Octavia Documentation
Release 17.1.0.dev41

OpenStack Octavia Team

Feb 12, 2026

©2026 OpenStack Foundation

CONTENTS

1 Octavia Administration 2
1.1 Getting Started L. e e e e e e e e e 2
1.1.1 Introducing Octavia it 2

1.1.2 Octavia Glossary v i v it e e e e e 5

1.1.3 Developer / Operator Quick Start Guide 7

1.2 Installation and Configuration Guides 14
1.2.1 Building Octavia AmphoraImages 14

1.2.2 Octavia Certificate Configuration Guide 20

1.2.3 Octavia Configuration Options 27

1.2.4 OctaviaPolicies e 114

1.3 Optional Installation and Configuration Guides 129
1.3.1 Awvailable Provider Drivers, 129

1.3.2 Octavia Amphora Log Offloading 130

1.3.3 Octavia API Auditing 135

1.3.4 Octavia API Health Monitoring 138

1.3.5 OctaviaFlavors e 149

1.3.6 Running Octaviain Apache 151

1.3.7 Octavia Amphora Failover Circuit Breaker 151

1.3.8 Using SR-IOV Ports with Octavia 154

1.4 Maintenance and Operations v i i e e e e e e 156
1.4.1 Operator Maintenance Guide 156

1,42 octavia-Statls e e e e e e e 161

1.4.3 Load Balancing Service Upgrade Guide 162

1.5 Operator Reference e 163
1.5.1 Octavia HAProxy Amphora API 163

1.5.2 Octavia Event Notifications 188

2 Octavia Command Line Interface 190
3 Octavia Configuration 191
4 Octavia Contributor 192
4.1 Contributor Guidelines 192
4.1.1 SoYouWantto Contribute... 192

4.1.2 Octavia Constitution e 195

4.1.3 Octavia Style Commandments 195

4.2 Contributor Reference L 198
4.2.1 Provider Driver Development Guide 198

422 Debugging Octaviacode i 231

4.2.3 Octavia Entity Relationship Diagram 234
4.2.4 Octavia Controller Flows 235
42,5 Guru Meditation Reports 263
43 Internal APIs e 264
4.4 Design Documentation e e e e e e 264
441 Version 0.5 (liberty) 264
4.5 Project Specifications e e e e 272
45.1 Version 0.5 (Iiberty) oo 272
452 Version 0.8 (mitaka) 318
453 Version 0.9 (newton) e e e e e e e 325
454 Version 1.0 (pike) 349
455 Version 1.1 (qUeens) it e e e 362
45.6 Version14.0(caracal) e e 409
457 Version 15.0 (Dalmatian) 413
4.6 Module Reference 422
4.6.1 octavia. e e e e e e e e e e e 422
Octavia Installation 962
5.1 Inmstalland configure 962
5.1.1 Install and configure for Ubuntu 962
5.1.2 Additional configuration steps to configure amphorav2 provider 970
5.1.3 Deploying with OpenStack-Ansible 972
Octavia Reference 973
Octavia User 974
7.1 Cookbooks e e e e e e e 974
7.1.1 Basic Load Balancing Cookbook 974
7.1.2 Layer 7Cookbook 994
7.2 Guides e e e e e e e e e e e 1001
7.2.1 Layer7LoadBalancing 1001
7.2.2 Octavia Provider Feature Matrix 1004
7.2.3 Monitoring Load Balancers 1042
7.3 References e e e e e e e 1044
7.3.1 Octavia Software Development Kits (SDK) 1044
T4 Videos o . e e e e e e e e e e e e 1044

Octavia Documentation, Release 17.1.0.dev41

Welcome to the OpenStack Octavia project documentation. Octavia brings network load balancing to
OpenStack.

See Introducing Octavia for an overview of Octavia.

For information on what is new see the Octavia Release Notes.

CONTENTS 1

https://docs.openstack.org/releasenotes/octavia/

CHAPTER
ONE

OCTAVIA ADMINISTRATION

1.1 Getting Started

1.1.1 Introducing Octavia
Welcome to Octavia!
Octavia is an open source, operator-scale load balancing solution designed to work with OpenStack.

Octavia was born out of the Neutron LBaaS project. Its conception influenced the transformation of the
Neutron LBaaS project, as Neutron LBaaS moved from version 1 to version 2. Starting with the Liberty
release of OpenStack, Octavia has become the reference implementation for Neutron LBaaS version 2.

Octavia accomplishes its delivery of load balancing services by managing a fleet of virtual machines,
containers, or bare metal serverscollectively known as amphorae which it spins up on demand. This on-
demand, horizontal scaling feature differentiates Octavia from other load balancing solutions, thereby
making Octavia truly suited "for the cloud".

Where Octavia fits into the OpenStack ecosystem

Load balancing is essential for enabling simple or automatic delivery scaling and availability. In turn,
application delivery scaling and availability must be considered vital features of any cloud. Together,
these facts imply that load balancing is a vital feature of any cloud.

Therefore, we consider Octavia to be as essential as Nova, Neutron, Glance or any other "core" project
that enables the essential features of a modern OpenStack cloud.

In accomplishing its role, Octavia makes use of other OpenStack projects:
* Nova - For managing amphora lifecycle and spinning up compute resources on demand.

* Neutron - For network connectivity between amphorae, tenant environments, and external net-
works.

* Barbican - For managing TLS certificates and credentials, when TLS session termination is con-
figured on the amphorae.

* Keystone - For authentication against the Octavia API, and for Octavia to authenticate with other
OpenStack projects.

* Glance - For storing the amphora virtual machine image.

* Oslo - For communication between Octavia controller components, making Octavia work within
the standard OpenStack framework and review system, and project code structure.

» Taskflow - Is technically part of Oslo; however, Octavia makes extensive use of this job flow system
when orchestrating back-end service configuration and management.

Octavia Documentation, Release 17.1.0.dev41

Octavia is designed to interact with the components listed previously. In each case, we’ve taken care to
define this interaction through a driver interface. That way, external components can be swapped out
with functionally-equivalent replacements without having to restructure major components of Octavia.
For example, if you use an SDN solution other than Neutron in your environment, it should be possible for
you to write an Octavia networking driver for your SDN environment, which can be a drop-in replacement
for the standard Neutron networking driver in Octavia.

As of Pike, it is recommended to run Octavia as a standalone load balancing solution. Neutron LBaaS
is deprecated in the Queens release, and Octavia is its replacement. Whenever possible, operators are
strongly advised to migrate to Octavia. For end-users, this transition should be relatively seamless,
because Octavia supports the Neutron LBaaS v2 API and it has a similar CLI interface. Alternatively, if
end-users cannot migrate on their side in the forseable future, operators could enable the experimental
Octavia proxy plugin in Neutron LBaaS.

It is also possible to use Octavia as a Neutron LBaaS plugin, in the same way as any other vendor. You
can think of Octavia as an "open source vendor" for Neutron LBaaS.

Octavia supports third-party vendor drivers just like Neutron LBaaS, and fully replaces Neutron LBaaS
as the load balancing solution for OpenStack.

For further information on OpenStack Neutron LBaaS deprecation, please refer to https://wiki.openstack.
org/wiki/Neutron/LBaaS/Deprecation.

Octavia terminology
Before you proceed further in this introduction, please note:

Experience shows thatwithin the subsegment of the IT industry that creates, deploys, and uses load bal-
ancing devices or services terminology is often used inconsistently. To reduce confusion, the Octavia
team has created a glossary of terms as they are defined and used within the context of the Octavia
project and Neutron LBaaS version 2. This glossary is available here: Octavia Glossary

If you are familiar with Neutron LBaaS version 1 terms and usage, it is especially important for you to
understand how the meanings of the terms "VIP," "load balancer," and "load balancing," have changed
in Neutron LBaaS version 2.

Our use of these terms should remain consistent with the Octavia Glossary throughout Octavia’s docu-
mentation, in discussions held by Octavia team members on public mailing lists, in IRC channels, and
at conferences. To avoid misunderstandings, it’s a good idea to familiarize yourself with these glossary
definitions.

1.1. Getting Started 3

https://wiki.openstack.org/wiki/Neutron/LBaaS/Deprecation
https://wiki.openstack.org/wiki/Neutron/LBaaS/Deprecation

Octavia Documentation, Release 17.1.0.dev41

A 10,000-foot overview of Octavia components

Octavia API

Amphora Oslo Octavia Health Housekeeping
Driver Messaging Worker Manager Manager

Database Controller Worker Driver

Amphora Certificate Compute Network
Driver Agent Driver Driver Driver Driver

Amphora Barbican /
Castellan

Octavia version 4.0 consists of the following major components:

» amphorae - Amphorae are the individual virtual machines, containers, or bare metal servers that
accomplish the delivery of load balancing services to tenant application environments. In Octavia
version (.8, the reference implementation of the amphorae image is an Ubuntu virtual machine
running HAProxy.

* controller - The Controller is the "brains" of Octavia. It consists of five sub-components, which
are individual daemons. They can be run on separate back-end infrastructure if desired:

— API Controller - As the name implies, this subcomponent runs Octavia’s API. It takes API
requests, performs simple sanitizing on them, and ships them off to the controller worker over
the Oslo messaging bus.

— Controller Worker - This subcomponent takes sanitized API commands from the API con-
troller and performs the actions necessary to fulfill the API request.

— Health Manager - This subcomponent monitors individual amphorae to ensure they are up
and running, and otherwise healthy. It also handles failover events if amphorae fail unexpect-
edly.

— Housekeeping Manager - This subcomponent cleans up stale (deleted) database records and
manages amphora certificate rotation.

— Driver Agent - The driver agent receives status and statistics updates from provider drivers.

* network - Octavia cannot accomplish what it does without manipulating the network environment.
Amphorae are spun up with a network interface on the "load balancer network," and they may also
plug directly into tenant networks to reach back-end pool members, depending on how any given

1.1. Getting Started 4

Octavia Documentation, Release 17.1.0.dev41

load balancing service is deployed by the tenant.

For a more complete description of Octavia’s components, please see the Octavia v0.5 Component Design
document within this documentation repository.

1.1.2 Octavia Glossary

As the Octavia project evolves, it’s important that people working on Octavia, users using Octavia, and
operators deploying Octavia use a common set of terminology in order to avoid misunderstandings and
confusion. To that end, we are providing the following glossary of terms.

Note also that many of these terms are expanded upon in design documents in this same repository. What
follows is a brief but necessarily incomplete description of these terms.

Amphora
Virtual machine, container, dedicated hardware, appliance or device that actually performs the task
of load balancing in the Octavia system. More specifically, an amphora takes requests from clients
on the front-end and distributes these to back-end systems. Amphorae communicate with their
controllers over the LB Network through a driver interface on the controller.

Amphora Load Balancer Driver
Component of the controller that does all the communication with amphorae. Drivers communi-
cate with the controller through a generic base class and associated methods, and translate these
into control commands appropriate for whatever type of software is running on the back-end am-
phora corresponding with the driver. This communication happens over the LB network.

Apolocation
Term used to describe when two or more amphorae are not colocated on the same physical hardware
(which is often essential in HA topologies). May also be used to describe two or more loadbal-
ancers which are not colocated on the same amphora.

Controller
Daemon with access to both the LB Network and OpenStack components which coordinates and
manages the overall activity of the Octavia load balancing system. Controllers will usually use an
abstracted driver interface (usually a base class) for communicating with various other components
in the OpenStack environment in order to facilitate loose coupling with these other components.
These are the "brains" of the Octavia system.

HAProxy
Load balancing software used in the reference implementation for Octavia. (See http://www.
haproxy.org/). HAProxy processes run on amphorae and actually accomplish the task of delivering
the load balancing service.

Health Monitor
An object that defines a check method for each member of the pool. The health monitor itself is a
pure-db object which describes the method the load balancing software on the amphora should use
to monitor the health of back-end members of the pool with which the health monitor is associated.

L7 Policy

Layer 7 Policy
Collection of L7 rules that get logically ANDed together as well as a routing policy for any given
HTTP or terminated HTTPS client requests which match said rules. An L7 Policy is associated
with exactly one HTTP or terminated HTTPS listener.

For example, a user could specify an L7 policy that any client request that matches the L7 rule

son

"request URI starts with */api’" should get routed to the "api" pool.

1.1. Getting Started 5

http://www.haproxy.org/
http://www.haproxy.org/

Octavia Documentation, Release 17.1.0.dev41

L7 Rule

Layer 7 Rule
Single logical expression used to match a condition present in a given HTTP or terminated HTTPS
request. L7 rules typically match against a specific header or part of the URI and are used in
conjunction with L7 policies to accomplish L7 switching. An L7 rule is associated with exactly
one L7 policy.

For example, a user could specify an L7 rule that matches any request URI path that begins with
ll/api "

L7 Switching

Layer 7 Switching
This is a load balancing feature specific to HTTP or terminated HTTPS sessions, in which different
client requests are routed to different back-end pools depending on one or more layer 7 policies the
user might configure.

For example, using L7 switching, a user could specify that any requests with a URI path that starts
with "/api" get routed to the "api" back-end pool, and that all other requests get routed to the default
pool.

LB Network
Load Balancer Network. The network over which the controller(s) and amphorae communicate.
The LB network itself will usually be a nova or neutron network to which both the controller and
amphorae have access, but is not associated with any one tenant. The LB Network is generally also
not part of the undercloud and should not be directly exposed to any OpenStack core components
other than the Octavia Controller.

Listener
Object representing the listening endpoint of a load balanced service. TCP / UDP port, as well
as protocol information and other protocol- specific details are attributes of the listener. Notably,
though, the IP address is not.

Load Balancer
Object describing a logical grouping of listeners on one or more VIPs and associated with one or
more amphorae. (Our "Loadbalancer” most closely resembles a Virtual IP address in other load
balancing implementations.) Whether the load balancer exists on more than one amphora depends
on the topology used. The load balancer is also often the root object used in various Octavia APIs.

Load Balancing
The process of taking client requests on a front-end interface and distributing these to a number of
back-end servers according to various rules. Load balancing allows for many servers to participate
in delivering some kind TCP or UDP service to clients in an effectively transparent and often
highly-available and scalable way (from the client’s perspective).

Member
Object representing a single back-end server or system that is a part of a pool. A member is
associated with only one pool.

Octavia
Octavia is an operator-grade open source load balancing solution. Also known as the Octavia
system or Octavia project. The term by itself should be used to refer to the system as a whole and
not any individual component within the Octavia load balancing system.

Pool
Object representing the grouping of members to which the listener forwards client requests. Note
that a pool is associated with only one listener, but a listener might refer to several pools (and

1.1. Getting Started 6

Octavia Documentation, Release 17.1.0.dev41

switch between them using layer 7 policies).

TLS Termination
Transport Layer Security Termination
Type of load balancing protocol where HTTPS sessions are terminated (decrypted) on the amphora

as opposed to encrypted packets being forwarded on to back-end servers without being decrypted
on the amphora. Also known as SSL termination. The main advantages to this type of load balanc-
ing are that the payload can be read and / or manipulated by the amphora, and that the expensive
tasks of handling the encryption are off-loaded from the back-end servers. This is particularly
useful if layer 7 switching is employed in the same listener configuration.

VIP

Virtual IP Address
Single service IP address which is associated with a load balancer. This is similar to what is de-

scribed here: http://en.wikipedia.org/wiki/Virtual _IP_address In a highly available load balancing
topology in Octavia, the VIP might be assigned to several amphorae, and a layer-2 protocol like
CARP, VRRP, or HSRP (or something unique to the networking infrastructure) might be used to
maintain its availability. In layer-3 (routed) topologies, the VIP address might be assigned to an
upstream networking device which routes packets to amphorae, which then load balance requests
to back-end members.

1.1.3 Developer / Operator Quick Start Guide

This document is intended for developers and operators. For an end-user guide, please see the end-user
quick-start guide and cookbook in this documentation repository.

Running Octavia in devstack

tl;dr

8GB RAM minimum
e "yvmx" or "svm" in /proc/cpuinfo
e Ubuntu 18.04 or later

* On that host, copy and run as root: octavia/devstack/contrib/new-octavia-devstack.sh

System requirements

Octavia in devstack with a default (non-HA) configuration will deploy one amphora VM per loadbalancer
deployed. The current default amphora image also requires at least 1GB of RAM to run effectively. As
such it is important that your devstack environment has enough resources dedicated to it to run all its
necessary components. For most devstack environments, the limiting resource will be RAM. At the
present time, we recommend at least 12GB of RAM for the standard devstack defaults, or 8GB of RAM
if cinder and swift are disabled. More is recommended if you also want to run a couple of application
server VMs (so that Octavia has something to load balance within your devstack environment).

Also, because the current implementation of Octavia delivers load balancing services using amphorae
that run as Nova virtual machines, it is effectively mandatory to enable nested virtualization. The software
will work with software emulated CPUs, but be unusably slow. The idea is to make sure the BIOS of
the systems you’re running your devstack on have virtualization features enabled (Intel VT-x, AMD-V,
etc.), and the virtualization software you're using exposes these features to the guest VM (sometimes
called nested virtualization). For more information, see: Configure DevStack with KVM-based Nested
Virtualization

1.1. Getting Started 7

http://en.wikipedia.org/wiki/Virtual_IP_address
https://docs.openstack.org/devstack/latest/guides/devstack-with-nested-kvm.html
https://docs.openstack.org/devstack/latest/guides/devstack-with-nested-kvm.html

Octavia Documentation, Release 17.1.0.dev41

The devstack environment we recommend should be running Ubuntu Linux 18.04 or later. These in-
structions may work for other Linux operating systems or environments. However, most people doing
development on Octavia are using Ubuntu for their test environment, so you will probably have the easiest
time getting your devstack working with that OS.

Deployment

1. Deploy an Ubuntu 18.04 or later Linux host with at least 8GB of RAM. (This can be a VM, but
again, make sure you have nested virtualization features enabled in your BIOS and virtualization
software.)

2. Copy devstack/contrib/new-octavia-devstack.sh from this source repository onto that
host.

3. Run new-octavia-devstack.sh as root.

4. Deploy loadbalancers, listeners, etc.

Running Octavia in production

Notes
Disclaimers

This document is not a definitive guide for deploying Octavia in every production environment. There are
many ways to deploy Octavia depending on the specifics and limitations of your situation. For example, in
our experience, large production environments often have restrictions, hidden "features" or other elements
in the network topology which mean the default Neutron networking stack (with which Octavia was
designed to operate) must be modified or replaced with a custom networking solution. This may also
mean that for your particular environment, you may need to write your own custom networking driver to
plug into Octavia. Obviously, instructions for doing this are beyond the scope of this document.

We hope this document provides the cloud operator or distribution creator with a basic understanding
of how the Octavia components fit together practically. Through this, it should become more obvious
how components of Octavia can be divided or duplicated across physical hardware in a production cloud
environment to aid in achieving scalability and resiliency for the Octavia load balancing system.

In the interest of keeping this guide somewhat high-level and avoiding obsolescence or
operator/distribution-specific environment assumptions by specifying exact commands that should
be run to accomplish the tasks below, we will instead just describe what needs to be done and leave
it to the cloud operator or distribution creator to "do the right thing" to accomplish the task for their
environment. If you need guidance on specific commands to run to accomplish the tasks described
below, we recommend reading through the plugin.sh script in devstack subdirectory of this project. The
devstack plugin exercises all the essential components of Octavia in the right order, and this guide will
mostly be an elaboration of this process.

Environment Assumptions

The scope of this guide is to provide a basic overview of setting up all the components of Octavia in a
production environment, assuming that the default in-tree drivers and components (including a "standard"
Neutron install) are going to be used.

For the purposes of this guide, we will therefore assume the following core components have already
been set up for your production OpenStack environment:

e Nova

1.1. Getting Started 8

Octavia Documentation, Release 17.1.0.dev41

* Neutron

* Glance

* Barbican (if TLS offloading functionality is enabled)
» Keystone

* Rabbit

* MySQL

Production Deployment Walkthrough
Create Octavia User

By default Octavia will use the ’octavia’ user for keystone authentication, and the admin user for interac-
tions with all other services.

You must:
¢ Create ’octavia’ user.

¢ Add the ’admin’ role to this user.

Load Balancer Network Configuration

Octavia makes use of an "LB Network" exclusively as a management network that the controller uses
to talk to amphorae and vice versa. All the amphorae that Octavia deploys will have interfaces and
IP addresses on this network. Therefore, it’s important that the subnet deployed on this network be
sufficiently large to allow for the maximum number of amphorae and controllers likely to be deployed
throughout the lifespan of the cloud installation.

At the present time, though IPv4 subnets are used by default for the LB Network (for example:
172.16.0.0/12), IPv6 subnets can be used for the LB Network.

The LB Network is isolated from tenant networks on the amphorae by means of network namespaces on
the amphorae. Therefore, operators need not be concerned about overlapping subnet ranges with tenant
networks.

You must also create a Neutron security group which will be applied to amphorae created on the LB
network. It needs to allow amphorae to send UDP heartbeat packets to the health monitor (by default,
UDP port 5555), and ingress on the amphora’s API (by default, TCP port 9443). It can also be helpful
to allow SSH access to the amphorae from the controller for troubleshooting purposes (ie. TCP port 22),
though this is not strictly necessary in production environments.

Amphorae will send periodic health checks to the controller’s health manager. Any firewall protecting
the interface on which the health manager listens must allow these packets from amphorae on the LB
Network (by default, UDP port 5555).

Finally, you need to add routing or interfaces to this network such that the Octavia controller (which will
be described below) is able to communicate with hosts on this network. This also implies you should
have some idea where you’re going to run the Octavia controller components.

You must:
* Create the ’Ib-mgmt-net’.

* Assign the ’Ib-mgmt-net’ to the admin tenant.

1.1. Getting Started 9

Octavia Documentation, Release 17.1.0.dev41

* Create a subnet and assign it to the ’1b-mgmt-net’.

* Create neutron security group for amphorae created on the ’Ib-mgmt-net’. which allows appropri-
ate access to the amphorae.

» Update firewall rules on the host running the octavia health manager to allow health check messages
from amphorae.

* Add appropriate routing to / from the 'lb-mgmt-net’ such that egress is allowed, and the controller
(to be created later) can talk to hosts on this network.

Create Amphora Image

Octavia deploys amphorae based on a virtual machine disk image. By default we use the OpenStack
diskimage-builder project for this. Scripts to accomplish this are within the diskimage-create directory
of this repository. In addition to creating the disk image, configure a Nova flavor to use for amphorae,
and upload the disk image to glance.

You must:
* Create amphora disk image using OpenStack diskimage-builder.
* Create a Nova flavor for the amphorae.
* Add amphora disk image to glance.

* Tag the above glance disk image with amphora’.

Install Octavia Controller Software

This seems somewhat obvious, but the important things to note here are that you should put this some-
where on the network where it will have access to the database (to be initialized below), the oslo mes-
saging system, and the LB network. Octavia uses the standard python setuptools, so installation of the
software itself should be straightforward.

Running multiple instances of the individual Octavia controller components on separate physical hosts
is recommended in order to provide scalability and availability of the controller software.

The Octavia controller presently consists of several components which may be split across several phys-
ical machines. For the 4.0 release of Octavia, the important (and potentially separable) components are
the controller worker, housekeeper, health manager and API controller. Please see the component di-
agrams elsewhere in this repository’s documentation for detailed descriptions of each. Please use the
following table for hints on which controller components need access to outside resources:

Component Resource
LB Network Database OSLO messaging
API No Yes Yes
controller worker Yes Yes Yes
health monitor Yes Yes No
housekeeper Yes Yes No

In addition to talking to each other via Oslo messaging, various controller components must also com-
municate with other OpenStack components, like nova, neutron, barbican, etc. via their APIs.

You must:

1.1. Getting Started 10

Octavia Documentation, Release 17.1.0.dev41

* Pick appropriate host(s) to run the Octavia components.
* Install the dependencies for Octavia.

¢ Install the Octavia software.

Create Octavia Keys and Certificates

Octavia presently allows for one method for the controller to communicate with amphorae: The amphora
REST API. Both amphora API and Octavia controller do bi-directional certificate-based authentication in
order to authenticate and encrypt communication. You must therefore create appropriate TLS certificates
which will be used for key signing, authentication, and encryption. There is a detailed Octavia Certificate
Configuration Guide to guide you through this process.

Please note that certificates created with this guide may not meet your organization’s security policies,
since they are self-signed certificates with arbitrary bit lengths, expiration dates, etc. Operators should
obviously follow their own security guidelines in creating these certificates.

In addition to the above, it can sometimes be useful for cloud operators to log into running amphorae
to troubleshoot problems. The standard method for doing this is to use SSH from the host running the
controller worker. In order to do this, you must create an SSH public/private key pair specific to your
cloud (for obvious security reasons). You must add this keypair to nova. You must then also update
octavia.conf with the keypair name you used when adding it to nova so that amphorae are initialized with
it on boot.

See the Troubleshooting Tips section below for an example of how an operator can SSH into an amphora.
You must:

* Create TLS certificates for communicating with the amphorae.

* Create SSH keys for communicating with the amphorae.

* Add the SSH keypair to nova.

Configuring Octavia

Going into all of the specifics of how Octavia can be configured is actually beyond the scope of this
document. For full documentation of this, please see the configuration reference: Octavia Configuration
Options

A configuration template can be found in etc/octavia. conf in this repository.

It’s also important to note that this configuration file will need to be updated with UUIDs of the LB
network, amphora security group, amphora image tag, SSH key path, TLS certificate path, database
credentials, etc.

At a minimum, the configuration should specify the following, beyond the defaults. Your specific envi-
ronment may require more than this:

1.1. Getting Started 11

Octavia Documentation, Release 17.1.0.dev41

Section Configuration parameter
DEFAULT transport_url

database connection

certificates ca_certificate

certificates ca_private_key

certificates ca_private_key_passphrase

controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
haproxy_amphora
haproxy_amphora
health_manager
health_manager
health_manager
keystone_authtoken
keystone_authtoken
keystone_authtoken
keystone_authtoken
keystone_authtoken
oslo_messaging
oslo_messaging_rabbit
oslo_messaging_rabbit
oslo_messaging_rabbit

amp_boot_network_list
amp_flavor_id
amp_image_owner_id
amp_image_tag
amp_secgroup_list
amp_ssh_key_name
amphora_driver
compute_driver
loadbalancer_topology
network_driver
client_cert

server_ca

bind_ip
controller_ip_port_list
heartbeat_key
admin_password
admin_tenant_name
admin_user
www_authenticate_uri
auth_version

topic

rabbit_host
rabbit_userid
rabbit_password

1

You must:

* Create or update /etc/octavia/octavia.conf appropriately.

Initialize Octavia Database

This is controlled through alembic migrations under the octavia/db directory in this repository. A tool
has been created to aid in the initialization of the octavia database. This should be available under /usr/
local/bin/octavia-db-manage on the host on which the octavia controller worker is installed. Note
that this tool looks at the /etc/octavia/octavia. conf file for its database credentials, so initializing
the database must happen after Octavia is configured.

It’s also important to note here that all of the components of the Octavia controller will need direct
access to the database (including the API handler), so you must ensure these components are able to
communicate with whichever host is housing your database.

You must:

¢ Create database credentials for Octavia.

! This is technically optional, but extremely useful for troubleshooting.

1.1. Getting Started 12

Octavia Documentation, Release 17.1.0.dev41

* Add these to the /etc/octavia/octavia.conf file.
e Run /usr/local/bin/octavia-db-manage upgrade head on the controller worker host to

initialize the octavia database.

Launching the Octavia Controller

We recommend using upstart / systemd scripts to ensure the components of the Octavia controller are
all started and kept running. It of course doesn’t hurt to first start by running these manually to ensure
configuration and communication is working between all the components.

You must:

* Make sure each Octavia controller component is started appropriately.

Install Octavia extension in Horizon

This isn’t strictly necessary for all cloud installations, however, if yours makes use of the Horizon GUI
interface for tenants, it is probably also a good idea to make sure that it is configured with the Octavia
extension.

You may:

 Install the octavia GUI extension in Horizon

Test deployment

If all of the above instructions have been followed, it should now be possible to deploy load balancing
services using the OpenStack CLI, communicating with the Octavia v2 API.

Example:

Upon executing the above, log files should indicate that an amphora is deployed to house the load balancer,
and that this load balancer is further modified to include a listener. The amphora should be visible to the
octavia or admin tenant using the openstack server list command, and the listener should respond
on the load balancer’s IP on port 80 (with an error 503 in this case, since no pool or members have been
defined yetbut this is usually enough to see that the Octavia load balancing system is working). For more
information on configuring load balancing services as a tenant, please see the end-user quick-start guide
and cookbook.

Troubleshooting Tips

The troubleshooting hints in this section are meant primarily for developers or operators troubleshoot-
ing underlying Octavia components, rather than end-users or tenants troubleshooting the load balancing
service itself.

1.1. Getting Started 13

Octavia Documentation, Release 17.1.0.dev41

SSH into Amphorae

If you are using the reference amphora image, it may be helpful to log into running amphorae when
troubleshooting service problems. To do this, first discover the 1b_network_ip address of the amphora
you would like to SSH into by looking in the amphora table in the octavia database. Then from the host
housing the controller worker, run:

1.2 Installation and Configuration Guides

1.2.1 Building Octavia Amphora Images

Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as amphora. Amphora
may be a virtual machine, may be a container, or may run on bare metal. Creating images for bare metal
amphora installs is outside the scope of this version but may be added in a future release.

Prerequisites
Python pip should be installed as well as the python modules found in the requirements.txt file.

To do so, you can use the following command on Ubuntu:

$

$ sudo apt install python-pip

$

$ sudo apt install python-virtualenv

$ virtualenv octavia_disk_image_create
octavia_disk_image_create/bin/activate

$

$

$ octavia/diskimage-create

$ pip install -r requirements.txt

Your cache directory should have at least 1GB available, the working directory will need ~1.5GB, and
your image destination will need ~500MB

The script will use the version of diskimage-builder installed on your system, or it can be overridden by
setting the following environment variables:

/<some directory>/diskimage-builder
/<some directory>/diskimage-builder/elements

The following packages are required on each platform:

Ubuntu

[$ sudo apt install gemu-utils git kpartx debootstrap]

Fedora, CentOS and Red Hat Enterprise Linux

[$ sudo dnf install gemu-img git e2fsprogs policycoreutils-python-utils }

1.2. Installation and Configuration Guides 14

Octavia Documentation, Release 17.1.0.dev41

Test Prerequisites

The tox image tests require libguestfs-tools 1.24 or newer. Libguestfs allows testing the Amphora image
without requiring root privileges. On Ubuntu systems you also need to give read access to the kernels
for the user running the tests:

$ sudo chmod /boot/vmlinuz*

Usage

This script and associated elements will build Amphora images. Current support is with an Ubuntu and
CentOS Stream base OS and HAProxy. The script can use RHEL and Fedora as a base OS but these will
not initially be tested or supported. As the project progresses and/or the diskimage-builder project adds
support for additional base OS options they may become available for Amphora images. This does not
mean that they are necessarily supported or tested.

Note

If your cloud has multiple hardware architectures available to nova, remember to set the appropriate
hw_architecture property on the image when you load it into glance. For example, when loading
an amphora image built for "amd64" you would add "--property hw_architecture="x86_64"" to your
"openstack image create" command line.

The script will use environment variables to customize the build beyond the Octavia project defaults,
such as adding elements.

The supported and tested image is created by using the diskimage-create.sh defaults (no command line
parameters or environment variables set). As the project progresses we may add additional supported
configurations.

Command syntax:

$ diskimage-create.sh

[-a **amd64** | armhf | aarch64 | ppc64le]

[-b **haproxy**]

[-c **~/.cache/image-create** | <cache directory>]

[-d **noble**/**9-stream**/**9*%* | <other release id>]

[-el

[f]

[-g **repository branch** | stable/train | stable/stein | ...]
[-h]

[-i **ubuntu-minimal** | fedora | centos-minimal | rhel | rocky]
[-k <kernel package name>]

[-1 <log file>]

[-m]

[-n]

[-o **amphora-x64-haproxy** | <filename>]

[-p]

[-r <root password>]

[-s **2%* | <size in GB>]

[-t **qcow2** | tar]

(continues on next page)

1.2. Installation and Configuration Guides 15

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)
[-v]
[-w <working directory>]
[-x]
[-y]

'-a' is the architecture type for the image (default: amd64)
'-b' is the backend type (default: haproxy)
'-c' is the path to the cache directory (default: ~/.cache/image-create)
'-d' distribution release id (default on ubuntu: noble)
'-e' enable complete mandatory access control systems when available.
— (default: permissive)
'-f' disable tmpfs for build
'-g' build the image for a specific OpenStack Git branch (default:.
—current repository branch)
'-h' display help message
'-i' is the base 0S (default: ubuntu-minimal)
'-k' is the kernel meta package name, currently only for ubuntu-minimal.
—base 0S (default: linux-image-virtual)
'-1'" is output logfile (default: none)
enable vCPU pinning optimizations (default: disabled)
-n' disable sshd (default: enabled)

'-0' is the output image file name

'-p' install amphora-agent from distribution packages (default: disabled)"
'-r' enable the root account in the generated image (default: disabled)
'-s' is the image size to produce in gigabytes (default: 2)

'-t' is the image type (default: gcow2)

display the script version

-w' working directory for image building (default: .)
-x' enable tracing for diskimage-builder

enable FIPS 140-2 mode in the amphora image

Building Images for Alternate Branches

By default, the diskimage-create.sh script will build an amphora image using the Octavia Git branch of
the repository. If you need an image for a specific branch, such as "stable/train", you need to specify the
"-g" option with the branch name. An example for "stable/train" would be:

[diskimage-create.sh -g stable/train

Advanced Git Branch/Reference Based Images

If you need to build an image from a local repository or with a specific Git reference or branch, you will
need to set some environment variables for diskimage-builder.

Note

These advanced settings will override the "-g" diskimage-create.sh setting.

1.2. Installation and Configuration Guides 16

Octavia Documentation, Release 17.1.0.dev41

Building From a Local Octavia Repository

Set the DIB_REPOLOCATION_amphora_agent variable to the location of the Git repository containing
the amphora agent:

/opt/stack/octavia }

Building With a Specific Git Reference

Set the DIB_REPOREF_amphora_agent variable to point to the Git branch or reference of the amphora
agent:

refs/changes/40/674140/7]

See the Environment Variables section below for additional information and examples.

Amphora Agent Upper Constraints

You may also need to specify which version of the OpenStack upper-constraints.txt file will be used to
build the image. For example, to specify the "stable/train" upper constraints Git branch, set the following
environment variable:

https://opendev.org/openstack/
—requirements/raw/branch/stable/train/upper-constraints.txt

See Dependency Management for OpenStack Projects for more information.

Environment Variables
These are optional environment variables that can be set to override the script defaults.
DIB_REPOLOCATION_amphora_agent
* Location of the amphora-agent code that will be installed in the image.
* Default: https://opendev.org/openstack/octavia
* Example: /tmp/octavia
DIB_REPOREF_amphora_agent
* The Git reference to checkout for the amphora-agent code inside the image.
* Default: The current branch
* Example: stable/stein
» Example: refs/changes/40/674140/7
DIB_REPOLOCATION_octavia_lib
* Location of the octavia-lib code that will be installed in the image.
* Default: https://opendev.org/openstack/octavia-lib
» Example: /tmp/octavia-lib
DIB_REPOREF _octavia_lib

* The Git reference to checkout for the octavia-lib code inside the image.

1.2. Installation and Configuration Guides 17

https://docs.openstack.org/project-team-guide/dependency-management.html
https://opendev.org/openstack/octavia
https://opendev.org/openstack/octavia-lib

Octavia Documentation, Release 17.1.0.dev41

* Default: master or stable branch for released OpenStack series installs.

* Example: stable/ussuri

» Example: refs/changes/19/744519/2
DIB_REPOLOCATION_upper_constraints

* Location of the upper-constraints.txt file used for the image.

* Default: The upper-constraints.txt for the current branch

* Example: https://opendev.org/openstack/requirements/raw/branch/master/
upper-constraints.txt

* Example: https://opendev.org/openstack/requirements/raw/branch/stable/train/
upper-constraints.txt

CLOUD_INIT_DATASOURCES
* Comma separated list of cloud-int datasources
* Default: ConfigDrive
* Options: NoCloud, ConfigDrive, OVF, MAAS, Ec2, <others>
* Reference: https://launchpad.net/cloud-init
DIB_DISTRIBUTION_MIRROR
* URL to a mirror for the base OS selected
* Default: None
DIB_ELEMENTS
* Override the elements used to build the image
* Default: None
DIB_LOCAL_ELEMENTS
» Elements to add to the build (requires DIB_LOCAL_ELEMENTS_PATH be specified)
* Default: None
DIB_LOCAL_ELEMENTS_PATH
* Path to the local elements directory
* Default: None
DIB_REPO_PATH
* Directory containing diskimage-builder
* Default: <directory above OCTAVIA_HOME>/diskimage-builder
* Reference: https://github.com/openstack/diskimage-builder
OCTAVIA_REPO_PATH
* Directory containing octavia
* Default: <directory above the script location>

* Reference: https://github.com/openstack/octavia

1.2. Installation and Configuration Guides 18

https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/stable/train/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/stable/train/upper-constraints.txt
https://launchpad.net/cloud-init
https://github.com/openstack/diskimage-builder
https://github.com/openstack/octavia

Octavia Documentation, Release 17.1.0.dev41

DIB_OCTAVIA_AMP_USE_NFTABLES
* Boolean that configures nftables inside the amphora image
* Required for SR-IOV enabled amphora

e Default: True

Using distribution packages for amphora agent

By default, amphora agent is installed from Octavia Git repository. To use distribution packages, use the
"-p" option.

Note this needs a base system image with the required repositories enabled (for example RDO repositories
for CentOS/Fedora). One of these variables must be set:

DIB_LOCAL_IMAGE
* Path to the locally downloaded image
* Default: None
DIB_CLOUD_IMAGES
* Directory base URL to download the image from

* Default: depends on the distribution

RHEL specific variables

Building a RHEL-based image requires:

* a Red Hat Enterprise Linux KVM Guest Image, manually download from the Red Hat Cus-
tomer Portal. Set the DIB_LOCAL_IMAGE variable to point to the file. More details at:
<DIB_REPO_PATH>/elements/rhel

* a Red Hat subscription for the matching Red Hat OpenStack Platform repository if you want
to install the amphora agent from the official distribution package (requires setting -p option
in diskimage-create.sh). Set the needed registration parameters depending on your configu-
ration. More details at: <DIB_REPO_PATH>/elements/rhel-common

Here is an example with Customer Portal registration and OSP 15 repository:

$

This example uses registration via a Satellite (the activation key must enable an OSP repository):

$

1.2. Installation and Configuration Guides 19

Octavia Documentation, Release 17.1.0.dev41

Building in a virtualenv with tox

To make use of a virtualenv for Python dependencies you may run tox. Note that you may still need to
install binary dependencies on the host for the build to succeed.

If you wish to customize your build modify tox.ini to pass on relevant environment variables or com-
mand line arguments to the diskimage-create. sh script.

[s tox -e build

Container Support

The Docker command line required to import a tar file created with this script is:

[$ docker import - image:amphora-x64-haproxy < amphora-x64-haproxy.tar

References

This documentation and script(s) leverage prior work by the OpenStack TripleO and Sahara teams. Thank
you to everyone that worked on them for providing a great foundation for creating Octavia Amphora
images.

* https://opendev.org/openstack/diskimage-builder
* https://opendev.org/openstack/tripleo-image-elements

* https://opendev.org/openstack/sahara-image-elements

Copyright
Copyright 2014 Hewlett-Packard Development Company, L.P.
All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

* http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and limitations
under the License.

1.2.2 Octavia Certificate Configuration Guide

This document is intended for Octavia administrators setting up certificate authorities for the two-way
TLS authentication used in Octavia for command and control of Amphora.

This guide does not apply to the configuration of TERMINATED_TLS listeners on load balancers. See
the Load Balancing Cookbook for instructions on creating TERMINATED_TLS listeners.

1.2. Installation and Configuration Guides 20

https://opendev.org/openstack/diskimage-builder
https://opendev.org/openstack/tripleo-image-elements
https://opendev.org/openstack/sahara-image-elements
http://www.apache.org/licenses/LICENSE-2.0
../../user/guides/basic-cookbook.html#deploy-a-tls-terminated-https-load-balancer

Octavia Documentation, Release 17.1.0.dev41

Two-way TLS Authentication in Octavia

The Octavia controller processes communicate with the Amphora over a TLS connection much like an
HTTPS connection to a website. However, Octavia validates that both sides are trusted by doing a two-
way TLS authentication.

Note

This is a simplification of the full TLS handshake process. See the TLS 1.3 RFC 8446 for the full
handshake.

Phase One

When a controller process, such as the Octavia worker process, connects to an Amphora, the Amphora
will present its server certificate to the controller. The controller will then validate it against the server
Certificate Authority (CA) certificate stored on the controller. If the presented certificate is validated
against the server CA certificate, the connection goes into phase two of the two-way TLS authentication.

Phase Two

Once phase one is complete, the controller will present its client certificate to the Amphora. The Amphora
will then validate the certificate against the client CA certificate stored inside the Amphora. If this
certificate is successfully validated, the rest of the TLS handshake will continue to establish the secure
communication channel between the controller and the Amphora.

Certificate Lifecycles

The server certificates are uniquely generated for each amphora by the controller using the server cer-
tificate authority certificates and keys. These server certificates are automatically rotated by the Octavia
housekeeping controller process as they near expiration.

The client certificates are used for the Octavia controller processes. These are managed by the operator
and due to their use on the control plane of the cloud, typically have a long lifetime.

See the Operator Maintenance Guide for more information about the certificate lifecycles.

Creating the Certificate Authorities

As discussed above, this configuration uses two certificate authorities; one for the server certificates, and
one for the client certificates.

Note

Technically Octavia can be run using just one certificate authority by using it to issue certificates for
both roles. However, this weakens the security as a server certificate from an amphora could be used
to impersonate a controller. We recommend you use two certificate authorities for all deployments
outside of testing.

For this document we are going to setup simple OpenSSL based certificate authorities. However, any
standards compliant certificate authority software can be used to create the required certificates.

1.2. Installation and Configuration Guides 21

https://tools.ietf.org/html/rfc8446
operator-maintenance.html#rotating-cryptographic-certificates

Octavia Documentation, Release 17.1.0.dev41

1. Create a working directory for the certificate authorities. Make sure to set the proper permissions
on this directory such that others cannot access the private keys, random bits, etc. being generated

here.

$ mkdir certs
$ chmod certs
$ certs

2. Create the OpenSSL configuration file. This can be shared between the two certificate authorities.

$ vi openssl.cnf

(continues on next page)

1.2. Installation and Configuration Guides 22

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

stateOrProvinceName match
organizationName match
organizationalUnitName optional
commonName supplied
emailAddress optional

[req]

Options for the ‘req tool (‘man req’).
default_bits 2048
distinguished_name req_distinguished_name
string_mask utf8only

SHA-1 is deprecated, so use SHA-2 instead.
default_md sha256

Extension to add when the -x509 option is used.
x509_extensions v3_ca

[req_distinguished_name]
See <https://en.wikipedia.org/wiki/Certificate_signing_request>.

countryName Country Name (2 letter code)
stateOrProvinceName State or Province Name
localityName Locality Name
0.organizationName Organization Name
organizationalUnitName Organizational Unit Name
commonName Common Name

emailAddress Email Address

Optionally, specify some defaults.

countryName_default UsS
stateOrProvinceName_default Oregon
localityName_default
0.organizationName_default OpenStack
organizationalUnitName_default Octavia
emailAddress_default

commonName_default example.org
[v3_ca]

Extensions for a typical CA ("man x509v3_config’).
subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer
basicConstraints critical, CA:true

keyUsage critical, digitalSignature, cRLSign, keyCertSign

[usr_cert]

Extensions for client certificates (‘man x509v3_config’).
basicConstraints CA:FALSE

nsCertType client, email

nsComment "OpenSSL Generated Client Certificate"

(continues on next page)

1.2.

Installation and Configuration Guides 23

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

3. Make any locally required configuration changes to the openssl.cnf. Some settings to consider are:
* The default certificate lifetime is 10 years.
* The default bit length is 2048.

4. Make directories for the two certificate authorities.

$ mkdir client_ca
$ mkdir server_ca

5. Starting with the server certificate authority, prepare the CA.

$ server_ca

$ mkdir certs crl newcerts private
$ chmod private

$ touch index.txt

$ > serial

6. Create the server CA key.

* You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/ca.key.pem -aes-128-cbc -
—pkeyopt rsa_keygen_bits:4096
$ chmod private/ca.key.pem

7. Create the server CA certificate.
* You will need to specify the passphrase used in step 6.

* You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

* You may want to mention this is the server CA in the common name field.

1.2. Installation and Configuration Guides 24

Octavia Documentation, Release 17.1.0.dev41

* Since this is the CA certificate, you might want to give it a very long lifetime, such as twenty
years shown in this example command.

$ openssl req -config ../openssl.cnf -key private/ca.key.pem -new -x509 -
—days -sha256 -extensions v3_ca -out certs/ca.cert.pem

8. Moving to the client certificate authority, prepare the CA.

$../client_ca

$ mkdir certs crl csr newcerts private
$ chmod private

$ touch index.txt

$ > serial

9. Create the client CA key.

* You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/ca.key.pem -aes-128-cbc -
—pkeyopt rsa_keygen_bits:4096
$ chmod private/ca.key.pem

10. Create the client CA certificate.
* You will need to specify the passphrase used in step 9.

* You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

* You may want to mention this is the client CA in the common name field.

* Since this is the CA certificate, you might want to give it a very long lifetime, such as twenty
years shown in this example command.

—days -sha256 -extensions v3_ca -out certs/ca.cert.pem

$ openssl req -config ../openssl.cnf -key private/ca.key.pem -new -x509 - J

11. Create a key for the client certificate to use.

* You can create one certificate and key to be used by all of the controllers or you can create a
unique certificate and key for each controller.

* You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/client.key.pem -aes-128-cbc.
—-pkeyopt rsa_keygen_bits:2048

- J

12. Create the certificate request for the client certificate used on the controllers.
* You will need to specify the passphrase used in step 11.

* You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

* You must fill in the common name field.

* You may want to mention this is the client certificate in the common name field, or the indi-
vidual controller information.

1.2. Installation and Configuration Guides 25

Octavia Documentation, Release 17.1.0.dev41

$ openssl req -config ../openssl.cnf -new -sha256 -key private/client.key.
—pem -out csr/client.csr.pem

13. Sign the client certificate request.
* You will need to specify the CA passphrase used in step 9.

* Since this certificate is used on the control plane, you might want to give it a very long
lifetime, such as twenty years shown in this example command.

$ openssl ca -config ../openssl.cnf -extensions usr_cert -days -
—notext -md sha256 -in csr/client.csr.pem -out certs/client.cert.pem

14. Create a concatenated client certificate and key file.

* You will need to specify the CA passphrase used in step 11.

$ openssl rsa -in private/client.key.pem -out private/client.cert-and-key.
—pem
$ cat certs/client.cert.pem >> private/client.cert-and-key.pem

Configuring Octavia

In this section we will configure Octavia to use the certificates and keys created during the Creating the
Certificate Authorities section.

1. Copy the required files over to your Octavia controllers.

* Only the Octavia worker, health manager, and housekeeping processes will need access to
these files.

* The first command should return you to the "certs" directory created in step 1 of the Creating
the Certificate Authorities section.

* These commands assume you are running the octavia processes under the "octavia" user.

* Note, some of these steps should be run with "sudo" and are indicated by the "#" prefix.

L

2. Configure the [certificates] section of the octavia.conf file.

* Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

1.2. Installation and Configuration Guides 26

Octavia Documentation, Release 17.1.0.dev41

» The "<server CA passphrase>" should be replaced with the passphrase that was used in step
6 of the Creating the Certificate Authorities section.

[certificates]

3. Configure the [controller_worker] section of the octavia.conf file.

* Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

[controller_worker]

4. Configure the [haproxy_amphora] section of the octavia.conf file.

* Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

[haproxy_amphoral]

5. Start the controller processes.

1.2.3 Octavia Configuration Options

Table of Contents

* Octavia Configuration Options
— DEFAULT
— amphora_agent
— api_settings
— audit
— certificates
— cinder
— compute

— controller_worker

— database

1.2. Installation and Configuration Guides 27

Octavia Documentation, Release 17.1.0.dev41

driver_agent

glance
haproxy_amphora
health_manager
house_keeping
keepalived_vrrp
keystone_authtoken
networking

neutron

nova

oslo_messaging
oslo_messaging_kafka
oslo_messaging_notifications
oslo_messaging_rabbit
oslo_middleware

quotas

service_auth

task_flow

DEFAULT

log_options

Type

boolean

Default

True

Mutable
This option can be changed without restarting.

Enables or disables logging values of all registered options when starting a service (at DEBUG

level).

graceful_shutdown_timeout

Type

integer

Default

60

Mutable
This option can be changed without restarting.

1.2. Installation and Configuration Guides 28

Octavia Documentation, Release 17.1.0.dev41

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

host
Type
hostname

Default
<server-hostname.example.com>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

The hostname Octavia is running on
octavia_plugins
Type
string

Default
hot_plug_plugin

Name of the controller plugin to use

debug
Type

boolean

Default
False

Mutable
This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.
log_config_append
Type
string

Default
<None>

Mutable
This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 1: Deprecated Variations

Group Name

DEFAULT log-config
DEFAULT log_config

1.2. Installation and Configuration Guides 29

Octavia Documentation, Release 17.1.0.dev41

log_date_format
Type
string

Default
%Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file
Type

string

Default
<None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT logfile

log_dir

Type
string

Default
<None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT logdir

use_syslog
Type
boolean

Default
False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

1.2. Installation and Configuration Guides 30

Octavia Documentation, Release 17.1.0.dev41

use_journal
Type
boolean

Default
False

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type
string

Default
LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type
boolean

Default
False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type
boolean

Default
False

Log output to standard error. This option is ignored if log_config_append is set.

log_color

Type
boolean

Default
False

(Optional) Set the *color’ key according to log levels. This option takes effect only when logging
to stderr or stdout is used. This option is ignored if log_config_append is set.

log_rotate_interval
Type
integer

Default
1

1.2. Installation and Configuration Guides 31

Octavia Documentation, Release 17.1.0.dev41

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to "interval".

log_rotate_interval_type
Type
string

Default
days

Valid Values
Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type

integer

Default
30

Maximum number of rotated log files.

max_logfile_size_mb

Type
integer

Default
200

Log file maximum size in MB. This option is ignored if "log_rotation_type" is not set to "size".

log_rotation_type

Type
string

Default
none

Valid Values
interval, size, none

Log rotation type.

Possible values

interval
Rotate logs at predefined time intervals.
size
Rotate logs once they reach a predefined size.

none
Do not rotate log files.

1.2. Installation and Configuration Guides 32

Octavia Documentation, Release 17.1.0.dev41

logging_context_format_string
Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s
[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string
Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s [-]
%(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type
string

Default
%(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type
string
Default
%(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s
Prefix each line of exception output with this format. Used by

oslo_log.formatters.ContextFormatter
logging_user_identity_format
Type
string

Default
%(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

1.2. Installation and Configuration Guides 33

Octavia Documentation, Release 17.1.0.dev41

default_log_levels
Type
list

Default

['amgp=WARN', 'boto=WARN', 'sglalchemy=WARN', 'suds=INFO',
'oslo.messaging=INFO', 'oslo_messaging=INFO', 'iso8601=WARN',
'requests.packages.urllib3.connectionpool=WARN', 'urllib3.
connectionpool=WARN', 'websocket=WARN', 'requests.packages.
urllib3.util.retry=WARN', 'urllib3.util.retry=WARN',
'keystonemiddleware=WARN', 'routes.middleware=WARN',
'stevedore=WARN', 'taskflow=WARN', 'keystoneauth=WARN', 'oslo.
cache=INFO', 'oslo_policy=INFO', 'dogpile.core.dogpile=INFO']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

Type
boolean

Default
False

Enables or disables publication of error events.

instance_format

Type
string

Default
"[instance: %(uuid)s]

The format for an instance that is passed with the log message.

instance_uuid_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type
integer

Default
0

Interval, number of seconds, of log rate limiting.

1.2. Installation and Configuration Guides 34

Octavia Documentation, Release 17.1.0.dev41

rate_limit_burst

Type
integer

Default
0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

Type
string

Default
CRITICAL

Valid Values
CRITICAL, ERROR, INFO, WARNING, DEBUG, ”

Log level name used by rate limiting. Logs with level greater or equal to rate_limit_except_level
are not filtered. An empty string means that all levels are filtered.

fatal_deprecations

Type
boolean

Default
False

Enables or disables fatal status of deprecations.

executor_thread_pool_size

Type
integer

Default
64

Size of executor thread pool when executor is threading or eventlet.

Table 4: Deprecated Variations

Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout

Type
integer

Default
60

Seconds to wait for a response from a call.

1.2. Installation and Configuration Guides 35

Octavia Documentation, Release 17.1.0.dev41

transport_url

Type
string

Default
rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass @ Jhost:port[,[userN:passN @ JhostN:portN]/virtual_host?query
Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type
string

Default
octavia

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type

boolean

Default
False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

amphora_agent

agent_server_ca

Type
string

Default
/etc/octavia/certs/client_ca.pem

The ca which signed the client certificates

agent_server_cert

Type
string

Default
/etc/octavia/certs/server.pem

The server certificate for the agent server to use

1.2. Installation and Configuration Guides 36

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Octavia Documentation, Release 17.1.0.dev41

agent_server_network_dir
Type
string
Default
<None>
The directory where new network interfaces are located
agent_request_read_timeout
Type
integer

Default
180

The time in seconds to allow a request from the controller to run before terminating the socket.
agent_tls_protocol

Type
string

Default
TLSv1.2

Valid Values
SSLv3, TLSvl, TLSv1.1, TLSv1.2, TLSv1.3

Minimum TLS protocol for communication with the amphora agent.
admin_log_targets

Type
list

Default
<None>

List of log server ip and port pairs for Administrative logs. Additional hosts are backup to
the primary server. If none is specified remote logging is disabled. Example 127.0.0.1:10514,

192.168.0.1:10514
tenant_log_targets
Type
list
Default

<None>

List of log server ip and port pairs for tenant traffic logs. Additional hosts are backup to the

primary server. If none is specified remote logging is disabled. Example 127.0.0.1:10514,
192.168.0.1:10514

user_log_facility

Type

integer

1.2. Installation and Configuration Guides 37

Octavia Documentation, Release 17.1.0.dev41

Default
0

Minimum Value
0

Maximum Value
7

LOG_LOCAL facility number to use for user traffic logs.

administrative_log_facility

Type
integer

Default
1

Minimum Value
0

Maximum Value
7

LOG_LOCAL facility number to use for amphora processes logs.

log_protocol

Type

string

Default
UDP

Valid Values
TCP, UDP

The log forwarding transport protocol. One of UDP or TCP.

log_retry_count

Type

integer

Default
5

The maximum attempts to retry connecting to the logging host.

log_retry_interval

Type
integer

Default
2

The time, in seconds, to wait between retries connecting to the logging host.

1.2. Installation and Configuration Guides 38

Octavia Documentation, Release 17.1.0.dev41

log_queue_size
Type
integer

Default
10000

The queue size (messages) to buffer log messages.

logging_template_override

Type
string

Default
<None>

Custom logging configuration template.

forward_all_logs
Type
boolean

Default
False

When True, the amphora will forward all of the system logs (except tenant traffic logs) to the admin

log target(s). When False, only amphora specific admin logs will be forwarded.

disable_local_log_storage
Type
boolean

Default
False

When True, no logs will be written to the amphora filesystem. When False, log files will be written

to the local filesystem.
amphora_id
Type
string

Default
<None>

The amphora ID.
amphora_udp_driver
Type
string

Default
keepalived_lvs

1.2. Installation and Configuration Guides

39

Octavia Documentation, Release 17.1.0.dev41

The UDP API backend for amphora agent.

Warning

future.

Reason

This option is deprecated for removal since Wallaby. Its value may be silently ignored in the

amphora-agent will not support any other backend than keepalived_lvs.

api_settings

bind_host

Type
ip address

Default
127.0.0.1

The host IP to bind to

bind_port

Type
port number

Default
9876

Minimum Value
0

Maximum Value
65535

The port to bind to

auth_strategy
Type
string

Default
keystone

Valid Values
noauth, keystone, testing

The auth strategy for API requests.
allow_pagination
Type
boolean

Default
True

1.2. Installation and Configuration Guides

40

Octavia Documentation, Release 17.1.0.dev41

Allow the usage of pagination

allow_sorting

Type

boolean

Default
True

Allow the usage of sorting

allow_filtering

Type
boolean

Default
True

Allow the usage of filtering

allow_field_selection
Type
boolean

Default
True

Allow the usage of field selection
pagination_max_limit
Type
string

Default
1000

The maximum number of items returned in a single response. The string ’infinite’ or a negative
integer value means 'no limit’

api_base_uri
Type
string

Default
<None>

Base URI for the API for use in pagination links. This will be autodetected from the request if not
overridden here.

allow_tls_terminated_listeners
Type
boolean

Default
True

1.2. Installation and Configuration Guides 41

Octavia Documentation, Release 17.1.0.dev41

Allow users to create TLS Terminated listeners?

allow_ping_health_monitors

Type

boolean

Default
True

Allow users to create PING type Health Monitors?

allow_prometheus_listeners

Type

boolean

Default
True

Allow users to create PROMETHEUS type listeners?
enabled_provider_drivers
Type
dict

Default
{'amphora': 'The Octavia Amphora driver.', 'octavia':
'Deprecated alias of the Octavia Amphora driver.'}

A comma separated list of dictionaries of the enabled provider driver names and descriptions. Must
match the driver name in the octavia.api.drivers entrypoint.

default_provider_driver
Type
string

Default
amphora

Default provider driver.

udp_connect_min_interval_health_monitor
Type
integer

Default
3

The minimum health monitor delay interval for the UDP-CONNECT Health Monitor type. A
negative integer value means 'no limit’.

healthcheck_enabled
Type
boolean

Default
False

1.2. Installation and Configuration Guides 42

Octavia Documentation, Release 17.1.0.dev41

When True, the oslo middleware healthcheck endpoint is enabled in the Octavia API.

healthcheck_refresh_interval

Type

integer

Default
5

The interval healthcheck plugins should cache results, in seconds.

default_listener_ciphers

Type
string

Default
TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256: ECDH

Default OpenSSL cipher string (colon-separated) for new TLS-enabled listeners.

default_pool_ciphers

Type
string

Default
TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:ECDH

Default OpenSSL cipher string (colon-separated) for new TLS-enabled pools.

tls_cipher_prohibit_list

Type
string

Default

Colon separated list of OpenSSL ciphers. Usage of these ciphers will be blocked.

Table 5: Deprecated Variations

Group Name

api_settings tls_cipher_blacklist

default_listener_tls_versions

Type
list

Default
['TLSv1.2', 'TLSv1l.3']

List of TLS versions to use for new TLS-enabled listeners.

1.2. Installation and Configuration Guides 43

Octavia Documentation, Release 17.1.0.dev41

default_pool_tls_versions

Type
list

Default
['TLSv1.2', 'TLSv1l.3']

List of TLS versions to use for new TLS-enabled pools.

minimum_tls_version

Type

string

Default
<None>

Valid Values
SSLv3, TLSv1, TLSv1.1, TLSv1.2, TLSv1.3, <None>

Minimum allowed TLS version for listeners and pools.

default_listener_alpn_protocols

Type

list

Default
['h2', 'http/1.1', 'http/1.0']

List of ALPN protocols to use for new TLS-enabled listeners.

default_pool_alpn_protocols

Type

list

Default
['h2', 'http/1.1', 'http/1.0']

List of ALPN protocols to use for new TLS-enabled pools.

audit
enabled
Type
boolean
Default
False

Enable auditing of API requests
audit_map_file
Type
string

Default
/etc/octavia/octavia_api_audit_map.conf

1.2. Installation and Configuration Guides

44

Octavia Documentation, Release 17.1.0.dev41

Path to audit map file for octavia-api service. Used only when API audit is enabled.

ignore_req_list
Type
string

Default

Comma separated list of REST API HTTP methods to be ignored during audit. For example:
auditing will not be done on any GET or POST requests if this is set to "GET,POST". It is used

only when API audit is enabled.

certificates

cert_manager

Type
string

Default
barbican_cert_manager

Name of the cert manager to use

cert_generator

Type
string

Default
local_cert_generator

Name of the cert generator to use

barbican_auth

Type
string

Default
barbican_acl_auth

Name of the Barbican authentication method to use

service_name

Type
string

Default
<None>

The name of the certificate service in the keystone catalog

endpoint

Type
string

1.2. Installation and Configuration Guides

45

Octavia Documentation, Release 17.1.0.dev41

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.
region_name
Type
string

Default
<None>

Region in Identity service catalog to use for communication with the barbican service.
endpoint_type
Type
string

Default
publicURL

The endpoint_type to be used for barbican service.

ca_certificates_file
Type
string

Default
<None>

CA certificates file path for the key manager service (such as Barbican).
insecure
Type
boolean

Default
False

Disable certificate validation on SSL connections

ca_certificate
Type
string

Default
/etc/ssl/certs/ssl-cert-snakeoil.pem

Absolute path to the CA Certificate for signing. Defaults to env[OS_OCTAVIA_TLS_CA_CERT].
ca_private_key
Type
string

Default
/etc/ssl/private/ssl-cert-snakeoil.key

1.2. Installation and Configuration Guides 46

Octavia Documentation, Release 17.1.0.dev41

Absolute path to the Private Key for signing. Defaults to env[OS_OCTAVIA_TLS_CA_KEY].

ca_private_key_passphrase

Type

string

Default
<None>

Passphrase for the Private Key. Defaults to env[OS_OCTAVIA_CA_KEY_PASS] or None.

server_certs_key_passphrase

Type
list

Default
['insecure-key-do-not-use-this-key']

List of passphrase for encrypting Amphora Certificates and Private Keys, first in list is used for
encryption while all other keys is used to decrypt previously encrypted data. Each key must be 32,
base64(url) compatible, characters long. Defaults to env[TLS_PASS_AMPS_DEFAULT] or a list
with default key insecure-key-do-not-use-this-key

signing_digest

Type
string

Default
sha256

Certificate signing digest. Defaults to env[OS_OCTAVIA_CA_SIGNING_DIGEST] or "sha256".

cert_validity_time

Type
integer

Default
2592000

The validity time for the Amphora Certificates (in seconds).

cinder

service_name

Type

string

Default
<None>

The name of the cinder service in the keystone catalog

endpoint

Type

string

1.2. Installation and Configuration Guides 47

Octavia Documentation, Release 17.1.0.dev41

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

region_name
Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack services.

endpoint_type

Type
string

Default
publicURL

Endpoint interface in identity service to use

ca_certificates_file

Type
string

Default
<None>

CA certificates file path

availability_zone

Type
string

Default
<None>

Availability zone to use for creating Volume

insecure
Type
boolean

Default
False

Disable certificate validation on SSL connections

volume_size
Type
integer

Default
16

1.2. Installation and Configuration Guides

48

Octavia Documentation, Release 17.1.0.dev41

Minimum Value
1

Size of volume, in GB, for Amphora instance

volume_type

Type
string

Default
<None>

Type of volume for Amphorae volume root disk

volume_create_retry_interval

Type
integer

Default
5

Interval time to wait volume is created in available state

volume_create_timeout

Type
integer

Default
300

Timeout to wait for volume creation success

volume_create_max_retries

Type
integer

Default
5

Maximum number of retries to create volume

compute

max_retries
Type
integer

Default
15

The maximum attempts to retry an action with the compute service.

retry_interval

Type

integer

1.2. Installation and Configuration Guides

49

Octavia Documentation, Release 17.1.0.dev41

Default
1

Seconds to wait before retrying an action with the compute service.

retry_backoff

Type
integer

Default
1

The seconds to backoff retry attempts.

retry_max

Type
integer

Default
10

The maximum interval in seconds between retry attempts.

controller_worker

workers

Type
integer

Default
1

Minimum Value
1

Number of workers for the controller-worker service.

amp_active_retries

Type

integer

Default
30

Retry attempts to wait for Amphora to become active

amp_active_wait_sec

Type

integer

Default
10

Seconds to wait between checks on whether an Amphora has become active

1.2. Installation and Configuration Guides 50

Octavia Documentation, Release 17.1.0.dev41

amp_flavor_id

Type
string

Default

Nova instance flavor id for the Amphora

amp_image_tag

Type
string

Default

Glance image tag for the Amphora image to boot. Use this option to be able to update the image
without reconfiguring Octavia.

amp_image_owner_id

Type

string

Default

Restrict glance image selection to a specific owner ID. This is a recommended security setting.

amp_ssh_key_name

Type
string

Default

Optional SSH keypair name, in nova, that will be used for the authorized_keys inside the amphora.

amp_timezone
Type
string

Default
UTC

The timezone to use in the Amphora as represented in /usr/share/zoneinfo.

amp_boot_network_list
Type
list

Default
[]

List of networks to attach to the Amphorae. All networks defined in the list will be attached to
each amphora.

1.2. Installation and Configuration Guides 51

Octavia Documentation, Release 17.1.0.dev41

amp_secgroup_list

Type
list

Default
[]

List of security groups to attach to the Amphora.

client_ca

Type
string

Default
/etc/octavia/certs/ca_01.pem

Client CA for the amphora agent to use

amphora_driver

Type

string

Default
amphora_haproxy_rest_driver

Name of the amphora driver to use

compute_driver

Type

string

Default
compute_nova_driver

Name of the compute driver to use

network_driver

Type

string

Default
allowed_address_pairs_driver

Name of the network driver to use

volume_driver
Type
string

Default
volume_noop_driver

Valid Values
volume_noop_driver, volume_cinder_driver

Name of the volume driver to use

1.2. Installation and Configuration Guides

52

Octavia Documentation, Release 17.1.0.dev41

image_driver
Type
string

Default
image_glance_driver

Valid Values
image_noop_driver, image_glance_driver

Name of the image driver to use

distributor_driver
Type
string

Default
distributor_noop_driver

Name of the distributor driver to use
statistics_drivers
Type
list

Default
['stats_db']

List of drivers for updating amphora statistics.

loadbalancer_topology
Type
string

Default
SINGLE

Valid Values
ACTIVE_STANDBY, SINGLE

Mutable
This option can be changed without restarting.

Load balancer topology configuration. SINGLE - One amphora per load balancer. AC-
TIVE_STANDBY - Two amphora per load balancer.

user_data_config_drive

Type
boolean

Default
False

If True, build cloud-init user-data that is passed to the config drive on Amphora boot instead of
personality files. If False, utilize personality files.

1.2. Installation and Configuration Guides 53

Octavia Documentation, Release 17.1.0.dev41

Warning

in the future.

Reason

This option is deprecated for removal since Antelope(2023.1). Its value may be silently ignored

User_data nova option is not used and is too small to replace the config_drive.

amphora_delete_retries
Type
integer

Default
5

Number of times an amphora delete should be retried.

amphora_delete_retry_interval
Type
integer

Default
5

Time, in seconds, between amphora delete retries.

event_notifications
Type
boolean

Default
True

Enable octavia event notifications.

quirements.
db_commit_retry_attempts
Type
integer

Default
2000

See oslo_messaging_notifications section for additional re-

The number of times the database action will be attempted.

db_commit_retry_initial_delay
Type
integer

Default
1

The initial delay before a retry attempt.

1.2. Installation and Configuration Guides 54

Octavia Documentation, Release 17.1.0.dev41

db_commit_retry_backoff

Type
integer

Default
1

The time to backoff retry attempts.

db_commit_retry_max

Type
integer

Default
5

The maximum amount of time to wait between retry attempts.

database

sqlite_synchronous

Type
boolean

Default
True

If True, SQLite uses synchronous mode.

backend

Type

string

Default
sgqlalchemy

The back end to use for the database.

connection

Type

string

Default
<None>

The SQLAIchemy connection string to use to connect to the database.

slave_connection

Type

string

Default
<None>

The SQLAIchemy connection string to use to connect to the slave database.

1.2. Installation and Configuration Guides 55

Octavia Documentation, Release 17.1.0.dev41

asyncio_connection
Type
string

Default
<None>

The SQLAIchemy asyncio connection string to use to connect to the database.

asyncio_slave_connection

Type
string

Default
<None>

The SQLAIchemy asyncio connection string to use to connect to the slave database.

synchronous_reader

Type
boolean

Default
True

Whether or not to assume a reader context needs to guarantee it can read data committed by a writer
assuming replication lag is present; defaults to True. When False, a reader context works the same
as async_reader and will select the slave database if present. When using a galera cluster, this can
be set to False only if you set mysql_wsrep_sync_wait to 1 (this will guarantee that the reader will
wait until writesets are committed).Note that this may incur a performance degradation within the
galera cluster. Note also that this parameter has no effect if you do not set any slave_connection.

mysql_sql_mode
Type
string

Default
TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_wsrep_sync_wait
Type
integer

Default
<None>

For Galera only, configure wsrep_sync_wait causality checks on new connections. Default is None,
meaning don’t configure any setting.

1.2. Installation and Configuration Guides 56

Octavia Documentation, Release 17.1.0.dev41

connection_recycle_time
Type
integer

Default
3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

max_pool_size

Type

integer

Default
5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries

Type
integer

Default
10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

retry_interval

Type

integer

Default
10

Interval between retries of opening a SQL connection.

max_overflow

Type
integer

Default
50

If set, use this value for max_overflow with SQLAlIchemy.

connection_debug
Type
integer

Default
0

1.2. Installation and Configuration Guides 57

Octavia Documentation, Release 17.1.0.dev41

Minimum Value
0

Maximum Value
100

Verbosity of SQL debugging information: 0=None, 100=Everything.

connection_trace

Type
boolean

Default
False

Add Python stack traces to SQL as comment strings.

pool_timeout

Type
integer

Default
<None>

If set, use this value for pool_timeout with SQLAIchemy.

use_db_reconnect

Type
boolean

Default
False

Enable the experimental use of database reconnect on connection lost.

db_retry_interval

Type
integer

Default
1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type
boolean

Default
True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

Type

integer

1.2. Installation and Configuration Guides 58

Octavia Documentation, Release 17.1.0.dev41

Default
10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

Type
integer

Default
20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters

Type

string

Default

Optional URL parameters to append onto the connection URL at connect time; specify as
paraml=valuel¶m2=value2&...

driver_agent

status_socket_path

Type
string

Default
/var/run/octavia/status.sock

Path to the driver status unix domain socket file.

stats_socket_path

Type
string

Default
/var/run/octavia/stats.sock

Path to the driver statistics unix domain socket file.

get_socket_path

Type
string

Default
/var/run/octavia/get.sock

Path to the driver get unix domain socket file.

1.2. Installation and Configuration Guides 59

Octavia Documentation, Release 17.1.0.dev41

status_request_timeout

Type
integer

Default
5

Time, in seconds, to wait for a status update request.

status_max_processes

Type
integer

Default
50

Maximum number of concurrent processes to use servicing status updates.

stats_request_timeout

Type
integer

Default
5

Time, in seconds, to wait for a statistics update request.

stats_max_processes
Type
integer

Default
50

Maximum number of concurrent processes to use servicing statistics updates.

get_request_timeout

Type

integer

Default
5

Time, in seconds, to wait for a get request.

get_max_processes

Type

integer

Default
50

Maximum number of concurrent processes to use servicing get requests.

1.2. Installation and Configuration Guides

60

Octavia Documentation, Release 17.1.0.dev41

max_process_warning_percent

Type
floating point

Default
0.75

Minimum Value
0.01

Maximum Value
0.99

Percentage of max_processes (both status and stats) in use to start logging warning messages about
an overloaded driver-agent.

provider_agent_shutdown_timeout

Type
integer

Default
60

The time, in seconds, to wait for provider agents to shutdown after the exit event has been set.

enabled_provider_agents

Type
list

Default
[]

List of enabled provider agents. The driver-agent will launch these agents at startup.

glance

service_name

Type
string

Default
<None>

The name of the glance service in the keystone catalog

endpoint

Type
string

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

1.2. Installation and Configuration Guides 61

Octavia Documentation, Release 17.1.0.dev41

region_name
Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack services.

endpoint_type

Type
string

Default
publicURL

Endpoint interface in identity service to use

ca_certificates_file
Type
string

Default
<None>

CA certificates file path

insecure
Type
boolean

Default
False

Disable certificate validation on SSL connections

haproxy_amphora

base_path

Type

string

Default
/var/lib/octavia

Base directory for amphora files.

base_cert_dir

Type

string

Default
/var/lib/octavia/certs

Base directory for cert storage.

1.2. Installation and Configuration Guides

62

Octavia Documentation, Release 17.1.0.dev41

haproxy_template

Type
string

Default
<None>

Custom haproxy template.

connection_logging

Type
boolean

Default
True

Set this to False to disable connection logging.

connection_max_retries

Type
integer

Default
120

Retry threshold for connecting to amphorae.

connection_retry_interval
Type
integer

Default
5

Retry timeout between connection attempts in seconds.

active_connection_max_retries
Type
integer

Default
15

Retry threshold for connecting to active amphorae.

active_connection_retry_interval
Type
integer

Default
2

Retry timeout between connection attempts in seconds for active amphora.

1.2. Installation and Configuration Guides

Octavia Documentation, Release 17.1.0.dev41

Table 6: Deprecated Variations

Group Name

haproxy_amphora active_connection_rety_interval

failover_connection_max_retries

Type
integer

Default
2

Retry threshold for connecting to an amphora in failover.

failover_connection_retry_interval

Type
integer

Default
5

Retry timeout between connection attempts in seconds for amphora in failover.

build_rate_limit

Type
integer

Default
-1

Number of amphorae that could be built per controller worker, simultaneously.

build_active_retries

Type
integer

Default
120

Retry threshold for waiting for a build slot for an amphorae.

build_retry_interval

Type
integer

Default
5

Retry timeout between build attempts in seconds.

haproxy_stick_size

Type
string

1.2. Installation and Configuration Guides

64

Octavia Documentation, Release 17.1.0.dev41

Default
10k

Size of the HAProxy stick table. Accepts k, m, g suffixes.

user_log_format

Type
string

Default
{{ project_id }} {{ 1b_id }} %f %ci %cp %t %{+Q}r %ST %B %U
%[ssl_c_verify] %{+Q}[ssl_c_s_dn] %b %s %Tt %tsc

Log format string for user flow logging.

bind_host

Type
ip address

Default

The host IP to bind to
bind_port

Type

port number

Default
9443

Minimum Value
0

Maximum Value
65535

The port to bind to

1b_network_interface
Type
string

Default
o-hm0

Network interface through which to reach amphora, only required if using IPv6 link local addresses.

haproxy_cmd

Type
string

Default
/usr/sbin/haproxy

The full path to haproxy

1.2. Installation and Configuration Guides

65

Octavia Documentation, Release 17.1.0.dev41

respawn_count

Type
integer

Default
2

The respawn count for haproxy’s upstart script

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
upstart support has been removed and this option is no longer used.

respawn_interval

Type
integer

Default
2

The respawn interval for haproxy’s upstart script

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
upstart support has been removed and this option is no longer used.

rest_request_conn_timeout

Type
floating point

Default
10

The time in seconds to wait for a REST API to connect.

rest_request_read_timeout

Type
floating point

Default
60

The time in seconds to wait for a REST API response.

timeout_client_data

1.2. Installation and Configuration Guides

66

Octavia Documentation, Release 17.1.0.dev41

Type
integer

Default
50000

Frontend client inactivity timeout.

timeout_member_connect

Type
integer

Default
5000

Backend member connection timeout.

timeout_member_data

Type
integer

Default
50000

Backend member inactivity timeout.

timeout_tcp_inspect

Type
integer

Default
0

Time to wait for TCP packets for content inspection.

client_cert

Type
string

Default
/etc/octavia/certs/client.pem

The client certificate to talk to the agent

server_ca

Type
string

Default
/etc/octavia/certs/server_ca.pem

The ca which signed the server certificates

api_db_commit_retry_attempts

Type

integer

1.2. Installation and Configuration Guides

67

Octavia Documentation, Release 17.1.0.dev41

Default
15

The number of times the database action will be attempted.

api_db_commit_retry_initial_delay

Type

integer

Default
1

The initial delay before a retry attempt.

api_db_commit_retry_backoff

Type

integer

Default
1

The time to backoff retry attempts.

api_db_commit_retry_max
Type
integer

Default
5

The maximum amount of time to wait between retry attempts.

default_connection_limit
Type
integer

Default
50000

Default connection_limit for listeners, used when setting "-1" or when unsetting connection_limit

with the listener API.

health_manager
bind_ip
Type
ip address

Default
127.0.0.1

IP address the controller will listen on for heart beats

bind_port

Type

port number

1.2. Installation and Configuration Guides

68

Octavia Documentation, Release 17.1.0.dev41

Default
5555

Minimum Value
0

Maximum Value
65535

Port number the controller will listen on for heart beats

failover_threads

Type
integer

Default
10

Number of threads performing amphora failovers.
health_update_threads
Type
integer

Default
<None>

Number of processes for amphora health update.

stats_update_threads
Type
integer

Default
<None>

Number of processes for amphora stats update.

heartbeat_key
Type
string

Default
<None>

Mutable

This option can be changed without restarting.

key used to validate amphora sending the message

heartbeat_timeout
Type
integer

Default
60

1.2. Installation and Configuration Guides

69

Octavia Documentation, Release 17.1.0.dev41

Interval, in seconds, to wait before failing over an amphora.

health_check_interval

Type

integer

Default
3

Sleep time between health checks in seconds.
sock_rlimit
Type
integer

Default
0

sets the value of the heartbeat recv buffer

failover_threshold
Type
integer

Default
<None>

Stop failovers if the count of simultaneously failed amphora reaches this number. This may prevent
large scale accidental failover events, like in the case of network failures or read-only database

issues.
controller_ip_port_list
Type
list

Default
[]

Mutable
This option can be changed without restarting.

List of controller ip and port pairs for the heartbeat receivers.

192.168.0.1:5555

heartbeat_interval

Type

integer

Default
10

Mutable
This option can be changed without restarting.

Sleep time between sending heartbeats.

Example 127.0.0.1:5555,

1.2. Installation and Configuration Guides

70

Octavia Documentation, Release 17.1.0.dev41

house_keeping

cleanup_interval

Type
integer

Default
30

DB cleanup interval in seconds

amphora_expiry_age

Type
integer

Default
604800

Amphora expiry age in seconds

load_balancer_expiry_age

Type
integer

Default
604800

Load balancer expiry age in seconds

cert_interval

Type
integer

Default
3600

Certificate check interval in seconds

cert_expiry_buffer

Type
integer

Default
1209600

Seconds until certificate expiration

cert_rotate_threads

Type
integer

Default
10

Number of threads performing amphora certificate rotation

1.2. Installation and Configuration Guides

71

Octavia Documentation, Release 17.1.0.dev41

keepalived_vrrp

vrrp_advert_int

Type
integer

Default
1

Amphora role and priority advertisement interval in seconds.

vrrp_check_interval

Type
integer

Default
5

VRRP health check script run interval in seconds.

vrrp_fail_count

Type
integer

Default
2

Number of successive failures before transition to a fail state.

vrrp_success_count

Type
integer

Default
2

Number of consecutive successes before transition to a success state.

vrrp_garp_refresh_interval

Type
integer

Default
5

Time in seconds between gratuitous ARP announcements from the MASTER.

vrrp_garp_refresh_count

Type
integer

Default
2

Number of gratuitous ARP announcements to make on each refresh interval.

1.2. Installation and Configuration Guides 72

Octavia Documentation, Release 17.1.0.dev41

keystone_authtoken

www_authenticate_uri

Type
string

Default
<None>

Complete "public” Identity API endpoint. This endpoint should not be an "admin" endpoint, as
it should be accessible by all end users. Unauthenticated clients are redirected to this endpoint
to authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If you're using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that

endpoint.
Table 7: Deprecated Variations
Group Name
keystone_authtoken auth_uri
auth_uri
Type
string
Default
<None>

Complete "public" Identity API endpoint. This endpoint should not be an "admin" endpoint, as
it should be accessible by all end users. Unauthenticated clients are redirected to this endpoint
to authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If you're using a versioned v2 endpoint here, then this should nor be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning

This option is deprecated for removal since Queens. Its value may be silently ignored in the
future.

Reason
The auth_uri option is deprecated in favor of www_authenticate_uri and will
be removed in the S release.

auth_version
Type
string

Default
<None>

1.2. Installation and Configuration Guides 73

Octavia Documentation, Release 17.1.0.dev41

API version of the Identity API endpoint.
interface
Type
string

Default
internal

non

Interface to use for the Identity API endpoint. Valid values are "public”, "internal" (default) or
"admin".

delay_auth_decision

Type
boolean

Default
False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type
integer

Default
<None>

Request timeout value for communicating with Identity API server.

http_request_max_retries

Type
integer

Default
3

How many times are we trying to reconnect when communicating with Identity API Server.

cache
Type
string

Default
<None>

Request environment key where the Swift cache object is stored. When auth_token middleware is
deployed with a Swift cache, use this option to have the middleware share a caching backend with
swift. Otherwise, use the memcached_servers option instead.

certfile

Type
string

1.2. Installation and Configuration Guides 74

Octavia Documentation, Release 17.1.0.dev41

Default
<None>

Required if identity server requires client certificate

keyfile

Type
string

Default
<None>

Required if identity server requires client certificate

cafile

Type
string

Default
<None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

region_name

Type
string

Default
<None>

The region in which the identity server can be found.

memcached_servers

Type
list

Default
<None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 8: Deprecated Variations

Group Name

keystone_authtoken memcache_servers

1.2. Installation and Configuration Guides 75

Octavia Documentation, Release 17.1.0.dev41

token_cache_time
Type
integer

Default
300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy
Type
string

Default
None

Valid Values
None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key
Type
string

Default
<None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_tls_enabled

Type

boolean

Default
False

(Optional) Global toggle for TLS usage when comunicating with the caching servers.

memcache_tls_cafile
Type
string

Default
<None>

(Optional) Path to a file of concatenated CA certificates in PEM format necessary to establish the
caching server’s authenticity. If tls_enabled is False, this option is ignored.

1.2. Installation and Configuration Guides 76

Octavia Documentation, Release 17.1.0.dev41

memcache_tls_certfile
Type
string

Default
<None>

(Optional) Path to a single file in PEM format containing the client’s certificate as well as any
number of CA certificates needed to establish the certificate’s authenticity. This file is only required
when client side authentication is necessary. If tls_enabled is False, this option is ignored.

memcache_tls_keyfile
Type
string

Default
<None>

(Optional) Path to a single file containing the client’s private key in. Otherwhise the private key
will be taken from the file specified in tls_certfile. If tIs_enabled is False, this option is ignored.

memcache_tls_allowed_ciphers

Type

string

Default
<None>

(Optional) Set the available ciphers for sockets created with the TLS context. It should be a string
in the OpenSSL cipher list format. If not specified, all OpenSSL enabled ciphers will be available.

memcache_pool_dead_retry

Type
integer

Default
300

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type
integer

Default
10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout
Type
integer

Default
3

1.2. Installation and Configuration Guides 77

Octavia Documentation, Release 17.1.0.dev41

(Optional) Socket timeout in seconds for communicating with a memcached server.

memcache_pool_unused_timeout
Type
integer

Default
60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout
Type
integer

Default
10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool

Type
boolean

Default
True

(Optional) Use the advanced (eventlet safe) memcached client pool.

include_service_catalog

Type
boolean

Default
True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type

string

Default
permissive

Used to control the use and type of token binding. Can be set to: "disabled" to not check token
binding. "permissive" (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. "strict" like "permissive" but if the bind type is unknown the token
will be rejected. "required” any form of token binding is needed to be allowed. Finally the name
of a binding method that must be present in tokens.

1.2. Installation and Configuration Guides 78

Octavia Documentation, Release 17.1.0.dev41

service_token_roles
Type
list
Default
['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list

must be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required
Type
boolean

Default
False

For backwards compatibility reasons we must let valid service tokens pass that don’t pass the ser-
vice_token_roles check as valid. Setting this true will become the default in a future release and
should be enabled if possible.

service_type
Type
string

Default
<None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

memcache_sasl_enabled

Type

boolean

Default
False

Enable the SASL(Simple Authentication and Security Layer) if the SASL_enable is true, else dis-
able.

memcache_username

Type
string

Default

the user name for the SASL

1.2. Installation and Configuration Guides 79

Octavia Documentation, Release 17.1.0.dev41

memcache_password

Type
string

Default

the username password for SASL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 9: Deprecated Variations

Group Name

keystone_authtoken auth_plugin

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

networking

max_retries
Type
integer

Default
15

The maximum attempts to retry an action with the networking service.

retry_interval

Type

integer

Default
1

Seconds to wait before retrying an action with the networking service.

1.2. Installation and Configuration Guides

80

Octavia Documentation, Release 17.1.0.dev41

retry_backoff

Type
integer

Default
1

The seconds to backoff retry attempts.

retry_max
Type
integer

Default
10

The maximum interval in seconds between retry attempts.

port_detach_timeout

Type
integer

Default
300

Seconds to wait for a port to detach from an amphora.

allow_vip_network_id

Type
boolean

Default
True

Can users supply a network_id for their VIP?

allow_vip_subnet_id

Type

boolean

Default
True

Can users supply a subnet_id for their VIP?

allow_vip_port_id

Type

boolean

Default
True

Can users supply a port_id for their VIP?

1.2. Installation and Configuration Guides

81

Octavia Documentation, Release 17.1.0.dev41

valid_vip_networks
Type
list

Default
<None>

List of network_ids that are valid for VIP creation. If this field is empty, no validation is performed.

reserved_ips
Type
list

Default
['169.254.169.254"]

List of IP addresses reserved from being used for member addresses. IPv6 addresses should be in
expanded, uppercase form.

allow_invisible_resource_usage
Type
boolean

Default
False

When True, users can use network resources they cannot normally see as VIP or member subnets.
Making this True may allow users to access resources on subnets they do not normally have access
to via neutron RBAC policies.

neutron
endpoint
Type
string
Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

Warning

This option is deprecated for removal since 2023.2/Bobcat. Its value may be silently ignored
in the future.

Reason
The endpoint_override option defined by keystoneauthl is the new name for
this option.

endpoint_type

Type
string

1.2. Installation and Configuration Guides 82

Octavia Documentation, Release 17.1.0.dev41

Default
<None>

Endpoint interface in identity service to use

Warning

This option is deprecated for removal since 2023.2/Bobcat. Its value may be silently ignored
in the future.

Reason
This option was replaced by the valid_interfaces option defined by key-
stoneauth.

ca_certificates_file
Type
string

Default
<None>

CA certificates file path

Warning

This option is deprecated for removal since 2023.2/Bobcat. Its value may be silently ignored
in the future.

Reason
The cafile option defined by keystoneauth1 is the new name for this option.

cafile
Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type

string

Default
<None>

PEM encoded client certificate cert file
keyfile

Type

string

1.2. Installation and Configuration Guides 83

Octavia Documentation, Release 17.1.0.dev41

Default
<None>

PEM encoded client certificate key file

insecure

Type
boolean

Default
False

Verify HTTPS connections.

timeout

Type
integer

Default
<None>

Timeout value for http requests

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 10: Deprecated Variations

Group Name

neutron auth_plugin

1.2. Installation and Configuration Guides

84

Octavia Documentation, Release 17.1.0.dev41

auth_section
Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

auth_url

Type
unknown type

Default
<None>

Authentication URL

system_scope

Type
unknown type

Default
<None>

Scope for system operations

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type

unknown type

Default
<None>

Domain name to scope to

project_id

Type

unknown type

Default
<None>

Project ID to scope to

1.2. Installation and Configuration Guides

85

Octavia Documentation, Release 17.1.0.dev41

project_name

Type
unknown type

Default
<None>

Project name to scope to

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

default_domain_id
Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name
Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

1.2. Installation and Configuration Guides 86

Octavia Documentation, Release 17.1.0.dev41

user_id

Type
unknown type

Default
<None>

User’s user ID

username

Type
unknown type

Default
<None>

User’s username

Table 11: Deprecated Variations

Group Name

neutron user-name
neutron user_name

user_domain_id

Type
unknown type

Default
<None>

User’s domain ID

user_domain_name

Type

unknown type

Default
<None>

User’s domain name

password

Type

unknown type

Default
<None>

User’s password

tenant_id

Type

unknown type

1.2. Installation and Configuration Guides

87

Octavia Documentation, Release 17.1.0.dev41

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

service_type

Type
string

Default
<None>

The default service_type for endpoint URL discovery.

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

valid_interfaces
Type
list

Default
<None>

List of interfaces, in order of preference, for endpoint URL.

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

endpoint_override
Type
string

Default
<None>

1.2. Installation and Configuration Guides

88

Octavia Documentation, Release 17.1.0.dev41

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

version
Type
string

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

min_version
Type
string

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is "latest".

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

connect_retries

Type

integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay
Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

1.2. Installation and Configuration Guides 89

Octavia Documentation, Release 17.1.0.dev41

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

retriable_status_codes

Type

list

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

nova

service_name

Type
string

Default
<None>

The name of the nova service in the keystone catalog

endpoint

Type
string

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.
region_name
Type
string

Default
<None>

1.2. Installation and Configuration Guides 920

Octavia Documentation, Release 17.1.0.dev41

Region in Identity service catalog to use for communication with the OpenStack services.

endpoint_type

Type

string

Default
publicURL

Endpoint interface in identity service to use

ca_certificates_file

Type
string

Default
<None>

CA certificates file path

insecure

Type
boolean

Default
False

Disable certificate validation on SSL connections

enable_anti_affinity

Type
boolean

Default
False

Flag to indicate if nova anti-affinity feature is turned on. This option is only used when creating
amphorae in ACTIVE_STANDBY topology.

anti_affinity_policy

Type

string

Default
anti-affinity

Valid Values
anti-affinity, soft-anti-affinity

Sets the anti-affinity policy for nova

random_amphora_name_length

Type
integer

1.2. Installation and Configuration Guides 91

Octavia Documentation, Release 17.1.0.dev41

Default
0

If non-zero, generate a random name of the length provided for each amphora, in the format "a[A-
Z0-9]*". Otherwise, the default name format will be used: "amphora-{UUID}".

availability_zone

Type
string

Default
<None>

Awailability zone to use for creating Amphorae

oslo_messaging

topic

Type

string

Default
<None>

Topic (i.e. Queue) Name

oslo_messaging_kafka

kafka_max_fetch_bytes

Type
integer

Default
1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type
floating point

Default
1.0

Default timeout(s) for Kafka consumers

consumer_group

Type
string

Default
oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

1.2. Installation and Configuration Guides 92

Octavia Documentation, Release 17.1.0.dev41

producer_batch_timeout
Type
floating point

Default
0.0

Upper bound on the delay for KafkaProducer batching in seconds
producer_batch_size
Type
integer

Default
16384

Size of batch for the producer async send
compression_codec
Type
string

Default
none

Valid Values
none, gzip, snappy, 1z4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit
Type
boolean

Default
False

Enable asynchronous consumer commits

max_poll_records
Type
integer

Default
500

The maximum number of records returned in a poll call

security_protocol
Type
string

Default
PLAINTEXT

1.2. Installation and Configuration Guides 93

Octavia Documentation, Release 17.1.0.dev41

Valid Values
PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type
string

Default
PLAIN

Mechanism when security protocol is SASL

ssl_cafile

Type
string

Default

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type
string

Default

Client certificate PEM file used for authentication.

ssl_client_key_file

Type
string

Default

Client key PEM file used for authentication.

ssl_client_key_password

Type
string

Default

Client key password file used for authentication.

oslo_messaging_notifications

driver

Type

multi-valued

1.2. Installation and Configuration Guides

94

Octavia Documentation, Release 17.1.0.dev41

Default

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop
transport_url
Type
string
Default

<None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

topics
Type
list
Default
['notifications']
AMAQP topic used for OpenStack notifications.
retry
Type
integer
Default
-1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. O - No retry, -1 - indefinite

oslo_messaging_rabbit
amgp_durable_queues
Type
boolean
Default

False

Use durable queues in AMQP. If rabbit_quorum_queue is enabled, queues will be durable and this
value will be ignored.

amgp_auto_delete
Type
boolean

Default
False

Auto-delete queues in AMQP.

1.2. Installation and Configuration Guides 95

Octavia Documentation, Release 17.1.0.dev41

rpc_conn_pool_size

Type
integer

Default
30

Minimum Value
1

Size of RPC connection pool.

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

ssl

Type

boolean

Default
False

Connect over SSL.

ssl_version
Type
string

Default

SSL version to use (valid only if SSL enabled). Valid values are TLSv1l and SSLv23. SSLv2,

SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

ssl_key_file
Type
string

Default

1.2. Installation and Configuration Guides

96

Octavia Documentation, Release 17.1.0.dev41

SSL key file (valid only if SSL enabled).

ssl_cert_file
Type
string

Default

SSL cert file (valid only if SSL enabled).

ssl_ca_file

Type
string

Default

SSL certification authority file (valid only if SSL enabled).

ssl_enforce_£fips_mode

Type
boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode, an
exception will be raised.

heartbeat_in_pthread

Type
boolean

Default
False

(DEPRECATED) It is recommend not to use this option anymore. Run the health check heartbeat
thread through a native python thread by default. If this option is equal to False then the health
check heartbeat will inherit the execution model from the parent process. For example if the parent
process has monkey patched the stdlib by using eventlet/greenlet then the heartbeat will be run
through a green thread. This option should be set to True only for the wsgi services.

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The option is related to Eventlet which will be removed. In addition this
has never worked as expected with services using eventlet for core service
framework.

1.2. Installation and Configuration Guides 97

Octavia Documentation, Release 17.1.0.dev41

kombu_reconnect_delay
Type
floating point

Default
1.0

Minimum Value
0.0

Maximum Value
4.5

How long to wait (in seconds) before reconnecting in response to an AMQP consumer cancel
notification.

kombu_reconnect_splay

Type
floating point

Default
0.0

Minimum Value
0.0

Random time to wait for when reconnecting in response to an AMQP consumer cancel notification.

kombu_compression
Type
string

Default
<None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type

integer

Default
60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 12: Deprecated Variations

Group Name

oslo_messaging_rabbit kombu_reconnect_timeout

1.2. Installation and Configuration Guides 98

Octavia Documentation, Release 17.1.0.dev41

kombu_failover_strategy
Type
string

Default
round-robin

Valid Values
round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type

string

Default
AMQPLAIN

Valid Values
PLAIN, AMQPLAIN, EXTERNAL, RABBIT-CR-DEMO

The RabbitMQ login method.

rabbit_retry_interval

Type
integer

Default
1

Minimum Value
1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type
integer

Default
2

Minimum Value
0

How long to backoff for between retries when connecting to RabbitMQ.

rabbit_interval_max
Type
integer

Default
30

1.2. Installation and Configuration Guides 99

Octavia Documentation, Release 17.1.0.dev41

Minimum Value
1

Maximum interval of RabbitMQ connection retries.

rabbit_ha_queues

Type
boolean

Default
False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe
the RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-
policy argument when declaring a queue. If you just want to make sure that all queues (except
those with auto-generated names) are mirrored across all nodes, run: "rabbitmqctl set_policy HA
"A(Namg.).*” *{"ha-mode": "all"}” "

rabbit_quorum_queue

Type
boolean

Default
False

Use quorum queues in RabbitMQ (x-queue-type: quorum). The quorum queue is a modern queue
type for RabbitMQ implementing a durable, replicated FIFO queue based on the Raft consensus
algorithm. It is available as of RabbitMQ 3.8.0. If set this option will conflict with the HA queues
(rabbit_ha_queues) aka mirrored queues, in other words the HA queues should be disabled.
Quorum queues are also durable by default so the amqp_durable_queues option is ignored when
this option is enabled.

rabbit_transient_quorum_queue

Type
boolean

Default
False

Use quorum queues for transients queues in RabbitMQ. Enabling this option will then make sure
those queues are also using quorum kind of rabbit queues, which are HA by default.

rabbit_quorum_delivery_limit

Type

integer

Default
0

Each time a message is redelivered to a consumer, a counter is incremented. Once the redelivery
count exceeds the delivery limit the message gets dropped or dead-lettered (if a DLX exchange has
been configured) Used only when rabbit_quorum_queue is enabled, Default O which means dont
set a limit.

1.2. Installation and Configuration Guides 100

Octavia Documentation, Release 17.1.0.dev41

rabbit_quorum_max_memory_length

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of messages in the quorum queue.
Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set a limit.

rabbit_quorum_max_memory_bytes

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of memory bytes used by the
quorum queue. Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set
a limit.

rabbit_transient_queues_ttl

Type

integer

Default
1800

Minimum Value
0

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues. Setting 0 as value will disable the x-expires. If doing so, make sure you have
a rabbitmgq policy to delete the queues or you deployment will create an infinite number of queue
over time.In case rabbit_stream_fanout is set to True, this option will control data retention policy
(x-max-age) for messages in the fanout queue rather then the queue duration itself. So the oldest
data in the stream queue will be discarded from it once reaching TTL Setting to 0 will disable
x-max-age for stream which make stream grow indefinitely filling up the diskspace

rabbit_gos_prefetch_count

Type
integer

Default
0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

Type
integer

1.2. Installation and Configuration Guides 101

Octavia Documentation, Release 17.1.0.dev41

Default
60

Number of seconds after which the Rabbit broker is considered down if heartbeat’s keep-alive fails
(0 disables heartbeat).

heartbeat_rate
Type
integer

Default
3

How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

Type

boolean

Default
True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist. MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Mandatory flag no longer deactivable.

enable_cancel_on_failover
Type
boolean

Default
False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

use_queue_manager

Type
boolean

Default
False

Should we use consistant queue names or random ones

1.2. Installation and Configuration Guides 102

Octavia Documentation, Release 17.1.0.dev41

hostname

Type
string

Default
nodel.example.com

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Hostname used by queue manager. Defaults to the value returned by socket.gethostname().

processname

Type
string

Default
nova-api

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Process name used by queue manager

rabbit_stream_fanout

Type

boolean

Default
False

Use stream queues in RabbitMQ (x-queue-type: stream). Streams are a new persistent and repli-
cated data structure ("queue type") in RabbitMQ which models an append-only log with non-
destructive consumer semantics. It is available as of RabbitMQ 3.9.0. If set this option will replace
all fanout queues with only one stream queue.

oslo_middleware

max_request_body_size

Type
integer

Default
114688

The maximum body size for each request, in bytes.

quotas

default_load_balancer_quota
Type
integer

Default
-1

1.2. Installation and Configuration Guides 103

Octavia Documentation, Release 17.1.0.dev41

Default per project load balancer quota.

default_listener_quota

Type

integer

Default
-1

Default per project listener quota.

default_member_quota

Type
integer

Default
-1

Default per project member quota.

default_pool_quota

Type
integer

Default
-1

Default per project pool quota.

default_health_monitor_quota

Type
integer

Default
-1

Default per project health monitor quota.

default_l7policy_quota

Type
integer

Default
-1

Default per project 17policy quota.

default_l7rule_quota

Type
integer

Default
-1

Default per project 17rule quota.

1.2. Installation and Configuration Guides

104

Octavia Documentation, Release 17.1.0.dev41

service_auth

cafile
Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

insecure

Type
boolean

Default
False

Verify HTTPS connections.

timeout

Type
integer

Default
<None>

Timeout value for http requests

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

1.2. Installation and Configuration Guides

105

Octavia Documentation, Release 17.1.0.dev41

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 13: Deprecated Variations

Group Name

service_auth auth_plugin

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

auth_url

Type
unknown type

Default
<None>

Authentication URL

system_scope

Type
unknown type

Default
<None>

Scope for system operations

domain_id

Type
unknown type

1.2. Installation and Configuration Guides

106

Octavia Documentation, Release 17.1.0.dev41

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

project_id

Type
unknown type

Default
<None>

Project ID to scope to

project_name

Type
unknown type

Default
<None>

Project name to scope to

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project
project_domain_name
Type
unknown type

Default
<None>

Domain name containing project
trust_id
Type
unknown type

Default
<None>

1.2. Installation and Configuration Guides

107

Octavia Documentation, Release 17.1.0.dev41

ID of the trust to use as a trustee use

default_domain_id

Type

unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

user_id

Type
unknown type

Default
<None>

User’s user ID

username

Type
unknown type

Default
<None>

User’s username

Table 14: Deprecated Variations

Group Name

service_auth user-name
service_auth user_name

user_domain_id

Type
unknown type

Default
<None>

User’s domain ID

1.2. Installation and Configuration Guides 108

Octavia Documentation, Release 17.1.0.dev41

user_domain_name

Type
unknown type

Default
<None>

User’s domain name

password

Type
unknown type

Default
<None>

User’s password

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

task flow
engine
Type
string
Default
parallel
Valid Values

serial, parallel

TaskFlow engine to use.

Possible values

serial
Runs all tasks on a single thread

1.2. Installation and Configuration Guides

109

Octavia Documentation, Release 17.1.0.dev41

parallel
Schedules tasks onto different threads to allow for running non-dependent tasks simultane-
ously

max_workers
Type
integer

Default
5

The maximum number of workers

disable_revert
Type
boolean

Default
False

If True, disables the controller worker taskflow flows from reverting. This will leave resources in
an inconsistent state and should only be used for debugging purposes.

persistence_connection
Type
string

Default
sqlite://

Persistence database, which will be used to store tasks states. Database connection url with db
name

jobboard_enabled
Type
boolean

Default
False

If True, enables TaskFlow jobboard.

jobboard_backend_driver
Type
string

Default
redis_taskflow_driver

Valid Values
redis_taskflow_driver, zookeeper_taskflow_driver, etcd_taskflow_driver

Jobboard backend driver that will monitor job state.

1.2. Installation and Configuration Guides 110

Octavia Documentation, Release 17.1.0.dev41

Possible values

redis_taskflow_driver
Driver that will use Redis to store job states.

zookeeper_taskflow_driver

Driver that will use Zookeeper to store job states.

etcd_taskflow_driver
Driver that will user Etcd to store job states.

jobboard_backend_hosts

Type

list

Default
['127.0.0.1']

Jobboard backend server host(s).

jobboard_backend_port

Type

port number

Default
6379

Minimum Value
0

Maximum Value
65535

Jobboard backend server port

jobboard_backend_username

Type
string

Default
<None>

Jobboard backend server user name

jobboard_backend_password

Type
string

Default
<None>

Jobboard backend server password

jobboard_backend_namespace

Type
string

1.2. Installation and Configuration Guides

111

Octavia Documentation, Release 17.1.0.dev41

Default
octavia_jobboard

Jobboard name that should be used to store taskflow job id and claims for it.

jobboard_redis_backend_db

Type
integer

Default
0

Minimum Value
0

Database ID in redis server.

jobboard_redis_sentinel

Type
string

Default
<None>

Sentinel name if it is used for Redis.

jobboard_redis_sentinel_username

Type
string

Default
<None>

Redis Sentinel server user name

jobboard_redis_sentinel_password

Type
string

Default
<None>

Redis Sentinel server password

jobboard_redis_backend_ssl_options

Type
dict

Default
{'ssl': False, 'ssl_keyfile': None, 'ssl_certfile': None,
'ssl_ca_certs': None, 'ssl_cert_reqs': 'required'}

Redis jobboard backend ssl configuration options.

1.2. Installation and Configuration Guides 112

Octavia Documentation, Release 17.1.0.dev41

jobboard_redis_sentinel_ssl_options

Type
dict

Default
{'ssl': False, 'ssl_keyfile': None, 'ssl_certfile': None,
'ssl_ca_certs': None, 'ssl_cert_reqs': 'required'}

Redis sentinel ssl configuration options.

jobboard_zookeeper_ssl_options

Type
dict

Default
{'use_ssl': False, 'keyfile': None, 'keyfile_password':
None, 'certfile': None, 'verify_certs': True}

Zookeeper jobboard backend ssl configuration options.

jobboard_etcd_ssl_options

Type
dict

Default
{'use_ssl': False, 'ca_cert': None, 'cert_key': None,
'cert_cert': None}

Etcd jobboard backend ssl configuration options.

jobboard_etcd_timeout

Type

integer

Default
<None>

Timeout when communicating with the Etcd backend.
jobboard_etcd_api_path
Type
string

Default
<None>

API Path of the Etcd server.

jobboard_expiration_time
Type
integer

Default
30

1.2. Installation and Configuration Guides 113

Octavia Documentation, Release 17.1.0.dev41

For backends like redis claiming jobs requiring setting the expiry - how many seconds the claim
should be retained for.

jobboard_save_logbook

Type
boolean

Default
False

If for analysis required saving logbooks info, set this parameter to True. By default remove logbook
from persistence backend when job completed.

1.2.4 Octavia Policies

Warning

JSON formatted policy file is deprecated since Octavia 8.0.0 (Wallaby). This oslopolicy-convert-
json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML in a backward-
compatible way.

Octavia Advanced Role Based Access Control (RBAC)

Octavia adopted the "Advanced Role Based Access Control (RBAC)" default policies in the Pike release
of OpenStack. This provides a fine-grained default access control policy for the Octavia service.

The Octavia Advanced RBAC goes beyond the OpenStack legacy RBAC policies of allowing "owners
and admins" full access to all services. It also provides a more fine-grained RBAC policy than the newer
Keystone Default Roles .

The default policy is to not allow access unless the auth_strategy is 'noauth’.
Users must be a member of one of the following roles to have access to the load-balancer API:

role:load-balancer_observer
User has access to load-balancer read-only APIs.

role:load-balancer_global_observer
User has access to load-balancer read-only APIs including resources owned by others.

role:load-balancer_member
User has access to load-balancer read and write APISs.

role:load-balancer_quota_admin
User is considered an admin for quota APIs only.

role:load-balancer_admin
User is considered an admin for all load-balancer APIs including resources owned by others.

role:admin and system_scope:all
User is admin to all service APIs, including Octavia.

Note

1.2. Installation and Configuration Guides 114

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Octavia Documentation, Release 17.1.0.dev41

’is_admin:True’ is a policy rule that takes into account the auth_strategy == noauth configuration
setting. It is equivalent to ’rule:context_is_admin or {auth_strategy == noauth}’ if that would be
valid syntax.

These roles are in addition to the Keystone Default Roles:
* role:reader
* role:member

In addition, the Octavia API supports Keystone scoped tokens. When enabled in Oslo Policy, users will
need to present a token scoped to either the "system" or a specific "project”. See the section Upgrade
Considerations for more information.

See the section Managing Octavia User Roles for examples and advice on how to apply these RBAC
policies in production.

Legacy Admin or Owner Policy Override File

An alternate policy file has been provided in octavia/etc/policy called admin_or_owner-policy.yaml that
removes the load-balancer RBAC role requirement. Please see the README.rst in that directory for
more information.

This will drop the role requirements to allow access to all with the "admin" role or if the user is a member
of the project that created the resource. All users have access to the Octavia API to create and manage
load balancers under their project.

OpenStack Default Roles Policy Override File

An alternate policy file has been provided in octavia/etc/policy called keystone_default_roles-policy.yaml
that removes the load-balancer RBAC role requirement. Please see the README.rst in that directory for
more information.

This policy will honor the following Keystone Default Roles in the Octavia API:
* Admin
* Project scoped - Reader
* Project scoped - Member

In addition, there is an alternate policy file that enables system scoped tokens checking called
keystone_default_roles_scoped-policy.yaml.

* System scoped - Admin
* System scoped - Reader
* Project scoped - Reader

* Project scoped - Member

Managing Octavia User Roles
User and group roles are managed through the Keystone (identity) project.

A role can be added to a user with the following command:

1.2. Installation and Configuration Guides 115

https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Octavia Documentation, Release 17.1.0.dev41

An example where user "jane", in the "engineering" project, gets a new role "load-balancer_member":

[1

Keystone Group Roles

Roles can also be assigned to Keystone groups. This can simplify the management of user roles greatly.

For example, your cloud may have a "users" group defined in Keystone. This group is set up to have all
of the regular users of your cloud as a member. If you want all of your users to have access to the load
balancing service Octavia, you could add the "load-balancer_member" role to the "users" group:

[1

Upgrade Considerations

Starting with the Wallaby release of Octavia, Keystone token scopes and default roles can be enforced. By
default, in the Wallaby release, Oslo Policy will not be enforcing these new roles and scopes. However,
at some point in the future they may become the default. You may want to enable them now to be ready
for the later transition. This section will describe those settings.

The Oslo Policy project defines two configuration settings, among others, that can be set in the Octavia
configuration file to influence how policies are handled in the Octavia API. Those two settings are en-
force_scope and enforce_new_defaults.

[oslo_policy] enforce_scope

Keystone has introduced the concept of token scopes. Currently, Oslo Policy defaults to not enforce the
scope validation of a token for backward compatibility reasons.

The Octavia API supports enforcing the Keystone token scopes as of the Wallaby release. If you are
ready to start enforcing the Keystone token scope in the Octavia API you can add the following setting
to your Octavia API configuration file:

Currently the primary effect of this setting is to allow a system scoped admin token when performing
administrative API calls to the Octavia APIL. It will also allow system scoped reader tokens to have the
equivalent of the load-balancer_global_observer role.

The Octavia API already enforces the project scoping in Keystone tokens.

[oslo_policy] enforce_new_defaults

The Octavia Wallaby release added support for Keystone Default Roles in the default policies. The pre-
vious Octavia Advanced RBAC policies have now been deprecated in favor of the new policies requiring
one of the new Keystone Default Roles. Currently, Oslo Policy defaults to using the deprecated policies
that do not require the new Keystone Default Roles for backward compatibility.

1.2. Installation and Configuration Guides 116

https://docs.openstack.org/keystone/latest/admin/identity-concepts.html
https://docs.openstack.org/oslo.policy/latest
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_new_defaults
https://docs.openstack.org/keystone/latest/admin/tokens-overview.html#authorization-scopes
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Octavia Documentation, Release 17.1.0.dev41

The Octavia API supports requiring these new Keystone Default Roles as of the Wallaby release. If you
are ready to start requiring these roles you can enable the new policies by adding the following setting to
your Octavia API configuration file:

When the new default policies are enabled in the Octavia API, users with the load-balancer_observer role
will also require the Keystone default role of "role:reader”. Users with the load-balancer_member role
will also require the Keystone default role of "role:member".

Sample File Generation

To generate a sample policy.yaml file from the Octavia defaults, run the oslo policy generation script:

Merged File Generation

This will output a policy file which includes all registered policy defaults and all policies configured with
a policy file. This file shows the effective policy in use by the project:

This tool uses the output_file path from the config-file.

List Redundant Configurations

This will output a list of matches for policy rules that are defined in a configuration file where the rule
does not differ from a registered default rule. These are rules that can be removed from the policy file
with no change in effective policy:

Default Octavia Policies - API Effective Rules

This section will list the RBAC rules the Octavia API will use followed by a list of the roles that will be
allowed access.

Without enforce_scope and enforce_new_defaults:
¢ load-balancer:read

load-balancer_admin

load-balancer_global_observer

load-balancer_member and <project member>

load-balancer_observer and <project member>

role:admin

1.2. Installation and Configuration Guides 117

https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_new_defaults

Octavia Documentation, Release 17.1.0.dev41

* load-balancer:read-global
— load-balancer_admin
— load-balancer_global_observer
— role:admin
* load-balancer:write
— load-balancer_admin
— load-balancer_member and <project member>
— role:admin

* load-balancer:read-quota

load-balancer_admin

load-balancer_global_observer

load-balancer_member and <project member>

load-balancer_observer and <project member>

load-balancer_quota_admin

role:admin
* load-balancer:read-quota-global

load-balancer_admin

load-balancer_global_observer

load-balancer_quota_admin

role:admin
* load-balancer:write-quota
— load-balancer_admin
— load-balancer_quota_admin
— role:admin
With enforce_scope and enforce_new_defaults:
* load-balancer:read

load-balancer_admin

load-balancer_global_observer

load-balancer_member and <project member> and role:member

load-balancer_observer and <project member> and role:reader

role:admin and system_scope:all

role:reader and system_scope:all
* load-balancer:read-global

— load-balancer_admin

1.2. Installation and Configuration Guides 118

https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_new_defaults

Octavia Documentation, Release 17.1.0.dev41

— load-balancer_global_observer
— role:admin and system_scope:all
— role:reader and system_scope:all
* load-balancer:write
— load-balancer_admin
— load-balancer_member and <project member> and role:member
— role:admin and system_scope:all
* load-balancer:read-quota

load-balancer_admin

load-balancer_global_observer

load-balancer_member and <project member> and role:member

load-balancer_observer and <project member> and role:reader

load-balancer_quota_admin

role:admin and system_scope:all

role:reader and system_scope:all
* load-balancer:read-quota-global

load-balancer_admin

load-balancer_global_observer

load-balancer_quota_admin

role:admin and system_scope:all

role:reader and system_scope:all
* load-balancer:write-quota

— load-balancer_admin

— load-balancer_quota_admin

— role:admin and system_scope:all

Default Octavia Policies - Generated From The Octavia Code

(continues on next page)

1.2. Installation and Configuration Guides 119

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

—balancer:admin"

Intended scope(s): project

#"load-balancer:read-quota": '"rule:load-balancer:observer_and_owner or.
—rule:load-balancer:global_observer or rule:load-balancer:member_and_owner.
—or rule:load-balancer:quota-admin or rule:load-balancer:admin"

Intended scope(s): project
#"load-balancer:read-quota-global": "rule:load-balancer:global_observer or.
—rule:load-balancer:quota-admin or rule:load-balancer:admin"

Intended scope(s): project
#"load-balancer:write-quota": "rule:load-balancer:quota-admin or rule:load-
—balancer:admin"

Intended scope(s): project
#"project-member": "role:member and project_id:%(project_id)s"

Intended scope(s): project
#"project-reader": "role:reader and project_id:%(project_id)s"

Intended scope(s): project
#"context_is_admin": "role:admin"

DEPRECATED

"context_is_admin'":"role:admin or role:load-balancer_admin" has been
deprecated since W in favor of "context_is_admin':'"role:admin".

The Octavia API now requires the OpenStack default roles and scoped

tokens. See

https://docs.openstack.org/octavia/latest/configuration/policy.html

and https://docs.openstack.org/keystone/latest/contributor/services.

html#reusable-default-roles for more information.

Intended scope(s): project
#"load-balancer:admin': "is_admin:True or role:admin"

DEPRECATED

"load-balancer:admin':"is_admin:True or role:admin or role:load-

balancer_admin'" has been deprecated since W in favor of "load-

balancer:admin'":"is_admin:True or role:admin".

The Octavia API now requires the OpenStack default roles and scoped
tokens. See

https://docs.openstack.org/octavia/latest/configuration/policy.html
and https://docs.openstack.org/keystone/latest/contributor/services.
html#reusable-default-roles for more information.

Intended scope(s): project
#"service": "role:service"

(continues on next page)

1.2. Installation and Configuration Guides 120

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Intended scope(s): project
#"load-balancer:global_observer": "role:admin"

DEPRECATED

"load-balancer:global_observer":'"role:load-balancer_global_observer"
has been deprecated since W in favor of "load-

balancer:global_observer":"role:admin".

The Octavia API now requires the OpenStack default roles and scoped

tokens. See

https://docs.openstack.org/octavia/latest/configuration/policy.html

and https://docs.openstack.org/keystone/latest/contributor/services.

html#reusable-default-roles for more information.

Intended scope(s): project
#"load-balancer:member_and_owner": "rule:project-member"

DEPRECATED

"load-balancer:member_and_owner":'"role:load-balancer_member and

rule:load-balancer:owner" has been deprecated since W in favor of

"load-balancer:member_and_owner":"rule:project-member".

The Octavia API now requires the OpenStack default roles and scoped
tokens. See

https://docs.openstack.org/octavia/latest/configuration/policy.html
and https://docs.openstack.org/keystone/latest/contributor/services.
html#reusable-default-roles for more information.

Intended scope(s): project
#"load-balancer:observer_and_owner": "rule:project-reader"

DEPRECATED

"load-balancer:observer_and_owner":"role:load-balancer_observer and
rule:load-balancer:owner" has been deprecated since W in favor of

"load-balancer:observer_and_owner":"rule:project-reader".

The Octavia API now requires the OpenStack default roles and scoped
tokens. See

https://docs.openstack.org/octavia/latest/configuration/policy.html
and https://docs.openstack.org/keystone/latest/contributor/services.
html#reusable-default-roles for more information.

Intended scope(s): project
#"load-balancer:quota-admin": "role:admin"

DEPRECATED

"load-balancer:quota-admin":"role:load-balancer_quota_admin" has

been deprecated since W in favor of "load-balancer:quota-

admin'":"role:admin".

The Octavia API now requires the OpenStack default roles and scoped
tokens. See

https://docs.openstack.org/octavia/latest/configuration/policy.html

(continues on next page)

1.2. Installation and Configuration Guides 121

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

and https://docs.openstack.org/keystone/latest/contributor/services.
html#reusable-default-roles for more information.

Intended scope(s): project
#"load-balancer:owner": "project_id:%(project_id)s"

List Flavors
GET /v2.0/lbaas/flavors
#"os_load-balancer_api:flavor:get_all": "rule:load-balancer:read"

Create a Flavor
POST /v2.0/lbaas/flavors
#"os_load-balancer_api:flavor:post'": "rule:load-balancer:admin"

Update a Flavor
PUT /v2.0/lbaas/flavors/{flavor_id}
#"os_load-balancer_api:flavor:put": "rule:load-balancer:admin"

Show Flavor details
GET /v2.0/lbaas/flavors/{flavor_id}
#"os_load-balancer_api:flavor:get_one": "rule:load-balancer:read"

Remove a Flavor
DELETE /v2.0/lbaas/flavors/{flavor_id}
#"os_load-balancer_api:flavor:delete": "rule:load-balancer:admin"

List Flavor Profiles
GET /v2.0/lbaas/flavorprofiles
#"os_load-balancer_api:flavor-profile:get_all": "rule:load-balancer:admin"

Create a Flavor Profile
POST /v2.0/lbaas/flavorprofiles
#"os_load-balancer_api:flavor-profile:post": "rule:load-balancer:admin"

Update a Flavor Profile
PUT /v2.0/lbaas/flavorprofiles/{flavor_profile_id}
#"os_load-balancer_api:flavor-profile:put": "rule:load-balancer:admin"

Show Flavor Profile details
GET /v2.0/lbaas/flavorprofiles/{flavor_profile_id}
#"os_load-balancer_api:flavor-profile:get_one": "rule:load-balancer:admin"

Remove a Flavor Profile
DELETE /v2.0/lbaas/flavorprofiles/{flavor_profile_id}
#"os_load-balancer_api: flavor-profile:delete": "rule:load-balancer:admin"

List Availability Zones
GET /v2.0/lbaas/availabilityzones
#"os_load-balancer_api:availability-zone:get_all": "rule:load-balancer:read"

(continues on next page)

1.2. Installation and Configuration Guides 122

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Create an Availability Zone
POST /v2.0/lbaas/availabilityzones
#"os_load-balancer_api:availability-zone:post": "rule:load-balancer:admin"

Update an Availability Zone
PUT /v2.0/lbaas/availabilityzones/{availability_zone_id}
#"os_load-balancer_api:availability-zone:put": "rule:load-balancer:admin"

Show Availability Zone details
GET /v2.0/lbaas/availabilityzones/{availability_zone_id}
#"os_load-balancer_api:availability-zone:get_one": "rule:load-balancer:read"

Remove an Availability Zone
DELETE /v2.0/lbaas/availabilityzones/{availability_zone_id}
#"os_load-balancer_api:availability-zone:delete": "rule:load-balancer:admin"

List Availability Zones

GET /v2.0/lbaas/availabilityzoneprofiles
#"os_load-balancer_api:availability-zone-profile:get_all": "rule:load-
—balancer:admin"

Create an Availability Zone

POST /v2.0/lbaas/availabilityzoneprofiles
#"os_load-balancer_api:availability-zone-profile:post": "rule:load-
—balancer:admin"

Update an Availability Zone

PUT /v2.0/lbaas/availabilityzoneprofiles/{availability_zone_profile_id}
#"os_load-balancer_api:availability-zone-profile:put": "rule:load-
—balancer:admin"

Show Availability Zone details

GET /v2.0/lbaas/availabilityzoneprofiles/{availability_zone_profile_id}
#"os_load-balancer_api:availability-zone-profile:get_one": "rule:load-
—balancer:admin"

Remove an Availability Zone

DELETE /v2.0/lbaas/availabilityzoneprofiles/{availability_zone_profile_id}
#"os_load-balancer_api:availability-zone-profile:delete": "rule:load-
—balancer:admin"

List Health Monitors of a Pool
GET /v2/lbaas/healthmonitors
#"os_load-balancer_api:healthmonitor:get_all": "rule:load-balancer:read"

List Health Monitors including resources owned by others
GET /v2/1lbaas/healthmonitors
#"os_load-balancer_api:healthmonitor:get_all-global": "rule:load-

(continues on next page)

1.2. Installation and Configuration Guides 123

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

—balancer:read-global"

Create a Health Monitor
POST /v2/lbaas/healthmonitors
#"os_load-balancer_api:healthmonitor:post": "rule:load-balancer:write"

Show Health Monitor details
GET /v2/lbaas/healthmonitors/{healthmonitor_id}
#"os_load-balancer_api:healthmonitor:get_one": "rule:load-balancer:read"

Update a Health Monitor
PUT /v2/lbaas/healthmonitors/{healthmonitor_id}
#"os_load-balancer_api:healthmonitor:put": "rule:load-balancer:write"

Remove a Health Monitor
DELETE /vZ2/lbaas/healthmonitors/{healthmonitor_id}
#"os_load-balancer_api:healthmonitor:delete": "rule:load-balancer:write"

List L7 Policys
GET /v2/1baas/l17policies
#"os_load-balancer_api:17policy:get_all": "rule:load-balancer:read"

List L7 Policys including resources owned by others

GET /v2/1baas/l17policies
#"os_load-balancer_api:17policy:get_all-global": "rule:load-balancer:read-
—~global"

Create a L7 Policy
POST /v2/lbaas/17policies
#"os_load-balancer_api:17policy:post": "rule:load-balancer:write"

Show L7 Policy details
GET /v2/1baas/17policies/{17policy_id}
#"os_load-balancer_api:17policy:get_one": "rule:load-balancer:read"

Update a L7 Policy
PUT /v2/1baas/17policies/{17policy_id}
#"os_load-balancer_api:17policy:put”: "rule:load-balancer:write"

Remove a L7 Policy
DELETE /v2/lbaas/17policies/{17policy_id}
#"os_load-balancer_api:1l7policy:delete": "rule:load-balancer:write"

List L7 Rules
GET /v2/lbaas/l17policies/{17policy_id}/rules
#"os_load-balancer_api:17rule:get_all": "rule:load-balancer:read"

Create a L7 Rule
POST /v2/lbaas/17policies/{l17policy_id}/rules

(continues on next page)

1.2. Installation and Configuration Guides 124

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

#"os_load-balancer_api:17rule:post": "rule:load-balancer:write"

Show L7 Rule details
GET /v2/1baas/17policies/{17policy_id}/rules/{17rule_id}
#"os_load-balancer_api:l7rule:get_one": "rule:load-balancer:read"

Update a L7 Rule
PUT /v2/lbaas/17policies/{17policy_id}/rules/{17rule_id}
#"os_load-balancer_api:l7rule:put": "rule:load-balancer:write"

Remove a L7 Rule
DELETE /v2/lbaas/l7policies/{17policy_id}/rules/{17rule_id}
#"os_load-balancer_api:l7rule:delete": "rule:load-balancer:write"

List Listeners
GET /v2/lbaas/listeners
#"os_load-balancer_api:listener:get_all": "rule:load-balancer:read"

List Listeners including resources owned by others

GET /v2/lbaas/listeners
#"os_load-balancer_api:listener:get_all-global": "rule:load-balancer:read-
—~global"

Create a Listener
POST /v2/lbaas/listeners
#"os_load-balancer_api:listener:post": "rule:load-balancer:write"

Show Listener details
GET /v2/lbaas/listeners/{listener_id}
#"os_load-balancer_api:listener:get_one": "rule:load-balancer:read"

Update a Listener
PUT /v2/lbaas/listeners/{listener_id}
#"os_load-balancer_api:listener:put”: "rule:load-balancer:write"

Remove a Listener
DELETE /v2/lbaas/listeners/{listener_id}
#"os_load-balancer_api:listener:delete"”: "rule:load-balancer:write"

Show Listener statistics
GET /v2/lbaas/listeners/{listener_id}/stats
#"os_load-balancer_api:listener:get_stats": "rule:load-balancer:read"

List Load Balancers
GET /v2/lbaas/loadbalancers
#"os_load-balancer_api:loadbalancer:get_all": "rule:load-balancer:read"

List Load Balancers including resources owned by others
GET /v2/lbaas/loadbalancers

(continues on next page)

1.2. Installation and Configuration Guides 125

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

#"os_load-balancer_api:loadbalancer:get_all-global": "rule:load-balancer:read-
—~global"

Create a Load Balancer
POST /v2/1baas/loadbalancers
#"os_load-balancer_api:loadbalancer:post": "rule:load-balancer:write"

Create a Load Balancer with VIP Security Groups

POST /v2/1baas/loadbalancers
#"os_load-balancer_api:loadbalancer:post:vip_sg_ids": "rule:load-
—balancer:write"

Show Load Balancer details
GET /v2/lbaas/loadbalancers/{loadbalancer_id}
#"os_load-balancer_api:loadbalancer:get_one": "rule:load-balancer:read"

Update a Load Balancer
PUT /v2/1baas/loadbalancers/{loadbalancer_id}
#"os_load-balancer_api:loadbalancer:put": "rule:load-balancer:write"

Update the VIP Security Groups of a Load Balancer
PUT /v2/1lbaas/loadbalancers/{loadbalancer_id}
#"os_load-balancer_api:loadbalancer:put:vip_sg_ids": "rule:load-balancer:write

n
—

Remove a Load Balancer
DELETE /v2/lbaas/loadbalancers/{loadbalancer_id}
#"os_load-balancer_api:loadbalancer:delete": "rule:load-balancer:write"

Show Load Balancer statistics
GET /v2/lbaas/loadbalancers/{loadbalancer_id}/stats
#"os_load-balancer_api:loadbalancer:get_stats": "rule:load-balancer:read"

Show Load Balancer status
GET /v2/lbaas/loadbalancers/{loadbalancer_id}/status
#"os_load-balancer_api:loadbalancer:get_status": "rule:load-balancer:read"

Failover a Load Balancer
PUT /v2/lbaas/loadbalancers/{loadbalancer_id}/failover
#"os_load-balancer_api:loadbalancer:put_failover": "rule:load-balancer:admin"

List Members of a Pool

GET /v2/1baas/pools/{pool_id}/members
#"os_load-balancer_api:member:get_all": "rule:load-balancer:read or.
wrule:service"

Create a Member
POST /v2/1lbaas/pools/{pool_id}/members
#"os_load-balancer_api:member:post': "rule:load-balancer:write"

(continues on next page)

1.2. Installation and Configuration Guides 126

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Show Member details
GET /v2/1baas/pools/{pool_id} /members/{member_id}
#"os_load-balancer_api:member:get_one": "rule:load-balancer:read"

Update a Member
PUT /v2/1baas/pools/{pool_id} /members/{member_id}
#"os_load-balancer_api:member:put": "rule:load-balancer:write"

Remove a Member
DELETE /v2/lbaas/pools/{pool_id}/members/{member_id}
#"os_load-balancer_api:member:delete": "rule:load-balancer:write"

List Pools
GET /v2/1baas/pools
#"os_load-balancer_api:pool:get_all": "rule:load-balancer:read"

List Pools including resources owned by others
GET /v2/1baas/pools
#"os_load-balancer_api:pool:get_all-global": "rule:load-balancer:read-global"

Create a Pool
POST /v2/lbaas/pools
#"os_load-balancer_api:pool:post": "rule:load-balancer:write"

Show Pool details
GET /v2/lbaas/pools/{pool_id}
#"os_load-balancer_api:pool:get_one": "rule:load-balancer:read"

Update a Pool
PUT /v2/1baas/pools/{pool_id}
#"os_load-balancer_api:pool:put": "rule:load-balancer:write"

Remove a Pool
DELETE /v2/lbaas/pools/{pool_id}
#"os_load-balancer_api:pool:delete"”: "rule:load-balancer:write"

List enabled providers
GET /v2/lbaas/providers
#"os_load-balancer_api:provider:get_all": "rule:load-balancer:read"

List Quotas
GET /v2/lbaas/quotas
#"os_load-balancer_api:quota:get_all": "rule:load-balancer:read-quota"

List Quotas including resources owned by others

GET /v2/lbaas/quotas

#"os_load-balancer_api:quota:get_all-global": "rule:load-balancer:read-quota-
—global"

(continues on next page)

1.2. Installation and Configuration Guides 127

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Show Quota details
GET /v2/lbaas/quotas/{project_id}
#"os_load-balancer_api:quota:get_one": "rule:load-balancer:read-quota"

Update a Quota
PUT /v2/lbaas/quotas/{project_id}
#"os_load-balancer_api:quota:put"”: "rule:load-balancer:write-quota"

Reset a Quota
DELETE /v2/lbaas/quotas/{project_id}
#"os_load-balancer_api:quota:delete": '"rule:load-balancer:write-quota"

Show Default Quota for a Project
GET /v2/lbaas/quotas/{project_id}/default
#"os_load-balancer_api:quota:get_defaults": "rule:load-balancer:read-quota"

List Amphorae
GET /v2/octavia/amphorae
#"os_load-balancer_api:amphora:get_all": "rule:load-balancer:admin"

Show Amphora details
GET /v2/octavia/amphorae/{amphora_id}
#"os_load-balancer_api:amphora:get_one": "rule:load-balancer:admin"

Delete an Amphora
DELETE /v2/octavia/amphorae/{amphora_id}
#"os_load-balancer_api:amphora:delete": "rule:load-balancer:admin"

Update Amphora Agent Configuration
PUT /v2/octavia/amphorae/{amphora_id}/config
#"os_load-balancer_api:amphora:put_config": "rule:load-balancer:admin"

Failover Amphora
PUT /v2/octavia/amphorae/{amphora_id}/failover
#"os_load-balancer_api:amphora:put_failover": "rule:load-balancer:admin"

Show Amphora statistics
GET /v2/octavia/amphorae/{amphora_id}/stats
#"os_load-balancer_api:amphora:get_stats": "rule:load-balancer:admin"

List the provider flavor capabilities.
GET /v2/lbaas/providers/{provider}/flavor_capabilities
#"os_load-balancer_api:provider-flavor:get_all": "rule:load-balancer:admin"

List the provider availability zone capabilities.

GET /v2/lbaas/providers/{provider}/availability_zone_capabilities
#"os_load-balancer_api:provider-availability-zone:get_all": "rule:load-
—balancer:admin"

1.2. Installation and Configuration Guides 128

Octavia Documentation, Release 17.1.0.dev41

1.3 Optional Installation and Configuration Guides

1.3.1 Available Provider Drivers

Octavia supports enabling multiple provider drivers via the Octavia v2 API. Drivers, other than the ref-
erence Amphora driver, exist outside of the Octavia repository and are not maintained by the Octavia
team. This list is intended to provide a place for operators to discover and find available load balancing
provider drivers.

This list is a ""best effort' to keep updated, so please check with your favorite load balancer provider to
see if they support OpenStack load balancing. If they don’t, make a request for support!

Note

The provider drivers listed here may not be maintained by the OpenStack LBaaS (Octavia) team.
Please submit bugs for these projects through their respective bug tracking systems.

Drivers are installed on all of your Octavia API instances using pip and automatically integrated with
Octavia using setuptools entry points. Once installed, operators can enable the provider by adding the
provider to the Octavia configuration file enabled_provider_drivers setting in the [api_settings] section.
Be sure to install and enable the provider on all of your Octavia API instances.

A10 Networks OpenStack Octavia Driver

A10 Networks Octavia Driver for Thunder, vThunder and AX Series Appliances.
Default provider name: al0

The driver source: https://github.com/alOnetworks/al0-octavia/

The documentation: https://github.com/alOnetworks/al0-octavia/

Where to report issues with the driver: Contact A10 Networks

Amphora

This is the reference driver for Octavia, meaning it is used for testing the Octavia code base. It is an open
source, scalable, and highly available load balancing provider. It adopts taskflow jobboard feature and
saves task states into the persistence backend, this allows to continue task execution if controller work
was interrupted.

Default provider name: amphora

The driver package: https://pypi.org/project/octavia/

The driver source: https://opendev.org/openstack/octavia/
The documentation: https://docs.openstack.org/octavia/latest/

Where to report issues with the driver: https://launchpad.net/octavia

F5 Networks Provider Driver for OpenStack Octavia by SAP SE
F5 Networks Provider Driver for OpenStack Octavia provided by SAP SE.
Default provider name: f5

The driver source: https://github.com/sapcc/octavia-f5-provider-driver

1.3. Optional Installation and Configuration Guides 129

http://setuptools.readthedocs.io/en/latest/pkg_resources.html?#entry-points
https://docs.openstack.org/octavia/latest/configuration/configref.html#api_settings.enabled_provider_drivers
https://github.com/a10networks/a10-octavia/
https://github.com/a10networks/a10-octavia/
https://pypi.org/project/octavia/
https://opendev.org/openstack/octavia/
https://docs.openstack.org/octavia/latest/
https://launchpad.net/octavia
https://github.com/sapcc/octavia-f5-provider-driver

Octavia Documentation, Release 17.1.0.dev41

Where to report issues with the driver: Contact SAP SE

OVN Octavia Provider Driver

OVN provides virtual networking for Open vSwitch and is a component of the Open vSwitch project.
This project provides integration between OpenStack Octavia and OVN.

Default provider name: ovn

The driver package: https://pypi.org/project/ovn-octavia-provider/

The driver source: https://opendev.org/openstack/ovn-octavia-provider

The documentation: https://docs.openstack.org/ovn-octavia-provider/latest/
Where to report issues with the driver: https://bugs.launchpad.net/neutron/+bugs?field.tag=
ovn-octavia-provider

Radware Provider Driver for OpenStack Octavia

Radware provider driver for OpenStack Octavia.

Default provider name: radware

The driver package: https://pypi.org/project/radware_octavia_rocky_driver/
The documentation: https://pypi.org/project/radware_octavia_rocky_driver/

Where to report issues with the driver: Contact Radware

VMware NSX

VMware NSX Octavia Driver.

Default provider name: vmwareedge

The driver package: https://pypi.org/project/vmware-nsx/
The driver source: https://opendev.org/x/vmware-nsx

Where to report issues with the driver: https://bugs.launchpad.net/vmware-nsx

1.3.2 Octavia Amphora Log Offloading
The default logging configuration will store the logs locally, on the amphora filesystem with file rotation.

Octavia Amphorae can offload their log files via the syslog protocol to syslog receivers via the load
balancer management network (Ib-mgmt-net). This allows log aggregation of both administrative logs
and also tenant traffic flow logs. The syslog receivers can either be local to the load balancer management
network or routable via the load balancer management network. By default any syslog receiver that
supports UDP or TCP syslog protocol can be used, however the operator also has the option to create an
override rsyslog configuration template to enable other features or protocols their Amphora image may
support.

This guide will discuss the features of Amphora log offloading and how to configure them.

1.3. Optional Installation and Configuration Guides 130

https://pypi.org/project/ovn-octavia-provider/
https://opendev.org/openstack/ovn-octavia-provider
https://docs.openstack.org/ovn-octavia-provider/latest/
https://bugs.launchpad.net/neutron/+bugs?field.tag=ovn-octavia-provider
https://bugs.launchpad.net/neutron/+bugs?field.tag=ovn-octavia-provider
https://pypi.org/project/radware_octavia_rocky_driver/
https://pypi.org/project/radware_octavia_rocky_driver/
https://pypi.org/project/vmware-nsx/
https://opendev.org/x/vmware-nsx
https://bugs.launchpad.net/vmware-nsx

Octavia Documentation, Release 17.1.0.dev41

Administrative Logs

The administrative log offloading feature of the Amphora covers all of the system logging inside the
Amphora except for the tenant flow logs. Tenant flow logs can be sent to and processed by the same
syslog receiver used by the administrative logs, but they are configured separately.

All administrative log messages will be sent using the native log format for the application sending the

message.

Enabling Administrative Log Offloading

One or more syslog receiver endpoints must be configured in the Octavia configuration file to enable ad-
ministrative log offloading. The first endpoint will be the primary endpoint to receive the syslog packets.
Read the Failover Considerations section for information about how to use multiple target servers.

To configure administrative log offloading, set the following setting in your Octavia configuration file for
all of the controllers and restart them:

In this example, the syslog receiver will be 192.0.2.1 on port 10514. If log_protocol is not specified UDP
will be used.

Note

Make sure your syslog receiver endpoints are accessible from the load balancer management net-
work and you have configured the required security group or firewall rules to allow the traffic. These
endpoints can be routable addresses from the load balancer management network.

The load balancer related administrative logs will be sent using a LOG_LOCAL[0-7] facility. The facility
number defaults to 1, but is configurable using the administrative_log_facility setting in the Octavia
configuration file.

To configure administrative log facility, set the following setting in your Octavia configuration file for all
of the controllers and restart them:

Forwarding All Administrative Logs

By default, the Amphorae will only forward load balancer related administrative logs, such as the haproxy
admin logs, keepalived, and Amphora agent logs. You can optionally configure the Amphorae to send
all of the administrative logs from the Amphora, such as the kernel, system, and security logs. Even with
this setting the tenant flow logs will not be included. You can configure tenant flow log forwarding in the
Tenant Flow Logs section.

The load balancer related administrative logs will be sent using the LOG_LOCALJ[0-7] configured using
the administrative_log_facility setting. All other administrative log messages will use their native syslog
facilities.

To configure the Amphorae to forward all administrative logs, set the following setting in your Octavia
configuration file for all of the controllers and restart them:

1.3. Optional Installation and Configuration Guides 131

Octavia Documentation, Release 17.1.0.dev41

Tenant Flow Logs

Enabling Tenant Flow Log Offloading

One or more syslog receiver endpoints must be configured in the Octavia configuration file to enable
tenant flow log offloading. The first endpoint will be the primary endpoint to receive the syslog packets.
The endpoints configured for tenant flow log offloading may be the same endpoints as the administrative
log offloading configuration. Read the Failover Considerations section for information about how to use
multiple target servers.

Warning

Tenant flow logging can produce a large number of syslog messages depending on how many con-
nections the load balancers are receiving. Tenant flow logging produces one log entry per connection
to the load balancer. We recommend you monitor, size, and configure your syslog receivers appro-
priately based on the expected number of connections your load balancers will be handling.

To configure tenant flow log offloading, set the following setting in your Octavia configuration file for all
of the controllers and restart them:

In this example, the syslog receiver will be 192.0.2.1 on port 10514. If log_protocol is not specified UDP
will be used.

Note

Make sure your syslog receiver endpoints are accessible from the load balancer management net-
work and you have configured the required security group or firewall rules to allow the traffic. These
endpoints can be routable addresses from the load balancer management network.

The load balancer related tenant flow logs will be sent using a LOG_LOCAL[0-7] facility. The facility
number defaults to 0, but is configurable using the user_log_facility setting in the Octavia configuration
file.

To configure the tenant flow log facility, set the following setting in your Octavia configuration file for
all of the controllers and restart them:

1.3. Optional Installation and Configuration Guides 132

Octavia Documentation, Release 17.1.0.dev41

Tenant Flow Log Format

The default tenant flow log format is:

Any field that is unknown or not applicable to the connection will have a ’-’ character in its place.

An example log entry when using rsyslog as the syslog receiver is:

Note

The prefix[1] in this example comes from the rsyslog receiver and is not part of the syslog message
from the amphora.

[1] "Jun 12 00:44:13 amphora-3e0239c3-5496-4215-b76c-6abbel18de573 haproxy[1644]:"

A

Custom Tenant Flow Log Format

You can optionally specify a custom log format for the tenant flow logs. This string follows the HAProxy
log format variables with the exception of the "{{ project_id }}" and "{{ 1b_id }}" variables that will be
replaced by the Octavia Amphora driver. These custom variables are optional.

See the HAProxy documentation for Custom log format variable definitions.

To configure a custom log format, set the following setting in your Octavia configuration file for all of
the controllers and restart them:

Failover Considerations

In order to provide protection against potential data loss because of downtime of a single syslog server,
it may be a advisable to use multiple log targets. In such configuration log_protocol needs to be set to
TCP. With the UDP syslog protocol, RSyslog is unable to detect if the primary endpoint has failed.

Also pay attention to the log_retry_count and log_retry_interval settings when using multiple log targets.
You might want to set log_retry_count to 0 and use a higher value for log_retry_interval. Values up to
1800 (30 minutes) are possible. That way the failover will happen immediately after the client detects that
the server became unavailable. In such case, that server won’t be used again for at least log_retry_interval
seconds after that event. In the following example the primary syslog receiver will be 192.0.2.1 on port
10514. The backup syslog receiver will be 2001:db8:1::10 on port 10514.

1.3. Optional Installation and Configuration Guides 133

http://cbonte.github.io/haproxy-dconv/1.9/configuration.html#8.2.4

Octavia Documentation, Release 17.1.0.dev41

Disabling Logging

There may be cases where you need to disable logging inside the Amphora, such as complying with
regulatory standards. Octavia provides multiple options for disabling Amphora logging.

Disable Local Log Storage

This setting stops log entries from being written to the disk inside the Amphora. Logs can still be sent
via Amphora log offloading if log offloading is configured for the Amphorae. Enabling this setting may
provide a performance benefit to the load balancer.

Warning

This feature disables ALL log storage in the Amphora, including kernel, system, and security logging.

Note

If you enable this setting and are not using Amphora log offloading, we recommend you also Disable
Tenant Flow Logging to improve load balancing performance.

To disable local log storage in the Amphora, set the following setting in your Octavia configuration file
for all of the controllers and restart them:

Disable Tenant Flow Logging

This setting allows you to disable tenant flow logging irrespective of the other logging configuration
settings. It will take precedent over the other settings. When this setting is enabled, no tenant flow
(connection) logs will be written to the disk inside the Amphora or be sent via the Amphora log offloading.

Note

Disabling tenant flow logging can also improve the load balancing performance of the amphora. Due
to the potential performance improvement, we recommend you enable this setting when using the
Disable Local Log Storage setting.

To disable tenant flow logging, set the following setting in your Octavia configuration file for all of the
controllers and restart them:

1.3. Optional Installation and Configuration Guides 134

Octavia Documentation, Release 17.1.0.dev41

1.3.3 Octavia API Auditing

The keystonemiddleware audit middleware supports delivery of Cloud Auditing Data Federation (CADF)
audit events via Oslo messaging notifier capability. Based on notification_driver configuration, audit
events can be routed to messaging infrastructure (notification_driver = messagingv2) or can be routed to
a log file (notification_driver = log).

More information about the CADF format can be found on the DMTF Cloud Auditing Data Federation
website.

Audit middleware creates two events per REST API interaction. First event has information extracted
from request data and the second one has request outcome (response).
Configuring Octavia API Auditing

Auditing can be enabled by making the following changes to the Octavia configuration file on your Oc-
tavia API instance(s).

1. Enable auditing:

L

2. Optionally specify the location of the audit map file:

The default audit map file location is /etc/octavia/octavia_api_audit_map.conf.

3. Copy the audit map file from the octavia/etc/audit directory to the location specified in the previous
step. A sample file has been provided in octavia/etc/audit/octavia_api_audit_map.conf.sample.

4. Optionally specify the REST HTTP methods you do not want to audit:

5. Specify the driver to use for sending the audit notifications:

Driver options are: messaging, messagingv2, routing, log, noop

6. Optionally specify the messaging topic:

1.3. Optional Installation and Configuration Guides 135

https://docs.openstack.org/keystonemiddleware/latest/audit.html
https://www.dmtf.org/standards/cadf
https://www.dmtf.org/standards/cadf

Octavia Documentation, Release 17.1.0.dev41

.

7. Optionally specify the messaging transport URL:

8. Restart your Octavia API processes.

Sampe Audit Events

Request
"event_type": "audit.http.request"
"timestamp": "2018-10-11 22:42:22.721025"
"payload"

"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event"
"eventTime": "2018-10-11T22:42:22.720112+0000"

"target"
"id": "octavia"
"typeURI": "service/load-balancer/loadbalancers"
"addresses™
"url": "http://10.21.21.53/load-balancer"
"name": "admin"

"url": "http://10.21.21.53/load-balancer"”
"name": "private"

"url": "http://10.21.21.53/1load-balancer"”

"name": "public"
"name": "octavia"
"observer"

llidll lltarge_tll

"tags" "correlation_id?value=e5b34bc3-4837-54fa-9892-8e65a9%9a2e73a"
"eventType": "activity"
"initiator"
"typeURI": "service/security/account/user"
"name": "admin"
"credential™
"token": "FHFHE"
"identity_status": "Confirmed"

"hOSt n

"agent": "openstacksdk/0.17.2 keystoneauthl/3.11.0 python-requests/2.
(continues on next page)

1.3. Optional Installation and Configuration Guides 136

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

—19.1 CPython/2.7.12"
"address": "10.21.21.53"

"project_id": "90168d185e504b5580884a235ba31612"
"id": "2af901396a424d5ca9dffa725226e8c7"

"action": "read/list"

"outcome": "pending"

"id": "8cfl4af5-246e-5739-alle-513cal3b7d36"
"requestPath": "/load-balancer/v2.0/lbaas/loadbalancers"

"priority": "INFO"
"publisher_id": "uwsgi"
"message_id": "63264e0e-e60f-4adc-a656-0d87ab5d6329"

Response
"event_type": "audit.http.response"
"timestamp": "2018-10-11 22:42:22.853129"
"payload"

"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event"
"eventTime": "2018-10-11T22:42:22.720112+0000"

"target"
"id": "octavia"
"typeURI": "service/load-balancer/loadbalancers"”
"addresses™
"url": "http://10.21.21.53/load-balancer"
"name": "admin"

"url": "http://10.21.21.53/load-balancer"”
"name": "private"

"url": "http://10.21.21.53/load-balancer"

"name": "public"
"name": "octavia"
"observer"

llidll Htarge_tll

"tags" "correlation_id?value=e5b34bc3-4837-54fa-9892-8e65a9%9a2e73a"
"eventType": "activity"
"initiator"
"typeURI": "service/security/account/user"
"name": "admin"
"credential™
"token" Wkt

(continues on next page)

1.3. Optional Installation and Configuration Guides 137

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

1.3.4 Octavia API Health Monitoring

The Octavia API provides a health monitoring endpoint that can be used by external load balancers to
manage the Octavia API pool. When properly configured, the health monitoring endpoint will reflect the
full operational status of the Octavia API.

The Octavia API health monitoring endpoint extends the OpenStack Oslo middleware healthcheck library
to test the Octavia Pecan API framework and associated services.

Oslo Healthcheck Queries

Oslo middleware healthcheck supports HTTP "GET'" and "HEAD'" methods.

The response from Oslo middleware healthcheck can be customized by specifying the acceptable re-
sponse type for the request.

Oslo middleware healthcheck currently supports the following types:
* text/plain

e text/html

1.3. Optional Installation and Configuration Guides 138

https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html

Octavia Documentation, Release 17.1.0.dev41

* application/json

If the requested type is not one of the above, it defaults to text/plain.

Note

The content of the response "reasons" will vary based on the backend plugins enabled in Oslo mid-
dleware healthcheck. It is a best practice to only rely on the HTTP status code for Octavia API health
monitoring.

Example Responses

Example passing output for text/plain with detailed False:

$ curl -i http://198.51.100.10/load-balancer/healthcheck

HTTP/1.1 OK

Date: Mon, Mar :10:27 GMT
Server: Apache/2.4.29 Ubuntu
Content-Type: text/plain UTF-8

Content-Length:

x-openstack-request-id: req-9c6f4303-63a7-4£30-8afc-39340658702f
Connection: close

Vary: Accept-Encoding

OK

Example failing output for text/plain with detailed False:

$ curl -i http://198.51.100.10/load-balancer/healthcheck

HTTP/1.1 Service Unavailable

Date: Mon, Mar :42:12 GMT
Server: Apache/2.4.29 Ubuntu
Content-Type: text/plain UTF-8

Content-Length:
x-openstack-request-id: req-84024269-2dfb-41ad-bfda-b3eldal38bba
Connection: close

Example passing output for text/html with detailed False:

$ curl -i -H http://198.51.100.10/1load-balancer/
—healthcheck

HTTP/1.1 OK

Date: Mon, Mar :25:11 GMT

Server: Apache/2.4.29 Ubuntu

Content-Type: text/html UTF-8

Content-Length:
x-openstack-request-id: req-b212d619-146f-4b50-91a3-5dal6051badc
Connection: close

(continues on next page)

1.3. Optional Installation and Configuration Guides 139

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Vary: Accept-Encoding

<HTML>
<HEAD><TITLE>Healthcheck Status</TITLE></HEAD>
<BODY>

<H2>Result of 1 checks:</H2>

<TABLE >
<TBODY>

<TR>

<TH>
Reason
</TH>
</TR>
<TR>

<TD>0K</TD>

</TR>
</TBODY>
</TABLE>
<HR></HR>

</BODY>
</HTML>

Example failing output for text/html with detailed False:

$ curl -i -H http://198.51.100.10/load-balancer/
—healthcheck

HTTP/1.1 Service Unavailable

Date: Mon, Mar :42:22 GMT

Server: Apache/2.4.29 Ubuntu

Content-Type: text/html UTF-8

Content-Length:
x-openstack-request-id: req-c91dd214-85ca-4d33-9fa3-2db81566d9e5
Connection: close

<HTML>
<HEAD><TITLE>Healthcheck Status</TITLE></HEAD>
<BODY>

<H2>Result of 1 checks:</H2>

<TABLE >
<TBODY>

<TR>

<TH>

(continues on next page)

1.3. Optional Installation and Configuration Guides 140

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)
Reason
</TH>
</TR>
<TR>

<TD>The Octavia database is unavailable.</TD>

</TR>
</TBODY>
</TABLE>
<HR></HR>

</BODY>
</HTML>

Example passing output for application/json with detailed False:

$ curl -i -H http://192.51.100.10/load-balancer/
—healthcheck

HTTP/1.1 OK

Date: Mon, Mar :34:42 GMT

Server: Apache/2.4.29 Ubuntu

Content-Type: application/json

Content-Length:

x-openstack-request-id: req-417dc85c-e64e-496e-a461-494a3e6a5479
Connection: close

: false,

Example failing output for application/json with derailed False:

$ curl -i -H http://192.51.100.10/load-balancer/
—healthcheck

HTTP/1.1 Service Unavailable

Date: Mon, Mar :46:28 GMT

Server: Apache/2.4.29 Ubuntu

Content-Type: application/json

Content-Length:

x-openstack-request-id: req-de50b057-6105-4fca-a758-c872ef28bbfa
Connection: close

: false,

(continues on next page)

1.3. Optional Installation and Configuration Guides 141

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Example Detailed Responses

Example passing output for text/plain with detailed True:

$ curl -i http://198.51.100.10/load-balancer/healthcheck

HTTP/1.1 OK

Date: Mon, Mar :10:27 GMT
Server: Apache/2.4.29 Ubuntu
Content-Type: text/plain UTF-8

Content-Length:

x-openstack-request-id: req-9c6£f4303-63a7-4f30-8afc-39340658702f
Connection: close

Vary: Accept-Encoding

OK

Example failing output for text/plain with detailed True:

$ curl -i http://198.51.100.10/load-balancer/healthcheck

HTTP/1.1 Service Unavailable

Date: Mon, Mar :41:23 GMT
Server: Apache/2.4.29 Ubuntu
Content-Type: text/plain UTF-8

Content-Length:
x-openstack-request-id: req-2cd046cb-3a6c-45e3-921d-5f4a9%e65c63e
Connection: close

Example passing output for text/html with detailed True:

$ curl -i -H http://198.51.100.10/load-balancer/
—healthcheck

HTTP/1.1 OK

Date: Mon, Mar :11:54 GMT

Server: Apache/2.4.29 Ubuntu

Content-Type: text/html UTF-8

Content-Length:

x-openstack-request-id: req-ae7404c9-b183-46dc-bblb-e5f4e4984a57
Connection: close

Vary: Accept-Encoding

<HTML>
<HEAD><TITLE>Healthcheck Status</TITLE></HEAD>

(continues on next page)

1.3. Optional Installation and Configuration Guides 142

Octavia Documentation, Release 17.1.0.dev41

<BODY>
<H1>Server status</H1>
Server hostname:<PRE>devstack2</PRE>

Current time:<PRE>2020-03-16 :11:54.320529</PRE>

Python version:<PRE>3.6.9 default, Nov
GCC 8.3.0 </PRE>

(continued from previous page)

:44:02

Platform:<PRE>Linux-4.15.0-88-generic-x86_64-with-Ubuntu-18.04-bionic

-+</PRE>

<HR></HR>

<H2>Garbage collector:</H2>
Counts:<PRE> , , </PRE>
Thresholds:<PRE> , , </PRE>
<HR></HR>

<H2>Result of 1 checks:</H2>

<TABLE >
<TBODY>

<TR>

<TH>

Kind

</TH>

<TH>

Reason

</TH>

<TH>

Details

</TH>

</TR>
<TR>
<TD>0OctaviaDBCheckResult</TD>
<TD>0K</TD>
<TD></TD>
</TR>
</TBODY>
</TABLE>
<HR></HR>
<H2>1 greenthread s active:</H2>
<TABLE >
<TBODY>
<TR>
<TD><PRE> <...> </PRE></TD>
</TR>
</TBODY>
</TABLE>
<HR></HR>
<H2>1 thread s active:</H2>
<TABLE >
<TBODY>
<TR>

(continues on next page)

1.3. Optional Installation and Configuration Guides

143

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)
<TD><PRE> <...> </PRE></TD>
</TR>
</TBODY>
</TABLE>
</BODY>
</HTML>

Example failing output for text/html with detailed True:

$ curl -i -H http://198.51.100.10/load-balancer/
—healthcheck

HTTP/1.1 Service Unavailable

Date: Mon, Mar :43:52 GMT

Server: Apache/2.4.29 Ubuntu

Content-Type: text/html UTF-8

Content-Length:
x-openstack-request-id: req-39b65058-6dc3-4069-a2d5-8a9714dba6ld
Connection: close

<HTML>

<HEAD><TITLE>Healthcheck Status</TITLE></HEAD>

<BODY>

<H1>Server status</H1>

Server hostname:<PRE>devstack2</PRE>

Current time:<PRE>2020-03-16 :43:52.411127</PRE>

Python version:<PRE>3.6.9 default, Nov , :44:02

GCC 8.3.0 </PRE>

Platform:<PRE>Linux-4.15.0-88-generic-x86_64-with-Ubuntu-18.04-bionic
—</PRE>

<HR></HR>

<H2>Garbage collector:</H2>

Counts:<PRE> , , </PRE>

Thresholds:<PRE> , , </PRE>

<HR></HR>

<H2>Result of 1 checks:</H2>

<TABLE >

<TBODY>

<TR>

<TH>

Kind

</TH>

<TH>

Reason

</TH>

<TH>

Details

</TH>

</TR>

(continues on next page)

1.3. Optional Installation and Configuration Guides 144

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

<TR>
<TD>OctaviaDBCheckResult</TD>
<TD>The Octavia database is unavailable.</TD>
<TD>Database health check failed due to: pymysql.err.OperationalError ..
SQL: SELECT
Background on this error at: http://sqlalche.me/e/e3q8 .</TD>
</TR>
</TBODY>
</TABLE>
<HR></HR>
<H2>1 greenthread s active:</H2>
<TABLE >
<TBODY>
<TR>
<TD><PRE> <...> </PRE></TD>
</TR>
</TBODY>
</TABLE>
<HR></HR>
<H2>1 thread s active:</H2>
<TABLE >
<TBODY>
<TR>
<TD><PRE> <...> </PRE></TD>
</TR>
</TBODY>
</TABLE>
</BODY>
</HTML>

Example passing output for application/json with detailed True:

$ curl -i -H http://192.51.100.10/load-balancer/
—shealthcheck

HTTP/1.1 OK

Date: Mon, Mar :05:26 GMT

Server: Apache/2.4.29 Ubuntu

Content-Type: application/json

Content-Length:

x-openstack-request-id: req-d3913655-6e3f-4086-a252-8bb297ea5fd6
Connection: close

. true,

(continues on next page)

1.3. Optional Installation and Configuration Guides 145

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Example failing output for application/json with detailed True:

$ curl -i -H http://192.51.100.10/load-balancer/
—shealthcheck

HTTP/1.1 Service Unavailable

Date: Mon, Mar :56:43 GMT

Server: Apache/2.4.29 Ubuntu

Content-Type: application/json

Content-Length:

x-openstack-request-id: req-3d62ea®4-9bdb-4e19-b218-1a81££7d7337
Connection: close

! true,

(continues on next page)

1.3. Optional Installation and Configuration Guides 146

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

| <...>
’
N ’
- i o
N ’
| <iu.>

Oslo Healthcheck Plugins

The Octavia API health monitoring endpoint, implemented with Oslo middleware healthcheck, is ex-
tensible using optional backend plugins. There are currently plugins provided by the Oslo middleware
library and plugins provided by Octavia.

Oslo middleware provided plugins
* disable_by_file
* disable_by_files_ports
Octavia provided plugins

e octavia_db_check

Warning

Some plugins may have long timeouts. Itis a best practice to configure your healthcheck query to have
connection, read, and/or data timeouts. The appropriate values will be unique to each deployment
depending on the cloud performance, number of plugins, etc.

1.3. Optional Installation and Configuration Guides 147

https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html#disable-by-file
https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html#disable-by-files-ports

Octavia Documentation, Release 17.1.0.dev41

Enabling Octavia APl Health Monitoring

To enable the Octavia API health monitoring endpoint, the proper configuration file settings need to be
updated and the Octavia API processes need to be restarted.

Start by enabling the endpoint:

| |

When the healthcheck_enabled setting is False, queries of the /healthcheck will receive an HTTP 404
Not Found response.

You will then need to select the desired monitoring backend plugins:

| |

Note

When no plugins are configured, the behavior of Oslo middleware healthcheck changes. Not only
does it not run any tests, it will return 204 results instead of 200.

The Octavia API health monitoring endpoint does not require a keystone token for access to allow external
load balancers to query the endpoint. For this reason we recommend you restrict access to it on your
external load balancer to prevent abuse.

As an additional protection, the API will cache results for a configurable period of time. This means that
queries to the health monitoring endpoint will return cached results until the refresh interval has expired,
at which point the health check plugin will rerun the check.

By default, the refresh interval is five seconds. This can be configured by adjusting the
healthcheck_refresh_interval setting in the Octavia configuration file:

| |

Optionally you can enable the "detailed" mode in Oslo middleware healthcheck. This will cause Oslo
middleware healthcheck to return additional information about the API instance. It will also provide
exception details if one was raised during the health check. This setting is False and disabled by default
in the Octavia API.

Warning

Enabling the ’detailed’ setting will expose sensitive details about the API process. Do not enabled
this unless you are sure it will not pose a security risk to your API instances. We highly recommend
you do not enable this.

1.3. Optional Installation and Configuration Guides 148

Octavia Documentation, Release 17.1.0.dev41

Using Octavia API Health Monitoring

The Octavia API health monitoring endpoint can be accessed via the /healthmonitor path on the Octavia
API endpoint.

For example, if your Octavia (load-balancer) endpoint in keystone is:

[https://l@.21.21.78/load—ba1ancer }

You would access the Octavia API health monitoring endpoint via:

[https ://10.21.21.78/1load-balancer/heal thcheck }

A keystone token is not required to access this endpoint.

Octavia Plugins

octavia_db_check

The octavia_db_check plugin validates the API instance has a working connection to the Octavia

database. It executes a SQL no-op query, 'SELECT 1;’, against the database.

Note

Many OpenStack services and libraries, such as oslo.db and sqlalchemy, also use the no-op query,
"SELECT 1;’ for health checks.

The possible octavia_db_check results are:

Request Result Status Code "reason" Message

GET Pass 200 OK
HEAD Pass 204
GET Fail 503 The Octavia database is unavailable.

HEAD Fail 503

When running Oslo middleware healthcheck in "detailed" mode, the "details" field will have additional
information about the error encountered, including the exception details if they were available.

1.3.5 Octavia Flavors

Octavia flavors are a powerful tool for operators to bring enhanced load balancing capabilities to their
users. An Octavia flavor is a predefined set of provider configuration options that are created by the
operator. When an user requests a load balancer they can request the load balancer be built with one of
the defined flavors. Flavors are defined per provider driver and expose the unique capabilities of each
provider.

This document is intended to explain the flavors capability for operators that wish to create flavors for
their users.

There are three steps to creating a new Octavia flavor:
1. Decide on the provider flavor capabilities that will be configured in the flavor.

2. Create the flavor profile with the flavor capabilities.

1.3. Optional Installation and Configuration Guides 149

https://docs.openstack.org/api-ref/load-balancer/v2/index.html#service-endpoints
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#service-endpoints

Octavia Documentation, Release 17.1.0.dev41

3. Create the user facing flavor.

Provider Capabilities

To start the process of defining a flavor, you will want to look at the flavor capabilities that the provider
driver exposes. To do this you can use the provider driver flavor capabilities API or the OpenStack client.

[openstack loadbalancer provider capability list <provider> }

With the default RBAC policy, this command is only available to administrators.
This will list all of the flavor capabilities the provider supports and may be configured via a flavor.

As an example, the amphora provider supports the loadbalancer_topology capability, among many oth-
ers:

Flavor Profiles

The next step in the process of creating a flavor is to define a flavor profile. The flavor profile includes
the provider and the flavor data. The flavor capabilities are the supported flavor data settings for a given
provider. A flavor profile can be created using the flavor profile API or the OpenStack client.

For example, to create a flavor for the amphora provider, we would create the following flavor profile:

openstack loadbalancer flavorprofile create --name amphora-single-profile --
—provider amphora --flavor-data

With the default RBAC policy, this command is only available to administrators.

This will create a flavor profile for the amphora provider that creates a load balancer with a single am-
phora. When you create a flavor profile, the settings are validated with the provider to make sure the
provider can support the capabilities specified.

The output of the command above is:

1.3. Optional Installation and Configuration Guides 150

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#create-flavor-profile

Octavia Documentation, Release 17.1.0.dev41

Flavors

Finally we will create the user facing Octavia flavor. This defines the information users will see and
use to create a load balancer with an Octavia flavor. The name of the flavor is the term users can use
when creating a load balancer. We encourage you to include a detailed description for users to clearly
understand the capabilities of the flavor you are providing.

To continue the example above, to create a flavor with the flavor profile we created in the previous step
we call:

openstack loadbalancer flavor create --name standalone-lb --flavorprofile..
—amphora-single-profile --description o
< --enable

This will create a user visible Octavia flavor that will create a load balancer that uses one amphora and
is not highly available. Users can specify this flavor when creating a new load balancer. Disabled flavors
are still visible to users, but they will not be able to create a load balancer using the flavor.

The output of the command above is:

At this point, the flavor is available for use by users creating new load balancers.

1.3.6 Running Octavia in Apache

To run Octavia in apache2, copy the httpd/octavia-api.conf sample configuration file to the appro-
priate location for the Apache server.

On Debian/Ubuntu systems it is:

Restart Apache to have it start serving Octavia.

1.3.7 Octavia Amphora Failover Circuit Breaker

During a large infrastructure outage, the automatic failover of stale amphorae can lead to a mass failover
event and create a considerable amount of extra load on servers. By using the amphora failover circuit
breaker feature, you can avoid these unwanted failover events. The circuit breaker is a configurable
threshold value that you can set, and will stop amphorae from automatically failing over whenever that
threshold value is met. The circuit breaker feature is disabled by default.

1.3. Optional Installation and Configuration Guides 151

Octavia Documentation, Release 17.1.0.dev41

Configuration

You define the threshold value for the failover circuit breaker feature by setting the failover_threshold
variable. The failover_threshold variable is a member of the health_manager group within the configu-
ration file /etc/octavia/octavia.conf.

Whenever the number of stale amphorae reaches or surpasses the value of failover_threshold, Octavia
performs the following actions:

* stops automatic failovers of amphorae.
* sets the status of the stale amphorae to FAILOVER_STOPPED.
* logs an error message.

The line below shows a typical error message:

ERROR octavia.db.repositories - Stale amphora count reached the threshold.
< . amphorae were into FAILOVER_STOPPED status.
Note

Base the value that you set for failover_threshold on the size of your environment. We recommend
that you set the value to a number greater than the typical number of amphorae that you estimate to
run on a single host, or to a value that reflects between 20% and 30% of the total number of amphorae.

Error Recovery

Automatic Error Recovery

For amphorae whose status is FAILOVER_STOPPED, Octavia will automatically reset their status to
ALLOCATED after receiving new updates from these amphorae.

Manual Error Recovery

To recover from the FAILOVER_STOPPED condition, you must manually reduce the value of the stale
amphorae below the circuit breaker threshold.

You can use the openstack loadbalancer amphora list command to list the amphorae that are in
FAILOVER_STOPPED state. Use the openstack loadbalancer amphora failover command to
manually trigger the amphora to failover.

In this example, failover_threshold = 3 and an infrastructure outage caused four amphorae to become
unavailable. After the health manager process detects this state, it sets the status of all stale amphorae to
FAILOVER_STOPPED as shown below.

openstack loadbalancer amphora list

R e e e e e e e et e s
Cytmmmmmm fo— - Fom - Fom - +
id loadbalancer_id o
- status role lb_network_ip ha_ip
b ———————— o ———————
Ctmmmmmmm e fomm e e e +

79f0e06d-446d-448a-9d2b-c3b89d0c700d 8fd2cac5-cbca-4bbl-bcfc-daba43e®97ab..

(continues on next page)

1.3. Optional Installation and Configuration Guides 152

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

<. FAILOVER_STOPPED BACKUP .168.0.108 .0.2.17
9c0416d7-6293-4f13-8£f67-61e5d757b36e 4bl3ddal-296a-400c-8248-1abad5728057.,
< ALLOCATED MASTER .168.0.198 .0.2.42
e11208b7-f13d-4db3-9ded-1ee6£70a0502 8fd2cac5-cbca-4bbl-bcfc-daba43e®97ab..
<. FATILOVER_STOPPED MASTER .168.0.154 .0.2.17
ceea9fff-71a2-48c8-a968-e51dc440c572 ab513cb3-8f5d-461e-b7ae-ad6b5083a371..
< ALLOCATED MASTER .168.0.149 .0.2.26
al1351933-2270-493c-8201-d8£f9f9fed42f7 4b13ddal-296a-400c-8248-1abad5728057.,
< FAILOVER_STOPPED @ BACKUP .168.0.103 .0.2.42
441718e7-0956-436b-9£99-9a476339d7d2 ab513cb3-8f5d-461le-b7ae-a®6b5083a371..
< FAILOVER_STOPPED @ BACKUP .168.0.148 .0.2.26
- B T T
R e +o—m— - e ettt tomm - +

After operators have resolved the infrastructure outage, they might need to manually trigger failovers to
return to normal operation. In this example, two manual failovers are necessary to get the number of stale
amphorae below the configured threshold of three:

openstack loadbalancer amphora failover --wait 79f0e0®6d-446d-448a-9d2b-
—c3b89d0c700d
openstack loadbalancer amphora list

e e
N e e +-——— - Fommm - to—mm - +
id loadbalancer_id o
- status role lb_network_ip ha_ip
e T e
e e R e +
9c0416d7-6293-4f13-8£67-61e5d757b36e = 4bl3ddal-296a-400c-8248-1abad5728057..
< ALLOCATED MASTER .168.0.198 .0.2.42
e11208b7-1f13d-4db3-9ded-1ee6£70a0502 8fd2cac5-cbca-4bbl-bcfc-daba43e097ab..
—» FAILOVER_STOPPED MASTER .168.0.154 .0.2.17
ceea9fff-71a2-48c8-a968-e51dc440c572 ab513cb3-8f5d-461le-b7ae-a®6b5083a371..
< ALLOCATED MASTER .168.0.149 .0.2.26
a1351933-2270-493c-8201-d8f9f9fe42f7 4bl3ddal-296a-400c-8248-1abad5728057..
—» FAILOVER_STOPPED @ BACKUP .168.0.103 .0.2.42
441718e7-0956-436b-9£99-9a476339d7d2 ab513cb3-8f5d-461le-b7ae-a®6b5083a371..
<, FAILOVER_STOPPED @ BACKUP .168.0.148 .0.2.26
cf734b57-6019-4ec0-8437-115£76d1bbb® 8fd2cac5-cbca-4bbl-bcfc-daba43e®97ab..
<, ALLOCATED BACKUP .168.0.141 .0.2.17
- e
N e R fom e e +

openstack loadbalancer amphora failover --wait el11208b7-f13d-4db3-9ded-
—1lee6f70a0502
openstack loadbalancer amphora list

R et e T e et e
N R e T +

id loadbalancer_id o
< status role 1b_network_ip ha_ip
e e
et ——mm - +o——— = B e to—m - +

(continues on next page)

1.3. Optional Installation and Configuration Guides 153

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

9c0416d7-6293-4£13-8f67-61e5d757b36e = 4bl3ddal-296a-400c-8248-1abad5728057..

<+ ALLOCATED MASTER .168.0.198 .0.2.42
ceea9fff-71a2-48c8-a968-e51dc440c572 ab513cb3-8f5d-461e-b7ae-al®6b5083a371..
- ALLOCATED MASTER .168.0.149 .0.2.26
cf734b57-6019-4ec0-8437-115£76d1bbb® @ 8fd2cac5-cbca-4bbl-bcfc-daba43e097ab..
—» ALLOCATED BACKUP .168.0.141 .0.2.17
d2909051-402e-4e75-86c9-ec6725c814al 8fd2cac5-cbca-4bbl-bcfc-daba43e®97ab.,
<> ALLOCATED MASTER .168.0.25 .0.2.17
5133e01la-fb53-457b-b810-edbb5202437e 4b13ddal-296a-400c-8248-1abad5728057..
. ALLOCATED BACKUP .168.0.76 .0.2.42
f82eff89-e326-4e9d-86bc-58c720220a3f ab513cb3-8f5d-461le-b7ae-a®6b5083a371,.,
- ALLOCATED BACKUP .168.0.86 .0.2.26
e e e T o
Gt —m— - o o o +

After the number of stale amphorae falls below the configured threshold value, normal operation resumes
and the automatic failover process attempts to restore the remaining stale amphorae.

1.3.8 Using SR-IOV Ports with Octavia

Single Root I/0 Virtualization (SR-IOV) can significantly reduce the latency through an Octavia Am-
phora based load balancer while maximizing bandwith and request rates. With Octavia Amphora load
balancers, you can attach SR-IOV Virtual Functions (VF) as the VIP port and/or backend member ports.

Enabling SR-IOV on Your Compute Hosts

To allow Octavia load balancers to use SR-IOV, you must configure nova and neutron to make SR-IOV
available on at least one compute host. Please follow the Networking Guide to setup your compute hosts
for SR-IOV.

Configuring Host Aggregates, Compute and Octavia Flavors

Octavia hot-plugs the network ports into the Amphora as the load balancer is being provisioned. This
means we need to use host aggregates and compute flavor properties to make sure the Amphora are
created on SR-IOV enable compute hosts with the correct networks.

Host Aggregates

This configuration can be as simple or complex as you need it to be. A simple approach would be to add
one property for the SR-IOV host aggregate, such as:

$ openstack aggregate create sriov_aggregate
$ openstack aggregate add host sriov_aggregate sriov-host.example.org
$ openstack aggregate --property sriov-nic sriov_aggregate

A more advanced configuration may list out the specific networks that are available via the SR-IOV VFs:

$ openstack aggregate create sriov_aggregate

$ openstack aggregate add host sriov_aggregate sriov-host.example.org

$ openstack aggregate --property public-sriov --property members-
—Ssriov sriov_aggregate

1.3. Optional Installation and Configuration Guides 154

https://docs.openstack.org/neutron/latest/admin/config-sriov.html

Octavia Documentation, Release 17.1.0.dev41

Compute Flavors

Next we need to create a compute flavor that includes the required properties to match the host aggregate.
Here is an example for a basic Octavia Amphora compute flavor using the advanced host aggregate
discussed in the previous section:

$ openstack flavor create --id amphora-sriov-flavor --ram --disk 3 --
—Vvcpus --private sriov.amphora --property hw_rng:allowed True --property.
—public-sriov --property members-sriov

Note

This flavor is marked "private" so must be created inside the Octavia service account project.

Octavia Flavors

Now that we have the compute service setup to properly place our Amphora instances on hosts with
SR-IOV NICs on the right networks, we can create an Octavia flavor that will use the compute flavor.

$ openstack loadbalancer flavorprofile create --name amphora-sriov-profile --
—provider amphora --flavor-data

$ openstack loadbalancer flavor create --name SRIOV-public-members --
—flavorprofile amphora-sriov-profile --description r
< --enable

When the allow_member_sriov Octavia flavor setting is true, users can request Octavia to attach the
member ports using SR-IOV VFs. If Octavia is not able to successfully attach the member port as an
SR-IOV VF, the member will be marked as provisioning_status of ERROR as we could not acquire a
networking port for the requested member network. If the member network is already attached using a
non-SR-I0OV port, the member will also be marked with provisioning_status of ERROR.

Note

By default, both sriov_vip and allow_member_sriov are false.

Building the Amphora Image

Neutron does not support security groups on SR-IOV ports, so Octavia will use nftables inside the Am-
phroa to provide network security. The amphora image must be built with nftables enabled for SR-IOV
enabled load balancers. Images with nftables enabled can be used for both SR-IOV enabled load bal-
ancers as well as load balancers that are not using SR-IOV ports. When the SR-IOV for load balancer
VIP ports feature was added to Octavia, the default setting for using nftables has been changed to True.
Prior to this it needed to be enabled by setting an environment variable before building the Amphora
image:

$ True
§ ./diskimage-create.sh

1.3. Optional Installation and Configuration Guides 155

Octavia Documentation, Release 17.1.0.dev41

1.4 Maintenance and Operations

1.4.1 Operator Maintenance Guide

This document is intended for operators. For a developer guide see the Developer / Operator Quick Start
Guide in this documentation repository. For an end-user guide, please see the Basic Load Balancing
Cookbook in this documentation repository.

Monitoring

Monitoring Load Balancer Amphora

Octavia will monitor the load balancing amphorae itself and initiate failovers and/or replacements if they
malfunction. Therefore, most installations won’t need to monitor the amphorae running the load balancer.

Octavia will log each failover to the corresponding health manager logs. It is advisable to use log analytics
to monitor failover trends to notice problems in the OpenStack installation early. We have seen neutron
(network) connectivity issues, Denial of Service attacks, and nova (compute) malfunctions lead to a
higher than normal failover rate. Alternatively, the monitoring of the other services showed problems as
well, so depending on your overall monitoring strategy this might be optional.

If additional monitoring is necessary, review the corresponding calls on the amphora agent REST inter-
face (see Octavia HAProxy Amphora API)

Monitoring Pool Members

Octavia will use the health information from the underlying load balancing subsystems to determine the
health of members. This information will be streamed to the Octavia database and made available via
the status tree or other API methods. For critical applications we recommend to poll this information in
regular intervals.

Monitoring Load Balancers

You should monitor the provisioning status of a load balancer, and send alerts if the provisioning status
is not ACTIVE. Alerts should not be triggered when an application is making regular changes to the pool
and enters several PENDING stages.

The provisioning status of load balancer objects reflect the status of the control plane being able to contact
and successfully provision a create, update, and delete request. The operating status of a load balancer
object reports on the current functional status of the load balancer.

For example, a load balancer might have a provisioning status of ERROR, but an operating status of
ONLINE. This could be caused by a neutron networking failure that blocked that last requested update to
the load balancer configuration from successfully completing. In this case the load balancer is continuing
to process traffic through the load balancer, but might not have applied the latest configuration updates
yet.

A load balancer in a PENDING provisioning status is immutable, it cannot be updated or deleted by
another process, this PENDING status acts as a lock on the resource. If a database outage occurs while a
load balancer is deleted, created or updated, the Octavia control plane will try to remove the PENDING
status and set it to ERROR during a long period of time (around 2h45min with the default settings), to
prevent the resource from remaining immutable.

1.4. Maintenance and Operations 156

Octavia Documentation, Release 17.1.0.dev41

Monitoring load balancer functionality

You can monitor the operational status of your load balancer using the openstack loadbalancer status
show command. It reports the current operation status of the load balancer and its child objects.

You might also want to use an external monitoring service that connects to your load balancer listeners
and monitors them from outside of the cloud. This type of monitoring indicates if there is a failure
outside of Octavia that might impact the functionality of your load balancer, such as router failures,
network connectivity issues, and so on.

Monitoring Octavia Control Plane

To monitor the Octavia control plane we recommend process monitoring of the main Octavia processes:
* octavia-api
* octavia-worker
* octavia-health-manager
* octavia-housekeeping

The Monasca project has a plugin for such monitoring (see Monasca Octavia plugin). Please refer to this
project for further information.

Octavia’s control plane components are shared nothing and can be scaled linearly. For high availabil-
ity of the control plane we recommend to run at least one set of components in each availability zone.
Furthermore, the octavia-api endpoint could be behind a load balancer or other HA technology. That
said, if one or more components fail the system will still be available (though potentially degraded). For
instance if you have installed one set of components in each of the three availability zones even if you
lose a whole zone Octavia will still be responsive and available - only if you lose the Octavia control
plane in all three zones will the service be unavailable. Please note this only addresses control plane
availability; the availability of the load balancing function depends highly on the chosen topology and
the anti-affinity settings. See our forthcoming HA guide for more details.

Additionally, we recommend to monitor the Octavia API endpoint(s). There currently is no special url
to use so just polling the root URL in regular intervals is sufficient.

There is a host of information in the log files which can be used for log analytics. A few examples of
what could be monitored are:

* Amphora Build Rate - to determine load of the system
* Amphora Build Time - to determine how long it takes to build an amphora

* Failures/Errors - to be notified of system problems early

Rotating the Amphora Images

Octavia will start load balancers with a pre-built image which contain the amphora agent, aload balancing
application, and are seeded with cryptographic certificates through the config drive at start up.

Rotating the image means making a load balancer amphora running with an old image failover to an
amphora with a new image. This should be without any measurable interruption in the load balancing
functionality when using ACTIVE/STANDBY topology. Standalone load balancers might experience a
short outage.

Here are some reasons you might need to rotate the amphora image:

1.4. Maintenance and Operations 157

https://github.com/openstack/monasca-agent/blob/master/monasca_setup/detection/plugins/octavia.py

Octavia Documentation, Release 17.1.0.dev41

» There has been a (security) update to the underlying operating system

* You want to deploy a new version of the amphora agent or haproxy

* The cryptographic certificates and/or keys on the amphora have been compromised.

* Though not related to rotating images, this procedure might be invoked if you are switching to a

different flavor for the underlying virtual machine.

Preparing a New Amphora Image

To prepare a new amphora image you will need to use diskimage-create.sh as described in the README
in the diskimage-create directory.

For instance, in the octavia/diskimage-create directory, run:

./diskimage-create.sh]

Once you have created a new image you will need to upload it into glance. The following shows how to
do this if you have set the image tag in the Octavia configuration file. Make sure to use a user with the
same tenant as the Octavia service account:

openstack image create --file amphora-x64-haproxy.qcow?2
--disk-format qcow2 --tag <amphora-image-tag> --private
--container-format bare /var/lib/octavia/amphora-x64-haproxy.qcow?2

If you didn’t configure image tags and instead configured an image id, you will need to update the Octavia
configuration file with the new id and restart the Octavia services (except octavia-api).

Generating a List of Load Balancers to Rotate

The easiest way to generate a list, is to just list the IDs of all load balancers:

[openstack loadbalancer list -c id -f value]

Take note of the IDs.

Rotating a Load Balancer

Octavia has an API call to initiate the failover of a load balancer:

[openstack loadbalancer failover <loadbalancer id>]

You can observe the failover by querying octavia openstack load balancer show <loadbalancer
id> until the load balancer goes ACTIVE again.

Best Practices/Optimizations

Since a failover puts significant load on the OpenStack installation by creating new virtual machines and
ports, it should either be done at a very slow pace, during a time with little load, or with the right throttling
enabled in Octavia. The throttling will make sure to prioritize failovers higher than other operations and
depending on how many failovers are initiated this might crowd out other operations.

1.4. Maintenance and Operations 158

Octavia Documentation, Release 17.1.0.dev41

Rotating Cryptographic Certificates

Octavia secures the communication between the amphora agent and the control plane with two-way SSL
encryption. To accomplish that, several certificates are distributed in the system:

* Control plane:

— Amphora certificate authority (CA) certificate: Used to validate amphora certificates if Oc-
tavia acts as a Certificate Authority to issue new amphora certificates

— Client certificate: Used to authenticate with the amphora
* Amphora:
— Client CA certificate: Used to validate control plane client certificate
— Amphora certificate: Presented to control plane processes to prove amphora identity.

The heartbeat UDP packets emitted from the amphora are secured with a symmetric encryption key. This
is set by the configuration option heartbeat_key in the health_manager section. We recommend setting
it to a random string of a sufficient length.

Rotating Amphora Certificates

For the server part Octavia will act as a certificate authority itself to issue amphora certificates to be used
by each amphora. Octavia will also monitor those certificates and refresh them before they expire.

There are three ways to initiate a rotation manually:

» Change the expiration date of the certificate in the database. Octavia will then rotate the amphora
certificates with newly issued ones. This requires the following:

— Client CA certificate hasn’t expired or the corresponding client certificate on the control plane
hasn’t been issued by a different client CA (in case the authority was compromised)

— The Amphora CA certificate on the control plane didn’t change in any way which jeopar-
dizes validation of the amphora certificate (e.g. the certificate was reissued with a new pri-
vate/public key)

* If the amphora CA changed in a way which jeopardizes validation of the amphora certificate an
operator can manually upload newly issued amphora certificates by switching off validation of the
old amphora certificate. This requires a client certificate which can be validated by the client CA
file on the amphora. Refer to Octavia HAProxy Amphora API for more details.

* If the client certificate on the control plane changed in a way that it can’t be validated by the client
certificate authority certificate on the amphora, a failover (see Rotating Amphora Certificates) of
all amphorae needs to be initiated. Until the failover is completed the amphorae can’t be controlled
by the control plane.

Rotating the Certificate Authority Certificates

If there is a compromise of the certificate authorities’ certificates, or they expired, new ones need to be
installed into the system. If Octavia is not acting as the certificate authority only the certificate authority’s
cert needs to be changed in the system so amphora can be authenticated again.

* Issue new certificates (see the script in the bin folder of Octavia if Octavia is acting as the certificate
authority) or follow the instructions of the third-party certificate authority. Copy the certificate and
the private key (if Octavia acts as a certificate authority) where Octavia can find them.

1.4. Maintenance and Operations 159

Octavia Documentation, Release 17.1.0.dev41

« If the previous certificate files haven’t been overridden, adjust the paths to the new certs in the
configuration file and restart all Octavia services (except octavia-api).

Review Rotating Amphora Certificates above to determine if and how the amphora certificates needs to
be rotated.

Rotating Client Certificates

If the client certificates expired new ones need to be issued and installed on the system:

* Issue a new client certificate (see the script in the bin folder of Octavia if self signed certificates
are used) or use the ones provided to you by your certificate authority.

* Copy the new cert where Octavia can find it.

« If the previous certificate files haven’t been overridden, adjust the paths to the new certs in the
configuration file. In all cases restart all Octavia services except octavia-api.

If the client CA certificate has been replaced in addition to rotating the client certificate the new client CA
certificate needs to be installed in the system. After that initiate a failover of all amphorae to distribute
the new client CA cert. Until the failover is completed the amphorae can’t be controlled by the control
plane.

Changing The Heartbeat Encryption Key

Special caution needs to be taken to replace the heartbeat encryption key. Once this is changed Octavia
can’t read any heartbeats and will assume all amphora are in an error state and initiate an immediate
failover.

In preparation, read the chapter on Best Practices/Optimizations in the Failover section.

Given the risks involved with changing this key it should not be changed during routine maintenance but
only when a compromise is strongly suspected.

Note

For future versions of Octavia an "update amphora" API is planned which will allow this key to be
changed without failover. At that time there would be a procedure to halt health monitoring while the
keys are rotated and then resume health monitoring.

Handling a VM Node Failure

If a node fails which is running amphora, Octavia will automatically failover the amphora to a different
node (capacity permitting). In some cases, the node can be recovered (e.g. through a hard reset) and
the hypervisor might bring back the amphora vms. In this case, an operator should manually delete all
amphora on this specific node since Octavia assumes they have been deleted as part of the failover and
will not touch them again.

Note

As a safety measure an operator can, prior to deleting, manually check if the VM is in use. First,
use the Amphora API to obtain the current list of amphorae, then match the nova instance ID to the
compute_id column in the amphora API response (it is not currently possible to filter amphora by

1.4. Maintenance and Operations 160

Octavia Documentation, Release 17.1.0.dev41

compute_id). If there are any matches where the amphora status is not ’'DELETED’, the amphora is
still considered to be in use.

Evacuating a Specific Amphora from a Host

In some cases an amphora needs to be evacuated either because the host is being shutdown for mainte-
nance or as part of a failover. Octavia has a rich amphora API to do that.

First use the amphora API to find the specific amphora. Then, if not already performed, disable schedul-
ing to this host in nova. Lastly, initiate a failover of the specific amphora with the failover command on
the amphora API.

Alternatively, a live migration might also work if it happens quick enough for Octavia not to notice a
stale amphora (the default configuration is 60s).

1.4.2 octavia-status

CLI interface for Octavia status commands

Synopsis

Description
octavia-status is a tool that provides routines for checking the status of a Octavia deployment.
Options

The standard pattern for executing a octavia-status command is:

[J

Run without arguments to see a list of available command categories:

[)

Categories are:

* upgrade
Detailed descriptions are below:

You can also run with a category argument such as upgrade to see a list of all commands in that category:

[1

These sections describe the available categories and arguments for octavia-status.

Upgrade

octavia-status upgrade check
Performs a release-specific readiness check before restarting services with new code. For example,

1.4. Maintenance and Operations 161

Octavia Documentation, Release 17.1.0.dev41

missing or changed configuration options, incompatible object states, or other conditions that could
lead to failures while upgrading.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.
This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This
should be considered something that stops an upgrade.
255 An unexpected error occurred.
History of Checks
4.0.0 (Stein)

» Sample check to be filled in with checks as they are added in Stein.

1.4.3 Load Balancing Service Upgrade Guide

This document outlines steps and notes for operators for reference when upgrading their Load Balancing
service from previous versions of OpenStack.

Plan the upgrade
Before jumping right in to the upgrade process, there are a few considerations operators should observe:
 Carefully read the release notes, particularly the upgrade section.

» Upgrades are only supported between sequential releases. For example, upgrading from Pike to
Queens is supported while from Pike to Rocky is not.

* It is expected that each Load Balancing provider provides its own upgrade documentation. Please
refer to it for upgrade instructions.

* The Load Balancing service builds on top of other OpenStack services, e.g. Compute, Networking,
Image and Identify. On a staging environment, upgrade the Load Balancing service and verify it
works as expected. For example, a good indicator would be the successful run of Octavia Tempest
tests <https://opendev.org/openstack/octavia-tempest-plugin>.

Cold upgrade

In a cold upgrade (also known as offline upgrade and non-rolling upgrade), the Load Balancing service
is not available because all the control plane services have to be taken down. No data plane disruption
should result during the course of upgrading. In the case of the Load Balancing service, it means no
downtime nor reconfiguration of service-managed resources (e.g. load balancers, listeners, pools and
members).

1. Run the octavia-status upgrade check command to validate that Octavia is ready for upgrade.

2. Gracefully stop all Octavia processes. We recommend in this order: Housekeeping, Health man-
ager, API, Worker.

3. Optional: Make a backup of the database.

1.4. Maintenance and Operations 162

Octavia Documentation, Release 17.1.0.dev41

4. Upgrade all Octavia control plane nodes to the next release. Remember to also upgrade library
dependencies (e.g. octavia-lib). If upgrading Octavia from distribution packages, your system
package manager is expected to handle this automatically.

5. Verify that all configuration option names are up-to-date with latest Octavia version. For example,
pay special attention to deprecated configurations.

6. Run octavia-db-manage upgrade head from any Octavia node to upgrade the database and
run any corresponding database migrations.

7. Start all Octavia processes.

8. Build a new image and upload it to the Image service. Do not forget to tag the image. We rec-
ommend updating images frequently to include latest bug fixes and security issues on installed
software (operating system, amphora agent and its dependencies).

Amphorae upgrade

Amphorae upgrade may be required in the advent of API incompatibility between the running amphora
agent (old version) and Octavia services (new version). Octavia will automatically recover by failing over
amphorae and thus new amphora instances will be running on latest amphora agent code. The drawback
in that case is data plane downtime during failover. API breakage is a very rare case, and would be
highlighted in the release notes if this scenario occurs.

Upgrade testing

Grenade is an OpenStack test harness project that validates upgrade scenarios between releases. It uses
DevStack to initially perform a base OpenStack install and then upgrade to a target version.

Octavia has a Grenade plugin and a CI gate job that validates cold upgrades of an OpenStack deployment
with Octavia enabled. The plugin creates load balancing resources and verifies that resources are still
working during and after upgrade.

1.5 Operator Reference

1.5.1 Octavia HAProxy Amphora API
Introduction

This document describes the API interface between the reference haproxy driver and its corresponding
haproxy-based amphorae.

Octavia reference haproxy amphorae use a web service API for configuration and control. This API
should be secured through the use of TLS encryption as well as bi-directional verification of client- and
server-side certificates. (The exact process for generating and distributing these certificates should be
covered in another document.)

In addition to the web service configuration and control interface, the amphorae may use an HMAC-
signed UDP protocol for communicating regular, less- vital information to the controller (ex. statistics
updates and health checks). Information on this will also be covered in another document.

If a given loadbalancer is being serviced by multiple haproxy amphorae at the same time, configuration
and control actions should be made on all these amphorae at approximately the same time. (Amphorae
do not communicate directly with each other, except in an active-standby topology, and then this com-
munication is limited to fail-over protocols.)

1.5. Operator Reference 163

https://docs.openstack.org/grenade/latest/
https://opendev.org/openstack/octavia/src/branch/master/devstack/upgrade

Octavia Documentation, Release 17.1.0.dev41

Contents

* Octavia HAProxy Amphora API

— Introduction
% Versioning
% Response codes
% A note about storing state

- API
% Get amphora info
% Get amphora details
% Get interface
% Get all listeners’ statuses
% Start or Stop a load balancer
% Delete a listener
% Upload SSL certificate PEM file
% Get SSL certificate md5sum
% Delete SSL certificate PEM file
% Upload load balancer haproxy configuration
% Get loadbalancer haproxy configuration
% Plug VIP
% Plug Network
% Upload SSL server certificate PEM file for Controller Communication
* Upload keepalived configuration

% Start, Stop, or Reload keepalived

% Update the amphora agent configuration

Versioning

All Octavia APIs (including internal APIs like this one) are versioned. For the purposes of this document,
the initial version of this API shall be 1.0.

Response codes

Typical response codes are:
* 200 OK - Operation was completed as requested.
* 201 Created - Operation successfully resulted in the creation / processing of a file.

* 202 Accepted - Command was accepted but is not completed. (Note that this is used for asyn-

1.5. Operator Reference 164

Octavia Documentation, Release 17.1.0.dev41

chronous processing.)
* 400 Bad Request - API handler was unable to complete request.
* 401 Unauthorized - Authentication of the client certificate failed.
* 404 Not Found - The requested file was not found.
* 500 Internal Server Error - Usually indicates a permissions problem

* 503 Service Unavailable - Usually indicates a change to a listener was attempted during a transition
of amphora topology.

A note about storing state

In the below API, it will become apparent that at times the amphora will need to be aware of the state of
things (topology-wise, or simply in terms running processes on the amphora). When it comes to storing
or gathering this data, we should generally prefer to try to resolve these concerns in the following order.
Note also that not every kind of state data will use all of the steps in this list:

1. Get state information by querying running processes (ex. parsing haproxy status page or querying
iptables counters, etc.)

2. Get state by consulting on-disk cache generated by querying running processes. (In the case where
state information is relatively expensive to collect-- eg. package version listings.)

3. Get state by consulting stored configuration data as sent by the controller. (ex. amphora topology,
haproxy configuration or TLS certificate data)

4. Get state by querying a controller API (not described here).
In no case should the amphora assume it ever has direct access to the Octavia database. Also, sensitive
data (like TLS certificates) should be stored in a secure way (ex. memory filesystem).
API

Get amphora info

* URL: /info
* Method: GET
e URL params: none
* Data params: none
* Success Response:

— Code: 200

% Content: JSON formatted listing of several basic amphora data.

* Error Response:

— none

JSON Response attributes:

* hostname - amphora hostname
* uuid - amphora UUID

* haproxy_version - Version of the haproxy installed

1.5. Operator Reference 165

Octavia Documentation, Release 17.1.0.dev41

api_version - Version of haproxy amphora API in use

Notes: The data in this request is used by the controller for determining the amphora and API version
numbers.

It’s also worth noting that this is the only API command that doesn’t have a version string prepended to

it.

Examples:

Success code 200:

Get amphora details

URL: /1.0/details
Method: GET
URL params: none
Data params: none
Success Response:

— Code: 200

% Content: JSON formatted listing of various amphora statistics.

Error Response:

— none

JSON Response attributes:

hostname - amphora hostname
uuid - amphora UUID
haproxy_version - Version of the haproxy installed
api_version - Version of haproxy amphora APIl/agent in use
network_tx - Current total outbound bandwidth in bytes/sec (30-second snapshot)
network_rx - Current total inbound bandwidth in bytes/sec (30-second snapshot)
active - Boolean (is amphora in an "active" role?)
haproxy_count - Number of running haproxy processes
cpu - list of percent CPU usage broken down into:
— total
— user

— system

1.5.

Operator Reference 166

Octavia Documentation, Release 17.1.0.dev41

soft_irq

* memory - memory usage in kilobytes broken down into:

e disk

total

free
available
buffers
cached
swap_used
shared
slab

committed_as

- disk usage in kilobytes for root filesystem, listed as:

used

available

* load - System load (list)

* topology - One of SINGLE, ACTIVE-STANDBY, ACTIVE-ACTIVE
* topology_status - One of OK, TOPOLOGY-CHANGE

* listeners - list of listener UUIDs being serviced by this amphora

* packages - list of load-balancing related packages installed with versions (eg. OpenSSL, haproxy,
nginx, etc.)

Notes: The data in this request is meant to provide intelligence for an auto-scaling orchestration controller
(heat) in order to determine whether additional (or fewer) virtual amphorae are necessary to handle load.
As such, we may add additional parameters to the JSON listing above if they prove to be useful for making
these decisions.

The data in this request is also used by the controller for determining overall health of the amphora,
currently-configured topology and role, etc.

Examples

¢ Success code 200:

(continues on next page)

1.5. Operator Reference

167

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Get interface

* URL: /1.0/interface/:ip
* Method: GET
e URL params:
— :ip = the ip address to find the interface name
* Data params: none
* Success Response:

— Code: 200

1.5. Operator Reference

168

Octavia Documentation, Release 17.1.0.dev41

% Content: OK
Content: JSON formatted interface
* Error Response:
— Code: 400
Content: Bad IP address version
— Code: 404
% Content: Error interface not found for IP address

* Response:

OK
ethl

Examples:

¢ Success code 200:

e Error code 404:

e Error code 404:

1.5. Operator Reference 169

Octavia Documentation, Release 17.1.0.dev41

Get all listeners’ statuses

URL: /1.0/listeners
Method: GET

e URL params: none
* Data params: none
* Success Response:

— Code: 200

% Content: JSON-formatted listing of each listener’s status

* Error Response:

— none

JSON Response attributes:

Note that the command will return an array of all listeners’ statuses. Each listener status contains the
following attributes:

* status - One of the operational status: ACTIVE, STOPPED, ERROR - future versions might
support provisioning status: PENDING_CREATE, PENDING_UPDATE, PENDING_DELETE,
DELETED

e uuid - Listener UUID
* type - One of: TCP, HTTP, TERMINATED_HTTPS

Notes: Note that this returns a status if: the pid file exists, the stats socket exists, or an haproxy configu-
ration is present (not just if there is a valid haproxy configuration).

Examples

¢ Success code 200:

Start or Stop a load balancer

* URL: /1.0/loadbalancer/:object_id/:action
* Method: PUT
¢ URL params:

— :object_id = Object UUID

1.5. Operator Reference 170

Octavia Documentation, Release 17.1.0.dev41

— :action = One of: start, stop, reload
* Data params: none
* Success Response:
— Code: 202
% Content: OK

% (Also contains preliminary results of attempt to start / stop / soft restart (reload) the
haproxy daemon)

* Error Response:
— Code: 400
% Content: Invalid request
— Code: 404
% Content: Listener Not Found
— Code: 500
Content: Error starting / stopping / reload_config haproxy
% (Also contains error output from attempt to start / stop / soft restart (reload) haproxy)
— Code: 503
% Content: Topology transition in progress

* Response:

OK
Configuration file is valid
haproxy daemon for 85e2111b-29c4-44be-94£3-e72045805801 started (pid 32428)

Examples:

¢ Success code 201:

e Error code 400:

1.5. Operator Reference 171

Octavia Documentation, Release 17.1.0.dev41

e Error code 404:

¢ Error code 500:

¢ Error code 503:

Delete a listener

* URL: /1.0/listeners/:listener
* Method: DELETE
e URL params:
— :listener = Listener UUID

* Data params: none

1.5. Operator Reference 172

Octavia Documentation, Release 17.1.0.dev41

* Success Response:
— Code: 200
% Content: OK
* Error Response:
— Code: 404
Content: Not Found
— Code: 503
% Content: Topology transition in progress

* Response:

OK

* Implied actions:

Stop listener

Delete IPs, iptables accounting rules, etc. from this amphora if they’re no longer in use.

Clean up listener configuration directory.

Delete listener’s SSL certificates

Clean up logs (ship final logs to logging destination if configured)

Clean up stats socket.
Examples

¢ Success code 200:

e Error code 404:

1.5. Operator Reference 173

Octavia Documentation, Release 17.1.0.dev41

Error code 503:

Upload SSL certificate PEM file

OK

URL: /1.0/loadbalancer/:loadbalancer_id/certificates/:filename.pem
Method: PUT
URL params:

— :loadbalancer_id = Load balancer UUID

— :filename = PEM filename (see notes below for naming convention)

Data params: Certificate data. (PEM file should be a concatenation of unencrypted RSA key,
certificate and chain, in that order)

Success Response:
— Code: 201
% Content: OK
Error Response:
— Code: 400
% Content: No certificate found

Code: 400

% Content: No RSA key found
Code: 400

% Content: Certificate and key do not match

Code: 404

* Content: Not Found

Code: 503
% Content: Topology transition in progress

Response:

Notes: * filename.pem should match the primary CN for which the certificate is valid. All-caps WILD-
CARD should be used to replace an asterisk in a wildcard certificate (eg. a CN of **.example.com’ should
have a filename of *"WILDCARD.example.com.pem’). Filenames must also have the .pem extension. *
In order for the new certificate to become effective the haproxy needs to be explicitly restarted

Examples:

1.5. Operator Reference 174

Octavia Documentation, Release 17.1.0.dev41

¢ Success code 201:

¢ Error code 400:

¢ Error code 400:

¢ Error code 400:

¢ Error code 404:

1.5. Operator Reference 175

Octavia Documentation, Release 17.1.0.dev41

¢ Error code 503:

Get SSL certificate md5sum

URL: /1.0/loadbalancer/:loadbalancer_id/certificates/:filename.pem
* Method: GET
e URL params:

— loadbalancer_id = Load balancer UUID

— :filename = PEM filename (see notes below for naming convention)
* Data params: none
* Success Response:

— Code: 200

Content: PEM file mdSsum

* Error Response:
— Code: 404

% Content: Not Found

* Response:

<certificate PEM file md5 sum>

* Implied actions: none

Notes: The mdSsum is the sum from the raw certificate data as stored on the amphora (which will usually
include the RSA key, certificate and chain concatenated together). Note that we don’t return any actual
raw certificate data as the controller should already know this information, and unnecessarily disclosing
it over the wire from the amphora is a security risk.

Examples:

1.5. Operator Reference 176

Octavia Documentation, Release 17.1.0.dev41

¢ Success code 200:

e Error code 404:

¢ Error code 404:

Delete SSL certificate PEM file

* URL: /1.0/loadbalancer/:loadbalancer_id/certificates/.filename.pem
* Method: DELETE
* URL params:
— :loadbalancer_id = Load balancer UUID
— :filename = PEM filename (see notes below for naming convention)
* Data params: none
* Success Response:
— Code: 200
% Content: OK
* Error Response:
— Code: 404
% Content: Not found
— Code: 503
% Content: Topology transition in progress
* Implied actions:
— Clean up listener configuration directory if it’s now empty.

Examples:

1.5. Operator Reference 177

Octavia Documentation, Release 17.1.0.dev41

¢ Success code 200:

¢ Error code 404:

¢ Error code 503:

Upload load balancer haproxy configuration

* URL: /1.0/loadbalancer/:amphora_id/:loadbalancer_id/haproxy

Method: PUT
e URL params:
— loadbalancer_id = Load Balancer UUID
— ramphora_id = Amphora UUID
* Data params: haproxy configuration file for the listener
* Success Response:
— Code: 201
% Content: OK
* Error Response:
— Code: 400
% Content: Invalid configuration

% (Also includes error output from configuration check command)

1.5. Operator Reference 178

Octavia Documentation, Release 17.1.0.dev41

— Code: 503
% Content: Topology transition in progress

* Response:

OK
Configuration file is valid

* Implied actions:
— Do a syntax check on haproxy configuration file prior to an attempt to run it.
— Add resources needed for stats, logs, and connectivity

Notes: The uploaded configuration file should be a complete and syntactically-correct haproxy config.
The amphora does not have intelligence to generate these itself and has only rudimentary ability to parse
certain features out of the configuration file (like bind addresses and ports for purposes of setting up stats,
and specially formatted comments meant to indicate pools and members that will be parsed out of the
haproxy daemon status interface for tracking health and stats).

Examples:

e Success code 201:

¢ Error code 400:

¢ Error code 503:

1.5. Operator Reference 179

Octavia Documentation, Release 17.1.0.dev41

Get loadbalancer haproxy configuration

URL: /1.0/loadbalancer/:loadbalancer_id/haproxy
Method: GET

* URL params:
— :loadbalancer_id = Load balancer UUID
* Data params: none
* Success Response:
— Code: 200
% Content: haproxy configuration file for the listener
* Error Response:
— Code: 404
% Content: Not found

* Response:

Config file for 85e2111b-29c4-44be-9413-e72045805801
(cut for brevity)

* Implied actions: none
Examples:

¢ Success code 200:

¢ Error code 404:

1.5. Operator Reference

180

Octavia Documentation, Release 17.1.0.dev41

Plug VIP

OK

URL: /1.0/plug/vip/:ip
Method: Post
URL params:

— :ip =the vip’s ip address
Data params:
subnet_cidr: The vip subnet in cidr notation
gateway: The vip subnet gateway address
mac_address: The mac address of the interface to plug
Success Response:

— Code: 202

Content: OK

Error Response: * Code: 400

Content: Invalid IP
Content: Invalid subnet information

Code: 404

% Content: No suitable network interface found

Code: 500

Content: Error plugging VIP
% (Also contains error output from the ip up command)

Code: 503

Content: Topology transition in progress

Response:

VIP <vip> ip plugged on interface <interface>

Implied actions:
— Look for an interface marked as down (recently added port)
— Assign VIP

— Bring that interface up

Examples:

Success code 202:

1.5. Operator Reference

181

Octavia Documentation, Release 17.1.0.dev41

Error code 400:

Error code 404:

Plug Network

URL: /1.0/plug/network/
Method: POST
URL params: none
Data params:
mac_address: The mac address of the interface to plug
Success Response:
— Code: 202
% Content: OK
Error Response:
— Code: 404
% Content: No suitable network interface found
— Code: 500

% Content: Error plugging Port

1.5. Operator Reference

182

Octavia Documentation, Release 17.1.0.dev41

% (Also contains error output from the ip up command)
— Code: 503
Content: Topology transition in progress

* Response:

OK
Plugged interface <interface>

Examples:

¢ Success code 202:

e Error code 404:

Upload SSL server certificate PEM file for Controller Communication

e URL: /1.0/certificate
Method: PUT

* Data params: Certificate data. (PEM file should be a concatenation of unencrypted RSA key,
certificate and chain, in that order)

* Success Response:
— Code: 202
% Content: OK
* Error Response:

— Code: 400

1.5. Operator Reference 183

Octavia Documentation, Release 17.1.0.dev41

% Content: No certificate found
— Code: 400
Content: No RSA key found
— Code: 400
% Content: Certificate and key do not match

* Response:

OK

Notes: Since certificates might be valid for a time smaller than the amphora is in existence this add a
way to rotate them. Once the certificate is uploaded the agent is being recycled so depending on the
implementation the service might not be available for some time.

Examples:

¢ Success code 202:

e Error code 400:

¢ Error code 400:

1.5. Operator Reference 184

Octavia Documentation, Release 17.1.0.dev41

¢ Error code 400:

Upload keepalived configuration

* URL: /1.0/vrrp/upload
Method: PUT

* URL params: none
* Data params: none
* Success Response:
— Code: 200
% Content: OK
* Error Response:

— Code: 500

% Content: Failed to upload keepalived configuration.

* Response:
OK
Examples:

¢ Success code 200:

Start, Stop, or Reload keepalived

* URL: /1.0/vrrp/:action
* Method: PUT
* URL params:

— :action = One of: start, stop, reload

1.5. Operator Reference

185

Octavia Documentation, Release 17.1.0.dev41

* Data params: none
* Success Response:
— Code: 202
% Content: OK
* Error Response:
— Code: 400
% Content: Invalid Request
— Code: 500
% Content: Failed to start / stop / reload keepalived service:
% (Also contains error output from attempt to start / stop / reload keepalived)

* Response:

OK
keepalived started

Examples:

¢ Success code 202:

¢ Error code: 400

e Error code: 500

(continues on next page)

1.5. Operator Reference 186

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Update the amphora agent configuration

* URL: /1.0/config
Method: PUT

* Data params: A amphora-agent configuration file
* Success Response:
— Code: 202
Content: OK
* Error Response:
— Code: 500
% message: Unable to update amphora-agent configuration.
% details: (The exception details)

* Response:

OK

* Implied actions:

— The running amphora-agent configuration file is mutated.

Notes: Only options that are marked mutable in the oslo configuration will be updated.

Examples:

¢ Success code 202:

e Error code 500:

1.5. Operator Reference

187

Octavia Documentation, Release 17.1.0.dev41

1.5.2 Octavia Event Notifications

Octavia uses the oslo messaging notification system to send notifications for certain events, such as "oc-
tavia.loadbalancer.create.end" after the completion of a loadbalancer create operation.

Configuring oslo messaging for event notifications

By default, the notifications driver in oslo_messaging is set to an empty string; therefore, this option
must be configured in order for notifications to be sent. Valid options are defined in oslo.messaging
documentation. The example provided below is the format produced by the messagingv?2 driver.

You may specify a custom list of topics on which to send notifications. A topic is created for each notifi-
cation level, with a dot and the level appended to the value(s) specified in this list, e.g.: notifications.info,
octavia-notifications.info, etc..

Oslo messaging supports separate backends for RPC and notifications. If different from the [DEFAULT]
transport_url configuration, you must specify the transport_url in the [oslo_messaging_notifications]
section of your octavia.conf configuration.

Event Types

Event types supported in Octavia are:
'octavia.loadbalancer.update.end'
'octavia.loadbalancer.create.end'

'octavia.loadbalancer.delete.end'

Example Notification

The payload for an oslo.message notification for Octavia loadbalancer events is the complete loadbalancer
dict in json format. The complete contents of an oslo.message notification for a loadbalancer event in
Octavia follows the format of the following example:

(continues on next page)

1.5. Operator Reference 188

https://docs.openstack.org/oslo.messaging/latest/configuration/opts.html#oslo-messaging-notifications
https://docs.openstack.org/oslo.messaging/latest/configuration/opts.html#oslo-messaging-notifications

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)
"availability_zone": null
"created_at": "2022-04-22T23:02:14.000000"
"description": ""
"flavor_id": null
"id": "8d4c8f66-7acl-408e-82d5-59f6fcdea9ee”

"listeners"

"name": "my-octavia-loadbalancer"
"operating_status": "OFFLINE"

"pools"

"project_id": "qs59p6z696cp9cho8ze96edddvpfyvgz"
"provider": "amphora"

"provisioning_status": "PENDING_CREATE"

"tags"

"updated_at": null

"yip"

"ip_address": "192.168.100.2"

"network_id": "849b08a9-4397-4d6e-929d-90efc0®55ab8e"
"port_id": "303870a4-bbc3-428c-98dd-492£423869d9"
"qos_policy_id": null

"subnet_id": "d5931lee-ed3a-42c0-ac97-cebf7945facc"

"timestamp": "2022-04-22 23:02:15.717375"

"_unique_id": "71£03£f00c96342328f09dbd92fe0®0d398"

"_context_user": null

"_context_tenant": "qs59p6z696cp9cho8ze96edddvpfyvgz"
"_context_system_scope": null

"_context_project": "qs59p6z696cp9cho8ze96edddvpfyvgz"
"_context_domain": null

"_context_user_domain": null

"_context_project_domain": null

"_context_is_admin": false

"_context_read_only": false

"_context_show_deleted": false

"_context_auth_token": null

"_context_request_id": "req-072bab53-1b9b-46fa-92b0-7£f04305c31bf"
"_context_global_request_id": null

"_context_resource_uuid": null

"_context_roles"

"_context_user_identity": "- qs59p6z696cp9cho8ze96edddvpfyvgz - - -"
"_context_is_admin_project": true

Disabling Event Notifications

By default, event notifications are enabled (see configuring oslo messaging section above for additional
requirements). To disable this feature, use the following setting in your Octavia configuration file:

[controller_worker]
event_notifications False

1.5. Operator Reference 189

CHAPTER
TWO

OCTAVIA COMMAND LINE INTERFACE

Octavia has an OpenStack Client plugin available as the native Command Line Interface (CLI).

Please see the python-octaviaclient documentation for documentation on installing and using the CLI.

190

https://docs.openstack.org/python-octaviaclient/latest/

CHAPTER
THREE

OCTAVIA CONFIGURATION

191

CHAPTER
FOUR

OCTAVIA CONTRIBUTOR

4.1 Contributor Guidelines

4.1.1 So You Want to Contribute...

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Octavia.

Communication

IRC
People working on the Octavia project may be found in the #openstack-1baas channel on the
IRC network described in https://docs.openstack.org/contributors/common/irc.html during work-
ing hours in their timezone. The channel is logged, so if you ask a question when no one is
around, you can check the log to see if it’s been answered: http://eavesdrop.openstack.org/irclogs/
%23openstack-1baas/

Weekly Meeting
The Octavia team meets weekly on IRC. Please see the OpenStack meetings page for the cur-
rent meeting details and ICS file: http://eavesdrop.openstack.org/#Octavia_Meeting Meetings are
logged: http://eavesdrop.openstack.org/meetings/octavia/

Mailing List
We use the openstack-discuss @lists.openstack.org mailing list for asynchronous discussions or to
communicate with other OpenStack teams. Use the prefix [octavia] in your subject line (it’s a
high-volume list, so most people use email filters).

More information about the mailing list, including how to subscribe and read the archives, can be
found at: http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Virtual Meet-ups
From time to time, the Octavia project will have video meetings to address topics not easily covered
by the above methods. These are announced well in advance at the weekly meeting and on the
mailing list.

Physical Meet-ups
The Octavia project usually has a presence at the OpenDev/OpenStack Project Team Gathering
that takes place at the beginning of each development cycle. Planning happens on an etherpad
whose URL is announced at the weekly meetings and on the mailing list.

192

https://docs.openstack.org/contributors/
https://docs.openstack.org/contributors/common/irc.html
http://eavesdrop.openstack.org/irclogs/%23openstack-lbaas/
http://eavesdrop.openstack.org/irclogs/%23openstack-lbaas/
http://eavesdrop.openstack.org/#Octavia_Meeting
http://eavesdrop.openstack.org/meetings/octavia/
mailto:openstack-discuss@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Octavia Documentation, Release 17.1.0.dev41

Contacting the Core Team

The octavia-core team is an active group of contributors who are responsible for directing and maintaining
the Octavia project. As a new contributor, your interaction with this group will be mostly through code
reviews, because only members of octavia-core can approve a code change to be merged into the code
repository.

Note

Although your contribution will require reviews by members of octavia-core, these aren’t the only
people whose reviews matter. Anyone with a gerrit account can post reviews, so you can ask other
developers you know to review your code ... and you can review theirs. (A good way to learn your
way around the codebase is to review other people’s patches.)

If you’re thinking, "I’m new at this, how can I possibly provide a helpful review?", take a look at How
to Review Changes the OpenStack Way.

There are also some Octavia project specific reviewing guidelines in the Octavia Style Commandments
section of the Octavia Contributor Guide.

You can learn more about the role of core reviewers in the OpenStack governance documentation: https:
/ldocs.openstack.org/contributors/common/governance.html#core-reviewer

The membership list of octavia-core is maintained in gerrit: https://review.opendev.org/#/admin/groups/
370,members

You can also find the members of the octavia-core team at the Octavia weekly meetings.

New Feature Planning

The Octavia team use both Request For Enhancement (RFE) and Specifications (specs) processes for new
features.

RFE
When a feature being proposed is easy to understand and will have limited scope, the requester
will create an RFE in Launchpad. This is a bug report that includes the tag [RFE] in the subject
prefix.

Once an RFE bug report is created, a core reviewer or the Project Team Lead (PTL) will approved
the RFE by setting the Importance field to Wishlist. This signals that the core team understands the
feature being proposed and enough detail has been provided to make sure the core team understands
the goal of the change.

specs
If the new feature is a major change or addition to Octavia that will need a detailed design to be
successful, the Octavia team requires a specification (spec) proposal be submitted as a patch.

Octavia specification documents are stored in the /octavia/specs directory in the main Octavia
git repository: https://opendev.org/openstack/octavia/src/branch/master/specs This directory in-
cludes a template.rst file that includes instructions for creating a new Octavia specification.

These specification documents are then rendered and included in the Project Specifications section
of the Octavia Contributor Guide.

Feel free to ask in #openstack-1baas or at the weekly meeting if you have an idea you want to develop
and you’re not sure whether it requires an RFE or a specification.

4.1. Contributor Guidelines 193

https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://review.opendev.org/#/admin/groups/370,members
https://review.opendev.org/#/admin/groups/370,members
https://opendev.org/openstack/octavia/src/branch/master/specs
https://opendev.org/openstack/octavia/src/branch/master/specs/template.rst
https://docs.openstack.org/octavia/latest/contributor/index.html#project-specifications

Octavia Documentation, Release 17.1.0.dev41

The Octavia project observes the OpenStack-wide deadlines, for example, final release of non-client
libraries (octavia-lib), final release for client libraries (python-octaviaclient), feature freeze, etc. These
are noted and explained on the release schedule for the current development cycle available at: https:
/Ireleases.openstack.org/

Task Tracking
We track our tasks in Launchpad.

If you're looking for some smaller, easier work item to pick up and get started on, search for the "low-
hanging-fruit’ tag.

When you start working on a bug, make sure you assign it to yourself. Otherwise someone else may also
start working on it, and we don’t want to duplicate efforts. Also, if you find a bug in the code and want
to post a fix, make sure you file a bug (and assign it to yourself!) just in case someone else comes across
the problem in the meantime.
Reporting a Bug
You found an issue and want to make sure we are aware of it? You can do so on Launchpad.
Please remember to include the following information:

* The version of Octavia and OpenStack you observed the issue in.

* Steps to reproduce.

* Expected behavior.

* Observed behavior.

* The log snippet that contains any error information. Please include the lines directly before the
error message(s) as they provide context for the error.

Getting Your Patch Merged

The Octavia project policy is that a patch must have two +2s reviews from the core reviewers before it
can be merged.

Patches for Octavia projects must include unit and functional tests that cover the new code. Octavia
projects include the "openstack-tox-cover" testing job to help identify test coverage gaps in a patch. This
can also be run locally by running "tox -e cover".

In addition, some changes may require a release note. Any patch that changes functionality, adds func-
tionality, or addresses a significant bug should have a release note. Release notes can be created using
the "reno" tool by running "reno new <summary-message>".

Keep in mind that the best way to make sure your patches are reviewed in a timely manner is to review
other people’s patches. We’re engaged in a cooperative enterprise here.
Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

4.1. Contributor Guidelines 194

https://releases.openstack.org/
https://releases.openstack.org/
https://launchpad.net/octavia
https://launchpad.net/octavia
https://docs.openstack.org/project-team-guide/ptl.html

Octavia Documentation, Release 17.1.0.dev41

4.1.2 Octavia Constitution

This document defines the guiding principles that project leadership will be following in creating, im-
proving and maintaining the Octavia project.

Octavia is an OpenStack project

This means we try to run things the same way other "canonized" OpenStack projects operate from a
procedural perspective. This is because we hope that Octavia will eventually become a standard part of
any OpenStack deployment.

Octavia is as open as OpenStack

Octavia tries to follow the same standards for openness that the OpenStack project also strives to follow:
https://wiki.openstack.org/wiki/Open We are committed to open design, development, and community.
Octavia is "free"

We mean that both in the "beer" and in the "speech" sense. That is to say, the reference implementation for
Octavia should be made up only of open source components that share the same kind of unencumbered
licensing that OpenStack uses.

Note that this does not mean we are against having vendors develop products which can replace some of
the components within Octavia. (For example, the Octavia VM images might be replaced by a vendor’s
proprietary VM image.) Rather, it means that:

* The reference implementation should always be open source and unencumbered.

* We are typically not interested in making design compromises in order to work with a vendor’s
proprietary product. If a vendor wants to develop a component for Octavia, then the vendor should
bend to Octavia’s needs, not the other way around.

Octavia is a load balancer for large operators

That’s not to say that small operators can’t use it. (In fact, we expect it to work well for small deployments,
too.) But what we mean here is that if in creating, improving or maintaining Octavia we somehow make
it unable to meet the needs of a typical large operator (or that operator’s users), then we have failed.

Octavia follows the best coding and design conventions

For the most part, Octavia tries to follow the coding standards set forth for the OpenStack project in
general: https://docs.openstack.org/hacking/latest More specific additional standards can be found in the
HACKING:.rst file in the same directory as this constitution.

Any exceptions should be well justified and documented. (Comments in or near the breach in coding
standards are usually sufficient documentation.)

4.1.3 Octavia Style Commandments

This project was ultimately spawned from work done on the Neutron project. As such, we tend to follow
Neutron conventions regarding coding style.

* We follow the OpenStack Style Commandments: https://docs.openstack.org/hacking/latest

4.1. Contributor Guidelines 195

https://wiki.openstack.org/wiki/Open
https://docs.openstack.org/hacking/latest
https://docs.openstack.org/hacking/latest

Octavia Documentation, Release 17.1.0.dev41

Octavia Specific Commandments
* [O319] Validate that debug level logs are not translated.
* [0321] Validate that jsonutils module is used instead of json
* [0322] Don’t use author tags

* [0323] Change assertEqual(True, A) or assertEqual(False, A) to the more specific assertTrue(A)
or assertFalse(A)

* [0324] Method’s default argument shouldn’t be mutable
* [0339] LOG.warn() is not allowed. Use LOG.warning()
* [0340] Don’t use xrange()

* [0341] Don’t translate logs.

* [0342] Exception messages should be translated

* [0343] Python 3: do not use basestring.

* [0344] Python 3: do not use dict.iteritems.

* [0345] Usage of Python eventlet module not allowed

* [0346] Don’t use backslashes for line continuation.

* [0347] Taskflow revert methods must have **kwargs.

Creating Unit Tests

For every new feature, unit tests should be created that both test and (implicitly) document the usage of
said feature. If submitting a patch for a bug that had no unit test, a new passing unit test should be added.
If a submitted bug fix does have a unit test, be sure to add a new one that fails without the patch and
passes with the patch.

Everything is python

Although OpenStack apparently allows either python or C++ code, at this time we don’t envision needing
anything other than python (and standard, supported open source modules) for anything we intend to do
in Octavia.

Idempotency

With as much as is going on inside Octavia, its likely that certain messages and commands will be
repeatedly processed. It’s important that this doesn’t break the functionality of the load balancing service.
Therefore, as much as possible, algorithms and interfaces should be made as idempotent as possible.

Centralize intelligence, de-centralize workload

This means that tasks which need to be done relatively infrequently but require either additional knowl-
edge about the state of other components in the Octavia system, advanced logic behind decisions, or oth-
erwise a high degree of intelligence should be done by centralized components (ex. controllers) within
the Octavia system. Examples of this might include:

* Generating haproxy configuration files

* Managing the lifecycle of Octavia amphorae

4.1. Contributor Guidelines 196

Octavia Documentation, Release 17.1.0.dev41

* Moving a loadbalancer instance from one Octavia amphora to another.

On the other hand, tasks done extremely often, or which entail a significant load on the system should
be pushed as far out to the most horizontally scalable components as possible. Examples of this might
include:

» Serving actual client requests to end-users (ie. running haproxy)
* Monitoring pool members for failure and sending notifications about this
* Processing log files

There will often be a balance that needs to be struck between these two design considerations for any
given task for which an algorithm needs to be designed. In considering how to strike this balance, always
consider the conditions that will be present in a large operator environment.

Also, as a secondary benefit of centralizing intelligence, minor feature additions and bugfixes can often
be accomplished in a large operator environment without having to touch every Octavia amphora running
in said environment.

All APIs are versioned

This includes "internal" APIs between Octavia components. Experience coding in the Neutron LBaaS
project has taught us that in a large project with many heterogeneous parts, throughout the lifecycle of
this project, different parts will evolve at different rates. It is important that these components are allowed
to do so without hindering or being hindered by parallel development in other components.

Itis also likely that in very large deployments, there might be tens- or hundreds-of-thousands of individual
instances of a given component deployed (most likely, the Octavia amphorae). It is unreasonable to expect
a large operator to update all of these components at once. Therefore it is likely that for a significant
amount of time during a roll-out of a new version, both the old and new versions of a given component
must be able to be controlled or otherwise interfaced with by the new components.

Both of the above considerations can be allowed for if we use versioning of APIs where components
interact with each other.

Octavia must also keep in mind Neutron LBaaS API versions. Octavia must have the ability to support
multiple simultaneous Neutron LBaaS API versions in an effort to allow for Neutron LBaaS API depre-
cation of URIs. The rationale is that Neutron LBaaS API users should have the ability to transition from
one version to the next easily.

Scalability and resilience are as important as functionality

Octavia is meant to be an operator scale load balancer. As such, it’s usually not enough just to get
something working: It also needs to be scalable. For most components, "scalable" implies horizontally
scalable.

In any large operational environment, resilience to failures is a necessity. Practically speaking, this means
that all components of the system that make up Octavia should be monitored in one way or another,
and that where possible automatic recovery from the most common kinds of failures should become a
standard feature. Where automatic recovery is not an option, then some form of notification about the
failure should be implemented.

4.1. Contributor Guidelines 197

Octavia Documentation, Release 17.1.0.dev41

Avoid premature optimization

Understand that being "high performance" is often not the same thing as being "scalable." First get the
thing to work in an intelligent way. Only worry about making it fast if speed becomes an issue.

Don’t repeat yourself

Octavia strives to follow DRY principles. There should be one source of truth, and repetition of code
should be avoided.

Security is not an afterthought

The load balancer is often both the most visible public interface to a given user application, but load
balancers themselves often have direct access to sensitive components and data within the application
environment. Security bugs will happen, but in general we should not approve designs which have known
significant security problems, or which could be made more secure by better design.

Octavia should follow industry standards

By "industry standards" we either mean RFCs or well-established best practices. We are generally not
interested in defining new standards if a prior open standard already exists. We should also avoid doing
things which directly or indirectly contradict established standards.

Use of pre-commit checks

pre-commit is a software tool that allows us to manage pre-commit checks as part of the Git repository’s
configuration and to run checks as Git pre-commit hooks (or other types of Git hooks) automatically on
developer machines. It helps to catch and fix common issues before they get pushed to the server. After
the installation of the tool (e.g. on Fedora via sudo dnf install pre-commit) simply cd to the Git repository
and run pre-commit install to let the tool install its Git pre-commit hook. From now on these predefined
checks will run on files that you change in new Git commits.

4.2 Contributor Reference

4.2.1 Provider Driver Development Guide

This document is intended as a guide for developers creating provider drivers for the Octavia API. This
guide is intended to be an up to date version of the provider driver specification previously approved.

How Provider Drivers Integrate

Auvailable drivers will be enabled by entries in the Octavia configuration file. Drivers will be loaded via
stevedore and Octavia will communicate with drivers through a standard class interface defined below.
Most driver functions will be asynchronous to Octavia, and Octavia will provide a library of functions
that give drivers a way to update status and statistics. Functions that are synchronous are noted below.

Octavia API functions not listed here will continue to be handled by the Octavia API and will not call
into the driver. Examples would be show, list, and quota requests.

In addition, drivers may provide a provider agent that the Octavia driver-agent will launch at start up.
This is a long-running process that is intended to support the provider driver.

4.2. Contributor Reference 198

https://pre-commit.com/
../specs/version1.1/enable-provider-driver.html

Octavia Documentation, Release 17.1.0.dev41

Driver Entry Points

Provider drivers will be loaded via stevedore. Drivers will have an entry point defined in their setup tools
configuration using the Octavia driver namespace "octavia.api.drivers". This entry point name will be
used to enable the driver in the Octavia configuration file and as the "provider" parameter users specify
when creating a load balancer. An example for the octavia reference driver would be:

[J

In addition, provider drivers may provide a provider agent also defined by a setup tools entry point. The
provider agent namespace is "octavia.driver_agent.provider_agents". This will be called once, at Octavia
driver-agent start up, to launch a long-running process. Provider agents must be enabled in the Octavia
configuration file. An example provider agent entry point would be:

[1

Stable Provider Driver Interface

Provider drivers should only access the following Octavia APIs. All other Octavia APIs are not consid-
ered stable or safe for provider driver use and may change at any time.

* octavia_lib.api.drivers.data_models
* octavia_lib.api.drivers.driver_lib

* octavia_lib.api.drivers.exceptions

* octavia_lib.api.drivers.provider_base

e octavia_lib.common.constants

Octavia Provider Driver API

Provider drivers will be expected to support the full interface described by the Octavia API, cur-
rently v2.0. If a driver does not implement an API function, drivers should fail a request by raising a
NotImplementedError exception. If a driver implements a function but does not support a particular
option passed in by the caller, the driver should raise an UnsupportedOptionError.

It is recommended that drivers use the jsonschema package or voluptuous to validate the request against
the current driver capabilities.

See the Exception Model below for more details.

Note

Driver developers should refer to the official Octavia API reference document for details of the fields
and expected outcome of these calls.

Load balancer
Create

Creates a load balancer.

Octavia will pass in the load balancer object with all requested settings.

4.2. Contributor Reference 199

https://docs.openstack.org/stevedore/latest/
https://github.com/Julian/jsonschema
https://pypi.org/project/voluptuous
https://docs.openstack.org/api-ref/load-balancer/v2/index.html

Octavia Documentation, Release 17.1.0.dev41

The load balancer will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status of the
load balancer to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The load
balancer python object representing the request body will be passed to the driver create method as it was
received and validated with the following exceptions:

1. The provider will be removed as this is used for driver selection.

2. The flavor will be expanded from the provided ID to be the full dictionary representing the flavor
metadata.

Load balancer object

As of the writing of this specification the create load balancer object may contain the following:

Name Type Description

admin_state_up bool Admin state: True if up, False if down.
description string A human-readable description for the resource.
flavor dict The flavor keys and values.

availability_zone dict The availability zone keys and values.

listeners list A list of Listener objects.

loadbalancer_id string ID of load balancer to create.

name string Human-readable name of the resource.

pools list A list of Pool object.

project_id string ID of the project owning this resource.
vip_address string The IP address of the Virtual IP (VIP).
vip_network_id string The ID of the network for the VIP.

vip_port_id string The ID of the VIP port.

vip_qos_policy_id string The ID of the qos policy for the VIP.
vip_subnet_id string The ID of the subnet for the VIP.

vip_sg_ids list The list of Neutron Security Group IDs of the VIP port (optional)

The driver is expected to validate that the driver supports the request and raise an exception if the request
cannot be accepted.

VIP port creation

Some provider drivers will want to create the Neutron port for the VIP, and others will want Octavia
to create the port instead. In order to support both use cases, the create_vip_port() method will ask
provider drivers to create a VIP port. If the driver expects Octavia to create the port, the driver will raise
a NotImplementedError exception. Octavia will call this function before calling loadbalancer_create() in
order to determine if it should create the VIP port. Octavia will call create_vip_port() with a loadbalancer
ID and a partially defined VIP dictionary. Provider drivers that support port creation will create the port
and return a fully populated VIP dictionary.

VIP dictionary

4.2. Contributor Reference 200

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

project_id string ID of the project owning this resource.

vip_address string The IP address of the Virtual IP (VIP).

vip_network_id string The ID of the network for the VIP.

vip_port_id string The ID of the VIP port.

vip_qos_policy_id string The ID of the qos policy for the VIP.

vip_subnet_id string The ID of the subnet for the VIP.

vip_sg_ids list The list of Neutron Security Group IDs of the VIP port (optional)

Creating a Fully Populated Load Balancer
If the "listener" option is specified, the provider driver will iterate through the list and create all of the

child objects in addition to creating the load balancer instance.

Delete

Removes an existing load balancer.
Octavia will pass in the load balancer object and cascade boolean as parameters.

The load balancer will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

The API includes an option for cascade delete. When cascade is set to True, the provider driver will

delete all child objects of the load balancer.

Failover

Performs a failover of a load balancer.
Octavia will pass in the load balancer ID as a parameter.

The load balancer will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the load balancer to either ACTIVE if successfully failed
over, or ERROR if not failed over.

Failover can mean different things in the context of a provider driver. For example, the Octavia driver
replaces the current amphora(s) with another amphora. For another provider driver, failover may mean
failing over from an active system to a standby system.

Update

Modifies an existing load balancer using the values supplied in the load balancer object.

Octavia will pass in the original load balancer object which is the baseline for the update, and a load
balancer object with the fields to be updated. Fields not updated by the user will contain "Unset" as
defined in the data model.

As of the writing of this specification the update load balancer object may contain the following:

4.2. Contributor Reference 201

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

admin_state_up bool Admin state: True if up, False if down.
description string A human-readable description for the resource.
loadbalancer_id string ID of load balancer to update.

name string Human-readable name of the resource.

vip_qos_policy_id string

The ID of the qos policy for the VIP.

The load balancer will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the load balancer to either ACTIVE if successfully updated,

or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.2. Contributor Reference

202

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Listener
Create

Creates a listener for a load balancer.
Octavia will pass in the listener object with all requested settings.

The listener will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when it
is passed to the driver. The driver will be responsible for updating the provisioning status of the listener
to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The listener
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will inherit the
project_id from the parent load balancer. 2. The default_tls_container_ref will be expanded and provided
to the driver in PEM format. 3. The sni_container_refs will be expanded and provided to the driver in
PEM format.

4.2. Contributor Reference 203

Octavia Documentation, Release 17.1.0.dev41

Listener object

As of the writing of this specification the create listener object may contain the following:

Name Type

Description

ad- bool
min_state_up
client_authent string

client_ca_tls_ string
client_ca_tls_ string
client_crl_cor string
client_crl_cor string

connec- int
tion_limit

de- ob-
fault_pool ject
de- string
fault_pool_id

de- dict
fault_tls_cont:

de- string

fault_tls_cont:
description string
in- dict
sert_headers

17policies list

listener_id string
loadbal- string
ancer_id

name string
project_id string
protocol string
proto- int
col_port

sni_container_ list
sni_container list

time- int
out_client_da
time- int
out_member_
time- int
out_member_
time- int
out_tcp_inspe
al- list

lowed_cidrs

Admin state: True if up, False if down.

The TLS client authentication mode. One of the options NONE, OPTIONAL or
MANDATORY.

A PEM encoded certificate.

The reference to the secrets container.

A PEM encoded CRL file.

The reference to the secrets container.

The max number of connections permitted for this listener. Default is -1, which
is infinite connections.

A Pool object.

The ID of the pool used by the listener if no L7 policies match.
A TLS container dict.
The reference to the secrets container.

A human-readable description for the listener.

A dictionary of optional headers to insert into the request before it is sent to the
backend member. See Supported HTTP Header Insertions. Keys and values are
specified as strings.

A list of L7policy objects.

ID of listener to create.

ID of load balancer.

Human-readable name of the listener.

ID of the project owning this resource.

Protocol type: One of HTTP, HTTPS, TCP, or TERMINATED_HTTPS.
Protocol port number.

A list of TLS container dict.

A list of references to the SNI secrets containers.

Frontend client inactivity timeout in milliseconds.

Backend member connection timeout in milliseconds.

Backend member inactivity timeout in milliseconds.

Time, in milliseconds, to wait for additional TCP packets for content inspection.

List of IPv4 or IPv6 CIDRs.

As of the writing of this specification the TLS container dictionary contains the following:

4.2. Contributor Reference 204

Octavia Documentation, Release 17.1.0.dev41

Key Type Description

certificate string The PEM encoded certificate.

intermediates List A list of intermediate PEM certificates.
passphrase string The private_key passphrase.

primary_cn string The primary common name of the certificate.
private_key string The PEM encoded private key.

As of the writing of this specification the Supported HTTP Header Insertions are:

Key Type

Description

X- bool
Forwardec

For

X- int
Forwardec

Port

X- bool
Forwardec

Proto

X-SSL- string
Client-

Verity

X-SSL- string
Client-

Has-

Cert

X-SSL- string
Client-

DN

X-SSL- string
Client-

CN

X-SSL- string
Issuer

X-SSL- string
Client-

SHA1

X-SSL- string
Client-

Not-

Before

X-SSL- string
Client-

Not-

After

When True a X-Forwarded-For header is inserted into the request to the backend
member that specifies the client IP address.

A X-Forwarded-Port header is inserted into the request to the backend member that
specifies the integer provided. Typically this is used to indicate the port the client
connected to on the load balancer.

A X-Forwarded-Proto header is inserted into the end of request to the backend
member. HTTP for the HTTP listener protocol type, HTTPS for the TERMI-
NATED_HTTPS listener protocol type.

When "true" a X-SSL-Client-Verify header is inserted into the request to the
backend member that contains O if the client authentication was successful, or an
result error number greater than O that align to the openssl verify error codes.
When "true" a X-SSL-Client-Has-Cert header is inserted into the request to the
backend member that is “true” if a client authentication certificate was presented,
and “false” if not. Does not indicate validity.

When "true" a X-SSL-Client-DN header is inserted into the request to the back-
end member that contains the full Distinguished Name of the certificate presented
by the client.

When "true" a X-SSL-Client-CN header is inserted into the request to the back-
end member that contains the Common Name from the full Distinguished Name of
the certificate presented by the client.

When "true" a X-SSL-Issuer header is inserted into the request to the backend
member that contains the full Distinguished Name of the client certificate issuer.
When "true" aX-SSL-Client-SHA1 header is inserted into the request to the back-
end member that contains the SHA-1 fingerprint of the certificate presented by the
client in hex string format.

When "true" a X-SSL-Client-Not-Before header is inserted into the request to
the backend member that contains the start date presented by the client as a formatted
string YYMMDDhhmmss[Z].

When "true" a X-SSL-Client-Not-After header is inserted into the request to
the backend member that contains the end date presented by the client as a formatted
string Y YMMDDhhmmss[Z].

Creating a Fully Populated Listener

If the "default_pool" or "l7policies" option is specified, the provider driver will create all of the child

4.2. Contributor Reference 205

Octavia Documentation, Release 17.1.0.dev41

objects in addition to creating the listener instance.

Delete

Deletes an existing listener.
Octavia will pass the listener object as a parameter.

The listener will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing listener using the values supplied in the listener object.

Octavia will pass in the original listener object which is the baseline for the update, and a listener object
with the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the data
model.

As of the writing of this specification the update listener object may contain the following:

4.2. Contributor Reference 206

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_up

client_authen string The TLS client authentication mode. One of the options NONE, OPTIONAL or
MANDATORY.

client_ca_tls_ string A PEM encoded certificate.

client_ca_tls_ string The reference to the secrets container.

client_crl_co1 string A PEM encoded CRL file.

client_crl_co1 string The reference to the secrets container.

connec- int The max number of connections permitted for this listener. Default is -1,

tion_limit which is infinite connections.

de- string The ID of the pool used by the listener if no L7 policies match.

fault_pool_id

de- dict A TLS container dict.

fault_tls_cont

de- string The reference to the secrets container.

fault_tls_cont

description string A human-readable description for the listener.

in- dict A dictionary of optional headers to insert into the request before it is sent

sert_headers to the backend member. See Supported HI'TP Header Insertions. Keys and
values are specified as strings.

listener_id string ID of listener to update.

name string Human-readable name of the listener.

sni_container list A list of TLS container dict.

sni_container list A list of references to the SNI secrets containers.

time- int Frontend client inactivity timeout in milliseconds.

out_client_da

time- int Backend member connection timeout in milliseconds.

out_member_

time- int Backend member inactivity timeout in milliseconds.

out_member_

time- int Time, in milliseconds, to wait for additional TCP packets for content inspec-

out_tcp_inspe
al-
lowed_cidrs

tion.

list | List of IPv4 or IPv6 CIDRs.

The listener will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the listener to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.2. Contributor Reference

207

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Pool
Create

Creates a pool for a load balancer.
Octavia will pass in the pool object with all requested settings.

The pool will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when it is
passed to the driver. The driver will be responsible for updating the provisioning status of the pool to
either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The pool
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will inherit
the project_id from the parent load balancer.

Pool object

As of the writing of this specification the create pool object may contain the following:

4.2. Contributor Reference 208

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

ad- bool Admin state: True if up, False if down.
min_state_ug

ca_tls_contai string A PEM encoded certificate.

ca_tls_contai string The reference to the secrets container.
crl_container string A PEM encoded CRL file.

crl_container string The reference to the secrets container.
description string A human-readable description for the pool.
healthmon- ob- A Healthmonitor object.

itor ject

Ib_algorithm string Load balancing algorithm: One of ROUND_ROBIN,
LEAST_CONNECTIONS, SOURCE_IP or SOURCE_IP_PORT.

loadbal- string ID of load balancer.

ancer_id

listener_id string ID of listener.

members list A list of Member objects.

name string Human-readable name of the pool.

pool_id string ID of pool to create.

project_id string ID of the project owning this resource.

protocol string Protocol type: One of HTTP, HTTPS, PROXY, or TCP.

ses- dict Defines session persistence as one of {’type’: <’HTTP_COOKIE’

sion_persiste | ’SOURCE_IP’>} OR {’type’: ’APP_COOKIE’, ’cookie_name’:
<cookie_name>}

tls_container dict A TLS container dict.

tls_container string The reference to the secrets container.

tls_enabled bool True when backend re-encryption is enabled.

Delete

Removes an existing pool and all of its members.
Octavia will pass the pool object as a parameter.

The pool will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The driver
will notify Octavia that the delete was successful by setting the provisioning_status to DELETED. If the
delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing pool using the values supplied in the pool object.

Octavia will pass in the original pool object which is the baseline for the update, and a pool object with
the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the data model.

As of the writing of this specification the update pool object may contain the following:

4.2. Contributor Reference 209

Octavia Documentation, Release 17.1.0.dev41

Name

Type

Description

ad-
min_state_ug
ca_tls_contai
ca_tls_contai
crl_container
crl_container
description
Ib_algorithm

name
pool_id

ses-
sion_persiste

tls_container
tls_container
tls_enabled

bool

string
string
string
string
string
string

string
string
dict

dict
string
bool

Admin state: True if up, False if down.

A PEM encoded certificate.

The reference to the secrets container.

A PEM encoded CRL file.

The reference to the secrets container.

A human-readable description for the pool.
Load balancing algorithm:
LEAST_CONNECTIONS, or SOURCE_IP.
Human-readable name of the pool.
ID of pool to update.

Defines session persistence as
| ’SOURCE_IP’>} OR {’type’:
<cookie_name> }

A TLS container dict.

The reference to the secrets container.
True when backend re-encryption is enabled.

One of ROUND_ROBIN,

one of ({’type’: <’HTTP_COOKIE’
’APP_COOKIE’, ’cookie_name’:

The pool will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The driver
will update the provisioning_status of the pool to either ACTIVE if successfully updated, or ERROR if the
update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.2. Contributor Reference

210

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Member
Create

Creates a member for a pool.
Octavia will pass in the member object with all requested settings.

The member will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when it
is passed to the driver. The driver will be responsible for updating the provisioning status of the member
to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The member
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The member will inherit
the project_id from the parent load balancer.

Member object

As of the writing of this specification the create member object may contain the following:

4.2. Contributor Reference 211

Octavia Documentation, Release 17.1.0.dev41

Nam Type Description

ad- string The IP address of the backend member to receive traffic from the load balancer.

dress

ad- bool Admin state: True if up, False if down.

min_

backi bool Is the member a backup? Backup members only receive traffic when all non-backup
members are down.

mem string ID of member to create.

ber_i

mon- string An alternate IP address used for health monitoring a backend member.

tor_a
mon- int An alternate protocol port used for health monitoring a backend member.

tor_p

name string Human-readable name of the member.

pool_ string ID of pool.

proje string ID of the project owning this resource.

pro- int The port on which the backend member listens for traffic.

to-

col_g

sub- string Subnet ID.

net i

weigl int The weight of a member determines the portion of requests or connections it services
compared to the other members of the pool. For example, a member with a weight of
10 receives five times as many requests as a member with a weight of 2. A value of 0
means the member does not receive new connections but continues to service existing
connections. A valid value is from O to 256. Default is 1.

vnic_ string The member vNIC type used for the member port. One of normal or direct.

..note:: The vnic_type of normal and direct are the same as those defined by
neutron ports.

Delete

Removes a pool member.
Octavia will pass the member object as a parameter.

The member will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing member using the values supplied in the listener object.

Octavia will pass in the original member object which is the baseline for the update, and a member object
with the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the data
model.

As of the writing of this specification the update member object may contain the following:

4.2. Contributor Reference 212

Octavia Documentation, Release 17.1.0.dev41

Nam Type Description

ad- bool Admin state: True if up, False if down.

min_

backi bool Is the member a backup? Backup members only receive traffic when all non-backup
members are down.

mem string ID of member to update.

ber_i

mon- string An alternate IP address used for health monitoring a backend member.

tor_a
mon- int An alternate protocol port used for health monitoring a backend member.

tor_p

name string Human-readable name of the member.

weigl int The weight of a member determines the portion of requests or connections it services
compared to the other members of the pool. For example, a member with a weight of
10 receives five times as many requests as a member with a weight of 2. A value of 0
means the member does not receive new connections but continues to service existing
connections. A valid value is from O to 256. Default is 1.

The member will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the member to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Batch Update

Set the state of members for a pool in one API call. This may include creating new members, deleting
old members, and updating existing members. Existing members are matched based on address/port
combination.

For example, assume a pool currently has two members. These members have the following ad-
dress/port combinations: *192.0.2.15:80” and *192.0.2.16:80°. Now assume a PUT request is made that
includes members with address/port combinations: *192.0.2.16:80” and *192.0.2.17:80°. The member
’192.0.2.15:80” will be deleted because it was not in the request. The member *192.0.2.16:80” will be
updated to match the request data for that member, because it was matched. The member >192.0.2.17:80°
will be created, because no such member existed.

The members will be in the PENDING_CREATE, PENDING_UPDATE, or PENDING_DELETE provision-
ing_status when it is passed to the driver. The driver will update the provisioning_status of the members
to either ACTIVE or DELETED if successfully updated, or ERROR if the update was not successful.

The batch update method will supply a list of Member objects. Existing members not in this list should
be deleted, existing members in the list should be updated, and members in the list that do not already
exist should be created.

Abstract class definition

(continues on next page)

4.2. Contributor Reference 213

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Creates a new member for a pool.

:param member (object): The member object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not

support one of the configuration options.

raise NotImplementedError

def member_delete(self

Deletes a pool member.

:param member (object): The member object.

:return: Nothing if the create request was accepted.

:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.

raise NotImplementedError

def member_update(self

Updates a pool member.

:param old_member (object): The baseline member object.
:param new_member (object): The updated member object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not

support one of the configuration options.

raise NotImplementedError

def member_batch_update(self
"""Creates, updates, or deletes a set of pool members.

:param pool_id (string): The id of the pool to update.
:param members (list): List of member objects.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not

support one of the configuration options.

raise NotImplementedError

4.2, Contributor Reference

214

Octavia Documentation, Release 17.1.0.dev41

Health Monitor

Create

Creates a health monitor on a pool.

Octavia will pass in the health monitor object with all requested settings.

The health monitor will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status of the
health monitor to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The health-
monitor python object representing the request body will be passed to the driver create method as it was
received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will inherit
the project_id from the parent load balancer.

Healthmonitor object

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_1

delay int The interval, in seconds, between health checks.

do- string The domain name to be passed in the host header for health monitor checks.
main_name

ex- string The expected HTTP status codes to get from a successful health check. This may
pected_cod be a single value, a list, or a range.

health- string ID of health monitor to create.

moni-

tor_id

http_metho string
http_versio: float
max_retries int
max_retries int

name string
pool_id string

project_id string
timeout int
type string

url_path string

The HTTP method that the health monitor uses for requests. One of CONNECT,
DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, or TRACE.

The HTTP version to use for health monitor connections. One of ’1.0” or *1.1".
Defaults to *1.0’.

The number of successful checks before changing the operating status of the mem-
ber to ONLINE.

The number of allowed check failures before changing the operating status of the
member to ERROR. A valid value is from 1 to 10.

Human-readable name of the monitor.

The pool to monitor.

ID of the project owning this resource.

The time, in seconds, after which a health check times out. This value must be less
than the delay value.

The type of health monitor. One of HTTP, HTTPS, PING, SCTP, TCP, TLS-
HELLO or UDP-CONNECT.

The HTTP URL path of the request sent by the monitor to test the health of a
backend member. Must be a string that begins with a forward slash (/).

4.2. Contributor Reference 215

Octavia Documentation, Release 17.1.0.dev41

Delete

Deletes an existing health monitor.
Octavia will pass in the health monitor object as a parameter.

The health monitor will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing health monitor using the values supplied in the health monitor object.

Octavia will pass in the original health monitor object which is the baseline for the update, and a health
monitor object with the fields to be updated. Fields not updated by the user will contain "Unset" as
defined in the data model.

As of the writing of this specification the update health monitor object may contain the following:

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_1

delay int ~ The interval, in seconds, between health checks.

do- string The domain name to be passed in the host header for health monitor checks.
main_name

ex- string The expected HTTP status codes to get from a successful health check. This may
pected_cod be a single value, a list, or a range.

health- string ID of health monitor to create.

moni-

tor_id

http_metho string The HTTP method that the health monitor uses for requests. One of CONNECT,
DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, or TRACE.

http_versio: float The HTTP version to use for health monitor connections. One of 1.0’ or "1.1°.
Defaults to *1.0’.

max_retries int ~ The number of successful checks before changing the operating status of the mem-
ber to ONLINE.

max_retries int ~ The number of allowed check failures before changing the operating status of the
member to ERROR. A valid value is from 1 to 10.

name string Human-readable name of the monitor.

timeout int The time, in seconds, after which a health check times out. This value must be less
than the delay value.

url_path string The HTTP URL path of the request sent by the monitor to test the health of a
backend member. Must be a string that begins with a forward slash (/).

The health monitor will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the health monitor to either ACTIVE if successfully
updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

4.2. Contributor Reference 216

Octavia Documentation, Release 17.1.0.dev41

L7 Policy
Create

Creates an L7 policy.
Octavia will pass in the L7 policy object with all requested settings.

The L7 policy will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when
it is passed to the driver. The driver will be responsible for updating the provisioning status of the L7
policy to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The 17policy
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

4.2. Contributor Reference 217

Octavia Documentation, Release 17.1.0.dev41

1. The project_id will be removed, if present, as this field is now deprecated. The 17policy will inherit
the project_id from the parent load balancer.

L7policy object

As of the writing of this specification the create 17policy object may contain the following:

Name Type Description

action string The L7 policy action. One of REDIRECT_TO_POOL, REDIRECT_TO_URL,
or REJECT.

ad- bool Admin state: True if up, False if down.

min_state_up

description string A human-readable description for the L7 policy.
17policy_id string The ID of the L7 policy.

listener_id string The ID of the listener.

name string Human-readable name of the L7 policy.

position int The position of this policy on the listener. Positions start at 1.

project_id string ID of the project owning this resource.

redi- int The HTTP status code to be returned on a redirect policy.

rect_http_cod

redi- string Requests matching this policy will be redirected to the pool with this ID. Only
rect_pool_id valid if action is REDIRECT_TO_POOL.

redi- string Requests matching this policy will be redirected to this Prefix URL. Only valid
rect_prefix if action is REDIRECT_PREFIX.

redirect_url string Requests matching this policy will be redirected to this URL. Only valid if action
is REDIRECT_TO_URL.
rules list A list of 17rule objects.

Creating a Fully Populated L7 policy
If the "rules" option is specified, the provider driver will create all of the child objects in addition to

creating the L7 policy instance.

Delete

Deletes an existing L7 policy.
Octavia will pass in the L7 policy object as a parameter.

The 17policy will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing L7 policy using the values supplied in the 17policy object.

Octavia will pass in the original L7 policy object which is the baseline for the update, and an L7 policy
object with the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the
data model.

As of the writing of this specification the update L7 policy object may contain the following:

4.2. Contributor Reference 218

Octavia Documentation, Release 17.1.0.dev41

Name Type

Description

action string

ad- bool
min_state_up
description string
17policy_id string

name string
position int
redi- int
rect_http_cod

redi- string
rect_pool_id

redi- string
rect_prefix

redirect_url string

The L7 policy action. One of REDIRECT_TO_POOL, REDIRECT_TO_URL,
or REJECT.

Admin state: True if up, False if down.

A human-readable description for the L7 policy.

The ID of the L7 policy.

Human-readable name of the L7 policy.

The position of this policy on the listener. Positions start at 1.
The HTTP status code to be returned on a redirect policy.

Requests matching this policy will be redirected to the pool with this ID. Only
valid if action is REDIRECT_TO_POOL.

Requests matching this policy will be redirected to this Prefix URL. Only valid
if action is REDIRECT_PREFIX.

Requests matching this policy will be redirected to this URL. Only valid if action
is REDIRECT_TO_URL.

The L7 policy will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the L7 policy to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.2. Contributor Reference 219

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

L7 Rule
Create

Creates a new L7 rule for an existing L7 policy.
Octavia will pass in the L7 rule object with all requested settings.

The L7 rule will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when it
is passed to the driver. The driver will be responsible for updating the provisioning status of the L7 rule
to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The 17rule
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will inherit
the project_id from the parent load balancer.

L7rule object

As of the writing of this specification the create 17rule object may contain the following:

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_u

com- string The comparison type for the L7 rule. One of CONTAINS, ENDS_WITH,

pare_type EQUAL_TO, REGEX, or STARTS_WITH.

invert bool When True the logic of the rule is inverted. For example, with invert True, equal
to would become not equal to.

key string The key to use for the comparison. For example, the name of the cookie to eval-
uate.

[7policy_id string The ID of the L7 policy.
17rule_id string The ID of the L7 rule.
project_id string ID of the project owning this resource.

type string The L7 rule type. One of COOKIE, FILE_TYPE, HEADER, HOST_NAME, or
PATH.
value string The value to use for the comparison. For example, the file type to compare.

4.2. Contributor Reference 220

Octavia Documentation, Release 17.1.0.dev41

Delete

Deletes an existing L7 rule.
Octavia will pass in the L7 rule object as a parameter.

The L7 rule will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing L7 rule using the values supplied in the 17rule object.

Octavia will pass in the original L7 rule object which is the baseline for the update, and an L7 rule object
with the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the data
model.

As of the writing of this specification the update L7 rule object may contain the following:

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_u

com- string The comparison type for the L7 rule. One of CONTAINS, ENDS_WITH,

pare_type EQUAL_TO, REGEX, or STARTS_WITH.

invert bool When True the logic of the rule is inverted. For example, with invert True, equal
to would become not equal to.

key string The key to use for the comparison. For example, the name of the cookie to eval-
uate.

17rule_id string The ID of the L7 rule.

type string The L7 rule type. One of COOKIE, FILE_TYPE, HEADER, HOST_NAME, or
PATH.

value string The value to use for the comparison. For example, the file type to compare.

The L7 rule will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the L7 rule to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.2. Contributor Reference 221

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Flavor

Octavia flavors are defined in a separate flavor specification. Support for flavors will be provided through
two provider driver interfaces, one to query supported flavor metadata keys and another to validate that
a flavor is supported. Both functions are synchronous.

get_supported_flavor_metadata

Retrieves a dictionary of supported flavor keys and their description. For example:

validate_flavor

Validates that the driver supports the flavor metadata dictionary.

The validate_flavor method will be passed a flavor metadata dictionary that the driver will validate. This
is used when an operator uploads a new flavor that applies to the driver.

4.2. Contributor Reference 222

../specs/version1.0/flavors.html

Octavia Documentation, Release 17.1.0.dev41

The validate_flavor method will either return or raise a UnsupportedOptionError exception.

Following are interface definitions for flavor support:

Availability Zone

Octavia availability zones have no explicit spec, but are modeled closely after the existing flavor spec-
ification. Support for availability_zones will be provided through two provider driver interfaces, one
to query supported availability zone metadata keys and another to validate that an availability zone is
supported. Both functions are synchronous.

get_supported_availability _zone_metadata

Retrieves a dictionary of supported availability zone keys and their description. For example:

4.2. Contributor Reference 223

../specs/version1.0/flavors.html
../specs/version1.0/flavors.html

Octavia Documentation, Release 17.1.0.dev41

validate_availability_zone

Validates that the driver supports the availability zone metadata dictionary.

The validate_availability_zone method will be passed an availability zone metadata dictionary that the
driver will validate. This is used when an operator uploads a new availability zone that applies to the
driver.

The validate_availability_zone method will either return or raise a UnsupportedOptionError excep-
tion.

Following are interface definitions for availability zone support:

Exception Model
DriverError

This is a catch all exception that drivers can return if there is an unexpected error. An example might be
a delete call for a load balancer the driver does not recognize. This exception includes two strings: The
user fault string and the optional operator fault string. The user fault string, "user_fault_string", will be
provided to the API requester. The operator fault string, "operator_fault_string", will be logged in the
Octavia API log file for the operator to use when debugging.

(continues on next page)

4.2. Contributor Reference 224

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

NotimplementedError

Driver implementations may not support all operations, and are free to reject a request. If the driver does
not implement an API function, the driver will raise a NotImplementedError exception.

UnsupportedOptionError

Provider drivers will validate that they can complete the request -- that all options are supported by
the driver. If the request fails validation, drivers will raise an UnsupportedOptionError exception. For
example, if a driver does not support a flavor passed as an option to load balancer create(), the driver
will raise an UnsupportedOptionError and include a message parameter providing an explanation of the
failure.

4.2. Contributor Reference 225

Octavia Documentation, Release 17.1.0.dev41

Driver Support Library

Provider drivers need support for updating provisioning status, operating status, and statistics. Drivers
will not directly use database operations, and instead will callback to octavia-lib using a new APIL.

Warning

The methods listed here are the only callable methods for drivers. All other interfaces are not consid-
ered stable or safe for drivers to access. See Stable Provider Driver Interface for a list of acceptable
APIs for provider driver use.

Warning

This library is interim and will be removed when the driver support endpoint is made available. At
which point drivers will not import any code from octavia-lib.

Update Provisioning and Operating Status API

The update status API defined below can be used by provider drivers to update the provisioning and/or
operating status of Octavia resources (load balancer, listener, pool, member, health monitor, L7 policy,
or L7 rule).

For the following status API, valid values for provisioning status and operating status parameters are as
defined by Octavia status codes. If an existing object is not included in the input parameter, the status
remains unchanged.

Note

If the driver-agent exceeds its configured status_max_processes this call may block while it waits for
a status process slot to become available. The operator will be notified if the driver-agent approaches
or reaches the configured limit.

provisioning_status: status associated with lifecycle of the resource. See Octavia Provisioning Status
Codes.

operating_status: the observed status of the resource. See Octavia Operating Status Codes.

The dictionary takes this form:

4.2. Contributor Reference 226

https://docs.openstack.org/api-ref/load-balancer/v2/index.html#provisioning-status-codes
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#provisioning-status-codes
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#operating-status-codes

Octavia Documentation, Release 17.1.0.dev41

Update Statistics API

Provider drivers can update statistics for listeners using the following API. Similar to the status function
above, a single dictionary with multiple listener statistics is used to update statistics in a single call. If an
existing listener is not included, the statistics that object remain unchanged.

Note

If the driver-agent exceeds its configured stats_max_processes this call may block while it waits for
a stats process slot to become available. The operator will be notified if the driver-agent approaches
or reaches the configured limit.

The general form of the input dictionary is a list of listener statistics:

4.2. Contributor Reference 227

Octavia Documentation, Release 17.1.0.dev41

Get Resource Support

Provider drivers may need to get information about an Octavia resource. As an example of its use, a
provider driver may need to sync with Octavia, and therefore need to fetch all of the Octavia resources
it is responsible for managing. Provider drivers can use the existing Octavia API to get these resources.
See the Octavia API Reference.

API Exception Model

The driver support API will include exceptions: two API groups:
» UpdateStatusError
» UpdateStatisticsError
* DriverAgentNotFound
* DriverAgentTimeout

Each exception class will include a message field that describes the error and references to the failed
record if available.

(continues on next page)

4.2. Contributor Reference 228

https://docs.openstack.org/api-ref/load-balancer/v2/index.html

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Provider Agents

Provider agents are long-running processes started by the Octavia driver-agent process at start up. They
are intended to allow provider drivers a long running process that can handle periodic jobs for the provider
driver or receive events from another provider agent. Provider agents are optional and not required for a
successful Octavia provider driver.

Provider Agents have access to the same Stable Provider Driver Interface as the provider driver. A
provider agent must not access any other Octavia code.

Warning

The methods listed in the Driver Support Library section are the only Octavia callable methods for
provider agents. All other interfaces are not considered stable or safe for provider agents to access.
See Stable Provider Driver Interface for a list of acceptable APIs for provider agents use.

Declaring Your Provider Agent

The Octavia driver-agent will use stevedore to load enabled provider agents at start up. Provider agents
are enabled in the Octavia configuration file. Provider agents that are installed, but not enabled, will not
be loaded. An example configuration file entry for a provider agent is:

The provider agent name must match the provider agent name declared in your python setup tools entry
point. For example:

4.2. Contributor Reference 229

https://docs.openstack.org/stevedore/latest/

Octavia Documentation, Release 17.1.0.dev41

Provider Agent Method Invocation

On start up of the Octavia driver-agent, the method defined in the entry point will be launched in its own
multiprocessing Process.

Your provider agent method will be passed a multiprocessing Event that will be used to signal that
the provider agent should shutdown. When this event is "set", the provider agent should grace-
fully shutdown. If the provider agent fails to exit within the Octavia configuration file setting
"provider_agent_shutdown_timeout" period, the driver-agent will forcefully shutdown the provider agent

with a SIGKILL signal.

Example Provider Agent Method

If, for example, you declared a provider agent as "my_agent":

The signature of your "my_provider_agent" method would be:

[

Documenting the Driver

Octavia provides two documents to let operators and users know about available drivers and their features.

Available Provider Drivers

The Available Provider Drivers document provides administrators with a guide to the available Octavia
provider drivers. Since provider drivers are not included in the Octavia source repositories, this guide is
an important tool for administrators to find your provider driver.

You can submit information for your provider driver by submitting a patch to the Octavia documentation
following the normal OpenStack process.

See the OpenStack Contributor Guide for more information on submitting a patch to OpenStack.

Octavia Provider Feature Matrix

The Octavia documentation includes a Octavia Provider Feature Matrix that informs users on which
Octavia features are supported by each provider driver.

The feature matrices are built using the Oslo sphinx-feature-classification library. This allows a simple
INI file format for describing the capabilities of an Octavia provider driver.

Each driver should define a [driver.<driver name>] section and then add a line to each feature specifying
the level of support the provider driver provides for the feature.

For example, the Amphora driver support for "admin_state_up" would add the following to the feature-
matrix-1b.ini file.

(continues on next page)

4.2. Contributor Reference 230

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event
https://docs.openstack.org/contributors/
https://docs.openstack.org/sphinx-feature-classification/latest/

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Valid driver feature support statuses are:

complete
Fully implemented, expected to work at all times.

partial

Implemented, but with caveats about when it will work.
missing

Not implemented at all.

You can also optionally provide additional, provider driver specific, notes for users by defining a "driver-
notes.<driver name>".

Driver notes are highly recommended when a provider driver declares a partial status.

4.2.2 Debugging Octavia code

This document describes how to setup and debug Octavia code using your favorite IDE (e.g. PyCharm,
Visual Studio Code).

Prerequisites
¢ QOctavia installed.

* IDE installed and Octavia added as project.

Setup

Both PyCharm Professional edition and Visual Studio Code offer remote debugging features that can be
used for debugging Octavia components.

Note

Before running a new Octavia process you should make sure that processes of that component are no
longer running. You can use ps aux in order to verify that.

PyCharm

Note

Remote debugging is a PyCharm Professional feature.

4.2. Contributor Reference 231

Octavia Documentation, Release 17.1.0.dev41

PyCharm offers two ways of debugging remotely'. In general, the "through a remote interpreter" ap-
proach is more convenient and should be preferred. On the other hand, the "Python debug server" ap-
proach is the only one that works for debugging the API component (because of uWSGI). Therefore, this
guide will explain both approaches.

Using a remote interpreter

First, configure a remote interpreter for the VM as documented in’. Adding a deployment configuration
with correct path mappings allows PyCharm to upload local changes to the remote host automatically.

Then, create a new Run/Debug Configuration by selecting Run -> Edit Configurations... in the menu bar.
Add a new configuration and make sure Module name is selected instead of Script path. Enter the module
name of the Octavia component you want to debug, for instance octavia.cmd.octavia_worker. Ad-
ditionally, add --config-file /etc/octavia/octavia.conf to Parameters. Then check whether
the right remote Python interpreter is selected. After you confirm the settings by clicking OK you should
be able to run/debug the Octavia component with that new run configuration.

Using a Python debug server

As mentioned above the "remote interpreter" approach does not work with Octavia-API because that
process is managed by uWSGI. Here the Python debug server approach® needs to be used. You will need
to install the pydevd-pycharm via pip as shown when creating the run/debug configuration. However,
it is not necessary to modify the Python code in any way because Octavia code is already set up for it to
work.

Export DEBUGGER_TYPE, DEBUGGER_HOST and DEBUGGER_PORT (host and port of the system
running the IDE, respectively), and start the Octavia service you want to debug. For example, to debug
the Octavia API service:

$ export DEBUGGER_TYPE=pydev

$ export DEBUGGER_HOST=192.168.121.1

$ export DEBUGGER_PORT=5678

$ uwsgi --ini /etc/octavia/octavia-uwsgi.ini

Note

You must run the Octavia/uWSGI command directly. Starting it via systemctl will not work with
the debug server.

Visual Studio Code

While PyCharm synchronizes local changes with the remote host, Code will work on the remote envi-
ronment directly through a SSH tunnel. That means that you don’t even need to have source code on your
local machine in order to debug code on the remote.

Detail information about remote debugging over SSH can be found in the official Visual Studio Code
documentation®. This guide will focus on the essential steps only.

U https://www.jetbrains.com/help/pycharm/remote-debugging- with-product.html

2 https://www.jetbrains.com/help/pycharm/remote-debugging- with-product. html#remote-interpreter

? https://www.jetbrains.com/help/pycharm/remote-debugging-with-product. html#remote-debug-config
4 https://code.visualstudio.com/docs/remote/ssh

4.2. Contributor Reference 232

https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html
https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html#remote-interpreter
https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html#remote-debug-config
https://code.visualstudio.com/docs/remote/ssh

Octavia Documentation, Release 17.1.0.dev41

Using the remote development extension pack

Note

This approach will not work with the Octavia API component because that component is managed by
uWSGL

After installing the Visual Studio Code Remote Development Extension Pack® you need to open the Re-
mote Explorer view and connect to the SSH target. This will open a new window and on the bottom left
of that window you should see SSH: followed by the SSH host name. In the Explorer view you can then
choose to either clone a repository or open an existing folder on the remote. For instance when working
with devstack you might want to open /opt/stack or /opt/stack/octavia.

Next, you should configure the launch.json, which contains the run configurations. Use the following
template and adjust it to your needs:

{

// Use IntelliSense to learn about possible attributes.

// Hover to view descriptions of existing attributes.

// For more information, visit: https://go.microsoft.com/fwlink/?
—1inkid=830387

"version": "0.2.0",
"configurations": [
{

"name": "Octavia Worker",
"type": "python",
"request": "launch",
"module": "octavia.cmd.octavia_worker",
"args": ["--config-file", "/etc/octavia/octavia.conf"],

"justMyCode": true

J

Make sure that the correct Python interpreter is selected in the status bar. In a devstack environment the
global Python interpreter /usr/bin/python3 should be the correct one. Now you can start debugging by
pressing F5.

Note

When running this the first time Visual Studio Code might ask you to install the Python debugger
extension on the remote, which you must do. Simply follow the steps shown in the IDE.

Using ptvsd

Warning

> https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

4.2. Contributor Reference 233

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

Octavia Documentation, Release 17.1.0.dev41

ptvsd has been deprecated and replaced by debugpy. However, debugpy doesn’t seem work with
uWSGI processes. The information in this section might be outdated.

Another example is debugging the Octavia API service with the ptvsd debugger:

$ export DEBUGGER_TYPE=ptvsd

$ export DEBUGGER_HOST=192.168.121.1

$ export DEBUGGER_PORT=5678

$ /usr/bin/uwsgi --ini /etc/octavia/octavia-uwsgi.ini -p 1

The service will connect to your IDE, at which point remote debugging is active. Resume the program
on the debugger to continue with the initialization of the service. At this point, the service should be
operational and you can start debugging.

Troubleshooting

Remote process does not connect with local PyCharm debug server

1. Check if the debug server is still running
2. Check if the values of the exported DEBUGGER_ variables above are correct.

3. Check if the remote machine can reach the port of the debug server:

[$ nc -zvwl® $DEBUGGER_HOST $DEBUGGER PORT]

If it cannot connect, the connection may be blocked by a firewall.

4.2.3 Octavia Entity Relationship Diagram
Below is the current Octavia database data model.

* Solid stars are primary key columns.

* Hollow stars are foreign key columns.

* Items labeled as "PROPERTY" are data model relationships and are not present in the database.

4.2. Contributor Reference 234

Octavia Documentation, Release 17.1.0.dev41

4.2.4 Octavia Controller Flows

Octavia uses OpenStack TaskFlow to orchestrate the actions the Octavia controller needs to take while
managing load balancers.

This document is meant as a reference for the key flows used in the Octavia controller.

The following are flow diagrams for the amphora V2 driver.

Amphora Flows

Contents

* Amphora Flows
— cert_rotate_amphora_flow

— get_failover_amphora_flow

4.2, Contributor Reference 235

Octavia Documentation, Release 17.1.0.dev41

cert_rotate_amphora_flow

linear_flow.Flow: octavia-cert-rotate-amphora-flow(len=5)
@roﬂer.Worker.v2.tasks.lifecycle_tasks.AmphoraToErrorOnRevertTask== 1.0

@Oller.worker.v2.tasks.cert_task.GenerateServerPEMTask::1 .0
@oﬂer.worker.v2.tasks.amphora_driver_tasks.AmphoraCertUpload:: 1.0

@roﬂer.worker.v2.tasks.database_tasks.UpdateAmphoraDBCertExp@

@Hoﬂer.worker.v2.tasks.database_tasks.UpdateAmphoraCertBusyToFalse:: 1.0
linear_flow.Flow: octavia-cert-rotate-amphora-flow(len=5)[$]

4.2. Contributor Reference 236

Octavia Documentation, Release 17.1.0.dev41

get_failover_amphora_flow

237

Octavia Documentation, Release 17.1.0.dev41

Health Monitor Flows

Contents

e Health Monitor Flows
— get_create_health_monitor_flow

— get_delete_health_monitor_flow

— get_update_health_monitor_flow

get_create_health_monitor_flow

linear_flow.Flow: octavia-create-health-monitor-flow(len=6)
@ troller.worker.v2.tasks.lifecycle_tasks.HealthMonitorToErrorOnRevertTask==1.0

@roller.worker.ﬁ.tasks.databaseftasks.MarkHealthMonitorPendingCreate@
@oﬂer.worker.ﬁ.tasks.amphorafdriverftasks.Listeners@
@roller.workﬂ.ﬂ.tasks.databaseftasks.MarkHealthMonitorActiveInDBE
@ler.worker.ﬂ.tasks.database_tasks.Mar@oolAct@
@oﬂer.worker.ﬂ.tasks.database_tasks.MarkLBAndListenersActiv@
@low: octavia—create—health—monitor—f@v

4.2. Contributor Reference 238

Octavia Documentation, Release 17.1.0.dev41

get_delete_health_monitor_flow

linear_flow.Flow: octavia-delete-health-monitor-flow(len=8)

@Oller.worker.ﬂ.tasks.lifecycle_tasks.HealthMonitorToErrorOnRevertTask:: 1.0

@oller.worker. v2.tasks.database_tasks.MarkHealthMonitorPendingDeleteInDB==1.0

@ler.workerﬂ.tasks.amphora_driver_tasks.ListenersU pdate==1.0

@Oﬂer.worker.ﬂ.tasks.databaseftasks,DeleteHealthMonitorInDB== 1.0

@ller.worker.ﬂ .tasks.database_tasks.DecrementHealthMonitorQuota==1.0

@tro]ler.worker.vltasks.database_tasks.

UpdatePoolMembersOperatingStatusinDB==1.0

@Her.worker.v2.tasks.database,tasks.MarkPoolActiveInDBzz1.0

@roﬂer.woﬂcer.ﬁ.tasks.database_t

asks.MarkLLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-delete-health-monitor-flow(len=8)[$]

4.2. Contributor Reference

239

Octavia Documentation, Release 17.1.0.dev41

get_update_health_monitor_flow

@w: octavia—update—health—monit@
@ollﬂ.worker.ﬁ.tasks.lifecycle_tasks.HealthMonitorToErrorOnRevertTasD
@troller.worker.ﬂ.tasks.database_tasks.MarkHealthMonitorPendingUpdateInDB:D
@oﬂer.worker.ﬁ.tasks‘amphorafdriverftasks.Listeners@
@oﬂer.worker.ﬁ.tasks.database_tasks.UpdateHealthMo@
@roﬂenworker.vltasks.databaseftasks.MarkHealthMonitorActive@
@ler.woﬂ«:nﬂ.tasks.database_tasks.MarkPoolAct@
@roﬂer.worker.vltasks.databaseftasks.MarkLBAndListenersActiv@

linear_flow.Flow: octavia-update-health-monitor-flow(len=7)[$]

Layer 7 Policy Flows

Contents
* Layer 7 Policy Flows
— get_create_l7policy_flow
— get_delete_l7policy_flow

— get_update_l7policy_flow

4.2. Contributor Reference 240

Octavia Documentation, Release 17.1.0.dev41

get_create_|7policy_flow

linear_flow.Flow: octavia-create-17policy-flow(len=5)
@tmﬂer.worker.ﬂ.tasks.lifecycle_tasks.L7PolicyToErrorOnRevertTask:: 1.0

@troﬂer.workﬂ.ﬁ.tasks.database_tasks.MarkL7PolicyPendingCreateInDB:)
@roﬂer.workﬂ.v2.tasks.amphora_driver_tasks.ListenersU@
@oller.worker.VZ.tasks.databaseftasks.MarkL7PolicyActiveInDBE
@roﬂer.worker.vltasks.database_tasks.MarkLBAndListenersActive@

linear_flow.Flow: octavia-create-17policy-flow(len=5)[$]

4.2. Contributor Reference 241

Octavia Documentation, Release 17.1.0.dev41

get_delete_I7policy_flow

linear_flow.Flow: octavia-delete-17policy-flow(len=6)
@tmﬂer.worker.ﬂ.tasks.lifecycle_tasks.L7PolicyToErrorOnRevertTask:: 1.0

@troﬂer.worker.ﬁ.tasks.database_tasks.MarkL7PolicyPendingDeleteInDB:: 1.0

@roﬂer.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate::1 0
@oller.worker.vztasks.database,tasks.DeleteL7 PolicyInDB==1.0
@roller.worker.vltasks.database_tasks.DecrementL7p0hcy@

@roller.worker.ﬂ.tasks.database_tasks.MarkLBAndListenersActiveInDB:: 1.0
linear_flow.Flow: octavia-delete-17policy-flow(len=6)[$]

4.2. Contributor Reference 242

Octavia Documentation, Release 17.1.0.dev41

get_update_I7policy_flow

linear_flow.Flow: octavia-update-17policy-flow(len=6)
@troﬂer.woﬂ@r.ﬂ.tasks.lifecycle_tasks.L7P01icyToErrorOnRevertTaskzz 1.0

@roller.worker.ﬂ.tasks.database_tasks.MarkL7PolicyPendin gUpdate@
@rol]er.worker.ﬂ.tasks.amphora_driver_tasks.ListenersU@
@oﬂer.worker.v2.tasks.database_tasks.UpdateL7Polic@
@mller.Worker.v2.tasks.database_tasks.MarkL7PolicyActive®
@Uoﬂer.worker.ﬂ.tasks.databaseftasks.MarkLBAndListenersActiveInDBZD

linear_flow.Flow: octavia-update-17policy-flow(len=6)[$]

Layer 7 Rule Flows

Contents

* Layer 7 Rule Flows
— get_create_l7rule_flow

— get_delete_l7rule_flow

— get_update_l7rule_flow

4.2. Contributor Reference 243

Octavia Documentation, Release 17.1.0.dev41

get_create_I7rule_flow

@lowz octavia-create-17rule-flow(len=6)

@troller.worker.V2.tasks.lifecycle_tasks.L7RuleToErrorOnRevertTask== 1.0

@roller.worker.vz.tasks.databaseftasks.MarkL7RulePendingCreateInDB== 1.0

@ml]er.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate::1 0

@roﬂer.worker.v2.tasks.database_tasks.MarkL7RuleActiveInDB== 1.0

@roﬂer.worker.ﬂ.tasks.database_tasks.MarkL7PolicyActiveInDB:: 1.0

@roﬂer.worker.VZ.tasks.database_tasks.MarkLBAndListenersActiveInDB:: 1.0

linear_flow.Flow: octavia-create-17rule-flow(len=6)[$]

4.2. Contributor Reference 244

Octavia Documentation, Release 17.1.0.dev41

get_delete_|7rule_flow

@low: octavia—delete—l7polic@
@tro]ler.worker.v2.tasks.lifecycle_tasks.L7RuleToErrorOnRevertTaskD
@mﬂer.worker.ﬁ.tasks.databaseftasks.MarkL7RulePendingDelete@
@roller.worker.v2.tasks.amphora_driver_tasks.ListenersU@
@oller.worker.ﬁ.tasks.database_tasks.DeleteL7Rul@
@roﬂer.worker.v2.tasks.database_tasks.DecrementL7rule@
@roﬂer.worker.ﬁ.tasks.database_tasks.MarkL7P01icyActiveInDB)
@roller.worker.v2.tasks.databaseftasks.MarkLBAndListenersActive@

linear_flow.Flow: octavia-delete-17policy-flow(len=7)[$]

4.2. Contributor Reference 245

Octavia Documentation, Release 17.1.0.dev41

get_update_|7rule_flow

@low: octavia—update-l7rule@
@troller.worker.ﬂ.tasks‘lifecycle_tasks.L7RuleToErrorOnRevertTask)
@roﬂer.worker.VZ.tasks.databaseftasks.MarkL7RulePendingUpdate@
@roller.worker.v2.tasks.amphora_driver_tasks.ListenersU@
@oﬂer.worker.VZ.tasks.database_tasks.UpdateL7RuleInD]E
@roﬂer.worker.vltasks.database_tasks.MarkL7Ru1eActiv@
@roﬂer.worker.ﬁ.tasks.database_tasks.MarkL7P01icyActiveInDB)
@mller.worker.v2.tasks.databaseftasks.MarkLBAndListenersActiveln@

linear_flow.Flow: octavia-update-17rule-flow(len=7)[$]

Listener Flows

Contents

e Listener Flows

get_create_all_listeners_flow

get_create_listener_flow

get_delete_listener_flow

get_update_listener_flow

4.2. Contributor Reference 246

Octavia Documentation, Release 17.1.0.dev41

get_create_all_listeners_flow

@How: octavia-create-all-listeners@

l
@trollcr.worker.V2.tasks.database_tasks.GetListenersF romLoadbal@
@troﬂer.worker.ﬁ.tasks.databaseftasks.ReloadLoadB@
@ro]ler.worker.v2.tasks.amphora_driver_tasks.ListenersU@
@oﬂer.worker.ﬁ.tasks.network_tasks.Upd@»

@ roller.worker.v2.tasks.database_tasks.MarkHealthMonitorsOnlineInDB==1.0

@lcw: octavia-create-all-listeners-flow(len=5)[$]

get_create_listener_flow

linear_flow.Flow: octavia-create-listener_flow(len=4)
@troller.worker.v2.tasks‘lifecycle_tasks.ListenersToErrorOnRevertTask==1 .0

@ml]er.worker.ﬂ.tasks.amphora_driver_tasks.ListenersU@
@oﬂer.worker.vZ.tasks.network_tasks.Upd@
@roﬂer.worker.v2.tasks.database_tasks.MarkLBAndListenersActive@
@OWZ octavia-create-listenerﬁ@

4.2. Contributor Reference 247

Octavia Documentation, Release 17.1.0.dev41

get_delete_listener_flow

linear_flow.Flow: octavia-delete-listener_flow(len=6)

@troﬂer.workﬂ.ﬁ.tasks.lifecycle_tasks.ListenerToErrorOnRevertTask:: 1.0

A 4
@roller.worker.ﬂ.tasks.amphora_driver_tasks.ListenerDelete::1 .0
A 4

@roﬂer.worker.ﬁ.tasks.network_tasks.UpdateVIPForDeletezz 1.0

@roﬂer.worker.ﬁ .tasks.database_tasks.DeleteListenerInDB==1.0

@troﬂer.worker.v2.tasks.database_tasks.DecrementListenerQuota:: 1.0

@ntroﬂer.worker.ﬁ.tasks.databaseﬁtasks.MarkLBActiveInDBByLiSt@

@F]OWZ octavia-delete-listener_flow(len=6)[$]

4.2. Contributor Reference 248

Octavia Documentation, Release 17.1.0.dev41

get_update_listener_flow

@low: octavia-update-listener-flow(len=>5)
@troﬂer.Worker.VZ.tasks.lifecycle_tasks.ListenerToErrorOnRevertTask== 1.0

@mﬂer.worker.vZ.tasks.amphoraﬁdriverﬁtasks.ListenersU@
@oﬂer.worker.v2.tasks.network_tasks.Upd@
@oller.worker.vltasks.database_tasks.UpdateListenerInDlE
@mller.worker.vltasks.database_tasks.MarkLBAndListenersActiveIn@

linear_flow.Flow: octavia-update-listener-flow(len=5)[$]

Load Balancer Flows

Contents

e Load Balancer Flows

get_cascade_delete_load_balancer_flow

get_create_load_balancer_flow

get_delete_load_balancer_flow
get_failover_LB_flow

get_update_load_balancer_flow

4.2. Contributor Reference 249

Octavia Documentation, Release 17.1.0.dev41

get_cascade_delete_load_balancer_flow

linear_flow.Flow: octavia-delete-loadbalancer-flow(len=14)

octavia.controller.worker.v2.tasks lifecycle_tasks.LoadBalancerToErrorOnRevertTask:

octavia.controller.worker.v2.tasks.compute_tasks.NovaServerGroupDelete==1.0

octavia.controller. worker.v2.tasks.database_tasks.MarkLB;

linear_flow.Flow:

mark_pool_pending_delete_in_db_6886a40b-12a-41a3-9ece-5¢51845a7ac: mark_pool_pending_delete_in_db_08ada7a2-3eff-42c6-bdd8-b6f2ecd7335!

count_pool_children_for_quota_6886a40b-1f2a-41a3-9ece-5¢51845a7ac:

count_pool_children_for_quota_08ada7a2-3eff-42c6-bdd8-b6f2ecd73358:

delete_pool_in_db_6886a40b-12a-41a3-9ece-5¢51845a7acd==1.0 delete_pool_in_db_08ada7a2-3eff-42c6-bdd8-b6f2ecd73358==1.0

decrement_pool_quota_6886a40b-1f2a-41a3-9ece-5¢51845a7acd==1.0 decrement_pool_quota_08ada7a2-3eff-42c6-bdd8-b6f2ecd73358==1.0

linear_flow.Flow: octavia-delete-pool-flow-6886a40b- 1f2a-41a3-9ece-5¢51845a7acd(len=4)[$] linear_flow.Flow: octavia-delete-pool-flow-08ada7a2-3eff-42c6-bdd8-b6f2ecd 73358 (len=4)[$]

unordered_flow.Flow: pool_delete_flow(len=2)[$]

linear_flow.Flow: delete_listeners_flow(len=2)

delete_update_v

unordered_flow.Flow: delete_listeners_flows(len=2)

linear_flow.Flow: a-delete-lis flow-368dffc7-7440-4ee0-acas-11052d001b05(len=2) linear_flow.Flow: octavia-delete-listener_flow-d9c45ec4-9dbe-491b-9f21-6886562348bf (len=2)

delete_listener_in_db_368dffc7-7440-4ee0-aca5-11052d001b05==1.0 delete_listener_in_db_d9c45ec4-9dbe-491b-921-6886562348bf==1.0

decrement_listener_quota_368dffc7-7440-4ee0-aca5-11052d001b05==1.0

linear_flow.Flow: octavia-delete-listener_flow-368dffc7-7440-4ee0-aca5-11052d001b05(len=2)[$] lincar_flow.Flow: octavia-delete-listener_flow-d9c45ec4-9dbe-491b-9f21-6886562348bf(len=2)[$]

unordered_flow.Flow: delete_listeners_flows(len=2)[$

linear_flow.Flow: delete_listeners_flow(len=2)[$]

unordered_flow.Flow: delete_member_ports(len=2)

delete_member_port-6e03e9ad-726a-46ee-90e0-1cad753bal bO: delete_member_port_in_db-6e03e9ad-726a-46ee-90e0-1cad753bal b0==1.0

unordered_flow.Flow: delete_member_ports(len=2)[$]

octavia.controller.worker.v2.tasks.network_tasks.UnplugV

v2.tasks.network_tasks. Dea

tavia v2.tasks.compute_tasks.Del horacOnL 0

]

octavia.controller.worker.v2.tasks.database_tasks. MarkLBAmphoraeDeletedInDB:

]

octavia.controller.worker.v2.tasks.database_tasks.DisableLBAmphoraeHealthMonitoring==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBDeletedInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementLoadBalancerQuota==1.0

octavia.controller. worker.v2.tasks, ndDx

‘ication_task Notification==1.0

ctavia-delete-pool-flow-6886a40b- 1f2a-41a3-9ece-5¢51845aTac4(len=4) linear_flow.Flow: octavia-delete-pool-flow-08ada7a2-3eff-42c6-bdd8-b6f2ecd73358(len=4)

decrement_listener_quota_d9c45ec4-9dbe-491b-9f21-6886562348bf==1.0

linear_flow.Flow: octavia-delete-loadbalancer-flow(len=14)[$]

4.2. Contributor Reference

250

Octavia Documentation, Release 17.1.0.dev41

4.2. Contributor Reference 251

Octavia Documentation, Release 17.1.0.dev41

get_create_load_balancer_flow

e o Flew: otai-ceste ndbalncer w1 1)

et ol ok 2 ks newark_tsks AloeseVIP==1 1
)

i contlec ok 2 ks pework ks GetSubnetFrom VI

ondered o Flow: octvi-rese losdelaeer ot

Tiear ko Flow: MASTER-octavis pla. et bl (-6 Tiear_fow Flow: BACKUP-octavi-plug et ssbflon{en=67
D ———r—r— e o Flow: BACKUP-ccavi cret-amp-for Iy sublion 12

TR i o i s e 1 FACKUF sovir s o o i sk o ot o

e i o BAC

NIASTER octvis-crte.smp-forIo-sbfho-octvi-computewari—=1 0

BACKUP cctvi-rte.smp-for I bl -ctvi-compuie-war

e e
E B — —

< e .« e Tl Flew: BACKUP .
Z T o Fow MAST > i z e i o BAC i

Tioear o Flow: BACKUP-cctav-crete-amp-or T ubfla e 251

NIASTER cctvi g et-sibllon octai-amp plag ip—1 0

L T A ———)

D me———

BACKUP-octaia-plg et subflon-ocia-amp-aply 4

NIASTER et pls- et sbllo-ocatvis-amp-updteip 10 BACKUP-octvis s et subllo-catvis-mp-updte ip a1 0
e S ——— [S ————

e ——— Ticar_fow Fow: BACKUP-octavi i et ssbflon o= 5]
nonteedflom Flow: octvi-crete dodalvcer o ln=2 5]

[—

nordered_flon Flow: VRRP -yt subfon =

T e ——r—" Tiear T Flow: VRRP-mp--upite ablowtln=3)

D ——r

4.2. Contributor Refe 252

Octavia Documentation, Release 17.1.0.dev41

get_delete_load_balancer_flow

linear_flow.Flow: octavia-delete-loadbalancer-flow(len=11)

@troller.worker.v2.tasks.lifecycle_tasks.LoadBalancerToErrorOnRevertTask:= 1.0

@oﬂer.worker.v2.tasks.compute_tasks.NovaServerGroupDelete:: 1.0

@roﬂer.worker.ﬂ.tasks.database_tasks.MarkLBAmphoraeHealthBusy::1 .0

@Her.worker.V2.tasks.network_tasks.UnplugVIP:: 1.0

@oﬂer.worker.ﬂ.tasks.network_tasks.DeallocateVIP:: 1.0

@ Oller.worker.VZ.tasks.compute_tasks.DeleteAmphorannLoadBa@

@rollar.worker.v2.tasks.dz;ltabase_tasks.MarkLBAmphoraeDeletedInDB== 1.0

@troﬂer.worker.vltasks.database_tasks.DisableLBAmphoraeHealthMonit@

@oller.worker.vltasks.databaseﬁtasks.MarkLBDeletedInDB:: 1.0

@roﬂer.worker.vZ.tasks.databaseftasks.DecrementLoadBalancerQuota== 1.0

@Her.worker.ﬂ.tasks.notificationftasks.SendDeleteNotificationzz 1.0

linear_flow.Flow: octavia-delete-loadbalancer-flow(len=11)[$]

4.2. Contributor Reference 253

Octavia Documentation, Release 17.1.0.dev41

4.2. Contributor Reference 254

Octavia Documentation, Release 17.1.0.dev41

t failover LB flow

ge

255

tor Reference

4.2, Contrib

Octavia Documentation, Release 17.1.0.dev41

get_update load_balancer_flow

@low: octavia-update-loadbalancer@
@roller.worker.v2.tasks.1ifecycle_tasks.LoadBalancerToErrorOnRever@
@roﬂer.worker.ﬂ.tasks.networkftasks.UpdateVIPSecurity(@
@troller.worker.vltasks.network_tasks.UpdateAmphoraSecurity@
@Her.worker.v2.tasks.network_tasks.App@
@roﬂer.worker.ﬁ.tasks.amphorafdriverftasks.Listeners@
@roller.worker.ﬁ.tasks.database_tasks.UpdateLoadbalancerInDBE
@oﬂer.worker‘v2.tasks.database_tasks.MarkLBActiv@
@roﬂer.worker.ﬂ.tasks.notification_tasks.SendUpdateNotifi@
@ow: octavia—update—loadbalancer—ﬂ@»

Member Flows

Contents

e Member Flows

get_batch_update_members_flow

get_create_member_flow

get_delete_member_flow

get_update_member_flow

4.2. Contributor Reference 256

Octavia Documentation, Release 17.1.0.dev41

get_batch_update_members_flow

linear_flow.Flow: octavia-batch-update-members-flow(len=9)

|_flow.Flow: octavia dered-member-updates-flow(len=3)

octavia-member-to-error-on-revert-flow-deleted==1.0 m

unordered_flow.Flow: octavia-unordered-member-updates-flow(len=3)[$]

octavia.controller.worker.v2.tasks.network _tasks.CalculateDelta==1.0

octavia .worker.v2.tasks.network _tasks.F orkDeltas==1.0

}

octavia.controller.worker.v2.tasks.network _tasks.GetAmphoraeNetworkConfigs==1.0

)

octavia.controller.worker.v2.tasks.amphora_driver_tasks. AmphoraePostNetworkPlug==1.0

)

worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia)|

dered_flow.Flow: octavi il b tive-flow(len=0)

d_flow.Flow: octavi dered-member-active-flow(len=0)[$]

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActivelnDB==1.0

)

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActivelnDB==1.0

linear_flow.Flow: octavia-batch-update-members-flow(len=9)[$]

octavia-member-to-error-on-revert-flow-updated==1.0

4.2. Contributor Reference

257

Octavia Documentation, Release 17.1.0.dev41

get_create_member_flow

linear_flow.Flow: octavia-create-member-flow(len=10)
@troﬂer.worker.v2.tasks.lifecycle,tasks.MemberToErrorOnRevertTask:: 1.0

@Uoﬂer.worker.ﬁ.tasks.databaseftasks.MarkMemberPendingCreateIIﬂ)&)
@oller.workﬂ.ﬁ.tasks.network_tasks.Calcula@
@oller.worker.v2.tasks.network_tasks.HandleNetworkDeltaE
@troﬂer‘worker.v2.tasks.network_tasks.GetAmphoraeNetworkC@
@troﬂer.worker.vltasks.amphora_driver_tasks.AmphoraePostNetwor@
@troﬂer.worker.ﬂ.tasks.amphora_driver_tasks.ListenersU@
@roﬂer.worker.ﬂ.tasks.databaseftasks.MarkMemberACtive@
@oﬂer.worker.ﬂ.tasks.database_tasks.MarkPoolActiv@
@troller.workﬂ.ﬂ.tasks.database_tasks.MarkLBAndListenersActivem)
@ow: octavia-create-member-ﬂ@

4.2. Contributor Reference 258

Octavia Documentation, Release 17.1.0.dev41

get_delete_member_flow

linear_flow.Flow: octavia-delete-member-flow(len=11)
@troﬂer.worker.v2.tasks.lifecycle,tasks.MemberToErrorOnRevertTask:: 1.0

@troller.worker.ﬂ.tasks.databaseftasks.MarkMemberPendingDeleteInDB:)
@oller.workﬂ.ﬁ.tasks.network_tasks.Calcula@
@oller.worker.v2.tasks.network_tasks.HandleNetworkDeltaE
@troﬂer‘worker.v2.tasks.network_tasks.GetAmphoraeNetworkC@
@troﬂer.womer.v2.tasks.amphora_driver_tasks.AmphoraePostNetwor@
@troﬂer.Worker.VZ.tasks.amphora_driver_tasks.ListenersU@
@oller.worker.ﬁ.tasks.databaseftasks.DeleteMembe@
@roller.worker.ﬁ.tasks.database_tasks.DecrementMember@
@oller.worker.ﬂ.tasks.database_tasks.MarkPoolActiv@
@troﬂer.worker.ﬂ.tasks.database_tasks‘MarkLBAndListenersActivelnDB:D

linear_flow.Flow: octavia-delete-member-flow(len=11)[$]

4.2. Contributor Reference 259

Octavia Documentation, Release 17.1.0.dev41

get_update_member_flow

linear_flow.Flow: octavia-update-member-flow(len=7)
@tmﬂer.worker.ﬁ.tasks.lifecycle_tasks.MemberToErrorOnRevertTask::1 .0

@m]ler.worker.ﬂ.tasks.database_tasks.MarkMemberPendingUpdateInDB==1 .0

@roﬂer.worker.ﬂ.tasks.amphora_driver_tasks.ListenersUpdate:: 1.0
@oﬂer.worker.ﬂ.tasks.database_tasks.UpdateMemberInDBzz 1.0
@roﬂer.worker.ﬂ.tasks.database_tasks.MarkMemberActiveInDB:: 1.0

@troller.worker.ﬁ.tasks.database,tasks.MarkPoolActiveInDB:: 1.0

@troﬂer.workﬂ.ﬁ.tasks.database,tasks.MarkLBAndListenersActiveInDB:: 1.0
@Flow: octavia-update-member-flow(len=7)[$]

Pool Flows

Contents

* Pool Flows
— get_create_pool_flow

— get_delete_pool_flow

— get_update_pool_flow

4.2. Contributor Reference 260

Octavia Documentation, Release 17.1.0.dev41

get_create_pool_flow

@Hew: octavia-create—pool@
@oﬂer.worker.ﬂ.tasks.lifecycle_tasks.PoolToErrorOnReve@
@troﬂer.worker.ﬁ.tasks.databaseftasks.MarkPoolPendingCreateInDBD
@rol]er.worker.v2.tasks.amphora_driver_tasks.ListenersU@
@troﬂer.worker.ﬁ.tasks.database_tasks.MarkPoolActive@
@roﬂer.worker.v2.tasks.database_tasks.MarkLBAndListenersActive@

linear_flow.Flow: octavia-create-pool-flow(len=5)[$]

4.2. Contributor Reference 261

Octavia Documentation, Release 17.1.0.dev41

get_delete_pool_flow

@Flow: octavia-delete-pool-flow(len=7)

@Oﬂer.worker.ﬂ.tasks.lifecycle_tasks.PoolToErrorOnRevertTask:=1 0

@troller.worker.vltasks.databaseftasks.MarkPoolPendingDeleteInDB== 1.0

@troller.worker.v2.tasks.database_tasks.CountPoolChildrenForQ@

@roﬂer.worker.ﬂ .tasks.amphora_driver_tasks.ListenersUpdate==1.0

@oﬂer.worker.ﬁ.tasks.database_tasks.DeletePoolInDB:: 1.0

@oﬂer.worker.ﬂ.tasks.database_tasks.DecrementPoolQuota:: 1.0

@roller.worker.v2.tasks.databaseftasks.MarkLBAndListenersActiveInDB==1 0

linear_flow.Flow: octavia-delete-pool-flow(len=7)[$]

4.2. Contributor Reference 262

Octavia Documentation, Release 17.1.0.dev41

get_update_pool_flow

@low: octavia-update-pool@
@oﬂer.worker.vltasks.lifecycle_tasks.PoolToErrorOnReve@
@troﬂer.worker.v2.tasks.databaseftasks.MarkPoolPendingUpdateInDB}
@rol]er.worker.v2.tasks.amphora_driver_tasks.ListenersU@
@oﬂer.worker.ﬁ.tasks.database_tasks.UpdatePoo@
@troﬂer.worker.vz.tasks.database_tasks.MarkPoolActive@
@roﬂer.worker.VZ.tasks.database_tasks.MarkLBAndListenersActive@
@low: octavia-update-pool—f@

4.2.5 Guru Meditation Reports

Octavia contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Octavia executable. This report is called a Guru Meditation Report (GMR for short).

Generating a GMR

A GMR can be generated by sending the USR?2 signal to any Octavia process with support (see below).
The GMR will then be outputted as standard error for that particular process.

For example, suppose that octavia-api has process id 8675, and was run with 2>/var/log/octavia/
octavia-api-err.log. Then,kill -USR2 8675 will trigger the Guru Meditation report to be printed
to /var/log/octavia/octavia-api-err.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However, the
base GMR consists of several sections:

Package
Shows information about the package to which this process belongs, including version information.

4.2. Contributor Reference 263

Octavia Documentation, Release 17.1.0.dev41

Threads
Shows stack traces and thread ids for each of the threads within this process.

Green Threads
Shows stack traces for each of the green threads within this process (green threads don’t have thread
ids).

Configuration

Lists all the configuration options currently accessible via the CONF object for the current process.
Adding Support for GMRs to New Executables
Adding support for a GMR to a given executable is fairly easy.

First import the module:

Then, register any additional sections (optional):

Finally (under main), before running the "main loop" of the executable (usually service.
server(server) or something similar), register the GMR hook:

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the inline documentation under oslo.reports

4.3 Internal APIs

Note

The documents listed below are design documents and specifications created and approved at a previ-
ous point in time. The code base and current functionality may deviate from these original documents.
Please see the Octavia documentation for the current feature details.

4.4 Design Documentation

4.4.1 Version 0.5 (liberty)

Octavia v0.5 Component Design

Please refer to the following diagram of the Octavia v0.5 components:

4.3. Internal APIs 264

Octavia Documentation, Release 17.1.0.dev41

Octavia component design (v0.5)

Octavia
Neutron

LB Network

Networking Services Networking Driver

Amphora
LBaaS = 1™~
— Controller

e
J/ Operator API Handler Health Monitor Amphora

User API Handler Amphora LB Driver \-
Driver I
S —
» Amphora
Database

This milestone release of Octavia concentrates on making the service delivery scalable (though individ-
ual listeners are not horizontally scalable at this stage), getting API and other interfaces between major
components correct, without worrying about making the command and control layer scalable.

Note that this design is not yet "operator grade" but is a good first step to achieving operator grade (which
will occur with version 1 of Octavia).

LBaaS Components

The entities in this section describe components that are part of the Neutron LBaaS project, with which
Octavia interfaces to deliver load balancing services.

USER API HANDLER

This is the front-end that users (and user GUIs or what have you) talk to manipulate load balancing
services.

Notes:
* All implementation details are hidden from the user in this interface

* Performs a few simple sanity checks on user-supplied data, but otherwise looks to a driver provide
more detail around whether what the user is asking for is possible on the driver’s implementation.

* Any functionality that the user asks for that their back-end flavor / driver doesn’t support will be
met with an error when the user attempts to configure services this way. (There may be multiple
kinds of errors: "incomplete configuration" would be non-fatal and allow DB objects to be created
/ altered. "incompatible configuration" would be fatal and disallow DB objects from being created
/ associations made.) Examples of this include: UDP protocol for a listener on a driver/flavor that
uses only haproxy as its back-end.

* Drivers should also be able to return "out of resources’ or ’some other error occurred’ errors (hope-
fully with helpful error messages).

* This interface is stateless, though drivers may keep state information in a database. In any case,
this interface should be highly scalable.

 Talks some "intermediate driver interface" with the driver. This takes the form of python objects
passed directly within the python code to the driver.

4.4. Design Documentation 265

Octavia Documentation, Release 17.1.0.dev41

LBaaS / Octavia Crossover

The entities in this section are "glue" components which allow Octavia to interface with other services in
the OpenStack environment. The idea here is that we want Octavia to be as loosely-coupled as possible
with those services with which it must interact in order to keep these interfaces as clean as possible.

Initially, all the components in this section will be entirely under the purview of the Octavia project.
Over time some of these components might be eliminated entirely, or reduced in scope as these third-
party services evolve and increase in cleanly-consumable functionality.

DRIVER

This is the part of the load balancing service that actually interfaces between the (sanitized) user and
operator configuration and the back-end load balancing appliances or other "service providing entity."

Notes:

* Configuration of the driver is handled via service profile definitions in association with the Neutron
flavor framework. Specifically, a given flavor has service profiles associated with it, and service
profiles which specify the Octavia driver will include meta-data (in the form of JSON configura-
tion) which is used by the driver to define implementation specifics (for example, HA configuration
and other details).

* Driver will be loaded by the daemon that does the user API and operator APL. It is not, in and of
itself, its own daemon, though a given vendor’s back-end may contain its own daemons or other
services that the driver interfaces with.

* It is thought that the driver front-end should be stateless in order to make it horizontally scalable
and to preserves the statelessness of the user and operator API handlers. Note that the driver may
interface with back-end components which need not be stateless.

* It is also possible for multiple instances of the driver will talk to the same amphora at the same
time. Emphasis on the idempotency of the update algorithms used should help minimize the issues
this can potentially cause.

NETWORK DRIVER

In order to keep Octavia’s design more clean as a pure consumer of network services, yet still be able to
develop Octavia at a time when it is impossible to provide the kind of load balancing services we need to
provide without "going around" the existing Neutron API, we have decided to write a "network driver"
component which does those dirty back-end configuration commands via an API we write, until these can
become a standard part of Neutron. This component should be as loosely coupled with Octavia as Octavia
will be with Neutron and present a standard interface to Octavia for accomplishing network configuration
tasks (some of which will simply be a direct correlation with existing Neutron API commands).

Notes:

* This is a daemon or "unofficial extension", presumably living on a Neutron network node which
should have "back door" access to all things Neutron and exposes an API that should only be used
by Octavia.

» Exactly what API will be provided by this driver will be defined as we continue to build out the
reference implementation for Octavia.

* Obviously, as we discover missing functionality in the Neutron API, we should work with the
Neutron core devs to get these added to the API in a timely fashion: We want the Network driver
to be as lightweight as possible.

4.4. Design Documentation 266

Octavia Documentation, Release 17.1.0.dev41

Octavia Components

Everything from here down are entities that have to do with the Octavia driver and load balancing system.
Other vendor drivers are unlikely to have the same components and internal structure. It is planned that
Octavia will become the new reference implementation for LBaaS, though it of course doesn’t need to be
the only one. (In fact, a given operator should be able to use multiple vendors with potentially multiple
drivers and multiple driver configurations through the Neutron Flavor framework.)

OPERATOR API HANDLER

This is exactly like the USER APl HANDLER in function, except that implementation details are exposed
to the operator, and certain admin-level features are exposed (ex. listing a given tenant’s loadbalancers,
& etc.)

It’s also anticipated that the Operator API needs will vary enough from implementation to implemen-
tation that no single Operator API will be sufficient for the needs of all vendor implementations. (And
operators will definitely have implementation-specific concerns.) Also, we anticipate that most vendors
will already have an operator API or other interface which is controlled and configured outsite the purview
of OpenStack in general. As such it makes sense for Octavia to have its own operator API / interface.

Notes:

* This interface is stateless. State should be managed by the controller, and stored in a highly avail-
able database.

CONTROLLER

This is the component providing all the command and control for the amphorae. On the front end, it takes
its commands and controls from the LBaaS driver.

It should be noted that in later releases of Octavia, the controller functions will be split across several
components. At this stage we are less concerned with how this internal communication will happen,
and are most concerned with ensuring communication with amphorae, the amphora LB driver, and the
Network driver are all made as perfect as possible.

Among the controller’s responsibilities are:

» Sending configuration and certificate information to an amphora LB driver, which in the reference
implementation will be generating configuration files for haproxy and PEM-formatted user certifi-
cates and sending these to individual amphorae. Configuration files will be generated from jinja
templates kept in an template directory specific to the haproxy driver.

* Processing the configuration updates that need to be applied to individual amphorae, as sent by the
amphora LB driver.

¢ Interfacing with network driver to plumb additional interfaces on the amphorae as necessary.
* Monitoring the health of all amphorae (via a driver interface).

* Receiving and routing certain kinds of notifications originating on the amphorae (ex. "member
down")

* This is a stateful service, and should keep its state in a central, highly available database of some
sort.

* Respecting colocation / apolocation requirements of loadbalancers as set forth by users.

4.4. Design Documentation 267

Octavia Documentation, Release 17.1.0.dev41

Receiving notifications, statistics data and other short, regular messages from amphorae and rout-
ing them to the appropriate entity.

Responding to requests from amphorae for configuration data.

Responding to requests from the user API or operator API handler driver for data about specific
loadbalancers or sub-objects, their status, and statistics.

Amphora lifecycle management, including interfacing with Nova and Neutron to spin up new am-
phorae as necessary and handle initial configuration and network plumbing for their LB network
interface, and cleaning this up when an amphora is destroyed.

Maintaining a pool of spare amphorae (ie. spawning new ones as necessary and deleting ones from
the pool when we have too much inventory here.)

Gracefully spinning down "dirty old amphorae"

Loading and calling configured amphora drivers.

Notes:

Almost all the intelligence around putting together and validating loadbalancer configurations will
live here-- the Amphora API is meant to be as simple as possible so that minor feature improve-
ments do not necessarily entail pushing out new amphorae across an entire installation.

The size of the spare amphora pool should be determined by the flavor being offered.

The controller also handles spinning up amphorae in the case of a true active/standby topology (ie.
where the spares pool is effectively zero.) It should have enough intelligence to communicate to
Nova that these amphorae should not be on the same physical host in this topology.

It also handles spinning up new amphorae when one fails in the above topology.

Since spinning up a new amphora is a task that can take a long time, the controller should spawn
a job or child process which handles this highly asynchronous request.

AMPHORA LOAD BALANCER (LB) DRIVER

This is the abstraction layer that the controller talks to for communicating with the amphorae. Since
we want to keep Octavia flexible enough so that certain components (like the amphora) can be replaced
by third party products if the operator so desires, it’s important to keep many of the implementation-
specific details contained within driver layers. An amphora LB driver also gives the operator the ability to
have different open-source amphorae with potentially different capabilities (accessed via different flavors)
which can be handy for, for example, field-testing a new amphora image.

The reference implementation for the amphora LB driver will be for the amphora described below.

Responsibilities of the amphora LB driver include:

Generating configuration files for haproxy and PEM-formatted user certificates and sending these
to individual amphorae. Configuration files will be generated from jinja templates kept in an tem-
plate directory specific to the haproxy driver.

Handling all communication to and from amphorae.

4.4. Design Documentation 268

Octavia Documentation, Release 17.1.0.dev41

LB NETWORK

This is the subnet that controllers will use to communicate with amphorae. This means that controllers
must have connectivity (either layer 2 or routed) to this subnet in order to function, and vice versa. Since
amphorae will be communicating on it, this means the network is not part of the "undercloud."

Notes:

As certain sensitive data (TLS private keys, for example) will be transmitted over this commu-
nication infrastructure, all messages carrying a sensitive payload should be done via encrypted
and authenticated means. Further, we recommend that messages to and from amphorae be signed
regardless of the sensitivity of their content.

AMPHORAE

This is a Nova VM which actually provides the load balancing services as configured by the user. Re-
sponsibilities of these entities include:

Actually accomplishing the load balancing services for user-configured loadbalancers using
haproxy.

Sending regular heartbeats (which should include some status information).

Responding to specific requests from the controller for very basic loadbalancer or sub-object status
data, including statistics.

Doing common high workload, low intelligence tasks that we don’t want to burden the controller
with. (ex. Shipping listener logs to a swift data store, if configured.)

Sending "edge" notifications (ie. status changes) to the controller when members go up and down,
when listeners go up and down, etc.

Notes:

Each amphora will generally need its own dedicated LB network IP address, both so that we don’t
accidentally bind to any IP:port the user wants to use for loadbalancing services, and so that an
amphora that is not yet in use by any loadbalancer service can still communicate on the network
and receive commands from its controller. Whether this IP address exists on the same subnet as
the loadbalancer services it hosts is immaterial, so long as front-end and back-end interfaces can
be plumbed after an amphora is launched.

Since amphorae speak to controllers in a "trusted" way, it’s important to ensure that users do not
have command-line access to the amphorae. In other words, the amphorae should be a black box
from the users’ perspective.

Amphorae will be powered using haproxy 1.5 initially. We may decide to use other software (es-
pecially for TLS termination) later on.

The "glue scripts" which communicate with the controller should be as lightweight as possible:
Intelligence about how to put together an haproxy config, for example, should not live on the
amphora. Rather, the amphora should perform simple syntax checks, start / restart haproxy if the
checks pass, and report success/failure of the haproxy restart.

With few exceptions, most of the API commands the amphora will ever do should be safely handled
synchronously (ie. nothing should take longer than a second or two to complete).

Connection logs, and other things anticipated to generate a potential large amount of data should
be communicated by the amphora directly to which ever service is going to consume that data. (for

44,

Design Documentation 269

Octavia Documentation, Release 17.1.0.dev41

example, if logs are being shunted off to swift on a nightly basis, the amphora should handle this
directly and not go through the controller.)

INTERNAL HEALTH MONITORS

There are actually a few of these, all of which need to be driven by some daemon(s) which periodically
check that heartbeats from monitored entities are both current and showing "good" status, if applicable.
Specifically:

* Controllers need to be able to monitor the availability and overall health of amphorae they control.
For active amphorae, this check should happen pretty quickly: About once every 5 seconds. For
spare amphorae, the check can happen much more infrequently (say, once per minute).

The idea here is that internal health monitors will monitor a periodic heartbeat coming from the am-
phorae, and take appropriate action (assuming these are down) if they fail to check in with a heartbeat
frequently enough. This means that internal health monitors need to take the form of a daemon which is
constantly checking for and processing heartbeat requests (and updating controller or amphorae statuses,
and triggering other events as appropriate).

Some notes on Controller <-> Amphorae communications

In order to keep things as scalable as possible, the thought was that short, periodic and arguably less
vital messages being emitted by the amphora and associated controller would be done via HMAC-signed
UDP, and more vital, more sensitive, and potentially longer transactional messages would be handled via
a RESTful API on the controller, accessed via bi-directionally authenticated HTTPS.

Specifically, we should expect the following to happen over UDP: * heartbeats from the amphora VM to
the controller

* stats data from the amphora to the controller
» "edge" alert notifications (change in status) from the amphora to the controller
* Notification of pending tasks in queue from controller to amphora

And the following would happen over TCP: * haproxy / tls certificate configuration changes

Supported Amphora Virtual Appliance Topologies

Initially, I propose we support two topologies with version 0.5 of Octavia:

Option 1: "Single active node + spares pool"

* This is similar to what HP is doing right now with Libra: Each amphora is stand-alone with a
frequent health-check monitor in place and upon failure, an already-spun-up amphora is moved
from the spares pool and configured to take the old one’s place. This allows for acceptable recov-
ery times on amphora failure while still remaining efficient, as far as VM resource utilization is
concerned.

Option 2: "True Active / Standby"

* This is similar to what Blue Box is doing right now where amphorae are deployed in pairs and use
corosync / pacemaker to monitor each other’s health and automatically take over (usually in less
than 5 seconds) if the "active" node fails. This provides for the fastest possible recovery time on
hardware failure, but is much less efficient, as far as VM resource utilization is concerned.

4.4. Design Documentation 270

Octavia Documentation, Release 17.1.0.dev41

* In this topology a floating IP address (different from a Neutron floating IP!) is used to determine
which amphora is the "active" one at any given time.

* In this topology, both amphorae need to be colocated on the same subnet. As such a "spares pool"
doesn’t make sense for this type of layout, unless all spares are on the same management network
with the active nodes.

We considered also supporting "Single node" topology, but this turns out to be the same thing as option
1 above with a spares pool size of zero.

Supported Network Topologies

This is actually where things get tricky, as far as amphora plumbing is concerned. And it only grows
trickier when we consider that front-end connectivity (ie. to the ’loadbalancer’ vip_address) and back-
end connectivity (ie. to members of a loadbalancing pool) can be handled in different ways. Having said
this, we can break things down into LB network, front-end and back-end topology to discuss the various
possible permutations here.

LB Network

Each amphora needs to have a connection to a LB network. And each controller needs to have access
to this management network (this could be layer-2 or routed connectivity). Command and control will
happen via the amphorae’s LB network IP.

Front-end topologies

There are generally two ways to handle the amphorae’s connection to the front-end IP address (this is the
vip_address of the loadbalancer object):

Option 1: Layer-2 connectivity

The amphora can have layer-2 connectivity to the neutron network which is host to the subnet on which
the loadbalancer vip_address resides. In this scenario, the amphora would need to send ARP responses to
requests for the vip_address, and therefore amphorae need to have interfaces plumbed on said vip_address
subnets which participate in ARP.

Note that this is somewhat problematic for active / standby virtual appliance topologies because the
vip_address for a given load balancer effectively becomes a highly-available IP address (a true floating
VIP), which means on service failover from active to standby, the active amphora needs to relinquish all
the vip_addresses it has, and the standby needs to take them over and start up haproxy services. This is
OK if a given amphora only has a few load balancers, but can lead to several minutes’ down-time during
a graceful failover if there are a dozen or more load balancers on the active/standby amphora pair. It’s
also more risky: The standby node might not be able to start up all the haproxy services during such a
failover. What’s more, most types of VRRP-like services which handle floating IPs require amphorae
to have an additional IP address on the subnet housing the floating vip_address in order for the standby
amphora to monitor the active amphora.

Also note that in this topology, amphorae need an additional virtual network interface plumbed when
new front-end loadbalancer vip_addresses are assigned to them which exist on subnets to which they
don’t already have access.

Option 2: Routed (layer-3) connectivity

In this layout, static routes are injected into the routing infrastructure (Neutron) which essentially allow
traffic destined for any given loadbalancer vip_address to be routed to an IP address which lives on the
amphora. (I would recommend this be something other than the LB network IP.) In this topology, it’s

4.4. Design Documentation 271

Octavia Documentation, Release 17.1.0.dev41

actually important that the loadbalancer vip_address does not exist in any subnet with potential front-end
clients because in order for traffic to reach the loadbalancer, it must pass through the routing infrastructure
(and in this case, front-end clients would attempt layer-2 connectivity to the vip_address).

This topology also works much better for active/standby configurations, because both the active and
standby amphorae can bind to the vip_addresses of all their assigned loadbalancer objects on a dummy,
non-ARPing interface, both can be running all haproxy services at the same time, and keep the standby
server processes from interfering with active loadbalancer traffic through the use of fencing scripts on
the amphorae. Static routing is accomplished to a highly available floating "routing IP" (using some
VRRP-like service for just this IP) which becomes the trigger for the fencing scripts on the amphora. In
this scenario, fail-overs are both much more reliable, and can be accomplished in usually < 5 seconds.

Further, in this topology, amphorae do not need any additional virtual interfaces plumbed when new
front-end loadbalancer vip_addresses are assigned to them.

Back-end topologies

There are also two ways that amphorae can potentially talk to back-end member IP addresses. Unlike
the front-end topologies (where option 1 and option 2 are basically mutually exclusive, if not practically
exclusive) both of these types of connectivity can be used on a single amphora, and indeed, within a
single loadbalancer configuration.

Option 1: Layer-2 connectivity

This is layer-2 connectivity to back-end members, and is implied when a member object has a subnet_id
assigned to it. In this case, the existence of the subnet_id implies amphorae need to have layer-2 con-
nectivity to that subnet, which means they need to have a virtual interface plumbed to it, as well as an
IP address on the subnet. This type of connectivity is useful for "secure" back-end subnets that exist
behind a NATing firewall where PAT is not in use on the firewall. (In this way it effectively bypasses
the firewall.) We anticipate this will be the most common form of back-end connectivity in use by most
OpenStack users.

Option 2: Routed (layer-3) connectivity

This is routed connectivity to back-end members. This is implied when a member object does not have
a subnet_id specified. In this topology, it is assumed that member ip_addresses are reachable through
standard neutron routing, and therefore connections to them can be initiated from the amphora’s default
gateway. No new virtual interfaces need to be plumbed for this type of connectivity to members.

4.5 Project Specifications

4.5.1 Version 0.5 (liberty)
Amphora Driver Interface
https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface

This blueprint describes how a driver will interface with the controller. It will describe the base class
and other classes required. It will not describe the REST interface needed to talk to an amphora nor how
health information or statistics are gathered from the amphora.

4.5. Project Specifications 272

https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface

Octavia Documentation, Release 17.1.0.dev41

Problem description

The controller needs to talk through a driver to the amphora to allow for custom APIs and custom ren-
dering of configuration data for different amphora implementations.

The controller will heavily utilize taskflow [2] to accomplish its goals so it is highly encouraged for
drivers to use taskflow to organize their work, too.

Proposed change

Establish a base class to model the desire functionality:

(continues on next page)

4.5. Project Specifications 273

Octavia Documentation, Release 17.1.0.dev41

def

def

def

def

def

(continued from previous page)
finalize_amphora(self
"""OPTIONAL - called once an amphora has been build but before

any listeners are configured. This is a hook for drivers who need
to do additional work before am amphora becomes ready to accept
listeners. Please keep in mind that amphora might be kept in am
offline pool after this call.

pass

post_network_plug(self
"""OPTIONAL - called after adding a compute instance to a network.

This will perform any necessary actions to allow for connectivity
for that network on that instance.

port is an instance of octavia.network.data_models.Port. It
contains information about the port, subnet, and network that
was just plugged.

LIRIRT]

post_vip_plug(self
"""OPTIONAL - called after plug_vip method of the network driver.

This is to do any additional work needed on the amphorae to plug
the vip, such as bring up interfaces.

amphorae_network_config is a dictionary of objects that include
network specific information about each amphora's connections.

start_health_check(self
"""start check health

:param health_mixin: health mixin object
:type amphora: object

Start listener process and calls HealthMixin to update
databases information.

pass

stop_health_check(self
"""stop check health

Stop listener process and calls HealthMixin to update
databases information.

pass

4.5.

Project Specifications 274

Octavia Documentation, Release 17.1.0.dev41

The referenced listener is a listener object and vip a vip as described in our model. The model is detached
from the DB so the driver can’t write to the DB. Because our initial goal is to render a whole config no
special methods for adding nodes, health monitors, etc. are supported at this juncture. This might be
added in later versions.

No method for obtaining logs has been added. This will be done in a future blueprint.

Exception Model

The driver is expected to raise the following well defined exceptions
* NotImplementedError - this functionality is not implemented/not supported

* AmphoraDriverError - a super class for all other exceptions and the catch
all if no specific exception can be found

— NotFoundError - this amphora couldn’t be found/ was deleted by nova
— InfoException - gathering information about this amphora failed

— NetworkConfigException - gathering network information failed

— UnauthorizedException - the driver can’t access the amphora

— TimeOutException - contacting the amphora timed out

UnavailableException - the amphora is temporary unavailable

SuspendFaied - this load balancer couldn’t be suspended

EnableFailed - this load balancer couldn’t be enabled

DeleteFailed - this load balancer couldn’t be deleted

ProvisioningErrors - those are errors which happen during provisioning
ListenerProvisioningError - could not provision Listener
* LoadBalancerProvisoningError - could not provision LoadBalancer
* HealthMonitorProvisioningError - could not provision HealthMonitor

NodeProvisioningError - could not provision Node

Health and Stat Mixin

It has been suggested to gather health and statistic information via UDP packets emitted from the am-
phora. This requires each driver to spin up a thread to listen on a UDP port and then hand the information
to the controller as a mixin to make sense of it.

Here is the mixin definition:

(continues on next page)

4.5. Project Specifications 275

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Things a good driver should do:

* Non blocking IO - throw an appropriate exception instead to wait forever; use timeouts on sockets

* We might employ a circuit breaker to insulate driver problems from controller problems [1]

* Use appropriate logging

* Use the preferred threading model

This will be demonstrated in the Noop-driver code.

Alternatives

Require all amphora to implement a common REST interface and use that as the integration point.

Data model impact

None

REST API impact

None
Security impact
None

Notifications impact

None - since initial version

Other end user impact

None

Performance Impact

Minimal

4.5. Project Specifications

276

Octavia Documentation, Release 17.1.0.dev41

Other deployer impact

Deployers need to make sure to bundle the compatible versions of amphora, driver, controller --

Developer impact

Need to write towards this clean interface.

Implementation
Assignee(s)

German Eichberger

Work Items
e Write abstract interface
* Write Noop driver
e Write tests
Dependencies

None

Testing

* Unit tests with tox and Noop-Driver

* tempest tests with Noop-Driver

Documentation Impact

None - we won’t document the interface for 0.5. If that changes we need to write an interface documen-
tation so 3rd party drivers know what we expect.

References

[1] https://martinfowler.com/bliki/CircuitBreaker.html [2] https://docs.openstack.org/taskflow/latest/

Compute Driver Interface
https://blueprints.launchpad.net/octavia/+spec/compute-driver-interface

This blueprint describes how a driver will interface with Nova to manage the creation and deletion of
amphora instances. It will describe the base class and other classes required to create, delete, manage the
execution state, and query the status of amphorae.

Problem description

The controller needs to be able to create, delete, and monitor the status of amphora instances. The
amphorae may be virtual machines, containers, bare-metal servers, or dedicated hardware load balancers.
This interface should hide the implementation details of the amphorae from the caller to the maximum
extent possible.

4.5. Project Specifications 277

https://martinfowler.com/bliki/CircuitBreaker.html
https://docs.openstack.org/taskflow/latest/
https://blueprints.launchpad.net/octavia/+spec/compute-driver-interface

Octavia Documentation, Release 17.1.0.dev41

This interface will provide means to specify:

* type (VM, Container, bare metal)
* flavor (provides means to specify memory and storage capacity)

e what else?

Proposed change

Establish an abstract base class to model the desired functionality:

class AmphoraComputeDriver(object

def build(self None
None None None
None None None

def

""" build a new amphora.

:param amphora_type: The type of amphora to create. For
version 0.5, only VM is supported. In the future this
may support Container, BareMetal, and HWLoadBalancer.
:param amphora_flavor: Optionally specify a flavor. The
interpretation of this parameter will depend upon the
amphora type and may not be applicable to all types.
:param image_id: ID of the base image for a VM amphora
:param keys: Optionally specify a list of ssh public keys
:param sec_groups: Optionally specify list of security
groups

:param network_ids: A list of network_ids to attach to

the amphora

:config_drive_files: A dict of files to overwrite on

the server upon boot. Keys are file names (i.e. /etc/passwd)
and values are the file contents (either as a string or as
a file-like object). A maximum of five entries is allowed,
and each file must be 10k or less.

:param user_data: user data to pass to be exposed by the
metadata server this can be a file type object as well or
a string

:returns: The id of the new instance.
raise NotImplementedError

delete(self
""" delete the specified amphora

nmun

raise NotImplementedError
(continues on next page)

4.5. Project Specifications 278

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Exception Model

The driver is expected to raise the following well defined exceptions:
* NotImplementedError - this functionality is not implemented/not supported

* AmphoraComputeError - a super class for all other exceptions and the catch
all if no specific exception can be found

— AmphoraBuildError - An amphora of the specified type could not be built
— DeleteFailed - this amphora couldn’t be deleted
* InstanceNotFoundError - an instance matching the desired criteria could not be found

* NotSuspendedError - resume() attempted on an instance that was not suspended

Things a good driver should do:

* Non blocking operations - If an operation will take a long time to execute, perform it asyn-
chronously. The definition of "a long time" is open to interpretation, but a common UX guideline
is 200 ms

* We might employ a circuit breaker to insulate driver problems from controller problems [1]
» Use appropriate logging
* Use the preferred threading model

This will be demonstrated in the Noop-driver code.

4.5. Project Specifications 279

Octavia Documentation, Release 17.1.0.dev41

Alternatives
Data model impact

None

REST API impact

None
Security impact
None

Notifications impact

None - since initial version

Other end user impact

None

Performance Impact
Minimal
Other deployer impact

Deployers need to make sure to bundle the compatible versions of amphora, driver, controller --

Developer impact

Need to write towards this clean interface.

Implementation
Assignee(s)

Al Miller

Work Iltems
e Write abstract interface
* Write Noop driver
e Write tests
Dependencies

None

4.5. Project Specifications 280

Octavia Documentation, Release 17.1.0.dev41

Testing

* Unit tests with tox and Noop-Driver

* tempest tests with Noop-Driver

Documentation Impact

None - this is an internal interface and need not be externally documented.

References

[1] http://martinfowler.com/bliki/CircuitBreaker.html

Octavia Base Image
Launchpad blueprint:
https://blueprints.launchpad.net/octavia/+spec/base-image

Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as amphora. Amphora
may be a virtual machine, may be a container, or may run on bare metal. Creating images for bare metal
amphora installs is outside the scope of this 0.5 specification but may be added in a future release.

Amphora will need a base image that can be deployed by Octavia to provide load balancing.

Problem description

Octavia needs a method for generating base images to be deployed as load balancing entities.

Proposed change

Leverage the OpenStack diskimage-builder project [1] tools to provide a script that builds qcow?2 images
or a tar file suitable for use in creating containers. This script will be modeled after the OpenStack Sahara
[2] project’s diskimage-create.sh script.

This script and associated elements will build Amphora images. Initial support with be with an Ubuntu
OS and HAProxy. The script will be able to use Fedora or CentOS as a base OS but these will not initially
be tested or supported. As the project progresses and/or the diskimage-builder project adds support for
additional base OS options they may become available for Amphora images. This does not mean that
they are necessarily supported or tested.

The script will use environment variables to customize the build beyond the Octavia project defaults,
such as adding elements.

The initial supported and tested image will be created using the diskimage-create.sh defaults (no com-
mand line parameters or environment variables set). As the project progresses we may add additional
supported configurations.

Command syntax:

$ diskimage-create.sh
[-ai386 | amd64 | armhf |
[-b haproxy |

4.5. Project Specifications 281

http://martinfowler.com/bliki/CircuitBreaker.html
https://blueprints.launchpad.net/octavia/+spec/base-image

Octavia Documentation, Release 17.1.0.dev41

[-c ~/.cache/image-create | <cache directory>]
[-h]
[-i ubuntu | fedora | centos]
[-o amphora-x64-haproxy | <filename>]
[-r <root password>]
[-s 5] <size in GB>]
[-t qcow2 | tar]
[-w <working directory>]
’-a’ is the architecture type for the image (default: amd64)
’-b’ is the backend type (default: haproxy)
’-c’ is the path to the cache directory (default: ~/.cache/image-create)
’-h’ display help message
’-i’ is the base OS (default: ubuntu)
’-0’ is the output image file name
’-1’” enable the root account in the generated image (default: disabled)
’-s’ is the image size to produce in gigabytes (default: 5)
’-t’ is the image type (default: qcow?2)
’-w’ working directory for image building (default: .)

Environment variables supported by the script:
DIB_DISTRIBUTION_MIRROR - URL to a mirror for the base OS selected (-i).
DIB_REPO_PATH - Path to the diskimage-builder repository (default: ../../diskimage-builder)

ELEMENTS_REPO_PATH - Path to the /tripleo-image-elements repository (default:
./..[tripleo-image-elements)

DIB_ELEMENTS - Override the elements used to build the image

DIB_LOCAL_ELEMENTS - Elements to add to the build (requires
DIB_LOCAL_ELEMENTS_PATH be specified)

DIB_LOCAL_ELEMENTS_PATH - Path to the local elements directory

Container support

The Docker command line required to import a tar file created with this script is [3]:

[$ docker import - image:amphora-x64-haproxy < amphora-x64-haproxy.tar

Alternatives

Deployers can manually create an image or container, but they would need to make sure the required
components are included.

4.5. Project Specifications 282

Octavia Documentation, Release 17.1.0.dev41

Data model impact

None

REST API impact

None
Security impact
None

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

This script will make creating an Octavia Amphora image or container simple.

Developer impact

None

Implementation
Assignee(s)

Michael Johnson <johnsom>

Work Items

1. Write diskimage-create.sh script based on Sahara project’s script.

2. Identify the list of packages required for Octavia Amphora.

3. Create required elements not provided by the diskimage-builder project.

4. Create unit tests

Dependencies

This script will depend on the OpenStack diskimage-builder project.

4.5. Project Specifications

283

Octavia Documentation, Release 17.1.0.dev41

Testing

Initial testing will be completed using the default settings for the diskimage-create.sh tool.
* Unit tests with tox
— Validate that the image is the correct size and mounts via loopback
— Check that a valid kernel is installed
— Check that HAProxy and all required packages are installed
* tempest tests
Documentation Impact

References

[1] https://github.com/openstack/diskimage-builder
[2] https://github.com/openstack/sahara-image-elements
[3] https://github.com/openstack/diskimage-builder/blob/master/docs/docker.md

Octavia v0.5 master component design document

Problem description

We need to define the various components that will make up Octavia v0.5.

Proposed change

This is the first functional release of Octavia, incorporating a scalable service delivery layer, but not yet
concerned with a scalable command and control layer.

See doc/source/design/version(.5 for a detailed description of the v0.5 component design.
Alternatives

We’re open to suggestions, but note that later designs already discussed on the mailing list will incorporate
several features of this design.

Data model impact

Octavia 0.5 introduces the main data model which will also be used in subsequent releases.

REST API impact

None

Security impact
The only sensitive data used in Octavia 0.5 are the TLS private keys used with TERMINATED_HTTPS
functionality. However, the back-end storage aspect of these secrets will be handled by Barbican.

Octavia amphorae will also need to keep copies of these secrets locally in order to facilitate seamless
service restarts. These local stores should be made on a memory filesystem.

4.5. Project Specifications 284

https://github.com/openstack/diskimage-builder
https://github.com/openstack/sahara-image-elements
https://github.com/openstack/diskimage-builder/blob/master/docs/docker.md

Octavia Documentation, Release 17.1.0.dev41

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

Operator API and UI may need to be changed as a result of this specification.

Developer impact

None beyond implementing the spec. :)

Implementation
Assignee(s)
Lots of us will be working on this!

Work Items

Again, lots of things to be done here.

Dependencies

Barbican

Testing

A lot of new tests will need to be written to test the separate components, their interfaces, and likely
failure scenarios.

Documentation Impact

This specification largely defines the documentation of the component design.
Component design is becoming a part of the project standard documentation.
References

Mailing list discussion of similar designs earlier this year

4.5. Project Specifications 285

Octavia Documentation, Release 17.1.0.dev41

Octavia Controller

Launchpad blueprint:

https://blueprints.launchpad.net/octavia/+spec/controller

Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as Amphora.

The component of Octavia that provides command and control of the Amphora is the Octavia controller.

Problem description

Octavia requires a controller component that provides the following capabilities:

Processing Amphora configuration updates and making them available to the Amphora driver
Providing certificate information to the Amphora driver

Deploying Amphora instances

Managing the Amphora spares pool

Cleaning up Amphora instances that are no longer needed

Monitoring the health of Amphora instances

Processing alerts and messages from the Amphora (example "member down")

Respecting colocation / apolocation / flavor requirements of the Amphora

Processing statistical data from the Amphora including communicating with metering services,
such as Ceilometer (https://blueprints.launchpad.net/ceilometer/+spec/ceilometer-meter-Ibaas)

Responding to API requests sent by the API processes

Proxy Amphora data to other OpenStack services such as Swift for log file archival

Proposed change

The Octavia controller will consist of the following components:

Amphora Driver
Queue Consumer
Certificate Library
Compute Driver
Controller Worker
Health Manager
Housekeeping Manager
Network Driver

Services Proxy

4.5. Project Specifications 286

https://blueprints.launchpad.net/octavia/+spec/controller
https://blueprints.launchpad.net/ceilometer/+spec/ceilometer-meter-lbaas

Octavia Documentation, Release 17.1.0.dev41

Database X

Certificate

Neutron Library,

Housekeeping

Oslo (Spares/Cleanup)

Messaging

Controller Health Services
‘Worker Manager Proxy

Barbican

Amphora Driver
Queue 7 Log \) Stats Config
Consumer . Handler , Handler Handler

Ceilometer

Message
Handler

The manager and proxy components should be implemented as independent processes to provide a level
of autonomy to these controller functions.

The highly available database will provide the persistent "brain" for the Octavia controller. Octavia
controller processes will share state and information about the Amphora, load balancers, and listeners
via the database. It is expected that the Octavia controller and Amphora driver will directly interact with
the database but the Amphorae will never directly access the database.

By using a highly available database, Octavia controllers themselves do not directly keep any stateful
information on Amphorae. Because of this, Amphorae are not assigned to any specific controller. Any
controller is able to service monitoring, heartbeat, API, and other requests coming to or from Amphorae.

Amphora Driver

The Amphora driver abstracts the backend implementation of an Amphora. The controller will interact
with Amphora via the Amphora driver. This interface is defined in the amphora-driver-interface specifi-
cation.

Queue Consumer

The Queue Consumer is event driven and tasked with servicing requests from the API components via
an Oslo messaging. It is also the primary lifecycle management component for Amphora.

To service requests the Queue Consumer will spawn a Controller Worker process. Spawning a separate
process makes sure that the Queue Consumer can continue to service API requests while the longer
running deployment process is progressing.

Messages received via Oslo messaging will include the load balancer ID, requested action, and configu-
ration update data. Passing the configuration update data via Oslo messaging allows the deploy worker to
rollback to a "last known good" configuration should there be a problem with the configuration update.
The spawned worker will use this information to access the Octavia database to gather any additional
details that may be required to complete the requested action.

Compute Driver

The Compute Driver abstracts the implementation of instantiating the virtual machine, container, appli-
ance, or device that the Amphora will run in.

Controller Worker

4.5. Project Specifications 287

Octavia Documentation, Release 17.1.0.dev41

The Controller Worker is spawned from the Queue Consumer or the Health Manager. It interfaces with
the compute driver (in some deployment scenarios), network driver, and Amphora driver to activate
Amphora instances, load balancers, and listeners.

When a request for a new instance or failover is received the Controller Worker will have responsibility
for connecting the appropriate networking ports to the Amphora via the network driver and triggering a
configuration push via the Amphora driver. This will include validating that the targeted Amphora has
the required networks plumbed to the Amphora.

The Amphora configured by the Controller Worker may be an existing Amphora instance, a new Am-
phora from the spares pool, or a newly created Amphora. This determination will be made based on the
apolocation requirements of the load balancer, the load balancer count on the existing Amphora, and the
availability of ready spare Amphora in the spares pool.

The Controller Worker will be responsible for passing in the required metadata via config drive when
deploying an Amphora. This metadata will include: a list of controller IP addresses, controller certificate
authority certificate, and the Amphora certificate and key file.

The main flow of the Controller Worker is described in the amphora-lifecycle-management specification
as the Activate Amphora sequence.

Certificate Library

The Certificate Library provides an abstraction for workers to access security data stored in OpenStack
Barbican from the Amphora Driver. It will provide a short term (1 minute) cache of the security contents
to facilitate the efficient startup of a large number of listeners sharing security content.

Health Manager

The Health Manager is tasked with checking for missing or unhealthy Amphora stored in the highly avail-
able database. The amphora-lifecycle-management specification details the health monitoring sequence.

The health monitor will have a separate thread that checks these timestamps on a configurable interval
to see if the Amphora has not provided a heartbeat in the required amount of time which is another
configurable setting. Should a Amphora fail to report a heartbeat in the configured interval the Health
Manager will initiate a failover of the Amphora by spawning a deploy worker and will update the status
of the listener in the database.

The Health Manager will have to be aware of the load balancer associated with the failed listener to decide
if it needs to fail over additional listeners to migrate the failed listener to a new Amphora.

Housekeeping Manager

The Housekeeping Manager will manage the spare Amphora pool and the teardown of Amphora that
are no longer needed. On a configurable interval the Housekeeping Manager will check the Octavia
database to identify the required cleanup and maintenance actions. The amphora-lifecycle-management
specification details the Create, Spare, and Delete Amphora sequences the Housekeeping Manager will
follow.

The operator can specify a number of Amphora instances to be held in a spares pool. Building Amphora
instances can take a long time so the Housekeeping Manager will spawn threads to manage the number
of Amphorae in the spares pool.

The Housekeeping Manager will interface with the compute driver, network driver, and the Certificate
Manager to accomplish the create and delete actions.

Network Driver

The Network Driver abstracts the implementation of connecting an Amphora to the required networks.

4.5. Project Specifications 288

Octavia Documentation, Release 17.1.0.dev41

Services Proxy

The Services Proxy enables Amphora to reach other cloud services directly over the Load Balancer Net-
work where the controller may need to provide authentication tokens on behalf of the Amphora, such as
when archiving load balancer traffic logs into customer swift containers.

Alternatives

Data model impact
REST API impact
Security impact
Notifications impact
Other end user impact
Performance Impact
Other deployer impact
Developer impact
Implementation
Assignee(s)

Michael Johnson <johnsom>

Work ltems
Dependencies

Testing
Documentation Impact
References

Amphora lifecycle management: https://review.opendev.org/#/c/130424/
LBaaS metering:
https://blueprints.launchpad.net/ceilometer/+spec/ceilometer-meter-1baas

Controller Worker (deploy-worker)
Launchpad blueprint:
https://blueprints.launchpad.net/octavia/+spec/controller-worker

Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as Amphora.

The component of Octavia that provides command and control of the Amphora is the Octavia controller.

4.5. Project Specifications 289

https://review.opendev.org/#/c/130424/
https://blueprints.launchpad.net/ceilometer/+spec/ceilometer-meter-lbaas
https://blueprints.launchpad.net/octavia/+spec/controller-worker

Octavia Documentation, Release 17.1.0.dev41

Problem description

Components of the Octavia controller require a shared library that provides the orchestration of cre-
ate/update/delete actions for Octavia objects such as load balancers and listeners.

It is expected that this library will be used by the Queue Consumer to service API requests, by the
Housekeeping Manager to manage the spare Amphora pool, and by the Health Manager to fail over
failed objects.

Proposed change

The Controller Worker will be implemented as a class that provides methods to facilitate the cre-
ate/update/delete actions. This class will be responsible for managing the number of simultaneous oper-
ations being executed by coordinating through the Octavia database.

The Controller Worker will provide a base class that sets up and initializes the TaskFlow engines required
to complete the action. Users of the library will then call the appropriate method for the action. These
methods setup and launch the appropriate flow. Each flow will be contained in a separate class for code
reuse and supportability.

The Controller Worker library will provide the following methods:

(continues on next page)

4.5. Project Specifications 290

Octavia Documentation, Release 17.1.0.dev41

def

def

def

def

def

(continued from previous page)

:returns: None
:raises LBNotFound: The referenced load balancer was not found

raise NotImplementedError

delete_load_balancer(self
"""Deletes a load balancer by de-allocating Amphorae.

:param load_balancer_id: ID of the load balancer to delete
:returns: None
:raises LBNotFound: The referenced load balancer was not found

raise NotImplementedError

create_listener(self
"""Creates a listener.

:param listener_id: ID of the listener to create
:returns: None
:raises NoSuitablelLB: Unable to find the load balancer

raise NotImplementedError

update_listener(self
"""Updates a listener.

:param listener_id: ID of the listener to update

:param listener_updates: Dict containing updated listener attributes
:returns: None

:raises ListenerNotFound: The referenced listener was not found

wun

raise NotImplementedError

delete_listener(self
"""Deletes a listener.

:param listener_id: ID of the listener to delete
:returns: None
:raises ListenerNotFound: The referenced listener was not found

raise NotImplementedError

create_pool (self
"""Creates a node pool.

:param pool_id: ID of the pool to create
:returns: None
:raises NoSuitablelLB: Unable to find the load balancer

(continues on next page)

4.5.

Project Specifications 291

Octavia Documentation, Release 17.1.0.dev41

def

def

def

def

def

(continued from previous page)

raise NotImplementedError

update_pool(self
"""Updates a node pool.

:param pool_id: ID of the pool to update

:param pool_updates: Dict containing updated pool attributes
:returns: None

:raises PoolNotFound: The referenced pool was not found

raise NotImplementedError

delete_pool(self
"""Deletes a node pool.

:param pool_id: ID of the pool to delete
:returns: None
:raises PoolNotFound: The referenced pool was not found

raise NotImplementedError

create_health_monitor(self
"""Creates a health monitor.

:param health monitor_id: ID of the health monitor to create
:returns: None
:raises NoSuitablePool: Unable to find the node pool

raise NotImplementedError

update_health_monitor(self
"""Updates a health monitor.

:param health monitor_id: ID of the health monitor to update

:param health_monitor_updates: Dict containing updated health monitor
attributes

:returns: None

:raises HMNotFound: The referenced health monitor was not found

raise NotImplementedError

delete_health_monitor(self
"""Deletes a health monitor.

:param health monitor_id: ID of the health monitor to delete
:returns: None
:raises HMNotFound: The referenced health monitor was not found

raise NotImplementedError

(continues on next page)

4.5.

Project Specifications 292

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

def create_member(self
"""Creates a pool member.

:param member_id: ID of the member to create
:returns: None
:raises NoSuitablePool: Unable to find the node pool

raise

def update_member(self
"""Updates a pool member.

:param member_id: ID of the member to update

:param member_updates: Dict containing updated member attributes
:returns: None

:raises MemberNotFound: The referenced member was not found

raise

def delete_member(self
"""Deletes a pool member.

:param member_id: ID of the member to delete
:returns: None
:raises MemberNotFound: The referenced member was not found

raise

def failover_amphora(self
"""Failover an amphora

:param amp_id: ID of the amphora to fail over
:returns: None
:raises AmphoraNotFound: The referenced Amphora was not found

raise

Alternatives

This code could be included in the Queue Consumer component of the controller. However this would
not allow the library to be shared with other components of the controller, such as the Health Manager

Data model impact
REST API impact

None

4.5. Project Specifications 293

Octavia Documentation, Release 17.1.0.dev41

Security impact
Notifications impact
Other end user impact
Performance Impact
Other deployer impact
Developer impact
Implementation
Assignee(s)

Michael Johnson <johnsom>

Work Items
Dependencies

https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface https://blueprints.
launchpad.net/octavia/+spec/neutron-network-driver https://blueprints.launchpad.net/octavia/+spec/
nova-compute-driver

Testing

Unit tests

Documentation Impact

None

References

https://blueprints.launchpad.net/octavia/+spec/health-manager https://blueprints.launchpad.net/
octavia/+spec/housekeeping-manager https://blueprints.launchpad.net/octavia/+spec/queue-consumer

HAProxy Amphora API
https://blueprints.launchpad.net/octavia/+spec/appliance-api

The reference implementation of Octavia is going to make use of an haproxy- based amphora. As such,
there will be an haproxy reference driver that speaks a well-defined protocol to the haproxy-based am-
phora. This document is meant to be a foundation of this interface, outlining in sufficient detail the
various commands that will definitely be necessary. This design should be iterated upon as necessary
going forward.

Problem description

This API specification is necessary in order to fully develop the haproxy reference driver, both to ensure
this interface is well documented, and so that different people can work on different parts of bringing
Octavia to fruition.

4.5. Project Specifications 294

https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/neutron-network-driver
https://blueprints.launchpad.net/octavia/+spec/neutron-network-driver
https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver
https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver
https://blueprints.launchpad.net/octavia/+spec/health-manager
https://blueprints.launchpad.net/octavia/+spec/housekeeping-manager
https://blueprints.launchpad.net/octavia/+spec/housekeeping-manager
https://blueprints.launchpad.net/octavia/+spec/queue-consumer
https://blueprints.launchpad.net/octavia/+spec/appliance-api

Octavia Documentation, Release 17.1.0.dev41

Proposed change

Note that this spec does not yet attempt to define the following, though these may follow shortly after
this initial spec is approved: * Method for bi-directional authentication between driver and amphora.
* Bootstrapping process of amphora * Transition process from "spare" to "active" amphora and other
amphora lifecycle transitions

This spec does attempt to provide an initial foundation for the following: * RESTful interface exposed
on amphora management

Alternatives

None

Data model impact

None (yet)

REST API impact

Please note that the proposed changes in this spec do NOT affect either the publicly-exposed user or
operator APIs, nor really anything above the haproxy reference driver.

Please see doc/main/api/haproxy-amphora-api.rst
Security impact
None yet, though bi-directional authentication between driver and amphora needs to be addressed.

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

None

Developer impact

None

4.5. Project Specifications 295

Octavia Documentation, Release 17.1.0.dev41

Implementation
Assignee(s)

stephen-balukoff david-lenwell

Work ltems
Dependencies

haproxy reference driver

Testing

Unit tests

Documentation Impact

None

References

None

Housekeeping Manager Specification

https://blueprints.launchpad.net/octavia/+spec/housekeeping-manager

Problem description

The Housekeeping Manager will manage the spare amphora pool and the teardown of amphorae that are
no longer needed. On a configurable interval the Housekeeping Manager will check the Octavia database
to identify the required cleanup and maintenance actions required. The amphora-lifecycle-management
specification details the Create and Deactivate amphora sequences the Housekeeping Manager will fol-
low.

Proposed change

The housekeeping manager will run as a daemon process which will perform the following actions:
* Read the following from the configuration file

— housekeeping_interval: The time (in seconds) that the housekeeping manager will sleep be-
fore running its checks again.

— spare_amphora_pool_size: The desired number of spare amphorae.

— maximum_deploying_amphora_count: The maximum number of amphorae that may be de-
ployed simultaneously.

— maximum_preserved_amphora_count: How many deactivated amphorae to preserve. 0
means delete, 1 or greater means keep up to that many amphorae for future diagnostics.
Only amphorae in the ERROR and PRESERVE states are eligible to be preserved. TODO:
Right now there is no PRESERVE state, for this to work we would need to define one in the
amphora spec.

4.5. Project Specifications 296

https://blueprints.launchpad.net/octavia/+spec/housekeeping-manager

Octavia Documentation, Release 17.1.0.dev41

— preservation_scheme
* "keep": keep all preserved amphorae

"cycle": maintain a queue of preserved amphorae, deleting the oldest one when a new
amphora is preserved.

— preservation_method: Preservation must take into account the possibility that amphorae in-
stantiated in the future may reuse MAC addresses.

"unplug": Disconnect the virtual NICs from the amphora
% "snapshot": Take a snapshot of the amphora, then stop it
* Get the spare pool size
— Log the spare pool size

— If the spare pool size is less than the spare pool target capacity, initiate creation of appropriate
number of amphorae.

Obtain the list of deactivated amphorae and schedule their removal. If preservation_count > 0, and
there are fewer than that many amphorae in the preserved pool, preserve the amphora. After the
preserved pool size reaches preservation_count, use preservation_scheme to determine whether to
keep newly failed amphorae.

Sleep for the time specified by housekeeping_interval.
* Return to the top

Establish a base class to model the desired functionality:

(continues on next page)

4.5. Project Specifications 297

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Exception Model

The manager is expected to raise or pass along the following well-defined exceptions:
* NotImplementedError - this functionality is not implemented/not supported

* AmphoraDriverError - a super class for all other exceptions and the catch
all if no specific exception can be found * NotFoundError - this amphora couldn’t be found/
was deleted by nova * UnauthorizedException - the driver can’t access the amphora * Un-
availableException - the amphora is temporary unavailable * DeleteFailed - this load balancer
couldn’t be deleted

Alternatives
Data model impact

Requires the addition of the housekeeping_interval, spare_pool_size, spare_amphora_pool_size, maxi-
mum_preserved_amphora_count, preservation_scheme, and preservation_method to the config.

REST API impact

None.

Security impact

Must follow standard practices for database access.
Notifications impact

Other deployer impact

Other end user impact

There should be no end-user-visible impact.

Performance Impact

The housekeeping_interval and spare_pool_size parameters will be adjustable by the operator in order
to balance resource usage against performance.

Developer impact

Developers of other modules need to be aware that amphorae may be created, deleted, or saved for diag-
nosis by this daemon.

4.5. Project Specifications 298

Octavia Documentation, Release 17.1.0.dev41

Implementation
Assignee(s)

Al Miller <ajmiller>

Work ltems

e Write abstract interface
* Write Noop driver

e Write tests

Dependencies

Amphora driver Config manager

Testing

* Unit tests with tox and Noop-Driver

* tempest tests with Noop-Driver

Documentation Impact

None - we won’t document the interface for 0.5. If that changes we need to write an interface documen-
tation so 3rd party drivers know what we expect.

References

Network Driver Interface
Include the URL of your launchpad blueprint:
https://blueprints.launchpad.net/octavia/+spec/network-driver-interface

We need a generic interface in which to create networking resources. This is to allow implementations
that can support different networking infrastructures that accomplish frontend and backend connectivity.

Problem description

There is a need to define a generic interface for a networking service. An Octavia controller should not
know what networking infrastructure is being used underneath. It should only know an interface. This
interface is needed to support differing networking infrastructures.

Proposed change

In order to make the network driver as genericly functional as possible, it is broken down into methods
that Octavia will need at a high level to accomplish frontend and backend connectivity. The idea is that
to implement these methods it may require multiple requests to the networking service to accomplish the
end result. The interface is meant to promote stateless implementations and suffer no issues being run in
parallel.

4.5. Project Specifications 299

https://blueprints.launchpad.net/octavia/+spec/network-driver-interface

Octavia Documentation, Release 17.1.0.dev41

In the future we would like to create a common module that implementations of this interface can call
to setup a taskflow engine to promote using a common taskflow configuration. That however, can be left
once this has had time to mature.

Existing data model:
* class VIP

load_balancer_id

ip_address

network_id - (neutron subnet)

port_id - (neutron port)
* class Amphora

load_balancer_id

compute_id

Ib_network_ip

status

vrrp_ip - if an active/passive topology, this is the ip where the vrrp
communication between peers happens

ha_ip - this is the highly available IP. In an active/passive topology
it most likely exists on the MASTER amphora and on failure it will be raised on the
BACKUP amphora. In an active/active topology it may exist on both amphorae. In
the end, it is up to the amphora driver to decide how to use this.

New data models:
* class Interface

- id

network_id - (neutron subnet)

amphora_id

fixed_ips

¢ class Delta

amphora_id

compute_id

add_nics

delete_nics
¢ class Network

- id

name

subnets - (list of subnet ids)

tenant_id

4.5. Project Specifications 300

Octavia Documentation, Release 17.1.0.dev41

admin_state_up
provider_network_type
provider_physical_network
provider_segmentation_id
router_external

mtu

 class Subnet

id

name
network_id
tenant_id
gateway_ip
cidr

ip_version

¢ class Port

* FixedIP

id

name

device_id
device_owner
mac_address
network_id
status

tenant_id
admin_state_up

fixed_ips - list of FixedIP objects

subnet_id

ip_address

* AmphoraNetworkConfig

amphora - Amphora object
vip_subnet - Subnet object
vip_port - Port object
vrrp_subnet - Subnet object

vrrp_port - Port object

4.5.

Project Specifications

301

Octavia Documentation, Release 17.1.0.dev41

— ha_subnet - Subnet object
— ha_port - Port object
New Exceptions defined in the octavia.network package:

» NetworkException - Base Exception

* PlugVIPException

* UnplugVIPException

* PluggedVIPNotFound

* AllocateVIPException

* DeallocateVIPException

* PlugNetworkException

* UnplugNetworkException

* VIPInUse

* PortNotFound

* SubnetNotFound

* NetworkNotFound

* AmphoraNotFound

This class defines the methods for a fully functional network driver. Implementations of this interface
can expect a rollback to occur if any of the non-nullipotent methods raise an exception.

class AbstractNetworkDriver

* plug_vip(loadbalancer, vip)

Sets up the routing of traffic from the vip to the load balancer and its amphorae.

loadbalancer - instance of data_models.LoadBalancer

% this is to keep the parameters as generic as possible so different implementations can use
different properties of a load balancer. In the future we may want to just take in a list of
amphora compute ids and the vip data model.

vip = instance of a VIP

returns list of Amphora

raises PlugVIPException, PortNotFound

* unplug_vip(loadbalancer, vip)

Removes the routing of traffic from the vip to the load balancer and its amphorae.

loadbalancer = instance of a data_models.LoadBalancer

vip = instance of a VIP

returns None

raises UnplugVIPException, PluggedVIPNotFound

* allocate_vip(loadbalancer)

4.5. Project Specifications 302

Octavia Documentation, Release 17.1.0.dev41

Allocates a virtual ip and reserves it for later use as the frontend connection of a load balancer.
loadbalancer = instance of a data_models.L.oadBalancer
returns VIP instance

raises AllocateVIPException, PortNotFound, SubnetNotFound

¢ deallocate_vip(vip)

Removes any resources that reserved this virtual ip.
vip = VIP instance
returns None

raises DeallocateVIPException, VIPInUse

* plug_network(compute_id, network_id, ip_address=None)

Connects an existing amphora to an existing network.
compute_id = id of an amphora in the compute service
network_id = id of the network to attach

ip_address = ip address to attempt to be assigned to interface
returns Interface instance

raises PlugNetworkException, AmphoraNotFound, NetworkNotFound

* unplug_network(compute_id, network_id, ip_address=None)

Disconnects an existing amphora from an existing network. If ip_address is not specified
then all interfaces on that network will be unplugged.

compute_id = id of an amphora in the compute service to unplug
network_id = id of network to unplug amphora

ip_address = ip address of interface to unplug

returns None

raises UnplugNetworkException, AmphoraNotFound, NetworkNotFound,
NetworkException

* get_plugged_networks(compute_id):

Retrieves the current plugged networking configuration
compute_id = id of an amphora in the compute service

returns = list of Instance instances

* update_vip(loadbalancer):

Hook for the driver to update the VIP information based on the state of the passed in load-
balancer

loadbalancer: instance of a data_models.LoadBalancer

* get_network(network_id):

Retrieves the network from network_id

4.5. Project Specifications 303

Octavia Documentation, Release 17.1.0.dev41

— network_id = id of an network to retrieve

— returns = Network data model

— raises NetworkException, NetworkNotFound
* get_subnet(subnet_id):

Retrieves the subnet from subnet_id

subnet_id = id of a subnet to retrieve

returns = Subnet data model

raises NetworkException, SubnetNotFound

* get_port(port_id):

Retrieves the port from port_id

port_id = id of a port to retrieve

returns = Port data model

raises NetworkException, PortNotFound

* failover_preparation(amphora):

Prepare an amphora for failover

amphora = amphora data model

returns = None

raises PortNotFound

Alternatives

* Straight Neutron Interface (networks, subnets, ports, floatingips)

* Straight Nova-Network Interface (network, fixed_ips, floatingips)

Data model impact

* The Interface data model defined above will just be a class. We may later decide that it needs to
be stored in the database, but we can optimize on that in a later review if needed.

REST API impact

None
Security impact
None

Notifications impact

None

4.5. Project Specifications 304

Octavia Documentation, Release 17.1.0.dev41

Other end user impact

None

Performance Impact

None

Other deployer impact

Need a service account to own the resources these methods create.

Developer impact

This will be creating an interface in which other code will be creating network resources.

Implementation
Assignee(s)
brandon-logan

Work ltems

Define interface

Dependencies

None

Testing

None

Documentation Impact

Just docstrings on methods.

References

None

Nova Compute Driver
Blueprint: https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver

Octavia needs to interact with nova for creation of VMs for this version. This spec will flesh out all the
methods described in the compute-driver-interface with nova VM specific commands.

4.5. Project Specifications 305

https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver

Octavia Documentation, Release 17.1.0.dev41

Problem description

This spec details operations for creating, updating, and modifying amphora that will hold the actual load
balancer. It will utilize the nova client python api version 3 for the nova specific requests and commands.

Proposed change

Expose nova operations
* Build: Will need to build a virtual machine according to configuration parameters
— Will leverage the nova client ServerManager method "create" to build a server
* Get: Will need to retrieve details of the virtual machine from nova

— Will leverage the nova client ServerManager method "get" to retrieve a server, and return an
amphora object

e Delete: Will need to remove a virtual machine
— Will leverage the nova client ServerManager method "delete" for removal of server
e Status: Will need to retrieve the status of the virtual machine

— Will leverage the aforementioned get call to retrieve status of the server
Alternatives

None

Data model impact

Add fields to existing Amphora object

REST API impact

None
Security impact
None

Notifications impact

None

Other end user impact

None

Performance Impact

None

4.5. Project Specifications 306

Octavia Documentation, Release 17.1.0.dev41

Other deployer impact

None

Developer impact

Will need a nova service account and necessary credentials stored in config

Implementation
Assignee(s)
trevor-vardeman

Work Items

Expose nova operations

Dependencies

compute-driver-interface

Testing

Unit tests Functional tests

Documentation Impact

None

References

https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver https://docs.openstack.org/
python-novaclient/latest/reference/api/index.html

Octavia Operator API Foundation

https://blueprints.launchpad.net/octavia/+spec/operator-api

Octavia needs the foundation of the Operator API created. This spec is not meant to address every

functionality needed in the operator API, only to create a solid foundation to iterate on in the future.

Problem description

This is needed because this will be the mechanism to actually communicate with Octavia. Doing CRUD
operations on all entities will be needed ASAP so that the system can be thoroughly tested.

Proposed change

Expose Pecan resources - Defined explicitly below in the REST API Impact

Create WSME types - These will be responsible for request validation and deserialization, and also re-
sponse serialization

4.5. Project Specifications 307

https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver
https://docs.openstack.org/python-novaclient/latest/reference/api/index.html
https://docs.openstack.org/python-novaclient/latest/reference/api/index.html
https://blueprints.launchpad.net/octavia/+spec/operator-api

Octavia Documentation, Release 17.1.0.dev41

Setup paste deploy - This will be used in the future to interact with keystone and other middleware,
however at first this will not have any authentication so tenant_ids will just have to be made up uuids.

Create a handler interface and a noop logging implementation - A handler interface will be created. This
abstraction layer is needed because calling the controller in the resource layer will work for 0.5 but 1.0
will be sending it off to a queue. With this abstraction layer we can easily swap out a 0.5 controller with
a 1.0 controller.

Call database repositories - Most if not all resources will make a call to the database

Call handler - Only create, update, and delete operations should call the handler

Alternatives

None

Data model impact

Will need to add some methods to the database repository

REST API impact

Exposed Resources and Methods

POST /loadbalancers * Successful Status Code - 202 * JSON Request Body Attributes ** vip - an-
other JSON object with one required attribute from the following * net_port_id - uuid * subnet_id -
uuid * floating_ip_id - uuid * floating_ip_network_id - uuid ** tenant_id - string - optional - default
"0" * 36 (for now) ** name - string - optional - default null ** description - string - optional - default
null ** enabled - boolean - optional - default true * JSON Response Body Attributes ** id - uuid **
vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid * float-
ing_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR)

PUT /loadbalancers/{lb_id} * Successful Status Code - 202 * JSON Request Body Attributes ** name
- string ** description - string ** enabled - boolean * JSON Response Body Attributes ** id - uuid
** vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid * float-
ing_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR)

DELETE /loadbalancers/{1b_id} * Successful Status Code - 202 * No response or request body

GET /loadbalancers/{1b_id} * Successful Status Code - 200 * JSON Response Body Attributes ** id -
uuid ** vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid *
floating_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR)

GET /loadbalancers?tenant_id * Successful Status Code - 200 * tenant_id is an optional query parameter
to filter by tenant_id * returns a list of load balancers

4.5. Project Specifications 308

Octavia Documentation, Release 17.1.0.dev41

POST /loadbalancers/{1b_id }/listeners * Successful Status Code - 202 * JSON Request Body Attributes
*% protocol - string enum - (TCP, HTTP, HTTPS) - required ** protocol_port - integer - required **
connection_limit - integer - optional ** default_tls_container_id - uuid - optional ** tenant_id - string
- optional - default "0" * 36 (for now) ** name - string - optional - default null ** description - string -
optional - default null ** enabled - boolean - optional - default true * JSON Response Body Attributes **
id - uuid ** protocol - string enum - (TCP, HTTP, HTTPS) ** protocol_port - integer ** connection_limit
- integer ** default_tls_container_id - uuid ** tenant_id - string - optional ** name - string - optional
** description - string - optional ** enabled - boolean - optional ** provisioning_status - string enum
- (ACTIVE, PENDING_CREATE, PENDING_UPDATE, PENDING_DELETE, DELETED, ERROR)
** operating_status - string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

PUT /loadbalancers/{1b_id }/listeners/{listener_id} * Successful Status Code - 202 * JSON Request Body
Attributes ** protocol - string enum ** protocol_port - integer ** connection_limit - integer ** de-
fault_tls_container_id - uuid ** name - string ** description - string ** enabled - boolean * JSON
Response Body Attributes ** id - uuid ** protocol - string enum - (TCP, HTTP, HTTPS) ** proto-
col_port - integer ** connection_limit - integer ** default_tls_container_id - uuid ** tenant_id - string
- optional ** name - string - optional ** description - string - optional ** enabled - boolean - optional
** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE, PEND-
ING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE, DE-
GRADED, ERROR)

DELETE /loadbalancers/{1b_id }/listeners/{listener_id} * Successful Status Code - 202 * No response or
request body

GET /loadbalancers/{1b_id }/listeners/{listener_id} * Successful Status Code - 200 * JSON Response
Body Attributes ** id - uuid ** protocol - string enum - (TCP, HTTP, HTTPS) ** protocol_port -
integer ** connection_limit - integer ** default_tls_container_id - uuid ** tenant_id - string - op-
tional ** name - string - optional ** description - string - optional ** enabled - boolean - optional
** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE, PEND-
ING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE, DE-
GRADED, ERROR)

GET /loadbalancers/{1b_id }/listeners * Successful Status Code - 200 * A list of listeners on load balancer
Ib_id

POST /loadbalancers/{Ib_id}/listeners/{listener_id}/pools * Successful Status Code - 202 * JSON Re-
quest Body Attributes ** protocol - string enum - (TCP, HTTP, HTTPS) - required ** lb_algorithm
- string enum - (ROUND_ROBIN, LEAST_CONNECTIONS, RANDOM) - required ** ses-
sion_persistence - JSON object - optional * type - string enum - (SOURCE_IP, HTTP_COOKIE)
- required * cookie_name - string - required for HTTP_COOKIE type ** tenant_id - string - optional
- default "0" * 36 (for now) ** name - string - optional - default null ** description - string - optional -
default null ** enabled - boolean - optional - default true * JSON Response Body Attributes ** id - uuid
** protocol - string enum - (TCP, HTTP, HTTPS) ** 1b_algorithm - string enum - (ROUND_ROBIN,
LEAST_CONNECTIONS, RANDOM) ** session_persistence - JSON object * type - string enum -
(SOURCE_IP, HTTP_COOKIE) * cookie_name - string ** name - string ** description - string **
enabled - boolean ** operating_status - string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

PUT /loadbalancers/{1b_id }/listeners/{listener_id}/pools/{pool_id} * Successful Status Code - 202 *
JSON Request Body Attributes ** protocol - string enum - (TCP, HTTP, HTTPS) ** 1b_algorithm -
string enum - (ROUND_ROBIN, LEAST_CONNECTIONS, RANDOM) ** session_persistence - JSON
object * type - string enum - (SOURCE_IP, HTTP_COOKIE) * cookie_name - string ** name -
string ** description - string ** enabled - boolean * JSON Response Body Attributes ** id - uuid **
protocol - string enum - (TCP, HTTP, HTTPS) ** 1b_algorithm - string enum - (ROUND_ROBIN,
LEAST_CONNECTIONS, RANDOM) ** session_persistence - JSON object * type - string enum -

4.5. Project Specifications 309

Octavia Documentation, Release 17.1.0.dev41

(SOURCEL_IP, HTTP_COOKIE) * cookie_name - string ** name - string ** description - string **
enabled - boolean ** operating_status - string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

DELETE /loadbalancers/{1b_id }/listeners/{listener_id}/pools/{pool_id} * Successful Status Code - 202
No request or response body

GET /loadbalancers/{1b_id}/listeners/{listener_id}/pools/{pool_id} * Successful Status Code - 200 *
JSON Response Body Attributes ** id - uuid ** protocol - string enum - (TCP, HTTP, HTTPS)
**]b_algorithm - string enum - (ROUND_ROBIN, LEAST_CONNECTIONS, RANDOM) ** ses-
sion_persistence - JSON object * type - string enum - (SOURCE_IP, HTTP_COOKIE) *
cookie_name - string ** name - string ** description - string ** enabled - boolean ** operating_status -
string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

GET /loadbalancers/{1b_id }/listeners/{listener_id}/pools * Successful Status Code - 200 * Returns a list
of pools

POST /loadbalancers/{Ib_id }/listeners/{listener_id}/ pools/{pool_id}/healthmonitor * Successful Status
Code - 202 * JSON Request Body Attributes ** type - string enum - (HTTP, HTTPS, TCP) - required
** delay - integer - required ** timeout - integer - required ** fall_threshold - integer - required **
rise_threshold - integer - required ** http_method - string enum - (GET, POST, PUT, DELETE) - required
for HTTP(S) ** url_path - string - required for HTTP(S) ** expected_codes - comma delimited string -
required for HTTP(S) ** enabled - boolean - required - default true * JSON Response Body Attributes
** type - string enum - (HTTP, HTTPS, TCP) ** delay - integer ** timeout - integer ** fall_threshold
- integer ** rise_threshold - integer ** http_method - string enum - (GET, POST, PUT, DELETE) **
url_path - string ** expected_codes - comma delimited string ** enabled - boolean

PUT /loadbalancers/{1b_id }/listeners/{listener_id}/ pools/{pool_id }/healthmonitor * Successful Status
Code - 202 * JSON Request Body Attributes ** type - string enum - (HTTP, HTTPS, TCP) ** delay -
integer ** timeout - integer ** fall_threshold - integer ** rise_threshold - integer ** http_method - string
enum - (GET, POST, PUT, DELETE) ** url_path - string ** expected_codes - comma delimited string
** enabled - boolean * JSON Response Body Attributes ** type - string enum - (HTTP, HTTPS, TCP) **
delay - integer ** timeout - integer ** fall_threshold - integer ** rise_threshold - integer ** http_method
- string enum - (GET, POST, PUT, DELETE) ** url_path - string ** expected_codes - comma delimited
string ** enabled - boolean

DELETE /loadbalancers/{1b_id}/listeners/{listener_id}/ pools/{pool_id}/healthmonitor * Successful
Status Code - 202 No request or response body

GET /loadbalancers/{1b_id}/listeners/{listener_id}/ pools/{pool_id}/healthmonitor * Successful Status
Code - 200 * JSON Response Body Attributes ** type - string enum - (HTTP, HTTPS, TCP) ** delay -
integer ** timeout - integer ** fall_threshold - integer ** rise_threshold - integer ** http_method - string
enum - (GET, POST, PUT, DELETE) ** url_path - string ** expected_codes - comma delimited string
** enabled - boolean

POST /loadbalancers/{1b_id}/listeners/{listener_id}/ pools/{pool_id}/members * Successful Status
Code - 202 * JSON Request Body Attributes ** ip_address - IP Address - required ** protocol_port
- integer - required ** weight - integer - optional ** subnet_id - uuid - optional ** tenant_id - string -
optional - default "0" * 36 (for now) ** enabled - boolean - optional - default true * JSON Response
Body Attributes ** id - uuid ** ip_address - IP Address ** protocol_port - integer ** weight - integer **
subnet_id - uuid ** tenant_id - string ** enabled - boolean ** operating_status - string enum - (ONLINE,
OFFLINE, DEGRADED, ERROR)

PUT /loadbalancers/{1b_id }/listeners/{listener_id }/ pools/{pool_id}/members/{member_id} * Success-
ful Status Code - 202 * JSON Request Body Attributes ** protocol_port - integer - required ** weight
- integer - optional ** enabled - boolean - optional - default true * JSON Response Body Attributes **
id - wuid ** ip_address - IP Address ** protocol_port - integer ** weight - integer ** subnet_id - uuid

4.5. Project Specifications 310

Octavia Documentation, Release 17.1.0.dev41

** tenant_id - string ** enabled - boolean ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR)

DELETE /loadbalancers/{1b_id }/listeners/{listener_id }/ pools/{pool_id }/members/{member_id} * Suc-
cessful Status Code - 202 No request or response body

GET /loadbalancers/{1b_id}/listeners/{listener_id}/ pools/{pool_id }/members/{member_id} * Success-
ful Status Code - 200 * JSON Response Body Attributes ** id - uuid ** ip_address - IP Address **
protocol_port - integer ** weight - integer ** subnet_id - uuid ** tenant_id - string ** enabled - boolean
** operating_status - string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

GET /loadbalancers/{1b_id }/listeners/{listener_id}/ pools/{pool_id }/members * Successful Status Code
- 200 Returns a list of members

Security impact
No authentication with keystone

Notifications impact

None

Other end user impact

Not ready for end user

Performance Impact

None

Other deployer impact

None

Developer impact

None

Implementation
Assignee(s)
brandon-logan
Work ltems

Expose Pecan resources Create WSME types Setup paste deploy Create a handler interface and a noop
logging implementation Call database repositories Call handler

4.5. Project Specifications 311

Octavia Documentation, Release 17.1.0.dev41

Dependencies

db-repositories

Testing

Unit tests

Documentation Impact

None

References

None

Queue Consumer
https://blueprints.launchpad.net/octavia/+spec/queue-consumer

This blueprint describes how Oslo messages are consumed, processed and delegated from the API-
controller queue to the controller worker component of Octavia. The component that is responsible
for these activities is called the Queue Consumer.

Problem description

Oslo messages need to be consumed by the controller and delegated to the proper controller worker.
Something needs to interface with the API-controller queue and spawn the controller workers. That
"something" is what we are calling the Queue Consumer.

Proposed change

The major component of the Queue Consumer will be a class that acts as a consumer to Oslo messages.
It will be responsible for configuring and starting a server that is then able to receive messages. There
will be a one-to-one mapping between API methods and consumer methods (see code snippet below).
Corresponding controller workers will be spawned depending on which consumer methods are called.

The threading will be handled by Oslo messaging using the ’eventlet’ executor. Using the ’eventlet’
executor will allow for message throttling and removes the need for the controller workers to manage
threads. The benefit of using the ’eventlet’ executor is that the Queue Consumer will not have to spawn
threads at all, since every message received will be in its own thread already. This means that the Queue
Consumer doesn’t spawn a controller worker, rather it just starts the execution of the deploy code.

An ’oslo_messaging’ configuration section will need to be added to octavia.conf for Oslo messaging
options. For the Queue Consumer, the 'rpc_thread_pool_size’ config option will need to be added. This
option will determine how many consumer threads will be able to read from the queue at any given time
(per consumer instance) and serve as a throttling mechanism for message consumption. For example, if
‘rpc_thread_pool_size’ is set to 1 thread then only one controller worker will be able to conduct work.
When that controller worker completes its task then a new message can be consumed and a new controller
worker flow started.

Below are the planned interface methods for the queue consumer. The Queue Consumer will be listening
on the OCTAVIA_PROV (short for octavia provisioning) topic. The context parameter will be supplied
along with an identifier such as a load balancer id, listener id, etc. relevant to the particular interface

4.5. Project Specifications 312

https://blueprints.launchpad.net/octavia/+spec/queue-consumer

Octavia Documentation, Release 17.1.0.dev41

method. The context parameter is a dictionary and is reserved for metadata. For example, the Neutron
LBaaS agent leverages this parameter to send additional request information. Additionally, update meth-
ods include a *_updates parameter than includes the changes that need to be made. Thus, the controller
workers responsible for the update actions will need to query the database to retrieve the old state and
combine it with the updates to provision appropriately. If a rollback or exception occur, then the con-
troller worker will only need to update the provisioning status to ERROR and will not need to worry
about making database changes to attributes of the object being updated.

(continues on next page)

4.5. Project Specifications 313

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Alternatives

There are a variety of ways to consume from Oslo messaging. For example, instead of having a single
consumer on the controller we could have multiple consumers (i.e. one for CREATE messages, one for
UPDATE messages, etc.). However, since we merely need something to pass messages off to controller
workers other options are overkill.

Data model impact

While there is no direct data model impact it is worth noting that the API will not be persisting updates
to the database. Rather, delta updates will pass from the user all the way to the controller worker. Thus,
when the controller worker successfully completes the prescribed action, only then will it persist the
updates to the database. No API changes are necessary for create and update actions.

REST API impact
None

Security impact
None

Notifications impact

None

Other end user impact

None

Performance Impact

The only performance related item is queue throttling. This is done by design so that operators can safely
throttle incoming messages dependent on their specific needs.

Other deployer impact

Configuration options will need to be added to ocativa.conf. Please see above for more details.

Developer impact

None

4.5. Project Specifications 314

Octavia Documentation, Release 17.1.0.dev41

Implementation
Assignee(s)

jorge-miramontes

Work Items

* Implement consumer class

* Add executable queue-consumer.py to bin directory
Dependencies

https://blueprints.launchpad.net/octavia/+spec/controller-worker

Testing

Unit tests

Documentation Impact

None

References

None

TLS Data Security and Barbican
Launchpad blueprint:
https://blueprints.launchpad.net/octavia/+spec/tls-data-security

Octavia will have some need of secure storage for TLS related data. This BP is intended to identify all of
the data that needs secure storage, or any other interaction that will require the use of Barbican or another
secure solution.

Problem description

1. Octavia will support TLS Termination (including SNI), which will require us to store and retrieve
certificates and private keys from a secure repository.

2. Octavia will communicate with its Amphorae using TLS, so each Amphora will need a certificate for
the controller to validate.

3. Octavia will need TLS data for exposing its own API via HTTPS.
Proposed change

The initial supported implementation for TLS related functions will be Barbican, but the interface will
be generic such that other implementations could be created later.

4.5. Project Specifications 315

https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/tls-data-security

Octavia Documentation, Release 17.1.0.dev41

Note

a sequence diagram describing the communication between the User, Octavia, Barbican and the Am-
phora API was removed, the diagram is still available in the documentation of older stable branches.

1. Create a CertificateManager interface for storing and retrieving certificate and private key pairs (and
intermediate certs / private key passphrase). Users will pass their TLS data to Octavia in the form of a
certificate_id, which is a reference to their data in some secure service. Octavia will store that certifi-
cate_id for each Listener/SNI and will retrieve the data when necessary. (Barbican specific: users will
need to add Octavia’s user account as an authorized user on the Container and all Secrets [1] so we catch
fetch the data on their behalf.)

We will need to validate the certificate data (including key and intermediates) when we initially receive
it, and will assume that it remains unchanged for the lifespan of the LB (in Barbican the data is immutable
so this is a safe assumption, I do not know how well this will work for other services). In the case of
invalid TLS data, we will reject the request with a 400 (if it is an initial create) or else put the LB into
ERROR status (if it is on a failover event or during some other non-interactive scenario).

Note

a sequence diagram describing the communication between the Octavia components was removed,
the diagram is still available in the documentation of older stable branches.

2. Create a CertificateGenerator interface to generate certificates from CSRs. When the controller creates
an Amphora, it will generate a private key and a CSR, generate a signed certificate from the CSR, and
include the private key and signed certificate in a ConfigDrive for the new Amphora. It will also include
a copy of the Controller’s certificate on the ConfigDrive. All future communications with the Amphora
will do certificate validation based on these certificates. For the Amphora, this will be based on our
(private) certificate authority and the CN of the Amphora’s cert matching the ID of the Amphora. For
the Controller, the cert should be a complete match with the version provided.

(The CertificateManager and CertificateGenerator interfaces are separate because while Barbican can
perform both functions, future implementations may need to use two distinct services to achieve both.)

3. The key/cert for the main Octavia API/controller should be maintained manually by the server opera-
tors using whatever configuration management they choose. We should not need to use a specific external
repo for this. The trusted CA Cert will also need to be retrieved from barbican and manually loaded in
the config.

Alternatives

We could skip the interface and just use Barbican directly, but that would be diverging from what seems
to be the accepted OpenStack model for Secret Store integration.

We could also store everything locally or in the DB, but that isn’t a real option for production systems
because it is incredibly insecure (though there will be a "dummy driver" that operates this way for devel-
opment purposes).

4.5. Project Specifications 316

https://docs.openstack.org/octavia/latest/contributor/specs/version0.5/tls-data-security.html
https://docs.openstack.org/octavia/latest/contributor/specs/version0.5/tls-data-security.html

Octavia Documentation, Release 17.1.0.dev41

Data model impact

Nothing new, the models for this should already be in place. Some of the columns/classes might need
to be renamed more generically (currently there is a tls_container_id column, which would become
tls_certificate_id to be more generic).

REST API impact

None

Security impact

Using Barbican is considered secure.

Notifications impact

None

Other end user impact

None

Performance Impact

Adding an external touchpoint (a certificate signing service) to the Amphora spin-up workflow will in-
crease the average time for readying an Amphora. This shouldn’t be a huge problem if the standby-pool
size is sufficient for the particular deployment.

Other deployer impact

None

Developer impact

None

Implementation
Assignee(s)

Adam Harwell (adam-harwell)

Work Items

1. Create CertificateManager interface.

2. Create CertificateGenerator interface.

3. Create BarbicanCertificateManager implementation.
4. Create BarbicanCertificateGenerator implementation.
5

. Create unit tests!

4.5. Project Specifications 317

Octavia Documentation, Release 17.1.0.dev41

Dependencies

This script will depend on the OpenStack Barbican project, including some features that are still only at
the blueprint stage.

Testing

There will be testing. Yes.

Documentation Impact

Documentation changes will be primarily internal.

References

[1] https://review.opendev.org/#/c/127353/
[2] https://review.opendev.org/#/c/129048/

4.5.2 Version 0.8 (mitaka)

Active-Standby Amphora Setup using VRRP

https://blueprints.launchpad.net/octavia/+spec/activepassiveamphora

This blueprint describes how Octavia implements its Active/Standby solution. It will describe the high
level topology and the proposed code changes from the current supported Single topology to realize the
high availability loadbalancer scenario.

Problem description

A tenant should be able to start high availability loadbalancer(s) for the tenant’s backend services as
follows:

The operator should be able to configure an Active/Standby topology through an octavia configu-
ration file, which the loadbalancer shall support. An Active/Standby topology shall be supported
by Octavia in addition to the Single topology that is currently supported.

In Active/Standby, two Amphorae shall host a replicated configuration of the load balancing ser-
vices. Both amphorae will also deploy a Virtual Router Redundancy Protocol (VRRP) implemen-
tation [2].

Upon failure of the master amphora, the backup one shall seamlessly take over the load balancing
functions. After the master amphora changes to a healthy status, the backup amphora shall give
up the load balancing functions to the master again (see [2] section 3 for details on master election
protocol).

Fail-overs shall be seamless to end-users and fail-over time should be minimized.

The following diagram illustrates the Active/Standby topology.

asciiflow:

(continues on next page)

4.5. Project Specifications 318

https://review.opendev.org/#/c/127353/
https://review.opendev.org/#/c/129048/
https://blueprints.launchpad.net/octavia/+spec/activepassiveamphora

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

The newly introduced VRRP IPs shall communicate on the same tenant network (see security
impact for more details).

The existing Haproxy Jinja configuration template shall include "peer" setup for state synchroniza-
tion over the VRRP IP addresses.

The VRRP IP addresses shall work with both IPv4 and IPv6.

Proposed change

The Active/Standby loadbalancers require the following high level changes:

Add support of VRRP in the amphora base image through Keepalived.

Extend the controller worker to be able to spawn N amphorae associated with the same loadbalancer
on N different compute nodes (This takes into account future work on Active/Active topology).
The amphorae shall be allowed to use the VIP through "allow address pairing". These amphorae
shall replicate the same listeners, and pools configuration. Note: topology is a property of a load
balancer and not of one of its amphorae.

Extend the amphora driver interface, the amphora REST driver, and Jinja configuration templates
for the newly introduced VRRP service [4].

Develop a Keepalived driver.

Extend the network driver to become aware of the different loadbalancer topologies and add support
of network creation. The network driver shall also pair the different amphorae in a given topology
to the same VIP address.

Extend the controller worker to build the right flow/sub-flows according to the given topology. The
controller worker is also responsible of creating the correct stores needed by other flow/sub-flows.

4.5.

Project Specifications 319

Octavia Documentation, Release 17.1.0.dev41

» Extend the Octavia configuration and Operator API to support the Active/Standby topology.

* MINOR: Extend the Health Manager to be aware of the role of the amphora (Master/Backup) [9].
If the health manager decided to spawn a new amphora to replace an unhealthy one (while a backup
amphora is already in service), it must replicate the same VRRP priorities, ids, and authentication
credentials to keep the loadbalancer in its appropriate configuration. Listeners associated with this
load balancer shall be put in a DEGRADED provisioning state.

Alternatives

We could use heartbeats as an alternative to VRRP, which is also a widely adopted solution. Heartbeats
better suit redundant file servers, filesystems, and databases rather than network services such as routers,
firewalls, and loadbalancers. Willy Tarreau, the creator of Haproxy, provides a detailed view on the major
differences between heartbeats and VRRP in [5].

Data model impact

The data model of the Octavia database shall be impacted as follows:

* A new column in the load_balancer table shall indicate its topology. The topology field takes
values from: SINGLE, or ACTIVE/STANDBY.

* A new column in the amphora table shall indicate an amphora’s role in the topology. If the topology
is SINGLE, the amphora role shall be STANDALONE. If the topology is ACTIVE/STANDBY,
the amphora role shall be either MASTER or BACKUP. This role field will also be of use for the
Active/Active topology.

* New value tables for the loadbalancer topology and the amphorae roles.

* New columns in the amphora table shall indicate the VRRP priority, the VRRP ID, and the VRRP
interface of the amphora.

* A new column in the listener table shall indicate the TCP port used for listener internal data syn-
chronization.

* VRRP groups define the common VRRP configurations for all listeners on an amphora. A new
table shall hold the VRRP groups main configuration primitives including at least: VRRP authen-
tication information, role and priority advertisement interval. Each Active/Standby loadbalancer
defines one and only one VRRP group.

REST API impact

** Changes to amphora API: see [11] **

PUT /listeners/{amphora_id}/{listener_id }/haproxy
PUT /vrrp/upload

PUT /vrrp/{action}

GET /interface/{ip_addr}

** Changes to operator API: see [10] **

POST /loadbalancers * Successful Status Code - 202 * JSON Request Body Attributes ** vip - an-
other JSON object with one required attribute from the following * net_port_id - uuid * subnet_id -
uuid * floating_ip_id - uuid * floating_ip_network_id - uuid ** tenant_id - string - optional - default
"0" * 36 (for now) ** name - string - optional - default null ** description - string - optional - default

4.5. Project Specifications 320

Octavia Documentation, Release 17.1.0.dev41

null ** enabled - boolean - optional - default true * JSON Response Body Attributes ** id - uuid **
vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid * float-
ing_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR) ** topology - string enum - (SINGLE, ACTIVE_STANDBY)

PUT /loadbalancers/{lb_id} * Successful Status Code - 202 * JSON Request Body Attributes ** name
- string ** description - string ** enabled - boolean * JSON Response Body Attributes ** id - uuid
** yip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid * float-
ing_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR) ** topology - string enum - (SINGLE, ACTIVE_STANDBY)

GET /loadbalancers/{1b_id} * Successful Status Code - 200 * JSON Response Body Attributes ** id -
uuid ** vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid *
floating_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR) ** topology - string enum - (SINGLE, ACTIVE_STANDBY)

Security impact

* The VRRP driver must automatically add a security group rule to the amphora’s security group to
allow VRRP traffic (Protocol number 112) on the same tenant subnet.

* The VRRP driver shall automatically add a security group rule to allow Authentication Header
traffic (Protocol number 51).

* VRRP driver shall support authentication-type MDS5.

* The HAProxy driver must be updated to automatically add a security group rule that allows multi-
peers to synchronize their states.

* Currently HAProxy does not support peer authentication, and state sync messages are in plaintext.

* At this point, VRRP shall communicate on the same tenant network. The rationale is to fail-over
based on a similar network interfaces condition which the tenant operates experience. Also, VRRP
traffic and sync messages shall naturally inherit same protections applied to the tenant network.
This may create fake fail-overs if the tenant network is under unplanned, heavy traffic. This is still
better than failing over while the master is actually serving tenant’s traffic or not failing over at all if
the master has failed services. Additionally, the Keepalived shall check the health of the HAproxy
service.

* In next steps the following shall be taken into account: * Tenant quotas and supported topologies.
* Protection of VRRP Traffic, HAproxy state sync, Router IDs, and pass phrases in both packets
and DB.

Notifications impact

None.

4.5. Project Specifications 321

Octavia Documentation, Release 17.1.0.dev41

Other end user impact

* The operator shall be able to specify the loadbalancer topology in the Octavia configuration file
(used by default).

Performance Impact

The Active/Standby can consume up to twice the resources (storage, network, compute) as required by
the Single Topology. Nevertheless, one single amphora shall be active (i.e. serving end-user) at any point
in time. If the Master amphora is healthy, the backup one shall remain idle until it receives no VRRP
advertisements from the master.

The VRRP requires executing health checks in the amphorae at fine grain granularity period. The health
checks shall be as lightweight as possible such that VRRP is able to execute all check scripts within a
predefined interval. If the check scripts failed to run within this predefined interval, VRRP may become
unstable and may alternate the amphorae roles between MASTER and BACKUP incorrectly.

Other deployer impact

* Anamphora_topology config option shall be added. The controller worker shall change its taskflow
behavior according to the requirement of different topologies.

* By default, the amphora_topology is SINGLE and the ACTIVE/STANDBY topology shall be en-
abled/requested explicitly by operators.

* The Keepalived version deployed in the amphora image must be newer than 1.2.8 to support unicast

VRRP mode.

Developer impact

None.

Implementation
Assignee(s)

Sherif Abdelwahab (abdelwas)

Work Items

* Amphora image update to include Keepalived.

* Data model updates.

* Control Worker extensions.

* Keepalived driver.

* Update Network driver.

* Security rules.

» Update Amphora REST APIs and Jinja Configurations.
* Update Octavia Operator APIs.

4.5. Project Specifications 322

Octavia Documentation, Release 17.1.0.dev41

Dependencies

Keepalived version deployed in the amphora image must be newer than 1.2.8 to support unicast VRRP
mode.

Testing

¢ Unit tests with tox.

¢ Function tests with tox.

Documentation Impact

* Description of the different supported topologies: Single, Active/Standby.
* Octavia configuration file changes to enable the Active/Standby topology.
* CLI changes to enable the Active/Standby topology.

* Changes shall be introduced to the amphora APIs: see [11].

References

[1] Implementing High Availability Instances with Neutron using VRRP http://goo.gl/eP71g7
[2] RFC3768 Virtual Router Redundancy Protocol (VRRP)

[3] https://review.opendev.org/#/c/38230/

[4] http://www.keepalived.org/LVS-NAT-Keepalived-HOWTO.html

[5] http://www.formilux.org/archives/haproxy/1003/3259.html

[6] https://blueprints.launchpad.net/octavia/+spec/base-image

[7] https://blueprints.launchpad.net/octavia/+spec/controller-worker

[8] https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface

[9] https://blueprints.launchpad.net/octavia/+spec/controller

[10] https://blueprints.launchpad.net/octavia/+spec/operator-api

[11] doc/main/api/haproxy-amphora-api.rst

Allow to use Glance image tag to refer to desired Amphora image
https://blueprints.launchpad.net/octavia/+spec/use-glance-tags-to-manage-image

Currently, Octavia allows to define the Glance image ID to be used to boot new Amphoras. This spec
suggests another way to define the desired image, by using Glance tagging mechanism.

Problem description

The need to hardcode image ID in the service configuration file has drawbacks.

Specifically, when an updated image is uploaded into Glance, the operator is required to orchestrate
configuration file update on all Octavia nodes and then restart all Octavia workers to apply the change.
It is both complex and error prone.

4.5. Project Specifications 323

http://goo.gl/eP71g7
https://review.opendev.org/#/c/38230/
http://www.keepalived.org/LVS-NAT-Keepalived-HOWTO.html
http://www.formilux.org/archives/haproxy/1003/3259.html
https://blueprints.launchpad.net/octavia/+spec/base-image
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/use-glance-tags-to-manage-image

Octavia Documentation, Release 17.1.0.dev41

Proposed change

The spec suggests an alternative way to configure the desired Glance image to be used for Octavia: using
Glance image tagging feature.

Glance allows to tag an image with any tag which is represented by a string value.

With the proposed change, Octavia operator will be able to tell Octavia to use an image with the specified
tag. Then Octavia will talk to Glance to determine the exact image ID that is marked with the tag, before
booting a new Amphora.

Alternatives

Alternatively, we could make Nova talk to Glance to determine the desired image ID based on the tag
provided by Octavia. This approach is not supported by Nova community because they don’t want to
impose the complexity into their code base.

Another alternative is to use image name instead of its ID. Nova is capable of fetching the right image
from Glance by name as long as the name is unique. This is not optimal in case when the operator does
not want to remove the old Amphora image right after a new image is uploaded (for example, if the
operator wants to test the new image before cleaning up the old one).

Data model impact

None.

REST API impact

None.

Security impact

Image tags should be managed by the same user that owns the images themselves.

Notifications impact

None.

Other end user impact

The proposed change should not break existing mechanism. To achieve that, the new mechanism will be
guarded with a new configuration option that will store the desired Glance tag.

Performance Impact

If the feature is used, Octavia will need to reach to Glance before booting a new Amphora. The perfor-
mance impact is well isolated and is not expected to be significant.

Other deployer impact

The change couples Octavia with Glance. It should not be an issue since there are no use cases to use
Octavia without Glance installed.

4.5. Project Specifications 324

Octavia Documentation, Release 17.1.0.dev41

The new feature deprecates amp_image_id option. Operators that still use the old image referencing
mechanism will be advised to switch to the new option.

Eventually, the old mechanism will be removed from the tree.
Developer impact

None.

Implementation
Assignee(s)

Primary assignee:
ihrachys (Ihar Hrachyshka)

Work Items

* introduce glanceclient integration into nova compute driver
* introduce new configuration option to store the glance tag

* introduce devstack plugin support to configure the feature

* provide documentation for the new feature

Dependencies

None.

Testing

Unit tests will be written to cover the feature.

Octavia plugin will be switched to using the new glance image referencing mechanism. Tempest tests
will be implemented to test the new feature.

Documentation Impact

New feature should be documented in operator visible guides.

References

4.5.3 Version 0.9 (newton)

Distributor for Active-Active, N+1 Amphorae Setup

Attention

Please review the active-active topology blueprint first (Active-Active, N+1 Amphorae Setup)

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

4.5. Project Specifications 325

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 17.1.0.dev41

Problem description

This blueprint describes how Octavia implements a Distributor to support the active-active loadbalancer
(LB) solution, as described in the blueprint linked above. It presents the high-level Distributor design
and suggests high-level code changes to the current code base to realize this design.

In a nutshell, in an active-active topology, an Amphora Cluster of two or more active Amphorae col-
lectively provide the loadbalancing service. It is designed as a 2-step loadbalancing process; first, a
lightweight distribution of VIP traffic over an Amphora Cluster; then, full-featured loadbalancing of traf-
fic over the back-end members. Since a single loadbalancing service, which is addressable by a single
VIP address, is served by several Amphorae at the same time, there is a need to distribute incoming
requests among these Amphorae -- that is the role of the Distributor.

This blueprint uses terminology defined in the Octavia glossary when available, and defines new terms
to describe new components and features as necessary.

Note: Items marked with [P2] refer to lower priority features to be designed / implemented
only after initial release.

Proposed change

* QOctavia shall implement a Distributor to support the active-active topology.

* The operator should be able to select and configure the Distributor (e.g., through an Octavia con-
figuration file or [P2] through a flavor framework).

* QOctavia shall support a pluggable design for the Distributor, allowing different implementations.
In particular, the Distributor shall be abstracted through a driver, similarly to the current support
of Amphora implementations.

* QOctavia shall support different provisioning types for the Distributor; including VM-based (the
default, similar to current Amphorae), [P2] container-based, and [P2] external (vendor-specific)
hardware.

* The operator shall be able to configure the distribution policies, including affinity and availability
(see below for details).

Architecture
High-level Topology Description

* The following diagram illustrates the Distributor’s role in an active-active topology:

Front-End Back-End
Internet Networks Networks
(world) (tenants) (tenants)
A B C ABC

floating IP
to VIP f.e. IPs Amphorae b.e.
LB A of IPs
VIP A Tenant A
GW
Routerfloating IP
to VIP f.e. IPs Amphorae b.e.
LB B of IPs

(continues on next page)

4.5. Project Specifications 326

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

VIP B Tenant B

floating IP
to VIP f.e. IPs Amphorae b.e.
LB C of IPs
VIP C Tenant C
arp arp arp

VIPVIPVIP

IPA ITPB IPC

Distributor
(multi-tenant)

* In the above diagram, several tenants (A, B, C, ...) share the Distributor, yet the Amphorae, and
the front- and back-end (tenant) networks are not shared between tenants. (See also "Distributor
Sharing" below.) Note that in the initial code implementing the distributor, the distributor will
not be shared between tenants, until tests verifying the security of a shared distributor can be
implemented.

* The Distributor acts as a (one-legged) router, listening on each load balancer’s VIP and forwarding
to one of its Amphorae.

* Each load balancer’s VIP is advertised and answered by the Distributor. An arp request for any
of the VIP addresses is answered by the Distributor, hence any traffic sent for each VIP is received
by the Distributor (and forwarded to an appropriate Amphora).

* ARP is disabled on all the Amphorae for the VIP interface.

* The Distributor distributes the traffic of each VIP to an Amphora in the corresponding load balancer
Cluster.

* An example of high-level data flow:

1. Internet clients access a tenant service through an externally visible floating-IP (IPv4 or
IPv6).

2. The GW router maps the floating IP into a loadbalancer’s internal VIP on the tenant’s front-
end network.

3. (Ist packet to VIP only) the GW send an arp request on VIP (tenant front-end) network.
The Distributor answers the arp request with its own MAC address on this network (all the
Amphorae on the network can serve the VIP, but do not answer the arp).

4. The GW router forwards the client request to the Distributor.

5. The Distributor forwards the packet to one of the Amphorae on the tenant’s front-end network
(distributed according to some policy, as described below), without changing the destination
IP (i.e., still using the VIP).

6. The Amphora accepts the packet and continues the flow on the tenant’s back-end network as
for other Octavia loadbalancer topologies (non active-active).

4.5. Project Specifications 327

Octavia Documentation, Release 17.1.0.dev41

7. The outgoing response packets from the Amphora are forwarded directly to the GW router
(that is, it does not pass through the Distributor).

Affinity of Flows to Amphorae

 Affinity is required to make sure related packets are forwarded to the same Amphora. At minimum,
since TCP connections are terminated at the Amphora, all packets that belong to the same flow
must be sent to the same Amphora. Enhanced affinity levels can be used to make sure that flows
with similar attributes are always sent to the same Amphora; this may be desired to achieve better
performance (see discussion below).

* [P2] The Distributor shall support different modes of client-to-Amphora affinity. The operator
should be able to select and configure the desired affinity level.

* Since the Distributor is L3 and the "heavy lifting" is expected to be done by the Amphorae, this
specification proposes implementing two practical affinity alternatives. Other affinity alternatives
may be implemented at a later time.

Source IP and source port
In this mode, the Distributor must always send packets from the same combination of Source
IP and Source port to the same Amphora. Since the Target IP and Target Port are fixed per
Listener, this mode implies that all packets from the same TCP flow are sent to the same
Amphora. This is the minimal affinity mode, as without it TCP connections will break.

Note: related flows (e.g., parallel client calls from the same HTML page) will typically be
distributed to different Amphorae; however, these should still be routed to the same back-end.
This could be guaranteed by using cookies and/or by synchronizing the stick-tables. Also,
the Amphorae in the Cluster could be configured to use the same hashing parameters (avoid
any random seed) to ensure all make similar decisions.

Source IP (default)
In this mode, the Distributor must always send packets from the same source IP to the same
Amphora, regardless of port. This mode allows TLS session reuse (e.g., through session ids),
where an abbreviated handshake can be used to improve latency and computation time.

The main disadvantage of sending all traffic from the same source IP to the same Amphora
is that it might lead to poor load distribution for large workloads that have the same source
IP (e.g., workload behind a single nat or proxy).

Note on TLS implications:

In some (typical) TLS sessions, the additional load incurred for each new session is
significantly larger than the load incurred for each new request or connection on the same
session; namely, the total load on each Amphora will be more affected by the number
of different source IPs it serves than by the number of connections. Moreover, since the
total load on the Cluster incurred by all the connections depends on the level of session
reuse, spreading a single source IP over multiple Amphorae increases the overall load
on the Cluster. Thus, a Distributor that uniformly spreads traffic without affinity per
source IP (e.g., uses per-flow affinity only) might cause an increase in overall load on
the Cluster that is proportional to the number of Amphorae. For example, in a scale-
out scenario (where a new Amphora is spawned to share the total load), moving some
flows to the new Amphora might increase the overall Cluster load, negating the benefit
of scaling-out.

Session reuse helps with the certificate exchange phase. Improvements in performance
with the certificate exchange depend on the type of keys used, and is greatest with RSA.

4.5. Project Specifications 328

Octavia Documentation, Release 17.1.0.dev41

Session reuse may be less important with other schemes; shared TLS session tickets
are another mechanism that may circumvent the problem; also, upcoming versions of
HA-Proxy may be able to obviate this problem by synchronizing TLS state between
Amphorae (similar to stick-table protocol).

* Per the agreement at the Mitaka mid-cycle, the default affinity shall be based on source-IP only and
a consistent hashing function (see below) shall be used to distribute flows in a predictable manner;
however, abstraction will be used to allow other implementations at a later time.

Forwarding with OVS and OpenFlow Rules

* The reference implementation of the Distributor shall use OVS for forwarding and configure the
Distributor through OpenFlow rules.

— OpenFlow rules can be implemented by a software switch (e.g., OVS) that can run on a
VM. Thus, can be created and managed by Octavia similarly to creation and management of
Amphora VMs.

— OpenFlow rules are supported by several HW switches, so the same control plane can be used
for both SW and HW implementations.

¢ Qutline of Rules

— A group with the select method is used to distribute IP traffic over multiple Amphorae.
There is one bucket per Amphora -- adding an Amphora adds a new bucket and deleting
and Amphora removes the corresponding bucket.

— The select method supports (OpenFlow v1.5) hashed-based selection of the bucket. The
hash can be set up to use different fields, including by source IP only (default) and by source
IP and source port.

— All buckets route traffic back on the in-port (i.e., no forwarding between ports). This ensures
that the same front-end network is used (i.e., the Distributor does not route between front-end
networks; therefore, does not mix traffic of different tenants).

— The bucket actions do a re-write of the outgoing packets. It supports re-write of the desti-
nation MAC to that of the specific Amphora and re-write of the source MAC to that of the
Distributor interface (together these MAC re-writes provide L3 routing functionality).

Note: alternative re-write rules can be used to support other forwarding mechanisms.

— OpenFlow rules are also used to answer arp requests on the VIP. arp requests for each VIP
are captured, re-written as arp replies with the MAC address of the particular front-end
interface and sent back on the in-port. Again, there is no routing between interfaces.

* Handling Amphora failure

— Initial implementation will assume a fixed size for each cluster (no elasticity). The hashing
will be "consistent” by virtue of never changing the number of buckets. If the cluster size
is changed on the fly (there should not be an API to do so) then there are no guarantees on
shuffling.

— If an Amphora fails then remapping cannot be avoided -- all flows of the failed Amphora must
be remapped to a different one. Rather than mapping these flows to other active Amphorae in
the cluster, the reference implementation will map all flows to the cluster’s standby Amphora
(i.e. the "+1" Amphora in this "N+1" cluster). This ensures that the cluster size does not
change. The only change in the OpenFlow rules would be to replace the MAC of the failed
Amphora with that of the standby Amphora.

4.5. Project Specifications 329

Octavia Documentation, Release 17.1.0.dev41

— This implementation is very similar to Active-Standby fail-over. There will be a standby
Amphora that can serve traffic in case of failure. The differences from Active-Standby is
that a single Amphora acts as a standby for multiple ones; fail-over re-routing is handled
through the Distributor (rather than by VRRP); and a whole cluster of Amphorae is active
concurrently, to enable support of large workloads.

— Health Manager will trigger re-creation of a failed Amphora. Once the Amphora is ready it
becomes the new standby (no changes to OpenFlow rules).

— [P2] Handle concurrent failure of more than a single Amphora
* Handling Distributor failover

— To handle the event of a Distributor failover caused by a catastrophic failure of a Distributor,
and in order to preserve the client to Amphora affinity when the Distributor is replaced, the
Amphora registration process with the Distributor should preserve positional information.
This should ensure that when a new Distributor is created, Amphorae will be assigned to the
same buckets to which they were previously assigned.

— In the reference implementation, we propose making the Distributor API return the com-
plete list of Amphorae MAC addresses with positional information each time an Amphora is
registered or unregistered.

Specific proposed changes

Note: These are changes on top of the changes described in the "Active-Active, N+1 Amphorae Setup"
blueprint, (see https://blueprints.launchpad.net/octavia/+spec/active-active-topology)

* Create flow for the creation of an Amphora cluster with N active Amphora and one extra standby
Amphora. Set-up the Amphora roles accordingly.

* Support the creation, connection, and configuration of the various networks and interfaces as de-
scribed in high-level topology diagram. The Distributor shall have a separate interface for each
loadbalancer and shall not allow any routing between different ports. In particular, when a load-
balancer is created the Distributor should:

— Attach the Distributor to the loadbalancer’s front-end network by adding a VIP port to the
Distributor (the LB VIP Neutron port).

— Configure OpenFlow rules: create a group with the desired cluster size and with the given
Amphora MACs; create rules to answer arp requests for the VIP address.

Notes:
[P2] It is desirable that the Distributor be considered as a router by Neutron (to handle port se-
curity, network forwarding without arp spoofing, etc.). This may require changes to Neutron
and may also mean that Octavia will be a privileged user of Neutron.

Distributor needs to support IPv6 NDP

[P2] If the Distributor is implemented as a container then hot-plugging a port for each VIP
might not be possible.

If DVR is used then routing rules must be used to forward external traffic to the Distributor
rather than rely on arp. In particular, DVR messes-up noarp settings.

* Support Amphora failure recovery

4.5. Project Specifications 330

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 17.1.0.dev41

— Modify the HM and failure recovery flows to add tasks to notify the ACM when ACTIVE-
ACTIVE topology is in use. If an active Amphora fails then it needs to be decommissioned
on the Distributor and replaced with the standby.

— Failed Amphorae should be recreated as a standby (in the new IN_CLUSTER_STANDBY
role). The standby Amphora should also be monitored and recovered on failure.

* Distributor driver and Distributor image

— The Distributor should be supported similarly to an amphora; namely, have its own abstract
driver.

— Distributor image (for reference implementation) should include OVS with a recent version
(>1.5) that supports hash-based bucket selection. As is done for Amphorae, Distributor image
should be installed with public keys to allow secure configuration by the Octavia controller.

— Reference implementation shall spawn a new Distributor VM as needed. It shall monitor its
health and handle recovery using heartbeats sent to the health monitor in a similar fashion
to how this is done presently with Amphorae. [P2] Spawn a new Distributor if the number
VIPs exceeds a given limit (to limit the number of Neutron ports attached to one Distributor).
[P2] Add configuration options and/or Operator API to allow operator to request a dedicated
Distributor for a VIP (or per tenant).

* Define a REST API for Distributor configuration (no SSH API). See below for details.

¢ Create data-model for Distributor.

Alternatives

TBD

Data model impact

Add table distributor with the following columns:

¢ id (sa.String(36) , nullable=False)
ID of Distributor instance.

e compute_id (sa.String(36), nullable=True)
ID of compute node running the Distributor.

Ib_network_ip (sa.String(64), nullable=True)
IP of Distributor on management network.

status (sa.String(36), nullable=True)
Provisioning status

* vip_port_ids (list of sa.String(36))
List of Neutron port IDs. New VIFs may be plugged into the Distributor when a new LB is
created. We may need to store the Neutron port IDs in order to support fail-over from one
Distributor instance to another.

Add table distributor_health with the following columns:

e distributor_id (sa.String(36) , nullable=False)
ID of Distributor instance.

* last_update (sa.DateTime, nullable=False)
Last time distributor heartbeat was received by a health monitor.

4.5. Project Specifications 331

Octavia Documentation, Release 17.1.0.dev41

* busy (sa.Boolean, nullable=False)
Field indicating a create / delete or other action is being conducted on the distributor instance
(ie. to prevent a race condition when multiple health managers are in use).

Add table amphora_registration with the following columns. This describes which Amphorae are
registered with which Distributors and in which order:

e Ib_id (sa.String(36) , nullable=False)
ID of load balancer.

e distributor_id (sa.String(36) , nullable=False)
ID of Distributor instance.

e amphora_id (sa.String(36) , nullable=False)
ID of Amphora instance.

* position (sa.Integer, nullable=True)
Order in which Amphorae are registered with the Distributor.

REST API impact

Distributor will be running its own rest API server. This API will be secured using two-way SSL authen-
tication, and use certificate rotation in the same way this is done with Amphorae today.

Following API calls will be addressed.
1. Post VIP Plug

Adding a VIP network interface to the Distributor involves tasks which run outside the Distributor
itself. Once these are complete, the Distributor must be configured to use the new interface. This
is a REST call, similar to what is currently done for Amphorae when connecting to a new member
network.

Ib_id
An identifier for the particular loadbalancer/VIP. Used for subsequent register/unregister of
Amphorae.

vip_address
The IP of the VIP (for which IP to answer arp requests)

subnet_cidr
Netmask for the VIP’s subnet.

gateway
Gateway outbound packets from the VIP ip address should use.

mac_address
MAC address of the new interface corresponding to the VIP.

vrrp_ip
In the case of HA Distributor, this contains the IP address that will be used in setting up
the allowed address pairs relationship. (See Amphora VIP plugging under the ACTIVE-
STANDBY topology for an example of how this is used.)

host_routes
List of routes that should be added when the VIP is plugged.

alg_extras
Extra arguments related to the algorithm that will be used to distribute requests to Amphorae

4.5. Project Specifications 332

Octavia Documentation, Release 17.1.0.dev41

part of this load balancer configuration. This consists of an algorithm name and affinity type.
In the initial release of ACTIVE-ACTIVE, the only valid algorithm will be hash, and the
affinity type may be Source_IP or [P2] Source_IP_AND_port.

2. Pre VIP unplug

Removing a VIP network interface will involve several tasks on the Distributor to gracefully roll-
back OVS configuration and other details that were set-up when the VIP was plugged in.

Ib_id
ID of the VIP’s loadbalancer that will be unplugged.

3. Register Amphorae

This adds Amphorae to the configuration for a given load balancer. The Distributor should respond
with a new list of all Amphorae registered with the Distributor with positional information.

Ib_id
ID of the loadbalancer with which the Amphora will be registered

amphorae
List of Amphorae MAC addresses and (optional) position argument in which they should be
registered.

4. Unregister Amphorae

This removes Amphorae from the configuration for a given load balancer. The Distributor should
respond with a new list of all Amphorae registered with the Distributor with positional information.

Ib_id
ID of the loadbalancer with which the Amphora will be registered

amphorae
List of Amphorae MAC addresses that should be unregistered with the Distributor.

Security impact

The Distributor is designed to be multi-tenant by default. (Note that the first reference implementation
will not be multi-tenant until tests can be developed to verify the security of a multi-tenant reference
distributor.) Although each tenant has its own front-end network, the Distributor is connected to all,
which might allow leaks between these networks. The rationale is two fold: First, the Distributor should
be considered as a trusted infrastructure component. Second, all traffic is external traffic before it reaches
the Amphora. Note that the GW router has exactly the same attributes; in other words, logically, we
can consider the Distributor to be an extension to the GW (or even use the GW HW to implement the
Distributor).

This approach might not be considered secure enough for some cases, such as, if LBaaS is used for
internal tier-to-tier communication inside a tenant network. Some tenants may want their loadbalancer’s
VIP to remain private and their front-end network to be isolated. In these cases, in order to accomplish
active-active for this tenant we would need separate dedicated Distributor instance(s).

Notifications impact
Other end user impact

Performance Impact

4.5. Project Specifications 333

Octavia Documentation, Release 17.1.0.dev41

Other deployer impact
Developer impact

Further Discussion

Note

This section captures some background, ideas, concerns, and remarks that were raised by various
people. Some of the items here can be considered for future/alternative design and some will hopefully
make their way into, yet to be written, related blueprints (e.g., auto-scaled topology).

[P2] Handling changes in Cluster size (manual or auto-scaled)

* The Distributor shall support different mechanism for preserving affinity of flows to Amphorae
following a change in the size of the Amphorae Cluster.

* The goal is to minimize shuffling of client-to-Amphora mapping during cluster size changes:

— When an Amphora is removed from the Cluster (e.g., due to failure or scale-down action),
all its flows are broken; however, flows to other Amphorae should not be affected. Also, if a
drain method is used to empty the Amphora of client flows (in the case of a graceful removal),
this should prevent disruption.

— When an Amphora is added to the Cluster (e.g., recovery of a failed Amphora), some new
flows should be distributed to the new Amphora; however, most flows should still go to the
same Amphora they were distributed to before the new Amphora was added. For example, if
the affinity of flows to Amphorae is per Source IP and a new Amphora was just added then
the Distributor should forward packets from this IP only one of only two Amphorae: either
the same Amphora as before or the Amphora that was added.

Using a simple hash to maintain affinity does not meet this goal.

For example, suppose we maintain affinity (for a fixed cluster size) using a hash (for randomiz-
ing key distribution) as chosen_amphora_id = hash(sourcelP # port) mod number_of_amphorae.
When a new Amphora is added or remove the number of Amphorae changes; thus, a different
Amphora will be chosen for most flows.

* Below are the couple of ways to tackle this shuffling problem.

Consistent Hashing
Consistent hashing is a hashing mechanism (regardless if key is based on IP or IP/port) that
preserves most hash mappings during changes in the size of the Amphorae Cluster. In par-
ticular, for a cluster with N Amphorae that grows to N+1 Amphorae, a consistent hashing
function ensures that, with high probability, only 1/N of inputs flows will be re-hashed (more
precisely, K/N keys will be rehashed). Note that, even with consistent hashing, some flows
will be remapped and there is only a statistical bound on the number of remapped flows.

The "classic" consistent hashing algorithm maps both server IDs and keys to hash values and
selects for each key the server with the closest hash value to the key hash value. Lookup
generally requires O(log N) to search for the "closest" server. Achieving good distribution
requires multiple hashes per server (~10s) -- although these can be pre-computed there is
an ~10s*N memory footprint. Other algorithms (e.g., MSFT’s Magleb) have better perfor-
mance, but provide weaker guarantees.

4.5. Project Specifications 334

Octavia Documentation, Release 17.1.0.dev41

There are several consistent hashing libraries available. None are supported in OVS.
— Ketama https://github.com/RJ/ketama
— Openstack swift https://docs.openstack.org/swift/latest/ring.html#ring

— Amazon dynamo http://www.allthingsdistributed.com/files/
amazon-dynamo-sosp2007.pdf

We should also strongly consider making any consistent hashing algorithm we develop avail-
able to all OpenStack components by making it part of an Oslo library.

Rendezvous hashing
This method provides similar properties to Consistent Hashing (i.e., a hashing function that
remaps only 1/N of keys when a cluster with N Amphorae grows to N+1 Amphorae.

For each server ID, the algorithm concatenates the key and server ID and computes a hash.
The server with the largest hash is chosen. This approach requires O(N) for each lookup, but
is much simpler to implement and has virtually no memory footprint. Through search-tree
encoding of the server IDs it is possible to achieve O(log N) lookup, but implementation is
harder and distribution is not as good. Another feature is that more than one server can be
chosen (e.g., two largest values) to handle larger loads -- not directly useful for the Distributor
use case.

Hybrid, Permutation-based approach

This is an alternative implementation of consistent hashing that may be simpler to implement.
Keys are hashed to a set of buckets; each bucket is pre-mapped to a random permutation of
the server IDs. Lookup is by computing a hash of the key to obtain a bucket and then going
over the permutation selecting the first server. If a server is marked as "down" the next server
in the list is chosen. This approach is similar to Rendezvous hashing if each key is directly
pre-mapped to a random permutation (and like it allows more than one server selection). If
the number of failed servers is small then lookup is about O(1); memory is O(N * #buckets),
where the granularity of distribution is improved by increasing the number of buckets. The
permutation-based approach is useful to support clusters of fixed size that need to handle a
few nodes going down and then coming back up. If there is an assumption on the number of
failures then memory can be reduced to O(max_failures * #buckets). This approach seems
to suit the Distributor Active-Active use-case for non-elastic workloads.

* Flow tracking is required, even with the above hash functions, to handle the (relatively few)
remapped flows. If an existing flow is remapped, its TCP connection would break. This is ac-
ceptable when an Amphora goes down and it flows are mapped to a new one. On the other hand,
it may be unacceptable when an Amphora is added to the cluster and 1/N of existing flows are
remapped. The Distributor may support different modes, as follows.

None / Stateless
In this mode, the Distributor applies its most recent forwarding rules, regardless of previous
state. Some existing flows might be remapped to a different Amphora and would be broken.
The client would have to recover and establish a connection with the new Amphora (it would
still be mapped to the same back-end, if possible). Combined with consistent (or similar)
hashing, this may be good enough for many web applications that are built for failure anyway,
and can restore their state upon reconnect.

Full flow Tracking
In this mode, the Distributor tracks existing flows to provide full affinity, i.e., only new flows
can be remapped to different Amphorae. The Linux connection tracking may be used (e.g.,
through IPTables or through OpenFlow); however, this might not scale well. Alternatively,

4.5. Project Specifications 335

https://github.com/RJ/ketama
https://docs.openstack.org/swift/latest/ring.html#ring
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Octavia Documentation, Release 17.1.0.dev41

the Distributor can use an independent mechanism similar to HA-Proxy sticky-tables to track
the flows. Note that the Distributor only needs to track the mapping per source IP and source
port (unlike Linux connection tracking which follows the TCP state and related connections).

Use Ryu
Ryu is a well supported and tested python binding for issuing OpenFlow commands. Espe-
cially since Neutron recently moved to using this for many of the things it does, using this in
the Distributor might make sense for Octavia as well.

Forwarding Data-path Implementation Alternatives

The current design uses L2 forwarding based only on L3 parameters and uses Direct Return routing (one-
legged). The rational behind this approach is to keep the Distributor as light as possible and have the
Amphorae do the bulk of the work. This allows one (or a few) Distributor instance(s) to serve all traffic
even for very large workloads. Other approaches are possible.

2-legged Router

* Distributor acts as router, being in-path on both directions.
* New network between Distributor and Amphorae -- Only Distributor on VIP subnet.

* No need to use MAC forwarding -- use routing rules

LVS

Use LVS for Distributor.

DNS

Use DNS for the Distributor.
* Use DNS to map to particular Amphorae. Distribution will be of domain name rather than VIP.
* No problem with per-flow affinity, as client will use same IP for entire TCP connection.

* Need a different public IP for each Amphora (no VIP)

Pure SDN

* Implement the OpenFlow rules directly in the network, without a Distributor instance.

* If the network infrastructure supports this then the Distributor can become more robust and very
lightweight, making it practical to have a dedicated Distributor per VIP (only the rules will be
dedicated as the network and SDN controller are shared resources)

Distributor Sharing

* The initial implementation of the Distributor will not be shared between tenants until tests can be
written to verify the security of this solution.

* The implementation should support different Distributor sharing and cardinality configurations.
This includes single-shared Distributor, multiple-dedicated Distributors, and multiple-shared Dis-
tributors. In particular, an abstraction layer should be used and the data-model should include an
association between the load balancer and Distributor.

4.5. Project Specifications 336

Octavia Documentation, Release 17.1.0.dev41

* A shared Distributor uses the least amount of resources, but may not meet isolation requirements
(performance and/or security) or might become a bottleneck.

Distributor High-Availability

* The Distributor should be highly-available (as this is one of the motivations for the active-active
topology). Once the initial active-active functionality is delivered, developing a highly available
distributor should take a high priority.

* A mechanism similar to the VRRP used on ACTIVE-STANDBY topology Amphorae can be used.

* Since the Distributor is stateless (for fixed cluster sizes and if no connection tracking is used) it is
possible to set up an active-active configuration and advertise more than one Distributor (e.g, for
ECMP).

* As a first step, the initial implementation will use a single Distributor instance (i.e., will not be
highly-available). Health Manager will monitor the Distributor health and initiate recovery if
needed.

* The implementation should support plugging-in a hardware-based implementation of the Distrib-
utor that may have its own high-availability support.

* In order to preserve client to Amphora affinity in the case of a failover, a VRRP-like HA Distributor
has several options. We could potentially push Amphora registrations to the standby Distributor
with the position arguments specified, in order to guarantee the active and standby Distributor
always have the same configuration. Or, we could invent and utilize a synchronization protocol
between the active and standby Distributors. This will be explored and decided when an HA Dis-
tributor specification is written and approved.

Implementation
Assignee(s)
Work Items
Dependencies
Testing

 Unit tests with tox.

* Function tests with tox.
Documentation Impact
References

https://blueprints.launchpad.net/octavia/+spec/base-image https://blueprints.launchpad.net/octavia/
+spec/controller-worker https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller https://blueprints.launchpad.net/octavia/
+spec/operator-api Octavia HAProxy Amphora API https://blueprints.launchpad.net/octavia/+spec/
active-active-topology

4.5. Project Specifications 337

https://blueprints.launchpad.net/octavia/+spec/base-image
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/active-active-topology
https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 17.1.0.dev41

Active-Active, N+1 Amphorae Setup

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Problem description

This blueprint describes how Octavia implements an active-active loadbalancer (LB) solution that is
highly-available through redundant Amphorae. It presents the high-level service topology and suggests
high-level code changes to the current code base to realize this scenario. In a nutshell, an Amphora
Cluster of two or more active Amphorae collectively provide the loadbalancing service.

The Amphora Cluster shall be managed by an Amphora Cluster Manager (ACM). The ACM shall pro-
vide an abstraction that allows different types of active-active features (e.g., failure recovery, elasticity,
etc.). The initial implementation shall not rely on external services, but the abstraction shall allow for
interaction with external ACMs (to be developed later).

This blueprint uses terminology defined in Octavia glossary when available, and defines new terms to
describe new components and features as necessary.

Note: Items marked with [P2] refer to lower priority features to be designed / implemented
only after initial release.

Proposed change

A tenant should be able to start a highly-available, loadbalancer for the tenant’s backend services as
follows:

* The operator should be able to configure an active-active topology through an Octavia configu-
ration file or [P2] through a Neutron flavor, which the loadbalancer shall support. Octavia shall
support active-active topologies in addition to the topologies that it currently supports.

* Inan active-active topology, a cluster of two or more amphorae shall host a replicated configuration
of the load-balancing services. Octavia will manage this Amphora Cluster as a highly-available
service using a pool of active resources.

* The Amphora Cluster shall provide the load-balancing services and support the configurations that
are supported by a single Amphora topology, including L7 load-balancing, SSL termination, etc.

* The active-active topology shall support various Amphora types and implementations; including,
virtual machines, [P2] containers, and bare-metal servers.

* The operator should be able to configure the high-availability requirements for the active-active
load-balancing services. The operator shall be able to specify the number of healthy Amphorae
that must exist in the load-balancing Amphora Cluster. If the number of healthy Amphorae drops
under the desired number, Octavia shall automatically and seamlessly create and configure a new
Amphora and add it to the Amphora Cluster. [P2] The operator should be further able to define
that the Amphora Cluster shall be allocated on separate physical resources.

* An Amphora Cluster will collectively act to serve as a single logical loadbalancer as defined in
the Octavia glossary. Octavia will seamlessly distribute incoming external traffic among the Am-
phorae in the Amphora Cluster. To that end, Octavia will employ a Distributor component that
will forward external traffic towards the managed amphora instances. Conceptually, the Distributor
provides an extra level of load-balancing for an active-active Octavia application, albeit a simplified
one. Octavia should be able to support several Distributor implementations (e.g., software-based
and hardware-based) and different affinity models (at minimum, flow-affinity should be supported
to allow TCP connectivity between clients and Amphorae).

4.5. Project Specifications 338

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 17.1.0.dev41

* The detailed design of the Distributor component will be described in a separate document (see
"Distributor for Active-Active, N+1 Amphorae Setup", active-active-distributor.rst).

High-level Topology Description
Single Tenant

* The following diagram illustrates the active-active topology:

Front-End Back-End
Internet Network Network
(world) (tenant) (tenant)
floating IP
Router to LB VIP Tenant
GW IP Amphora IP Service
@) back @)
VIP
MGMT
IP Tenant
Service
Distri- IP 2)
butor
VIP IP Amphora IP
MGMT 2 back Tenant
IP arp VIP Service
MGMT 3
IP
Octavia LBaaS
Controller
IP Amphora IP
Amphora k) back
Cluster Mgr. VIP Tenant
MGMT Service
IP (m)
Management Amphora Cluster Back-end Pool
Network 1..k 1..m

* An example of high-level data-flow:

1. Internet clients access a tenant service through an externally visible floating-IP (IPv4 or
IPv6).

2. If IPv4, a gateway router maps the floating IP into a loadbalancer’s internal VIP on the tenant’s
front-end network.

3. The (multi-tenant) Distributor receives incoming requests to the loadbalancer’s VIP. It acts
as a one-legged direct return LB, answering arp requests for the loadbalancer’s VIP (see
Distributor spec.).

4. The Distributor distributes incoming connections over the tenant’s Amphora Cluster, by for-

4.5. Project Specifications 339

Octavia Documentation, Release 17.1.0.dev41

warding each new connection opened with a loadbalancer’s VIP to a front-end MAC address
of an Amphora in the Amphora Cluster (layer-2 forwarding). Note: the Distributor may im-
plement other forwarding schemes to support more complex routing mechanisms, such as
DVR (see Distributor spec.).

5. An Amphora receives the connection and accepts traffic addressed to the loadbalancer’s VIP.
The front-end IPs of the Amphorae are allocated on the tenant’s front-end network. Each
Amphora accepts VIP traffic, but does not answer arp request for the VIP address.

6. The Amphora load-balances the incoming connections to the back-end pool of tenant servers,
by forwarding each external request to a member on the tenant network. The Amphora also
performs SSL termination if configured.

7. Outgoing traffic traverses from the back-end pool members, through the Amphora and directly
to the gateway (i.e., not through the Distributor).

Multi-tenant Support

* The following diagram illustrates the active-active topology with multiple tenants:

Front-End Back-End
Internet Networks Networks
(world) (tenant) (tenant)
B A A
floating IP
to LB VIP A Tenant A
RouterA IP Amphora A IPService
GW @D back @D
floating IP VIP
to LB VIP B MGMT
IP Tenant A
Service
M B A (2)
A IP Amphora A IP
2) back
VIP Tenant A
MGMT Service
IP (3
B A B

IP AA TP Amphora A IP
(k) back Tenant A
Distri- VIParp VIP Service

butor MGMT (m)
IP
IP B tenant A
VIP B tenant B
B IP Amphora B IP
MGMT arp (@) back Tenant B

(continues on next page)

4.5. Project Specifications 340

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

IP VIP Service
MGMT (@D)
IP
M Octavia LBaaS B B
Controller
B IP Amphora B IP
Amphora (w back
Cluster Mgr. VIP Tenant B
MGMT Service
IP (r)
Management Amphora Clusters Back-end Pool
Network A(Cl..k), B(1..q9) A(l..m),B(1..r)

¢ Both tenants A and B share the Distributor, but each has a different front-end network. The Dis-

tributor listens on both loadbalancers’ VIPs and forwards to either A’s or B’s Amphorae.

* The Amphorae and the back-end (tenant) networks are not shared between tenants.

Problem Details

* QOctavia should support different Distributor implementations, similar to its support for different

Amphora types. The operator should be able to configure different types of algorithms for the
Distributor. All algorithms should provide flow-affinity to allow TLS termination at the amphora.
See Distributor for Active-Active, N+1 Amphorae Setup for details.

Octavia controller shall seamlessly configure any newly created Amphora ([P2] including peer
state synchronization, such as sticky-tables, if needed) and shall reconfigure the other solution
components (e.g., Neutron) as needed. The controller shall further manage all Amphora life-cycle
events.

Since it is impractical at scale for peer state synchronization to occur between all Amphorae part
of a single load balancer, Amphorae that are all part of a single load balancer configuration need
to be divided into smaller peer groups (consisting of 2 or 3 Amphorae) with which they should
synchronize state information.

Required changes

The active-active loadbalancers require the following high-level changes:

Amphora related changes

* Updated Amphora image to support active-active topology. The front-end still has both a unique IP

(to allow direct addressing on front-end network) and a VIP; however, it should not answer ARP
requests for the VIP address (all Amphorae in a single Amphora Cluster concurrently serve the
same VIP). Amphorae should continue to have a management IP on the LB Network so Octavia
can configure them. Amphorae should also generally support hot-plugging interfaces into back-end
tenant networks as they do in the current implementation. [P2] Finally, the Amphora configuration
may need to be changed to randomize the member list, in order to prevent synchronized decisions
by all Amphorae in the Amphora Cluster.

4.5.

Project Specifications 341

Octavia Documentation, Release 17.1.0.dev41

Extend data model to support active-active Amphora. This is somewhat similar to active-passive
(VRRP) support. Each Amphora needs to store its IP and port on its front-end network (similar to
ha_ip and ha_port_id in the current model) and its role should indicate it is in a cluster.

The provisioning status should be interpreted as referring to an Amphora only and not the load-
balancing service. The status of the load balancer should correspond to the number of ONLINE
Amphorae in the Cluster. If all Amphoae are ONLINE, the load balancer is also ONLINE. If a small
number of Amphorae are not ONLINE, then the load balancer is DEGRADED. If enough Amphorae
are not ONLINE (past a threshold), then the load balancer is DOWN.

Rework some of the controller worker flows to support creation and deletion of Amphorae by the
ACM in an asynchronous manner. The compute node may be created/deleted independently of
the corresponding Amphora flow, triggered as events by the ACM logic (e.g., node update). The
flows do not need much change (beyond those implied by the changes in the data model), since the
post-creation/pre-deletion configuration of each Amphora is unchanged. This is also similar to the
failure recovery flow, where a recovery flow is triggered asynchronously.

Create a flow (or task) for the controller worker for (de-)registration of Amphorae with Distributor.
The Distributor has to be aware of the current ONLINE Amphorae, to which it can forward traffic.
[P2] The Distributor can do very basic monitoring of the Amphorae health (primarily to make
sure network connectivity between the Distributor and Amphorae is working). Monitoring pool
member health will remain the purview of the pool health monitors.

All the Amphorae in the Amphora Cluster shall replicate the same listeners, pools, and TLS con-
figuration, as they do now. We assume all Amphorae in the Amphora Cluster can perform exactly
the same load-balancing decisions and can be treated as equivalent by the Distributor (except for
affinity considerations).

Extend the Amphora (REST) API and/or Plug VIP task to allow disabling of arp on the VIP.

In order to prevent losing session_persistence data in the event of an Amphora failure, the Am-
phorae will need to be configured to share session_persistence data (via stick tables) with a subset
of other Amphorae that are part of the same load balancer configuration (ie. a peer group).

Amphora Cluster Manager driver for the active-active topology (new)

Add an active-active topology to the topology types.

Add a new driver to support creation/deletion of an Amphora Cluster via an ACM. This will re-use
existing controller-worker flows as much as possible. The reference ACM will call the existing
drivers to create compute nodes for the Amphorae and configure them.

The ACM shall orchestrate creation and deletion of Amphora instances to meet the availability
requirements. Amphora failover will utilize the existing health monitor flows, with hooks to notify
the ACM when ACTIVE-ACTIVE topology is used. [P2] ACM shall handle graceful amphora re-
moval via draining (delay actual removal until existing connections are terminated or some timeout
has passed).

Change the flow of LB creation. The ACM driver shall create an Amphora Cluster instance for
each new loadbalancer. It should maintain the desired number of Amphorae in the Cluster and
meet the high-availability configuration given by the operator. Note: a base functionality is already
supported by the Health Manager; it may be enough to support a fixed or dynamic cluster size. In
any case, existing flows to manage Amphora life cycle will be re-used in the reference ACM driver.

The ACM shall be responsible for providing health, performance, and life-cycle management at
the Cluster-level rather than at Amphora-level. Maintaining the loadbalancer status (as described

4.5.

Project Specifications 342

Octavia Documentation, Release 17.1.0.dev41

above) by some function of the collective status of all Amphorae in the Cluster is one example.
Other examples include tracking configuration changes, providing Cluster statistics, monitoring
and maintaining compute nodes for the Cluster, etc. The ACM abstraction would also support
pluggable ACM implementations that may provide more advance capabilities (e.g., elasticity, AZ
aware availability, etc.). The reference ACM driver will re-use existing components and/or code
which currently handle health, life-cycle, etc. management for other load balancer topologies.

* New data model for an Amphora Cluster which has a one-to-one mapping with the loadbalancer.
This defines the common properties of the Amphora Cluster (e.g., id, min. size, desired size, etc.)
and additional properties for the specific implementation.

* Add configuration file options to support configuration of an active-active Amphora Cluster. Add
default configuration. [P2] Add Operator API.

* Add or update documentation for new components added and new or changed functionality.

* Communication between the ACM and Distributors should be secured using two-way SSL cer-
tificate authentication much the same way this is accomplished between other Octavia controller
components and Amphorae today.

Network driver changes

» Support the creation, connection, and configuration of the various networks and interfaces as de-
scribed in "high-level topology’ diagram.

* Adding a new loadbalancer requires attaching the Distributor to the loadbalancer’s front-end net-
work, adding a VIP port to the Distributor, and configuring the Distributor to answer arp requests
for the VIP. The Distributor shall have a separate interface for each loadbalancer and shall not allow
any routing between different ports; in particular, Amphorae of different tenants must not be able
to communicate with each other. In the reference implementation, this will be accomplished by
using separate OVS bridges per load balancer.

* Adding a new Amphora requires attaching it to the front-end and back-end networks (similar to
current implementation), adding the VIP (but with arp disabled), and registering the Amphora
with the Distributor. The tenant’s front-end and back-end networks must allow attachment of dy-
namically created Amphorae by involving the ACM (e.g., when the health monitor replaces a failed
Amphora). ([P2] extend the LBaaS API to allow specifying an address range for new Amphorae
usage, e.g., a subnet pool).

Amphora health-monitoring support

* Modify Health Manager to manage the health for an Amphora Cluster through the ACM; namely,
forward Amphora health change events to the ACM, so it can decide when the Amphora Cluster is
considered to be in healthy state. This should be done in addition to managing the health of each
Amphora. [P2] Monitor the Amphorae also on their front-end network (i.e., from the Distributor).

Distributor support

* Note: as mentioned above, the detailed design of the Distributor component is described in a
separate document). Some design considerations are highlighted below.

* The Distributor should be supported similarly to an Amphora; namely, have its own abstract driver.
* For a reference implementation, add support for a Distributor image.

* Define a REST API for Distributor configuration (no SSH API). The API shall support:

4.5. Project Specifications 343

Octavia Documentation, Release 17.1.0.dev41

— Add and remove a VIP (loadbalancer) and specify distribution parameters (e.g., affinity, al-
gorithm, etc.).

— Registration and de-registration of Amphorae.
— Status
— [P2] Macro-level stats

* Spawn Distributors (if using on demand Distributor compute nodes) and/or attach to existing ones
as needed. Manage health and life-cycle of the Distributor(s). Create, connect, and configure
Distributor networks as necessary.

¢ Create data model for the Distributor.

* Add Distributor driver and flows to (re-)configure the Distributor on creation/destruction of a new
loadbalancer (add/remove loadbalancer VIP) and [P2] configure the distribution algorithm for the
loadbalancer’s Amphora Cluster.

* Add flows to Octavia to (re-)configure the Distributor on adding/removing Amphorae from the
Amphora Cluster.

Packaging

» Extend Octavia installation scripts to create an image for the Distributor.

Alternatives

* Use external services to manage the cluster directly.
This utilizes functionality that already exists in OpenStack (e.g., like Heat and Ceilometer)
rather than replicating it. This approach would also benefit from future extensions to these
services. On the other hand, this adds undesirable dependencies on other projects (and their
corresponding teams), complicates handling of failures, and require defensive coding around
service calls. Furthermore, these services cannot handle the LB-specific control configura-
tion.

* Implement a nested Octavia
Use another layer of Octavia to distribute traffic across the Amphora Cluster (i.e., the Am-
phorae in the Cluster are back-end members of another Octavia instance). This approach has
the potential to provide greater flexibility (e.g., provide NAT and/or more complex distri-
bution algorithms). It also potentially reuses existing code. However, we do not want the
Distributor to proxy connections so HA-Proxy cannot be used. Furthermore, this approach
might significantly increase the overhead of the solution.

Data model impact

* loadbalancer table

— cluster_id: associated Amphora Cluster (no changes to table, 1-1 relationship from Cluster
data-model)

* Ib_topology table
— new value: ACTIVE_ACTIVE
* amphora_role table

— new value: IN_CLUSTER

4.5. Project Specifications 344

Octavia Documentation, Release 17.1.0.dev41

* Distributor table (new): Distributor information, similar to Amphora. See Distributor for Active-
Active, N+1 Amphorae Setup

* Cluster table (new): an extension to loadbalancer (i.e., one-to-one mapping to load-balancer)

id (primary key)
cluster_name: identifier of Cluster instance for Amphora Cluster Manager

desired_size: required number of Amphorae in Cluster. Octavia will create this many active-
active Amphorae in the Amphora Cluster.

min_size: number of ACTIVE Amphorae in Cluster must be above this number for Amphora
Cluster status to be ACTIVE

cooldown: cooldown period between successive add/remove Amphora operations (to avoid
thrashing)

load_balancer_id: 1:1 relationship to loadbalancer

distributor_id: N:1 relationship to Distributor. Support multiple Distributors
provisioning_status

operating_status

enabled

cluster_type: type of Amphora Cluster implementation

REST API impact

* Distributor REST API -- This is a new internal API that will be secured via two-way SSL certificate
authentication. See Distributor for Active-Active, N+1 Amphorae Setup

e Amphora REST API -- support configuration of disabling arp on VIP.

* [P2] LBaaS API -- support configuration of desired availability, perhaps by selecting a flavor (e.g.,
gold is a minimum of 4 Amphorae, platinum is a minimum of 10 Amphora).

* Operator API --

Topology to use
Cluster type

Default availability parameters for the Amphora Cluster

Security impact

» See Distributor for Active-Active, N+1 Amphorae Setup for Distributor related security impact.

Notifications impact

None.

4.5. Project Specifications 345

Octavia Documentation, Release 17.1.0.dev41

Other end user impact

None.

Performance Impact

ACTIVE-ACTIVE should be able to deliver significantly higher performance than SINGLE or ACTIVE-
STANDBY topology. It will consume more resources to deliver this higher performance.

Other deployer impact

The reference ACM becomes a new process that is part of the Octavia control components (like the
controller worker, health monitor and housekeeper). If the reference implementation is used, a new
Distributor image will need to be created and stored in glance much the same way the Amphora image
is created and stored today.

Developer impact

None.

Implementation
Assignee(s)

@TODO

Work ltems

@TODO

Dependencies

@TODO

Testing

¢ Unit tests with tox.
¢ Function tests with tox.

¢ Scenario tests.

Documentation Impact

Need to document all new APIs and API changes, new ACTIVE-ACTIVE topology design and features,
and new instructions for operators seeking to deploy Octavia with ACTIVE-ACTIVE topology.

References

https://blueprints.launchpad.net/octavia/+spec/base-image https://blueprints.launchpad.net/octavia/
+spec/controller-worker https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller https://blueprints.launchpad.net/octavia/
+spec/operator-api Octavia HAProxy Amphora API https://blueprints.launchpad.net/octavia/+spec/
active-active-topology

4.5. Project Specifications 346

https://blueprints.launchpad.net/octavia/+spec/base-image
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/active-active-topology
https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 17.1.0.dev41

Add statistics gathering API for loadbalancer

https://blueprints.launchpad.net/octavia/+spec/stats-support

Problem description

Currently, Octavia does not support the gathering of loadbalancer statistics. This causes inconsistencies
between the Octavia and Neutron-LBaaS APIs. Another point is that the statistics data we get from the
Octavia API for the listener only reflects the first record for the listener in the Octavia database, since
we’re supporting more topologies than SINGLE, this needs to be to fixed too.

Proposed change

Add one more data ‘request_errors’ to indicate the number of request errors for each listener, we can get
this data from the stats of haproxy ’ereq’.

Add a new module ’stats’ to octavia.common with a class ’StatsMixin’ to do the actual statistics
calculation for both listener and loadbalancer. Make the mixin class as a new base class for oc-
tavia.api.v1l.controllers.listener_statistics.ListenerStatisticsController, to make sure we get correct stats
from Octavia APL

Add a new module ’loadbalancer_statistics’ to octavia.api.v1.controllers with a class LoadbalancerStatis-
ticsController to provide a new REST API for gathering statistics at the loadbalancer level.

Use evenstream to serialize the statistics messages from the octavia to neutron-lbaas via oslo_messaging,
to keep consistent with neutron-lbaas API.

Alternatives

Update the ’stats’ method in neutron-lbaas for octavia driver, allow the neutron-lbaas to get stats from
octavia through REST API request, to keep consistent with neutron-lbaas APIL

Data model impact

One new column for table listener_statistics will be introduced to represent request errors:

Field Type Null Key Default Extra
request_errors bigint(20) NO NULL

REST API impact
Add ’request_errors’ in the response of list listener statistics:

Example List listener statistics: JSON response

(continues on next page)

4.5. Project Specifications 347

https://blueprints.launchpad.net/octavia/+spec/stats-support

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Add a new API to list loadbalancer statistics

Lists loadbalancer statistics.

Request Type GET

Endpoint URL/v1/loadbalancers/{1lb_id}/stats
Response Codes ~ Success 200
Error 401, 404, 500

Example List loadbalancer statistics: JSON response

Security impact
None

Notifications impact

None

Other end user impact

None

Performance Impact

None

4.5. Project Specifications

348

Octavia Documentation, Release 17.1.0.dev41

Other deployer impact

None

Developer impact

None

Implementation

Assignee(s)

li, chen <shchenli@cn.ibm.com>

Work Items

* Extend current stats collection for listener amphora

Add module ’stats’
* Add new API for gathering statistics at the loadbalancer level

» Update stats to neutron database

Dependencies

None

Testing

Function tests with tox.

Documentation Impact

Changes shall be introduced to the octavia APIs: see [1]

References

[1] https://docs.openstack.org/api-ref/load-balancer/v1/octaviaapi.html

4.5.4 Version 1.0 (pike)
Provider Flavor Framework
https://blueprints.launchpad.net/octavia/+spec/octavia-1baas-flavors

A Provider Flavor framework provides a mechanism for providers to specify capabilities that are not
currently handled via the octavia api. It allows the operators to enable capabilities that may possibly be
unique to a particular provider or simply just not available at the moment within octavia. If it is a common
feature it is highly encouraged to have the non-existing features implemented via the standard Octavia
api. In addition operators can configure different flavors from a maintained list of provider capabilities.
This framework enables providers to supply new features with speed to market and provides operators
with an ease of use experience.

4.5. Project Specifications 349

mailto:shchenli@cn.ibm.com
https://docs.openstack.org/api-ref/load-balancer/v1/octaviaapi.html
https://blueprints.launchpad.net/octavia/+spec/octavia-lbaas-flavors

Octavia Documentation, Release 17.1.0.dev41

Problem description

Flavors are used in various services for specifying service capabilities and other parameters. Having the
ability to create loadbalancers with various capabilities (such as HA, throughput or ddos protection) gives
users a way to better plan their LB services and get a benefit of LBaaS functions which are not a part of
Octavia API. Since Octavia will become the new OpenStack LBaaS API, a new flavors API should be
developed inside Octavia.

As for now, Octavia does not support multi providers. The ability to define different LBaaS providers
is a mandatory feature for Octavia to be Openstack LbaaS API. Therefore, this spec depends on adding
multi providers support to Octavia. Service providers will be configured via Octavia configuration file.

Its important to mention that adding flavors capability to Octavia is not actually dependent on the work for
LBaaS API spinout, from Neutron to Octavia, to be completed. This capability can be added to Octavia
but not actually used until the API spinout is complete and Octavia becomes the official OpenStack LBaaS
APL

This spec is based on two existing specs from neutron:
Service Flavor Framework Flavor framework - Templates and meta-data

However, this is a spec for the first and basic flavors support. Following capabilities are not part of this
spec:

* Providing parameterized metainfo templates for provider profiles.

* Providing meta data for specific LBaaS object as part of its creation.

Proposed change

The Provider Flavor framework enables the ability to create distinct provider flavor profiles of supported
parameters. Operators will have the ability to query the provider driver interface for a list of supported
parameters. Operators can view the said list by provider and create flavors by selecting one or many
parameters from the list. The parameters that will be used to enable specific functionality will be json
type in transit and at rest. This json payload is assigned to a provider and a flavor name. Users then
have the option of selecting from any of the existing flavors and submitting the selected flavor upon the
creation of the load balancer. The following flavor name examples can be, but not limited to dev, stage,
prod or bronze, silver, gold. A provider can have many flavor names and a flavor name can be used by
only one provider. Each provider/flavor pair is assigned a group of meta-parameters and forms a flavor
profile. The flavor name or id is submitted when creating a load balancer.

The proposal is to add LBaaS service flavoring to Octavia. This will include following aspects:
* Adding new flavors API to Octavia API
* Adding flavors models to Octavia
* Adding flavors db tables to Octavia database
* Adding DB migration for new DB objects

* Ensuring backwards compatibility for loadbalancer objects which were created before flavors sup-
port. This is for both cases, when loadbalancer was created before multi providers support and
when loadbalancer was created with certain provider.

* Adding default entries to DB tables representing the default Octavia flavor and default Octavia
provider profile.

* Adding "default" flavor to devstack plugin.

4.5. Project Specifications 350

https://specs.openstack.org/openstack/neutron-specs/specs/liberty/neutron-flavor-framework.html
https://specs.openstack.org/openstack/neutron-specs/specs/mitaka/neutron-flavor-framework-templates.html

Octavia Documentation, Release 17.1.0.dev41

A sample use case of the operator flavor workflow would be the following:
* The operator queries the provider capabilities
* The operator create flavor profile
* The flavor profile is validated with provider driver
* The flavor profile is stored in octavia db
* The end user creates Ib with the flavor

* The profile is validated against driver once again, upon every lb-create

Alternatives

An alternative is patchset-5 within this very same spec. While the concept is the same, the design is differ-
ent. Differences with patchset-5 to note is primarily with the data schemas. With patchset-5 the metadata
that is passed to the load balancer has a one to one relationship with the provider. Also key/values pairs
are stored in json as opposed to in normalized tables. And a list of provider supported capabilities is not
maintained. That said this alternative design is an option.

Data model impact

DB table *flavor_profile’ introduced to represent the profile that is created when combining a provider
with a flavor.

Field Type Null Key Default
id varchar(36) NO PK generated
provider_name varchar(255) NO
metadata varchar(4096) NO

Note

The provider_name is the name the driver is advertised as via setuptools entry points. This will be
validated when the operator uploads the flavor profile and the metadata is validated.

DB table "flavor’ introduced to represent flavors.

Field Type Null Key Default
id varchar(36) NO PK generated
name varchar(255) NO UK

description varchar(255) YES NULL
enabled tinyint(1) NO True

flavor_profile_id varchar(36) NO FK

DB table attribute "load_balancer.flavor_id’ introduced to link a flavor to a load_balancer.

Field Type Null Key Default
flavor_id varchar(36) YES FK1 NULL

4.5. Project Specifications 351

Octavia Documentation, Release 17.1.0.dev41

REST API impact

FLAVOR(/flavors)

Attribute Type Access Default Validation/ Con- Description

Name Value version

id string RO, ad- generated N/A identity

(UUID) min

name string RO, ad- ” string human-readable name
min

description string RO, ad- string human-readable descrip-
min tion

enabled bool RO, ad- true bool toggle
min

fla- string RO, ad- string human-readable fla-

vor_profile_id min vor_profile_id

FLAVOR PROFILE(/flavorprofiles)

Attribute Type Ac- Default Validation/ Con- Description
Name cess Value version
id string admin generated N/A identity
(UUID)
name string admin ” string human-readable name
provider-id string admin ” string human-readable
provider-id
metadata string admin {} json flavor meta parameters

Security impact

The policy.json will be updated to allow all users to query the flavor listing and request details about a
specific flavor entry, with the exception of flavor metadata. All other REST points for create/update/delete
operations will be admin only. Additionally, the CRUD operations for Provider Profiles will be restricted
to administrators.

Notifications impact

N/A

Other end user impact

An existing LB cannot be updated with a different flavor profile. A flavor profile can only be applied
upon the creation of the LB. The flavor profile will be immutable.

Performance Impact

There will be a minimal overhead incurred when the logical representation is scheduled onto the actual
backend. Once the backend is selected, direct communications will occur via driver calls.

4.5. Project Specifications 352

Octavia Documentation, Release 17.1.0.dev41

IPv6 impact

None

Other deployer impact

The deployer will need to craft flavor configurations that they wish to expose to their users. During
migration the existing provider configurations will be converted into basic flavor types. Once migrated,
the deployer will have the opportunity to modify the flavor definitions.

Developer impact

The expected developer impact should be minimal as the framework only impacts the initial scheduling
of the logical service onto a backend. The driver implementations should remain unchanged except for
the addition of the metainfo call.

Community impact

This proposal allows operators to offer services beyond those directly implemented, and to do so in a way
that does not increase community maintenance or burden.

Provider driver impact

The provider driver should have the following abilities:
* Provide an interface to describe the available supported metadata options
* Provide an interface to validate the flavor metadata
* Be able to accept the flavor metadata parameters

» Exception handling for non-supported metadata
Implementation
Assignee(s)

* Evgeny Fedoruk (evgenyf)

* Carlos Puga (cpuga)
Work Iltems

* Implement the new models

* Implement the REST API Extension (including tests)

* Implementation migration script for existing deployments.
* Add client API support

* Add policies to the Octavia RBAC system

4.5. Project Specifications 353

Octavia Documentation, Release 17.1.0.dev41

Dependencies

Depends on provider support and provider drivers that support the validation interface and accept the
flavor profile metadata.

Testing

Tempest Tests

Tempest testing including new API and scenario tests to validate new entities.
Functional Tests

Functional tests will need to be created to cover the API and database changes.
API Tests

The new API extensions will be tested using functional tests.

Documentation Impact

User Documentation

User documentation will need be included to describe to users how to use flavors when building their
logical topology.

Operator Documentation

Operator documentation will need to be created to detail how to manage Flavors, Providers and their
respective Profiles.

Developer Documentation

Provider driver implementation documentation will need to be updated to cover the new interfaces ex-
pected of provider drivers and the structure of the metadata provided to the driver.

API Reference

The API reference documentation will need to be updated for the new API extensions.

References

[1] https://docs.openstack.org/api-ref/load-balancer/v2/index.html

LBaa$S Alternative Monitoring IP/Port
https://blueprints.launchpad.net/octavia/+spec/Ibaas-health-monitoring-port

In the current state, the health monitor IP address/port pair is derived from a load balancer’s pool mem-
ber’s address and protocol port. In some use cases it would be desirable to monitor a different IP ad-
dress/port pair for the health of a load balanced pool’s member than the already specified address and
protocol port. Due to the current state this is not possible.

Problem description

The use case where this would be desirable would be when the End User is making the health monitor
application on the member available on a IP/port that is mutually exclusive to the IP/port of the application
that is being load balanced on the member. The End User would find this advantageous when attempting

4.5. Project Specifications 354

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://blueprints.launchpad.net/octavia/+spec/lbaas-health-monitoring-port

Octavia Documentation, Release 17.1.0.dev41

to limit access to health diagnostic information by not allowing it to be served over the main ingress
IP/port of their application.

Beyond limiting access to any health APIs, it allows the End Users to design different methods of health

monitoring, such as creating distinct daemons responsible for the health of their hosts applications.

Proposed change

The creation of a pool member would now allow the specification of an IP address and port to monitor
health. The process used to assess the health of pool members would now use this new IP address and
port to diagnose the member.

If a health monitor IP address or port is not specified the default behavior would be to use the IP address
and port specified by the member.

There would likely need to be some Horizon changes to support this feature, however by maintaining the

old behavior as the default we will not create a strong dependency.

Alternatives

An alternative is to not allow this functionality, and force all End Users to ensure their health checks are
available over the member’s load balanced IP address and protocol port.

As stated in the Problem Description this would force End Users to provide additional security around
their health diagnostic information so that they do not expose it to unintended audiences. Pushing this
requirement on the End User is a heavier burden and limits their configuration options of the applications
they run on Openstack that are load balanced.

Data model impact

The Member data model would gain two new member fields called monitor_port and monitor_address.
These two member fields would store the port and IP address, respectively, that the monitor will query
for the health of the load balancer’s listener’s pool member.

It is important to have the default behavior fall back on the address and protocol port of the member as
this will allow any migrations to not break existing deployments of Openstack.

Any Member data models without this new feature would have the fields default to the value of null to
signify that Octavia’s LBaaS service should use the member’s protocol port to assess health status.

REST API impact

There are two APIs that will need to be modified, only slightly, to facilitate this change.

Table 1: Octavia LBaaS APIs

Method URI

POST /v2.0/Ibaas/pools/{pool_id }/members

PUT /v2.0/baas/pools/{pool_id}/members/{ member_id}
GET /v2.0/1baas/pools/{pool_id }/members/{ member_id}

The POST and PUT calls will need two additional fields added to their JSON body data for the request
and the JSON response data.

4.5. Project Specifications 355

Octavia Documentation, Release 17.1.0.dev41

The GET call will need two additional fields as well, however they would only be added to the JSON
response data.

The fields to be added to each is:

Table 2: Added Fields

Attribute Type Ac- Default Validation Conver- Description

Name cess Value sion

monitor_port int RW, null int health check port (optional)
all

moni- string RW, null types.IPAddressType(health check IP address (op-

tor_address all tional)

Security impact
None

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

None

Developer impact

Other plugins do not have to implement this feature as it is optional due to the default behavior. If they
decide to implement this feature, they would just need to supply the protocol port in their POSTs and
PUTs: to the health monitor APIs.

Implementation
Assignee(s)

Primary assignee:
a.amerine

Other contributors:
None

4.5. Project Specifications 356

Octavia Documentation, Release 17.1.0.dev41

Work ltems

Alter the Member Data Model

Alter Pool Member APIs

Update API reference documentation to reflect changes
* Write or Alter Unit, Functional, and Tempest Tests to verify new functionality
Dependencies

None

Testing

Integration tests can be written to verify functionality. Generally, it should only require an existing Open-
stack deployment that is running LBaaS to verify health checks.

Documentation Impact

The REST API impact will need to be addressed in documentation so developers moving forward know
about the feature and can use it.

References

* Octavia Roadmap Considerations: Health monitoring on alternate IPs and/or ports (https://wiki.
openstack.org/wiki/Octavia/Roadmap)

* RFE Port based HealthMonitor in neutron_lbaas (https://launchpad.net/bugs/1541579)
Align octavia APl With Neutron LBaaS API
Problem description

For the octavia API to truly be standalone, it needs to have capability parity with Neutron LBaaS’s APIL.
Neutron LBaaS has the luxury of piggy-backing off of Neutron’s APIL. This gives Neutron LBaaS’s API
resources many capabilities for free. This document is meant to enumerate those capabilities that the
octavia API does not possess at the time of this writing.

Proposed change

Complete the tasks enumerated in the Work Items section

Alternatives

* Do nothing and keep the status quo

Data model impact

There will be some minor data model changes to octavia in support of this change.

4.5. Project Specifications 357

https://wiki.openstack.org/wiki/Octavia/Roadmap
https://wiki.openstack.org/wiki/Octavia/Roadmap
https://launchpad.net/bugs/1541579

Octavia Documentation, Release 17.1.0.dev41

REST API impact

This change will have significant impact to the octavia API.

Security impact

This change will improve octavia security by adding keystone authentication.

Notifications impact

No expected change.

Other end user impact

Users will be able to use the new octavia API endpoint for LBaaS.

Performance Impact

This change may slightly improve performance by reducing the number of software layers requests will
traverse before responding to the request.

Other deployer impact

Over time the neutron-lbaas package will be deprecated and deployers will only require octavia for LBaaS.

Developer impact

This will simplify LBaaS development by reducing the number of databases as well as repositories that
require updating for LBaaS enhancements.

Implementation
Assignee(s)

blogan diltram johnsom rm_you dougwig

Work ltems

Implement the following API Capabilities:
* Keystone Authentication
* Policy Engine
* Pagination
¢ Quotas
* Filtering lists by query parameter
* Fields by query parameter
* Add the same root API endpoints as n-lbaas
* Support "provider" option in the API to select a driver to spin up a load balancer.

* API Handler layer to become the same as n-lbaas driver layer and allow multiple handlers/drivers.

4.5. Project Specifications 358

Octavia Documentation, Release 17.1.0.dev41

* Neutron LBaaS V2 driver to octavia API Handler shim layer
Implement the following additional features that n-lbaas maintains:

* OSC extension via a new repository ’python-octaviaclient’
Other Features to be Considered:

* Notifications for resource creating, updating, and deleting.

* Flavors

* Agent namespace driver or some lightweight functional driver.

* Testing octavia with all of the above

REST API Microversioning

Dependencies

None

Testing

Api tests from neutron-lbaas will be used to validate the new octavia API.

Documentation Impact

The octavia api reference will need to be updated.

References

Vip QoS Policy Application

Problem description

For real cases, the bandwidth of vip should be limited, because the upstream network resource is provided
by the ISP or other organizations. That means it is not free. The openstack provider or users should pay for
the limited bandwidth, for example, users buy the 50M bandwidth from ISP for openstack environment
to access Internet, also it will be used for the connection outside of openstack to access the servers in
openstack. And the servers are behind LoadBalance VIP. We cannot offer the whole bandwidth to the
servers, as maybe there also are the VMs want to access the external network. So we should take a
bandwidth limitation towards vip port.

Also, if the upstream network resource had been used up mostly, we still want the backend servers behind
loadbalancer are accessible and stable. The min bandwidth limitation is needed for this scenario.

For more QoS functions, in reality, we can’t limit our users or deployers to use loadbalance default drivers,
such as haproxy driver and Octavia driver. They may be more concerned about the fields/functions related
to QoS, like DSCP markings. They could integrate the third-party drivers which are concerned about
these fields.

Proposed change

This spec introduces the Neutron QoS function to meet the requirements. Currently, there are 3 ports(at
least) in the loadbalancer created by Octavia. One is from the Ib-mgmt-net, the others are from the
vip-subnet, called "loadbalancer-LOADBALANCER_ID" and "octavia-1b-vrirp-LOADBALNCER_ID".

4.5. Project Specifications 359

Octavia Documentation, Release 17.1.0.dev41

The first one is vip port, the second one is for vrrp HA, and it will set "allowed_address_pairs" toward
vip fixed_ip. The QoS policy should focus on the attached port "octavia-1b-vrrp-LOADBALNCER_ID".

We could apply the Neutron QoS policy to the "octavia-1b-vrrp-LOADBALNCER_ID" ports, whether
the topology is active-active or standalone.

There are the following changes:
* Extend a new column named "qos_policy_id" in vip table.

* Extend Octavia API, we need pass the vip-qos-policy-id which created in Neutron into LoadBal-
ancer creation/update.

* Apply QoS policy on vip port in Loadbalancer working flow.
Alternatives

We accept the QoS parameters and implement the QoS function on our own.

Data model impact

In this spec, the QoS function will be provided by Neutron, so Octavia should know the relationship of
QoS policies and the vip port of Loadbalancers. There will be some minor data model changes to Octavia
in support of this change.

* vip table - gos_policy_id: associate QoS policy id with vip port.

REST API impact

Proposed attribute:

The definition in Octavia is like::
vip_qos_policy_id = wtypes.wsattr(wtypes.UuidType())

Some samples in Loadbalancer creation/update. Users allow pass "vip_qos_policy_id".

Create/Update Loadbalancer Request:

(continues on next page)

4.5. Project Specifications 360

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Security impact
None

Notifications impact

No expected change.

Other end user impact

Users will be able to specify qos_policy to create/update Loadbalancers.

Performance Impact

* It will be a very short time to cost in loadbalancer creation, as we need validate the input QoS
policy.

* The QoS policy in Neutron side will affect the network performance based on the different types
of QoS rules.

4.5. Project Specifications 361

Octavia Documentation, Release 17.1.0.dev41

Other deployer impact

None

Developer impact

TBD.

Implementation
Assignee(s)

zhaobo reedip

Work Items

* Add the DB model and extend the table column.

* Extending Octavia V2 API to accept QoS policy.

* Add QoS application logic into Loadbalancer workflow.

* Add API validation code to validate access/existence of the qos_policy which created in Neutron.
* Add UTs to Octavia.

* Add API tests.

* Update CLI to accept QoS fields.

* Documentation work.

Dependencies

None

Testing

Unit tests, Functional tests, API tests and Scenario tests are necessary.

Documentation Impact

The Octavia API reference will need to be updated.

References

4.5.5 Version 1.1 (queens)

Distributor for L3 Active-Active, N+1 Amphora Setup

Attention

Please review the active-active topology blueprint first (Active-Active, N+1 Amphorae Setup)

https://blueprints.launchpad.net/octavia/+spec/13-active-active

4.5. Project Specifications 362

https://blueprints.launchpad.net/octavia/+spec/l3-active-active

Octavia Documentation, Release 17.1.0.dev41

Problem description

This blueprint describes a L3 active-active distributor implementation to support the Octavia active-
active-topology. The L3 active-active distributor will leverage the capabilities of a layer 3 Clos network
fabric in order to distribute traffic to an Amphora Cluster of 1 or more amphoras. Specifically, the L3
active-active distributor design will leverage Equal Cost Multipath Load Sharing (ECMP) with anycast
routing to achieve traffic distribution across the Amphora Cluster. In this reference implementation, the
BGP routing protocol will be used to inject anycast routes into the L3 fabric.

In order to scale a single VIP address across multiple active amphoras it is required to have a distributor
to balance the traffic. By leveraging the existing capabilities of a modern L3 network, we can use the
network itself as the distributor. This approach has several advantages, which include:

Traffic will be routed via the best path to the destination amphora. There is no need to add an
additional hop (distributor) between the network and the amphora.

The distributor is not in the data path and simply becomes a function of the L3 network.
The performance and scale of the distributor is the same as the L3 network.
Native support for both IPv4 and IPv6, without customized logic for each address family.

Note: Items marked with [P2] refer to lower priority features to be designed / implemented
only after initial release.

Proposed change

Octavia shall implement the L3 active-active distributor through a pluggable driver.

The distributor control plane function (bgp speaker) will run inside the amphora and leverage the
existing amphora lifecycle manager.

Each amphora will run a bgp speaker in the default namespace in order to announce the anycast VIP
into the L3 fabric. BGP peering and announcements will occur over the Ib-mgmt-net network. The
anycast VIP will get advertised as a /32 or /128 route with a next-hop of the front-end IP assigned
to the amphora instance. The front-end network IPs must be directly routable from the L3 fabric,
such as in the provider networking model.

Octavia shall implement the ability to specify an anycast VIP/subnet and front-end subnet (provider
network) when creating a new load balancer. The amphora will have ports on three networks
(anycast, front-end, management). The anycast VIP will get configured on the loopback interface
inside the amphora-haproxy network namespace.

The operator shall be able to define a bgp peer profile, which includes the required metadata for
the amphora to establish a bgp peering session with the L3 fabric. The bgp peering information
will be passed into the amphora-agent configuration file via config drive during boot. The amphora
will use the bgp peering information to establish a BGP peer and announce its anycast VIP.

[P2] Add the option to allow the bgp speaker to run on a dedicated amphora instance that is not
running the software load balancer (HAProxy). In this model a dedicated bgp speaker could adver-
tise anycast VIPs for one or more amphoras. Each BGP speaker (peer) can only announce a single
next-hop route for an anycast VIP. In order to perform ECMP load sharing, multiple dedicated
amphoras running bgp speakers will be required, each of them would then announce a different
next-hop address for the anycast VIP. Each next-hop address is the front-end (provider network) IP
of an amphora instance running the software load balancer.

[P2] The Amphora Cluster will provide resilient flow handling in order to handle ECMP group
flow remapping events and support amphora connection draining.

4.5. Project Specifications 363

Octavia Documentation, Release 17.1.0.dev41

* [P2] Support Floating IPs (FIPs). In order to support FIPs the existing Neutron floatingips API
would need to be extended. This will be described in more detail in a separate spec in the Neutron
project.

Architecture
High-level Topology Description

The below diagram shows the interaction between 2 .. n amphora instances from each tenant and how
they interact with the L3 network distributor.

Management Front-End
Internet Network Networks
(World) (provider)

Amphora of Tenant A

MGMTns: defaultns: amphora-haproxyf.e.
P --------\--\-\-\-\-»- - " : i } IP
BGP Anycast VIP
Speaker (loopback)

{anycast VIP}/32 next-hop {f.e. IP}

Amphora of Tenant B

MGMTns: defaultns: amphora-haproxyf.e.
IP —— - IP
BGP Anycast VIP
Speaker (loopback)

Distributor |
(L3 Network) |

Peering Session 1..% |

{anycast VIP}/32 next-hop {f.e. IP}

Amphora of Tenant C

MGMTns: defaultns: amphora-haproxyf.e.
P -----—-————— IP
BGP Anycast VIP
Speaker (loopback)

(continues on next page)

4.5. Project Specifications 364

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)
Peering Session 1..% |
{anycast VIP}/32 next-hop {f.e. IP}

Anycast
1..% Network

Whenever a new active-active amphora is instantiated it will create BGP peering session(s) over
the Ib-mgmt-net to the L3 fabric. The BGP peer will need to have a neighbor definition in order to
allow the peering sessions from the amphoras. In order to ease configuration, a neighbor statement
allowing peers from the entire Ib-mgmt-net IP prefix range can be defined: neighbor 10.10.10.
0/24

The BGP peer IP can either be a route reflector (RR) or any other network device that will redis-
tribute routes learned from the amphora BGP speaker. In order to help scaling, it is possible to peer
with the ToR switch based on the rack the amphora instance is provisioned in. The configuration
can be simplified by creating an anycast loopback interface oneach ToR switch, which will
provide a consistent BGP peer IP regardless of which rack or hypervisor is hosting the amphora
instance.

Once a peering session is established between an amphora and the L3 fabric, the amphora will
need to announce its anycast VIP with a next-hop address of its front-end network IP. The front-
end network IP (provider) must be routable and reachable from the L3 network in order to be used.

In order to leverage ECMP for distributing traffic across multiple amphoras, multiple equal-cost
routes must be installed into the network for the anycast VIP. This requires the .3 network to have
Multipath BGP enabled, so BGP installs multiple paths and does not select a single best path.

After the amphoras in a cluster are initialized there will be an ECMP group with multiple equal-cost
routes for the anycast VIP. The data flow for traffic is highlighted below:

1. Traffic will ingress into the L3 network fabric with a destination IP address of the anycast
VIP.

2. If this is a new flow, the flow will get hashed to one of the next-hop addresses in the ECMP
group.

3. The packet will get sent to the front-end IP address of the amphora instance that was selected
from the above step.

4. The amphora will accept the packet and send it to the back-end server over the front-end
network or a directly attached back-end (tenant) network attached to the amphora.

5. The amphora will receive the response from the back-end server and forward it on to the
next-hop gateway of front-end (provider) network using the anycast VIP as the source IP
address.

6. All subsequent packets belonging to the same flow will get routed through the same path.

Adding or removing members to a L3 active-active amphora cluster will result in flow remapping,
as different paths will be selected due to rehashing. It is recommended to enable the resilient
hashing feature on ECMP groups in order to minimize flow remapping.

4.5.

Project Specifications 365

Octavia Documentation, Release 17.1.0.dev41

Distributor (BGP Speaker) Lifecycle

The below diagram shows the interaction between an amphora instance that is serving as a distributor
and the L3 network. In this example we are peering with the ToR switch in order to disseminate anycast

VIP routes into the L3 network.

(continues on next page)

4.5. Project Specifications 366

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

. The amphora gets created and is booted. In this example, the amphora will perform both the load

balancing (HAProxy) and L3 Distributor function (BGP Speaker).

. The amphora will read in the BGP configuration information from the config drive and configure

the BGP Speaker to peer with the ToR switch.

. The BGP Speaker process will start and establish a BGP peering session with the ToR switch.

. Once the BGP peering session is active, the amphora is ready to advertise its anycast VIP into the

network with a next-hop of its front-end IP address.

. The BGP speaker will communicate using the BGP protocol and send a BGP "announce" message

to the ToR switch in order to announce a VIP route. If the amphora is serving as both a load
balancer and distributor the announcement will happen on listener start. Otherwise the announce
will happen on a register amphora request to the distributor.

. The ToR switch will learn this new route and advertise it into the L3 fabric. At this point the L3

fabric will know of the new VIP route and how to reach it (via the ToR that just announced it).

. The L3 fabric will create an ECMP group if it has received multiple route advertisements for the

same anycast VIP. This will result in a single VIP address with multiple next-hop addresses.

. Once the route is accepted by the L3 fabric, traffic will get distributed to the recently registered

amphora (HAProxy).

4.5.

Project Specifications 367

Octavia Documentation, Release 17.1.0.dev41

9. The BGP speaker will communicate using the BGP protocol and send a BGP "withdraw" message
to the ToR switch in order to withdraw a VIP route. If the amphora is serving as both a load
balancer and distributor the withdrawal will happen on listener stop. Otherwise the withdraw will
happen on an unregister amphora request to the distributor.

10. The ToR switch will tell the L3 fabric over BGP that the anycast VIP route for the amphora being
unregistered is no longer valid.

11. The L3 fabric will remove the VIP address with the next-hop address to the amphora (HAProxy)
being unregistered. It will keep all other existing VIP routes to other amphora (HAProxy) instances
until they are explicitly unregistered.

12. Once the route is removed the amphora (HAProxy) will no longer receive any traffic for the VIP.

Alternatives

TBD

Data model impact

Add the following columns to the existing vip table:

e distributor_id (String(36) , nullable=True)
ID of the distributor responsible for distributing traffic for the corresponding VIP.

Add table distributor with the following columns:

e id (String(36) , nullable=False)
ID of Distributor instance.

* distributor_type (String(36) , nullable=False)
Type of distributor L3_BGP.

 status (String(36) , nullable=True)
Provisioning status.

Update existing table amphora. An amphora can now serve as a distributor, Ib, or both. The vrrp_*
tables will be renamed to frontend_* in order to make the purpose of this interface more apparent and to
better represent other use cases besides active/standy.

 load_balancer_id (String(36) , nullable=True)
This will be set to null if this amphora is a dedicated distributor and should not run HAProxy.

* service_type (String(36) , nullable=True)
New field added to the amphora table in order to describe the type of amphora. This field
is used to describe the function (service) the amphora provides. For example, if this is a
dedicated distributor the service type would be set to "distributor".

 frontend_ip (String(64) , nullable=True)
New name for former vrrp_ip field. This is the primary IP address inside the amphora-
haproxy namespace used for L3 communication to back-end members.

 frontend_subnet_id (String(36) , nullable=True)
New field added to the amphora table, which is the neutron subnet id of the front-end network
connected to the amphora.

* frontend_port_id (String(36) , nullable=True)
New name for former vrrp_port_id field. This represents the neutron port ID of a port at-

4.5. Project Specifications 368

Octavia Documentation, Release 17.1.0.dev41

tached to the front-end network. It should no longer be assumed that the front-end subnet is
the same as the VIP subnet.

« frontend_interface (String(16) , nullable=True)
New name for former vrrp_interface field.

 frontend_id (Integer , nullable=True)
New name for former vrrp_id field.

* frontend_priority (Integer , nullable=True)
New name for former vrrp_priority field.

Use existing table amphora_health with the following columns:

e amphora_id (String(36) , nullable=False)
ID of amphora instance running Ib and/or implementing distributor function.

* last_update (DateTime , nullable=False)
Last time amphora heartbeat was received by a health monitor.

* busy (Boolean , nullable=False)
Field indicating a create / delete or other action is being conducted on the amphora instance
(ie. to prevent a race condition when multiple health managers are in use).

Add table amphora_registration with the below columns. This table determines the role of the
amphora. The amphora can be dedicated as a distributor, load balancer, or perform a combined role
of load balancing and distributor. A distributor amphora can be registered to multiple load balancers.

» amphora_id (String(36) , nullable=False)
ID of Amphora instance.

 load_balancer_id (String(36) , nullable=False)
ID of load balancer.

e distributor_id (String(36) , nullable=True)
ID of Distributor instance.

Add table distributor_13_bgp_speaker with the following columns:

e id (String(36) , nullable=False)
ID of the BGP Speaker.

* ip_version (Integer , nullable=False)
Protocol version of the BGP speaker. IP version 4 or 6.

¢ local_as (Integer , nullable=False)
Local AS number for the BGP speaker.

Add table distributor_13_bgp_peer with the following columns:

e id (String(36) , nullable=False)
ID of the BGP peer.

e peer_ip (String(64) , nullable=False)
The IP address of the BGP neighbor.

e remote_as (Integer , nullable=False)
Remote AS of the BGP peer.

e auth_type (String(16) , nullable=True)
Authentication type, such as md5. An additional parameter will need to be set in the octavia

4.5. Project Specifications 369

Octavia Documentation, Release 17.1.0.dev41

configuration file by the admin to set the md5 authentication password that will be used with
the md5 auth type.

 ttl_hops (Integer , nullable=True)
Number of hops between speaker and peer for ttl security 1-254.

e hold_time (Integer , nullable=True)
Amount of time in seconds that can elapse between messages from peer.

* keepalive_interval (Integer , nullable=True)
How often to send keep alive packets in seconds.

Add table distributor_13_bgp_peer_registration with the following columns:

* distributor_I3_bgp_speaker_id (String(36) , nullable=False)
ID of the BGP Speaker.

* distributor_I3_bgp_peer_id (String(36) , nullable=False)
ID of the BGP peer.

Add table distributor_13_amphora_bgp_speaker_registration with the following columns:

* distributor_I3_bgp_speaker_id (String(36) , nullable=False)
ID of the BGP Speaker.

e amphora_id (String(36) , nullable=False)
ID of amphora instance that the BGP speaker will run on.

Add table distributor_13_amphora_vip_registration with the following columns:

e amphora_id (String(36) , nullable=False)
ID of the distributor amphora instance.

 load_balancer_id (String(36) , nullable=False)
The ID of the load balancer. This will be used to get the VIP IP address.

* nexthop_ip (String(64) , nullable=False)
The amphora front-end network IP used to handle VIP traffic. This is the next-hop address
that will be advertised for the VIP. This does not have to be an IP address of an amphora, as
it could be external such as for UDP load balancing.

o distributor_I3_bgp_peer_id (String(36) , nullable=True)
The BGP peer we will announce the anycast VIP to. If not specified, we will announce over
all peers.

REST API impact

* QOctavia API -- Allow the user to specify a separate VIP/subnet and front-end subnet (provider
network) when creating a new load balancer. Currently the user can only specify the VIP subnet,
which results in both the VIP and front-end network being on the same subnet.

» Extended Amphora API -- The L3 BGP distributor driver will call the extended amphora API in
order to implement the control plane (BGP) and advertise new anycast VIP routes into the network.

The below extended amphora API calls will be implemented for amphoras running as a dedicated dis-
tributor:

1. Register Amphora

4.5. Project Specifications 370

Octavia Documentation, Release 17.1.0.dev41

This call will result in the BGP speaker announcing the anycast VIP into the L3 network with a
next-hop of the front-end IP of the amphora being registered. Prior to this call, the load balancing
amphora will have to configure the anycast VIP on the loopback interface inside the amphora-
haproxy namespace.

* amphora_id

ID of the amphora running the load balancer to register.

e vip_ip
The VIP IP address.
* nexthop_ip
The amphora’s front-end network IP address used to handle anycast VIP traffic.
* peer_id
ID of the peer that will be used to announce the anycast VIP. If not specified, VIP will
be announced across all peers.

2. Unregister Amphora

The BGP speaker will withdraw the anycast VIP route for the specified amphora from the L3
network. After the route is withdrawn, the anycast VIP IP will be removed from the loopback
interface on the load balancing amphora.

e amphora_id
ID of the amphora running the load balancer to unregister.

* vip_ip
The VIP IP address.

* nexthop_ip
The amphora’s front-end network IP Address used to handle anycast VIP traffic.

* peer_id
ID of the peer that will be used to withdraw the anycast VIP. If not specified, route will
be withdrawn from all peers.

3. List Amphora

Will return a list of all amphora IDs and their anycast VIP routes currently being advertised by the
BGP speaker.

4. [P2] Drain Amphora

All new flows will get redirected to other members of the cluster and existing flows will be drained.
Once the active flows have been drained, the BGP speaker will withdraw the anycast VIP route from
the L3 network and unconfigure the VIP from the lo interface.

5. [P2] Register VIP

This call will be used for registering anycast routes for non-amphora endpoints, such as for UDP
load balancing.

* vip_ip
The VIP IP address.

* nexthop_ip
The nexthop network IP Address used to handle anycast VIP traffic.

4.5. Project Specifications 371

Octavia Documentation, Release 17.1.0.dev41

* peer_id
ID of the peer that will be used to announce the anycast VIP. If not specified, route will
be announced from all peers.

6. [P2] Unregister VIP

This call will be used for unregistering anycast routes for non-amphora endpoints, such as for UDP
load balancing.

e vip_ip
The VIP IP address.

* nexthop_ip
The nexthop network IP Address used to handle anycast VIP traffic.

* peer_id
ID of the peer that will be used to withdraw the anycast VIP. If not specified, route will
be withdrawn from all peers.

6. [P2] List VIP

Will return a list of all non-amphora anycast VIP routes currently being advertised by the BGP
speaker.

Security impact

The distributor inherently supports multi-tenancy, as it is simply providing traffic distribution across mul-
tiple amphoras. Network isolation on a per tenant basis is handled by the amphoras themselves, as they
service only a single tenant. Further isolation can be provided by defining separate anycast network(s)
on a per tenant basis. Firewall or ACL policies can then be built around these prefixes.

To further enhance BGP security, route-maps, prefix-lists, and communities to control what routes are
allowed to be advertised in the L.3 network from a particular BGP peer can be used. MDS5 password and
GTSM can provide additional security to limit unauthorized BGP peers to the L3 network.

Notifications impact
Other end user impact
Performance Impact
Other deployer impact
Developer impact
Implementation
Assignee(s)

Work Iltems
Dependencies

Testing

¢ Unit tests with tox.

¢ Function tests with tox.

4.5. Project Specifications 372

Octavia Documentation, Release 17.1.0.dev41

Documentation Impact

The API-Ref documentation will need to be updated for load balancer create. An additional optional
parameter frontend_network_id will be added. If set, this parameter will result in the primary interface
inside the amphora-haproxy namespace getting created on the specified network. Default behavior is to
provision this interface on the VIP subnet.

References

* Active-Active Topology

Enable Provider Driver Support

Specification Table of Contents

* Enable Provider Driver Support
— Problem description
— Proposed change

% Driver Entry Points

% Octavia Provider Driver API
- Load balancer
- Listener
- Pool
- Member
- Health Monitor
- L7 Policy
- L7 Rule
- Flavor
- Exception Model

% Driver Support Library
- Update provisioning and operating status API
- Update statistics APl
- Get Resource Support
- API Exception Model

% Alternatives

% Data model impact

% REST API impact

% Security impact

4.5. Project Specifications 373

https://blueprints.launchpad.net/octavia/+spec/active-active-topology/

Octavia Documentation, Release 17.1.0.dev41

% Notifications impact
% Other end user impact
% Performance Impact
% Other deployer impact

% Developer impact

Implementation
% Assignee(s)

x Work Items

Dependencies

Testing

Documentation Impact

References

https://storyboard.openstack.org/#!/story/1655768

Provider drivers are implementations that give Octavia operators a choice of which load balancing sys-
tems to use in their Octavia deployment. Currently, the default Octavia driver is the only one available.
Operators may want to employ other load balancing implementations, including hardware appliances, in
addition to the default Octavia driver.

Problem description

Neutron LBaaS v2 supports a provider parameter, giving LBaaS users a way to direct LBaaS requests to
a specific backend driver. The Octavia API includes a provider parameter as well, but currently supports
one provider, the Octavia driver. Adding support for other drivers is needed. With this in place, operators
can configure load balancers using multiple providers, either the Octavia default or others.

Proposed change

Available drivers will be enabled by entries in the Octavia configuration file. Drivers will be loaded via
stevedore and Octavia will communicate with drivers through a standard class interface defined below.
Most driver functions will be asynchronous to Octavia, and Octavia will provide a library of functions
that give drivers a way to update status and statistics. Functions that are synchronous are noted below.

Octavia API functions not listed here will continue to be handled by the Octavia API and will not call
into the driver. Examples would be show, list, and quota requests.

Driver Entry Points

Provider drivers will be loaded via stevedore. Drivers will have an entry point defined in their setup tools
configuration using the Octavia driver namespace "octavia.api.drivers". This entry point name will be
used to enable the driver in the Octavia configuration file and as the "provider" parameter users specify
when creating a load balancer. An example for the octavia reference driver would be:

4.5. Project Specifications 374

https://storyboard.openstack.org/#!/story/1655768
https://docs.openstack.org/stevedore/latest/

Octavia Documentation, Release 17.1.0.dev41

Octavia Provider Driver API

Provider drivers will be expected to support the full interface described by the Octavia API, cur-
rently v2.0. If a driver does not implement an API function, drivers should fail a request by raising a
NotImplementedError exception. If a driver implements a function but does not support a particular
option passed in by the caller, the driver should raise an UnsupportedOptionError.

It is recommended that drivers use the jsonschema package or voluptuous to validate the request against
the current driver capabilities.

See the Exception Model below for more details.

Note

Driver developers should refer to the official Octavia API reference <https://docs.openstack.org/api-
ref/load-balancer/v2/index.html> document for details of the fields and expected outcome of these
calls.

Load balancer

* create
Creates a load balancer.
Octavia will pass in the load balancer object with all requested settings.

The load balancer will be in the PENDING_CREATE provisioning_status and OFFLINE operat-
ing_status when it is passed to the driver. The driver will be responsible for updating the pro-
visioning status of the load balancer to either ACTIVE if successfully created, or ERROR if not
created.

The Octavia API will accept and do basic API validation of the create request from the user. The
load balancer python object representing the request body will be passed to the driver create method
as it was received and validated with the following exceptions:

1. The provider will be removed as this is used for driver selection.

2. The flavor will be expanded from the provided ID to be the full dictionary representing the
flavor metadata.

Load balancer object

As of the writing of this specification the create load balancer object may contain the following:

4.5. Project Specifications 375

https://github.com/Julian/jsonschema
https://pypi.org/project/voluptuous/

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

admin_state_up bool Admin state: True if up, False if down.
description string A human-readable description for the resource.
flavor dict The flavor keys and values.

listeners list A list of Listener objects.
loadbalancer_id string ID of load balancer to create.

name string Human-readable name of the resource.
pools list A list of Pool object.

project_id string ID of the project owning this resource.
vip_address string The IP address of the Virtual IP (VIP).
vip_network_id string The ID of the network for the VIP.
vip_port_id string The ID of the VIP port.
vip_qos_policy_id string The ID of the qos policy for the VIP.
vip_subnet_id string The ID of the subnet for the VIP.

The driver is expected to validate that the driver supports the request and raise an exception if the
request cannot be accepted.

VIP port creation

Some provider drivers will want to create the Neutron port for the VIP, and others will want Octavia
to create the port instead. In order to support both use cases, the create_vip_port() method will
ask provider drivers to create a VIP port. If the driver expects Octavia to create the port, the
driver will raise a NotImplementedError exception. Octavia will call this function before calling
loadbalancer_create() in order to determine if it should create the VIP port. Octavia will call
create_vip_port() with a loadbalancer ID and a partially defined VIP dictionary. Provider drivers
that support port creation will create the port and return a fully populated VIP dictionary.

VIP dictionary
Name Type Description
project_id string ID of the project owning this resource.
vip_address string The IP address of the Virtual IP (VIP).
vip_network_id string The ID of the network for the VIP.
vip_port_id string The ID of the VIP port.
vip_qos_policy_id string The ID of the qos policy for the VIP.
vip_subnet_id string The ID of the subnet for the VIP.

Creating a Fully Populated Load Balancer

If the "listener" option is specified, the provider driver will iterate through the list and create all of
the child objects in addition to creating the load balancer instance.

* delete
Removes an existing load balancer.
Octavia will pass in the load balancer object and cascade boolean as parameters.

The load balancer will be in the PENDING_DELETE provisioning_status when it is passed to the
driver. The driver will notify Octavia that the delete was successful by setting the provision-
ing_status to DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

4.5. Project Specifications 376

Octavia Documentation, Release 17.1.0.dev41

The API includes an option for cascade delete. When cascade is set to True, the provider driver
will delete all child objects of the load balancer.

* failover
Performs a failover of a load balancer.
Octavia will pass in the load balancer ID as a parameter.

The load balancer will be in the PENDING_UPDATE provisioning_status when it is passed to the
driver. The driver will update the provisioning_status of the load balancer to either ACTIVE if
successfully failed over, or ERROR if not failed over.

Failover can mean different things in the context of a provider driver. For example, the Octavia
driver replaces the current amphora(s) with another amphora. For another provider driver, failover
may mean failing over from an active system to a standby system.

e update
Modifies an existing load balancer using the values supplied in the load balancer object.

Octavia will pass in the original load balancer object which is the baseline for the update, and a
load balancer object with the fields to be updated.

As of the writing of this specification the update load balancer object may contain the following:

Name Type Description

admin_state_up bool Admin state: True if up, False if down.
description string A human-readable description for the resource.
loadbalancer_id string ID of load balancer to update.

name string Human-readable name of the resource.

vip_qos_policy_id string The ID of the qos policy for the VIP.

The load balancer will be in the PENDING_UPDATE provisioning_status when it is passed to the
driver. The driver will update the provisioning_status of the load balancer to either ACTIVE if
successfully updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.5. Project Specifications 377

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support creating
VIP ports.

raise NotImplementedError

def loadbalancer_create(self
"""Creates a new load balancer.

:param loadbalancer (object): The load balancer object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support create.
:raises UnsupportedOptionError: The driver does not

support one of the configuration options.

raise NotImplementedError

def loadbalancer_delete(self False
"""Deletes a load balancer.

:param loadbalancer (object): The load balancer object.

:param cascade (bool): If True, deletes all child objects (listeners,
pools, etc.) in addition to the load balancer.

:return: Nothing if the delete request was accepted.

:raises DriverError: An unexpected error occurred in the driver.

:raises NotImplementedError: if driver does not support request.

raise NotImplementedError

def loadbalancer_failover(self
"""Performs a fail over of a load balancer.

:param loadbalancer_id (string): ID of the load balancer to failover.
:return: Nothing if the failover request was accepted.

:raises DriverError: An unexpected error occurred in the driver.
:raises: NotImplementedError if driver does not support request.

raise NotImplementedError

def loadbalancer_update(self
"""Updates a load balancer.

:param old_loadbalancer (object): The baseline load balancer object.
:param new_loadbalancer (object): The updated load balancer object.
:return: Nothing if the update request was accepted.

:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support request.
:raises UnsupportedOptionError: The driver does not

(continues on next page)

4.5. Project Specifications 378

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Listener

* create
Creates a listener for a load balancer.
Octavia will pass in the listener object with all requested settings.

The listener will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status
of the listener to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
listener python object representing the request body will be passed to the driver create method as
it was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will
inherit the project_id from the parent load balancer.

2. The default_tls_container_ref will be expanded and provided to the driver in pkcs12 format.
3. The sni_container_refs will be expanded and provided to the driver in pkcs12 format.
Listener object

As of the writing of this specification the create listener object may contain the following:

4.5. Project Specifications 379

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_u

connec- int The max number of connections permitted for this listener. Default is -1,

tion_limit which is infinite connections.

de- ob- A Pool object.

fault_pool ject

de- string The ID of the pool used by the listener if no L7 policies match.

fault_pool_i

de- dict A TLS container dict.

fault_tls_cor

de- string The reference to the secrets container.

fault_tls_cor

descrip- string A human-readable description for the listener.

tion

in- dict A dictionary of optional headers to insert into the request before it is sent to

sert_headers the backend member. See Supported HITP Header Insertions. Keys and
values are specified as strings.

17policies list A list of L7policy objects.

listener_id string ID of listener to create.

loadbal- string ID of load balancer.

ancer_id

name string Human-readable name of the listener.

protocol string Protocol type: One of HTTP, HTTPS, TCP, or TERMINATED_HTTPS.

proto- int Protocol port number.

col_port

sni_containe list A list of 7LS container dict.

sni_containe list A list of references to the SNI secrets containers.

time- int Frontend client inactivity timeout in milliseconds.

out_client_d

time- int Backend member connection timeout in milliseconds.

out_membe1

time- int Backend member inactivity timeout in milliseconds.

out_membe1

time- int Time, in milliseconds, to wait for additional TCP packets for content in-

out_tcp_insg

spection.

As of the writing of this specification the TLS container dictionary contains the following:

Key

Type Description

certificate string The PEM encoded certificate.

intermediates List A list of intermediate PEM certificates.
primary_cn string The primary common name of the certificate.
private_key string The PEM encoded private key.

As of the writing of this specification the Supported HTTP Header Insertions are:

4.5. Project Specifications 380

Octavia Documentation, Release 17.1.0.dev41

Key Type Description

X- bool When True a X-Forwarded-For header is inserted into the request to the backend
Forward member that specifies the client IP address.

For

X- int A X-Forwarded-Port header is inserted into the request to the backend member
Forward that specifies the integer provided. Typically this is used to indicate the port the
Port client connected to on the load balancer.

Creating a Fully Populated Listener

If the "default_pool" or "17policies" option is specified, the provider driver will create all of the
child objects in addition to creating the listener instance.

* delete
Deletes an existing listener.
Octavia will pass the listener object as a parameter.

The listener will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

* update
Modifies an existing listener using the values supplied in the listener object.

Octavia will pass in the original listener object which is the baseline for the update, and a listener
object with the fields to be updated.

As of the writing of this specification the update listener object may contain the following:

4.5. Project Specifications 381

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_u

connec- int The max number of connections permitted for this listener. Default is -1,

tion_limit which is infinite connections.

de- string The ID of the pool used by the listener if no L7 policies match.

fault_pool_i

de- dict A TLS container dict.

fault_tls_cor

de- string The reference to the secrets container.

fault_tls_cor

descrip- string A human-readable description for the listener.

tion

in- dict A dictionary of optional headers to insert into the request before it is sent to

sert_headers the backend member. See Supported HITP Header Insertions. Keys and
values are specified as strings.

listener_id string ID of listener to update.

name string Human-readable name of the listener.

sni_containe list A list of 7LS container dict.

sni_containe list A list of references to the SNI secrets containers.

time- int Frontend client inactivity timeout in milliseconds.

out_client_d

time- int Backend member connection timeout in milliseconds.

out_membel

time- int Backend member inactivity timeout in milliseconds.

out_membel

time- int Time, in milliseconds, to wait for additional TCP packets for content in-

out_tcp_insg

spection.

The listener will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the listener to either ACTIVE if successfully up-
dated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.5. Project Specifications 382

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Pool

* create
Creates a pool for a load balancer.
Octavia will pass in the pool object with all requested settings.

The pool will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when
it is passed to the driver. The driver will be responsible for updating the provisioning status of the
pool to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
pool python object representing the request body will be passed to the driver create method as it
was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will
inherit the project_id from the parent load balancer.

Pool object

As of the writing of this specification the create pool object may contain the following:

4.5. Project Specifications 383

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state

descrip- string A human-readable description for the pool.

tion

health- ob- A Healthmonitor object.

monitor ject

Ib_algorith string Load balancing algorithm: One of ROUND_ROBIN,

LEAST_CONNECTIONS, or SOURCE_IP.
loadbal- string ID of load balancer.

ancer_id

lis- string 1D of listener.

tener_id

members list A list of Member objects.

name string Human-readable name of the pool.

pool_id string ID of pool to create.

protocol string Protocol type: One of HTTP, HTTPS, PROXY, or TCP.

ses- dict Defines session persistence as one of {’type’: <’HTTP_COOKIE’

sion_persis | ’SOURCE_IP’>} OR {’type’: ’APP_COOKIE’, ’cookie _name’:
<cookie_name>}

* delete
Removes an existing pool and all of its members.
Octavia will pass the pool object as a parameter.

The pool will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status
to DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

* update
Modifies an existing pool using the values supplied in the pool object.

Octavia will pass in the original pool object which is the baseline for the update, and a pool object
with the fields to be updated.

As of the writing of this specification the update pool object may contain the following:

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_

descrip- string A human-readable description for the pool.

tion

Ib_algorith string Load balancing algorithm: One of ROUND_ROBIN,
LEAST_CONNECTIONS, or SOURCE_IP.

name string Human-readable name of the pool.

pool_id string ID of pool to update.

ses- dict Defines session persistence as one of {’type’: < HTTP_COOKIE’

sion_persis | *SOURCE_IP’>} OR {’type’: ’APP_COOKIE’, ’cookie_name’:

<cookie_name> }

4.5. Project Specifications 384

Octavia Documentation, Release 17.1.0.dev41

The pool will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The

driver will update the provisioning_status of the pool to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

Member

* create
Creates a member for a pool.
Octavia will pass in the member object with all requested settings.

The member will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status

4.5. Project Specifications 385

Octavia Documentation, Release 17.1.0.dev41

when it is passed to the driver. The driver will be responsible for updating the provisioning status
of the member to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
member python object representing the request body will be passed to the driver create method as
it was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The member will
inherit the project_id from the parent load balancer.

Member object

As of the writing of this specification the create member object may contain the following:

Nam Type Description

ad- string The IP address of the backend member to receive traffic from the load balancer.

dress

ad- bool Admin state: True if up, False if down.

min_

backi bool Is the member a backup? Backup members only receive traffic when all non-
backup members are down.

mem string ID of member to create.

ber_i

mon- string An alternate IP address used for health monitoring a backend member.

i-

tor_a

mon- int An alternate protocol port used for health monitoring a backend member.

i-

tor_p

name string Human-readable name of the member.

pool_ string ID of pool.

pro- int The port on which the backend member listens for traffic.

to-

col_g

sub- string Subnet ID.

net_i

weigl int The weight of a member determines the portion of requests or connections it ser-
vices compared to the other members of the pool. For example, a member with a
weight of 10 receives five times as many requests as a member with a weight of 2.
A value of 0 means the member does not receive new connections but continues to
service existing connections. A valid value is from O to 256. Default is 1.

* delete
Removes a pool member.
Octavia will pass the member object as a parameter.

The member will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

e update

4.5. Project Specifications 386

Octavia Documentation, Release 17.1.0.dev41

Modifies an existing member using the values supplied in the listener object.

Octavia will pass in the original member object which is the baseline for the update, and a member
object with the fields to be updated.

As of the writing of this specification the update member object may contain the following:

Nam Type Description

ad- bool Admin state: True if up, False if down.

min_

backi bool Is the member a backup? Backup members only receive traffic when all non-
backup members are down.

mem string ID of member to update.

ber_i

mon- string An alternate IP address used for health monitoring a backend member.

tor_a
mon- int An alternate protocol port used for health monitoring a backend member.

tor_p

name string Human-readable name of the member.

weigl int The weight of a member determines the portion of requests or connections it ser-
vices compared to the other members of the pool. For example, a member with a
weight of 10 receives five times as many requests as a member with a weight of 2.
A value of 0 means the member does not receive new connections but continues to
service existing connections. A valid value is from O to 256. Default is 1.

The member will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the member to either ACTIVE if successfully
updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

* batch update

Set the state of members for a pool in one API call. This may include creating new members,
deleting old members, and updating existing members. Existing members are matched based on
address/port combination.

For example, assume a pool currently has two members. These members have the following
address/port combinations: *192.0.2.15:80° and "192.0.2.16:80°. Now assume a PUT request is
made that includes members with address/port combinations: *192.0.2.16:80” and *192.0.2.17:80’.
The member *192.0.2.15:80° will be deleted because it was not in the request. The member
’192.0.2.16:80° will be updated to match the request data for that member, because it was matched.
The member *192.0.2.17:80” will be created, because no such member existed.

The members will be in the PENDING_CREATE, PENDING_UPDATE, or PENDING_DELETE provi-
sioning_status when it is passed to the driver. The driver will update the provisioning_status of
the members to either ACTIVE or DELETED if successfully updated, or ERROR if the update was not
successful.

The batch update method will supply a list of Member objects. Existing members not in this list
should be deleted, existing members in the list should be updated, and members in the list that do

4.5. Project Specifications 387

Octavia Documentation, Release 17.1.0.dev41

not already exist should be created.

Abstract class definition

-

class
def

Driver (object
member_create(self
"""Creates a new member for a pool.

:param member (object): The member object.

:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not

support one of the configuration options.

raise NotImplementedError

def

def

def

member_delete(self

Deletes a pool member.

:param member (object): The member object.

:return: Nothing if the create request was accepted.

:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.

raise NotImplementedError

member_update(self

Updates a pool member.

:param old_member (object): The baseline member object.
:param new_member (object): The updated member object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not

support one of the configuration options.

raise NotImplementedError

member_batch_update(self
"""Creates, updates, or deletes a set of pool members.

:param members (list): List of member objects.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
(continues on next page)

4.5. Project Specifications 388

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Health Monitor

* create
Creates a health monitor on a pool.
Octavia will pass in the health monitor object with all requested settings.

The health monitor will be in the PENDING_CREATE provisioning_status and OFFLINE operat-
ing_status when it is passed to the driver. The driver will be responsible for updating the pro-
visioning status of the health monitor to either ACTIVE if successfully created, or ERROR if not
created.

The Octavia API will accept and do basic API validation of the create request from the user.
The healthmonitor python object representing the request body will be passed to the driver cre-
ate method as it was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will
inherit the project_id from the parent load balancer.

Healthmonitor object

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_

delay int The interval, in seconds, between health checks.

ex- string The expected HTTP status codes to get from a successful health check. This
pected_coc may be a single value, a list, or a range.

health- string ID of health monitor to create.

moni-

tor_id

http_methc string The HTTP method that the health monitor uses for requests. One of CON-
NECT, DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, or TRACE.

max_retrie int ~ The number of successful checks before changing the operating status of the
member to ONLINE.

max_retrie int The number of allowed check failures before changing the operating status
of the member to ERROR. A valid value is from 1 to 10.

name string Human-readable name of the monitor.

pool_id string The pool to monitor.

timeout int The time, in seconds, after which a health check times out. This value must
be less than the delay value.

type string The type of health monitor. One of HTTP, HTTPS, PING, TCP, or TLS-
HELLO.

url_path string The HTTP URL path of the request sent by the monitor to test the health of
a backend member. Must be a string that begins with a forward slash (/).

e delete

4.5. Project Specifications 389

Octavia Documentation, Release 17.1.0.dev41

Deletes an existing health monitor.
Octavia will pass in the health monitor object as a parameter.

The health monitor will be in the PENDING_DELETE provisioning_status when it is passed to the
driver. The driver will notify Octavia that the delete was successful by setting the provision-
ing_status to DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

* update
Modifies an existing health monitor using the values supplied in the health monitor object.

Octavia will pass in the original health monitor object which is the baseline for the update, and a
health monitor object with the fields to be updated.

As of the writing of this specification the update health monitor object may contain the following:

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_

delay int The interval, in seconds, between health checks.

ex- string The expected HTTP status codes to get from a successful health check. This
pected_coc may be a single value, a list, or a range.

health- string ID of health monitor to create.

moni-

tor_id

http_methc string The HTTP method that the health monitor uses for requests. One of CON-
NECT, DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, or TRACE.

max_retrie int ~ The number of successful checks before changing the operating status of the
member to ONLINE.

max_retrie int ~ The number of allowed check failures before changing the operating status
of the member to ERROR. A valid value is from 1 to 10.

name string Human-readable name of the monitor.

timeout int The time, in seconds, after which a health check times out. This value must
be less than the delay value.

url_path string The HTTP URL path of the request sent by the monitor to test the health of
a backend member. Must be a string that begins with a forward slash (/).

The health monitor will be in the PENDING_UPDATE provisioning_status when it is passed to the
driver. The driver will update the provisioning_status of the health monitor to either ACTIVE if
successfully updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.5. Project Specifications 390

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

L7 Policy

* create
Creates an L7 policy.
Octavia will pass in the L7 policy object with all requested settings.

The L7 policy will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status
of the L7 policy to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
17policy python object representing the request body will be passed to the driver create method as
it was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The 17policy will
inherit the project_id from the parent load balancer.

L7policy object

As of the writing of this specification the create 17policy object may contain the following:

4.5. Project Specifications 391

Octavia Documentation, Release 17.1.0.dev41

Name Type Description

action string The L7 policy action. One of REDIRECT_TO_POOL, REDI-
RECT_TO_URL, or REJECT.

ad- bool Admin state: True if up, False if down.

min_state_t

descrip- string A human-readable description for the L7 policy.

tion

17policy_id string The ID of the L7 policy.

lis- string The ID of the listener.

tener_id

name string Human-readable name of the L7 policy.

position int The position of this policy on the listener. Positions start at 1.

redi- string Requests matching this policy will be redirected to the pool with this ID.

rect_pool_i Only valid if action is REDIRECT_TO_POOL.

redi- string Requests matching this policy will be redirected to this URL. Only valid if

rect_url action is REDIRECT_TO_URL.

rules list A list of 17rule objects.

Creating a Fully Populated L7 policy

If the "rules" option is specified, the provider driver will create all of the child objects in addition
to creating the L7 policy instance.

* delete
Deletes an existing L7 policy.
Octavia will pass in the L7 policy object as a parameter.

The 17policy will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

e update
Modifies an existing L7 policy using the values supplied in the 17policy object.

Octavia will pass in the original L7 policy object which is the baseline for the update, and an L7
policy object with the fields to be updated.

As of the writing of this specification the update L7 policy object may contain the following:

4.5. Project Specifications 392

Octavia Documentation, Release 17.1.0.dev41

Name Type

Description

action string

ad- bool
min_state_1
descrip- string
tion

17policy_id string
name string
position int
redi- string
rect_pool_i

redi- string
rect_url

The L7 policy action. One of REDIRECT_TO_POOL, REDI-
RECT_TO_URL, or REJECT.
Admin state: True if up, False if down.

A human-readable description for the L7 policy.

The ID of the L7 policy.

Human-readable name of the L7 policy.

The position of this policy on the listener. Positions start at 1.

Requests matching this policy will be redirected to the pool with this ID.
Only valid if action is REDIRECT_TO_POOL.

Requests matching this policy will be redirected to this URL. Only valid if
action is REDIRECT_TO_URL.

The L7 policy will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the L7 policy to either ACTIVE if successfully
updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.5. Project Specifications 393

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

L7 Rule

* create
Creates a new L7 rule for an existing L7 policy.
Octavia will pass in the L7 rule object with all requested settings.

The L7 rule will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status
of the L7 rule to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
17rule python object representing the request body will be passed to the driver create method as it
was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will
inherit the project_id from the parent load balancer.

L7rule object

As of the writing of this specification the create 17rule object may contain the following:

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state 1

com- string The comparison type for the L7 rule. One of CONTAINS, ENDS_WITH,

pare_type EQUAL_TO, REGEX, or STARTS_WITH.

invert bool When True the logic of the rule is inverted. For example, with invert True,
equal to would become not equal to.

key string The key to use for the comparison. For example, the name of the cookie to
evaluate.

17policy_id string The ID of the L7 policy.
17rule_id string The ID of the L7 rule.

type string The L7 rule type. One of COOKIE, FILE TYPE, HEADER,
HOST_NAME, or PATH.
value string The value to use for the comparison. For example, the file type to compare.
* delete

Deletes an existing L7 rule.

Octavia will pass in the L7 rule object as a parameter.

4.5. Project Specifications 394

Octavia Documentation, Release 17.1.0.dev41

The L7 rule will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

* update
Modifies an existing L7 rule using the values supplied in the 17rule object.

Octavia will pass in the original L7 rule object which is the baseline for the update, and an L7 rule
object with the fields to be updated.

As of the writing of this specification the update L7 rule object may contain the following:

Name Type Description

ad- bool Admin state: True if up, False if down.

min_state_1

com- string The comparison type for the L7 rule. One of CONTAINS, ENDS_WITH,

pare_type EQUAL_TO, REGEX, or STARTS_WITH.

invert bool When True the logic of the rule is inverted. For example, with invert True,
equal to would become not equal to.

key string The key to use for the comparison. For example, the name of the cookie to
evaluate.

17rule_id string The ID of the L7 rule.

type string The L7 rule type. One of COOKIE, FILE TYPE, HEADER,
HOST_NAME, or PATH.

value string The value to use for the comparison. For example, the file type to compare.

The L7 rule will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the L7 rule to either ACTIVE if successfully up-
dated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

(continues on next page)

4.5. Project Specifications 395

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Flavor

Octavia flavors are defined in a separate specification (see References below). Support for flavors will be
provided through two provider driver interfaces, one to query supported flavor metadata keys and another
to validate that a flavor is supported. Both functions are synchronous.

* get_supported_flavor_keys

Retrieves a dictionary of supported flavor keys and their description.

* validate_flavor
Validates that the driver supports the flavor metadata dictionary.

The validate_flavor method will be passed a flavor metadata dictionary that the driver will validate.
This is used when an operator uploads a new flavor that applies to the driver.

The validate_flavor method will either return or raise a UnsupportedOptionError exception.

Following are interface definitions for flavor support:

(continues on next page)

4.5. Project Specifications 396

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Exception Model

DriverError

This is a catch all exception that drivers can return if there is an unexpected error. An example might be
a delete call for a load balancer the driver does not recognize. This exception includes two strings: The
user fault string and the optional operator fault string. The user fault string, "user_fault_string", will be
provided to the API requester. The operator fault string, "operator_fault_string", will be logged in the
Octavia API log file for the operator to use when debugging.

NotimplementedError

Driver implementations may not support all operations, and are free to reject a request. If the driver does
not implement an API function, the driver will raise a NotImplementedError exception.

4.5. Project Specifications 397

Octavia Documentation, Release 17.1.0.dev41

UnsupportedOptionError

Provider drivers will validate that they can complete the request -- that all options are supported by
the driver. If the request fails validation, drivers will raise an UnsupportedOptionError exception. For
example, if a driver does not support a flavor passed as an option to load balancer create(), the driver
will raise an UnsupportedOptionError and include a message parameter providing an explanation of the
failure.

Driver Support Library

Provider drivers need support for updating provisioning status, operating status, and statistics. Drivers
will not directly use database operations, and instead will callback to Octavia using a new APIL.

Warning

The methods listed here are the only callable methods for drivers. All other interfaces are not consid-
ered stable or safe for drivers to access.

Update provisioning and operating status API

The update status API defined below can be used by provider drivers to update the provisioning and/or
operating status of Octavia resources (load balancer, listener, pool, member, health monitor, L7 policy,
or L7 rule).

4.5. Project Specifications 398

Octavia Documentation, Release 17.1.0.dev41

For the following status API, valid values for provisioning status and operating status parameters are as
defined by Octavia status codes. If an existing object is not included in the input parameter, the status
remains unchanged.

provisioning_status: status associated with lifecycle of the resource. See Octavia Provisioning Status
Codes.

operating_status: the observed status of the resource. See Octavia Operating Status Codes.

The dictionary takes this form:

Update statistics API

Provider drivers can update statistics for listeners using the following API. Similar to the status function
above, a single dictionary with multiple listener statistics is used to update statistics in a single call. If an
existing listener is not included, the statistics for that object will remain unchanged.

The general form of the input dictionary is a list of listener statistics:

(continues on next page)

4.5. Project Specifications 399

https://docs.openstack.org/api-ref/load-balancer/v2/index.html#provisioning-status-codes
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#provisioning-status-codes
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#operating-status-codes

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Get Resource Support

Provider drivers may need to get information about an Octavia resource. As an example of its use, a
provider driver may need to sync with Octavia, and therefore need to fetch all of the Octavia resources
it is responsible for managing. Provider drivers can use the existing Octavia API to get these resources.
See the Octavia API Reference.

API Exception Model

The driver support API will include two Exceptions, one for each of the two API groups:
» UpdateStatusError
» UpdateStatisticsError

Each exception class will include a message field that describes the error and references to the failed
record if available.

(continues on next page)

4.5. Project Specifications 400

https://docs.openstack.org/api-ref/load-balancer/v2/index.html

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

Alternatives

Driver Support Library

An alternative to this library is a REST interface that drivers use directly. A REST implementation can
still be used within the library, but wrapping it in an API simplifies the programming interface.

Data model impact

None, the required data model changes are already present.

REST API impact

None, the required REST API changes are already present.
Security impact

None.

Notifications impact

None.

Other end user impact

Users will be able to direct requests to specific backends using the provider parameter. Users may want
to understand the availability of provider drivers, and can use Octavia APIs to do so.

Performance Impact

The performance impact on Octavia should be minimal. Driver requests will need to be scheduled,
and Octavia will process driver callbacks through a REST interface. As provider drivers are loaded by
Octavia, calls into drivers are through direct interfaces.

Other deployer impact

Minimal configuration is needed to support provider drivers. The work required is adding a driver name
to Octavia’s configuration file, and installing provider drivers supplied by third parties.

4.5. Project Specifications 401

Octavia Documentation, Release 17.1.0.dev41

Developer impact

The proposal defines interaction between Octavia and backend drivers, so no developer impact is ex-
pected.

Implementation
Assignee(s)
Work Items

* Implement loading drivers defined the Octavia configuration.
* Implement scheduling requests to drivers.
* Implement validating flavors with provider drivers.
* Implement getting and testing flavors with provider drivers.
* Implement a no-op driver for testing.
* Implement driver support library functions:
— Update status functions
— Update statistics functions

* Migrate the existing Octavia reference driver to use this interface.

Dependencies

* Octavia API: https://docs.openstack.org/api-ref/load-balancer/

* Flavors: https://docs.openstack.org/octavia/latest/contributor/specs/version1.0/flavors.html

Testing

Tempest tests should be added for testing:
* Scheduling: test that Octavia effectively schedules to drivers besides the default driver.
* Request validation: test request validation API.
* Flavor profile validation: test flavor validation.
* Flavor queries: test flavor queries.
* Statistics updates

Functional API tests should be updated to test the provider APL

Documentation Impact

A driver developer guide should be created.

4.5. Project Specifications 402

https://docs.openstack.org/api-ref/load-balancer/
https://docs.openstack.org/octavia/latest/contributor/specs/version1.0/flavors.html

Octavia Documentation, Release 17.1.0.dev41

References

Octavia API
https://docs.openstack.org/api-ref/load-balancer/v2/index.html

Octavia Flavors Specification
https://docs.openstack.org/octavia/latest/contributor/specs/version1.0/flavors.html

UDP Support
https://storyboard.openstack.org/#!/story/1657091

Problem description

Currently, the default driver of Octavia (haproxy) only supports TCP, HTTP, HTTPS, and TERMI-
NATED_HTTPS. We need support for load balancing UDP.

For some use-cases, UDP load balancing support is useful. One such case are real-time media streaming
applications which are based on RTSP'.

For the Internet of Things (IoT)?, there are many services or applications that use UDP as their trans-
mission protocol. For example: CoAP* (Constrained Application Protocol), DDS* (Data Distribution
Service) for Real-Time systems, and the introduction protocol Thread’.

Applications with high demand for real-time (like video chatting) run on RDUP® (Reliable User Data-
gram Protocol), RTP’ (RealTime Protocol) and UDT® (UDP-based Data Transfer Protocol). These pro-
tocols also are based on UDP.

There isn’t any option in the API for these protocols, which Layer 4 UDP would provide. This means that
customers lack a way to support these services which may be running on VM instances in an OpenStack
environment.

Proposed change

This spec extends the LBaaSv2 API to support UDP as a protocol in Listener and Pool resource requests.

It will require a new load balancing engine to support this feature, as the current haproxy engine only
supports TCP based protocols. If users want a load balancer which supports both TCP and UDP, this
need cannot be met by launching haproxy-based amphora instances. It’s the good time to extend octavia
to support more load balancing scenarios. This spec will introduce how LVS® can work with haproxy
for UDP loadbalancing. The reason for choosing LVS is that we can easily integrate it with the existing
keepalived service. That means we can configure LVS via keepalived, and check member health as
well.

For the current service VM driver implementation, haproxy runs in the amphora-haproxy namespace in
an amphora instance. So we also need to configure keeplived in the same namespace for UDP cases
even in SINGLE topology. For ACTIVE_STANDBY, keepalived will serve two purposes: UDP and

! https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol

2 https://en.wikipedia.org/wiki/Internet_of_things

® https://en.wikipedia.org/wiki/Constrained_Application_Protocol

4 https://en.wikipedia.org/wiki/Data_Distribution_Service

3 https://en.wikipedia.org/wiki/Thread_(network_protocol)

8 https://en.wikipedia.org/wiki/Reliable_User_Datagram_Protocol
7 https://de.wikipedia.org/wiki/Real-Time_Transport_Protocol

8 https://en.wikipedia.org/wiki/UDP-based_Data_Transfer_Protocol
® http://www.linuxvirtualserver.org/

4.5. Project Specifications 403

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/octavia/latest/contributor/specs/version1.0/flavors.html
https://storyboard.openstack.org/#!/story/1657091
https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://en.wikipedia.org/wiki/Data_Distribution_Service
https://en.wikipedia.org/wiki/Thread_(network_protocol
https://en.wikipedia.org/wiki/Reliable_User_Datagram_Protocol
https://de.wikipedia.org/wiki/Real-Time_Transport_Protocol
https://en.wikipedia.org/wiki/UDP-based_Data_Transfer_Protocol
http://www.linuxvirtualserver.org/

Octavia Documentation, Release 17.1.0.dev41

VRRP. So, one instance of keepalived must be bound in the namespace, along with the LVS instance
it configures.

The main idea is to use keepalived to configure and manage LVS'" and its configuration. We also
need to check the members’ statuses with keepalived instead of haproxy, so there must be a different
workflow in Octavia resources and deployment topologies. The simplest implementation is LVS within
NAT mode, so we will only support this mode to start. If possible we will add other modes in the future.

Currently, a single keepalived instance can support multiple virtual server configurations, but for min-
imal impact of reconfiguration to the existing listeners, we’d better not to refresh all the keepalived
configuration files and restart the instances, because that would cause all listeners traffic to be blocked
if the LVS configuration maintained by keepalived is removed. This spec proposes that each listener
will have its own keepalived process, but that process won’t contain a VRRP instance, just the con-
figuration of virtual server and real servers. That means if the Loadbalancer service is running with
ACTIVE-STANDBY topology, each amphora instance will run multiple keepalived instances, the
count being N+1 (where N is the UDP Listener count, and +1 is the VRRP instance for HA). The ex-
isting keepalived will be used, but each "UDP Listener keepalived process" will need to be controlled
by health check of the Main VRRP keepalived process. Then the VIP could be moved to the BACKUP
amphorae instance in ACTIVE/STANDBY topology if there is any issue with these UDP keepalived
processes. The health check will simply reflect whether the keepalived processes are alive.

The workflow for this feature contains:
1. Add a new keepalived jinja template to support LVS configuration.
2. Add netcat into dib-elements for supporting all platforms.

3. Extend the ability of amphora agent to run keepalived with LVS configuration in amphora in-
stances, including the init configuration, such as systemd, sysvinit and upstart.

4. Enhance the session persistence to work with UDP and enable/disable the "One-Packet-
Scheduling" option.

5. Update the database to allow listeners to support both tcp and udp on the same port, add udp as a
valid protocol and ONE_PACKET_SCHEDULING as a valid session_persistence_type in the database.

6. Setup validation code for supported features of UDP load balancing (such as session persistence,
types of health monitors, load balancing algorithms, number of L7 policies allowed, etc).

7. Extend the existing LBaaSv2 API in Octavia to allow udp parameters in the Listener resource.

8. Extend the Loadbalancer/Listener flows to support udp loadbalancer in the particular topologies.

Alternatives

Introduce a new UDP driver based on LVS or other Loadbalancer engines. Then find a way to fix the gap
of the current Octavia data models which have a strong relationship with HTTP which based on TCP.

Provide a new driver provider framework to change the amphorae backend from haproxy to some other
load balancer engines, for example, if we introduce LVS driver, we may just support the simple L7 func-
tions with LVS, as it’s a risk to change provider from existing haproxy-based amphora instances to LVS
ones. If possible, we need to limit the API to not support fields/resources if the backend driver is LVS,
such as "insert_headers" in Listener, L7Policies, L7Rules and etc, a series fields/resources that related to
L7 layer. The all things are to match the real ability of backend. That means all the configuration of L7
resources will be ignored or translate to LVS configuration if the backend is LVS. For other load balancer
engines which support UDP, such as f5/nginx, we may also need to do this.

10 https://github.com/acassen/keepalived/blob/master/doc/keepalived.conf. SYNOPSIS#L.559

4.5. Project Specifications 404

https://github.com/acassen/keepalived/blob/master/doc/keepalived.conf.SYNOPSIS#L559

Octavia Documentation, Release 17.1.0.dev41

Combining the 2 load balancer engines for a simple reference implementation, LVS would only support
the L4 layer LB, and haproxy would provide the L7 LB functionality which is more specific and de-
tailed. For other engines like f5/nginx, Octavia can directly pass the UDP parameters to backend. This
is very good for the community environment. Then Octavia may support more powerful and complex
LoadBalancing solutions.

Data model impact

There may not be any data model changes, this spec just allows a user to input the udp protocol to
create/update the Listener and Pool resources. So here, just extend the SUPPORTED_PROTOCOLS to
add the value PROTOCOL_UDP.

Also add a record into the table protocol for PROTOCOL_UDP.

As LVS only operates in Layer 4, there are some conflicts with current Octavia data models. There are
some limitation below:

1. No L7 policies allowed.

2. For session persistence, this spec will intro persistence_timeout (sec) and
persistence_granularity (subnet mask)'' in the virtual server configuration. The function
will be based on the LVS. With no session persistence specified, LVS will be configured with a
persistence_timeout of 0. There are two valid session persistence options for UDP (if session
persistence is specified), SOURCE_IP and ONE_PACKET_SCHEDULING.

3. Intro a’'UDP_CONNECT’ type for UDP in healthmonitor, for the simple, only check the UDP
port is open by nc command. And for current API of healthmonitor, we need to make clear the
meaning of LVS with the current heal thmonitor API like the mapping below

Option Healthmonitor Description Keepalived LVS De-
Mapping scription
Healthmonitor-
>LVS
delay -> de- Set the time in seconds, between sending probes to Delay timer for ser-
lay_loop members. vice polling.
max_retires_dow Set the number of allowed check failure before ~Number of retries be-
-> retry changing the operating status of the member to ER- fore fail.

ROR.

timeout -> de- Set the maximum time, in seconds, that a monitor delay before retry (de-
lay_before_retry waits to connect before it times out. This value must fault 1 unless other-
be less than the delay value. wise specified)

4. For UDP load balancing, we can support the same algorithms at first. Such as SOURCE_IP(sh),
ROUND_ROBIN(rr) and LEAST_CONNECTIONS(Ic).

" http://www.linuxvirtualserver.org/docs/persistence.html

4.5. Project Specifications 405

http://www.linuxvirtualserver.org/docs/persistence.html

Octavia Documentation, Release 17.1.0.dev41

REST API impact

* Allow the protocol fields to accept udp.
* Allow the healthmonitor. type field to accept UDP type values.

* Add some fields to session_persistence that are specific to UDP though SOURCE_IP type and
a new type ONE_PACKET_SCHEDULING.

Create/Update Listener Request:

Note

It is the same as the current relationships, where one 1istener will have only one default pool for
UDP. A loadbalancer can have multiple 1isteners for UDP loadbalancing on different ports.

Create/Update Pool Request
SOURCE_TIP type case:

ONE_PACKET_SCHEDULING type case:

4.5. Project Specifications 406

Octavia Documentation, Release 17.1.0.dev41

Note

The validation part for UDP will just allow to set the specific fields which associated with UDP. For
example, user can not set the protocol with "udp" and insert_headers in the same request.

Create/Update Health Monitor Request:

Note

We don’t allow to create a healthmonitor with any other L7 parameters, like "http_method",
"url_path" and "expected_code" if the associated pool support UDP. But for the positional option
"max_retries", it’s different from API description in keepalived/LVS, so the default value is the same
as the value of "max_retires_down" if user specified. In general, "max_retires_down" should be over-
ridden by "max_retries".

4.5. Project Specifications 407

Octavia Documentation, Release 17.1.0.dev41

Security impact

The security should be affected by the UDP server, we need to add another neutron security group rule
to the existing security group to support UDP. Security impact is minimal as the keepalived/LVS will be
running in the tenant traffic network namespace.

Notifications impact

No expected change.

Other end user impact

Users will be able to pass "UDP" to create/update Listener/Pool resources for UDP load balancer.

Performance Impact

* If enabled driver is LVS, it will have a good performance for L4 load balancing, but lack the any
functionality in L7.

* As this spec introduces LVS and Haproxy working together, if users update the Listener or Pool
resources in a LoadBalancer instance frequently, the loadbalancer functionality may be delayed
for a while as the refresh of UDP related LVS configuration.

* As we need to add keepalived monitoring process for each UDP listeners, it is necessary to consider
RAM about amphora VM instances.

Other deployer impact

No expected change.

Developer impact

No expected change.

Implementation
Assignee(s)

zhaobo

Work Items

» Add/extend startup script templates for keepalived processes, including configuration.

* Extend the ability of existing amphora agent and driver to generate and control LVS by
keepalived in amphora instances.

* Extend the exist Octavia V2 API to access udp parameter in Listener and pools resources.
* Extend the Loadbalancer/Listener flows to support udp loadbalancer in the particular topologies.
* Extend Octavia V2 API to accept UDP fields.

* Add the specified logic which involved into haproxy agent and the affected resource workflow in
Octavia.

4.5. Project Specifications 408

Octavia Documentation, Release 17.1.0.dev41

Add API validation code to validate the fields of UDP cases.

Add Unit Tests to Octavia.

Add API functional tests.

* Add scenario tests into octavia tempest plugin.

Update CLI and Octavia-dashboard to support UDP fields input.

¢ Documentation work.

Dependencies

None

Testing

Unit tests, Functional tests, API tests and Scenario tests are necessary.

Documentation Impact

The description of Octavia API reference will need to be updated. The load balancing cookbook should
be also updated. Make it clear the difference of healthmonitor behaviors in UDP cases.

References

4.5.6 Version 14.0 (caracal)
Support SR-IOV network ports in Octavia

The maximum performance of Octavia Amphora based load balancers is often limited by the Software
Defined Networking (SDN) used in the OpenStack deployment. There are users that want very high
connection rates and high bandwidth through their load balancers.

This specification describes how we can add Single Root I/O Virtualization (SR-IOV) support to Octavia
Amphora load balancers.

Problem description

* Users would like to use SR-IOV VFs for the VIP and member ports on their Amphora based load
balancers for improved maximum performance and reduced latency. Initial testing showed a 9%
increase in bandwidth and a 70% drop in latency through the load balancer when using SR-IOV.

» Users are overflowing tap interfaces with bursty "thundering herd" traffic such that packets are
unable to make it into the Amphora instance.

Proposed change

Since Octavia hot plugs the network interfaces into the Amphora instances, the first work will be docu-
menting how to configure nova to properly place the Amphorae on hosts with the required hardware and
networks. There is some existing documentation for this in the nova guide, but we should summarize it
with a focus on Amphora.

This documentation will include how to configure host aggregates, the compute flavor, and the Octavia
flavor to properly schedule the Amphora instances.

4.5. Project Specifications 409

Octavia Documentation, Release 17.1.0.dev41

In general, the SR-IOV ports will be handled the same as ports are with the AAP driver, including reg-
istering the VIP as an AAP address even though this is technically not required for SR-IOV ports, it will
make sure the address is allocated in neutron. Only the base VRRP ports will allocate an SR-IOV VF as
the AAP port will be "unbound" with a vnic_type of "normal".

The create load balancer flow creation will be enhanced to create the base VRRP port using an SR-
IOV VF if the Octavia flavor has SRIOV_VIP set to true. If placement/nova scheduling fail to find
an appropriate host or the SR-IOV VF port fails to plug into the Amphora, additional logging may be
required, but the normal revert flows should continue to handle the error situation and mark the load
balancer in provisioning status ERROR.

The building of the listener create and update flows will need to be updated to include extra tasks to
configure nftables inside the Amphora to replace the functionality of the neutron security groups lost
when using SR-IOV ports.

The Amphora agent will need to be enhanced for a new "security group" endpoint and to configure the
Amphora nftables. The nftables rules will be added as stateless rules, meaning conntrack will not be
enabled. The load balancing engines are already managing state for the flows, so there is no reason to
also have state management in the firewall.

I am proposing we only support nftables inside the Amphora as most distributions are moving away from
iptables towards nftables.

Alternatives

There are two obvious alternatives:
* Do nothing and continue to rely on SDN performance.
» Use provider networks to remove some of the overhead of the SDN.

Itis not clear that SDN performance can improve to a level that would meet the needs of Octavia Amphora
load balancers and provider networks still have some overhead and limitations depending on how they
are implemented (tap interfaces, etc.)

Data model impact

The load balancer and member objects will be expanded to include the vnic type for the ports.

REST API impact

The Octavia API will be expanded to include the vnic type used for the VIP and member ports. The field
with either be "normal” for OVS/OVN ports or "direct" for SR-IOV ports. This field with use the same
terminology as neutron uses.

The Amphora API will need to be expanded to have a security group endpoint. This endpoint will accept
POST calls that contain the: allowed_cidrs, protocol, and port information required to configure the
appropriate nftable rules.

When this endpoint is called, the amphora agent will flush the current tables and build up a fresh table.
There will be chains for the VIP, VRRP, and member ports. This will be implemented using the python
nftables bindings.

4.5. Project Specifications 410

Octavia Documentation, Release 17.1.0.dev41

Security impact

Neutron security groups do not work on SR-IOV ports, so the amphora agent will need to manage nftables
for the SR-IOV ports.

There is no current use case where Octavia would need TRUST mode VFs, so this specification does not
include any discussion of enabling TRUST on VFs used by the Octavia amphora driver. The amphora
will treat TRUST VFs as if they were not TRUST enabled.

Notifications impact

None

Other end user impact

End users will need to select the appropriate Octavia flavor at load balancer creation time. They will
also need to specify the proper network that matches the network(s) defined in the compute and Octavia
flavors.

Performance Impact

This proposal is specifically about improving data plane performance.

I would expect little change to the provisioning time, or possibly a faster provisioning time, when using
SR-IOV ports as it should require fewer API calls to Neutron.

Other deployer impact

If deployers want SR-IOV interface support at deployment time, they will need to configure the required
compute host aggregates, compute flavors, and octavia flavor supporting the SR-IOV enabled hosts and
networks.

We also recommend that the FDB L2 agent be enabled, when needed, so that virtual ports on the same
compute host can communicate with the SR-IOV ports.

The Amphora images will now require the nftables and python3-nftables packages.
Developer impact

There should be minimal developer impact as it is enhancing existing flows.

Implementation
Assignee(s)

Primary assignee:
johnsom

Work Items

1. Document the required host aggregates, compute flavor, and Octavia flavor.

2. Update the load balancer "create" flow creation to use the SR-IOV tasks when creating the VRRP
base ports.

4.5. Project Specifications 411

Octavia Documentation, Release 17.1.0.dev41

3. Update the load balancer data model to store the port vnic type.
4. Expand the load balancer API to include the vnic type used for the VIP.

5. Update the listener create/update flows to add the extra tasks to configure the nftables inside the
Amphora.

6. Add a security group endpoint to the Amphora agent to allow configuring and updating the nftables
inside the Amphora.

7. Add any necessary logging and error handling should nova fail to attach SR-IOV ports.
8. Add the required unit and functional tests for the new code.
9. Add the required tempest tests to cover the usage scenarios (pending igb driver support in the PTI

platforms)

Dependencies

None

Testing

Currently this feature cannot fully be tested in the OpenDev gates as it will require an SR-IOV capable
nic in the test system.

There will be unit and function test coverage.

Recently gemu has added a virtual device, the "igb" device, that is capable of emulating an SR-IOV
device. Versions of gemu and the associated libraries that include this new device are not yet shipping
in any distribution supported by OpenStack.

When the "igb" device becomes available, we should be able to run scenario tests with SR-IOV VIP and
member ports.

Performance testing will be out of scope because the OpenDev testing environment does not contain

SR-IOV capable NICs and is not setup for data plane performance testing.

Documentation Impact

An administrative document will need to be created that describes the process required to setup a compute
and octavia flavor for SR-IOV devices.

References

* https://docs.openstack.org/neutron/latest/admin/config-sriov.html
* https://docs.openstack.org/nova/latest/reference/scheduler-hints-vs-flavor-extra-specs.html

* https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/
granular-resource-requests.html

* https://www.qemu.org/docs/master/system/devices/igb.html

4.5. Project Specifications 412

https://docs.openstack.org/neutron/latest/admin/config-sriov.html
https://docs.openstack.org/nova/latest/reference/scheduler-hints-vs-flavor-extra-specs.html
https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/granular-resource-requests.html
https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/granular-resource-requests.html
https://www.qemu.org/docs/master/system/devices/igb.html

Octavia Documentation, Release 17.1.0.dev41

4.5.7 Version 15.0 (Dalmatian)
Support for Custom Security Groups for VIP Ports

This specification describes how Octavia can allow users to provide their own Neutron Security Groups
for the VIP Port of a load balancer.

Problem description

Many users have requested a method for customizing the security groups of the VIP ports of a load
balancer in Octavia. There are some benefits from using custom security groups:

* Allowing incoming connections only from specific remote group IDs.

* Having a unique API (The networking Security Groups API) to configure the network security for
all the users’ resources.

Note: The specification is not about Security Groups for the member ports, this feature could be the
subject of another spec.

Proposed change

A user will be able to provide a vip_sg_ids parameter when creating a load balancer.

This parameter will be optional and defaulted to None. When set, it contains a list of Neutron Security
Group IDs. When it’s not set, the behavior of the VIP port would not change. In this document, these
security groups are called Custom security groups, as opposed to the existing Octavia-managed security
groups.

If the parameter is set, Octavia would apply these Custom security groups to the VIP and Amphora ports
(known as VRRP ports internally). Then Octavia would create and manage a security group (Octavia-
managed security group) with rules for its internal communication (haproxy peering, VRRP communi-
cation). Thus the VIP port would have more than one Neutron security group.

No rules based on the port or the protocol of the listeners would be managed by Octavia, for each new

listener, the user would have to add their own rules to their Custom security groups.

Alternatives

An alternative method would be to implement an allowed_remote_group_ids parameter when cre-
ating a load balancer. Users would have a feature that covers the first point described in "Problem De-
scription”.

Data model impact

This feature requires some changes in the data model, a new table VipSecurityGroup is added, it
contains:

* load_balancer_id: the UUID of the load balancer (which also represents a Vip)
e sg_id: the UUID of a Custom Security Group
A load balancer (identified by its ID) or a VIP are linked to one or more Custom Security Groups.

It also requires an update of the data model in octavia-lib.

4.5. Project Specifications 413

Octavia Documentation, Release 17.1.0.dev41

REST API impact

The POST /v2/lbaas/loadbalancers endpoint is updated to accept an optional vip_sg_ids parameter (a
list of UUIDs that represents Custom Security Groups).

If the parameter is set, Octavia checks that the Custom security groups exist and that the user is allowed
to use them, then Octavia creates new VIPSecurityGroup objects with these new parameters.

The PUT /v2/lbaas/loadbalancers endpoint is also updated, allowing to update the list of Custom Security
Groups.

The vip_sg_ids parameter is also added to the reply of the GET method.

Using vip_sg_ids is incompatible with some existing features in Octavia, like allowed_cidrs in the
listeners. Setting allowed_cidrs in a load balancer with vip_sg_ids should be denied, updating the
vip_sg_ids of a load balancer that includes listeners with allowed_cidrs too.

vip_sg_ids is also incompatible with SR-IOV enabled load balancers and other provider drivers.
Security impact

When this feature is enabled, Octavia no longer handles the security of the VIP port, the users are re-
sponsible of the configuration of the Custom Security Groups.

A RBAC policy is added to Octavia, an administrator can limit the access to this feature to a specific role.
Notifications impact

None.

Other end user impact

The impact for the end user is that they are responsible for allowing the incomming traffic to their load
balancer. The creation of a new listener would request at least 2 API calls, one for creating the listener
in Octavia, one for adding a new security group rule to the Custom security group.

Performance Impact

Performance could be impacted if the user adds too many rules to the Custom security group, but this
issue is outside the scope of Octavia.

Other deployer impact

None.

Developer impact

Impact is minimal, a few changes in the API and in the DB, only a few new conditionals in the al-
lowed_address_pairs module.

It could have a more significant impact if this feature is added to the octavia-dashboard.

4.5. Project Specifications 414

Octavia Documentation, Release 17.1.0.dev41

Implementation
Assignee(s)

Primary assignee:
gthiemonge

Work Items

1. Update the data model of the VIP port in octavia_lib and octavia.
Update the API to handle the new vip_sg_id parameter.

Update the allowed_address_pairs module to handle this new feature.
Update the api-ref and the user guide.

Add required unit and functional tests.

Add support to python-octaviaclient and openstacksdk

N ok weN

Add tempest tests for this feature.

Dependencies

None.

Testing

The feature can easily be tested with tempest tests.
* creation of a load balancer and its Custom security groups, check that it’s reachable

* update the list of Custom security groups, check that the connectivity to the load balancer is im-
pacted.

Documentation Impact

The feature will be included in the cookbook. The api-ref and feature matrix will be also updated.

References
None.

Support for traffic rate limiting in Octavia

Rate limiting is an essential technique for managing the traffic that is handled by a load balancer and for
ensuring fairness and system stability.

Problem description

Without rate limiting malicious clients and bots may be able to attack a server by flooding it with traffic
or requests. Rate limiting can help to limit the amount of resources that single clients can allocate on
server side and therefor can help to mitigate DoS attacks.

4.5. Project Specifications 415

Octavia Documentation, Release 17.1.0.dev41

Octavia already allows to limit the number of concurrent connections by using the connection_limit
option when configuring a listener. This option will continue to exist and will work independently of this
new rate limiting feature.

Proposed change

Both the data model and the REST API need to be extended. The concept of rate limit policies and rate
limit rules allows to manage rules for rate limiting and to apply them to listeners. This document refers
to them as policies and rules for simplicity.

A policy consists of one or more rules. Each policy defines an action that specifies the rate limiting
method that should be used. Rules within a policy will be combined using a logical AND operation. That
means all rules within a policy need to be broken before rate limiting gets applied. Multiple policies on
a single listener logically OR each other.

Rate limiting can be implemented in various ways using different metrics for different protocols. Hence,
this specification tries to be as flexible as possible while keeping the API simple. Drivers may choose
to implement only a subset of the possible configuration variants, or even none of them. The algorithm
used for rate limiting is considered an implementation detail of the driver and out of the scope of this
document.

Alternatives

Rate limiting for all request based protocols (HTTP protocols) could be done by extending the L7 policy
API and by managing rules as L7 rules.

Rate limiting for all TCP based protocols could be supported and configured using the listener APIL.

Splitting the configuration between two different APIs may confuse users, however. Using a separate
API for rate limiting seems like the cleaner approach.

Data model impact

A new RateLimitPolicy model class contains data about policies. Its attributes are:
e id (string)
* name (string)
* description (string)
* rules (RateLimitRules)
* action (string)
e listener_id (string)
* listener (string)
e enabled (boolean)
* provisioning_status (string)
* operating_status (string)
* project_id (string)
e created_at (DateTime)

e updated_at (DateTime)

4.5. Project Specifications 416

Octavia Documentation, Release 17.1.0.dev41

* tags (string)

The rules attribute forms a one-to-many relationship with a new RateLimitRule model class. action
defines the rate limiting method. Possible values are DENY (respond with HTTP 429), REJECT (close the
connection with no response), SILENT_DROP (like REJECT, but without client notification) QUEUE (queue
new requests, "leaky bucket") using a Python enum. The existing Listener model class gets a new
one-to-may relationship with the RateLimitPolicy model class using a new rate_limit_policies
attribute. That means a listener may have multiple policies, but a policy can be linked to only one listener.

The new RateLimitRule model class defines a specific rate limiting rule. Its attributes are:
e id (string)
* name (string)
* project_id (string)
* metric (string)
* threshold (integer)
* interval (integer, defaults to 30)
* urls (ScalarListType)
* provisioning_status (string)
* operating_status (string)
* tags (string)

Possible values of metric are REQUESTS REQUESTS_PER_URL, KBYTES and PACKETS. interval de-
notes the time interval in seconds in which the metric gets measured for each client. threshold defines
the threshold at which the rate gets limited. The urls field defines the URL paths for the specific rule
and is ignored if metric is not REQUESTS_PER_URL.

REST API impact

If not stated otherwise the attributes in the responses match with the ones in the data model. The rela-
tionships will be shown using IDs of related objects.

Listener

The listener API gets a new rate_limit_policies (Optional) attribute. Valid values are null (the
default) or a list of policy IDs.

Rate Limit Policy

The request of the POST /v2/lbaas/ratelimitpolicies and PUT /v2/lbaas/
ratelimitpolicies/{policy_id} methods of the Rate Limit Policy API takes the attributes
name (Optional), description (Optional), listener_id, action, enabled (Optional), project_id
(Optional), tags (Optional). The response contains all attributes in the data model. The GET /v2/
lbaas/ratelimitpolicies method supports the attributes the project_id (Optional) and fields
(Optional). The response is a list of policies filtered by the optional project_id and containing the
desired fields (or all). The endpoint /v2/1baas/ratelimitpolicies/{policy_id} supports the
GET and DELETE methods.

4.5. Project Specifications 417

Octavia Documentation, Release 17.1.0.dev41

Rate Limit Rule

The GET /v2/lbaas/ratelimitpolicies/{policy_id}/rules method behaves like the GET
method for the policy, but for rules. The POST /v2/lbaas/ratelimitpolicies/{policy_id}/
rules method accepts the request attributes listener_id, project_id (Optional), metric,
threshold, interval (Optional), urls (Optional) tags (Optional). The GET /v2/lbaas/
ratelimitpolicies/{policy_id}/rules/{rule_id} request accepts an optional fields at-
tribute. The PUT /v2/lbaas/ratelimitpolicies/{policy_id}/rules/{rule_id} method ac-
cepts the request attributes, “project_id‘ (Optional), metric, threshold, interval (Optional), urls
(Optional), tags (Optional). The DELETE /v2/lbaas/ratelimitpolicies/{policy_id}/rules/
{rule_id} method has no response body.

Security impact

None.

Notifications impact

None.

Other end user impact

None.

Performance Impact

Rate limiting is an optional feature and has no performance impact in a default configuration. Depending
on the complexity of the rules and the implementation, some processing overhead may impact perfor-
mance. In the ACTIVE/STANDBY topology some additional network overhead for synchronization of
request statistics (ie. stick tables for Amphorae) is to be expected.

Overall, however, fairness and performance can improve when using rate limiting.
Other deployer impact

Deployers might want to review the RAM setting of the Nova flavor that is used for the load balancers.
Rate limiting will require some additional memory on Amphorae, depending on the number of rules and
the interval setting.

Developer impact

Driver developers are impacted by the extended API and data model that allows them to implement the
new feature in future versions.

Implementation

The reference implementation using the Amphora driver will use HAProxy’s own rate limiting capabili-
ties. In addition to limiting the number of HTTP requests it will also be possible to limit the number of
HTTP requests by URL path’. The sliding window rate limiting algorithm will be used'.

3 https://www.haproxy.com/documentation/haproxy-configuration-tutorials/traffic- policing/
#rate-limit-http-requests-by-url-path
! https://www.haproxy.com/blog/four-examples-of-haproxy-rate-limiting

4.5. Project Specifications 418

https://www.haproxy.com/documentation/haproxy-configuration-tutorials/traffic-policing/#rate-limit-http-requests-by-url-path
https://www.haproxy.com/documentation/haproxy-configuration-tutorials/traffic-policing/#rate-limit-http-requests-by-url-path
https://www.haproxy.com/blog/four-examples-of-haproxy-rate-limiting

Octavia Documentation, Release 17.1.0.dev41

Rate limiting based on the TCP protocol is not part of the initial implementation, but might be added in
a future version. This could be done using nftables rules’.

Assignee(s)

Primary assignee:
Tom Weininger

Work Items

1. Adjust API documentation
Create user documentation
Implement HTTP rate limiting in Amphora driver

Implement HTTP by URL rate limiting in Amphora driver

ok v

Implement unit tests

Dependencies

None.

Testing

Testing should focus on API changes, verification and correctness of generated HAProxy configuration.

Documentation Impact

API and user documentation will need to be extended.

References

Load balancer resizing
Link to blueprint: https://blueprints.launchpad.net/octavia/+spec/octavia-resize-loadbalancer
This spec’s goal is to describe the functionality of resizing of load balancers. The main aim of this new

feature is to enable you to change the flavor directly from the APL

Problem description

Today’s users can’t easily change the flavor. They have to recreate their load balancer with the new flavor
and migrate their configurations such as 17 rules, listeners, etc. This can be very tedious for a user who
wants to quickly resize his load balancer. It can be especially complicated to script.

Proposed change

The proposed change would be to add an endpoint to allow load balancer resizing. It would also be easy
to cancel a resize in progress and return to the previous flavor.

2 https://wiki.nftables.org/wiki-nftables/index.php/Meters

4.5. Project Specifications 419

https://blueprints.launchpad.net/octavia/+spec/octavia-resize-loadbalancer
https://wiki.nftables.org/wiki-nftables/index.php/Meters

Octavia Documentation, Release 17.1.0.dev41

To achieve this, the endpoint will launch a workflow to initiate a failover with the new flavor ID. This
will involve patching the get_failover_LB_flow to add the flavorld parameter. At the end of the workflow
the flavor_id will be updated in the loadbalancer table.

A check will be added before the start of the failover to prevent migration to a flavor profile topology
different from the original one. A user cannot migrate from a flavorprofile standalone to active/passive.

If a problem occurs during resizing, the load balancer status will be set to ERROR. The flavor will remain
the same in database, allowing the user to perform a failover or retry the same call.

Alternatives
* Rebuild the vm of the loadbalancer with the new flavor compute.
* Use the "backup" and "restore".

Data model impact

None

REST API impact

Add one endpoint in /2.0/lbaas/loadbalancers.
To run this endpoint, the user must have the role load-balancer:write".

Start a resize of a load balancer:

Table 3: Response code

Code Description

202 Accepted Resize starting

400 Bad request Resize object is invalid

401 Unauthorized X-Auth-Token is invalid

403 Forbidden X-Auth-Token is valid, but the associated project does not have the appropriate
role/scope

404 Not Found Load balancer not found

Security impact
None

Notifications impact

Add a notification to announce a loadbalancer resize.

4.5. Project Specifications 420

Octavia Documentation, Release 17.1.0.dev41

Other end user impact

Add one command to launch resize in CLI client.

Start a resize: openstack loadbalancer resize
--flavor <flavor-id|flavor-name> <Ib-id|lb-name>

Add functions to resize in the openstacksdk.

Performance Impact

None

Other deployer impact

None

Developer impact

None
Implementation
Assignee(s)
TBD

Work ltems

* Create endpoints

* Patch the ger_failover_LB_flow to add flavorld parameter.

¢ Add unit tests

Add API functional tests
* Add tempest tests
* Update Octavia CLI and OpenstackSDK

¢ Write Documentation

Dependencies

None

Testing

Tempest tests should be added for testing this new feature:
* Create a loadbalancer

* Try to resize

4.5. Project Specifications

421

Octavia Documentation, Release 17.1.0.dev41

Documentation Impact

* A user guide to explain how that works.

* Add a note on the fact that some flavor changes can cause data plane downtime. Similarly, going
from a newer image tag to an older one may cause failures or features to be disabled.

References

None

4.6 Module Reference

4.6.1 octavia
octavia package

Subpackages

octavia.amphorae package

Subpackages

octavia.amphorae.backends package

Subpackages

octavia.amphorae.backends.agent package

Subpackages

octavia.amphorae.backends.agent.api_server package

Submodules
octavia.amphorae.backends.agent.api_server.amphora_info module

class AmphoralInfo (osutils)

Bases: object

compile_amphora_details (extend_lvs_driver=None)
compile_amphora_info (extend_Ilvs_driver=None)

get_interface(ip_addr)

octavia.amphorae.backends.agent.api_server.certificate_update module

upload_server_cert()

octavia.amphorae.backends.agent.api_server.haproxy_compatibility module

get_haproxy_versions()

Get major and minor version number from haproxy

4.6. Module Reference 422

Octavia Documentation, Release 17.1.0.dev41

Returns major_version
The major version digit

Returns minor_version
The minor version digit

process_cfg_for_version_compat (haproxy_cfg)

octavia.amphorae.backends.agent.api_server.keepalived module
class Keepalived
Bases: object

manager_keepalived_service (action)

upload_keepalived_config()

octavia.amphorae.backends.agent.api_server.keepalivedlvs module
class KeepalivedLvs
Bases: LvsListenerApiServerBase

delete_lvs_listener (listener_id)

Delete a LVS Listener from a amphora

Parameters
listener_id -- The id of the listener

Returns
HTTP response with status code.

Raises
Exception -- If unsupported initial system of amphora.

get_all_lvs_listeners_status()
Gets the status of all UDP listeners

Gets the status of all UDP listeners on the amphora.

get_lvs_listener_config(listener_id)
Gets the keepalivedlvs config

Parameters
listener_id -- the id of the listener

manage_lvs_listener (listener_id, action)

Gets the LVS Listener configuration details
Parameters
» listener_id -- the id of the LVS Listener
* action -- the operation type.

Returns
HTTP response with status code.

Raises
Exception -- If the listener is failed to find.

4.6. Module Reference

Octavia Documentation, Release 17.1.0.dev41

upload_lvs_listener_config(listener_id)
Upload the configuration for LVS.

Parameters
listener_id -- The id of a LVS Listener

Returns
HTTP response with status code.

Raises
Exception -- If any file / directory is not found or fail to create.

octavia.amphorae.backends.agent.api_server.loadbalancer module
class Loadbalancer
Bases: object
delete_certificate(/b_id, filename)
delete_l1b(lb_id)
get_all_listeners_status (other_listeners=None)
Gets the status of all listeners

This method will not consult the stats socket so a listener might show as ACTIVE but still be
in ERROR

Currently type==SSL is also not detected
get_certificate_md5 (/b_id, filename)
get_haproxy_config(/b_id)

Gets the haproxy config

Parameters
listener_id -- the id of the listener

start_stop_lb(/b_id, action)
upload_certificate(lb_id, filename)
upload_haproxy_config(amphora_id, Ib_id)
Upload the haproxy config
Parameters
» amphora_id -- The id of the amphora to update
* 1b_id -- The id of the loadbalancer

class Wrapped (stream_)

Bases: object
get_md5Q)

read(line)

4.6. Module Reference 424

Octavia Documentation, Release 17.1.0.dev41

octavia.amphorae.backends.agent.api_server.lvs_listener_base module
class LvsListenerApiServerBase

Bases: object

Base LVS Listener Server API

abstract delete_lvs_listener (listener_id)

Delete a LVS Listener from a amphora

Parameters
listener_id -- The id of the listener

Returns
HTTP response with status code.

Raises
Exception -- If unsupported initial system of amphora.

abstract get_all_lvs_listeners_status()
Gets the status of all LVS Listeners

This method will not consult the stats socket so a listener might show as ACTIVE but still be
in ERROR

Returns
a list of LVS Listener status

Raises
Exception -- If the listener pid located directory is not exist

abstract get_lvs_listener_config(listener_id)
Gets the LVS Listener configuration details

Parameters
listener_id -- the id of the LVS Listener

Returns
HTTP response with status code.

Raises
Exception -- If the listener is failed to find.

get_subscribed_amp_compile_info()
abstract manage_lvs_listener (listener_id, action)
Gets the LVS Listener configuration details
Parameters
» listener_id -- the id of the LVS Listener
* action -- the operation type.

Returns
HTTP response with status code.

Raises
Exception -- If the listener is failed to find.

4.6. Module Reference 425

Octavia Documentation, Release 17.1.0.dev41

abstract upload_lvs_listener_config(listener_id)
Upload the configuration for LVS.

Parameters
listener_id -- The id of a LVS Listener

Returns
HTTP response with status code.

Raises

Exception -- If any file / directory is not found or fail to create.

octavia.amphorae.backends.agent.api_server.osutils module

class BaseOS (os_name)

Bases: object

classmethod bring_interface_up (interface, name)
classmethod get_os_util()

write_interface_file (interface, ip_address, prefixlen)

write_port_interface_file(interface, fixed_ips, mtu, is_sriov=False)

write_vip_interface_file (interface, vips, mtu, vrrp_info, fixed_ips=None, is_sriov=False)

class CentOS (os_name)
Bases: RH

classmethod is_os_name (os_name)

class RH(os_name)
Bases: BaseOS

cmd_get_version_of_installed_package (package_name)
classmethod is_os_name(os_name)

class Ubuntu(os_name)
Bases: BaseOS

cmd_get_version_of_installed_package (package_name)

classmethod is_os_name (os_name)

octavia.amphorae.backends.agent.api_server.plug module

class Plug(osutils)

Bases: object

build_vrrp_info (vrrp_ip, subnet_cidr, gateway, host_routes)

plug_lo()

plug_network (mac_address, fixed_ips, mtu=None, vip_net_info=None, is_sriov=False)

4.6. Module Reference

426

Octavia Documentation, Release 17.1.0.dev41

plug_vip (vip, subnet_cidr, gateway, mac_address, mtu=None, vrrp_ip=None, host_routes=(),
additional_vips=(), is_sriov=False)

render_vips (vips)

octavia.amphorae.backends.agent.api_server.rules_schema module
octavia.amphorae.backends.agent.api_server.server module

class Server (hm_queue)

Bases: object

delete_certificate(lb_id, filename)
delete_lb_object(object_id)
get_all_listeners_status()
get_certificate_md5(/b_id, filename)
get_details()
get_haproxy_config(/b_id)
get_info()
get_interface(ip_addr)
get_lvs_listener_config(listener_id)
manage_service_vrrp (action)
plug_network()
plug_vip (vip)
set_interface_rules(ip_addr)
start_stop_lb_object (object_id, action)
upload_cert()
upload_certificate(lb_id, filename)
upload_config()
upload_haproxy_config(amphora_id, Ib_id)
upload_lvs_listener_config(amphora_id, listener_id)
upload_vrrp_config()
version_discovery()
make_json_error(ex)

register_app_error_handler (app)

4.6. Module Reference 427

Octavia Documentation, Release 17.1.0.dev41

octavia.amphorae.backends.agent.api_server.util module
exception ParsingError
Bases: Exception
config_path(/b_id)
get_backend_for_lb_object (object_id)
Returns the backend for a listener.

If the listener is a TCP based listener return "THAPROXY’. If the listener is a UDP or SCTP based
listener return ’LVS’ If the listener is not identifiable, return None.

Parameters
listener_id -- The ID of the listener to identify.

Returns
HAPROXY_BACKEND, LVS_BACKEND or None

get_haproxy_pid(l/b_id)
get_haproxy_vip_addresses(/b_id)
Get the VIP addresses for a load balancer.

Parameters
1b_id -- The load balancer ID to get VIP addresses from.

Returns
List of VIP addresses (IPv4 and IPv6)

get_keepalivedlvs_pid(listener_id)
get_listeners()
Get Listeners

Returns
An array with the ids of all listeners, e.g. ['123’,°456°, ...] or [] if no listeners exist

get_loadbalancers()
Get Load balancers

Returns
An array with the uuids of all load balancers, e.g. ['123’, ’456°, ...] or [] if no
loadbalancers exist

get_lvs_listeners()
get_lvs_vip_addresses(listener_id: str) — list[str]
Get the VIP addresses for a LVS load balancer.

Parameters
listener_id -- The listener ID to get VIP addresses from.

Returns
List of VIP addresses (IPv4 and IPv6)

haproxy_check_script_path()

4.6. Module Reference 428

Octavia Documentation, Release 17.1.0.dev41

haproxy_dir (/b_id)
haproxy_sock_path(/b_id)
init_path(lb_id)
install_netns_systemd_service()
is_lb_running(lb_id)
is_lvs_listener_running(/istener_id)
keepalived_backend_check_script_dir()
keepalived_backend_check_script_path()
keepalived_cfg_path()
keepalived_check_script_path()
keepalived_check_scripts_dir()
keepalived_dir()
keepalived_init_path()
keepalived_log_path()
keepalived_lvs_cfg_path(listener_id)
keepalived_lvs_dir()
keepalived_lvs_init_path(listener_id)
keepalived_lvs_pids_path(listener_id)
keepalived_pid_path()
parse_haproxy_file(/b_id)
pid_path(lb_id)

run_systemctl_command (command, service, raise_error=True)

send_member_advertisements (fixed_ips: Iterable[Dict{str, str]])

Sends advertisements for each fixed_ip of a list

This method will send either GARP (IPv4) or neighbor advertisements (IPv6) for the addresses of
the subnets of the members.

Parameters
fixed_ips -- a list of dicts that contain ’ip_address’ elements

Returns
None

4.6. Module Reference 429

Octavia Documentation, Release 17.1.0.dev41

send_vip_advertisements (/b_id: str | None = None, listener_id: str | None = None)

Sends address advertisements for each load balancer VIP.

This method will send either GARP (IPv4) or neighbor advertisements (IPv6) for the VIP addresses

on a load balancer.

Parameters
1b_id -- The load balancer ID to send advertisements for.

Returns
None

state_file_path(/b_id)

vrrp_check_script_update(/b_id, action)

Module contents
Submodules
octavia.amphorae.backends.agent.agent_jinja_cfg module

class AgentJinjaTemplater

Bases: object

build_agent_config(amphora_id, topology)

Module contents

octavia.amphorae.backends.health_daemon package

Submodules
octavia.amphorae.backends.health_daemon.health_daemon module

build_stats_message()

Build a stats message based on retrieved listener statistics.

Example version 3 message without UDP (note that values are deltas, not absolutes):

-

(continues on next page)

4.6. Module Reference

430

Octavia Documentation, Release 17.1.0.dev41

(continued from previous page)

L

calculate_stats_deltas (listener_id, row)
get_counters()

get_counters_file()
get_stats(stat_sock_file)
list_sock_stat_files(hadir=None)

persist_counters()

Attempt to persist the latest statistics values

run_sender (cmd_queue)

octavia.amphorae.backends.health_daemon.health_sender module

class UDPStatusSender

Bases: object

dosend (0bj)
update (dest, port)

round_robin_addr (addrinfo_list)

octavia.amphorae.backends.health_daemon.status_message module
decode_obj (binary_array)
encode_obj (ob))

get_hmac (payload, key, hex=True)
Get digest for the payload.

The hex param is for backward compatibility, so the package data sent from the existing amphorae
can still be checked in the previous approach.

get_payload(envelope, key, hex=True)

to_hex (byte_array)

4.6. Module Reference 431

Octavia Documentation, Release 17.1.0.dev41

unwrap_envelope (envelope, key)

A backward-compatible way to get data.

We may still receive package from amphorae that are using digest() instead of hexdigest()

wrap_envelope (obj, key, hex=True)

Module contents

octavia.amphorae.backends.utils package

Submodules

octavia.amphorae.backends.utils.haproxy_ query module

class HAProxyQuery (stats_socket)

Bases: object

Class used for querying the HAProxy statistics socket.

The CSV output is defined in the HAProxy documentation:
http://cbonte.github.io/haproxy-dconv/configuration- 1.4.html#9

get_pool_status()

Get status for each server and the pool as a whole.

Returns
pool data structure {<pool-name>: { ’uuid’: <uuid>, ’status’: *"UP’|’'DOWN’,
‘members’: [<name>: *UP’’DOWN’|"DRAIN’|’no check’] }}

save_state(state_file_path)

Save haproxy connection state to a file.

Parameters
state_file_path -- Absolute path to the state file

Returns
bool (True if success, False otherwise)

show_info ()

Get and parse output from ’show info’ command.

show_stat (proxy_iid=-1, object_type=-1, server_id=-1)
Get and parse output from ’show stat’ command.

Parameters
* proxy_iid -- Proxy ID (column 27 in CSV output). -1 for all.

* object_type -- Select the type of dumpable object. Values can be ORed.
-1 - everything 1 - frontends 2 - backends 4 - servers

» server_id -- Server ID (column 28 in CSV output?), or -1 for everything.

Returns
stats (split into an array by newline)

4.6.

Module Reference 432

http://cbonte.github.io/haproxy-dconv/configuration-1.4.html#9

Octavia Documentation, Release 17.1.0.dev41

octavia.amphorae.backends.utils.interface module

class InterfaceController

Bases: object

ADD = 'add'

DELETE = 'delete’

FLUSH = 'flush'

SET = 'set'
TENTATIVE_WAIT_INTERVAL = 0.2
TENTATIVE_WAIT_TIMEOUT = 30
down (interface)
interface_file_list()

list(O

up (interface)

octavia.amphorae.backends.utils.interface_file module

class InterfaceFile(name, if_type, mtu=None, addresses=None, routes=None, rules=None,
scripts=None, is_sriov=False)

Bases: object

classmethod dump (obj)
classmethod from_file(filename)
classmethod get_directory()

classmethod get_extensions()

classmethod get_host_routes (routes, **kwargs)

classmethod load(fp)

write()

class PortInterfaceFile(name, mtu, fixed_ips, is_sriov=False)

Bases: InterfaceFile

class VIPInterfaceFile(name, mtu, vips, vrrp_info, fixed_ips, topology, is_sriov=False)

Bases: InterfaceFile

octavia.amphorae.backends.utils.ip_advertisement module

4.6. Module Reference

433

Octavia Documentation, Release 17.1.0.dev41

calculate_icmpv6_checksum(packet)
Calculate the ICMPv6 checksum for a packet.

Parameters
packet -- The packet bytes to checksum.

Returns
The checksum integer.

garp (interface, ip_address, net_ns=None)
Sends a gratuitous ARP for ip_address on the interface.

Parameters
 interface -- The interface name to send the GARP on.
e ip_address -- The IP address to advertise in the GARP.
* net_ns -- The network namespace to send the GARP from.

Returns
None

neighbor_advertisement (interface, ip_address, net_ns=None)
Sends a unsolicited neighbor advertisement for an ip on the interface.

Parameters
e interface -- The interface name to send the GARP on.
e ip_address -- The IP address to advertise in the GARP.
* net_ns -- The network namespace to send the GARP from.

Returns
None

send_ip_advertisement (interface, ip_address, net_ns=None)
Send an address advertisement.

This method will send either GARP (IPv4) or neighbor advertisements (IPv6) for the ip address

specified.
Parameters
e interface -- The interface name to send the advertisement on.
e ip_address -- The IP address to advertise.
* net_ns -- The network namespace to send the advertisement from.
Returns
None

octavia.amphorae.backends.utils.keepalivedlvs_query module

get_ipvsadm_info(ns_name, is_stats_cmd=False)

get_listener_realserver_mapping(ns_name, listener_ip_ports, health_monitor_enabled)

get_lvs_listener_pool_status (listener_id)

4.6. Module Reference

434

Octavia Documentation, Release 17.1.0.dev41

get_lvs_listener_resource_ipports_nsname (/istener_id)
get_lvs_listeners_stats()

read_kernel_file(ns_name, file_path)

octavia.amphorae.backends.utils.network_namespace module
class NetworkNamespace (netns)

Bases: object

A network namespace context manager.

Runs wrapped code inside the specified network namespace.

Parameters
netns -- The network namespace name to enter.

CLONE_NEWNET = 1073741824

octavia.amphorae.backends.utils.network_utils module
get_interface_name (ip_address, net_ns=None)
Gets the interface name from an IP address.
Parameters
* ip_address -- The IP address to lookup.
* net_ns -- The network namespace to find the interface in.

Returns
The interface name.

Raises

* exceptions.InvalidIPAddress -- Invalid IP address provided.

e octavia.common.exceptions.NotFound -- No interface was found.

octavia.amphorae.backends.utils.nftable_utils module
load_nftables_file()

write_nftable_rules_file (interface_name, rules)

Module contents

Module contents
octavia.amphorae.driver_exceptions package
Submodules

octavia.amphorae.driver_exceptions.exceptions module

4.6. Module Reference

435

Octavia Documentation, Release 17.1.0.dev41

exception AmpConnectionRetry(**kwargs)

Bases: AmphoraDriverError

message = 'Could not connect to amphora, exception caught: %(exception)s'
exception AmpDriverNotImplementedError (**kwargs)

Bases: AmphoraDriverError

message = 'Amphora does not implement this feature.'
exception AmpVersionUnsupported(**kwargs)

Bases: AmphoraDriverError

message = 'Amphora version %(version)s is no longer supported.'
exception AmphoraDriverError (**kwargs)

Bases: Exception

message = 'A super class for all other exceptions and the catch.'

static use_fatal_exceptions()

Return True if use fatal exceptions by raising them.

exception ArchiveException(**kwargs)

Bases: AmphoraDriverError

message = "couldn't archive the logs"
exception DeleteFailed(**kwargs)

Bases: AmphoraDriverError

message = "this load balancer couldn't be deleted"
exception EnableFailed(**kwargs)

Bases: AmphoraDriverError

message = "this load balancer couldn't be enabled"
exception HealthMonitorProvisioningError (**kwargs)

Bases: ProvisioningErrors

message = "couldn't provision HealthMonitor"
exception InfoException(**kwargs)

Bases: AmphoraDriverError

message = 'gathering information about this amphora failed'
exception ListenerProvisioningError (**kwargs)

Bases: ProvisioningErrors

message = "couldn't provision Listener"
exception LoadBalancerProvisoningError (**kwargs)

Bases: ProvisioningErrors

message = "couldn't provision LoadBalancer"

4.6. Module Reference 436

Octavia Documentation, Release 17.1.0.dev41

exception MetricsException(**kwargs)

Bases: AmphoraDriverError

message = 'gathering metrics failed'
exception NodeProvisioningError (**kwargs)

Bases: ProvisioningErrors

message = "couldn't provision Node"
exception NotFoundError (**kwargs)

Bases: AmphoraDriverError

message = "this amphora couldn't be found"

exception ProvisioningErrors(**kwargs)
Bases: AmphoraDriverError

message = 'Super class for provisioning amphora errors

exception StatisticsException(**kwargs)

Bases: AmphoraDriverError

message = 'gathering statistics failed'

exception SuspendFailed(**kwargs)

Bases: AmphoraDriverError

message = "this load balancer couldn't be suspended"

exception TimeOutException(**kwargs)

Bases: AmphoraDriverError

message = 'contacting the amphora timed out'

exception UnauthorizedException(**kwargs)

Bases: AmphoraDriverError

message = "the driver can't access the amphora"

Module contents

octavia.amphorae.drivers package

Subpackages

octavia.amphorae.drivers.haproxy package
Submodules
octavia.amphorae.drivers.haproxy.data_models module

class CPU(total=None, user=None, system=None, soft_irqg=None)
Bases: BaseDataModel

4.6. Module Reference

437

Octavia Documentation, Release 17.1.0.dev41

class Details(hostname=None, uuid=None, version=None, api_version=None, network_tx=None,
network_rx=None, active=None, haproxy_count=None, cpu=None, memory=None,

disk=None, load=None, listeners=None, packages=None)

Bases: BaseDataModel

class Disk(used=None, available=None)
Bases: BaseDatalModel

class Info(hostname=None, uuid=None, version=None, api_version=None)

Bases: BaseDataModel

class ListenerStatus (status=None, uuid=None, provisioning_status=None, type=None,

pools=None)

Bases: BaseDatalModel

class Memory (fotal=None, free=None, available=None, buffers=None, cached=None,
swap_used=None, shared=None, slab=None, committed_as=None)

Bases: BaseDatalModel

class Pool (uuid=None, status=None, members=None)

Bases: BaseDataModel

class Topology (hostname=None, uuid=None, topology=None, role=None, ip=None, ha_ip=None)

Bases: BaseDataModel

octavia.amphorae.drivers.haproxy.exceptions module

exception APIException(**kwargs)
Bases: HTTPClientError

code = 500

msg = 'Something unknown went wrong'

exception Conflict(**kwargs)
Bases: APIException

code = 409
msg = 'Conflict'

exception Forbidden(**kwargs)
Bases: APTIException

code = 403
msg = 'Forbidden'

exception InternalServerError (**kwargs)
Bases: APIException

code = 500

msg = 'Internal Server Error'

4.6. Module Reference

438

Octavia Documentation, Release 17.1.0.dev41

exception InvalidRequest (**kwargs)
Bases: APIException

code = 400
msg = 'Invalid request’

exception NotFound(**kwargs)
Bases: APIException

code = 404
msg = 'Not Found'

exception ServiceUnavailable(**kwargs)
Bases: APIException

code = 503
msg = 'Service Unavailable'

exception Unauthorized(**kwargs)
Bases: APIException

code = 401
msg = 'Unauthorized'

check_exception(response, ignore=(), log_error=True)

octavia.amphorae.drivers.haproxy.rest_api_driver module

class AmphoraAPIClientl_0
Bases: AmphoraAPIClientBase

delete_cert_pem(amp, loadbalancer_id, pem_filename)
delete_listener (amp, object_id)

get_all_listeners(amp)

get_cert_md5sum(amp, loadbalancer_id, pem_filename, ignore=())
get_details (amp)

get_info(amp, raise_retry_exception=False, timeout_dict=None)
get_interface(amp, ip_addr, timeout_dict=None, log_error=True)
get_listener_status (amp, listener_id)

plug_network (amp, port)

plug_vip (amp, vip, net_info)

set_interface_rules(amp, ip_address, rules, timeout_dict=None)

4.6. Module Reference

439

Octavia Documentation, Release 17.1.0.dev41

update_agent_config(amp, agent_config, timeout_dict=None)
update_cert_for_rotation(amp, pem_file)
upload_cert_pem(amp, loadbalancer_id, pem_filename, pem_file)
upload_config(amp, loadbalancer_id, config, timeout_dict=None)
upload_udp_config(amp, listener_id, config, timeout_dict=None)
upload_vrrp_config(amp, config)

class AmphoraAPIClientBase

Bases: object

get_api_version(amp, timeout_dict=None, raise_retry_exception=False)

request (method: str, amp: Amphora, path: str ="/, timeout_dict: dict | None = None,
retry_404: bool = True, raise_retry_exception: bool = False, **kwargs)

class CustomHostNameCheckingAdapter (pool_connections=10, pool_maxsize=10,
max_retries=0, pool_block=False)

Bases: HTTPAdapter

cert_verify(conn, url, verify, cert)

Verify a SSL certificate. This method should not be called from user code, and is only exposed
for use when subclassing the HTTPAdapter.

Parameters
» conn -- The urllib3 connection object associated with the cert.
e url -- The requested URL.

» verify -- Either a boolean, in which case it controls whether we verify the
server’s TLS certificate, or a string, in which case it must be a path to a CA
bundle to use

» cert -- The SSL certificate to verify.

init_poolmanager (*pool_args, **pool_kwargs)
Initializes a urllib3 PoolManager.

This method should not be called from user code, and is only exposed for use when subclass-
ing the HTTPAdapter.

Parameters
» connections -- The number of urllib3 connection pools to cache.
* maxsize -- The maximum number of connections to save in the pool.
* block -- Block when no free connections are available.

* pool_kwargs -- Extra keyword arguments used to initialize the Pool Man-
ager.

class HaproxyAmphoral.oadBalancerDriver

Bases: AmphoraloadBalancerDriver, KeepalivedAmphoraDriverMixin

4.6. Module Reference 440

Octavia Documentation, Release 17.1.0.dev41

check (amphora: Amphora, timeout_dict: dict | None = None)

Check connectivity to the amphora.

delete(listener)
Delete the listener on the vip.
Parameters

listener (octavia.db.models.Listener) -- listener object, need to use
its protocol_port property

Returns
return a value list (listener, vip, status flag--delete)

At this moment, we just build the basic structure for testing, will add more function along
with the development.
finalize_amphora(amphora)
Finalize the amphora before any listeners are configured.
Parameters

amphora (octavia.db.models. Amphora) -- amphora object, need to use its
id property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development. This is a hook for drivers who need to do additional work before an
amphora becomes ready to accept listeners. Please keep in mind that amphora might be kept
in an offline pool after this call.
get_diagnostics (amphora)
Return ceilometer ready diagnostic data.
Parameters

amphora (octavia.db.models. Amphora) -- amphora object, need to use its
id property

Returns
return a value list (amphora.id, status flag--’ge t_diagnostics’)

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it run some expensive self tests to determine if the
amphora and the Ibs are healthy the idea is that those tests are triggered more infrequent than
the health gathering.

get_info(amphora, raise_retry_exception=Fualse, timeout_dict=None)

Returns information about the amphora.
Parameters

» amphora (octavia.db.models.Amphora) -- amphora object, need to use
its id property

» raise_retry_exception -- Flag if outside task should be retried

Returns
return a value list (amphora.id, status flag--’info’)

4.6.

Module Reference 441

Octavia Documentation, Release 17.1.0.dev41

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it to return information as: {"Rest Interface":
"1.0", "Amphorae": "1.0", "packages":{"ha proxy":"1.5"}} some information might come
from querying the amphora

get_interface_from_ip (amphora, ip_address, timeout_dict=None)

Get the interface name for an IP address.
Parameters
 amphora (octavia.db.models. Amphora) -- The amphora to query.
* ip_address (string) -- The IP address to lookup. (IPv4 or IPv6)

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
the interface name string if found.

Raises

e octavia.amphorae.drivers.haproxy.exceptions.NotFound -- No
interface found on the amphora

* TimeOutException -- The amphora didn’t reply

post_network_plug (amphora, port, amphora_network_config)
Called after amphora added to network

Parameters

* amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

e port (octavia.network.data_models.Port) -- contains information of

the plugged port
» amphora_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information

about the subnets and ports that an amphorae owns.

This method is optional to implement. After adding an amphora to a network, there may be
steps necessary on the amphora to allow it to access said network. Ex: creating an interface
on an amphora for a neutron network to utilize.

post_vip_plug(amphora, load_balancer, amphorae_network_config, vrrp_port, vip_subnet,
additional_vip_data=None)

Called after network driver has allocated and plugged the VIP
Parameters
» amphora (octavia.db.models.Amphora)

e load_balancer (octavia.common.data_models.LoadBalancer) -- A
load balancer that just had its vip allocated and plugged in the network driver.

e amphorae_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information about
the subnets and ports that an amphorae owns.

4.6. Module Reference 442

Octavia Documentation, Release 17.1.0.dev41

* vrrp_port (octavia.network.data_models.Port)-- VRRP port asso-
ciated with the load balancer

e vip_subnet (octavia.network.data_models.Subnet) -- VIP subnet
associated with the load balancer

Returns
None

This is to do any additional work needed on the amphorae to plug the vip, such as bring up
interfaces.

reload(loadbalancer, amphora=None, timeout_dict=None)

Reload the listeners on the amphora.
Parameters

e loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to reload listeners

» amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
reload on all amphora

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

set_interface_rules(amphora: Amphora, ip_address, rules, timeout_dict=None)

Sets interface firewall rules in the amphora
Parameters
» amphora -- The amphora to query.

* ip_address -- The IP address assigned to the interface the rules will be
applied on.

» rules -- The I1st of allow rules to apply.

start (loadbalancer, amphora=None, timeout_dict=None)

Start the listeners on the amphora.
Parameters

* loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to start listeners

» amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
start on all amphora

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

4.6.

Module Reference 443

Octavia Documentation, Release 17.1.0.dev41

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

update (loadbalancer)

Update the amphora with a new configuration.

Parameters
loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer ob-

ject, need to use its vip.ip_address property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development.

update_amphora_agent_config(amphora, agent_config, timeout_dict=None)
Update the amphora agent configuration file.

Parameters
» amphora (object) -- The amphora to update.
* agent_config (string) -- The new amphora agent configuration.

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Returns

None

Note: This will mutate the amphora agent config and adopt the
new values.

update_amphora_listeners (loadbalancer, amphora, timeout_dict=None)

Update the amphora with a new configuration.
Parameters
* loadbalancer (object) -- The load balancer to update
» amphora (object) -- The amphora to update

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Returns
None

Updates the configuration of the listeners on a single amphora.

upload_cert_amp (amp, pem)
Upload cert info to the amphora.

Parameters

4.6. Module Reference 444

Octavia Documentation, Release 17.1.0.dev41

» amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

» pem_file (file object) -- a certificate file

Upload cert file to amphora for Controller Communication.

Module contents
octavia.amphorae.drivers.health package
Submodules
octavia.amphorae.drivers.health.heartbeat_udp module
class UDPStatusGetter

Bases: object

This class defines methods that will gather heartbeats

The heartbeats are transmitted via UDP and this class will bind to a port and absorb them

check()

dorecv (*args, **kw)

Waits for a UDP heart beat to be sent.

Returns
Returns the unwrapped payload and addr that sent the heartbeat.

update (key, ip, port)

Update the running config for the udp socket server
Parameters
* key -- The hmac key used to verify the UDP packets. String
* ip -- The ip address the UDP server will read from
* port -- The port the UDP server will read from

Returns
None

class UpdateHealthDb

Bases: object
update_health (health, srcaddr)
update_stats (health_message)
Parses the health message then passes it to the stats driver(s)

Parameters
health_message (dict) -- The health message containing the listener stats

Example V1 message:

4.6. Module Reference 445

Octavia Documentation, Release 17.1.0.dev41

L

Example V2 message:

Example V3 message:

4.6. Module Reference 446

Octavia Documentation, Release 17.1.0.dev41

Module contents

octavia.amphorae.drivers.keepalived package
Subpackages

octavia.amphorae.drivers.keepalived.jinja package
Submodules
octavia.amphorae.drivers.keepalived.jinja.jinja_cfg module
class KeepalivedJinjaTemplater (keepalived_template=None)

Bases: object

build_keepalived_config(loadbalancer, amphora, amp_net_config)
Renders the loadblanacer keepalived configuration for Active/Standby

Parameters
* loadbalancer -- A loadbalancer object
» amphora -- An amphora object
e amp_net_config -- The amphora network config, a dict

get_template (template_file)
Returns the specified Jinja configuration template.

Module contents

Submodules
octavia.amphorae.drivers.keepalived.vrrp_rest_driver module
class KeepalivedAmphoraDriverMixin

Bases: VRRPDriverMixin

reload_vrrp_service (loadbalancer)
Reload the VRRP services of all amphorae of the loadbalancer

Parameters
loadbalancer -- loadbalancer object

start_vrrp_service(amphora, timeout_dict=None)
Start the VRRP services on an amphorae.

Parameters
* amphora -- amphora object

e timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

4.6. Module Reference 447

Octavia Documentation, Release 17.1.0.dev41

stop_vrrp_service (loadbalancer)

Stop the vrrp services running on the loadbalancer’s amphorae

Parameters
loadbalancer -- loadbalancer object

update_vrrp_conf (loadbalancer, amphorae_network_config, amphora, timeout_dict=None)
Update amphora of the loadbalancer with a new VRRP configuration

Parameters
* loadbalancer -- loadbalancer object
» amphorae_network_config -- amphorae network configurations
» amphora -- The amphora object to update.

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Module contents

octavia.amphorae.drivers.noop_driver package

Submodules

octavia.amphorae.drivers.noop_driver.driver module

class NoopAmphoraloadBalancerDriver

Bases: Amphoral.oadBalancerDriver, VRRPDriverMixin

check (amphora, timeout_dict=None)
Check connectivity to the amphora.

Parameters
* amphora -- The amphora to query.

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Raises
TimeOutException -- The amphora didn’t reply
delete(listener)
Delete the listener on the vip.
Parameters

listener (octavia.db.models.Listener) -- listener object, need to use
its protocol_port property

Returns
return a value list (listener, vip, status flag--delete)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

4.6.

Module Reference 448

Octavia Documentation, Release 17.1.0.dev41

finalize_amphora(amphora)

Finalize the amphora before any listeners are configured.

Parameters
amphora (octavia.db.models. Amphora) -- amphora object, need to use its
id property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development. This is a hook for drivers who need to do additional work before an
amphora becomes ready to accept listeners. Please keep in mind that amphora might be kept
in an offline pool after this call.

get_diagnostics (amphora)
Return ceilometer ready diagnostic data.
Parameters

amphora (octavia.db.models. Amphora) -- amphora object, need to use its
id property

Returns
return a value list (amphora.id, status flag--"ge t_diagnostics’)

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it run some expensive self tests to determine if the
amphora and the Ibs are healthy the idea is that those tests are triggered more infrequent than
the health gathering.

get_info (amphora, raise_retry_exception=False)

Returns information about the amphora.
Parameters

» amphora (octavia.db.models.Amphora) -- amphora object, need to use
its id property

» raise_retry_exception -- Flag if outside task should be retried

Returns
return a value list (amphora.id, status flag--"info’)

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it to return information as: {"Rest Interface":
"1.0", "Amphorae": "1.0", "packages":{"ha proxy":"1.5"}} some information might come
from querying the amphora

get_interface_from_ip (amphora, ip_address, timeout_dict=None)
Get the interface name from an IP address.

Parameters
» amphora (octavia.db.models.Amphora) -- The amphora to query.
* ip_address (string) -- The IP address to lookup. (IPv4 or IPv6)

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

4.6.

Module Reference 449

Octavia Documentation, Release 17.1.0.dev41

post_network_plug (amphora, port, amphora_network_config)
Called after amphora added to network

Parameters

» amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

e port (octavia.network.data_models.Port) -- contains information of

the plugged port
e amphora_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information

about the subnets and ports that an amphorae owns.

This method is optional to implement. After adding an amphora to a network, there may be
steps necessary on the amphora to allow it to access said network. Ex: creating an interface
on an amphora for a neutron network to utilize.

post_vip_plug(amphora, load_balancer, amphorae_network_config, vrrp_port, vip_subnet,
additional_vip_data=None)

Called after network driver has allocated and plugged the VIP
Parameters
» amphora (octavia.db.models.Amphora)

e load_balancer (octavia.common.data_models.LoadBalancer) -- A
load balancer that just had its vip allocated and plugged in the network driver.

» amphorae_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information about
the subnets and ports that an amphorae owns.

* vrrp_port (octavia.network.data_models.Port)-- VRRP port asso-
ciated with the load balancer

e vip_subnet (octavia.network.data_models.Subnet) -- VIP subnet
associated with the load balancer

Returns
None

This is to do any additional work needed on the amphorae to plug the vip, such as bring up
interfaces.

reload(loadbalancer, amphora=None, timeout_dict=None)

Reload the listeners on the amphora.
Parameters

e loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to reload listeners

» amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
reload on all amphora

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

4.6.

Module Reference 450

Octavia Documentation, Release 17.1.0.dev41

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

reload_vrrp_service (loadbalancer)
Reload the VRRP services of all amphorae of the loadbalancer

Parameters
loadbalancer -- loadbalancer object

set_interface_rules(amphora, ip_address, rules)

Sets interface firewall rules in the amphora
Parameters
» amphora -- The amphora to query.

* ip_address -- The IP address assigned to the interface the rules will be
applied on.

» rules -- The I1st of allow rules to apply.

start (loadbalancer, amphora=None, timeout_dict=None)
Start the listeners on the amphora.
Parameters

* loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to start listeners

» amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
start on all amphora

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

start_vrrp_service(amphora, timeout_dict=None)
Start the VRRP services on the amphora

Parameters
» amphora -- The amphora object to start the service on.

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

stop_vrrp_service (loadbalancer)
Stop the vrrp services running on the loadbalancer’s amphorae

Parameters
loadbalancer -- loadbalancer object

4.6. Module Reference 451

Octavia Documentation, Release 17.1.0.dev41

update (loadbalancer)
Update the amphora with a new configuration.

Parameters
loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer ob-

ject, need to use its vip.ip_address property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development.

update_amphora_agent_config(amphora, agent_config)
Upload and update the amphora agent configuration.

Parameters

» amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

» agent_config (string) -- The new amphora agent configuration file.

update_amphora_listeners (loadbalancer, amphora, timeout_dict)
Update the amphora with a new configuration.
Parameters

e loadbalancer (list (octavia.db.models.Listener))--Listoflisten-
ers to update.

» amphora (octavia.db.models.Amphora) -- The index of the specific am-
phora to update

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
None

Builds a new configuration, pushes it to the amphora, and reloads the listener on one amphora.

update_vrrp_conf (loadbalancer, amphorae_network_config, amphora, timeout_dict=None)
Update amphorae of the loadbalancer with a new VRRP configuration

Parameters
* loadbalancer -- loadbalancer object
» amphorae_network_config -- amphorae network configurations
» amphora -- The amphora object to update.

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

upload_cert_amp (amphora, pem_file)
Upload cert info to the amphora.

4.6. Module Reference 452

Octavia Documentation, Release 17.1.0.dev41

Parameters

» amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

e pem_file (file object) -- a certificate file
Upload cert file to amphora for Controller Communication.

class NoopManager
Bases: object

delete(listener)

finalize_amphora(amphora)

get_diagnostics (amphora)

get_info (amphora, raise_retry_exception=Fualse)
get_interface_from_ip (amphora, ip_address, timeout_dict=None)
post_network_plug (amphora, port, amphora_network_config)

post_vip_plug(amphora, load_balancer, amphorae_network_config, vrrp_port, vip_subnet,
additional_vip_data=None)

reload(loadbalancer, amphora=None, timeout_dict=None)

start (loadbalancer, amphora=None, timeout_dict=None)

update (loadbalancer)

update_amphora_agent_config(amphora, agent_config)
update_amphora_listeners (loadbalancer, amphora, timeout_dict)

upload_cert_amp (amphora, pem_file)

Module contents

Submodules
octavia.amphorae.drivers.driver_base module
class AmphoraloadBalancerDriver

Bases: object

abstract check(amphora: Amphora, timeout_dict: dict | None = None)

Check connectivity to the amphora.
Parameters
* amphora -- The amphora to query.

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

4.6. Module Reference 453

Octavia Documentation, Release 17.1.0.dev41

Raises
TimeOutException -- The amphora didn’t reply
abstract delete(listener)
Delete the listener on the vip.
Parameters

listener (octavia.db.models.Listener) -- listener object, need to use
its protocol_port property

Returns
return a value list (listener, vip, status flag--delete)

At this moment, we just build the basic structure for testing, will add more function along
with the development.
abstract finalize_amphora (amphora)
Finalize the amphora before any listeners are configured.
Parameters

amphora (octavia.db.models.Amphora) -- amphora object, need to use its
id property

Returns

None

At this moment, we just build the basic structure for testing, will add more function along
with the development. This is a hook for drivers who need to do additional work before an
amphora becomes ready to accept listeners. Please keep in mind that amphora might be kept
in an offline pool after this call.
abstract get_diagnostics (amphora)
Return ceilometer ready diagnostic data.
Parameters

amphora (octavia.db.models. Amphora) -- amphora object, need to use its
id property

Returns
return a value list (amphora.id, status flag--’ge t_diagnostics’)

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it run some expensive self tests to determine if the
amphora and the lbs are healthy the idea is that those tests are triggered more infrequent than
the health gathering.

abstract get_info(amphora, raise_retry_exception=False)

Returns information about the amphora.
Parameters

» amphora (octavia.db.models.Amphora) -- amphora object, need to use
its id property

» raise_retry_exception -- Flag if outside task should be retried

Returns
return a value list (amphora.id, status flag--’info’)

4.6.

Module Reference 454

Octavia Documentation, Release 17.1.0.dev41

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it to return information as: {"Rest Interface":
"1.0", "Amphorae": "1.0", "packages":{"ha proxy":"1.5"}} some information might come
from querying the amphora

abstract get_interface_from_ip(amphora, ip_address, timeout_dict=None)

Get the interface name from an IP address.
Parameters
» amphora (octavia.db.models.Amphora) -- The amphora to query.
* ip_address (string) -- The IP address to lookup. (IPv4 or IPv6)

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

post_network_plug (amphora, port, amphora_network_config)
Called after amphora added to network

Parameters

 amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

e port (octavia.network.data_models.Port) -- contains information of

the plugged port
e amphora_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information

about the subnets and ports that an amphorae owns.

This method is optional to implement. After adding an amphora to a network, there may be
steps necessary on the amphora to allow it to access said network. Ex: creating an interface
on an amphora for a neutron network to utilize.

post_vip_plug(amphora, load_balancer, amphorae_network_config, vrrp_port, vip_subnet,
additional_vip_data=None)

Called after network driver has allocated and plugged the VIP
Parameters
» amphora (octavia.db.models.Amphora)

* load_balancer (octavia.common.data_models.LoadBalancer) -- A
load balancer that just had its vip allocated and plugged in the network driver.

e amphorae_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information about
the subnets and ports that an amphorae owns.

* vrrp_port (octavia.network.data_models.Port)-- VRRP port asso-
ciated with the load balancer

* vip_subnet (octavia.network.data_models.Subnet) -- VIP subnet
associated with the load balancer

Returns
None

4.6.

Module Reference 455

Octavia Documentation, Release 17.1.0.dev41

This is to do any additional work needed on the amphorae to plug the vip, such as bring up
interfaces.

abstract reload(loadbalancer, amphora, timeout_dict=None)

Reload the listeners on the amphora.
Parameters

* loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to reload listeners

» amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
reload on all amphora

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

abstract set_interface_rules(amphora: Amphora, ip_address, rules)

Sets interface firewall rules in the amphora
Parameters
* amphora -- The amphora to query.

* ip_address -- The IP address assigned to the interface the rules will be
applied on.

» rules -- The 11st of allow rules to apply.

abstract start(loadbalancer, amphora, timeout_dict=None)

Start the listeners on the amphora.
Parameters

* loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to start listeners

» amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
start on all amphora

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

abstract update(loadbalancer)
Update the amphora with a new configuration.

4.6.

Module Reference 456

Octavia Documentation, Release 17.1.0.dev41

Parameters
loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer ob-

ject, need to use its vip.ip_address property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development.

update_amphora_agent_config(amphora, agent_config)
Upload and update the amphora agent configuration.

Parameters

» amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

» agent_config (string) -- The new amphora agent configuration file.

abstract update_amphora_listeners (loadbalancer, amphora, timeout_dict)

Update the amphora with a new configuration.
Parameters

e loadbalancer (1ist (octavia.db.models.Listener))-- List of listen-
ers to update.

» amphora (octavia.db.models.Amphora) -- The index of the specific am-
phora to update

* timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
None

Builds a new configuration, pushes it to the amphora, and reloads the listener on one amphora.

upload_cert_amp (amphora, pem_file)
Upload cert info to the amphora.

Parameters

» amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

e pem_file (file object) -- a certificate file
Upload cert file to amphora for Controller Communication.

class VRRPDriverMixin

Bases: object
Abstract mixin class for VRRP support in loadbalancer amphorae

Usage: To plug VRRP support in another service driver XYZ, use: @plug_mixin(XYZ) class
XYZ: ...

4.6. Module Reference 457

Octavia Documentation, Release 17.1.0.dev41

abstract reload_vrrp_service(loadbalancer)
Reload the VRRP services of all amphorae of the loadbalancer

Parameters
loadbalancer -- loadbalancer object

abstract start_vrrp_service(amphora, timeout_dict=None)
Start the VRRP services on the amphora

Parameters
» amphora -- The amphora object to start the service on.

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

abstract stop_vrrp_service (loadbalancer)

Stop the vrrp services running on the loadbalancer’s amphorae

Parameters
loadbalancer -- loadbalancer object

abstract update_vrrp_conf (loadbalancer, amphorae_network_config, amphora,
timeout_dict=None)

Update amphorae of the loadbalancer with a new VRRP configuration
Parameters
* loadbalancer -- loadbalancer object
» amphorae_network_config -- amphorae network configurations
» amphora -- The amphora object to update.

* timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Module contents

Module contents

octavia.api package

Subpackages

octavia.api.common package
Submodules
octavia.api.common.hooks module

class ContentTypeHook

Bases: PecanHook

Force the request content type to JSON if that is acceptable.

4.6. Module Reference 458

Octavia Documentation, Release 17.1.0.dev41

on_route (state)
Override this method to create a hook that gets called upon the start of routing.
Parameters
state -- The Pecan state object for the current request.
class ContextHook

Bases: PecanHook
Configures a request context and attaches it to the request.

on_route (state)
Override this method to create a hook that gets called upon the start of routing.
Parameters
state -- The Pecan state object for the current request.

class QueryParametersHook
Bases: PecanHook

before (state)

Override this method to create a hook that gets called after routing, but before the request
gets passed to your controller.

Parameters
state -- The Pecan state object for the current request.

octavia.api.common.pagination module

class PaginationHelper (params, sort_dir="asc’)
Bases: object

Class helping to interact with pagination functionality
Pass this class to db.repositories to apply it on query

apply (query, model, enforce_valid_params=True)
Returns a query with sorting / pagination criteria added.

Pagination works by requiring a unique sort_key specified by sort_keys. (If sort_keys is not
unique, then we risk looping through values.) We use the last row in the previous page as
the pagination *marker’. So we must return values that follow the passed marker in the order.
With a single-valued sort_key, this would be easy: sort_key > X. With a compound-values
sort_key, (k1, k2, k3) we must do this to repeat the lexicographical ordering: (k1 > X1) or
(k1 == X1 && k2 > X2) or (k1 == X1 && k2 == X2 && k3 > X3) We also have to cope
with different sort_directions. Typically, the id of the last row is used as the client-facing
pagination marker, then the actual marker object must be fetched from the db and passed in to
us as marker. :param query: the query object to which we should add paging/sorting/filtering
:param model: the ORM model class :param enforce_valid_params: check for invalid entries
in self.params

Return type
sqlalchemy.orm.query.Query

Returns
The query with sorting/pagination/filtering added.

4.6. Module Reference 459

Octavia Documentation, Release 17.1.0.dev41

octavia.api.common.types module
class AlpnProtocolType
Bases: UserType

basetype

alias of str
name = 'alpn_protocol'
static validate(value)
Validates whether value is a valid ALPN protocol ID.

class BaseMeta (name, bases, dct)

Bases: BaseMeta

class BaseType(**kw)

Bases: Base

classmethod from_data_model (data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters
e data_model -- data model to convert from
e children -- convert child data models

to_dict (render_unsets=False)
Converts Octavia WSME type to dictionary.

Parameters
render_unsets -- If True, will convert items that are WSME Unset types to
None. If False, does not add the item

classmethod translate_dict_keys_to_data_model (wsme_dict)

Translate the keys from wsme class type, to data_model.

classmethod translate_key_to_data_model (key)

Translate the keys from wsme class type, to data_model.

class CidrType
Bases: UserType

basetype

alias of str
name = 'cidr'
static validate (value)
Validates whether value is an IPv4 or IPv6 CIDR.

class IPAddressType
Bases: UserType

basetype

alias of str

4.6. Module Reference

460

Octavia Documentation, Release 17.1.0.dev41

name = 'ipaddress'
static validate (value)
Validates whether value is an IPv4 or IPv6 address.

class IdOnlyType (**kw)
Bases: BaseType

id
Complex type attribute definition.

Example:

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class NameOnlyType (**kw)
Bases: BaseType

name
Complex type attribute definition.

Example:

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class PageType (**kw)
Bases: BaseType

href
Complex type attribute definition.

Example:

4.6. Module Reference 461

Octavia Documentation, Release 17.1.0.dev41

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

rel
Complex type attribute definition.

Example:

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class URLPathType
Bases: UserType

basetype

alias of str

name = 'url_path'
static validate (value)

class URLType (require_scheme=True)
Bases: UserType

basetype
alias of str

name = 'url'

validate (value)

4.6. Module Reference 462

Octavia Documentation, Release 17.1.0.dev41

octavia.api.common.utils module
json_error_formatter (body, status, title, environ)
A json_formatter for webob exceptions.

Follows API-WG guidelines at http://specs.openstack.org/openstack/api-wg/guidelines/errors.
html

Module contents

octavia.api.drivers package

Subpackages

octavia.api.drivers.amphora_driver package
Subpackages

octavia.api.drivers.amphora_driver.v2 package
Submodules
octavia.api.drivers.amphora_driver.v2.driver module
class AmphoraProviderDriver

Bases: ProviderDriver

create_vip_port (loadbalancer_id, project_id, vip_dictionary, additional_vip_dicts)

Creates a port for a load balancer VIP.

If the driver supports creating VIP ports, the driver will create a VIP port with the primary
VIP and all additional VIPs added to the port, and return the vip_dictionary populated with
the vip_port_id and a list of vip_dictionaries populated with data from the additional VIPs
(which are guaranteed to be in the same Network). This might look like: {’port_id’: port_id,
’subnet_id’: subnet_id_1, ’ip_address’: ipl}, [{’subnet_id’: subnet_id_2, ’ip_address’:
ip2}, {...}, {...}] If the driver does not support port creation, the driver will raise a NotIm-
plementedError.

Parameters
e loadbalancer_id (string) -- ID of loadbalancer.
* project_id (string) -- The project ID to create the VIP under.

Param
vip_dictionary: The VIP dictionary.

Param
additional_vip_dicts: A list of additional VIP dictionaries, with subnets guar-
anteed to be in the same network as the primary vip_dictionary.

Returns
VIP dictionary with vip_port_id + alist of additional VIP dictionaries (vip_dict,
additional_vip_dicts).

Raises

» DriverError -- An unexpected error occurred in the driver.

4.6. Module Reference 463

http://specs.openstack.org/openstack/api-wg/guidelines/errors.html
http://specs.openstack.org/openstack/api-wg/guidelines/errors.html

Octavia Documentation, Release 17.1.0.dev41

* NotImplementedError -- The driver does not support creating VIP ports.

get_supported_availability_zone_metadata()

Returns the valid availability zone metadata keys and descriptions.

This extracts the valid availability zone metadata keys and descriptions from the JSON vali-
dation schema and returns it as a dictionary.

Returns
Dictionary of availability zone metadata keys and descriptions

Raises
DriverError -- An unexpected error occurred.

get_supported_flavor_metadata()

Returns the valid flavor metadata keys and descriptions.

This extracts the valid flavor metadata keys and descriptions from the JSON validation
schema and returns it as a dictionary.

Returns
Dictionary of flavor metadata keys and descriptions.

Raises
DriverError -- An unexpected error occurred.

health_monitor_create (healthmonitor)

Creates a new health monitor.

Parameters
healthmonitor (object) -- The health monitor object.

Returns
Nothing if the create request was accepted.

Raises
* DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

health_monitor_delete (healthmonitor)
Deletes a healthmonitor_id.

Parameters
healthmonitor (object) -- The monitor to delete.

Returns
Nothing if the create request was accepted.

Raises
* DriverError -- An unexpected error occurred in the driver.

* NotImplementedError -- if driver does not support request.

4.6.

Module Reference 464

Octavia Documentation, Release 17.1.0.dev41

health_monitor_update(old_healthmonitor, new_healthmonitor)

Updates a health monitor.
Parameters
* 0ld_healthmonitor (object) -- The baseline health monitor object.
* new_healthmonitor (object) -- The updated health monitor object.

Returns
Nothing if the create request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

17policy_create(l7policy)

Creates a new L7 policy.

Parameters
17policy (object) -- The L7 policy object.

Returns
Nothing if the create request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

17policy_delete(I7policy)
Deletes an L7 policy.

Parameters
17policy (object) -- The L7 policy to delete.

Returns
Nothing if the delete request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

17policy_update(old_[7policy, new_l7policy)
Updates an L7 policy.

Parameters
* 0ld_17policy (object) -- The baseline L7 policy object.
* new_l7policy (object) -- The updated L7 policy object.

4.6.

Module Reference 465

Octavia Documentation, Release 17.1.0.dev41

Returns
Nothing if the update request was accepted.

Raises
e DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

17rule_create(l/7rule)

Creates a new L7 rule.

Parameters
17rule (object) -- The L7 rule object.

Returns
Nothing if the create request was accepted.

Raises
e DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

17rule_delete(I/7rule)

Deletes an L7 rule.

Parameters
17rule (object) -- The L7 rule to delete.

Returns
Nothing if the delete request was accepted.

Raises
* DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

17rule_update(old_I7rule, new_I7rule)
Updates an L7 rule.

Parameters
* 0ld_l17rule (object) -- The baseline L7 rule object.
* new_l17rule (object) -- The updated L7 rule object.

Returns
Nothing if the update request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.

* NotImplementedError -- if driver does not support request.

4.6.

Module Reference 466

Octavia Documentation, Release 17.1.0.dev41

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

listener_create(listener)

Creates a new listener.

Parameters
listener (object) -- The listener object.

Returns
Nothing if the create request was accepted.

Raises

» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

listener_delete(listener)

Deletes a listener.

Parameters
listener (object) -- The listener to delete.

Returns
Nothing if the delete request was accepted.

Raises

» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

listener_update(old_listener, new_listener)

Updates a listener.

Parameters

* old_listener (object) -- The baseline listener object.

* new_listener (object) -- The updated listener object.

Returns
Nothing if the update request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

loadbalancer_create (loadbalancer)

Creates a new load balancer.

Parameters
loadbalancer (object) -- The load balancer object.

4.6. Module Reference 467

Octavia Documentation, Release 17.1.0.dev41

Returns
Nothing if the create request was accepted.

Raises
e DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- The driver does not support create.

* UnsupportedOptionError -- The driver does not support one of the con-
figuration options.

loadbalancer_delete (loadbalancer, cascade=False)

Deletes a load balancer.
Parameters
» loadbalancer (object) -- The load balancer to delete.

» cascade (bool) -- If True, deletes all child objects (listeners, pools, etc.) in
addition to the load balancer.

Returns
Nothing if the delete request was accepted.

Raises
* DriverError -- An unexpected error occurred in the driver.

* NotImplementedError -- if driver does not support request.

loadbalancer_failover (loadbalancer_id)

Performs a fail over of a load balancer.

Parameters
loadbalancer_id (string) -- ID of the load balancer to failover.

Returns
Nothing if the failover request was accepted.

Raises
DriverError -- An unexpected error occurred in the driver.

Raises
NotImplementedError if driver does not support request.

loadbalancer_update (original_load_balancer, new_loadbalancer)

Updates a load balancer.
Parameters
* old_loadbalancer (object) -- The baseline load balancer object.

* new_loadbalancer (object) -- The updated load balancer object.

Returns
Nothing if the update request was accepted.

Raises
* DriverError -- An unexpected error occurred in the driver.

* NotImplementedError -- The driver does not support request.

4.6.

Module Reference 468

Octavia Documentation, Release 17.1.0.dev41

* UnsupportedOptionError -- The driver does not support one of the con-
figuration options.

member_batch_update (pool_id, members)

Creates, updates, or deletes a set of pool members.
Parameters
* pool_id (string) -- The id of the pool to update.

» members (list) -- List of member objects.

Returns
Nothing if the create request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

member_create (member)

Creates a new member for a pool.

Parameters
member (object) -- The member object.

Returns
Nothing if the create request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

member_delete (member)

Deletes a pool member.

Parameters
member (object) -- The member to delete.

Returns
Nothing if the create request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

member_update (old_member, new_member)

Updates a pool member.

Parameters

* 0ld_member (object) -- The baseline member object.

4.6.

Module Reference 469

Octavia Documentation, Release 17.1.0.dev41

* new_member (object) -- The updated member object.

Returns
Nothing if the create request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

pool_create (pool)

Creates a new pool.

Parameters
pool (object) -- The pool object.

Returns
Nothing if the create request was accepted.

Raises
* DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

pool_delete(pool)

Deletes a pool and its members.

Parameters
pool (object) -- The pool to delete.

Returns
Nothing if the create request was accepted.

Raises
* DriverError -- An unexpected error occurred in the driver.
* NotImplementedError -- if driver does not support request.

pool_update (old_pool, new_pool)
Updates a pool.

Parameters
» pool (object) -- The baseline pool object.
* pool -- The updated pool object.

Returns
Nothing if the create request was accepted.

Raises
» DriverError -- An unexpected error occurred in the driver.

* NotImplementedError -- if driver does not support request.

4.6.

Module Reference 470

Octavia Documentation, Release 17.1.0.dev41

* UnsupportedOptionError -- if driver does not support one of the config-
uration options.

validate_availability_zone (availability_zone_dict)

Validates availability zone profile data.

This will validate an availability zone profile dataset against the availability zone settings the
amphora driver supports.

Parameters
availability_zone_dict (dict) -- The availability zone dict to validate.

Returns
None

Raises
e DriverError -- An unexpected error occurred.

* UnsupportedOptionError -- If the driver does not support one of the avail-
ability zone settings.

validate_flavor (flavor_dict)
Validates flavor profile data.

This will validate a flavor profile dataset against the flavor settings the amphora driver sup-
ports.

Parameters
flavor_dict -- The flavor dictionary to validate.

Returns
None

Raises
* DriverError -- An unexpected error occurred.

» UnsupportedOptionError -- If the driver does not support one of the flavor
settings.

Module contents

Submodules
octavia.api.drivers.amphora_driver.availability_zone_schema module
octavia.api.drivers.amphora_driver.flavor_schema module

Module contents

octavia.api.drivers.driver_agent package

Submodules

octavia.api.drivers.driver_agent.driver_get module

process_get (get_data)

4.6. Module Reference 471

Octavia Documentation, Release 17.1.0.dev41

octavia.api.drivers.driver_agent.driver_listener module

class ForkingUDSServer (server_address, RequestHandlerClass, bind_and_activate=True)

Bases: ForkingMixIn, UnixStreamServer

class GetRequestHandler (request, client_address, server)

Bases: BaseRequestHandler

handle()

class StatsRequestHandler (request, client_address, server)

Bases: BaseRequestHandler

handle()

class StatusRequestHandler (request, client_address, server)

Bases: BaseRequestHandler

handle()
get_listener (exit_event)
stats_listener (exit _event)

status_listener (exit_event)

octavia.api.drivers.driver_agent.driver_updater module

class DriverUpdater (**kwargs)

Bases: object

update_listener_statistics(statistics)

Update listener statistics.

Parameters
statistics (dict) -- Statistics for listeners: id (string): ID for listener. ac-
tive_connections (int): Number of currently active connections. bytes_in (int):
Total bytes received. bytes_out (int): Total bytes sent. request_errors (int):
Total requests not fulfilled. total_connections (int): The total connections han-
dled.

Raises
UpdateStatisticsError

Returns
None

update_loadbalancer_status (status)

Update load balancer status.

Parameters
status (dict) -- dictionary defining the provisioning status and operating sta-
tus for load balancer objects, including pools, members, listeners, L7 policies,
and L7 rules. iod (string): ID for the object. provisioning_status (string): Pro-
visioning status for the object. operating_status (string): Operating status for
the object.

4.6. Module Reference

Octavia Documentation, Release 17.1.0.dev41

Raises
UpdateStatusError

Returns
None

Module contents
octavia.api.drivers.noop_driver package
Submodules
octavia.api.drivers.noop_driver.agent module

noop_provider_agent (exit_event)

octavia.api.drivers.noop_driver.driver module

class NoopManager

Bases: object

create_vip_port (loadbalancer_id, project_id, vip_dictionary, additional_vip_dicts)
get_supported_a