OpenStack-Ansible Documentation
Release 30.1.0.dev44

OpenStack-Ansible Contributors

Feb 09, 2025

CONTENTS

1 Abstract 1
2 2025.1 (Epoxy): Under development 2
3 2024.2 (Dalmatian): Maintained 296
4 2024.1 (Caracal): Maintained 297
5 2023.2 (Bobcat): Maintained 298
6 2023.1 (Antelope): Maintained 299
7 Zed: EOM (end-of-maintenance) 300
8 Yoga: EOM (end-of-maintenance) 301
9 Xena: EOM (end-of-maintenance) 302
10 Wallaby: EOM (end-of-maintenance) 303
11 Victoria: EOM (end-of-maintenance) 304
12 Ussuri: EOL (end-of-life) 305
13 Train: EOL (end-of-life) 306
14 Stein: EOL (end-of-life) 307
15 Rocky: EOL (end-of-life) 308
16 Queens: EOL (end-of-life) 309
17 Pike: EOL (end-of-life) 310
18 Ocata: EOL (end-of-life) 311
19 Newton: EOL (end-of-life) 312
20 Mitaka: EOL (end-of-life) 313
Python Module Index 314

Index 315

CHAPTER
ONE

ABSTRACT

OpenStack-Ansible provides Ansible playbooks and roles for the deployment and configuration of an
OpenStack environment.

Documentation for each of the following releases is available.

CHAPTER
TWO

2025.1 (EPOXY): UNDER DEVELOPMENT

OpenStack-Ansible 2025.1 (Epoxy) is currently Under Development.

2.1 Operations Guide

This guide provides information about operating your OpenStack-Ansible deployment.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for
step-by-step instructions on how to deploy the OpenStack packages and dependencies on your cloud
using OpenStack-Ansible.

For user guides, see the User Guide.
For information on how to contribute, extend or develop OpenStack-Ansible, see the Contributors Guide.
For in-depth technical information, see the OpenStack-Ansible Reference.

This guide ranges from first operations to verify your deployment, to the major upgrades procedures.

2.1.1 Verify OpenStack-Ansible Cloud

This chapter is intended to document basic OpenStack operations to verify your OpenStack-Ansible de-
ployment.

It explains how CLIs can be used as an admin and a user, to ensure the well-behavior of your cloud.

Check your OpenStack-Ansible cloud

This chapter goes through the verification steps for a basic operation of the OpenStack API and dashboard,
as an administrator.

Note

The utility container provides a CLI environment for additional configuration and testing.

1. Access the utility container:

[$ lxc-attach -n "1xc-1s -1 | grep utility | head -n 1°

2. Source the admin tenant credentials:

[$. ~/openrc

3. Run an OpenStack command that uses one or more APIs. For example:

https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/index.html
https://docs.openstack.org/openstack-ansible/latest/user/index.html
https://docs.openstack.org/openstack-ansible/latest/contributor/index.html
https://docs.openstack.org/openstack-ansible/latest/reference/index.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

$ openstack user list --domain default

i T TR o +
| ID | Name |
R et et e T e o +
| 04007b990d9442b59009b98a828aa981 | glance [
| O0ccf5£2020ca4820847e109edd46e324 | keystone |
| 1dc5£638d4d840c690c23d5ea83c3429 | neutron |
| 3073d0fa5ced46£098215d3edb235d00 | cinder [
5£3839eelf®44eba921a7e8a23bb212d	admin
61bc8ee7cc9b4530bbl8acbh740ee752a	stack_domain_admin
77b604b67b79447eac95969%9aafc81339	alt_demo
85c5bf07393744dbb034fab788d7973f	nova
a86fcl2ade404a838e3b08elc9db376f	swift
bbac48963eff4ac79314c42fc3d7f1df	ceilometer
c3c9858cbhaac4db9914e3695b1825e41	dispersion
cd85ca889c9e480d8ac458f188f16034	demo [
efab6dc30c96480b971b3bd5768107ab	heat [
B e T - +

4. With a web browser, access the Dashboard using the external load balancer domain name
or IP address. This is defined by the external_lb_vip_address option in the /etc/
openstack_deploy/openstack_user_config.yml file. The dashboard uses HTTPS on port
443.

5. Authenticate using the wusername admin and password defined by the
keystone_auth_admin_password option in the /etc/openstack_deploy/user_secrets.
yml file.

6. Run an OpenStack command to reveal all endpoints from your deployment. For example:

-

$ openstack endpoint list

tom - +o—m - R e e e tomm - R +--
R R e T +

| ID | Region | Service Name | Service Type | Enabled |.
—.Interface | URL

B T T e B T - +--
R B e +

| [ID truncated] | RegionOne | cinderv2 | volumev2 | True | o
—admin | http://172.29.236.100:8776/v2/%(project_id)s |

| [ID truncated] | RegionOne | cinderv3 | volumev3 | True |
—public | https://10.23.100.127:8776/v3/%(project_id)s |

| [ID truncated] | RegionOne | aodh | alarming | True | o
—internal | http://172.29.236.100:8042

| [ID truncated] | RegionOne | glance | image | True |
—public | https://10.23.100.127:9292

| [ID truncated] | RegionOne | cinderv2 | volumev?2 | True |
—internal | http://172.29.236.100:8776/v2/%(project_id)s |

| [ID truncated] | RegionOne | heat-cfn | cloudformation | True |
—admin | http://172.29.236.100:8000/v1

| [ID truncated] | RegionOne | neutron | network | True | o
—admin | http://172.29.236.100:9696

(continues on next page)

2.1. Operations Guide 3

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

| [ID truncated] | RegionOne | aodh | alarming | True | o
—public | https://10.23.100.127:8042

| [ID truncated] | RegionOne | nova | compute | True |
—admin | http://172.29.236.100:8774/v2.1/%(project_id)s |

| [ID truncated] | RegionOne | heat-cfn | cloudformation | True | o
—internal | http://172.29.236.100:8000/v1

| [ID truncated] | RegionOne | swift | object-store | True |
—public | https://10.23.100.127:8080/v1/AUTH_%(project_id)s |

| [ID truncated] | RegionOne | designate | dns | True |
—admin | http://172.29.236.100:9001

| [ID truncated] | RegionOne | cinderv2 | volumev?2 | True | o
—public | https://10.23.100.127:8776/v2/%(project_id)s

| [ID truncated] | RegionOne | keystone | identity | True |
—admin | http://172.29.236.100:5000/v3

| [ID truncated] | RegionOne | nova | compute | True | o
—public | https://10.23.100.127:8774/v2.1/%(project_id)s |

| [ID truncated] | RegionOne | keystone | identity | True | o
—internal | http://172.29.236.100:5000/v3

| [ID truncated] | RegionOne | nova | compute | True Jos
—internal | http://172.29.236.100:8774/v2.1/%(project_id)s |

| [ID truncated] | RegionOne | gnocchi | metric | True |
—public | https://10.23.100.127:8041

| [ID truncated] | RegionOne | neutron | network | True | o
—internal | http://172.29.236.100:9696

| [ID truncated] | RegionOne | aodh | alarming | True | o
—admin | http://172.29.236.100:8042

| [ID truncated] | RegionOne | heat | orchestration | True Jos
—admin | http://172.29.236.100:8004/v1/%(project_id)s |

| [ID truncated] | RegionOne | glance | image | True |
—internal | http://172.29.236.100:9292

| [ID truncated] | RegionOne | designate | dns | True |
—internal | http://172.29.236.100:9001

| [ID truncated] | RegionOne | cinderv3 | volume | True | o
—internal | http://172.29.236.100:8776/v3/%(project_id)s |

| [ID truncated] | RegionOne | heat-cfn | cloudformation | True | o
—public | https://10.23.100.127:8000/v1

| [ID truncated] | RegionOne | designate | dns | True | o
—public | https://10.23.100.127:9001

| [ID truncated] | RegionOne | swift | object-store | True [o
—admin | http://172.29.236.100:8080/v1/AUTH_%(project_id)s |

| [ID truncated] | RegionOne | heat | orchestration | True [o
—internal | http://172.29.236.100:8004/v1/%(project_id)s |

| [ID truncated] | RegionOne | cinderv3 | volumev3 | True |
—admin | http://172.29.236.100:8776/v3/%(project_id)s |

| [ID truncated] | RegionOne | swift | object-store | True | o
—internal | http://172.29.236.100:8080/v1/AUTH _%(project_id)s |

| [ID truncated] | RegionOne | neutron | network | True |
—public | https://10.23.100.127:9696

| [ID truncated] | RegionOne | heat | orchestration | True Jos

(continues on next page)

Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

—public | https://10.23.100.127:8004/v1/%(project_id)s

| [ID truncated] | RegionOne | gnocchi | metric | True | o
—admin | http://172.29.236.100:8041

| [ID truncated] | RegionOne | gnocchi | metric | True | o
—internal | http://172.29.236.100:8041

| [ID truncated] | RegionOne | keystone | identity | True | o
—public | https://10.23.100.127:5000/v3

| [ID truncated] | RegionOne | glance | image | True [o
—admin | http://172.29.236.100:9292

| [ID truncated] | RegionOne | placement | placement | True |
—internal | http://172.29.236.100:8780

| [ID truncated] | RegionOne | placement | placement | True | o
—admin | http://172.29.236.100:8780

| [ID truncated] | RegionOne | placement | placement | True | o
—public | https://10.23.100.127:8780

B T - o B TR o +--
pm———————— et et et +

7. Run an OpenStack command to ensure all the compute services are working (the output depends
on your configuration) For example:

e N

$ openstack compute service list

e e oo - e
mmtmm o B +

| ID | Binary | Host | Zone .
< | Status | State | Updated At

s T T T e
ymmtm o e +

| 1 | nova-conductor | aiol-nova-conductor-container-5482f£f27 |._
—internal | enabled | up | 2018-02-14T15:34:42.000000 |

| 2 | nova-scheduler | aiol-nova-scheduler-container-0b594e89 |.
—internal | enabled | up | 2018-02-14T15:34:47.000000 |

| 5 | nova-consoleauth | aiol-nova-console-container-835ca240 [=
—internal | enabled | up | 2018-02-14T15:34:47.000000 |

| 6 | nova-compute | ubuntu-focal | nova .
< | enabled | up | 2018-02-14T15:34:42.000000 |

s T B e e
R e e +

8. Run an OpenStack command to ensure the networking services are working (the output also de-
pends on your configuration) For example

$ openstack network agent list

| ID | Agent Type | Host o
N | Availability Zone | Alive | State |.
—Binary

e e o -

(continues on next page)

2.1. Operations Guide 5

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

m e T - -
e ——————————————-—— +

| 262b29fe-e60e-44b0-ae3c-065565f8deb7 | Metering agent | aiol-
—neutron-agents-container-2b0569d5 | None [:-) | UP Jos
—heutron-metering-agent |

| 41135£7f-9e6c-4122-b6b3-d131bfaae53e | Linux bridge agent | ubuntu-

. focal | None | =) | UP | o
—neutron-linuxbridge-agent |

| 615d12a8-e738-490a-8552-2a03c8544b51 | Metadata agent | aiol-
—neutron-agents-container-2b0569d5 | None | =) | UP [
—neutron-metadata-agent |

| 99b2abd3-a330-4ca7-b524-ed176c10b31c | DHCP agent | aiol-
—neutron-agents-container-2b0569d5 | nova [:-) | UP Jos
—neutron-dhcp-agent |

| e0139a26-fbf7-4cee-a37£-90940dc5851f | Linux bridge agent | aiol-
—neutron-agents-container-2b0569d5 | None | =) | UP [
—neutron-linuxbridge-agent |

| feb20ed4-4346-4ad9-b50c-41efd784f2e9 | L3 agent | aiol-
—neutron-agents-container-2b0569d5 | nova | =) | UP Jos
—neutron-13-agent |

e T T
e o e e S
mm +

9. Run an OpenStack command to ensure the block storage services are working (depends on your
configuration). For example:

$ openstack volume service list

e TR e R e
ym———- +o——— - it +

| Binary | Host | Zone |.
—Status | State | Updated At

oo - e -
————- +-—-———- R it +

| cinder-scheduler | aiol-cinder-scheduler-container-ff4c6cle | nova |.
—enabled | up | 2018-02-14T15:37:21.000000 |

| cinder-volume | ubuntu-bionic@lvm | nova |.
—enabled | up | 2018-02-14T15:37:25.000000 |

| cinder-backup | ubuntu-bionic | nova |.
—enabled | up | 2018-02-14T15:37:21.000000 |

e Rt ettt +-————- +-——-
y————— e e +

10. Run an OpenStack command to ensure the image storage service is working (depends on your
uploaded images). For example:

$ openstack image list

(continues on next page)

6 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

{I 6092d7b3-87c1-4d6c-a822-66c0c6171bd3 | cirros | active |
B ittt T +o—m - +o—m— - +

11. Check the backend API health on your load balancer nodes. For example, if using haproxy, ensure
no backend is marked as DOWN:

{$ hatop -s /var/run/haproxy.stat

Configure your first networks

A newly deployed OpenStack-Ansible has no networks by default. If you need to add networks, you can
use the openstack CLI, or you can use the ansible modules for it.

An example for the latter is in the openstack-ansible-ops repository, under the
openstack-service-setup.yml playbook.

Use the command line clients

This section describes some of the more common commands to use your OpenStack cloud.

Log in to any utility container or install the openstack client on your machine, and run the following
commands:

The openstack flavor list command lists the flavors that are available. These are different disk sizes that
can be assigned to images:

$ openstack flavor list

+-———- +ommm - +-—————- +-—-——- +o—mm - e +o—m - +
| ID | Name | RAM | Disk | Ephemeral | VCPUs | Is Public |
+-———- +o—mm - +-—————- +-—-——- +o—mm - +-—————- +-—mm - +
1	ml.tiny	512	1] 0	1	True	
2	ml.small	2048	20	0	1	True
3	ml.medium	4096	40	0	2	True
4	ml.large	8192	80	0	4	True
5	ml.xlarge	16384	160	0	8	True
R o o R o e o +

The openstack floating ip list command lists the currently available floating IP addresses and the in-
stances they are associated with:

$ openstack floating ip list

Fmmmmmm e e oo fommm - it
pm————— - R et P +

| ID | Floating IP Address | Fixed IP Address | Port [
—~Floating Network | Project [

Fmmm e et et oo fommm - fomm oo
Chmmmm—mm oo Fommmmm e +

| 0a88589a-ffac... | 192.168.12.7 | None | None |
—d831dac6-028c... | 32db2ccf2a... |

e it et ettt e L o +o——— -
Chmmmm—mm——m o Fommmmm e mm - +

For more information about OpenStack client utilities, see these links:

2.1. Operations Guide 7

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* OpenStack API Quick Start

* OpenStackClient commands

* Image Service (glance) CLI commands

* Image Service (glance) CLI command cheat sheet
* Compute (nova) CLI commands

* Compute (nova) CLI command cheat sheet

* Networking (neutron) CLI commands

* Networking (neutron) CLI command cheat sheet
* Block Storage (cinder) CLI commands

* Block Storage (cinder) CLI command cheat sheet
* python-keystoneclient

* python-glanceclient

* python-novaclient

* python-neutronclient

2.1.2 Managing your cloud

This chapter is intended to document OpenStack operations tasks that are integral to the operations sup-
port in an OpenStack-Ansible deployment.

It explains operations such as managing images, instances, or networks.

Managing images

An image represents the operating system, software, and any settings that instances may need depending
on the project goals. Create images first before creating any instances.

Adding images can be done through the Dashboard, or the command line. Another option available is
the python-openstackclient tool, which can be installed on the controller node, or on a workstation.

Adding an image using the Dashboard

In order to add an image using the Dashboard, prepare an image binary file, which must be accessible
over HTTP using a valid and direct URL. Images can be compressed using .zip or .tar.gz.

Note

Uploading images using the Dashboard will be available to users with administrator privileges. Op-
erators can set user access privileges.

1. Log in to the Dashboard.
Select the Admin tab in the navigation pane and click images.

Click the Create Image button. The Create an Image dialog box will appear.

Ll

Enter the details of the image, including the Image Location, which is where the URL location of
the image is required.

8 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/api-quick-start/index.html
https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/glance/latest/cli/index.html
https://docs.openstack.org/python-glanceclient/latest/cli/glance.html
https://docs.openstack.org/nova/latest/cli/index.html
https://docs.openstack.org/python-novaclient/latest/cli/nova.html
https://docs.openstack.org/neutron/latest/cli/index.html
https://docs.openstack.org/python-neutronclient/latest/cli/neutron.html
https://docs.openstack.org/python-cinderclient/latest/user/shell.html
https://docs.openstack.org/python-cinderclient/latest/cli/details.html
https://pypi.org/project/python-keystoneclient/
https://pypi.org/project/python-glanceclient/
https://pypi.org/project/python-novaclient/
https://pypi.org/project/python-neutronclient/

OpenStack-Ansible Documentation, Release 30.1.0.dev44

5. Click the Create Image button. The newly created image may take some time before it is com-
pletely uploaded since the image arrives in an image queue.

Adding an image using the command line

The utility container provides a CLI environment for additional configuration and management.

1. Access the utility container:

{$ lxc-attach -n "1xc-1s -1 | grep utility | head -n 1° }

Use the openstack client within the utility container to manage all glance images. See the openstack
client official documentation on managing images.
Managing instances

This chapter describes how to create and access instances.

Creating an instance using the Dashboard

Using an image, create a new instance via the Dashboard options.
1. Log into the Dashboard, and select the Compute project from the drop down list.
2. Click the Images option.
3. Locate the image that will act as the instance base from the Images table.
4. Click Launch from the Actions column.
5

. Check the Launch Instances dialog, and find the details tab. Enter the appropriate values for the
instance.

1. In the Launch Instance dialog, click the Access & Security tab. Select the keypair. Set the
security group as default.

2. Click the Networking tab. This tab will be unavailable if OpenStack networking (neutron)
has not been enabled. If networking is enabled, select the networks on which the instance
will reside.

3. Click the Volume Options tab. This tab will only be available if a Block Storage volume
exists for the instance. Select Dont boot from a volume for now.

For more information on attaching Block Storage volumes to instances for persistent storage,
see the Managing volumes for persistent storage section below.

4. Add customisation scripts, if needed, by clicking the Post-Creation tab. These run after
the instance has been created. Some instances support user data, such as root passwords, or
admin users. Enter the information specific to the instance here if required.

5. Click Advanced Options. Specify whether the instance uses a configuration drive to store
metadata by selecting a disk partition type.

6. Click Launch to create the instance. The instance will start on a compute node. The Instance
page will open and start creating a new instance. The Instance page that opens will list the instance
name, size, status, and task. Power state and public and private IP addresses are also listed here.

The process will take less than a minute to complete. Instance creation is complete when the status
is listed as active. Refresh the page to see the new active instance.

2.1. Operations Guide 9

https://docs.openstack.org/image-guide/create-images-manually.html
https://docs.openstack.org/image-guide/create-images-manually.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Table 1: Launching an instance options

Field Name Required Details

Availability Zone Optional The availability zone in which
the image service creates the
instance. If no availability
zones is defined, no instances
will be found. The cloud
provider sets the availability
zone to a specific value.

Instance Name Required The name of the new instance,
which becomes the initial host
name of the server. If the
server name is changed in the
API or directly changed, the
Dashboard names remain un-

changed

Image Required The type of container format,
one of ami, ari, aki, bare,
or ovf

Flavor Required The vCPU, Memory, and

Disk configuration. Note that
larger flavors can take a long
time to create. If creating
an instance for the first time
and want something small
with which to test, select
ml.small.

Instance Count Required If creating multiple instances
with this configuration, enter
an integer up to the number
permitted by the quota, which
is 10 by default.

Instance Boot Source Required Specify whether the instance
will be based on an image
or a snapshot. If it is the
first time creating an instance,
there will not yet be any snap-
shots available.

Image Name Required The instance will boot
from the selected image.
This option will be pre-
populated with the instance
selected from the table.
However, choose Boot from
Snapshot in Instance Boot
Source, and it will default to
Snapshot instead.

Security Groups Optional This option assigns security
groups to an instance. The
default security group acti-
vates when no customised

10 Chapter 2. 2025.1 (EF6%4p: UiREeHadvsispnisnt

curity Groups, similar to a
cloud firewall, define which
incoming network traffic is

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Creating an instance using the command line

On the command line, instance creation is managed with the openstack server create command. Before
launching an instance, determine what images and flavors are available to create a new instance using the
openstack image list and openstack flavor list commands.

1. Log in to any utility container.

2. Issue the openstack server create command with a name for the instance, along with the name of
the image and flavor to use:

$ openstack server create --image precise-image --flavor 2 --key-name.
—example-key example-instance

et e e e e e
———t

| Property | Value o

o o
oo eap

| 0S-DCF:diskConfig | MANUAL o
-

| OS-EXT-SRV-ATTR:host | None o
- |

| OS-EXT-SRV-ATTR:hypervisor_hostname | None -
- |

| OS-EXT-SRV-ATTR:instance_name | instance-0000000d o
- |

| OS-EXT-STS:power_state | 0 o
- |

| OS-EXT-STS:task_state | scheduling o
- |

| OS-EXT-STS:vm_state | building o

»

| accessIPv4 | o
- |

| accessIPv6 | o
= |

| adminPass | ATSEfRY9£ZPx o
S

| config_drive | o
S

| created | 2012-08-02T15:43:46Z =
-

| flavor | ml.small o
- |

| hostId | o
- |

| id | 5bf46a3b-084c-4cel-b06f-
—e460e875075b |

| image | precise-image o
- |

| key_name | example-key o

(continues on next page)

2.1. Operations Guide 11

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

S

| metadata | {3 o
o

| name | example-instance o
- |

| progress | 0 o
o

| status | BUILD o

=

| tenant_id [

—b4769145977045e2a9279c842b09%beba |

| updated | 2012-08-02T15:43:46Z =

o

| user_id [

—5£f2£f2c28bdc844£9845251290b524e80 |

e e e

N

3. To check that the instance was created successfully, issue the openstack server list command:

$ openstack server list

e T T T B T T R
Cmmmmmmm +

| ID [Name | Status | Networks I
—Image Name |

e TR o e o e
R +

| [ID truncated] | example-instance | ACTIVE | public=192.0.2.0 |.
—precise-image |

oo o e o o
R +

Managing an instance

1. Log in to the Dashboard. Select one of the projects, and click Instances.
2. Select an instance from the list of available instances.
3. Check the Actions column, and click on the More option. Select the instance state.
The Actions column includes the following options:
* Resize or rebuild any instance

* View the instance console log

Edit the instance

Modify security groups

* Pause, resume, or suspend the instance

Soft or hard reset the instance

12 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Note

Terminate the instance under the Actions column.

Managing volumes for persistent storage

Volumes attach to instances, enabling persistent storage. Volume storage provides a source of memory
for instances. Administrators can attach volumes to a running instance, or move a volume from one
instance to another.

Nova instances live migration

Nova is capable of live migration instances from one host to a different host to support various operational
tasks including:

¢ Host Maintenance
* Host capacity management

* Resizing and moving instances to better hardware

Nova configuration drive implication

Depending on the OpenStack-Ansible version in use, Nova can be configured to force configuration drive
attachments to instances. In this case, a ISO9660 CD-ROM image will be made available to the instance
via the /mnt mount point. This can be used by tools, such as cloud-init, to gain access to instance
metadata. This is an alternative way of accessing the Nova EC2-style Metadata.

To allow live migration of Nova instances, this forced provisioning of the config (CD-ROM) drive needs
to either be turned off, or the format of the configuration drive needs to be changed to a disk format like
vfat, a format which both Linux and Windows instances can access.

This work around is required for all Libvirt versions prior 1.2.17.

To turn off the forced provisioning of and change the format of the configuration drive to a hard disk style
format, add the following override to the /etc/openstack_deploy/user_variables.yml file:

Tunneling versus direct transport

In the default configuration, Nova determines the correct transport URL for how to transfer the data from
one host to the other. Depending on the nova_virt_type override the following configurations are
used:

¢ kvm defaults to gemu+tcp://%s/system
* gemu defaults to gemu+tcp://%s/system
¢ xen defaults to xenmigr://%s/system

Libvirt TCP port to transfer the data to migrate.

2.1. Operations Guide 13

OpenStack-Ansible Documentation, Release 30.1.0.dev44

OpenStack-Ansible changes the default setting and used a encrypted SSH connection to transfer the in-
stance data.

Other configurations can be configured inside the /etc/openstack_deploy/user_variables.yml
file:

Local versus shared storage

By default, live migration assumes that your Nova instances are stored on shared storage and KVM/Libvirt
only need to synchronize the memory and base image of the Nova instance to the new host. Live mi-
grations on local storage will fail as a result of that assumption. Migrations with local storage can be
accomplished by allowing instance disk migrations with the --block-migrate option.

Additional Nova flavor features like ephemeral storage or swap have an impact on live migration perfor-
mance and success.

Cinder attached volumes also require a Libvirt version larger or equal to 1.2.17.

Executing the migration

The live migration is accessible via the nova client.

Examplarery live migration on a local storage:

Monitoring the status

Once the live migration request has been accepted, the status can be monitored with the nova client:

(continues on next page)

14 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

To filter the list, the options --host or --status can be used:

[

J

In cases where the live migration fails, both the source and destination compute nodes need to be checked
for errors. Usually it is sufficient to search for the instance UUID only to find errors related to the live
migration.

Other forms of instance migration

Besides the live migration, Nova offers the option to migrate entire hosts in a online (live) or offline (cold)
migration.

The following nova client commands are provided:
* host-evacuate-live

Live migrate all instances of the specified host to other hosts if resource utilzation allows. It is best
to use shared storage like Ceph or NFS for host evacuation.

* host-servers-migrate

This command is similar to host evacuation but migrates all instances off the specified host while
they are shutdown.

* resize

Changes the flavor of an Nova instance (increase) while rebooting and also migrates (cold) the
instance to a new host to accommodate the new resource requirements. This operation can take
considerate amount of time, depending disk image sizes.

Managing networks

Operational considerations, like compliance, can make it necessary to manage networks. For example,
adding new provider networks to the OpenStack-Ansible managed cloud. The following sections are the
most common administrative tasks outlined to complete those tasks.

For more generic information on troubleshooting your network, see the Network Troubleshooting chapter
in the Operations Guide.

For more in-depth information on Networking, see the Networking Guide.
Add provider bridges using new network interfaces

Add each provider network to your cloud to be made known to OpenStack-Ansible and the operating
system before you can execute the necessary playbooks to complete the configuration.

2.1. Operations Guide 15

https://wiki.openstack.org/wiki/OpsGuide/Network_Troubleshooting
https://docs.openstack.org/neutron/latest/admin/

OpenStack-Ansible Documentation, Release 30.1.0.dev44

OpenStack-Ansible configuration

All provider networks need to be added to the OpenStack-Ansible configuration.

Edit the file /etc/openstack_deploy/openstack_user_config.yml and add a new block under-
neath the provider_networks section:

The container_bridge setting defines the physical network bridge used to connect the veth pair from
the physical host to the container. Inside the container, the container_interface setting defines the
name at which the physical network will be made available. The container_interface setting is not
required when Neutron agents are deployed on bare metal. Make sure that both settings are uniquely
defined across their provider networks and that the network interface is correctly configured inside your
operating system. group_binds define where this network need to attached to, to either containers or
physical hosts and is ultimately dependent on the network stack in use. For example, Linuxbridge versus
OVS. The configuration range defines Neutron physical segmentation IDs which are automatically used
by end users when creating networks via mainly horizon and the Neutron API. Similar is true for the
net_name configuration which defines the addressable name inside the Neutron configuration. This
configuration also need to be unique across other provider networks.

For more information, see Configure the deployment in the OpenStack-Ansible Deployment Guide.

Updating the node with the new configuration

Run the appropriate playbooks depending on the group_binds section.

For example, if you update the networks requiring a change in all nodes with a linux bridge agent, as-
suming you have infra nodes named infra01, infra02, and infra03, run:

openstack-ansible containers-deploy.yml --limit localhost,infra®1,infra®1-
—host_containers

openstack-ansible containers-deploy.yml --limit localhost,infra®02,infra02-
—host_containers

openstack-ansible containers-deploy.yml --limit localhost,infra®3,infra®3-
—host_containers

Then update the neutron configuration.

openstack-ansible os-neutron-install.yml --limit localhost,infra®1l,infra®1-
—host_containers

openstack-ansible os-neutron-install.yml --limit localhost,infra®2,infra®2-
—host_containers

openstack-ansible os-neutron-install.yml --limit localhost,infra®3,infra®3-
—host_containers

Then update your compute nodes if necessary.

Remove provider bridges from OpenStack

Similar to adding a provider network, the removal process uses the same procedure but in a reversed order.
The Neutron ports will need to be removed, prior to the removal of the OpenStack-Ansible configuration.

1. Unassign all Neutron floating IPs:

16 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/configure.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Note

Export the Neutron network that is about to be removed as single UUID.

L

2. Remove all Neutron ports from the instances:

3. Remove Neutron router ports and DHCP agents:

4. Remove the Neutron network:

5. Remove the provider network from the provider_networks configuration of the OpenStack-
Ansible configuration /etc/openstack_deploy/openstack_user_config.yml and re-run

the following playbooks:

2.1. Operations Guide 17

OpenStack-Ansible Documentation, Release 30.1.0.dev44

openstack-ansible lxc-containers-create.yml --limit infra®@l:infra®1-
—host_containers

openstack-ansible lxc-containers-create.yml --limit infra®2:infra®2-
—host_containers

openstack-ansible lxc-containers-create.yml --limit infra®3:infra®3-
—host_containers

openstack-ansible os-neutron-install.yml --tags neutron-config

Restart a Networking agent container

Under some circumstances, configuration or temporary issues, one specific or all neutron agents container
need to be restarted.

This can be accomplished with multiple commands:
1. Example of rebooting still accessible containers.

This example will issue a reboot to the container named with
neutron_agents_container_hostname_name from inside:

[ansible -m shell neutron_agents_container_hostname_name -a J

2. Example of rebooting one container at a time, 60 seconds apart:

{ ansible -m shell neutron_agents_container -a --forks.,
o

3. If the container does not respond, it can be restarted from the physical network host:

ansible -m shell network_hosts -a

—forks

2.1.3 Maintenance tasks

This chapter is intended for OpenStack-Ansible specific maintenance tasks.

Galera cluster maintenance

Routine maintenance includes gracefully adding or removing nodes from the cluster without impacting
operation and also starting a cluster after gracefully shutting down all nodes.

MySQL instances are restarted when creating a cluster, when adding a node, when the service is not
running, or when changes are made to the /etc/mysql/my.cnf configuration file.

Verify cluster status

Compare the output of the following command with the following output. It should give you information
about the status of your cluster.

ansible galera_container -m shell -a

(continues on next page)

18 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

In this example, only one node responded.

Gracefully shutting down the MariaDB service on all but one node allows the remaining operational
node to continue processing SQL requests. When gracefully shutting down multiple nodes, perform the
actions sequentially to retain operation.

Start a cluster

Gracefully shutting down all nodes destroys the cluster. Starting or restarting a cluster from zero nodes
requires creating a new cluster on one of the nodes.

1. Start a new cluster on the most advanced node. Change to the playbooks directory and check the
seqno value in the grastate.dat file on all of the nodes:

ansible galera_container -m shell -a
GALERA saved state version: 2.1
GALERA saved state version: 2.1
GALERA saved state version: 2.1

In this example, all nodes in the cluster contain the same positive seqno values as they were syn-
chronized just prior to graceful shutdown. If all seqgno values are equal, any node can start the
new cluster.

2.1. Operations Guide 19

OpenStack-Ansible Documentation, Release 30.1.0.dev44

/etc/init.d/mysql start --wsrep-new-cluster

systemctl set-environment
systemctl start mysql
systemctl set-environment

Please also have a look at upstream starting a cluster page

This can also be done with the help of ansible using the shell module:

ansible galera_container -m shell -a
. --limit galera_container

This command results in a cluster containing a single node. The wsrep_cluster_size value
shows the number of nodes in the cluster.

2. Restart MariaDB on the other nodes (replace [0] from previous ansible command with [1:]) and
verify that they rejoin the cluster.

(continues on next page)

20 Chapter 2. 2025.1 (Epoxy): Under development

https://galeracluster.com/documentation-webpages/startingcluster.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Galera cluster recovery

Run the openstack.osa.galera_server playbook using the galera_force_bootstrap variable to
automatically recover a node or an entire environment.

1. Run the following Ansible command to show the failed nodes:

openstack-ansible openstack.osa.galera_server -e
- True --tags galera_server-config

You can additionally define a different bootstrap node through galera_server_bootstrap_node vari-
able, in case current bootstrap node is in desynced/broken state. You can check what node is currently
selected for bootstrap using this ad-hoc:

ansible -m debug -a
. localhost

The cluster comes back online after completion of this command. If this fails, please review restarting
the cluster and recovering the primary component in the galera documentation as theyre invaluable for a
full cluster recovery.

Recover a single-node failure

If a single node fails, the other nodes maintain quorum and continue to process SQL requests.

1. Change to the playbooks directory and run the following Ansible command to determine the
failed node:

ansible galera_container -m shell -a

(continues on next page)

2.1. Operations Guide 21

https://galeracluster.com/library/training/tutorials/restarting-cluster.html
https://galeracluster.com/library/training/tutorials/restarting-cluster.html
https://galeracluster.com/documentation-webpages/pcrecovery.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

In this example, node 3 has failed.
2. Restart MariaDB on the failed node and verify that it rejoins the cluster.

3. If MariaDB fails to start, run the mysqld command and perform further analysis on the output. As
a last resort, rebuild the container for the node.

Recover a multi-node failure

When all but one node fails, the remaining node cannot achieve quorum and stops processing SQL re-
quests. In this situation, failed nodes that recover cannot join the cluster because it no longer exists.

1. Run the following Ansible command to show the failed nodes:

ansible galera_container -m shell -a

In this example, nodes 2 and 3 have failed. The remaining operational server indicates
non-Primary because it cannot achieve quorum.

2. Run the following command to rebootstrap the operational node into the cluster:

mysql -e

(continues on next page)

22 Chapter 2. 2025.1 (Epoxy): Under development

https://galeracluster.com/documentation-webpages/quorumreset.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

The remaining operational node becomes the primary node and begins processing SQL requests.

3. Restart MariaDB on the failed nodes and verify that they rejoin the cluster:

ansible galera_container -m shell -a

L

4. If MariaDB fails to start on any of the failed nodes, run the mysqld command and perform further
analysis on the output. As a last resort, rebuild the container for the node.

Recover a complete environment failure

Restore from backup if all of the nodes in a Galera cluster fail (do not shutdown gracefully). Change
to the playbook directory and run the following command to determine if all nodes in the cluster have

failed:

ansible galera_container -m shell -a

GALERA saved state

GALERA saved state

(continues on next page)

2.1. Operations Guide 23

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

GALERA saved state

J

All the nodes have failed if mysqld is not running on any of the nodes and all of the nodes contain a
seqno value of -1.

If any single node has a positive seqno value, then that node can be used to restart the cluster. However,
because there is no guarantee that each node has an identical copy of the data, we do not recommend to
restart the cluster using the --wsrep-new-cluster command on one node.

Rebuild a container

Recovering from certain failures require rebuilding one or more containers.

1. Disable the failed node on the load balancer.

Note

Do not rely on the load balancer health checks to disable the node. If the node is not disabled,
the load balancer sends SQL requests to it before it rejoins the cluster and cause data inconsis-
tencies.

2. Destroy the container and remove MariaDB data stored outside of the container:

-1 node3_galera_container-3ea2cbd3

openstack-ansible openstack.osa.containers_lxc_destroy }

In this example, node 3 failed.

3. Run the host setup playbook to rebuild the container on node 3:

openstack-ansible oopenstack.osa.containers_lxc_create -1 node3
-1 node3_galera_container-3ea2cbd3

The playbook restarts all other containers on the node.

4. Run the infrastructure playbook to configure the container specifically on node 3:

openstack-ansible openstack.osa.setup_infrastructure
--1limit node3_galera_container-3ea2chd3
| Warning |

24 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

The new container runs a single-node Galera cluster, which is a dangerous state because the
environment contains more than one active database with potentially different data.

ansible galera_container -m shell -a

5. Restart MariaDB in the new container and verify that it rejoins the cluster.

Note

In larger deployments, it may take some time for the MariaDB daemon to start in the
new container. It will be synchronizing data from the other MariaDB servers during this
time. You can monitor the status during this process by tailing the /var/log/mysql_logs/
galera_server_error.log log file.

Lines starting with WSREP_SST will appear during the sync process and you should see a line
with WSREP: SST complete, seqno: <NUMBER> if the sync was successful.

ansible galera_container -m shell -a

(continues on next page)

2.1. Operations Guide 25

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

6. Enable the previously failed node on the load balancer.

RabbitMQ cluster maintenance

A RabbitMQ broker is a logical grouping of one or several Erlang nodes with each node running the Rab-
bitMQ application and sharing users, virtual hosts, queues, exchanges, bindings, and runtime parameters.
A collection of nodes is often referred to as a cluster. For more information on RabbitMQ clustering, see
RabbitMQ cluster.

Within OpenStack-Ansible, all data and states required for operation of the RabbitMQ cluster is replicated
across all nodes including the message queues providing high availability. RabbitMQ nodes address
each other using domain names. The hostnames of all cluster members must be resolvable from all
cluster nodes, as well as any machines where CLI tools related to RabbitMQ might be used. There are
alternatives that may work in more restrictive environments. For more details on that setup, see Inet
Configuration.

Note

There is currently an Ansible bug in regards to HOSTNAME. If the host .bashrc holds a var named
HOSTNAME, the container where the 1xc_container module attaches will inherit this var and po-
tentially set the wrong $HOSTNAME. See the Ansible fix which will be released in Ansible version
2.3.

Create a RabbitMQ cluster

RabbitMQ clusters can be formed in two ways:
* Manually with rabbitmqctl

* Declaratively (list of cluster nodes in a config, with rabbitmg-autocluster, or
rabbitmg-clusterer plugins)

Note

RabbitMQ brokers can tolerate the failure of individual nodes within the cluster. These nodes can
start and stop at will as long as they have the ability to reach previously known members at the time
of shutdown.

There are two types of nodes you can configure: disk and RAM nodes. Most commonly, you will use

26 Chapter 2. 2025.1 (Epoxy): Under development

https://www.rabbitmq.com/clustering.html
http://erlang.org/doc/apps/erts/inet_cfg.html
http://erlang.org/doc/apps/erts/inet_cfg.html
https://github.com/ansible/ansible/pull/22246

OpenStack-Ansible Documentation, Release 30.1.0.dev44

your nodes as disk nodes (preferred). Whereas RAM nodes are more of a special configuration used in
performance clusters.

RabbitMQ nodes and the CLI tools use an erlang cookie to determine whether or not they have per-
mission to communicate. The cookie is a string of alphanumeric characters and can be as short or as long
as you would like.

Note

The cookie value is a shared secret and should be protected and kept private.

The default location of the cookie on *nix environments is /var/lib/rabbitmg/.erlang.cookie
or in $HOME/ . erlang.cookie.

Tip

While troubleshooting, if you notice one node is refusing to join the cluster, it is definitely worth
checking if the erlang cookie matches the other nodes. When the cookie is misconfigured (for exam-
ple, not identical), RabbitMQ will log errors such as Connection attempt from disallowed node and
Could not auto-cluster. See clustering for more information.

To form a RabbitMQ Cluster, you start by taking independent RabbitMQ brokers and re-configuring these
nodes into a cluster configuration.

Using a 3 node example, you would be telling nodes 2 and 3 to join the cluster of the first node.
1. Login to the 2nd and 3rd node and stop the rabbitmq application.

2. Join the cluster, then restart the application:

Check the RabbitMQ cluster status

1. Run rabbitmgctl cluster_status from either node.
You will see rabbitl and rabbit2 are both running as before.

The difference is that the cluster status section of the output, both nodes are now grouped together:

To add the third RabbitMQ node to the cluster, repeat the above process by stopping the RabbitMQ
application on the third node.

2.1. Operations Guide 27

https://www.rabbitmq.com/clustering.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

1. Join the cluster, and restart the application on the third node.

2. Execute rabbitmq cluster_status to see all 3 nodes:

Stop and restart a RabbitMQ cluster

To stop and start the cluster, keep in mind the order in which you shut the nodes down. The last node you
stop, needs to be the first node you start. This node is the master.

If you start the nodes out of order, you could run into an issue where it thinks the current master should
not be the master and drops the messages to ensure that no new messages are queued while the real master
is down.

RabbitMQ and mnesia

Mnesia is a distributed database that RabbitMQ uses to store information about users, exchanges, queues,
and bindings. Messages, however are not stored in the database.

For more information about Mnesia, see the Mnesia overview.

To view the locations of important Rabbit files, see File Locations.

Repair a partitioned RabbitMQ cluster for a single-node

Invariably due to something in your environment, you are likely to lose a node in your cluster. In this
scenario, multiple LXC containers on the same host are running Rabbit and are in a single Rabbit cluster.

If the host still shows as part of the cluster, but it is not running, execute:

[rabbitmgctl start_app

1

However, you may notice some issues with your application as clients may be trying to push messages to
the un-responsive node. To remedy this, forget the node from the cluster by executing the following:

1. Ensure RabbitMQ is not running on the node:

{ rabbitmgctl stop_app

2. On the Rabbit2 node, execute:

[rabbitmgctl forget_cluster_node rabbit@rabbitl

By doing this, the cluster can continue to run effectively and you can repair the failing node.

Important

Watch out when you restart the node, it will still think it is part of the cluster and will require you to
reset the node. After resetting, you should be able to rejoin it to other nodes as needed.

28 Chapter 2. 2025.1 (Epoxy): Under development

http://erlang.org/doc/apps/mnesia/Mnesia_overview.html
https://www.rabbitmq.com/relocate.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Repair a partitioned RabbitMQ cluster for a multi-node cluster

The same concepts apply to a multi-node cluster that exist in a single-node cluster. The only difference
is that the various nodes will actually be running on different hosts. The key things to keep in mind when
dealing with a multi-node cluster are:

* When the entire cluster is brought down, the last node to go down must be the first node to be
brought online. If this does not happen, the nodes will wait 30 seconds for the last disc node to
come back online, and fail afterwards.

If the last node to go offline cannot be brought back up, it can be removed from the cluster using
the forget_cluster_node command.

* If all cluster nodes stop in a simultaneous and uncontrolled manner, (for example, with a power
cut) you can be left with a situation in which all nodes think that some other node stopped after
them. In this case you can use the force_boot command on one node to make it bootable again.

Consult the rabbitmqctl manpage for more information.

Migrate between HA and Quorum queues

In the 2024.1 (Caracal) release OpenStack Ansible switches to use RabbitMQ Quorum Queues by default,
rather than the legacy High Availability classic queues. Migration to Quorum Queues can be performed at
upgrade time, but may result in extended control plane downtime as this requires all OpenStack services
to be restarted with their new configuration.

In order to speed up the migration, the following playbooks can be run to migrate either to or from
Quorum Queues, whilst skipping package install and other configuration tasks. These tasks are available
from the 2024.1 release onwards.

openstack-ansible openstack.osa.rabbitmg_server --tags rabbitmg-
—config

openstack-ansible openstack.osa.setup_openstack --tags common-mg,
—post-install

In order to take advantage of these steps, we suggest setting oslomsg_rabbit_quorum_queues to False
before upgrading to 2024.1. Then, once you have upgraded, set oslomsg_rabbit_quorum_queues back
to the default of True and run the playbooks above.

2.1. Operations Guide 29

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Running ad-hoc Ansible plays

Being familiar with running ad-hoc Ansible commands is helpful when operating your OpenStack-
Ansible deployment. For a review, we can look at the structure of the following ansible command:

[ansible example_group -m shell -a }

This command calls on Ansible to run the example_group using the -m shell module with the -a argu-
ment which is the hostname command. You can substitute example_group for any groups you may have
defined. For example, if you had compute_hosts in one group and infra_hosts in another, supply
either group name and run the command. You can also use the * wild card if you only know the first
part of the group name, for instance if you know the group name starts with compute you would use
compute_h*. The -m argument is for module.

Modules can be used to control system resources or handle the execution of system commands. For more
information about modules, see Module Index and About Modules.

If you need to run a particular command against a subset of a group, you could use the limit flag -1. For
example, if a compute_hosts group contained computel, compute2, compute3, and compute4, and
you only needed to execute a command on computel and compute4 you could limit the command as
follows:

[ansible example_group -m shell -a -1 computel, computed }

Note

Each host is comma-separated with no spaces.

Note

Run the ad-hoc Ansible commands from the openstack-ansible/playbooks directory.

For more information, see Inventory and Patterns.

Running the shell module

The two most common modules used are the shell and copy modules. The shell module takes the
command name followed by a list of space delimited arguments. It is almost like the command module,
but runs the command through a shell (/bin/sh) on the remote node.

For example, you could use the shell module to check the amount of disk space on a set of Compute
hosts:

[ansible compute_hosts -m shell -a }

To check on the status of your Galera cluster:

| ansible galera_container -m shell -a }

When a module is being used as an ad-hoc command, there are a few parameters that are not required. For
example, for the chdir command, there is no need to chdir=/home/user 1ls when running Ansible

30 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.ansible.com/ansible/modules_by_category.html
https://docs.ansible.com/ansible/modules.html
https://docs.ansible.com/ansible/intro_inventory.html
https://docs.ansible.com/ansible/intro_patterns.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

from the CLI:

{ ansible compute_hosts -m shell -a }

For more information, see shell - Execute commands in nodes.

Running the copy module

The copy module copies a file on a local machine to remote locations. To copy files from remote locations
to the local machine you would use the fetch module. If you need variable interpolation in copied files,
use the template module. For more information, see copy - Copies files to remote locations.

The following example shows how to move a file from your deployment host to the /tmp directory on a

set of remote machines:

ansible remote_machines -m copy -a

The fetch module gathers files from remote machines and stores the files locally in a file tree, organized
by the hostname from remote machines and stores them locally in a file tree, organized by hostname.

Note
This module transfers log files that might not be present, so a missing remote file will not be an error

unless fail_on_missing is set to yes.

The following examples shows the nova-compute. log file being pulled from a single Compute host:

ansible,.
—compute_hosts -m fetch -a

ls -1la /tmp/
—~aiol/var/log/nova/nova-compute.log
Using tags

Tags are similar to the limit flag for groups, except tags are used to only run specific tasks within a
playbook. For more information on tags, see Tags and Understanding ansible tags.

2.1. Operations Guide 31

https://docs.ansible.com/ansible/shell_module.html
https://docs.ansible.com/ansible/copy_module.html
http://ansible-docs.readthedocs.io/zh/stable-2.0/rst/playbooks_tags.html
http://www.caphrim.net/ansible/2015/05/24/understanding-ansible-tags.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Ansible forks

The default MaxSessions setting for the OpenSSH Daemon is 10. Each Ansible fork makes use of a
session. By default, Ansible sets the number of forks to 5. However, you can increase the number of
forks used in order to improve deployment performance in large environments.

Note that more than 10 forks will cause issues for any playbooks which use delegate_to or
local_action in the tasks. It is recommended that the number of forks are not raised when execut-
ing against the control plane, as this is where delegation is most often used.

The number of forks used may be changed on a permanent basis by including the appropriate change
to the ANSIBLE_FORKS in your .bashrc file. Alternatively it can be changed for a particular playbook
execution by using the --forks CLI parameter. For example, the following executes the nova playbook
against the control plane with 10 forks, then against the compute nodes with 50 forks.

openstack-ansible --forks os-nova-install.yml --limit compute_containers
openstack-ansible --forks os-nova-install.yml --limit compute_hosts

For more information about forks, please see the following references:
* OpenStack-Ansible Bug 1479812
* Ansible forks entry for ansible.cfg

* Ansible Performance Tuning

Container management

With Ansible, the OpenStack installation process is entirely automated using playbooks written in
YAML. After installation, the settings configured by the playbooks can be changed and modified. Ser-
vices and containers can shift to accommodate certain environment requirements. Scaling services are
achieved by adjusting services within containers, or adding new deployment groups. It is also possible
to destroy containers, if needed, after changes and modifications are complete.

Scale individual services

Individual OpenStack services, and other open source project services, run within contain-
ers. It is possible to scale out these services by modifying the /etc/openstack_deploy/
openstack_user_config.yml file.

1. Navigate into the /etc/openstack_deploy/openstack_user_config.yml file.

2. Access the deployment groups section of the configuration file. Underneath the deployment group
name, add an affinity value line to container scales OpenStack services:

J

In this example, galera_container has a container value of one. In practice, any containers that
do not need adjustment can remain at the default value of one, and should not be adjusted above
or below the value of one.

32 Chapter 2. 2025.1 (Epoxy): Under development

https://bugs.launchpad.net/openstack-ansible/+bug/1479812
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html#cmdoption-ansible-playbook-f
https://www.ansible.com/blog/ansible-performance-tuning

OpenStack-Ansible Documentation, Release 30.1.0.dev44

The affinity value for each container is set at one by default. Adjust the affinity value to zero for
situations where the OpenStack services housed within a specific container will not be needed
when scaling out other required services.

3. Update the container number listed under the affinity configuration to the desired number. The
above example has galera_container set at one and rabbit_mq_container at two, which
scales RabbitMQ services, but leaves Galera services fixed.

4. Run the appropriate playbook commands after changing the configuration to create the new con-
tainers, and install the appropriate services.

For example, run the openstack-ansible Ixc-containers-create.yml rabbitmq-install.yml com-
mands from the openstack-ansible/playbooks repository to complete the scaling process
described in the example above:

$ cd openstack-ansible/playbooks
$ openstack-ansible lxc-containers-create.yml rabbitmg-install.yml

Destroy and recreate containers

Resolving some issues may require destroying a container, and rebuilding that container from the begin-
ning. It is possible to destroy and re-create a container with the 1xc-containers-destroy.yml and
1xc-containers-create.yml commands. These Ansible scripts reside in the openstack-ansible/
playbooks repository.

1. Navigate to the openstack-ansible directory.

2. Run the openstack-ansible Ixc-containers-destroy.yml commands, specifying the target contain-
ers and the container to be destroyed.

$ openstack-ansible lxc-containers-destroy.yml --limit "CONTAINER_NAME"
$ openstack-ansible lxc-containers-create.yml --limit "CONTAINER_NAME"

3. Replace “CONTAINER_NAME“ with the target container.

Firewalls

OpenStack-Ansible does not configure firewalls for its infrastructure. It is up to the deployer to define
the perimeter and its firewall configuration.

By default, OpenStack-Ansible relies on Ansible SSH connections, and needs the TCP port 22 to be
opened on all hosts internally.

For more information on generic OpenStack firewall configuration, see the Firewalls and default ports

In each of the roles respective documentatione you can find the default variables for the ports used within
the scope of the role. Reviewing the documentation allow you to find the variable names if you want to
use a different port.

Note

OpenStack-Ansibles group vars conveniently expose the vars outside of the role scope in case you are
relying on the OpenStack-Ansible groups to configure your firewall.

2.1. Operations Guide 33

https://docs.openstack.org/install-guide/firewalls-default-ports.html
https://opendev.org/openstack/openstack-ansible/src/inventory/group_vars/all/all.yml

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Finding ports for your external load balancer

As explained in the previous section, you can find (in each roles documentation) the default variables
used for the public interface endpoint ports.

For example, the os_glance documentation lists the variable glance_service_publicuri. This
contains the port used for the reaching the service externally. In this example, it is equal to
glance_service_port, whose value is 9292.

As a hint, you could find the list of all public URI defaults by executing the following:

Note

Haproxy can be configured with OpenStack-Ansible. The automatically generated /etc/haproxy/
haproxy . cfg file have enough information on the ports to open for your environment.

Prune Inventory Backup Archive
The inventory backup archive will require maintenance over a long enough period of time.
Bulk pruning

It is possible to do mass pruning of the inventory backup. The following example will prune all but the
last 15 inventories from the running archive.

tar -tvf
head -n -15 awk
xargs -n | tar -vf --delete

Selective Pruning

To prune the inventory archive selectively, first identify the files you wish to remove by listing them out.

N

tar -tvf /etc/openstack_deploy/backup_openstack_inventory.tar

-rw-r--r-- root/root -05-03 :11 openstack_inventory. json-
—20180503_151147. json
-rw-r--r-- root/root -05-03 :11 openstack_inventory.json-
—20180503_151205. json
-rw-r--r-- root/root -05-03 :12 openstack_inventory. json-

—20180503_151217. json

Now delete the targeted inventory archive.

tar -vf /etc/openstack_deploy/backup_openstack_inventory.tar --delete.
—openstack_inventory.json-20180503_151205. json

34 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/openstack-ansible-os_glance/latest/#default-variables
https://opendev.org/openstack/openstack-ansible/src/commit/6520d0bb2c689ed7caa5df581be6a966133cdce0/inventory/group_vars/haproxy/haproxy.yml

OpenStack-Ansible Documentation, Release 30.1.0.dev44

2.1.4 Scaling your environment

This is a draft environment scaling page for the proposed OpenStack-Ansible operations guide.

Add a new infrastructure host

While three infrastructure hosts are recommended, if further hosts are needed in an environment, it is
possible to create additional nodes.

Warning

Make sure you back up your current OpenStack environment before adding any new nodes. See Back
up and restore your cloud for more information.

1. Add the node to the infra_hosts stanza of the /etc/openstack_deploy/
openstack_user_config.yml

2. Change to playbook folder on the deployment host.

{ /opt/openstack-ansible }

3. To prepare new hosts and deploy containers on them run setup-hosts.yml playbook with the
limit argument.

openstack-ansible openstack.osa.setup_hosts --limit localhost,infra
—»<node-ID>, infra<node-ID>-host_containers

4. In case youre relying on /etc/hosts content, you should also update it for all hosts

openstack-ansible openstack.osa.openstack_hosts_setup -e
. all --tags openstack_hosts-file

5. Next we need to expand galera/rabbitmq clusters, which is done during setup-infrastructure.
yml. So we will run this playbook without limits.

Warning

Make sure that containers from new infra host does not appear in inventory as first one for
groups galera_all, rabbitmqg_all and repo_all. You can varify that with ad-hoc com-

mands:
ansible -m debug -a localhost
ansible -m debug -a localhost
ansible -m debug -a localhost

openstack-ansible openstack.osa.setup_infrastructure -e

—

2.1. Operations Guide 35

OpenStack-Ansible Documentation, Release 30.1.0.dev44

6. Once infrastructure playboks are done, its turn of openstack services to be deployed. Most of
the services are fine to be ran with limits, but some, like keystone, are not. So we run keystone
playbook separately from all others:

openstack-ansible openstack.osa.keystone
openstack-ansible openstack.osa.setup_openstack --limit ,
—localhost,infra<node-ID>,infra<node-ID>-host_containers

Test new infra nodes

After creating a new infra node, test that the node runs correctly by launching a new instance. Ensure
that the new node can respond to a networking connection test through the ping command. Log in to
your monitoring system, and verify that the monitors return a green signal for the new node.

Add a compute host
Use the following procedure to add a compute host to an operational cluster.

1. Configure the host as a target host. See the target hosts configuration section of the deploy guide.
for more information.

2. Edit the /etc/openstack_deploy/openstack_user_config.yml file and add the host to the
compute_hosts stanza.

If necessary, also modify the used_ips stanza.

3. If the cluster is utilizing Telemetry/Metering (ceilometer), edit the /etc/openstack_deploy/
conf.d/ceilometer.yml file and add the host to the metering-compute_hosts stanza.

4. Run the following commands to add the host. Replace NEW_HOST_NAME with the name of the new
host.

/opt/openstack-ansible/playbooks
openstack-ansible openstack.osa.setup_hosts --limit localhost,NEW_HOST_
—NAME
openstack-ansible openstack.osa.openstack_hosts_setup -e
o nova_compute --tags openstack_hosts-file
openstack-ansible openstack.osa.setup_openstack --limit localhost,NEW_
—HOST_NAME

L J

Alternatively you can try using new compute nodes deployment script /opt/
openstack-ansible/scripts/add-compute. sh.

You can provide this script with extra tasks that will be executed before or right after OSA roles.
To do so you should set environment variables PRE_OSA_TASKS or POST_OSA_TASKS with plays
to run devided with semicolon:

—

/opt/openstack-ansible/scripts/add-compute.sh HOST_NAME,HOST_NAME_2

36 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/targethosts.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Test new compute nodes

After creating a new node, test that the node runs correctly by launching an instance on the new node.

openstack server create --image IMAGE --flavor ml.tiny
--key-name KEY --availability-zone ZONE:HOST:NODE
--nic net-id UUID SERVER

Ensure that the new instance can respond to a networking connection test through the ping command.
Log in to your monitoring system, and verify that the monitors return a green signal for the new node.
Remove a compute host

The openstack-ansible-ops repository contains a playbook for removing a compute host from an
OpenStack-Ansible environment. To remove a compute host, follow the below procedure.

Note

This guide describes how to remove a compute node from an OpenStack-Ansible environment com-
pletely. Perform these steps with caution, as the compute node will no longer be in service after
the steps have been completed. This guide assumes that all data and instances have been properly
migrated.

1. Disable all OpenStack services running on the compute node. This can include, but is not limited
to, the nova-compute service and the neutron agent service.

Note

Ensure this step is performed first

Run these commands on the compute node to be removed
stop nova-compute
stop neutron-linuxbridge-agent

2. Clone the openstack-ansible-ops repository to your deployment host:

git clone https://opendev.org/openstack/openstack-ansible-ops
/opt/openstack-ansible-ops

3. Run the remove_compute_node.yml Ansible playbook with the host_to_be_removed user
variable set:

/opt/openstack-ansible-ops/ansible_tools/playbooks

4. After the playbook completes, remove the compute node from the OpenStack-Ansible configura-
tion file in /etc/openstack_deploy/openstack_user_config.yml.

2.1. Operations Guide 37

https://opendev.org/openstack/openstack-ansible-ops

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Recover a compute host failure

The following procedure addresses Compute node failure if shared storage is used.

Note

If shared storage is not used, data can be copied from the /var/1ib/nova/instances directory on
the failed Compute node $ {FAILED_NODE} to another node $ {RECEIVING_NODE }before performing

the following procedure. Please note this method is not supported.

1. Re-launch all instances on the failed node.
2. Invoke the MySQL command line tool

3. Generate a list of instance UUIDs hosted on the failed node:

4. Set instances on the failed node to be hosted on a different node:

5. Reboot each instance on the failed node listed in the previous query to regenerate the XML files:

[

6. Find the volumes to check the instance has successfully booted and is at the login :

7. If rows are found, detach and re-attach the volumes using the values listed in the previous query:

8. Rebuild or replace the failed node as described in add-compute-host.

Replacing failed hardware

It is essential to plan and know how to replace failed hardware in your cluster without compromising

your cloud environment.
Consider the following to help establish a hardware replacement plan:

* What type of node am I replacing hardware on?

* Can the hardware replacement be done without the host going down? For example, a single disk

in a RAID-10.

38 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* If the host DOES have to be brought down for the hardware replacement, how should the resources
on that host be handled?

If you have a Compute (nova) host that has a disk failure on a RAID-10, you can swap the failed disk
without powering the host down. On the other hand, if the RAM has failed, you would have to power
the host down. Having a plan in place for how you will manage these types of events is a vital part of
maintaining your OpenStack environment.

For a Compute host, shut down the instance on the host before it goes down. For a Block Storage (cinder)
host using non-redundant storage, shut down any instances with volumes attached that require that mount
point. Unmount the drive within your operating system and re-mount the drive once the Block Storage
host is back online.

Shutting down the Compute host

If a Compute host needs to be shut down:

1. Disable the nova-compute binary:

nova service-disable --reason HOSTNAME nova-
—,compute

2. List all running instances on the Compute host:

nova list --all-t --host <compute_name> awk >
/home/user/running_instances i cat /home/user/running_
—instances nova stop

3. Use SSH to connect to the Compute host.

4. Confirm all instances are down:

[virsh list --all }

5. Shut down the Compute host:

[shutdown -h now }

6. Once the Compute host comes back online, confirm everything is in working order and start the
instances on the host. For example:

cat /home/user/running_instances
nova start

7. Enable the nova-compute service in the environment:

[nova service-enable HOSTNAME nova-compute }

Shutting down the Block Storage host

If a LVM backed Block Storage host needs to be shut down:

1. Disable the cinder-volume service:

2.1. Operations Guide 39

OpenStack-Ansible Documentation, Release 30.1.0.dev44

cinder service-list --host CINDER SERVICE NAME INCLUDING @BACKEND
cinder service-disable CINDER SERVICE NAME INCLUDING @BACKEND
cinder-volume --reason

L

2. List all instances with Block Storage volumes attached:

s N

mysqgl cinder -BNe
tee /home/user/running_instances

3. Shut down the instances:

[cat /home/user/running_instances @ xargs -nl nova stop }

4. Verify the instances are shutdown:

[cat /home/user/running_instances @ xargs -nl nova show fgrep vm_state }

5. Shut down the Block Storage host:

[shutdown -h now J

6. Replace the failed hardware and validate the new hardware is functioning.

7. Enable the cinder-volume service:

cinder service-enable CINDER SERVICE NAME INCLUDING @BACKEND cinder- l
—.volume

8. Verify the services on the host are reconnected to the environment:

{ cinder service-list --host CINDER SERVICE NAME INCLUDING @BACKEND }

9. Start your instances and confirm all of the instances are started:

cat /home/user/running_instances xargs -nl nova start
cat /home/user/running_instances xargs -nl nova show fgrep vm_state

Destroying Containers

1. To destroy a container, execute the following:

openstack-ansible openstack.osa.containers_lxc_destroy --limit.
—localhost,<container name container group>

Note
You will be asked two questions:

Are you sure you want to destroy the LXC containers? Are you sure you
want to destroy the LXC container data?

The first will just remove the container but leave the data in the bind mounts
and logs. The second will remove the data in the bind mounts and logs too.

40 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Warning

If you remove the containers and data for the entire galera_server container group you will lose all your
databases! Also, if you destroy the first container in many host groups you will lose other important
items like certificates, keys, etc. Be sure that you understand what youre doing when using this tool.

1. To create the containers again, execute the following:

/opt/openstack-ansible/playbooks
openstack-ansible openstack.osa.containers_lxc_create --limit localhost,
—1xc_hosts,<container name container

The Ixc_hosts host group must be included as the playbook and roles executed require the use of
facts from the hosts.
Accessibility for multi-region Object Storage

In multi-region Object Storage utilizing separate database backends, objects are retrievable from an al-
ternate location if the default_project_id for a user in the keystone database is the same across each
database backend.

Important

It is recommended to perform the following steps before a failure occurs to avoid having to dump and
restore the database.

If a failure does occur, follow these steps to restore the database from the Primary (failed) Region:

1. Record the Primary Region output of the default_project_id for the specified user from the
user table in the keystone database:

Note

The user is admin in this example.

mysql -e "SELECT default_project_id from keystone.user WHERE \

name="'admin';

e +
| default_project_id |
et i e +
| 76ef6df109744a03b64ffaad2a7c£f504 |
tom e +

2. Record the Secondary Region output of the default_project_id for the specified user from the
user table in the keystone database:

(continues on next page)

2.1. Operations Guide 41

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

L J

3. In the Secondary Region, update the references to the project_id to match the ID from the
Primary Region:

L

The user in the Secondary Region now has access to objects PUT in the Primary Region. The Secondary
Region can PUT objects accessible by the user in the Primary Region.

2.1.5 Monitoring your environment

This is a draft monitoring system page for the proposed OpenStack-Ansible operations guide.

2.1.6 Back up and restore your cloud

For disaster recovery purposes, it is a good practice to perform regular backups of the database, configu-
ration files, network information, and OpenStack service details in your environment. For an OpenStack
cloud deployed using OpenStack-Ansible, back up the /etc/openstack_deploy/ directory.

Back up and restore the /etc/openstack_deploy/ directory

The /etc/openstack_deploy/ directory contains a live inventory, host structure, network information,
passwords, and options that are applied to the configuration files for each service in your OpenStack
deployment. Back up the /etc/openstack_deploy/ directory to a remote location.

To restore the /etc/openstack_deploy/ directory, copy the backup of the directory to your cloud
environment.

42 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Database backups and recovery

MySQL data is available on the infrastructure nodes. You can recover databases, and rebuild the galera
cluster. For more information, see Galera cluster recovery.

2.1.7 Troubleshooting

This chapter is intended to help troubleshoot and resolve operational issues in an OpenStack-Ansible
deployment.

Networking

This section focuses on troubleshooting general host-to-host communication required for the OpenStack
control plane to function properly.

This does not cover any networking related to instance connectivity.
These instructions assume an OpenStack-Ansible installation using LXC containers, VXLAN overlay,

and the Linuxbridge ml2 driver.

Network List

1. HOST_NET (Physical Host Management and Access to Internet)
2. CONTAINER_NET (LXC container network used Openstack Services)
3. OVERLAY_NET (VXLAN overlay network)

Useful network utilities and commands:

ip link show dev INTERFACE_NAME

arp -n -i INTERFACE_NAME

ip -4 -6 address show dev INTERFACE_NAME

ping <TARGET_IP_ADDRESS>

tcpdump -n -nn < -i INTERFACE_NAME > host SOURCE_IP_ADDRESS
brctl show BRIDGE_ID

iptables -nL

arping -c NUMBER -d <TARGET_IP_ADDRESS>

Troubleshooting host-to-host traffic on HOST_NET

Perform the following checks:
* Check physical connectivity of hosts to physical network
* Check interface bonding (if applicable)
* Check VLAN configurations and any necessary trunking to edge ports on physical switch

* Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if
applicable)

* Check that hosts are in the same IP subnet or have proper routing between them
* Check there are no iptables applied to the hosts that would deny traffic

IP addresses should be applied to physical interface, bond interface, tagged sub-interface, or in some
cases the bridge interface:

2.1. Operations Guide 43

OpenStack-Ansible Documentation, Release 30.1.0.dev44

ip address show dev bond®

Troubleshooting host-to-host traffic on CONTAINER_NET

Perform the following checks:
* Check physical connectivity of hosts to physical network
* Check interface bonding (if applicable)
* Check VLAN configurations and any necessary trunking to edge ports on physical switch

* Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if
applicable)

* Check that hosts are in the same subnet or have proper routing between them
* Check there are no iptables applied to the hosts that would deny traffic

» Check to verify that physical interface is in the bridge

* Check to verify that veth-pair end from container is in br-mgmt

IP address should be applied to br-mgmt:

ip address show dev br-mgmt

IP address should be applied to ethl inside the LXC container:

ip address show dev ethl

br-mgmt should contain veth-pair ends from all containers and a physical interface or tagged-
subinterface:

brctl show br-mgmt

(continues on next page)

44 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Troubleshooting host-to-host traffic on OVERLAY_NET

Perform the following checks:
* Check physical connectivity of hosts to physical network
* Check interface bonding (if applicable)
* Check VLAN configurations and any necessary trunking to edge ports on physical switch

* Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if
applicable)

* Check that hosts are in the same subnet or have proper routing between them
* Check there are no iptables applied to the hosts that would deny traffic

* Check to verify that physcial interface is in the bridge

* Check to verify that veth-pair end from container is in br-vxlan

IP address should be applied to br-vxlan:

ip address show dev br-vxlan

Checking services

You can check the status of an OpenStack service by accessing every controller node and running the
service <SERVICE_NAME> status.

See the following links for additional information to verify OpenStack services:
* Identity service (keystone)
* Image service (glance)
* Compute service (nova)
* Networking service (neutron)
* Block Storage service

* Object Storage service (swift)

Restarting services

Restart your OpenStack services by accessing every controller node. Some OpenStack services will
require restart from other nodes in your environment.

The following table lists the commands to restart an OpenStack service.

2.1. Operations Guide 45

https://ask.openstack.org/en/question/101127/how-to-check-if-keystone-is-running/
https://docs.openstack.org/ocata/install-guide-ubuntu/glance-verify.html
https://docs.openstack.org/ocata/install-guide-ubuntu/nova-verify.html
https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-verify.html
https://docs.openstack.org/ocata/install-guide-rdo/cinder-verify.html
https://docs.openstack.org/project-install-guide/object-storage/ocata/verify.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Table 2: Restarting OpenStack services

OpenStack service Commands

Image service
service glance-api restart

Compute service (controller

node) service nova-api-os-compute restart
service nova-consoleauth restart
service nova-scheduler restart
service nova-conductor restart
service nova-api-metadata restart

service nova-novncproxy restart using novnc
service nova-spicehtml5proxy restart using.
—spice
Compute service (compute
node) service nova-compute restart

Networking service
service neutron-server restart
service neutron-dhcp-agent restart
service neutron-13-agent restart
service neutron-metadata-agent restart
service neutron-linuxbridge-agent restart

Networking service (com-
pute node) service neutron-linuxbridge-agent restart

Block Storage service
service cinder-api restart
service cinder-backup restart
service cinder-scheduler restart
service cinder-volume restart

Block Storage service
service manila-api restart
service manila-data restart
service manila-share restart
service manila-scheduler restart

Object Storage service
service swift-account-auditor restart
service swift-account-server restart
service swift-account-reaper restart
service swift-account-replicator restart
service swift-container-auditor restart
service swift-container-server restart
service swift-container-reconciler restart
service swift-container-replicator restart
service swift-container-sync restart
service swift-container-updater restart
service swift-object-auditor restart
service swift-object-expirer restart
service swift-object-server restart
service swift-object-reconstructor restart
service swift-object-replicator restart

- service swift-object-updater restart —
46 service sflapPiRk2y-2@29¢k(EpoXyt Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Troubleshooting Instance connectivity issues

This section will focus on troubleshooting general instance (VM) connectivity communication. This
does not cover any networking related to instance connectivity. This is assuming a OpenStack-Ansible
install using LXC containers, VXLAN overlay and the Linuxbridge ml2 driver.

Data flow example

Preliminary troubleshooting questions to answer:

* Which compute node is hosting the VM in question?
* Which interface is used for provider network traffic?
* Which interface is used for VXLAN overlay?

* Is the connectivity issue ingress to the instance?

2.1. Operations Guide 47

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* Is the connectivity issue egress from the instance?

* What is the source address of the traffic?

* What is the destination address of the traffic?

* Is there a Neutron router in play?

¢ Which network node (container) is the router hosted?

* What is the tenant network type?
If VLAN:
Does physical interface show link and all VLANs properly trunked across physical network?
No:

» Check cable, seating, physical switchport configuration, interface/bonding configuration, and
general network configuration. See general network troubleshooting documentation.

Yes:
e Good!
e Continue!
Important

Do not continue until physical network is properly configured.

Does the instances IP address ping from networks DHCP namespace or other instances in the same
network?

No:
* Check nova console logs to see if the instance ever received its IP address initially.
* Check Neutron security-group-rules, consider adding allow ICMP rule for testing.
* Check that linux bridges contain the proper interfaces. on compute and network nodes.
* Check Neutron DHCP agent logs.
* Check syslogs.
* Check Neutron linux bridge logs.

Yes:

* Good! This suggests that the instance received its IP address and can reach local network
resources.

e Continue!

Important

Do not continue until instance has an IP address and can reach local network resources like DHCP.

Does the instances IP address ping from the gateway device (Neutron router namespace or another gate-
way device)?

48 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

No:

* Check Neutron L3 agent logs (if applicable).

* Check Neutron linuxbridge logs.

* Check physical interface mappings.

* Check Neutron Router ports (if applicable).

* Check that linux bridges contain the proper interfaces on compute and network nodes.

* Check Neutron security-group-rules, consider adding allow ICMP rule for testing.
Yes:

* Good! The instance can ping its intended gateway. The issue may be north of the gateway or
related to the provider network.

* Check gateway or host routes on the Neutron subnet.

* Check Neutron security-group-rules, consider adding ICMP rule for testing.
* Check Neutron Floating]P associations (if applicable).

* Check Neutron Router external gateway information (if applicable).

* Check upstream routes, NATSs or access-control-lists.

Important

Do not continue until the instance can reach its gateway.

If VXLAN:
Does physical interface show link and all VLANS properly trunked across physical network?
No:

* Check cable, seating, physical switchport configuration, interface/bonding configuration, and
general network configuration. See general network troubleshooting documentation.

Yes:
¢ Good!
¢ Continue!
Important

Do not continue until physical network is properly configured.

Are VXLAN VTEP addresses able to ping each other?
No:
* Check br-vxlan interface on Compute and Network nodes
* Check veth pairs between containers and linux bridges on the host.

* Check that linux bridges contain the proper interfaces on compute and network nodes.

2.1. Operations Guide 49

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Yes:
* Check ml2 config file for local VXLAN IP and other VXLAN configuration settings.
¢ Check VTEP learning method (multicast or 12population):
— If multicast, make sure the physical switches are properly allowing and distributing
multicast traffic.
Important

Do not continue until VXLAN endpoints have reachability to each other.

Does the instances IP address ping from networks DHCP namespace or other instances in the same
network?

No:
* Check Nova console logs to see if the instance ever received its IP address initially.
* Check Neutron security-group-rules, consider adding allow ICMP rule for testing.
* Check that linux bridges contain the proper interfaces on compute and network nodes.
* Check Neutron DHCP agent logs.
* Check syslogs.
* Check Neutron linux bridge logs.
* Check that Bridge Forwarding Database (fdb) contains the proper entries on both the compute
and Neutron agent container.
Yes:
* Good! This suggests that the instance received its IP address and can reach local network
resources.
Important

Do not continue until instance has an IP address and can reach local network resources.

Does the instances IP address ping from the gateway device (Neutron router namespace or another gate-
way device)?

No:
* Check Neutron L3 agent logs (if applicable).
* Check Neutron linux bridge logs.
* Check physical interface mappings.

» Check Neutron router ports (if applicable).

Check that linux bridges contain the proper interfaces on compute and network nodes.

* Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

50 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* Check that Bridge Forwarding Database (fdb) contains the proper entries on both the compute
and Neutron agent container.

Yes:
* Good! The instance can ping its intended gateway.
* Check gateway or host routes on the Neutron subnet.
* Check Neutron security-group-rules, consider adding ICMP rule for testing.
* Check Neutron FloatingIP associations (if applicable).
* Check Neutron Router external gateway information (if applicable).

* Check upstream routes, NATs or access-control-lists.

Diagnose Image service issues
The glance-api handles the API interactions and image store.

To troubleshoot problems or errors with the Image service, refer to /var/log/glance-api.log inside
the glance api container.

You can also conduct the following activities which may generate logs to help identity problems:
1. Download an image to ensure that an image can be read from the store.
2. Upload an image to test whether the image is registering and writing to the image store.
3. Run the openstack image list command to ensure that the API and registry is working.
For an example and more information, see Verify operation <https.//docs.openstack.org/glance/latest/install/verify.html>_
and Manage Images <https://docs.openstack.org/glance/latest/admin/manage-images.html>_
RabbitMQ issues
Analyze RabbitMQ queues

Analyze OpenStack service logs and RabbitMQ logs

Failed security hardening after host kernel upgrade from version 3.13

Ubuntu kernel packages newer than version 3.13 contain a change in module naming from
nf_conntrack to br_netfilter. After upgrading the kernel, run the openstack-hosts-setup.
yml playbook against those hosts. For more information, see OSA bug 157996.

Cached Ansible facts issues
At the beginning of a playbook run, information about each host is gathered, such as:
* Linux distribution
» Kernel version
* Network interfaces
To improve performance, particularly in large deployments, you can cache host facts and information.

OpenStack-Ansible enables fact caching by default. The facts are cached in JSON files within /etc/
openstack_deploy/ansible_facts.

2.1. Operations Guide 51

https://bugs.launchpad.net/openstack-ansible/+bug/1579963

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Fact caching can be disabled by running export ANSIBLE_CACHE_PLUGIN=memory. To set this per-
manently, set this variable in /usr/local/bin/openstack-ansible.rc. Refer to the Ansible docu-
mentation on fact caching for more details.

Forcing regeneration of cached facts

Cached facts may be incorrect if the host receives a kernel upgrade or new network interfaces. Newly
created bridges also disrupt cache facts.

This can lead to unexpected errors while running playbooks, and require cached facts to be regenerated.

Run the following command to remove all currently cached facts for all hosts:

rm /etc/openstack_deploy/ansible_facts/*

New facts will be gathered and cached during the next playbook run.
To clear facts for a single host, find its file within /etc/openstack_deploy/ansible_facts/ and
remove it. Each host has a JSON file that is named after its hostname. The facts for that host will be
regenerated on the next playbook run.
Failed ansible playbooks during an upgrade
Container networking issues
All LXC containers on the host have at least two virtual Ethernet interfaces:
* eth0 in the container connects to [xcbr0 on the host

e ethl in the container connects to br-mgmt on the host

Note

Some containers, such as cinder, glance, neutron_agents, and swift_proxy have more than
two interfaces to support their functions.

Predictable interface naming

On the host, all virtual Ethernet devices are named based on their container as well as the name of the
interface inside the container:

[CONTAINER_UNIQUE_ID _ }

As an example, an all-in-one (AIO) build might provide a utility container called aiol_utility_container-
d13b7132. That container will have two network interfaces: d13b7132_ethO and d13b7132_ethl.

Another option would be to use the LXC tools to retrieve information about the utility container. For
example:

lxc-info -n aiol_utility_container-d13b7132

(continues on next page)

52 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#fact-caching

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

The Link: lines will show the network interfaces that are attached to the utility container.

Review container networking traffic

To dump traffic on the br-mgmt bridge, use tcpdump to see all communications between the various
containers. To narrow the focus, run tcpdump only on the desired network interface of the containers.

Restoring inventory from backup

OpenStack-Ansible maintains a running archive of inventory. If a change has been introduced into the
system that has broken inventory or otherwise has caused an unforseen issue, the inventory can be reverted
to an early version. The backup file /etc/openstack_deploy/backup_openstack_inventory.tar
contains a set of timestamped inventories that can be restored as needed.

Example inventory restore process.

mkdir /tmp/inventory_restore
cp /etc/openstack_deploy/backup_openstack_inventory.tar /tmp/inventory_
—restore/backup_openstack_inventory.tar
/tmp/inventory_restore
tar xf backup_openstack_inventory.tar

cp openstack_inventory.json-YYYYMMDD_SSSSSS. json /etc/openstack_deploy/
—openstack_inventory. json

rm -rf /tmp/inventory_restore

At the completion of this operation the inventory will be restored to the earlier version.

2.1.8 Compatibility Matrix

All of the OpenStack-Ansible releases are compatible with specific sets of operating systems and their
versions. Operating Systems have their own lifecycles, however we may drop their support before end of
their EOL because of various reasons:

* OpenStack requires a higher version of a library (ie. libvirt)

* Python version

2.1. Operations Guide 53

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* specific dependencies
* etc.

However, we do try to provide upgrade releases where we support both new and old Operating System
versions, providing deployers the ability to properly upgrade their deployments to the new Operating
System release.

In CI we test upgrades between releases only for source deployments. This also includes CI testing of
upgrade path between SLURP releases.

Below you will find the support matrix of Operating Systems for OpenStack-Ansible releases.

Note

Compatability matrix for legacy releases of OpenStack-Ansible can be found on this page: Compati-
bility Matrix of Legacy releases.

Operating systems with experimental support are marked with E in the table.

2.1.9 Compatibility Matrix of Legacy releases

This page contains compatability matrix of releases that are either in Extended Maintanence or already
reached End of Life. We keep such matrix for historical reasons mainly and for deployments that forgot
to get updated in time.

Operating systems with experimental support are marked with E in the table.

2.1.10 Minor version upgrade

Upgrades between minor versions of OpenStack-Ansible require updating the repository clone to the
latest minor release tag, updating the ansible roles, and then running playbooks against the target hosts.
This section provides instructions for those tasks.

Prerequisites

To avoid issues and simplify troubleshooting during the upgrade, disable the security hardening role
by setting the apply_security_hardening variable to False in the user_variables.yml file, and
backup your openstack-ansible installation.

Execute a minor version upgrade
A minor upgrade typically requires the following steps:

1. Change directory to the cloned repositorys root directory:

[/opt/openstack-ansible

2. Ensure that your OpenStack-Ansible code is on the latest 2025.1 tagged release:
git checkout master

3. Update all the dependent roles to the latest version:

[./scripts/bootstrap-ansible.sh]

54 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

4. Change to the playbooks directory:

[playbooks }

5. Update the hosts:

[openstack-ansible openstack.osa.setup_hosts -e latest }

6. Update the infrastructure:

openstack-ansible -e
openstack.osa.setup_infrastructure

7. Update all OpenStack services:

{ openstack-ansible openstack.osa.setup_openstack -e latest }

Note

You can limit upgrades to specific OpenStack components. See the following section for details.

Upgrade specific components

You can limit upgrades to specific OpenStack components by running each of the component playbooks
against groups.

For example, you can update only the Compute hosts by running the following command:

[openstack-ansible openstack.osa.nova --limit nova_compute }

To update only a single Compute host, run the following command:

[openstack-ansible openstack.osa.nova --limit <node-name> }

Note

Skipping the nova-key tag is necessary so that the keys on all Compute hosts are not gathered.

To see which hosts belong to which groups, use the inventory-manage.py script to show all groups
and their hosts. For example:

1. Change directory to the repository clone root directory:

[/opt/openstack-ansible }

2. Show all groups and which hosts belong to them:

[./scripts/inventory-manage.py -G }

3. Show all hosts and the groups to which they belong:

2.1. Operations Guide 55

OpenStack-Ansible Documentation, Release 30.1.0.dev44

[./scripts/inventory-manage.py -9 }

To see which hosts a playbook runs against, and to see which tasks are performed, run the following
commands (for example):

1. See the hosts in the nova_compute group that a playbook runs against:

openstack-ansible openstack.osa.nova --limit nova_compute
--list-hosts

L J

2. See the tasks that are executed on hosts in the nova_compute group:

openstack-ansible openstack.osa.nova --limit nova_compute
--skip-tags
--list-tasks

2.1.11 Major upgrades

This guide provides information about the upgrade process from 2024.2 or 2024.1 to 2025.1 for
OpenStack-Ansible.

Note

You can upgrade between sequential releases or between releases marked as SLURP.

Introduction

For upgrades between major versions, the OpenStack-Ansible repository provides playbooks and scripts
to upgrade an environment. The run-upgrade.sh script runs each upgrade playbook in the correct
order, or playbooks can be run individually if necessary. Alternatively, a deployer can upgrade manually.

For more information about the major upgrade process, see Upgrading by using a script and Upgrading
manually.

Warning

Upgrading to master is not recommended. Master is under heavy development, and is not stable. Test
this on a development environment first.

Upgrading by using a script
The 2025.1 release series of OpenStack-Ansible contains the code for migrating from 2024.2 or 2024.1
to 2025.1.

Running the upgrade script

To upgrade from 2024.2 or 2024.1 to 2025.1 by using the upgrade script, perform the following steps in
the openstack-ansible directory:

1. Change directory to the repository clone root directory:

56 Chapter 2. 2025.1 (Epoxy): Under development

https://releases.openstack.org/

OpenStack-Ansible Documentation, Release 30.1.0.dev44

[/opt/openstack-ansible }

2. Run the following commands:

git checkout master
./scripts/run-upgrade.sh

For more information about the steps performed by the script, see Upgrading manually.

Upgrading manually

Manual upgrades are useful for scoping the changes in the upgrade process (for example, in very large de-
ployments with strict SLA requirements), or performing other upgrade automation beyond that provided
by OpenStack-Ansible.

The steps detailed here match those performed by the run-upgrade. sh script. You can safely run these
steps multiple times.

Preflight checks

Before starting with the upgrade, perform preflight health checks to ensure your environment is stable.
If any of those checks fail, ensure that the issue is resolved before continuing.

Check out the 2025.1 release

Ensure that your OpenStack-Ansible code is on the latest 2025.1 tagged release.
git checkout master

Prepare the shell variables

Define these variables to reduce typing when running the remaining upgrade tasks. Because these envi-
ronments variables are shortcuts, this step is optional. If you prefer, you can reference the files directly
during the upgrade.

/opt/openstack-ansible

Backup the existing OpenStack-Ansible configuration

Make a backup of the configuration of the environment:

source_series_backup_file="/openstack/backup-openstack-ansible-2024.2.tar.
—~gz"

tar zcf ${source_series_backup_file} /etc/openstack_deploy /etc/ansible/ /
—usr/local/bin/openstack-ansible.rc

Bootstrap the new Ansible and OSA roles

To ensure that there is no currently set ANSIBLE_INVENTORY to override the default inventory loca-
tion, we unset the environment variable.

2.1. Operations Guide 57

OpenStack-Ansible Documentation, Release 30.1.0.dev44

[ANSIBLE_INVENTORY }

Bootstrap Ansible again to ensure that all OpenStack-Ansible role dependencies are in place before you
run playbooks from the 2025.1 release.

[/bootstrap-ansible.sh]

Change to the playbooks directory

Change to the playbooks directory to simplify the CLI commands from here on in the procedure, given
that most playbooks executed are in this directory.

[playbooks }

Implement changes to OSA configuration

If there have been any OSA variable name changes or environment/inventory changes, there is a playbook
to handle those changes to ensure service continuity in the environment when the new playbooks run.
The playbook is tagged to ensure that any part of it can be executed on its own or skipped. Please review
the contents of the playbook for more information.

openstack-ansible

—

Note

With upgrade to 2024.2 (Dalmation) release and beyond, usage of RabbitMQ Quorum
Queues is mandatory to ensure high availability of queues. If you had previously set
oslomsg_rabbit_quorum_queues: false, please consider migrating before continuing with
this upgrade which uses RabbitMQ 4.x.

Please, check RabbitM(Q maintenance for more information about switching between Quourum and
HA Queues.

Upgrade hosts

Before installing the infrastructure and OpenStack, update the host machines.

Warning

Usage of non-trusted certificates for RabbitMQ is not possible due to requirements of newer amgp
versions.

After that you can proceed with standard OpenStack upgrade steps:

openstack-ansible openstack.osa.setup_hosts --limit
< -e latest

58 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/openstack-ansible/latest/admin/maintenance-tasks.html#migrate-between-ha-and-quorum-queues

OpenStack-Ansible Documentation, Release 30.1.0.dev44

This command is the same setting up hosts on a new installation. The galera_all and rabbitmq_all
host groups are excluded to prevent reconfiguration and restarting of any of those containers as they need
to be updated, but not restarted.

Once that is complete, upgrade the final host groups with the flag to prevent container restarts.

openstack-ansible openstack.osa.setup_hosts -e
- --1limit

Upgrade infrastructure

We can now go ahead with the upgrade of all the infrastructure components. To ensure that rabbitmq and
mariadb are upgraded, we pass the appropriate flags.

Warning

Please make sure you are running RabbitMQ version 3.13 or later before proceeding to this step.
Upgrade of RabbitMQ to version 4.0 (default for 2024.2) from prior version will result in playbook
failure.

At this point you can minorly upgrade RabbitMQ with the following command:

openstack-ansible openstack.osa.rabbitmg_server -e rabbitmg_upgrade=true -e
rabbitmg_package_version=3.13.7-1

Also ensure that you have migrated from mirrored queues (HA queues) to Quorum queues before the
upgrade, as mirrored queues are no longer supported after upgrade.

openstack-ansible openstack.osa.setup_infrastructure -e
' -e -e latest

With this complete, we can now restart the mariadb containers one at a time, ensuring that each is started,
responding, and synchronized with the other nodes in the cluster before moving on to the next steps.
This step allows the LXC container configuration that you applied earlier to take effect, ensuring that the
containers are restarted in a controlled fashion.

—

openstack-ansible }

Upgrade OpenStack

We can now go ahead with the upgrade of all the OpenStack components.

[openstack-ansible openstack.osa.setup_openstack -e latest

Upgrade Ceph

With each OpenStack-Ansible version we define default Ceph client version that will be installed on
Glance/Cinder/Nova hosts and used by these services. If you want to preserve the previous ver-
sion of the ceph client during an OpenStack-Ansible upgrade, you will need to override a variable
ceph_stable_release in your user_variables.yml

2.1. Operations Guide 59

OpenStack-Ansible Documentation, Release 30.1.0.dev44

If Ceph has been deployed as part of an OpenStack-Ansible deployment using the roles maintained by the
Ceph-Ansible project you will also need to upgrade the Ceph version. Each OpenStack-Ansible release
is tested only with specific Ceph-Ansible release and Ceph upgrades are not checked in any Openstack-
Ansible integration tests. So we do not test or guarantee an upgrade path for such deployments. In this
case tests should be done in a lab environment before upgrading.

Warning

Ceph related playbooks are included as part of openstack.osa.setup_infrastructure and
openstack.osa.setup_openstack playbooks, so you should be cautious when running them dur-
ing OpenStack upgrades. If you have upgrade_ceph_packages: true in your user variables or
provided -e upgrade_ceph_packages=true as argument and run setup-infrastructure.yml
this will result in Ceph package being upgraded as well.

In order to upgrade Ceph in the deployment you will need to run:

openstack-ansible /etc/ansible/roles/ceph-ansible/infrastructure-playbooks/
—rolling_update.yml

2.1.12 Distribution upgrades

This guide provides information about upgrading from one distribution release to the next.

Note

This guide was last updated when upgrading from Ubuntu Focal to Jammy during the Antelope
(2023.1) release. For earlier releases please see other versions of the guide.

Introduction

OpenStack Ansible supports operating system distribution upgrades during specific release cycles. These
can be observed by consulting the operating system compatibility matrix, and identifying where two
versions of the same operating system are supported.

Upgrades should be performed in the order specified in this guide to minimise the risk of service in-
terruptions. Upgrades must also be carried out by performing a fresh installation of the target systems
operating system, before running openstack-ansible to install services on this host.

Ordering

This guide includes a suggested order for carrying out upgrades. This may need to be adapted dependent
on the extent to which you have customised your OpenStack Ansible deployment.

Critically, it is important to consider when you upgrade repo hosts/containers. At least one repo host
should be upgraded before you upgrade any API hosts/containers. The last repo host to be upgraded
should be the primary, and should not be carried out until after the final service which does not support
limit is upgraded.

If you have a multi-architecture deployment, then at least one repo host of each architecture will need to
be upgraded before upgrading any other hosts which use that architecture.

60 Chapter 2. 2025.1 (Epoxy): Under development

https://github.com/ceph/ceph-ansible/

OpenStack-Ansible Documentation, Release 30.1.0.dev44

If this order is adapted, it will be necessary to restore some files to the repo host from a backup part-way
through the process. This will be necessary if no repo hosts remain which run the older operating system
version, which prevents older packages from being built.

Beyond these requirements, a suggested order for upgrades is a follows:
1. Infrastructure services (Galera, RabbitMQ, APIs, HAProxy)
In all cases, secondary or backup instances should be upgraded first
2. Compute nodes

3. Network nodes

Pre-Requisites

* Ensure that all hosts in your target deployment have been installed and configured using a matching
version of OpenStack Ansible. Ideally perform a minor upgrade to the latest version of the Open-
Stack release cycle which you are currently running first in order to reduce the risk of encountering
bugs.

* Check any OpenStack Ansible variables which you customise to ensure that they take into account
the new and old operating system version (for example custom package repositories and version
pinning).

* Perform backups of critical data, in particular the Galera database in case of any failures. It is also
recommended to back up the /var/www/repo directory on the primary repo host in case it needs to
be restored mid-upgrade.

* Identify your primary HAProxy/Galera/RabbitMQ/repo infrastructure host

In a simple 3 infrastructure hosts setup, these services/containers usually end up being all on the
the same host.

The primary will be the LAST box youll want to reinstall.
— HAProxy/keepalived

Finding your HAProxy/keepalived primary is as easy as

|

Or preferably if youve installed HAProxy with stats, like so;

|

|

and can visit https://admin:password @external_Ib_vip_address: 1936/ and read Statistics Re-
port for pid # on infrastructure_host

* Ensure RabbitMQ is running with all feature flags enabled to avoid conflicts when re-installing
nodes. If any are listed as disabled then enable them via the console on one of the nodes:

|

2.1. Operations Guide 61

https://admin:password@external_lb_vip_address:1936/

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Warnings

* During the upgrade process, some OpenStack services cannot be deployed by using Ansibles limit.
As such, it will be necessary to deploy some services to mixed operating system versions at the
same time.

The following services are known to lack support for limit:
— RabbitMQ
— Repo Server
— Keystone

* In the same way as OpenStack Ansible major (and some minor) upgrades, there will be brief
interruptions to the entire Galera and RabbitMQ clusters during the upgrade which will result
in brief service interruptions.

* When taking down memcached instances for upgrades you may encounter performance issues with
the APIs.

Deploying Infrastructure Hosts

1. Disable HAProxy back ends (optional)

If you wish to minimise error states in HAProxy, services on hosts which are being reinstalled can
be set in maintenance mode (MAINT).

Log into your primary HAProxy/keepalived and run something similar to

E -

for each API or service instance you wish to disable.

You can also use a playbook from OPS repository like this:

E |

Or if youve enabled haproxy_stats as described above, you can visit https://admin:password @
external_lb_vip_address: 1936/ and select them and Set state to MAINT

2. Reinstall an infrastructure hosts operating system
As noted above, this should be carried out for non-primaries first, ideally starting with a repo host.
3. Clearing out stale information

1. Removing stale ansible-facts

(* because were deleting all container facts for the host as well.)
2. If RabbitMQ was running on this host

We forget it by running these commands on another RabbitMQ host.

62 Chapter 2. 2025.1 (Epoxy): Under development

https://opendev.org/openstack/openstack-ansible-ops/src/branch/master/ansible_tools/playbooks/set-haproxy-backends-state.yml
https://admin:password@external_lb_vip_address:1936/
https://admin:password@external_lb_vip_address:1936/

OpenStack-Ansible Documentation, Release 30.1.0.dev44

3. If GlusterFS was running on this host (repo nodes)

We forget it by running these commands on another repo host. Note that we have to tell
Gluster we are intentionally reducing the number of replicas. N should be set to the number
of repo servers minus 1. Existing gluster peer names can be found using the gluster peer
status command.

4. Do generic preparation of reinstalled host

5. This step should be executed when you are re-configuring one of haproxy hosts

Since configuration of haproxy backends happens during individual service provisioning, we need
to ensure that all backends are configured before enabling keepalived to select this host.

Commands below will configure all required backends on haproxy nodes:

—
.

Once this is done, you can deploy keepalived again:

E .

After that you might want to ensure that local backends remain disabled. You can also use a
playbook from OPS repository for this:

E |

6. If it is NOT a primary, install everything on the new host

2.1. Operations Guide 63

(continues on next page)

https://opendev.org/openstack/openstack-ansible-ops/src/branch/master/ansible_tools/playbooks/set-haproxy-backends-state.yml

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(* because we need to include containers in the limit)
7. If it IS a primary, do these steps
1. Temporarily set your primary Galera in MAINT in HAProxy.

In order to prevent role from making your primary Galera as UP in haproxy, create an empty
file /var/tmp/clustercheck.disabled . You can do this with ad-hoc:

Once its done you can run playbook to install MariaDB to the destination

Youll now have mariadb running, and it should be synced with non-primaries.

To check that verify MariaDB cluster status by executing from host running primary MariaDB
following command:

E J

In case node is not getting synced you might need to restart the mariadb.service and verify
everything is in order.

Once MariaDB cluster is healthy you can remove the file that disables backend from being
used by HAProxy.

2. We can move on to RabbitMQ primary

3. Now the repo host primary

64 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

4. Everything should now be in a working state and we can finish it off with

8. Adjust HAProxy status

If HAProxy was set into MAINT mode, this can now be removed for services which have been
restored.

For the repo host, it is important that the freshly installed hosts are set to READY in HAProxy, and
any which remain on the old operating system are set to MAINT.

You can also use a playbook from OPS repository to re-enable all backends from the host:

Deploying Compute & Network Hosts

1. Disable the hypervisor service on compute hosts and migrate any VMs to another available hyper-
Visor.

2. Reinstall a hosts operating system

3. Clear out stale ansible-facts

(* because were deleting all container facts for the host as well.)

4. Execute the following:

(* because we need to include containers in the limit)
5. Re-instate compute node hypervisor UUIDs

Compute nodes should have their UUID stored in the file /var/lib/nova/compute_id and the nova-
compute service restarted. UUIDs can be found from the command lineopenstack hypervisor list.

Alternatively, the following Ansible can be used to automate these actions:

2.1. Operations Guide 65

https://opendev.org/openstack/openstack-ansible-ops/src/branch/master/ansible_tools/playbooks/set-haproxy-backends-state.yml

OpenStack-Ansible Documentation, Release 30.1.0.dev44

2.2 User Guide

In this section, you will find user stories and examples relevant to deploying OpenStack-Ansible.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for
step-by-step instructions on how to deploy the OpenStack packages and dependencies on your cloud
using OpenStack-Ansible.

For information on how to manage and operate OpenStack-Ansible, see the see the Operations Guide.
For information on how to contribute, extend or develop OpenStack-Ansible, see the Contributors Guide.

For in-depth technical information, see the OpenStack-Ansible Reference.

2.2.1 Quickstart: AlO

All-in-one (AIO) builds are a great way to perform an OpenStack-Ansible build for:
* a development environment
* an overview of how all of the OpenStack services fit together
* asimple lab deployment

Although AIO builds arent recommended for large production deployments, theyre great for smaller
proof-of-concept deployments.

Absolute minimum server resources (currently used for gate checks):
* 8 vCPUs
* 50GB free disk space on the root partition
* 8GB RAM
Recommended server resources:
* CPU/motherboard that supports hardware-assisted virtualization
» 8 CPU Cores

* 80GB free disk space on the root partition, or 60GB+ on a blank secondary disk. Using a sec-
ondary disk requires the use of the bootstrap_host_data_disk_device parameter. Please see
Building an AIO for more details.

* 16GB RAM

It is possible to perform AIO builds within a virtual machine for demonstration and evaluation, but your
virtual machines will perform poorly unless nested virtualization is available. For production workloads,
multiple nodes for specific roles are recommended.

Building an AIO

Overview

There are three steps to running an AIO build, with an optional first step should you need to customize
your build:

* Prepare the host
* Bootstrap Ansible and the required roles

* Bootstrap the AIO configuration

66 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/index.html
https://docs.openstack.org/openstack-ansible/latest/admin/index.html
https://docs.openstack.org/openstack-ansible/latest/contributor/index.html
https://docs.openstack.org/openstack-ansible/latest/reference/index.html
https://en.wikipedia.org/wiki/Hardware-assisted_virtualization

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* Run playbooks

Prepare the host

When building an AIO on a new server, it is recommended that all system packages are upgraded and
then reboot into the new kernel:

Note

Execute the following commands and scripts as the root user.

apt-get update
apt-get dist-upgrade
reboot

dnf upgrade

dnf install git-core
systemctl stop firewalld
systemctl mask firewalld
reboot

Note

Before rebooting, in /etc/sysconfig/selinux, make sure that SELINUX=enforcing is changed
to SELINUX=disabled. SELinux enabled is not currently supported in OpenStack-Ansible for Cen-
tOS/Rocky/RHEL due to a lack of maintainers for the feature.

Note

If you are installing with limited connectivity, please review Installing with limited connectivity before
proceeding.

Bootstrap Ansible and the required roles

Start by cloning the OpenStack-Ansible repository and changing into the repository root directory:

git clone https://opendev.org/openstack/openstack-ansible
/opt/openstack-ansible
/opt/openstack-ansible

Next switch the applicable branch/tag to be deployed from. Note that deploying from the head of a branch
may result in an unstable build due to changes in flight and upstream OpenStack changes. For a test (for
example, not a development) build it is usually best to checkout the latest tagged version.

List all existing tags.
git tag -1

2.2. User Guide 67

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Checkout the stable branch and find just the latest tag
git checkout master
git describe --abbrev=0 --tags

Checkout the latest tag from either method of retrieving the tag.
git checkout master

Note

The 2025.1 release is only compatible with Debian 12 (bookworm), Ubuntu 22.04 (Jammy Jellyfish),
Ubuntu 24.04 (Noble Numbat), CentOS 9 Stream, and derivitives of CentOS Stream/RHEL such as
Rocky Linux.

The next step is to bootstrap Ansible and the Ansible roles for the development environment.

Run the following to bootstrap Ansible and the required roles:

[scripts/bootstrap-ansible.sh

Note

You might encounter an error while running the Ansible bootstrap script when building some of the
Python extensions (like pycrypto) which says:

[)

The reason of this failure might be resulting from a noexec mount flag used for the filesystem associ-
ated with /tmp which you can check by running the following command:

[mount grep $(df /tmp tail -n +2 awk grep noexec }

If this is the case you can specify an alternate path which does not have this mount option set:

[/var/tmp scripts/bootstrap-ansible.sh]

Bootstrap the AlO configuration

In order for all the services to run, the host must be prepared with the appropriate disks partitioning,
packages, network configuration and configurations for the OpenStack Deployment.

By default the AIO bootstrap scripts deploy a base set of OpenStack services with sensible defaults for
the purpose of a gate check, development or testing system.

Review the bootstrap-host role defaults file to see various configuration options. Deployers have the
option to change how the host is bootstrapped. This is useful when you wish the AIO to make use of a
secondary data disk, or when using this role to bootstrap a multi-node development environment.

The bootstrap script is pre-set to pass the environment variable BOOTSTRAP_OPTS as an additional option
to the bootstrap process. For example, if you wish to set the bootstrap to re-partition a specific secondary
storage device (/dev/sdb), which will erase all of the data on the device, then execute:

68 Chapter 2. 2025.1 (Epoxy): Under development

https://opendev.org/openstack/openstack-ansible/src/tests/roles/bootstrap-host/defaults/main.yml

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Additional options may be implemented by simply concatenating them with a space between each set of
options, for example:

If you are installing with limited connectivity, or you dont have default route set, you will need to define
interface for outgoing connections manually

[1

For the default AIO scenario, the AIO configuration preparation is completed by executing:

[scripts/bootstrap-aio.sh

|

To add OpenStack Services over and above the bootstrap-aio default services for the applicable scenario,
copy the conf.d files with the .aio file extension into /etc/openstack_deploy and rename then to
.yml files. For example, in order to enable the OpenStack Telemetry services, execute the following:

/opt/openstack-ansible/
cp etc/openstack_deploy/conf.d/ aodh,gnocchi,ceilometer .yml.aio /etc/
—openstack_deploy/conf.d/
f ls -1 /etc/openstack_deploy/conf.d/*.aio mv -v

It is possible to also do this (and change other defaults) during the bootstrap script initial execution by
changing the SCENARIO environment variable before running the script. The key word aio will ensure
that a basic set of OpenStack services (cinder, glance, horizon, neutron, nova) will be deployed. The key
words Ixc can be used to set the container back-end, while the key word metal will deploy all services
without containers. In order to implement any other services, add the name of the conf.d file name
without the .yml.aio extension into the SCENARIO environment variable. Each key word should be
delimited by an underscore. For example, the following will implement an AIO with barbican, cinder,
glance, horizon, neutron, and nova. It will set the cinder storage back-end to ceph and will make use of
LXC as the container back-end.

scripts/bootstrap-aio.sh

To add any global overrides, over and above the defaults for the applicable scenario, edit /etc/
openstack_deploy/user_variables.yml. In order to understand the various ways that you can
override the default behaviour set out in the roles, playbook and group variables, see Overriding default
configuration.

See the Deployment Guide for a more detailed break down of how to implement your own configuration
rather than to use the AIO bootstrap.

Run playbooks

Finally, run the playbooks by executing:

2.2. User Guide 69

https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/index.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

openstack-ansible openstack.osa.setup_hosts
openstack-ansible openstack.osa.setup_infrastructure
openstack-ansible openstack.osa.setup_openstack

The installation process will take a while to complete, but here are some general estimates:
* Bare metal systems with SSD storage: ~ 30-50 minutes
* Virtual machines with SSD storage: ~ 45-60 minutes
» Systems with traditional hard disks: ~ 90-120 minutes

Once the playbooks have fully executed, it is possible to experiment with various settings changes in
/etc/openstack_deploy/user_variables.yml and only run individual playbooks. For example,
to run the playbook for the Keystone service, execute:

/opt/openstack-ansible/playbooks
openstack-ansible os-keystone-install.yml

Interacting with an AlIO
Once an AIO has been deployed, you most likely want to interact with it. You can do this via the web

interface or one of the many clients or libraries that exist for OpenStack.

Using a GUI

The horizon web interface provides a graphical interface for interacting with the AIO deployment. By
default, the horizon API is available on port 443 of the host (or port 80, if SSL certificate configuration
was disabled). As such, to interact with horizon, simply browse to the IP of the host.

Note

If the AIO was deployed in a cloud VM, you may need to configure security groups or firewall rules
to allow access to the HTTP(S) ports. For example, if the AIO was deployed in an OpenStack VM,
you can create and apply a suitable security group for interacting with horizon like so:

openstack security group create http

--description
openstack security group rule create http

--protocol tcp --dst-port --remote-ip 0.0.0.0/0
openstack security group rule create http

--protocol tcp --dst-port --remote-ip 0.0.0.0/0
openstack server add security group http

A list of service ports can be found in the OpenStack Install Guide.

This will present a login page. By default, OpenStack-Ansible create a user called admin. The pass-
word will be the value of the keystone_auth_admin_password variable. If you did not configure this
variable, OpenStack-Ansible auto-generates one. You can view the configured password in the /etc/
openstack_deploy/user_secrets.yml file.

grep admin_pass /etc/openstack_deploy/user_secrets.yml

(continues on next page)

70 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/install-guide/firewalls-default-ports.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Using this username and password combination, log in to horizon.

Using a client or library

There are a variety of clients and libraries available for interacting with an OpenStack deployment, in-
cluding as openstackclient, openstacksdk, or gophercloud. These are typically configured using either
environment variables sourced from an openrc file or the newer clouds.yaml file.

OpenStack-Ansible provides the openstack_openrc role for creating these configuration files as well as
a number of utilities such as openstackclient. If the AIO deployment using the 1xc scenario (the default),
these will be availably in the utility container.

lxc-attach -n 1xc-1s -1 grep utility

ls /root/openrc

ls /root/.config/openstack/clouds.yaml

default
openstack project list -c Name -f value

Alternatively, if the AIO was deployed using the metal scenario, these files will be available on the host
itself.

ls /root/openrc

ls /root/.config/openstack/clouds.yaml

If you wish to access the AIO deployment from another host - perhaps your local workstation - you will
need either an openrc file or clouds.yaml file. You can download an openrc file from horizon: simply
click the User dropdown in the top-right corner and select OpenStack RC file.

Important

You may be tempted to copy the openrc or clouds.yaml files created by the openstack_openrc
role. However, these files use the internal interface by default. This interface use the management
network (172.29.236.0/22), which is not routable from outside the host. If you wish to use these
files, you will need to change the interface to public.

2.2. User Guide 71

https://opendev.org/openstack/python-openstackclient
https://opendev.org/openstack/openstacksdk
https://opendev.org/openstack/gophercloud
https://docs.openstack.org/keystone/latest/contributor/service-catalog.html#endpoints

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Note

If the AIO was deployed in a cloud VM, you may need to configure security groups or firewall rules
to allow access to the various sevice ports. For example, if the AIO was deployed in an OpenStack
VM, you can create and apply a suitable security group for interacting the core services like so:

openstack security group create openstack-apis
--description
port
openstack server add security group openstack-apis

A list of service ports can be found in the OpenStack Install Guide.

Note

If you have enabled SSL certificate configuration (default), all services will use self-signed certifi-
cates. While the host is configured to trust these certificates, this is not the case for other hosts. This
will result in HTTPS errors when attempting to interact with the cloud. To resolve this issue, you will
need to manually configure certificates on other hosts or ignore SSL issues. To use the self-signed
certificate, first copy it to the other hosts. The name and location of the generated certificate are con-
figured by the pki_authorities and pki_trust_store_location variables respectively, which
are used by the pki role provided by ansible-role-pki. On an Ubuntu 22.04 host, these will default to
ExampleCorpRoot and /usr/local/share/ca-certificates, respectively. For example:

scp aio:/usr/local/share/ca-certificates/ExampleCorpRoot.crt ~/.config/
—openstack/aio.crt

Once this is done, configure the cacert value in the the definition for your cloud in clouds.yaml.
For example:

Alternatively, you can simply ignore SSL issues by setting verify: false in the definition for
your cloud in clouds.yaml. This will disable SSL verification entirely for this cloud. For example:

Finally, you can also opt to disable SSL certificate configuration during initial deployment or opt to
use an external certificate authority for signing, such as Lets Encrypt. Both topics are outside the
scope of this document.

More information about SSL certificate configuration can be found in the security guide.

Once one of these files have been created, you can use it to interact with your deployment using most

72 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/install-guide/firewalls-default-ports.html
https://opendev.org/openstack/ansible-role-pki

OpenStack-Ansible Documentation, Release 30.1.0.dev44

standard clients and libraries. For example, to list available projects using openstackclient:

aio
openstack project list -c Name -f value

Rebooting an AlIO

As the AIO includes all three cluster members of MariaDB/Galera, the cluster has to be re-initialized
after the host is rebooted.

This is done by executing the following:

/opt/openstack-ansible/playbooks
openstack-ansible -e galera-install.yml

If this fails to get the database cluster back into a running state, then please make use of the Galera Cluster
Recovery section in the operations guide.

Rebuilding an AIO

Sometimes it may be useful to destroy all the containers and rebuild the AIO. While it is preferred that the
AlO is entirely destroyed and rebuilt, this isnt always practical. As such the following may be executed
instead:

/opt/openstack-ansible/playbooks

openstack-ansible lxc-containers-destroy.yml

i
ls /etc/init
grep -e
awk -F
service stop
i pip freeze grep -e -

pip uninstall -y

rm -rf /openstack /etc/ neutron,nova,swift,cinder
/var/log/ neutron,nova,swift,cinder

rm -rf /root/.pip
(continues on next page)

2.2. User Guide 73

/admin/maintenance-tasks.html#galera-cluster-recovery
/admin/maintenance-tasks.html#galera-cluster-recovery

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

rm /etc/apt/apt.conf.d/00apt-cacher-proxy

Should an existing AIO environment need to be reinstalled, the most efficient method is to destroy the
host operating system and start over. For this reason, AIOs are best run inside of some form of virtual
machine or cloud guest.

Reference Diagram for an AlO Build

Here is a basic diagram that attempts to illustrate what the resulting AIO deployment looks like.

This diagram is not to scale and is not even 100% accurate, this diagram was built for informational
purposes only and should ONLY be used as such.

——————— >[ETH® == Public Network]

') [% 1 Socket Connections
[HOST MACHINE] [<>vA] Network Connections

I

I

| |e=mmeecemcnasmas >[HAProxy]
| A

I I

| v

| (BR-Interfaces)<------
| *

A

I
I
I
I
I
I
I
I
I
I
I
I
[Galera x3] I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
| v
I
[Memcached]<------------ | | |
EES *[Rsyslog J<------------—-- [--1 | *
| [Repos Server x3 J<------ | ---]-->[RabbitMQ x3]
| [Horizon x2 J<----------- [
| [Nova api ec2]<--------- |- |
| [Nova api os J<---------- [->] |
| [Nova console]J<--------- [
| [Nova Cert]<------------ [->] |
| [Cinder api J<----------- [->] |
| [Glance api J<----------- [->] |
| [Heat apis]J<------------ [->] | [Loop back devices]*-%*
| [Heat engine]<---------- [->] | \ \
| ====== >[Nova api metadata] [{LvM} { XFS x3 1} |
[Nova conductor J<------- [1	S &
[===== >[Nova scheduler]-------- [->]	[
	[Keystone x3 J<---------- I=>1 I I

(continues on next page)

74 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

oo

| |--->[Neutron agents]*------- |==[memcmmmcemcrocceessosssmon= *

|| [Neutron server J<------- [->] |

| | |->[Swift proxy J]<----------—- | |
~|-]-|-[Cinder volume J*-----------------————- *

I

I

---—>[Compute]*[Neutron linuxbridge]<--- ->[Swift storage]

2.2.2 Network architectures

OpenStack-Ansible supports a number of different network architectures, and can be deployed using a
single network interface for non-production workloads or using multiple network interfaces or bonded
interfaces for production workloads.

The OpenStack-Ansible reference architecture segments traffic using VLANSs across multiple network
interfaces or bonds. Common networks used in an OpenStack-Ansible deployment can be observed in
the following table:

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Overlay Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

The Management Network, also referred to as the container network, provides management of and
communication between the infrastructure and OpenStack services running in containers or on metal.
The management network uses a dedicated VLAN typically connected to the br-mgmt bridge, and
may also be used as the primary interface used to interact with the server via SSH.

The Overlay Network, also referred to as the tunnel network, provides connectivity between hosts
for the purpose of tunnelling encapsulated traffic using VXLAN, GENEVE, or other protocols. The
overlay network uses a dedicated VLAN typically connected to the br-vxlan bridge.

The Storage Network provides segregated access to Block Storage from OpenStack services such
as Cinder and Glance. The storage network uses a dedicated VLAN typically connected to the
br-storage bridge.

Note

The CIDRs and VLAN:S listed for each network are examples and may be different in your environ-
ment.

Additional VLANs may be required for the following purposes:
* External provider networks for Floating IPs and instances

» Self-service project/tenant networks for instances

2.2. User Guide 75

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* Other OpenStack services

Network interfaces

Configuring network interfaces

OpenStack-Ansible does not mandate any specific method of configuring network interfaces on the host.
You may choose any tool, such as ifupdown, netplan, systemd-networkd, networkmanager or another
operating-system specific tool. The only requirement is that a set of functioning network bridges and
interfaces are created which match those expected by OpenStack-Ansible, plus any that you choose to
specify for neutron physical interfaces.

A selection of network configuration example files are given in the etc/network and etc/netplan for
ubuntu systems, and it is expected that these will need adjustment for the specific requirements of each
deployment.

If you want to delegate management of network bridges and interfaces to OpenStack-
Ansible, you can define variables openstack_hosts_systemd_networkd devices and
openstack_hosts_systemd_networkd_networks in group_vars/lxc_hosts, for example:

J

If you need to run some pre/post hooks for interfaces, you will need to configure a systemd service for
that. It can be done using variable openstack_hosts_systemd_services, like that:

76 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Single interface or bond

OpenStack-Ansible supports the use of a single interface or set of bonded interfaces that carry traffic for
OpenStack services as well as instances.

Open Virtual Network (OVN)

The following diagrams demonstrate hosts using a single bond with OVN.

In the scenario below only Network node is connected to external network and computes do not have
external connectivity, so routers are needed for external connectivity:

Compute Node

/ QEMU OWN Controller \

Ganave

Metwork MNode

/_ OWN Gateway \\

Routing
& MAT

br-ex

| bond0.40 - [Tethl] -

_________ i+ bond0.20 \(Poraeo 1 G

4o gD)
= —)

Metwork Switch

Control Plane

i E ema

.
'
'
'
1

L/

The following diagram demonstrates a compute node serving as an OVN gatway. It is connected to the

2.2. User Guide 77

OpenStack-Ansible Documentation, Release 30.1.0.dev44

public network, which enables to connect VMs to public networks not only through routers, but also
directly:

Compute Node
OWN Galeway

~

Control Plane

,____1____L P T,

t---1bond0.10 +-{ bond0.30 L hond0.40

SR D s PN /

4D dpP
] 11
[Metwork Switch |

Open vSwitch and Linux Bridge

The following diagram demonstrates hosts using a single interface for OVS and LinuxBridge Scenario:

Network Interface Layout - Single Interface

G N
Collapsed Infrastructure/Network
Control Plane Host(s) /[N\
Compute Host
/ e 4
7 (ks
physnet1 tho Overlay Networks physnet1:eth Overlay Networks
, 7
7
br-mgmt br-vxlan br-storage 7 br-mgmt br-vxlan br-storage
7
rd
| |) 2 | ____________ | ___
eth0 ‘ " eth0.10 }) % ’ etho. 30 ‘ " eth0.20 } i eth0)}------------ 1 eth0.10 +----+ eth0.30 +----4 eth0.20 }
_) CD M’ Mo’ N
\ \ J

| |
Physical Network Switch)

- — b (External) provider network interface
used for floating IPs or direct
instance connectivity

Physical interface shared between management,
storage, provider and tenant network traffic

>> Interface used for overlay network traffic
(e.g. VXLAN, GENEVE, etc.)

The following diagram demonstrates hosts using a single bond:

78 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Network Interface Layout - Single Bond

/// N
Collapsed Infrastructure/Network
Control Plane Host(s) /7
4 N
Compute Host
4
7 4 Overlay Networks -
z .7 Overlay Networks
physn/etLbondO \ physnet1:bond0 \
4 - s
________ ,7 br-mgmt br-vxlan br-storage P br-mgmt br-vxlan br-storage
i bondo \‘.pb " bondo }
1 H 1 H
' = : : P N ., P .
i eth0 : + bond0.10 }----{ bond0.30 }-----{ bond0.20 } i eth0 L + bond0.10 }---- bond0.30 }----{ bond0.20 }
! : y / ! H Ny - N g N
\[i(eth2): t(Ceth2)!
\ \
2 - NS - /

|1
Physical Network Switch)

(External) provider network interface
used for floating IPs or direct
instance connectivity

Physical interface shared between management, - — D
storage, provider and tenant network traffic

>p Interface used for overlay network traffic
(e.g. VXLAN, GENEVE, etc.)

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infral using a single bond.

Note

If your environment does not have eth@, but instead has p1p1 or some other interface name, ensure
that all references to eth@ in all configuration files are replaced with the appropriate name. The same
applies to additional network interfaces.

(continues on next page)

2.2. User Guide 79

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

80 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

including COMPUTE, NETWORK, and collapsed INFRA/NETWORK nodes.
#

.30
172.29.240.16
255.255.252.0

OpenStack Networking VLAN bridge

#

The "br-vlan" bridge is no longer necessary for deployments unless Neutron
agents are deployed in a container. Instead, a direct interface such as

bond® can be specified via the "host_bind override" override when defining
provider networks.

#

#auto br-vlan

#iface br-vlan inet manual

bridge_stp off

bridge_waitport 0

bridge_fd 0

bridge_ports bond0®

computel Network VLAN bridge
#auto br-vlan

#iface br-vlan inet manual

bridge_stp off

bridge_waitport 0

bridge_f£fd 0
#

Storage bridge (optional)

#

Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the

IP addresses are assigned to containers which use this

bridge.

#

.20

computel Storage bridge

(continues on next page)

2.2. User Guide 81

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Multiple interfaces or bonds

OpenStack-Ansible supports the use of a multiple interfaces or sets of bonded interfaces that carry traffic

for OpenStack services and instances.

Open Virtual Network (OVN)

The following diagrams demonstrate hosts using multiple bonds with OVN.

In the scenario below only Network node is connected to external network and computes do not have
external connectivity, so routers are needed for external connectivity:

Compute Node

~

~

QEMU OWN Controller
VM
ethl
[]
pond0 pondl
P ' [br—mgmt] [br-stor] """ ,
eth2 || . . eth4 |,
\Eethl :r-i bond0.10 +- bond0.20 | [ethd |- bond0.30 ;

Control Plane

t--4 bond0.10

MNetwork Node

OVN Gateway

Fommmmm o

Routing
& NAT
br-ex br-int

' [feth@"] -+ bond0.40 -+ bond0.30 |

~

D o D D 4P
= = = B =
[Network Switch

The following diagram demonstrates a compute node serving as an OVN gatway. It is connected to the
public network, which enables to connect VMs to public networks not only through routers, but also

directly:

82

Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Compute Node
OV Gateway

~

Control Plane

-~ bond0.10 H bond0.20 | etha + bond0.30 : : bondo. 40 :
L dpD -
3
! ! [
[Network Switch]

Open vSwitch and Linux Bridge
The following diagram demonstrates hosts using multiple interfaces for OVS and LinuxBridge Scenario:

Network Interface Layout - Multiple Interfaces

Ve
7)
Collapsed Infrastructure/Network

Control Plane Host(s) // ™\
Compute Host

|
\ Overlay Networks | Overlay Networks

|
physnet1 eth1

physnet1:eth1 \
(br-mgmt)(br-storage) @ (br-mgmt)(br-storage) '|

- \ , N ,
(etho ----- &y " eth0.10 } .-----1 ethO 20} eth1 ---1 eth1 30} (etho }----4 eth0.10 }----1 eth0.20 } (eth1 }---1 eth1.30 }
\ \ [N Mo’ Mo’ /
| | |
Physical Network Switch)
Physical interface for management and - (External) provider network interface
storage traffic used for floating IPs or direct

instance connectivity
Physical interface for provider

and tenant network traffic >p Interface used for overlay network traffic
(e.g. VXLAN, GENEVE, etc.)

The following diagram demonstrates hosts using multiple bonds:

2.2. User Guide 83

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Network Interface Layout - Multiple Bonded Interfaces

/
(N
Collapsed Infrastructure/Network Vo
Control Plane Host(s) 4

Networking
L2/L3 Agents

\
\

Compute Host(s)

Networking
L2 Agents

\
| Overlay Networks physnet1:bond?

\
physnet1 :bond1 \ Overlay Networks

T N br mgmt br storage Xk’, ————————— . br-vxlan T N br-mgmt br-storage % ————————— . br-vxlan
¢ bond0 } ¢ bondl ¢ bondo } Y bond1

1 H 1 H [l H 1

' H ' H ' ' '

| [e U ' 1 P N ' 1 P EE . RS EEN o) S EE N
L J— { bondo 10) bondO zo. 1) b { bona1.30} L} S— {bond0.10}----{ bondo203 { SN)L {bonat 20

1 1 1 H
! ! : \ - ! - < -
1 1 ! 1 H
\ \) \ \

s

eth3 eth3
\\ 4 Ay 4 (e Ay i g J
(Physical Network Switch)
Physical interface for management and —_-— D (External) provider network interface
storage traffic used for floating IPs or direct

instance connectivity

Physical interface for provider

and tenant network traffic >b Interface used for overlay network traffic
(e.g. VXLAN, GENEVE, etc.)

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infral using multiple bonded interfaces.

Note

If your environment does not have eth®, but instead has p1p1 or some other interface name, ensure
that all references to eth@ in all configuration files are replaced with the appropriate name. The same
applies to additional network interfaces.

(continues on next page)

84 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 85

OpenStack-Ansible Documentation, Release 30.1.0.dev44

.10
W72 29236 1L
255.255.252.0
172.29.236.1

8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge

(continued from previous page)

including COMPUTE, NETWORK, and collapsed INFRA/NETWORK nodes.

#
#
Nodes hosting Neutron agents must have an IP address on this interface,
#
#

.30
172.29.240.16
255.255.252.0

OpenStack Networking VLAN bridge

The "br-vlan" bridge is no longer necessary for deployments unless Neutron

bondl can be specified via the "host_bind_override" override when defining

provider networks.

#
#
#
agents are deployed in a container. Instead, a direct interface such as
#
#
#

#auto br-vlan

#iface br-vlan inet manual
bridge_stp off

bridge_waitport 0

bridge_f£fd 0

bridge_ports bondl

computel Network VLAN bridge
#auto br-vlan

#iface br-vlan inet manual

bridge_stp off

bridge_waitport 0

bridge_fd 0
#

Storage bridge (optional)

on this bridge. When used by infrastructure nodes, the

#
#
Only the COMPUTE and STORAGE nodes must have an IP address
#
#

IP addresses are assigned to containers which use this

(continues on next page)

86

Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Additional resources

For more information on how to properly configure network interface files and OpenStack-Ansible con-
figuration files for different deployment scenarios, please refer to the following:

* Configuring a test environment
* Configuring a homogeneous production environment
* Using provider network groups for a heterogeneous environment
For network agent and container networking toplogies, please refer to the following:

* Container networking architecture

2.2.3 Test environment example

Here is an example test environment for a working OpenStack-Ansible (OSA) deployment with a small
number of servers.

This example environment has the following characteristics:
* One infrastructure (control plane) host (8 vCPU, 8 GB RAM, 60 GB HDD)
* One compute host (8 vCPU, 8 GB RAM, 60 GB HDD)
¢ One Network Interface Card (NIC) for each host

* A basic compute kit environment, with the Image (glance) and Compute (nova) services set to use
file-backed storage.

* Internet access via the router address 172.29.236.1 on the Management Network

2.2. User Guide 87

https://docs.openstack.org/openstack-ansible/latest/user/test/example.html
https://docs.openstack.org/openstack-ansible/latest/user/prod/example.html
https://docs.openstack.org/openstack-ansible/latest/user/prod/provnet_groups.html
https://docs.openstack.org/openstack-ansible/latest/reference/architecture/container-networking.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Host and Service Layout - Test Environment

Compute

N 4 N\
Infrastructure Compute ! Block
Control Plane Host Host ! Storage
: Host
I

Hypervisor Block Storage

Volumes

|
Networking i
|

: L2 Agents H !
Identity ; Rsyslog Bind
e Sorvice e Rsyslog Bind
9 Vi Management
Networking Networking
Management L2/L.3 Agents
[Orchestration j (Dashboard J
i Block Storage !)
| Management | Rsyslog Bind
\)
Load Balancer Load Balancer
OpenStack-
Ansible
/

I

Ansible

Repository

. Infrastructure service OpenStack service Logging service 1 ! Optional component
]

Network configuration

Switch port configuration

The following example provides a good reference for switch configuration and cab layout. This example
may be more that what is required for basic setups however it can be adjusted to just about any con-
figuration. Additionally you will need to adjust the VLANS noted within this example to match your
environment.

88 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

/

/

/
/

noooonod
CICCCECCEIEL switehd

oooooaand
CICEEEE E E-switeh 2

mojninnjoionia)
CEOEMOERRGEE iLo switch

Server

Rack

Switch 1 Low Port Configuration

interfaces for plpl
switchport mode trunk
switchport trunk native vlan 500
switchport trunk allowed vlan 500-502,530-549
spanning-tree port type edge trunk
spanning-tree bpduguard enable
no snmp trap link-status

Switch 2 Low Port Configuration

interfaces for pdpl
switchport mode trunk
switchport trunk native vlan 500
switchport trunk allowed vlan 500-502,530-549
spanning-tree port type edge trunk
spanning-tree bpduguard enable
no snmp trap link-status

Switch 1 and 2 High Port Configuration

interfaces for bond0 (plp2 and p4p2)
switchport mode trunk
switchport trunk allowed vlan 500-502,530-549
spanning-tree port type edge trunk
spanning-tree bpduguard enable
no snmp trap link-status
channel-group # passive

iLO Switch Configuration

interfaces for ilo
description ilo
switchport mode access
switchport access vlan 501
spanning-tree port type edge

VLAND ID Hame Subnet Gateway Reserved
VLAN 500 pxe 172.24.0.0/22 172.24.0.1 First 20
VLAN 501 ile 10.15.240.0/21 10.15.240.1 First 20
VLAN 502 mgmt 172.24.8.0/22 172.24.8.1 First 20
VLAN 530 General 172.24.100.0/22 172.24.100.1 First 20
VLAN 531 General 172.24.104.0/22 172.24.104.1 First 20
VLAN 532 General 172.24.108.0/22 172.24.108.1 First 20
VLAN 533 General 172.24.112.0/22 172.24.112.1 First 20
VLAN 534 General 172.24.116.0/22 172.24.116.1 First 20
VLAN 535 General 172.24.120.0/22 172.24.120.1 First 20
VLAN 536 General 172.24.124.0/22 172.24.124.1 First 20
VLAN 537 General 172.24.128.0/22 172.24.128.1 First 20
VLAN 538 General 172.24.132.0/22 172.24.132.1 First 20
VLAN 539 General 172.24.136.0/22 172.24.136.1 First 20
VLAN 540 General 172.24.140.0/22 172.24.140.1 First 20
VLAN 541 General 172.24.144.0/22 172.24.144.1 First 20
VLAN 542 General 172.24.148.0/22 172.24.148.1 First 20
VLAN 543 General 172.24.152.0/22 172.24.152.1 First 20
VLAN 544 General 172.24.156.0/22 172.24.156.1 First 20
VLAN 545 General 172.24.160.0/22 172.24.160.1 First 20
VLAN 546 General 172.24.164.0/22 172.24.164.1 First 20
VLAN 547 General 172.24.168.0/22 172.24.168.1 First 20
VLAN 548 General 172.24.172.0/22 172.24.172.1 First 20
VLAN 549 General 172.24.176.0/22 172.24.176.1 First 20

Network CIDR/VLAN assighments

The following CIDR and VLAN assignments are used for this environment.

IpP
Ip
Ip
Ip
ip
Ip
Ip
ip
s
IpP
Ip
Ip
Ip
ip
Ip
Ip
ip
sl
IpP
IpP
Ip
Ip
Ip

Network

CIDR

VLAN

Management Network
Tunnel (VXLAN) Network
Storage Network

172.29.236.0/22 10
172.29.240.0/22 30
172.29.244.0/22 20

IP assighments

Addresses

addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses
addresses

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP

infral
computel
storagel

172.29.236.11
172.29.236.12
172.29.236.13

172.29.240.11
172.29.240.12

172.29.244.12
172.29.244.13

Internet Access

2.2. User Guide

89

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infral.

Note

If your environment does not have eth@, but instead has p1p1 or some other interface name, ensure
that all references to eth@ in all configuration files are replaced with the appropriate name. The same
applies to additional network interfaces.

(continues on next page)

920 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)
Bind the External VIP
0
0
172.29.236.10
255.255.252.0

OpenStack Networking VXLAN (tunnel/overlay) bridge

#

The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.

#

.30
172.29.240.11
255.255.252.0

OpenStack Networking VLAN bridge

computel Network VLAN bridge
#auto br-vlan

#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_f£fd 0

For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'ethl2' is the value used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the value
specified on the host_bind_override parameter.

When the neutron agent is containerized it will use the container_interface
value of the br-vlan network, which is also the same 'eth12' value.

Create veth pair, do not abort if already exists

pre-up ip link add br-vlan-veth type veth peer name ethl2 || true
Set both ends UP

pre-up ip link set br-vlan-veth up

pre-up ip link set ethl2 up

R R N R R R T R R S N

(continues on next page)

2.2. User Guide 91

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Deployment configuration
Environment layout
The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

The following configuration describes the layout for this environment.

(continues on next page)

92 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 93

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

94 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of Ansible
groups. This allows the deployer to set whether the services will run in a container (the default), or on
the host (on metal).

For this environment you do not need the /etc/openstack_deploy/env.d folder as the defaults set
by OpenStack-Ansible are suitable.

2.2. User Guide 95

OpenStack-Ansible Documentation, Release 30.1.0.dev44

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the default
variables.

For this environment, if you want to use the same IP address for the internal and external endpoints, you
will need to ensure that the internal and public OpenStack endpoints are served with the same protocol.
This is done with the following content:

2.2.4 Production environment

This is an example production environment for a working OpenStack-Ansible (OSA) deployment with
high availability services.

This example environment has the following characteristics:
» Three infrastructure (control plane) hosts
* Two compute hosts
* One NFS storage device
* One log aggregation host
* Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

* Full compute kit with the Telemetry service (ceilometer) included, with NFS configured as a stor-
age back end for the Image (glance), and Block Storage (cinder) services

* Internet access via the router address 172.29.236.1 on the Management Network

96 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Host and Service Layout - Production Environment

e 4 A
Deployment Infrastructure Rsyslog Compute Network-
Host Infractriictiiva Server Host connected
o Infrastructure e storage
ARSBIE Control Plane Host Hypervisor
Block St
i,
- J/

- Memcached I Identity

[Image Service J [M;::anngﬁr;cgnt
- [Networking J [Networking

Management L2/1L.3 Agents
[Orchestration J [Dashboard
] Management
-
\
. Infrastructure service OpenStack service Logging service

Network configuration
Network CIDR/VLAN assignments
The following CIDR and VLAN assignments are used for this environment.

Network CIDR VLAN

Management Network 172.29.236.0/22 10

Tunnel (VXLAN) Network 172.29.240.0/22 30

Storage Network 172.29.244.0/22 20

IP assignments

The following host name and IP address assignments are used for this environment.

Host name

Management IP Tunnel (VXLAN) IP

Storage IP

Ib_vip_address
infral

infra2

infra3

logl

NFS Storage
computel
compute?2

172.29.236.9

172.29.236.11
172.29.236.12
172.29.236.13
172.29.236.14

172.29.236.16
172.29.236.17

172.29.240.11
172.29.240.12
172.29.240.13

172.29.240.16
172.29.240.17

172.29.244.15
172.29.244.16
172.29.244.17

2.2. User Guide

97

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infral.

Note

If your environment does not have eth@, but instead has p1p1 or some other interface name, ensure
that all references to eth@ in all configuration files are replaced with the appropriate name. The same
applies to additional network interfaces.

(continues on next page)

98 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 99

OpenStack-Ansible Documentation, Release 30.1.0.dev44

#

#

(continued from previous page)

.30
172.29.240.16
255.255.252.0

OpenStack Networking VLAN bridge

computel Network VLAN bridge

#auto br-vlan
#iface br-vlan inet manual

SR S R R N R TR T R N S S S S S N

R

bridge_stp off
bridge_waitport 0
bridge_fd 0

For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'ethl2' is the value used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the value
specified on the host_bind_override parameter.

When the neutron agent is containerized it will use the container_interface
value of the br-vlan network, which is also the same 'ethl2' value.

Create veth pair, do not abort if already exists

pre-up ip link add br-vlan-veth type veth peer name ethl2 || true
Set both ends UP

pre-up ip link set br-vlan-veth up

pre-up ip link set ethl2 up
Delete veth pair on DOWN

post-down ip link del br-vlan-veth || true

bridge_ports bondl br-vlan-veth

Storage bridge (optional)

Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the

IP addresses are assigned to containers which use this
bridge.

(continues on next page)

100 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Deployment configuration
Environment layout
The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

The following configuration describes the layout for this environment.

(continues on next page)

2.2. User Guide 101

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

102 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 103

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

104 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 105

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

106 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

2.2. User Guide 107

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of Ansible
groups. This allows the deployer to set whether the services will run in a container (the default), or on
the host (on metal).

For this environment, the cinder-volume runs in a container on the infrastructure hosts. To achieve
this, implement /etc/openstack_deploy/env.d/cinder.yml with the following content:

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the default
variables.

For this environment, implement the load balancer on the infrastructure hosts. Ensure that keepalived is
also configured with HAProxy in /etc/openstack_deploy/user_variables.yml with the follow-
ing content.

2.2.5 Provider network groups

Many network configuration examples assume a homogenous environment, where each server is config-
ured identically and consistent network interfaces and interface names can be assumed across all hosts.

Recent changes to OSA enables deployers to define provider networks that apply to particular inventory
groups and allows for a heterogeneous network configuration within a cloud environment. New groups
can be created or existing inventory groups, such as network_hosts or compute_hosts, can be used
to ensure certain configurations are applied only to hosts that meet the given parameters.

Before reading this document, please review the following scenario:

108 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* Production environment

This example environment has the following characteristics:
* Anetwork_hosts group consisting of three collapsed infrastructure/network (control plane) hosts
* A compute_hosts group consisting of two compute hosts

* Multiple Network Interface Cards (NIC) used as provider network interfaces that vary between
hosts

Note

The groups network_hosts and compute_hosts are pre-defined groups in an OpenStack-Ansible
deployment.

The following diagram demonstates servers with different network interface names:

network_hosts compute_hosts
e =N |
: [f N 4 i
- Collapsed o -
Infrastructure/Network e s \\
Control Plane Host Compute Host
Networking Networking
L2/L3 Agents L2 Agents
\ \‘
physnet1:ens1fo physnet1:ens2f0
\ \
\ \
etho) (eth1) ‘% etho) (eth1) ‘%
-
eth2 eth3 ens1f0 ens1f1 eth2 eth3 ens2f0 ens2f1
(| Q) (ers)) @) () (o) (o) ()
\ | / t
I I
- - - - I
Ip dp P 4P
[I
[| | [| [| |
(_. Physical Network Switch)
j_l [| [
Physical Network Switch)

Bonds as required for management, External provider network interface
storage, and overlay network traffic. used for floating IPs or direct
instance connectivity

In this example environment, infrastructure/network nodes hosting L2/L.3/DHCP agents will utilize an
interface named ens1£® for the provider network physnetl. Compute nodes, on the other hand, will
utilize an interface named ens2£0 for the same physnet1 provider network.

2.2. User Guide 109

https://docs.openstack.org/openstack-ansible/latest/user/prod/example.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Note

Differences in network interface names may be the result of a difference in drivers and/or PCI slot
locations.

Deployment configuration
Environment layout
The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

The following configuration describes the layout for this environment.

(continues on next page)

110 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

The network details will be used to populate the respective network
configuration file(s) on the members of the listed groups.

#
type
range

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

type

type
range

"br-vxlan'
"veth"
"ethl0"
"tunnel"
"vxlan"
"1:1000"
"vxlan"

"br-vlan"
"veth"
"eth12"
"ens1£f0"
"flat"
"physnet1"

"br-vlan"
"veth"
"ethll"
"ens1f0"
"vlan"
"101:200,301:400"
"physnet2"

The below provider network(s) define details related to a given provider
network: physnetl. Details include the name of the veth interface to
connect to the bridge when agent on_metal is False (container_interface)
or the physical interface to connect to the bridge when agent on_metal
is True (host_bind_override), as well as the network type. The provider
network name (net_name) will be used to build a physical network mapping
to a network interface; either container_interface or host_bind_override
(when defined).

The network details will be used to populate the respective network
configuration file(s) on the members of the listed groups. In this
example, host_bind override specifies the enslf0® interface and applies
only to the members of network_hosts:

(continues on next page)

2.2. User Guide

111

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

112 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 113

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

114 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 115

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

116 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Hosts in the network_hosts group will map physnetl to the ens1£0 interface, while hosts in the
compute_hosts group will map physnet1 to the ens2£0 interface. Additional provider mappings can
be established using the same format in a separate definition.

An additional provider interface definition named physnet2 using different interfaces between hosts
may resemble the following:

Note

The container_interface parameter is only necessary when Neutron agents are run in containers,
and can be excluded in many cases. The container_bridge and container_type parameters also
relate to infrastructure containers, but should remain defined for legacy purposes.

2.2. User Guide 117

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Custom Groups

Custom inventory groups can be created to assist in segmenting hosts beyond the built-in groups provided
by OpenStack-Ansible.

Before creating custom groups, please review the following:

* Configuring the inventory

The following diagram demonstates how a custom group can be used to further segment hosts:

network_hosts

compute_hosts

(
4 Collapsed
Infrastructure/Network

Control Plane Host

\
physnet1:ens1f0

\
\
etho) (eth1) :
1
& FE®

\

%

-
4P Ip

custom1_hosts

custom2_hosts

-

(eth0)

eth2)

(2

N 7

Compute Host

\
physnet1:ens2f0

\
\

eth0

Compute Host

\
physnet1:ens8f0

eth1

D \
eth1 Y

J
D)

7=

P

P

N

[P

P

Physical Network Switch

(_l !}
C

Physical Network Switch

Bonds as required for management,

storage, and overlay network traffic.

External provider network interface
used for floating IPs or direct
instance connectivity

When creating a custom group, first create a skeleton in /etc/openstack_deploy/env.d/. The fol-
lowing is an example of an inventory skeleton for a group named custom2_hosts that will consist of
bare metal hosts, and has been created at /etc/openstack_deploy/env.d/custom2_hosts.yml.

J

Define the group and its members in a corresponding file in /etc/openstack_deploy/conf.d/. The
following is an example of a group named custom2_hosts defined in /etc/openstack_deploy/
conf.d/custom2_hosts.yml consisting of a single member, compute2:

(continues on next page)

118

Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/openstack-ansible/latest/reference/inventory/configure-inventory.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

custom example

The custom group can then be specifed when creating a provider network, as shown here:

2.2.6 Installing with limited connectivity

Many playbooks and roles in OpenStack-Ansible retrieve dependencies from the public Internet by de-
fault. The example configurations assume that the deployer provides a good quality Internet connection
via a router on the OpenStack management network.

Deployments may encounter limited external connectivity for a number of reasons:
* Unreliable or low bandwidth external connectivity
* Firewall rules which block external connectivity
» External connectivity required to be via HTTP or SOCKS proxies
* Architectural decisions by the deployer to isolate the OpenStack networks
* High security environments where no external connectivity is permitted

When running OpenStack-Ansible in network environments that block internet connectivity, we recom-
mend the following set of practices and configuration overrides for deployers to use.

The options below are not mutually exclusive and may be combined if desired.

Example internet dependencies
* Python packages
* Distribution specific packages
* LXC container images

* Source code repositories

GPG keys for package validation

2.2. User Guide 119

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Practice A: Mirror internet resources locally

You may choose to operate and maintain mirrors of OpenStack-Ansible and OpenStack dependencies.
Mirrors often provide a great deal of risk mitigation by reducing dependencies on resources and systems
outside of your direct control. Mirrors can also provide greater stability, performance and security.

Python package repositories

Many packages used to run OpenStack are installed using pip. We advise mirroring the PyPi package
index used by pip. A deployer can choose to actively mirror the entire upstream PyPi repository, but this
may require a significant amount of storage. Alternatively, a caching pip proxy can be used to retain local
copies of only those packages which are required.

In order to configure the deployment to use an alternative index, create the file /etc/pip.conf with the
following content and ensure that it resides on all hosts in the environment.

In addition, it is necessary to configure easy_install to use an alternative index. easy_install is used
instead of pip to install anything listed under setup_requires in setup.py during wheel builds. See https:
/lpip.pypa.io/en/latest/reference/pip_install/#controlling-setup-requires

To configure easy_install to use an alternative index, create the file /root/.pydistutils.cfg with the following
content.

Then, in /etc/openstack_deploy/user_variables.yml, configure the deployment to copy these files from
the host into the container cache image.

Distribution specific packages

Many software packages are installed on Ubuntu hosts using .deb packages. Similar packaging mecha-
nisms exist for other Linux distributions. We advise mirroring the repositories that host these packages.

Upstream Ubuntu repositories to mirror for Ubuntu 22.04 LTS:
* jammy
* jammy-updates

OpenStack-Ansible requires several other repositories to install specific components such as Galera and
Ceph.

Example repositories to mirror (Ubuntu target hosts):
* https://download.ceph.com/

* http://ubuntu-cloud.archive.canonical.com/ubuntu

120 Chapter 2. 2025.1 (Epoxy): Under development

https://pip.pypa.io/en/latest/reference/pip_install/#controlling-setup-requires
https://pip.pypa.io/en/latest/reference/pip_install/#controlling-setup-requires
https://download.ceph.com/
http://ubuntu-cloud.archive.canonical.com/ubuntu

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* https://dl.cloudsmith.io/public/rabbitmg/rabbitmq-erlang
* https://dl.cloudsmith.io/public/rabbitmg/rabbitmq-server
* http://downloads.mariadb.com/MariaDB

These lists are intentionally not exhaustive and equivalents will be required for other Linux distribu-
tions. Consult the OpenStack-Ansible playbooks and role documentation for further repositories and the
variables that may be used to override the repository location.

LXC container images

OpenStack-Ansible builds LXC images using debootstrap or dnf depending on the distribution. In or-
der to override the package repository you might need to adjust some variables, like 1xc_apt_mirror
or completely override build command with 1xc_hosts_container_build_command Consult the
openstack-ansible-1xc_hosts role for details on configuration overrides for this scenario.

Source code repositories

OpenStack-Ansible relies upon Ansible Galaxy to download Ansible roles when bootstrapping a
deployment host. Deployers may wish to mirror the dependencies that are downloaded by the
bootstrap-ansible. sh script.

Deployers can configure the script to source Ansible from an alternate Git repository by setting the
environment variable ANSIBLE_GIT_REPO. Also, during initial bootstrap you might need to define
a custom URL for upper-constraints file that is part of openstack/requirements repository, using the
TOX_CONSTRAINTS_FILE environment variable.

Deployers can configure the script to source Ansible role dependencies from alternate locations by pro-
viding a custom role requirements file and specifying the path to that file using the environment variable
ANSIBLE_ROLE_FTILE.

Practice B: Proxy access to internet resources

Some networks have no routed access to the Internet, or require certain traffic to use application specific
gateways such as HTTP or SOCKS proxy servers.

Target and deployment hosts can be configured to reach public internet resources via HTTP or SOCKS
proxy server(s). OpenStack-Ansible may be used to configure target hosts to use the proxy server(s).
OpenStack-Ansible does not provide automation for creating the proxy server(s).

Initial host deployment is outside the scope of OpenStack-Ansible and the deployer must ensure a mini-
mum set of proxy configuration is in place, in particular for the system package manager.

apt-get proxy configuration

See Setting up apt-get to use a http-proxy

Other proxy configuration

In addition to this basic configuration, there are other network clients on the target hosts which may be
configured to connect via a proxy. For example:

* Most Python network modules

e curl

2.2. User Guide 121

https://dl.cloudsmith.io/public/rabbitmq/rabbitmq-erlang
https://dl.cloudsmith.io/public/rabbitmq/rabbitmq-server
http://downloads.mariadb.com/MariaDB
https://help.ubuntu.com/community/AptGet/Howto#Setting_up_apt-get_to_use_a_http-proxy

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* wget
* openstack

These tools and their underlying libraries are used by Ansible itself and the OpenStack-Ansible play-
books, so there must be a proxy configuration in place for the playbooks to successfully access external
resources.

Typically these tools read environment variables containing proxy server settings. These environment
variables can be configured in /etc/environment if required.

It is important to note that the proxy server should only be used to access external resources, and commu-
nication between the internal components of the OpenStack deployment should be direct and not through
the proxy. The no_proxy environment variable is used to specify hosts that should be reached directly
without going through the proxy. These often are the hosts in the management network.

OpenStack-Ansible provides two distinct mechanisms for configuring proxy server settings:

1. The default configuration file suggests setting a persistent proxy configuration on all target hosts
and defines a persistent no_proxy environment variable which lists all hosts/containers management
addresses as well as the load balancer internal/external addresses.

2. An alternative method applies proxy configuration in a transient manner during the execution of
Ansible playbooks and defines a minimum set of management network IP addresses for no_proxy that
are required for the playbooks to succeed. These proxy settings do not persist after an Ansible playbook
run and the completed deployment does not require them in order to be functional.

The deployer must decide which of these approaches is more suitable for the target hosts, taking into
account the following guidance:

1. Persistent proxy configuration is a standard practice and network clients on the target hosts will be
able to access external resources after deployment.

2. The deployer must ensure that a persistent proxy configuration has complete coverage of all OpenStack
management network host/containers IP addresses in the no_proxy environment variable. It is necessary
to use a list of IP addresses, CIDR notation is not valid for no_proxy.

3. Transient proxy configuration guarantees that proxy environment variables will not persist, ensuring
direct communication between services on the OpenStack management network after deployment. Target
host network clients such as wget will not be able to access external resources after deployment.

4. The maximum length of no_proxy should not exceed 1024 characters due to a fixed size buffer in the
pam_env PAM module. Longer environment variables will be truncated during deployment operations
and this will lead to unpredictable errors during or after deployment.

Once the number of hosts/containers in a deployment reaches a certain size, the length of no_proxy
will exceed 1024 characters at which point it is mandatory to use the transient proxy settings which only
requires a subset of the management network IP addresses to be present in no_proxy at deployment time.

Refer to global_environment _variables: and deployment_environment_variables: in the example
user_variables.yml for details of configuring persistent and transient proxy environment variables.

Deployment host proxy configuration for bootstrapping Ansible

Configure the bootstrap-ansible. sh script used to install Ansible and Ansible role dependencies on
the deployment host to use a proxy by setting the environment variables HTTPS_PROXY or HTTP_PROXY.

122 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Note

We recommend you set your /etc/environment variables with proxy settings before launching any
scripts or playbooks to avoid failure.

For larger or complex environments a dedicated deployment host allows the most suitable proxy config-
uration to be applied to both deployment and target hosts.

Considerations when proxying TLS traffic

Proxying TLS traffic often interferes with the clients ability to perform successful validation of the cer-
tificate chain. Various configuration variables exist within the OpenStack-Ansible playbooks and roles
that allow a deployer to ignore these validation failures. Disable certificate chain validation on a case by
case basis and only after encountering failures that are known to only be caused by the proxy server(s).

2.2.7 Routed environment example

This section describes an example production environment for a working OpenStack-Ansible (OSA) de-
ployment with high availability services where provider networks and connectivity between physical
machines are routed (layer 3).

This example environment has the following characteristics:
* Three infrastructure (control plane) hosts
* Two compute hosts
* One NFS storage device
* One log aggregation host
* Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

* Full compute kit with the Telemetry service (ceilometer) included, with NFS configured as a stor-
age backend for the Image (glance), and Block Storage (cinder) services

* Static routes are added to allow communication between the Management, Tunnel, and Storage
Networks of each pod. The gateway address is the first usable address within each networks subnet.

2.2. User Guide 123

OpenStack-Ansible Documentation, Release 30.1.0.dev44

-
Deployment Infrastriicture |
Host Infractriictiivra \
Infrastructure

OpenStack-
Ansible
Repository

. Infrastructure service

Host and Service Layout - Production Environment

Control Plane Host

\

Rsyslog
Server

Rsyslog

Host

Compute

Networking
L2 Agents

AN

'd N\
Compute

J

Network-
connected
storage

Block Storage
Volumes

Memcached

I Identity
Image Service J [

J(

Orchestration J [Dashboard

Compute
Management

Networking
L2/1L.3 Agents

Networking
Management

(
(
(

Block Storage
Management

OpenStack service

Network configuration

Network CIDR/VLAN assignments

Logging service

The following CIDR assignments are used for this environment.

Network CIDR VLAN
POD 1 Management Network 172.29.236.0/24 10
POD 1 Tunnel (VXLAN) Network 172.29.237.0/24 30
POD 1 Storage Network 172.29.238.0/24 20
POD 2 Management Network 172.29.239.0/24 10
POD 2 Tunnel (VXLAN) Network 172.29.240.0/24 30
POD 2 Storage Network 172.29.241.0/24 20
POD 3 Management Network 172.29.242.0/24 10
POD 3 Tunnel (VXLAN) Network 172.29.243.0/24 30
POD 3 Storage Network 172.29.244.0/24 20
POD 4 Management Network 172.29.245.0/24 10
POD 4 Tunnel (VXLAN) Network 172.29.246.0/24 30
POD 4 Storage Network 172.29.247.0/24 20

124

Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

IP assignments

The following host name and IP address assignments are used for this environment.

Host name

Management IP Tunnel (VxLAN) IP Storage IP

Ib_vip_address
infral

172.29.236.9
172.29.236.10

172.29.237.10

infra2 172.29.239.10 172.29.240.10

infra3 172.29.242.10 172.29.243.10

logl 172.29.236.11

NFS Storage 172.29.244.15
computel 172.29.245.10 172.29.246.10 172.29.247.10
compute?2 172.29.245.11 172.29.246.11 172.29.247.11

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infral.

Note

If your environment does not have eth®, but instead has p1p1 or some other interface name, ensure
that all references to eth@ in all configuration files are replaced with the appropriate name. The same
applies to additional network interfaces.

(continues on next page)

2.2. User Guide 125

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

126 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

#
#
#
#
#

#

#

(continued from previous page)

172.29.236.10
255.255.255.0
172.29.236.1

8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge

The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.

.30
172.29.237.10
255.255.252.0

OpenStack Networking VLAN bridge

computel Network VLAN bridge

#auto br-vlan
#iface br-vlan inet manual

HHOoFH W R T W P W R W W W W W R W ™R W%

bridge_stp off
bridge_waitport 0
bridge_fd 0

For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'ethl2' is the value used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the value
specified on the host_bind override parameter.

When the neutron agent is containerized it will use the container_interface
value of the br-vlan network, which is also the same 'ethl2' value.

Create veth pair, do not abort if already exists

pre-up ip link add br-vlan-veth type veth peer name ethl2 || true
Set both ends UP

pre-up ip link set br-vlan-veth up

pre-up ip link set ethl2 up
Delete veth pair on DOWN

(continues on next page)

2.2. User Guide 127

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.
For each pod, a group will need to be defined containing all hosts within that pod.

Within defined provider networks, address_prefix is used to override the prefix of the key added to
each host that contains IP address information. This should usually be one of either container, tunnel,
or storage. reference_group contains the name of a defined pod group and is used to limit the scope
of each provider network to that group.

Static routes are added to allow communication of provider networks between pods.

The following configuration describes the layout for this environment.

(continues on next page)

128 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

172.29.242.0/24

172.29.243.0/24
172.29.244.0/24
172.29.245.0/24
172.29.246.0/24
172.29.247.0/24

"172.29.236.1,172.29.236.50"
"172.29.237.1,172.29.237.50"
"172.29.238.1,172.29.238.50"
"172.29.239.1,172.29.239.50"
"172.29.240.1,172.29.240.50"
"172.29.241.1,172.29.241.50"
"172.29.242.1,172.29.242.50"
"172.29.243.1,172.29.243.50"
"172.29.244.1,172.29.244.50"
"172.29.245.1,172.29.245.50"
"172.29.246.1,172.29.246.50"
"172.29.247.1,172.29.247.50"

The below domains name must resolve to an IP address

in the CIDR specified in haproxy_keepalived_external_vip_cidr and
haproxy_keepalived_internal_vip_cidr.

If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.

O W R W W™ R

"br-mgmt"

"br-mgmt"
"veth"
"ethl"
"podl_container"
"management"

type: "raw

"podl_hosts"

Containers in podl need routes to the container networks of other.

—pods

Route to container networks

(continues on next page)

2.2. User Guide

129

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

130 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Containers in pod4 need routes to the container networks of other.
—pods

Route to container networks
172.29.236.0/22
172.29.239.1

"br-vxlan"
"veth"
"ethl10"
"podl_tunnel"
"tunnel"
type: "vxlan"
range: "1:1000"
"vxlan"

"podl_hosts"
Containers in podl need routes to the tunnel networks of other pods

Route to tunnel networks
172.29.240.0/22
172.29.240.1

"br-vxlan"
"veth"
"ethl10"
"pod2_tunnel"
"tunnel"
type: "vxlan"
range: "1:1000"
"vxlan"

"pod2_hosts"
Containers in pod2 need routes to the tunnel networks of other pods

Route to tunnel networks
172.29.240.0/22
172.29.241.1

"br-vxlan"
"veth"
"ethl10"
"pod3_tunnel"
"tunnel"
type: "vxlan"
range: "1:1000"

(continues on next page)

2.2. User Guide 131

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

132 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 133

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

134 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

load balancer

(continued from previous page)

Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.

#HH
OpenStack
##H

keystone

cinder api services

glance

The settings here are repeated for each infra host.

They could instead be applied as global settings in

user_variables, but are left here to illustrate that
each container could have different storage targets.

H R W R R

172.29.236.11

"172.29.244.15:/images"
“/var/lib/glance/images™
type: "nfs"
" _netdev,auto"

172.29.236.12

"172.29.244.15:/images"
"“/var/lib/glance/images™
type: "nfs"
" _netdev,auto"

172.29.236.13

"172.29.244.15:/images"
"/var/lib/glance/images"
type: "nfs"
"_netdev,auto"

(continues on next page)

2.2. User Guide

135

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

136 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of Ansible
groups. This allows the deployer to set whether the services will run in a container (the default), or on
the host (on metal).

For this environment, the cinder-volume runs in a container on the infrastructure hosts. To achieve
this, implement /etc/openstack_deploy/env.d/cinder.yml with the following content:

You can also declare a custom group for each pod that will also include all containers from hosts that
belong to this pod. This might be handy if you want to define some variable for all hosts in the pod using
group_variables.

2.2. User Guide 137

OpenStack-Ansible Documentation, Release 30.1.0.dev44

For that create /etc/openstack_deploy/env.d/pod.yml with the following content:

Above example will create following groups:
* podN_hosts which will contain only bare metal nodes

* podN_containers that will contain all containers that are spawned on

138 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

bare metal nodes, that are part of the pod.

* podN_all that will contain podN_hosts and podN_containers members

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the default
variables.

For this environment, implement the load balancer on the infrastructure hosts. Ensure that keepalived is
also configured with HAProxy in /etc/openstack_deploy/user_variables.yml with the follow-
ing content.

2.2.8 Ceph production example

This section describes an example production environment for a working OpenStack-Ansible (OSA) de-
ployment with high availability services and using the Ceph backend for images, volumes, and instances.

This example environment has the following characteristics:
* Three infrastructure (control plane) hosts with ceph-mon containers
* Two compute hosts
* Three Ceph OSD storage hosts
* One log aggregation host
* Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

* Full compute kit with the Telemetry service (ceilometer) included, with Ceph configured as a
storage back end for the Image (glance), and Block Storage (cinder) services

* Internet access via the router address 172.29.236.1 on the Management Network

2.2. User Guide 139

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Host and Service Layout - Production Ceph Environment

(
Deployment ~ Infrastruchire \ Rsyslog Compute Ceph OSD
Host Server Host Host

o Infrastructure Compute Ceph OSD
Control Plane Host Hypervisor Daemons
Rsyslog
OpenStack- -
" ; Networkin
Ansible TS RabbitMQ B Agemsg

Repositol Galera

- -
. Compute
- [—] [— J
Networking Networking
Management L2/L3 Agents
[Orchestration][Dashboard]
Block Storage Ceph Monitor
Management Daemons
] Ceph Manager
| Daemons

. /

. Infrastructure service OpenStack service Logging service

Integration with Ceph
OpenStack-Ansible allows Ceph storage cluster integration in three ways:

* connecting to your own pre-deployed ceph cluster by pointing to its information in
user_variables.yml and allowing openstack-ansible to ssh to the ceph monitors to retrieve the
contents of ceph.conf and the keyrings.

This method only requires a very small amount of configuration in user_variables.yml to point
to the external ceph cluster monitors. The whole configuration for ceph-ansible would live outside
the openstack-ansible deployment and there is no duplication. The ceph_mons variable expects a
list of IP addresses for the Ceph Monitor servers in the external ceph deployment:

Note

Overriding ceph_mons is required only when you are using external cluster which does not present
in the OpenStack-Ansibles inventory (ie group mon_group_name is not defined).

* connecting to your own pre-deployed ceph cluster by pointing to its monitors in user_variables.
yml as above and providing data to populate ceph.conf and ceph keyring files on the deploy host.
This is described here. No ssh access by openstack-ansible is required to the ceph cluster.

* deploying a ceph cluster as part of the openstack-ansible deployment by using the roles maintained

140 Chapter 2. 2025.1 (Epoxy): Under development

https://ceph.io
https://docs.openstack.org/openstack-ansible-ceph_client/latest/config-from-file.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

by the Ceph-Ansible project. Deployers can enable the ceph-install.yml playbook by adding
hosts to the ceph-mon_hosts and ceph-osd_hosts groups in openstack_user_config.yml.
In order to enable ceph-rgw-install.yml playbook you need to add ceph-rgw_hosts in
openstack_user_config.yml.

Note

Please mention, that RGW installation should be performed after deployment of Keystone service.

Once groups are defined, you can proceed with configuring Ceph-Ansible specific vars in the
OpenStack-Ansible user_variables.yml file.

Warning

Deploying ceph cluster as part of openstack-ansible is not recommended since ceph-ansible upgrade
path is not tested or supported. This option is mainly used for CI and AIO deployments to test and
demonstrate a sample integration of the software stack.

This example will focus on the deployment of both OpenStack-Ansible and its Ceph cluster.

Network configuration
Network CIDR/VLAN assighnments

The following CIDR and VLAN assignments are used for this environment.

Network CIDR VLAN

Management Network 172.29.236.0/22 10
Tunnel (VXLAN) Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

IP assignments

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP

Ib_vip_address

172.29.236.9

infral 172.29.236.11 172.29.240.11

infra2 172.29.236.12 172.29.240.12

infra3 172.29.236.13 172.29.240.13

logl 172.29.236.14

computel 172.29.236.16 172.29.240.16 172.29.244.16
compute2 172.29.236.17 172.29.240.17 172.29.244.17
osdl 172.29.236.18 172.29.244.18
0sd2 172.29.236.19 172.29.244.19
0sd3 172.29.236.20 172.29.244.20

2.2. User Guide

141

https://github.com/ceph/ceph-ansible/
https://github.com/ceph/ceph-ansible/blob/master/group_vars/all.yml.sample

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infral.

Note

If your environment does not have eth@, but instead has p1p1 or some other interface name, ensure
that all references to eth@ in all configuration files are replaced with the appropriate name. The same
applies to additional network interfaces.

(continues on next page)

142 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 143

OpenStack-Ansible Documentation, Release 30.1.0.dev44

#

#

(continued from previous page)

.30
172.29.240.16
255.255.252.0

OpenStack Networking VLAN bridge

computel Network VLAN bridge

#auto br-vlan
#iface br-vlan inet manual

SR S R R N R TR T R N S S S S S N

R

bridge_stp off
bridge_waitport 0
bridge_fd 0

For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'ethl2' is the value used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the value
specified on the host_bind_override parameter.

When the neutron agent is containerized it will use the container_interface
value of the br-vlan network, which is also the same 'ethl2' value.

Create veth pair, do not abort if already exists

pre-up ip link add br-vlan-veth type veth peer name ethl2 || true
Set both ends UP

pre-up ip link set br-vlan-veth up

pre-up ip link set ethl2 up
Delete veth pair on DOWN

post-down ip link del br-vlan-veth || true

bridge_ports bondl br-vlan-veth

Storage bridge (optional)

Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the

IP addresses are assigned to containers which use this
bridge.

(continues on next page)

144 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Deployment configuration
Environment layout
The /etc/openstack_deploy/openstack_user_config.yml file defines the environment layout.

The following configuration describes the layout for this environment.

(continues on next page)

2.2. User Guide 145

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

146 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

(continues on next page)

2.2. User Guide 147

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

148 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of Ansible
groups. This allows the deployer to set whether the services will run in a container (the default), or on
the host (on metal).

For a ceph environment, you can run the cinder-volume in a container. To do this you will need to
create a /etc/openstack_deploy/env.d/cinder.yml file with the following content:

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the default
variables.

For this example environment, we configure a HA load balancer. We implement the load balancer
(HAProxy) with an HA layer (keepalived) on the infrastructure hosts. Your /etc/openstack_deploy/
user_variables.yml must have the following content to configure haproxy, keepalived and ceph:

(continues on next page)

2.2. User Guide 149

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

2.2.9 Using radosgw as a drop-in replacement for Swift

OpenStack-Ansible gives you the option of deploying radosgw as a drop-in replacement for native Open-
Stack Swift.

In particular, the ceph-rgw-install.yml playbook (which includes ceph-rgw-keystone-setup.
yml) will deploy radosgw to any ceph-rgw hosts, and create a corresponding Keystone object-store
service catalog entry. The service endpoints do contain the AUTH_%(tenant_id)s prefix just like in
native Swift, so public read ACLs and temp URLs will work just like they do in Swift.

By default, OSA enables only the Swift API in radosgw.

Adding S3 API support

You may want to enable the default radosgw S3 API, in addition to the Swift API. In order to do so,
you need to override the ceph_conf_overrides_rgw variable in user_variables.yml. Below is an
example configuration snippet:

Note

Mentioned below overrides are default ones and will be applied to ceph-rgw group

(continues on next page)

150 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

'rgw_keystone_url'
'rgw_keystone_api_version': 3
'rgw_keystone_admin_user'
'rgw_keystone_admin_password'
'rgw_keystone_admin_project'

'rgw_keystone_admin_domain': 'default'
'rgw_keystone_accepted_roles': 'member, admin, swiftoperator'
'rgw_keystone_implicit_tenants': 'true'
'rgw_swift_account_in_url': 'true'
'rgw_swift_versioning_enabled': 'true'
'rgw_enable_apis': 'swift, s3'
'rgw_s3_auth_use_keystone': 'true'

##t#

Backend TLS

#H#t#

Ceph configuration options to enable TLS on ceph-rgw

"{{ ceph_rgw_backend_ssl is truthy |.
—ternary(ceph_rgw_ssl_cert, '') }}"
Ceph-ansible requires to include private key in ‘radosgw_frontend_ssl_
—certificate’
which is not possible with ansible-role-pki.
That is why 'ssl_private_key 1is defined in ‘radosgw_frontend_options’.

"{{ ceph_rgw_backend_ssl is truthy | ternary('ssl_

private_key="' + ceph_rgw_ssl_key, '') }}"

Define if communication between haproxy and service backends should be
encrypted with TLS.
"{{ openstack_service_backend_ssl | default(False) }}"

Storage location for SSL certificate authority
"{{ openstack_pki_dir | default('/etc/openstack_deploy/pki
(_}l) }}Il

Delegated host for operating the certificate authority
"{{ openstack_pki_setup_host | default('localhost') }
;}}II

ceph_rgw server certificate
"{{ ceph_rgw_pki_dir ~ '/certs/private/' }}"
"{{ ceph_rgw_pki_dir ~ '/certs/certs/' }}"
"{{ openstack_pki_service_intermediate_
—cert_name | default('ExampleCorpIntermediate') }}"

(continues on next page)

2.2. User Guide 151

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

You may also want to add the rgw_dns_name option if you want to enable bucket hostnames with the S3
APL

2.2.10 Integrate radosgw into your Telemetry

The telemetry (and in consequence accounting) for radosgw as object-storage will not work out of the
box. You need to change different parts of your OpenStack and Ceph setup to get it up and running.
Ceilometer Changes

Ceilometer needs additional pip packages to talk to Ceph Rados Gateway. To install it, edit the default
ceilometer_pip_packages in your user_variables.yml file:

(continues on next page)

152 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

J

You also have to configure Ceilometer to actually query radosgw. When your ceilometer isnt configured
to poll everything, add these pollsters to your polling.yml file:

Add them also to your pipeline:

Declare Ceph Rados Gateway as object-store in your ceilometer.conf file by adding this to your
user_variables.yml file:

The required user and credentials is created by this command:

radosgw-admin user create --uid admin --display-name --caps

—

2.2. User Guide 153

OpenStack-Ansible Documentation, Release 30.1.0.dev44

To get your credentials, execute:

{radosgw—admin user info --uid admin jq

Ceph Changes

The required changes are described in the documentation of Ceilometer. This is just a sum up. In your
ceph.conf add:

2.2.11 Security settings

This chapter contains information to configure specific security settings for your OpenStack-Ansible
cloud.

For understanding security design, please see Security.

Securing services with SSL certificates

The OpenStack Security Guide recommends providing secure communication between various services
in an OpenStack deployment. The OpenStack-Ansible project currently offers the ability to configure
SSL certificates for secure communication between services:

All public endpoints reside behind haproxy, resulting in the only certificate management for externally
visible https services are those for haproxy. Certain internal services such as RabbitMQ also require
proper SSL configuration.

When deploying with OpenStack-Ansible, you can either use self-signed certificates that are generated
during the deployment process or provide SSL certificates, keys, and CA certificates from your own
trusted certificate authority. Highly secured environments use trusted, user-provided certificates for as
many services as possible.

Note

Perform all SSL certificate configuration in /etc/openstack_deploy/user_variables.yml file.
Do not edit the playbooks or roles themselves.

Openstack-Ansible uses an ansible role ansible_role_pki as a general tool to manage and install self-
signed and user provided certificates.

Note

The openstack-ansible example configurations are designed to be minimal examples and in test or de-
velopment use-cases will set external_1b_vip_address to the IP address of the haproxy external
endpoint. For a production deployment it is advised to set external_lb_vip_address to be the
FQDN which resolves via DNS to the IP of the external endpoint.

154 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/security-guide/secure-communication.html
https://opendev.org/openstack/ansible-role-pki

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Self-signed certificates

Self-signed certificates enable you to start quickly and encrypt data in transit. However, they do not
provide a high level of trust for public endpoints in highly secure environments. By default, self-signed
certificates are used in OpenStack-Ansible. When self-signed certificates are used, certificate verification
is automatically disabled.

Self-signed certificates can play an important role in securing internal services within the Openstack-
Ansible deployment, as they can only be issued by the private CA associated with the deployment. Using
mutual TLS between backend services such as RabbitMQ and MariaDB with self-signed certificates
and a robust CA setup can ensure that only correctly authenticated clients can connect to these internal
services.

Generating and regenerating self-signed certificate authorities

A self-signed certificate authority is generated on the deploy host during the first run of the playbook.

To regenerate the certificate authority you must set the openstack_pki_regen_ca variable to either the
name of the root CA or intermediate CA you wish or regenerate, or to true to regenerate all self-signed
certificate authorities.

openstack-ansible -e
. certificate-authority.yml

Take particular care not to regenerate Root or Intermediate certificate authorities in a way that may in-
validate existing server certificates in the deployment. It may be preferable to create new Intermediate
CA certificates rather than regenerate existing ones in order to maintain existing chains of trust.

Generating and regenerating self-signed certificates

Self-signed certificates are generated for each service during the first run of the playbook.

To regenerate a new self-signed certificate for a service, you must set the
<servicename>_pki_regen_cert variable to true in one of the following ways:

* To force a self-signed certificate to regenerate, you can pass the variable to openstack-ansible
on the command line:

[openstack-ansible -e haproxy-install.yml }

 To force a self-signed certificate to regenerate with every playbook run, set the appropriate regen-
eration option to true. For example, if you have already run the haproxy playbook, but you want
to regenerate the self-signed certificate, set the haproxy_pki_regen_cert variable to true in
the /etc/openstack_deploy/user_variables.yml file:

Generating and regenerating self-signed user certificates

Self-signed user certificates are generated but not installed for services outside of Openstack ansible.
These user certificates are signed by the same self-signed certificate authority as is used by openstack
services but are intended to be used by user applications.

To generate user certificates, define a variable with the prefix user_pki_certificates_ inthe /etc/
openstack_deploy/user_variables.yml file.

2.2. User Guide 155

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Example

Generate the certificate with the following command:

[openstack-ansible certificate-generate.yml]

To regenerate a new self-signed certificate for a service, you must set the user_pki_regen_cert vari-
able to true in one of the following ways:

* To force a self-signed certificate to regenerate, you can pass the variable to openstack-ansible
on the command line:

[openstack-ansible -e certificate—generate.yml}

* To force a self-signed -certificate to regenerate with every playbook run, set the
user_pki_regen_cert variable to true in the /etc/openstack_deploy/user_variables.
yml file:

[J

User-provided certificates

For added trust in highly secure environments, you can provide your own SSL certificates, keys, and
CA certificates. Acquiring certificates from a trusted certificate authority is outside the scope of this
document, but the Certificate Management section of the Linux Documentation Project explains how to
create your own certificate authority and sign certificates.

Use the following process to deploy user-provided SSL certificates in OpenStack-Ansible:
1. Copy your SSL certificate, key, and CA certificate files to the deployment host.

2. Specify the path to your SSL certificate, key, and CA certificate in the /etc/openstack_deploy/
user_variables.yml file.

3. Run the playbook for that service.
HAProxy example

The variables to set which provide the path on the deployment node to the certificates for HAProxy
configuration are:

156 Chapter 2. 2025.1 (Epoxy): Under development

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/c118.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

RabbitMQ example

To deploy user-provided certificates for RabbitMQ, copy the certificates to the deployment host, edit the
/etc/openstack_deploy/user_variables.yml file and set the following three variables:

Then, run the playbook to apply the certificates:

[openstack-ansible rabbitmg-install.yml

The playbook deploys your user-provided SSL certificate, key, and CA certificate to each RabbitMQ
container.

The process is identical for the other services. Replace rabbitmg in the preceding configuration variables
with horizon, haproxy, or keystone, and then run the playbook for that service to deploy user-provided
certificates to those services.

Certbot certificates

The HAProxy ansible role supports using certbot to automatically deploy trusted SSL certificates for the
public endpoint. Each HAProxy server will individually request a SSL certificate using certbot.

Certbot defaults to using LetsEncrypt as the Certificate Authority, other Certificate Authorities
can be used by setting the haproxy_ssl_letsencrypt_certbot_server variable in the /etc/
openstack_deploy/user_variables.yml file:

The http-01 type challenge is used by certbot to deploy certificates so it is required that the public endpoint
is accessible directly by the Certificate Authority.

Deployment of certificates using LetsEncrypt has been validated for openstack-ansible using Ubuntu
Jammy. Other distributions should work but are not tested.

To deploy certificates with certbot, add the following to /etc/openstack_deploy/user_variables.
yml to enable the certbot function in the haproxy ansible role, and to create a new backend service called
certbot to service http-01 challenge requests.

2.2. User Guide 157

OpenStack-Ansible Documentation, Release 30.1.0.dev44

TLS for Haproxy Internal VIP

As well as load balancing public endpoints, haproxy is also used to load balance internal connections.

By default, OpenStack-Ansible does not secure connections to the internal VIP. To enable this you must
set the following variables in the /etc/openstack_deploy/user_variables.yml file:

Run all playbooks to configure haproxy and openstack services.

When enabled haproxy will use the same TLS certificate on all interfaces (internal and external). It is not
currently possible in OpenStack-Ansible to use different self-signed or user-provided TLS certificates on
different haproxy interfaces.

The only way to use a different TLS certificates on the internal and external VIP is to use certbot.

Enabling TLS on the internal VIP for existing deployments will cause some downtime, this is because
haproxy only listens on a single well known port for each OpenStack service and OpenStack services are
configured to use http or https. This means once haproxy is updated to only accept HTTPS connections,
the OpenStack services will stop working until they are updated to use HTTPS.

To avoid downtime, it is recommended to enable openstack_service_accept_both_protocols un-

til all services are configured correctly. It allows haproxy frontends to listen on both HTTP and HTTPS.

TLS for Haproxy Backends

Communication between haproxy and service backends can be encrypted. Currently it is disabled by
default. It can be enabled for all services by setting the following variable:

[J

There is also an option to enable it only for individual services:

| |

By default, self-signed certificates will be used to secure traffic but user-provided certificates are also
supported.

TLS for Live Migrations

Live migration of VMs using SSH is deprecated and the OpenStack Nova Docs recommends using
the more secure native TLS method supported by QEMU. The default live migration method used by
OpenStack-Ansible has been updated to use TLS migrations.

QEMU-native TLS requires all compute hosts to accept TCP connections on port 16514 and port range
49152 to 49261.

It is not possible to have a mixed estate of some compute nodes using SSH and some using TLS for live
migrations, as this would prevent live migrations between the compute nodes.

158 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/nova/latest/admin/secure-live-migration-with-qemu-native-tls.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

There are no issues enabling TLS live migration during an OpenStack upgrade, as long as you do not
need to live migrate instances during the upgrade. If you you need to live migrate instances during an
upgrade, enable TLS live migrations before or after the upgrade.

To force the use of SSH instead of TLS for live migrations you must set the
nova_libvirtd_listen_tls variable to ® in the /etc/openstack_deploy/user_variables.yml
file:

TLS for VNC

When using VNC for console access there are 3 connections to secure, client to haproxy, haproxy to
noVNC Proxy and noVNC Proxy to Compute nodes. The OpenStack Nova Docs for remote console
access cover console security in much more detail.

In OpenStack-Ansible TLS to haproxy is configured in haproxy, TLS from haproxy to noVNC is not
currently enabled and TLS from nVNC to Compute nodes is enabled by default.

Changes will not apply to any existing running guests on the compute node, so this configuration should
be done before launching any instances. For existing deployments it is recommended that you migrate
instances off the compute node before enabling.

To help with the transition from unencrypted VNC to VeNCrypt, initially noVNC proxy auth scheme
allows for both encrypted and unencrypted sessions using the variable nova_vencrypt_auth_scheme. This
will be restricted to VeNCrypt only in future versions of OpenStack-Ansible.

[J

To not encrypt data from noVNC proxy to Compute nodes you must set the nova_gemu_vnc_t1ls vari-
able to 0 in the /etc/openstack_deploy/user_variables.yml file:

[)

Security Headers

Security headers are HTTP headers that can be used to increase the security of a web application by
restricting what modern browsers are able to run.

In OpenStack-Ansible, security headers are implemented in haproxy as all the public endpoints reside
behind it.

The following headers are enabled by default on all the haproxy interfaces that implement TLS, but only
for the Horizon service. The security headers can be implemented on other haproxy services, but only
services used by browsers will make use of the headers.

HTTP Strict Transport Security

The OpenStack TLS Security Guide recommends that all production deployments use HTTP strict trans-
port security (HSTS).

By design, this header is difficult to disable once set. It is recommended that during testing you set a
short time of 1 day and after testing increase the time to 1 year.

To change the default max age to 1 day, override the variable haproxy_security_headers_max_age
in the /etc/openstack_deploy/user_variables.yml file:

2.2. User Guide 159

https://docs.openstack.org/nova/latest/admin/remote-console-access.html#vnc-proxy-security
https://docs.openstack.org/nova/latest/admin/remote-console-access.html#vnc-proxy-security
https://docs.openstack.org/security-guide/secure-communication/tls-proxies-and-http-services.html#http-strict-transport-security

OpenStack-Ansible Documentation, Release 30.1.0.dev44

[

J

If you would like your domain included in the HSTS preload list, which is built into browsers, before
submitting your request to be added to the HSTS preload list you must add the preload token to your
response header. The preload token indicates to the maintainers of HSTS preload list that you are happy
to have your site included.

X-Content-Type-Options

The X-Content-Type-Options header prevents MIME type sniffing.

This functionality can be changed by overriding the list of headers in haproxy_security_headers
variable in the /etc/openstack_deploy/user_variables.yml file.

Referrer Policy

The Referrer-Policy header controls how much referrer information is sent with requests. It defaults
to same-origin, which does not send the origin path for cross-origin requests.

This functionality can be changed by overriding the list of headers in haproxy_security_headers
variable in the /etc/openstack_deploy/user_variables.yml file.

Permission Policy

The Permissions-Policy header allows you to selectively enable, disable or modify the use of browser
features and APIs, previously known as Feature Policy.

By default this header is set to block access to all features apart from the following from the same origin;
fullscreen, clipboard read, clipboard write and spatial navigation.

This functionality can be changed by overriding the list of headers in haproxy_security_headers
variable in the /etc/openstack_deploy/user_variables.yml file.

Content Security Policy (CSP)

The Content-Security-Policy header allows you to control what resources a browser is allowed to
load for a given page, which helps to mitigate the risks from Cross-Site Scripting (XSS) and data injection
attacks.

By default, the Content Security Policy (CSP) enables a minimum set of resources to allow Horizon to
work, which includes access the Nova console. If you require access to other resources these can be
set by overriding the haproxy_security_headers_csp variable in the /etc/openstack_deploy/
user_variables.yml file.

Report Only

Implementing CSP could lead to broken content if a browser is blocked from access-
ing certain resources, therefore it is recommended that when testing CSP you use the
Content-Security-Policy-Report-Only header, instead of Content-Security-Policy,
this reports CSP violations to the browser console, but does not enforce the policy.

160 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

To set the CSP policy to report only by overriding the haproxy_security_headers_csp_report_only
variable to True in the /etc/openstack_deploy/user_variables.yml file:

Reporting Violations

It is recommended that you monitor attempted CSP violations in production, this is achieved by setting
the report-uri and report-to tokens.

Federated Login

When using federated login you will need to override the default Content Security Policy to allow
access to your authorisation server by overriding the haproxy_horizon_csp variable in the /etc/
openstack_deploy/user_variables.yml file:

—
— o
—
N o
—

It is also possible to set specific security headers for skyline.

Security.txt

security.txt is a proposed IETF standard to allow independent security researchers to easily report vul-
nerabilities. The standard defines that a text file called security.txt should be found at /.well-
known/security.txt. For legacy compatibility reasons the file might also be placed at /security.txt.

In OpenStack-Ansible, security.txt is implemented in haproxy as all public endpoints reside behind
it. It defaults to directing any request paths that end with /security.txt to the text file using an ACL
rule in haproxy.

Enabling security.txt

Use the following process to add a security.txt file to your deployment using OpenStack-Ansible:

1. Write the contents of the security.txt file in accordance with the standard.

2.2. User Guide 161

https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt

OpenStack-Ansible Documentation, Release 30.1.0.dev44

2. Define the contents of security.txt in the variable haproxy_security_txt_content in the
/etc/openstack_deploy/user_variables.yml file:

1. Update haproxy

[openstack-ansible haproxy-install.yml]

Advanced security.txt ACL

In some cases you may need to change the haproxy ACL used to redirect requests to the security.txt
file, such as adding extra domains.

The haproxy ACL is updated by overriding the variable haproxy_map_entries inside
haproxy_security_txt_service.

Apply ansible-hardening

The ansible-hardening role is applicable to physical hosts within an OpenStack-Ansible deployment
that are operating as any type of node, infrastructure or compute. By default, the role is enabled. You can
disable it by changing the value of the apply_security_hardening variable in the user_variables.
yml file to false:

You can apply security hardening configurations to an existing environment or audit an environment by
using a playbook supplied with OpenStack-Ansible:

openstack-ansible security-hardening.yml

openstack-ansible --check security-hardening.yml

For more information about the security configurations, see the security hardening role documentation.

Running as non-root user
Deployers do not have to use root user accounts on deploy or target hosts. This approach works out of

the box by leveraging Ansible privilege escalation.

Deploment hosts

You can avoid usage of the root user on a deployment by following these guidelines:

1. Clone OpenStack-Ansible repository to home user directory. It means, that instead of /opt/
openstack-ansible repository will be in ~/openstack-ansible.

2. Use custom path for /etc/openstack_deploy directory. You can place OpenStack-Ansible con-
figuration directory inside user home directory. For that you will need to define the following
environment variable:

162 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/ansible-hardening/
https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_privilege_escalation.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

[1

3. If you want to keep basic ansible logging, you need either to create /openstack/log/
ansible-logging/ directory and allow user to write there, or define the following environment
variable:

Note

You can also add the environment variable to user . rc file inside openstack_deploy
folder (${OSA_CONFIG_DIR}/user.rc). user.rc file is sourced each time you
run openstack-ansible binary.

4. Initial bootstrap of OpenStack-Ansible using ./scripts/bootstrap-ansible.sh script still should be
done either as the root user or escalate privileges using sudo or su.

Destination hosts

It is also possible to use non-root user for Ansible authentication on destination hosts. However, this user
must be able to escalate privileges using Ansible privilege escalation.

Note

You can add environment variables from that section to user. rc file inside openstack_deploy folder
(${0SA_CONFIG_DIR}/user.rc). user.rc file is sourced each time you run openstack-ansible
binary.

There are also couple of additional things which you might want to consider:

1. Provide --become flag each time your run a playbook or ad-hoc command. Alternatively, you can
define the following environment variable:

2. Override Ansible temporary path if LXC containers are used. The ansible connection from the
physical host to the LXC container passes environment variables from the host. This means that
Ansible attempts to use the same temporary folder in the LXC container as it would on the host,
relative to the non-root user ${HOME} directory. This will not exist inside the container and
another path must be used instead.

You can do that following in multiple ways:
a. Define ansible_remote_tmp: /tmp in user_variables.yml

b. Define the following environment variable:

3. Define the user that will be used for for connections from the deploy host to the ansible target hosts.
In case the user is the same for all hosts in your deployment, you can do it in one of following ways:

2.2. User Guide 163

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_privilege_escalation.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

a. Define ansible_user: <USER> in user_variables.yml

b. Define the following environment variable:

1

If the user differs from host to host, you can leverage group_vars or host_vars. More
information on how to use that can be found in the overrides guide

2.2.12 Source overriding examples

There are situations where a deployer want to override sources with its own fork.

This chapter gives case-by-case examples on how to override the default sources.

Overriding Ansible version

Overriding the default Ansible version is not recommended, as each branch of OpenStack-Ansible has
been built with the a specific Ansible version in mind, and many Ansible changes are neither backwards
nor forward compatible.

The bootstrap-ansible. shscriptinstalls Ansible, and uses a variable ANSTBLE_PACKAGE to describe
which version to install.

For example to install ansible version 2.5.0:

s J

Installing directly from git is also supported. For example, from the tip of Ansible development branch:

. |

Overriding the roles

Overriding the role file has been explained in the reference guide, on the Adding new or overriding roles
in your OpenStack-Ansible installation section.
Overriding other upstream projects source code

All the upstream repositories used are defined in the openstack-ansible integrated repository, in the
inventory/group_vars/<service_group>/source_git.yml file.

For example, if you want to override glance repository with your own, you need to define the following:

Please note, for this glance example, that you do not need to edit the inventory/group_vars/
glance_all/source_git.yml file.

Instead, the usual overrides mechanism can take place, and you can define these 3 variables in a user_*.
yml file. See also the Overriding default configuration page.

164 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Note

These variables behave a little differently than standard ansible precedence, because they are also
consumed by a custom lookup plugin.

The py_pkgs lookup will ignore all _git_ variables unless the _git_repo variable is present.

So even if you only want to override the _git_install_branch for a repository, you should also
define the _git_repo variable in your user variables.

2.2.13 Telemetry with Gnocchi, Ceph and Redis example

The default openstack-ansible installation configures gnocchi to use a file as storage backend. When you
already have a pre-installed ceph, you can use this as backend for gnocchi. This documentation will guide
you how to set up gnocchi to use your ceph as storage backend.

Ceph as metric storage

You have to add some pip packages to your gnocchi setup:

But when your setup grows, gnocchi might slow down or block your ceph installation. You might expe-
rience slow requests and stuck PGs in your Ceph. As this might have multiple causes, take a look at the
presentations linked in the Performance Tests for Gnocchi section. They also include various parameters
which you might tune.

Redis as measure storage

One solution to possible performance problems is to use an incoming measure storage for your gnocchi
installation. The supported storage systems are:

* File (default)
* Ceph (preferred)
* OpenStack Swift

e Amazon S3

2.2. User Guide 165

https://gnocchi.xyz/intro.html#incoming-and-storage-drivers

OpenStack-Ansible Documentation, Release 30.1.0.dev44

* Redis
When your Swift API endpoint uses Ceph as a backend, the only one left for this setup is Redis.

So first of all setup a redis server/cluster, e.g. with this ansible role. Next, you have to configure Gnocchi
with OpenStack-Ansible to use the Redis Cluster as incoming storage:

L

You also have to install additional pip/distro packages to use the redis cluster:

Note

166 Chapter 2. 2025.1 (Epoxy): Under development

https://github.com/DavidWittman/ansible-redis

OpenStack-Ansible Documentation, Release 30.1.0.dev44

A word of caution: the name of the Ceph alternative lib implementation (ceph_alternative_lib) varies
between Gnocchi versions.

Zookeeper for coordination

When you deployed Gnocchi on multiple servers to distribute the work, add Zookeeper as coordination
backend. To setup Zookeeper, you can use this ansible role.

Create containers for Zookeeper:

Now you can set up Zookeeper as coordination backend for Gnocchi:

You also have to install additional packages:

this is what we want:

but as there is no librados > .2 pip package we have to first install.
—.ceph without alternative support

after adding the ceph repo to gnocchi container, python-rados> .2.0 is.
—installed and linked automatically

and gnocchi will automatically take up the features present the used..

(continues on next page)

2.2. User Guide 167

https://github.com/openstack/ansible-role-zookeeper.git

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

—rados lib.

addiitional pip packages needed zookeeper coordination backend

Performance Tests for Gnocchi
For more ideas how to tune your Gnocchi stack, take a look at these presentations:

* https://docs.openstack.org/performance-docs/test_results/telemetry_gnocchi_with_ceph/index.
html

2.2.14 HAProxy and Keepalived in LXC containers

There can be a usecase where you might want to run HAProxy and Keepalived inside LXC containers.
For instance, running these services on bare metal assumes that a default route for hosts should be set
towards a public network. This scenario might be un-preferable for some deployments, especially in
cases where you do not have standalone Load-Balancing hosts, but theyre co-located with other infra
services instead.

Inventory overrides

In order to tell dynamic_inventory to generate a set of containers for haproxy, you need to create a file
/etc/openstack_deploy/env.d/haproxy.yml with the following content:

Defining host networking

In order to make a public network available, you need to ensure having a corresponsive bridge on your
hosts to which HAProxy containers will be plugged in with one side of a veth pair. The bridge should
also contain a VLAN interface providing public connectivity.

You can create a bridge manually or leverage our systemd_networkd role which is capable of configuring
required networking on hosts.

For the example below, lets name our bridge br-public-api and public vlan with ID 40. In your
user_variables.yml define the following variables:

(continues on next page)

168 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/performance-docs/test_results/telemetry_gnocchi_with_ceph/index.html
https://docs.openstack.org/performance-docs/test_results/telemetry_gnocchi_with_ceph/index.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Bond
Mode
TransmitHashPolicy
LACPTransmitRate
MIIMonitorSec
filename

_systemd_networkd_public_api_devices

NetDev
Name
Kind

VLAN
Id

filename

NetDev
Name
Kind

Bridge
ForwardDelaySec
HelloTimeSec
MaxAgeSec
STP

filename

openstack_hosts_systemd_networkd_devices

_systemd_networkd_bonded_networks
interface
filename
bond
link_config_overrides
Match
MACAddress
interface
filename
bond
link_config_overrides
Match
MACAddress
interface
filename

(continued from previous page)

(continues on next page)

2.2. User Guide

169

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

Defining container networking

In case of deploying HAProxy inside LXC you need to ensure connectivity with a public network
and that haproxy_bind_external_lb_vip_address will be present inside the container as well as
external_lb_vip_address is reachable.

For that we need to do the following series of changes in the openstack_user_config.yml file.

1. In cidr_networks add a network which should be used as public network for accessing APIs.
For example we will be using 203.0.113.128/28:

1. In wused_ips you need to reserve IP address for your gateway and
haproxy_keepalived_external_vip_cidr/external_lb_vip_address

2. In provider_networks you need to define a new container network and assign it to HAproxy

group.

(

(continues on next page)

170 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

group_binds

type
container_bridge
container_interface
container_type
ip_from_q
static_routes

cidr

gateway

L J

While these are all changes, that need to be done in openstack_user_config.yml, there is one more
override that needs to be applied.

As you might have spotted, we are defining a default route for the container through eth20. However, by
default all containers have their default route through eth0O, which is a local LXC bridge where address is
recieved through DHCP. In order to avoid a conflict, you need to ensure that the default route will not be
set for ethQ inside the container. For that, create a file /etc/openstack_deploy/group_vars/haproxy with
the following content:

1xc_container_networks
1xcbr0®_address
bridge
bridge_type
interface
type
dhcp_use_routes

Configuring HAProxy binding inside containers

As IP provisioning is quite random inside containers, it may not always be handy to bind HAProxy to
a specific IP address. If thats the case, you can bind HAProxy to an interface instead, since we always
know the interface names inside containers. With that keepalived public/internal VIPs are supposed to
be added in used_ips, so you still can define them freely.

Example bellow shows a possible content in user_variables.yml:

haproxy_bind_external_lb_vip_interface
haproxy_bind_internal_lb_vip_interface
haproxy_bind_external_lb_vip_address
haproxy_bind_internal_lb_vip_address
haproxy_keepalived_external_vip_cidr
haproxy_keepalived_internal_vip_cidr
haproxy_keepalived_external_interface
haproxy_keepalived_internal_interface

—

Alternatively, you can detect IPs used inside your containers to configure haproxy binds. This can be
done by reffering to container_networks mapping

2.2. User Guide 171

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Creating containers

Once all steps above are accomplished, its time to create our new haproxy containers. For that run the
following command:

2.2.15 Using domain (or path) based endpoints instead of port-based

By default, OpenStack-Ansible uses port-based endpoints. This means, that each service will be served
on its own unique port for both public and internal endpoints. For example, Keystone will be added as
https://domain.com:5000/v3, Nova as https://domain.com:8774/v2.1 and so on.

While this is the simplest approach, as it does not require any extra configuration and is easy to start
with, it also has some disadvantages. For example, some clients or organizations might not be allowed
to connect to custom ports which completely disables the ability to use them in such deployments.

In order to work around such limitations, starting from 2023.1 (Antelope) release, it is possible to have
domain-based or path-based endpoints instead.

Configuring domain-based endpoints (recommended)

Domain-based endpoints do separate direct requests to specific services based on FQDNs. Usually for
this purpose subdomains are used. For example, Keystone endpoint may look like https://identity.
domain.com while Nova endpoint can be like https://compute.domain.com.

As a prerequisite for this type of setup you need to ensure that corresponding A or CNAME records
are present for your domain. Also, you need to ensure having a valid wildcard or SAN certificates for
public/internal endpoints.

HAProxy configuration

In order for HAProxy to pass specific FQDN to its own backend we will leverage map files functionality.
We need to make adjustments to each HAProxy service definition to:

* Prevent creation of a front-end per service. As we are now expecting traffic to come only on default
80 and 443 ports there is no need to have a separate frontend per service. A HAProxy map file is
attached to a base frontend which is deployed with the haproxy_server role and is independent of
any service definitions. The map file can be used to direct incoming requests to specific backends
by using rules defined in the map file to match against host request headers.

Note

In case of any changes to haproxy_base_service_overrides variable you need to re-run
openstack-ansible openstack.osa.haproxy --tags haproxy-service-config.

172 Chapter 2. 2025.1 (Epoxy): Under development

https://www.haproxy.com/documentation/haproxy-configuration-tutorials/core-concepts/map-files/

OpenStack-Ansible Documentation, Release 30.1.0.dev44

» Populate a base map file with search patterns per service backend. As each service is going to use
its own FQDN we need to inform HAProxy which backend should be used when request is coming
to the FQDN.

Sample configuration for Keystone and Nova will look like this:

Note

With changes made to haproxy_<service>_service_overrides variable you need
to re-run a service-specific playbook with haproxy-service-config tag, for example
openstack-ansible openstack.osa.keystone --tags haproxy-service-config.

Service configuration

Along with HAProxy configuration we also need to ensure that the endpoint catalog will be populated
with correct URIs. Each service has a set of variables that needs to be overridden. Usually such variables
have the following format:

* <service>_service_publicuri
e <gservice>_service_internaluri
e <gservice>_service_adminuri

Below you can find an example for defining endpoints for Keystone and Nova:

2.2. User Guide 173

OpenStack-Ansible Documentation, Release 30.1.0.dev44

keystone_service_publicuri: "{{ openstack_service_publicuri_proto }}://
—identity.{{ external_lb_vip_address }}"

keystone_service_internaluri: "{{ openstack_service_internaluri_proto }}://
—~identity.{{ internal_lb_vip_address }}"

keystone_service_adminuri: "{{ openstack_service_adminuri_proto }}://identity.
—{{ internal_lb_vip_address }}"

nova_service_publicuri: "{{ openstack_service_publicuri_proto }}://compute.{{.
—external_lb_vip_address }}"

nova_service_internaluri: "{{ openstack_service_internaluri_proto }}://
—compute.{{ internal_lb_vip_address }}"

nova_service_adminuri: "{{ openstack_service_adminuri_proto }}://compute.{{.
—internal_lb_vip_address }}"

nova_novncproxy_base_uri: "{{ nova_novncproxy_proto }}://novnc.{{ external_lb_
—vip_address }}"

Using Lets Encrypt

While you can consider having a wildcard or SAN TLS certificate for the domain to cover all service
endpoints in this setup, it is still possible to use Lets Encrypt certificates with dns-01 authentication or
by supplying a list of subdomains which issued certificate will cover.

So your Lets Encrypt configuration may look like this:

haproxy_ssl_letsencrypt_enable
haproxy_ssl_letsencrypt_email: "root@{{ external_lb_vip_address }}"
haproxy_ssl_letsencrypt_domains

"{{ external_lb_vip_address }}"

"identity.{{ external_lb_vip_address }}"

"compute.{{ external_lb_vip_address }}"

Note

Please mention, that Internal FQDNSs are still going to be covered with self-signed certificates as in
most use-cases Lets Encrypt should not be able to verify domain ownership for internal VIPs, unless
dns-01 auth is used.

You also might need to take care of expanding CN names for issued SAN certificate by the PKI role. For
that you will have to override haproxy_vip_binds variable like in example below:

haproxy_vip_binds
address: "{{ haproxy_bind_external_lb_vip_address }}"
interface: "{{ haproxy_bind_external_lb_vip_interface }}"
type
address: "{{ haproxy_bind_internal_lb_vip_address }}"
interface: "{{ haproxy_bind_internal_lb_vip_interface }}"
type
pki_san_records
"{{ internal_lb_vip_address }}"
(continues on next page)

174 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

You also might want to adjust HSTS headers defined by haproxy_security_headers_csp variable.
While default rules do allow subdomains out of the box, you might want to restrict records a bit more to
disallow access on arbitrary ports.

Note

Variables haproxy_security_child_src_records and haproxy_security_connect_src_records
are only available staring with 2024.2 (Dalmatian) version. You need to override
haproxy_security_headers_csp as a whole for earlier releases

Configuring path-based endpoints
Path-based endpoints imply serving services on the same FQDN but differentiating them based on URI.

For example, Keystone can be configured as https://domain.com/identity/v3 while Nova as
https://domain.com/compute/v2.1

Warning

Please note, that Horizon does utilize /identity for its Keystone panel, so if youre serving Horizon
on / (default) and using /identity to forward traffic to Keystone backend, management of users, roles,
projects inside the Horizon will be broken due to a conflict.

While path-based endpoints might look tempting due to using FQDN and thus not having the need for
wildcard TLS, they are harder to maintain and more complex to set up. Also worth mentioning, that not
all services are ready to support path-based endpoints, despite this approach being used in devstack.

Good example of exceptions which do not support path-based endpoints at the moment
are VNC consoles for VMs (to be implemented with blueprint), Magnum (bug report
<https://launchpad.net/bugs/2083168>) and Ceph Rados Gateway.

HAProxy configuration

Similar to domain-based endpoints we rely on HAProxy maps functionality. But instead of map_dom we
will be using map_reg.

So we need to define a map file to be used and a way to parse it. For that we need to apply an override
for the base service.

2.2. User Guide 175

https://blueprints.launchpad.net/nova/+spec/novnc-base-url-respect-extra-params

OpenStack-Ansible Documentation, Release 30.1.0.dev44

In case you do need to have a Ceph RGW or want to combine domain-based with path-based approach -
you can do that by defining two map files:
Note

In case of any changes to haproxy_base_service_overrides variable you need to re-run
openstack-ansible openstack.osa.haproxy --tags haproxy-service-config.

If no domain will be matched HAProxy will proceed with path-based endpoints.

Next, we need to ensure a HAProxy configuration for each service does contain HAProxy map population
with a respective condition, for example:

Note

With changes made to haproxy_<service>_service_overrides variable you need to re-run
a service-specific playbook with haproxy-service-config tag, for example openstack-ansible
openstack.osa.keystone --tags haproxy-service-config.

Service configuration

Similar to the domain-based endpoints we need to override endpoints definition for each service. End-
points are usually defined with following variables:

* <service>_service_publicuri

176 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

e <service>_service_internaluri
e <service>_service_adminuri

Below you can find an example for defining endpoints for Keystone and Nova:

However, there is another important part of the configuration required per service which is not a case for
domain-based setup. All services assume that theyve been served on root path (i.e. /) while in path-based
approach we use a unique path for each service.

So we now need to make service respect the path and respond correctly on it. One way of doing that
could be using rewrite mechanism in uWSGI, for example:

Warning

Example below does not represent a correct approach on how to configure path-based endpoint for
most services

But this approach is not correct and will result in issues in some clients or use cases, despite the service
appearing completely functional. The problem with the approach above is related to how services return
the self URL when its asked for. Most services will reply with their current micro-version and URI to
this micro-version in reply.

If you are to use uWSGI rewrites like shown above, you will result in response like that:

(continues on next page)

2.2. User Guide 177

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

As you might see, href is pointing not to the expected location. While some clients may not refer to href
link provided by service, others might use it as source of truth and which will result in failures.

Some services, like keystone, have a configuration options which may control how href is being defined.
For instance, keystone does have [DEFAULT |/public_endpoint option, but this approach is not consistent
across services. Moreover, keystone will return provided public_endpoint for all endpoints, including
admin and internal.

With that, the only correct approach here would be to adjust api-paste.ini for each respective service.
But, Keystone specifically, does not support api-paste.ini files. So the only way around it is actually a
uWSGI rewrite and to define a public_endpoint in keystone.conf

For other services applying api-paste.ini can be done with variables, but each service have quite a
unique content there, so approach cant be easily generalized. Below you can find overrides made for
some services as an example:

(continues on next page)

178 Chapter 2. 2025.1 (Epoxy): Under development

OpenStack-Ansible Documentation, Release 30.1.0.dev44

(continued from previous page)

We suggest referring to each service api-paste.ini for more details on how to properly configure overrides.

2.2.16 Messaging configuration

This section provides an overview of hybrid messaging deployment concepts and describes the necessary
steps for a working OpenStack-Ansible (OSA) deployment where RPC and Notify communications are
separated and integrated with different messaging server backends.

oslo.messaging library

The oslo.messaging library is part of the OpenStack Oslo project that provides intra-service messag-
ing capabilities. The library supports two communication patterns (RPC and Notify) and provides an
abstraction that hides the details of the messaging bus operation from the OpenStack services.

Notifications

Notify communications are an asynchronous exchange from notifier to listener. The messages transferred
typically correspond to information updates or event occurrences that are published by an OpenStack
service. The listener need not be present when the notification is sent as notify communications are tem-
porally decoupled. This decoupling between notifier and listener requires that the messaging backend
deployed for notifications provide message persistence such as a broker queue or log store. It is notewor-
thy that the message transfer is unidirectional from notifier to listener and there is no message flow back
to the notifier.

RPC

The RPC is intended as a synchronous exchange between a client and server that is temporally bracketed.
The information transferred typically corresponds to a request-response pattern for service command
invocation. If the server is not present at the time the command is invoked, the call should fail. The
temporal coupling requires that the messaging backend deployed support the bi-directional transfer of
the request from caller to server and the associated reply sent from the server back to the caller. This
requirement can be satisfied by a broker queue or a direct messaging backend server.

2.2. User Guide 179

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Messaging transport

The oslo.messaging library supports a messaging transport plugin capability such that RPC and Notify
communications can be separated and different messaging backend servers can be deployed.

The oslo.messaging drivers provide the transport integration for the selected protocol and backend server.
The following table summarizes the supported oslo.messaging drivers and the communication services
they support.

T - Fom - e B - +
| Oslo.Messaging | Transport | Backend | RPC | Notify | Messaging |
| Driver | Protocol | Server | | | Type |
+ + + + + + +
| rabbit | AMQP V0.9 | rabbitmg | yes | yes | queue |
R o e e e o +
| kafka | kafka | kafka | | yes | queue

| (experimental) | binary | | | | (stream) |
R it TP to—m - R ettt +---—- +-—— - +o—m - +

Standard deployment of rabbitmq server

A single rabbitmq server backend (e.g. server or cluster) is the default deployment for OSA. This broker
messaging backend provides the queue services for both RPC and Notification communications through
its integration with the oslo.messaging rabbit driver. The oslo-messaging.yml file provides the default
configuration to associate the oslo.messaging RPC and Notify services to the rabbitmq server backend.

180 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html
https://github.com/openstack/openstack-ansible/blob/master/inventory/group_vars/all/oslo-messaging.yml

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Managing RabbitMQ stream policy

When deploying RabbitMQ with support for quorum and stream queues, the retention behaviour for
messages changes. Stream queues maintain an append only log on disk of all messages received until
a retention policy indicates they should be disposed of. By default, this policy is set with a per-stream
x-max-age of 1800 seconds. However, as noted in the RabbitMQ docs, this only comes into effect ones
a stream has accumulated enough messages to fill a segment, which has a default size of 500MB.

If you would like to reduce disk usage, an additional policy can be applied via OpenStack Ansible as
shown below:

Note however, that this policy will only apply if it is in place before any stream queues are created. If these
already exist, they will need to be manually deleted and re-created by the relevant OpenStack service.

This issue is being tracked in an oslo.messaging bug.

2.2. User Guide 181

https://www.rabbitmq.com/docs/streams#retention
https://bugs.launchpad.net/oslo.messaging/+bug/2089845

OpenStack-Ansible Documentation, Release 30.1.0.dev44

2.2.17 Multi-Architecture Deployments

OpenStack-Ansible supports deployments where either the control plane or compute nodes may comprise
of several different CPU architectures

Mixed CPU architectures for compute nodes

OpenStack-Ansible supports having compute nodes of multiple architectures deployed in the same envi-
ronment.

Deployments consisting entirely of x86_64 or aarch64 nodes do not need any special consideration and
will work according to the normal OpenStack-Ansible documentation.

A deployment with a mixture of architectures, or adding a new architecture to an existing single archite-
cure deployment requires some additional steps to be taken by both the deployer and end users to ensure
that the behaviour is as desired.

Example - adding aarch64 nodes to an x86_64 deployment

1) Install the operating system onto all the new compute nodes.
2) Add the new compute nodes to openstack_user_config.yml.

3) Ensure a host of each compute architecture is present in repo-infra_hosts in
openstack_user_config.yml.

This host will build python wheels for its own architecture which will speed up the deployment
of many hosts. If you do not make a repository server for each architecture, ensure that measures
are taken not to overload the opendev.org git servers, such as using local mirrors of all OpenStack
service repos.

4) Run the OpenStack-Ansible playbooks to deploy the required services.
5) Add HW_ARCH_XXXX Trait to Every Compute Host in Openstack

Although most CPU hardware traits such as instruction set extensions are detected and handled au-
tomatically in OpenStack, CPU architecture is not. It is necessary to manually add an architecture
trait to the resource provider corresponding to every compute host. The required traits are:

HW_ARCH_X86_64 for x86_64 Intel and AMD CPUs HW_ARCH_AARCHG64 for aarch64 ar-
chitecure CPUs

(see: https://docs.openstack.org/os-traits/latest/reference/traits.html)

openstack resource provider list

openstack resource provider trait list <uuid-of-compute-host>
openstack resource provider trait --trait <existing-trait-1>.
—--trait <existing-trait-2> ... --trait HW_ARCH_xxxxx <uuid-of-
—.compute-host>

Note

The trait set command replaces all existing traits with the set provided, so you must
specify all existing traits as well as the new trait.

6) Configure Nova Scheduler to Check Architecture

182 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/os-traits/latest/reference/traits.html

OpenStack-Ansible Documentation, Release 30.1.0.dev44

Two additional settings in /etc/nova/nova.conf in all Nova API instances:

The image_metadata_prefilter setting forces the Nova scheduler to match the
hw_architecture property on Glance images with the corresponding HW_ARCH_XXX
trait on compute host resource providers. This ensures that images explicitly tagged with a target
architecture get scheduled hosts with a matching architecture.

The image_properties_default_architecture setting would apply in an existing x86_64
architecture cloud where previously hw_architecture was not set on all Glance images. This
avoids the need to retrospectively apply the property for all existing images which may be difficult
as users may have their own tooling to create and upload images without applying the required

property.

Warning
Undocumented Behaviour Alert!

Note that the image metadata prefilter and ImagePropertiesFilter are different and unrelated
steps in the process Nova scheduler uses to determine candidate compute hosts. This section
explains how to use them together.

The image_metadata_prefilter only looks at the HW_ARCH_XXX traits on compute
hosts and finds hardware that matches the required architecture. This only happens when the
hw_architecture property is present on an image, and only if the required traits are manually
added to compute hosts.

The image_properties_default_architecture is used by the ImagePropertiesFilter
which examines all the architectures supported by QEMU on each compute host; this includes
software emulations of non-native architectures.

If the full QEMU suite is installed on a compute host, that host will offer to run all architec-
tures supported by the available qemu-system-* binaries. In this situation images without the
hw_architecture property could be scheduled to a non native architecture host and emulated.

7) Disable QEMU Emulation

Note

This step applies particularly to existing x86_64 environments when new aarch64 compute
nodes are added and it cannot be assumed that the hw_architecure property is applied to all
Glance images as the operator may not be in control of all image uploads.

To avoid unwanted QEMU emulation of non native architectures it is necessary to ensure that only
the native gemu-system-* binary is present on all compute nodes. The simplest way to do this for
existing deployments is to use the system package manager to ensure that the unwanted binaries
are removed.

2.2. User Guide 183

OpenStack-Ansible Documentation, Release 30.1.0.dev44

OpenStack-Ansible releases including 2023.1 and later will only install the native architecture
gemu-system-*‘ binary so this step should not be required on newer releases.

8) Upload images to Glance

e Ideally the hw_architecture property is set for all uploaded images. It
is mandatory to set this property for all architectures that do not match
image_properties_default_architecture

* It is recommended to set the property hw_firmware_type="uefi' for any images which
require UEFI boot, even when this implicit with the aarch64 architecture. This is to avoid
issues with NVRAM files in libvirt when deleting an instance.

Architecture emulation by Nova

Nova has the capability to allow emulation of one CPU architecture on a host with a different native CPU
architecure, see https://docs.openstack.org/nova/latest/admin/hw-emulation-architecture.html for more
details.

This OpenStack-Ansible documentation currently assumes that a deployer wishes to run images on a
compute host with a native CPU architecure, and does not give an example configuration involving em-
ulation.

2.3 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with OpenStack-Ansible.

2.3.1 Communication
IRC channel

Warning

The OpenStack Community moved the IRC network from Freenode to OFTC on May 31, 2021. All
the current IRC channels used in The OpenStack community are registered in OFTC network too.

The OpenStack-Ansible community communicates in the #openstack-ansible IRC channel hosted on
OFTC. This channel is logged, and its logs are published on http://eavesdrop.openstack.org/irclogs/
%23o0penstack-ansible/.

Weekly meetings are held in our IRC channel. The schedule and logs can be found on http://eavesdrop.
openstack.org/#OpenStack_Ansible_Deployment_Meeting. The agenda for the next meeting can be
found on our Meetings wiki page.

Mailing lists

Members of the OpenStack-Ansible community should monitor the OpenStack-discuss mailing lists.

All our communications should be prefixed with [openstack-ansible].

184 Chapter 2. 2025.1 (Epoxy): Under development

https://docs.openstack.org/nova/latest/admin/hw-emulation-architecture.html
https://docs.openstack.org/contributors/
http://eavesdrop.openstack.org/irclogs/%23openstack-ansible/
http://eavesdrop.openstack.org/irclogs/%23openstack-ansible/
http://eavesdrop.openstack.org/#OpenStack_Ansible_Deployment_Meeting
http://eavesdrop.openstack.org/#OpenStack_Ansible_Deployment_Meeting
https://wiki.openstack.org/wiki/Meetings/openstack-ansible
http://lists.openstack.org/cgi-bin/mailman/listinfo

OpenStack-Ansible Documentation, Release 30.1.0.dev44

2.3.2 Contacting the Core Team

All of our core team is available through IRC and present in #openstack-ansible channel on OFTC. The
list of the current members of the OpenStack-Ansible Team might be found on gerrit.

2.3.3 New Feature Planning

If you would like to contribute towards a role to introduce an OpenStack or infrastructure service, or
to improve an existing role, the OpenStack-Ansible project would welcome that contribution and your
assistance in maintaining it.

Please look through Contributor Guidelines page for more information about the process.

2.3.4 Task Tracking
We track our tasks in Launchpad
https://bugs.launchpad.net/openstack-ansible
If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag.
2.3.5 Reporting a Bug
You found an issue and want to make sure we are aware of it? You can do so on Launchpad.

Also you may find more detailed information about how to work with bugs on the page Bug Handling

2.3.6 Getting Your Patch Merged

Any new code will be reviewed before merging into our repositories and requires at least 2 approvals
from our Core team.

We follow openstack guidelines for the code reviewing process.

Please be aware that any patch can be refused by the community if they dont match the General Guidelines
Jor Submitting Code.

2.3.7 Project Team Lead Duties
All common PTL duties are enumerated in the PTL guide.

All Core reviewer duties are described on the page Core Reviewers.

2.4 Developer Documentation

In this section, you will find documentation relevant to developing OpenStack-Ansible.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for
step-by-step instructions on how to deploy the OpenStack packages and dependencies on your cloud
using Ope