2 Plug-in | \ w . Block Storage]
Fmmmm—m=== ~ Compute ! Volume Service !
Linux Network I Object Storage | 1 :
Message Queue Utiliti] P Servi | | ,— - T-T-T——~° -
tilities G EEGEERIEE) Linux Network 1| Shared File System | |
P ~ Utilities ! Service !
[Network Time J Networking ! Shared File System | ! 1
.) ; i 1 [~
Service Linux Bridge Agent }, Management Y, Networking 1 Telemetry 1y
—_———————] Linux Bridge Agent : Agent 1
i 1]
[Identity J i MDatabase — 4 i
\ e Telemetry |
[J |
1
i
\

i \
1 1
1 1
1 1
1 1
Compute Networking Telemetry | 1 : 1
Management Metadata Agent] Agent(s) _j' 1 Object Storage 1
y. I'l Account Service :
]
1 1
! Object Storage 1
C] Core component '\ container service |
1 1
: Object Storage :
T \ i Object Service i
! ; Optional component \ E—— d

o

3.2.1.2 Compute service overview

Todo: Update a lot of the links in here.

Use OpenStack Compute to host and manage cloud computing systems. OpenStack Compute is a major
part of an Infrastructure-as-a-Service (IaaS) system. The main modules are implemented in Python.

OpenStack Compute interacts with OpenStack Identity for authentication, OpenStack Placement for re-
source inventory tracking and selection, OpenStack Image service for disk and server images, and Open-
Stack Dashboard for the user and administrative interface. Image access is limited by projects, and by

3.2. Installation 87

Nova Documentation, Release 25.3.1.dev38

users; quotas are limited per project (the number of instances, for example). OpenStack Compute can
scale horizontally on standard hardware, and download images to launch instances.

OpenStack Compute consists of the following areas and their components:

nova-api service Accepts and responds to end user compute API calls. The service supports the Open-
Stack Compute API. It enforces some policies and initiates most orchestration activities, such as
running an instance.

nova-api-metadata service Accepts metadata requests from instances. For more information, refer
to Metadata service.

nova-compute service A worker daemon that creates and terminates virtual machine instances through
hypervisor APIs. For example:

¢ libvirt for KVM or QEMU
e VMwareAPI for VMware

Processing is fairly complex. Basically, the daemon accepts actions from the queue and performs
a series of system commands such as launching a KVM instance and updating its state in the
database.

nova-scheduler service Takes a virtual machine instance request from the queue and determines on
which compute server host it runs.

nova-conductor module Mediates interactions between the nova-compute service and the database.
It eliminates direct accesses to the cloud database made by the nova-compute service. The
nova-conductor module scales horizontally. However, do not deploy it on nodes where the
nova-compute service runs. For more information, see the conductor section in the Configura-
tion Options.

nova-novncproxy daemon Provides a proxy for accessing running instances through a VNC connec-
tion. Supports browser-based novnc clients.

nova-spicehtml5proxy daemon Provides a proxy for accessing running instances through a SPICE
connection. Supports browser-based HTMLS5 client.

The queue A central hub for passing messages between daemons. Usually implemented with RabbitMQ
but other options are available.

SQL database Stores most build-time and run-time states for a cloud infrastructure, including:
* Available instance types
* Instances in use
* Available networks
* Projects

Theoretically, OpenStack Compute can support any database that SQLAlchemy supports. Com-
mon databases are SQLite3 for test and development work, MySQL, MariaDB, and PostgreSQL.

3.2. Installation 88

https://www.rabbitmq.com/
https://docs.openstack.org/oslo.messaging/yoga/admin/drivers

Nova Documentation, Release 25.3.1.dev38

3.2.1.3 Install and configure controller node

This section describes how to install and configure the Compute service on the controller node for Ubuntu,
openSUSE and SUSE Linux Enterprise, and Red Hat Enterprise Linux and CentOS.

Install and configure controller node for Ubuntu

This section describes how to install and configure the Compute service, code-named nova, on the con-
troller node.

Prerequisites

Before you install and configure the Compute service, you must create databases, service credentials, and
API endpoints.

1. To create the databases, complete these steps:

» Use the database access client to connect to the database server as the root user:

mysql

¢ Create the nova_api, nova, and nova_cell0 databases:

Grant proper access to the databases:

Replace NOVA_DBPASS with a suitable password.

¢ Exit the database access client.

3.2. Installation 89

Nova Documentation, Release 25.3.1.dev38

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. Create the Compute service credentials:

¢ Create the nova user:

openstack user create --domain default --password-prompt nova

Add the admin role to the nova user:

openstack role add --project service --user nova admin

Note: This command provides no output.

* Create the nova service entity:

openstack service create --name nova
--description compute

4. Create the Compute API service endpoints:

openstack endpoint create --region RegionOne
compute public http://controller:8774/v2.1

(continues on next page)

3.2. Installation 90

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

openstack endpoint create --region RegionOne
compute internal http://controller:8774/v2.1

openstack endpoint create --region RegionOne
compute admin http://controller:8774/v2.1

5. Install Placement service and configure user and endpoints:

* Refer to the Placement service install guide for more information.

3.2. Installation 91

https://docs.openstack.org/placement/yoga/install/install-ubuntu.html#configure-user-and-endpoints

Nova Documentation, Release 25.3.1.dev38

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt install nova-api nova-conductor nova-novncproxy nova-scheduler

2. Edit the /etc/nova/nova. conf file and complete the following actions:

* Inthe [api_database] and [database] sections, configure database access:

Replace NOVA_DBPASS with the password you chose for the Compute databases.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [api] and [keystone_authtoken] sections, configure Identity service access:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

3.2. Installation 92

Nova Documentation, Release 25.3.1.dev38

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [service_user] section, configure service user tokens:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

» Configure the [neutron] section of /etc/nova/mova.conf. Refer to the Networking service
install guide for more information.

* In the [vnc] section, configure the VNC proxy to use the management interface IP address
of the controller node:

* In the [glance] section, configure the location of the Image service API:

* In the [oslo_concurrency] section, configure the lock path:

* Due to a packaging bug, remove the log_dir option from the [DEFAULT] section.

* In the [placement] section, configure access to the Placement service:

3.2. Installation 93

https://docs.openstack.org/neutron/yoga/install/controller-install-ubuntu.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/neutron/yoga/install/controller-install-ubuntu.html#configure-the-compute-service-to-use-the-networking-service

Nova Documentation, Release 25.3.1.dev38

Replace PLACEMENT_PASS with the password you choose for the placement service user
created when installing Placement. Comment out or remove any other options in the

[placement] section.

3. Populate the nova-api database:

su -s /bin/sh -c

nova

Note: Ignore any deprecation messages in this output.

4. Register the cell® database:

su -s /bin/sh -c

nova

5. Create the celll cell:

su -s /bin/sh -c
~" nova

6. Populate the nova database:

su -s /bin/sh -c

nova

7. Verify nova cellO and celll are registered correctly:

su -s /bin/sh -c

nova

—

(continues on next page)

3.2. Installation

94

https://docs.openstack.org/placement/yoga/install/

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Finalize installation

* Restart the Compute services:

service nova-api restart

service nova-scheduler restart
service nova-conductor restart
service nova-novncproxy restart

Install and configure controller node for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Compute service, code-named nova, on the con-
troller node.

Prerequisites

Before you install and configure the Compute service, you must create databases, service credentials, and
API endpoints.

1. To create the databases, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl -u root -p

Create the nova_api, nova, and nova_cell0 databases:

Grant proper access to the databases:

(continues on next page)

3.2. Installation 95

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Replace NOVA_DBPASS with a suitable password.
 Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. Create the Compute service credentials:

¢ Create the nova user:

openstack user create --domain default --password-prompt nova

¢ Add the admin role to the nova user:

openstack role add --project service --user nova admin

Note: This command provides no output.

* Create the nova service entity:

openstack service create --name nova
--description compute

(continues on next page)

3.2. Installation 96

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

4. Create the Compute API service endpoints:

openstack endpoint create --region RegionOne
compute public http://controller:8774/v2.1

openstack endpoint create --region RegionOne
compute internal http://controller:8774/v2.1

openstack endpoint create --region RegionOne
compute admin http://controller:8774/v2.1

(continues on next page)

3.2. Installation 97

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

5. Install Placement service and configure user and endpoints:

* Refer to the Placement service install guide for more information.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

Note: As of the Newton release, SUSE OpenStack packages are shipped with the upstream default
configuration files. For example, /etc/nova/nova.conf has customizations in /etc/nova/nova.
conf.d/010-nova.conf. While the following instructions modify the default configuration file, adding
a new file in /etc/nova/nova.conf.d achieves the same result.

1. Install the packages:

zypper install
openstack-nova-api
openstack-nova-scheduler
openstack-nova-conductor
openstack-nova-novncproxy
iptables

2. Edit the /etc/nova/nova.conf file and complete the following actions:

* In the [DEFAULT] section, enable only the compute and metadata APIs:

In the [api_database] and [database] sections, configure database access:

(continues on next page)

3.2. Installation 98

https://docs.openstack.org/placement/yoga/install/install-obs.html#configure-user-and-endpoints

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Replace NOVA_DBPASS with the password you chose for the Compute databases.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [api] and [keystone_authtoken] sections, configure Identity service access:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [service_user] section, configure service user tokens:

(continues on next page)

3.2. Installation 99

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

* Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

* In the [vnc] section, configure the VNC proxy to use the management interface IP address
of the controller node:

* In the [glance] section, configure the location of the Image service API:

* In the [oslo_concurrency] section, configure the lock path:

* Inthe [placement] section, configure access to the Placement service:

Replace PLACEMENT_PASS with the password you choose for the placement service user
created when installing Placement. Comment out or remove any other options in the
[placement] section.

3.2. Installation 100

https://docs.openstack.org/neutron/yoga/install/controller-install-obs.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/neutron/yoga/install/controller-install-obs.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/placement/yoga/install/

Nova Documentation, Release 25.3.1.dev38

3. Populate the nova-api database:

su -s /bin/sh -c nova
Note: Ignore any deprecation messages in this output.
4. Register the cell® database:
su -s /bin/sh -c nova
5. Create the celll cell:
su -s /bin/sh -c
~" nova
6. Populate the nova database:
su -s /bin/sh -c nova

7. Verify nova cellO and celll are registered correctly:

su -s /bin/sh -c

nova

3.2. Installation

101

Nova Documentation, Release 25.3.1.dev38

Finalize installation

* Start the Compute services and configure them to start when the system boots:

systemctl enable
openstack-nova-api.service
openstack-nova-scheduler.service
openstack-nova-conductor.service
openstack-nova-novncproxy.service

systemctl start
openstack-nova-api.service
openstack-nova-scheduler.service
openstack-nova-conductor.service
openstack-nova-novncproxy.service

Install and configure controller node for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Compute service, code-named nova, on the con-
troller node.

Prerequisites

Before you install and configure the Compute service, you must create databases, service credentials, and
API endpoints.

1. To create the databases, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysql -u root -p

¢ Create the nova_api, nova, and nova_cell0 databases:

Grant proper access to the databases:

(continues on next page)

3.2. Installation 102

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Replace NOVA_DBPASS with a suitable password.
¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. Create the Compute service credentials:

¢ Create the nova user:

openstack user create --domain default --password-prompt nova

Add the admin role to the nova user:

openstack role add --project service --user nova admin

Note: This command provides no output.

* Create the nova service entity:

openstack service create --name nova
--description compute

(continues on next page)

3.2. Installation 103

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

4. Create the Compute API service endpoints:

openstack endpoint create --region RegionOne
compute public http://controller:8774/v2.1

openstack endpoint create --region RegionOne
compute internal http://controller:8774/v2.1

openstack endpoint create --region RegionOne
compute admin http://controller:8774/v2.1

(continues on next page)

3.2. Installation 104

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

5. Install Placement service and configure user and endpoints:

* Refer to the Placement service install guide for more information.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

yum install openstack-nova-api openstack-nova-conductor
openstack-nova-novncproxy openstack-nova-scheduler

2. Edit the /etc/nova/nova.conf file and complete the following actions:

* In the [DEFAULT] section, enable only the compute and metadata APIs:

* Inthe [api_database] and [database] sections, configure database access:

Replace NOVA_DBPASS with the password you chose for the Compute databases.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

3.2. Installation 105

https://docs.openstack.org/placement/yoga/install/install-rdo.html#configure-user-and-endpoints

Nova Documentation, Release 25.3.1.dev38

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [api] and [keystone_authtoken] sections, configure Identity service access:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [service_user] section, configure service user tokens:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [DEFAULT] section, configure the my_ip option to use the management interface IP
address of the controller node:

* Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

* In the [vnc] section, configure the VNC proxy to use the management interface IP address
of the controller node:

3.2. Installation 106

https://docs.openstack.org/neutron/yoga/install/compute-install-rdo.html
https://docs.openstack.org/neutron/yoga/install/compute-install-rdo.html

Nova Documentation, Release 25.3.1.dev38

In the [glance] section, configure the location of the Image service API:

* In the [oslo_concurrency] section, configure the lock path:

* In the [placement] section, configure access to the Placement service:

Replace PLACEMENT_PASS with the password you choose for the placement service user
created when installing Placement. Comment out or remove any other options in the
[placement] section.

3. Populate the nova-api database:

su -s /bin/sh -c nova

Note: Ignore any deprecation messages in this output.

4. Register the cell® database:

su -s /bin/sh -c nova

5. Create the celll cell:

su -s /bin/sh -c
" nova

6. Populate the nova database:

3.2. Installation 107

https://docs.openstack.org/placement/yoga/install/

Nova Documentation, Release 25.3.1.dev38

su -s /bin/sh -c nova

7. Verify nova cell0 and celll are registered correctly:

su -s /bin/sh -c nova

Finalize installation

* Start the Compute services and configure them to start when the system boots:

systemctl enable
openstack-nova-api.service
openstack-nova-scheduler.service
openstack-nova-conductor.service
openstack-nova-novncproxy.service

systemctl start
openstack-nova-api.service
openstack-nova-scheduler.service
openstack-nova-conductor.service
openstack-nova-novncproxy.service

3.2.1.4 Install and configure a compute node

This section describes how to install and configure the Compute service on a compute node for Ubuntu,
openSUSE and SUSE Linux Enterprise, and Red Hat Enterprise Linux and CentOS.

The service supports several hypervisors to deploy instances or virtual machines (VMs). For simplicity,
this configuration uses the Quick EMUIator (QEMU) hypervisor with the kernel-based VM (KVM) ex-
tension on compute nodes that support hardware acceleration for virtual machines. On legacy hardware,
this configuration uses the generic QEMU hypervisor. You can follow these instructions with minor
modifications to horizontally scale your environment with additional compute nodes.

3.2. Installation 108

Nova Documentation, Release 25.3.1.dev38

Note: This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion to the first compute node in the example architectures section. Each additional compute node
requires a unique IP address.

Install and configure a compute node for Ubuntu

This section describes how to install and configure the Compute service on a compute node. The service
supports several hypervisors to deploy instances or virtual machines (VMs). For simplicity, this config-
uration uses the Quick EMUlator (QEMU) hypervisor with the kernel-based VM (KVM) extension on
compute nodes that support hardware acceleration for virtual machines. On legacy hardware, this config-
uration uses the generic QEMU hypervisor. You can follow these instructions with minor modifications
to horizontally scale your environment with additional compute nodes.

Note: This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion to the first compute node in the example architectures section. Each additional compute node
requires a unique IP address.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt install nova-compute

2. Edit the /etc/nova/nova. conf file and complete the following actions:

* In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [api] and [keystone_authtoken] sections, configure Identity service access:

[api]

(continues on next page)

3.2. Installation 109

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [service_user] section, configure service user tokens:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your compute node, typically 10.0.0.31 for the first node in the example
architecture.

* Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

* In the [vnc] section, enable and configure remote console access:

(continues on next page)

3.2. Installation 110

https://docs.openstack.org/neutron/yoga/install/compute-install-ubuntu.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/neutron/yoga/install/compute-install-ubuntu.html#configure-the-compute-service-to-use-the-networking-service

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

The server component listens on all IP addresses and the proxy component only listens on the
management interface IP address of the compute node. The base URL indicates the location
where you can use a web browser to access remote consoles of instances on this compute
node.

Note: If the web browser to access remote consoles resides on a host that cannot resolve
the controller hostname, you must replace controller with the management interface
IP address of the controller node.

* In the [glance] section, configure the location of the Image service API:

* In the [oslo_concurrency] section, configure the lock path:

* In the [placement] section, configure the Placement API:

Replace PLACEMENT_PASS with the password you choose for the placement user in the
Identity service. Comment out any other options in the [placement] section.

3.2. Installation 111

Nova Documentation, Release 25.3.1.dev38

Finalize installation

1. Determine whether your compute node supports hardware acceleration for virtual machines:

egrep -cC /proc/cpuinfo

If this command returns a value of one or greater, your compute node supports hardware ac-
celeration which typically requires no additional configuration.

If this command returns a value of zero, your compute node does not support hardware accelera-
tion and you must configure 1ibvirt to use QEMU instead of KVM.

e Edit the [1ibvirt] section in the /etc/nova/nova-compute. conf file as follows:

2. Restart the Compute service:

service nova-compute restart

Note: If the nova-compute service fails to start, check /var/log/nova/nova-compute.log. The
error message AMQP server on controller:5672 is unreachable likely indicates that the fire-
wall on the controller node is preventing access to port 5672. Configure the firewall to open port 5672
on the controller node and restart nova-compute service on the compute node.

Add the compute node to the cell database

Important: Run the following commands on the controller node.

1. Source the admin credentials to enable admin-only CLI commands, then confirm there are compute
hosts in the database:

admin-openrc
openstack compute service list --service nova-compute
o
) o
o
o
o

2. Discover compute hosts:

3.2. Installation 112

Nova Documentation, Release 25.3.1.dev38

su -s /bin/sh -c nova
o
.
Note: When you add new compute nodes, you must run nova-manage cell_v2

discover_hosts on the controller node to register those new compute nodes. Alternatively, you
can set an appropriate interval in /etc/nova/nova.conf:

[scheduler]

Install and configure a compute node for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Compute service on a compute node. The service
supports several hypervisors to deploy instances or virtual machines (VMs). For simplicity, this config-
uration uses the Quick EMUlator (QEMU) hypervisor with the kernel-based VM (KVM) extension on
compute nodes that support hardware acceleration for virtual machines. On legacy hardware, this config-
uration uses the generic QEMU hypervisor. You can follow these instructions with minor modifications
to horizontally scale your environment with additional compute nodes.

Note: This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion to the first compute node in the example architectures section. Each additional compute node
requires a unique IP address.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

yum install openstack-nova-compute

2. Edit the /etc/nova/nova. conf file and complete the following actions:

3.2. Installation 113

Nova Documentation, Release 25.3.1.dev38

* In the [DEFAULT] section, enable only the compute and metadata APIs:

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [api] and [keystone_authtoken] sections, configure Identity service access:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [service_user] section, configure service user tokens:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

3.2. Installation 114

Nova Documentation, Release 25.3.1.dev38

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your compute node, typically 10.0.0.31 for the first node in the example
architecture.

* Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

* In the [vnc] section, enable and configure remote console access:

The server component listens on all IP addresses and the proxy component only listens on the
management interface IP address of the compute node. The base URL indicates the location
where you can use a web browser to access remote consoles of instances on this compute
node.

Note: If the web browser to access remote consoles resides on a host that cannot resolve
the controller hostname, you must replace controller with the management interface
IP address of the controller node.

* In the [glance] section, configure the location of the Image service API:

In the [oslo_concurrency] section, configure the lock path:

In the [placement] section, configure the Placement API:

(continues on next page)

3.2. Installation 115

https://docs.openstack.org/neutron/yoga/install/compute-install-rdo.html#configure-the-compute-service-to-use-the-networking-service
https://docs.openstack.org/neutron/yoga/install/compute-install-rdo.html#configure-the-compute-service-to-use-the-networking-service

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Replace PLACEMENT_PASS with the password you choose for the placement user in the
Identity service. Comment out any other options in the [placement] section.

Finalize installation

1. Determine whether your compute node supports hardware acceleration for virtual machines:

egrep -cC /proc/cpuinfo

If this command returns a value of one or greater, your compute node supports hardware ac-
celeration which typically requires no additional configuration.

If this command returns a value of zero, your compute node does not support hardware accelera-
tion and you must configure 1ibvirt to use QEMU instead of KVM.

e Edit the [1ibvirt] section in the /etc/nova/nova. conf file as follows:

2. Start the Compute service including its dependencies and configure them to start automatically
when the system boots:

systemctl enable libvirtd.service openstack-nova-compute.service
systemctl start libvirtd.service openstack-nova-compute.service

Note: If the nova-compute service fails to start, check /var/log/nova/nova-compute.log. The
error message AMQP server on controller:5672 is unreachable likely indicates that the fire-
wall on the controller node is preventing access to port 5672. Configure the firewall to open port 5672
on the controller node and restart nova-compute service on the compute node.

Add the compute node to the cell database

Important: Run the following commands on the controller node.

1. Source the admin credentials to enable admin-only CLI commands, then confirm there are compute
hosts in the database:

admin-openrc

openstack compute service list --service nova-compute

(continues on next page)

3.2. Installation 116

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

2. Discover compute hosts:

su -s /bin/sh -c nova
o
<
Note: When you add new compute nodes, you must run nova-manage cell_v2

discover_hosts on the controller node to register those new compute nodes. Alternatively, you
can set an appropriate interval in /etc/nova/nova.conf:

Install and configure a compute node for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Compute service on a compute node. The service
supports several hypervisors to deploy instances or virtual machines (VMs). For simplicity, this config-
uration uses the Quick EMUlator (QEMU) hypervisor with the kernel-based VM (KVM) extension on
compute nodes that support hardware acceleration for virtual machines. On legacy hardware, this config-
uration uses the generic QEMU hypervisor. You can follow these instructions with minor modifications
to horizontally scale your environment with additional compute nodes.

Note: This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion to the first compute node in the example architectures section. Each additional compute node
requires a unique IP address.

3.2. Installation 117

Nova Documentation, Release 25.3.1.dev38

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

zypper install openstack-nova-compute genisoimage gemu-kvm libvirt

2. Edit the /etc/nova/nova. conf file and complete the following actions:

* In the [DEFAULT] section, enable only the compute and metadata APIs:

In the [DEFAULT] section, set the compute_driver:

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [api] and [keystone_authtoken] sections, configure Identity service access:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

3.2. Installation 118

Nova Documentation, Release 25.3.1.dev38

Note: Comment out or remove any other options in the [keystone_authtoken] section.

* In the [service_user] section, configure service user tokens:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [DEFAULT] section, configure the my_ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management net-
work interface on your compute node, typically 10.0.0. 31 for the first node in the example
architecture.

* Configure the [neutron] section of /etc/nova/nova.conf. Refer to the Networking service
install guide for more details.

* In the [vnc] section, enable and configure remote console access:

The server component listens on all IP addresses and the proxy component only listens on the
management interface IP address of the compute node. The base URL indicates the location
where you can use a web browser to access remote consoles of instances on this compute
node.

Note: If the web browser to access remote consoles resides on a host that cannot resolve
the controller hostname, you must replace controller with the management interface
IP address of the controller node.

* In the [glance] section, configure the location of the Image service API:

3.2. Installation 119

https://docs.openstack.org/neutron/yoga/install/compute-install-obs.html
https://docs.openstack.org/neutron/yoga/install/compute-install-obs.html

Nova Documentation, Release 25.3.1.dev38

In the [oslo_concurrency] section, configure the lock path:

* In the [placement] section, configure the Placement API:

Replace PLACEMENT_PASS with the password you choose for the placement user in the
Identity service. Comment out any other options in the [placement] section.

3. Ensure the kernel module nbd is loaded.

modprobe nbd

4. Ensure the module loads on every boot by adding nbd to the /etc/modules-load.d/nbd.conf
file.

Finalize installation

1. Determine whether your compute node supports hardware acceleration for virtual machines:

egrep -cC /proc/cpuinfo

If this command returns a value of one or greater, your compute node supports hardware ac-
celeration which typically requires no additional configuration.

If this command returns a value of zero, your compute node does not support hardware accelera-
tion and you must configure libvirt to use QEMU instead of KVM.

e Edit the [1ibvirt] section in the /etc/nova/nova. conf file as follows:

2. Start the Compute service including its dependencies and configure them to start automatically
when the system boots:

3.2. Installation 120

Nova Documentation, Release 25.3.1.dev38

systemctl enable libvirtd.service openstack-nova-compute.service
systemctl start libvirtd.service openstack-nova-compute.service

Note: If the nova-compute service fails to start, check /var/log/nova/nova-compute.log. The
error message AMQP server on controller:5672 is unreachable likely indicates that the fire-
wall on the controller node is preventing access to port 5672. Configure the firewall to open port 5672
on the controller node and restart nova-compute service on the compute node.

Add the compute node to the cell database

Important: Run the following commands on the controller node.

1. Source the admin credentials to enable admin-only CLI commands, then confirm there are compute
hosts in the database:

admin-openrc

openstack compute service list --service nova-compute

2. Discover compute hosts:

su -s /bin/sh -c nova
<
.
o
Note: When you add new compute nodes, you must run nova-manage cell_v2

discover_hosts on the controller node to register those new compute nodes. Alternatively, you
can set an appropriate interval in /etc/nova/nova.conf:

3.2. Installation 121

Nova Documentation, Release 25.3.1.dev38

[scheduler]

3.2.1.5 Verify operation

Verify operation of the Compute service.

Note: Perform these commands on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

2. List service components to verify successful launch and registration of each process:

openstack compute service list

Note: This output should indicate two service components enabled on the controller node and
one service component enabled on the compute node.

3. List API endpoints in the Identity service to verify connectivity with the Identity service:

Note: Below endpoints list may differ depending on the installation of OpenStack components.

openstack catalog list

(continues on next page)

3.2. Installation 122

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Note: Ignore any warnings in this output.

4. List images in the Image service to verify connectivity with the Image service:

openstack image list

5. Check the cells and placement API are working successfully and that other necessary prerequisites
are in place:

nova-status upgrade check

(continues on next page)

3.2. Installation 123

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

3.3 Deployment Considerations

There is information you might want to consider before doing your deployment, especially if it is going
to be a larger deployment. For smaller deployments the defaults from the install guide will be sufficient.

* Compute Driver Features Supported: While the majority of nova deployments use libvirt/kvm,
you can use nova with other compute drivers. Nova attempts to provide a unified feature set across
these, however, not all features are implemented on all backends, and not all features are equally
well tested.

— Feature Support by Use Case: A view of what features each driver supports based on whats
important to some large use cases (General Purpose Cloud, NFV Cloud, HPC Cloud).

— Feature Support full list: A detailed dive through features in each compute driver backend.

* Cells v2 configuration: For large deployments, cells v2 cells allow sharding of your compute en-
vironment. Upfront planning is key to a successful cells v2 layout.

* Running nova-api on wsgi: Considerations for using a real WSGI container instead of the baked-in
eventlet web server.

3.3. Deployment Considerations 124

Nova Documentation, Release 25.3.1.dev38

3.3.1 Feature Classification

This document presents a matrix that describes which features are ready to be used and which features
are works in progress. It includes links to relevant documentation and functional tests.

Warning: Please note: this is a work in progress!

3.3.1.1 Aims
Users want reliable, long-term solutions for their use cases. The feature classification matrix identifies
which features are complete and ready to use, and which should be used with caution.

The matrix also benefits developers by providing a list of features that require further work to be consid-
ered complete.

Below is a matrix for a selection of important verticals:
* General Purpose Cloud Features
* NFV Cloud Features
* HPC Cloud Features

For more details on the concepts in each matrix, please see Notes on Concepts.

3.3.1.2 General Purpose Cloud Features
This is a summary of the key features dev/test clouds, and other similar general purpose clouds need, and
it describes their current state.

Below there are sections on NFV and HPC specific features. These look at specific features and scenarios
that are important to those more specific sets of use cases. Summary

3.3. Deployment Considerations 125

Nova Documentation, Release 25.3.1.dev38

Feature Ma- | Hypertroniclib- lib- lib- lib- IBM | VMwalisM
tu- |V Cl | virt+kvm | virt+kvmvirt+virfudeezeviriudens | Cl zVM
rity | Cl (x86 & | (s390x) CT VM erVM Cl

ppc64) Cl

Create com-| v’ ? v ? v v v v v

Server plete

and Delete

Server

Snapshot com-| ? ? v ? v v v ? v

Server plete

Server com-| v’ ? v ? v v v v v

power ops plete

Rebuild com-| v’ ? v ? v v X v X

Server plete

Resize com-| v’ ? v ? v v X v X

Server plete

Volume Op- | com-| v X v ? v v v v X

erations plete

Custom disk | com-| v’ n | X v ? X v X v X

configu- plete

rations on

boot

Custom neu- | com-| v/ X v ? ? ? v v v

tron config- | plete

urations on

boot

Pause a | com-| v X v ? X v X v v

Server plete

Suspend a | com-| v X v ? v v X v X

Server plete

Server con- | com-| v X v ? ? ? v v v

sole output plete

Server com-| v’ X v ? v v X v X

Rescue plete

Server Con- | com-| v v v ? X v v v v

fig Drive plete

Server ex- |V X v ? X X X X X

Change per-

Password i-
men-
tal

Server com-| v’ X v ? X v v X X

Shelve and | plete

Unshelve

Details

* Create Server and Delete Server This includes creating a server, and deleting a server. Specifi-
cally this is about booting a server from a glance image using the default disk and network config-

uration.

3.3. Deployment Considerations

126

https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/NovaVMware/Minesweeper
https://wiki.openstack.org/wiki/NovaVMware/Minesweeper
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_z/VM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_z/VM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_z/VM_CI

Nova Documentation, Release 25.3.1.dev38

info:
— Maturity: complete
— API Docs: https://docs.openstack.org/api-ref/compute/#servers-servers
— Admin Docs: https://docs.openstack.org/nova/latest/user/launch-instances.html
— Tempest tests: 9a438d88-10c6-4bcd-8b5b-5b6e25e1346f, 585e934c-448e-43c4-acbf-
d06a9b899997
drivers:

— libvirt+kvim (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: partial
— libvirt+virtuozzo VM: partial
— VMware CI: complete
— Hyper-V CI: complete
— Ironic CI: unknown
— IBM PowerVM CI: complete
— IBM zVM CI: complete
* Snapshot Server This is creating a glance image from the currently running server.
info:
— Maturity: complete

- API Docs: https://docs.openstack.org/api-ref/compute/ ?expanded=
#servers-run-an-action-servers-action

— Admin Docs: https://docs.openstack.org/glance/latest/admin/troubleshooting.html
— Tempest tests: aaacd1d0-55a2-4ce8-818a-b5439df8adc9
drivers:
— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: partial
— libvirt+virtuozzo VM: partial
— VMware CI: unknown
— Hyper-V CI: unknown
— Ironic CI: unknown
— IBM PowerVM CI: complete
— IBM zVM CI: complete
* Server power ops This includes reboot, shutdown and start.

info:

3.3. Deployment Considerations 127

https://docs.openstack.org/api-ref/compute/#servers-servers
https://docs.openstack.org/nova/latest/user/launch-instances.html
https://github.com/openstack/tempest/search?q=9a438d88-10c6-4bcd-8b5b-5b6e25e1346f
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/glance/latest/admin/troubleshooting.html
https://github.com/openstack/tempest/search?q=aaacd1d0-55a2-4ce8-818a-b5439df8adc9

Nova Documentation, Release 25.3.1.dev38

— Maturity: complete

- API Docs: https://docs.openstack.org/api-ref/compute/ ?expanded=
#servers-run-an-action-servers-action

— Admin Docs:

— Tempest tests: 2cblbaf6-ac8d-4429-bf0d-ba8a0ba53e32, af8eafd4-38a7-4a4b-bdbc-
75145a580560

drivers:
— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: partial
— libvirt+virtuozzo VM: partial
— VMware CI: complete
— Hyper-V CI: complete
— Ironic CI: unknown
— IBM PowerVM CI: complete
— IBM zVM CI: complete

* Rebuild Server You can rebuild a server, optionally specifying the glance image to use.

info:
— Maturity: complete
- API Docs: https://docs.openstack.org/api-ref/compute/ ?expanded=
#servers-run-an-action-servers-action
— Admin Docs:
— Tempest tests: aaa6bcdf3-55a7-461a-add9-1c8596b9%9a07c
drivers:

— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: partial
— libvirt+virtuozzo VM: partial
— VMware CI: complete
— Hyper-V CI: complete
— Ironic CI: unknown
— IBM PowerVM CI: missing
— IBM zVM CI: missing
* Resize Server You resize a server to a new flavor, then confirm or revert that operation.

info:

3.3. Deployment Considerations 128

https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://github.com/openstack/tempest/search?q=2cb1baf6-ac8d-4429-bf0d-ba8a0ba53e32
https://github.com/openstack/tempest/search?q=af8eafd4-38a7-4a4b-bdbc-75145a580560
https://github.com/openstack/tempest/search?q=af8eafd4-38a7-4a4b-bdbc-75145a580560
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://github.com/openstack/tempest/search?q=aaa6cdf3-55a7-461a-add9-1c8596b9a07c

Nova Documentation, Release 25.3.1.dev38

— Maturity: complete

- API Docs: https://docs.openstack.org/api-ref/compute/ ?expanded=
#servers-run-an-action-servers-action

— Admin Docs:

— Tempest tests: 1499262a-9328-4eda-9068-dblac57498d2
drivers:

— libvirt+kvm (x86 & ppc64): complete

— libvirt+kvm (s390x): unknown

— libvirt+virtuozzo CT: complete

— libvirt+virtuozzo VM: partial

— VMware CI: complete

— Hyper-V CI: complete

— Ironic CI: unknown

— IBM PowerVM CI: missing

— IBM zVM CI: missing

* Volume Operations This is about attaching volumes, detaching volumes.

info:
— Maturity: complete
- API Docs: https://docs.openstack.org/api-ref/compute/
#servers-with-volume-attachments-servers-os-volume-attachments
— Admin Docs: https://docs.openstack.org/cinder/latest/admin/
blockstorage-manage-volumes.html
— Tempest tests: 1f42874-7db5-4487-a8e1-ddda5tb5288d
drivers:

— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown

— libvirt+virtuozzo CT: complete

— libvirt+virtuozzo VM: complete

— VMware CI: complete

— Hyper-V CI: complete

— Ironic CI: missing

— IBM PowerVM CI: complete

— IBM zVM CI: missing

* Custom disk configurations on boot This is about supporting all the features of BDMv2. This
includes booting from a volume, in various ways, and specifying a custom set of ephemeral disks.
Note some drivers only supports part of what the API allows.

3.3. Deployment Considerations 129

https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://docs.openstack.org/api-ref/compute/?expanded=#servers-run-an-action-servers-action
https://github.com/openstack/tempest/search?q=1499262a-9328-4eda-9068-db1ac57498d2
https://docs.openstack.org/api-ref/compute/#servers-with-volume-attachments-servers-os-volume-attachments
https://docs.openstack.org/api-ref/compute/#servers-with-volume-attachments-servers-os-volume-attachments
https://docs.openstack.org/cinder/latest/admin/blockstorage-manage-volumes.html
https://docs.openstack.org/cinder/latest/admin/blockstorage-manage-volumes.html
https://github.com/openstack/tempest/search?q=fff42874-7db5-4487-a8e1-ddda5fb5288d

Nova Documentation, Release 25.3.1.dev38

info:
— Maturity: complete
- API Docs: https://docs.openstack.org/api-ref/compute/?expanded=
create-image-createimage-action-detail#create-server
— Admin Docs: https://docs.openstack.org/nova/latest/user/block-device-mapping.html
— Tempest tests: 557cd2c2-4eb8-4dce-98be-f86765ff311b, 36¢34c67-7b54-4b59-b188-
02a2f458a63b
drivers:

— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown

— libvirt+virtuozzo CT: missing

libvirt+virtuozzo VM: complete

VMware CI: partial

Hyper-V CI: complete (updated in N release)

Ironic CI: missing
— IBM PowerVM CI: missing
— IBM zVM CI: missing

* Custom neutron configurations on boot This is about supporting booting from one or more
neutron ports, or all the related short cuts such as booting a specified network. This does not
include SR-IOV or similar, just simple neutron ports.

info:
— Maturity: complete
— API Docs: https://docs.openstack.org/api-ref/compute/ ?&expanded=create-server-detail
— Admin Docs:
— Tempest tests: 2f320127-95¢7-4977-92d2-bc5aec602fb4
drivers:

— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: unknown

— libvirt+virtuozzo VM: unknown

VMware CI: partial

Hyper-V CI: partial

Ironic CI: missing

IBM PowerVM CI: complete
IBM zVM CI: partial

3.3. Deployment Considerations 130

https://docs.openstack.org/api-ref/compute/?expanded=create-image-createimage-action-detail#create-server
https://docs.openstack.org/api-ref/compute/?expanded=create-image-createimage-action-detail#create-server
https://docs.openstack.org/nova/latest/user/block-device-mapping.html
https://github.com/openstack/tempest/search?q=557cd2c2-4eb8-4dce-98be-f86765ff311b, 36c34c67-7b54-4b59-b188-02a2f458a63b
https://github.com/openstack/tempest/search?q=557cd2c2-4eb8-4dce-98be-f86765ff311b, 36c34c67-7b54-4b59-b188-02a2f458a63b
https://docs.openstack.org/api-ref/compute/?&expanded=create-server-detail
https://github.com/openstack/tempest/search?q=2f3a0127-95c7-4977-92d2-bc5aec602fb4

Nova Documentation, Release 25.3.1.dev38

* Pause a Server This is pause and unpause a server, where the state is held in memory.
info:
— Maturity: complete
— API Docs: https://docs.openstack.org/api-ref/compute/ 7#pause-server-pause-action
— Admin Docs:
— Tempest tests: bd61a9fd-062f-4670-972b-2d6c3e3b9e73
drivers:
— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: missing
— libvirt+virtuozzo VM: partial
— VMware CI: partial
— Hyper-V CI: complete
— Ironic CI: missing
— IBM PowerVM CI: missing
— IBM zVM CI: complete

* Suspend a Server This suspend and resume a server, where the state is held on disk.

info:
— Maturity: complete
- API Docs: https://docs.openstack.org/api-ref/compute/ ?expanded=
suspend-server-suspend-action-detail
— Admin Docs:
— Tempest tests: 0d8ee21e-b749-462d-83da-b85b41c86¢7f
drivers:

— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: partial

— libvirt+virtuozzo VM: partial

VMware CI: complete

Hyper-V CI: complete

Ironic CI: missing
IBM PowerVM CI: missing
IBM zVM CI: missing

* Server console output This gets the current server console output.

info:

3.3. Deployment Considerations 131

https://docs.openstack.org/api-ref/compute/?#pause-server-pause-action
https://github.com/openstack/tempest/search?q=bd61a9fd-062f-4670-972b-2d6c3e3b9e73
https://docs.openstack.org/api-ref/compute/?expanded=suspend-server-suspend-action-detail
https://docs.openstack.org/api-ref/compute/?expanded=suspend-server-suspend-action-detail
https://github.com/openstack/tempest/search?q=0d8ee21e-b749-462d-83da-b85b41c86c7f

Nova Documentation, Release 25.3.1.dev38

— Maturity: complete

- API Docs: https://docs.openstack.org/api-ref/compute/
#show-console-output-os-getconsoleoutput-action

— Admin Docs:

— Tempest tests: 4b8867e6-fffa-4d54-b1d1-6fdda57be2f3
drivers:

— libvirt+kvm (x86 & ppc64): complete

— libvirt+kvm (s390x): unknown

— libvirt+virtuozzo CT: unknown

— libvirt+virtuozzo VM: unknown

— VMware CI: partial

— Hyper-V CI: partial

— Ironic CI: missing

— IBM PowerVM CI: complete

— IBM zVM CI: complete

» Server Rescue This boots a server with a new root disk from the specified glance image to allow
a user to fix a boot partition configuration, or similar.

info:
— Maturity: complete
— API Docs: https://docs.openstack.org/api-ref/compute/#rescue-server-rescue-action
— Admin Docs:
— Tempest tests: d032140-714c-42e4-a8fd-adcd8df06be6, 70cdb8al-89f8-437d-9448-
88441d82bf46
drivers:

— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown

— libvirt+virtuozzo CT: partial

— libvirt+virtuozzo VM: complete

— VMware CI: complete

— Hyper-V CI: partial

— Ironic CI: missing

— IBM PowerVM CI: missing

— IBM zVM CI: missing

* Server Config Drive This ensures the user data provided by the user when booting a server is
available in one of the expected config drive locations.

info:

3.3. Deployment Considerations 132

https://docs.openstack.org/api-ref/compute/#show-console-output-os-getconsoleoutput-action
https://docs.openstack.org/api-ref/compute/#show-console-output-os-getconsoleoutput-action
https://github.com/openstack/tempest/search?q=4b8867e6-fffa-4d54-b1d1-6fdda57be2f3
https://docs.openstack.org/api-ref/compute/#rescue-server-rescue-action
https://github.com/openstack/tempest/search?q=fd032140-714c-42e4-a8fd-adcd8df06be6
https://github.com/openstack/tempest/search?q=70cdb8a1-89f8-437d-9448-8844fd82bf46
https://github.com/openstack/tempest/search?q=70cdb8a1-89f8-437d-9448-8844fd82bf46

Nova Documentation, Release 25.3.1.dev38

— Maturity: complete
— API Docs: https://docs.openstack.org/api-ref/compute/#create-server
— Admin Docs: https://docs.openstack.org/nova/latest/admin/config-drive.html
— Tempest tests: 7{ff3tb3-91d8-4fd0-bd7d-0204f1f180ba
drivers:
— libvirt+kvm (x86 & ppc64): complete
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: missing

— libvirt+virtuozzo VM: partial

VMware CI: complete

Hyper-V CI: complete

Ironic CI: partial

IBM PowerVM CI: complete

IBM zVM CI: complete

» Server Change Password The ability to reset the password of a user within the server.

info:
— Maturity: experimental
- API Docs: https://docs.openstack.org/api-ref/compute/
#change-administrative-password-changepassword-action
— Admin Docs:
— Tempest tests: 6158df09-4b82-4ab3-af6d-29cf36at858d
drivers:

— libvirt+kvm (x86 & ppc64): partial
— libvirt+kvm (s390x): unknown

— libvirt+virtuozzo CT: missing

— libvirt+virtuozzo VM: missing

— VMware CI: missing

— Hyper-V CI: partial

— Ironic CI: missing

— IBM PowerVM CI: missing

— IBM zVM CI: missing

* Server Shelve and Unshelve The ability to keep a server logically alive, but not using any cloud
resources. For local disk based instances, this involves taking a snapshot, called offloading.

info:

— Maturity: complete

3.3. Deployment Considerations 133

https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/config-drive.html
https://github.com/openstack/tempest/search?q=7fff3fb3-91d8-4fd0-bd7d-0204f1f180ba
https://docs.openstack.org/api-ref/compute/#change-administrative-password-changepassword-action
https://docs.openstack.org/api-ref/compute/#change-administrative-password-changepassword-action
https://github.com/openstack/tempest/search?q=6158df09-4b82-4ab3-af6d-29cf36af858d

Nova Documentation, Release 25.3.1.dev38

— API Docs: https://docs.openstack.org/api-ref/compute/#shelve-server-shelve-action

— Admin Docs:

— Tempest tests:
9339b627271f

drivers:

1164e700-0af0-4a4c-8792-35909a88743c,c1b6318c-b9da-490b-9c67-

— libvirt+kvm (x86 & ppc64): complete

— libvirt+kvm (s390x): unknown

— libvirt+virtuozzo CT: missing

— libvirt+virtuozzo VM: complete

— VMware CI: missing

— Hyper-V CI: complete

— Ironic CI: missing

— IBM PowerVM CI:

complete

— IBM zVM CI: missing

3.3.1.3 NFV Cloud Features

Network Function Virtualization (NFV) is about virtualizing network node functions into building blocks
that may connect, or chain together to create a particular service. It is common for this workloads needing
bare metal like performance, i.e. low latency and close to line speed performance.

Important: Indeployments older than Train, or in mixed Stein/Train deployments with a rolling upgrade
in progress, unless specifically enabled, live migration is not possible for instances with a NUMA
topology when using the libvirt driver. A NUMA topology may be specified explicitly or can be added
implicitly due to the use of CPU pinning or huge pages. Refer to bug #1289064 for more information.
As of Train, live migration of instances with a NUMA topology when using the libvirt driver is fully

supported.
Summary
Feature Maturity libvirt+kvm (x86 & | libvirt+kvm
ppc64) (s390x)
NUMA Placement experimen- | v’ ?
tal
CPU Pinning Policy experimen- v ?
tal
CPU Pinning Thread Pol- | experimen- | v ?
icy tal

Details

* NUMA Placement Configure placement of instance vCPUs and memory across host NUMA

nodes

3.3. Deployment Considerations

134

https://docs.openstack.org/api-ref/compute/#shelve-server-shelve-action
https://github.com/openstack/tempest/search?q=1164e700-0af0-4a4c-8792-35909a88743c,c1b6318c-b9da-490b-9c67-9339b627271f
https://github.com/openstack/tempest/search?q=1164e700-0af0-4a4c-8792-35909a88743c,c1b6318c-b9da-490b-9c67-9339b627271f
https://bugs.launchpad.net/nova/+bug/1289064
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating

Nova Documentation, Release 25.3.1.dev38

info:
— Maturity: experimental
— API Docs: https://docs.openstack.org/api-ref/compute/#create-server
— Admin Docs: https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#
customizing-instance-cpu-pinning-policies
— Tempest tests: 9a438d88-10c6-4bcd-8bSb-5b6e25e1346f, 585e934c-448e-43c4-acbt-
d06a9b899997
drivers:

— libvirt+kvm (x86 & ppc64): partial
— libvirt+kvm (s390x): unknown
* CPU Pinning Policy Enable/disable binding of instance vCPUs to host CPUs
info:
— Maturity: experimental
— API Docs: https://docs.openstack.org/api-ref/compute/#create-server

— Admin Docs: https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#
customizing-instance-cpu-pinning-policies

— Tempest tests:

drivers:
— libvirt+kvim (x86 & ppc64): partial
— libvirt+kvm (s390x): unknown

* CPU Pinning Thread Policy Configure usage of host hardware threads when pinning is used

info:
— Maturity: experimental
— API Docs: https://docs.openstack.org/api-ref/compute/#create-server
— Admin Docs: https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#
customizing-instance-cpu-pinning-policies
— Tempest tests:
drivers:

— libvirt+kvm (x86 & ppc64): partial

— libvirt+kvm (s390x): unknown

3.3. Deployment Considerations 135

https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://github.com/openstack/tempest/search?q=9a438d88-10c6-4bcd-8b5b-5b6e25e1346f
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies
https://docs.openstack.org/nova/latest/admin/cpu-topologies.html#customizing-instance-cpu-pinning-policies

Nova Documentation, Release 25.3.1.dev38

3.3.1.4 HPC Cloud Features

High Performance Compute (HPC) cloud have some specific needs that are covered in this set of features.
Summary

Fea- Ma- | Hyper-Ironiclib- lib- lib- lib- Pow- | VMw3
ture tu- \" virt+kvm virt+kvm| virt+virtuozad+virtupzdM | Ci
rity Cl (x86 & | (s390x) | CT VM Cl

ppc64)

GPU ex- X ? vl ? v v X X
Passthrougleri-

men-

tal
Virtual | ex- X X v queens ? ? ? X X
GPUs peri-

men-

tal
Details

* GPU Passthrough The PCI passthrough feature in OpenStack allows full access and direct control
of a physical PCI device in guests. This mechanism is generic for any devices that can be attached
to a PCI bus. Correct driver installation is the only requirement for the guest to properly use the
devices.

info:
— Maturity: experimental
— API Docs: https://docs.openstack.org/api-ref/compute/#create-server
— Admin Docs: https://docs.openstack.org/nova/latest/admin/pci-passthrough.html

— Tempest tests: 9a438d88-10c6-4bcd-8bSb-5b6e25e1346f, 585e934c-448e-43c4-acbf-
d06a9b899997

drivers:
— libvirt+kvmm (x86 & ppc64): complete (updated in L release)
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: partial
— libvirt+virtuozzo VM: partial
— VMware CI: missing
— Hyper-V CI: missing
— Ironic: unknown
— PowerVM CI: missing
* Virtual GPUs Attach a virtual GPU to an instance at server creation time
info:

— Maturity: experimental

3.3. Deployment Considerations 136

https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Hyper-V_CI
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/Virtuozzo_Storage_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/ThirdPartySystems/IBM_PowerVM_CI
https://wiki.openstack.org/wiki/NovaVMware/Minesweeper
https://wiki.openstack.org/wiki/NovaVMware/Minesweeper
https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/pci-passthrough.html
https://github.com/openstack/tempest/search?q=9a438d88-10c6-4bcd-8b5b-5b6e25e1346f
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997
https://github.com/openstack/tempest/search?q=585e934c-448e-43c4-acbf-d06a9b899997

Nova Documentation, Release 25.3.1.dev38

— API Docs: https://docs.openstack.org/api-ref/compute/#create-server
— Admin Docs: https://docs.openstack.org/nova/latest/admin/virtual-gpu.html
— Tempest tests:
drivers:
— libvirt+kvm (x86 & ppc64): partial (updated in QUEENS release)
— libvirt+kvm (s390x): unknown
— libvirt+virtuozzo CT: unknown
— libvirt+virtuozzo VM: unknown
— VMware CI: missing
— Hyper-V CI: missing
— Ironic: missing

— PowerVM CI: missing

3.3.1.5 Notes on Concepts

This document uses the following terminology.

Users

These are the users we talk about in this document:

application deployer creates and deletes servers, directly or indirectly using an API
application developer creates images and apps that run on the cloud

cloud operator administers the cloud

self service administrator runs and uses the cloud

Note: This is not an exhaustive list of personas, but rather an indicative set of users.

Feature Group

To reduce the size of the matrix, we organize the features into groups. Each group maps to a set of user
stories that can be validated by a set of scenarios and tests. Typically, this means a set of tempest tests.

This list focuses on API concepts like attach and detach volumes, rather than deployment specific concepts
like attach an iSCSI volume to a KVM based VM.

3.3. Deployment Considerations 137

https://docs.openstack.org/api-ref/compute/#create-server
https://docs.openstack.org/nova/latest/admin/virtual-gpu.html

Nova Documentation, Release 25.3.1.dev38

Deployment

A deployment maps to a specific test environment. We provide a full description of the environment, so
it is possible to reproduce the reported test results for each of the Feature Groups.

This description includes all aspects of the deployment, for example the hypervisor, number of nova-
compute services, storage, network driver, and types of images being tested.

Feature Group Maturity

The Feature Group Maturity rating is specific to the API concepts, rather than specific to a particular
deployment. That detail is covered in the deployment rating for each feature group.

Note: Although having some similarities, this list is not directly related to the Interop effort.

Feature Group ratings:

Incomplete Incomplete features are those that do not have enough functionality to satisfy real world use
cases.

Experimental Experimental features should be used with extreme caution. They are likely to have little
or no upstream testing, and are therefore likely to contain bugs.

Complete For a feature to be considered complete, it must have:
» complete API docs (concept and REST call definition)
* complete Administrator docs
* tempest tests that define if the feature works correctly
* sufficient functionality and reliability to be useful in real world scenarios
* areasonable expectation that the feature will be supported long-term

Complete and Required There are various reasons why a complete feature may be required, but gener-
ally it is when all drivers support that feature. New drivers need to prove they support all required
features before they are allowed in upstream Nova.

Required features are those that any new technology must support before being allowed into tree.
The larger the list, the more features are available on all Nova based clouds.

Deprecated Deprecated features are those that are scheduled to be removed in a future major release of
Nova. If a feature is marked as complete, it should never be deprecated.

If a feature is incomplete or experimental for several releases, it runs the risk of being deprecated
and later removed from the code base.

3.3. Deployment Considerations 138

Nova Documentation, Release 25.3.1.dev38

Deployment Rating for a Feature Group

The deployment rating refers to the state of the tests for each Feature Group on a particular deployment.

Deployment ratings:

Unknown No data is available.

Not Implemented No tests exist.

Implemented Self declared that the tempest tests pass.
Regularly Tested Tested by third party CI.

Checked Tested as part of the check or gate queue.

The eventual goal is to automate this list from a third party CI reporting system, but currently we docu-
ment manual inspections in an ini file. Ideally, we will review the list at every milestone.

3.3.2 Feature Support Matrix

When considering which capabilities should be marked as mandatory the following general guiding prin-

ciples were applied

 Inclusivity - people have shown ability to make effective use of a wide range of virtualization

technologies with broadly varying feature sets. Aiming to keep the requirements as inclusive as
possible, avoids second-guessing what a user may wish to use the cloud compute service for.

Bootstrapping - a practical use case test is to consider that starting point for the compute deploy is
an empty data center with new machines and network connectivity. The look at what are the mini-
mum features required of a compute service, in order to get user instances running and processing
work over the network.

Competition - an early leader in the cloud compute service space was Amazon EC2. A sanity
check for whether a feature should be mandatory is to consider whether it was available in the first
public release of EC2. This had quite a narrow feature set, but none the less found very high usage
in many use cases. So it serves to illustrate that many features need not be considered mandatory
in order to get useful work done.

Reality - there are many virt drivers currently shipped with Nova, each with their own supported
feature set. Any feature which is missing in at least one virt driver that is already in-tree, must
by inference be considered optional until all in-tree drivers support it. This does not rule out
the possibility of a currently optional feature becoming mandatory at a later date, based on other
principles above.

Summary
Feature Status Hyper-V | Ironic | Libvirt KVM
Attach block volume to instance optional v X v
Attach tagged block device to instance optional X X v
Detach block volume from instance optional v X v
Extend block volume attached to instance optional X X v
Attach virtual network interface to instance optional v v v
Attach tagged virtual network interface to instance optional v X ?
Detach virtual network interface from instance optional v v v
3.3. Deployment Considerations 139

Nova Documentation, Release 25.3.1.dev38

Feature Status Hyper-V | Ironic | Libvirt KVM
Set the host in a maintenance mode optional X X X
Evacuate instances from a host optional ? ? v
Rebuild instance optional v v v
Guest instance status mandatory | v’ v v
Guest host uptime optional v X v
Guest host ip optional v X v
Live migrate instance across hosts optional v X X
Force live migration to complete optional X X X
Abort an in-progress or queued live migration optional X X X
Launch instance mandatory | v/ v v
Stop instance CPUs (pause) optional v X v
Reboot instance optional v v v
Rescue instance optional v v ?
Resize instance optional v X v
Restore instance optional v X v
Set instance admin password optional X X ?
Save snapshot of instance disk optional v X v
Suspend instance optional v X v
Swap block volumes optional X X ?
Shutdown instance mandatory | v’ v v
Trigger crash dump optional X v ?
Resume instance CPUs (unpause) optional v X v
uefi boot optional v v v
Device tags optional v X v
quiesce optional X X ?
unquiesce optional X X ?
Attach block volume to multiple instances optional X X ?
Attach encrypted block volume to server optional X X ?
Validate image with trusted certificates optional X X v
File backed memory optional X X ?
Report CPU traits optional X X ?
SR-IOV ports with resource request optional X X X
Boot instance with secure encrypted memory optional X X X
Cache base images for faster instance boot optional v X v
Boot instance with an emulated trusted platform module (TPM) | optional X X X

Details

 Attach block volume to instance Status: optional.

CLI commands:

— nova volume-attach <server> <volume>

Notes: The attach volume operation provides a means to hotplug additional block storage to a
running instance. This allows storage capabilities to be expanded without interruption of service.
In a cloud model it would be more typical to just spin up a new instance with large storage, so the
ability to hotplug extra storage is for those cases where the instance is considered to be more of a

pet than cattle. Therefore this operation is not considered to be mandatory to support.

Driver Support:

3.3. Deployment Considerations

140

Nova Documentation, Release 25.3.1.dev38

— Hyper-V: complete

— Ironic: missing

— Libvirt KVM (aarch64): complete
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing

— Libvirt QEMU (x86): complete

— Libvirt Virtuozzo CT: missing

— Libvirt Virtuozzo VM: complete

— PowerVM: complete Notes: This is not tested for every CI run. Add a powervm:volume-
check comment to trigger a CI job running volume tests.

— VMware vCenter: complete
— zZzVM: missing
» Attach tagged block device to instance Status: optional.
CLI commands:
— nova volume-attach <server> <volume> [--tag <tag>]

Notes: Attach a block device with a tag to an existing server instance. See Device tags for more
information.

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing
* Detach block volume from instance Status: optional.

CLI commands:

3.3. Deployment Considerations 141

Nova Documentation, Release 25.3.1.dev38

— nova volume-detach <server> <volume>
Notes: See notes for attach volume operation.

Driver Support:

Hyper-V: complete

— Ironic: missing

— Libvirt KVM (aarch64): complete
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing

— Libvirt QEMU (x86): complete

— Libvirt Virtuozzo CT: missing

— Libvirt Virtuozzo VM: complete

— PowerVM: complete Notes: This is not tested for every CI run. Add a powervm:volume-
check comment to trigger a CI job running volume tests.

— VMware vCenter: complete
— zVM: missing
* Extend block volume attached to instance Status: optional.
CLI commands:
— cinder extend <volume> <new_size>

Notes: The extend volume operation provides a means to extend the size of an attached volume.
This allows volume size to be expanded without interruption of service. In a cloud model it would
be more typical to just spin up a new instance with large storage, so the ability to extend the size
of an attached volume is for those cases where the instance is considered to be more of a pet than
cattle. Therefore this operation is not considered to be mandatory to support.

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): unknown

— Libvirt KVM (s390x): unknown

— Libvirt KVM (x86): complete

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: missing

— Libvirt Virtuozzo VM: unknown

3.3. Deployment Considerations 142

Nova Documentation, Release 25.3.1.dev38

— PowerVM: complete Notes: This is not tested for every CI run. Add a powervm:volume-
check comment to trigger a CI job running volume tests.

— VMware vCenter: missing
— zVM: missing
 Attach virtual network interface to instance Status: optional.
CLI commands:
— nova interface-attach <server>

Notes: The attach interface operation provides a means to hotplug additional interfaces to a run-
ning instance. Hotplug support varies between guest OSes and some guests require a reboot for
new interfaces to be detected. This operation allows interface capabilities to be expanded without
interruption of service. In a cloud model it would be more typical to just spin up a new instance
with more interfaces.

Driver Support:

— Hyper-V: partial Notes: Works without issue if instance is off. When hotplugging, only
works if using Windows/Hyper-V Server 2016 and the instance is a Generation 2 VM.

— Ironic: complete
— Libvirt KVM (aarch64): complete
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: complete
— VMware vCenter: complete
— zVM: missing
» Attach tagged virtual network interface to instance Status: optional.
CLI commands:
— nova interface-attach <server> [--tag <tag>]

Notes: Attach a virtual network interface with a tag to an existing server instance. See Device tags
for more information.

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): unknown
Libvirt KVM (ppc64): complete

3.3. Deployment Considerations 143

Nova Documentation, Release 25.3.1.dev38

— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: missing

— Libvirt QEMU (x86): complete

— Libvirt Virtuozzo CT: missing

Libvirt Virtuozzo VM: complete

Power VM: missing

VMware vCenter: missing
— zZzVM: missing
* Detach virtual network interface from instance Status: optional.
CLI commands:
— nova interface-detach <server> <port_id>
Notes: See notes for attach-interface operation.

Driver Support:

Hyper-V: complete Notes: Works without issue if instance is off. When hotplugging, only
works if using Windows/Hyper-V Server 2016 and the instance is a Generation 2 VM.

Ironic: complete

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: complete
— VMware vCenter: complete
— zVM: missing
* Set the host in a maintenance mode Status: optional.
CLI commands:
— nova host-update <host>

Notes: This operation allows a host to be placed into maintenance mode, automatically triggering
migration of any running instances to an alternative host and preventing new instances from being
launched. This is not considered to be a mandatory operation to support. The driver methods to
implement are host_maintenance_mode and set_host_enabled.

Driver Support:

3.3. Deployment Considerations 144

Nova Documentation, Release 25.3.1.dev38

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): missing
Libvirt KVM (ppc64): missing

— Libvirt KVM (s390x): missing

— Libvirt KVM (x86): missing

— Libvirt LXC: missing
— Libvirt QEMU (x86): missing
— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: missing
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing

* Evacuate instances from a host Status: optional.

CLI commands:

— nova evacuate <server>
— nova host-evacuate <host>

Notes: A possible failure scenario in a cloud environment is the outage of one of the compute
nodes. In such a case the instances of the down host can be evacuated to another host. It is assumed
that the old host is unlikely ever to be powered back on, otherwise the evacuation attempt will be
rejected. When the instances get moved to the new host, their volumes get re-attached and the
locally stored data is dropped. That happens in the same way as a rebuild. This is not considered
to be a mandatory operation to support.

Driver Support:

Hyper-V: unknown

Ironic: unknown

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): unknown
Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: unknown

— Libvirt QEMU (x86): unknown

— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: missing
— PowerVM: missing

— VMware vCenter: unknown

3.3. Deployment Considerations 145

Nova Documentation, Release 25.3.1.dev38

— zVM: unknown
* Rebuild instance Status: optional.
CLI commands:
— nova rebuild <server> <image>

Notes: A possible use case is additional attributes need to be set to the instance, nova will purge
all existing data from the system and remakes the VM with given information such as metadata
and personalities. Though this is not considered to be a mandatory operation to support.

Driver Support:

Hyper-V: complete

Ironic: complete

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: complete
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: complete
— zVM: unknown
* Guest instance status Status: mandatory.

Notes: Provides realtime information about the power state of the guest instance. Since the power
state is used by the compute manager for tracking changes in guests, this operation is considered
mandatory to support.

Driver Support:
— Hyper-V: complete
— Ironic: complete
— Libvirt KVM (aarch64): complete
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: complete
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete

— Libvirt Virtuozzo VM: complete

3.3. Deployment Considerations 146

Nova Documentation, Release 25.3.1.dev38

— PowerVM: complete
— VMware vCenter: complete
— zVM: complete
* Guest host uptime Status: optional.
Notes: Returns the result of host uptime since power on, its used to report hypervisor status.

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
Libvirt KVM (s390x): complete
Libvirt KVM (x86): complete

Libvirt LXC: complete
Libvirt QEMU (x86): complete

Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: complete
— VMware vCenter: missing
— zVM: complete
* Guest host ip Status: optional.
Notes: Returns the ip of this host, its used when doing resize and migration.

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: complete

— Libvirt QEMU (x86): complete

— Libvirt Virtuozzo CT: complete

— Libvirt Virtuozzo VM: complete
— PowerVM: complete

— VMware vCenter: complete

3.3. Deployment Considerations 147

Nova Documentation, Release 25.3.1.dev38

— zVM: complete
* Live migrate instance across hosts Status: optional.
CLI commands:
— nova live-migration <server>
— nova host-evacuate-live <host>

Notes: Live migration provides a way to move an instance off one compute host, to another com-
pute host. Administrators may use this to evacuate instances from a host that needs to undergo
maintenance tasks, though of course this may not help if the host is already suffering a failure. In
general instances are considered cattle rather than pets, so it is expected that an instance is liable
to be killed if host maintenance is required. It is technically challenging for some hypervisors to
provide support for the live migration operation, particularly those built on the container based
virtualization. Therefore this operation is not considered mandatory to support.

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): missing
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: complete
— zVM: missing

* Force live migration to complete Status: optional.

CLI commands:

— nova live-migration-force-complete <server> <migration>

Notes: Live migration provides a way to move a running instance to another compute host. But
it can sometimes fail to complete if an instance has a high rate of memory or disk page access.
This operation provides the user with an option to assist the progress of the live migration. The
mechanism used to complete the live migration depends on the underlying virtualization subsystem
capabilities. If libvirt/gemu is used and the post-copy feature is available and enabled then the
force complete operation will cause a switch to post-copy mode. Otherwise the instance will be
suspended until the migration is completed or aborted.

Driver Support:
— Hyper-V: missing

3.3. Deployment Considerations 148

Nova Documentation, Release 25.3.1.dev38

— Ironic: missing
— Libvirt KVM (aarch64): missing
— Libvirt KVM (ppc64): complete Notes: Requires libvirt>=1.3.3, gemu>=2.5.0
— Libvirt KVM (s390x): complete Notes: Requires libvirt>=1.3.3, gemu>=2.5.0
— Libvirt KVM (x86): complete Notes: Requires libvirt>=1.3.3, gemu>=2.5.0
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete Notes: Requires libvirt>=1.3.3, gemu>=2.5.0
— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: missing
— PowerVM: missing
— VMware vCenter: missing
— zZzVM: missing

* Abort an in-progress or queued live migration Status: optional.

CLI commands:

— nova live-migration-abort <server> <migration>

Notes: Live migration provides a way to move a running instance to another compute host. But it
can sometimes need a large amount of time to complete if an instance has a high rate of memory or
disk page access or is stuck in queued status if there are too many in-progress live migration jobs
in the queue. This operation provides the user with an option to abort in-progress live migrations.
When the live migration job is still in queued or preparing status, it can be aborted regardless of
the type of underneath hypervisor, but once the job status changes to running, only some of the
hypervisors support this feature.

Driver Support:
— Hyper-V: missing
— Ironic: missing
— Libvirt KVM (aarch64): missing
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: unknown
— Libvirt Virtuozzo VM: unknown
— PowerVM: missing
— VMware vCenter: missing

— zVM: missing

3.3. Deployment Considerations 149

Nova Documentation, Release 25.3.1.dev38

* Launch instance Status: mandatory.

Notes: Importing pre-existing running virtual machines on a host is considered out of scope of the
cloud paradigm. Therefore this operation is mandatory to support in drivers.

Driver Support:

Hyper-V: complete

Ironic: complete

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: complete
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: complete
— VMware vCenter: complete
— zZVM: complete
» Stop instance CPUs (pause) Status: optional.
CLI commands:
— nova pause <server>

Notes: Stopping an instances CPUs can be thought of as roughly equivalent to suspend-to-RAM.
The instance is still present in memory, but execution has stopped. The problem, however, is that
there is no mechanism to inform the guest OS that this takes place, so upon unpausing, its clocks
will no longer report correct time. For this reason hypervisor vendors generally discourage use of
this feature and some do not even implement it. Therefore this operation is considered optional to
support in drivers.

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: complete
— Libvirt QEMU (x86): complete

— Libvirt Virtuozzo CT: missing

3.3. Deployment Considerations 150

Nova Documentation, Release 25.3.1.dev38

— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: missing
— zVM: complete
* Reboot instance Status: optional.
CLI commands:
— nova reboot <server>

Notes: It is reasonable for a guest OS administrator to trigger a graceful reboot from inside the
instance. A host initiated graceful reboot requires guest co-operation and a non-graceful reboot
can be achieved by a combination of stop+start. Therefore this operation is considered optional.

Driver Support:

Hyper-V: complete

Ironic: complete

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

Libvirt LXC: complete
Libvirt QEMU (x86): complete

Libvirt Virtuozzo CT: complete

Libvirt Virtuozzo VM: complete
— PowerVM: complete
— VMware vCenter: complete
— zVM: complete
* Rescue instance Status: optional.
CLI commands:
— nova rescue <server>

Notes: The rescue operation starts an instance in a special configuration whereby it is booted from
an special root disk image. The goal is to allow an administrator to recover the state of a broken
virtual machine. In general the cloud model considers instances to be cattle, so if an instance
breaks the general expectation is that it be thrown away and a new instance created. Therefore this
operation is considered optional to support in drivers.

Driver Support:
— Hyper-V: complete
— Ironic: complete

— Libvirt KVM (aarch64): unknown

3.3. Deployment Considerations 151

Nova Documentation, Release 25.3.1.dev38

— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: complete
— zVM: missing

* Resize instance Status: optional.

CLI commands:

— nova resize <server> <flavor>

Notes: The resize operation allows the user to change a running instance to match the size of a
different flavor from the one it was initially launched with. There are many different flavor attributes
that potentially need to be updated. In general it is technically challenging for a hypervisor to
support the alteration of all relevant config settings for a running instance. Therefore this operation
is considered optional to support in drivers.

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: complete
— zVM: missing

* Restore instance Status: optional.

CLI commands:

— nova resume <server>

3.3. Deployment Considerations 152

Nova Documentation, Release 25.3.1.dev38

Notes: See notes for the suspend operation
Driver Support:
— Hyper-V: complete
— Ironic: missing
— Libvirt KVM (aarch64): complete
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete

Libvirt Virtuozzo VM: complete

PowerVM: missing

VMware vCenter: complete
— zVM: missing
* Set instance admin password Status: optional.
CLI commands:
— nova set-password <server>

Notes: Provides a mechanism to (re)set the password of the administrator account inside the in-
stance operating system. This requires that the hypervisor has a way to communicate with the
running guest operating system. Given the wide range of operating systems in existence it is un-
reasonable to expect this to be practical in the general case. The configdrive and metadata service
both provide a mechanism for setting the administrator password at initial boot time. In the case
where this operation were not available, the administrator would simply have to login to the guest
and change the password in the normal manner, so this is just a convenient optimization. Therefore
this operation is not considered mandatory for drivers to support.

Driver Support:
— Hyper-V: missing
— Ironic: missing
— Libvirt KVM (aarch64): unknown
— Libvirt KVM (ppc64): missing
— Libvirt KVM (s390x): missing

— Libvirt KVM (x86): complete Notes: Requires libvirt>=1.2.16 and
hw_gemu_guest_agent.

— Libvirt LXC: missing

— Libvirt QEMU (x86): complete Notes: Requires libvirt>=1.2.16 and
hw_gemu_guest_agent.

3.3. Deployment Considerations 153

Nova Documentation, Release 25.3.1.dev38

— Libvirt Virtuozzo CT: complete Notes: Requires libvirt>=2.0.0
— Libvirt Virtuozzo VM: complete Notes: Requires libvirt>=2.0.0
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing

» Save snapshot of instance disk Status: optional.

CLI commands:

— nova image-create <server> <name>

Notes: The snapshot operation allows the current state of the instance root disk to be saved and
uploaded back into the glance image repository. The instance can later be booted again using
this saved image. This is in effect making the ephemeral instance root disk into a semi-persistent
storage, in so much as it is preserved even though the guest is no longer running. In general
though, the expectation is that the root disks are ephemeral so the ability to take a snapshot cannot
be assumed. Therefore this operation is not considered mandatory to support.

Driver Support:

Hyper-V: complete

— Ironic: missing

— Libvirt KVM (aarch64): complete
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing

— Libvirt QEMU (x86): complete

— Libvirt Virtuozzo CT: complete

— Libvirt Virtuozzo VM: complete

— PowerVM: complete Notes: When using the localdisk disk driver, snapshot is only sup-
ported if I/O is being hosted by the management partition. If hosting I/O on traditional VIOS,
we are limited by the fact that a VSCSI device cant be mapped to two partitions (the VIOS
and the management) at once.

— VMware vCenter: complete
— zZVM: complete
* Suspend instance Status: optional.
CLI commands:
— nova suspend <server>

Notes: Suspending an instance can be thought of as roughly equivalent to suspend-to-disk. The
instance no longer consumes any RAM or CPUs, with its live running state having been preserved
in a file on disk. It can later be restored, at which point it should continue execution where it left
off. As with stopping instance CPUs, it suffers from the fact that the guest OS will typically be

3.3. Deployment Considerations 154

Nova Documentation, Release 25.3.1.dev38

left with a clock that is no longer telling correct time. For container based virtualization solutions,
this operation is particularly technically challenging to implement and is an area of active research.
This operation tends to make more sense when thinking of instances as pets, rather than cattle, since
with cattle it would be simpler to just terminate the instance instead of suspending. Therefore this
operation is considered optional to support.

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: complete
— zZzVM: missing

* Swap block volumes Status: optional.

CLI commands:

— nova volume-update <server> <attachment> <volume>

Notes: The swap volume operation is a mechanism for changing a running instance so that its
attached volume(s) are backed by different storage in the host. An alternative to this would be to
simply terminate the existing instance and spawn a new instance with the new storage. In other
words this operation is primarily targeted towards the pet use case rather than cattle, however, it
is required for volume migration to work in the volume service. This is considered optional to
support.

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): unknown

Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete

— Libvirt LXC: missing

— Libvirt QEMU (x86): complete

3.3. Deployment Considerations 155

Nova Documentation, Release 25.3.1.dev38

— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing
* Shutdown instance Status: mandatory.
CLI commands:
— nova delete <server>

Notes: The ability to terminate a virtual machine is required in order for a cloud user to stop uti-
lizing resources and thus avoid indefinitely ongoing billing. Therefore this operation is mandatory
to support in drivers.

Driver Support:

Hyper-V: complete

Ironic: complete

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: complete Notes: Fails in latest Ubuntu Trusty kernel from security repository
(3.13.0-76-generic), but works in upstream 3.13.x kernels as well as default Ubuntu Trusty
latest kernel (3.13.0-58-generic).

— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: complete
— VMware vCenter: complete
— zVM: complete

* Trigger crash dump Status: optional.

CLI commands:

— nova trigger-crash-dump <server>

Notes: The trigger crash dump operation is a mechanism for triggering a crash dump in an in-
stance. The feature is typically implemented by injecting an NMI (Non-maskable Interrupt) into
the instance. It provides a means to dump the production memory image as a dump file which is
useful for users. Therefore this operation is considered optional to support.

Driver Support:
— Hyper-V: missing

— Ironic: complete

3.3. Deployment Considerations 156

Nova Documentation, Release 25.3.1.dev38

— Libvirt KVM (aarch64): unknown
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: missing
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing
* Resume instance CPUs (unpause) Status: optional.
CLI commands:
— nova unpause <server>
Notes: See notes for the Stop instance CPUs operation

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: complete
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: missing
— zVM: complete
 uefi boot Status: optional.
Notes: This allows users to boot a guest with uefi firmware.
Driver Support:

— Hyper-V: complete Notes: In order to use uefi, a second generation Hyper-V vm must be
requested.

— Ironic: partial Notes: depends on hardware support

3.3. Deployment Considerations 157

Nova Documentation, Release 25.3.1.dev38

— Libvirt KVM (aarch64): complete
— Libvirt KVM (ppc64): missing
— Libvirt KVM (s390x): missing
— Libvirt KVM (x86): complete
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: missing
— PowerVM: missing
— VMware vCenter: complete
— zVM: missing

* Device tags Status: optional.

CLI commands:

— nova boot

Notes: This allows users to set tags on virtual devices when creating a server instance. Device
tags are used to identify virtual device metadata, as exposed in the metadata API and on the config
drive. For example, a network interface tagged with nicl will appear in the metadata along with its
bus (ex: PCI), bus address (ex: 0000:00:02.0), MAC address, and tag (nicl). If multiple networks
are defined, the order in which they appear in the guest operating system will not necessarily reflect
the order in which they are given in the server boot request. Guests should therefore not depend
on device order to deduce any information about their network devices. Instead, device role tags
should be used. Device tags can be applied to virtual network interfaces and block devices.

Driver Support:

Hyper-V: complete

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: unknown

— Libvirt QEMU (x86): complete

— Libvirt Virtuozzo CT: unknown
— Libvirt Virtuozzo VM: complete
— PowerVM: missing

— VMware vCenter: missing

— zVM: missing

3.3. Deployment Considerations 158

Nova Documentation, Release 25.3.1.dev38

* quiesce Status: optional.

Notes: Quiesce the specified instance to prepare for snapshots. For libvirt, guest filesystems will
be frozen through gemu agent.

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): unknown
Libvirt KVM (ppc64): complete

— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: missing
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing
* unquiesce Status: optional.

Notes: See notes for the quiesce operation

Driver Support:
— Hyper-V: missing
— Ironic: missing
— Libvirt KVM (aarch64): unknown
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete

— Libvirt Virtuozzo CT: missing

Libvirt Virtuozzo VM: missing

PowerVM: missing

VMware vCenter: missing
— zVM: missing
 Attach block volume to multiple instances Status: optional.

CLI commands:

3.3. Deployment Considerations 159

Nova Documentation, Release 25.3.1.dev38

— nova volume-attach <server> <volume>

Notes: The multiattach volume operation is an extension to the attach volume operation. It allows
to attach a single volume to multiple instances. This operation is not considered to be mandatory
to support. Note that for the libvirt driver, this is only supported if gemu<2.10 or libvirt>=3.10.

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): unknown
Libvirt KVM (ppc64): complete

— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing
* Attach encrypted block volume to server Status: optional.
CLI commands:
— nova volume-attach <server> <volume>

Notes: This is the same as the attach volume operation except with an encrypted block device.
Encrypted volumes are controlled via admin-configured volume types in the block storage service.
Since attach volume is optional this feature is also optional for compute drivers to support.

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): unknown
Libvirt KVM (ppc64): unknown
— Libvirt KVM (s390x): unknown

— Libvirt KVM (x86): complete Notes: For native QEMU decryption of the encrypted vol-
ume (and rbd support), QEMU>=2.6.0 and libvirt>=2.2.0 are required and only the luks type
provider is supported. Otherwise both luks and cryptsetup types are supported but not na-
tively, i.e. not all volume types are supported.

— Libvirt LXC: missing
— Libvirt QEMU (x86): complete Notes: The same restrictions apply as KVM x86.

— Libvirt Virtuozzo CT: missing

3.3. Deployment Considerations 160

Nova Documentation, Release 25.3.1.dev38

— Libvirt Virtuozzo VM: unknown
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing
¢ Validate image with trusted certificates Status: optional.
CLI commands:
— nova boot --trusted-image-certificate-id ...

Notes: Since trusted image certification validation is configurable by the cloud deployer it is con-
sidered optional. However, it is a virt-agnostic feature so there is no good reason that all virt
drivers cannot support the feature since it is mostly just plumbing user requests through the virt
driver when downloading images.

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): complete
Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete

— Libvirt KVM (x86): complete

— Libvirt LXC: complete
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing

* File backed memory Status: optional.

Notes: The file backed memory feature in Openstack allows a Nova node to serve guest memory
from a file backing store. This mechanism uses the libvirt file memory source, causing guest
instance memory to be allocated as files within the libvirt memory backing directory. This is only
supported if gemu>2.6 and libvirt>4.0.0

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): unknown
Libvirt KVM (ppc64): unknown
Libvirt KVM (s390x): unknown

3.3. Deployment Considerations 161

Nova Documentation, Release 25.3.1.dev38

— Libvirt KVM (x86): complete
— Libvirt LXC: missing
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: missing
— Libvirt Virtuozzo VM: missing
— PowerVM: missing
— VMware vCenter: missing
— zVM: missing

* Report CPU traits Status: optional.

Notes: The report CPU traits feature in OpenStack allows a Nova node to report its CPU traits
according to CPU mode configuration. This gives users the ability to boot instances based on
desired CPU traits.

Driver Support:

— Hyper-V: missing

— Ironic: missing

— Libvirt KVM (aarch64): unknown

— Libvirt KVM (ppc64): complete
Libvirt KVM (s390x): missing
Libvirt KVM (x86): complete

Libvirt LXC: missing
Libvirt QEMU (x86): complete

Libvirt Virtuozzo CT: missing

Libvirt Virtuozzo VM: missing

Power VM: missing

VMware vCenter: missing
— zZzVM: missing
* SR-IOV ports with resource request Status: optional.
CLI commands:
— nova boot --nic port-id <neutron port with resource request> ...

Notes: To support neutron SR-IOV ports (vnic_type=direct or vnic_type=macvtap) with re-
source request the virt driver needs to include the parent_ifname key in each subdict which
represents a VF under the pci_passthrough_devices key in the dict returned from the Comput-
eDriver.get_available_resource() call.

Driver Support:
— Hyper-V: missing

— Ironic: missing

3.3. Deployment Considerations 162

Nova Documentation, Release 25.3.1.dev38

Libvirt KVM (aarch64): missing
Libvirt KVM (ppc64): missing
Libvirt KVM (s390x): missing
Libvirt KVM (x86): complete
Libvirt LXC: missing

Libvirt QEMU (x86): complete
Libvirt Virtuozzo CT: missing
Libvirt Virtuozzo VM: missing
PowerVM: missing

VMware vCenter: missing

zVM: missing

* Boot instance with secure encrypted memory Status: optional.

CLI commands:

openstack server create <usual server create parameters>

Notes: The feature allows VMs to be booted with their memory hardware-encrypted with a key
specific to the VM, to help protect the data residing in the VM against access from anyone other
than the user of the VM. The Configuration and Security Guides specify usage of this feature.

Driver Support:

Hyper-V: missing

Ironic: missing

Libvirt KVM (aarch64): missing
Libvirt KVM (ppc64): missing
Libvirt KVM (s390x): missing

Libvirt KVM (x86): partial Notes: This feature is currently only available with hosts
which support the SEV (Secure Encrypted Virtualization) technology from AMD.

Libvirt LXC: missing

Libvirt QEMU (x86): missing
Libvirt Virtuozzo CT: missing
Libvirt Virtuozzo VM: missing
Power VM: missing

VMware vCenter: missing

ZVM: missing

* Cache base images for faster instance boot Status: optional.

CLI commands:

openstack server create <usual server create parameters>

3.3. Deployment Considerations 163

Nova Documentation, Release 25.3.1.dev38

Notes: Drivers supporting this feature cache base images on the compute host so that subsequent
boots need not incur the expense of downloading them. Partial support entails caching an image
after the first boot that uses it. Complete support allows priming the cache so that the first boot
also benefits. Image caching support is tunable via config options in the [image_cache] group.

Driver Support:
— Hyper-V: partial
— Ironic: missing
— Libvirt KVM (aarch64): complete
— Libvirt KVM (ppc64): complete
— Libvirt KVM (s390x): complete
— Libvirt KVM (x86): complete
— Libvirt LXC: unknown
— Libvirt QEMU (x86): complete
— Libvirt Virtuozzo CT: complete
— Libvirt Virtuozzo VM: complete

— PowerVM: partial Notes: The PowerVM driver does image caching natively when using
the SSP disk driver. It does not use the config options in the [image_cache] group.

— VMware vCenter: partial
— zZzVM: missing
* Boot instance with an emulated trusted platform module (TPM) Status: optional.
CLI commands:
— openstack server create <usual server create parameters>

Notes: Allows VMs to be booted with an emulated trusted platform module (TPM) device. Only
lifecycle operations performed by the VM owner are supported, as the users credentials are required
to unlock the virtual device files on the host.

Driver Support:
— Hyper-V: missing
— Ironic: missing
— Libvirt KVM (aarch64): missing
— Libvirt KVM (ppc64): missing
— Libvirt KVM (s390x): missing
— Libvirt KVM (x86): partial Notes: Move operations are not yet supported.
— Libvirt LXC: missing
— Libvirt QEMU (x86): partial Notes: Move operations are not yet supported.
— Libvirt Virtuozzo CT: missing

— Libvirt Virtuozzo VM: missing

3.3. Deployment Considerations 164

Nova Documentation, Release 25.3.1.dev38

— PowerVM: missing
— VMware vCenter: missing
— zZzVM: missing

Notes:

¢ This document is a continuous work in progress

3.3.3 Cells (v2)

New in version 16.0.0: (Pike)

This document describes the layout of a deployment with cells v2, including deployment considerations
for security and scale and recommended practices and tips for running and maintaining cells v2 for admins
and operators. It is focused on code present in Pike and later, and while it is geared towards people who
want to have multiple cells for whatever reason, the nature of the cells v2 support in Nova means that it
applies in some way to all deployments.

Before reading any further, there is a nice overview presentation that Andrew Laski gave at the Austin
(Newton) summit which may be worth watching.

Note: Cells v2 is different to the cells feature found in earlier versions of nova, also known as cells v1.
Cells vl was deprecated in 16.0.0 (Pike) and removed entirely in Train (20.0.0).

3.3.3.1 Overview

The purpose of the cells functionality in nova is to allow larger deployments to shard their many compute
nodes into cells. All nova deployments are by definition cells deployments, even if most will only ever
have a single cell. This means a multi-cell deployment will not b radically different from a standard nova
deployment.

Consider such a deployment. It will consists of the following components:
* The nova-api service which provides the external REST API to users.

* The nova-scheduler and placement services which are responsible for tracking resources and
deciding which compute node instances should be on.

* An API database that is used primarily by nova-api and nova-scheduler (called API-level
services below) to track location information about instances, as well as a temporary location for
instances being built but not yet scheduled.

* The nova-conductor service which offloads long-running tasks for the API-level services and
insulates compute nodes from direct database access

* The nova-compute service which manages the virt driver and hypervisor host.

* A cell database which is used by API, conductor and compute services, and which houses the
majority of the information about instances.

* A cellO database which is just like the cell database, but contains only instances that failed to be
scheduled. This database mimics a regular cell, but has no compute nodes and is used only as a
place to put instances that fail to land on a real compute node (and thus a real cell).

3.3. Deployment Considerations 165

https://www.openstack.org/videos/summits/austin-2016/nova-cells-v2-whats-going-on

Nova Documentation, Release 25.3.1.dev38

* A message queue which allows the services to communicate with each other via RPC.

In smaller deployments, there will typically be a single message queue that all services share and a single
database server which hosts the API database, a single cell database, as well as the required cell0 database.
Because we only have one real cell, we consider this a single-cell deployment.

In larger deployments, we can opt to shard the deployment using multiple cells. In this configuration there
will still only be one global API database but there will be a cell database (where the bulk of the instance
information lives) for each cell, each containing a portion of the instances for the entire deployment
within, as well as per-cell message queues and per-cell nova-conductor instances. There will also be
an additional nova-conductor instance, known as a super conductor, to handle API-level operations.

In these larger deployments, each of the nova services will use a cell-specific configuration file, all of
which will at a minimum specify a message queue endpoint (i.e. transport_url). Most of the ser-
vices will also contain database connection configuration information (i.e. database.connection),
while API-level services that need access to the global routing and placement information will also be
configured to reach the API database (i.e. api_database.connection).

Note: The pair of transport_url and database. connection configured for a service defines what
cell a service lives in.

API-level services need to be able to contact other services in all of the cells. Since they only have one
configured transport_url and database.connection, they look up the information for the other
cells in the API database, with records called cell mappings.

Note: The API database must have cell mapping records that match the transport_url and
database. connection configuration options of the lower-level services. See the nova-manage Cells
v2 Commands commands for more information about how to create and examine these records.

The following section goes into more detail about the difference between single-cell and multi-cell de-
ployments.

3.3.3.2 Service layout

The services generally have a well-defined communication pattern that dictates their layout in a deploy-
ment. In a small/simple scenario, the rules do not have much of an impact as all the services can commu-
nicate with each other on a single message bus and in a single cell database. However, as the deployment
grows, scaling and security concerns may drive separation and isolation of the services.

Single cell

This is a diagram of the basic services that a simple (single-cell) deployment would have, as well as the
relationships (i.e. communication paths) between them:

3.3. Deployment Considerations 166

Nova Documentation, Release 25.3.1.dev38

nova-api

Cell0 Database

API Database

nova-conductor

Cell Database

nova-scheduler

MQ

nova-compute

All of the services are configured to talk to each other over the same message bus, and there is only one
cell database where live instance data resides. The cell0 database is present (and required) but as no
compute nodes are connected to it, this is still a single cell deployment.

Multiple cells

In order to shard the services into multiple cells, a number of things must happen. First, the message bus
must be split into pieces along the same lines as the cell database. Second, a dedicated conductor must
be run for the API-level services, with access to the API database and a dedicated message queue. We
call this super conductor to distinguish its place and purpose from the per-cell conductor nodes.

3.3. Deployment Considerations

167

Nova Documentation, Release 25.3.1.dev38

nova-api

API Database

super conductor

nova-scheduler

Cell Database

Cell 0

nova-conductor

nova-compute

Cell 1 Cell 2

nova-conductor nova-compute

Cell Database

It is important to note that services in the lower cell boxes only have the ability to call back to the place-
ment API but cannot access any other API-layer services via RPC, nor do they have access to the API
database for global visibility of resources across the cloud. This is intentional and provides security
and failure domain isolation benefits, but also has impacts on some things that would otherwise require
this any-to-any communication style. Check Operations requiring upcalls below for the most up-to-date
information about any caveats that may be present due to this limitation.

3.3.3.3 Database layout

As mentioned previously, there is a split between global data and data that is local to a cell. These
databases schema are referred to as the API and main database schemas, respectively.

API database

The API database is the database used for API-level services, such as nova-api and, in a multi-cell
deployment, the superconductor. The models and migrations related to this database can be found in
nova.db.api, and the database can be managed using the nova-manage api_db commands.

Main (cell-level) database

The main database is the database used for cell-level nova-conductor instances. The models and mi-
grations related to this database can be found in nova.db.main, and the database can be managed using
the nova-manage db commands.

3.3. Deployment Considerations 168

Nova Documentation, Release 25.3.1.dev38

3.3.3.4 Usage

As noted previously, all deployments are in effect now cells v2 deployments. As aresult, setup of any nova
deployment - even those that intend to only have one cell - will involve some level of cells configuration.
These changes are configuration-related, both in the main nova configuration file as well as some extra
records in the databases.

All nova deployments must now have the following databases available and configured:
1. The API database
2. One special cell database called cellO
3. One (or eventually more) cell databases

Thus, a small nova deployment will have an API database, a cell0, and what we will call here a celll
database. High-level tracking information is kept in the API database. Instances that are never scheduled
are relegated to the cell0 database, which is effectively a graveyard of instances that failed to start. All
successful/running instances are stored in celll.

Note: Since Nova services make use of both configuration file and some databases records, starting or
restarting those services with an incomplete configuration could lead to an incorrect deployment. Only
restart the services once you are done with the described steps below.

Note: The following examples show the full expanded command line usage of the setup commands. This
is to make it easier to visualize which of the various URLSs are used by each of the commands. However,
you should be able to put all of that in the config file and nova-manage will use those values. If need
be, you can create separate config files and pass them as nova-manage --config-file foo.conf to
control the behavior without specifying things on the command lines.

Configuring a new deployment

If you are installing Nova for the first time and have no compute hosts in the database yet then it will
be necessary to configure cell0 and at least one additional real cell. To begin, ensure your API database
schema has been populated using the nova-manage api_db sync command. Ensure the connection
information for this database is stored in the nova.conf file using the api_database.connection
config option:

Since there may be multiple cell databases (and in fact everyone will have cell0 and celll at a minimum),
connection info for these is stored in the API database. Thus, the API database must exist and must
provide information on how to connect to it before continuing to the steps below, so that nova-manage
can find your other databases.

Next, we will create the necessary records for the cell0 database. To do that we will first use nova-manage
cell_v2 map_cell® to create and map cell0. For example:

3.3. Deployment Considerations 169

Nova Documentation, Release 25.3.1.dev38

$ nova-manage cell_v2 map_cell®
--database_connection mysql+pymysql://root:secretmysql@dbserver/nova_
—cell®?charset utf8

Note: If you dont specify --database_connection then the commands will use the database.
connection value from your config file and mangle the database name to have a _cel10 suffix

Warning: If your databases are on separate hosts then you should specify
--database_connection or make certain that the nova.conf being used has the database.
connection value pointing to the same user/password/host that will work for the cell0 database.
If the cell) mapping was created incorrectly, it can be deleted using the nova-manage cell_v2
delete_cell command before running nova-manage cell_v2 map_cell® again with the
proper database connection value.

We will then use nova-manage db sync to apply the database schema to this new database. For exam-
ple:

$ nova-manage db sync
--database_connection mysql+pymysql://root:secretmysql@dbserver/nova_
—cell®?charset utf8

Since no hosts are ever in cell0, nothing further is required for its setup. Note that all deployments only
ever have one cell0, as it is special, so once you have done this step you never need to do it again, even if
you add more regular cells.

Now, we must create another cell which will be our first regular cell, which has actual compute hosts in
it, and to which instances can actually be scheduled. First, we create the cell record using nova-manage
cell_v2 create_cell. For example:

$ nova-manage cell_v2 create_cell

--name celll

--database_connection mysql+pymysql://root:secretmysql@127.0.0.1/nova?
—charset utf8

--transport-url rabbit://stackrabbit:secretrabbit@ngserver:5672/

Note: If you dont specify the database and transport urls then nova-manage will use the
transport_url and database. connection values from the config file.

Note: It is a good idea to specify a name for the new cell you create so you can easily look up cell
UUIDs with the nova-manage cell_v2 list_cells command later if needed.

Note: The nova-manage cell_v2 create_cell command will print the UUID of the newly-created
cell if --verbose is passed, which is useful if you need to run commands like nova-manage cell_v2

3.3. Deployment Considerations 170

Nova Documentation, Release 25.3.1.dev38

discover_hosts targeted at a specific cell.

At this point, the API database can now find the cell database, and further commands will attempt to look
inside. If this is a completely fresh database (such as if youre adding a cell, or if this is a new deployment),
then you will need to run nova-manage db sync on it to initialize the schema.

Now we have a cell, but no hosts are in it which means the scheduler will never actually place instances
there. The next step is to scan the database for compute node records and add them into the cell we just
created. For this step, you must have had a compute node started such that it registers itself as a running
service. You can identify this using the openstack compute service list command:

$ openstack compute service list --service nova-compute

Once that has happened, you can scan and add it to the cell using the nova-manage cell_v2
discover_hosts command:

$ nova-manage cell_v2 discover_hosts

This command will connect to any databases for which you have created cells (as above), look for hosts
that have registered themselves there, and map those hosts in the API database so that they are visible
to the scheduler as available targets for instances. Any time you add more compute hosts to a cell, you
need to re-run this command to map them from the top-level so they can be utilized. You can also
configure a periodic task to have Nova discover new hosts automatically by setting the scheduler.
discover_hosts_in_cells_interval to atime interval in seconds. The periodic task is run by the
nova-scheduler service, so you must be sure to configure it on all of your nova-scheduler hosts.

Note: In the future, whenever you add new compute hosts, you will need to run the nova-manage
cell_v2 discover_hostscommand after starting them to map them to the cell if you did not configure
automatic host discovery using scheduler.discover_hosts_in_cells_interval.

Adding a new cell to an existing deployment

You can add additional cells to your deployment using the same steps used above to create your first cell.
We can create a new cell record using nova-manage cell_v2 create_cell. For example:

$ nova-manage cell_v2 create_cell

--name cell2

--database_connection mysql+pymysql://root:secretmysql@127.0.0.1/nova?
—charset utf8

--transport-url rabbit://stackrabbit:secretrabbit@mqserver:5672/

Note: If you dont specify the database and transport urls then nova-manage will use the
transport_url and database. connection values from the config file.

Note: It is a good idea to specify a name for the new cell you create so you can easily look up cell
UUIDs with the nova-manage cell_v2 list_cells command later if needed.

3.3. Deployment Considerations 171

Nova Documentation, Release 25.3.1.dev38

Note: The nova-manage cell_v2 create_cell command will print the UUID of the newly-created
cell if --verbose is passed, which is useful if you need to run commands like nova-manage cell_v2
discover_hosts targeted at a specific cell.

You can repeat this step for each cell you wish to add to your deployment. Your existing cell database
will be re-used - this simply informs the top-level API database about your existing cell databases.

Once youve created your new cell, use nova-manage cell_v2 discover_hosts to map compute
hosts to cells. This is only necessary if you havent enabled automatic discovery using the scheduler.
discover_hosts_in_cells_interval option. For example:

$ nova-manage cell_v2 discover_hosts

Note: This command will search for compute hosts in each cell database and map them to the cor-
responding cell. This can be slow, particularly for larger deployments. You may wish to specify the
--cell_uuid option, which will limit the search to a specific cell. You can use the nova-manage
cell_v2 list_cells command to look up cell UUIDs if you are going to specify --cell_uuid.

Finally, run the nova-manage cell_v2 map_instances command to map existing instances to the
new cell(s). For example:

$ nova-manage cell_v2 map_instances

Note: This command will search for instances in each cell database and map them to the correct cell.
This can be slow, particularly for larger deployments. You may wish to specify the --cell_uuid option,
which will limit the search to a specific cell. You can use the nova-manage cell_v2 list_cells
command to look up cell UUIDs if you are going to specify --cell_uuid.

Note: The --max-count option can be specified if you would like to limit the number of instances to
map in a single run. If --max-count is not specified, all instances will be mapped. Repeated runs of
the command will start from where the last run finished so it is not necessary to increase --max-count
to finish. An exit code of 0 indicates that all instances have been mapped. An exit code of 1 indicates
that there are remaining instances that need to be mapped.

Template URLs in Cell Mappings

Starting in the 18.0.0 (Rocky) release, the URLs provided in the cell mappings for
--database_connection and --transport-url can contain variables which are evaluated each time
they are loaded from the database, and the values of which are taken from the corresponding base options
in the hosts configuration file. The base URL is parsed and the following elements may be substituted
into the cell mapping URL (using rabbit://bob:s3kret@myhost:123/nova?sync=true#extra):

3.3. Deployment Considerations 172

Nova Documentation, Release 25.3.1.dev38

Table 2: Cell Mapping URL Variables

Variable Meaning Part of exam-
ple URL

scheme The part before the :// rabbit

username The username part of the credentials bob

password The password part of the credentials s3kret

hostname The hostname or address myhost

port The port number (must be specified) 123

path The path part of the URL (without leading slash) nova

query The full query string arguments (without leading question | sync=true
mark)

fragment Everything after the first hash mark extra

Variables are provided in curly brackets, like {username}. A simple template of rabbit:/
/{username}:{password}@otherhost/{path} will generate a full URL of rabbit://
bob:s3kret@otherhost/nova when used with the above example.

Note: The database.connection and transport_url values are not reloaded from the configura-
tion file during a SIGHUP, which means that a full service restart will be required to notice changes in a
cell mapping record if variables are changed.

Note: The transport_url option can contain an extended syntax for the netloc part of the URL (i.e.
userA:passwordA@hostA:portA,userB:passwordB:hostB:portB). In this case, substitions of the
form usernamel, username2, etc will be honored and can be used in the template URL.

The templating of these URLs may be helpful in order to provide each service host with its own credentials
for, say, the database. Without templating, all hosts will use the same URL (and thus credentials) for
accessing services like the database and message queue. By using a URL with a template that results in
the credentials being taken from the host-local configuration file, each host will use different values for
those connections.

Assuming you have two service hosts that are normally configured with the cellO database as their primary
connection, their (abbreviated) configurations would look like this:

and:

Without cell mapping template URLSs, they would still use the same credentials (as stored in the mapping)
to connect to the cell databases. However, consider template URLSs like the following:

and:

3.3. Deployment Considerations 173

Nova Documentation, Release 25.3.1.dev38

Using the first service and celll mapping, the calculated URL that will actually be used for connecting
to that database will be:

3.3.3.5 Design

Prior to the introduction of cells v2, when a request hit the Nova API for a particular instance, the instance
information was fetched from the database. The information contained the hostname of the compute node
on which the instance was currently located. If the request needed to take action on the instance (which
it generally would), the hostname was used to calculate the name of a queue and a message was written
there which would eventually find its way to the proper compute node.

The meat of the cells v2 feature was to split this hostname lookup into two parts that yielded three pieces
of information instead of one. Basically, instead of merely looking up the name of the compute node
on which an instance was located, we also started obtaining database and queue connection information.
Thus, when asked to take action on instance $foo, we now:

1. Lookup the three-tuple of (database, queue, hostname) for that instance
2. Connect to that database and fetch the instance record
3. Connect to the queue and send the message to the proper hostname queue

The above differs from the previous organization in two ways. First, we now need to do two database
lookups before we know where the instance lives. Second, we need to demand-connect to the appro-
priate database and queue. Both of these changes had performance implications, but it was possible to
mitigate them through the use of things like a memcache of instance mapping information and pooling
of connections to database and queue systems. The number of cells will always be much smaller than
the number of instances.

There were also availability implications with the new feature since something like a instance list which
might query multiple cells could end up with a partial result if there is a database failure in a cell. These
issues can be mitigated, as discussed in Handling cell failures. A database failure within a cell would
cause larger issues than a partial list result so the expectation is that it would be addressed quickly and
cells v2 will handle it by indicating in the response that the data may not be complete.

3.3.3.6 Comparison with cells v1

Prior to the introduction of cells v2, nova had a very similar feature, also called cells or referred to as
cells v1 for disambiguation. Cells v2 was an effort to address many of the perceived shortcomings of the
cell v1 feature. Benefits of the cells v2 feature over the previous cells v1 feature include:

* Native sharding of the database and queue as a first-class-feature in nova. All of the code paths
will go through the lookup procedure and thus we wont have the same feature parity issues as we
do with current cells.

* No high-level replication of all the cell databases at the top. The API will need a database of its
own for things like the instance index, but it will not need to replicate all the data at the top level.

3.3. Deployment Considerations 174

Nova Documentation, Release 25.3.1.dev38

* It draws a clear line between global and local data elements. Things like flavors and keypairs are
clearly global concepts that need only live at the top level. Providing this separation allows compute
nodes to become even more stateless and insulated from things like deleted/changed global data.

* Existing non-cells users will suddenly gain the ability to spawn a new cell from their existing de-
ployment without changing their architecture. Simply adding information about the new database
and queue systems to the new index will allow them to consume those resources.

» Existing cells users will need to fill out the cells mapping index, shutdown their existing cells
synchronization service, and ultimately clean up their top level database. However, since the high-
level organization is not substantially different, they will not have to re-architect their systems to
move to cells v2.

* Adding new sets of hosts as a new cell allows them to be plugged into a deployment and tested
before allowing builds to be scheduled to them.

3.3.3.7 Caveats

Note: Many of these caveats have been addressed since the introduction of cells v2 in the 16.0.0 (Pike)
release. These are called out below.

Cross-cell move operations

Support for cross-cell cold migration and resize was introduced in the 21.0.0 (Ussuri) release. This is
documented in Cross-cell resize. Prior to this release, it was not possible to cold migrate or resize an
instance from a host in one cell to a host in another cell.

It is not currently possible to live migrate, evacuate or unshelve an instance from a host in one cell to a
host in another cell.

Quota-related quirks

Quotas are now calculated live at the point at which an operation would consume more resource, instead of
being kept statically in the database. This means that a multi-cell environment may incorrectly calculate
the usage of a tenant if one of the cells is unreachable, as those resources cannot be counted. In this case,
the tenant may be able to consume more resource from one of the available cells, putting them far over
quota when the unreachable cell returns.

Note: Starting in the Train (20.0.0) release, it is possible to configure counting of quota usage from
the placement service and API database to make quota usage calculations resilient to down or poor-
performing cells in a multi-cell environment. See the quotas documentation for more details.

3.3. Deployment Considerations 175

Nova Documentation, Release 25.3.1.dev38

Performance of listing instances

Prior to the 17.0.0 (Queens) release, the instance list operation may not sort and paginate results prop-
erly when crossing multiple cell boundaries. Further, the performance of a sorted list operation across
multiple cells was considerably slower than with a single cell. This was resolved as part of the efficient-
multi-cell-instance-list-and-sort spec.

Notifications

With a multi-cell environment with multiple message queues, it is likely that operators will want to
configure a separate connection to a unified queue for notifications. This can be done in the configuration
file of all nodes. Refer to the oslo.messaging configuration documentation for more details.

Nova Metadata API service

Starting from the 19.0.0 (Stein) release, the nova metadata API service can be run either globally or per
cell using the api.local_metadata_per_cell configuration option.

Global

If you have networks that span cells, you might need to run Nova metadata API globally. When run-
ning globally, it should be configured as an API-level service with access to the api_database.
connection information. The nova metadata API service must not be run as a standalone service,
using the nova-api-metadata service, in this case.

Local per cell

Running Nova metadata API per cell can have better performance and data isolation in a multi-cell de-
ployment. If your networks are segmented along cell boundaries, then you can run Nova metadata API
service per cell. If you choose to run it per cell, you should also configure each neutron-metadata-agent
service to point to the corresponding nova-api-metadata. The nova metadata API service must be
run as a standalone service, using the nova-api-metadata service, in this case.

Console proxies

Starting from the 18.0.0 (Rocky) release, console proxies must be run per cell because console token
authorizations are stored in cell databases. This means that each console proxy server must have access
to the database. connection information for the cell database containing the instances for which it is
proxying console access. This functionality was added as part of the convert-consoles-to-objects spec.

3.3. Deployment Considerations 176

https://blueprints.launchpad.net/nova/+spec/efficient-multi-cell-instance-list-and-sort
https://blueprints.launchpad.net/nova/+spec/efficient-multi-cell-instance-list-and-sort
https://docs.openstack.org/oslo.messaging/yoga/configuration/opts.html#oslo_messaging_notifications.transport_url
https://docs.openstack.org/neutron/yoga/configuration/metadata-agent.html?#DEFAULT.nova_metadata_host
https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/convert-consoles-to-objects.html

Nova Documentation, Release 25.3.1.dev38

Operations requiring upcalls

If you deploy multiple cells with a superconductor as described above, computes and cell-based conduc-
tors will not have the ability to speak to the scheduler as they are not connected to the same MQ. This is
by design for isolation, but currently the processes are not in place to implement some features without
such connectivity. Thus, anything that requires a so-called upcall will not function. This impacts the
following:

1. Instance reschedules during boot and resize (part 1)

Note: This has been resolved in the Queens release.

2. Instance affinity reporting from the compute nodes to scheduler
3. The late anti-affinity check during server create and evacuate

4. Querying host aggregates from the cell

Note: This has been resolved in the Rocky release.

5. Attaching a volume and [cinder] cross_az_attach = False

6. Instance reschedules during boot and resize (part 2)

Note: This has been resolved in the Ussuri release.

The first is simple: if you boot an instance, it gets scheduled to a compute node, fails, it would normally be
re-scheduled to another node. That requires scheduler intervention and thus it will not work in Pike with
a multi-cell layout. If you do not rely on reschedules for covering up transient compute-node failures,
then this will not affect you. To ensure you do not make futile attempts at rescheduling, you should set
scheduler.max_attempts to 1 in nova.conf.

The second two are related. The summary is that some of the facilities that Nova has for ensuring that
affinity/anti-affinity is preserved between instances does not function in Pike with a multi-cell layout. If
you dont use affinity operations, then this will not affect you. To make sure you dont make futile attempts
at the affinity check, you should set workarounds.disable_group_policy_check_upcall to True
and filter_scheduler. track_instance_changes to False in nova.conf.

The fourth was previously only a problem when performing live migrations using the since-removed
XenAPI driver and not specifying --block-migrate. The driver would attempt to figure out if block
migration should be performed based on source and destination hosts being in the same aggregate. Since
aggregates data had migrated to the API database, the cell conductor would not be able to access the
aggregate information and would fail.

The fifth is a problem because when a volume is attached to an instance in the nova-compute service,
and [cinder]/cross_az_attach=False in nova.conf, we attempt to look up the availability zone that
the instance is in which includes getting any host aggregates that the instance.host is in. Since the
aggregates are in the API database and the cell conductor cannot access that information, so this will fail.
In the future this check could be moved to the nova-api service such that the availability zone between
the instance and the volume is checked before we reach the cell, except in the case of boot from volume
where the nova-compute service itself creates the volume and must tell Cinder in which availability zone

3.3. Deployment Considerations 177

https://specs.openstack.org/openstack/nova-specs/specs/queens/approved/return-alternate-hosts.html
https://blueprints.launchpad.net/nova/+spec/live-migration-in-xapi-pool
https://review.opendev.org/q/topic:bug/1781286

Nova Documentation, Release 25.3.1.dev38

to create the volume. Long-term, volume creation during boot from volume should be moved to the
top-level superconductor which would eliminate this AZ up-call check problem.

The sixth is detailed in bug 1781286 and is similar to the first issue. The issue is that servers created with-
out a specific availability zone will have their AZ calculated during a reschedule based on the alternate
host selected. Determining the AZ for the alternate host requires an up call to the API DB.

3.3.3.8 Handling cell failures

For an explanation on how nova-api handles cell failures please see the Handling Down Cells section
of the Compute API guide. Below, you can find some recommended practices and considerations for
effectively tolerating cell failure situations.

Configuration considerations

Since a cell being reachable or not is determined through timeouts, it is suggested to provide suitable
values for the following settings based on your requirements.

1. database.max_retries is 10 by default meaning every time a cell becomes unreachable, it
would retry 10 times before nova can declare the cell as a down cell.

2. database.retry_interval is 10 seconds and oslo_messaging_rabbit.
rabbit_retry_interval is 1 second by default meaning every time a cell becomes unreachable
it would retry every 10 seconds or 1 second depending on if its a database or a message queue
problem.

3. Nova also has a timeout value called CELL_TIMEOUT which is hardcoded to 60 seconds and that is
the total time the nova-api would wait before returning partial results for the down cells.

The values of the above settings will affect the time required for nova to decide if a cell is unreachable
and then take the necessary actions like returning partial results.

The operator can also control the results of certain actions like listing servers and services depending
on the value of the api.list_records_by_skipping_down_cells config option. If this is true, the
results from the unreachable cells will be skipped and if it is false, the request will just fail with an API
error in situations where partial constructs cannot be computed.

Disabling down cells

While the temporary outage in the infrastructure is being fixed, the affected cells can be disabled so
that they are removed from being scheduling candidates. To enable or disable a cell, use nova-manage
cell_v2 update_cell --cell_uuid <cell_uuid> --disable. See the Cells v2 Commands man
page for details on command usage.

3.3. Deployment Considerations 178

https://bugs.launchpad.net/nova/+bug/1781286
https://docs.openstack.org/api-guide/compute/down_cells.html

Nova Documentation, Release 25.3.1.dev38

Known issues

1. Services and Performance: In case a cell is down during the startup of nova services, there is
the chance that the services hang because of not being able to connect to all the cell databases that
might be required for certain calculations and initializations. An example scenario of this situation
is if upgrade_levels. compute is set to auto then the nova-api service hangs on startup if
there is at least one unreachable cell. This is because it needs to connect to all the cells to gather
information on each of the compute services version to determine the compute version cap to use.
The current workaround is to pin the upgrade_Ilevels. compute to a particular version like rocky
and get the service up under such situations. See bug 1815697 for more details. Also note that
in general during situations where cells are not reachable certain slowness may be experienced in
operations requiring hitting all the cells because of the aforementioned configurable timeout/retry
values.

2. Counting Quotas: Another known issue is in the current approach of counting quotas where we
query each cell database to get the used resources and aggregate them which makes it sensitive
to temporary cell outages. While the cell is unavailable, we cannot count resource usage residing
in that cell database and things would behave as though more quota is available than should be.
That is, if a tenant has used all of their quota and part of it is in cell A and cell A goes offline
temporarily, that tenant will suddenly be able to allocate more resources than their limit (assuming
cell A returns, the tenant will have more resources allocated than their allowed quota).

Note: Starting in the Train (20.0.0) release, it is possible to configure counting of quota usage
from the placement service and API database to make quota usage calculations resilient to down or
poor-performing cells in a multi-cell environment. See the guotas documentation for more details.

3.3.3.9 FAQs

* How do I find out which hosts are bound to which cell?
There are a couple of ways to do this.
1. Run nova-manage cell_v2 discover_hosts --verbose.

This does not produce a report but if you are trying to determine if a host is in a cell you can
run this and it will report any hosts that are not yet mapped to a cell and map them. This
command is idempotent.

2. Run nova-manage cell_v2 list_hosts.

This will list hosts in all cells. If you want to list hosts in a specific cell, you can use the
--cell_uuid option.

* T updated the database_connection and/or transport_url in a cell using the nova-manage
cell_v2 update_cell command but the API is still trying to use the old settings.

The cell mappings are cached in the nova-api service worker so you will need to restart the worker
process to rebuild the cache. Note that there is another global cache tied to request contexts, which
is used in the nova-conductor and nova-scheduler services, so you might need to do the same if
you are having the same issue in those services. As of the 16.0.0 (Pike) release there is no timer
on the cache or hook to refresh the cache using a SIGHUP to the service.

3.3. Deployment Considerations 179

https://bugs.launchpad.net/nova/+bug/1815697

Nova Documentation, Release 25.3.1.dev38

* I have upgraded from Newton to Ocata and I can list instances but I get a HTTP 404 (NotFound)
error when I try to get details on a specific instance.

Instances need to be mapped to cells so the API knows which cell an instance lives in. When
upgrading, the nova-manage cell_v2 simple_cell_setup command will automatically map
the instances to the single cell which is backed by the existing nova database. If you have already
upgraded and did not use the nova-manage cell_v2 simple_cell_setup command, you can
run the nova-manage cell_v2 map_instances command with the --cell_uuid option to
map all instances in the given cell. See the Cells v2 Commands man page for details on command
usage.

* Can I create a cell but have it disabled from scheduling?

Yes. It is possible to create a pre-disabled cell such that it does not become a candidate for schedul-
ing new VMs. This can be done by running the nova-manage cell_v2 create_cell command
with the --disabled option.

* How can I disable a cell so that the new server create requests do not go to it while I perform
maintenance?

Existing cells can be disabled by running nova-manage cell_v2 update_cell with the
--disable option and can be re-enabled once the maintenance period is over by running this
command with the --enable option.

* I disabled (or enabled) a cell using the nova-manage cell_v2 update_cell or I created a new
(pre-disabled) cell(mapping) using the nova-manage cell_v2 create_cell command but the
scheduler is still using the old settings.

The cell mappings are cached in the scheduler worker so you will either need to restart the scheduler
process to refresh the cache, or send a SIGHUP signal to the scheduler by which it will automati-
cally refresh the cells cache and the changes will take effect.

* Why was the cells REST API not implemented for cells v2? Why are there no CRUD operations
for cells in the API?

One of the deployment challenges that cells v1 had was the requirement for the API and control
services to be up before a new cell could be deployed. This was not a problem for large-scale
public clouds that never shut down, but is not a reasonable requirement for smaller clouds that do
offline upgrades and/or clouds which could be taken completely offline by something like a power
outage. Initial devstack and gate testing for cells v1 was delayed by the need to engineer a solution
for bringing the services partially online in order to deploy the rest, and this continues to be a gap
for other deployment tools. Consider also the FFU case where the control plane needs to be down
for a multi-release upgrade window where changes to cell records have to be made. This would
be quite a bit harder if the way those changes are made is via the API, which must remain down
during the process.

Further, there is a long-term goal to move cell configuration (i.e. cell_mappings and the associated
URLs and credentials) into config and get away from the need to store and provision those things
in the database. Obviously a CRUD interface in the API would prevent us from making that move.

* Why are cells not exposed as a grouping mechanism in the API for listing services, instances, and
other resources?

Early in the design of cells v2 we set a goal to not let the cell concept leak out of the API, even for
operators. Aggregates are the way nova supports grouping of hosts for a variety of reasons, and
aggregates can cut across cells, and/or be aligned with them if desired. If we were to support cells
as another grouping mechanism, we would likely end up having to implement many of the same

3.3. Deployment Considerations 180

Nova Documentation, Release 25.3.1.dev38

features for them as aggregates, such as scheduler features, metadata, and other searching/filtering
operations. Since aggregates are how Nova supports grouping, we expect operators to use aggre-
gates any time they need to refer to a cell as a group of hosts from the API, and leave actual cells
as a purely architectural detail.

The need to filter instances by cell in the API can and should be solved by adding a generic by-
aggregate filter, which would allow listing instances on hosts contained within any aggregate, in-
cluding one that matches the cell boundaries if so desired.

* Why are the API responses for GET /servers, GET /servers/detail, GET /servers/
{server_id} and GET /os-services missing some information for certain cells at certain
times? Why do I see the status as UNKNOWN for the servers in those cells at those times when I
run openstack server list or openstack server show?

Starting from microversion 2.69 the API responses of GET /servers, GET /servers/detail,
GET /servers/{server_id} and GET /os-services may contain missing keys during down
cell situations. See the Handling Down Cells section of the Compute API guide for more informa-
tion on the partial constructs.

For administrative considerations, see Handling cell failures.

3.3.3.10 References

A large number of cells v2-related presentations have been given at various OpenStack and Openlnfra
Summits over the years. These provide an excellent reference on the history and development of the
feature along with details from real-world users of the feature.

e Newton Summit Video - Nova Cells V2: Whats Going On?

* Pike Summit Video - Scaling Nova: How CellsV2 Affects Your Deployment
* Queens Summit Video - Add Cellsv2 to your existing Nova deployment

* Rocky Summit Video - Moving from CellsV1 to CellsV2 at CERN

* Stein Summit Video - Scaling Nova with CellsV2: The Nova Developer and the CERN Operator
perspective

¢ Train Summit Video - Whats new in Nova Cellsv2?

3.3.4 Using WSGI with Nova

Though the compute and metadata APIs can be run using independent scripts that provide eventlet-based
HTTP servers, it is generally considered more performant and flexible to run them using a generic HTTP
server that supports WSGI (such as Apache or nginx).

The nova project provides two automatically generated entry points that support this: nova-api-wsgi
and nova-metadata-wsgi. These read nova.conf and api-paste.ini and generate the required
module-level application that most WSGI servers require. If nova is installed using pip, these two
scripts will be installed into whatever the expected bin directory is for the environment.

The new scripts replace older experimental scripts that could be found in the nova/wsgi directory of the
code repository. The new scripts are not experimental.

When running the compute and metadata services with WSGI, sharing the compute and metadata service
in the same process is not supported (as it is in the eventlet-based scripts).

3.3. Deployment Considerations 181

https://docs.openstack.org/api-guide/compute/down_cells.html
https://www.openstack.org/videos/austin-2016/nova-cells-v2-whats-going-on
https://www.openstack.org/videos/boston-2017/scaling-nova-how-cellsv2-affects-your-deployment
https://www.openstack.org/videos/sydney-2017/adding-cellsv2-to-your-existing-nova-deployment
https://www.openstack.org/videos/summits/vancouver-2018/moving-from-cellsv1-to-cellsv2-at-cern
https://www.openstack.org/videos/summits/berlin-2018/scaling-nova-with-cellsv2-the-nova-developer-and-the-cern-operator-perspective
https://www.openstack.org/videos/summits/berlin-2018/scaling-nova-with-cellsv2-the-nova-developer-and-the-cern-operator-perspective
https://www.openstack.org/videos/summits/denver-2019/whats-new-in-nova-cellsv2
https://www.python.org/dev/peps/pep-3333/
http://httpd.apache.org/
http://nginx.org/en/

Nova Documentation, Release 25.3.1.dev38

In devstack as of May 2017, the compute and metadata APIs are hosted by a Apache communicating with
uwsgi via mod_proxy_uwsgi. Inspecting the configuration created there can provide some guidance on
one option for managing the WSGI scripts. It is important to remember, however, that one of the major
features of using WSGI is that there are many different ways to host a WSGI application. Different servers
make different choices about performance and configurability.

3.4 Maintenance

Once you are running nova, the following information is extremely useful.
* Admin Guide: A collection of guides for administrating nova.
* Flavors: What flavors are and why they are used.

* Upgrades: How nova is designed to be upgraded for minimal service impact, and the order you
should do them in.

* Quotas: Managing project quotas in nova.
» Aggregates: Aggregates are a useful way of grouping hosts together for scheduling purposes.

» Scheduling: How the scheduler is configured, and how that will impact where compute instances
land in your environment. If you are seeing unexpected distribution of compute instances in your
hosts, youll want to dive into this configuration.

* Exposing custom metadata to compute instances: How and when you might want to extend the
basic metadata exposed to compute instances (either via metadata server or config drive) for your
specific purposes.

3.4.1 Admin Documentation

The OpenStack Compute service allows you to control an Infrastructure-as-a-Service (IaaS) cloud com-
puting platform. It gives you control over instances and networks, and allows you to manage access to
the cloud through users and projects.

Compute does not include virtualization software. Instead, it defines drivers that interact with underlying
virtualization mechanisms that run on your host operating system, and exposes functionality over a web-
based APL

3.4.1.1 Overview

To effectively administer compute, you must understand how the different installed nodes interact with
each other. Compute can be installed in many different ways using multiple servers, but generally multiple
compute nodes control the virtual servers and a cloud controller node contains the remaining Compute
services.

The Compute cloud works using a series of daemon processes named nova-* that exist persistently on
the host machine. These binaries can all run on the same machine or be spread out on multiple boxes in
a large deployment. The responsibilities of services and drivers are:

3.4. Maintenance 182

https://uwsgi-docs.readthedocs.io/
http://uwsgi-docs.readthedocs.io/en/latest/Apache.html#mod-proxy-uwsgi

Nova Documentation, Release 25.3.1.dev38

Services

nova-api-metadata A server daemon that serves the Nova Metadata API.
nova-api-os-compute A server daemon that serves the Nova OpenStack Compute API.
nova-api A server daemon that serves the metadata and compute APIs in separate greenthreads.

nova-compute Manages virtual machines. Loads a Service object, and exposes the public methods on
ComputeManager through a Remote Procedure Call (RPC).

nova-conductor Provides database-access support for compute nodes (thereby reducing security risks).
nova-scheduler Dispatches requests for new virtual machines to the correct node.

nova-novncproxy Provides a VNC proxy for browsers, allowing VNC consoles to access virtual ma-
chines.

nova-spicehtml5proxy Provides a SPICE proxy for browsers, allowing SPICE consoles to access virtual
machines.

nova-serialproxy Provides a serial console proxy, allowing users to access a virtual machines serial
console.

The architecture is covered in much greater detail in Nova System Architecture.

Note: Some services have drivers that change how the service implements its core functionality. For
example, the nova-compute service supports drivers that let you choose which hypervisor type it can
use.

3.4.1.2 Deployment Considerations

There is information you might want to consider before doing your deployment, especially if it is going
to be a larger deployment. For smaller deployments the defaults from the install guide will be sufficient.

* Compute Driver Features Supported: While the majority of nova deployments use libvirt/kvm,
you can use nova with other compute drivers. Nova attempts to provide a unified feature set across
these, however, not all features are implemented on all backends, and not all features are equally
well tested.

— Feature Support by Use Case: A view of what features each driver supports based on whats
important to some large use cases (General Purpose Cloud, NFV Cloud, HPC Cloud).

— Feature Support full list: A detailed dive through features in each compute driver backend.

Cells v2 configuration: For large deployments, cells v2 cells allow sharding of your compute en-
vironment. Upfront planning is key to a successful cells v2 layout.

Availablity Zones: Availability Zones are an end-user visible logical abstraction for partitioning a
cloud without knowing the physical infrastructure.

Placement service: Overview of the placement service, including how it fits in with the rest of
nova.

Running nova-api on wsgi: Considerations for using a real WSGI container instead of the baked-in
eventlet web server.

3.4. Maintenance 183

https://docs.openstack.org/placement/yoga/

Nova Documentation, Release 25.3.1.dev38

Host aggregates

Host aggregates are a mechanism for partitioning hosts in an OpenStack cloud, or a region of an Open-
Stack cloud, based on arbitrary characteristics. Examples where an administrator may want to do this
include where a group of hosts have additional hardware or performance characteristics.

Host aggregates started out as a way to use Xen hypervisor resource pools, but have been generalized to
provide a mechanism to allow administrators to assign key-value pairs to groups of machines. Each node
can have multiple aggregates, each aggregate can have multiple key-value pairs, and the same key-value
pair can be assigned to multiple aggregates. This information can be used in the scheduler to enable
advanced scheduling, to set up Xen hypervisor resource pools or to define logical groups for migration.

Host aggregates are not explicitly exposed to users. Instead administrators map flavors to host aggre-
gates. Administrators do this by setting metadata on a host aggregate, and matching flavor extra spec-
ifications. The scheduler then endeavors to match user requests for instances of the given flavor to a
host aggregate with the same key-value pair in its metadata. Compute nodes can be in more than one
host aggregate. Weight multipliers can be controlled on a per-aggregate basis by setting the desired
xxx_weight_multiplier aggregate metadata.

Administrators are able to optionally expose a host aggregate as an Availability Zone. Availability zones
are different from host aggregates in that they are explicitly exposed to the user, and hosts can only be
in a single availability zone. Administrators can configure a default availability zone where instances
will be scheduled when the user fails to specify one. For more information on how to do this, refer to
Availability Zones.

Configure scheduler to support host aggregates

One common use case for host aggregates is when you want to support scheduling instances to a subset
of compute hosts because they have a specific capability. For example, you may want to allow users to
request compute hosts that have SSD drives if they need access to faster disk I/O, or access to compute
hosts that have GPU cards to take advantage of GPU-accelerated code.

To configure the scheduler to support host aggregates, the filter_scheduler.enabled_filters
configuration option must contain the AggregateInstanceExtraSpecsFilter in addition to the
other filters used by the scheduler. Add the following line to nova.conf on the host that runs the
nova-scheduler service to enable host aggregates filtering, as well as the other filters that are typi-
cally enabled:

Example: Specify compute hosts with SSDs

This example configures the Compute service to enable users to request nodes that have solid-state drives
(SSDs). You create a fast-io host aggregate in the nova availability zone and you add the ssd=true
key-value pair to the aggregate. Then, you add the nodel, and node2 compute nodes to it.

openstack aggregate create --zone nova fast-io

(continues on next page)

3.4. Maintenance 184

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

openstack aggregate set --property true 1

openstack aggregate add host 1 nodel

openstack aggregate add host 1 node2

(continues on next page)

3.4. Maintenance 185

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Use the openstack flavor create command to create the ssd.large flavor called with an ID of 6,
8 GB of RAM, 80 GB root disk, and 4 vCPUs.

openstack flavor create --id 6 --ram 8192 --disk 80 --vcpus 4 ssd.large

Once the flavor is created, specify one or more key-value pairs that match the key-value pairs
on the host aggregates with scope aggregate_instance_extra_specs. In this case, that is the
aggregate_instance_extra_specs:ssd=true key-value pair. Setting a key-value pair on a flavor
is done using the openstack flavor set command.

openstack flavor set
--property aggregate_instance_extra_specs:ssd true ssd.large

Once it is set, you should see the extra_specs property of the ssd.large flavor populated with a key
of ssd and a corresponding value of true.

openstack flavor show ssd.large

(continues on next page)

3.4. Maintenance 186

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Now, when a user requests an instance with the ssd.large flavor, the scheduler only considers hosts
with the ssd=true key-value pair. In this example, these are nodel and node2.

Aggregates in Placement

Aggregates also exist in placement and are not the same thing as host aggregates in nova. These ag-
gregates are defined (purely) as groupings of related resource providers. Since compute nodes in nova
are represented in placement as resource providers, they can be added to a placement aggregate as well.
For example, get the UUID of the compute node using openstack hypervisor list and add it to an
aggregate in placement using openstack resource provider aggregate set.

openstack --os-compute-api-version 2.53 hypervisor list

openstack --os-placement-api-version 1.2 resource provider aggregate set
--aggregate df4c74£3-d2c4-4991-b461-f1a678el1d161
815a5634-86fb-4ele-8824-8a631fee3elb

Some scheduling filter operations can be performed by placement for increased speed and efficiency.

Note: The nova-api service attempts (as of nova 18.0.0) to automatically mirror the association of
a compute host with an aggregate when an administrator adds or removes a host to/from a nova host
aggregate. This should alleviate the need to manually create those association records in the placement
API using the openstack resource provider aggregate set CLI invocation.

Tenant Isolation with Placement

In order to use placement to isolate tenants, there must be placement aggregates that match the mem-
bership and UUID of nova host aggregates that you want to use for isolation. The same key pattern
in aggregate metadata used by the AggregateMultiTenancylsolation filter controls this function, and is
enabled by setting scheduler.limit_tenants_to_placement_aggregate to True.

openstack --os-compute-api-version 2.53 aggregate create myagg

(continues on next page)

3.4. Maintenance 187

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

openstack --os-compute-api-version 2.53 aggregate add host myagg nodel

openstack project list -f value @ (grep

openstack aggregate set
--property 9691591£913949818a514£95286a6b90 myagg

openstack --os-placement-api-version 1.2 resource provider aggregate set
--aggregate 019e2189-31b3-49el-aff2-b220ebd91c24
815a5634-86fb-4ele-8824-8a631fee3el®6

Note that the filter_tenant_id metadata key can be optionally suffixed with any string for multiple
tenants, such as filter_tenant_id3=$tenantid.

Usage

Much of the configuration of host aggregates is driven from the API or command-line clients. For exam-
ple, to create a new aggregate and add hosts to it using the openstack client, run:

openstack aggregate create my-aggregate
openstack aggregate add host my-aggregate my-host

To list all aggregates and show information about a specific aggregate, run:

3.4. Maintenance 188

Nova Documentation, Release 25.3.1.dev38

openstack aggregate list
openstack aggregate show my-aggregate

To set and unset a property on the aggregate, run:

openstack aggregate set --property true my-aggregrate
openstack aggregate unset --property pinned my-aggregate

To rename the aggregate, run:

openstack aggregate set --name my-awesome-aggregate my-aggregate

To remove a host from an aggregate and delete the aggregate, run:

openstack aggregate remove host my-aggregate my-host
openstack aggregate delete my-aggregate

For more information, refer to the OpenStack Client documentation.

Configuration

In addition to CRUD operations enabled by the API and clients, the following configuration options can
be used to configure how host aggregates and the related availability zones feature operate under the
hood:

e default_schedule_zone
* scheduler.limit_tenants_to_placement_aggregate
* cinder.cross_az_attach

Finally, as discussed previously, there are a number of host aggregate-specific scheduler filters. These
are:

» AggregatelmagePropertieslsolation
» AggregatelnstanceExtraSpecsFilter
* AggregateloOpskFilter
» AggregateMultilenancylsolation
» AggregateNumlinstancesFilter
» AggregateTypeAffinityFilter
The following configuration options are applicable to the scheduler configuration:
e cpu_allocation_ratio
e ram_allocation_ratio
e filter_scheduler.max_instances_per_host
e filter_scheduler.aggregate_image_properties_isolation_separator

e filter_scheduler.aggregate_image_properties_isolation_namespace

3.4. Maintenance 189

https://docs.openstack.org/python-openstackclient/yoga/cli/command-objects/aggregate.html

Nova Documentation, Release 25.3.1.dev38

Image Caching

Aggregates can be used as a way to target multiple compute nodes for the purpose of requesting that
images be pre-cached for performance reasons.

Note: Some of the virt drivers provide image caching support, which improves performance of second-
and-later boots of the same image by keeping the base image in an on-disk cache. This avoids the need to
re-download the image from Glance, which reduces network utilization and time-to-boot latency. Image
pre-caching is the act of priming that cache with images ahead of time to improve performance of the
first boot.

Assuming an aggregate called my-aggregate where two images should be pre-cached, running the
following command will initiate the request:

nova aggregate-cache-images my-aggregate imagel image2

Note that image pre-caching happens asynchronously in a best-effort manner. The images and aggregate
provided are checked by the server when the command is run, but the compute nodes are not checked to
see if they support image caching until the process runs. Progress and results are logged by each compute,
and the process sends aggregate.cache_images.start, aggregate.cache_images.progress,
and aggregate.cache_images.end notifications, which may be useful for monitoring the operation
externally.

References

* Curse your bones, Availability Zones! (Openstack Summit Vancouver 2018)

Compute service node firewall requirements

Console connections for virtual machines, whether direct or through a proxy, are received on ports 5900
to 5999. The firewall on each Compute service node must allow network traffic on these ports.

This procedure modifies the iptables firewall to allow incoming connections to the Compute services.
Configuring the service-node firewall
1. Log in to the server that hosts the Compute service, as root.

2. Edit the /etc/sysconfig/iptables file, to add an INPUT rule that allows TCP traffic on ports
from 5900 to 5999. Make sure the new rule appears before any INPUT rules that REJECT traffic:

3. Save the changes to the /etc/sysconfig/iptables file, and restart the iptables service to
pick up the changes:

service iptables restart

4. Repeat this process for each Compute service node.

3.4. Maintenance 190

https://docs.openstack.org/nova/latest/user/support-matrix.html#operation_cache_images
https://www.openstack.org/videos/vancouver-2018/curse-your-bones-availability-zones-1

Nova Documentation, Release 25.3.1.dev38

Availability Zones

Note: This section provides deployment and admin-user usage information about the availability zone
feature. For end-user information about availability zones, refer to the user guide.

Auvailability Zones are an end-user visible logical abstraction for partitioning a cloud without knowing
the physical infrastructure. They can be used to partition a cloud on arbitrary factors, such as location
(country, datacenter, rack), network layout and/or power source.

Note: Availability Zones should not be assumed to map to fault domains and provide no intrinsic HA
benefit by themselves.

Availability zones are not modeled in the database; rather, they are defined by attaching specific metadata
information to an aggregate The addition of this specific metadata to an aggregate makes the aggregate
visible from an end-user perspective and consequently allows users to schedule instances to a specific
set of hosts, the ones belonging to the aggregate. There are a few additional differences to note when
comparing availability zones and host aggregates:

* A host can be part of multiple aggregates but it can only be in one availability zone.

* By default a host is part of a default availability zone even if it doesnt belong to an aggregate. The
name of this default availability zone can be configured using default_availability_zone
config option.

Warning: The use of the default availability zone name in requests can be very error-prone.
Since the user can see the list of availability zones, they have no way to know whether the default
availability zone name (currently nova) is provided because an host belongs to an aggregate
whose AZ metadata key is set to nova, or because there is at least one host not belonging to
any aggregate. Consequently, it is highly recommended for users to never ever ask for booting
an instance by specifying an explicit AZ named nova and for operators to never set the AZ
metadata for an aggregate to nova. This can result is some problems due to the fact that the
instance AZ information is explicitly attached to nova which could break further move opera-
tions when either the host is moved to another aggregate or when the user would like to migrate
the instance.

Note: Availability zone names must NOT contain : since it is used by admin users to specify
hosts where instances are launched in server creation. See Using availability zones to select hosts
for more information.

In addition, other services, such as the networking service and the block storage service, also provide
an availability zone feature. However, the implementation of these features differs vastly between these
different services. Consult the documentation for these other services for more information on their
implementation of this feature.

3.4. Maintenance 191

https://docs.openstack.org/neutron/yoga/
https://docs.openstack.org/cinder/yoga/

Nova Documentation, Release 25.3.1.dev38

Availability Zones with Placement

In order to use placement to honor availability zone requests, there must be placement aggregates that
match the membership and UUID of nova host aggregates that you assign as availability zones. The same
key in aggregate metadata used by the AvailabilityZoneFilter filter controls this function, and is enabled
by setting scheduler.query_placement_for_availability_zone to True. As of 24.0.0 (Xena),
this is the default.

openstack --os-compute-api-version 2.53 aggregate create myaz

openstack --os-compute-api-version 2.53 aggregate add host myaz nodel

openstack aggregate set --property az002 myaz

openstack --os-placement-api-version 1.2 resource provider aggregate set --
—aggregate 019e2189-31b3-49el-aff2-b220ebd91c24 815a5634-86fb-4ele-8824-
—8a631fee3el6

Without the above configuration, the AvailabilityZoneFilter filter must be enabled in
filter_scheduler.enabled_filters to retain proper behavior.

3.4. Maintenance 192

Nova Documentation, Release 25.3.1.dev38

Implications for moving servers

There are several ways to move a server to another host: evacuate, resize, cold migrate, live migrate, and
unshelve. Move operations typically go through the scheduler to pick the target host unless a target host
is specified and the request forces the server to that host by bypassing the scheduler. Only evacuate and
live migrate can forcefully bypass the scheduler and move a server to a specified host and even then it is
highly recommended to not force and bypass the scheduler.

With respect to availability zones, a server is restricted to a zone if:

1. The server was created in a specific zone with the POST /servers request containing the
availability_zone parameter.

2. If the server create request did not contain the availability_zone parameter but the API service
is configured for default_schedule_zone then by default the server will be scheduled to that
zone.

3. The shelved offloaded server was unshelved by specifying the availability_zone with the POST
/servers/{server_id}/action request using microversion 2.77 or greater.

4. cinder.cross_az_attach is False, default_schedule_zone is None, the server is created
without an explicit zone but with pre-existing volume block device mappings. In that case the
server will be created in the same zone as the volume(s) if the volume zone is not the same as
default_availability_zone. See Resource affinity for details.

If the server was not created in a specific zone then it is free to be moved to other zones, i.e. the Avail-
abilityZoneFilter is a no-op.

Knowing this, it is dangerous to force a server to another host with evacuate or live migrate if the server
is restricted to a zone and is then forced to move to a host in another zone, because that will create an
inconsistency in the internal tracking of where that server should live and may require manually updating
the database for that server. For example, if a user creates a server in zone A and then the admin force
live migrates the server to zone B, and then the user resizes the server, the scheduler will try to move it
back to zone A which may or may not work, e.g. if the admin deleted or renamed zone A in the interim.

Resource affinity

The cinder.cross_az_attach configuration option can be used to restrict servers and the volumes
attached to servers to the same availability zone.

A typical use case for setting cross_az_attach=False is to enforce compute and block storage affinity,
for example in a High Performance Compute cluster.

By default cross_az_attach is True meaning that the volumes attached to a server can be in a different
availability zone than the server. If set to False, then when creating a server with pre-existing volumes or
attaching a volume to a server, the server and volume zone must match otherwise the request will fail. In
addition, if the nova-compute service creates the volumes to attach to the server during server create, it
will request that those volumes are created in the same availability zone as the server, which must exist
in the block storage (cinder) service.

As noted in the Implications for moving servers section, forcefully moving a server to another zone could
also break affinity with attached volumes.

Note: cross_az_attach=False is not widely used nor tested extensively and thus suffers from some
known issues:

3.4. Maintenance 193

Nova Documentation, Release 25.3.1.dev38

* Bug 1694844, This is fixed in the 21.0.0 (Ussuri) release by using the volume zone for the server
being created if the server is created without an explicit zone, default_schedule_zone is None,
and the volume zone does not match the value of default_availability_zone.

* Bug 1781421

Using availability zones to select hosts

We can combine availability zones with a specific host and/or node to select where an instance is launched.
For example:

openstack server create --availability-zone ZONE:HOST:NODE ... SERVER

Note: It is possible to use ZONE, ZONE : HOST, and ZONE: : NODE.

Note: This is an admin-only operation by default, though you can modify this behavior using the
os_compute_api:servers:create: forced_host rule in policy.yaml.

However, as discussed previously, when launching instances in this manner the scheduler filters are not
run. For this reason, this behavior is considered legacy behavior and, starting with the 2.74 microversion,
it is now possible to specify a host or node explicitly. For example:

openstack --os-compute-api-version 2.74 server create
--host HOST --hypervisor-hostname HYPERVISOR ... SERVER

Note: This is an admin-only operation by default, though you can modify this behavior using the
compute:servers:create:requested_destination rule in policy.yaml.

This avoids the need to explicitly select an availability zone and ensures the scheduler filters are not
bypassed.

Usage

Creating an availability zone (AZ) is done by associating metadata with a host aggregate. For this reason,
the openstack client provides the ability to create a host aggregate and associate it with an AZ in one
command. For example, to create a new aggregate, associating it with an AZ in the process, and add host
to it using the openstack client, run:

openstack aggregate create --zone my-availability-zone my-aggregate
openstack aggregate add host my-aggregate my-host

Note: While it is possible to add a host to multiple host aggregates, it is not possible to add them to
multiple availability zones. Attempting to add a host to multiple host aggregates associated with differing

3.4. Maintenance 194

https://bugs.launchpad.net/nova/+bug/1694844
https://bugs.launchpad.net/nova/+bug/1781421

Nova Documentation, Release 25.3.1.dev38

availability zones will result in a failure.

Alternatively, you can set this metadata manually for an existing host aggregate. For example:

openstack aggregate set
--property my-availability-zone my-aggregate

To list all host aggregates and show information about a specific aggregate, in order to determine which
AZ the host aggregate(s) belong to, run:

openstack aggregate list --long
openstack aggregate show my-aggregate

Finally, to disassociate a host aggregate from an availability zone, run:

openstack aggregate unset --property availability_zone my-aggregate

Configuration

Refer to Host aggregates for information on configuring both host aggregates and availability zones.

Configuration

To configure your Compute installation, you must define configuration options in these files:

* nova.conf contains most of the Compute configuration options and resides in the /etc/nova
directory.

* api-paste.ini defines Compute limits and resides in the /etc/nova directory.
» Configuration files for related services, such as the Image and Identity services.

A list of config options based on different topics can be found below:

Service User Tokens

Note: Configuration of service user tokens is required for every Nova service for security reasons. See
https://bugs.launchpad.net/nova/+bug/2004555 for details.

Configure Nova to send service user tokens alongside regular user tokens when making REST API calls
to other services. The identity service (Keystone) will authenticate a request using the service user token
if the regular user token has expired.

This is important when long-running operations such as live migration or snapshot take long enough to
exceed the expiry of the user token. Without the service token, if a long-running operation exceeds the
expiry of the user token, post operations such as cleanup after a live migration could fail when Nova calls
other service APIs like block-storage (Cinder) or networking (Neutron).

The service token is also used by services to validate whether the API caller is a service. Some service
APIs are restricted to service users only.

3.4. Maintenance 195

https://bugs.launchpad.net/nova/+bug/2004555

Nova Documentation, Release 25.3.1.dev38

To set up service tokens, create a nova service user and service role in the identity service (Keystone)
and assign the service role to the nova service user.

Then, configure the service_user section of the Nova configuration file, for example:

And configure the other identity options as necessary for the service user, much like you would configure
nova to work with the image service (Glance) or networking service (Neutron).

Note: Please note that the role assigned to the service_user needs to be in the configured
keystone_authtoken. service_token_roles of other services such as block-storage (Cinder), im-
age (Glance), and networking (Neutron).

Compute API configuration

The Compute API, is the component of OpenStack Compute that receives and responds to user requests,
whether they be direct API calls, or via the CLI tools or dashboard.

Configure Compute API password handling

The OpenStack Compute API enables users to specify an administrative password when they create,
rebuild, rescue or evacuate a server instance. If the user does not specify a password, a random password
is generated and returned in the API response.

In practice, how the admin password is handled depends on the hypervisor in use and might require
additional configuration of the instance. For example, you might have to install an agent to handle the
password setting. If the hypervisor and instance configuration do not support setting a password at server
create time, the password that is returned by the create API call is misleading because it was ignored.

To prevent this confusion, set the enable_instance_password configuration to False to disable the
return of the admin password for installations that do not support setting instance passwords.

3.4. Maintenance 196

Nova Documentation, Release 25.3.1.dev38

Resize

Resize (or Server resize) is the ability to change the flavor of a server, thus allowing it to upscale or
downscale according to user needs. For this feature to work properly, you might need to configure some
underlying virt layers.

This document describes how to configure hosts for standard resize. For information on cross-cell resize,
refer to Cross-cell resize.

Virt drivers

Todo: This section needs to be updated for other virt drivers, shared storage considerations, etc.

KVM

Resize on KVM is implemented currently by transferring the images between compute nodes over ssh.
For KVM you need hostnames to resolve properly and passwordless ssh access between your compute
hosts. Direct access from one compute host to another is needed to copy the VM file across.

Cloud end users can find out how to resize a server by reading Resize an instance.

Automatic confirm

There is a periodic task configured by configuration option resize_confirm_window (in seconds). If
this value is not 0, the nova-compute service will check whether servers are in a resized state longer than
the value of resize_confirm_window and if so will automatically confirm the resize of the servers.

Cross-cell resize

Note: This document describes how to configure nova for cross-cell resize. For information on same-cell
resize, refer to Resize. For information on the cells v2 feature, refer to Cells (v2).

Historically resizing and cold migrating a server has been explicitly restricted to within the same cell in
which the server already exists. The cross-cell resize feature allows configuring nova to allow resizing
and cold migrating servers across cells.

The full design details are in the Ussuri spec and there is a video from a summit talk with a high-level
overview.

3.4. Maintenance 197

https://opendev.org/openstack/nova/src/tag/20.0.0/nova/conductor/tasks/migrate.py#L164
https://specs.openstack.org/openstack/nova-specs/specs/ussuri/approved/cross-cell-resize.html
https://www.openstack.org/videos/summits/denver-2019/whats-new-in-nova-cellsv2

Nova Documentation, Release 25.3.1.dev38

Use case

There are many reasons to use multiple cells in a nova deployment beyond just scaling the database
and message queue. Cells can also be used to shard a deployment by hardware generation and feature
functionality. When sharding by hardware generation, it would be natural to setup a host aggregate for
each cell and map flavors to the aggregate. Then when it comes time to decommission old hardware the
deployer could provide new flavors and request that users resize to the new flavors, before some deadline,
which under the covers will migrate their servers to the new cell with newer hardware. Administrators
could also just cold migrate the servers during a maintenance window to the new cell.

Requirements

To enable cross-cell resize functionality the following conditions must be met.

Minimum compute versions

All compute services must be upgraded to 21.0.0 (Ussuri) or later and not be pinned to older RPC API
versions in upgrade_levels.compute.

Policy configuration

The policy rule compute:servers:resize:cross_cell controls who can perform a cross-cell resize
or cold migrate operation. By default the policy disables the functionality for all users. A microversion
is not required to opt into the behavior, just passing the policy check. As such, it is recommended to start
by allowing only certain users to be able to perform a cross-cell resize or cold migration, for example by
setting the rule to rule:admin_api or some other rule for test teams but not normal users until you are
comfortable supporting the feature.

Compute driver

There are no special compute driver implementations required to support the feature, it is built on existing
driver interfaces used during resize and shelve/unshelve. However, only the libvirt compute driver has
integration testing in the nova-multi-cell CI job.

Networking

The networking API must expose the Port Bindings Extended API extension which was added in
the 13.0.0 (Rocky) release for Neutron.

3.4. Maintenance 198

Nova Documentation, Release 25.3.1.dev38

Notifications

The types of events and their payloads remain unchanged. The major difference from same-cell resize is
the publisher_id may be different in some cases since some events are sent from the conductor service
rather than a compute service. For example, with same-cell resize the instance.resize_revert.
start notification is sent from the source compute host in the finish_revert_resize method but with
cross-cell resize that same notification is sent from the conductor service.

Obviously the actual message queue sending the notifications would be different for the source and target
cells assuming they use separate transports.

Instance actions

The overall instance actions named resize, confirmResize and revertResize are the same as same-
cell resize. However, the events which make up those actions will be different for cross-cell resize since
the event names are generated based on the compute service methods involved in the operation and there
are different methods involved in a cross-cell resize. This is important for triage when a cross-cell resize
operation fails.

Scheduling

The CrossCellWeigher is enabled by default. When a scheduling request allows selecting com-
pute nodes from another cell the weigher will by default prefer hosts within the source cell over
hosts from another cell. However, this behavior is configurable using the filter_scheduler.
cross_cell_move_weight_multiplier configuration option if, for example, you want to drain old
cells when resizing or cold migrating.

Code flow

The end user experience is meant to not change, i.e. status transitions. A successfully cross-cell resized
server will go to VERIFY_RESTIZE status and from there the user can either confirm or revert the resized
server using the normal confirmResize and revertResize server action APIs.

Under the covers there are some differences from a traditional same-cell resize:

e There is no inter-compute interaction. Everything is synchronously orchestrated from the (su-
per)conductor service. This uses the long_rpc_timeout configuration option.

* The orchestration tasks in the (super)conductor service are in charge of creating a copy of the
instance and its related records in the target cell database at the beginning of the operation,
deleting them in case of rollback or when the resize is confirmed/reverted, and updating the
instance_mappings table record in the API database.

* Non-volume-backed servers will have their root disk uploaded to the image service as a temporary
snapshot image just like during the shelveOffload operation. When finishing the resize on the
destination host in the target cell that snapshot image will be used to spawn the guest and then the
snapshot image will be deleted.

3.4. Maintenance 199

https://opendev.org/openstack/nova/src/tag/20.0.0/nova/compute/manager.py#L4326
https://docs.openstack.org/api-ref/compute/#confirm-resized-server-confirmresize-action
https://docs.openstack.org/api-ref/compute/#revert-resized-server-revertresize-action
https://opendev.org/openstack/nova/src/branch/master/nova/conductor/tasks/cross_cell_migrate.py
https://docs.openstack.org/api-ref/compute/#shelf-offload-remove-server-shelveoffload-action

Nova Documentation, Release 25.3.1.dev38

Sequence diagram

The following diagrams are current as of the 21.0.0 (Ussuri) release.

Resize

This is the sequence of calls to get the server to VERIFY_RESIZE status.

]

cast

conductor

=]

MigrationTask

v

Tarye toBsetuprask

erepresizentvestrask

PrepresizentsourceTask

EinishResizentbestrask

Confirm resize

. e ssteecwee

This is the sequence of calls when confirming or deleting a server in VERIFY_RESIZE status.

conductor

Source

cast (or call if deleting)

|cunfim_snapshnt_hased_msixe B'

i izeTask

|

call

confirm_swapshot_based_resize_at_source |

:’ |I|nx\‘l delete source cell instance |5|

:’ [update target cell imstance status [

3.4. Maintenance

200

https://opendev.org/openstack/nova/src/tag/20.0.0/nova/compute/api.py#L2171

Nova Documentation, Release 25.3.1.dev38

Revert resize

This is the sequence of calls when reverting a server in VERIFY_RESIZE status.

E
! cast : i '

| [revert_snapshot based resize |-

| :
Rl i) i

:’ [update records from target to source cell 1
E - 1 lopinte Sstanes norpiy

! call

| [revert_snapshot_based_resize_at_dest |y

H :’ [hard delete taryet cell instamce

| call

» | [Einish_revert_snapshot_based_resize_at_sowrce L

Limitations

These are known to not yet be supported in the code:

* Instances with ports attached that have bandwidth-aware resource provider allocations. Nova falls
back to same-cell resize if the server has such ports.

* Rescheduling to alternative hosts within the same target cell in case the primary selected host fails
the prep_snapshot_based_resize_at_dest call.

These may not work since they have not been validated by integration testing:
* Instances with PCI devices attached.
* Instances with a NUMA topology.

Other limitations:

» The config drive associated with the server, if there is one, will be re-generated on the destination
host in the target cell. Therefore if the server was created with personality files they will be lost.
However, this is no worse than evacuating a server that had a config drive when the source and
destination compute host are not on shared storage or when shelve offloading and unshelving a
server with a config drive. If necessary, the resized server can be rebuilt to regain the personality
files.

e The _poll_unconfirmed_resizes periodic task, which can be configured to automatically
confirm pending resizes on the target host, might not support cross-cell resizes because doing so
would require an up-call to the API to confirm the resize and cleanup the source cell database.

3.4. Maintenance 201

https://docs.openstack.org/api-guide/compute/server_concepts.html#server-personality
https://docs.openstack.org/api-ref/compute/#evacuate-server-evacuate-action

Nova Documentation, Release 25.3.1.dev38

Troubleshooting
Timeouts

Configure a service user in case the user token times out, e.g. during the snapshot and download of a
large server image.

If RPC calls are timing out with a MessagingTimeout error in the logs, check the long_rpc_timeout
option to see if it is high enough though the default value (30 minutes) should be sufficient.

Recovering from failure

The orchestration tasks in conductor that drive the operation are built with rollbacks so each part of the
operation can be rolled back in order if a subsequent task fails.

The thing to keep in mind is the instance_mappings record in the API DB is the authority on where the
instance lives and that is where the API will go to show the instance in a GET /servers/{server_id}
call or any action performed on the server, including deleting it.

So if the resize fails and there is a copy of the instance and its related records in the target cell, the tasks
should automatically delete them but if not you can hard-delete the records from whichever cell is not
the one in the instance_mappings table.

If the instance is in ERROR status, check the logs in both the source and destination compute service to see
if there is anything that needs to be manually recovered, for example volume attachments or port bindings,
and also check the (super)conductor service logs. Assuming volume attachments and port bindings are
OK (current and pointing at the correct host), then try hard rebooting the server to get it back to ACTIVE
status. If that fails, you may need to rebuild the server on the source host. Note that the guests disks
on the source host are not deleted until the resize is confirmed so if there is an issue prior to confirm or
confirm itself fails, the guest disks should still be available for rebuilding the instance if necessary.

Configuring Fibre Channel Support

Fibre Channel support in OpenStack Compute is remote block storage attached to compute nodes for
VMs.

Todo: This below statement needs to be verified for current release

Fibre Channel supported only the KVM hypervisor.

Compute and Block Storage support Fibre Channel automatic zoning on Brocade and Cisco switches.
On other hardware Fibre Channel arrays must be pre-zoned or directly attached to the KVM hosts.

3.4. Maintenance 202

https://docs.openstack.org/api-ref/compute/#rebuild-server-rebuild-action

Nova Documentation, Release 25.3.1.dev38

KVM host requirements

You must install these packages on the KVM host:
sysfsutils Nova uses the systool application in this package.
sg3-utils or sg3_utils Nova uses the sg_scan and sginfo applications.

Installing the multipath-tools or device-mapper-multipath package is optional.

Configuring iSCSI interface and offload support

Compute supports open-iscsi iSCSI interfaces for offload cards. Offload hardware must be present and
configured on every compute node where offload is desired. Once an open-iscsi interface is configured,
the iface name (iface.iscsi_ifacename) should be passed to libvirt via the iscsi_iface parameter
for use. All iSCSI sessions will be bound to this iSCSI interface.

Currently supported transports (iface.transport_name) are be2iscsi, bnx2i, cxgb3i, cxgb4i,
gla4xxx, ocs, tcp. Configuration changes are required on the compute node only.

iSER is supported using the separate iSER LibvirtISERVolumeDriver and will be rejected if used via the
iscsi_iface parameter.

iSCSI iface configuration

* Note the distinction between the transport name (iface.transport_name) and iface name
(iface.iscsi_ifacename). The actual iface name must be specified via the iscsi_iface param-
eter to libvirt for offload to work.

e The default name for an iSCSI iface (open-iscsi parameter iface.iscsi_ifacename) is in the
format transport_name.hwaddress when generated by iscsiadm.

* iscsiadm can be used to view and generate current iface configuration. Every network interface
that supports an open-iscsi transport can have one or more iscsi ifaces associated with it. If no ifaces
have been configured for a network interface supported by an open-iscsi transport, this command
will create a default iface configuration for that network interface. For example :

iscsiadm -m iface

The output is in the format:

* Individual iface configuration can be viewed via

iscsiadm -m iface -I IFACE_NAME
BEGIN RECORD 2.0-873

(continues on next page)

3.4. Maintenance 203

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

END RECORD

Configuration can be updated as desired via

iscsiadm -m iface-I IFACE_NAME--op update -n iface.SETTING -v VALUE

* All iface configurations need a minimum of iface.iface_name, iface.transport_name and
iface.hwaddress to be correctly configured to work. Some transports may require iface.
ipaddress and iface.net_ifacename as well to bind correctly.

Detailed configuration instructions can be found at: https://github.com/open-iscsi/open-iscsi/
blob/master/README

Hypervisors
KVM

KVM is configured as the default hypervisor for Compute.

Note: This document contains several sections about hypervisor selection. If you are reading this
document linearly, you do not want to load the KVM module before you install nova-compute. The
nova-compute service depends on gemu-kvm, which installs /1ib/udev/rules.d/45-qemu-kvm.
rules, which sets the correct permissions on the /dev/kvm device node.

The KVM hypervisor supports the following virtual machine image formats:
* Raw
* QEMU Copy-on-write (QCOW?2)
* QED Qemu Enhanced Disk
e VMware virtual machine disk format (vidk)

This section describes how to enable KVM on your system. For more information, see the following
distribution-specific documentation:

* Fedora: Virtualization Getting Started Guide

e Ubuntu: KVM/Installation

* Debian: KVM Guide

* Red Hat Enterprise Linux (RHEL): Getting started with virtualization
* openSUSE: Setting Up a KVM VM Host Server

SLES: Virtualization with KVM.

3.4. Maintenance 204

https://github.com/open-iscsi/open-iscsi/blob/master/README
https://github.com/open-iscsi/open-iscsi/blob/master/README
https://docs.fedoraproject.org/en-US/quick-docs/getting-started-with-virtualization/
https://help.ubuntu.com/community/KVM/Installation
https://wiki.debian.org/KVM
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8_configuring-and-managing-virtualization
https://doc.opensuse.org/documentation/leap/virtualization/html/book-virt/cha-qemu-host.html
https://documentation.suse.com/sles/11-SP4/html/SLES-all/book-kvm.html

Nova Documentation, Release 25.3.1.dev38

Configuration

To enable KVM explicitly, add the following configuration options to the /etc/nova/nova. conf file:

Enable KVM

The following sections outline how to enable KVM based hardware virtualization on different architec-
tures and platforms. To perform these steps, you must be logged in as the root user.

For x86-based systems

1. To determine whether the svm or vimx CPU extensions are present, run this command:

grep -E /proc/cpuinfo

This command generates output if the CPU is capable of hardware-virtualization. Even if output
is shown, you might still need to enable virtualization in the system BIOS for full support.

If no output appears, consult your system documentation to ensure that your CPU and mother-
board support hardware virtualization. Verify that any relevant hardware virtualization options are
enabled in the system BIOS.

The BIOS for each manufacturer is different. If you must enable virtualization in the BIOS, look
for an option containing the words virtualization, VT, VMX, or SVM.

2. To list the loaded kernel modules and verify that the kvm modules are loaded, run this command:

lsmod '@ grep kvm

If the output includes kvm_intel or kvm_amd, the kvm hardware virtualization modules are loaded
and your kernel meets the module requirements for OpenStack Compute.

If the output does not show that the kvm module is loaded, run this command to load it:

modprobe -a kvm

Run the command for your CPU. For Intel, run this command:

modprobe -a kvm-intel

For AMD, run this command:

modprobe -a kvm-amd

Because a KVM installation can change user group membership, you might need to log in again
for changes to take effect.

3.4. Maintenance 205

Nova Documentation, Release 25.3.1.dev38

If the kernel modules do not load automatically, use the procedures listed in these subsections.

If the checks indicate that required hardware virtualization support or kernel modules are disabled or
unavailable, you must either enable this support on the system or find a system with this support.

Note: Some systems require that you enable VT support in the system BIOS. If you believe your pro-
cessor supports hardware acceleration but the previous command did not produce output, reboot your
machine, enter the system BIOS, and enable the VT option.

If KVM acceleration is not supported, configure Compute to use a different hypervisor, such as QFEMU.

These procedures help you load the kernel modules for Intel-based and AMD-based processors if they
do not load automatically during KVM installation.

Intel-based processors

If your compute host is Intel-based, run these commands as root to load the kernel modules:

modprobe kvm
modprobe kvm-intel

Add these lines to the /etc/modules file so that these modules load on reboot:

AMD-based processors

If your compute host is AMD-based, run these commands as root to load the kernel modules:

modprobe kvm
modprobe kvm-amd

Add these lines to /etc/modules file so that these modules load on reboot:

For POWER-based systems

KVM as a hypervisor is supported on POWER systems PowerNV platform.

1. To determine if your POWER platform supports KVM based virtualization run the following com-
mand:

cat /proc/cpuinfo @ grep PowerNV

If the previous command generates the following output, then CPU supports KVM based virtual-
ization.

3.4. Maintenance 206

Nova Documentation, Release 25.3.1.dev38

If no output is displayed, then your POWER platform does not support KVM based hardware
virtualization.

2. To list the loaded kernel modules and verify that the kvmm modules are loaded, run the following
command:

lsmod ' grep kvm

If the output includes kvm_hv, the kvm hardware virtualization modules are loaded and your kernel
meets the module requirements for OpenStack Compute.

If the output does not show that the kvm module is loaded, run the following command to load it:

modprobe -a kvm

For PowerNV platform, run the following command:

modprobe -a kvm-hv

Because a KVM installation can change user group membership, you might need to log in again
for changes to take effect.

For AArch64-based systems

Todo: Populate this section.

Configure Compute backing storage

Backing Storage is the storage used to provide the expanded operating system image, and any ephemeral
storage. Inside the virtual machine, this is normally presented as two virtual hard disks (for example, /
dev/vda and /dev/vdb respectively). However, inside OpenStack, this can be derived from one of these
methods: 1vm, gcow, rbd or flat, chosen using the 1ibvirt.images_type option in nova.conf on
the compute node.

Note: The option raw is acceptable but deprecated in favor of flat. The Flat back end uses either raw
or QCOW?2 storage. It never uses a backing store, so when using QCOW?2 it copies an image rather than
creating an overlay. By default, it creates raw files but will use QCOW?2 when creating a disk from a
QCOW2 if force_raw_images is not set in configuration.

QCOW is the default backing store. It uses a copy-on-write philosophy to delay allocation of storage until
it is actually needed. This means that the space required for the backing of an image can be significantly
less on the real disk than what seems available in the virtual machine operating system.

Flat creates files without any sort of file formatting, effectively creating files with the plain binary one
would normally see on a real disk. This can increase performance, but means that the entire size of the
virtual disk is reserved on the physical disk.

3.4. Maintenance 207

Nova Documentation, Release 25.3.1.dev38

Local LVM volumes can also be used. Set the 1ibvirt.images_volume_group configuration option
to the name of the LVM group you have created.

Direct download of images from Ceph

When the Glance image service is set up with the Ceph backend and Nova is using a local ephemeral
store ([1ibvirt]/images_type!=rbd), it is possible to configure Nova to download images directly
into the local compute image cache.

With the following configuration, images are downloaded using the RBD export command instead of us-
ing the Glance HTTP API. In some situations, especially for very large images, this could be substantially
faster and can improve the boot times of instances.

On the Glance API node in glance-api.conf:

On the Nova compute node in nova.conf:

Nested guest support

You may choose to enable support for nested guests that is, allow your Nova instances to themselves run
hardware-accelerated virtual machines with KVM. Doing so requires a module parameter on your KVM
kernel module, and corresponding nova. conf settings.

Host configuration

To enable nested KVM guests, your compute node must load the kvm_intel or kvm_amd module
with nested=1. You can enable the nested parameter permanently, by creating a file named /etc/
modprobe.d/kvm. conf and populating it with the following content:

options kvm_intel nested=1
options kvm_amd nested=1

A reboot may be required for the change to become effective.

3.4. Maintenance 208

https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

Nova Documentation, Release 25.3.1.dev38

Nova configuration

To support nested guests, you must set your 1ibvirt. cpu_mode configuration to one of the following
options:

Host passthrough (host-passthrough) In this mode, nested virtualization is automatically enabled
once the KVM kernel module is loaded with nesting support.

However, do consider the other implications that host passthrough mode has on compute function-
ality.

Host model (host-model) In this mode, nested virtualization is automatically enabled once the KVM
kernel module is loaded with nesting support, if the matching CPU model exposes the vmx fea-
ture flag to guests by default (you can verify this with virsh capabilities on your com-
pute node). If your CPU model does not pass in the vmx flag, you can force it with 1ibvirt.
cpu_model_extra_flags:

Again, consider the other implications that apply to the /ost model mode.

Custom (custom) In custom mode, the same considerations apply as in host-model mode, but you may
additionally want to ensure that libvirt passes not only the vmx, but also the pcid flag to its guests:

More information on CPU models can be found in CPU models.

Limitations

When enabling nested guests, you should be aware of (and inform your users about) certain limitations
that are currently inherent to nested KVM virtualization. Most importantly, guests using nested virtual-
ization will, while nested guests are running,

* fail to complete live migration;
* fail to resume from suspend.

See the KVM documentation for more information on these limitations.

3.4. Maintenance 209

https://www.linux-kvm.org/page/Nested_Guests#Limitations

Nova Documentation, Release 25.3.1.dev38

KVM performance tweaks

The VHostNet kernel module improves network performance. To load the kernel module, run the fol-
lowing command as root:

modprobe vhost_net

Troubleshooting

Trying to launch a new virtual machine instance fails with the ERROR state, and the following error appears
in the /var/log/nova/nova-compute. log file:

This message indicates that the KVM kernel modules were not loaded.

If you cannot start VMs after installation without rebooting, the permissions might not be set correctly.
This can happen if you load the KVM module before you install nova-compute. To check whether the
group is set to kvm, run:

1s -1 /dev/kvm

If it is not set to kvm, run:

udevadm trigger

QEMU

From the perspective of the Compute service, the QEMU hypervisor is very similar to the KVM hypervi-
sor. Both are controlled through libvirt, both support the same feature set, and all virtual machine images
that are compatible with KVM are also compatible with QEMU. The main difference is that QEMU does
not support native virtualization. Consequently, QEMU has worse performance than KVM and is a poor
choice for a production deployment.

The typical uses cases for QEMU are
* Running on older hardware that lacks virtualization support.

* Running the Compute service inside of a virtual machine for development or testing purposes,
where the hypervisor does not support native virtualization for guests.

Configuration

To enable QEMU, configure DEFAULT. compute_driver = libvirt.LibvirtDriver and libvirt.
virt_type = gemu. For example:

(continues on next page)

3.4. Maintenance 210

http://www.linux-kvm.org/page/VhostNet

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

For some operations you may also have to install the guestmount utility:

On Ubuntu:

apt-get install guestmount

On Red Hat Enterprise Linux, Fedora, or CentOS:

yum install libguestfs-tools

On openSUSE:

zypper install guestfs-tools

The QEMU hypervisor supports the following virtual machine image formats:
* Raw
* QEMU Copy-on-write (qcow?2)

e VMware virtual machine disk format (vdk)

LXC (Linux containers)

LXC (also known as Linux containers) is a virtualization technology that works at the operating system
level. This is different from hardware virtualization, the approach used by other hypervisors such as
KVM, Xen, and VMware. LXC (as currently implemented using libvirt in the Compute service) is
not a secure virtualization technology for multi-tenant environments (specifically, containers may affect
resource quotas for other containers hosted on the same machine). Additional containment technologies,
such as AppArmor, may be used to provide better isolation between containers, although this is not the
case by default. For all these reasons, the choice of this virtualization technology is not recommended in
production.

If your compute hosts do not have hardware support for virtualization, LXC will likely provide better
performance than QEMU. In addition, if your guests must access specialized hardware, such as GPUs,
this might be easier to achieve with LXC than other hypervisors.

Note: Some OpenStack Compute features might be missing when running with LXC as the hypervisor.
See the hypervisor support matrix for details.

3.4. Maintenance 211

http://wiki.openstack.org/HypervisorSupportMatrix

Nova Documentation, Release 25.3.1.dev38

Configuration

To enable LXC, configure DEFAULT. compute_driver = libvirt.LibvirtDriver and libvirt.
virt_type = 1xc. For example:

On Ubuntu, enable LXC support in OpenStack by installing the nova-compute-1xc package.

VMware vSphere
Introduction

OpenStack Compute supports the VMware vSphere product family and enables access to advanced fea-
tures such as vMotion, High Availability, and Dynamic Resource Scheduling (DRS).

This section describes how to configure VMware-based virtual machine images for launch. The VMware
driver supports vCenter version 5.5.0 and later.

The VMware vCenter driver enables the nova-compute service to communicate with a VMware vCenter
server that manages one or more ESX host clusters. The driver aggregates the ESX hosts in each cluster
to present one large hypervisor entity for each cluster to the Compute scheduler. Because individual ESX
hosts are not exposed to the scheduler, Compute schedules to the granularity of clusters and vCenter uses
DRS to select the actual ESX host within the cluster. When a virtual machine makes its way into a
vCenter cluster, it can use all vSphere features.

The following sections describe how to configure the VMware vCenter driver.

High-level architecture

The following diagram shows a high-level view of the VMware driver architecture:

VMware driver architecture

As the figure shows, the OpenStack Compute Scheduler sees three hypervisors that each correspond
to a cluster in vCenter. nova-compute contains the VMware driver. You can run with multiple
nova-compute services. It is recommended to run with one nova-compute service per ESX cluster
thus ensuring that while Compute schedules at the granularity of the nova-compute service it is also
in effect able to schedule at the cluster level. In turn the VMware driver inside nova-compute interacts
with the vCenter APIs to select an appropriate ESX host within the cluster. Internally, vCenter uses DRS
for placement.

The VMware vCenter driver also interacts with the Image service to copy VMDK images from the Image
service back-end store. The dotted line in the figure represents VMDK images being copied from the
OpenStack Image service to the vSphere data store. VMDK images are cached in the data store so the
copy operation is only required the first time that the VMDK image is used.

3.4. Maintenance 212

Nova Documentation, Release 25.3.1.dev38

OpenStack Compute Scheduler OpenStack
Image

Service

Clusterl Cluster2 Cluster3

Image
Service
Storage

Clustgr3

Clusterl

vSphere | Shared
Datastore

3.4. Maintenance 213

Nova Documentation, Release 25.3.1.dev38

After OpenStack boots a VM into a vSphere cluster, the VM becomes visible in vCenter and can access
vSphere advanced features. At the same time, the VM is visible in the OpenStack dashboard and you
can manage it as you would any other OpenStack VM. You can perform advanced vSphere operations in
vCenter while you configure OpenStack resources such as VMs through the OpenStack dashboard.

The figure does not show how networking fits into the architecture. For details, see Networking with
VMware vSphere.

Configuration overview

To get started with the VMware vCenter driver, complete the following high-level steps:
1. Configure vCenter. See Prerequisites and limitations.
2. Configure the VMware vCenter driver in the nova. conf file. See VMware vCenter driver.
3. Load desired VMDK images into the Image service. See /mages with VMware vSphere.

4. Configure the Networking service (neutron). See Networking with VMware vSphere.

Prerequisites and limitations

Use the following list to prepare a vSphere environment that runs with the VMware vCenter driver:

Copying VMDK files In vSphere 5.1, copying large image files (for example, 12 GB and greater) from
the Image service can take a long time. To improve performance, VMware recommends that you
upgrade to VMware vCenter Server 5.1 Update 1 or later. For more information, see the Release
Notes.

DRS For any cluster that contains multiple ESX hosts, enable DRS and enable fully automated place-
ment.

Shared storage Only shared storage is supported and data stores must be shared among all hosts in a
cluster. It is recommended to remove data stores not intended for OpenStack from clusters being
configured for OpenStack.

Clusters and data stores Do not use OpenStack clusters and data stores for other purposes. If you do,
OpenStack displays incorrect usage information.

Networking The networking configuration depends on the desired networking model. See Networking
with VMware vSphere.

Security groups If you use the VMware driver with OpenStack Networking and the NSX plug-in, se-
curity groups are supported.

Note: The NSX plug-in is the only plug-in that is validated for vSphere.

VNC The port range 5900 - 6105 (inclusive) is automatically enabled for VNC connections on every
ESX host in all clusters under OpenStack control.

Note: In addition to the default VNC port numbers (5900 to 6000) specified in the above docu-
ment, the following ports are also used: 6101, 6102, and 6105.

3.4. Maintenance 214

https://www.vmware.com/support/vsphere5/doc/vsphere-vcenter-server-51u1-release-notes.html#resolvedissuescimapi
https://www.vmware.com/support/vsphere5/doc/vsphere-vcenter-server-51u1-release-notes.html#resolvedissuescimapi

Nova Documentation, Release 25.3.1.dev38

You must modify the ESXi firewall configuration to allow the VNC ports. Additionally, for the fire-
wall modifications to persist after a reboot, you must create a custom vSphere Installation Bundle
(VIB) which is then installed onto the running ESXi host or added to a custom image profile used
to install ESXi hosts. For details about how to create a VIB for persisting the firewall configuration
modifications, see Knowledge Base.

Note: The VIB can be downloaded from openstack-vmwareapi-team/Tools.

To use multiple vCenter installations with OpenStack, each vCenter must be assigned to a separate avail-
ability zone. This is required as the OpenStack Block Storage VMDK driver does not currently work
across multiple vCenter installations.

VMware vCenter service account

OpenStack integration requires a vCenter service account with the following minimum permissions. Ap-
ply the permissions to the Datacenter root object, and select the Propagate to Child Objects option.

Table 3: vCenter permissions tree

All Privi-
leges
Datastore
Allocate space
Browse datastore
Low level file operation
Remove file
Exten-
sion
Register extension
Folder
Create folder
Host
Configuration
Maintenance
Network configuration
Storage partition configuration
Network
Assign network
Resource
Assign virtual machine to resource
pool
Migrate powered off virtual machine
Migrate powered on virtual machine
Virtual
Machine
Configuration
Add existing disk
Add new disk

continues on next page

3.4. Maintenance

215

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2007381
https://github.com/openstack-vmwareapi-team/Tools

Nova Documentation, Release 25.3.1.dev38

Table 3 — continued from previous page

All Privi-
leges

Add or remove device

Advanced

CPU count

Change resource

Disk change tracking

Host USB device

Memory

Modify device settings

Raw device

Remove disk

Rename

Set annotation

Swapfile placement

Interaction

Configure CD media

Power Off

Power On

Reset

Suspend

Inventory

Create from existing

Create new

Move

Remove

Unregister

Provisioning

Clone virtual machine

Customize

Create template from virtual ma-
chine

Snapshot management

Create snapshot

Remove snapshot

Profile-
driven
storage
Profile-driven storage view
Sessions
Validate session
View and stop sessions
vApp
Export
Import

3.4. Maintenance

216

Nova Documentation, Release 25.3.1.dev38

VMware vCenter driver

Use the VMware vCenter driver (VMwareVCDriver) to connect OpenStack Compute with vCenter. This
recommended configuration enables access through vCenter to advanced vSphere features like vMotion,
High Availability, and Dynamic Resource Scheduling (DRS).

VMwareVCDriver configuration options

Add the following VMware-specific configuration options to the nova. conf file:

Note:

Clusters: The vCenter driver can support only a single cluster. Clusters and data stores used by the
vCenter driver should not contain any VMs other than those created by the driver.

Data stores: The datastore_regex setting specifies the data stores to use with Compute. For
example, datastore_regex="nas.*" selects all the data stores that have a name starting with
nas. If this line is omitted, Compute uses the first data store returned by the vSphere API. It is rec-
ommended not to use this field and instead remove data stores that are not intended for OpenStack.

Reserved host memory: The reserved_host_memory_mb option value is 512 MB by default.
However, VMware recommends that you set this option to 0 MB because the vCenter driver reports
the effective memory available to the virtual machines.

The vCenter driver generates instance name by instance ID. Instance name template is ignored.

The minimum supported vCenter version is 5.5.0. Starting in the OpenStack Ocata release any
version lower than 5.5.0 will be logged as a warning. In the OpenStack Pike release this will be
enforced.

A nova-compute service can control one or more clusters containing multiple ESXi hosts, making
nova-compute a critical service from a high availability perspective. Because the host that runs
nova-compute can fail while the vCenter and ESX still run, you must protect the nova-compute service
against host failures.

Note:

Many nova.conf options are relevant to libvirt but do not apply to this driver.

3.4. Maintenance 217

Nova Documentation, Release 25.3.1.dev38

Images with VMware vSphere

The vCenter driver supports images in the VMDK format. Disks in this format can be obtained from
VMware Fusion or from an ESX environment. It is also possible to convert other formats, such as
gcow2, to the VMDK format using the gemu-img utility. After a VMDK disk is available, load it into
the Image service. Then, you can use it with the VMware vCenter driver. The following sections provide
additional details on the supported disks and the commands used for conversion and upload.

Supported image types

Upload images to the OpenStack Image service in VMDK format. The following VMDK disk types are
supported:

* VMFS Flat Disks (includes thin, thick, zeroedthick, and eagerzeroedthick). Note that once a
VMES thin disk is exported from VMEFS to a non-VMES location, like the OpenStack Image ser-
vice, it becomes a preallocated flat disk. This impacts the transfer time from the Image service to
the data store when the full preallocated flat disk, rather than the thin disk, must be transferred.

* Monolithic Sparse disks. Sparse disks get imported from the Image service into ESXi as
thin provisioned disks. Monolithic Sparse disks can be obtained from VMware Fusion or can be
created by converting from other virtual disk formats using the gemu-img utility.

* Stream-optimized disks. Stream-optimized disks are compressed sparse disks. They can be
obtained from VMware vCenter/ESXi when exporting vm to ovf/ova template.

The following table shows the vmware_disktype property that applies to each of the supported VMDK
disk types:

Table 4: OpenStack Image service disk type settings

vmware_disktype property | VMDK disk type

sparse Monolithic Sparse

thin VMES flat, thin provisioned

preallocated (default) VMES flat, thick/zeroedthick/eagerzeroedthick
streamOptimized Compressed Sparse

The vmware_disktype property is set when an image is loaded into the Image service. For example,
the following command creates a Monolithic Sparse image by setting vmware_disktype to sparse:

openstack image create

--disk-format vmdk

--container-format bare

--property

--property

ubuntu-sparse < ubuntuLTS-sparse.vmdk

Note: Specifying thin does not provide any advantage over preallocated with the current version
of the driver. Future versions might restore the thin properties of the disk after it is downloaded to a
vSphere data store.

The following table shows the vmware_ostype property that applies to each of the supported guest OS:

3.4. Maintenance 218

Nova Documentation, Release 25.3.1.dev38

Note: If a glance image has a vmware_ostype property which does not correspond to a valid VMware
guestld, VM creation will fail, and a warning will be logged.

Table 5: OpenStack Image service OS type settings

vmware_ostype property | Retail Name

asianux3_64Guest Asianux Server 3 (64 bit)
asianux3Guest Asianux Server 3
asianux4_64Guest Asianux Server 4 (64 bit)
asianux4Guest Asianux Server 4

darwin64Guest Darwin 64 bit

darwinGuest Darwin

debian4_64Guest Debian GNU/Linux 4 (64 bit)
debian4Guest Debian GNU/Linux 4
debian5_64Guest Debian GNU/Linux 5 (64 bit)
debian5Guest Debian GNU/Linux 5

dosGuest MS-DOS

freebsd64Guest FreeBSD x64

freebsdGuest FreeBSD

mandrivaGuest Mandriva Linux

netware4Guest Novell NetWare 4

netwareSGuest Novell NetWare 5.1

netware6Guest Novell NetWare 6.x

nld9Guest Novell Linux Desktop 9

oesGuest Open Enterprise Server
openServerSGuest SCO OpenServer 5
openServer6Guest SCO OpenServer 6
opensuse64Guest openSUSE (64 bit)

opensuseGuest openSUSE

0s2Guest 0S/2

other24xLinux64Guest Linux 2.4x Kernel (64 bit) (experimental)
other24xLinuxGuest Linux 2.4x Kernel
other26xLinux64Guest Linux 2.6x Kernel (64 bit) (experimental)
other26xLinuxGuest Linux 2.6x Kernel (experimental)
otherGuest Other Operating System
otherGuest64 Other Operating System (64 bit) (experimental)
otherLinux64Guest Linux (64 bit) (experimental)
otherLinuxGuest Other Linux

redhatGuest Red Hat Linux 2.1

rhel2Guest Red Hat Enterprise Linux 2
rhel3_64Guest Red Hat Enterprise Linux 3 (64 bit)
rhel3Guest Red Hat Enterprise Linux 3
rheld_64Guest Red Hat Enterprise Linux 4 (64 bit)
rhel4Guest Red Hat Enterprise Linux 4
rhel5_64Guest Red Hat Enterprise Linux 5 (64 bit) (experimental)
rhel5Guest Red Hat Enterprise Linux 5
rhel6_64Guest Red Hat Enterprise Linux 6 (64 bit)

continues on next page

3.4. Maintenance

219

Nova Documentation, Release 25.3.1.dev38

Table 5 — continued from previous page

vmware_ostype property

Retail Name

rhel6Guest

Red Hat Enterprise Linux 6

sjdsGuest Sun Java Desktop System
sles10_64Guest SUSE Linux Enterprise Server 10 (64 bit) (experimental)
sles10Guest SUSE Linux Enterprise Server 10
sles11_64Guest SUSE Linux Enterprise Server 11 (64 bit)
sles11Guest SUSE Linux Enterprise Server 11
sles64Guest SUSE Linux Enterprise Server 9 (64 bit)
slesGuest SUSE Linux Enterprise Server 9
solaris10_64Guest Solaris 10 (64 bit) (experimental)
solaris10Guest Solaris 10 (32 bit) (experimental)
solaris6Guest Solaris 6

solaris7Guest Solaris 7

solaris8 Guest Solaris 8

solaris9Guest Solaris 9

suse64Guest SUSE Linux (64 bit)

suseGuest SUSE Linux

turboLinux64Guest Turbolinux (64 bit)

turboLinuxGuest Turbolinux

ubuntu64Guest Ubuntu Linux (64 bit)

ubuntuGuest Ubuntu Linux

unix Ware7Guest SCO UnixWare 7
win2000AdvServGuest Windows 2000 Advanced Server
win2000ProGuest Windows 2000 Professional
win2000ServGuest Windows 2000 Server

win31Guest Windows 3.1

win95Guest Windows 95

win98Guest Windows 98

windows7_64Guest Windows 7 (64 bit)

windows7Guest Windows 7

windows7Server64Guest

Windows Server 2008 R2 (64 bit)

winLonghorn64Guest Windows Longhorn (64 bit) (experimental)
winLonghornGuest Windows Longhorn (experimental)
winMeGuest Windows Millennium Edition
winNetBusinessGuest Windows Small Business Server 2003

winNetDatacenter64Guest

Windows Server 2003, Datacenter Edition (64 bit) (experimental)

winNetDatacenterGuest

Windows Server 2003, Datacenter Edition

winNetEnterprise64Guest

Windows Server 2003, Enterprise Edition (64 bit)

winNetEnterpriseGuest

Windows Server 2003, Enterprise Edition

winNetStandard64Guest

Windows Server 2003, Standard Edition (64 bit)

winNetEnterpriseGuest

Windows Server 2003, Enterprise Edition

winNetStandard64Guest Windows Server 2003, Standard Edition (64 bit)
winNetStandardGuest Windows Server 2003, Standard Edition
winNetWebGuest Windows Server 2003, Web Edition
winNTGuest Windows NT 4

winVista64Guest Windows Vista (64 bit)

winVistaGuest Windows Vista

winXPHomeGuest Windows XP Home Edition

continues on next page

3.4. Maintenance

220

Nova Documentation, Release 25.3.1.dev38

Table 5 — continued from previous page
vmware_ostype property | Retail Name
winXPPro64Guest Windows XP Professional Edition (64 bit)
winXPProGuest Windows XP Professional

Convert and load images

Using the gemu-img utility, disk images in several formats (such as, qcow2) can be converted to the
VMDK format.

For example, the following command can be used to convert a qcow2 Ubuntu Trusty cloud image:

gemu-img convert -f gcow2 ~/Downloads/trusty-server-cloudimg-amd64-diskl.
—img
-0 vmdk trusty-server-cloudimg-amd64-diskl.vmdk

VMDK disks converted through gemu-img are always monolithic sparse VMDK disks with an IDE
adapter type. Using the previous example of the Ubuntu Trusty image after the qemu-img conversion,
the command to upload the VMDK disk should be something like:

openstack image create

--container-format bare --disk-format vmdk

--property

--property

trusty-cloud < trusty-server-cloudimg-amd64-diskl.vmdk

Note that the vmware_disktype is set to sparse and the vmware_adaptertype is set to ide in the
previous command.

If the image did not come from the gemu-img utility, the vimware_disktype and vmware_adaptertype
might be different. To determine the image adapter type from an image file, use the following command
and look for the ddb.adapterType= line:

head -20 <vmdk file name>

Assuming a preallocated disk type and an iSCSI IsiLogic adapter type, the following command uploads
the VMDK disk:

openstack image create

--disk-format vmdk

--container-format bare

--property

--property

--property

ubuntu-thick-scsi < ubuntulLTS-flat.vmdk

Currently, OS boot VMDK disks with an IDE adapter type cannot be attached to a virtual SCSI con-
troller and likewise disks with one of the SCSI adapter types (such as, busLogic, Isil.ogic, IsiLogicsas,
paraVirtual) cannot be attached to the IDE controller. Therefore, as the previous examples show, it is im-
portant to set the vmware_adaptertype property correctly. The default adapter type is IsiLogic, which
is SCSI, so you can omit the vimware_adaptertype property if you are certain that the image adapter
type is IsiLogic.

3.4. Maintenance 221

http://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img

Nova Documentation, Release 25.3.1.dev38

Tag VMware images

In a mixed hypervisor environment, OpenStack Compute uses the hypervisor_type tag to match im-
ages to the correct hypervisor type. For VMware images, set the hypervisor type to vmware. Other valid
hypervisor types include: hyperv, ironic, 1xc, and gemu. Note that gemu is used for both QEMU and
KVM hypervisor types.

openstack image create

--disk-format vmdk

--container-format bare

--property

--property

--property

--property

ubuntu-thick-scsi < ubuntulLTS-flat.vmdk

Optimize images

Monolithic Sparse disks are considerably faster to download but have the overhead of an additional con-
version step. When imported into ESX, sparse disks get converted to VMFS flat thin provisioned disks.
The download and conversion steps only affect the first launched instance that uses the sparse disk image.
The converted disk image is cached, so subsequent instances that use this disk image can simply use the
cached version.

To avoid the conversion step (at the cost of longer download times) consider converting sparse disks to
thin provisioned or preallocated disks before loading them into the Image service.

Use one of the following tools to pre-convert sparse disks.
vSphere CLI tools Sometimes called the remote CLI or rCLI.

Assuming that the sparse disk is made available on a data store accessible by an ESX host, the
following command converts it to preallocated format:

Note that the vifs tool from the same CLI package can be used to upload the disk to be converted.
The vifs tool can also be used to download the converted disk if necessary.

vmkfstools directly on the ESX host If the SSH service is enabled on an ESX host, the sparse disk
can be uploaded to the ESX data store through scp and the vmkfstools local to the ESX host can
use used to perform the conversion. After you log in to the host through ssh, run this command:

vmware-vdiskmanager vmware-vdiskmanager is a utility that comes bundled with VMware Fusion
and VMware Workstation. The following example converts a sparse disk to preallocated format:

3.4. Maintenance 222

Nova Documentation, Release 25.3.1.dev38

In the previous cases, the converted vmdk is actually a pair of files:
* The descriptor file converted. vmdk.
* The actual virtual disk data file converted-flat.vmdk.

The file to be uploaded to the Image service is converted-flat.vmdk.

Image handling

The ESX hypervisor requires a copy of the VMDXK file in order to boot up a virtual machine. As a result,
the vCenter OpenStack Compute driver must download the VMDK via HTTP from the Image service
to a data store that is visible to the hypervisor. To optimize this process, the first time a VMDK file is
used, it gets cached in the data store. A cached image is stored in a folder named after the image ID.
Subsequent virtual machines that need the VMDK use the cached version and dont have to copy the file
again from the Image service.

Even with a cached VMDXK, there is still a copy operation from the cache location to the hypervisor file
directory in the shared data store. To avoid this copy, boot the image in linked_clone mode. To learn how
to enable this mode, see vmware.use_linked_clone.

Note: You can also use the img_linked_clone property (or legacy property vmware_linked_clone)
in the Image service to override the linked_clone mode on a per-image basis.

If spawning a virtual machine image from ISO with a VMDK disk, the image is created and attached
to the virtual machine as a blank disk. In that case img_linked_clone property for the image is just
ignored.

If multiple compute nodes are running on the same host, or have a shared file system, you can enable them
to use the same cache folder on the back-end data store. To configure this action, set the cache_prefix
option in the nova. conf file. Its value stands for the name prefix of the folder where cached images are
stored.

Note: This can take effect only if compute nodes are running on the same host, or have a shared file
system.

You can automatically purge unused images after a specified period of time. To configure this action, set
these options in the :oslo.config:group ‘image_cache* section in the nova. conf file:

e image_cache.remove_unused_base_images

e image_cache.remove_unused_original_minimum_age_seconds

3.4. Maintenance 223

Nova Documentation, Release 25.3.1.dev38

Networking with VMware vSphere

The VMware driver supports networking with the Networking Service (neutron). Depending on your
installation, complete these configuration steps before you provision VMs:

1. Before provisioning VMs, create a port group with the same name as the vmware.
integration_bridge value in nova.conf (default is br-int). All VM NICs are attached to
this port group for management by the OpenStack Networking plug-in.

Volumes with VMware vSphere

The VMware driver supports attaching volumes from the Block Storage service. The VMware VMDK
driver for OpenStack Block Storage is recommended and should be used for managing volumes based
on vSphere data stores. For more information about the VMware VMDK driver, see Cinders manual on
the VMDK Driver (TODO: this has not yet been imported and published). Also an iSCSI volume driver
provides limited support and can be used only for attachments.

Troubleshooting

Operators can troubleshoot VMware specific failures by correlating OpenStack logs to vCenter logs.
Every RPC call which is made by an OpenStack driver has an opID which can be traced in the vCenter
logs. For example consider the following excerpt from a nova-compute log:

In this case the opID is oslo.vmware-debb6064-690e-45ac-b0ae-1b94a9638d1f and we can grep
the vCenter log (usually /var/log/vmware/vpxd/vpxd. log) for it to find if anything went wrong with
the CreateVM operation.

Hyper-V virtualization platform

Todo: This is really installation guide material and should probably be moved.

It is possible to use Hyper-V as a compute node within an OpenStack Deployment. The nova-compute
service runs as openstack-compute, a 32-bit service directly upon the Windows platform with the
Hyper-V role enabled. The necessary Python components as well as the nova-compute service are
installed directly onto the Windows platform. Windows Clustering Services are not needed for function-
ality within the OpenStack infrastructure. The use of the Windows Server 2012 platform is recommend
for the best experience and is the platform for active development. The following Windows platforms
have been tested as compute nodes:

* Windows Server 2012
* Windows Server 2012 R2 Server and Core (with the Hyper-V role enabled)

* Hyper-V Server

3.4. Maintenance 224

Nova Documentation, Release 25.3.1.dev38

Hyper-V configuration

The only OpenStack services required on a Hyper-V node are nova-compute and
neutron-hyperv-agent. Regarding the resources needed for this host you have to consider that
Hyper-V will require 16 GB - 20 GB of disk space for the OS itself, including updates. Two NICs are
required, one connected to the management network and one to the guest data network.

The following sections discuss how to prepare the Windows Hyper-V node for operation as an OpenStack
compute node. Unless stated otherwise, any configuration information should work for the Windows
2012 and 2012 R2 platforms.

Local storage considerations

The Hyper-V compute node needs to have ample storage for storing the virtual machine images running
on the compute nodes. You may use a single volume for all, or partition it into an OS volume and VM
volume.

Configure NTP

Network time services must be configured to ensure proper operation of the OpenStack nodes. To set
network time on your Windows host you must run the following commands:

C
C
C

Keep in mind that the node will have to be time synchronized with the other nodes of your OpenStack
environment, so it is important to use the same NTP server. Note that in case of an Active Directory
environment, you may do this only for the AD Domain Controller.

Configure Hyper-V virtual switching

Information regarding the Hyper-V virtual Switch can be found in the Hyper-V Virtual Switch Overview.

To quickly enable an interface to be used as a Virtual Interface the following PowerShell may be used:

PS C:\> $if = Get-NetIPAddress -IPAddress 192* | Get-NetIPInterface
PS C:\> New-VMSwitch -NetAdapterName $if.ifAlias -Name YOUR_BRIDGE_NAME -
—AllowManagementOS $false

Note: It is very important to make sure that when you are using a Hyper-V node with only 1 NIC the
-AllowManagementOS option is set on True, otherwise you will lose connectivity to the Hyper-V node.

3.4. Maintenance 225

https://technet.microsoft.com/en-us/library/hh831823.aspx

Nova Documentation, Release 25.3.1.dev38

Enable iSCSI initiator service

To prepare the Hyper-V node to be able to attach to volumes provided by cinder you must first make sure
the Windows iSCSI initiator service is running and started automatically.

PS C:\> Set-Service -Name MSiSCSI -StartupType Automatic
PS C:\> Start-Service MSiSCSI

Configure shared nothing live migration

Detailed information on the configuration of live migration can be found in this guide
The following outlines the steps of shared nothing live migration.
1. The target host ensures that live migration is enabled and properly configured in Hyper-V.

2. The target host checks if the image to be migrated requires a base VHD and pulls it from the Image
service if not already available on the target host.

3. The source host ensures that live migration is enabled and properly configured in Hyper-V.
4. The source host initiates a Hyper-V live migration.
5. The source host communicates to the manager the outcome of the operation.

The following three configuration options are needed in order to support Hyper-V live migration and
must be added to your nova. conf on the Hyper-V compute node:

* This is needed to support shared nothing Hyper-V live migrations. It is used in nova/compute/
manager.py.

* This flag is needed to support live migration to hosts with different CPU features. This flag is
checked during instance creation in order to limit the CPU features used by the VM.

* This option is used to specify where instances are stored on disk.

Additional Requirements:
* Hyper-V 2012 R2 or Windows Server 2012 R2 with Hyper-V role enabled
* A Windows domain controller with the Hyper-V compute nodes as domain members
* The instances_path command-line option/flag needs to be the same on all hosts

* The openstack-compute service deployed with the setup must run with domain credentials. You
can set the service credentials with:

3.4. Maintenance 226

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/Use-live-migration-without-Failover-Clustering-to-move-a-virtual-machine

Nova Documentation, Release 25.3.1.dev38

How to setup live migration on Hyper-V

To enable shared nothing live migration, run the 3 instructions below on each Hyper-V host:

PS C:\> Enable-VMMigration
PS C:\> Set-VMMigrationNetwork IP_ADDRESS
PS C:\> Set-VMHost -VirtualMachineMigrationAuthenticationTypeKerberos

Note: Replace the IP_ADDRESS with the address of the interface which will provide live migration.

Additional Reading

This article clarifies the various live migration options in Hyper-V:

Hyper-V Live Migration of Yesterday

Install nova-compute using OpenStack Hyper-V installer

In case you want to avoid all the manual setup, you can use Cloudbase Solutions installer. You can find
it here:

HyperVNovaCompute_Beta download

The tool installs an independent Python environment in order to avoid conflicts with existing applications,
and dynamically generates a nova. conf file based on the parameters provided by you.

The tool can also be used for an automated and unattended mode for deployments on a massive number
of servers. More details about how to use the installer and its features can be found here:

Cloudbase

Requirements
Python

Setting up Python prerequisites

1. Download and install Python 3.8 using the MSI installer from the Python website.

PS C:\> $src = "https://www.python.org/ftp/python/3.8.8/python-3.8.8.exe"
PS C:\> $dest = "$env:temp\python-3.8.8.exe"

PS C:\> Invoke-WebRequest -Uri $src -OutFile $dest

PS C:\> Unblock-File $dest

PS C:\> Start-Process $dest

2. Make sure that the Python and Python\Scripts paths are set up in the PATH environment vari-
able.

3.4. Maintenance 227

https://ariessysadmin.blogspot.ro/2012/04/hyper-v-live-migration-of-windows.html
https://www.cloudbase.it/downloads/HyperVNovaCompute_Beta.msi
https://www.cloudbase.it
https://www.python.org/downloads/windows/

Nova Documentation, Release 25.3.1.dev38

PS C:\> $oldPath = [System.Environment]::GetEnvironmentVariable("Path")
PS C:\> $newPath = $oldPath + ";C:\python38\;C:\python38\Scripts\"

PS C:\> [System.Environment]::SetEnvironmentVariable("Path", $newPath,..
—[System.EnvironmentVariableTarget]: :User

Python dependencies

The following packages must be installed with pip:
* pywin32
* pymysql
e greenlet
* pycryto
* ecdsa

* amqp

* wmi

PS C:\> pip install ecdsa
PS C:\> pip install amqp
PS C:\> pip install wmi

Other dependencies

gemu-img is required for some of the image related operations. You can get it from here: http://gemu.
weilnetz.de/. You must make sure that the gemu-img path is set in the PATH environment variable.

Some Python packages need to be compiled, so you may use MinGW or Visual Studio. You can get
MinGW from here: http://sourceforge.net/projects/mingw/. You must configure which compiler is to
be used for this purpose by using the distutils.cfg file in $Python38\Lib\distutils, which can
contain:

As a last step for setting up MinGW, make sure that the MinGW binaries directories are set up in PATH.

Install nova-compute

Download the nova code

1. Use Git to download the necessary source code. The installer to run Git on Windows can be
downloaded here:

https://gitforwindows.org/

3.4. Maintenance 228

http://qemu.weilnetz.de/
http://qemu.weilnetz.de/
http://sourceforge.net/projects/mingw/
https://gitforwindows.org/

Nova Documentation, Release 25.3.1.dev38

2. Download the installer. Once the download is complete, run the installer and follow the prompts
in the installation wizard. The default should be acceptable for the purposes of this guide.

3. Run the following to clone the nova code.

PS C:\> git.exe clone https://opendev.org/openstack/nova

Install nova-compute service

To install nova-compute, run:

PS C:\> cd c:\nova
PS C:\> python setup.py install

Configure nova-compute

The nova.conf file must be placed in C:\etc\nova for running OpenStack on Hyper-V. Below is a
sample nova.conf for Windows:

(continues on next page)

3.4. Maintenance 229

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

Prepare images for use with Hyper-V

Hyper-V currently supports only the VHD and VHDX file format for virtual machine instances. Detailed
instructions for installing virtual machines on Hyper-V can be found here:

Create Virtual Machines

Once you have successfully created a virtual machine, you can then upload the image to glance using the
openstack-client:

PS C:\> openstack image create \
--name "VM_IMAGE_NAME" \
--property hypervisor_type=hyperv \
--public \
--container-format bare \
--disk-format vhd

Note: VHD and VHDX files sizes can be bigger than their maximum internal size, as such you need
to boot instances using a flavor with a slightly bigger disk size than the internal size of the disk file. To
create VHDs, use the following PowerShell cmdlet:

PS C:\> New-VHD DISK_NAME.vhd -SizeBytes VHD_SIZE

3.4. Maintenance 230

http://technet.microsoft.com/en-us/library/cc772480.aspx

Nova Documentation, Release 25.3.1.dev38

Inject interfaces and routes

The interfaces.template file describes the network interfaces and routes available on your
system and how to activate them. You can specify the location of the file with the
injected_network_template configuration option in nova.conf.

A default template exists in nova/virt/interfaces.template.

Run Compute with Hyper-V

To start the nova-compute service, run this command from a console in the Windows server:

PS C:\> C:\Python27\python.exe c:\Python27\Scripts\nova-compute --config-file.
—c:\etc\nova\nova.conf

Troubleshooting

* I ran the nova-manage service list command from my controller; however, Im not seeing
smiley faces for Hyper-V compute nodes, what do I do?

Verify that you are synchronized with a network time source. For instructions about how to con-
figure NTP on your Hyper-V compute node, see Configure NTP.

* How do I restart the compute service?

PS C:\> net stop nova-compute &% net start nova-compute

e How do I restart the iSCSI initiator service?

PS C:\> net stop msiscsi && net start msiscsi

Virtuozzo

Virtuozzo 7.0.0 (or newer), or its community edition OpenVZ, provides both types of virtualization:
Kernel Virtual Machines and OS Containers. The type of instance to span is chosen depending on the
hw_vm_type property of an image.

Note: Some OpenStack Compute features may be missing when running with Virtuozzo as the hyper-
visor. See Feature Support Matrix for details.

3.4. Maintenance 231

Nova Documentation, Release 25.3.1.dev38

Configuration

To enable LXC, configure DEFAULT. compute_driver = libvirt.LibvirtDriver and libvirt.
virt_type = parallels. For example:

To enable Virtuozzo Virtual Machines, set the following options in /etc/nova/nova.conf on all hosts
running the nova-compute service.

PowerVM
Introduction

OpenStack Compute supports the Power VM hypervisor through Novalink. In the NovaLink architecture,
a thin NovaLink virtual machine running on the Power system manages virtualization for that system.
The nova-compute service can be installed on the NovaLink virtual machine and configured to use the
PowerVM compute driver. No external management element (e.g. Hardware Management Console) is
needed.

Configuration

In order to function properly, the nova-compute service must be executed by a member of the
pvm_admin group. Use the usermod command to add the user. For example, to add the stacker
user to the pvm_admin group, execute:

usermod -a -G pvm_admin stacker

The user must re-login for the change to take effect.

To enable the PowerVM compute driver, configure DEFAULT.compute_driver = powervm.
PowerVMDriver. For example:

3.4. Maintenance 232

https://www.ibm.com/support/knowledgecenter/en/POWER8/p8eig/p8eig_kickoff.htm

Nova Documentation, Release 25.3.1.dev38

[DEFAULT]

The PowerVM driver supports two types of storage for ephemeral disks: localdisk or ssp. If
localdisk is selected, you must specify which volume group should be used. E.g.:

[powervm]

Note: Using the rootvg volume group is strongly discouraged since rootvg is used by the management
partition and filling this will cause failures.

The PowerVM driver also supports configuring the default amount of physical processor compute power
(known as proc units) which will be given to each vCPU. This value will be used if the requested flavor
does not specify the powervm:proc_units extra-spec. A factor value of 1.0 means a whole physical
processor, whereas 0.05 means 1/20th of a physical processor. E.g.:

[powervm]

Volume Support

Volume support is provided for the PowerVM virt driver via Cinder. Currently, the only supported vol-
ume protocol is vSCSI Fibre Channel. Attach, detach, and extend are the operations supported by the
PowerVM vSCSI FC volume adapter. Boot From Volume is not yet supported.

zVM
z/VM System Requirements

» The appropriate APARSs installed, the current list of which can be found: z/VM OpenStack Cloud
Information (http://www.vm.ibm.com/sysman/osmntlvl.html).

Note: IBM z Systems hardware requirements are based on both the applications and the load on the
system.

3.4. Maintenance 233

https://www.ibm.com/support/knowledgecenter/en/POWER8/p8hat/p8hat_virtualscsi.htm
http://www.vm.ibm.com/sysman/osmntlvl.html

Nova Documentation, Release 25.3.1.dev38

Active Engine Guide

Active engine is used as an initial configuration and management tool during deployed machine startup.
Currently the z/VM driver uses zvmguestconfigure and cloud-init as a two stage active engine.

Installation and Configuration of zvmguestconfigure

Cloudlib4zvm supports initiating changes to a Linux on z Systems virtual machine while Linux is shut
down or the virtual machine is logged off. The changes to Linux are implemented using an activation en-
gine (AE) that is run when Linux is booted the next time. The first active engine, zvmguestconfigure,
must be installed in the Linux on z Systems virtual server so it can process change request files transmitted
by the cloudlib4zvm service to the reader of the virtual machine as a class X file.

Note: An additional activation engine, cloud-init, should be installed to handle OpenStack related tai-
loring of the system. The cloud-init AE relies on tailoring performed by zvmguestconfigure.

Installation and Configuration of cloud-init

OpenStack uses cloud-init as its activation engine. Some Linux distributions include cloud-init either
already installed or available to be installed. If your distribution does not include cloud-init, you can
download the code from https://launchpad.net/cloud-init/+download. After installation, if you issue the
following shell command and no errors occur, cloud-init is installed correctly:

Installation and configuration of cloud-init differs among different Linux distributions, and cloud-init
source code may change. This section provides general information, but you may have to tailor cloud-init
to meet the needs of your Linux distribution. You can find a community-maintained list of dependencies
at http://ibm.biz/cloudinitLoZ.

As of the Rocky release, the z/ZVM OpenStack support has been tested with cloud-init 0.7.4 and 0.7.5 for
RHEL6.x and SLES11.x, 0.7.6 for RHEL7.x and SLES12.x, and 0.7.8 for Ubuntu 16.04.

During cloud-init installation, some dependency packages may be required. You can use zypper and
python setuptools to easily resolve these dependencies. See https://pypi.python.org/pypi/setuptools for
more information.

Image guide

This guideline will describe the requirements and steps to create and configure images for use with z/VM.

3.4. Maintenance 234

https://launchpad.net/cloud-init/+download
http://ibm.biz/cloudinitLoZ
https://pypi.python.org/pypi/setuptools

Nova Documentation, Release 25.3.1.dev38

Image Requirements

* The following Linux distributions are supported for deploy:
RHEL 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7

RHEL 7.0, 7.1 and 7.2

SLES 11.2,11.3,and 11.4

SLES 12 and SLES 12.1

Ubuntu 16.04

* A supported root disk type for snapshot/spawn. The following are supported:
- FBA
- ECKD

* An image deployed on a compute node must match the disk type supported by that compute
node, as configured by the zvm_diskpool_type property in the zvmsdk.conf configuration file
in zvm cloud connector A compute node supports deployment on either an ECKD or FBA im-
age, but not both at the same time. If you wish to switch image types, you need to change the
zvm_diskpool_type and zvm_diskpool properties in the zvmsdk.conf file, accordingly. Then
restart the nova-compute service to make the changes take effect.

* If you deploy an instance with an ephemeral disk, both the root disk and the ephemeral disk will be
created with the disk type that was specified by zvm_diskpool_type property in the zvmsdk.conf
file. That property can specify either ECKD or FBA.

¢ The network interfaces must be IPv4 interfaces.

* Image names should be restricted to the UTF-8 subset, which corresponds to the ASCII character
set. In addition, special characters such as /, \, $, %, @ should not be used. For the FBA disk type
vm, capture and deploy is supported only for an FBA disk with a single partition. Capture and
deploy is not supported for the FBA disk type vm on a CMS formatted FBA disk.

» The virtual server/Linux instance used as the source of the new image should meet the following
criteria:

1. The root filesystem must not be on a logical volume.

2. The minidisk on which the root filesystem resides should be a minidisk of the same type as
desired for a subsequent deploy (for example, an ECKD disk image should be captured for a
subsequent deploy to an ECKD disk).

3. The minidisks should not be a full-pack minidisk, since cylinder O on full-pack minidisks is
reserved, and should be defined with virtual address 0100.

4. The root disk should have a single partition.

5. The image being captured should not have any network interface cards (NICs) defined below
virtual address 1100.

In addition to the specified criteria, the following recommendations allow for efficient use of the image:

* The minidisk on which the root filesystem resides should be defined as a multiple of full gigabytes
in size (for example, 1GB or 2GB). OpenStack specifies disk sizes in full gigabyte values, whereas
z/VM handles disk sizes in other ways (cylinders for ECKD disks, blocks for FBA disks, and so

3.4. Maintenance 235

https://cloudlib4zvm.readthedocs.io/en/latest/configuration.html#configuration-options
https://cloudlib4zvm.readthedocs.io/en/latest/
https://cloudlib4zvm.readthedocs.io/en/latest/configuration.html#configuration-options
https://cloudlib4zvm.readthedocs.io/en/latest/configuration.html#configuration-options

Nova Documentation, Release 25.3.1.dev38

on). See the appropriate online information if you need to convert cylinders or blocks to gigabytes;
for example: http://www.mvsforums.com/helpboards/viewtopic.php?t=8316.

* During subsequent deploys of the image, the OpenStack code will ensure that a disk image is not
copied to a disk smaller than the source disk, as this would result in loss of data. The disk specified
in the flavor should therefore be equal to or slightly larger than the source virtual machines root
disk.

Ironic
Introduction

The ironic hypervisor driver wraps the Bare Metal (ironic) API, enabling Nova to provision baremetal
resources using the same user-facing API as for server management.

This is the only driver in nova where one compute service can map to many hosts, meaning a
nova-compute service can manage multiple ComputeNodes. An ironic driver managed compute ser-
vice uses the ironic node uuid for the compute node hypervisor_hostname (nodename) and uuid
fields. The relationship of instance:compute node:ironic nodeis 1:1:1.

Scheduling of bare metal nodes is based on custom resource classes, specified via the resource_class
property on a node and a corresponding resource property on a flavor (see the flavor documentation). The
RAM and CPU settings on a flavor are ignored, and the disk is only used to determine the root partition
size when a partition image is used (see the image documentation).

Configuration

* Configure the Compute service to use the Bare Metal service.
* Create flavors for use with the Bare Metal service.

* Conductors Groups.

Scaling and performance issues

* The update_available_resource periodic task reports all the resources managed by Ironic.
Depending the number of nodes, it can take a lot of time. The nova-compute will not perform any
other operations when this task is running. You can use conductor groups to help scale, by setting
ironic.partition_key.

Known limitations / Missing features

* Migrate
* Resize

* Snapshot
* Pause

¢ Shelve

3.4. Maintenance 236

http://www.mvsforums.com/helpboards/viewtopic.php?t=8316
https://docs.openstack.org/ironic/yoga//install/configure-nova-flavors.html
https://docs.openstack.org/ironic/yoga//latest/install/configure-glance-images.html
https://docs.openstack.org/ironic/yoga//latest/install/configure-compute.html
https://docs.openstack.org/ironic/yoga//latest/install/configure-nova-flavors.html
https://docs.openstack.org/ironic/yoga//admin/conductor-groups.html

Nova Documentation, Release 25.3.1.dev38

Evacuate

OpenStack Compute supports many hypervisors, which might make it difficult for you to choose one.
Most installations use only one hypervisor. However, you can use ComputeFilter and ImageProperties-
Filter to schedule different hypervisors within the same installation. The following links help you choose
a hypervisor. See Feature Support Matrix for a detailed list of features and support across the hypervisors.

The following hypervisors are supported:

KVM - Kernel-based Virtual Machine. The virtual disk formats that it supports is inherited from
QEMU since it uses a modified QEMU program to launch the virtual machine. The supported
formats include raw images, the qcow2, and VMware formats.

LXC - Linux Containers (through libvirt), used to run Linux-based virtual machines.
QEMU - Quick EMUlator, generally only used for development purposes.

VMware vSphere 5.1.0 and newer - Runs VMware-based Linux and Windows images through a
connection with a vCenter server.

Hyper-V - Server virtualization with Microsoft Hyper-V, use to run Windows, Linux, and FreeBSD
virtual machines. Runs nova-compute natively on the Windows virtualization platform.

Virtuozzo 7.0.0 and newer - OS Containers and Kernel-based Virtual Machines supported. The
supported formats include ploop and gcow?2 images.

PowerVM - Server virtualization with IBM PowerVM for AIX, IBM i, and Linux workloads on
the Power Systems platform.

zVM - Server virtualization on z Systems and IBM LinuxONE, it can run Linux, z/OS and more.

Ironic - OpenStack project which provisions bare metal (as opposed to virtual) machines.

Nova supports hypervisors via virt drivers. Nova has the following in tree virt drivers:

compute_driver = libvirt.LibvirtDriver

This driver runs on Linux and supports multiple hypervisor backends, which can be configured via
the I1ibvirt.virt_type config option.

compute_driver = ironic.IronicDriver
compute_driver = vmwareapi.VMwareVCDriver
compute_driver = hyperv.HyperVDriver
compute_driver = powervm.PowerVMDriver
compute_driver = zvm.ZVMDriver
compute_driver = fake.FakeDriver

This driver does not spawn any virtual machines and therefore should only be used during testing.

3.4. Maintenance 237

https://www.linux-kvm.org/page/Main_Page
https://linuxcontainers.org
https://wiki.qemu.org/Manual
https://www.vmware.com/support/vsphere-hypervisor.html
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://www.virtuozzo.com/products/vz7.html
https://www.ibm.com/us-en/marketplace/ibm-powervm
https://www.ibm.com/it-infrastructure/z/zvm
https://docs.openstack.org/ironic/latest/

Nova Documentation, Release 25.3.1.dev38

Compute log files

The corresponding log file of each Compute service is stored in the /var/log/nova/ directory of the
host on which each service runs.

Table 6: Log files used by Compute services

Log file Service name (Cen- | Service name
tOS/Fedora/openSUSE/Red (Ubuntu/Debian)
Hat Enterprise Linux/SUSE
Linux Enterprise)

nova-api.log openstack-nova-api nova-api

nova-compute.log

openstack-nova-compute

nova-compute

nova-conductor.log

openstack-nova-conductor

nova-conductor

nova-manage.log

nova-manage

nova-manage

nova-scheduler.log

openstack-nova-scheduler

nova-scheduler

Compute service sample configuration files

Files in this section can be found in /etc/nova.

api-paste.ini

The Compute service stores its API configuration settings in the api-paste.ini file.

(continues on next page)

3.4. Maintenance

238

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

API). It also provides new features via API microversions which are
opt into for clients. Unaware clients will receive the same frozen
v2 API feature set, but with some relaxed validation

—

DEPRECATED: The [api]auth_strategy conf option is deprecated and will be
removed in a subsequent release, whereupon this pipeline will be.
—unreachable.

—

—

DEPRECATED: The [api]auth_strategy conf option is deprecated and will be
removed in a subsequent release, whereupon this pipeline will be.
—unreachable.

filter

filter

filter

DEPRECATED: NoAuthMiddleware will be removed in a subsequent release,
whereupon this filter will cease to function.
filter

filter

filter

filter

(continues on next page)

3.4. Maintenance 239

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

filter

filter

filter

filter

rootwrap.conf

The rootwrap.conf file defines configuration values used by the rootwrap script when the Compute
service needs to escalate its privileges to those of the root user.

Itis also possible to disable the root wrapper, and default to sudo only. Configure the disable_rootwrap
option in the [workaround] section of the nova.conf configuration file.

(continues on next page)

3.4. Maintenance 240

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

List of directories to load filter definitions from (separated by ',").
These directories MUST all be only writeable by root !

H*

List of directories to search executables in, in case filters do not
explicitly specify a full path (separated by ',')
If not specified, defaults to system PATH environment variable.
These directories MUST all be only writeable by root !

bin bin bin

H R W% R

%

Enable logging to syslog
Default value is False
False

H*

Which syslog facility to use.
Valid values include auth, authpriv, syslog, local®, locall...
Default value is 'syslog’

Which messages to log.
INFO means log all usage
ERROR means only log unsuccessful attempts

3.4.1.3 Basic configuration

Once you have an OpenStack deployment up and running, you will want to manage it. The below guides

cover everything from creating initial flavor and image to log management and live migration of instances.
* Quotas: Managing project quotas in nova.

» Scheduling: How the scheduler is configured, and how that will impact where compute instances
land in your environment. If you are seeing unexpected distribution of compute instances in your
hosts, youll want to dive into this configuration.

* Exposing custom metadata to compute instances: How and when you might want to extend the
basic metadata exposed to compute instances (either via metadata server or config drive) for your
specific purposes.

Manage the cloud
Show usage statistics for hosts and instances

You can show basic statistics on resource usage for hosts and instances.

Note: For more sophisticated monitoring, see the Ceilometer project. You can also use tools, such as
Ganglia or Graphite, to gather more detailed data.

3.4. Maintenance 241

https://docs.openstack.org/ceilometer/latest/
http://ganglia.info/
http://graphite.wikidot.com/

Nova Documentation, Release 25.3.1.dev38

Show host usage statistics

The following examples show the host usage statistics for a host called devstack.

¢ List the hosts and the nova-related services that run on them:

openstack host list

* Get a summary of resource usage of all of the instances running on the host:

openstack host show devstack

The CPU column shows the sum of the virtual CPUs for instances running on the host.

The MEMORY MB column shows the sum of the memory (in MB) allocated to the instances that run
on the host.

The DISK GB column shows the sum of the root and ephemeral disk sizes (in GB) of the instances
that run on the host.

The row that has the value used_now in the PROJECT column shows the sum of the resources
allocated to the instances that run on the host, plus the resources allocated to the host itself.

The row that has the value used_max in the PROJECT column shows the sum of the resources
allocated to the instances that run on the host.

Note: These values are computed by using information about the flavors of the instances that run

3.4. Maintenance 242

Nova Documentation, Release 25.3.1.dev38

on the hosts. This command does not query the CPU usage, memory usage, or hard disk usage of
the physical host.

Show instance usage statistics

* Get CPU, memory, I/O, and network statistics for an instance.

1. List instances:

openstack server list

2. Get diagnostic statistics:

Note: As of microversion v2.48, diagnostics information for all virt drivers will have a
standard format as below. Before microversion 2.48, each hypervisor had its own format.
For more details on diagnostics response message see server diagnostics api documentation.

nova diagnostics myCirrosServer

(continues on next page)

3.4. Maintenance 243

https://docs.openstack.org/api-ref/compute/#servers-diagnostics-servers-diagnostics

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

[}

config_drive indicates if the config drive is supported on the instance.
cpu_details contains a list of details per vCPU.

disk_details contains a list of details per disk.

driver indicates the current driver on which the VM is running.
hypervisor indicates the current hypervisor on which the VM is running.
nic_details contains a list of details per vNIC.

uptime is the amount of time in seconds that the VM has been running.

Diagnostics prior to v2.48:

nova diagnostics myCirrosServer

(continues on next page)

3.4. Maintenance 244

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

* Get summary statistics for each project:

openstack usage list

System administrators can use the openstack to manage their clouds.

The openstack client can be used by all users, though specific commands might be restricted by the
Identity service.

Managing the cloud with the openstack client

1. The python-openstackclient package provides an openstack shell that enables Compute API
interactions from the command line. Install the client, and provide your user name and password
(which can be set as environment variables for convenience), for the ability to administer the cloud
from the command line.

For more information on python-openstackclient, refer to the documentation.

2. Confirm the installation was successful:

openstack help

Running openstack help returns a list of openstack commands and parameters. To get help
for a subcommand, run:

3.4. Maintenance 245

https://docs.openstack.org/python-openstackclient/yoga/

Nova Documentation, Release 25.3.1.dev38

openstack help SUBCOMMAND

For a complete list of openstack commands and parameters, refer to the OpenStack Command-
Line Reference.

3. Set the required parameters as environment variables to make running commands easier. For ex-
ample, you can add --os-username as an openstack option, or set it as an environment variable.
To set the user name, password, and project as environment variables, use:

export joecool
export coolword
export coolu

4. The Identity service gives you an authentication endpoint, which Compute recognizes as
OS_AUTH_URL:

export http://hostname:5000/v2.0

Manage Compute services

You can enable and disable Compute services. The following examples disable and enable the
nova-compute service.

1. List the Compute services:

openstack compute service list

2. Disable a nova service:

openstack compute service set --disable --disable-reason o
—scompute nova-compute

3.4. Maintenance 246

https://docs.openstack.org/python-openstackclient/yoga/cli/index.html
https://docs.openstack.org/python-openstackclient/yoga/cli/index.html

Nova Documentation, Release 25.3.1.dev38

3. Check the service list:

openstack compute service list

4. Enable the service:

openstack compute service set --enable compute nova-compute

Configure Compute service groups

The Compute service must know the status of each compute node to effectively manage and use them.
This can include events like a user launching a new VM, the scheduler sending a request to a live node,
or a query to the ServiceGroup API to determine if a node is live.

When a compute worker running the nova-compute daemon starts, it calls the join API to join the compute
group. Any service (such as the scheduler) can query the groups membership and the status of its nodes.
Internally, the ServiceGroup client driver automatically updates the compute worker status.

Database ServiceGroup driver

By default, Compute uses the database driver to track if a node is live. In a compute worker, this driver
periodically sends a db update command to the database, saying Im OK with a timestamp. Compute
uses a pre-defined timeout (service_down_time) to determine if a node is dead.

The driver has limitations, which can be problematic depending on your environment. If a lot of compute
worker nodes need to be checked, the database can be put under heavy load, which can cause the timeout
to trigger, and a live node could incorrectly be considered dead. By default, the timeout is 60 seconds.
Reducing the timeout value can help in this situation, but you must also make the database update more
frequently, which again increases the database workload.

The database contains data that is both transient (such as whether the node is alive) and persistent (such
as entries for VM owners). With the ServiceGroup abstraction, Compute can treat each type separately.

3.4. Maintenance 247

Nova Documentation, Release 25.3.1.dev38

Memcache ServiceGroup driver

The memcache ServiceGroup driver uses memcached, a distributed memory object caching system that
is used to increase site performance. For more details, see memcached.org.

To use the memcache driver, you must install memcached. You might already have it installed, as the same
driver is also used for the OpenStack Object Storage and OpenStack dashboard. To install memcached,
see the Environment -> Memcached section in the Installation Tutorials and Guides depending on your
distribution.

These values in the /etc/nova/nova. conf file are required on every node for the memcache driver:

Logging
Logging module

Logging behavior can be changed by creating a configuration file. To specify the configuration file, add
this line to the /etc/nova/nova. conf file:

To change the logging level, add DEBUG, INFO, WARNING, or ERROR as a parameter.

The logging configuration file is an INI-style configuration file, which must contain a section called
logger_nova. This controls the behavior of the logging facility in the nova-* services. For example:

This example sets the debugging level to INFO (which is less verbose than the default DEBUG setting).

For more about the logging configuration syntax, including the handlers and qualname variables, see
the Python documentation on logging configuration files.

For an example of the 1ogging. conf file with various defined handlers, see the Example Configuration
File for nova.

3.4. Maintenance 248

http://memcached.org/
https://docs.openstack.org/install-guide
https://docs.python.org/release/2.7/library/logging.html#configuration-file-format
https://docs.openstack.org/oslo.log/yoga/admin/example_nova.html
https://docs.openstack.org/oslo.log/yoga/admin/example_nova.html

Nova Documentation, Release 25.3.1.dev38

Syslog

OpenStack Compute services can send logging information to syslog. This is useful if you want to
use rsyslog to forward logs to a remote machine. Separately configure the Compute service (nova), the
Identity service (keystone), the Image service (glance), and, if you are using it, the Block Storage service
(cinder) to send log messages to syslog. Open these configuration files:

* /etc/nova/nova.conf

e /etc/keystone/keystone.conf

* /etc/glance/glance-api.conf

e /etc/glance/glance-registry.conf
e /etc/cinder/cinder.conf

In each configuration file, add these lines:

In addition to enabling syslog, these settings also turn off debugging output from the log.

Note: Although this example uses the same local facility for each service (LOG_LOCAL®, which corre-
sponds to syslog facility LOCAL®), we recommend that you configure a separate local facility for each
service, as this provides better isolation and more flexibility. For example, you can capture logging in-
formation at different severity levels for different services. syslog allows you to define up to eight local
facilities, LOCAL®, LOCAL1l, ..., LOCAL7. For more information, see the syslog documentation.

Rsyslog

rsyslog is useful for setting up a centralized log server across multiple machines. This section briefly
describe the configuration to set up an rsyslog server. A full treatment of rsyslog is beyond the scope of
this book. This section assumes rsyslog has already been installed on your hosts (it is installed by default
on most Linux distributions).

This example provides a minimal configuration for /etc/rsyslog.conf on the log server host, which
receives the log files

provides TCP syslog reception
ModLoad imtcp
InputTCPServerRun 1024

Add afilterrule to /etc/rsyslog. conf which looks for a host name. This example uses COMPUTE_01
as the compute host name:

:hostname, isequal, "COMPUTE_01" /mnt/rsyslog/logs/compute-01.log

On each compute host, create a file named /etc/rsyslog.d/60-nova.conf, with the following con-
tent:

3.4. Maintenance 249

Nova Documentation, Release 25.3.1.dev38

prevent debug from dnsmasq with the daemon.none parameter
*_*j;auth,authpriv.none,daemon.none,local®.none -/var/log/syslog
Specify a log level of ERROR

local®.error 0@172.20.1.43:1024

Once you have created the file, restart the rsyslog service. Error-level log messages on the compute
hosts should now be sent to the log server.

Serial console

The serial console provides a way to examine kernel output and other system messages during trou-
bleshooting if the instance lacks network connectivity.

Read-only access from server serial console is possible using the os-GetSerialOutput server action.
Most cloud images enable this feature by default. For more information, see Common errors and fixes
for Compute.

OpenStack Juno and later supports read-write access using the serial console using the
os-GetSerialConsole server action. This feature also requires a websocket client to access the
serial console.

Configuring read-write serial console access

1. On a compute node, edit the /etc/nova/nova.conf file:

In the [serial_console] section, enable the serial console:

2. Inthe [serial_console] section, configure the serial console proxy similar to graphical console
proxies:

The base_url option specifies the base URL that clients receive from the API upon requesting a
serial console. Typically, this refers to the host name of the controller node.

The 1isten option specifies the network interface nova-compute should listen on for virtual con-
sole connections. Typically, 0.0.0.0 will enable listening on all interfaces.

The proxyclient_address option specifies which network interface the proxy should connect
to. Typically, this refers to the IP address of the management interface.

When you enable read-write serial console access, Compute will add serial console information to
the Libvirt XML file for the instance. For example:

3.4. Maintenance 250

Nova Documentation, Release 25.3.1.dev38

Accessing the serial console on an instance

1. Usethenova get-serial-proxy command to retrieve the websocket URL for the serial console
on the instance:

nova get-serial-proxy INSTANCE_NAME

Type Url
serial ws://127.0.0.1:6083/?token=18510769-71ad-4e5a-8348-4218b5613b3d

Alternatively, use the API directly:

curl -i
o

-X POST

2. Use Python websocket with the URL to generate .send, .recv, and . fileno methods for serial
console access. For example:

websocket

Alternatively, use a Python websocket client.

Note: When you enable the serial console, typical instance logging using the nova console-log
command is disabled. Kernel output and other system messages will not be visible unless you are actively
viewing the serial console.

3.4. Maintenance 251

https://github.com/larsks/novaconsole/

Nova Documentation, Release 25.3.1.dev38

Secure with rootwrap

Rootwrap allows unprivileged users to safely run Compute actions as the root user. Compute previously
used sudo for this purpose, but this was difficult to maintain, and did not allow advanced filters. The
rootwrap command replaces sudo for Compute.

To use rootwrap, prefix the Compute command with nova-rootwrap. For example:

sudo nova-rootwrap /etc/nova/rootwrap.conf command

A generic sudoers entry lets the Compute user run nova-rootwrap as root. The nova-rootwrap
code looks for filter definition directories in its configuration file, and loads command filters from them.
It then checks if the command requested by Compute matches one of those filters and, if so, executes the
command (as root). If no filter matches, it denies the request.

Note: Be aware of issues with using NFS and root-owned files. The NFS share must be configured with
the no_root_squash option enabled, in order for rootwrap to work correctly.

Rootwrap is fully controlled by the root user. The root user owns the sudoers entry which allows Compute
to run a specific rootwrap executable as root, and only with a specific configuration file (which should also
be owned by root). The nova-rootwrap command imports the Python modules it needs from a cleaned,
system-default PYTHONPATH. The root-owned configuration file points to root-owned filter definition
directories, which contain root-owned filters definition files. This chain ensures that the Compute user
itself is not in control of the configuration or modules used by the nova-rootwrap executable.

Configure rootwrap

Configure rootwrap in the rootwrap.conf file. Because it is in the trusted security path, it must be
owned and writable by only the root user. The rootwrap_config=entry parameter specifies the files
location in the sudoers entry and in the nova. conf configuration file.

The rootwrap.conf file uses an INI file format with these sections and parameters:

Table 7: rootwrap.conf configuration options

Configuration option=Default value (Type) Description
[DEFAULTT filters_path=/etc/nova/rootwrap.d,/ust/share/nova/rootwrghistOpt) Comma-separated
list of directories containing
filter definition files. Defines
where rootwrap filters are
stored. Directories defined on
this line should all exist, and
be owned and writable only by
the root user.

If the root wrapper is not performing correctly, you can add a workaround option into the nova.conf
configuration file. This workaround re-configures the root wrapper configuration to fall back to running
commands as sudo, and is a Kilo release feature.

Including this workaround in your configuration file safeguards your environment from issues that can
impair root wrapper performance. Tool changes that have impacted Python Build Reasonableness (PBR)

3.4. Maintenance 252

https://opendev.org/openstack/pbr/

Nova Documentation, Release 25.3.1.dev38

for example, are a known issue that affects root wrapper performance.

To set up this workaround, configure the disable_rootwrap option in the [workaround] section of
the nova. conf configuration file.

The filters definition files contain lists of filters that rootwrap will use to allow or deny a specific com-
mand. They are generally suffixed by .filters . Since they are in the trusted security path, they need
to be owned and writable only by the root user. Their location is specified in the rootwrap. conf file.

Filter definition files use an INI file format with a [Filters] section and several lines, each with a
unique parameter name, which should be different for each filter you define:

Table 8: Filters configuration options

Configuration option=Default value (Type) Description
[Filters] filter_name=kpartx: CommandFilter, /sbin/kpartx, root | (ListOpt) Comma-separated list
containing the filter class to use,
followed by the Filter arguments
(which vary depending on the Fil-
ter class selected).

Configure the rootwrap daemon

Administrators can use rootwrap daemon support instead of running rootwrap with sudo. The rootwrap
daemon reduces the overhead and performance loss that results from running oslo.rootwrap with
sudo. Each call that needs rootwrap privileges requires a new instance of rootwrap. The daemon prevents
overhead from the repeated calls. The daemon does not support long running processes, however.

To enable the rootwrap daemon, set use_rootwrap_daemon to True in the Compute service configu-
ration file.

Configure SSH between compute nodes

Todo: Consider merging this into a larger migration document or to the installation guide

If you are resizing or migrating an instance between hypervisors, you might encounter an SSH (Permis-
sion denied) error. Ensure that each node is configured with SSH key authentication so that the Compute
service can use SSH to move disks to other nodes.

Note: It is not necessary that all the compute nodes share the same key pair. However for the ease of the
configuration, this document only utilizes a single key pair for communication between compute nodes.

To share a key pair between compute nodes, complete the following steps:

1. On the first node, obtain a key pair (public key and private key). Use the root key that is in the
/root/.ssh/id_rsa and /root/.ssh/id_rsa.pub directories or generate a new key pair.

2. Run setenforce 0 to put SELinux into permissive mode.

3. Enable login abilities for the nova user:

3.4. Maintenance 253

Nova Documentation, Release 25.3.1.dev38

usermod -s /bin/bash nova

Ensure you can switch to the nova account:

Su - nova

4. As root, create the folder that is needed by SSH and place the private key that you obtained in step
1 into this folder, and add the pub key to the authorized_keys file:

5. Copy the whole folder created in step 4 to the rest of the nodes:

scp -r /var/lib/nova/.ssh remote-host:/var/lib/nova/

6. Ensure that the nova user can now log in to each node without using a password:

su - nova
ssh *computeNodeAddress*
exit

7. As root on each node, restart both libvirt and the Compute services:

systemctl restart libvirtd.service
systemctl restart openstack-nova-compute.service

Configure live migrations

Migration enables an administrator to move a virtual machine instance from one compute host to an-
other. A typical scenario is planned maintenance on the source host, but migration can also be useful to
redistribute the load when many VM instances are running on a specific physical machine.

This document covers live migrations using the Libvirt and VM Ware hypervisors

Note: Not all Compute service hypervisor drivers support live-migration, or support all live-migration
features. Similarly not all compute service features are supported.

Consult Feature Support Matrix to determine which hypervisors support live-migration.

See the Configuration Guide for details on hypervisor configuration settings.

The migration types are:
* Non-live migration, also known as cold migration or simply migration.

The instance is shut down, then moved to another hypervisor and restarted. The instance recognizes
that it was rebooted, and the application running on the instance is disrupted.

This section does not cover cold migration.

3.4. Maintenance 254

Nova Documentation, Release 25.3.1.dev38

* Live migration

The instance keeps running throughout the migration. This is useful when it is not possible or
desirable to stop the application running on the instance.

Live migrations can be classified further by the way they treat instance storage:

— Shared storage-based live migration. The instance has ephemeral disks that are located on
storage shared between the source and destination hosts.

— Block live migration, or simply block migration. The instance has ephemeral disks that are
not shared between the source and destination hosts. Block migration is incompatible with
read-only devices such as CD-ROMs and Configuration Drive (config_drive).

— Volume-backed live migration. Instances use volumes rather than ephemeral disks.

Block live migration requires copying disks from the source to the destination host. It takes more
time and puts more load on the network. Shared-storage and volume-backed live migration does
not copy disks.

Note: In a multi-cell cloud, instances can be live migrated to a different host in the same cell, but not
across cells. Refer to the cells v2 documentation. for more information.

The following sections describe how to configure your hosts for live migrations using the libvirt virt
driver and KVM hypervisor.

Libvirt

General configuration

To enable any type of live migration, configure the compute hosts according to the instructions below:
1. Set the following parameters in nova. conf on all compute hosts:
* server_listen=0.0.0.0

You must not make the VNC server listen to the IP address of its compute host, since that
addresses changes when the instance is migrated.

Important: Since this setting allows VNC clients from any IP address to connect to instance
consoles, you must take additional measures like secure networks or firewalls to prevent po-
tential attackers from gaining access to instances.

* instances_path must have the same value for all compute hosts. In this guide, the value
/var/lib/nova/instances is assumed.

2. Ensure that name resolution on all compute hosts is identical, so that they can connect each other
through their hostnames.

If you use /etc/hosts for name resolution and enable SELinux, ensure that /etc/hosts has the
correct SELinux context:

restorecon /etc/hosts

3.4. Maintenance 255

Nova Documentation, Release 25.3.1.dev38

3. Enable password-less SSH so that root on one compute host can log on to any other compute host
without providing a password. The 1libvirtd daemon, which runs as root, uses the SSH protocol
to copy the instance to the destination and cant know the passwords of all compute hosts.

You may, for example, compile roots public SSH keys on all compute hosts into an
authorized_keys file and deploy that file to the compute hosts.

4. Configure the firewalls to allow libvirt to communicate between compute hosts.

By default, libvirt uses the TCP port range from 49152 to 49261 for copying memory and disk
contents. Compute hosts must accept connections in this range.

For information about ports used by libvirt, see the libvirt documentation.

Important: Be mindful of the security risks introduced by opening ports.

Securing live migration streams

If your compute nodes have at least libvirt 4.4.0 and QEMU 2.11.0, it is strongly recommended to secure
all your live migration streams by taking advantage of the QEMU-native TLS feature. This requires a
pre-existing PKI (Public Key Infrastructure) setup. For further details on how to set this all up, refer to
the Secure live migration with QEMU-native TLS document.

Block migration, volume-based live migration

If your environment satisfies the requirements for QEMU-native TLS, then block migration requires some
setup; refer to the above section, Securing live migration streams, for details. Otherwise, no additional
configuration is required for block migration and volume-backed live migration.

Be aware that block migration adds load to the network and storage subsystems.

Shared storage

Compute hosts have many options for sharing storage, for example NFS, shared disk array LUNs, Ceph
or GlusterFS.

The next steps show how a regular Linux system might be configured as an NFS v4 server for live mi-
gration. For detailed information and alternative ways to configure NFS on Linux, see instructions for
Ubuntu, RHEL and derivatives or SLES and OpenSUSE.

1. Ensure that UID and GID of the nova user are identical on the compute hosts and the NFS server.

2. Create a directory with enough disk space for all instances in the cloud, owned by user nova. In
this guide, we assume /var/lib/nova/instances.

3. Set the execute/search bit on the instances directory:

chmod o+x /var/lib/nova/instances

This allows gemu to access the instances directory tree.

3.4. Maintenance 256

http://libvirt.org/remote.html#Remote_libvirtd_configuration
https://help.ubuntu.com/community/SettingUpNFSHowTo
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/nfs-serverconfig.html
https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_nfs_configuring-nfs-server.html

Nova Documentation, Release 25.3.1.dev38

4. Export /var/lib/nova/instances to the compute hosts. For example, add the following line
to /etc/exports:

The asterisk permits access to any NFS client. The option £sid=0 exports the instances directory
as the NFS root.

After setting up the NFS server, mount the remote filesystem on all compute hosts.

1. Assuming the NFS servers hostname is nfs-server, add this line to /etc/fstab to mount the
NEFS root:

2. Test NFS by mounting the instances directory and check access permissions for the nova user:

sudo mount -a -v
ls -1d /var/lib/nova/instances/

Advanced configuration for KVM and QEMU

Live migration copies the instances memory from the source to the destination compute host. After
a memory page has been copied, the instance may write to it again, so that it has to be copied again.
Instances that frequently write to different memory pages can overwhelm the memory copy process and
prevent the live migration from completing.

This section covers configuration settings that can help live migration of memory-intensive instances
succeed.

1. Live migration completion timeout

The Compute service will either abort or force complete a migration when it has been running
too long. This behavior is configurable using the I1ibvirt.live_migration_timeout_action
config option. The timeout is calculated based on the instance size, which is the instances memory
size in GiB. In the case of block migration, the size of ephemeral storage in GiB is added.

The timeout in seconds is the instance size multiplied by the configurable parameter 1ibvirt.
live_migration_completion_timeout, whose default is 800. For example, shared-storage
live migration of an instance with 8GiB memory will time out after 6400 seconds.

2. Instance downtime

Near the end of the memory copy, the instance is paused for a short time so that the remaining
few pages can be copied without interference from instance memory writes. The Compute service
initializes this time to a small value that depends on the instance size, typically around 50 millisec-
onds. When it notices that the memory copy does not make sufficient progress, it increases the
time gradually.

You can influence the instance downtime algorithm with the help of three configuration variables
on the compute hosts:

3.4. Maintenance 257

Nova Documentation, Release 25.3.1.dev38

live_migration_downtime sets the target maximum period of time Nova will try to keep the
instance paused during the last part of the memory copy, in milliseconds. This value may be
exceeded if there is any reduction on the transfer rate after the VM is paused. The default is 500.

live_migration_downtime_steps sets the total number of adjustment steps until
live_migration_downtime is reached. The default is 10 steps.

live_migration_downtime_delay sets the time interval between two adjustment steps in sec-
onds. The default is 75.

3. Auto-convergence

One strategy for a successful live migration of a memory-intensive instance is slowing the instance
down. This is called auto-convergence. Both libvirt and QEMU implement this feature by auto-
matically throttling the instances CPU when memory copy delays are detected.

Auto-convergence is disabled by default. You can enable it by setting
live_migration_permit_auto_converge=true.

Caution: Before enabling auto-convergence, make sure that the instances application tolerates
a slow-down.

Be aware that auto-convergence does not guarantee live migration success.

4. Post-copy

Live migration of a memory-intensive instance is certain to succeed when you enable post-copy.
This feature, implemented by libvirt and QEMU, activates the virtual machine on the destination
host before all of its memory has been copied. When the virtual machine accesses a page that is
missing on the destination host, the resulting page fault is resolved by copying the page from the
source host.

Post-copy is disabled by default. You can enable it by setting
live_migration_permit_post_copy=true.

When you enable both auto-convergence and post-copy, auto-convergence remains disabled.

Caution: The page faults introduced by post-copy can slow the instance down.

When the network connection between source and destination host is interrupted, page faults
cannot be resolved anymore and the instance is rebooted.

The full list of live migration configuration parameters is documented in the Nova Configuration Options

3.4. Maintenance 258

Nova Documentation, Release 25.3.1.dev38

VMware
vSphere configuration

Enable vMotion on all ESX hosts which are managed by Nova by following the instructions in this KB
article.

Live-migrate instances

Live-migrating an instance means moving its virtual machine to a different OpenStack Compute server
while the instance continues running. Before starting a live-migration, review the chapter Configure live
migrations. It covers the configuration settings required to enable live-migration, but also reasons for
migrations and non-live-migration options.

The instructions below cover shared-storage and volume-backed migration. To block-migrate in-
stances, add the command-line option -block-migrate to the nova live-migration command, and
--block-migration to the openstack server migrate command.

Manual selection of the destination host

1. Obtain the ID of the instance you want to migrate:

openstack server list

2. Determine on which host the instance is currently running. In this example, vm1 is running on
HostB:

openstack server show dldflb5a-70c4-4fed-98b7-423362f2c47c

(continues on next page)

3.4. Maintenance 259

https://kb.vmware.com/s/article/2054994

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

3. Select the compute node the instance will be migrated to. In this example, we will migrate the
instance to HostC, because nova-compute is running on it:

openstack compute service list

4. Check that HostC has enough resources for migration:

openstack host show HostC

e cpu: Number of CPUs
* memory_mb: Total amount of memory, in MB
* disk_gb: Total amount of space for NOVA-INST-DIR/instances, in GB

In this table, the first row shows the total amount of resources available on the physical server. The
second line shows the currently used resources. The third line shows the maximum used resources.
The fourth line and below shows the resources available for each project.

3.4. Maintenance 260

Nova Documentation, Release 25.3.1.dev38

5. Migrate the instance:

openstack server migrate dldflb5a-70c4-4fed-98b7-423362f2c47c --live.,
—HostC

6. Confirm that the instance has been migrated successfully:

openstack server show dldflb5a-70c4-4fed-98b7-423362f2c47c

If the instance is still running on HostB, the migration failed. The nova-scheduler and
nova-conductor log files on the controller and the nova-compute log file on the source compute
host can help pin-point the problem.

Automatic selection of the destination host

To leave the selection of the destination host to the Compute service, use the nova command-line client.
1. Obtain the instance ID as shown in step 1 of the section Manual selection of the destination host.
2. Leave out the host selection steps 2, 3, and 4.

3. Migrate the instance:

nova live-migration dldflb5a-70c4-4fed-98b7-423362f2c47c

Monitoring the migration

1. Confirm that the instance is migrating:

openstack server show dldflb5a-70c4-4fed-98b7-423362f2c47c

2. Check progress

Use the nova command-line client for novas migration monitoring feature. First, obtain the migra-
tion ID:

3.4. Maintenance 261

Nova Documentation, Release 25.3.1.dev38

nova server-migration-list dldflb5a-70c4-4fed-98b7-423362f2c47c

For readability, most output columns were removed. Only the first column, Id, is relevant. In this
example, the migration ID is 2. Use this to get the migration status.

nova server-migration-show dldflb5a-70c4-4fed-98b7-423362f2c47c 2

The output shows that the migration is running. Progress is measured by the number of memory
bytes that remain to be copied. If this number is not decreasing over time, the migration may be
unable to complete, and it may be aborted by the Compute service.

Note: The command reports that no disk bytes are processed, even in the event of block migration.

What to do when the migration times out

During the migration process, the instance may write to a memory page after that page has been copied
to the destination. When that happens, the same page has to be copied again. The instance may write
to memory pages faster than they can be copied, so that the migration cannot complete. There are
two optional actions, controlled by 1ibvirt.live_migration_timeout_action, which can be taken
against a VM after libvirt.live_migration_completion_timeout is reached:

1. abort (default): The live migration operation will be cancelled after the completion time-
out is reached. This is similar to using API DELETE /servers/{server_id}/migrations/
{migration_id}.

3.4. Maintenance 262

Nova Documentation, Release 25.3.1.dev38

2. force_complete: The compute service will either pause the VM or trigger post-copy depend-
ing on if post copy is enabled and available (1ibvirt.live_migration_permit_post_copy
is set to True). This is similar to using API POST /servers/{server_id}/migrations/
{migration_id}/action (force_complete).

You can also read the 1ibvirt.live_migration_timeout_action configuration option help for
more details.

The following remarks assume the KVM/Libvirt hypervisor.

How to know that the migration timed out

To determine that the migration timed out, inspect the nova-compute log file on the source host. The
following log entry shows that the migration timed out:

grep WARNING.*d1ldflb5a-70c4-4fed-98b7-423362f2c47c /var/log/nova/nova-
—compute.log

Addressing migration timeouts

To stop the migration from putting load on infrastructure resources like network and disks, you may opt
to cancel it manually.

nova live-migration-abort INSTANCE_ID MIGRATION_ID

To make live-migration succeed, you have several options:

* Manually force-complete the migration

nova live-migration-force-complete INSTANCE_ID MIGRATION_ID

The instance is paused until memory copy completes.

Caution: Since the pause impacts time keeping on the instance and not all applications tolerate
incorrect time settings, use this approach with caution.

* Enable auto-convergence

Auto-convergence is a Libvirt feature. Libvirt detects that the migration is unlikely to complete
and slows down its CPU until the memory copy process is faster than the instances memory writes.

To enable auto-convergence, set live_migration_permit_auto_converge=true in nova.
conf and restart nova-compute. Do this on all compute hosts.

Caution: One possible downside of auto-convergence is the slowing down of the instance.

3.4. Maintenance 263

Nova Documentation, Release 25.3.1.dev38

* Enable post-copy

This is a Libvirt feature. Libvirt detects that the migration does not progress and responds by
activating the virtual machine on the destination host before all its memory has been copied. Access
to missing memory pages result in page faults that are satisfied from the source host.

To enable post-copy, set Live_migration_permit_post_copy=true in nova.conf and restart
nova-compute. Do this on all compute hosts.

When post-copy is enabled, manual force-completion does not pause the instance but switches to
the post-copy process.

Caution: Possible downsides:

— When the network connection between source and destination is interrupted, page faults
cannot be resolved anymore, and the virtual machine is rebooted.

— Post-copy may lead to an increased page fault rate during migration, which can slow the
instance down.

If live migrations routinely timeout or fail during cleanup operations due to the user token timing out,
consider configuring nova to use service user tokens.

Secure live migration with QEMU-native TLS
Context

The encryption offered by novas 1ibvirt.live_migration_tunnelled does not secure all the dif-
ferent migration streams of a nova instance, namely: guest RAM, device state, and disks (via NBD)
when using non-shared storage. Further, the tunnelling via libvirtd has inherent limitations: (a) it cannot
handle live migration of disks in a non-shared storage setup (a.k.a. block migration); and (b) has a huge
performance overhead and latency, because it burns more CPU and memory bandwidth due to increased
number of data copies on both source and destination hosts.

To solve this existing limitation, QEMU and libvirt have gained (refer below for version details) support
for native TLS, i.e. TLS built into QEMU. This will secure all data transports, including disks that are
not on shared storage, without incurring the limitations of the tunnelled via libvirtd transport.

To take advantage of the native TLS support in QEMU and libvirt, nova has introduced new configuration
attribute 1ibvirt.live_migration _with_native_tls.

Prerequisites

(1) Version requirement: This feature needs at least libvirt 4.4.0 and QEMU 2.11.

(2) A pre-configured TLS environmenti.e. CA, server, and client certificates, their file permissions,
et almust be correctly configured (typically by an installer tool) on all relevant compute nodes.
To simplify your PKI (Public Key Infrastructure) setup, use deployment tools that take care of
handling all the certificate lifecycle management. For example, refer to the TLS everywhere guide
from the TripleO project.

(3) Password-less SSH setup for all relevant compute nodes.

3.4. Maintenance 264

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/tls-everywhere.html

Nova Documentation, Release 25.3.1.dev38

(4) On all relevant compute nodes, ensure the TLS-related config attributes in /etc/libvirt/qemu.
conf are in place:

If it is not already configured, modify /etc/sysconfig/libvirtd on both (ComputeNodel &
ComputeNode?2) to listen for TCP/IP connections:

Then, restart the libvirt daemon (also on both nodes):

$ systemctl restart libvirtd

Refer to the Related information section on a note about the other TLS-related configuration at-
tributes in /etc/libvirt/gemu. conf.

Validating your TLS environment on compute nodes

Assuming you have two compute hosts (ComputeNodel, and ComputeNode2) run the
virt-pki-validate tool (comes with the libvirt-client package on your Linux distribution) on
both the nodes to ensure all the necessary PKI files are configured are configured:

[ComputeNodel]$ virt-pki-validate

Found /usr/bin/certtool

Found CA certificate /etc/pki/CA/cacert.pem for TLS Migration Test

Found client certificate /etc/pki/libvirt/clientcert.pem for ComputeNodel
Found client private key /etc/pki/libvirt/private/clientkey.pem

Found server certificate /etc/pki/libvirt/servercert.pem for ComputeNodel
Found server private key /etc/pki/libvirt/private/serverkey.pem

Make sure /etc/sysconfig/libvirtd is setup to listen to

TCP/IP connections and restart the libvirtd service

[ComputeNode2]$ virt-pki-validate

Found /usr/bin/certtool

Found CA certificate /etc/pki/CA/cacert.pem for TLS Migration Test

Found client certificate /etc/pki/libvirt/clientcert.pem for ComputeNode2
Found client private key /etc/pki/libvirt/private/clientkey.pem

Found server certificate /etc/pki/libvirt/servercert.pem for ComputeNode2
Found server private key /etc/pki/libvirt/private/serverkey.pem

Make sure /etc/sysconfig/libvirtd is setup to listen to

TCP/IP connections and restart the libvirtd service

3.4. Maintenance 265

Nova Documentation, Release 25.3.1.dev38

Other TLS environment related checks on compute nodes

IMPORTANT: Ensure that the permissions of certificate files and keys in /etc/pki/qemu/* direc-
tory on both source and destination compute nodes to be the following 0640 with root:qgemu as the

group/user. For example, on a Fedora-based system:

$ 1s -lasrtZ /etc/pki/gemu

total 32

0 drwxr-xr-x. 10 root root system_ u:object_r:cert_t:s0 110 Dec 10 10:39 .
4 -rw-r----- . 1 root gemu unconfined_u:object_r:cert_t:s® 1464 Dec 10 11:08.
—ca-cert.pem

4 -rw-r----- . 1 root gemu unconfined_u:object_r:cert_t:s® 1558 Dec 10 11:08.
—server-cert.pem

4 -rw-r----- . 1 root gemu unconfined_u:object_r:cert_t:s® 1619 Dec 10 11:09.
—client-cert.pem

8 -rw-r----- . 1 root gemu unconfined_u:object_r:cert_t:s® 8180 Dec 10 11:09.
—client-key.pem

8 -rw-r----- . 1 root gemu unconfined_u:object_r:cert_t:s® 8177 Dec 11 05:35.

—server-key.pem

0 drwxr-xr-x. 2 root root unconfined_u:object_r:cert_t:s® 146 Dec 11 06:01 .

Performing the migration

ey

2

On all relevant compute nodes, enable the 1ibvirt.live_migration_with_native_tls con-
figuration attribute and set the 1ibvirt.live_migration_scheme configuration attribute to tls:

Note: Setting both Iibvirt.live_migration_with_native_tls and libvirt.
live_migration_tunnelled at the same time is invalid (and disallowed).

Note: Not setting 1ibvirt.live_migration_scheme to tls will result in libvirt using the
unencrypted TCP connection without displaying any error or a warning in the logs.

And restart the nova-compute service:

§ systemctl restart openstack-nova-compute

Now that all TLS-related configuration is in place, migrate guests (with or without shared storage)
from ComputeNodel to ComputeNode2. Refer to the Live-migrate instances document on details
about live migration.

3.4. Maintenance 266

Nova Documentation, Release 25.3.1.dev38

Related information

* If you have the relevant libvirt and QEMU versions (mentioned in the Prerequisites section ear-
lier), then using the Iibvirt.live_migration_with_native_tls is strongly recommended
over the more limited 1ibvirt.live_migration_tunnelled option, which is intended to be
deprecated in future.

* There are in total nine TLS-related config options in /etc/libvirt/qemu.conf:

If you set both default_tls_x509_cert_dir and default_tls_x509_verify parameters for
all certificates, there is no need to specify any of the other *_t1s* config options.

The intention (of libvirt) is that you can just use the default_t1ls_x509_% config attributes so
that you dont need to set any other *_t1ls* parameters, _unless_ you need different certificates
for some services. The rationale for that is that some services (e.g. migration / NBD) are only
exposed to internal infrastructure; while some sevices (VNC, Spice) might be exposed publically,
so might need different certificates. For OpenStack this does not matter, though, we will stick with
the defaults.

e If they are not already open, ensure you open up these TCP ports on your firewall:
16514 (where the authenticated and encrypted TCP/IP socket will be listening on) and
49152-49215 (for regular migration) on all relevant compute nodes. (Otherwise you
get error: 1internal error: unable to execute QEMU command 'drive-mirror':
Failed to connect socket: No route to host).

Manage volumes

Depending on the setup of your cloud provider, they may give you an endpoint to use to manage volumes.
You can use the openstack CLI to manage volumes.

For the purposes of the compute service, attaching, detaching and creating a server from a volume are
of primary interest.

Refer to the CLI documentation for more information.

3.4. Maintenance 267

https://docs.openstack.org/python-openstackclient/yoga/cli/command-objects/volume.html

Nova Documentation, Release 25.3.1.dev38

Volume multi-attach

Nova added support for multiattach volumes in the 17.0.0 Queens release.

This document covers the nova-specific aspects of this feature. Refer to the block storage admin guide
for more details about creating multiattach-capable volumes.

Boot from volume and attaching a volume to a server that is not SHELVED_OFFLOADED is supported.
Ultimately the ability to perform these actions depends on the compute host and hypervisor driver that
is being used.

There is also a recorded overview and demo for volume multi-attach.

Requirements

* The minimum required compute API microversion for attaching a multiattach-capable volume to
more than one server is 2.60.

* Cinder 12.0.0 (Queens) or newer is required.

* The nova-compute service must be running at least Queens release level code (17.0.0) and the
hypervisor driver must support attaching block storage devices to more than one guest. Refer to
Feature Support Matrix for details on which compute drivers support volume multiattach.

* When using the libvirt compute driver, the following native package versions determine multiattach
support:

— libvirt must be greater than or equal to 3.10, or
— gemu must be less than 2.10

* Swapping an in-use multiattach volume is not supported (this is actually controlled via the block
storage volume retype API).

Known issues

* Creating multiple servers in a single request with a multiattach-capable volume as the root disk is
not yet supported: https://bugs.launchpad.net/nova/+bug/1747985

* Subsequent attachments to the same volume are all attached in read/write mode by default in the
block storage service. A future change either in nova or cinder may address this so that subsequent
attachments are made in read-only mode, or such that the mode can be specified by the user when
attaching the volume to the server.

Testing

Continuous integration testing of the volume multiattach feature is done via the tempest-full and
tempest-slow jobs, which, along with the tests themselves, are defined in the tempest repository.

3.4. Maintenance 268

https://specs.openstack.org/openstack/nova-specs/specs/queens/implemented/multi-attach-volume.html
https://docs.openstack.org/cinder/yoga/admin/blockstorage-volume-multiattach.html
https://www.youtube.com/watch?v=hZg6wqxdEHk
https://bugs.launchpad.net/nova/+bug/1747985
http://codesearch.openstack.org/?q=CONF.compute_feature_enabled.volume_multiattach&i=nope&files=&repos=tempest

Nova Documentation, Release 25.3.1.dev38

Managing volume attachments

During the lifecycle of an instance admins may need to check various aspects of how a given volume
is mapped both to an instance and the underlying compute hosting the instance. This could even in-
clude refreshing different elements of the attachment to ensure the latest configuration changes within
the environment have been applied.

Checking an existing attachment

Existing volume attachments can be checked using the following OpenStack Client commands:

List all volume attachments for a given instance:

$ openstack server volume list 216f9481-4c9d-4530-b865-51cedfadb8e7

o Fommm - o
ym———mm - B et ettt +
ID Device Server ID o
- Volume ID
o Fommm - T it
R o +

8b9b3491-£083-4485-8374-258372£3db35 | /dev/vdb = 216£9481-4c9d-4530-b865-
—51cedfad4b8e7 ' 8b9b3491-f083-4485-8374-258372£3db35

List all volume attachments for a given instance with the Cinder volume attachment and Block Device
Mapping UUIDs also listed with microversion >=2.89:

$ openstack --os-compute-api-version 2.89 server volume list 216f9481-4c9d-
—4530-b865-51cedfadb8e7?

Fomm - B et e it e et e e
R o e B T T T
—————- e e e e e e +

Device Server ID Volume ID o
. Tag Delete On Termination? @ Attachment ID o
. BlockDeviceMapping UUID
e e e
Cpmm——mm—— - +-————- o - B it it e
O - +

/dev/vdb = 216£f9481-4c9d-4530-b865-51cedfa4b8e7 = 8b9b3491-f083-4485-8374-
—258372£3db35 | None @ False d338fb38-cfd5-461£-8753-
—145dcbdb6c78 | 4e957e6d-52f2-44da-8cf8-3flab755e26d
fmm - e e
m——mm— - +-—-—-- et e it e
R e +

List all Cinder volume attachments for a given volume from microversion >= 3.27:

$ openstack --os-volume-api-version 3.27 volume attachment list --volume-id.
—8b9b3491-f083-4485-8374-258372£3db35
e o

e e + (continues on next page)

3.4. Maintenance 269

https://docs.openstack.org/python-openstackclient/yoga/cli/command-objects

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

ID Volume ID o
< Server ID Status
e e
B e TR Fom - +

d338fb38-cfd5-461f-8753-145dcbdb6c78 @ 8b9b3491-£f083-4485-8374-258372£3db35..
< 216f9481-4c9d-4530-b865-51cedfadb8e? attached
- -
it et T e R e e +

Show the details of a Cinder volume attachment from microversion >= 3.27:

$ openstack --os-volume-api-version 3.27 volume attachment show d338fb38-cfd5-
—461£-8753-145dcbdb6c78

Fom - e ettt e et it T
Gmmmm—m—m - +

Field Value o
- -
ym——————————— +

ID d338fb38-c£fd5-461£f-8753-145dcbdb6c78 o

Volume ID 8b9b3491-f083-4485-8374-258372£3db35 o

Instance ID 216£9481-4c9d-4530-b865-51cedfadb8e? o
: (continues on next pague)
3.4. Maintenance 270

—

Nova Documentation, Release 25.3.1.dev38

(continued from previous page)

%Status attached z
E)Attach Mode ' rw ;
%Attached At = 2021-09-14T13:03:38.000000 ;
EDetached At ;
%Properties | ’ | | :
S
3.4. Maintenance 271

Nova Documentation, Release 25.3.1.dev38

Refresh a volume attachment with nova-manage

New in version 24.0.0: (Xena)

Admins may also refresh an existing volume attachment using the following nova-manage commands.

Note: Users can also refresh volume attachments by shelving and later unshelving their instances.
The following is an alternative to that workflow and useful for admins when having to mass refresh
attachments across an environment.

Note: Future work will look into introducing an os-refresh admin API that will include orchestrating
the shutdown of an instance and refreshing volume attachments among other things.

To begin the admin can use the volume_attachment show subcommand to dump existing details of the
attachment directly from the Nova database. This includes the stashed connection_info not shared by the
APL

$ nova-manage volume_attachment show 216£9481-4c9d-4530-b865-51cedfadb8e7..
—»8b9b3491-f083-4485-8374-258372£3db35 --json @ jq .attachment_id

If the stored connection_info or attachment_id are incorrect then the admin may want to refresh the
attachment to the compute host entirely by recreating the Cinder volume attachment record(s) and pulling
down fresh connection_info. To do this we first need to ensure the instance is stopped:

$ openstack server stop 216f9481-4c9d-4530-b865-51cedfadb8e?

Once stopped the host connector of the compute hosting the instance has to be fetched using the vol-
ume_attachment get_connector subcommand:

root@compute $ nova-manage volume_attachment get_connector --json > connector.
—json

Note: Future work will remove this requirement and incorperate the gathering of the host connector into
the main refresh command. Unfortunatley until then it must remain a seperate manual step.

We can then provide this connector to the volume_attachment refresh subcommand. This command
will connect to the compute, disconnect any host volume connections, delete the existing Cinder volume
attachment, recreate the volume attachment and finally update Novas database.

$ nova-manage volume_attachment refresh 216£9481-4c9d-4530-b865-51cedfadb8e7..
—8b9b3491-1083-4485-8374-258372£3db35 connector. json

The Cinder volume attachment and connection_info stored in the Nova database should now be updated:

$ nova-manage volume_attachment show 216£9481-4c9d-4530-b865-51cedfadb8e7..
—8b9b3491-£083-4485-8374-258372£3db35 --json | jgq .attachment_id

3.4. Maintenance 272

Nova Documentation, Release 25.3.1.dev38

The instance can then be restarted and the event list checked

$ openstack server start

Manage Flavors

Admin users can use the openstack flavor command to customize and manage flavors. To see infor-
mation for this command, run:

openstack flavor --help

Note: Configuration rights can be delegated to additional users by redefining the access controls for
os_compute_api:os-flavor-manage:create, os_compute_api:os-flavor-manage:update
and os_compute_api:os-flavor-manage:delete in /etc/nova/policy.yaml on the nova-api
server.

Note: Flavor customization can be limited by the hypervisor in use. For example the libvirt driver
enables quotas on CPUs available to a VM, disk tuning, bandwidth I/O, watchdog behavior, random
number generator device control, and instance VIF traffic control.

For information on the flavors and flavor extra specs, refer to Flavors.

Create a flavor

1. List flavors to show the ID and name, the amount of memory, the amount of disk space for the root
partition and for the ephemeral partition, the swap, and the number of virtual CPUs for each flavor:

openstack flavor list

2. To create a flavor, specify a name, ID, RAM size, disk size, and the number of vCPUs for the flavor,
as follows:

openstack flavor create FLAVOR_NAME --id FLAVOR_ID
--ram RAM_IN_MB --disk ROOT_DISK_IN_GB --vcpus NUMBER_OF_VCPUS

Note: Unique ID (integer or UUID) for the new flavor. If specifying auto, a UUID will be
automatically generated.

3.4. Maintenance 273

Nova Documentation, Release 25.3.1.dev38

Here is an example that creates a public ml.extra_tiny flavor that automatically gets an ID
assigned, with 256 MB memory, no disk space, and one VCPU.

openstack flavor create --public ml.extra_tiny --id auto
--ram 256 --disk 0 --vcpus 1

3. If an individual user or group of users needs a custom flavor that you do not want other projects to
have access to, you can create a private flavor.

openstack flavor create --private ml.extra_tiny --id auto
--ram 256 --disk 0 --vcpus 1

After you create a flavor, assign it to a project by specifying the flavor name or ID and the project
ID:

openstack flavor set --project PROJECT_ID ml.extra_tiny

For a list of optional parameters, run this command:

openstack help flavor create

4. In addition, you can set or unset properties, commonly referred to as extra specs, for the existing
flavor. The extra_specs metadata keys can influence the instance directly when it is launched.
If a flavor sets the quota:vif_outbound_peak=65536 extra spec, the instances outbound peak
bandwidth I/O should be less than or equal to 512 Mbps. There are several aspects that can work for
an instance including CPU limits, Disk tuning, Bandwidth 1/0, Watchdog behavior, and Random-
number generator. For information about available metadata keys, see Flavors.

For a list of optional parameters, run this command:

openstack flavor set --help

Modify a flavor

Only the description of flavors can be modified (starting from microversion 2.55). To modify the descrip-
tion of a flavor, specify the flavor name or ID and a new description as follows:

openstack --os-compute-api-version 2.55 flavor set --description
—<DESCRIPTION> <FLAVOR>

Note: The only field that can be updated is the description field. Nova has historically intentionally not
included an API to update a flavor because that would be confusing for instances already created with
that flavor. Needing to change any other aspect of a flavor requires deleting and/or creating a new flavor.

Nova stores a serialized version of the flavor associated with an instance record in the instance_extra
table. While nova supports updating flavor extra_specs it does not update the embedded flavor in existing
instances. Nova does not update the embedded flavor as the extra_specs change may invalidate the current
placement of the instance or alter the compute context that has been created for the instance by the virt
driver. For this reason admins should avoid updating extra_specs for flavors used by existing instances.
A resize can be used to update existing instances if required but as a resize performs a cold migration it
is not transparent to a tenant.

3.4. Maintenance 274

https://docs.openstack.org/api-ref/compute/?expanded=#update-an-extra-spec-for-a-flavor

Nova Documentation, Release 25.3.1.dev38

Delete a flavor

To delete a flavor, specify the flavor name or ID as follows:

openstack flavor delete FLAVOR

Default Flavors

Previous versions of nova typically deployed with default flavors.

following table lists the default flavors for Mitaka and earlier.

This was removed from Newton. The

Flavor VCPUs | Disk (in GB) | RAM (in MB)
ml.tiny 1 1 512

ml.small 1 20 2048
ml.medium | 2 40 4096

ml.]large 4 80 8192
ml.xlarge 8 160 16384

Injecting the administrator password

Compute can generate a random administrator (root) password and inject that password into an instance.
If this feature is enabled, users can run ssh to an instance without an ssh keypair. The random password
appears in the output of the openstack server create command. You can also view and set the
admin password from the dashboard.

Password injection using the dashboard

For password injection display in the dashboard, please refer to the setting of can_set_password in
Horizon doc

Password injection on libvirt-based hypervisors

For hypervisors that use the libvirt back end (such as KVM, QEMU, and LXC), admin password injection
is disabled by default. To enable it, set this option in /etc/nova/nova.conf:

When enabled, Compute will modify the password of the admin account by editing the /etc/shadow
file inside the virtual machine instance.

Note: Linux distribution guest only.

Note: Users can only use ssh to access the instance by using the admin password if the virtual machine
image is a Linux distribution, and it has been configured to allow users to use ssh as the root user with

3.4. Maintenance 275

https://docs.openstack.org/horizon/yoga//configuration/settings.html#openstack-hypervisor-features

Nova Documentation, Release 25.3.1.dev38

password authorization. This is not the case for Ubuntu cloud images which, by default, does not allow
users to use ssh to access the root account, or CentOS cloud images which, by default, does not allow
ssh access to the instance with password.

Password injection and Windows images (all hypervisors)

For Windows virtual machines, configure the Windows image to retrieve the admin password on boot by
installing an agent such as cloudbase-init.

Configure remote console access

OpenStack provides a number of different methods to interact with your guests: VNC, SPICE, Serial,
RDP or MKS. If configured, these can be accessed by users through the OpenStack dashboard or the
command line. This document outlines how these different technologies can be configured.

Overview

It is considered best practice to deploy only one of the consoles types and not all console types are sup-
ported by all compute drivers. Regardless of what option is chosen, a console proxy service is required.
These proxy services are responsible for the following:

* Provide a bridge between the public network where the clients live and the private network where
the servers with consoles live.

* Mediate token authentication.
* Transparently handle hypervisor-specific connection details to provide a uniform client experience.

For some combinations of compute driver and console driver, these proxy services are provided by the
hypervisor or another service. For all others, nova provides services to handle this proxying. Consider a
noVNC-based VNC console connection for example:

1. A user connects to the API and gets an access_url such as, http://ip:port/?
path=%3Ftoken%3Dxyz.

2. The user pastes the URL in a browser or uses it as a client parameter.
3. The browser or client connects to the proxy.

4. The proxy authorizes the token for the user, and maps the token to the private host and port of the
VNC server for an instance.

The compute host specifies the address that the proxy should use to connect through the vnc.
server_proxyclient_address option. In this way, the VNC proxy works as a bridge between
the public network and private host network.

5. The proxy initiates the connection to VNC server and continues to proxy until the session ends.
This means a typical deployment with noVNC-based VNC consoles will have the following components:

* One or more nova-novncproxy service. Supports browser-based noVNC clients. For simple
deployments, this service typically runs on the same machine as nova-api because it operates as
a proxy between the public network and the private compute host network.

3.4. Maintenance 276

http://uec-images.ubuntu.com
http://cloud.centos.org/centos/
https://cloudbase.it/cloudbase-init

Nova Documentation, Release 25.3.1.dev38

* One or more nova-compute services. Hosts the instances for which consoles are provided.

Todo: The below diagram references nova-consoleauth and needs to be updated.

This particular example is illustrated below.

1- The user requests an mess I:] -2- The api sends a «get_vnc_consolen message —j-

-q—S Returns a urlwnnamkew ¢ ﬁ

Nava-api Compute node

| o
B Generates a token {’/

3 Sends a eget_vnc_connections message E

Browses the url returned
6 Hitp://novnci p port/Ptoken=xyz 4 Sends «authorize_console » message

@ Caches the connection informatiens and token :

4 Sends « check tokcw»
8 Proxystats

Browser Nova-consoleauth Libvirt driver

noVNC-based VNC console

VNC is a graphical console with wide support among many hypervisors and clients. noVNC provides
VNC support through a web browser.

Note: It has been reported that versions of noVNC older than 0.6 do not work with the
nova-novncproxy service.

If using non-US key mappings, you need at least noVNC 1.0.0 for a fix.
If using VMware ESX/ESXi hypervisors, you need at least noVNC 1.1.0 for a fix.

Configuration

To enable the noVINC VNC console service, you must configure both the nova-novncproxy service and
the nova-compute service. Most options are defined in the vnc group.

The nova-novncproxy service accepts the following options:
* daemon
* ssl_only
* source_is_ipvé
* cert
e key
* web

e console.ssl_ciphers

3.4. Maintenance 277

https://bugs.launchpad.net/nova/+bug/1752896
https://github.com/novnc/noVNC/commit/99feba6ba8fee5b3a2b2dc99dc25e9179c560d31
https://github.com/novnc/noVNC/commit/2c813a33fe6821f5af737327c50f388052fa963b

Nova Documentation, Release 25.3.1.dev38

e console.ssl_minimum_version
e vnc.novncproxy_host
* VNC.NovnCcproxy_port

If using the libvirt compute driver and enabling VNC proxy security, the following additional options are
supported:

* vnc.auth_schemes

e vnc.vencrypt_client_key
e vnc.vencrypt_client_cert
* vnc.vencrypt_ca_certs

For example, to configure this via a nova-novncproxy . conf file:

[vnc]

Note: This doesnt show configuration with security. For information on how to configure this, refer to
VNC proxy security below.

The nova-compute service requires the following options to configure noVNC-based VNC console
support:

* vnc.enabled
e vnc.novncproxy_base_url
* vnc.server_listen
e vnc.server_proxyclient_address
If using the VMware compute driver, the following additional options are supported:
e vmware.vnc_port
e vmware.vnc_port_total

For example, to configure this via a nova. conf file:

[vnc]

Replace IP_ADDRESS with the IP address from which the proxy is accessible by the outside world. For
example, this may be the management interface IP address of the controller or the VIP.

3.4. Maintenance 278

Nova Documentation, Release 25.3.1.dev38

VNC proxy security

Deploy the public-facing interface of the VNC proxy with HTTPS to prevent attacks from malicious
parties on the network between the tenant user and proxy server. When using HTTPS, the TLS encryption
only applies to data between the tenant user and proxy server. The data between the proxy server and
Compute node instance will still be unencrypted. To provide protection for the latter, it is necessary
to enable the VeNCrypt authentication scheme for VNC in both the Compute nodes and noVNC proxy
server hosts.

QEMU/KVM Compute node configuration

Ensure each Compute node running QEMU/KVM with libvirt has a set of certificates issued to it. The
following is a list of the required certificates:

e /etc/pki/libvirt-vnc/server-cert.pem

An x509 certificate to be presented by the VNC server. The CommonName should match the pri-
mary hostname of the compute node. Use of subjectAltName is also permitted if there is a
need to use multiple hostnames or IP addresses to access the same Compute node.

e /etc/pki/libvirt-vnc/server-key.pem
The private key used to generate the server-cert.pemn file.
* /etc/pki/libvirt-vnc/ca-cert.pem

The authority certificate used to sign server-cert.pem and sign the VNC proxy server certifi-
cates.

The certificates must have v3 basic constraints” present to indicate the permitted key use and purpose
data.

We recommend using a dedicated certificate authority solely for the VNC service. This authority may
be a child of the master certificate authority used for the OpenStack deployment. This is because libvirt
does not currently have a mechanism to restrict what certificates can be presented by the proxy server.

For further details on certificate creation, consult the QEMU manual page documentation on VNC server
certificate setup'.

Configure libvirt to enable the VeNCrypt authentication scheme for the VNC server. In /etc/libvirt/
gemu. conf, uncomment the following settings:

e vnc_tls=1

This instructs libvirt to enable the VeNCrypt authentication scheme when launching QEMU, pass-
ing it the certificates shown above.

e vnc_tls_x509_verify=1

This instructs QEMU to require that all VNC clients present a valid x509 certificate. Assuming a
dedicated certificate authority is used for the VNC service, this ensures that only approved VNC
proxy servers can connect to the Compute nodes.

After editing gemu. conf, the 1ibvirtd service must be restarted:

2 https://tools.ietf.org/html/rfc3280#section-4.2.1.10
! https://qemu.weilnetz.de/doc/qemu-doc.html#vnc_005fsec_005fcertificate_005fverify

3.4. Maintenance 279

https://tools.ietf.org/html/rfc3280#section-4.2.1.10
https://qemu.weilnetz.de/doc/qemu-doc.html#vnc_005fsec_005fcertificate_005fverify

Nova Documentation, Release 25.3.1.dev38

$ systemctl restart libvirtd.service

Changes will not apply to any existing running guests on the Compute node, so this configuration should
be done before launching any instances.

noVNC proxy server configuration

The noVNC proxy server initially only supports the none authentication scheme, which does no checking.
Therefore, it is necessary to enable the vencrypt authentication scheme by editing the nova. conf file
to set.

The vnc.auth_schemes values should be listed in order of preference. If enabling VeNCrypt on an
existing deployment which already has instances running, the noVNC proxy server must initially be
allowed to use vencrypt and none. Once it is confirmed that all Compute nodes have VeNCrypt enabled
for VNG, it is possible to remove the none option from the list of the vnc. auth_schemes values.

At that point, the noVNC proxy will refuse to connect to any Compute node that does not offer VeNCrypt.
As well as enabling the authentication scheme, it is necessary to provide certificates to the noVNC proxy.
e /etc/pki/nova-novncproxy/client-cert.pem

An x509 certificate to be presented to the VNC server. While libvirt/QEMU will not currently do
any validation of the CommonName field, future versions will allow for setting up access controls
based on the CommonName. The CommonName field should match the primary hostname of the
controller node. If using a HA deployment, the Organization field can also be configured to a
value that is common across all console proxy instances in the deployment. This avoids the need
to modify each compute nodes whitelist every time a console proxy instance is added or removed.

* /etc/pki/nova-novncproxy/client-key.pem
The private key used to generate the client-cert.pemn file.
e /etc/pki/nova-novncproxy/ca-cert.pem

The certificate authority cert used to sign client-cert.pem and sign the compute node VNC
server certificates.

The certificates must have v3 basic constraints’ present to indicate the permitted key use and purpose
data.

Once the certificates have been created, the noVNC console proxy service must be told where to find
them. This requires editing nova. conf to set.

3.4. Maintenance 280

Nova Documentation, Release 25.3.1.dev38

SPICE console

The VNC protocol is fairly limited, lacking support for multiple monitors, bi-directional audio, reliable
cut-and-paste, video streaming and more. SPICE is a new protocol that aims to address the limitations
in VNC and provide good remote desktop support.

SPICE support in OpenStack Compute shares a similar architecture to the VNC implementation. The
OpenStack dashboard uses a SPICE-HTMLS5 widget in its console tab that communicates with the
nova-spicehtml5proxy service by using SPICE-over-websockets. The nova-spicehtml5proxy ser-
vice communicates directly with the hypervisor process by using SPICE.

Configuration

Important: VNC must be explicitly disabled to get access to the SPICE console. Set the vnc. enabled
option to False to disable the VNC console.

To enable the SPICE console service, you must configure both the nova-spicehtml5proxy service and
the nova-compute service. Most options are defined in the spice group.

The nova-spicehtml5proxy service accepts the following options.
* daemon
e ssl_only
* source_is_ipvé
e cert
e key
* web
* console.ssl_ciphers
e console.ssl_minimum_version
e spice.html5proxy_host
e spice.html5proxy_port

For example, to configure this via a nova-spicehtml5proxy.conf file:

[spicel]

The nova-compute service requires the following options to configure SPICE console support.
e spice.enabled
e spice.agent_enabled
e spice.html5proxy_base_url
e spice.server_listen

e spice.server_proxyclient_address

3.4. Maintenance 281

Nova Documentation, Release 25.3.1.dev38

For example, to configure this via a nova. conf file:

Replace IP_ADDRESS with the IP address from which the proxy is accessible by the outside world. For
example, this may be the management interface IP address of the controller or the VIP.

Serial

Serial consoles provide an alternative to graphical consoles like VNC or SPICE. They work a little dif-
ferently to graphical consoles so an example is beneficial. The example below uses these nodes:

* controller node with IP 192.168.50.100
* compute node 1 with I[P 192.168.50.104
* compute node 2 with IP 192.168.50.105

Heres the general flow of actions:

Browser/CLI/Client

10000

nova.conf

[DEFAULT]
my_ip=192.168.50.104
[serial_console]

Y 2. Y

/ nova-api // nova-serialproxy enabled=true
port_range=10000:20000
base_url=ws://192.168.50.100:6083

nova.conf proxyclient_address=192.168.50.104
[DEFAULT]

my ip=192.168.50.100
[serial_console]
enabled=true
serialproxy_host=192.168.50.100 10000
serialproxy_port=6083 # nova.conf

[DEFAULT]

my_ip=192.168.50.105

— [serial_console]

enabled=true
port_range=10000:20000

20000 base_url=ws://192.168.50.100:6083
proxyclient_address=192.168.50.105

1. The user requests a serial console connection string for an instance from the REST APL

2. The nova-api service asks the nova-compute service, which manages that instance, to fulfill
that request.

3.4. Maintenance 282

Nova Documentation, Release 25.3.1.dev38

3. That connection string gets used by the user to connect to the nova-serialproxy service.

4. The nova-serialproxy service then proxies the console interaction to the port of the compute
node where the instance is running. That port gets forwarded by the hypervisor (or ironic conductor,
for ironic) to the guest.

Configuration

To enable the serial console service, you must configure both the nova-serialproxy service and the
nova-compute service. Most options are defined in the serial_console group.

The nova-serialproxy service accepts the following options.
* daemon
* ssl_only
* source_is_ipv6
e cert
* key
e web
e console.ssl_ciphers
* console.ssl_minimum_version
e serial_console.serialproxy_host
e serial_console.serialproxy_port

For example, to configure this via a nova-serialproxy.conf file:

[serial_console]

The nova-compute service requires the following options to configure serial console support.
* serial_console.enabled
* serial_console.base_url
e serial_console.proxyclient_address
* serial_console.port_range

For example, to configure this via a nova. conf file:

[serial_console]

Replace TP_ADDRESS with the IP address from which the proxy is accessible by the outside world. For
example, this may be the management interface IP address of the controller or the VIP.

3.4. Maintenance 283

Nova Documentation, Release 25.3.1.dev38

There are some things to keep in mind when configuring these options:

RDP

serial_console.serialproxy_host is the address the nova-serialproxy service listens to
for incoming connections.

serial_console.serialproxy_port must be the same value as the port in the URI of
serial_console.base_url.

The URL defined in serial_console.base_url will form part of the response the user will get
when asking for a serial console connection string. This means it needs to be an URL the user can
connect to.

serial_console.proxyclient_address will be used by the nova-serialproxy service to
determine where to connect to for proxying the console interaction.

RDP is a graphical console primarily used with Hyper-V. Nova does not provide a console proxy service
for RDP - instead, an external proxy service, such as the wsgate application provided by FreeRDP-
WebConnect, should be used.

Configuration

To enable the RDP console service, you must configure both a console proxy service like wsgate and
the nova-compute service. All options for the latter service are defined in the rdp group.

Information on configuring an RDP console proxy service, such as wsgate, is not provided here. How-
ever, more information can be found at cloudbase.it.

The nova-compute service requires the following options to configure RDP console support.

rdp.enabled
rdp.html5_proxy_base_url

For example, to configure this via a nova. conf file:

Replace IP_ADDRESS with the IP address from which the proxy is accessible by the outside world. For
example, this may be the management interface IP address of the controller or the VIP.

MKS

MKS

is the protocol used for accessing the console of a virtual machine running on VMware vSphere.

It is very similar to VNC. Due to the architecture of the VMware vSphere hypervisor, it is not necessary
to run a console proxy service.

3.4. Maintenance 284

https://github.com/FreeRDP/FreeRDP-WebConnect
https://github.com/FreeRDP/FreeRDP-WebConnect
https://cloudbase.it/freerdp-html5-proxy-windows/

Nova Documentation, Release 25.3.1.dev38

Configuration

To enable the MKS console service, only the nova-compute service must be configured. All options
are defined in the mks group.

The nova-compute service requires the following options to configure MKS console support.
e mks.enabled
e mks.mksproxy_base_url

For example, to configure this via a nova. conf file:

About nova-consoleauth

The now-removed nova-consoleauth service was previously used to provide a shared service to man-
age token authentication that the client proxies outlined below could leverage. Token authentication was
moved to the database in 18.0.0 (Rocky) and the service was removed in 20.0.0 (Train).

Frequently Asked Questions

* Q: I want VNC support in the OpenStack dashboard. What services do I need?
A: You need nova-novncproxy and correctly configured compute hosts.

* Q: My VNC proxy worked fine during my all-in-one test, but now it doesnt work on multi
host. Why?

A: The default options work for an all-in-one install, but changes must be made on your compute
hosts once you start to build a cluster. As an example, suppose you have two servers:

PROXYSERVER 172.24.1.1, 192.168.1.1
COMPUTESERVER 192.168.1.2

Your nova-compute configuration file must set the following values:

Note: novncproxy_base_url uses a public IP; this is the URL that is ultimately returned to
clients, which generally do not have access to your private network. Your PROXYSERVER must

3.4. Maintenance 285

Nova Documentation, Release 25.3.1.dev38

be able toreach server_proxyclient_address, because that is the address over which the VNC
connection is proxied.

* Q: My noVNC does not work with recent versions of web browsers. Why?

A: Make sure you have installed python-numpy, which is required to support a newer version of
the WebSocket protocol (HyBi-07+).

* Q: How do I adjust the dimensions of the VNC window image in the OpenStack dashboard?

A: These values are hard-coded in a Django HTML template. To alter them, edit the
_detail_vnc.html template file. The location of this file varies based on Linux distribution. On
Ubuntu 14.04, the file is at /usr/share/pyshared/horizon/dashboards/nova/instances/
templates/instances/_detail_vnc.html.

Modify the width and height options, as follows:

* Q: My noVNC connections failed with ValidationError: Origin header protocol does not
match. Why?

A: Make sure the base_url match your TLS setting. If you are using https console connections,
make sure that the value of novncproxy_base_url is set explicitly where the nova-novncproxy
service is running.

References
Compute schedulers

Compute uses the nova-scheduler service to determine how to dispatch compute requests. For ex-
ample, the nova-scheduler service determines on which host or node a VM should launch. You can
configure the scheduler through a variety of options.

In the default configuration, this scheduler considers hosts that meet all the following criteria:
* Are in the requested Availability Zone (AvailabilityZoneFilter).

» Can service the request meaning the nova-compute service handling the target node is available
and not disabled (ComputeFilter).

* Satisfy the extra specs associated with the instance type (ComputeCapabilitiesFilter).

 Satisfy any architecture, hypervisor type, or virtual machine mode properties specified on the in-
stances image properties (ImagePropertiesFilter).

e Are on a different host than other instances of a group (if requested)
(ServerGroupAntiAffinityFilter).

* Are in a set of group hosts (if requested) (ServerGroupAffinityFilter).

The scheduler chooses a new host when an instance is migrated, resized, evacuated or unshelved after
being shelve offloaded.

When evacuating instances from a host, the scheduler service honors the target host defined by the admin-
istrator on the nova evacuate command. If a target is not defined by the administrator, the scheduler
determines the target host. For information about instance evacuation, see Evacuate instances.

3.4. Maintenance 286

Nova Documentation, Release 25.3.1.dev38

Prefilters

As of the Rocky release, the scheduling process includes a prefilter step to increase the efficiency of
subsequent stages. These prefilters are largely optional and serve to augment the request that is sent
to placement to reduce the set of candidate compute hosts based on attributes that placement is able
to answer for us ahead of time. In addition to the prefilters listed here, also see Tenant Isolation with
Placement and Availability Zones with Placement.

Compute Image Type Support

New in version 20.0.0: (Train)

Starting in the Train release, there is a prefilter available for excluding compute nodes that do not support
the disk_format of the image used in a boot request. This behavior is enabled by setting scheduler.
query_placement_for_image_type_support to True. For example, the libvirt driver, when using
ceph as an ephemeral backend, does not support qcow2 images (without an expensive conversion step).
In this case (and especially if you have a mix of ceph and non-ceph backed computes), enabling this
feature will ensure that the scheduler does not send requests to boot a gcow2 image to computes backed
by ceph.

Compute Disabled Status Support

New in version 20.0.0: (Train)

Starting in the Train release, there is a mandatory pre-filter which will exclude disabled compute nodes
similar to (but does not fully replace) the ComputeFilter. Compute node resource providers with the
COMPUTE_STATUS_DISABLED trait will be excluded as scheduling candidates. The trait is managed by
the nova-compute service and should mirror the disabled status on the related compute service record
in the os-services API. For example, if a compute services status is disabled, the related compute
node resource provider(s) for that service should have the COMPUTE_STATUS_DISABLED trait. When the
service status is enabled the COMPUTE_STATUS_DISABLED trait shall be removed.

If the compute service is down when the status is changed, the trait will be synchronized by the compute
service when it is restarted. Similarly, if an error occurs when trying to add or remove the trait on a given
resource provider, the trait will be synchronized when the update_available_resource periodic task
runs - which is controlled by the update_resources_interval configuration option.

Isolate Aggregates

New in version 20.0.0: (Train)

Starting in the Train release, there is an optional placement pre-request filter Filtering hosts by isolating
aggregates When enabled, the traits required in the servers flavor and image must be at least those required
in an aggregates metadata in order for the server to be eligible to boot on hosts in that aggregate.

3.4. Maintenance 287

https://specs.openstack.org/openstack/nova-specs/specs/train/approved/pre-filter-disabled-computes.html
https://docs.openstack.org/api-ref/compute/#compute-services-os-services

Nova Documentation, Release 25.3.1.dev38

The Filter Scheduler

Changed in version 23.0.0: (Wallaby)
Support for custom filters was removed. Only the filter scheduler is now supported by nova.

Novas scheduler, known as the filter scheduler, supports filtering and weighting to make informed deci-
sions on where a new instance should be created.

When the scheduler receives a request for a resource, it first applies filters to determine which hosts are
eligible for consideration when dispatching a resource. Filters are binary: either a host is accepted by the
filter, or it is rejected. Hosts that are accepted by the filter are then processed by a different algorithm to
decide which hosts to use for that request, described in the Weights section.

Filtering

Host 5

Host 3

—= Filters —»= - Weighting —=

Host 1

Host 6

Hosts chosen after filtering
and sorted after weighting
(here the best variant is
Host 5, the worst — Host 6)

The filter_scheduler.available_filters config option provides the Compute service with the
list of the filters that are available for use by the scheduler. The default setting specifies all of the filters
that are included with the Compute service. This configuration option can be specified multiple times.
For example, if you implemented your own custom filter in Python called myfilter.MyFilter and you
wanted to use both the built-in filters and your custom filter, your nova. conf file would contain:

[filter_scheduler]
nova.scheduler.filters.all_filters
myfilter.MyFilter

The filter_scheduler.enabled_filters configuration option in nova.conf defines the list of fil-
ters that are applied by the nova-scheduler service.

3.4. Maintenance 288

Nova Documentation, Release 25.3.1.dev38

Filters

The following sections describe the available compute filters.
Filters are configured using the following config options:

e filter_scheduler.available_filters - Defines filter classes made available to the sched-
uler. This setting can be used multiple times.

e filter_scheduler.enabled_filters - Of the available filters, defines those that the scheduler
uses by default.

Each filter selects hosts in a different way and has different costs. The order of filter_scheduler.
enabled_filters affects scheduling performance. The general suggestion is to filter out invalid hosts as
soon as possible to avoid unnecessary costs. We can sort filter_scheduler.enabled_filtersitems
by their costs in reverse order. For example, ComputeFilter is better before any resource calculating
filters like NUMATopologyFilter.

In medium/large environments having AvailabilityZoneFilter before any capability or resource calculat-
ing filters can be useful.

AggregateImagePropertiesIsolation

Changed in version 12.0.0: (Liberty)

Prior to 12.0.0 Liberty, it was possible to specify and use arbitrary metadata with this filter. Starting in
Liberty, nova only parses standard metadata. If you wish to use arbitrary metadata, consider using the
AggregatelnstanceExtraSpecsFilter filter instead.

Matches properties defined in an images metadata against those of aggregates to determine host matches:

* If a host belongs to an aggregate and the aggregate defines one or more metadata that matches an
images properties, that host is a candidate to boot the images instance.

* If a host does not belong to any aggregate, it can boot instances from all images.

For example, the following aggregate myWinAgg has the Windows operating system as metadata (named
windows):

openstack aggregate show myWinAgg

3.4. Maintenance 289

https://docs.openstack.org/glance/yoga/admin/useful-image-properties.html

Nova Documentation, Release 25.3.1.dev38

In this example, because the following Win-2012 image has the windows property, it boots on the
sf-devel host (all other filters being equal):

openstack image show Win-2012

You can configure the AggregateImagePropertiesIsolation filter by using the following options
in the nova. conf file:

e filter_scheduler.aggregate_image_properties_isolation_namespace

e filter_scheduler.aggregate_image_properties_isolation_separator

Note: This filter has limitations as described in bug 1677217 which are addressed in placement Filtering
hosts by isolating aggregates request filter.

Refer to Host aggregates for more information.

AggregateInstanceExtraSpecsFilter

Matches properties defined in extra specs for an instance type against admin-defined properties on a
host aggregate. Works with specifications that are scoped with aggregate_instance_extra_specs.
Multiple values can be given, as a comma-separated list. For backward compatibility, also works with
non-scoped specifications; this action is highly discouraged because it conflicts with Compute Capabili-
tiesFilter filter when you enable both filters.

Refer to Host aggregates for more information.

AggregateIloOpsFilter

Filters host by disk allocation with a per-aggregate max_io_ops_per_host value. If the
per-aggregate value is not found, the value falls back to the global setting defined by the
:oslo.config:option: ‘filter_scheduler.max_io_ops_per_host config option. If the host is in more than one
aggregate and more than one value is found, the minimum value will be used.

Refer to Host aggregates and loOpsFilter for more information.

3.4. Maintenance 290

https://bugs.launchpad.net/nova/+bug/1677217

Nova Documentation, Release 25.3.1.dev38

AggregateMultiTenancyIsolation

Ensures hosts in tenant-isolated host aggregates will only be available to a specified set of tenants. If a
host is in an aggregate that has the filter_tenant_id metadata key, the host can build instances from
only that tenant or comma-separated list of tenants. A host can be in different aggregates. If a host does
not belong to an aggregate with the metadata key, the host can build instances from all tenants. This does
not restrict the tenant from creating servers on hosts outside the tenant-isolated aggregate.

For example, consider there are two available hosts for scheduling, HostA and HostB. HostB is in an
aggregate isolated to tenant X. A server create request from tenant X will result in either HostA or HostB
as candidates during scheduling. A server create request from another tenant Y will result in only HostA
being a scheduling candidate since HostA is not part of the tenant-isolated aggregate.

Note: There is a known limitation with the number of tenants that can be isolated per aggregate using this
filter. This limitation does not exist, however, for the Tenant Isolation with Placement filtering capability
added in the 18.0.0 Rocky release.

AggregateNumInstancesFilter

Filters host in an aggregate by number of instances with a per-aggregate max_instances_per_host
value. If the per-aggregate value is not found, the value falls back to the global setting defined by the
filter_scheduler.max_instances_per_host config option. If the host is in more than one aggre-
gate and thus more than one value is found, the minimum value will be used.

Refer to Host aggregates and NumlInstancesFilter for more information.

AggregateTypeAffinityFilter

Filters hosts in an aggregate if the name of the instances flavor matches that of the instance_type key
set in the aggregates metadata or if the instance_type key is not set.

The value of the instance_type metadata entry is a string that may contain either a single
instance_type name or a comma-separated list of instance_type names, such as m1.nano or ml.
nano,ml.small.

Note: Instance types are a historical name for flavors.

Refer to Host aggregates for more information.

3.4. Maintenance 291

https