
os-ken Documentation
Release 1.4.1.dev5

OpenStack Developers

Jan 14, 2022

CONTENTS

1 Overview 1

2 Usage 2

3 Contributor Documentation 3

4 Configuration 4

5 Users guide 5

6 Administrators guide 6

7 References 7

8 Archived Contents 8
8.1 Writing Your OS-Ken Application . 8

8.1.1 The First Application . 8
8.1.2 Components of OS-Ken . 10
8.1.3 OS-Ken application API . 14
8.1.4 Library . 21
8.1.5 OpenFlow protocol API Reference . 160
8.1.6 Nicira Extension Structures . 523
8.1.7 OS-Ken API Reference . 549

8.2 Configuration . 551
8.2.1 Setup TLS Connection . 551
8.2.2 Topology Viewer . 552

8.3 Tests . 554
8.3.1 Testing VRRP Module . 554
8.3.2 Testing OF-config support with LINC . 558

8.4 Snort Intergration . 561
8.4.1 Overview . 561
8.4.2 Installation Snort . 562
8.4.3 Configure Snort . 562
8.4.4 Usage . 562

8.5 Built-in OS-Ken applications . 564
8.5.1 os_ken.app.ofctl . 564
8.5.2 os_ken.app.ofctl_rest . 566
8.5.3 os_ken.app.rest_vtep . 623
8.5.4 os_ken.services.protocols.bgp.application . 635

i

Python Module Index 639

Index 640

ii

CHAPTER

ONE

OVERVIEW

A component-based software defined networking framework in OpenStack.

os-ken is a fork of the Ryu library tailored for OpenStack Neutron.

• License: Apache License, Version 2.0

• Documentation: https://docs.openstack.org/os-ken/latest/

• Source: https://opendev.org/openstack/os-ken/

• Bugs: https://storyboard.openstack.org/#!/project/openstack/os-ken

• Release Notes: https://docs.openstack.org/releasenotes/os-ken/

1

https://docs.openstack.org/os-ken/latest/
https://opendev.org/openstack/os-ken/
https://storyboard.openstack.org/#!/project/openstack/os-ken
https://docs.openstack.org/releasenotes/os-ken/

CHAPTER

TWO

USAGE

To use os-ken in a project:

import os_ken

2

CHAPTER

THREE

CONTRIBUTOR DOCUMENTATION

If you would like to contribute to the development of OpenStack, you must follow the steps in this page:

https://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your OpenStack accounts are
set up, you can skip to the development workflow section of this documentation to learn how changes to
OpenStack should be submitted for review via the Gerrit tool:

https://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad: https://bugs.launchpad.net/neutron

3

https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/neutron

CHAPTER

FOUR

CONFIGURATION

T.B.D.

4

CHAPTER

FIVE

USERS GUIDE

T.B.D.

5

CHAPTER

SIX

ADMINISTRATORS GUIDE

T.B.D.

6

CHAPTER

SEVEN

REFERENCES

T.B.D.

7

CHAPTER

EIGHT

ARCHIVED CONTENTS

Note: Contents here are imported from the upstream Ryu documentation. They will be merged into the
OS-Ken documentation gradually.

8.1 Writing Your OS-Ken Application

8.1.1 The First Application

Whetting Your Appetite

If you want to manage the network gears (switches, routers, etc) at your way, you need to write your
OS-Ken application. Your application tells OS-Ken how you want to manage the gears. Then OS-Ken
configures the gears by using OpenFlow protocol, etc.

Writing OS-Ken application is easy. It’s just Python scripts.

Start Writing

We show a OS-Ken application that make OpenFlow switches work as a dumb layer 2 switch.

Open a text editor creating a new file with the following content:

from os_ken.base import app_manager

class L2Switch(app_manager.OSKenApp):
def __init__(self, *args, **kwargs):

super(L2Switch, self).__init__(*args, **kwargs)

OS-Ken application is just a Python script so you can save the file with any name, extensions, and any
place you want. Let’s name the file ’l2.py’ at your home directory.

This application does nothing useful yet, however it’s a complete OS-Ken application. In fact, you can
run this OS-Ken application:

% osken-manager ~/l2.py
loading app /Users/fujita/l2.py
instantiating app /Users/fujita/l2.py

8

os-ken Documentation, Release 1.4.1.dev5

All you have to do is defining needs a new subclass of OSKenApp to run your Python script as a OS-Ken
application.

Next let’s add the functionality of sending a received packet to all the ports.

from os_ken.base import app_manager
from os_ken.controller import ofp_event
from os_ken.controller.handler import MAIN_DISPATCHER
from os_ken.controller.handler import set_ev_cls
from os_ken.ofproto import ofproto_v1_0

class L2Switch(app_manager.OSKenApp):
OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

def __init__(self, *args, **kwargs):
super(L2Switch, self).__init__(*args, **kwargs)

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def packet_in_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto
ofp_parser = dp.ofproto_parser

actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
out = ofp_parser.OFPPacketOut(

datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
actions=actions)

dp.send_msg(out)

A new method ’packet_in_handler’ is added to L2Switch class. This is called when OS-Ken receives
an OpenFlow packet_in message. The trick is ’set_ev_cls’ decorator. This decorator tells OS-Ken when
the decorated function should be called.

The first argument of the decorator indicates an event that makes function called. As you expect easily,
every time OS-Ken gets a packet_in message, this function is called.

The second argument indicates the state of the switch. Probably, you want to ignore packet_in messages
before the negotiation between OS-Ken and the switch finishes. Using ’MAIN_DISPATCHER’ as the
second argument means this function is called only after the negotiation completes.

Next let’s look at the first half of the ’packet_in_handler’ function.

• ev.msg is an object that represents a packet_in data structure.

• msg.dp is an object that represents a datapath (switch).

• dp.ofproto and dp.ofproto_parser are objects that represent the OpenFlow protocol that OS-Ken
and the switch negotiated.

Ready for the second half.

• OFPActionOutput class is used with a packet_out message to specify a switch port that you want to
send the packet out of. This application need a switch to send out of all the ports so OFPP_FLOOD
constant is used.

• OFPPacketOut class is used to build a packet_out message.

• If you call Datapath class’s send_msg method with a OpenFlow message class object, OS-Ken
builds and send the on-wire data format to the switch.

8.1. Writing Your OS-Ken Application 9

os-ken Documentation, Release 1.4.1.dev5

Here, you finished implementing your first OS-Ken application. You are ready to run this OS-Ken
application that does something useful.

A dumb l2 switch is too dumb? You want to implement a learning l2 switch? Move to the next step. You
can learn from the existing OS-Ken applications at os_ken/app directory and integrated tests directory.

8.1.2 Components of OS-Ken

Executables

osken-manager

The main executable.

Base components

os_ken.base.app_manager

The central management of OSKen applications.

• Load OSKen applications

• Provide contexts to OSKen applications

• Route messages among OSKen applications

OpenFlow controller

os_ken.controller.controller

The main component of OpenFlow controller.

• Handle connections from switches

• Generate and route events to appropriate entities like OSKen applications

os_ken.controller.dpset

Manage switches.

Planned to be replaced by os_ken/topology.

8.1. Writing Your OS-Ken Application 10

https://github.com/osrg/os_ken/blob/master/os_ken/app/simple_switch.py
https://github.com/osrg/os_ken/blob/master/os_ken/app/
https://github.com/osrg/os_ken/blob/master/os_ken/tests/integrated/

os-ken Documentation, Release 1.4.1.dev5

os_ken.controller.ofp_event

OpenFlow event definitions.

os_ken.controller.ofp_handler

Basic OpenFlow handling including negotiation.

OpenFlow wire protocol encoder and decoder

os_ken.ofproto.ofproto_v1_0

OpenFlow 1.0 definitions.

os_ken.ofproto.ofproto_v1_0_parser

Decoder/Encoder implementations of OpenFlow 1.0.

os_ken.ofproto.ofproto_v1_2

OpenFlow 1.2 definitions.

os_ken.ofproto.ofproto_v1_2_parser

Decoder/Encoder implementations of OpenFlow 1.2.

os_ken.ofproto.ofproto_v1_3

OpenFlow 1.3 definitions.

os_ken.ofproto.ofproto_v1_3_parser

This module implements OpenFlow 1.3.x.

This module also implements some of extensions shown in "OpenFlow Extensions for 1.3.X Pack 1".
Namely, the following extensions are implemented.

• EXT-230 Bundle Extension (without bundle properties)

• EXT-236 Bad flow entry priority error Extension

• EXT-237 Set async config error Extension

• EXT-256 PBB UCA header field Extension

• EXT-260 Duplicate instruction error Extension

• EXT-264 Multipart timeout errors Extension

8.1. Writing Your OS-Ken Application 11

os-ken Documentation, Release 1.4.1.dev5

The following extensions are partially implemented.

• EXT-187 Flow entry notifications Extension (ONFMP_FLOW_MONITOR only)

• EXT-232 Table synchronisation Extension (Error codes only)

The following extensions are not implemented yet.

• EXT-191 Role Status Extension

• EXT-192-e Flow entry eviction Extension

• EXT-192-v Vacancy events Extension

os_ken.ofproto.ofproto_v1_4

OpenFlow 1.4 definitions.

os_ken.ofproto.ofproto_v1_4_parser

Decoder/Encoder implementations of OpenFlow 1.4.

os_ken.ofproto.ofproto_v1_5

OpenFlow 1.5 definitions.

os_ken.ofproto.ofproto_v1_5_parser

Decoder/Encoder implementations of OpenFlow 1.5.

OS-Ken applications

os_ken.app.cbench

A dumb OpenFlow 1.0 responder for benchmarking the controller framework. Intended to be used with
oflops cbench.

os_ken.app.simple_switch

An OpenFlow 1.0 L2 learning switch implementation.

8.1. Writing Your OS-Ken Application 12

os-ken Documentation, Release 1.4.1.dev5

os_ken.topology

Switch and link discovery module. Planned to replace os_ken/controller/dpset.

Libraries

os_ken.lib.packet

OSKen packet library. Decoder/Encoder implementations of popular protocols like TCP/IP.

os_ken.lib.ovs

ovsdb interaction library.

os_ken.lib.of_config

OF-Config implementation.

os_ken.lib.netconf

NETCONF definitions used by os_ken/lib/of_config.

os_ken.lib.xflow

An implementation of sFlow and NetFlow.

Third party libraries

os_ken.contrib.ovs

Open vSwitch python binding. Used by os_ken.lib.ovs.

os_ken.contrib.oslo.config

Oslo configuration library. Used for osken-manager’s command-line options and configuration files.

8.1. Writing Your OS-Ken Application 13

os-ken Documentation, Release 1.4.1.dev5

os_ken.contrib.ncclient

Python library for NETCONF client. Used by os_ken.lib.of_config.

8.1.3 OS-Ken application API

OS-Ken application programming model

Threads, events, and event queues

OS-Ken applications are single-threaded entities which implement various functionalities in OS-Ken.
Events are messages between them.

OS-Ken applications send asynchronous events to each other. Besides that, there are some OS-Ken-
internal event sources which are not OS-Ken applications. One of the examples of such event sources is
the OpenFlow controller. While an event can currently contain arbitrary python objects, it’s discouraged
to pass complex objects (eg. unpickleable objects) between OS-Ken applications.

Each OS-Ken application has a receive queue for events. The queue is FIFO and preserves the order
of events. Each OS-Ken application has a thread for event processing. The thread keeps draining the
receive queue by dequeueing an event and calling the appropritate event handler for the event type.
Because the event handler is called in the context of the event processing thread, it should be careful
when blocking. While an event handler is blocked, no further events for the OS-Ken application will be
processed.

There are kinds of events which are used to implement synchronous inter-application calls between OS-
Ken applications. While such requests use the same machinery as ordinary events, their replies are put
on a queue dedicated to the transaction to avoid deadlock.

While threads and queues are currently implemented with eventlet/greenlet, a direct use of them in a
OS-Ken application is strongly discouraged.

Contexts

Contexts are ordinary python objects shared among OS-Ken applications. The use of contexts is dis-
couraged for new code.

Create a OS-Ken application

A OS-Ken application is a python module which defines a subclass of
os_ken.base.app_manager.OSKenApp. If two or more such classes are defined in a module, the
first one (by name order) will be picked by app_manager. An OS-Ken application is singleton: only a
single instance of a given OS-Ken application is supported.

8.1. Writing Your OS-Ken Application 14

os-ken Documentation, Release 1.4.1.dev5

Observe events

A OS-Ken application can register itself to listen for specific events using
os_ken.controller.handler.set_ev_cls decorator.

Generate events

A OS-Ken application can raise events by calling appropriate os_ken.base.app_manager.OSKenApp’s
methods like send_event or send_event_to_observers.

Event classes

An event class describes a OS-Ken event generated in the system. By convention, event class names are
prefixed by "Event". Events are generated either by the core part of OS-Ken or OS-Ken applications. A
OS-Ken application can register its interest for a specific type of event by providing a handler method
using the os_ken.controller.handler.set_ev_cls decorator.

OpenFlow event classes

os_ken.controller.ofp_event module exports event classes which describe receptions of
OpenFlow messages from connected switches. By convention, they are named as
os_ken.controller.ofp_event.EventOFPxxxx where xxxx is the name of the corresponding Open-
Flow message. For example, EventOFPPacketIn for the packet-in message. The OpenFlow controller
part of OS-Ken automatically decodes OpenFlow messages received from switches and send these
events to OS-Ken applications which expressed an interest using os_ken.controller.handler.set_ev_cls.
OpenFlow event classes are subclasses of the following class.

class os_ken.controller.ofp_event.EventOFPMsgBase(msg)
The base class of OpenFlow event class.

OpenFlow event classes have at least the following attributes.

Attribute Description
msg An object which describes the corresponding OpenFlow message.
msg.datapath A os_ken.controller.controller.Datapath instance which describes an

OpenFlow switch from which we received this OpenFlow message.
timestamp Timestamp when Datapath instance generated this event.

The msg object has some more additional members whose values are extracted from the original
OpenFlow message.

See OpenFlow protocol API Reference for more info about OpenFlow messages.

8.1. Writing Your OS-Ken Application 15

os-ken Documentation, Release 1.4.1.dev5

os_ken.base.app_manager.OSKenApp

See OS-Ken API Reference.

os_ken.controller.handler.set_ev_cls

os_ken.controller.handler.set_ev_cls(ev_cls, dispatchers=None)
A decorator for OSKen application to declare an event handler.

Decorated method will become an event handler. ev_cls is an event class whose instances this
OSKenApp wants to receive. dispatchers argument specifies one of the following negotiation
phases (or a list of them) for which events should be generated for this handler. Note that, in case
an event changes the phase, the phase before the change is used to check the interest.

Negotiation phase Description
os_ken.controller.handler.HANDSHAKE_DISPATCHER Sending and waiting for hello

message
os_ken.controller.handler.CONFIG_DISPATCHER Version negotiated and sent

features-request message
os_ken.controller.handler.MAIN_DISPATCHER Switch-features message received

and sent set-config message
os_ken.controller.handler.DEAD_DISPATCHER Disconnect from the peer. Or

disconnecting due to some
unrecoverable errors.

os_ken.controller.controller.Datapath

class os_ken.controller.controller.Datapath(socket, address)
A class to describe an OpenFlow switch connected to this controller.

An instance has the following attributes.

8.1. Writing Your OS-Ken Application 16

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
id 64-bit OpenFlow Datapath ID. Only available for

os_ken.controller.handler.MAIN_DISPATCHER
phase.

ofproto A module which exports OpenFlow definitions,
mainly constants appeared in the specification, for the
negotiated OpenFlow version. For example,
os_ken.ofproto.ofproto_v1_0 for OpenFlow 1.0.

ofproto_parser A module which exports OpenFlow wire message
encoder and decoder for the negotiated OpenFlow
version. For example,
os_ken.ofproto.ofproto_v1_0_parser for OpenFlow
1.0.

ofproto_parser.OFPxxxx(datapath,...) A callable to prepare an OpenFlow message for the
given switch. It can be sent with Datapath.send_msg
later. xxxx is a name of the message. For example
OFPFlowMod for flow-mod message. Arguemnts
depend on the message.

set_xid(self, msg) Generate an OpenFlow XID and put it in msg.xid.
send_msg(self, msg) Queue an OpenFlow message to send to the

corresponding switch. If msg.xid is None, set_xid is
automatically called on the message before queueing.

send_packet_out deprecated
send_flow_mod deprecated
send_flow_del deprecated
send_delete_all_flows deprecated
send_barrier Queue an OpenFlow barrier message to send to the

switch.
send_nxt_set_flow_format deprecated
is_reserved_port deprecated

os_ken.controller.event.EventBase

class os_ken.controller.event.EventBase
The base of all event classes.

A OSKen application can define its own event type by creating a subclass.

8.1. Writing Your OS-Ken Application 17

os-ken Documentation, Release 1.4.1.dev5

os_ken.controller.event.EventRequestBase

class os_ken.controller.event.EventRequestBase
The base class for synchronous request for OSKenApp.send_request.

os_ken.controller.event.EventReplyBase

class os_ken.controller.event.EventReplyBase(dst)
The base class for synchronous request reply for OSKenApp.send_reply.

os_ken.controller.ofp_event.EventOFPStateChange

class os_ken.controller.ofp_event.EventOFPStateChange(dp)
An event class for negotiation phase change notification.

An instance of this class is sent to observer after changing the negotiation phase. An instance has
at least the following attributes.

Attribute Description
datapath os_ken.controller.controller.Datapath instance of the switch

os_ken.controller.ofp_event.EventOFPPortStateChange

class os_ken.controller.ofp_event.EventOFPPortStateChange(dp, rea-
son,
port_no)

An event class to notify the port state changes of Dtatapath instance.

This event performs like EventOFPPortStatus, but OSKen will send this event after updating
ports dict of Datapath instances. An instance has at least the following attributes.

Attribute Description
datapath os_ken.controller.controller.Datapath instance of the switch
reason one of OFPPR_*
port_no Port number which state was changed

os_ken.controller.dpset.EventDP

class os_ken.controller.dpset.EventDP(dp, enter_leave)
An event class to notify connect/disconnect of a switch.

For OpenFlow switches, one can get the same notification by observing
os_ken.controller.ofp_event.EventOFPStateChange. An instance has at least the following
attributes.

Attribute Description
dp A os_ken.controller.controller.Datapath instance of the switch
enter True when the switch connected to our controller. False for disconnect.
ports A list of port instances.

8.1. Writing Your OS-Ken Application 18

os-ken Documentation, Release 1.4.1.dev5

os_ken.controller.dpset.EventPortAdd

class os_ken.controller.dpset.EventPortAdd(dp, port)
An event class for switch port status "ADD" notification.

This event is generated when a new port is added to a switch. For OpenFlow switches, one can get
the same notification by observing os_ken.controller.ofp_event.EventOFPPortStatus. An instance
has at least the following attributes.

Attribute Description
dp A os_ken.controller.controller.Datapath instance of the switch
port port number

os_ken.controller.dpset.EventPortDelete

class os_ken.controller.dpset.EventPortDelete(dp, port)
An event class for switch port status "DELETE" notification.

This event is generated when a port is removed from a switch. For OpenFlow switches, one can get
the same notification by observing os_ken.controller.ofp_event.EventOFPPortStatus. An instance
has at least the following attributes.

Attribute Description
dp A os_ken.controller.controller.Datapath instance of the switch
port port number

os_ken.controller.dpset.EventPortModify

class os_ken.controller.dpset.EventPortModify(dp, new_port)
An event class for switch port status "MODIFY" notification.

This event is generated when some attribute of a port is changed. For OpenFlow switches, one
can get the same notification by observing os_ken.controller.ofp_event.EventOFPPortStatus. An
instance has at least the following attributes.

Attribute Description
dp A os_ken.controller.controller.Datapath instance of the switch
port port number

os_ken.controller.network.EventNetworkPort

class os_ken.controller.network.EventNetworkPort(network_id, dpid,
port_no, add_del)

An event class for notification of port arrival and deperture.

This event is generated when a port is introduced to or removed from a network by the REST API.
An instance has at least the following attributes.

8.1. Writing Your OS-Ken Application 19

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
network_id Network ID
dpid OpenFlow Datapath ID of the switch to which the port belongs.
port_no OpenFlow port number of the port
add_del True for adding a port. False for removing a port.

os_ken.controller.network.EventNetworkDel

class os_ken.controller.network.EventNetworkDel(network_id)
An event class for network deletion.

This event is generated when a network is deleted by the REST API. An instance has at least the
following attributes.

Attribute Description
network_id Network ID

os_ken.controller.network.EventMacAddress

class os_ken.controller.network.EventMacAddress(dpid, port_no, net-
work_id, mac_address,
add_del)

An event class for end-point MAC address registration.

This event is generated when a end-point MAC address is updated by the REST API. An instance
has at least the following attributes.

Attribute Description
network_id Network ID
dpid OpenFlow Datapath ID of the switch to which the port belongs.
port_no OpenFlow port number of the port
mac_address The old MAC address of the port if add_del is False. Otherwise the new MAC

address.
add_del False if this event is a result of a port removal. Otherwise True.

os_ken.controller.tunnels.EventTunnelKeyAdd

class os_ken.controller.tunnels.EventTunnelKeyAdd(network_id, tun-
nel_key)

An event class for tunnel key registration.

This event is generated when a tunnel key is registered or updated by the REST API. An instance
has at least the following attributes.

Attribute Description
network_id Network ID
tunnel_key Tunnel Key

8.1. Writing Your OS-Ken Application 20

os-ken Documentation, Release 1.4.1.dev5

os_ken.controller.tunnels.EventTunnelKeyDel

class os_ken.controller.tunnels.EventTunnelKeyDel(network_id, tun-
nel_key)

An event class for tunnel key registration.

This event is generated when a tunnel key is removed by the REST API. An instance has at least
the following attributes.

Attribute Description
network_id Network ID
tunnel_key Tunnel Key

os_ken.controller.tunnels.EventTunnelPort

class os_ken.controller.tunnels.EventTunnelPort(dpid, port_no, re-
mote_dpid, add_del)

An event class for tunnel port registration.

This event is generated when a tunnel port is added or removed by the REST API. An instance
has at least the following attributes.

Attribute Description
dpid OpenFlow Datapath ID
port_no OpenFlow port number
remote_dpid OpenFlow port number of the tunnel peer
add_del True for adding a tunnel. False for removal.

8.1.4 Library

OS-Ken provides some useful library for your network applications.

Packet library

Introduction

OS-Ken packet library helps you to parse and build various protocol packets. dpkt is the popular library
for the same purpose, however it is not designed to handle protocols that are interleaved; vlan, mpls, gre,
etc. So we implemented our own packet library.

8.1. Writing Your OS-Ken Application 21

os-ken Documentation, Release 1.4.1.dev5

Network Addresses

Unless otherwise specified, MAC/IPv4/IPv6 addresses are specified using human readable strings for
this library. For example, ’08:60:6e:7f:74:e7’, ’192.0.2.1’, ’fe80::a60:6eff:fe7f:74e7’.

Parsing Packet

First, let’s look at how we can use the library to parse the received packets in a handler for OFPPacketIn
messages.

from os_ken.lib.packet import packet

@handler.set_ev_cls(ofp_event.EventOFPPacketIn, handler.MAIN_DISPATCHER)
def packet_in_handler(self, ev):

pkt = packet.Packet(array.array('B', ev.msg.data))
for p in pkt.protocols:

print p

You can create a Packet class instance with the received raw data. Then the packet library parses the
data and creates protocol class instances included the data. The packet class ’protocols’ has the protocol
class instances.

If a TCP packet is received, something like the following is printed:

<os_ken.lib.packet.ethernet.ethernet object at 0x107a5d790>
<os_ken.lib.packet.vlan.vlan object at 0x107a5d7d0>
<os_ken.lib.packet.ipv4.ipv4 object at 0x107a5d810>
<os_ken.lib.packet.tcp.tcp object at 0x107a5d850>

If vlan is not used, you see something like:

<os_ken.lib.packet.ethernet.ethernet object at 0x107a5d790>
<os_ken.lib.packet.ipv4.ipv4 object at 0x107a5d810>
<os_ken.lib.packet.tcp.tcp object at 0x107a5d850>

You can access to a specific protocol class instance by using the packet class iterator. Let’s try to check
VLAN id if VLAN is used:

from os_ken.lib.packet import packet

@handler.set_ev_cls(ofp_event.EventOFPPacketIn, handler.MAIN_DISPATCHER)
def packet_in_handler(self, ev):

pkt = packet.Packet(array.array('B', ev.msg.data))
for p in pkt:

print p.protocol_name, p
if p.protocol_name == 'vlan':

print 'vid = ', p.vid

You see something like:

ethernet <os_ken.lib.packet.ethernet.ethernet object at 0x107a5d790>
vlan <os_ken.lib.packet.vlan.vlan object at 0x107a5d7d0>
vid = 10
ipv4 <os_ken.lib.packet.ipv4.ipv4 object at 0x107a5d810>
tcp <os_ken.lib.packet.tcp.tcp object at 0x107a5d850>

8.1. Writing Your OS-Ken Application 22

os-ken Documentation, Release 1.4.1.dev5

Building Packet

You need to create protocol class instances that you want to send, add them to a packet class instance
via add_protocol method, and then call serialize method. You have the raw data to send. The following
example is building an arp packet.

from os_ken.ofproto import ether
from os_ken.lib.packet import ethernet, arp, packet

e = ethernet.ethernet(dst='ff:ff:ff:ff:ff:ff',
src='08:60:6e:7f:74:e7',
ethertype=ether.ETH_TYPE_ARP)

a = arp.arp(hwtype=1, proto=0x0800, hlen=6, plen=4, opcode=2,
src_mac='08:60:6e:7f:74:e7', src_ip='192.0.2.1',
dst_mac='00:00:00:00:00:00', dst_ip='192.0.2.2')

p = packet.Packet()
p.add_protocol(e)
p.add_protocol(a)
p.serialize()
print repr(p.data) # the on-wire packet

Packet library API Reference

Packet class

class os_ken.lib.packet.packet.Packet(data=None, proto-
cols=None, parse_cls=<class
’os_ken.lib.packet.ethernet.ethernet’>)

A packet decoder/encoder class.

An instance is used to either decode or encode a single packet.

data is a bytearray to describe a raw datagram to decode. When decoding, a Packet object is
iteratable. Iterated values are protocol (ethernet, ipv4, ...) headers and the payload. Protocol
headers are instances of subclass of packet_base.PacketBase. The payload is a bytearray. They
are iterated in on-wire order.

data should be omitted when encoding a packet.

add_protocol(proto)
Register a protocol proto for this packet.

This method is legal only when encoding a packet.

When encoding a packet, register a protocol (ethernet, ipv4, ...) header to add to this packet.
Protocol headers should be registered in on-wire order before calling self.serialize.

classmethod from_jsondict(dict_, decode_string=<function b64decode>, **ad-
ditional_args)

Create an instance from a JSON style dict.

Instantiate this class with parameters specified by the dict.

This method takes the following arguments.

8.1. Writing Your OS-Ken Application 23

os-ken Documentation, Release 1.4.1.dev5

Argument Descrpition
dict_ A dictionary which describes the parameters. For example,

{"Param1": 100, "Param2": 200}
decode_string (Optional) specify how to decode strings. The default is base64. This

argument is used only for attributes which don’t have explicit type
annotations in _TYPE class attribute.

additional_args (Optional) Additional kwargs for constructor.

get_protocol(protocol)
Returns the firstly found protocol that matches to the specified protocol.

get_protocols(protocol)
Returns a list of protocols that matches to the specified protocol.

serialize()
Encode a packet and store the resulted bytearray in self.data.

This method is legal only when encoding a packet.

Stream Parser class

class os_ken.lib.packet.stream_parser.StreamParser
Streaming parser base class.

An instance of a subclass of this class is used to extract messages from a raw byte stream.

It’s designed to be used for data read from a transport which doesn’t preserve message boundaries.
A typical example of such a transport is TCP.

exception TooSmallException

parse(data)
Tries to extract messages from a raw byte stream.

The data argument would be python bytes newly read from the input stream.

Returns an ordered list of extracted messages. It can be an empty list.

The rest of data which doesn’t produce a complete message is kept internally and will be
used when more data is come. I.e. next time this method is called again.

abstract try_parse(q)
Try to extract a message from the given bytes.

This is an override point for subclasses.

This method tries to extract a message from bytes given by the argument.

Raises TooSmallException if the given data is not enough to extract a complete message but
there’s still a chance to extract a message if more data is come later.

List of the sub-classes:

• os_ken.lib.packet.bgp.StreamParser

8.1. Writing Your OS-Ken Application 24

os-ken Documentation, Release 1.4.1.dev5

Protocol Header classes

Packet Base Class

class os_ken.lib.packet.packet_base.PacketBase
A base class for a protocol (ethernet, ipv4, ...) header.

classmethod get_packet_type(type_)
Per-protocol dict-like get method.

Provided for convenience of protocol implementers. Internal use only.

abstract classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

classmethod register_packet_type(cls_, type_)
Per-protocol dict-like set method.

Provided for convenience of protocol implementers. Internal use only.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

ARP

class os_ken.lib.packet.arp.arp(hwtype=1, proto=2048, hlen=6, plen=4,
opcode=1, src_mac=’ff:ff:ff:ff:ff:ff’,
src_ip=’0.0.0.0’, dst_mac=’ff:ff:ff:ff:ff:ff’,
dst_ip=’0.0.0.0’)

ARP (RFC 826) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. IPv4 addresses are represented as a string like ’192.0.2.1’. MAC addresses
are represented as a string like ’08:60:6e:7f:74:e7’. __init__ takes the corresponding args in this
order.

8.1. Writing Your OS-Ken Application 25

os-ken Documentation, Release 1.4.1.dev5

Attribute Description Example
hwtype Hardware address.
proto Protocol address.
hlen byte length of each hardware address.
plen byte length of each protocol address.
opcode operation codes.
src_mac Hardware address of sender. ’08:60:6e:7f:74:e7’
src_ip Protocol address of sender. ’192.0.2.1’
dst_mac Hardware address of target. ’00:00:00:00:00:00’
dst_ip Protocol address of target. ’192.0.2.2’

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

os_ken.lib.packet.arp.arp_ip(opcode, src_mac, src_ip, dst_mac, dst_ip)
A convenient wrapper for IPv4 ARP for Ethernet.

This is an equivalent of the following code.

arp(ARP_HW_TYPE_ETHERNET, ether.ETH_TYPE_IP, 6, 4, opcode, src_mac,
src_ip, dst_mac, dst_ip)

BFD

BFD Control packet parser/serializer

[RFC 5880] BFD Control packet format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|Vers | Diag |Sta|P|F|C|A|D|M| Detect Mult | Length |
+-+

(continues on next page)

8.1. Writing Your OS-Ken Application 26

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

| My Discriminator |
+-+
| Your Discriminator |
+-+
| Desired Min TX Interval |
+-+
| Required Min RX Interval |
+-+
| Required Min Echo RX Interval |
+-+

An optional Authentication Section MAY be present in the following format of types:

1. Format of Simple Password Authentication Section:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Auth Type | Auth Len | Auth Key ID | Password... |
+-+
| ... |
+-+

2. Format of Keyed MD5 and Meticulous Keyed MD5 Authentication Section:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Auth Type | Auth Len | Auth Key ID | Reserved |
+-+
| Sequence Number |
+-+
| Auth Key/Digest... |
+-+
| ... |
+-+

3. Format of Keyed SHA1 and Meticulous Keyed SHA1 Authentication Section:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Auth Type | Auth Len | Auth Key ID | Reserved |
+-+
| Sequence Number |
+-+
| Auth Key/Hash... |
+-+
| ... |
+-+

class os_ken.lib.packet.bfd.BFDAuth(auth_len=None)
Base class of BFD (RFC 5880) Authentication Section

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order.

8.1. Writing Your OS-Ken Application 27

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
auth_type The authentication type in use.
auth_len The length, in bytes, of the authentication section, including the auth_type

and auth_len fields.

classmethod parser_hdr(buf)
Parser for common part of authentication section.

serialize_hdr()
Serialization function for common part of authentication section.

class os_ken.lib.packet.bfd.KeyedMD5(auth_key_id, seq, auth_key=None, di-
gest=None, auth_len=None)

BFD (RFC 5880) Keyed MD5 Authentication Section class

An instance has the following attributes. Most of them are same to the on-wire counterparts but
in host byte order.

Attribute Description
auth_type (Fixed) The authentication type in use.
auth_key_id The authentication Key ID in use.
seq The sequence number for this packet. This value is incremented occasionally.
auth_key The shared MD5 key for this packet.
digest (Optional) The 16-byte MD5 digest for the packet.
auth_len (Fixed) The length of the authentication section is 24 bytes.

authenticate(prev, auth_keys=None)
Authenticate the MD5 digest for this packet.

This method can be invoked only when self.digest is defined.

Returns a boolean indicates whether the digest can be authenticated by the correspondent
Auth Key or not.

prev is a bfd instance for the BFD Control header which this authentication section be-
longs to. It’s necessary to be assigned because an MD5 digest must be calculated over the
entire BFD Control packet.

auth_keys is a dictionary of authentication key chain which key is an integer of Auth Key
ID and value is a string of Auth Key.

serialize(payload, prev)
Encode a Keyed MD5 Authentication Section.

This method is used only when encoding an BFD Control packet.

payload is the rest of the packet which will immediately follow this section.

prev is a bfd instance for the BFD Control header which this authentication section be-
longs to. It’s necessary to be assigned because an MD5 digest must be calculated over the
entire BFD Control packet.

class os_ken.lib.packet.bfd.KeyedSHA1(auth_key_id, seq, auth_key=None,
auth_hash=None, auth_len=None)

BFD (RFC 5880) Keyed SHA1 Authentication Section class

8.1. Writing Your OS-Ken Application 28

os-ken Documentation, Release 1.4.1.dev5

An instance has the following attributes. Most of them are same to the on-wire counterparts but
in host byte order.

Attribute Description
auth_type (Fixed) The authentication type in use.
auth_key_id The authentication Key ID in use.
seq The sequence number for this packet. This value is incremented occasionally.
auth_key The shared SHA1 key for this packet.
auth_hash (Optional) The 20-byte SHA1 hash for the packet.
auth_len (Fixed) The length of the authentication section is 28 bytes.

authenticate(prev, auth_keys=None)
Authenticate the SHA1 hash for this packet.

This method can be invoked only when self.auth_hash is defined.

Returns a boolean indicates whether the hash can be authenticated by the correspondent
Auth Key or not.

prev is a bfd instance for the BFD Control header which this authentication section be-
longs to. It’s necessary to be assigned because an SHA1 hash must be calculated over the
entire BFD Control packet.

auth_keys is a dictionary of authentication key chain which key is an integer of Auth Key
ID and value is a string of Auth Key.

serialize(payload, prev)
Encode a Keyed SHA1 Authentication Section.

This method is used only when encoding an BFD Control packet.

payload is the rest of the packet which will immediately follow this section.

prev is a bfd instance for the BFD Control header which this authentication section be-
longs to. It’s necessary to be assigned because an SHA1 hash must be calculated over the
entire BFD Control packet.

class os_ken.lib.packet.bfd.MeticulousKeyedMD5(auth_key_id, seq,
auth_key=None,
digest=None,
auth_len=None)

BFD (RFC 5880) Meticulous Keyed MD5 Authentication Section class

All methods of this class are inherited from KeyedMD5.

An instance has the following attributes. Most of them are same to the on-wire counterparts but
in host byte order.

Attribute Description
auth_type (Fixed) The authentication type in use.
auth_key_id The authentication Key ID in use.
seq The sequence number for this packet. This value is incremented for each

successive packet transmitted for a session.
auth_key The shared MD5 key for this packet.
digest (Optional) The 16-byte MD5 digest for the packet.
auth_len (Fixed) The length of the authentication section is 24 bytes.

8.1. Writing Your OS-Ken Application 29

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bfd.MeticulousKeyedSHA1(auth_key_id, seq,
auth_key=None,
auth_hash=None,
auth_len=None)

BFD (RFC 5880) Meticulous Keyed SHA1 Authentication Section class

All methods of this class are inherited from KeyedSHA1.

An instance has the following attributes. Most of them are same to the on-wire counterparts but
in host byte order.

Attribute Description
auth_type (Fixed) The authentication type in use.
auth_key_id The authentication Key ID in use.
seq The sequence number for this packet. This value is incremented for each

successive packet transmitted for a session.
auth_key The shared SHA1 key for this packet.
auth_hash (Optional) The 20-byte SHA1 hash for the packet.
auth_len (Fixed) The length of the authentication section is 28 bytes.

class os_ken.lib.packet.bfd.SimplePassword(auth_key_id, password,
auth_len=None)

BFD (RFC 5880) Simple Password Authentication Section class

An instance has the following attributes. Most of them are same to the on-wire counterparts but
in host byte order.

Attribute Description
auth_type (Fixed) The authentication type in use.
auth_key_id The authentication Key ID in use.
password The simple password in use on this session. The password is a binary string,

and MUST be from 1 to 16 bytes in length.
auth_len The length, in bytes, of the authentication section, including the auth_type

and auth_len fields.

authenticate(prev=None, auth_keys=None)
Authenticate the password for this packet.

This method can be invoked only when self.password is defined.

Returns a boolean indicates whether the password can be authenticated or not.

prev is a bfd instance for the BFD Control header. It’s not necessary for authenticating
the Simple Password.

auth_keys is a dictionary of authentication key chain which key is an integer of Auth Key
ID and value is a string of Password.

serialize(payload, prev)
Encode a Simple Password Authentication Section.

payload is the rest of the packet which will immediately follow this section.

prev is a bfd instance for the BFD Control header. It’s not necessary for encoding only
the Simple Password section.

8.1. Writing Your OS-Ken Application 30

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bfd.bfd(ver=1, diag=0, state=0, flags=0, de-
tect_mult=0, my_discr=0, your_discr=0,
desired_min_tx_interval=0, re-
quired_min_rx_interval=0, re-
quired_min_echo_rx_interval=0,
auth_cls=None, length=None)

BFD (RFC 5880) Control packet encoder/decoder class.

The serialized packet would looks like the ones described in the following sections.

• RFC 5880 Generic BFD Control Packet Format

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order.

__init__ takes the corresponding args in this order.

Attribute Description
ver The version number of the protocol. This class implements

protocol version 1.
diag A diagnostic code specifying the local system’s reason for

the last change in session state.
state The current BFD session state as seen by the transmitting

system.
flags Bitmap of the following flags: BFD_FLAG_POLL,

BFD_FLAG_FINAL,
BFD_FLAG_CTRL_PLANE_INDEP,
BFD_FLAG_AUTH_PRESENT, BFD_FLAG_DEMAND,
BFD_FLAG_MULTIPOINT

detect_mult Detection time multiplier.
my_discr My Discriminator.
your_discr Your Discriminator.
desired_min_tx_interval Desired Min TX Interval. (in microseconds)
required_min_rx_interval Required Min RX Interval. (in microseconds)
required_min_echo_rx_interval Required Min Echo RX Interval. (in microseconds)
auth_cls (Optional) Authentication Section instance. It’s defined

only when the Authentication Present (A) bit is set in flags.
Assign an instance of the following classes:
SimplePassword, KeyedMD5,
MeticulousKeyedMD5, KeyedSHA1, and
MeticulousKeyedSHA1.

length (Optional) Length of the BFD Control packet, in bytes.

authenticate(*args, **kwargs)
Authenticate this packet.

Returns a boolean indicates whether the packet can be authenticated or not.

Returns False if the Authentication Present (A) is not set in the flag of this packet.

Returns False if the Authentication Section for this packet is not present.

For the description of the arguemnts of this method, refer to the authentication method of
the Authentication Section classes.

8.1. Writing Your OS-Ken Application 31

os-ken Documentation, Release 1.4.1.dev5

pack()
Encode a BFD Control packet without authentication section.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

BGP

RFC 4271 BGP-4

exception os_ken.lib.packet.bgp.AdminReset(data=”)

exception os_ken.lib.packet.bgp.AdminShutdown(data=”)
Error to indicate Administrative shutdown.

RFC says: If a BGP speaker decides to administratively shut down its peering with a neighbor,
then the speaker SHOULD send a NOTIFICATION message with the Error Code Cease and the
Error Subcode ’Administrative Shutdown’.

exception os_ken.lib.packet.bgp.AttrFlagError(data=”)
Error to indicate recognized path attributes have incorrect flags.

RFC says: If any recognized attribute has Attribute Flags that conflict with the Attribute Type
Code, then the Error Subcode MUST be set to Attribute Flags Error. The Data field MUST
contain the erroneous attribute (type, length, and value).

exception os_ken.lib.packet.bgp.AttrLenError(data=”)

exception os_ken.lib.packet.bgp.AuthFailure(data=”)

class os_ken.lib.packet.bgp.BGPEvpnEsImportRTExtendedCommunity(**kwargs)
ES-Import Route Target Extended Community

class os_ken.lib.packet.bgp.BGPEvpnEsiLabelExtendedCommunity(label=None,
mpls_label=None,
vni=None,
**kwargs)

ESI Label Extended Community

8.1. Writing Your OS-Ken Application 32

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bgp.BGPEvpnMacMobilityExtendedCommunity(**kwargs)
MAC Mobility Extended Community

class os_ken.lib.packet.bgp.BGPFlowSpecRedirectCommunity(**kwargs)
Flow Specification Traffic Filtering Actions for Redirect.

Attribute Description
as_number Autonomous System number.
local_administrator Local Administrator.

class os_ken.lib.packet.bgp.BGPFlowSpecTPIDActionCommunity(**kwargs)
Flow Specification TPID Actions.

At-
tribute

Description

ac-
tions

Bit representation of actions. Supported actions are TI(inner TPID action)
and TO(outer TPID action).

tpid_1 TPID used by TI.
tpid_2 TPID used by TO.

class os_ken.lib.packet.bgp.BGPFlowSpecTrafficActionCommunity(**kwargs)
Flow Specification Traffic Filtering Actions for Traffic Action.

Attribute Description
action Apply action. The supported action are SAMPLE and TERMINAL.

class os_ken.lib.packet.bgp.BGPFlowSpecTrafficMarkingCommunity(**kwargs)
Flow Specification Traffic Filtering Actions for Traffic Marking.

Attribute Description
dscp Differentiated Services Code Point.

class os_ken.lib.packet.bgp.BGPFlowSpecTrafficRateCommunity(**kwargs)
Flow Specification Traffic Filtering Actions for Traffic Rate.

Attribute Description
as_number Autonomous System number.
rate_info rate information.

class os_ken.lib.packet.bgp.BGPFlowSpecVlanActionCommunity(**kwargs)
Flow Specification Vlan Actions.

8.1. Writing Your OS-Ken Application 33

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description

ac-
tions_1

Bit representation of actions. Supported actions are POP, PUSH, SWAP,
REWRITE_INNER, REWRITE_OUTER.

ac-
tions_2

Same as actions_1.

vlan_1 VLAN ID used by actions_1.
cos_1 Class of Service used by actions_1.
vlan_2 VLAN ID used by actions_2.
cos_2 Class of Service used by actions_2.

class os_ken.lib.packet.bgp.BGPKeepAlive(type_=4, len_=None,
marker=None)

BGP-4 KEEPALIVE Message encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
marker Marker field. Ignored when encoding.
len Length field. Ignored when encoding.
type Type field.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bgp.BGPMessage(marker=None, len_=None,
type_=None)

Base class for BGP-4 messages.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
marker Marker field. Ignored when encoding.
len Length field. Ignored when encoding.
type Type field. one of BGP_MSG_* constants.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

8.1. Writing Your OS-Ken Application 34

os-ken Documentation, Release 1.4.1.dev5

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload=None, prev=None)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.bgp.BGPNotification(error_code, error_subcode,
data=b”, type_=3,
len_=None, marker=None)

BGP-4 NOTIFICATION Message encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
marker Marker field. Ignored when encoding.
len Length field. Ignored when encoding.
type Type field.
error_code Error code field.
error_subcode Error subcode field.
data Data field.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bgp.BGPOpen(my_as, bgp_identifier, type_=1,
opt_param_len=0, opt_param=None,
version=4, hold_time=0, len_=None,
marker=None)

BGP-4 OPEN Message encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 35

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
marker Marker field. Ignored when encoding.
len Length field. Ignored when encoding.
type Type field.
version Version field.
my_as My Autonomous System field. 2 octet unsigned integer.
hold_time Hold Time field. 2 octet unsigned integer.
bgp_identifier BGP Identifier field. An IPv4 address. For example, ’192.0.2.1’
opt_param_len Optional Parameters Length field. Ignored when encoding.
opt_param Optional Parameters field. A list of BGPOptParam instances. The default is

[].

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bgp.BGPPathAttributePmsiTunnel(pmsi_flags,
tunnel_type,
mpls_label=None,
label=None,
vni=None,
tun-
nel_id=None,
flags=0,
type_=None,
length=None)

P-Multicast Service Interface Tunnel (PMSI Tunnel) attribute

classmethod from_jsondict(dict_, decode_string=<function b64decode>, **ad-
ditional_args)

Create an instance from a JSON style dict.

Instantiate this class with parameters specified by the dict.

This method takes the following arguments.

Argument Descrpition
dict_ A dictionary which describes the parameters. For example,

{"Param1": 100, "Param2": 200}
decode_string (Optional) specify how to decode strings. The default is base64. This

argument is used only for attributes which don’t have explicit type
annotations in _TYPE class attribute.

additional_args (Optional) Additional kwargs for constructor.

8.1. Writing Your OS-Ken Application 36

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bgp.BGPRouteRefresh(afi, safi, demarcation=0,
type_=5, len_=None,
marker=None)

BGP-4 ROUTE REFRESH Message (RFC 2918) encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
marker Marker field. Ignored when encoding.
len Length field. Ignored when encoding.
type Type field.
afi Address Family Identifier
safi Subsequent Address Family Identifier

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bgp.BGPUpdate(type_=2, withdrawn_routes_len=None,
withdrawn_routes=None, to-
tal_path_attribute_len=None,
path_attributes=None, nlri=None,
len_=None, marker=None)

BGP-4 UPDATE Message encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
marker Marker field. Ignored when encoding.
len Length field. Ignored when encoding.
type Type field.
withdrawn_routes_len Withdrawn Routes Length field. Ignored when encoding.
withdrawn_routes Withdrawn Routes field. A list of BGPWithdrawnRoute instances.

The default is [].
total_path_attribute_len Total Path Attribute Length field. Ignored when encoding.
path_attributes Path Attributes field. A list of BGPPathAttribute instances. The

default is [].
nlri Network Layer Reachability Information field. A list of BGPNLRI

instances. The default is [].

classmethod parser(buf)
Decode a protocol header.

8.1. Writing Your OS-Ken Application 37

os-ken Documentation, Release 1.4.1.dev5

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

exception os_ken.lib.packet.bgp.BadBgpId(data=”)
Error to indicate incorrect BGP Identifier.

RFC says: If the BGP Identifier field of the OPEN message is syntactically incorrect, then the
Error Subcode MUST be set to Bad BGP Identifier. Syntactic correctness means that the BGP
Identifier field represents a valid unicast IP host address.

exception os_ken.lib.packet.bgp.BadLen(msg_type_code, message_length)

exception os_ken.lib.packet.bgp.BadMsg(msg_type)
Error to indicate un-recognized message type.

RFC says: If the Type field of the message header is not recognized, then the Error Subcode
MUST be set to Bad Message Type. The Data field MUST contain the erroneous Type field.

exception os_ken.lib.packet.bgp.BadNotification(data=”)

exception os_ken.lib.packet.bgp.BadPeerAs(data=”)
Error to indicate open message has incorrect AS number.

RFC says: If the Autonomous System field of the OPEN message is unacceptable, then the Error
Subcode MUST be set to Bad Peer AS. The determination of acceptable Autonomous System
numbers is configure peer AS.

exception os_ken.lib.packet.bgp.BgpExc(data=”)
Base bgp exception.

CODE = 0
BGP error code.

SEND_ERROR = True
Flag if set indicates Notification message should be sent to peer.

SUB_CODE = 0
BGP error sub-code.

exception os_ken.lib.packet.bgp.CollisionResolution(data=”)
Error to indicate Connection Collision Resolution.

RFC says: If a BGP speaker decides to send a NOTIFICATION message with the Error Code
Cease as a result of the collision resolution procedure (as described in [BGP-4]), then the subcode
SHOULD be set to "Connection Collision Resolution".

exception os_ken.lib.packet.bgp.ConnRejected(data=”)
Error to indicate Connection Rejected.

RFC says: If a BGP speaker decides to disallow a BGP connection (e.g., the peer is not configured
locally) after the speaker accepts a transport protocol connection, then the BGP speaker SHOULD
send a NOTIFICATION message with the Error Code Cease and the Error Subcode "Connection
Rejected".

8.1. Writing Your OS-Ken Application 38

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bgp.EvpnASBasedEsi(as_number, local_disc,
type_=None)

AS based ESI value

This type indicates an Autonomous System(AS)-based ESI Value that can be auto-generated or
configured by the operator.

class os_ken.lib.packet.bgp.EvpnArbitraryEsi(value, type_=None)
Arbitrary 9-octet ESI value

This type indicates an arbitrary 9-octet ESI value, which is managed and configured by the oper-
ator.

class os_ken.lib.packet.bgp.EvpnEsi(type_=None)
Ethernet Segment Identifier

The supported ESI Types:

• EvpnEsi.ARBITRARY indicates EvpnArbitraryEsi.

• EvpnEsi.LACP indicates EvpnLACPEsi.

• EvpnEsi.L2_BRIDGE indicates EvpnL2BridgeEsi.

• EvpnEsi.MAC_BASED indicates EvpnMacBasedEsi.

• EvpnEsi.ROUTER_ID indicates EvpnRouterIDEsi.

• EvpnEsi.AS_BASED indicates EvpnASBasedEsi.

class os_ken.lib.packet.bgp.EvpnEthernetAutoDiscoveryNLRI(route_dist,
esi, ether-
net_tag_id,
mpls_label=None,
vni=None,
la-
bel=None,
type_=None,
length=None)

Ethernet A-D route type specific EVPN NLRI

class os_ken.lib.packet.bgp.EvpnEthernetSegmentNLRI(route_dist,
esi, ip_addr,
ip_addr_len=None,
type_=None,
length=None)

Ethernet Segment route type specific EVPN NLRI

class os_ken.lib.packet.bgp.EvpnInclusiveMulticastEthernetTagNLRI(route_dist,
eth-
er-
net_tag_id,
ip_addr,
ip_addr_len=None,
type_=None,
length=None)

Inclusive Multicast Ethernet Tag route type specific EVPN NLRI

8.1. Writing Your OS-Ken Application 39

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bgp.EvpnIpPrefixNLRI(route_dist, ethernet_tag_id,
ip_prefix, esi=None,
gw_ip_addr=None,
mpls_label=None,
vni=None, label=None,
type_=None, length=None)

IP Prefix advertisement route NLRI

class os_ken.lib.packet.bgp.EvpnL2BridgeEsi(mac_addr, priority,
type_=None)

ESI value for Layer 2 Bridge

This type is used in the case of indirectly connected hosts via a bridged LAN between the CEs and
the PEs. The ESI Value is auto-generated and determined based on the Layer 2 bridge protocol.

class os_ken.lib.packet.bgp.EvpnLACPEsi(mac_addr, port_key, type_=None)
ESI value for LACP

When IEEE 802.1AX LACP is used between the PEs and CEs, this ESI type indicates an auto-
generated ESI value determined from LACP.

class os_ken.lib.packet.bgp.EvpnMacBasedEsi(mac_addr, local_disc,
type_=None)

MAC-based ESI Value

This type indicates a MAC-based ESI Value that can be auto-generated or configured by the oper-
ator.

class os_ken.lib.packet.bgp.EvpnMacIPAdvertisementNLRI(route_dist,
ether-
net_tag_id,
mac_addr,
ip_addr,
esi=None,
mpls_labels=None,
vni=None, la-
bels=None,
mac_addr_len=None,
ip_addr_len=None,
type_=None,
length=None)

MAC/IP Advertisement route type specific EVPN NLRI

class os_ken.lib.packet.bgp.EvpnNLRI(type_=None, length=None)
BGP Network Layer Reachability Information (NLRI) for EVPN

class os_ken.lib.packet.bgp.EvpnRouterIDEsi(router_id, local_disc,
type_=None)

Router-ID ESI Value

This type indicates a router-ID ESI Value that can be auto-generated or configured by the operator.

class os_ken.lib.packet.bgp.EvpnUnknownEsi(value, type_=None)
ESI value for unknown type

class os_ken.lib.packet.bgp.EvpnUnknownNLRI(value, type_, length=None)
Unknown route type specific EVPN NLRI

8.1. Writing Your OS-Ken Application 40

os-ken Documentation, Release 1.4.1.dev5

exception os_ken.lib.packet.bgp.FiniteStateMachineError(data=”)
Error to indicate any Finite State Machine Error.

RFC says: Any error detected by the BGP Finite State Machine (e.g., receipt of an unexpected
event) is indicated by sending the NOTIFICATION message with the Error Code Finite State
Machine Error.

class os_ken.lib.packet.bgp.FlowSpecComponentUnknown(buf,
type_=None)

Unknown component type for Flow Specification NLRI component

class os_ken.lib.packet.bgp.FlowSpecDSCP(operator, value, type_=None)
Diffserv Code Point for Flow Specification NLRI component

Set the 6-bit DSCP field at value. [RFC2474]

class os_ken.lib.packet.bgp.FlowSpecDestPort(operator, value,
type_=None)

Destination port number for Flow Specification NLRI component

Set the destination port of a TCP or UDP packet at value.

class os_ken.lib.packet.bgp.FlowSpecDestPrefix(length, addr,
type_=None)

Destination Prefix for Flow Specification NLRI component

class os_ken.lib.packet.bgp.FlowSpecDestinationMac(length, addr,
type_=None)

Destination Mac Address.

Set the Mac Address at value.

class os_ken.lib.packet.bgp.FlowSpecEtherType(operator, value,
type_=None)

Ethernet Type field in an Ethernet frame.

Set the 2 byte value of an Ethernet Type field at value.

class os_ken.lib.packet.bgp.FlowSpecFragment(operator, value,
type_=None)

Fragment for Flow Specification NLRI component

Set the bitmask for operand format at value. The following values are supported.

Attribute Description
LF Last fragment
FF First fragment
ISF Is a fragment
DF Don’t fragment

class os_ken.lib.packet.bgp.FlowSpecIPProtocol(operator, value,
type_=None)

IP Protocol for Flow Specification NLRI component

Set the IP protocol number at value.

class os_ken.lib.packet.bgp.FlowSpecIPv4NLRI(length=0, rules=None)
Flow Specification NLRI class for IPv4 [RFC 5575]

8.1. Writing Your OS-Ken Application 41

os-ken Documentation, Release 1.4.1.dev5

classmethod from_user(**kwargs)
Utility method for creating a NLRI instance.

This function returns a NLRI instance from human readable format value.

Parameters kwargs -- The following arguments are available.

Ar-
gu-
ment

Value Op-
era-
tor

Description

dst_prefixIPv4
Prefix

Noth-
ing

Destination Prefix.

src_prefixIPv4
Prefix

Noth-
ing

Source Prefix.

ip_protoInte-
ger

Nu-
meric

IP Protocol.

port Inte-
ger

Nu-
meric

Port number.

dst_port Inte-
ger

Nu-
meric

Destination port number.

src_port Inte-
ger

Nu-
meric

Source port number.

icmp_typeInte-
ger

Nu-
meric

ICMP type.

icmp_codeInte-
ger

Nu-
meric

ICMP code.

tcp_flagsFixed
string

Bit-
mask

TCP flags. Supported values are CWR, ECN, URGENT, ACK,
PUSH, RST, SYN and FIN.

packet_lenInte-
ger

Nu-
meric

Packet length.

dscp Inte-
ger

Nu-
meric

Differentiated Services Code Point.

frag-
ment

Fixed
string

Bit-
mask

Fragment. Supported values are DF (Don’t fragment), ISF (Is
a fragment), FF (First fragment) and LF (Last fragment)

Example:

>>> msg = bgp.FlowSpecIPv4NLRI.from_user(
... dst_prefix='10.0.0.0/24',
... src_prefix='20.0.0.1/24',
... ip_proto=6,
... port='80 | 8000',
... dst_port='>9000 & <9050',
... src_port='>=8500 & <=9000',
... icmp_type=0,
... icmp_code=6,
... tcp_flags='SYN+ACK & !=URGENT',
... packet_len=1000,
... dscp='22 | 24',
... fragment='LF | ==FF')
>>>

You can specify conditions with the following keywords.

8.1. Writing Your OS-Ken Application 42

os-ken Documentation, Release 1.4.1.dev5

The following keywords can be used when the operator type is Numeric.

Keyword Description
< Less than comparison between data and value.
<= Less than or equal to comparison between data and value.
> Greater than comparison between data and value.
>= Greater than or equal to comparison between data and value.
== Equality between data and value. This operator can be omitted.

The following keywords can be used when the operator type is Bitmask.

Keyword Description
!= Not equal operation.
== Exact match operation if specified. Otherwise partial match operation.
+ Used for the summation of bitmask values. (e.g., SYN+ACK)

You can combine the multiple conditions with the following operators.

Keyword Description
| Logical OR operation
& Logical AND operation

Returns A instance of FlowSpecVPNv4NLRI.

class os_ken.lib.packet.bgp.FlowSpecIPv6DestPrefix(length, addr,
offset=0,
type_=None)

IPv6 destination Prefix for Flow Specification NLRI component

class os_ken.lib.packet.bgp.FlowSpecIPv6FlowLabel(operator, value,
type_=None)

class os_ken.lib.packet.bgp.FlowSpecIPv6Fragment(operator, value,
type_=None)

Fragment for Flow Specification for IPv6 NLRI component

Attribute Description
LF Last fragment
FF First fragment
ISF Is a fragment

class os_ken.lib.packet.bgp.FlowSpecIPv6NLRI(length=0, rules=None)
Flow Specification NLRI class for IPv6 [RFC draft-ietf-idr-flow-spec-v6-08]

classmethod from_user(**kwargs)
Utility method for creating a NLRI instance.

This function returns a NLRI instance from human readable format value.

Parameters kwargs -- The following arguments are available.

8.1. Writing Your OS-Ken Application 43

os-ken Documentation, Release 1.4.1.dev5

Argu-
ment

Value Op-
era-
tor

Description

dst_prefix IPv6
Prefix

Noth-
ing

Destination Prefix.

src_prefix IPv6
Prefix

Noth-
ing

Source Prefix.

next_headerInteger Nu-
meric

Next Header.

port Integer Nu-
meric

Port number.

dst_port Integer Nu-
meric

Destination port number.

src_port Integer Nu-
meric

Source port number.

icmp_typeInteger Nu-
meric

ICMP type.

icmp_codeInteger Nu-
meric

ICMP code.

tcp_flags Fixed
string

Bit-
mask

TCP flags. Supported values are CWR, ECN, URGENT, ACK,
PUSH, RST, SYN and FIN.

packet_lenInteger Nu-
meric

Packet length.

dscp Integer Nu-
meric

Differentiated Services Code Point.

frag-
ment

Fixed
string

Bit-
mask

Fragment. Supported values are ISF (Is a fragment), FF
(First fragment) and LF (Last fragment)

flow_labelIntefer Nu-
meric

Flow Label.

Note: For dst_prefix and src_prefix, you can give "offset" value like this:
2001::2/128/32. At this case, offset is 32. offset can be omitted, then offset
is treated as 0.

class os_ken.lib.packet.bgp.FlowSpecIPv6SrcPrefix(length, addr, offset=0,
type_=None)

IPv6 source Prefix for Flow Specification NLRI component

class os_ken.lib.packet.bgp.FlowSpecIcmpCode(operator, value,
type_=None)

ICMP code Flow Specification NLRI component

Set the code field of an ICMP packet at value.

class os_ken.lib.packet.bgp.FlowSpecIcmpType(operator, value,
type_=None)

ICMP type for Flow Specification NLRI component

Set the type field of an ICMP packet at value.

class os_ken.lib.packet.bgp.FlowSpecInnerVLANCoS(operator, value,
type_=None)

8.1. Writing Your OS-Ken Application 44

os-ken Documentation, Release 1.4.1.dev5

VLAN CoS Fields in an Inner Ethernet frame.

Set the 3 bit CoS field at value..

class os_ken.lib.packet.bgp.FlowSpecInnerVLANID(operator, value,
type_=None)

Inner VLAN ID.

Set VLAN ID at value.

class os_ken.lib.packet.bgp.FlowSpecL2VPNNLRI(length=0, route_dist=None,
rules=None)

Flow Specification NLRI class for L2VPN [draft-ietf-idr-flowspec-l2vpn-05]

classmethod from_user(route_dist, **kwargs)
Utility method for creating a L2VPN NLRI instance.

This function returns a L2VPN NLRI instance from human readable format value.

Parameters kwargs -- The following arguments are available.

Argument Value Opera-
tor

Description

ether_type Integer Numeric Ethernet Type.
src_mac Mac Address Nothing Source Mac address.
dst_mac Mac Address Nothing Destination Mac address.
llc_ssap Integer Numeric Source Service Access Point in LLC.
llc_dsap Integer Numeric Destination Service Access Point in LLC.
llc_control Integer Numeric Control field in LLC.
snap Integer Numeric Sub-Network Access Protocol field.
vlan_id Integer Numeric VLAN ID.
vlan_cos Integer Numeric VLAN COS field.
inner_vlan_id Integer Numeric Inner VLAN ID.
inner_vlan_cos Integer Numeric Inner VLAN COS field.

class os_ken.lib.packet.bgp.FlowSpecLLCControl(operator, value,
type_=None)

Control field in LLC header in an Ethernet frame.

Set the Contorol field at value.

class os_ken.lib.packet.bgp.FlowSpecLLCDSAP(operator, value, type_=None)
Destination SAP field in LLC header in an Ethernet frame.

Set the 2 byte value of an Destination SAP at value.

class os_ken.lib.packet.bgp.FlowSpecLLCSSAP(operator, value, type_=None)
Source SAP field in LLC header in an Ethernet frame.

Set the 2 byte value of an Source SAP at value.

class os_ken.lib.packet.bgp.FlowSpecNextHeader(operator, value,
type_=None)

Next Header value in IPv6 packets

Set the IP protocol number at value

8.1. Writing Your OS-Ken Application 45

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bgp.FlowSpecPacketLen(operator, value,
type_=None)

Packet length for Flow Specification NLRI component

Set the total IP packet length at value.

class os_ken.lib.packet.bgp.FlowSpecPort(operator, value, type_=None)
Port number for Flow Specification NLRI component

Set the source or destination TCP/UDP ports at value.

class os_ken.lib.packet.bgp.FlowSpecSNAP(operator, value, type_=None)
Sub-Network Access Protocol field in an Ethernet frame.

Set the 5 byte SNAP field at value.

class os_ken.lib.packet.bgp.FlowSpecSourceMac(length, addr, type_=None)
Source Mac Address.

Set the Mac Address at value.

class os_ken.lib.packet.bgp.FlowSpecSrcPort(operator, value, type_=None)
Source port number for Flow Specification NLRI component

Set the source port of a TCP or UDP packet at value.

class os_ken.lib.packet.bgp.FlowSpecSrcPrefix(length, addr, type_=None)
Source Prefix for Flow Specification NLRI component

class os_ken.lib.packet.bgp.FlowSpecTCPFlags(operator, value,
type_=None)

TCP flags for Flow Specification NLRI component

Supported TCP flags are CWR, ECN, URGENT, ACK, PUSH, RST, SYN and FIN.

class os_ken.lib.packet.bgp.FlowSpecVLANCoS(operator, value, type_=None)
VLAN CoS Fields in an Ethernet frame.

Set the 3 bit CoS field at value.

class os_ken.lib.packet.bgp.FlowSpecVLANID(operator, value, type_=None)
VLAN ID.

Set VLAN ID at value.

class os_ken.lib.packet.bgp.FlowSpecVPNv4NLRI(length=0, route_dist=None,
rules=None)

Flow Specification NLRI class for VPNv4 [RFC 5575]

classmethod from_user(route_dist, **kwargs)
Utility method for creating a NLRI instance.

This function returns a NLRI instance from human readable format value.

Parameters

• route_dist -- Route Distinguisher.

• kwargs -- See os_ken.lib.packet.bgp.FlowSpecIPv4NLRI

Example:

8.1. Writing Your OS-Ken Application 46

os-ken Documentation, Release 1.4.1.dev5

>>> msg = bgp.FlowSpecIPv4NLRI.from_user(
... route_dist='65000:1000',
... dst_prefix='10.0.0.0/24',
... src_prefix='20.0.0.1/24',
... ip_proto=6,
... port='80 | 8000',
... dst_port='>9000 & <9050',
... src_port='>=8500 & <=9000',
... icmp_type=0,
... icmp_code=6,
... tcp_flags='SYN+ACK & !=URGENT',
... packet_len=1000,
... dscp='22 | 24',
... fragment='LF | ==FF')
>>>

class os_ken.lib.packet.bgp.FlowSpecVPNv6NLRI(length=0, route_dist=None,
rules=None)

Flow Specification NLRI class for VPNv6 [draft-ietf-idr-flow-spec-v6-08]

classmethod from_user(route_dist, **kwargs)
Utility method for creating a NLRI instance.

This function returns a NLRI instance from human readable format value.

Parameters

• route_dist -- Route Distinguisher.

• kwargs -- See os_ken.lib.packet.bgp.FlowSpecIPv6NLRI

exception os_ken.lib.packet.bgp.HoldTimerExpired(data=”)
Error to indicate Hold Timer expired.

RFC says: If a system does not receive successive KEEPALIVE, UPDATE, and/or NOTIFICA-
TION messages within the period specified in the Hold Time field of the OPEN message, then the
NOTIFICATION message with the Hold Timer Expired Error Code is sent and the BGP connec-
tion is closed.

exception os_ken.lib.packet.bgp.InvalidNetworkField(data=”)

exception os_ken.lib.packet.bgp.InvalidNextHop(data=”)

exception os_ken.lib.packet.bgp.InvalidOriginError(data=”)
Error indicates undefined Origin attribute value.

RFC says: If the ORIGIN attribute has an undefined value, then the Error Sub- code MUST be set
to Invalid Origin Attribute. The Data field MUST contain the unrecognized attribute (type, length,
and value).

exception os_ken.lib.packet.bgp.MalformedAsPath(data=”)
Error to indicate if AP_PATH attribute is syntactically incorrect.

RFC says: The AS_PATH attribute is checked for syntactic correctness. If the path is syntactically
incorrect, then the Error Subcode MUST be set to Malformed AS_PATH.

exception os_ken.lib.packet.bgp.MalformedAttrList(data=”)
Error to indicate UPDATE message is malformed.

8.1. Writing Your OS-Ken Application 47

os-ken Documentation, Release 1.4.1.dev5

RFC says: Error checking of an UPDATE message begins by examining the path attributes. If the
Withdrawn Routes Length or Total Attribute Length is too large (i.e., if Withdrawn Routes Length
+ Total Attribute Length + 23 exceeds the message Length), then the Error Subcode MUST be set
to Malformed Attribute List.

exception os_ken.lib.packet.bgp.MalformedOptionalParam(data=”)
If recognized optional parameters are malformed.

RFC says: If one of the Optional Parameters in the OPEN message is recognized, but is mal-
formed, then the Error Subcode MUST be set to 0 (Unspecific).

exception os_ken.lib.packet.bgp.MaxPrefixReached(data=”)

exception os_ken.lib.packet.bgp.MissingWellKnown(pattr_type_code)
Error to indicate missing well-known attribute.

RFC says: If any of the well-known mandatory attributes are not present, then the Error Subcode
MUST be set to Missing Well-known Attribute. The Data field MUST contain the Attribute Type
Code of the missing, well-known attribute.

exception os_ken.lib.packet.bgp.NotSync(data=”)

exception os_ken.lib.packet.bgp.OptAttrError(data=”)
Error indicates Optional Attribute is malformed.

RFC says: If an optional attribute is recognized, then the value of this attribute MUST be checked.
If an error is detected, the attribute MUST be discarded, and the Error Subcode MUST be set to
Optional Attribute Error. The Data field MUST contain the attribute (type, length, and value).

exception os_ken.lib.packet.bgp.OtherConfChange(data=”)

exception os_ken.lib.packet.bgp.OutOfResource(data=”)

exception os_ken.lib.packet.bgp.PeerDeConfig(data=”)

class os_ken.lib.packet.bgp.PmsiTunnelIdUnknown(value)
Unknown route type specific _PmsiTunnelId

class os_ken.lib.packet.bgp.RouteTargetMembershipNLRI(origin_as,
route_target)

Route Target Membership NLRI.

Route Target membership NLRI is advertised in BGP UPDATE messages using the
MP_REACH_NLRI and MP_UNREACH_NLRI attributes.

exception os_ken.lib.packet.bgp.RoutingLoop(data=”)

class os_ken.lib.packet.bgp.StreamParser
Streaming parser for BGP-4 messages.

This is a subclass of os_ken.lib.packet.stream_parser.StreamParser. Its parse method returns a list
of BGPMessage subclass instances.

try_parse(data)
Try to extract a message from the given bytes.

This is an override point for subclasses.

This method tries to extract a message from bytes given by the argument.

Raises TooSmallException if the given data is not enough to extract a complete message but
there’s still a chance to extract a message if more data is come later.

8.1. Writing Your OS-Ken Application 48

os-ken Documentation, Release 1.4.1.dev5

exception os_ken.lib.packet.bgp.UnRegWellKnowAttr(data=”)

exception os_ken.lib.packet.bgp.UnacceptableHoldTime(data=”)
Error to indicate Unacceptable Hold Time in open message.

RFC says: If the Hold Time field of the OPEN message is unacceptable, then the Error Subcode
MUST be set to Unacceptable Hold Time.

exception os_ken.lib.packet.bgp.UnsupportedOptParam(data=”)
Error to indicate unsupported optional parameters.

RFC says: If one of the Optional Parameters in the OPEN message is not recognized, then the
Error Subcode MUST be set to Unsupported Optional Parameters.

exception os_ken.lib.packet.bgp.UnsupportedVersion(locally_support_version)
Error to indicate unsupport bgp version number.

RFC says: If the version number in the Version field of the received OPEN message is not sup-
ported, then the Error Subcode MUST be set to Unsupported Version Number. The Data field
is a 2-octet unsigned integer, which indicates the largest, locally-supported version number less
than the version the remote BGP peer bid (as indicated in the received OPEN message), or if the
smallest, locally-supported version number is greater than the version the remote BGP peer bid,
then the smallest, locally- supported version number.

BMP

BGP Monitoring Protocol draft-ietf-grow-bmp-07

class os_ken.lib.packet.bmp.BMPInitiation(info, type_=4, len_=None, ver-
sion=3)

BMP Initiation Message

Attribute Description
version Version. this packet lib defines BMP ver. 3
len Length field. Ignored when encoding.
type Type field. one of BMP_MSG_ constants.
info One or more piece of information encoded as a TLV

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bmp.BMPMessage(type_, len_=None, version=3)
Base class for BGP Monitoring Protocol messages.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 49

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
version Version. this packet lib defines BMP ver. 3
len Length field. Ignored when encoding.
type Type field. one of BMP_MSG_ constants.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize()
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.bmp.BMPPeerDownNotification(reason, data,
peer_type,
is_post_policy,
peer_distinguisher,
peer_address,
peer_as,
peer_bgp_id,
timestamp, ver-
sion=3, type_=2,
len_=None)

BMP Peer Down Notification Message

Attribute Description
version Version. this packet lib defines BMP ver. 3
len Length field. Ignored when encoding.
type Type field. one of BMP_MSG_ constants.
reason Reason indicates why the session was closed.
data vary by the reason.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

8.1. Writing Your OS-Ken Application 50

os-ken Documentation, Release 1.4.1.dev5

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bmp.BMPPeerMessage(peer_type, is_post_policy,
peer_distinguisher,
peer_address, peer_as,
peer_bgp_id, timestamp,
version=3, type_=None,
len_=None)

BMP Message with Per Peer Header

Following BMP Messages contain Per Peer Header after Common BMP Header.

• BMP_MSG_TYPE_ROUTE_MONITRING

• BMP_MSG_TYPE_STATISTICS_REPORT

• BMP_MSG_PEER_UP_NOTIFICATION

Attribute Description
version Version. this packet lib defines BMP ver. 3
len Length field. Ignored when encoding.
type Type field. one of BMP_MSG_ constants.
peer_type The type of the peer.
is_post_policy Indicate the message reflects the post-policy Adj-RIB-In
peer_distinguisher Use for L3VPN router which can have multiple instance.
peer_address The remote IP address associated with the TCP session.
peer_as The Autonomous System number of the peer.
peer_bgp_id The BGP Identifier of the peer
timestamp The time when the encapsulated routes were received.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

8.1. Writing Your OS-Ken Application 51

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bmp.BMPPeerUpNotification(local_address,
local_port, re-
mote_port,
sent_open_message,
re-
ceived_open_message,
peer_type,
is_post_policy,
peer_distinguisher,
peer_address,
peer_as,
peer_bgp_id,
timestamp, ver-
sion=3, type_=3,
len_=None)

BMP Peer Up Notification Message

Attribute Description
version Version. this packet lib defines BMP ver. 3
len Length field. Ignored when encoding.
type Type field. one of BMP_MSG_ constants.
peer_type The type of the peer.
peer_flags Provide more information about the peer.
peer_distinguisher Use for L3VPN router which can have multiple instance.
peer_address The remote IP address associated with the TCP session.
peer_as The Autonomous System number of the peer.
peer_bgp_id The BGP Identifier of the peer
timestamp The time when the encapsulated routes were received.
local_address The local IP address associated with the peering TCP session.
local_port The local port number associated with the peering TCP session.
remote_port The remote port number associated with the peering TCP session.
sent_open_message The full OPEN message transmitted by the monitored router to its

peer.
re-
ceived_open_message

The full OPEN message received by the monitored router from its
peer.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

8.1. Writing Your OS-Ken Application 52

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bmp.BMPRouteMonitoring(bgp_update, peer_type,
is_post_policy,
peer_distinguisher,
peer_address, peer_as,
peer_bgp_id, timestamp,
version=3, type_=0,
len_=None)

BMP Route Monitoring Message

Attribute Description
version Version. this packet lib defines BMP ver. 3
len Length field. Ignored when encoding.
type Type field. one of BMP_MSG_ constants.
peer_type The type of the peer.
peer_flags Provide more information about the peer.
peer_distinguisher Use for L3VPN router which can have multiple instance.
peer_address The remote IP address associated with the TCP session.
peer_as The Autonomous System number of the peer.
peer_bgp_id The BGP Identifier of the peer
timestamp The time when the encapsulated routes were received.
bgp_update BGP Update PDU

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bmp.BMPStatisticsReport(stats, peer_type,
is_post_policy,
peer_distinguisher,
peer_address, peer_as,
peer_bgp_id, timestamp,
version=3, type_=1,
len_=None)

BMP Statistics Report Message

8.1. Writing Your OS-Ken Application 53

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
version Version. this packet lib defines BMP ver. 3
len Length field. Ignored when encoding.
type Type field. one of BMP_MSG_ constants.
peer_type The type of the peer.
peer_flags Provide more information about the peer.
peer_distinguisher Use for L3VPN router which can have multiple instance.
peer_address The remote IP address associated with the TCP session.
peer_as The Autonomous System number of the peer.
peer_bgp_id The BGP Identifier of the peer
timestamp The time when the encapsulated routes were received.
stats Statistics (one or more stats encoded as a TLV)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bmp.BMPTermination(info, type_=5, len_=None, ver-
sion=3)

BMP Termination Message

Attribute Description
version Version. this packet lib defines BMP ver. 3
len Length field. Ignored when encoding.
type Type field. one of BMP_MSG_ constants.
info One or more piece of information encoded as a TLV

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

8.1. Writing Your OS-Ken Application 54

os-ken Documentation, Release 1.4.1.dev5

BPDU

Bridge Protocol Data Unit(BPDU, IEEE 802.1D) parser/serializer http://standards.ieee.org/getieee802/
download/802.1D-2004.pdf

Configuration BPDUs format

Structure Octet
Protocol Identifier = 0000 0000 0000 0000 1 - 2
Protocol Version Identifier = 0000 0000 3
BPDU Type = 0000 0000 4
Flags 5

Root Identifier
include - priority system ID exten-

sion MAC address

6 - 13

Root Path Cost 14 - 17

Bridge Identifier
include - priority system ID exten-

sion MAC address

18 - 25

Port Identifier
include - priority port number

26 - 27

Message Age 28 - 29
Max Age 30 - 31
Hello Time 32 - 33
Forward Delay 34 - 35

Topology Change NotificationBPDUs format

Structure Octet
Protocol Identifier = 0000 0000 0000 0000 1 - 2
Protocol Version Identifier = 0000 0000 3
BPDU Type = 1000 0000 4

Rapid Spanning Tree BPDUs(RST BPDUs) format

8.1. Writing Your OS-Ken Application 55

http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf

os-ken Documentation, Release 1.4.1.dev5

Structure Octet
Protocol Identifier = 0000 0000 0000 0000 1 - 2
Protocol Version Identifier = 0000 0010 3
BPDU Type = 0000 0010 4
Flags 5

Root Identifier
include - priority system ID exten-

sion MAC address

6 - 13

Root Path Cost 14 - 17

Bridge Identifier
include - priority system ID exten-

sion MAC address

18 - 25

Port Identifier
include - priority port number

26 - 27

Message Age 28 - 29
Max Age 30 - 31
Hello Time 32 - 33
Forward Delay 34 - 35
Version 1 Length = 0000 0000 36

class os_ken.lib.packet.bpdu.ConfigurationBPDUs(flags=0,
root_priority=32768,
root_system_id_extension=0,
root_mac_address=’00:00:00:00:00:00’,
root_path_cost=0,
bridge_priority=32768,
bridge_system_id_extension=0,
bridge_mac_address=’00:00:00:00:00:00’,
port_priority=128,
port_number=0,
message_age=0,
max_age=20,
hello_time=2, for-
ward_delay=15)

Configuration BPDUs(IEEE 802.1D) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 56

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags

Bit 1: Topology Change flag
Bits 2 through 7: unused and take the value 0
Bit 8: Topology Change Acknowledgment
flag

root_priority Root Identifier priority set 0-61440 in steps of
4096

root_system_id_extension Root Identifier system ID extension
root_mac_address Root Identifier MAC address
root_path_cost Root Path Cost
bridge_priority Bridge Identifier priority set 0-61440 in steps

of 4096
bridge_system_id_extension Bridge Identifier system ID extension
bridge_mac_address Bridge Identifier MAC address
port_priority Port Identifier priority set 0-240 in steps of 16
port_number Port Identifier number
message_age Message Age timer value
max_age Max Age timer value
hello_time Hello Time timer value
forward_delay Forward Delay timer value

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

8.1. Writing Your OS-Ken Application 57

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.bpdu.RstBPDUs(flags=0, root_priority=32768,
root_system_id_extension=0,
root_mac_address=’00:00:00:00:00:00’,
root_path_cost=0,
bridge_priority=32768,
bridge_system_id_extension=0,
bridge_mac_address=’00:00:00:00:00:00’,
port_priority=128, port_number=0,
message_age=0, max_age=20,
hello_time=2, forward_delay=15)

Rapid Spanning Tree BPDUs(RST BPDUs, IEEE 802.1D) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags

Bit 1: Topology Change flag
Bit 2: Proposal flag
Bits 3 and 4: Port Role
Bit 5: Learning flag
Bit 6: Forwarding flag
Bit 7: Agreement flag
Bit 8: Topology Change Acknowledgment
flag

root_priority Root Identifier priority set 0-61440 in steps of
4096

root_system_id_extension Root Identifier system ID extension
root_mac_address Root Identifier MAC address
root_path_cost Root Path Cost
bridge_priority Bridge Identifier priority set 0-61440 in steps

of 4096
bridge_system_id_extension Bridge Identifier system ID extension
bridge_mac_address Bridge Identifier MAC address
port_priority Port Identifier priority set 0-240 in steps of 16
port_number Port Identifier number
message_age Message Age timer value
max_age Max Age timer value
hello_time Hello Time timer value
forward_delay Forward Delay timer value

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when

8.1. Writing Your OS-Ken Application 58

os-ken Documentation, Release 1.4.1.dev5

the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.bpdu.TopologyChangeNotificationBPDUs
Topology Change Notification BPDUs(IEEE 802.1D) header encoder/decoder class.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.bpdu.bpdu
Bridge Protocol Data Unit(BPDU) header encoder/decoder base class.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

8.1. Writing Your OS-Ken Application 59

os-ken Documentation, Release 1.4.1.dev5

CFM

class os_ken.lib.packet.cfm.cc_message(md_lv=0, version=0, rdi=0,
interval=4, seq_num=0,
mep_id=1, md_name_format=4,
md_name_length=0, md_name=b’0’,
short_ma_name_format=2,
short_ma_name_length=0,
short_ma_name=b’1’, tlvs=None)

CFM (IEEE Std 802.1ag-2007) Continuity Check Message (CCM) encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
md_lv Maintenance Domain Level.
version The protocol version number.
rdi RDI bit.
interval CCM Interval.The default is 4 (1 frame/s)
seq_num Sequence Number.
mep_id Maintenance association End Point Identifier.
md_name_format Maintenance Domain Name Format. The default is 4 (Character

string)
md_name_length Maintenance Domain Name Length. (0 means

automatically-calculate when encoding.)
md_name Maintenance Domain Name.
short_ma_name_format Short MA Name Format. The default is 2 (Character string)
short_ma_name_length Short MA Name Format Length. (0 means automatically-calculate

when encoding.)
short_ma_name Short MA Name.
tlvs TLVs.

class os_ken.lib.packet.cfm.cfm(op=None)
CFM (Connectivity Fault Management) Protocol header class.

http://standards.ieee.org/getieee802/download/802.1ag-2007.pdf

OpCode Field range assignments

OpCode range CFM PDU or organization
0 Reserved for IEEE 802.1
1 Continuity Check Message (CCM)
2 Loopback Reply (LBR)
3 Loopback Message (LBM)
4 Linktrace Reply (LTR)
5 Linktrace Message (LTM)
06 - 31 Reserved for IEEE 802.1
32 - 63 Defined by ITU-T Y.1731
64 - 255 Reserved for IEEE 802.1.

8.1. Writing Your OS-Ken Application 60

http://standards.ieee.org/getieee802/download/802.1ag-2007.pdf

os-ken Documentation, Release 1.4.1.dev5

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
op CFM PDU

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.cfm.data_tlv(length=0, data_value=b”)
CFM (IEEE Std 802.1ag-2007) Data TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length Length of Value field. (0 means automatically-calculate when encoding)
data_value Bit pattern of any of n octets.(n = length)

class os_ken.lib.packet.cfm.interface_status_tlv(length=0, inter-
face_status=1)

CFM (IEEE Std 802.1ag-2007) Interface Status TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length Length of Value field. (0 means automatically-calculate when encoding.)
interface_status Interface Status.The default is 1 (isUp)

8.1. Writing Your OS-Ken Application 61

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.cfm.link_trace_message(md_lv=0, version=0,
use_fdb_only=1, trans-
action_id=0, ttl=64,
ltm_orig_addr=’00:00:00:00:00:00’,
ltm_targ_addr=’00:00:00:00:00:00’,
tlvs=None)

CFM (IEEE Std 802.1ag-2007) Linktrace Message (LTM) encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
md_lv Maintenance Domain Level.
version The protocol version number.
use_fdb_only UseFDBonly bit.
transaction_id LTM Transaction Identifier.
ttl LTM TTL.
ltm_orig_addr Original MAC Address.
ltm_targ_addr Target MAC Address.
tlvs TLVs.

class os_ken.lib.packet.cfm.link_trace_reply(md_lv=0, version=0,
use_fdb_only=1, fwd_yes=0,
terminal_mep=1, trans-
action_id=0, ttl=64, re-
lay_action=1, tlvs=None)

CFM (IEEE Std 802.1ag-2007) Linktrace Reply (LTR) encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
version The protocol version number.
use_fdb_only UseFDBonly bit.
fwd_yes FwdYes bit.
terminal_mep TerminalMep bit.
transaction_id LTR Transaction Identifier.
ttl Reply TTL.
relay_action Relay Action.The default is 1 (RlyHit)
tlvs TLVs.

class os_ken.lib.packet.cfm.loopback_message(md_lv=0, version=0, trans-
action_id=0, tlvs=None)

CFM (IEEE Std 802.1ag-2007) Loopback Message (LBM) encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 62

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
md_lv Maintenance Domain Level.
version The protocol version number.
transaction_id Loopback Transaction Identifier.
tlvs TLVs.

class os_ken.lib.packet.cfm.loopback_reply(md_lv=0, version=0, transac-
tion_id=0, tlvs=None)

CFM (IEEE Std 802.1ag-2007) Loopback Reply (LBR) encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
md_lv Maintenance Domain Level.
version The protocol version number.
transaction_id Loopback Transaction Identifier.
tlvs TLVs.

class os_ken.lib.packet.cfm.ltm_egress_identifier_tlv(length=0,
egress_id_ui=0,
egress_id_mac=’00:00:00:00:00:00’)

CFM (IEEE Std 802.1ag-2007) LTM EGRESS TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length Length of Value field. (0 means automatically-calculate when encoding.)
egress_id_ui Egress Identifier of Unique ID.
egress_id_mac Egress Identifier of MAC address.

class os_ken.lib.packet.cfm.ltr_egress_identifier_tlv(length=0,
last_egress_id_ui=0,
last_egress_id_mac=’00:00:00:00:00:00’,
next_egress_id_ui=0,
next_egress_id_mac=’00:00:00:00:00:00’)

CFM (IEEE Std 802.1ag-2007) LTR EGRESS TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 63

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
length Length of Value field. (0 means automatically-calculate when

encoding.)
last_egress_id_ui Last Egress Identifier of Unique ID.
last_egress_id_mac Last Egress Identifier of MAC address.
next_egress_id_ui Next Egress Identifier of Unique ID.
next_egress_id_mac Next Egress Identifier of MAC address.

class os_ken.lib.packet.cfm.organization_specific_tlv(length=0,
oui=b’\x00\x00\x00’,
subtype=0,
value=b”)

CFM (IEEE Std 802.1ag-2007) Organization Specific TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length Length of Value field. (0 means automatically-calculate when encoding.)
oui Organizationally Unique Identifier.
subtype Subtype.
value Value.(optional)

class os_ken.lib.packet.cfm.port_status_tlv(length=0, port_status=2)
CFM (IEEE Std 802.1ag-2007) Port Status TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length Length of Value field. (0 means automatically-calculate when encoding.)
port_status Port Status.The default is 1 (psUp)

class os_ken.lib.packet.cfm.reply_egress_tlv(length=0, action=1,
mac_address=’00:00:00:00:00:00’,
port_id_length=0,
port_id_subtype=0,
port_id=b”)

CFM (IEEE Std 802.1ag-2007) Reply Egress TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 64

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
length Length of Value field. (0 means automatically-calculate when encoding.)
action Egress Action.The default is 1 (EgrOK)
mac_address Egress MAC Address.
port_id_length Egress PortID Length. (0 means automatically-calculate when encoding.)
port_id_subtype Egress PortID Subtype.
port_id Egress PortID.

class os_ken.lib.packet.cfm.reply_ingress_tlv(length=0, action=1,
mac_address=’00:00:00:00:00:00’,
port_id_length=0,
port_id_subtype=0,
port_id=b”)

CFM (IEEE Std 802.1ag-2007) Reply Ingress TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length Length of Value field. (0 means automatically-calculate when encoding.)
action Ingress Action.The default is 1 (IngOK)
mac_address Ingress MAC Address.
port_id_length Ingress PortID Length. (0 means automatically-calculate when encoding.)
port_id_subtype Ingress PortID Subtype.
port_id Ingress PortID.

class os_ken.lib.packet.cfm.sender_id_tlv(length=0, chassis_id_length=0,
chassis_id_subtype=4, chas-
sis_id=b”, ma_domain_length=0,
ma_domain=b”, ma_length=0,
ma=b”)

CFM (IEEE Std 802.1ag-2007) Sender ID TLV encoder/decoder class.

This is used with os_ken.lib.packet.cfm.cfm.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length Length of Value field. (0 means automatically-calculate when

encoding.)
chassis_id_length Chassis ID Length. (0 means automatically-calculate when encoding.)
chassis_id_subtype Chassis ID Subtype. The default is 4 (Mac Address)
chassis_id Chassis ID.
ma_domain_length Management Address Domain Length. (0 means

automatically-calculate when encoding.)
ma_domain Management Address Domain.
ma_length Management Address Length. (0 means automatically-calculate when

encoding.)
ma Management Address.

8.1. Writing Your OS-Ken Application 65

os-ken Documentation, Release 1.4.1.dev5

DHCP

DHCP packet parser/serializer

class os_ken.lib.packet.dhcp.dhcp(op, chaddr, options=None, htype=1,
hlen=0, hops=0, xid=None, secs=0,
flags=0, ciaddr=’0.0.0.0’, yiaddr=’0.0.0.0’,
siaddr=’0.0.0.0’, giaddr=’0.0.0.0’, sname=”,
boot_file=”)

DHCP (RFC 2131) header encoder/decoder class.

The serialized packet would looks like the ones described in the following sections.

• RFC 2131 DHCP packet format

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
op Message op code / message type. 1 = BOOTREQUEST, 2 = BOOTREPLY
htype Hardware address type (e.g. ’1’ = 10mb ethernet).
hlen Hardware address length (e.g. ’6’ = 10mb ethernet).
hops Client sets to zero, optionally used by relay agent when booting via a relay agent.
xid Transaction ID, a random number chosen by the client, used by the client and

serverto associate messages and responses between a client and a server.
secs Filled in by client, seconds elapsed since client began address acquisition or

renewal process.
flags Flags.
ciaddr Client IP address; only filled in if client is in BOUND, RENEW or REBINDING

state and can respond to ARP requests.
yiaddr ’your’ (client) IP address.
siaddr IP address of next server to use in bootstrap; returned in DHCPOFFER,

DHCPACK by server.
giaddr Relay agent IP address, used in booting via a relay agent.
chaddr Client hardware address.
sname Optional server host name, null terminated string.
boot_file Boot file name, null terminated string; "generic" name or null in

DHCPDISCOVER, fully qualified directory-path name in DHCPOFFER.
options Optional parameters field (’DHCP message type’ option must be included in

every DHCP message).

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

8.1. Writing Your OS-Ken Application 66

os-ken Documentation, Release 1.4.1.dev5

serialize(_payload=None, _prev=None)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.dhcp.option(tag, value, length=0)
DHCP (RFC 2132) options encoder/decoder class.

This is used with os_ken.lib.packet.dhcp.dhcp.options.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
tag Option type. (except for the ’magic cookie’, ’pad option’ and ’end option’.)
value Option’s value. (set the value that has been converted to hexadecimal.)
length Option’s value length. (calculated automatically from the length of value.)

class os_ken.lib.packet.dhcp.options(option_list=None, options_len=0,
magic_cookie=’99.130.83.99’)

DHCP (RFC 2132) options encoder/decoder class.

This is used with os_ken.lib.packet.dhcp.dhcp.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
option_list ’end option’ and ’pad option’ are added automatically after the option class

is stored in array.
options_len Option’s byte length. (’magic cookie’, ’end option’ and ’pad option’ length

including.)
magic_cookie The first four octets contain the decimal values 99, 130, 83 and 99.

DHCP6

DHCPv6 packet parser/serializer

[RFC 3315] DHCPv6 packet format:

The following diagram illustrates the format of DHCP messages sent between clients and servers:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| msg_type | transaction_id |
+-+
| |

(continues on next page)

8.1. Writing Your OS-Ken Application 67

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

. options .

. (variable) .
| |
+-+

There are two relay agent messages, which share the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| msg_type | hop_count | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| link_address |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| peer_address |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
. .
. options (variable number and length)
| |
+-+

class os_ken.lib.packet.dhcp6.dhcp6(msg_type, options, transaction_id=None,
hop_count=0, link_address=’::’,
peer_address=’::’)

DHCPv6 (RFC 3315) header encoder/decoder class.

The serialized packet would looks like the ones described in the following sections.

• RFC 3315 DHCP packet format

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

At-
tribute

Description

msg_type Identifies the DHCP message type
transac-
tion_id

For unrelayed messages only: the transaction ID for this message exchange.

hop_count For relayed messages only: number of relay agents that have relayed this message.
link_addressFor relayed messages only: a global or site-local address that will be used by the

server to identify the link on which the client is located.
peer_addressFor relayed messages only: the address of the client or relay agent from which the

message to be relayed was received.
options Options carried in this message

classmethod parser(buf)

8.1. Writing Your OS-Ken Application 68

os-ken Documentation, Release 1.4.1.dev5

Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload=None, prev=None)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.dhcp6.option(code, data, length=0)
DHCP (RFC 3315) options encoder/decoder class.

This is used with os_ken.lib.packet.dhcp6.dhcp6.options.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

The format of DHCP options is:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| option-code | option-len |
+-+
| option-data |
| (option-len octets) |
+-+

Attribute Description
option-
code

An unsigned integer identifying the specific option type carried in this option.

option-len An unsigned integer giving the length of the option-data field in this option in
octets.

option-
data

The data for the option; the format of this data depends on the definition of the
option.

class os_ken.lib.packet.dhcp6.options(option_list=None, options_len=0)
DHCP (RFC 3315) options encoder/decoder class.

This is used with os_ken.lib.packet.dhcp6.dhcp6.

8.1. Writing Your OS-Ken Application 69

os-ken Documentation, Release 1.4.1.dev5

Ethernet

class os_ken.lib.packet.ethernet.ethernet(dst=’ff:ff:ff:ff:ff:ff’,
src=’00:00:00:00:00:00’, ether-
type=2048)

Ethernet header encoder/decoder class.

An instance has the following attributes at least. MAC addresses are represented as a string like
’08:60:6e:7f:74:e7’. __init__ takes the corresponding args in this order.

Attribute Description Example
dst destination address ’ff:ff:ff:ff:ff:ff’
src source address ’08:60:6e:7f:74:e7’
ethertype ether type 0x0800

classmethod get_packet_type(type_)
Override method for the ethernet IEEE802.3 Length/Type field (self.ethertype).

If the value of Length/Type field is less than or equal to 1500 decimal(05DC hexadecimal),
it means Length interpretation and be passed to the LLC sublayer.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

Geneve

Geneve packet parser/serializer

class os_ken.lib.packet.geneve.Option(option_class=None, type_=None,
length=0)

Tunnel Options

8.1. Writing Your OS-Ken Application 70

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.geneve.OptionDataUnknown(buf, op-
tion_class=None,
type_=None,
length=0)

Unknown Option Class and Type specific Option

class os_ken.lib.packet.geneve.geneve(version=0, opt_len=0, flags=0, proto-
col=25944, vni=None, options=None)

Geneve (RFC draft-ietf-nvo3-geneve-03) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
version Version.
opt_len The length of the options fields.
flags Flag field for OAM packet and Critical options present.
protocol Protocol Type field. The Protocol Type is defined as "ETHER TYPES".
vni Identifier for unique element of virtual network.
options List of Option* instance.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload=None, prev=None)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

GRE

class os_ken.lib.packet.gre.gre(version=0, protocol=2048, checksum=None,
key=None, vsid=None, flow_id=None,
seq_number=None)

GRE (RFC2784,RFC2890) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 71

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description

version Version.
proto-
col

Protocol Type field. The Protocol Type is defined as "ETHER TYPES".

check-
sum

Checksum field(optional). When you set a value other than None, this field will be
automatically calculated.

key Key field(optional) This field is intended to be used for identifying an individual
traffic flow within a tunnel.

vsid Virtual Subnet ID field(optional) This field is a 24-bit value that is used to identify
the NVGRE-based Virtual Layer 2 Network.

flow_id FlowID field(optional) This field is an 8-bit value that is used to provide per-flow
entropy for flows in the same VSID.

seq_numberSequence Number field(optional)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload=None, prev=None)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

os_ken.lib.packet.gre.nvgre(version=0, vsid=0, flow_id=0)
Generate instance of GRE class with information for NVGRE (RFC7637).

Parameters

• version -- Version.

• vsid -- Virtual Subnet ID.

• flow_id -- FlowID.

Returns Instance of GRE class with information for NVGRE.

8.1. Writing Your OS-Ken Application 72

os-ken Documentation, Release 1.4.1.dev5

ICMP

class os_ken.lib.packet.icmp.TimeExceeded(data_len=0, data=None)
ICMP sub encoder/decoder class for Time Exceeded Message.

This is used with os_ken.lib.packet.icmp.icmp for ICMP Time Exceeded Message.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

[RFC4884] introduced 8-bit data length attribute.

Attribute Description
data_len data length
data Internet Header + leading octets of original datagram

class os_ken.lib.packet.icmp.dest_unreach(data_len=0, mtu=0, data=None)
ICMP sub encoder/decoder class for Destination Unreachable Message.

This is used with os_ken.lib.packet.icmp.icmp for ICMP Destination Unreachable Message.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

[RFC1191] reserves bits for the "Next-Hop MTU" field. [RFC4884] introduced 8-bit data length
attribute.

Attribute Description
data_len data length
mtu Next-Hop MTU

NOTE: This field is required when icmp code is 4
code 4 = fragmentation needed and DF set

data Internet Header + leading octets of original datagram

class os_ken.lib.packet.icmp.echo(id_=0, seq=0, data=None)
ICMP sub encoder/decoder class for Echo and Echo Reply messages.

This is used with os_ken.lib.packet.icmp.icmp for ICMP Echo and Echo Reply messages.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
id Identifier
seq Sequence Number
data Internet Header + 64 bits of Original Data Datagram

class os_ken.lib.packet.icmp.icmp(type_=8, code=0, csum=0, data=b”)
ICMP (RFC 792) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 73

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
type Type
code Code
csum CheckSum (0 means automatically-calculate when encoding)
data Payload. Either a bytearray, or os_ken.lib.packet.icmp.echo or

os_ken.lib.packet.icmp.dest_unreach or os_ken.lib.packet.icmp.TimeExceeded
object NOTE for icmp.echo: This includes "unused" 16 bits and the following
"Internet Header + 64 bits of Original Data Datagram" of the ICMP header.
NOTE for icmp.dest_unreach and icmp.TimeExceeded: This includes "unused"
8 or 24 bits and the following "Internet Header + leading octets of original
datagram" of the original packet.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

ICMPv6

class os_ken.lib.packet.icmpv6.echo(id_=0, seq=0, data=None)
ICMPv6 sub encoder/decoder class for Echo Request and Echo Reply messages.

This is used with os_ken.lib.packet.icmpv6.icmpv6 for ICMPv6 Echo Request and Echo Reply
messages.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
id Identifier
seq Sequence Number
data Data

8.1. Writing Your OS-Ken Application 74

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.icmpv6.icmpv6(type_=0, code=0, csum=0, data=b”)
ICMPv6 (RFC 2463) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
type_ Type
code Code
csum CheckSum (0 means automatically-calculate when encoding)
data Payload.

os_ken.lib.packet.icmpv6.echo object, os_ken.lib.packet.icmpv6.nd_neighbor
object, os_ken.lib.packet.icmpv6.nd_router_solicit object,
os_ken.lib.packet.icmpv6.nd_router_advert object, os_ken.lib.packet.icmpv6.mld
object, or a bytearray.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.icmpv6.mld(maxresp=0, address=’::’)
ICMPv6 sub encoder/decoder class for MLD Lister Query, MLD Listener Report, and MLD Lis-
tener Done messages. (RFC 2710)

http://www.ietf.org/rfc/rfc2710.txt

This is used with os_ken.lib.packet.icmpv6.icmpv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
maxresp max response time in millisecond. it is meaningful only in Query Message.
address a group address value.

8.1. Writing Your OS-Ken Application 75

http://www.ietf.org/rfc/rfc2710.txt

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.icmpv6.mldv2_query(maxresp=0, address=’::’,
s_flg=0, qrv=2, qqic=0, num=0,
srcs=None)

ICMPv6 sub encoder/decoder class for MLD v2 Lister Query messages. (RFC 3810)

http://www.ietf.org/rfc/rfc3810.txt

This is used with os_ken.lib.packet.icmpv6.icmpv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
maxresp max response time in millisecond. it is meaningful only in Query Message.
address a group address value.
s_flg when set to 1, routers suppress the timer process.
qrv robustness variable for a querier.
qqic an interval time for a querier in unit of seconds.
num a number of the multicast servers.
srcs a list of IPv6 addresses of the multicast servers.

class os_ken.lib.packet.icmpv6.mldv2_report(record_num=0,
records=None)

ICMPv6 sub encoder/decoder class for MLD v2 Lister Report messages. (RFC 3810)

http://www.ietf.org/rfc/rfc3810.txt

This is used with os_ken.lib.packet.icmpv6.icmpv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
record_num a number of the group records.
records a list of os_ken.lib.packet.icmpv6.mldv2_report_group. None if no records.

class os_ken.lib.packet.icmpv6.mldv2_report_group(type_=0, aux_len=0,
num=0, address=’::’,
srcs=None,
aux=None)

ICMPv6 sub encoder/decoder class for MLD v2 Lister Report Group Record messages. (RFC
3810)

This is used with os_ken.lib.packet.icmpv6.mldv2_report.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
type_ a group record type for v3.
aux_len the length of the auxiliary data in 32-bit words.
num a number of the multicast servers.
address a group address value.
srcs a list of IPv6 addresses of the multicast servers.
aux the auxiliary data.

8.1. Writing Your OS-Ken Application 76

http://www.ietf.org/rfc/rfc3810.txt
http://www.ietf.org/rfc/rfc3810.txt

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.icmpv6.nd_neighbor(res=0, dst=’::’, option=None)
ICMPv6 sub encoder/decoder class for Neighbor Solicitation and Neighbor Advertisement mes-
sages. (RFC 4861)

This is used with os_ken.lib.packet.icmpv6.icmpv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
res R,S,O Flags for Neighbor Advertisement. The 3 MSBs of "Reserved" field for Neighbor

Solicitation.
dst Target Address
option a derived object of os_ken.lib.packet.icmpv6.nd_option or a bytearray. None if no op-

tions.

class os_ken.lib.packet.icmpv6.nd_option_pi(length=0, pl=0, res1=0,
val_l=0, pre_l=0, res2=0,
prefix=’::’)

ICMPv6 sub encoder/decoder class for Neighbor discovery Prefix Information Option. (RFC
4861)

This is used with os_ken.lib.packet.icmpv6.nd_router_advert.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length length of the option. (0 means automatically-calculate when encoding)
pl Prefix Length.
res1 L,A,R* Flags for Prefix Information.
val_l Valid Lifetime.
pre_l Preferred Lifetime.
res2 This field is unused. It MUST be initialized to zero.
prefix An IP address or a prefix of an IP address.

*R flag is defined in (RFC 3775)

class os_ken.lib.packet.icmpv6.nd_option_sla(length=0,
hw_src=’00:00:00:00:00:00’,
data=None)

ICMPv6 sub encoder/decoder class for Neighbor discovery Source Link-Layer Address Option.
(RFC 4861)

This is used with os_ken.lib.packet.icmpv6.nd_neighbor, os_ken.lib.packet.icmpv6.nd_router_solicit
or os_ken.lib.packet.icmpv6.nd_router_advert.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 77

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
length length of the option. (0 means automatically-calculate when encoding)
hw_src Link-Layer Address. NOTE: If the address is longer than 6 octets this contains the first

6 octets in the address. This implementation assumes the address has at least 6 octets.
data A bytearray which contains the rest of Link-Layer Address and padding. When encoding

a packet, it’s user’s responsibility to provide necessary padding for 8-octets alignment
required by the protocol.

class os_ken.lib.packet.icmpv6.nd_option_tla(length=0,
hw_src=’00:00:00:00:00:00’,
data=None)

ICMPv6 sub encoder/decoder class for Neighbor discovery Target Link-Layer Address Option.
(RFC 4861)

This is used with os_ken.lib.packet.icmpv6.nd_neighbor.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length length of the option. (0 means automatically-calculate when encoding)
hw_src Link-Layer Address. NOTE: If the address is longer than 6 octets this contains the first

6 octets in the address. This implementation assumes the address has at least 6 octets.
data A bytearray which contains the rest of Link-Layer Address and padding. When encoding

a packet, it’s user’s responsibility to provide necessary padding for 8-octets alignment
required by the protocol.

class os_ken.lib.packet.icmpv6.nd_router_advert(ch_l=0, res=0, rou_l=0,
rea_t=0, ret_t=0, op-
tions=None)

ICMPv6 sub encoder/decoder class for Router Advertisement messages. (RFC 4861)

This is used with os_ken.lib.packet.icmpv6.icmpv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
ch_l Cur Hop Limit.
res M,O Flags for Router Advertisement.
rou_l Router Lifetime.
rea_t Reachable Time.
ret_t Retrans Timer.
options List of a derived object of os_ken.lib.packet.icmpv6.nd_option or a bytearray. None if

no options.

class os_ken.lib.packet.icmpv6.nd_router_solicit(res=0, option=None)
ICMPv6 sub encoder/decoder class for Router Solicitation messages. (RFC 4861)

This is used with os_ken.lib.packet.icmpv6.icmpv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 78

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
res This field is unused. It MUST be initialized to zero.
option a derived object of os_ken.lib.packet.icmpv6.nd_option or a bytearray. None if no op-

tions.

IGMP

Internet Group Management Protocol(IGMP) packet parser/serializer

[RFC 1112] IGMP v1 format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|Version| Type | Unused | Checksum |
+-+
| Group Address |
+-+

[RFC 2236] IGMP v2 format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type | Max Resp Time | Checksum |
+-+
| Group Address |
+-+

[RFC 3376] IGMP v3 Membership Query format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x11 | Max Resp Code | Checksum |
+-+
| Group Address |
+-+
| Resv |S| QRV | QQIC | Number of Sources (N) |
+-+
| Source Address [1] |
+- -+
| Source Address [2] |
+- . -+
. . .
. . .
+- -+
| Source Address [N] |
+-+

IGMP v3 Membership Report format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

(continues on next page)

8.1. Writing Your OS-Ken Application 79

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

+-+
| Type = 0x22 | Reserved | Checksum |
+-+
| Reserved | Number of Group Records (M) |
+-+
| |
. .
. Group Record [1] .
. .
| |
+-+
| |
. .
. Group Record [2] .
. .
| |
+-+
| . |
. . .
| . |
+-+
| |
. .
. Group Record [M] .
. .
| |
+-+

Where each Group Record has the following internal format:

+-+
| Record Type | Aux Data Len | Number of Sources (N) |
+-+
| Multicast Address |
+-+
| Source Address [1] |
+- -+
| Source Address [2] |
+- -+
. . .
. . .
. . .
+- -+
| Source Address [N] |
+-+
| |
. .
. Auxiliary Data .
. .
| |
+-+

class os_ken.lib.packet.igmp.igmp(msgtype=17, maxresp=0, csum=0, ad-
dress=’0.0.0.0’)

Internet Group Management Protocol(IGMP, RFC 1112, RFC 2236) header encoder/decoder
class.

8.1. Writing Your OS-Ken Application 80

os-ken Documentation, Release 1.4.1.dev5

http://www.ietf.org/rfc/rfc1112.txt

http://www.ietf.org/rfc/rfc2236.txt

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
msgtype a message type for v2, or a combination of version and a message type for v1.
maxresp max response time in unit of 1/10 second. it is meaningful only in Query Message.
csum a check sum value. 0 means automatically-calculate when encoding.
address a group address value.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.igmp.igmpv3_query(msgtype=17, maxresp=100,
csum=0, address=’0.0.0.0’,
s_flg=0, qrv=2, qqic=0, num=0,
srcs=None)

Internet Group Management Protocol(IGMP, RFC 3376) Membership Query message en-
coder/decoder class.

http://www.ietf.org/rfc/rfc3376.txt

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 81

http://www.ietf.org/rfc/rfc1112.txt
http://www.ietf.org/rfc/rfc2236.txt
http://www.ietf.org/rfc/rfc3376.txt

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
msgtype a message type for v3.
maxresp max response time in unit of 1/10 second.
csum a check sum value. 0 means automatically-calculate when encoding.
address a group address value.
s_flg when set to 1, routers suppress the timer process.
qrv robustness variable for a querier.
qqic an interval time for a querier in unit of seconds.
num a number of the multicast servers.
srcs a list of IPv4 addresses of the multicast servers.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.igmp.igmpv3_report(msgtype=34, csum=0,
record_num=0, records=None)

Internet Group Management Protocol(IGMP, RFC 3376) Membership Report message en-
coder/decoder class.

http://www.ietf.org/rfc/rfc3376.txt

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
msgtype a message type for v3.
csum a check sum value. 0 means automatically-calculate when encoding.
record_num a number of the group records.
records a list of os_ken.lib.packet.igmp.igmpv3_report_group. None if no records.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

8.1. Writing Your OS-Ken Application 82

http://www.ietf.org/rfc/rfc3376.txt

os-ken Documentation, Release 1.4.1.dev5

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.igmp.igmpv3_report_group(type_=0, aux_len=0,
num=0, ad-
dress=’0.0.0.0’,
srcs=None,
aux=None)

Internet Group Management Protocol(IGMP, RFC 3376) Membership Report Group Record mes-
sage encoder/decoder class.

http://www.ietf.org/rfc/rfc3376.txt

This is used with os_ken.lib.packet.igmp.igmpv3_report.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
type_ a group record type for v3.
aux_len the length of the auxiliary data.
num a number of the multicast servers.
address a group address value.
srcs a list of IPv4 addresses of the multicast servers.
aux the auxiliary data.

IPv4

class os_ken.lib.packet.ipv4.ipv4(version=4, header_length=5, tos=0, to-
tal_length=0, identification=0, flags=0,
offset=0, ttl=255, proto=0, csum=0,
src=’10.0.0.1’, dst=’10.0.0.2’, option=None)

IPv4 (RFC 791) header encoder/decoder class.

NOTE: When decoding, this implementation tries to decode the upper layer protocol even for a
fragmented datagram. It isn’t likely what a user would want.

8.1. Writing Your OS-Ken Application 83

http://www.ietf.org/rfc/rfc3376.txt

os-ken Documentation, Release 1.4.1.dev5

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. IPv4 addresses are represented as a string like ’192.0.2.1’. __init__ takes
the corresponding args in this order.

Attribute Description Example
version Version
header_length IHL
tos Type of Service
total_length Total Length (0 means automatically-calculate when encoding)
identifica-
tion

Identification

flags Flags
offset Fragment Offset
ttl Time to Live
proto Protocol
csum Header Checksum (Ignored and automatically-calculated when

encoding)
src Source Address ’192.0.2.1’
dst Destination Address ’192.0.2.2’
option A bytearray which contains the entire Options, or None for no

Options

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

8.1. Writing Your OS-Ken Application 84

os-ken Documentation, Release 1.4.1.dev5

IPv6

class os_ken.lib.packet.ipv6.auth(nxt=6, size=2, spi=0, seq=0,
data=b’\x00\x00\x00\x00’)

IP Authentication header (RFC 2402) encoder/decoder class.

This is used with os_ken.lib.packet.ipv6.ipv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
nxt Next Header
size the length of the Authentication Header in 64-bit words, subtracting 1.
spi security parameters index.
seq sequence number.
data authentication data.

class os_ken.lib.packet.ipv6.dst_opts(nxt=6, size=0, data=None)
IPv6 (RFC 2460) destination header encoder/decoder class.

This is used with os_ken.lib.packet.ipv6.ipv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
nxt Next Header
size the length of the destination header, not include the first 8 octet.
data IPv6 options.

class os_ken.lib.packet.ipv6.fragment(nxt=6, offset=0, more=0, id_=0)
IPv6 (RFC 2460) fragment header encoder/decoder class.

This is used with os_ken.lib.packet.ipv6.ipv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
nxt Next Header
offset offset, in 8-octet units, relative to the start of the fragmentable part of the original

packet.
more 1 means more fragments follow; 0 means last fragment.
id_ packet identification value.

class os_ken.lib.packet.ipv6.header(nxt)
extension header abstract class.

class os_ken.lib.packet.ipv6.hop_opts(nxt=6, size=0, data=None)
IPv6 (RFC 2460) Hop-by-Hop Options header encoder/decoder class.

This is used with os_ken.lib.packet.ipv6.ipv6.

8.1. Writing Your OS-Ken Application 85

os-ken Documentation, Release 1.4.1.dev5

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
nxt Next Header
size the length of the Hop-by-Hop Options header, not include the first 8 octet.
data IPv6 options.

class os_ken.lib.packet.ipv6.ipv6(version=6, traffic_class=0, flow_label=0,
payload_length=0, nxt=6, hop_limit=255,
src=’10::10’, dst=’20::20’, ext_hdrs=None)

IPv6 (RFC 2460) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. IPv6 addresses are represented as a string like ’ff02::1’. __init__ takes the
corresponding args in this order.

Attribute Description Example
version Version
traffic_class Traffic Class
flow_label When decoding, Flow Label. When encoding, the most significant 8 bits of

Flow Label.
payload_length Payload Length
nxt Next Header
hop_limit Hop Limit
src Source Address ’ff02::1’
dst Destination Address ’::’
ext_hdrs Extension Headers

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

8.1. Writing Your OS-Ken Application 86

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.ipv6.opt_header(nxt, size, data)
an abstract class for Hop-by-Hop Options header and destination header.

class os_ken.lib.packet.ipv6.option(type_=0, len_=- 1, data=None)
IPv6 (RFC 2460) Options header encoder/decoder class.

This is used with os_ken.lib.packet.ipv6.hop_opts or os_ken.lib.packet.ipv6.dst_opts.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
type_ option type.
len_ the length of data. -1 if type_ is 0.
data an option value. None if len_ is 0 or -1.

class os_ken.lib.packet.ipv6.routing(nxt)
An IPv6 Routing Header decoder class. This class has only the parser method.

IPv6 Routing Header types.

http://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml

Value Description Reference
0 Source Route (DEPRECATED) [[IPV6]][RFC5095]
1 Nimrod (DEPRECATED 2009-05-06)
2 Type 2 Routing Header [RFC6275]
3 RPL Source Route Header [RFC6554]
4 - 252 Unassigned
253 RFC3692-style Experiment 1 [2] [RFC4727]
254 RFC3692-style Experiment 2 [2] [RFC4727]
255 Reserved

class os_ken.lib.packet.ipv6.routing_type3(nxt=6, size=0, type_=3, seg=0,
cmpi=0, cmpe=0, adrs=None)

An IPv6 Routing Header for Source Routes with the RPL (RFC 6554) encoder/decoder class.

This is used with os_ken.lib.packet.ipv6.ipv6.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
nxt Next Header
size The length of the Routing header, not include the first 8 octet. (0 means

automatically-calculate when encoding)
type Identifies the particular Routing header variant.
seg Number of route segments remaining.
cmpi Number of prefix octets from segments 1 through n-1.
cmpe Number of prefix octets from segment n.
pad Number of octets that are used for padding after Address[n] at the end of the SRH.
adrs Vector of addresses, numbered 1 to n.

8.1. Writing Your OS-Ken Application 87

http://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml

os-ken Documentation, Release 1.4.1.dev5

LLC

Logical Link Control(LLC, IEEE 802.2) parser/serializer http://standards.ieee.org/getieee802/
download/802.2-1998.pdf

LLC format:

+-----------------+--------------+
| DSAP address | 8 bits |
+-----------------+--------------+
| SSAP address | 8 bits |
+-----------------+--------------+
| Control | 8 or 16 bits |
+-----------------+--------------+

DSAP address field:

LSB
+-----+---+---+---+---+---+---+---+
| I/G | D | D | D | D | D | D | D |
+-----+---+---+---+---+---+---+---+
I/G bit = 0 : Individual DSAP
I/G bit = 1 : Group DSA
D : DSAP address

SSAP address field:

LSB
+-----+---+---+---+---+---+---+---+
| C/R | S | S | S | S | S | S | S |
+-----+---+---+---+---+---+---+---+
C/R bit = 0 : Command
C/R bit = 1 : Response
S : SSAP address

Control field:

Information transfer command/response (I-format PDU):

1 2 3 4 5 6 7 8 9 10-16
+---+---+---+---+---+---+---+---+-----+------+
| 0 | N(S) | P/F | N(R) |
+---+---+---+---+---+---+---+---+-----+------+

Supervisory commands/responses (S-format PDUs):

1 2 3 4 5 6 7 8 9 10-16
+---+---+---+---+---+---+---+---+-----+------+
| 1 0 | S S | 0 0 0 0 | P/F | N(R) |
+---+---+---+---+---+---+---+---+-----+------+

Unnumbered commands/responses (U-format PDUs):

1 2 3 4 5 6 7 8
+---+---+----+---+-----+---+----+---+
| 1 1 | M1 M1 | P/F | M2 M2 M2 |

(continues on next page)

8.1. Writing Your OS-Ken Application 88

http://standards.ieee.org/getieee802/download/802.2-1998.pdf
http://standards.ieee.org/getieee802/download/802.2-1998.pdf

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

+---+---+----+---+-----+---+----+---+

N(S) : sender send sequence number (Bit 2=lower-order-bit)
N(R) : sender receive sequence number (Bit 10=lower-order-bit)
S : supervisory function bit
M1/M2: modifier function bit
P/F : poll bit - command LLC PDUs

final bit - response LLC PDUs

class os_ken.lib.packet.llc.ControlFormatI(send_sequence_number=0,
pf_bit=0, re-
ceive_sequence_number=0)

LLC sub encoder/decoder class for control I-format field.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
send_sequence_number sender send sequence number
pf_bit poll/final bit
receive_sequence_number sender receive sequence number

class os_ken.lib.packet.llc.ControlFormatS(supervisory_function=0,
pf_bit=0, re-
ceive_sequence_number=0)

LLC sub encoder/decoder class for control S-format field.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
supervisory_function supervisory function bit
pf_bit poll/final bit
receive_sequence_number sender receive sequence number

class os_ken.lib.packet.llc.ControlFormatU(modifier_function1=0, pf_bit=0,
modifier_function2=0)

LLC sub encoder/decoder class for control U-format field.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
modifier_function1 modifier function bit
pf_bit poll/final bit
modifier_function2 modifier function bit

class os_ken.lib.packet.llc.llc(dsap_addr, ssap_addr, control)
LLC(IEEE 802.2) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 89

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
dsap_addr Destination service access point address field includes I/G bit at least significant

bit.
ssap_addr Source service access point address field includes C/R bit at least significant bit.
control Control field [16 bits for formats that include sequence numbering, and 8 bits for

formats that do not]. Either os_ken.lib.packet.llc.ControlFormatI or
os_ken.lib.packet.llc.ControlFormatS or os_ken.lib.packet.llc.ControlFormatU
object.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

LLDP

Link Layer Discovery Protocol(LLDP, IEEE 802.1AB) http://standards.ieee.org/getieee802/download/
802.1AB-2009.pdf

basic TLV format:

octets | 1 | 2 | 3 ... n + 2 |
--
TLV type	TLV information	TLV information string
(7bits)	string length	(0-507 octets)
	(9bits)	
--

bits |8 2|1|8 1|

Organizationally specific TLV format:

octets | 1 | 2 | 3 ... 5 | 6 | 7 ... n + 6 |

| TLV type | Length | OUI | Subtype | Infomation |
| (7bits) | (9bits) | (24bits) | (8bits) | (0-507 octets) |

(continues on next page)

8.1. Writing Your OS-Ken Application 90

http://standards.ieee.org/getieee802/download/802.1AB-2009.pdf
http://standards.ieee.org/getieee802/download/802.1AB-2009.pdf

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

bits |8 2|1|8 1|

LLDPDU format:

--
| Chassis ID | Port ID | TTL | optional TLV | ... | optional TLV | End |
--

Chasis ID, Port ID, TTL, End are mandatory optional TLV may be inserted in any order

class os_ken.lib.packet.lldp.ChassisID(buf=None, *args, **kwargs)
Chassis ID TLV encoder/decoder class

Attribute Description
buf Binary data to parse.
subtype Subtype.
chassis_id Chassis id corresponding to subtype.

class os_ken.lib.packet.lldp.End(buf=None, *args, **kwargs)
End TLV encoder/decoder class

Attribute Description
buf Binary data to parse.

class os_ken.lib.packet.lldp.ManagementAddress(buf=None, *args,
**kwargs)

Management Address TLV encoder/decoder class

Attribute Description
buf Binary data to parse.
addr_subtype Address type.
addr Device address.
intf_subtype Interface type.
intf_num Interface number.
oid Object ID.

class os_ken.lib.packet.lldp.OrganizationallySpecific(buf=None,
*args,
**kwargs)

Organizationally Specific TLV encoder/decoder class

Attribute Description
buf Binary data to parse.
oui Organizationally unique ID.
subtype Organizationally defined subtype.
info Organizationally defined information string.

class os_ken.lib.packet.lldp.PortDescription(buf=None, *args, **kwargs)
Port description TLV encoder/decoder class

8.1. Writing Your OS-Ken Application 91

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
buf Binary data to parse.
port_description Port description.

class os_ken.lib.packet.lldp.PortID(buf=None, *args, **kwargs)
Port ID TLV encoder/decoder class

Attribute Description
buf Binary data to parse.
subtype Subtype.
port_id Port ID corresponding to subtype.

class os_ken.lib.packet.lldp.SystemCapabilities(buf=None, *args,
**kwargs)

System Capabilities TLV encoder/decoder class

Attribute Description
buf Binary data to parse.
system_cap System Capabilities.
enabled_cap Enabled Capabilities.

class os_ken.lib.packet.lldp.SystemDescription(buf=None, *args,
**kwargs)

System description TLV encoder/decoder class

Attribute Description
buf Binary data to parse.
system_description System description.

class os_ken.lib.packet.lldp.SystemName(buf=None, *args, **kwargs)
System name TLV encoder/decoder class

Attribute Description
buf Binary data to parse.
system_name System name.

class os_ken.lib.packet.lldp.TTL(buf=None, *args, **kwargs)
Time To Live TLV encoder/decoder class

Attribute Description
buf Binary data to parse.
ttl Time To Live.

class os_ken.lib.packet.lldp.lldp(tlvs)
LLDPDU encoder/decoder class.

An instance has the following attributes at least.

8.1. Writing Your OS-Ken Application 92

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
tlvs List of TLV instance.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

MPLS

os_ken.lib.packet.mpls.label_from_bin(buf)
Converts binary representation label to integer.

Parameters buf -- Binary representation of label.

Returns MPLS Label and BoS bit.

os_ken.lib.packet.mpls.label_to_bin(mpls_label, is_bos=True)
Converts integer label to binary representation.

Parameters

• mpls_label -- MPLS Label.

• is_bos -- BoS bit.

Returns Binary representation of label.

class os_ken.lib.packet.mpls.mpls(label=0, exp=0, bsb=1, ttl=255)
MPLS (RFC 3032) header encoder/decoder class.

NOTE: When decoding, this implementation assumes that the inner protocol is IPv4.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 93

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
label Label Value
exp Experimental Use
bsb Bottom of Stack
ttl Time To Live

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

OpenFlow

class os_ken.lib.packet.openflow.OFPUnparseableMsg(datapath, version,
msg_type, msg_len,
xid, body)

Unparseable OpenFlow message encoder class.

An instance has the following attributes at least.

At-
tribute

Description

data-
path

A os_ken.ofproto.ofproto_protocol.ProtocolDesc instance for this message or None if
OpenFlow protocol version is unsupported version.

ver-
sion

OpenFlow protocol version

msg_typeType of OpenFlow message
msg_len Length of the message
xid Transaction id
body OpenFlow body data

Note: "datapath" attribute is different from os_ken.controller.controller.Datapath. So you can not

8.1. Writing Your OS-Ken Application 94

os-ken Documentation, Release 1.4.1.dev5

use "datapath" attribute to send OpenFlow messages. For example, "datapath" attribute does not
have send_msg method.

class os_ken.lib.packet.openflow.openflow(msg)
OpenFlow message encoder/decoder class.

An instance has the following attributes at least.

At-
tribute

Description

msg An instance of OpenFlow message (see OpenFlow protocol API Reference) or an in-
stance of OFPUnparseableMsg if failed to parse packet as OpenFlow message.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(_payload, _prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

OSPF

RFC 2328 OSPF version 2

exception os_ken.lib.packet.ospf.InvalidChecksum

class os_ken.lib.packet.ospf.OSPFDBDesc(length=None, router_id=’0.0.0.0’,
area_id=’0.0.0.0’, au_type=1, au-
thentication=0, checksum=None,
version=2, mtu=1500, op-
tions=0, i_flag=0, m_flag=0,
ms_flag=0, sequence_number=0,
lsa_headers=None)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

8.1. Writing Your OS-Ken Application 95

os-ken Documentation, Release 1.4.1.dev5

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.ospf.OSPFHello(length=None, router_id=’0.0.0.0’,
area_id=’0.0.0.0’, au_type=1, au-
thentication=0, checksum=None,
version=2, mask=’0.0.0.0’,
hello_interval=10, options=0,
priority=1, dead_interval=40,
designated_router=’0.0.0.0’,
backup_router=’0.0.0.0’, neigh-
bors=None)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.ospf.OSPFLSAck(length=None, router_id=’0.0.0.0’,
area_id=’0.0.0.0’, au_type=1, au-
thentication=0, checksum=None,
version=2, lsa_headers=None)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.ospf.OSPFLSReq(length=None, router_id=’0.0.0.0’,
area_id=’0.0.0.0’, au_type=1, au-
thentication=0, checksum=None,
version=2, lsa_requests=None)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

8.1. Writing Your OS-Ken Application 96

os-ken Documentation, Release 1.4.1.dev5

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.ospf.OSPFLSUpd(length=None, router_id=’0.0.0.0’,
area_id=’0.0.0.0’, au_type=1, au-
thentication=0, checksum=None,
version=2, lsas=None)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.ospf.OSPFMessage(type_, length=None,
router_id=’0.0.0.0’,
area_id=’0.0.0.0’, au_type=1, au-
thentication=0, checksum=None,
version=2)

Base class for OSPF version 2 messages.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload=None, prev=None)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

os_ken.lib.packet.ospf.ospf
alias of os_ken.lib.packet.ospf.OSPFMessage

8.1. Writing Your OS-Ken Application 97

os-ken Documentation, Release 1.4.1.dev5

PBB

class os_ken.lib.packet.pbb.itag(pcp=0, dei=0, uca=0, sid=0)
I-TAG (IEEE 802.1ah-2008) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
pcp Priority Code Point
dei Drop Eligible Indication
uca Use Customer Address
sid Service Instance ID

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

SCTP

class os_ken.lib.packet.sctp.cause_cookie_while_shutdown(length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Cookie Received
While Shutting Down (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 98

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_invalid_param(length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Invalid Mandatory
Parameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_invalid_stream_id(value=0,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Invalid Stream Iden-
tifier (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value stream id.
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_missing_param(types=None, num=0,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Missing Mandatory
Parameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 99

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
types a list of missing params.
num Number of missing params. (0 means automatically-calculate when encoding)
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_no_userdata(value=None, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for No User Data (RFC
4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value the TSN of the DATA chunk received with no user data field.
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_out_of_resource(length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Out of Resource
(RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_protocol_violation(value=None,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Protocol Violation
(RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 100

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
value Additional Information.
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_restart_with_new_addr(value=None,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Restart of an Asso-
ciation with New Addresses (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value New Address TLVs.
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_stale_cookie(value=None, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Stale Cookie Error
(RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value Measure of Staleness.
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_unrecognized_chunk(value=None,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Unrecognized
Chunk Type (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 101

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
value Unrecognized Chunk.
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_unrecognized_param(value=None,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Unrecognized Pa-
rameters (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value Unrecognized Parameter.
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.cause_unresolvable_addr(value=None,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Unresolvable Ad-
dress (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value Unresolvable Address. one of follows:

os_ken.lib.packet.sctp.param_host_addr,
os_ken.lib.packet.sctp.param_ipv4, or
os_ken.lib.packet.sctp.param_ipv6.

length length of this cause containing this header. (0 means automatically-calculate
when encoding)

class os_ken.lib.packet.sctp.cause_user_initiated_abort(value=None,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for User-Initiated Abort
(RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_abort

8.1. Writing Your OS-Ken Application 102

os-ken Documentation, Release 1.4.1.dev5

• os_ken.lib.packet.sctp.chunk_error

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value Upper Layer Abort Reason.
length length of this cause containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.chunk_abort(tflag=0, length=0, causes=None)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Abort Association
(ABORT) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
tflag ’0’ means the Verification tag is normal. ’1’ means the Verification tag is copy of

the sender.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
causes a list of derived classes of os_ken.lib.packet.sctp.causes.

class os_ken.lib.packet.sctp.chunk_cookie_ack(flags=0, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Cookie Acknowl-
edgement (COOKIE ACK) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.chunk_cookie_echo(flags=0, length=0,
cookie=None)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Cookie Echo
(COOKIE ECHO) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 103

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
cookie cookie data.

class os_ken.lib.packet.sctp.chunk_cwr(flags=0, length=0, low_tsn=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for CWR chunk (RFC
4960 Appendix A.).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
low_tsn the lowest TSN.

class os_ken.lib.packet.sctp.chunk_data(unordered=0, begin=0, end=0,
length=0, tsn=0, sid=0, seq=0, pay-
load_id=0, payload_data=None)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Payload Data
(DATA) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
unordered if set to ’1’, the receiver ignores the sequence number.
begin if set to ’1’, this chunk is the first fragment.
end if set to ’1’, this chunk is the last fragment.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
tsn Transmission Sequence Number.
sid stream id.
seq the sequence number.
payload_id application specified protocol id. ’0’ means that no application id is identified.
payload_data user data.

class os_ken.lib.packet.sctp.chunk_ecn_echo(flags=0, length=0,
low_tsn=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for ECN-Echo chunk
(RFC 4960 Appendix A.).

8.1. Writing Your OS-Ken Application 104

os-ken Documentation, Release 1.4.1.dev5

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
low_tsn the lowest TSN.

class os_ken.lib.packet.sctp.chunk_error(flags=0, length=0, causes=None)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Operation Error
(ERROR) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
causes a list of derived classes of os_ken.lib.packet.sctp.causes.

class os_ken.lib.packet.sctp.chunk_heartbeat(flags=0, length=0,
info=None)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Heartbeat Request
(HEARTBEAT) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
info os_ken.lib.packet.sctp.param_heartbeat.

class os_ken.lib.packet.sctp.chunk_heartbeat_ack(flags=0, length=0,
info=None)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Heartbeat Acknowl-
edgement (HEARTBEAT ACK) chunk (RFC 4960).

This class is used with the following.

8.1. Writing Your OS-Ken Application 105

os-ken Documentation, Release 1.4.1.dev5

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
info os_ken.lib.packet.sctp.param_heartbeat.

class os_ken.lib.packet.sctp.chunk_init(flags=0, length=0, init_tag=0,
a_rwnd=0, os=0, mis=0, i_tsn=0,
params=None)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Initiation (INIT)
chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
init_tag the tag that be used as Verification Tag.
a_rwnd Advertised Receiver Window Credit.
os number of outbound streams.
mis number of inbound streams.
i_tsn Transmission Sequence Number that the sender will use.
params Optional/Variable-Length Parameters.

a list of derived classes of os_ken.lib.packet.sctp.param.

class os_ken.lib.packet.sctp.chunk_init_ack(flags=0, length=0, init_tag=0,
a_rwnd=0, os=0, mis=0,
i_tsn=0, params=None)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Initiation Acknowl-
edgement (INIT ACK) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 106

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
init_tag the tag that be used as Verification Tag.
a_rwnd Advertised Receiver Window Credit.
os number of outbound streams.
mis number of inbound streams.
i_tsn Transmission Sequence Number that the sender will use.
params Optional/Variable-Length Parameters.

a list of derived classes of os_ken.lib.packet.sctp.param.

class os_ken.lib.packet.sctp.chunk_sack(flags=0, length=0, tsn_ack=0,
a_rwnd=0, gapack_num=0,
duptsn_num=0, gapacks=None,
duptsns=None)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Selective Acknowl-
edgement (SACK) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
tsn_ack TSN of the last DATA chunk received in sequence before a gap.
a_rwnd Advertised Receiver Window Credit.
gapack_num number of Gap Ack blocks.
duptsn_num number of duplicate TSNs.
gapacks a list of Gap Ack blocks. one block is made of a list with the start offset and

the end offset from tsn_ack. e.g.) gapacks = [[2, 3], [10, 12], [19, 21]]
duptsns a list of duplicate TSN.

class os_ken.lib.packet.sctp.chunk_shutdown(flags=0, length=0, tsn_ack=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Shutdown Associa-
tion (SHUTDOWN) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 107

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)
tsn_ack TSN of the last DATA chunk received in sequence before a gap.

class os_ken.lib.packet.sctp.chunk_shutdown_ack(flags=0, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Shutdown Acknowl-
edgement (SHUTDOWN ACK) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
flags set to ’0’. this field will be ignored.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.chunk_shutdown_complete(tflag=0,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Shutdown Complete
(SHUTDOWN COMPLETE) chunk (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.sctp

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
tflag ’0’ means the Verification tag is normal. ’1’ means the Verification tag is copy of

the sender.
length length of this chunk containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_cookie_preserve(value=0, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Cookie Preservative
Parameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_init

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 108

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
value Suggested Cookie Life-Span Increment (msec).
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_ecn(value=None, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for ECN Parameter
(RFC 4960 Appendix A.).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_init

• os_ken.lib.packet.sctp.chunk_init_ack

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value set to None.
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_heartbeat(value=None, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Heartbeat Info Pa-
rameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_heartbeat

• os_ken.lib.packet.sctp.chunk_heartbeat_ack

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value the sender-specific heartbeat information.
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_host_addr(value=None, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Host Name Address
Parameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_init

• os_ken.lib.packet.sctp.chunk_init_ack

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 109

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
value a host name that ends with null terminator.
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_ipv4(value=’127.0.0.1’, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for IPv4 Address Pa-
rameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_init

• os_ken.lib.packet.sctp.chunk_init_ack

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value IPv4 address of the sending endpoint.
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_ipv6(value=’::1’, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for IPv6 Address Pa-
rameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_init

• os_ken.lib.packet.sctp.chunk_init_ack

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value IPv6 address of the sending endpoint.
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_state_cookie(value=None, length=0)
Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for State Cookie Param-
eter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_init_ack

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 110

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
value the state cookie. see Section 5.1.3 in RFC 4960.
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_supported_addr(value=None,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Supported Address
Types Parameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_init

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value a list of parameter types. odd cases pad with 0x0000.
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.param_unrecognized_param(value=None,
length=0)

Stream Control Transmission Protocol (SCTP) sub encoder/decoder class for Unrecognized Pa-
rameter (RFC 4960).

This class is used with the following.

• os_ken.lib.packet.sctp.chunk_init_ack

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
value the unrecognized parameter in the INIT chunk.
length length of this param containing this header. (0 means automatically-calculate

when encoding)

class os_ken.lib.packet.sctp.sctp(src_port=1, dst_port=1, vtag=0, csum=0,
chunks=None)

Stream Control Transmission Protocol (SCTP) header encoder/decoder class (RFC 4960).

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
src_port Source Port
dst_port Destination Port
vtag Verification Tag
csum Checksum (0 means automatically-calculate when encoding)
chunks a list of derived classes of os_ken.lib.packet.sctp.chunk.

8.1. Writing Your OS-Ken Application 111

os-ken Documentation, Release 1.4.1.dev5

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

Slow

class os_ken.lib.packet.slow.lacp(version=1, actor_system_priority=0, ac-
tor_system=’00:00:00:00:00:00’, ac-
tor_key=0, actor_port_priority=0, ac-
tor_port=0, actor_state_activity=0,
actor_state_timeout=0, ac-
tor_state_aggregation=0, ac-
tor_state_synchronization=0, ac-
tor_state_collecting=0, ac-
tor_state_distributing=0, ac-
tor_state_defaulted=0, ac-
tor_state_expired=0, part-
ner_system_priority=0, part-
ner_system=’00:00:00:00:00:00’, part-
ner_key=0, partner_port_priority=0, part-
ner_port=0, partner_state_activity=0,
partner_state_timeout=0, part-
ner_state_aggregation=0, part-
ner_state_synchronization=0, part-
ner_state_collecting=0, part-
ner_state_distributing=0, part-
ner_state_defaulted=0, part-
ner_state_expired=0, collec-
tor_max_delay=0)

Link Aggregation Control Protocol(LACP, IEEE 802.1AX) header encoder/decoder class.

http://standards.ieee.org/getieee802/download/802.1AX-2008.pdf

LACPDU format

8.1. Writing Your OS-Ken Application 112

http://standards.ieee.org/getieee802/download/802.1AX-2008.pdf

os-ken Documentation, Release 1.4.1.dev5

LACPDU structure Octets
Subtype = LACP 1
Version Number 1
TLV Actor TLV_type = Actor Information 1

Actor_Information_Length = 20 1
Actor_System_Priority 2
Actor_System 6
Actor_Key 2
Actor_Port_Priority 2
Actor_Port 2
Actor_State 1
Reserved 3

TLV Partner TLV_type = Partner Information 1
Partner_Information_Length = 20 1
Partner_System_Priority 2
Partner_System 6
Partner_Key 2
Partner_Port_Priority 2
Partner_Port 2
Partner_State 1
Reserved 3

TLV Collector TLV_type = Collector Information 1
Collector_Information_Length = 16 1
Collector_Max_Delay 2
Reserved 12

TLV Terminator TLV_type = Terminator 1
Terminator_Length = 0 1
Reserved 50

Terminator information uses a length value of 0 (0x00).

NOTE--The use of a Terminator_Length of 0 is intentional. In TLV encoding schemes it is
common practice for the terminator encoding to be 0 both for the type and the length.

Actor_State and Partner_State encoded as individual bits within a single octet as follows:

7 6 5 4 3 2 1 0
EXPR DFLT DIST CLCT SYNC AGGR TMO ACT

ACT bit 0. about the activity control value with regard to this link.

TMO bit 1. about the timeout control value with regard to this link.

AGGR bit 2. about how the system regards this link from the point of view of the aggregation.

SYNC bit 3. about how the system regards this link from the point of view of the synchronization.

CLCT bit 4. about collecting of incoming frames.

DIST bit 5. about distributing of outgoing frames.

DFLT bit 6. about the opposite system information which the system use.

8.1. Writing Your OS-Ken Application 113

os-ken Documentation, Release 1.4.1.dev5

EXPR bit 7. about the expire state of the system.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

8.1. Writing Your OS-Ken Application 114

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
version LACP version. This parameter must be set to

LACP_VERSION_NUMBER(i.e. 1).
actor_system_priority The priority assigned to this System.
actor_system The Actor’s System ID, encoded as a MAC address.
actor_key The operational Key value assigned to the port by the Actor.
actor_port_priority The priority assigned to this port.
actor_port The port number assigned to the port by the Actor.
actor_state_activity

about the activity control value with regard to this link.
LACP_STATE_ACTIVE(1)
LACP_STATE_PASSIVE(0)

actor_state_timeout
about the timeout control value with regard to this link.
LACP_STATE_SHORT_TIMEOUT(1)
LACP_STATE_LONG_TIMEOUT(0)

actor_state_aggregation
about how the system regards this link from the point of view
of the aggregation.
LACP_STATE_AGGREGATEABLE(1)
LACP_STATE_INDIVIDUAL(0)

actor_state_synchronization
about how the system regards this link from the point of view
of the synchronization.
LACP_STATE_IN_SYNC(1)
LACP_STATE_OUT_OF_SYNC(0)

actor_state_collecting
about collecting of incoming frames.
LACP_STATE_COLLECTING_ENABLED(1)
LACP_STATE_COLLECTING_DISABLED(0)

actor_state_distributing
about distributing of outgoing frames.
LACP_STATE_DISTRIBUTING_ENABLED(1)
LACP_STATE_DISTRIBUTING_DISABLED(0)

actor_state_defaulted
about the Partner information which the the Actor use.
LACP_STATE_DEFAULTED_PARTNER(1)
LACP_STATE_OPERATIONAL_PARTNER(0)

actor_state_expired
about the state of the Actor.
LACP_STATE_EXPIRED(1)
LACP_STATE_NOT_EXPIRED(0)

partner_system_priority The priority assigned to the Partner System.
partner_system The Partner’s System ID, encoded as a MAC address.
partner_key The operational Key value assigned to the port by the Partner.
partner_port_priority The priority assigned to this port by the Partner.
partner_port The port number assigned to the port by the Partner.
partner_state_activity See actor_state_activity.
partner_state_timeout See actor_state_timeout.
partner_state_aggregation See actor_state_aggregation.
partner_state_synchronization See actor_state_synchronization.
partner_state_collecting See actor_state_collecting.
partner_state_distributing See actor_state_distributing.
partner_state_defaulted See actor_state_defaulted.
partner_state_expired See actor_state_expired.
collector_max_delay the maximum time that the Frame Collector may delay.8.1. Writing Your OS-Ken Application 115

os-ken Documentation, Release 1.4.1.dev5

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.slow.slow
Slow Protocol header decoder class. This class has only the parser method.

http://standards.ieee.org/getieee802/download/802.3-2012_section5.pdf

Slow Protocols Subtypes

Subtype Value Protocol Name
0 Unused - Illegal Value
1 Link Aggregation Control Protocol(LACP)
2 Link Aggregation - Marker Protocol
3 Operations, Administration, and Maintenance(OAM)
4 - 9 Reserved for future use
10 Organization Specific Slow Protocol(OSSP)
11 - 255 Unused - Illegal values

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

8.1. Writing Your OS-Ken Application 116

http://standards.ieee.org/getieee802/download/802.3-2012_section5.pdf

os-ken Documentation, Release 1.4.1.dev5

TCP

class os_ken.lib.packet.tcp.tcp(src_port=1, dst_port=1, seq=0, ack=0, offset=0,
bits=0, window_size=0, csum=0, urgent=0, op-
tion=None)

TCP (RFC 793) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
src_port Source Port
dst_port Destination Port
seq Sequence Number
ack Acknowledgement Number
offset Data Offset (0 means automatically-calculate when encoding)
bits Control Bits
win-
dow_size

Window

csum Checksum (0 means automatically-calculate when encoding)
urgent Urgent Pointer
option List of TCPOption sub-classes or an bytearray containing options. None if no

options.

has_flags(*flags)
Check if flags are set on this packet.

returns boolean if all passed flags is set

Example:

>>> pkt = tcp.tcp(bits=(tcp.TCP_SYN | tcp.TCP_ACK))
>>> pkt.has_flags(tcp.TCP_SYN, tcp.TCP_ACK)
True

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

8.1. Writing Your OS-Ken Application 117

os-ken Documentation, Release 1.4.1.dev5

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

UDP

class os_ken.lib.packet.udp.udp(src_port=1, dst_port=1, total_length=0,
csum=0)

UDP (RFC 768) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
src_port Source Port
dst_port Destination Port
total_length Length (0 means automatically-calculate when encoding)
csum Checksum (0 means automatically-calculate when encoding)

static get_packet_type(src_port, dst_port)
Per-protocol dict-like get method.

Provided for convenience of protocol implementers. Internal use only.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

8.1. Writing Your OS-Ken Application 118

os-ken Documentation, Release 1.4.1.dev5

VLAN

class os_ken.lib.packet.vlan.svlan(pcp=0, cfi=0, vid=0, ethertype=33024)
S-VLAN (IEEE 802.1ad) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
pcp Priority Code Point
cfi Canonical Format Indicator. In a case to be used as B-TAG, this field means

DEI(Drop Eligible Indication).
vid VLAN Identifier
ethertype EtherType

classmethod get_packet_type(type_)
Per-protocol dict-like get method.

Provided for convenience of protocol implementers. Internal use only.

class os_ken.lib.packet.vlan.vlan(pcp=0, cfi=0, vid=0, ethertype=2048)
VLAN (IEEE 802.1Q) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
pcp Priority Code Point
cfi Canonical Format Indicator
vid VLAN Identifier
ethertype EtherType

classmethod get_packet_type(type_)
Override method for the Length/Type field (self.ethertype). The Length/Type field means
Length or Type interpretation, same as ethernet IEEE802.3. If the value of Length/Type field
is less than or equal to 1500 decimal(05DC hexadecimal), it means Length interpretation and
be passed to the LLC sublayer.

VRRP

VRRP packet parser/serializer

[RFC 3768] VRRP v2 packet format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|Version| Type | Virtual Rtr ID| Priority | Count IP Addrs|
+-+
| Auth Type | Adver Int | Checksum |
+-+
| IP Address (1) |

(continues on next page)

8.1. Writing Your OS-Ken Application 119

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

+-+
| . |
| . |
| . |
+-+
| IP Address (n) |
+-+
| Authentication Data (1) |
+-+
| Authentication Data (2) |
+-+

[RFC 5798] VRRP v3 packet format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| IPv4 Fields or IPv6 Fields |

... ...
| |
+-+
|Version| Type | Virtual Rtr ID| Priority |Count IPvX Addr|
+-+
|(rsvd) | Max Adver Int | Checksum |
+-+
| |
+ +
| IPvX Address(es) |
+ +
+ +
+ +
+ +
| |
+ +
| |
+-+

class os_ken.lib.packet.vrrp.vrrp(version, type_, vrid, priority, count_ip,
max_adver_int, checksum, ip_addresses,
auth_type=None, auth_data=None)

The base class for VRRPv2 (RFC 3768) and VRRPv3 (RFC 5798) header encoder/decoder
classes.

Unlike other os_ken.lib.packet.packet_base.PacketBase derived classes, This class should not be
directly instantiated by user.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order.

8.1. Writing Your OS-Ken Application 120

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
version Version
type Type
vrid Virtual Rtr ID (VRID)
priority Priority
count_ip Count IPvX Addr. Calculated automatically when encoding.
max_adver_int Maximum Advertisement Interval (Max Adver Int)
checksum Checksum. Calculated automatically when encoding.
ip_addresses IPvX Address(es). A python list of IP addresses.
auth_type Authentication Type (only for VRRPv2)
auth_data Authentication Data (only for VRRPv2)

create_packet(primary_ip_address, vlan_id=None)
Prepare a VRRP packet.

Returns a newly created os_ken.lib.packet.packet.Packet object with appropriate protocol
header objects added by add_protocol(). It’s caller’s responsibility to serialize(). The serial-
ized packet would looks like the ones described in the following sections.

• RFC 3768 5.1. VRRP Packet Format

• RFC 5798 5.1. VRRP Packet Format

Argument Description
primary_ip_address Source IP address
vlan_id VLAN ID. None for no VLAN.

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.vrrp.vrrpv2(version, type_, vrid, priority, count_ip,
max_adver_int, checksum, ip_addresses,
auth_type=None, auth_data=None)

VRRPv2 (RFC 3768) header encoder/decoder class.

8.1. Writing Your OS-Ken Application 121

os-ken Documentation, Release 1.4.1.dev5

Unlike other os_ken.lib.packet.packet_base.PacketBase derived classes, create method should be
used to instantiate an object of this class.

static create(type_, vrid, priority, max_adver_int, ip_addresses)
Unlike other os_ken.lib.packet.packet_base.PacketBase derived classes, this method should
be used to instantiate an object of this class.

This method’s arguments are same as os_ken.lib.packet.vrrp.vrrp object’s attributes of the
same name. (except that type_ corresponds to type attribute.)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

class os_ken.lib.packet.vrrp.vrrpv3(version, type_, vrid, priority, count_ip,
max_adver_int, checksum, ip_addresses,
auth_type=None, auth_data=None)

VRRPv3 (RFC 5798) header encoder/decoder class.

Unlike other os_ken.lib.packet.packet_base.PacketBase derived classes, create method should be
used to instantiate an object of this class.

static create(type_, vrid, priority, max_adver_int, ip_addresses)
Unlike other os_ken.lib.packet.packet_base.PacketBase derived classes, this method should
be used to instantiate an object of this class.

This method’s arguments are same as os_ken.lib.packet.vrrp.vrrp object’s attributes of the
same name. (except that type_ corresponds to type attribute.)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

8.1. Writing Your OS-Ken Application 122

os-ken Documentation, Release 1.4.1.dev5

VXLAN

os_ken.lib.packet.vxlan.vni_from_bin(buf)
Converts binary representation VNI to integer.

Parameters buf -- binary representation of VNI.

Returns VNI integer.

os_ken.lib.packet.vxlan.vni_to_bin(vni)
Converts integer VNI to binary representation.

Parameters vni -- integer of VNI

Returns binary representation of VNI.

class os_ken.lib.packet.vxlan.vxlan(vni)
VXLAN (RFC 7348) header encoder/decoder class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

Attribute Description
vni VXLAN Network Identifier

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(payload, prev)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

8.1. Writing Your OS-Ken Application 123

os-ken Documentation, Release 1.4.1.dev5

Zebra

Zebra protocol parser/serializer

Zebra Protocol is used to communicate with the zebra daemon.

class os_ken.lib.packet.zebra.InterfaceLinkParams(lp_status,
te_metric, max_bw,
max_reserved_bw,
unreserved_bw,
admin_group, re-
mote_as, remote_ip,
average_delay,
min_delay,
max_delay, de-
lay_var, pkt_loss,
residual_bw, aver-
age_bw, utilized_bw)

Interface Link Parameters class for if_link_params structure.

class os_ken.lib.packet.zebra.NextHopBlackhole(ifindex=None, if-
name=None, addr=None,
type_=None)

Nexthop class for ZEBRA_NEXTHOP_BLACKHOLE type.

class os_ken.lib.packet.zebra.NextHopIFIndex(ifindex=None, ifname=None,
addr=None, type_=None)

Nexthop class for ZEBRA_NEXTHOP_IFINDEX type.

class os_ken.lib.packet.zebra.NextHopIFName(ifindex=None, ifname=None,
addr=None, type_=None)

Nexthop class for ZEBRA_NEXTHOP_IFNAME type.

class os_ken.lib.packet.zebra.NextHopIPv4(ifindex=None, ifname=None,
addr=None, type_=None)

Nexthop class for ZEBRA_NEXTHOP_IPV4 type.

class os_ken.lib.packet.zebra.NextHopIPv4IFIndex(ifindex=None,
ifname=None,
addr=None,
type_=None)

Nexthop class for ZEBRA_NEXTHOP_IPV4_IFINDEX type.

class os_ken.lib.packet.zebra.NextHopIPv4IFName(ifindex=None,
ifname=None,
addr=None,
type_=None)

Nexthop class for ZEBRA_NEXTHOP_IPV4_IFNAME type.

class os_ken.lib.packet.zebra.NextHopIPv6(ifindex=None, ifname=None,
addr=None, type_=None)

Nexthop class for ZEBRA_NEXTHOP_IPV6 type.

class os_ken.lib.packet.zebra.NextHopIPv6IFIndex(ifindex=None,
ifname=None,
addr=None,
type_=None)

Nexthop class for ZEBRA_NEXTHOP_IPV6_IFINDEX type.

8.1. Writing Your OS-Ken Application 124

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.NextHopIPv6IFName(ifindex=None,
ifname=None,
addr=None,
type_=None)

Nexthop class for ZEBRA_NEXTHOP_IPV6_IFNAME type.

class os_ken.lib.packet.zebra.RegisteredNexthop(connected, family, pre-
fix)

Unit of ZEBRA_NEXTHOP_REGISTER message body.

class os_ken.lib.packet.zebra.ZebraBfdClientRegister(pid)
Message body class for FRR_ZEBRA_BFD_CLIENT_REGISTER.

class os_ken.lib.packet.zebra.ZebraBfdDestinationDeregister(pid,
dst_family,
dst_prefix,
multi_hop,
src_family,
src_prefix,
multi_hop_count=None,
if-
name=None)

Message body class for FRR_ZEBRA_BFD_DEST_DEREGISTER.

class os_ken.lib.packet.zebra.ZebraBfdDestinationRegister(pid,
dst_family,
dst_prefix,
min_rx_timer,
min_tx_timer,
de-
tect_mult,
multi_hop,
src_family,
src_prefix,
multi_hop_count=None,
if-
name=None)

Message body class for FRR_ZEBRA_BFD_DEST_REGISTER.

class os_ken.lib.packet.zebra.ZebraBfdDestinationReply
Message body class for FRR_ZEBRA_BFD_DEST_REPLAY.

class os_ken.lib.packet.zebra.ZebraBfdDestinationUpdate(pid,
dst_family,
dst_prefix,
min_rx_timer,
min_tx_timer,
detect_mult,
multi_hop,
src_family,
src_prefix,
multi_hop_count=None,
if-
name=None)

Message body class for FRR_ZEBRA_BFD_DEST_UPDATE.

8.1. Writing Your OS-Ken Application 125

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.ZebraHello(route_type, instance=None)
Message body class for ZEBRA_HELLO.

class os_ken.lib.packet.zebra.ZebraIPv4ImportLookup(prefix, met-
ric=None, nex-
thops=None,
from_zebra=False)

Message body class for ZEBRA_IPV4_IMPORT_LOOKUP.

class os_ken.lib.packet.zebra.ZebraIPv4NexthopAdd(route_type, flags,
message, safi=None,
prefix=None,
src_prefix=None,
nexthops=None,
ifindexes=None,
distance=None,
metric=None,
mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_IPV4_NEXTHOP_ADD.

class os_ken.lib.packet.zebra.ZebraIPv4NexthopDelete(route_type,
flags, message,
safi=None,
prefix=None,
src_prefix=None,
nexthops=None,
ifindexes=None,
distance=None,
metric=None,
mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_IPV4_NEXTHOP_DELETE.

class os_ken.lib.packet.zebra.ZebraIPv4NexthopLookup(addr, met-
ric=None,
nexthops=None)

Message body class for ZEBRA_IPV4_NEXTHOP_LOOKUP.

class os_ken.lib.packet.zebra.ZebraIPv4NexthopLookupMRib(addr, dis-
tance=None,
met-
ric=None,
nex-
thops=None)

Message body class for ZEBRA_IPV4_NEXTHOP_LOOKUP_MRIB.

8.1. Writing Your OS-Ken Application 126

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.ZebraIPv4RouteAdd(route_type, flags,
message, safi=None,
prefix=None,
src_prefix=None,
nexthops=None,
ifindexes=None, dis-
tance=None, met-
ric=None, mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for ZEBRA_IPV4_ROUTE_ADD.

class os_ken.lib.packet.zebra.ZebraIPv4RouteDelete(route_type, flags,
message, safi=None,
prefix=None,
src_prefix=None,
nexthops=None,
ifindexes=None,
distance=None,
metric=None,
mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for ZEBRA_IPV4_ROUTE_DELETE.

class os_ken.lib.packet.zebra.ZebraIPv4RouteIPv6NexthopAdd(route_type,
flags,
mes-
sage,
safi=None,
pre-
fix=None,
src_prefix=None,
nex-
thops=None,
ifind-
exes=None,
dis-
tance=None,
met-
ric=None,
mtu=None,
tag=None,
in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_IPV4_ROUTE_IPV6_NEXTHOP_ADD.

class os_ken.lib.packet.zebra.ZebraIPv6ImportLookup(prefix, met-
ric=None, nex-
thops=None,
from_zebra=False)

8.1. Writing Your OS-Ken Application 127

os-ken Documentation, Release 1.4.1.dev5

Message body class for ZEBRA_IPV6_IMPORT_LOOKUP.

class os_ken.lib.packet.zebra.ZebraIPv6NexthopAdd(route_type, flags,
message, safi=None,
prefix=None,
src_prefix=None,
nexthops=None,
ifindexes=None,
distance=None,
metric=None,
mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_IPV6_NEXTHOP_ADD.

class os_ken.lib.packet.zebra.ZebraIPv6NexthopDelete(route_type,
flags, message,
safi=None,
prefix=None,
src_prefix=None,
nexthops=None,
ifindexes=None,
distance=None,
metric=None,
mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_IPV6_NEXTHOP_DELETE.

class os_ken.lib.packet.zebra.ZebraIPv6NexthopLookup(addr, met-
ric=None,
nexthops=None)

Message body class for ZEBRA_IPV6_NEXTHOP_LOOKUP.

class os_ken.lib.packet.zebra.ZebraIPv6RouteAdd(route_type, flags,
message, safi=None,
prefix=None,
src_prefix=None,
nexthops=None,
ifindexes=None, dis-
tance=None, met-
ric=None, mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for ZEBRA_IPV6_ROUTE_ADD.

8.1. Writing Your OS-Ken Application 128

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.ZebraIPv6RouteDelete(route_type, flags,
message, safi=None,
prefix=None,
src_prefix=None,
nexthops=None,
ifindexes=None,
distance=None,
metric=None,
mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for ZEBRA_IPV6_ROUTE_DELETE.

class os_ken.lib.packet.zebra.ZebraImportCheckUpdate(family, prefix,
distance=None,
metric=None,
nexthops=None)

Message body class for FRR_ZEBRA_IMPORT_CHECK_UPDATE.

class os_ken.lib.packet.zebra.ZebraImportRouteRegister(nexthops)
Message body class for FRR_ZEBRA_IMPORT_ROUTE_REGISTER.

class os_ken.lib.packet.zebra.ZebraImportRouteUnregister(nexthops)
Message body class for FRR_ZEBRA_IMPORT_ROUTE_UNREGISTER.

class os_ken.lib.packet.zebra.ZebraInterfaceAdd(ifname=None,
ifindex=None,
status=None,
if_flags=None,
ptm_enable=None,
ptm_status=None, met-
ric=None, speed=None,
ifmtu=None,
ifmtu6=None,
bandwidth=None,
ll_type=None,
hw_addr_len=0,
hw_addr=None,
link_params=None)

Message body class for ZEBRA_INTERFACE_ADD.

class os_ken.lib.packet.zebra.ZebraInterfaceAddressAdd(ifindex,
ifc_flags,
family, prefix,
dest)

Message body class for ZEBRA_INTERFACE_ADDRESS_ADD.

class os_ken.lib.packet.zebra.ZebraInterfaceAddressDelete(ifindex,
ifc_flags,
family,
prefix,
dest)

Message body class for ZEBRA_INTERFACE_ADDRESS_DELETE.

8.1. Writing Your OS-Ken Application 129

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.ZebraInterfaceBfdDestinationUpdate(ifindex,
dst_family,
dst_prefix,
sta-
tus,
src_family,
src_prefix)

Message body class for FRR_ZEBRA_INTERFACE_BFD_DEST_UPDATE.

class os_ken.lib.packet.zebra.ZebraInterfaceDelete(ifname=None,
ifindex=None,
status=None,
if_flags=None,
ptm_enable=None,
ptm_status=None,
metric=None,
speed=None,
ifmtu=None,
ifmtu6=None,
bandwidth=None,
ll_type=None,
hw_addr_len=0,
hw_addr=None,
link_params=None)

Message body class for ZEBRA_INTERFACE_DELETE.

class os_ken.lib.packet.zebra.ZebraInterfaceDisableRadv(ifindex,
interval)

Message body class for FRR_ZEBRA_INTERFACE_DISABLE_RADV.

class os_ken.lib.packet.zebra.ZebraInterfaceDown(ifname=None,
ifindex=None,
status=None,
if_flags=None,
ptm_enable=None,
ptm_status=None,
metric=None,
speed=None,
ifmtu=None,
ifmtu6=None,
bandwidth=None,
ll_type=None,
hw_addr_len=0,
hw_addr=None,
link_params=None)

Message body class for ZEBRA_INTERFACE_DOWN.

class os_ken.lib.packet.zebra.ZebraInterfaceEnableRadv(ifindex, inter-
val)

Message body class for FRR_ZEBRA_INTERFACE_ENABLE_RADV.

class os_ken.lib.packet.zebra.ZebraInterfaceLinkParams(ifindex,
link_params)

Message body class for ZEBRA_INTERFACE_LINK_PARAMS.

8.1. Writing Your OS-Ken Application 130

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.ZebraInterfaceNbrAddressAdd(ifindex,
family,
prefix)

Message body class for FRR_ZEBRA_INTERFACE_NBR_ADDRESS_ADD.

class os_ken.lib.packet.zebra.ZebraInterfaceNbrAddressDelete(ifindex,
fam-
ily,
pre-
fix)

Message body class for FRR_ZEBRA_INTERFACE_NBR_ADDRESS_DELETE.

class os_ken.lib.packet.zebra.ZebraInterfaceUp(ifname=None,
ifindex=None, sta-
tus=None, if_flags=None,
ptm_enable=None,
ptm_status=None,
metric=None,
speed=None, ifmtu=None,
ifmtu6=None,
bandwidth=None,
ll_type=None,
hw_addr_len=0,
hw_addr=None,
link_params=None)

Message body class for ZEBRA_INTERFACE_UP.

class os_ken.lib.packet.zebra.ZebraInterfaceVrfUpdate(ifindex, vrf_id)
Message body class for FRR_ZEBRA_INTERFACE_VRF_UPDATE.

class os_ken.lib.packet.zebra.ZebraMessage(length=None, version=3,
vrf_id=0, command=None,
body=None)

Zebra protocol parser/serializer class.

An instance has the following attributes at least. Most of them are same to the on-wire counterparts
but in host byte order. __init__ takes the corresponding args in this order.

At-
tribute

Description

length Total packet length including this header. The minimum length is 3 bytes for version 0
messages, 6 bytes for version 1/2 messages and 8 bytes for version 3 messages.

ver-
sion

Version number of the Zebra protocol message. To instantiate messages with other than
the default version, version must be specified.

vrf_id VRF ID for the route contained in message. Not present in version 0/1/2 messages in
the on-wire structure, and always 0 for theses version.

com-
mand

Zebra Protocol command, which denotes message type.

body Messages body. An instance of subclass of _ZebraMessageBody named like "Ze-
bra + <message name>" (e.g., ZebraHello). Or None if message does not contain
any body.

Note: To instantiate Zebra messages, command can be omitted when the valid body is specified.

8.1. Writing Your OS-Ken Application 131

os-ken Documentation, Release 1.4.1.dev5

>>> from os_ken.lib.packet import zebra
>>> zebra.ZebraMessage(body=zebra.ZebraHello())
ZebraMessage(body=ZebraHello(route_type=14),command=23,
length=None,version=3,vrf_id=0)

On the other hand, if body is omitted, command must be specified.

>>> zebra.ZebraMessage(command=zebra.ZEBRA_INTERFACE_ADD)
ZebraMessage(body=None,command=1,length=None,version=3,vrf_id=0)

classmethod parser(buf)
Decode a protocol header.

This method is used only when decoding a packet.

Decode a protocol header at offset 0 in bytearray buf. Returns the following three objects.

• An object to describe the decoded header.

• A packet_base.PacketBase subclass appropriate for the rest of the packet. None when
the rest of the packet should be considered as raw payload.

• The rest of packet.

serialize(_payload=None, _prev=None)
Encode a protocol header.

This method is used only when encoding a packet.

Encode a protocol header. Returns a bytearray which contains the header.

payload is the rest of the packet which will immediately follow this header.

prev is a packet_base.PacketBase subclass for the outer protocol header. prev is None if the
current header is the outer-most. For example, prev is ipv4 or ipv6 for tcp.serialize.

class os_ken.lib.packet.zebra.ZebraMplsLabelsAdd(route_type, family,
prefix, gate_addr,
ifindex=None,
distance=None,
in_label=None,
out_label=None)

Message body class for FRR_ZEBRA_MPLS_LABELS_ADD.

class os_ken.lib.packet.zebra.ZebraMplsLabelsDelete(route_type, family,
prefix, gate_addr,
ifindex=None,
distance=None,
in_label=None,
out_label=None)

Message body class for FRR_ZEBRA_MPLS_LABELS_DELETE.

class os_ken.lib.packet.zebra.ZebraNexthopRegister(nexthops)
Message body class for ZEBRA_NEXTHOP_REGISTER.

class os_ken.lib.packet.zebra.ZebraNexthopUnregister(nexthops)
Message body class for ZEBRA_NEXTHOP_UNREGISTER.

8.1. Writing Your OS-Ken Application 132

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.ZebraNexthopUpdate(family, prefix, dis-
tance=None, met-
ric=None, nex-
thops=None)

Message body class for ZEBRA_NEXTHOP_UPDATE.

class os_ken.lib.packet.zebra.ZebraRedistributeAdd(route_type,
afi=None, in-
stance=None)

Message body class for ZEBRA_REDISTRIBUTE_ADD.

class os_ken.lib.packet.zebra.ZebraRedistributeDefaultAdd(route_type,
afi=None,
in-
stance=None)

Message body class for ZEBRA_REDISTRIBUTE_DEFAULT_ADD.

class os_ken.lib.packet.zebra.ZebraRedistributeDefaultDelete(route_type,
afi=None,
in-
stance=None)

Message body class for ZEBRA_REDISTRIBUTE_DEFAULT_DELETE.

class os_ken.lib.packet.zebra.ZebraRedistributeDelete(route_type,
afi=None, in-
stance=None)

Message body class for ZEBRA_REDISTRIBUTE_DELETE.

class os_ken.lib.packet.zebra.ZebraRedistributeIPv4Add(route_type,
flags,
message,
safi=None,
prefix=None,
src_prefix=None,
nex-
thops=None,
ifind-
exes=None,
dis-
tance=None,
metric=None,
mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_IPV4_ROUTE_ADD.

8.1. Writing Your OS-Ken Application 133

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.ZebraRedistributeIPv4Delete(route_type,
flags,
message,
safi=None,
pre-
fix=None,
src_prefix=None,
nex-
thops=None,
ifind-
exes=None,
dis-
tance=None,
met-
ric=None,
mtu=None,
tag=None,
in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_IPV4_ROUTE_DELETE.

class os_ken.lib.packet.zebra.ZebraRedistributeIPv6Add(route_type,
flags,
message,
safi=None,
prefix=None,
src_prefix=None,
nex-
thops=None,
ifind-
exes=None,
dis-
tance=None,
metric=None,
mtu=None,
tag=None, in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_REDISTRIBUTE_IPV6_ADD.

8.1. Writing Your OS-Ken Application 134

os-ken Documentation, Release 1.4.1.dev5

class os_ken.lib.packet.zebra.ZebraRedistributeIPv6Delete(route_type,
flags,
message,
safi=None,
pre-
fix=None,
src_prefix=None,
nex-
thops=None,
ifind-
exes=None,
dis-
tance=None,
met-
ric=None,
mtu=None,
tag=None,
in-
stance=None,
from_zebra=False)

Message body class for FRR_ZEBRA_REDISTRIBUTE_IPV6_DEL.

class os_ken.lib.packet.zebra.ZebraRouterIDAdd
Message body class for ZEBRA_ROUTER_ID_ADD.

class os_ken.lib.packet.zebra.ZebraRouterIDDelete
Message body class for ZEBRA_ROUTER_ID_DELETE.

class os_ken.lib.packet.zebra.ZebraRouterIDUpdate(family, prefix)
Message body class for ZEBRA_ROUTER_ID_UPDATE.

class os_ken.lib.packet.zebra.ZebraUnknownMessage(buf)
Message body class for Unknown command.

class os_ken.lib.packet.zebra.ZebraVrfAdd(vrf_name)
Message body class for FRR_ZEBRA_VRF_ADD.

class os_ken.lib.packet.zebra.ZebraVrfDelete(vrf_name)
Message body class for FRR_ZEBRA_VRF_DELETE.

class os_ken.lib.packet.zebra.ZebraVrfUnregister
Message body class for ZEBRA_VRF_UNREGISTER.

os_ken.lib.packet.zebra.zebra
alias of os_ken.lib.packet.zebra.ZebraMessage

8.1. Writing Your OS-Ken Application 135

os-ken Documentation, Release 1.4.1.dev5

PCAP file library

Introduction

OS-Ken PCAP file library helps you to read/write PCAP file which file format are described in The
Wireshark Wiki.

Reading PCAP file

For loading the packet data containing in PCAP files, you can use pcaplib.Reader.

class os_ken.lib.pcaplib.Reader(file_obj)
PCAP file reader

Argument Description
file_obj File object which reading PCAP file in binary mode

Example of usage:

from os_ken.lib import pcaplib
from os_ken.lib.packet import packet

frame_count = 0
iterate pcaplib.Reader that yields (timestamp, packet_data)
in the PCAP file
for ts, buf in pcaplib.Reader(open('test.pcap', 'rb')):

frame_count += 1
pkt = packet.Packet(buf)
print("%d, %f, %s" % (frame_count, ts, pkt))

Writing PCAP file

For dumping the packet data which your OSKenApp received, you can use pcaplib.Writer.

class os_ken.lib.pcaplib.Writer(file_obj, snaplen=65535, network=1)
PCAP file writer

Argument Description
file_obj File object which writing PCAP file in binary mode
snaplen Max length of captured packets (in octets)
network Data link type. (e.g. 1 for Ethernet, see tcpdump.org for details)

Example of usage:

...
from os_ken.lib import pcaplib

class SimpleSwitch13(app_manager.OSKenApp):
OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

(continues on next page)

8.1. Writing Your OS-Ken Application 136

https://wiki.wireshark.org/Development/LibpcapFileFormat
https://wiki.wireshark.org/Development/LibpcapFileFormat
http://www.tcpdump.org/linktypes.html

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

def __init__(self, *args, **kwargs):
super(SimpleSwitch13, self).__init__(*args, **kwargs)
self.mac_to_port = {}

Create pcaplib.Writer instance with a file object
for the PCAP file
self.pcap_writer = pcaplib.Writer(open('mypcap.pcap', 'wb'))

...

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def _packet_in_handler(self, ev):

Dump the packet data into PCAP file
self.pcap_writer.write_pkt(ev.msg.data)

...

OF-Config support

OS-Ken has a library for OF-Config support.

XML schema files for NETCONFIG and OFConfig

XML schema files for NETCONF and OFConfig are stolen from LINC whose licence is Apache 2.0.
It supports only part of OFConfig so that its schema files are (intentionally) limited such that operation
attributes are allowed only in several limited places. Once our library is tested with other OFConfig
switches, the schema files should be updated to allow operation attribute in more places.

References

• NETCONF ietf,

• NETCONF ietf wiki,

• OF-Config spec,

• ncclient,

• ncclient repo,

• LINC git repo

8.1. Writing Your OS-Ken Application 137

http://datatracker.ietf.org/wg/netconf/
http://tools.ietf.org/wg/netconf/trac/wiki
https://www.opennetworking.org/standards/of-config
http://ncclient.grnet.gr/
https://github.com/leopoul/ncclient/
https://github.com/FlowForwarding

os-ken Documentation, Release 1.4.1.dev5

BGP speaker library

Introduction

OS-Ken BGP speaker library helps you to enable your code to speak BGP protocol. The library supports
IPv4, IPv4 MPLS-labeled VPN, IPv6 MPLS-labeled VPN and L2VPN EVPN address families.

Example

The following simple code creates a BGP instance with AS number 64512 and Router ID 10.0.0.1. It
tries to establish a bgp session with a peer (its IP is 192.168.177.32 and the AS number is 64513). The
instance advertizes some prefixes.

import eventlet

BGPSpeaker needs sockets patched
eventlet.monkey_patch()

initialize a log handler
this is not strictly necessary but useful if you get messages like:
No handlers could be found for logger "os_ken.lib.hub"
import logging
import sys
log = logging.getLogger()
log.addHandler(logging.StreamHandler(sys.stderr))

from os_ken.services.protocols.bgp.bgpspeaker import BGPSpeaker

def dump_remote_best_path_change(event):
print 'the best path changed:', event.remote_as, event.prefix,\

event.nexthop, event.is_withdraw

def detect_peer_down(remote_ip, remote_as):
print 'Peer down:', remote_ip, remote_as

if __name__ == "__main__":
speaker = BGPSpeaker(as_number=64512, router_id='10.0.0.1',

best_path_change_handler=dump_remote_best_path_
↪→change,

peer_down_handler=detect_peer_down)

speaker.neighbor_add('192.168.177.32', 64513)
uncomment the below line if the speaker needs to talk with a bmp

↪→server.
speaker.bmp_server_add('192.168.177.2', 11019)
count = 1
while True:

eventlet.sleep(30)
prefix = '10.20.' + str(count) + '.0/24'
print "add a new prefix", prefix
speaker.prefix_add(prefix)
count += 1
if count == 4:

speaker.shutdown()
break

8.1. Writing Your OS-Ken Application 138

os-ken Documentation, Release 1.4.1.dev5

BGP speaker library API Reference

BGPSpeaker class

class os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker(as_number,
router_id,
bgp_server_hosts=(’0.0.0.0’,
’::’),
bgp_server_port=179,
re-
fresh_stalepath_time=0,
re-
fresh_max_eor_time=0,
best_path_change_handler=None,
adj_rib_in_change_handler=None,
peer_down_handler=None,
peer_up_handler=None,
ssh_console=False,
ssh_port=None,
ssh_host=None,
ssh_host_key=None,
la-
bel_range=(100,
100000),
al-
low_local_as_in_count=0,
clus-
ter_id=None,
lo-
cal_pref=100)

Class to provide the APIs of OSKen BGP Speaker.

as_number specifies an Autonomous Number. It must be an integer between 1 and 65535.

router_id specifies BGP router identifier. It must be the string representation of an IPv4
address (e.g. 10.0.0.1).

bgp_server_host specifies a list of TCP listen host addresses.

bgp_server_port specifies TCP listen port number. 179 is used if not specified.

refresh_stalepath_time causes the BGP speaker to remove stale routes from the BGP
table after the timer expires, even if the speaker does not receive a Router-Refresh End-of-RIB
message. This feature is disabled (not implemented yet).

refresh_max_eor_time causes the BGP speaker to generate a Route-Refresh End-of-RIB
message if it was not able to generate one due to route flapping. This feature is disabled (not
implemented yet).

best_path_change_handler, if specified, is called when any best remote path is changed
due to an update message or remote peer down. The handler is supposed to take one argument,
the instance of an EventPrefix class instance.

adj_rib_in_change_handler, if specified, is called when any adj-RIB-in path is changed
due to an update message or remote peer down. The given handler should take three argument, the

8.1. Writing Your OS-Ken Application 139

os-ken Documentation, Release 1.4.1.dev5

instance of an EventPrefix class instance, str type peer’s IP address and int type peer’s AS number.

peer_down_handler, if specified, is called when BGP peering session goes down.

peer_up_handler, if specified, is called when BGP peering session goes up.

ssh_console specifies whether or not SSH CLI need to be started.

ssh_port specifies the port number for SSH CLI server. The default is
bgp.operator.ssh.DEFAULT_SSH_PORT.

ssh_host specifies the IP address for SSH CLI server. The default is
bgp.operator.ssh.DEFAULT_SSH_HOST.

ssh_host_key specifies the path to the host key added to the keys list used by SSH CLI server.
The default is bgp.operator.ssh.DEFAULT_SSH_HOST_KEY.

label_range specifies the range of MPLS labels generated automatically.

allow_local_as_in_count maximum number of local AS number occurrences in
AS_PATH. This option is useful for e.g. auto RD/RT configurations in leaf/spine architecture with
shared AS numbers. The default is 0 and means "local AS number is not allowed in AS_PATH".
To allow local AS, 3 is recommended (Cisco’s default).

cluster_id specifies the cluster identifier for Route Reflector. It must be the string represen-
tation of an IPv4 address. If omitted, "router_id" is used for this field.

local_pref specifies the default local preference. It must be an integer.

attribute_map_get(address, route_dist=None, route_family=’ipv4’)
This method gets in-bound filters of the specified neighbor.

address specifies the IP address of the neighbor.

route_dist specifies route distinguisher that has attribute_maps.

route_family specifies route family of the VRF. This parameter must be one of the
following.

• RF_VPN_V4 (default) = ’ipv4’

• RF_VPN_V6 = ’ipv6’

Returns a list object containing an instance of AttributeMap

attribute_map_set(address, attribute_maps, route_dist=None,
route_family=’ipv4’)

This method sets attribute mapping to a neighbor. attribute mapping can be used when you
want to apply attribute to BGPUpdate under specific conditions.

address specifies the IP address of the neighbor

attribute_maps specifies attribute_map list that are used before paths are advertised.
All the items in the list must be an instance of AttributeMap class

route_dist specifies route dist in which attribute_maps are added.

route_family specifies route family of the VRF. This parameter must be one of the
following.

• RF_VPN_V4 (default) = ’ipv4’

• RF_VPN_V6 = ’ipv6’

8.1. Writing Your OS-Ken Application 140

os-ken Documentation, Release 1.4.1.dev5

We can set AttributeMap to a neighbor as follows:

pref_filter = PrefixFilter('192.168.103.0/30',
PrefixFilter.POLICY_PERMIT)

attribute_map = AttributeMap([pref_filter],
AttributeMap.ATTR_LOCAL_PREF, 250)

speaker.attribute_map_set('192.168.50.102', [attribute_map])

bmp_server_add(address, port)
This method registers a new BMP (BGP monitoring Protocol) server. The BGP speaker starts
to send BMP messages to the server. Currently, only one BMP server can be registered.

address specifies the IP address of a BMP server.

port specifies the listen port number of a BMP server.

bmp_server_del(address, port)
This method unregister the registered BMP server.

address specifies the IP address of a BMP server.

port specifies the listen port number of a BMP server.

evpn_prefix_add(route_type, route_dist, esi=0, ethernet_tag_id=None,
mac_addr=None, ip_addr=None, ip_prefix=None,
gw_ip_addr=None, vni=None, next_hop=None, tun-
nel_type=None, pmsi_tunnel_type=None, redun-
dancy_mode=None)

This method adds a new EVPN route to be advertised.

route_type specifies one of the EVPN route type name. This parameter must be one of
the following.

• EVPN_ETH_AUTO_DISCOVERY = ’eth_ad’

• EVPN_MAC_IP_ADV_ROUTE = ’mac_ip_adv’

• EVPN_MULTICAST_ETAG_ROUTE = ’multicast_etag’

• EVPN_ETH_SEGMENT = ’eth_seg’

• EVPN_IP_PREFIX_ROUTE = ’ip_prefix’

route_dist specifies a route distinguisher value.

esi is an value to specify the Ethernet Segment Identifier. 0 is the default and denotes a
single-homed site. If you want to advertise esi other than 0, it must be set as dictionary type.
If esi is dictionary type, ’type’ key must be set and specifies ESI type. For the supported
ESI type, see os_ken.lib.packet.bgp.EvpnEsi. The remaining arguments are the
same as that for the corresponding class.

ethernet_tag_id specifies the Ethernet Tag ID.

mac_addr specifies a MAC address to advertise.

ip_addr specifies an IPv4 or IPv6 address to advertise.

ip_prefix specifies an IPv4 or IPv6 prefix to advertise.

gw_ip_addr specifies an IPv4 or IPv6 address of gateway to advertise.

8.1. Writing Your OS-Ken Application 141

os-ken Documentation, Release 1.4.1.dev5

vni specifies an Virtual Network Identifier for VXLAN or Virtual Subnet Identifier for
NVGRE. If tunnel_type is not TUNNEL_TYPE_VXLAN or TUNNEL_TYPE_NVGRE,
this field is ignored.

next_hop specifies the next hop address for this prefix.

tunnel_type specifies the data plane encapsulation type to advertise. By the default, this
attribute is not advertised. The supported encapsulation types are following.

• TUNNEL_TYPE_VXLAN = ’vxlan’

• TUNNEL_TYPE_NVGRE = ’nvgre

pmsi_tunnel_type specifies the type of the PMSI tunnel attribute used to en-
code the multicast tunnel identifier. This attribute is advertised only if route_type is
EVPN_MULTICAST_ETAG_ROUTE and not advertised by the default. This attribute can
also carry vni if tunnel_type is specified. The supported PMSI tunnel types are following.

• PMSI_TYPE_NO_TUNNEL_INFO = 0

• PMSI_TYPE_INGRESS_REP = 6

redundancy_mode specifies a redundancy mode type. This attribute is advertised only
if route_type is EVPN_ETH_AUTO_DISCOVERY and not advertised by the default. The
supported redundancy mode types are following.

• REDUNDANCY_MODE_ALL_ACTIVE = ’all_active’

• REDUNDANCY_MODE_SINGLE_ACTIVE = ’single_active’

evpn_prefix_del(route_type, route_dist, esi=0, ethernet_tag_id=None,
mac_addr=None, ip_addr=None, ip_prefix=None)

This method deletes an advertised EVPN route.

route_type specifies one of the EVPN route type name.

route_dist specifies a route distinguisher value.

esi is an value to specify the Ethernet Segment Identifier.

ethernet_tag_id specifies the Ethernet Tag ID.

mac_addr specifies a MAC address to advertise.

ip_addr specifies an IPv4 or IPv6 address to advertise.

ip_prefix specifies an IPv4 or IPv6 prefix to advertise.

flowspec_prefix_add(flowspec_family, rules, route_dist=None, actions=None)
This method adds a new Flow Specification prefix to be advertised.

flowspec_family specifies one of the flowspec family name. This parameter must be
one of the following.

• FLOWSPEC_FAMILY_IPV4 = ’ipv4fs’

• FLOWSPEC_FAMILY_IPV6 = ’ipv6fs’

• FLOWSPEC_FAMILY_VPNV4 = ’vpnv4fs’

• FLOWSPEC_FAMILY_VPNV6 = ’vpnv6fs’

• FLOWSPEC_FAMILY_L2VPN = ’l2vpnfs’

8.1. Writing Your OS-Ken Application 142

os-ken Documentation, Release 1.4.1.dev5

rules specifies NLRIs of Flow Specification as a dictionary type value. For the supported
NLRI types and arguments, see from_user() method of the following classes.

• os_ken.lib.packet.bgp.FlowSpecIPv4NLRI

• os_ken.lib.packet.bgp.FlowSpecIPv6NLRI

• os_ken.lib.packet.bgp.FlowSpecVPNv4NLRI

• os_ken.lib.packet.bgp.FlowSpecVPNv6NLRI

• os_ken.lib.packet.bgp.FlowSpecL2VPNNLRI

route_dist specifies a route distinguisher value. This parameter is required only if
flowspec_family is one of the following address family.

• FLOWSPEC_FAMILY_VPNV4 = ’vpnv4fs’

• FLOWSPEC_FAMILY_VPNV6 = ’vpnv6fs’

• FLOWSPEC_FAMILY_L2VPN = ’l2vpnfs’

actions specifies Traffic Filtering Actions of Flow Specification as a dictionary type
value. The keys are "ACTION_NAME" for each action class and values are used for the
arguments to that class. For the supported "ACTION_NAME" and arguments, see the fol-
lowing table.

AC-
TION_NAME

Action Class

traffic_rate os_ken.lib.packet.bgp.BGPFlowSpecTrafficRateCommunity
traffic_action os_ken.lib.packet.bgp.BGPFlowSpecTrafficActionCommunity
redirect os_ken.lib.packet.bgp.BGPFlowSpecRedirectCommunity
traf-
fic_marking

os_ken.lib.packet.bgp.BGPFlowSpecTrafficMarkingCommunity

vlan_action os_ken.lib.packet.bgp.BGPFlowSpecVlanActionCommunity
tpid_action os_ken.lib.packet.bgp.BGPFlowSpecTPIDActionCommunity

Example(IPv4):

>>> speaker = BGPSpeaker(as_number=65001, router_id='172.17.0.1')
>>> speaker.neighbor_add(address='172.17.0.2',
... remote_as=65002,
... enable_ipv4fs=True)
>>> speaker.flowspec_prefix_add(
... flowspec_family=FLOWSPEC_FAMILY_IPV4,
... rules={
... 'dst_prefix': '10.60.1.0/24'
... },
... actions={
... 'traffic_marking': {
... 'dscp': 24
... }
... }
...)

Example(VPNv4):

8.1. Writing Your OS-Ken Application 143

os-ken Documentation, Release 1.4.1.dev5

>>> speaker = BGPSpeaker(as_number=65001, router_id='172.17.0.1')
>>> speaker.neighbor_add(address='172.17.0.2',
... remote_as=65002,
... enable_vpnv4fs=True)
>>> speaker.vrf_add(route_dist='65001:100',
... import_rts=['65001:100'],
... export_rts=['65001:100'],
... route_family=RF_VPNV4_FLOWSPEC)
>>> speaker.flowspec_prefix_add(
... flowspec_family=FLOWSPEC_FAMILY_VPNV4,
... route_dist='65000:100',
... rules={
... 'dst_prefix': '10.60.1.0/24'
... },
... actions={
... 'traffic_marking': {
... 'dscp': 24
... }
... }
...)

flowspec_prefix_del(flowspec_family, rules, route_dist=None)
This method deletes an advertised Flow Specification route.

flowspec_family specifies one of the flowspec family name.

rules specifies NLRIs of Flow Specification as a dictionary type value.

route_dist specifies a route distinguisher value.

in_filter_get(address)
This method gets in-bound filters of the specified neighbor.

address specifies the IP address of the neighbor.

Returns a list object containing an instance of Filter sub-class

in_filter_set(address, filters)
This method sets in-bound filters to a neighbor.

address specifies the IP address of the neighbor

filters specifies filter list applied before advertised paths are imported to the global rib.
All the items in the list must be an instance of Filter sub-class.

neighbor_add(address, remote_as, remote_port=179, enable_ipv4=True, en-
able_ipv6=False, enable_vpnv4=False, enable_vpnv6=False, en-
able_evpn=False, enable_ipv4fs=False, enable_ipv6fs=False, en-
able_vpnv4fs=False, enable_vpnv6fs=False, enable_l2vpnfs=False,
enable_enhanced_refresh=False, enable_four_octet_as_number=True,
next_hop=None, password=None, multi_exit_disc=None,
site_of_origins=None, is_route_server_client=False,
is_route_reflector_client=False, is_next_hop_self=False, lo-
cal_address=None, local_port=None, local_as=None, con-
nect_mode=’both’)

This method registers a new neighbor. The BGP speaker tries to establish a bgp session with
the peer (accepts a connection from the peer and also tries to connect to it).

8.1. Writing Your OS-Ken Application 144

os-ken Documentation, Release 1.4.1.dev5

address specifies the IP address of the peer. It must be the string representation of an IP
address. Only IPv4 is supported now.

remote_as specifies the AS number of the peer. It must be an integer between 1 and
65535.

remote_port specifies the TCP port number of the peer.

enable_ipv4 enables IPv4 address family for this neighbor.

enable_ipv6 enables IPv6 address family for this neighbor.

enable_vpnv4 enables VPNv4 address family for this neighbor.

enable_vpnv6 enables VPNv6 address family for this neighbor.

enable_evpn enables Ethernet VPN address family for this neighbor.

enable_ipv4fs enables IPv4 Flow Specification address family for this neighbor.

enable_ipv6fs enables IPv6 Flow Specification address family for this neighbor.

enable_vpnv4fs enables VPNv4 Flow Specification address family for this neighbor.

enable_vpnv6fs enables VPNv6 Flow Specification address family for this neighbor.

enable_l2vpnfs enables L2VPN Flow Specification address family for this neighbor.

enable_enhanced_refresh enables Enhanced Route Refresh for this neighbor.

enable_four_octet_as_number enables Four-Octet AS Number capability for this
neighbor.

next_hop specifies the next hop IP address. If not specified, host’s ip address to access to
a peer is used.

password is used for the MD5 authentication if it’s specified. By default, the MD5 au-
thentication is disabled.

multi_exit_disc specifies multi exit discriminator (MED) value as an int type value.
If omitted, MED is not sent to the neighbor.

site_of_origins specifies site_of_origin values. This parameter must be a list of
string.

is_route_server_client specifies whether this neighbor is a router server’s client
or not.

is_route_reflector_client specifies whether this neighbor is a router reflector’s
client or not.

is_next_hop_self specifies whether the BGP speaker announces its own ip address to
iBGP neighbor or not as path’s next_hop address.

local_address specifies Loopback interface address for iBGP peering.

local_port specifies source TCP port for iBGP peering.

local_as specifies local AS number per-peer. If omitted, the AS number of BGPSpeaker
instance is used.

connect_mode specifies how to connect to this neighbor. This parameter must be one of
the following.

8.1. Writing Your OS-Ken Application 145

os-ken Documentation, Release 1.4.1.dev5

• CONNECT_MODE_ACTIVE = ’active’

• CONNECT_MODE_PASSIVE = ’passive’

• CONNECT_MODE_BOTH (default) = ’both’

neighbor_del(address)
This method unregister the registered neighbor. If a session with the peer exists, the session
will be closed.

address specifies the IP address of the peer. It must be the string representation of an IP
address.

neighbor_get(route_type, address, format=’json’)
This method returns the BGP adj-RIB-in/adj-RIB-out information in a json format.

route_type This parameter is necessary for only received-routes and sent-routes.

• received-routes : paths received and not withdrawn by given peer

• sent-routes : paths sent and not withdrawn to given peer

address specifies the IP address of the peer. It must be the string representation of an IP
address.

format specifies the format of the response. This parameter must be one of the following.

• ’json’ (default)

• ’cli’

neighbor_reset(address)
This method reset the registered neighbor.

address specifies the IP address of the peer. It must be the string representation of an IP
address.

neighbor_state_get(address=None, format=’json’)
This method returns the state of peer(s) in a json format.

address specifies the address of a peer. If not given, the state of all the peers return.

format specifies the format of the response. This parameter must be one of the following.

• ’json’ (default)

• ’cli’

neighbor_update(address, conf_type, conf_value)
This method changes the neighbor configuration.

address specifies the IP address of the peer.

conf_type specifies configuration type which you want to change. Currently
os_ken.services.protocols.bgp.bgpspeaker.MULTI_EXIT_DISC can be specified.

conf_value specifies value for the configuration type.

neighbors_get(format=’json’)
This method returns a list of the BGP neighbors.

format specifies the format of the response. This parameter must be one of the following.

• ’json’ (default)

8.1. Writing Your OS-Ken Application 146

os-ken Documentation, Release 1.4.1.dev5

• ’cli’

out_filter_get(address)
This method gets out-filter setting from the specified neighbor.

address specifies the IP address of the peer.

Returns a list object containing an instance of Filter sub-class

out_filter_set(address, filters)
This method sets out-filter to neighbor.

address specifies the IP address of the peer.

filters specifies a filter list to filter the path advertisement. The contents must be an
instance of Filter sub-class

If you want to define out-filter that send only a particular prefix to neighbor, filters can be
created as follows:

p = PrefixFilter('10.5.111.0/24',
policy=PrefixFilter.POLICY_PERMIT)

all = PrefixFilter('0.0.0.0/0',
policy=PrefixFilter.POLICY_DENY)

pList = [p, all]

self.bgpspeaker.out_filter_set(neighbor_address, pList)

Note: out-filter evaluates paths in the order of Filter in the pList.

prefix_add(prefix, next_hop=None, route_dist=None)
This method adds a new prefix to be advertised.

prefix must be the string representation of an IP network (e.g., 10.1.1.0/24).

next_hop specifies the next hop address for this prefix. This parameter is necessary for
only VPNv4 and VPNv6 address families.

route_dist specifies a route distinguisher value. This parameter is necessary for only
VPNv4 and VPNv6 address families.

prefix_del(prefix, route_dist=None)
This method deletes a advertised prefix.

prefix must be the string representation of an IP network.

route_dist specifies a route distinguisher value.

rib_get(family=’all’, format=’json’)
This method returns the BGP routing information in a json format. This will be improved
soon.

family specifies the address family of the RIB (e.g. ’ipv4’).

format specifies the format of the response. This parameter must be one of the following.

• ’json’ (default)

8.1. Writing Your OS-Ken Application 147

os-ken Documentation, Release 1.4.1.dev5

• ’cli’

shutdown()
Shutdown BGP speaker

vrf_add(route_dist, import_rts, export_rts, site_of_origins=None, route_family=’ipv4’,
multi_exit_disc=None)

This method adds a new vrf used for VPN.

route_dist specifies a route distinguisher value.

import_rts specifies a list of route targets to be imported.

export_rts specifies a list of route targets to be exported.

site_of_origins specifies site_of_origin values. This parameter must be a list of
string.

route_family specifies route family of the VRF. This parameter must be one of the
following.

• RF_VPN_V4 (default) = ’ipv4’

• RF_VPN_V6 = ’ipv6’

• RF_L2_EVPN = ’evpn’

• RF_VPNV4_FLOWSPEC = ’ipv4fs’

• RF_VPNV6_FLOWSPEC = ’ipv6fs’

• RF_L2VPN_FLOWSPEC = ’l2vpnfs’

multi_exit_disc specifies multi exit discriminator (MED) value. It must be an integer.

vrf_del(route_dist)
This method deletes the existing vrf.

route_dist specifies a route distinguisher value.

vrfs_get(subcommand=’routes’, route_dist=None, route_family=’all’, format=’json’)
This method returns the existing vrfs.

subcommand specifies one of the following.

• ’routes’: shows routes present for vrf

• ’summary’: shows configuration and summary of vrf

route_dist specifies a route distinguisher value. If route_family is not ’all’, this value
must be specified.

route_family specifies route family of the VRF. This parameter must be one of the
following.

• RF_VPN_V4 = ’ipv4’

• RF_VPN_V6 = ’ipv6’

• RF_L2_EVPN = ’evpn’

• ’all’ (default)

format specifies the format of the response. This parameter must be one of the following.

8.1. Writing Your OS-Ken Application 148

os-ken Documentation, Release 1.4.1.dev5

• ’json’ (default)

• ’cli’

class os_ken.services.protocols.bgp.bgpspeaker.EventPrefix(path,
is_withdraw)

Used to pass an update on any best remote path to best_path_change_handler.

Attribute Description
remote_as The AS number of a peer that caused this change
route_dist None in the case of IPv4 or IPv6 family
prefix A prefix was changed
nexthop The nexthop of the changed prefix
label MPLS label for VPNv4, VPNv6 or EVPN prefix
path An instance of info_base.base.Path subclass
is_withdraw True if this prefix has gone otherwise False

class os_ken.services.protocols.bgp.info_base.base.PrefixFilter(prefix,
pol-
icy,
ge=None,
le=None)

Used to specify a prefix for filter.

We can create PrefixFilter object as follows:

prefix_filter = PrefixFilter('10.5.111.0/24',
policy=PrefixFilter.POLICY_PERMIT)

Attribute Description
prefix A prefix used for this filter
policy One of the following values.

PrefixFilter.POLICY.PERMIT
PrefixFilter.POLICY_DENY

ge Prefix length that will be applied to this filter.
ge means greater than or equal.

le Prefix length that will be applied to this filter.
le means less than or equal.

For example, when PrefixFilter object is created as follows:

p = PrefixFilter('10.5.111.0/24',
policy=PrefixFilter.POLICY_DENY,
ge=26, le=28)

Prefixes which match 10.5.111.0/24 and its length matches from 26 to 28 will be filtered. When
this filter is used as an out-filter, it will stop sending the path to neighbor because of POL-
ICY_DENY. When this filter is used as in-filter, it will stop importing the path to the global
rib because of POLICY_DENY. If you specify POLICY_PERMIT, the path is sent to neighbor or
imported to the global rib.

8.1. Writing Your OS-Ken Application 149

os-ken Documentation, Release 1.4.1.dev5

If you don’t want to send prefixes 10.5.111.64/26 and 10.5.111.32/27 and 10.5.111.16/28, and
allow to send other 10.5.111.0’s prefixes, you can do it by specifying as follows:

p = PrefixFilter('10.5.111.0/24',
policy=PrefixFilter.POLICY_DENY,
ge=26, le=28).

clone()
This method clones PrefixFilter object.

Returns PrefixFilter object that has the same values with the original one.

evaluate(path)
This method evaluates the prefix.

Returns this object’s policy and the result of matching. If the specified prefix matches this
object’s prefix and ge and le condition, this method returns True as the matching result.

path specifies the path that has prefix.

class os_ken.services.protocols.bgp.info_base.base.ASPathFilter(as_number,
pol-
icy)

Used to specify a prefix for AS_PATH attribute.

We can create ASPathFilter object as follows:

as_path_filter = ASPathFilter(65000,policy=ASPathFilter.TOP)

Attribute Description
as_number A AS number used for this filter
policy One of the following values.

ASPathFilter.POLICY_TOP
ASPathFilter.POLICY_END
ASPathFilter.POLICY_INCLUDE
ASPathFilter.POLICY_NOT_INCLUDE

Meaning of each policy is as follows:

Policy Description
POLICY_TOP Filter checks if the specified AS number is at the top of AS_PATH

attribute.
POLICY_END Filter checks is the specified AS number is at the last of AS_PATH

attribute.
POLICY_INCLUDE Filter checks if specified AS number exists in AS_PATH attribute.
POL-
ICY_NOT_INCLUDE

Opposite to POLICY_INCLUDE.

clone()
This method clones ASPathFilter object.

Returns ASPathFilter object that has the same values with the original one.

8.1. Writing Your OS-Ken Application 150

os-ken Documentation, Release 1.4.1.dev5

evaluate(path)
This method evaluates as_path list.

Returns this object’s policy and the result of matching. If the specified AS number matches
this object’s AS number according to the policy, this method returns True as the matching
result.

path specifies the path.

class os_ken.services.protocols.bgp.info_base.base.AttributeMap(filters,
attr_type,
attr_value)

This class is used to specify an attribute to add if the path matches filters. We can create At-
tributeMap object as follows:

pref_filter = PrefixFilter('192.168.103.0/30',
PrefixFilter.POLICY_PERMIT)

attribute_map = AttributeMap([pref_filter],
AttributeMap.ATTR_LOCAL_PREF, 250)

speaker.attribute_map_set('192.168.50.102', [attribute_map])

AttributeMap.ATTR_LOCAL_PREF means that 250 is set as a local preference value if nlri in the
path matches pref_filter.

ASPathFilter is also available as a filter. ASPathFilter checks if AS_PATH attribute in the path
matches AS number in the filter.

At-
tribute

Description

filters A list of filter. Each object should be a Filter class or its sub-class
attr_type A type of attribute to map on filters. Currently At-

tributeMap.ATTR_LOCAL_PREF is available.
attr_value A attribute value

clone()
This method clones AttributeMap object.

Returns AttributeMap object that has the same values with the original one.

evaluate(path)
This method evaluates attributes of the path.

Returns the cause and result of matching. Both cause and result are returned from filters that
this object contains.

path specifies the path.

8.1. Writing Your OS-Ken Application 151

os-ken Documentation, Release 1.4.1.dev5

MRT file library

Introduction

OS-Ken MRT file library helps you to read/write MRT (Multi-Threaded Routing Toolkit) Routing In-
formation Export Format [RFC6396].

Reading MRT file

For loading the routing information contained in MRT files, you can use mrtlib.Reader.

class os_ken.lib.mrtlib.Reader(f)
MRT format file reader.

Argument Description
f File object which reading MRT format file in binary mode.

Example of Usage:

import bz2
from os_ken.lib import mrtlib

count = 0
for record in mrtlib.Reader(

bz2.BZ2File('rib.YYYYMMDD.hhmm.bz2', 'rb')):
print("%d, %s" % (count, record))
count += 1

Writing MRT file

For dumping the routing information which your OSKenApp generated, you can use mrtlib.Writer.

class os_ken.lib.mrtlib.Writer(f)
MRT format file writer.

Argument Description
f File object which writing MRT format file in binary mode.

Example of usage:

import bz2
import time
from os_ken.lib import mrtlib
from os_ken.lib.packet import bgp

mrt_writer = mrtlib.Writer(
bz2.BZ2File('rib.YYYYMMDD.hhmm.bz2', 'wb'))

prefix = bgp.IPAddrPrefix(24, '10.0.0.0')

rib_entry = mrtlib.MrtRibEntry(

(continues on next page)

8.1. Writing Your OS-Ken Application 152

https://tools.ietf.org/html/rfc6396

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

peer_index=0,
originated_time=int(time.time()),
bgp_attributes=[bgp.BGPPathAttributeOrigin(0)])

message = mrtlib.TableDump2RibIPv4UnicastMrtMessage(
seq_num=0,
prefix=prefix,
rib_entries=[rib_entry])

record = mrtlib.TableDump2MrtRecord(
message=message)

mrt_writer.write(record)

OVSDB Manager library

Path: os_ken.services.protocols.ovsdb

Introduction

OS-Ken OVSDB Manager library allows your code to interact with devices speaking the OVSDB proto-
col. This enables your code to perform remote management of the devices and react to topology changes
on them.

Please note this library will spawn a server listening on the port 6640 (the IANA registered for OVSDB
protocol), but does not initiate connections from controller side. Then, to make your devices connect to
OS-Ken, you need to tell the controller IP address and port to your devices.

Show current configuration
$ ovs-vsctl get-manager

Set manager (controller) address
$ ovs-vsctl set-manager "tcp:127.0.0.1:6640"

If you want to specify IPv6 address, wrap ip with brackets
$ ovs-vsctl set-manager "tcp:[::1]:6640"

Also this library identifies the devices by "system-id" which should be unique, persistent identifier
among all devices connecting to a single controller. Please make sure "system-id" is configured be-
fore connecting.

Show current configuration
$ ovs-vsctl get Open_vSwitch . external_ids:system-id

Set system-id manually
$ ovs-vsctl set Open_vSwitch . external_ids:system-id=<SYSTEM-ID>

8.1. Writing Your OS-Ken Application 153

os-ken Documentation, Release 1.4.1.dev5

Example

The following logs all new OVSDB connections in "handle_new_ovsdb_connection" and also provides
the API "create_port" for creating a port on a bridge.

import uuid

from os_ken.base import app_manager
from os_ken.controller.handler import set_ev_cls
from os_ken.services.protocols.ovsdb import api as ovsdb
from os_ken.services.protocols.ovsdb import event as ovsdb_event

class MyApp(app_manager.OSKenApp):
@set_ev_cls(ovsdb_event.EventNewOVSDBConnection)
def handle_new_ovsdb_connection(self, ev):

system_id = ev.system_id
address = ev.client.address
self.logger.info(

'New OVSDB connection from system-id=%s, address=%s',
system_id, address)

Example: If device has bridge "s1", add port "s1-eth99"
if ovsdb.bridge_exists(self, system_id, "s1"):

self.create_port(system_id, "s1", "s1-eth99")

def create_port(self, system_id, bridge_name, name):
new_iface_uuid = uuid.uuid4()
new_port_uuid = uuid.uuid4()

bridge = ovsdb.row_by_name(self, system_id, bridge_name)

def _create_port(tables, insert):
iface = insert(tables['Interface'], new_iface_uuid)
iface.name = name
iface.type = 'internal'

port = insert(tables['Port'], new_port_uuid)
port.name = name
port.interfaces = [iface]

bridge.ports = bridge.ports + [port]

return new_port_uuid, new_iface_uuid

req = ovsdb_event.EventModifyRequest(system_id, _create_port)
rep = self.send_request(req)

if rep.status != 'success':
self.logger.error('Error creating port %s on bridge %s: %s',

name, bridge, rep.status)
return None

return rep.insert_uuids[new_port_uuid]

8.1. Writing Your OS-Ken Application 154

os-ken Documentation, Release 1.4.1.dev5

OVSDB library

Path: os_ken.lib.ovs

Similar to the OVSDB Manager library, this library enables your application to speak the OVSDB
protocol (RFC7047), but differ from the OVSDB Manager library, this library will initiate connections
from controller side as ovs-vsctl command does. Please make sure that your devices are listening on
either the Unix domain socket or TCP/SSL port before calling the APIs of this library.

Show current configuration
$ ovs-vsctl get-manager

Set TCP listen address
$ ovs-vsctl set-manager "ptcp:6640"

See manpage of ovs-vsctl command for more details.

Basic Usage

1. Instantiate os_ken.lib.ovs.vsctl.VSCtl.

2. Construct commands with os_ken.lib.ovs.vsctl.VSCtlCommand. The syntax is al-
most the same as ovs-vsctl command.

3. Execute commands via os_ken.lib.ovs.vsctl.VSCtl.run_command.

Example

from os_ken.lib.ovs import vsctl

OVSDB_ADDR = 'tcp:127.0.0.1:6640'
ovs_vsctl = vsctl.VSCtl(OVSDB_ADDR)

Equivalent to
$ ovs-vsctl show
command = vsctl.VSCtlCommand('show')
ovs_vsctl.run_command([command])
print(command)
>>> VSCtlCommand(args=[],command='show',options=[],result='830d781f-c3c8-
↪→4b4f-837e-106e1b33d058\n ovs_version: "2.8.90"\n')

Equivalent to
$ ovs-vsctl list Port s1-eth1
command = vsctl.VSCtlCommand('list', ('Port', 's1-eth1'))
ovs_vsctl.run_command([command])
print(command)
>>> VSCtlCommand(args=('Port', 's1-eth1'),command='list',options=[],
↪→result=[<ovs.db.idl.Row object at 0x7f525fb682e8>])
print(command.result[0].name)
>>> s1-eth1

8.1. Writing Your OS-Ken Application 155

https://tools.ietf.org/html/rfc7047
http://openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-vsctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-vsctl.8.txt

os-ken Documentation, Release 1.4.1.dev5

API Reference

os_ken.lib.ovs.vsctl

ovs-vsctl command like library to speak OVSDB protocol

class os_ken.lib.ovs.vsctl.VSCtl(remote)
A class to describe an Open vSwitch instance.

remote specifies the address of the OVS instance. os_ken.lib.ovs.vsctl.
valid_ovsdb_addr is a convenient function to validate this address.

run_command(commands, timeout_sec=None, exception=None)
Executes the given commands and sends OVSDB messages.

commands must be a list of os_ken.lib.ovs.vsctl.VSCtlCommand.

If timeout_sec is specified, raises exception after the given timeout [sec]. Additionally,
if exception is specified, this function will wraps exception using the given exception
class.

Retruns None but fills result attribute for each command instance.

class os_ken.lib.ovs.vsctl.VSCtlCommand(command, args=None, op-
tions=None)

Class to describe artgumens similar to those of ovs-vsctl command.

command specifies the command of ovs-vsctl.

args specifies a list or tuple of arguments for the given command.

options specifies a list or tuple of options for the given command. Please note that NOT all
options of ovs-vsctl are supported. For example, --id option is not yet supported. This class
supports the followings.

Option Description
--may-existDoes nothing when the given port already exists. The supported commands are

add-port and add-bond.
--fake-ifaceCreates a port as a fake interface. The supported command is add-bond.
--must-existRaises exception if the given port does not exist. The supported command is

del-port.
--with-ifaceTakes effect to the interface which has the same name. The supported command

is del-port.
--if-existsIgnores exception when not found. The supported command is get.

os_ken.lib.ovs.vsctl.valid_ovsdb_addr(addr)
Returns True if the given addr is valid OVSDB server address, otherwise False.

The valid formats are:

• unix:file

• tcp:ip:port

• ssl:ip:port

If ip is IPv6 address, wrap ip with brackets (e.g., ssl:[::1]:6640).

8.1. Writing Your OS-Ken Application 156

os-ken Documentation, Release 1.4.1.dev5

Parameters addr -- str value of OVSDB server address.

Returns True if valid, otherwise False.

os_ken.lib.ovs.bridge

Wrapper utility library of os_ken.lib.ovs.vsctl

class os_ken.lib.ovs.bridge.OVSBridge(CONF, datapath_id, ovsdb_addr, time-
out=None, exception=None)

Class to provide wrapper utilities of os_ken.lib.ovs.vsctl.VSCtl

CONF is a instance of oslo_config.cfg.ConfigOpts. Mostly self.CONF is sufficient
to instantiate this class from your OSKen application.

datapath_id specifies Datapath ID of the target OVS instance.

ovsdb_addr specifies the address of the OVS instance. Automatically validated when you call
init() method. Refer to os_ken.lib.ovs.vsctl.valid_ovsdb_addr for the format
of this address.

if timeout is omitted, CONF.ovsdb_timeout will be used as the default value.

Usage of timeout and exception is the same with timeout_sec and exception of
os_ken.lib.ovs.vsctl.VSCtl.run_command.

add_bond(name, ifaces, bond_mode=None, lacp=None)
Creates a bonded port.

Parameters

• name -- Port name to be created

• ifaces -- List of interfaces containing at least 2 interfaces

• bond_mode -- Bonding mode (active-backup, balance-tcp or balance-slb)

• lacp -- LACP mode (active, passive or off)

add_db_attribute(table, record, column, value, key=None)
Adds (’key’=)’value’ into ’column’ in ’record’ in ’table’.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl add TBL REC COL [KEY=]VALUE

add_gre_port(name, remote_ip, local_ip=None, key=None, ofport=None)
Creates a GRE tunnel port.

See the description of add_tunnel_port().

add_tunnel_port(name, tunnel_type, remote_ip, local_ip=None, key=None, of-
port=None)

Creates a tunnel port.

Parameters

• name -- Port name to be created

• tunnel_type -- Type of tunnel (gre or vxlan)

• remote_ip -- Remote IP address of tunnel

8.1. Writing Your OS-Ken Application 157

os-ken Documentation, Release 1.4.1.dev5

• local_ip -- Local IP address of tunnel

• key -- Key of GRE or VNI of VxLAN

• ofport -- Requested OpenFlow port number

add_vxlan_port(name, remote_ip, local_ip=None, key=None, ofport=None)
Creates a VxLAN tunnel port.

See the description of add_tunnel_port().

clear_db_attribute(table, record, column)
Clears values from ’column’ in ’record’ in ’table’.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl clear TBL REC COL

db_get_map(table, record, column)
Gets dict type value of ’column’ in ’record’ in ’table’.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl get TBL REC COL

db_get_val(table, record, column)
Gets values of ’column’ in ’record’ in ’table’.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl get TBL REC COL

del_controller()
Deletes the configured OpenFlow controller address.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl del-controller <bridge>

del_port(port_name)
Deletes a port on OVS instance.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl del-port <bridge> <port>

del_qos(port_name)
Deletes the Qos rule on the given port.

delete_port(port_name)
Deletes a port on the OVS instance.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl --if-exists del-port <bridge> <port>

find_db_attributes(table, *conditions)
Lists records satisfying ’conditions’ in ’table’.

This method is corresponding to the following ovs-vsctl command:

8.1. Writing Your OS-Ken Application 158

os-ken Documentation, Release 1.4.1.dev5

$ ovs-vsctl find TBL CONDITION...

Note: Currently, only ’=’ condition is supported. To support other condition is TODO.

get_controller()
Gets the configured OpenFlow controller address.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl get-controller <bridge>

get_datapath_id()
Gets Datapath ID of OVS instance.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl get Bridge <bridge> datapath_id

get_db_attribute(table, record, column, key=None)
Gets values of ’column’ in ’record’ in ’table’.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl get TBL REC COL[:KEY]

get_ofport(port_name)
Gets the OpenFlow port number.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl get Interface <port> ofport

get_port_name_list()
Gets a list of all ports on OVS instance.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl list-ports <bridge>

get_vif_ports()
Returns a VIF object for each VIF port

init()
Validates the given ovsdb_addr and connects to OVS instance.

If failed to connect to OVS instance or the given datapath_id does not match with
the Datapath ID of the connected OVS instance, raises os_ken.lib.ovs.bridge.
OVSBridgeNotFound exception.

list_db_attributes(table, record=None)
Lists ’record’ (or all records) in ’table’.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl list TBL [REC]

8.1. Writing Your OS-Ken Application 159

os-ken Documentation, Release 1.4.1.dev5

remove_db_attribute(table, record, column, value, key=None)
Removes (’key’=)’value’ into ’column’ in ’record’ in ’table’.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl remove TBL REC COL [KEY=]VALUE

run_command(commands)
Executes the given commands and sends OVSDB messages.

commands must be a list of os_ken.lib.ovs.vsctl.VSCtlCommand.

The given timeout and exception when instantiation will be used to call os_ken.
lib.ovs.vsctl.VSCtl.run_command.

set_controller(controllers)
Sets the OpenFlow controller address.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl set-controller <bridge> <target>...

set_db_attribute(table, record, column, value, key=None)
Sets ’value’ into ’column’ in ’record’ in ’table’.

This method is corresponding to the following ovs-vsctl command:

$ ovs-vsctl set TBL REC COL[:KEY]=VALUE

set_qos(port_name, type=’linux-htb’, max_rate=None, queues=None)
Sets a Qos rule and creates Queues on the given port.

exception os_ken.lib.ovs.bridge.OVSBridgeNotFound(msg=None,
**kwargs)

8.1.5 OpenFlow protocol API Reference

OpenFlow version independent classes and functions

Base class for OpenFlow messages

class os_ken.ofproto.ofproto_parser.MsgBase(datapath)
This is a base class for OpenFlow message classes.

An instance of this class has at least the following attributes.

Attribute Description
datapath A os_ken.controller.controller.Datapath instance for this message
version OpenFlow protocol version
msg_type Type of OpenFlow message
msg_len Length of the message
xid Transaction id
buf Raw data

8.1. Writing Your OS-Ken Application 160

os-ken Documentation, Release 1.4.1.dev5

_TYPE
_TYPE class attribute is used to annotate types of attributes.

This type information is used to find an appropriate conversion for a JSON style dictionary.

Currently the following types are implemented.

Type Descrption
ascii US-ASCII
utf-8 UTF-8

Example:

_TYPE = {
'ascii': [

'hw_addr',
],
'utf-8': [

'name',
]

}

classmethod from_jsondict(dict_, decode_string=<function b64decode>, **ad-
ditional_args)

Create an instance from a JSON style dict.

Instantiate this class with parameters specified by the dict.

This method takes the following arguments.

Argument Descrpition
dict_ A dictionary which describes the parameters. For example,

{"Param1": 100, "Param2": 200}
decode_string (Optional) specify how to decode strings. The default is base64. This

argument is used only for attributes which don’t have explicit type
annotations in _TYPE class attribute.

additional_args (Optional) Additional kwargs for constructor.

to_jsondict(encode_string=<function b64encode>)
This method returns a JSON style dict to describe this object.

The returned dict is compatible with json.dumps() and json.loads().

Suppose ClassName object inherits StringifyMixin. For an object like the following:

ClassName(Param1=100, Param2=200)

this method would produce:

{ "ClassName": {"Param1": 100, "Param2": 200} }

This method takes the following arguments.

8.1. Writing Your OS-Ken Application 161

os-ken Documentation, Release 1.4.1.dev5

Argument Description
encode_string (Optional) specify how to encode attributes which has python ’str’ type.

The default is base64. This argument is used only for attributes which
don’t have explicit type annotations in _TYPE class attribute.

Functions

os_ken.ofproto.ofproto_parser.ofp_msg_from_jsondict(dp, jsondict)
This function instanticates an appropriate OpenFlow message class from the given JSON style
dictionary. The objects created by following two code fragments are equivalent.

Code A:

jsonstr = '{ "OFPSetConfig": { "flags": 0, "miss_send_len": 128 } }'
jsondict = json.loads(jsonstr)
o = ofp_msg_from_jsondict(dp, jsondict)

Code B:

o = dp.ofproto_parser.OFPSetConfig(flags=0, miss_send_len=128)

This function takes the following arguments.

Argument Description
dp An instance of os_ken.controller.Datapath.
jsondict A JSON style dict.

OpenFlow v1.0 Messages and Structures

Controller-to-Switch Messages

Handshake

class os_ken.ofproto.ofproto_v1_0_parser.OFPFeaturesRequest(datapath)
Features request message

The controller sends a feature request to the switch upon session establishment.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

def send_features_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPFeaturesRequest(datapath)
datapath.send_msg(req)

JSON Example:

8.1. Writing Your OS-Ken Application 162

os-ken Documentation, Release 1.4.1.dev5

{
"OFPFeaturesRequest": {}

}

class os_ken.ofproto.ofproto_v1_0_parser.OFPSwitchFeatures(datapath,
datap-
ath_id=None,
n_buffers=None,
n_tables=None,
capa-
bili-
ties=None,
ac-
tions=None,
ports=None)

Features reply message

The switch responds with a features reply message to a features request.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
datapath_id Datapath unique ID.
n_buffers Max packets buffered at once.
n_tables Number of tables supported by datapath.
capabilities Bitmap of capabilities flag.

OFPC_FLOW_STATS
OFPC_TABLE_STATS
OFPC_PORT_STATS
OFPC_STP
OFPC_RESERVED
OFPC_IP_REASM
OFPC_QUEUE_STATS
OFPC_ARP_MATCH_IP

actions Bitmap of supported OFPAT_*.
ports List of OFPPhyPort instances.

Example:

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPSwitchFeatures received: '
'datapath_id=0x%016x n_buffers=%d '
'n_tables=%d capabilities=0x%08x ports=%s',
msg.datapath_id, msg.n_buffers, msg.n_tables,
msg.capabilities, msg.ports)

8.1. Writing Your OS-Ken Application 163

os-ken Documentation, Release 1.4.1.dev5

JSON Example:

{
"OFPSwitchFeatures": {

"actions": 2115,
"capabilities": 169,
"datapath_id": 1095522080376,
"n_buffers": 0,
"n_tables": 255,
"ports": {

"6": {
"OFPPhyPort": {

"advertised": 640,
"config": 0,
"curr": 648,
"hw_addr": "f2:0b:a4:7d:f8:ea",
"name": "Port6",
"peer": 648,
"port_no": 6,
"state": 2,
"supported": 648

}
},
"7": {

"OFPPhyPort": {
"advertised": 640,
"config": 0,
"curr": 648,
"hw_addr": "f2:0b:a4:d0:3f:70",
"name": "Port7",
"peer": 648,
"port_no": 7,
"state": 16,
"supported": 648

}
}

}
}

}

Switch Configuration

class os_ken.ofproto.ofproto_v1_0_parser.OFPSetConfig(datapath,
flags=None,
miss_send_len=None)

Set config request message

The controller sends a set config request message to set configuraion parameters.

8.1. Writing Your OS-Ken Application 164

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags One of the following configuration flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM
OFPC_FRAG_MASK

miss_send_len Max bytes of new flow that datapath should
send to the controller.

Example:

def send_set_config(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPSetConfig(datapath, ofp.OFPC_FRAG_NORMAL, 256)
datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPGetConfigRequest(datapath)
Get config request message

The controller sends a get config request to query configuration parameters in the switch.

Example:

def send_get_config_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGetConfigRequest(datapath)
datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPGetConfigReply(datapath)
Get config reply message

The switch responds to a configuration request with a get config reply message.

Attribute Description
flags One of the following configuration flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM
OFPC_FRAG_MASK

miss_send_len Max bytes of new flow that datapath should
send to the controller.

Example:

8.1. Writing Your OS-Ken Application 165

os-ken Documentation, Release 1.4.1.dev5

@set_ev_cls(ofp_event.EventOFPGetConfigReply, MAIN_DISPATCHER)
def get_config_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.flags == ofp.OFPC_FRAG_NORMAL:
flags = 'NORMAL'

elif msg.flags == ofp.OFPC_FRAG_DROP:
flags = 'DROP'

elif msg.flags == ofp.OFPC_FRAG_REASM:
flags = 'REASM'

elif msg.flags == ofp.OFPC_FRAG_MASK:
flags = 'MASK'

else:
flags = 'unknown'

self.logger.debug('OFPGetConfigReply received: '
'flags=%s miss_send_len=%d',
flags, msg.miss_send_len)

Modify State Messages

class os_ken.ofproto.ofproto_v1_0_parser.OFPFlowMod(datapath,
match=None,
cookie=0,
command=0,
idle_timeout=0,
hard_timeout=0,
priority=32768,
buffer_id=4294967295,
out_port=65535,
flags=0, ac-
tions=None)

Modify Flow entry message

The controller sends this message to modify the flow table.

8.1. Writing Your OS-Ken Application 166

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
match Instance of OFPMatch.
cookie Opaque controller-issued identifier.
command One of the following values.

OFPFC_ADD
OFPFC_MODIFY
OFPFC_MODIFY_STRICT
OFPFC_DELETE
OFPFC_DELETE_STRICT

idle_timeout Idle time before discarding (seconds).
hard_timeout Max time before discarding (seconds).
priority Priority level of flow entry.
buffer_id Buffered packet to apply to (or 0xffffffff). Not

meaningful for OFPFC_DELETE*.
out_port For OFPFC_DELETE* commands, require

matching entries to include this as an output
port. A value of OFPP_NONE indicates no
restriction.

flags One of the following values.

OFPFF_SEND_FLOW_REM
OFPFF_CHECK_OVERLAP
OFPFF_EMERG

actions List of OFPAction* instance.

Example:

def send_flow_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

match = ofp_parser.OFPMatch(in_port=1)
cookie = 0
command = ofp.OFPFC_ADD
idle_timeout = hard_timeout = 0
priority = 32768
buffer_id = 0xffffffff
out_port = ofproto.OFPP_NONE
flags = 0
actions = [ofp_parser.OFPActionOutput(ofp.OFPP_NORMAL, 0)]
req = ofp_parser.OFPFlowMod(

datapath, match, cookie, command, idle_timeout, hard_timeout,
priority, buffer_id, out_port, flags, actions)

datapath.send_msg(req)

JSON Example:

8.1. Writing Your OS-Ken Application 167

os-ken Documentation, Release 1.4.1.dev5

{
"OFPFlowMod": {

"actions": [
{

"OFPActionOutput": {
"max_len": 65535,
"port": 6

}
}

],
"buffer_id": 65535,
"command": 0,
"cookie": 0,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"match": {

"OFPMatch": {
"dl_dst": "f2:0b:a4:7d:f8:ea",
"dl_src": "00:00:00:00:00:00",
"dl_type": 0,
"dl_vlan": 0,
"dl_vlan_pcp": 0,
"in_port": 0,
"nw_dst": "0.0.0.0",
"nw_proto": 0,
"nw_src": "0.0.0.0",
"nw_tos": 0,
"tp_dst": 0,
"tp_src": 0,
"wildcards": 4194295

}
},
"out_port": 65532,
"priority": 123

}
}

class os_ken.ofproto.ofproto_v1_0_parser.OFPPortMod(datapath,
port_no=0,
hw_addr=’00:00:00:00:00:00’,
config=0, mask=0,
advertise=0)

Port modification message

The controller send this message to modify the behavior of the port.

8.1. Writing Your OS-Ken Application 168

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number to modify.
hw_addr The hardware address that must be the

same as hw_addr of OFPPhyPort of
OFPSwitchFeatures.

config Bitmap of configuration flags.

OFPPC_PORT_DOWN
OFPPC_NO_STP
OFPPC_NO_RECV
OFPPC_NO_RECV_STP
OFPPC_NO_FLOOD
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

mask Bitmap of configuration flags above to be
changed

advertise Bitmap of the following flags.

OFPPF_10MB_HD
OFPPF_10MB_FD
OFPPF_100MB_HD
OFPPF_100MB_FD
OFPPF_1GB_HD
OFPPF_1GB_FD
OFPPF_10GB_FD
OFPPF_COPPER
OFPPF_FIBER
OFPPF_AUTONEG
OFPPF_PAUSE
OFPPF_PAUSE_ASYM

Example:

def send_port_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

port_no = 3
hw_addr = 'fa:c8:e8:76:1d:7e'
config = 0
mask = (ofp.OFPPC_PORT_DOWN | ofp.OFPPC_NO_RECV |

ofp.OFPPC_NO_FWD | ofp.OFPPC_NO_PACKET_IN)
advertise = (ofp.OFPPF_10MB_HD | ofp.OFPPF_100MB_FD |

ofp.OFPPF_1GB_FD | ofp.OFPPF_COPPER |
ofp.OFPPF_AUTONEG | ofp.OFPPF_PAUSE |
ofp.OFPPF_PAUSE_ASYM)

req = ofp_parser.OFPPortMod(datapath, port_no, hw_addr, config,
(continues on next page)

8.1. Writing Your OS-Ken Application 169

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

mask, advertise)
datapath.send_msg(req)

Queue Configuration Messages

class os_ken.ofproto.ofproto_v1_0_parser.OFPQueueGetConfigRequest(datapath,
port)

Queue configuration request message

Attribute Description
port Port to be queried. Should refer to a valid physical port (i.e. < OFPP_MAX).

Example:

def send_queue_get_config_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueGetConfigRequest(datapath,
ofp.OFPP_NONE)

datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPQueueGetConfigReply(datapath)
Queue configuration reply message

The switch responds with this message to a queue configuration request.

Attribute Description
port Port to be queried.
queues List of OFPPacketQueue instance.

Example:

@set_ev_cls(ofp_event.EventOFPQueueGetConfigReply, MAIN_DISPATCHER)
def queue_get_config_reply_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPQueueGetConfigReply received: '
'port=%s queues=%s',
msg.port, msg.queues)

8.1. Writing Your OS-Ken Application 170

os-ken Documentation, Release 1.4.1.dev5

Read State Messages

class os_ken.ofproto.ofproto_v1_0_parser.OFPDescStatsRequest(datapath,
flags)

Description statistics request message

The controller uses this message to query description of the switch.

Attribute Description
flags Zero (none yet defined in the spec).

Example:

def send_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPDescStatsRequest(datapath)
datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPDescStatsReply(datapath)
Description statistics reply message

The switch responds with a stats reply that include this message to a description statistics request.

Attribute Description
mfr_desc Manufacturer description.
hw_desc Hardware description.
sw_desc Software description.
serial_num Serial number.
dp_desc Human readable description of datapath.

Example:

@set_ev_cls(ofp_event.EventOFPDescStatsReply, MAIN_DISPATCHER)
def desc_stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

self.logger.debug('DescStats: mfr_desc=%s hw_desc=%s sw_desc=%s '
'serial_num=%s dp_desc=%s',
body.mfr_desc, body.hw_desc, body.sw_desc,
body.serial_num, body.dp_desc)

class os_ken.ofproto.ofproto_v1_0_parser.OFPFlowStatsRequest(datapath,
flags,
match,
ta-
ble_id,
out_port)

Individual flow statistics request message

The controller uses this message to query individual flow statistics.

8.1. Writing Your OS-Ken Application 171

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description

flags Zero (none yet defined in the spec).
match Instance of OFPMatch.
ta-
ble_id

ID of table to read (from ofp_table_stats), 0xff for all tables or 0xfe for emergency.

out_port Require matching entries to include this as an output port. A value of OFPP_NONE
indicates no restriction.

Example:

def send_flow_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

match = ofp_parser.OFPMatch(in_port=1)
table_id = 0xff
out_port = ofp.OFPP_NONE
req = ofp_parser.OFPFlowStatsRequest(

datapath, 0, match, table_id, out_port)

datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPFlowStatsReply(datapath)
Individual flow statistics reply message

The switch responds with a stats reply that include this message to an individual flow statistics
request.

Attribute Description
table_id ID of table flow came from.
match Instance of OFPMatch.
duration_sec Time flow has been alive in seconds.
duration_nsec Time flow has been alive in nanoseconds beyond duration_sec.
priority Priority of the entry. Only meaningful when this is not an exact-match entry.
idle_timeout Number of seconds idle before expiration.
hard_timeout Number of seconds before expiration.
cookie Opaque controller-issued identifier.
packet_count Number of packets in flow.
byte_count Number of bytes in flow.
actions List of OFPAction* instance

Example:

@set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER)
def flow_stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

flows = []
for stat in body:

(continues on next page)

8.1. Writing Your OS-Ken Application 172

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

flows.append('table_id=%s match=%s '
'duration_sec=%d duration_nsec=%d '
'priority=%d '
'idle_timeout=%d hard_timeout=%d '
'cookie=%d packet_count=%d byte_count=%d '
'actions=%s' %
(stat.table_id, stat.match,
stat.duration_sec, stat.duration_nsec,
stat.priority,
stat.idle_timeout, stat.hard_timeout,
stat.cookie, stat.packet_count, stat.byte_count,
stat.actions))

self.logger.debug('FlowStats: %s', flows)

class os_ken.ofproto.ofproto_v1_0_parser.OFPAggregateStatsRequest(datapath,
flags,
match,
ta-
ble_id,
out_port)

Aggregate flow statistics request message

The controller uses this message to query aggregate flow statictics.

At-
tribute

Description

flags Zero (none yet defined in the spec).
match Fields to match.
ta-
ble_id

ID of table to read (from ofp_table_stats) 0xff for all tables or 0xfe for emergency.

out_port Require matching entries to include this as an output port. A value of OFPP_NONE
indicates no restriction.

Example:

def send_aggregate_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPAggregateStatsRequest(

datapath, 0, match, 0xff, ofp.OFPP_NONE)

datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPAggregateStatsReply(datapath)
Aggregate flow statistics reply message

The switch responds with a stats reply that include this message to an aggregate flow statistics
request.

8.1. Writing Your OS-Ken Application 173

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
packet_count Number of packets in flows.
byte_count Number of bytes in flows.
flow_count Number of flows.

Example:

@set_ev_cls(ofp_event.EventOFPAggregateStatsReply, MAIN_DISPATCHER)
def aggregate_stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

self.logger.debug('AggregateStats: packet_count=%d byte_count=%d '
'flow_count=%d',
body.packet_count, body.byte_count,
body.flow_count)

class os_ken.ofproto.ofproto_v1_0_parser.OFPTableStatsRequest(datapath,
flags)

Table statistics request message

The controller uses this message to query flow table statictics.

Attribute Description
flags Zero (none yet defined in the spec).

Example:

def send_table_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableStatsRequest(datapath)
datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPTableStatsReply(datapath)
Table statistics reply message

The switch responds with a stats reply that include this message to a table statistics request.

Attribute Description
table_id ID of table.
name table name.
wildcards Bitmap of OFPFW_* wildcards that are supported by the table.
max_entries Max number of entries supported
active_count Number of active entries
lookup_count Number of packets looked up in table
matched_count Number of packets that hit table

Example:

8.1. Writing Your OS-Ken Application 174

os-ken Documentation, Release 1.4.1.dev5

@set_ev_cls(ofp_event.EventOFPTableStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

tables = []
for stat in body:

tables.append('table_id=%d name=%s wildcards=0x%02x '
'max_entries=%d active_count=%d '
'lookup_count=%d matched_count=%d' %
(stat.table_id, stat.name, stat.wildcards,
stat.max_entries, stat.active_count,
stat.lookup_count, stat.matched_count))

self.logger.debug('TableStats: %s', tables)

class os_ken.ofproto.ofproto_v1_0_parser.OFPPortStatsRequest(datapath,
flags,
port_no)

Port statistics request message

The controller uses this message to query information about ports statistics.

Attribute Description
flags Zero (none yet defined in the spec).
port_no Port number to read (OFPP_NONE to all ports).

Example:

def send_port_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPPortStatsRequest(datapath, 0, ofp.OFPP_ANY)
datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPPortStatsReply(datapath)
Port statistics reply message

The switch responds with a stats reply that include this message to a port statistics request.

8.1. Writing Your OS-Ken Application 175

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number.
rx_packets Number of received packets.
tx_packets Number of transmitted packets.
rx_bytes Number of received bytes.
tx_bytes Number of transmitted bytes.
rx_dropped Number of packets dropped by RX.
tx_dropped Number of packets dropped by TX.
rx_errors Number of receive errors.
tx_errors Number of transmit errors.
rx_frame_err Number of frame alignment errors.
rx_over_err Number of packet with RX overrun.
rx_crc_err Number of CRC errors.
collisions Number of collisions.

Example:

@set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER)
def port_stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

ports = []
for stat in body:

ports.append('port_no=%d '
'rx_packets=%d tx_packets=%d '
'rx_bytes=%d tx_bytes=%d '
'rx_dropped=%d tx_dropped=%d '
'rx_errors=%d tx_errors=%d '
'rx_frame_err=%d rx_over_err=%d rx_crc_err=%d '
'collisions=%d' %
(stat.port_no,
stat.rx_packets, stat.tx_packets,
stat.rx_bytes, stat.tx_bytes,
stat.rx_dropped, stat.tx_dropped,
stat.rx_errors, stat.tx_errors,
stat.rx_frame_err, stat.rx_over_err,
stat.rx_crc_err, stat.collisions))

self.logger.debug('PortStats: %s', ports)

class os_ken.ofproto.ofproto_v1_0_parser.OFPQueueStatsRequest(datapath,
flags,
port_no,
queue_id)

Queue statistics request message

The controller uses this message to query queue statictics.

Attribute Description
flags Zero (none yet defined in the spec)
port_no Port number to read (All ports if OFPT_ALL).
queue_id ID of queue to read (All queues if OFPQ_ALL).

8.1. Writing Your OS-Ken Application 176

os-ken Documentation, Release 1.4.1.dev5

Example:

def send_queue_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueStatsRequest(datapath, 0, ofp.OFPT_ALL,
ofp.OFPQ_ALL)

datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPQueueStatsReply(datapath)
Queue statistics reply message

The switch responds with a stats reply that include this message to an aggregate flow statistics
request.

Attribute Description
port_no Port number.
queue_id ID of queue.
tx_bytes Number of transmitted bytes.
tx_packets Number of transmitted packets.
tx_errors Number of packets dropped due to overrun.

Example:

@set_ev_cls(ofp_event.EventOFPQueueStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

queues = []
for stat in body:

queues.append('port_no=%d queue_id=%d '
'tx_bytes=%d tx_packets=%d tx_errors=%d ' %
(stat.port_no, stat.queue_id,
stat.tx_bytes, stat.tx_packets, stat.tx_

↪→errors))
self.logger.debug('QueueStats: %s', queues)

class os_ken.ofproto.ofproto_v1_0_parser.OFPVendorStatsRequest(datapath,
flags,
ven-
dor,
spe-
cific_data=None)

Vendor statistics request message

The controller uses this message to query vendor-specific information of a switch.

class os_ken.ofproto.ofproto_v1_0_parser.OFPVendorStatsReply(datapath)
Vendor statistics reply message

The switch responds with a stats reply that include this message to an vendor statistics request.

8.1. Writing Your OS-Ken Application 177

os-ken Documentation, Release 1.4.1.dev5

Send Packet Message

class os_ken.ofproto.ofproto_v1_0_parser.OFPPacketOut(datapath,
buffer_id=None,
in_port=None,
actions=None,
data=None)

Packet-Out message

The controller uses this message to send a packet out throught the switch.

Attribute Description
buffer_id ID assigned by datapath (0xffffffff if none).
in_port Packet’s input port (OFPP_NONE if none).
actions ist of OFPAction* instance.
data Packet data of a binary type value or an instances of packet.Packet.

Example:

def send_packet_out(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

buffer_id = 0xffffffff
in_port = ofp.OFPP_NONE
actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD, 0)]
req = ofp_parser.OFPPacketOut(datapath, buffer_id,

in_port, actions)
datapath.send_msg(req)

JSON Example:

{
"OFPPacketOut": {

"actions": [
{

"OFPActionOutput": {
"max_len": 65535,
"port": 65532

}
}

],
"buffer_id": 4294967295,
"data":

↪→"8guk0D9w8gukffjqCABFAABU+BoAAP8Br4sKAAABCgAAAggAAgj3YAAAMdYCAAAAAACrjS0xAAAAABAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vAAAAAAAAAAA=
↪→",

"in_port": 65533
}

}

8.1. Writing Your OS-Ken Application 178

os-ken Documentation, Release 1.4.1.dev5

Barrier Message

class os_ken.ofproto.ofproto_v1_0_parser.OFPBarrierRequest(datapath)
Barrier request message

The controller sends this message to ensure message dependencies have been met or receive noti-
fications for completed operations.

Example:

def send_barrier_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPBarrierRequest(datapath)
datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_0_parser.OFPBarrierReply(datapath)
Barrier reply message

The switch responds with this message to a barrier request.

Example:

@set_ev_cls(ofp_event.EventOFPBarrierReply, MAIN_DISPATCHER)
def barrier_reply_handler(self, ev):

self.logger.debug('OFPBarrierReply received')

Asynchronous Messages

Packet-In Message

class os_ken.ofproto.ofproto_v1_0_parser.OFPPacketIn(datapath,
buffer_id=None,
total_len=None,
in_port=None,
reason=None,
data=None)

Packet-In message

The switch sends the packet that received to the controller by this message.

Attribute Description
buffer_id ID assigned by datapath.
total_len Full length of frame.
in_port Port on which frame was received.
reason Reason packet is being sent.

OFPR_NO_MATCH
OFPR_ACTION
OFPR_INVALID_TTL

data Ethernet frame.

8.1. Writing Your OS-Ken Application 179

os-ken Documentation, Release 1.4.1.dev5

Example:

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def packet_in_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPR_NO_MATCH:
reason = 'NO MATCH'

elif msg.reason == ofp.OFPR_ACTION:
reason = 'ACTION'

elif msg.reason == ofp.OFPR_INVALID_TTL:
reason = 'INVALID TTL'

else:
reason = 'unknown'

self.logger.debug('OFPPacketIn received: '
'buffer_id=%x total_len=%d in_port=%d, '
'reason=%s data=%s',
msg.buffer_id, msg.total_len, msg.in_port,
reason, utils.hex_array(msg.data))

JSON Example:

{
"OFPPacketIn": {

"buffer_id": 2,
"data": "////////

↪→8gukffjqCAYAAQgABgQAAfILpH346goAAAEAAAAAAAAKAAAD",
"in_port": 99,
"reason": 1,
"total_len": 42

}
}

Flow Removed Message

class os_ken.ofproto.ofproto_v1_0_parser.OFPFlowRemoved(datapath)
Flow removed message

When flow entries time out or are deleted, the switch notifies controller with this message.

8.1. Writing Your OS-Ken Application 180

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
match Instance of OFPMatch.
cookie Opaque controller-issued identifier.
priority Priority level of flow entry.
reason One of the following values.

OFPRR_IDLE_TIMEOUT
OFPRR_HARD_TIMEOUT
OFPRR_DELETE

duration_sec Time flow was alive in seconds.
duration_nsec Time flow was alive in nanoseconds beyond

duration_sec.
idle_timeout Idle timeout from original flow mod.
packet_count Number of packets that was associated with

the flow.
byte_count Number of bytes that was associated with the

flow.

Example:

@set_ev_cls(ofp_event.EventOFPFlowRemoved, MAIN_DISPATCHER)
def flow_removed_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPRR_IDLE_TIMEOUT:
reason = 'IDLE TIMEOUT'

elif msg.reason == ofp.OFPRR_HARD_TIMEOUT:
reason = 'HARD TIMEOUT'

elif msg.reason == ofp.OFPRR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPRR_GROUP_DELETE:
reason = 'GROUP DELETE'

else:
reason = 'unknown'

self.logger.debug('OFPFlowRemoved received: '
'match=%s cookie=%d priority=%d reason=%s '
'duration_sec=%d duration_nsec=%d '
'idle_timeout=%d packet_count=%d byte_count=%d',
msg.match, msg.cookie, msg.priority, reason,
msg.duration_sec, msg.duration_nsec,
msg.idle_timeout, msg.packet_count,
msg.byte_count)

8.1. Writing Your OS-Ken Application 181

os-ken Documentation, Release 1.4.1.dev5

Port Status Message

class os_ken.ofproto.ofproto_v1_0_parser.OFPPortStatus(datapath,
reason=None,
desc=None)

Port status message

The switch notifies controller of change of ports.

Attribute Description
reason One of the following values.

OFPPR_ADD
OFPPR_DELETE
OFPPR_MODIFY

desc instance of OFPPhyPort

Example:

@set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER)
def port_status_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPPR_ADD:
reason = 'ADD'

elif msg.reason == ofp.OFPPR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPPR_MODIFY:
reason = 'MODIFY'

else:
reason = 'unknown'

self.logger.debug('OFPPortStatus received: reason=%s desc=%s',
reason, msg.desc)

Error Message

class os_ken.ofproto.ofproto_v1_0_parser.OFPErrorMsg(datapath,
type_=None,
code=None,
data=None)

Error message

The switch notifies controller of problems by this message.

Attribute Description
type High level type of error
code Details depending on the type
data Variable length data depending on the type and code

8.1. Writing Your OS-Ken Application 182

os-ken Documentation, Release 1.4.1.dev5

type attribute corresponds to type_ parameter of __init__.

Types and codes are defined in os_ken.ofproto.ofproto.

Type Code
OFPET_HELLO_FAILED OFPHFC_*
OFPET_BAD_REQUEST OFPBRC_*
OFPET_BAD_ACTION OFPBAC_*
OFPET_FLOW_MOD_FAILED OFPFMFC_*
OFPET_PORT_MOD_FAILED OFPPMFC_*
OFPET_QUEUE_OP_FAILED OFPQOFC_*

Example:

@set_ev_cls(ofp_event.EventOFPErrorMsg,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def error_msg_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPErrorMsg received: type=0x%02x code=0x%02x '
'message=%s',
msg.type, msg.code, utils.hex_array(msg.data))

Symmetric Messages

Hello

class os_ken.ofproto.ofproto_v1_0_parser.OFPHello(datapath)
Hello message

When connection is started, the hello message is exchanged between a switch and a controller.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Echo Request

class os_ken.ofproto.ofproto_v1_0_parser.OFPEchoRequest(datapath,
data=None)

Echo request message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data.

Example:

8.1. Writing Your OS-Ken Application 183

os-ken Documentation, Release 1.4.1.dev5

def send_echo_request(self, datapath, data):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPEchoRequest(datapath, data)
datapath.send_msg(req)

Echo Reply

class os_ken.ofproto.ofproto_v1_0_parser.OFPEchoReply(datapath,
data=None)

Echo reply message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data.

Example:

@set_ev_cls(ofp_event.EventOFPEchoReply,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_reply_handler(self, ev):

self.logger.debug('OFPEchoReply received: data=%s',
utils.hex_array(ev.msg.data))

Vendor

class os_ken.ofproto.ofproto_v1_0_parser.OFPVendor(datapath)
Vendor message

The controller send this message to send the vendor-specific information to a switch.

Port Structures

class os_ken.ofproto.ofproto_v1_0_parser.OFPPhyPort(port_no, hw_addr,
name, config,
state, curr, adver-
tised, supported,
peer)

Description of a port

8.1. Writing Your OS-Ken Application 184

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number and it uniquely identifies a port

within a switch.
hw_addr MAC address for the port.
name Null-terminated string containing a human-

readable name for the interface.
config Bitmap of port configration flags.

OFPPC_PORT_DOWN
OFPPC_NO_STP
OFPPC_NO_RECV
OFPPC_NO_RECV_STP
OFPPC_NO_FLOOD
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

state Bitmap of port state flags.

OFPPS_LINK_DOWN
OFPPS_STP_LISTEN
OFPPS_STP_LEARN
OFPPS_STP_FORWARD
OFPPS_STP_BLOCK
OFPPS_STP_MASK

curr Current features.
advertised Features being advertised by the port.
supported Features supported by the port.
peer Features advertised by peer.

Flow Match Structure

class os_ken.ofproto.ofproto_v1_0_parser.OFPMatch(wildcards=None,
in_port=None,
dl_src=None,
dl_dst=None,
dl_vlan=None,
dl_vlan_pcp=None,
dl_type=None,
nw_tos=None,
nw_proto=None,
nw_src=None,
nw_dst=None,
tp_src=None,
tp_dst=None,
nw_src_mask=32,
nw_dst_mask=32)

Flow Match Structure

8.1. Writing Your OS-Ken Application 185

os-ken Documentation, Release 1.4.1.dev5

This class is implementation of the flow match structure having compose/query API.

Attribute Description
wildcards Wildcard fields.
(match fields) For the available match fields, please refer to the following.

Argument Value Description
in_port Integer 16bit Switch input port.
dl_src MAC address Ethernet source address.
dl_dst MAC address Ethernet destination address.
dl_vlan Integer 16bit Input VLAN id.
dl_vlan_pcp Integer 8bit Input VLAN priority.
dl_type Integer 16bit Ethernet frame type.
nw_tos Integer 8bit IP ToS (actually DSCP field, 6 bits).
nw_proto Integer 8bit IP protocol or lower 8 bits of ARP opcode.
nw_src IPv4 address IP source address.
nw_dst IPv4 address IP destination address.
tp_src Integer 16bit TCP/UDP source port.
tp_dst Integer 16bit TCP/UDP destination port.
nw_src_mask Integer 8bit IP source address mask specified as IPv4 address prefix.
nw_dst_mask Integer 8bit IP destination address mask specified as IPv4 address prefix.

Example:

>>> # compose
>>> match = parser.OFPMatch(
... in_port=1,
... dl_type=0x0800,
... dl_src='aa:bb:cc:dd:ee:ff',
... nw_src='192.168.0.1')
>>> # query
>>> if 'nw_src' in match:
... print match['nw_src']
...
'192.168.0.1'

Action Structures

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionHeader(type_,
len_)

class os_ken.ofproto.ofproto_v1_0_parser.OFPAction

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionOutput(port,
max_len=65509)

Output action

This action indicates output a packet to the switch port.

Attribute Description
port Output port.
max_len Max length to send to controller.

8.1. Writing Your OS-Ken Application 186

os-ken Documentation, Release 1.4.1.dev5

Note:: The reason of this magic number (0xffe5) is because there is no good constant in of1.0.
The same value as OFPCML_MAX of of1.2 and of1.3 is used.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionVlanVid(vlan_vid)
Set the 802.1q VLAN id action

This action indicates the 802.1q VLAN id to be set.

Attribute Description
vlan_vid VLAN id.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionVlanPcp(vlan_pcp)
Set the 802.1q priority action

This action indicates the 802.1q priority to be set.

Attribute Description
vlan_pcp VLAN priority.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionStripVlan
Strip the 802.1q header action

This action indicates the 802.1q priority to be striped.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionDlAddr(dl_addr)

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionSetDlSrc(dl_addr)
Set the ethernet source address action

This action indicates the ethernet source address to be set.

Attribute Description
dl_addr Ethernet address.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionSetDlDst(dl_addr)
Set the ethernet destination address action

This action indicates the ethernet destination address to be set.

Attribute Description
dl_addr Ethernet address.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionNwAddr(nw_addr)

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionSetNwSrc(nw_addr)
Set the IP source address action

This action indicates the IP source address to be set.

Attribute Description
nw_addr IP address.

8.1. Writing Your OS-Ken Application 187

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionSetNwDst(nw_addr)
Set the IP destination address action

This action indicates the IP destination address to be set.

Attribute Description
nw_addr IP address.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionSetNwTos(tos)
Set the IP ToS action

This action indicates the IP ToS (DSCP field, 6 bits) to be set.

Attribute Description
tos IP ToS (DSCP field, 6 bits).

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionTpPort(tp)

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionSetTpSrc(tp)
Set the TCP/UDP source port action

This action indicates the TCP/UDP source port to be set.

Attribute Description
tp TCP/UDP port.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionSetTpDst(tp)
Set the TCP/UDP destination port action

This action indicates the TCP/UDP destination port to be set.

Attribute Description
tp TCP/UDP port.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionEnqueue(port,
queue_id)

Output to queue action

This action indicates send packets to given queue on port.

Attribute Description
port Port that queue belongs.
queue_id Where to enqueue the packets.

class os_ken.ofproto.ofproto_v1_0_parser.OFPActionVendor(vendor=None)
Vendor action

This action is an extensible action for the vendor.

8.1. Writing Your OS-Ken Application 188

os-ken Documentation, Release 1.4.1.dev5

OpenFlow v1.2 Messages and Structures

Controller-to-Switch Messages

Handshake

class os_ken.ofproto.ofproto_v1_2_parser.OFPFeaturesRequest(datapath)
Features request message

The controller sends a feature request to the switch upon session establishment.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

def send_features_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPFeaturesRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPFeaturesRequest": {}

}

class os_ken.ofproto.ofproto_v1_2_parser.OFPSwitchFeatures(datapath,
datap-
ath_id=None,
n_buffers=None,
n_tables=None,
capa-
bili-
ties=None,
ports=None)

Features reply message

The switch responds with a features reply message to a features request.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPSwitchFeatures received: '
'datapath_id=0x%016x n_buffers=%d '
'n_tables=%d capabilities=0x%08x ports=%s',
msg.datapath_id, msg.n_buffers, msg.n_tables,
msg.capabilities, msg.ports)

JSON Example:

8.1. Writing Your OS-Ken Application 189

os-ken Documentation, Release 1.4.1.dev5

{
"OFPSwitchFeatures": {

"capabilities": 79,
"datapath_id": 9210263729383,
"n_buffers": 0,
"n_tables": 255,
"ports": {

"6": {
"OFPPort": {

"advertised": 10240,
"config": 0,
"curr": 10248,
"curr_speed": 5000,
"hw_addr": "f2:0b:a4:7d:f8:ea",
"max_speed": 5000,
"name": "Port6",
"peer": 10248,
"port_no": 6,
"state": 4,
"supported": 10248

}
},
"7": {

"OFPPort": {
"advertised": 10240,
"config": 0,
"curr": 10248,
"curr_speed": 5000,
"hw_addr": "f2:0b:a4:d0:3f:70",
"max_speed": 5000,
"name": "Port7",
"peer": 10248,
"port_no": 7,
"state": 4,
"supported": 10248

}
}

}
}

}

Switch Configuration

class os_ken.ofproto.ofproto_v1_2_parser.OFPSetConfig(datapath,
flags=0,
miss_send_len=0)

Set config request message

The controller sends a set config request message to set configuraion parameters.

8.1. Writing Your OS-Ken Application 190

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags One of the following configuration flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM
OFPC_FRAG_MASK
OFPC_INVALID_TTL_TO_CONTROLLER

miss_send_len Max bytes of new flow that datapath should
send to the controller

Example:

def send_set_config(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPSetConfig(datapath, ofp.OFPC_FRAG_NORMAL, 256)
datapath.send_msg(req)

JSON Example:

{
"OFPSetConfig": {

"flags": 0,
"miss_send_len": 128

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPGetConfigRequest(datapath)
Get config request message

The controller sends a get config request to query configuration parameters in the switch.

Example:

def send_get_config_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGetConfigRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGetConfigRequest": {}

}

class os_ken.ofproto.ofproto_v1_2_parser.OFPGetConfigReply(datapath,
flags=None,
miss_send_len=None)

Get config reply message

The switch responds to a configuration request with a get config reply message.

8.1. Writing Your OS-Ken Application 191

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags One of the following configuration flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM
OFPC_FRAG_MASK
OFPC_INVALID_TTL_TO_CONTROLLER

miss_send_len Max bytes of new flow that datapath should
send to the controller

Example:

@set_ev_cls(ofp_event.EventOFPGetConfigReply, MAIN_DISPATCHER)
def get_config_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.flags == ofp.OFPC_FRAG_NORMAL:
flags = 'NORMAL'

elif msg.flags == ofp.OFPC_FRAG_DROP:
flags = 'DROP'

elif msg.flags == ofp.OFPC_FRAG_REASM:
flags = 'REASM'

elif msg.flags == ofp.OFPC_FRAG_MASK:
flags = 'MASK'

elif msg.flags == ofp.OFPC_INVALID_TTL_TO_CONTROLLER:
flags = 'INVALID TTL TO CONTROLLER'

else:
flags = 'unknown'

self.logger.debug('OFPGetConfigReply received: '
'flags=%s miss_send_len=%d',
flags, msg.miss_send_len)

JSON Example:

{
"OFPGetConfigReply": {

"flags": 0,
"miss_send_len": 128

}
}

8.1. Writing Your OS-Ken Application 192

os-ken Documentation, Release 1.4.1.dev5

Flow Table Configuration

class os_ken.ofproto.ofproto_v1_2_parser.OFPTableMod(datapath, ta-
ble_id, config)

Flow table configuration message

The controller sends this message to configure table state.

Attribute Description
table_id ID of the table (OFPTT_ALL indicates all ta-

bles)
config Bitmap of the following flags.

OFPTC_TABLE_MISS_CONTROLLER
OFPTC_TABLE_MISS_CONTINUE
OFPTC_TABLE_MISS_DROP
OFPTC_TABLE_MISS_MASK

Example:

def send_table_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableMod(datapath, ofp.OFPTT_ALL,
ofp.OFPTC_TABLE_MISS_DROP)

datapath.send_msg(req)

JSON Example:

{
"OFPTableMod": {

"config": 0,
"table_id": 255

}
}

8.1. Writing Your OS-Ken Application 193

os-ken Documentation, Release 1.4.1.dev5

Modify State Messages

class os_ken.ofproto.ofproto_v1_2_parser.OFPFlowMod(datapath,
cookie=0,
cookie_mask=0,
table_id=0,
command=0,
idle_timeout=0,
hard_timeout=0,
priority=0,
buffer_id=4294967295,
out_port=0,
out_group=0,
flags=0,
match=None, in-
structions=None)

Modify Flow entry message

The controller sends this message to modify the flow table.

8.1. Writing Your OS-Ken Application 194

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
cookie Opaque controller-issued identifier
cookie_mask Mask used to restrict the cookie bits

that must match when the command is
OPFFC_MODIFY* or OFPFC_DELETE*

table_id ID of the table to put the flow in
command One of the following values.

OFPFC_ADD
OFPFC_MODIFY
OFPFC_MODIFY_STRICT
OFPFC_DELETE
OFPFC_DELETE_STRICT

idle_timeout Idle time before discarding (seconds)
hard_timeout Max time before discarding (seconds)
priority Priority level of flow entry
buffer_id Buffered packet to apply to (or

OFP_NO_BUFFER)
out_port For OFPFC_DELETE* commands, require

matching entries to include this as an output
port

out_group For OFPFC_DELETE* commands, require
matching entries to include this as an output
group

flags One of the following values.

OFPFF_SEND_FLOW_REM
OFPFF_CHECK_OVERLAP
OFPFF_RESET_COUNTS

match Instance of OFPMatch
instructions list of OFPInstruction* instance

Example:

def send_flow_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
table_id = 0
idle_timeout = hard_timeout = 0
priority = 32768
buffer_id = ofp.OFP_NO_BUFFER
match = ofp_parser.OFPMatch(in_port=1, eth_dst='ff:ff:ff:ff:ff:ff

↪→')
actions = [ofp_parser.OFPActionOutput(ofp.OFPP_NORMAL, 0)]
inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,

actions)]

(continues on next page)

8.1. Writing Your OS-Ken Application 195

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

req = ofp_parser.OFPFlowMod(datapath, cookie, cookie_mask,
table_id, ofp.OFPFC_ADD,
idle_timeout, hard_timeout,
priority, buffer_id,
ofp.OFPP_ANY, ofp.OFPG_ANY,
ofp.OFPFF_SEND_FLOW_REM,
match, inst)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowMod": {

"buffer_id": 65535,
"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "vlan_vid",
"mask": null,
"value": 258

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 6,
"type": 0

}
}

],
"len": 40,
"type": 3

}
},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionSetField": {

"field": {
(continues on next page)

8.1. Writing Your OS-Ken Application 196

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "01:02:03:04:05:06"

}
},
"len": 16,
"type": 25

}
}

],
"len": 24,
"type": 4

}
}

],
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 1

}
}

{
"OFPFlowMod": {

"buffer_id": 65535,
"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionGotoTable": {

"len": 8,
"table_id": 1,
"type": 1

}
}

(continues on next page)

8.1. Writing Your OS-Ken Application 197

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

],
"match": {

"OFPMatch": {
"length": 22,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 6

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 0

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPGroupMod(datapath,
command=0,
type_=0,
group_id=0,
buckets=None)

Modify group entry message

The controller sends this message to modify the group table.

8.1. Writing Your OS-Ken Application 198

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
command One of the following values.

OFPGC_ADD
OFPGC_MODIFY
OFPGC_DELETE

type One of the following values.

OFPGT_ALL
OFPGT_SELECT
OFPGT_INDIRECT
OFPGT_FF

group_id Group identifier
buckets list of OFPBucket

type attribute corresponds to type_ parameter of __init__.

Example:

def send_group_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

port = 1
max_len = 2000
actions = [ofp_parser.OFPActionOutput(port, max_len)]

weight = 100
watch_port = 0
watch_group = 0
buckets = [ofp_parser.OFPBucket(weight, watch_port, watch_group,

actions)]

group_id = 1
req = ofp_parser.OFPGroupMod(datapath, ofp.OFPGC_ADD,

ofp.OFPGT_SELECT, group_id, buckets)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupMod": {

"buckets": [
{

"OFPBucket": {
"actions": [

{
"OFPActionOutput": {

"len": 16,
"max_len": 65535,
"port": 2,

(continues on next page)

8.1. Writing Your OS-Ken Application 199

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 0
}

}
],
"len": 32,
"watch_group": 1,
"watch_port": 1,
"weight": 1

}
}

],
"command": 0,
"group_id": 1,
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPPortMod(datapath,
port_no=0,
hw_addr=’00:00:00:00:00:00’,
config=0, mask=0,
advertise=0)

Port modification message

The controller sneds this message to modify the behavior of the port.

8.1. Writing Your OS-Ken Application 200

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number to modify
hw_addr The hardware address that must be

the same as hw_addr of OFPPort of
OFPSwitchFeatures

config Bitmap of configuration flags.

OFPPC_PORT_DOWN
OFPPC_NO_RECV
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

mask Bitmap of configuration flags above to be
changed

advertise Bitmap of the following flags.

OFPPF_10MB_HD
OFPPF_10MB_FD
OFPPF_100MB_HD
OFPPF_100MB_FD
OFPPF_1GB_HD
OFPPF_1GB_FD
OFPPF_10GB_FD
OFPPF_40GB_FD
OFPPF_100GB_FD
OFPPF_1TB_FD
OFPPF_OTHER
OFPPF_COPPER
OFPPF_FIBER
OFPPF_AUTONEG
OFPPF_PAUSE
OFPPF_PAUSE_ASYM

Example:

def send_port_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

port_no = 3
hw_addr = 'fa:c8:e8:76:1d:7e'
config = 0
mask = (ofp.OFPPC_PORT_DOWN | ofp.OFPPC_NO_RECV |

ofp.OFPPC_NO_FWD | ofp.OFPPC_NO_PACKET_IN)
advertise = (ofp.OFPPF_10MB_HD | ofp.OFPPF_100MB_FD |

ofp.OFPPF_1GB_FD | ofp.OFPPF_COPPER |
ofp.OFPPF_AUTONEG | ofp.OFPPF_PAUSE |

(continues on next page)

8.1. Writing Your OS-Ken Application 201

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

ofp.OFPPF_PAUSE_ASYM)
req = ofp_parser.OFPPortMod(datapath, port_no, hw_addr, config,

mask, advertise)
datapath.send_msg(req)

JSON Example:

{
"OFPPortMod": {

"advertise": 4096,
"config": 0,
"hw_addr": "00-11-00-00-11-11",
"mask": 0,
"port_no": 1

}
}

Read State Messages

class os_ken.ofproto.ofproto_v1_2_parser.OFPDescStatsRequest(datapath,
flags=0)

Description statistics request message

The controller uses this message to query description of the switch.

Attribute Description
flags Zero (none yet defined in the spec)

Example:

def send_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPDescStatsRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPDescStatsRequest": {

"flags": 0
}

}

class os_ken.ofproto.ofproto_v1_2_parser.OFPDescStats(mfr_desc,
hw_desc,
sw_desc, se-
rial_num,
dp_desc)

Description statistics reply message

The switch responds with a stats reply that include this message to a description statistics request.

8.1. Writing Your OS-Ken Application 202

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
mfr_desc Manufacturer description
hw_desc Hardware description
sw_desc Software description
serial_num Serial number
dp_desc Human readable description of datapath

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_DESC:
self.desc_stats_reply_handler(body)

def desc_stats_reply_handler(self, body):
self.logger.debug('DescStats: mfr_desc=%s hw_desc=%s sw_desc=%s '

'serial_num=%s dp_desc=%s',
body.mfr_desc, body.hw_desc, body.sw_desc,
body.serial_num, body.dp_desc)

JSON Example:

{
"OFPStatsReply": {

"body": {
"OFPDescStats": {

"dp_desc": "dp",
"hw_desc": "hw",
"mfr_desc": "mfr",
"serial_num": "serial",
"sw_desc": "sw"

}
},
"flags": 0,
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPFlowStatsRequest(datapath,
ta-
ble_id=255,
out_port=4294967295,
out_group=4294967295,
cookie=0,
cookie_mask=0,
match=None,
flags=0)

Individual flow statistics request message

The controller uses this message to query individual flow statistics.

8.1. Writing Your OS-Ken Application 203

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch
flags Zero (none yet defined in the spec)

Example:

def send_flow_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPFlowStatsRequest(datapath,

ofp.OFPTT_ALL,
ofp.OFPP_ANY, ofp.OFPG_ANY,
cookie, cookie_mask, match)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowStatsRequest": {

"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"table_id": 0

}
}

8.1. Writing Your OS-Ken Application 204

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_2_parser.OFPFlowStats(table_id, du-
ration_sec,
duration_nsec,
priority,
idle_timeout,
hard_timeout,
cookie,
packet_count,
byte_count,
match, instruc-
tions=None,
length=None)

Individual flow statistics reply message

The switch responds with a stats reply that include this message to an individual flow statistics
request.

Attribute Description
table_id ID of table flow came from
duration_sec Time flow has been alive in seconds
duration_nsec Time flow has been alive in nanoseconds beyond duration_sec
priority Priority of the entry
idle_timeout Number of seconds idle before expiration
hard_timeout Number of seconds before expiration
cookie Opaque controller-issued identifier
packet_count Number of packets in flow
byte_count Number of bytes in flow
match Instance of OFPMatch
instructions list of OFPInstruction* instance

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_FLOW:
self.flow_stats_reply_handler(body)

def flow_stats_reply_handler(self, body):
flows = []
for stat in body:

flows.append('table_id=%s '
'duration_sec=%d duration_nsec=%d '
'priority=%d '
'idle_timeout=%d hard_timeout=%d '
'cookie=%d packet_count=%d byte_count=%d '
'match=%s instructions=%s' %
(stat.table_id,
stat.duration_sec, stat.duration_nsec,
stat.priority,

(continues on next page)

8.1. Writing Your OS-Ken Application 205

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

stat.idle_timeout, stat.hard_timeout,
stat.cookie, stat.packet_count, stat.byte_count,
stat.match, stat.instructions))

self.logger.debug('FlowStats: %s', flows)

JSON Example:

{
"OFPStatsReply": {

"body": [
{

"OFPFlowStats": {
"byte_count": 0,
"cookie": 0,
"duration_nsec": 115277000,
"duration_sec": 358,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [],
"length": 56,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"packet_count": 0,
"priority": 65535,
"table_id": 0

}
},
{

"OFPFlowStats": {
"byte_count": 0,
"cookie": 0,
"duration_nsec": 115055000,
"duration_sec": 358,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 0,
"port": 4294967290,
"type": 0

}
}

],
"len": 24,
"type": 4

}
(continues on next page)

8.1. Writing Your OS-Ken Application 206

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
],
"length": 88,
"match": {

"OFPMatch": {
"length": 10,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_type",
"mask": null,
"value": 2054

}
}

],
"type": 1

}
},
"packet_count": 0,
"priority": 65534,
"table_id": 0

}
},
{

"OFPFlowStats": {
"byte_count": 238,
"cookie": 0,
"duration_nsec": 511582000,
"duration_sec": 316220,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionGotoTable": {

"len": 8,
"table_id": 1,
"type": 1

}
}

],
"length": 80,
"match": {

"OFPMatch": {
"length": 22,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 6

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,

(continues on next page)

8.1. Writing Your OS-Ken Application 207

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"value": "f2:0b:a4:7d:f8:ea"
}

}
],
"type": 1

}
},
"packet_count": 3,
"priority": 123,
"table_id": 0

}
},
{

"OFPFlowStats": {
"byte_count": 98,
"cookie": 0,
"duration_nsec": 980901000,
"duration_sec": 313499,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 4294967293,
"type": 0

}
}

],
"len": 24,
"type": 3

}
}

],
"length": 80,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"packet_count": 1,
"priority": 0,
"table_id": 0

}
}

],
"flags": 0,
"type": 1

}
}

8.1. Writing Your OS-Ken Application 208

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_2_parser.OFPAggregateStatsRequest(datapath,
ta-
ble_id=255,
out_port=4294967295,
out_group=4294967295,
cookie=0,
cookie_mask=0,
match=None,
flags=0)

Aggregate flow statistics request message

The controller uses this message to query aggregate flow statictics.

Attribute Description
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch
flags Zero (none yet defined in the spec)

Example:

def send_aggregate_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPAggregateStatsRequest(datapath, 0,

ofp.OFPTT_ALL,
ofp.OFPP_ANY,
ofp.OFPG_ANY,
cookie, cookie_mask,
match)

datapath.send_msg(req)

JSON Example:

{
"OFPAggregateStatsRequest": {

"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,

(continues on next page)

8.1. Writing Your OS-Ken Application 209

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"table_id": 255
}

}

class os_ken.ofproto.ofproto_v1_2_parser.OFPAggregateStatsReply(packet_count,
byte_count,
flow_count)

Aggregate flow statistics reply message

The switch responds with a stats reply that include this message to an aggregate flow statistics
request.

Attribute Description
packet_count Number of packets in flows
byte_count Number of bytes in flows
flow_count Number of flows

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_AGGREGATE:
self.aggregate_stats_reply_handler(body)

def aggregate_stats_reply_handler(self, body):
self.logger.debug('AggregateStats: packet_count=%d byte_count=%d '

'flow_count=%d',
body.packet_count, body.byte_count,
body.flow_count)

JSON Example:

{
"OFPStatsReply": {

"body": {
"OFPAggregateStatsReply": {

"byte_count": 574,
"flow_count": 6,
"packet_count": 7

}
},
"flags": 0,
"type": 2

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPTableStatsRequest(datapath,
flags=0)

Table statistics request message

The controller uses this message to query flow table statictics.

8.1. Writing Your OS-Ken Application 210

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags Zero (none yet defined in the spec)

Example:

def send_table_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableStatsRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPTableStatsRequest": {

"flags": 0
}

}

class os_ken.ofproto.ofproto_v1_2_parser.OFPTableStats(table_id,
name, match,
wildcards,
write_actions,
apply_actions,
write_setfields,
ap-
ply_setfields,
meta-
data_match,
meta-
data_write,
instruc-
tions, config,
max_entries,
active_count,
lookup_count,
matched_count)

Table statistics reply message

The switch responds with a stats reply that include this message to a table statistics request.

8.1. Writing Your OS-Ken Application 211

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
table_id ID of table
name table name
match Bitmap of (1 « OFPXMT_*) that indicate the fields the table can match on
wildcards Bitmap of (1 « OFPXMT_*) wildcards that are supported by the table
write_actions Bitmap of OFPAT_* that are supported by the table with OF-

PIT_WRITE_ACTIONS
apply_actions Bitmap of OFPAT_* that are supported by the table with OF-

PIT_APPLY_ACTIONS
write_setfields Bitmap of (1 « OFPXMT_*) header fields that can be set with OF-

PIT_WRITE_ACTIONS
ap-
ply_setfields

Bitmap of (1 « OFPXMT_*) header fields that can be set with OF-
PIT_APPLY_ACTIONS

meta-
data_match

Bits of metadata table can match

meta-
data_write

Bits of metadata table can write

instructions Bitmap of OFPIT_* values supported
config Bitmap of OFPTC_* values
max_entries Max number of entries supported
active_count Number of active entries
lookup_count Number of packets looked up in table
matched_count Number of packets that hit table

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_TABLE:
self.table_stats_reply_handler(body)

def table_stats_reply_handler(self, body):
tables = []
for stat in body:

tables.append('table_id=%d active_count=%d lookup_count=%d '
' matched_count=%d' %
(stat.table_id, stat.active_count,
stat.lookup_count, stat.matched_count))

self.logger.debug('TableStats: %s', tables)

class os_ken.ofproto.ofproto_v1_2_parser.OFPPortStatsRequest(datapath,
port_no=4294967295,
flags=0)

Port statistics request message

The controller uses this message to query information about ports statistics.

8.1. Writing Your OS-Ken Application 212

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number to read (OFPP_ANY to all ports)
flags Zero (none yet defined in the spec)

Example:

def send_port_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPPortStatsRequest(datapath, ofp.OFPP_ANY)
datapath.send_msg(req)

JSON Example:

{
"OFPPortStatsRequest": {

"flags": 0,
"port_no": 4294967295

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPPortStats(port_no,
rx_packets,
tx_packets,
rx_bytes,
tx_bytes,
rx_dropped,
tx_dropped,
rx_errors,
tx_errors,
rx_frame_err,
rx_over_err,
rx_crc_err,
collisions)

Port statistics reply message

The switch responds with a stats reply that include this message to a port statistics request.

Attribute Description
port_no Port number
rx_packets Number of received packets
tx_packets Number of transmitted packets
rx_bytes Number of received bytes
tx_bytes Number of transmitted bytes
rx_dropped Number of packets dropped by RX
tx_dropped Number of packets dropped by TX
rx_errors Number of receive errors
tx_errors Number of transmit errors
rx_frame_err Number of frame alignment errors
rx_over_err Number of packet with RX overrun
rx_crc_err Number of CRC errors
collisions Number of collisions

8.1. Writing Your OS-Ken Application 213

os-ken Documentation, Release 1.4.1.dev5

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_PORT:
self.port_stats_reply_handler(body)

def port_stats_reply_handler(self, body):
ports = []
for stat in body:

ports.append('port_no=%d '
'rx_packets=%d tx_packets=%d '
'rx_bytes=%d tx_bytes=%d '
'rx_dropped=%d tx_dropped=%d '
'rx_errors=%d tx_errors=%d '
'rx_frame_err=%d rx_over_err=%d rx_crc_err=%d '
'collisions=%d' %
(stat.port_no,
stat.rx_packets, stat.tx_packets,
stat.rx_bytes, stat.tx_bytes,
stat.rx_dropped, stat.tx_dropped,
stat.rx_errors, stat.tx_errors,
stat.rx_frame_err, stat.rx_over_err,
stat.rx_crc_err, stat.collisions))

self.logger.debug('PortStats: %s', ports)

JSON Example:

{
"OFPStatsReply": {

"body": [
{

"OFPPortStats": {
"collisions": 0,
"port_no": 7,
"rx_bytes": 0,
"rx_crc_err": 0,
"rx_dropped": 0,
"rx_errors": 0,
"rx_frame_err": 0,
"rx_over_err": 0,
"rx_packets": 0,
"tx_bytes": 336,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 4

}
},
{

"OFPPortStats": {
"collisions": 0,
"port_no": 6,
"rx_bytes": 336,

(continues on next page)

8.1. Writing Your OS-Ken Application 214

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"rx_crc_err": 0,
"rx_dropped": 0,
"rx_errors": 0,
"rx_frame_err": 0,
"rx_over_err": 0,
"rx_packets": 4,
"tx_bytes": 336,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 4

}
}

],
"flags": 0,
"type": 4

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPQueueStatsRequest(datapath,
port_no=4294967295,
queue_id=4294967295,
flags=0)

Queue statistics request message

The controller uses this message to query queue statictics.

Attribute Description
port_no Port number to read
queue_id ID of queue to read
flags Zero (none yet defined in the spec)

Example:

def send_queue_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueStatsRequest(datapath, ofp.OFPP_ANY,
ofp.OFPQ_ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPQueueStatsRequest": {

"flags": 0,
"port_no": 4294967295,
"queue_id": 4294967295

}
}

8.1. Writing Your OS-Ken Application 215

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_2_parser.OFPQueueStats(port_no,
queue_id,
tx_bytes,
tx_packets,
tx_errors)

Queue statistics reply message

The switch responds with a stats reply that include this message to an aggregate flow statistics
request.

Attribute Description
port_no Port number
queue_id ID of queue
tx_bytes Number of transmitted bytes
tx_packets Number of transmitted packets
tx_errors Number of packets dropped due to overrun

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_QUEUE:
self.queue_stats_reply_handler(body)

def queue_stats_reply_handler(self, body):
queues = []
for stat in body:

queues.append('port_no=%d queue_id=%d '
'tx_bytes=%d tx_packets=%d tx_errors=%d ' %
(stat.port_no, stat.queue_id,
stat.tx_bytes, stat.tx_packets, stat.tx_

↪→errors))
self.logger.debug('QueueStats: %s', queues)

JSON Example:

{
"OFPStatsReply": {

"body": [
{

"OFPQueueStats": {
"port_no": 7,
"queue_id": 1,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
},
{

"OFPQueueStats": {
"port_no": 6,

(continues on next page)

8.1. Writing Your OS-Ken Application 216

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"queue_id": 1,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
},
{

"OFPQueueStats": {
"port_no": 7,
"queue_id": 2,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
}

],
"flags": 0,
"type": 5

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPGroupStatsRequest(datapath,
group_id=4294967292,
flags=0)

Group statistics request message

The controller uses this message to query statistics of one or more groups.

Attribute Description
group_id ID of group to read (OFPG_ALL to all groups)
flags Zero (none yet defined in the spec)

Example:

def send_group_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupStatsRequest(datapath, ofp.OFPG_ALL)
datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_2_parser.OFPGroupStats(group_id,
ref_count,
packet_count,
byte_count,
bucket_counters,
length=None)

Group statistics reply message

The switch responds with a stats reply that include this message to a group statistics request.

8.1. Writing Your OS-Ken Application 217

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
group_id Group identifier
ref_count Number of flows or groups that directly forward to this group
packet_count Number of packets processed by group
byte_count Number of bytes processed by group
bucket_counters List of OFPBucketCounter instance

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_GROUP:
self.group_stats_reply_handler(body)

def group_stats_reply_handler(self, body):
groups = []
for stat in body:

groups.append('group_id=%d ref_count=%d packet_count=%d '
'byte_count=%d bucket_counters=%s' %
(stat.group_id,
stat.ref_count, stat.packet_count,
stat.byte_count, stat.bucket_counters))

self.logger.debug('GroupStats: %s', groups)

class os_ken.ofproto.ofproto_v1_2_parser.OFPGroupDescStatsRequest(datapath,
flags=0)

Group description request message

The controller uses this message to list the set of groups on a switch.

Attribute Description
flags Zero (none yet defined in the spec)

Example:

def send_group_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupDescStatsRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupDescStatsRequest": {

"flags": 0
}

}

8.1. Writing Your OS-Ken Application 218

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_2_parser.OFPGroupDescStats(type_,
group_id,
buckets,
length=None)

Group description reply message

The switch responds with a stats reply that include this message to a group description request.

Attribute Description
type One of OFPGT_*
group_id Group identifier
buckets List of OFPBucket instance

type attribute corresponds to type_ parameter of __init__.

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_GROUP_DESC:
self.group_desc_stats_reply_handler(body)

def group_desc_stats_reply_handler(self, body):
descs = []
for stat in body:

descs.append('type=%d group_id=%d buckets=%s' %
(stat.type, stat.group_id, stat.buckets))

self.logger.debug('GroupDescStats: %s', descs)

JSON Example:

{
"OFPStatsReply": {

"body": [
{

"OFPGroupDescStats": {
"buckets": [

{
"OFPBucket": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 2,
"type": 0

}
}

],
"len": 32,
"watch_group": 1,
"watch_port": 1,

(continues on next page)

8.1. Writing Your OS-Ken Application 219

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"weight": 1
}

}
],
"group_id": 1,
"length": 40,
"type": 0

}
}

],
"flags": 0,
"type": 7

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPGroupFeaturesStatsRequest(datapath,
flags=0)

Group features request message

The controller uses this message to list the capabilities of groups on a switch.

Attribute Description
flags Zero (none yet defined in the spec)

Example:

def send_group_features_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupFeaturesStatsRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupFeaturesStatsRequest": {

"flags": 0
}

}

class os_ken.ofproto.ofproto_v1_2_parser.OFPGroupFeaturesStats(types,
ca-
pa-
bil-
i-
ties,
max_groups,
ac-
tions,
length=None)

Group features reply message

The switch responds with a stats reply that include this message to a group features request.

8.1. Writing Your OS-Ken Application 220

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
types Bitmap of OFPGT_* values supported
capabilities Bitmap of OFPGFC_* capability supported
max_groups Maximum number of groups for each type
actions Bitmaps of OFPAT_* that are supported

Example:

@set_ev_cls(ofp_event.EventOFPStatsReply, MAIN_DISPATCHER)
def stats_reply_handler(self, ev):

msg = ev.msg
ofp = msg.datapath.ofproto
body = ev.msg.body

if msg.type == ofp.OFPST_GROUP_FEATURES:
self.group_features_stats_reply_handler(body)

def group_features_stats_reply_handler(self, body):
self.logger.debug('GroupFeaturesStats: types=%d '

'capabilities=0x%08x max_groups=%s '
'actions=%s',
body.types, body.capabilities, body.max_groups,
body.actions)

JSON Example:

{
"OFPStatsReply": {

"body": {
"OFPGroupFeaturesStats": {

"actions": [
67082241,
67082241,
67082241,
67082241

],
"capabilities": 5,
"length": 40,
"max_groups": [

16777216,
16777216,
16777216,
16777216

],
"types": 15

}
},
"flags": 0,
"type": 8

}
}

8.1. Writing Your OS-Ken Application 221

os-ken Documentation, Release 1.4.1.dev5

Queue Configuration Messages

class os_ken.ofproto.ofproto_v1_2_parser.OFPQueueGetConfigRequest(datapath,
port)

Queue configuration request message

Attribute Description
port Port to be queried (OFPP_ANY to all configured queues)

Example:

def send_queue_get_config_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueGetConfigRequest(datapath, ofp.OFPP_ANY)
datapath.send_msg(req)

JSON Example:

{
"OFPQueueGetConfigRequest": {

"port": 4294967295
}

}

class os_ken.ofproto.ofproto_v1_2_parser.OFPQueueGetConfigReply(datapath,
port=None,
queues=None)

Queue configuration reply message

The switch responds with this message to a queue configuration request.

Attribute Description
port Port which was queried
queues list of OFPPacketQueue instance

Example:

@set_ev_cls(ofp_event.EventOFPQueueGetConfigReply, MAIN_DISPATCHER)
def queue_get_config_reply_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPQueueGetConfigReply received: '
'port=%s queues=%s',
msg.port, msg.queues)

JSON Example:

{
"OFPQueueGetConfigReply": {

"port": 4294967295,
"queues": [

{

(continues on next page)

8.1. Writing Your OS-Ken Application 222

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPPacketQueue": {
"len": 48,
"port": 77,
"properties": [

{
"OFPQueuePropMinRate": {

"len": 16,
"property": 1,
"rate": 10

}
},
{

"OFPQueuePropMaxRate": {
"len": 16,
"property": 2,
"rate": 900

}
}

],
"queue_id": 99

}
},
{

"OFPPacketQueue": {
"len": 48,
"port": 77,
"properties": [

{
"OFPQueuePropMinRate": {

"len": 16,
"property": 1,
"rate": 100

}
},
{

"OFPQueuePropMaxRate": {
"len": 16,
"property": 2,
"rate": 200

}
}

],
"queue_id": 88

}
}

]
}

}

8.1. Writing Your OS-Ken Application 223

os-ken Documentation, Release 1.4.1.dev5

Packet-Out Message

class os_ken.ofproto.ofproto_v1_2_parser.OFPPacketOut(datapath,
buffer_id=None,
in_port=None,
actions=None,
data=None, ac-
tions_len=None)

Packet-Out message

The controller uses this message to send a packet out throught the switch.

Attribute Description
buffer_id ID assigned by datapath (OFP_NO_BUFFER if none)
in_port Packet’s input port or OFPP_CONTROLLER
actions list of OpenFlow action class
data Packet data of a binary type value or an instances of packet.Packet.

Example:

def send_packet_out(self, datapath, buffer_id, in_port):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD, 0)]
req = ofp_parser.OFPPacketOut(datapath, buffer_id,

in_port, actions)
datapath.send_msg(req)

JSON Example:

{
"OFPPacketOut": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 4294967292,
"type": 0

}
}

],
"actions_len": 16,
"buffer_id": 4294967295,
"data":

↪→"8guk0D9w8gukffjqCABFAABU+BoAAP8Br4sKAAABCgAAAggAAgj3YAAAMdYCAAAAAACrjS0xAAAAABAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vAAAAAAAAAAA=
↪→",

"in_port": 4294967293
}

}

8.1. Writing Your OS-Ken Application 224

os-ken Documentation, Release 1.4.1.dev5

Barrier Message

class os_ken.ofproto.ofproto_v1_2_parser.OFPBarrierRequest(datapath)
Barrier request message

The controller sends this message to ensure message dependencies have been met or receive noti-
fications for completed operations.

Example:

def send_barrier_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPBarrierRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPBarrierRequest": {}

}

class os_ken.ofproto.ofproto_v1_2_parser.OFPBarrierReply(datapath)
Barrier reply message

The switch responds with this message to a barrier request.

Example:

@set_ev_cls(ofp_event.EventOFPBarrierReply, MAIN_DISPATCHER)
def barrier_reply_handler(self, ev):

self.logger.debug('OFPBarrierReply received')

JSON Example:

{
"OFPBarrierReply": {}

}

Role Request Message

class os_ken.ofproto.ofproto_v1_2_parser.OFPRoleRequest(datapath,
role, genera-
tion_id)

Role request message

The controller uses this message to change its role.

8.1. Writing Your OS-Ken Application 225

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

generation_id Master Election Generation ID

Example:

def send_role_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPRoleRequest(datapath, ofp.OFPCR_ROLE_EQUAL, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPRoleRequest": {

"generation_id": 17294086455919964160,
"role": 2

}
}

class os_ken.ofproto.ofproto_v1_2_parser.OFPRoleReply(datapath,
role=None,
genera-
tion_id=None)

Role reply message

The switch responds with this message to a role request.

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

generation_id Master Election Generation ID

Example:

@set_ev_cls(ofp_event.EventOFPRoleReply, MAIN_DISPATCHER)
def role_reply_handler(self, ev):

msg = ev.msg

(continues on next page)

8.1. Writing Your OS-Ken Application 226

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

dp = msg.datapath
ofp = dp.ofproto

if msg.role == ofp.OFPCR_ROLE_NOCHANGE:
role = 'NOCHANGE'

elif msg.role == ofp.OFPCR_ROLE_EQUAL:
role = 'EQUAL'

elif msg.role == ofp.OFPCR_ROLE_MASTER:
role = 'MASTER'

elif msg.role == ofp.OFPCR_ROLE_SLAVE:
role = 'SLAVE'

else:
role = 'unknown'

self.logger.debug('OFPRoleReply received: '
'role=%s generation_id=%d',
role, msg.generation_id)

JSON Example:

{
"OFPRoleReply": {

"generation_id": 17294086455919964160,
"role": 3

}
}

Asynchronous Messages

Packet-In Message

class os_ken.ofproto.ofproto_v1_2_parser.OFPPacketIn(datapath,
buffer_id=None,
total_len=None,
reason=None,
table_id=None,
match=None,
data=None)

Packet-In message

The switch sends the packet that received to the controller by this message.

8.1. Writing Your OS-Ken Application 227

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
buffer_id ID assigned by datapath
total_len Full length of frame
reason Reason packet is being sent.

OFPR_NO_MATCH
OFPR_ACTION
OFPR_INVALID_TTL

table_id ID of the table that was looked up
match Instance of OFPMatch
data Ethernet frame

Example:

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def packet_in_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPR_NO_MATCH:
reason = 'NO MATCH'

elif msg.reason == ofp.OFPR_ACTION:
reason = 'ACTION'

elif msg.reason == ofp.OFPR_INVALID_TTL:
reason = 'INVALID TTL'

else:
reason = 'unknown'

self.logger.debug('OFPPacketIn received: '
'buffer_id=%x total_len=%d reason=%s '
'table_id=%d match=%s data=%s',
msg.buffer_id, msg.total_len, reason,
msg.table_id, msg.match,
utils.hex_array(msg.data))

JSON Example:

{
"OFPPacketIn": {

"buffer_id": 2,
"data": "////////

↪→8gukffjqCAYAAQgABgQAAfILpH346goAAAEAAAAAAAAKAAAD",
"match": {

"OFPMatch": {
"length": 80,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 6

}

(continues on next page)

8.1. Writing Your OS-Ken Application 228

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

},
{

"OXMTlv": {
"field": "eth_type",
"mask": null,
"value": 2054

}
},
{

"OXMTlv": {
"field": "eth_dst",
"mask": null,
"value": "ff:ff:ff:ff:ff:ff"

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "arp_op",
"mask": null,
"value": 1

}
},
{

"OXMTlv": {
"field": "arp_spa",
"mask": null,
"value": "10.0.0.1"

}
},
{

"OXMTlv": {
"field": "arp_tpa",
"mask": null,
"value": "10.0.0.3"

}
},
{

"OXMTlv": {
"field": "arp_sha",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "arp_tha",
"mask": null,
"value": "00:00:00:00:00:00"

}
(continues on next page)

8.1. Writing Your OS-Ken Application 229

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
],
"type": 1

}
},
"reason": 1,
"table_id": 1,
"total_len": 42

}
}

Flow Removed Message

class os_ken.ofproto.ofproto_v1_2_parser.OFPFlowRemoved(datapath,
cookie=None,
prior-
ity=None,
rea-
son=None,
ta-
ble_id=None,
dura-
tion_sec=None,
dura-
tion_nsec=None,
idle_timeout=None,
hard_timeout=None,
packet_count=None,
byte_count=None,
match=None)

Flow removed message

When flow entries time out or are deleted, the switch notifies controller with this message.

8.1. Writing Your OS-Ken Application 230

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
cookie Opaque controller-issued identifier
priority Priority level of flow entry
reason One of the following values.

OFPRR_IDLE_TIMEOUT
OFPRR_HARD_TIMEOUT
OFPRR_DELETE
OFPRR_GROUP_DELETE

table_id ID of the table
duration_sec Time flow was alive in seconds
duration_nsec Time flow was alive in nanoseconds beyond

duration_sec
idle_timeout Idle timeout from original flow mod
hard_timeout Hard timeout from original flow mod
packet_count Number of packets that was associated with

the flow
byte_count Number of bytes that was associated with the

flow
match Instance of OFPMatch

Example:

@set_ev_cls(ofp_event.EventOFPFlowRemoved, MAIN_DISPATCHER)
def flow_removed_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPRR_IDLE_TIMEOUT:
reason = 'IDLE TIMEOUT'

elif msg.reason == ofp.OFPRR_HARD_TIMEOUT:
reason = 'HARD TIMEOUT'

elif msg.reason == ofp.OFPRR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPRR_GROUP_DELETE:
reason = 'GROUP DELETE'

else:
reason = 'unknown'

self.logger.debug('OFPFlowRemoved received: '
'cookie=%d priority=%d reason=%s table_id=%d '
'duration_sec=%d duration_nsec=%d '
'idle_timeout=%d hard_timeout=%d '
'packet_count=%d byte_count=%d match.fields=%s',
msg.cookie, msg.priority, reason, msg.table_id,
msg.duration_sec, msg.duration_nsec,
msg.idle_timeout, msg.hard_timeout,
msg.packet_count, msg.byte_count, msg.match)

JSON Example:

8.1. Writing Your OS-Ken Application 231

os-ken Documentation, Release 1.4.1.dev5

{
"OFPFlowRemoved": {

"byte_count": 86,
"cookie": 0,
"duration_nsec": 48825000,
"duration_sec": 3,
"hard_timeout": 0,
"idle_timeout": 3,
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"packet_count": 1,
"priority": 65535,
"reason": 0,
"table_id": 0

}
}

Port Status Message

class os_ken.ofproto.ofproto_v1_2_parser.OFPPortStatus(datapath,
reason=None,
desc=None)

Port status message

The switch notifies controller of change of ports.

Attribute Description
reason One of the following values.

OFPPR_ADD
OFPPR_DELETE
OFPPR_MODIFY

desc instance of OFPPort

Example:

@set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER)
def port_status_handler(self, ev):

(continues on next page)

8.1. Writing Your OS-Ken Application 232

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPPR_ADD:
reason = 'ADD'

elif msg.reason == ofp.OFPPR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPPR_MODIFY:
reason = 'MODIFY'

else:
reason = 'unknown'

self.logger.debug('OFPPortStatus received: reason=%s desc=%s',
reason, msg.desc)

JSON Example:

{
"OFPPortStatus": {

"desc": {
"OFPPort": {

"advertised": 10240,
"config": 0,
"curr": 10248,
"curr_speed": 5000,
"hw_addr": "f2:0b:a4:d0:3f:70",
"max_speed": 5000,
"name": "\u79c1\u306e\u30dd\u30fc\u30c8",
"peer": 10248,
"port_no": 7,
"state": 4,
"supported": 10248

}
},
"reason": 0

}
}

Error Message

class os_ken.ofproto.ofproto_v1_2_parser.OFPErrorMsg(datapath,
type_=None,
code=None,
data=None,
**kwargs)

Error message

The switch notifies controller of problems by this message.

Attribute Description
type High level type of error
code Details depending on the type
data Variable length data depending on the type and code

8.1. Writing Your OS-Ken Application 233

os-ken Documentation, Release 1.4.1.dev5

type attribute corresponds to type_ parameter of __init__.

Types and codes are defined in os_ken.ofproto.ofproto.

Type Code
OFPET_HELLO_FAILED OFPHFC_*
OFPET_BAD_REQUEST OFPBRC_*
OFPET_BAD_ACTION OFPBAC_*
OFPET_BAD_INSTRUCTION OFPBIC_*
OFPET_BAD_MATCH OFPBMC_*
OFPET_FLOW_MOD_FAILED OFPFMFC_*
OFPET_GROUP_MOD_FAILED OFPGMFC_*
OFPET_PORT_MOD_FAILED OFPPMFC_*
OFPET_TABLE_MOD_FAILED OFPTMFC_*
OFPET_QUEUE_OP_FAILED OFPQOFC_*
OFPET_SWITCH_CONFIG_FAILED OFPSCFC_*
OFPET_ROLE_REQUEST_FAILED OFPRRFC_*
OFPET_EXPERIMENTER N/A

If type == OFPET_EXPERIMENTER, this message has also the following attributes.

Attribute Description
exp_type Experimenter defined type
experimenter Experimenter ID

Example:

@set_ev_cls(ofp_event.EventOFPErrorMsg,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def error_msg_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPErrorMsg received: type=0x%02x code=0x%02x '
'message=%s',
msg.type, msg.code, utils.hex_array(msg.data))

JSON Example:

{
"OFPErrorMsg": {

"code": 11,
"data": "ZnVnYWZ1Z2E=",
"type": 2

}
}

{
"OFPErrorMsg": {

"code": null,
"data": "amlra2VuIGRhdGE=",
"exp_type": 60000,

(continues on next page)

8.1. Writing Your OS-Ken Application 234

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"experimenter": 999999,
"type": 65535

}
}

Symmetric Messages

Hello

class os_ken.ofproto.ofproto_v1_2_parser.OFPHello(datapath)
Hello message

When connection is started, the hello message is exchanged between a switch and a controller.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

JSON Example:

{
"OFPHello": {}

}

Echo Request

class os_ken.ofproto.ofproto_v1_2_parser.OFPEchoRequest(datapath,
data=None)

Echo request message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data

Example:

def send_echo_request(self, datapath, data):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPEchoRequest(datapath, data)
datapath.send_msg(req)

@set_ev_cls(ofp_event.EventOFPEchoRequest,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_request_handler(self, ev):

self.logger.debug('OFPEchoRequest received: data=%s',
utils.hex_array(ev.msg.data))

JSON Example:

8.1. Writing Your OS-Ken Application 235

os-ken Documentation, Release 1.4.1.dev5

{
"OFPEchoRequest": {

"data": "aG9nZQ=="
}

}

Echo Reply

class os_ken.ofproto.ofproto_v1_2_parser.OFPEchoReply(datapath,
data=None)

Echo reply message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data

Example:

def send_echo_reply(self, datapath, data):
ofp_parser = datapath.ofproto_parser

reply = ofp_parser.OFPEchoReply(datapath, data)
datapath.send_msg(reply)

@set_ev_cls(ofp_event.EventOFPEchoReply,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_reply_handler(self, ev):

self.logger.debug('OFPEchoReply received: data=%s',
utils.hex_array(ev.msg.data))

JSON Example:

{
"OFPEchoReply": {

"data": "aG9nZQ=="
}

}

Experimenter

class os_ken.ofproto.ofproto_v1_2_parser.OFPExperimenter(datapath,
experi-
menter=None,
exp_type=None,
data=None)

Experimenter extension message

8.1. Writing Your OS-Ken Application 236

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
experimenter Experimenter ID
exp_type Experimenter defined
data Experimenter defined arbitrary additional data

JSON Example:

{
"OFPExperimenter": {

"data": "bmF6bw==",
"exp_type": 123456789,
"experimenter": 98765432

}
}

Port Structures

class os_ken.ofproto.ofproto_v1_2_parser.OFPPort(port_no, hw_addr,
name, config,
state, curr, adver-
tised, supported,
peer, curr_speed,
max_speed)

Description of a port

8.1. Writing Your OS-Ken Application 237

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number and it uniquely identifies a port

within a switch.
hw_addr MAC address for the port.
name Null-terminated string containing a human-

readable name for the interface.
config Bitmap of port configration flags.

OFPPC_PORT_DOWN
OFPPC_NO_RECV
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

state Bitmap of port state flags.

OFPPS_LINK_DOWN
OFPPS_BLOCKED
OFPPS_LIVE

curr Current features.
advertised Features being advertised by the port.
supported Features supported by the port.
peer Features advertised by peer.
curr_speed Current port bitrate in kbps.
max_speed Max port bitrate in kbps.

Flow Match Structure

class os_ken.ofproto.ofproto_v1_2_parser.OFPMatch(type_=None,
length=None, _or-
dered_fields=None,
**kwargs)

Flow Match Structure

This class is implementation of the flow match structure having compose/query API. There are
new API and old API for compatibility. the old API is supposed to be removed later.

You can define the flow match by the keyword arguments. The following arguments are available.

Argument Value Description
in_port Integer 32bit Switch input port
in_phy_port Integer 32bit Switch physical input port
metadata Integer 64bit Metadata passed between tables
eth_dst MAC address Ethernet destination address
eth_src MAC address Ethernet source address
eth_type Integer 16bit Ethernet frame type
vlan_vid Integer 16bit VLAN id
vlan_pcp Integer 8bit VLAN priority

continues on next page

8.1. Writing Your OS-Ken Application 238

os-ken Documentation, Release 1.4.1.dev5

Table 1 – continued from previous page
Argument Value Description
ip_dscp Integer 8bit IP DSCP (6 bits in ToS field)
ip_ecn Integer 8bit IP ECN (2 bits in ToS field)
ip_proto Integer 8bit IP protocol
ipv4_src IPv4 address IPv4 source address
ipv4_dst IPv4 address IPv4 destination address
tcp_src Integer 16bit TCP source port
tcp_dst Integer 16bit TCP destination port
udp_src Integer 16bit UDP source port
udp_dst Integer 16bit UDP destination port
sctp_src Integer 16bit SCTP source port
sctp_dst Integer 16bit SCTP destination port
icmpv4_type Integer 8bit ICMP type
icmpv4_code Integer 8bit ICMP code
arp_op Integer 16bit ARP opcode
arp_spa IPv4 address ARP source IPv4 address
arp_tpa IPv4 address ARP target IPv4 address
arp_sha MAC address ARP source hardware address
arp_tha MAC address ARP target hardware address
ipv6_src IPv6 address IPv6 source address
ipv6_dst IPv6 address IPv6 destination address
ipv6_flabel Integer 32bit IPv6 Flow Label
icmpv6_type Integer 8bit ICMPv6 type
icmpv6_code Integer 8bit ICMPv6 code
ipv6_nd_target IPv6 address Target address for ND
ipv6_nd_sll MAC address Source link-layer for ND
ipv6_nd_tll MAC address Target link-layer for ND
mpls_label Integer 32bit MPLS label
mpls_tc Integer 8bit MPLS TC
pbb_uca Integer 8bit PBB UCA header field (EXT-256 Old version of ONF Extension)
tcp_flags Integer 16bit TCP flags (EXT-109 ONF Extension)
actset_output Integer 32bit Output port from action set metadata (EXT-233 ONF Extension)

Example:

>>> # compose
>>> match = parser.OFPMatch(
... in_port=1,
... eth_type=0x86dd,
... ipv6_src=('2001:db8:bd05:1d2:288a:1fc0:1:10ee',
... 'ffff:ffff:ffff:ffff::'),
... ipv6_dst='2001:db8:bd05:1d2:288a:1fc0:1:10ee')
>>> # query
>>> if 'ipv6_src' in match:
... print match['ipv6_src']
...
('2001:db8:bd05:1d2:288a:1fc0:1:10ee', 'ffff:ffff:ffff:ffff::')

Note: For the list of the supported Nicira experimenter matches, please refer to

8.1. Writing Your OS-Ken Application 239

os-ken Documentation, Release 1.4.1.dev5

os_ken.ofproto.nx_match.

Note: For VLAN id match field, special values are defined in OpenFlow Spec.

1) Packets with and without a VLAN tag

• Example:

match = parser.OFPMatch()

• Packet Matching

non-VLAN-tagged MATCH
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) MATCH

2) Only packets without a VLAN tag

• Example:

match = parser.OFPMatch(vlan_vid=0x0000)

• Packet Matching

non-VLAN-tagged MATCH
VLAN-tagged(vlan_id=3) x
VLAN-tagged(vlan_id=5) x

3) Only packets with a VLAN tag regardless of its value

• Example:

match = parser.OFPMatch(vlan_vid=(0x1000, 0x1000))

• Packet Matching

non-VLAN-tagged x
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) MATCH

4) Only packets with VLAN tag and VID equal

• Example:

match = parser.OFPMatch(vlan_vid=(0x1000 | 3))

• Packet Matching

non-VLAN-tagged x
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) x

8.1. Writing Your OS-Ken Application 240

os-ken Documentation, Release 1.4.1.dev5

Flow Instruction Structures

class os_ken.ofproto.ofproto_v1_2_parser.OFPInstructionGotoTable(table_id,
type_=None,
len_=None)

Goto table instruction

This instruction indicates the next table in the processing pipeline.

Attribute Description
table_id Next table

class os_ken.ofproto.ofproto_v1_2_parser.OFPInstructionWriteMetadata(metadata,
meta-
data_mask,
type_=None,
len_=None)

Write metadata instruction

This instruction writes the masked metadata value into the metadata field.

Attribute Description
metadata Metadata value to write
metadata_mask Metadata write bitmask

class os_ken.ofproto.ofproto_v1_2_parser.OFPInstructionActions(type_,
ac-
tions=None,
len_=None)

Actions instruction

This instruction writes/applies/clears the actions.

Attribute Description
type One of following values.

OFPIT_WRITE_ACTIONS
OFPIT_APPLY_ACTIONS
OFPIT_CLEAR_ACTIONS

actions list of OpenFlow action class

type attribute corresponds to type_ parameter of __init__.

8.1. Writing Your OS-Ken Application 241

os-ken Documentation, Release 1.4.1.dev5

Action Structures

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionOutput(port,
max_len=65509,
type_=None,
len_=None)

Output action

This action indicates output a packet to the switch port.

Attribute Description
port Output port
max_len Max length to send to controller

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionGroup(group_id=0,
type_=None,
len_=None)

Group action

This action indicates the group used to process the packet.

Attribute Description
group_id Group identifier

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionSetQueue(queue_id,
type_=None,
len_=None)

Set queue action

This action sets the queue id that will be used to map a flow to an already-configured queue on a
port.

Attribute Description
queue_id Queue ID for the packets

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionSetMplsTtl(mpls_ttl,
type_=None,
len_=None)

Set MPLS TTL action

This action sets the MPLS TTL.

Attribute Description
mpls_ttl MPLS TTL

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionDecMplsTtl(type_=None,
len_=None)

Decrement MPLS TTL action

This action decrements the MPLS TTL.

8.1. Writing Your OS-Ken Application 242

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionSetNwTtl(nw_ttl,
type_=None,
len_=None)

Set IP TTL action

This action sets the IP TTL.

Attribute Description
nw_ttl IP TTL

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionDecNwTtl(type_=None,
len_=None)

Decrement IP TTL action

This action decrements the IP TTL.

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionCopyTtlOut(type_=None,
len_=None)

Copy TTL Out action

This action copies the TTL from the next-to-outermost header with TTL to the outermost header
with TTL.

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionCopyTtlIn(type_=None,
len_=None)

Copy TTL In action

This action copies the TTL from the outermost header with TTL to the next-to-outermost header
with TTL.

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionPushVlan(ethertype=33024,
type_=None,
len_=None)

Push VLAN action

This action pushes a new VLAN tag to the packet.

Attribute Description
ethertype Ether type. The default is 802.1Q. (0x8100)

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionPushMpls(ethertype=34887,
type_=None,
len_=None)

Push MPLS action

This action pushes a new MPLS header to the packet.

Attribute Description
ethertype Ether type

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionPopVlan(type_=None,
len_=None)

Pop VLAN action

This action pops the outermost VLAN tag from the packet.

8.1. Writing Your OS-Ken Application 243

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionPopMpls(ethertype=2048,
type_=None,
len_=None)

Pop MPLS action

This action pops the MPLS header from the packet.

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionSetField(field=None,
**kwargs)

Set field action

This action modifies a header field in the packet.

The set of keywords available for this is same as OFPMatch.

Example:

set_field = OFPActionSetField(eth_src="00:00:00:00:00:00")

class os_ken.ofproto.ofproto_v1_2_parser.OFPActionExperimenter(experimenter,
type_=None,
len_=None)

Experimenter action

This action is an extensible action for the experimenter.

Attribute Description
experimenter Experimenter ID

Note: For the list of the supported Nicira experimenter actions, please refer to
os_ken.ofproto.nx_actions.

OpenFlow v1.3 Messages and Structures

Controller-to-Switch Messages

Handshake

class os_ken.ofproto.ofproto_v1_3_parser.OFPFeaturesRequest(datapath)
Features request message

The controller sends a feature request to the switch upon session establishment.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

def send_features_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPFeaturesRequest(datapath)
datapath.send_msg(req)

8.1. Writing Your OS-Ken Application 244

os-ken Documentation, Release 1.4.1.dev5

JSON Example:

{
"OFPFeaturesRequest": {}

}

class os_ken.ofproto.ofproto_v1_3_parser.OFPSwitchFeatures(datapath,
datap-
ath_id=None,
n_buffers=None,
n_tables=None,
auxil-
iary_id=None,
capa-
bili-
ties=None)

Features reply message

The switch responds with a features reply message to a features request.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPSwitchFeatures received: '
'datapath_id=0x%016x n_buffers=%d '
'n_tables=%d auxiliary_id=%d '
'capabilities=0x%08x',
msg.datapath_id, msg.n_buffers, msg.n_tables,
msg.auxiliary_id, msg.capabilities)

JSON Example:

{
"OFPSwitchFeatures": {

"auxiliary_id": 99,
"capabilities": 79,
"datapath_id": 9210263729383,
"n_buffers": 0,
"n_tables": 255

}
}

8.1. Writing Your OS-Ken Application 245

os-ken Documentation, Release 1.4.1.dev5

Switch Configuration

class os_ken.ofproto.ofproto_v1_3_parser.OFPSetConfig(datapath,
flags=0,
miss_send_len=0)

Set config request message

The controller sends a set config request message to set configuraion parameters.

Attribute Description
flags Bitmap of the following flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM

miss_send_len Max bytes of new flow that datapath should
send to the controller

Example:

def send_set_config(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPSetConfig(datapath, ofp.OFPC_FRAG_NORMAL, 256)
datapath.send_msg(req)

JSON Example:

{
"OFPSetConfig": {

"flags": 0,
"miss_send_len": 128

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPGetConfigRequest(datapath)
Get config request message

The controller sends a get config request to query configuration parameters in the switch.

Example:

def send_get_config_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGetConfigRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGetConfigRequest": {}

}

8.1. Writing Your OS-Ken Application 246

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.OFPGetConfigReply(datapath,
flags=None,
miss_send_len=None)

Get config reply message

The switch responds to a configuration request with a get config reply message.

Attribute Description
flags Bitmap of the following flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM
OFPC_FRAG_MASK

miss_send_len Max bytes of new flow that datapath should
send to the controller

Example:

@set_ev_cls(ofp_event.EventOFPGetConfigReply, MAIN_DISPATCHER)
def get_config_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto
flags = []

if msg.flags & ofp.OFPC_FRAG_NORMAL:
flags.append('NORMAL')

if msg.flags & ofp.OFPC_FRAG_DROP:
flags.append('DROP')

if msg.flags & ofp.OFPC_FRAG_REASM:
flags.append('REASM')

self.logger.debug('OFPGetConfigReply received: '
'flags=%s miss_send_len=%d',
','.join(flags), msg.miss_send_len)

JSON Example:

{
"OFPGetConfigReply": {

"flags": 0,
"miss_send_len": 128

}
}

8.1. Writing Your OS-Ken Application 247

os-ken Documentation, Release 1.4.1.dev5

Flow Table Configuration

class os_ken.ofproto.ofproto_v1_3_parser.OFPTableMod(datapath, ta-
ble_id, config)

Flow table configuration message

The controller sends this message to configure table state.

Attribute Description
table_id ID of the table (OFPTT_ALL indicates all tables)
config Bitmap of the following flags. OFPTC_DEPRECATED_MASK (3)

Example:

def send_table_mod(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableMod(datapath, 1, 3)
datapath.send_msg(req)

JSON Example:

{
"OFPTableMod": {

"config": 0,
"table_id": 255

}
}

Modify State Messages

class os_ken.ofproto.ofproto_v1_3_parser.OFPFlowMod(datapath,
cookie=0,
cookie_mask=0,
table_id=0,
command=0,
idle_timeout=0,
hard_timeout=0,
priority=32768,
buffer_id=4294967295,
out_port=0,
out_group=0,
flags=0,
match=None, in-
structions=None)

Modify Flow entry message

The controller sends this message to modify the flow table.

8.1. Writing Your OS-Ken Application 248

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
cookie Opaque controller-issued identifier
cookie_mask Mask used to restrict the cookie bits

that must match when the command is
OPFFC_MODIFY* or OFPFC_DELETE*

table_id ID of the table to put the flow in
command One of the following values.

OFPFC_ADD
OFPFC_MODIFY
OFPFC_MODIFY_STRICT
OFPFC_DELETE
OFPFC_DELETE_STRICT

idle_timeout Idle time before discarding (seconds)
hard_timeout Max time before discarding (seconds)
priority Priority level of flow entry
buffer_id Buffered packet to apply to (or

OFP_NO_BUFFER)
out_port For OFPFC_DELETE* commands, require

matching entries to include this as an output
port

out_group For OFPFC_DELETE* commands, require
matching entries to include this as an output
group

flags Bitmap of the following flags.

OFPFF_SEND_FLOW_REM
OFPFF_CHECK_OVERLAP
OFPFF_RESET_COUNTS
OFPFF_NO_PKT_COUNTS
OFPFF_NO_BYT_COUNTS

match Instance of OFPMatch
instructions list of OFPInstruction* instance

Example:

def send_flow_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
table_id = 0
idle_timeout = hard_timeout = 0
priority = 32768
buffer_id = ofp.OFP_NO_BUFFER
match = ofp_parser.OFPMatch(in_port=1, eth_dst='ff:ff:ff:ff:ff:ff

↪→')
actions = [ofp_parser.OFPActionOutput(ofp.OFPP_NORMAL, 0)]

(continues on next page)

8.1. Writing Your OS-Ken Application 249

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,
actions)]

req = ofp_parser.OFPFlowMod(datapath, cookie, cookie_mask,
table_id, ofp.OFPFC_ADD,
idle_timeout, hard_timeout,
priority, buffer_id,
ofp.OFPP_ANY, ofp.OFPG_ANY,
ofp.OFPFF_SEND_FLOW_REM,
match, inst)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowMod": {

"buffer_id": 65535,
"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "vlan_vid",
"mask": null,
"value": 258

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionCopyTtlOut": {
"len": 8,
"type": 11

}
},
{

"OFPActionCopyTtlIn": {
"len": 8,
"type": 12

}
},
{

"OFPActionCopyTtlIn": {
"len": 8,
"type": 12

}
(continues on next page)

8.1. Writing Your OS-Ken Application 250

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

},
{

"OFPActionPopPbb": {
"len": 8,
"type": 27

}
},
{

"OFPActionPushPbb": {
"ethertype": 4660,
"len": 8,
"type": 26

}
},
{

"OFPActionPopMpls": {
"ethertype": 39030,
"len": 8,
"type": 20

}
},
{

"OFPActionPushMpls": {
"ethertype": 34887,
"len": 8,
"type": 19

}
},
{

"OFPActionPopVlan": {
"len": 8,
"type": 18

}
},
{

"OFPActionPushVlan": {
"ethertype": 33024,
"len": 8,
"type": 17

}
},
{

"OFPActionDecMplsTtl": {
"len": 8,
"type": 16

}
},
{

"OFPActionSetMplsTtl": {
"len": 8,
"mpls_ttl": 10,
"type": 15

}
},
{

"OFPActionDecNwTtl": {
(continues on next page)

8.1. Writing Your OS-Ken Application 251

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"len": 8,
"type": 24

}
},
{

"OFPActionSetNwTtl": {
"len": 8,
"nw_ttl": 10,
"type": 23

}
},
{

"OFPActionExperimenterUnknown": {
"data": "AAECAwQFBgc=",
"experimenter": 101,
"len": 16,
"type": 65535

}
},
{

"OFPActionSetQueue": {
"len": 8,
"queue_id": 3,
"type": 21

}
},
{

"OFPActionGroup": {
"group_id": 99,
"len": 8,
"type": 22

}
},
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 6,
"type": 0

}
}

],
"len": 176,
"type": 3

}
},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionSetField": {

"field": {
"OXMTlv": {

"field": "eth_src",
"mask": null,
"value": "01:02:03:04:05:06"

(continues on next page)

8.1. Writing Your OS-Ken Application 252

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "pbb_uca",
"mask": null,
"value": 1

}
},
"len": 16,
"type": 25

}
}

],
"len": 40,
"type": 4

}
}

],
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 1

}
}

{
"OFPFlowMod": {

"buffer_id": 65535,
"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 253

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"idle_timeout": 0,
"instructions": [

{
"OFPInstructionGotoTable": {

"len": 8,
"table_id": 1,
"type": 1

}
}

],
"match": {

"OFPMatch": {
"length": 22,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 6

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 0

}
}

{
"OFPFlowMod": {

"buffer_id": 65535,
"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionMeter": {

"len": 8,
"meter_id": 1,
"type": 6

}

(continues on next page)

8.1. Writing Your OS-Ken Application 254

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionOutput": {

"len": 16,
"max_len": 65535,
"port": 6,
"type": 0

}
}

],
"len": 24,
"type": 3

}
}

],
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 1

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPGroupMod(datapath,
command=0,
type_=0,
group_id=0,
buckets=None)

Modify group entry message

The controller sends this message to modify the group table.

8.1. Writing Your OS-Ken Application 255

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
command One of the following values.

OFPGC_ADD
OFPGC_MODIFY
OFPGC_DELETE

type One of the following values.

OFPGT_ALL
OFPGT_SELECT
OFPGT_INDIRECT
OFPGT_FF

group_id Group identifier
buckets list of OFPBucket

type attribute corresponds to type_ parameter of __init__.

Example:

def send_group_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

port = 1
max_len = 2000
actions = [ofp_parser.OFPActionOutput(port, max_len)]

weight = 100
watch_port = 0
watch_group = 0
buckets = [ofp_parser.OFPBucket(weight, watch_port, watch_group,

actions)]

group_id = 1
req = ofp_parser.OFPGroupMod(datapath, ofp.OFPGC_ADD,

ofp.OFPGT_SELECT, group_id, buckets)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupMod": {

"buckets": [
{

"OFPBucket": {
"actions": [

{
"OFPActionOutput": {

"len": 16,
"max_len": 65535,
"port": 2,

(continues on next page)

8.1. Writing Your OS-Ken Application 256

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 0
}

}
],
"len": 32,
"watch_group": 1,
"watch_port": 1,
"weight": 1

}
}

],
"command": 0,
"group_id": 1,
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPPortMod(datapath,
port_no=0,
hw_addr=’00:00:00:00:00:00’,
config=0, mask=0,
advertise=0)

Port modification message

The controller sneds this message to modify the behavior of the port.

8.1. Writing Your OS-Ken Application 257

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number to modify
hw_addr The hardware address that must be

the same as hw_addr of OFPPort of
OFPSwitchFeatures

config Bitmap of configuration flags.

OFPPC_PORT_DOWN
OFPPC_NO_RECV
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

mask Bitmap of configuration flags above to be
changed

advertise Bitmap of the following flags.

OFPPF_10MB_HD
OFPPF_10MB_FD
OFPPF_100MB_HD
OFPPF_100MB_FD
OFPPF_1GB_HD
OFPPF_1GB_FD
OFPPF_10GB_FD
OFPPF_40GB_FD
OFPPF_100GB_FD
OFPPF_1TB_FD
OFPPF_OTHER
OFPPF_COPPER
OFPPF_FIBER
OFPPF_AUTONEG
OFPPF_PAUSE
OFPPF_PAUSE_ASYM

Example:

def send_port_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

port_no = 3
hw_addr = 'fa:c8:e8:76:1d:7e'
config = 0
mask = (ofp.OFPPC_PORT_DOWN | ofp.OFPPC_NO_RECV |

ofp.OFPPC_NO_FWD | ofp.OFPPC_NO_PACKET_IN)
advertise = (ofp.OFPPF_10MB_HD | ofp.OFPPF_100MB_FD |

ofp.OFPPF_1GB_FD | ofp.OFPPF_COPPER |
ofp.OFPPF_AUTONEG | ofp.OFPPF_PAUSE |

(continues on next page)

8.1. Writing Your OS-Ken Application 258

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

ofp.OFPPF_PAUSE_ASYM)
req = ofp_parser.OFPPortMod(datapath, port_no, hw_addr, config,

mask, advertise)
datapath.send_msg(req)

JSON Example:

{
"OFPPortMod": {

"advertise": 4096,
"config": 0,
"hw_addr": "00:11:00:00:11:11",
"mask": 0,
"port_no": 1

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPMeterMod(datapath,
command=0,
flags=1, me-
ter_id=1,
bands=None)

Meter modification message

The controller sends this message to modify the meter.

Attribute Description
command One of the following values.

OFPMC_ADD
OFPMC_MODIFY
OFPMC_DELETE

flags Bitmap of the following flags.

OFPMF_KBPS
OFPMF_PKTPS
OFPMF_BURST
OFPMF_STATS

meter_id Meter instance
bands list of the following class instance.

OFPMeterBandDrop
OFPMeterBandDscpRemark
OFPMeterBandExperimenter

JSON Example:

8.1. Writing Your OS-Ken Application 259

os-ken Documentation, Release 1.4.1.dev5

{
"OFPMeterMod": {

"bands": [
{

"OFPMeterBandDrop": {
"burst_size": 10,
"len": 16,
"rate": 1000,
"type": 1

}
},
{

"OFPMeterBandDscpRemark": {
"burst_size": 10,
"len": 16,
"prec_level": 1,
"rate": 1000,
"type": 2

}
},
{

"OFPMeterBandExperimenter": {
"burst_size": 10,
"experimenter": 999,
"len": 16,
"rate": 1000,
"type": 65535

}
}

],
"command": 0,
"flags": 14,
"meter_id": 100

}
}

Multipart Messages

class os_ken.ofproto.ofproto_v1_3_parser.OFPDescStatsRequest(datapath,
flags=0,
type_=None)

Description statistics request message

The controller uses this message to query description of the switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

(continues on next page)

8.1. Writing Your OS-Ken Application 260

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

req = ofp_parser.OFPDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPDescStatsRequest": {

"flags": 0,
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPDescStatsReply(datapath,
type_=None,
**kwargs)

Description statistics reply message

The switch responds with this message to a description statistics request.

Attribute Description
body Instance of OFPDescStats

Example:

@set_ev_cls(ofp_event.EventOFPDescStatsReply, MAIN_DISPATCHER)
def desc_stats_reply_handler(self, ev):

body = ev.msg.body

self.logger.debug('DescStats: mfr_desc=%s hw_desc=%s sw_desc=%s '
'serial_num=%s dp_desc=%s',
body.mfr_desc, body.hw_desc, body.sw_desc,
body.serial_num, body.dp_desc)

JSON Example:

{
"OFPDescStatsReply": {

"body": {
"OFPDescStats": {

"dp_desc": "dp",
"hw_desc": "hw",
"mfr_desc": "mfr",
"serial_num": "serial",
"sw_desc": "sw"

}
},
"flags": 0,
"type": 0

}
}

8.1. Writing Your OS-Ken Application 261

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.OFPFlowStatsRequest(datapath,
flags=0,
ta-
ble_id=255,
out_port=4294967295,
out_group=4294967295,
cookie=0,
cookie_mask=0,
match=None,
type_=None)

Individual flow statistics request message

The controller uses this message to query individual flow statistics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch

Example:

def send_flow_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPFlowStatsRequest(datapath, 0,

ofp.OFPTT_ALL,
ofp.OFPP_ANY, ofp.OFPG_ANY,
cookie, cookie_mask,
match)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowStatsRequest": {

"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,

(continues on next page)

8.1. Writing Your OS-Ken Application 262

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"table_id": 0,
"type": 1

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPFlowStatsReply(datapath,
type_=None,
**kwargs)

Individual flow statistics reply message

The switch responds with this message to an individual flow statistics request.

Attribute Description
body List of OFPFlowStats instance

Example:

@set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER)
def flow_stats_reply_handler(self, ev):

flows = []
for stat in ev.msg.body:

flows.append('table_id=%s '
'duration_sec=%d duration_nsec=%d '
'priority=%d '
'idle_timeout=%d hard_timeout=%d flags=0x%04x '
'cookie=%d packet_count=%d byte_count=%d '
'match=%s instructions=%s' %
(stat.table_id,
stat.duration_sec, stat.duration_nsec,
stat.priority,
stat.idle_timeout, stat.hard_timeout, stat.

↪→flags,
stat.cookie, stat.packet_count, stat.byte_count,
stat.match, stat.instructions))

self.logger.debug('FlowStats: %s', flows)

JSON Example:

{
"OFPFlowStatsReply": {

"body": [
{

"OFPFlowStats": {
"byte_count": 0,
"cookie": 0,
"duration_nsec": 115277000,
"duration_sec": 358,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [],
"length": 56,
"match": {

"OFPMatch": {
"length": 4,

(continues on next page)

8.1. Writing Your OS-Ken Application 263

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"oxm_fields": [],
"type": 1

}
},
"packet_count": 0,
"priority": 65535,
"table_id": 0

}
},
{

"OFPFlowStats": {
"byte_count": 0,
"cookie": 0,
"duration_nsec": 115055000,
"duration_sec": 358,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 0,
"port": 4294967290,
"type": 0

}
}

],
"len": 24,
"type": 4

}
}

],
"length": 88,
"match": {

"OFPMatch": {
"length": 10,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_type",
"mask": null,
"value": 2054

}
}

],
"type": 1

}
},
"packet_count": 0,
"priority": 65534,
"table_id": 0

}
(continues on next page)

8.1. Writing Your OS-Ken Application 264

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

},
{

"OFPFlowStats": {
"byte_count": 238,
"cookie": 0,
"duration_nsec": 511582000,
"duration_sec": 316220,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"instructions": [

{
"OFPInstructionGotoTable": {

"len": 8,
"table_id": 1,
"type": 1

}
}

],
"length": 80,
"match": {

"OFPMatch": {
"length": 22,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 6

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"packet_count": 3,
"priority": 123,
"table_id": 0

}
},
{

"OFPFlowStats": {
"byte_count": 98,
"cookie": 0,
"duration_nsec": 980901000,
"duration_sec": 313499,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 265

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"instructions": [
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionSetField": {

"field": {
"OXMTlv": {

"field": "vlan_vid",
"mask": null,
"value": 258

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionCopyTtlOut": {
"len": 8,
"type": 11

}
},
{

"OFPActionCopyTtlIn": {
"len": 8,
"type": 12

}
},
{

"OFPActionCopyTtlIn": {
"len": 8,
"type": 12

}
},
{

"OFPActionPopPbb": {
"len": 8,
"type": 27

}
},
{

"OFPActionPushPbb": {
"ethertype": 4660,
"len": 8,
"type": 26

}
},
{

"OFPActionPopMpls": {
"ethertype": 39030,
"len": 8,
"type": 20

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 266

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPActionPushMpls": {
"ethertype": 34887,
"len": 8,
"type": 19

}
},
{

"OFPActionPopVlan": {
"len": 8,
"type": 18

}
},
{

"OFPActionPushVlan": {
"ethertype": 33024,
"len": 8,
"type": 17

}
},
{

"OFPActionDecMplsTtl": {
"len": 8,
"type": 16

}
},
{

"OFPActionSetMplsTtl": {
"len": 8,
"mpls_ttl": 10,
"type": 15

}
},
{

"OFPActionDecNwTtl": {
"len": 8,
"type": 24

}
},
{

"OFPActionSetNwTtl": {
"len": 8,
"nw_ttl": 10,
"type": 23

}
},
{

"OFPActionSetQueue": {
"len": 8,
"queue_id": 3,
"type": 21

}
},
{

"OFPActionGroup": {
"group_id": 99,
"len": 8,

(continues on next page)

8.1. Writing Your OS-Ken Application 267

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 22
}

},
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 6,
"type": 0

}
},
{

"OFPActionExperimenterUnknown": {
"len": 16,
"data": "ZXhwX2RhdGE=",
"experimenter": 98765432,
"type": 65535

}
},
{

"NXActionUnknown": {
"len": 16,
"data": "cF9kYXRh",
"experimenter": 8992,
"type": 65535,
"subtype": 25976

}
}

],
"len": 192,
"type": 3

}
},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionSetField": {

"field": {
"OXMTlv": {

"field": "eth_src",
"mask": null,
"value": "01:02:03:04:05:06"

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "pbb_uca",
"mask": null,
"value": 1

(continues on next page)

8.1. Writing Your OS-Ken Application 268

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
},
"len": 16,
"type": 25

}
}

],
"len": 40,
"type": 4

}
},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionOutput": {

"len": 16,
"max_len": 65535,
"port": 4294967293,
"type": 0

}
}

],
"len": 24,
"type": 3

}
}

],
"length": 312,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"packet_count": 1,
"priority": 0,
"table_id": 0

}
}

],
"flags": 0,
"type": 1

}
}

8.1. Writing Your OS-Ken Application 269

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.OFPAggregateStatsRequest(datapath,
flags,
ta-
ble_id,
out_port,
out_group,
cookie,
cookie_mask,
match,
type_=None)

Aggregate flow statistics request message

The controller uses this message to query aggregate flow statictics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch

Example:

def send_aggregate_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPAggregateStatsRequest(datapath, 0,

ofp.OFPTT_ALL,
ofp.OFPP_ANY,
ofp.OFPG_ANY,
cookie, cookie_mask,
match)

datapath.send_msg(req)

JSON Example:

{
"OFPAggregateStatsRequest": {

"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"out_group": 4294967295,

(continues on next page)

8.1. Writing Your OS-Ken Application 270

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"out_port": 4294967295,
"table_id": 255,
"type": 2

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPAggregateStatsReply(datapath,
type_=None,
**kwargs)

Aggregate flow statistics reply message

The switch responds with this message to an aggregate flow statistics request.

Attribute Description
body Instance of OFPAggregateStats

Example:

@set_ev_cls(ofp_event.EventOFPAggregateStatsReply, MAIN_DISPATCHER)
def aggregate_stats_reply_handler(self, ev):

body = ev.msg.body

self.logger.debug('AggregateStats: packet_count=%d byte_count=%d '
'flow_count=%d',
body.packet_count, body.byte_count,
body.flow_count)

JSON Example:

{
"OFPAggregateStatsReply": {

"body": {
"OFPAggregateStats": {

"byte_count": 574,
"flow_count": 6,
"packet_count": 7

}
},
"flags": 0,
"type": 2

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPTableStatsRequest(datapath,
flags=0,
type_=None)

Table statistics request message

The controller uses this message to query flow table statictics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

8.1. Writing Your OS-Ken Application 271

os-ken Documentation, Release 1.4.1.dev5

def send_table_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPTableStatsRequest": {

"flags": 0,
"type": 3

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPTableStatsReply(datapath,
type_=None,
**kwargs)

Table statistics reply message

The switch responds with this message to a table statistics request.

Attribute Description
body List of OFPTableStats instance

Example:

@set_ev_cls(ofp_event.EventOFPTableStatsReply, MAIN_DISPATCHER)
def table_stats_reply_handler(self, ev):

tables = []
for stat in ev.msg.body:

tables.append('table_id=%d active_count=%d lookup_count=%d '
' matched_count=%d' %
(stat.table_id, stat.active_count,
stat.lookup_count, stat.matched_count))

self.logger.debug('TableStats: %s', tables)

JSON Example:

{
"OFPTableStatsReply": {

"body": [
{

"OFPTableStats": {
"active_count": 4,
"lookup_count": 4,
"matched_count": 4,
"table_id": 0

}
},
{

"OFPTableStats": {
"active_count": 4,
"lookup_count": 4,
"matched_count": 4,

(continues on next page)

8.1. Writing Your OS-Ken Application 272

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"table_id": 1
}

}
],
"flags": 0,
"type": 3

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPPortStatsRequest(datapath,
flags=0,
port_no=4294967295,
type_=None)

Port statistics request message

The controller uses this message to query information about ports statistics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read (OFPP_ANY to all ports)

Example:

def send_port_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPPortStatsRequest(datapath, 0, ofp.OFPP_ANY)
datapath.send_msg(req)

JSON Example:

{
"OFPPortStatsRequest": {

"flags": 0,
"port_no": 4294967295,
"type": 4

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPPortStatsReply(datapath,
type_=None,
**kwargs)

Port statistics reply message

The switch responds with this message to a port statistics request.

Attribute Description
body List of OFPPortStats instance

Example:

8.1. Writing Your OS-Ken Application 273

os-ken Documentation, Release 1.4.1.dev5

@set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER)
def port_stats_reply_handler(self, ev):

ports = []
for stat in ev.msg.body:

ports.append('port_no=%d '
'rx_packets=%d tx_packets=%d '
'rx_bytes=%d tx_bytes=%d '
'rx_dropped=%d tx_dropped=%d '
'rx_errors=%d tx_errors=%d '
'rx_frame_err=%d rx_over_err=%d rx_crc_err=%d '
'collisions=%d duration_sec=%d duration_nsec=%d'

↪→%
(stat.port_no,
stat.rx_packets, stat.tx_packets,
stat.rx_bytes, stat.tx_bytes,
stat.rx_dropped, stat.tx_dropped,
stat.rx_errors, stat.tx_errors,
stat.rx_frame_err, stat.rx_over_err,
stat.rx_crc_err, stat.collisions,
stat.duration_sec, stat.duration_nsec))

self.logger.debug('PortStats: %s', ports)

JSON Example:

{
"OFPPortStatsReply": {

"body": [
{

"OFPPortStats": {
"collisions": 0,
"duration_nsec": 0,
"duration_sec": 0,
"port_no": 7,
"rx_bytes": 0,
"rx_crc_err": 0,
"rx_dropped": 0,
"rx_errors": 0,
"rx_frame_err": 0,
"rx_over_err": 0,
"rx_packets": 0,
"tx_bytes": 336,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 4

}
},
{

"OFPPortStats": {
"collisions": 0,
"duration_nsec": 0,
"duration_sec": 0,
"port_no": 6,
"rx_bytes": 336,
"rx_crc_err": 0,
"rx_dropped": 0,
"rx_errors": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 274

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"rx_frame_err": 0,
"rx_over_err": 0,
"rx_packets": 4,
"tx_bytes": 336,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 4

}
}

],
"flags": 0,
"type": 4

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPPortDescStatsRequest(datapath,
flags=0,
type_=None)

Port description request message

The controller uses this message to query description of all the ports.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_port_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPPortDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPPortDescStatsRequest": {

"flags": 0,
"type": 13

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPPortDescStatsReply(datapath,
type_=None,
**kwargs)

Port description reply message

The switch responds with this message to a port description request.

Attribute Description
body List of OFPPort instance

Example:

8.1. Writing Your OS-Ken Application 275

os-ken Documentation, Release 1.4.1.dev5

@set_ev_cls(ofp_event.EventOFPPortDescStatsReply, MAIN_DISPATCHER)
def port_desc_stats_reply_handler(self, ev):

ports = []
for p in ev.msg.body:

ports.append('port_no=%d hw_addr=%s name=%s config=0x%08x '
'state=0x%08x curr=0x%08x advertised=0x%08x '
'supported=0x%08x peer=0x%08x curr_speed=%d '
'max_speed=%d' %
(p.port_no, p.hw_addr,
p.name, p.config,
p.state, p.curr, p.advertised,
p.supported, p.peer, p.curr_speed,
p.max_speed))

self.logger.debug('OFPPortDescStatsReply received: %s', ports)

JSON Example:

{
"OFPPortDescStatsReply": {

"body": [
{

"OFPPort": {
"advertised": 10240,
"config": 0,
"curr": 10248,
"curr_speed": 5000,
"hw_addr": "f2:0b:a4:d0:3f:70",
"max_speed": 5000,
"name": "Port7",
"peer": 10248,
"port_no": 7,
"state": 4,
"supported": 10248

}
},
{

"OFPPort": {
"advertised": 10240,
"config": 0,
"curr": 10248,
"curr_speed": 5000,
"hw_addr": "f2:0b:a4:7d:f8:ea",
"max_speed": 5000,
"name": "Port6",
"peer": 10248,
"port_no": 6,
"state": 4,
"supported": 10248

}
}

],
"flags": 0,
"type": 13

}
}

8.1. Writing Your OS-Ken Application 276

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.OFPQueueStatsRequest(datapath,
flags=0,
port_no=4294967295,
queue_id=4294967295,
type_=None)

Queue statistics request message

The controller uses this message to query queue statictics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read
queue_id ID of queue to read

Example:

def send_queue_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueStatsRequest(datapath, 0, ofp.OFPP_ANY,
ofp.OFPQ_ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPQueueStatsRequest": {

"flags": 0,
"port_no": 4294967295,
"queue_id": 4294967295,
"type": 5

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPQueueStatsReply(datapath,
type_=None,
**kwargs)

Queue statistics reply message

The switch responds with this message to an aggregate flow statistics request.

Attribute Description
body List of OFPQueueStats instance

Example:

@set_ev_cls(ofp_event.EventOFPQueueStatsReply, MAIN_DISPATCHER)
def queue_stats_reply_handler(self, ev):

queues = []
for stat in ev.msg.body:

queues.append('port_no=%d queue_id=%d '
'tx_bytes=%d tx_packets=%d tx_errors=%d '
'duration_sec=%d duration_nsec=%d' %

(continues on next page)

8.1. Writing Your OS-Ken Application 277

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

(stat.port_no, stat.queue_id,
stat.tx_bytes, stat.tx_packets, stat.tx_errors,
stat.duration_sec, stat.duration_nsec))

self.logger.debug('QueueStats: %s', queues)

JSON Example:

{
"OFPQueueStatsReply": {

"body": [
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"port_no": 7,
"queue_id": 1,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
},
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"port_no": 6,
"queue_id": 1,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
},
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"port_no": 7,
"queue_id": 2,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
}

],
"flags": 0,
"type": 5

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPGroupStatsRequest(datapath,
flags=0,
group_id=4294967292,
type_=None)

Group statistics request message

The controller uses this message to query statistics of one or more groups.

8.1. Writing Your OS-Ken Application 278

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags Zero or OFPMPF_REQ_MORE
group_id ID of group to read (OFPG_ALL to all groups)

Example:

def send_group_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupStatsRequest(datapath, 0, ofp.OFPG_ALL)
datapath.send_msg(req)

class os_ken.ofproto.ofproto_v1_3_parser.OFPGroupStatsReply(datapath,
type_=None,
**kwargs)

Group statistics reply message

The switch responds with this message to a group statistics request.

Attribute Description
body List of OFPGroupStats instance

Example:

@set_ev_cls(ofp_event.EventOFPGroupStatsReply, MAIN_DISPATCHER)
def group_stats_reply_handler(self, ev):

groups = []
for stat in ev.msg.body:

groups.append('length=%d group_id=%d '
'ref_count=%d packet_count=%d byte_count=%d '
'duration_sec=%d duration_nsec=%d' %
(stat.length, stat.group_id,
stat.ref_count, stat.packet_count,
stat.byte_count, stat.duration_sec,
stat.duration_nsec))

self.logger.debug('GroupStats: %s', groups)

class os_ken.ofproto.ofproto_v1_3_parser.OFPGroupDescStatsRequest(datapath,
flags=0,
type_=None)

Group description request message

The controller uses this message to list the set of groups on a switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_group_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

(continues on next page)

8.1. Writing Your OS-Ken Application 279

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

req = ofp_parser.OFPGroupDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupDescStatsRequest": {

"flags": 0,
"type": 7

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPGroupDescStatsReply(datapath,
type_=None,
**kwargs)

Group description reply message

The switch responds with this message to a group description request.

Attribute Description
body List of OFPGroupDescStats instance

Example:

@set_ev_cls(ofp_event.EventOFPGroupDescStatsReply, MAIN_DISPATCHER)
def group_desc_stats_reply_handler(self, ev):

descs = []
for stat in ev.msg.body:

descs.append('length=%d type=%d group_id=%d '
'buckets=%s' %
(stat.length, stat.type, stat.group_id,
stat.bucket))

self.logger.debug('GroupDescStats: %s', descs)

JSON Example:

{
"OFPGroupDescStatsReply": {

"body": [
{

"OFPGroupDescStats": {
"buckets": [

{
"OFPBucket": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 2,
"type": 0

}
}

],

(continues on next page)

8.1. Writing Your OS-Ken Application 280

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"len": 32,
"watch_group": 1,
"watch_port": 1,
"weight": 1

}
}

],
"group_id": 1,
"length": 40,
"type": 0

}
}

],
"flags": 0,
"type": 7

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPGroupFeaturesStatsRequest(datapath,
flags=0,
type_=None)

Group features request message

The controller uses this message to list the capabilities of groups on a switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_group_features_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupFeaturesStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupFeaturesStatsRequest": {

"flags": 0,
"type": 8

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPGroupFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Group features reply message

The switch responds with this message to a group features request.

Attribute Description
body Instance of OFPGroupFeaturesStats

8.1. Writing Your OS-Ken Application 281

os-ken Documentation, Release 1.4.1.dev5

Example:

@set_ev_cls(ofp_event.EventOFPGroupFeaturesStatsReply, MAIN_
↪→DISPATCHER)
def group_features_stats_reply_handler(self, ev):

body = ev.msg.body

self.logger.debug('GroupFeaturesStats: types=%d '
'capabilities=0x%08x max_groups=%s '
'actions=%s',
body.types, body.capabilities,
body.max_groups, body.actions)

JSON Example:

{
"OFPGroupFeaturesStatsReply": {

"body": {
"OFPGroupFeaturesStats": {

"actions": [
67082241,
67082241,
67082241,
67082241

],
"capabilities": 5,
"max_groups": [

16777216,
16777216,
16777216,
16777216

],
"types": 15

}
},
"flags": 0,
"type": 8

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPMeterStatsRequest(datapath,
flags=0,
me-
ter_id=4294967295,
type_=None)

Meter statistics request message

The controller uses this message to query statistics for one or more meters.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
meter_id ID of meter to read (OFPM_ALL to all meters)

Example:

8.1. Writing Your OS-Ken Application 282

os-ken Documentation, Release 1.4.1.dev5

def send_meter_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterStatsRequest(datapath, 0, ofp.OFPM_ALL)
datapath.send_msg(req)

JSON Example:

{
"OFPMeterStatsRequest": {

"flags": 0,
"meter_id": 4294967295,
"type": 9

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPMeterStatsReply(datapath,
type_=None,
**kwargs)

Meter statistics reply message

The switch responds with this message to a meter statistics request.

Attribute Description
body List of OFPMeterStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterStatsReply, MAIN_DISPATCHER)
def meter_stats_reply_handler(self, ev):

meters = []
for stat in ev.msg.body:

meters.append('meter_id=0x%08x len=%d flow_count=%d '
'packet_in_count=%d byte_in_count=%d '
'duration_sec=%d duration_nsec=%d '
'band_stats=%s' %
(stat.meter_id, stat.len, stat.flow_count,
stat.packet_in_count, stat.byte_in_count,
stat.duration_sec, stat.duration_nsec,
stat.band_stats))

self.logger.debug('MeterStats: %s', meters)

JSON Example:

{
"OFPMeterStatsReply": {

"body": [
{

"OFPMeterStats": {
"band_stats": [

{
"OFPMeterBandStats": {

"byte_band_count": 0,
"packet_band_count": 0

(continues on next page)

8.1. Writing Your OS-Ken Application 283

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

],
"byte_in_count": 0,
"duration_nsec": 480000,
"duration_sec": 0,
"flow_count": 0,
"len": 56,
"meter_id": 100,
"packet_in_count": 0

}
}

],
"flags": 0,
"type": 9

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPMeterConfigStatsRequest(datapath,
flags=0,
me-
ter_id=4294967295,
type_=None)

Meter configuration statistics request message

The controller uses this message to query configuration for one or more meters.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
meter_id ID of meter to read (OFPM_ALL to all meters)

Example:

def send_meter_config_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterConfigStatsRequest(datapath, 0,
ofp.OFPM_ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPMeterConfigStatsRequest": {

"flags": 0,
"meter_id": 4294967295,
"type": 10

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPMeterConfigStatsReply(datapath,
type_=None,
**kwargs)

Meter configuration statistics reply message

8.1. Writing Your OS-Ken Application 284

os-ken Documentation, Release 1.4.1.dev5

The switch responds with this message to a meter configuration statistics request.

Attribute Description
body List of OFPMeterConfigStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterConfigStatsReply, MAIN_DISPATCHER)
def meter_config_stats_reply_handler(self, ev):

configs = []
for stat in ev.msg.body:

configs.append('length=%d flags=0x%04x meter_id=0x%08x '
'bands=%s' %
(stat.length, stat.flags, stat.meter_id,
stat.bands))

self.logger.debug('MeterConfigStats: %s', configs)

JSON Example:

{
"OFPMeterConfigStatsReply": {

"body": [
{

"OFPMeterConfigStats": {
"bands": [

{
"OFPMeterBandDrop": {

"burst_size": 10,
"len": 16,
"rate": 1000,
"type": 1

}
}

],
"flags": 14,
"length": 24,
"meter_id": 100

}
}

],
"flags": 0,
"type": 10

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPMeterFeaturesStatsRequest(datapath,
flags=0,
type_=None)

Meter features statistics request message

The controller uses this message to query the set of features of the metering subsystem.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

8.1. Writing Your OS-Ken Application 285

os-ken Documentation, Release 1.4.1.dev5

def send_meter_features_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterFeaturesStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPMeterFeaturesStatsRequest": {

"flags": 0,
"type": 11

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPMeterFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Meter features statistics reply message

The switch responds with this message to a meter features statistics request.

Attribute Description
body List of OFPMeterFeaturesStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterFeaturesStatsReply, MAIN_
↪→DISPATCHER)
def meter_features_stats_reply_handler(self, ev):

features = []
for stat in ev.msg.body:

features.append('max_meter=%d band_types=0x%08x '
'capabilities=0x%08x max_bands=%d '
'max_color=%d' %
(stat.max_meter, stat.band_types,
stat.capabilities, stat.max_bands,
stat.max_color))

self.logger.debug('MeterFeaturesStats: %s', features)

JSON Example:

{
"OFPMeterFeaturesStatsReply": {

"body": [
{

"OFPMeterFeaturesStats": {
"band_types": 2147483654,
"capabilities": 15,
"max_bands": 255,
"max_color": 0,
"max_meter": 16777216

}
}

],

(continues on next page)

8.1. Writing Your OS-Ken Application 286

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"flags": 0,
"type": 11

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPTableFeaturesStatsRequest(datapath,
flags=0,
body=None,
type_=None)

Table features statistics request message

The controller uses this message to query table features.

Attribute Description
body List of OFPTableFeaturesStats instances. The default is [].

class os_ken.ofproto.ofproto_v1_3_parser.OFPTableFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Table features statistics reply message

The switch responds with this message to a table features statistics request.

Attribute Description
body List of OFPTableFeaturesStats instance

JSON Example:

See an example in:

os_ken/tests/unit/ofproto/json/of13/
4-56-ofp_table_features_reply.packet.json

Queue Configuration Messages

class os_ken.ofproto.ofproto_v1_3_parser.OFPQueueGetConfigRequest(datapath,
port)

Queue configuration request message

Attribute Description
port Port to be queried (OFPP_ANY to all configured queues)

Example:

def send_queue_get_config_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueGetConfigRequest(datapath, ofp.OFPP_ANY)
datapath.send_msg(req)

JSON Example:

8.1. Writing Your OS-Ken Application 287

os-ken Documentation, Release 1.4.1.dev5

{
"OFPQueueGetConfigRequest": {

"port": 4294967295
}

}

class os_ken.ofproto.ofproto_v1_3_parser.OFPQueueGetConfigReply(datapath,
queues=None,
port=None)

Queue configuration reply message

The switch responds with this message to a queue configuration request.

Attribute Description
queues list of OFPPacketQueue instance
port Port which was queried

Example:

@set_ev_cls(ofp_event.EventOFPQueueGetConfigReply, MAIN_DISPATCHER)
def queue_get_config_reply_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPQueueGetConfigReply received: '
'port=%s queues=%s',
msg.port, msg.queues)

JSON Example:

{
"OFPQueueGetConfigReply": {

"port": 4294967295,
"queues": [

{
"OFPPacketQueue": {

"len": 64,
"port": 77,
"properties": [

{
"OFPQueuePropMinRate": {

"len": 16,
"property": 1,
"rate": 10

}
},
{

"OFPQueuePropMaxRate": {
"len": 16,
"property": 2,
"rate": 900

}
},
{

"OFPQueuePropExperimenter": {
"data": [],

(continues on next page)

8.1. Writing Your OS-Ken Application 288

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"experimenter": 999,
"len": 16,
"property": 65535

}
}

],
"queue_id": 99

}
},
{

"OFPPacketQueue": {
"len": 65,
"port": 77,
"properties": [

{
"OFPQueuePropMinRate": {

"len": 16,
"property": 1,
"rate": 100

}
},
{

"OFPQueuePropMaxRate": {
"len": 16,
"property": 2,
"rate": 200

}
},
{

"OFPQueuePropExperimenter": {
"experimenter": 999,
"data": [

1
],
"len": 17,
"property": 65535

}
}

],
"queue_id": 88

}
},
{

"OFPPacketQueue": {
"len": 66,
"port": 77,
"properties": [

{
"OFPQueuePropMinRate": {

"len": 16,
"property": 1,
"rate": 200

}
},
{

"OFPQueuePropMaxRate": {
(continues on next page)

8.1. Writing Your OS-Ken Application 289

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"len": 16,
"property": 2,
"rate": 400

}
},
{

"OFPQueuePropExperimenter": {
"experimenter": 999,
"data": [

1,
2

],
"len": 18,
"property": 65535

}
}

],
"queue_id": 77

}
}

]
}

}

Packet-Out Message

class os_ken.ofproto.ofproto_v1_3_parser.OFPPacketOut(datapath,
buffer_id=None,
in_port=None,
actions=None,
data=None, ac-
tions_len=None)

Packet-Out message

The controller uses this message to send a packet out throught the switch.

Attribute Description
buffer_id ID assigned by datapath (OFP_NO_BUFFER if none)
in_port Packet’s input port or OFPP_CONTROLLER
actions list of OpenFlow action class
data Packet data of a binary type value or an instances of packet.Packet.

Example:

def send_packet_out(self, datapath, buffer_id, in_port):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD, 0)]
req = ofp_parser.OFPPacketOut(datapath, buffer_id,

in_port, actions)
datapath.send_msg(req)

8.1. Writing Your OS-Ken Application 290

os-ken Documentation, Release 1.4.1.dev5

JSON Example:

{
"OFPPacketOut": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 4294967292,
"type": 0

}
}

],
"actions_len": 16,
"buffer_id": 4294967295,
"data":

↪→"8guk0D9w8gukffjqCABFAABU+BoAAP8Br4sKAAABCgAAAggAAgj3YAAAMdYCAAAAAACrjS0xAAAAABAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vAAAAAAAAAAA=
↪→",

"in_port": 4294967293
}

}

Barrier Message

class os_ken.ofproto.ofproto_v1_3_parser.OFPBarrierRequest(datapath)
Barrier request message

The controller sends this message to ensure message dependencies have been met or receive noti-
fications for completed operations.

Example:

def send_barrier_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPBarrierRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPBarrierRequest": {}

}

class os_ken.ofproto.ofproto_v1_3_parser.OFPBarrierReply(datapath)
Barrier reply message

The switch responds with this message to a barrier request.

Example:

@set_ev_cls(ofp_event.EventOFPBarrierReply, MAIN_DISPATCHER)
def barrier_reply_handler(self, ev):

self.logger.debug('OFPBarrierReply received')

JSON Example:

8.1. Writing Your OS-Ken Application 291

os-ken Documentation, Release 1.4.1.dev5

{
"OFPBarrierReply": {}

}

Role Request Message

class os_ken.ofproto.ofproto_v1_3_parser.OFPRoleRequest(datapath,
role=None,
genera-
tion_id=None)

Role request message

The controller uses this message to change its role.

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

generation_id Master Election Generation ID

Example:

def send_role_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPRoleRequest(datapath, ofp.OFPCR_ROLE_EQUAL, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPRoleRequest": {

"generation_id": 17294086455919964160,
"role": 2

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPRoleReply(datapath,
role=None,
genera-
tion_id=None)

Role reply message

The switch responds with this message to a role request.

8.1. Writing Your OS-Ken Application 292

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

generation_id Master Election Generation ID

Example:

@set_ev_cls(ofp_event.EventOFPRoleReply, MAIN_DISPATCHER)
def role_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.role == ofp.OFPCR_ROLE_NOCHANGE:
role = 'NOCHANGE'

elif msg.role == ofp.OFPCR_ROLE_EQUAL:
role = 'EQUAL'

elif msg.role == ofp.OFPCR_ROLE_MASTER:
role = 'MASTER'

elif msg.role == ofp.OFPCR_ROLE_SLAVE:
role = 'SLAVE'

else:
role = 'unknown'

self.logger.debug('OFPRoleReply received: '
'role=%s generation_id=%d',
role, msg.generation_id)

JSON Example:

{
"OFPRoleReply": {

"generation_id": 17294086455919964160,
"role": 3

}
}

Set Asynchronous Configuration Message

class os_ken.ofproto.ofproto_v1_3_parser.OFPSetAsync(datapath,
packet_in_mask,
port_status_mask,
flow_removed_mask)

Set asynchronous configuration message

The controller sends this message to set the asynchronous messages that it wants to receive on a
given OpneFlow channel.

8.1. Writing Your OS-Ken Application 293

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
packet_in_mask 2-element array: element 0, when the con-

troller has a OFPCR_ROLE_EQUAL or OF-
PCR_ROLE_MASTER role. element 1, OF-
PCR_ROLE_SLAVE role controller. Bit-
masks of following values.

OFPR_NO_MATCH
OFPR_ACTION
OFPR_INVALID_TTL

port_status_mask 2-element array. Bitmasks of following val-
ues.

OFPPR_ADD
OFPPR_DELETE
OFPPR_MODIFY

flow_removed_mask 2-element array. Bitmasks of following val-
ues.

OFPRR_IDLE_TIMEOUT
OFPRR_HARD_TIMEOUT
OFPRR_DELETE
OFPRR_GROUP_DELETE

Example:

def send_set_async(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

packet_in_mask = 1 << ofp.OFPR_ACTION | 1 << ofp.OFPR_INVALID_TTL
port_status_mask = (1 << ofp.OFPPR_ADD

| 1 << ofp.OFPPR_DELETE
| 1 << ofp.OFPPR_MODIFY)

flow_removed_mask = (1 << ofp.OFPRR_IDLE_TIMEOUT
| 1 << ofp.OFPRR_HARD_TIMEOUT
| 1 << ofp.OFPRR_DELETE)

req = ofp_parser.OFPSetAsync(datapath,
[packet_in_mask, 0],
[port_status_mask, 0],
[flow_removed_mask, 0])

datapath.send_msg(req)

JSON Example:

{
"OFPSetAsync": {

"flow_removed_mask": [

(continues on next page)

8.1. Writing Your OS-Ken Application 294

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

15,
3

],
"packet_in_mask": [

5,
1

],
"port_status_mask": [

7,
3

]
}

}

class os_ken.ofproto.ofproto_v1_3_parser.OFPGetAsyncRequest(datapath)
Get asynchronous configuration request message

The controller uses this message to query the asynchronous message.

Example:

def send_get_async_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGetAsyncRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGetAsyncRequest": {}

}

class os_ken.ofproto.ofproto_v1_3_parser.OFPGetAsyncReply(datapath,
packet_in_mask=None,
port_status_mask=None,
flow_removed_mask=None)

Get asynchronous configuration reply message

The switch responds with this message to a get asynchronous configuration request.

8.1. Writing Your OS-Ken Application 295

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
packet_in_mask 2-element array: element 0, when the con-

troller has a OFPCR_ROLE_EQUAL or OF-
PCR_ROLE_MASTER role. element 1, OF-
PCR_ROLE_SLAVE role controller. Bit-
masks of following values.

OFPR_NO_MATCH
OFPR_ACTION
OFPR_INVALID_TTL

port_status_mask 2-element array. Bitmasks of following val-
ues.

OFPPR_ADD
OFPPR_DELETE
OFPPR_MODIFY

flow_removed_mask 2-element array. Bitmasks of following val-
ues.

OFPRR_IDLE_TIMEOUT
OFPRR_HARD_TIMEOUT
OFPRR_DELETE
OFPRR_GROUP_DELETE

Example:

@set_ev_cls(ofp_event.EventOFPGetAsyncReply, MAIN_DISPATCHER)
def get_async_reply_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPGetAsyncReply received: '
'packet_in_mask=0x%08x:0x%08x '
'port_status_mask=0x%08x:0x%08x '
'flow_removed_mask=0x%08x:0x%08x',
msg.packet_in_mask[0],
msg.packet_in_mask[1],
msg.port_status_mask[0],
msg.port_status_mask[1],
msg.flow_removed_mask[0],
msg.flow_removed_mask[1])

JSON Example:

{
"OFPGetAsyncReply": {

"flow_removed_mask": [
15,
3

(continues on next page)

8.1. Writing Your OS-Ken Application 296

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

],
"packet_in_mask": [

5,
1

],
"port_status_mask": [

7,
3

]
}

}

Asynchronous Messages

Packet-In Message

class os_ken.ofproto.ofproto_v1_3_parser.OFPPacketIn(datapath,
buffer_id=None,
total_len=None,
reason=None,
table_id=None,
cookie=None,
match=None,
data=None)

Packet-In message

The switch sends the packet that received to the controller by this message.

Attribute Description
buffer_id ID assigned by datapath
total_len Full length of frame
reason Reason packet is being sent.

OFPR_NO_MATCH
OFPR_ACTION
OFPR_INVALID_TTL

table_id ID of the table that was looked up
cookie Cookie of the flow entry that was looked up
match Instance of OFPMatch
data Ethernet frame

Example:

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def packet_in_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

(continues on next page)

8.1. Writing Your OS-Ken Application 297

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

if msg.reason == ofp.OFPR_NO_MATCH:
reason = 'NO MATCH'

elif msg.reason == ofp.OFPR_ACTION:
reason = 'ACTION'

elif msg.reason == ofp.OFPR_INVALID_TTL:
reason = 'INVALID TTL'

else:
reason = 'unknown'

self.logger.debug('OFPPacketIn received: '
'buffer_id=%x total_len=%d reason=%s '
'table_id=%d cookie=%d match=%s data=%s',
msg.buffer_id, msg.total_len, reason,
msg.table_id, msg.cookie, msg.match,
utils.hex_array(msg.data))

JSON Example:

{
"OFPPacketIn": {

"buffer_id": 2,
"cookie": 283686884868096,
"data": "////////

↪→8gukffjqCAYAAQgABgQAAfILpH346goAAAEAAAAAAAAKAAAD",
"match": {

"OFPMatch": {
"length": 80,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 6

}
},
{

"OXMTlv": {
"field": "eth_type",
"mask": null,
"value": 2054

}
},
{

"OXMTlv": {
"field": "eth_dst",
"mask": null,
"value": "ff:ff:ff:ff:ff:ff"

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 298

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OXMTlv": {

"field": "arp_op",
"mask": null,
"value": 1

}
},
{

"OXMTlv": {
"field": "arp_spa",
"mask": null,
"value": "10.0.0.1"

}
},
{

"OXMTlv": {
"field": "arp_tpa",
"mask": null,
"value": "10.0.0.3"

}
},
{

"OXMTlv": {
"field": "arp_sha",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "arp_tha",
"mask": null,
"value": "00:00:00:00:00:00"

}
}

],
"type": 1

}
},
"reason": 1,
"table_id": 1,
"total_len": 42

}
}

8.1. Writing Your OS-Ken Application 299

os-ken Documentation, Release 1.4.1.dev5

Flow Removed Message

class os_ken.ofproto.ofproto_v1_3_parser.OFPFlowRemoved(datapath,
cookie=None,
prior-
ity=None,
rea-
son=None,
ta-
ble_id=None,
dura-
tion_sec=None,
dura-
tion_nsec=None,
idle_timeout=None,
hard_timeout=None,
packet_count=None,
byte_count=None,
match=None)

Flow removed message

When flow entries time out or are deleted, the switch notifies controller with this message.

Attribute Description
cookie Opaque controller-issued identifier
priority Priority level of flow entry
reason One of the following values.

OFPRR_IDLE_TIMEOUT
OFPRR_HARD_TIMEOUT
OFPRR_DELETE
OFPRR_GROUP_DELETE

table_id ID of the table
duration_sec Time flow was alive in seconds
duration_nsec Time flow was alive in nanoseconds beyond

duration_sec
idle_timeout Idle timeout from original flow mod
hard_timeout Hard timeout from original flow mod
packet_count Number of packets that was associated with

the flow
byte_count Number of bytes that was associated with the

flow
match Instance of OFPMatch

Example:

@set_ev_cls(ofp_event.EventOFPFlowRemoved, MAIN_DISPATCHER)
def flow_removed_handler(self, ev):

msg = ev.msg

(continues on next page)

8.1. Writing Your OS-Ken Application 300

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPRR_IDLE_TIMEOUT:
reason = 'IDLE TIMEOUT'

elif msg.reason == ofp.OFPRR_HARD_TIMEOUT:
reason = 'HARD TIMEOUT'

elif msg.reason == ofp.OFPRR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPRR_GROUP_DELETE:
reason = 'GROUP DELETE'

else:
reason = 'unknown'

self.logger.debug('OFPFlowRemoved received: '
'cookie=%d priority=%d reason=%s table_id=%d '
'duration_sec=%d duration_nsec=%d '
'idle_timeout=%d hard_timeout=%d '
'packet_count=%d byte_count=%d match.fields=%s',
msg.cookie, msg.priority, reason, msg.table_id,
msg.duration_sec, msg.duration_nsec,
msg.idle_timeout, msg.hard_timeout,
msg.packet_count, msg.byte_count, msg.match)

JSON Example:

{
"OFPFlowRemoved": {

"byte_count": 86,
"cookie": 0,
"duration_nsec": 48825000,
"duration_sec": 3,
"hard_timeout": 0,
"idle_timeout": 3,
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"packet_count": 1,
"priority": 65535,
"reason": 0,
"table_id": 0

}
}

8.1. Writing Your OS-Ken Application 301

os-ken Documentation, Release 1.4.1.dev5

Port Status Message

class os_ken.ofproto.ofproto_v1_3_parser.OFPPortStatus(datapath,
reason=None,
desc=None)

Port status message

The switch notifies controller of change of ports.

Attribute Description
reason One of the following values.

OFPPR_ADD
OFPPR_DELETE
OFPPR_MODIFY

desc instance of OFPPort

Example:

@set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER)
def port_status_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPPR_ADD:
reason = 'ADD'

elif msg.reason == ofp.OFPPR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPPR_MODIFY:
reason = 'MODIFY'

else:
reason = 'unknown'

self.logger.debug('OFPPortStatus received: reason=%s desc=%s',
reason, msg.desc)

JSON Example:

{
"OFPPortStatus": {

"desc": {
"OFPPort": {

"advertised": 10240,
"config": 0,
"curr": 10248,
"curr_speed": 5000,
"hw_addr": "f2:0b:a4:d0:3f:70",
"max_speed": 5000,
"name": "\u79c1\u306e\u30dd\u30fc\u30c8",
"peer": 10248,
"port_no": 7,
"state": 4,

(continues on next page)

8.1. Writing Your OS-Ken Application 302

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"supported": 10248
}

},
"reason": 0

}
}

Error Message

class os_ken.ofproto.ofproto_v1_3_parser.OFPErrorMsg(datapath,
type_=None,
code=None,
data=None,
**kwargs)

Error message

The switch notifies controller of problems by this message.

Attribute Description
type High level type of error
code Details depending on the type
data Variable length data depending on the type and code

type attribute corresponds to type_ parameter of __init__.

Types and codes are defined in os_ken.ofproto.ofproto.

Type Code
OFPET_HELLO_FAILED OFPHFC_*
OFPET_BAD_REQUEST OFPBRC_*
OFPET_BAD_ACTION OFPBAC_*
OFPET_BAD_INSTRUCTION OFPBIC_*
OFPET_BAD_MATCH OFPBMC_*
OFPET_FLOW_MOD_FAILED OFPFMFC_*
OFPET_GROUP_MOD_FAILED OFPGMFC_*
OFPET_PORT_MOD_FAILED OFPPMFC_*
OFPET_TABLE_MOD_FAILED OFPTMFC_*
OFPET_QUEUE_OP_FAILED OFPQOFC_*
OFPET_SWITCH_CONFIG_FAILED OFPSCFC_*
OFPET_ROLE_REQUEST_FAILED OFPRRFC_*
OFPET_METER_MOD_FAILED OFPMMFC_*
OFPET_TABLE_FEATURES_FAILED OFPTFFC_*
OFPET_EXPERIMENTER N/A

If type == OFPET_EXPERIMENTER, this message has also the following attributes.

Attribute Description
exp_type Experimenter defined type
experimenter Experimenter ID

8.1. Writing Your OS-Ken Application 303

os-ken Documentation, Release 1.4.1.dev5

Example:

@set_ev_cls(ofp_event.EventOFPErrorMsg,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def error_msg_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPErrorMsg received: type=0x%02x code=0x%02x '
'message=%s',
msg.type, msg.code, utils.hex_array(msg.data))

JSON Example:

{
"OFPErrorMsg": {

"code": 11,
"data": "ZnVnYWZ1Z2E=",
"type": 2

}
}

Symmetric Messages

Hello

class os_ken.ofproto.ofproto_v1_3_parser.OFPHello(datapath, ele-
ments=None)

Hello message

When connection is started, the hello message is exchanged between a switch and a controller.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
elements list of OFPHelloElemVersionBitmap instance

JSON Example:

{
"OFPHello": {

"elements": [
{

"OFPHelloElemVersionBitmap": {
"length": 8,
"type": 1,
"versions": [

1,
2,
3,
9,
10,
30

(continues on next page)

8.1. Writing Your OS-Ken Application 304

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

]
}

}
]

}
}

class os_ken.ofproto.ofproto_v1_3_parser.OFPHelloElemVersionBitmap(versions,
type_=None,
length=None)

Version bitmap Hello Element

Attribute Description
versions list of versions of OpenFlow protocol a device supports

Echo Request

class os_ken.ofproto.ofproto_v1_3_parser.OFPEchoRequest(datapath,
data=None)

Echo request message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data

Example:

def send_echo_request(self, datapath, data):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPEchoRequest(datapath, data)
datapath.send_msg(req)

@set_ev_cls(ofp_event.EventOFPEchoRequest,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_request_handler(self, ev):

self.logger.debug('OFPEchoRequest received: data=%s',
utils.hex_array(ev.msg.data))

JSON Example:

{
"OFPEchoRequest": {

"data": "aG9nZQ=="
}

}

8.1. Writing Your OS-Ken Application 305

os-ken Documentation, Release 1.4.1.dev5

Echo Reply

class os_ken.ofproto.ofproto_v1_3_parser.OFPEchoReply(datapath,
data=None)

Echo reply message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data

Example:

def send_echo_reply(self, datapath, data):
ofp_parser = datapath.ofproto_parser

reply = ofp_parser.OFPEchoReply(datapath, data)
datapath.send_msg(reply)

@set_ev_cls(ofp_event.EventOFPEchoReply,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_reply_handler(self, ev):

self.logger.debug('OFPEchoReply received: data=%s',
utils.hex_array(ev.msg.data))

JSON Example:

{
"OFPEchoReply": {

"data": "aG9nZQ=="
}

}

Experimenter

class os_ken.ofproto.ofproto_v1_3_parser.OFPExperimenter(datapath,
experi-
menter=None,
exp_type=None,
data=None)

Experimenter extension message

Attribute Description
experimenter Experimenter ID
exp_type Experimenter defined
data Experimenter defined arbitrary additional data

JSON Example:

8.1. Writing Your OS-Ken Application 306

os-ken Documentation, Release 1.4.1.dev5

{
"OFPExperimenter": {

"data": "bmF6bw==",
"exp_type": 123456789,
"experimenter": 98765432

}
}

Port Structures

class os_ken.ofproto.ofproto_v1_3_parser.OFPPort(port_no, hw_addr,
name, config,
state, curr, adver-
tised, supported,
peer, curr_speed,
max_speed)

Description of a port

Attribute Description
port_no Port number and it uniquely identifies a port

within a switch.
hw_addr MAC address for the port.
name Null-terminated string containing a human-

readable name for the interface.
config Bitmap of port configration flags.

OFPPC_PORT_DOWN
OFPPC_NO_RECV
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

state Bitmap of port state flags.

OFPPS_LINK_DOWN
OFPPS_BLOCKED
OFPPS_LIVE

curr Current features.
advertised Features being advertised by the port.
supported Features supported by the port.
peer Features advertised by peer.
curr_speed Current port bitrate in kbps.
max_speed Max port bitrate in kbps.

8.1. Writing Your OS-Ken Application 307

os-ken Documentation, Release 1.4.1.dev5

Flow Match Structure

class os_ken.ofproto.ofproto_v1_3_parser.OFPMatch(type_=None,
length=None, _or-
dered_fields=None,
**kwargs)

Flow Match Structure

This class is implementation of the flow match structure having compose/query API. There are
new API and old API for compatibility. the old API is supposed to be removed later.

You can define the flow match by the keyword arguments. The following arguments are available.

Argument Value Description
in_port Integer 32bit Switch input port
in_phy_port Integer 32bit Switch physical input port
metadata Integer 64bit Metadata passed between tables
eth_dst MAC address Ethernet destination address
eth_src MAC address Ethernet source address
eth_type Integer 16bit Ethernet frame type
vlan_vid Integer 16bit VLAN id
vlan_pcp Integer 8bit VLAN priority
ip_dscp Integer 8bit IP DSCP (6 bits in ToS field)
ip_ecn Integer 8bit IP ECN (2 bits in ToS field)
ip_proto Integer 8bit IP protocol
ipv4_src IPv4 address IPv4 source address
ipv4_dst IPv4 address IPv4 destination address
tcp_src Integer 16bit TCP source port
tcp_dst Integer 16bit TCP destination port
udp_src Integer 16bit UDP source port
udp_dst Integer 16bit UDP destination port
sctp_src Integer 16bit SCTP source port
sctp_dst Integer 16bit SCTP destination port
icmpv4_type Integer 8bit ICMP type
icmpv4_code Integer 8bit ICMP code
arp_op Integer 16bit ARP opcode
arp_spa IPv4 address ARP source IPv4 address
arp_tpa IPv4 address ARP target IPv4 address
arp_sha MAC address ARP source hardware address
arp_tha MAC address ARP target hardware address
ipv6_src IPv6 address IPv6 source address
ipv6_dst IPv6 address IPv6 destination address
ipv6_flabel Integer 32bit IPv6 Flow Label
icmpv6_type Integer 8bit ICMPv6 type
icmpv6_code Integer 8bit ICMPv6 code
ipv6_nd_target IPv6 address Target address for ND
ipv6_nd_sll MAC address Source link-layer for ND
ipv6_nd_tll MAC address Target link-layer for ND
mpls_label Integer 32bit MPLS label
mpls_tc Integer 8bit MPLS TC

continues on next page

8.1. Writing Your OS-Ken Application 308

os-ken Documentation, Release 1.4.1.dev5

Table 2 – continued from previous page
Argument Value Description
mpls_bos Integer 8bit MPLS BoS bit
pbb_isid Integer 24bit PBB I-SID
tunnel_id Integer 64bit Logical Port Metadata
ipv6_exthdr Integer 16bit IPv6 Extension Header pseudo-field
pbb_uca Integer 8bit PBB UCA header field (EXT-256 Old version of ONF Extension)
tcp_flags Integer 16bit TCP flags (EXT-109 ONF Extension)
actset_output Integer 32bit Output port from action set metadata (EXT-233 ONF Extension)

Example:

>>> # compose
>>> match = parser.OFPMatch(
... in_port=1,
... eth_type=0x86dd,
... ipv6_src=('2001:db8:bd05:1d2:288a:1fc0:1:10ee',
... 'ffff:ffff:ffff:ffff::'),
... ipv6_dst='2001:db8:bd05:1d2:288a:1fc0:1:10ee')
>>> # query
>>> if 'ipv6_src' in match:
... print match['ipv6_src']
...
('2001:db8:bd05:1d2:288a:1fc0:1:10ee', 'ffff:ffff:ffff:ffff::')

Note: For the list of the supported Nicira experimenter matches, please refer to
os_ken.ofproto.nx_match.

Note: For VLAN id match field, special values are defined in OpenFlow Spec.

1) Packets with and without a VLAN tag

• Example:

match = parser.OFPMatch()

• Packet Matching

non-VLAN-tagged MATCH
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) MATCH

2) Only packets without a VLAN tag

• Example:

match = parser.OFPMatch(vlan_vid=0x0000)

• Packet Matching

8.1. Writing Your OS-Ken Application 309

os-ken Documentation, Release 1.4.1.dev5

non-VLAN-tagged MATCH
VLAN-tagged(vlan_id=3) x
VLAN-tagged(vlan_id=5) x

3) Only packets with a VLAN tag regardless of its value

• Example:

match = parser.OFPMatch(vlan_vid=(0x1000, 0x1000))

• Packet Matching

non-VLAN-tagged x
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) MATCH

4) Only packets with VLAN tag and VID equal

• Example:

match = parser.OFPMatch(vlan_vid=(0x1000 | 3))

• Packet Matching

non-VLAN-tagged x
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) x

Flow Instruction Structures

class os_ken.ofproto.ofproto_v1_3_parser.OFPInstructionGotoTable(table_id,
type_=None,
len_=None)

Goto table instruction

This instruction indicates the next table in the processing pipeline.

Attribute Description
table_id Next table

class os_ken.ofproto.ofproto_v1_3_parser.OFPInstructionWriteMetadata(metadata,
meta-
data_mask,
type_=None,
len_=None)

Write metadata instruction

This instruction writes the masked metadata value into the metadata field.

8.1. Writing Your OS-Ken Application 310

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
metadata Metadata value to write
metadata_mask Metadata write bitmask

class os_ken.ofproto.ofproto_v1_3_parser.OFPInstructionActions(type_,
ac-
tions=None,
len_=None)

Actions instruction

This instruction writes/applies/clears the actions.

Attribute Description
type One of following values.

OFPIT_WRITE_ACTIONS
OFPIT_APPLY_ACTIONS
OFPIT_CLEAR_ACTIONS

actions list of OpenFlow action class

type attribute corresponds to type_ parameter of __init__.

class os_ken.ofproto.ofproto_v1_3_parser.OFPInstructionMeter(meter_id=1,
type_=None,
len_=None)

Meter instruction

This instruction applies the meter.

Attribute Description
meter_id Meter instance

Action Structures

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionOutput(port,
max_len=65509,
type_=None,
len_=None)

Output action

This action indicates output a packet to the switch port.

Attribute Description
port Output port
max_len Max length to send to controller

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionGroup(group_id=0,
type_=None,
len_=None)

Group action

8.1. Writing Your OS-Ken Application 311

os-ken Documentation, Release 1.4.1.dev5

This action indicates the group used to process the packet.

Attribute Description
group_id Group identifier

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionSetQueue(queue_id,
type_=None,
len_=None)

Set queue action

This action sets the queue id that will be used to map a flow to an already-configured queue on a
port.

Attribute Description
queue_id Queue ID for the packets

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionSetMplsTtl(mpls_ttl,
type_=None,
len_=None)

Set MPLS TTL action

This action sets the MPLS TTL.

Attribute Description
mpls_ttl MPLS TTL

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionDecMplsTtl(type_=None,
len_=None)

Decrement MPLS TTL action

This action decrements the MPLS TTL.

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionSetNwTtl(nw_ttl,
type_=None,
len_=None)

Set IP TTL action

This action sets the IP TTL.

Attribute Description
nw_ttl IP TTL

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionDecNwTtl(type_=None,
len_=None)

Decrement IP TTL action

This action decrements the IP TTL.

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionCopyTtlOut(type_=None,
len_=None)

Copy TTL Out action

This action copies the TTL from the next-to-outermost header with TTL to the outermost header
with TTL.

8.1. Writing Your OS-Ken Application 312

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionCopyTtlIn(type_=None,
len_=None)

Copy TTL In action

This action copies the TTL from the outermost header with TTL to the next-to-outermost header
with TTL.

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionPushVlan(ethertype=33024,
type_=None,
len_=None)

Push VLAN action

This action pushes a new VLAN tag to the packet.

Attribute Description
ethertype Ether type. The default is 802.1Q. (0x8100)

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionPushMpls(ethertype=34887,
type_=None,
len_=None)

Push MPLS action

This action pushes a new MPLS header to the packet.

Attribute Description
ethertype Ether type

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionPopVlan(type_=None,
len_=None)

Pop VLAN action

This action pops the outermost VLAN tag from the packet.

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionPopMpls(ethertype=2048,
type_=None,
len_=None)

Pop MPLS action

This action pops the MPLS header from the packet.

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionSetField(field=None,
**kwargs)

Set field action

This action modifies a header field in the packet.

The set of keywords available for this is same as OFPMatch.

Example:

set_field = OFPActionSetField(eth_src="00:00:00:00:00:00")

class os_ken.ofproto.ofproto_v1_3_parser.OFPActionExperimenter(experimenter)
Experimenter action

This action is an extensible action for the experimenter.

8.1. Writing Your OS-Ken Application 313

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
experimenter Experimenter ID

Note: For the list of the supported Nicira experimenter actions, please refer to
os_ken.ofproto.nx_actions.

OpenFlow v1.4 Messages and Structures

Controller-to-Switch Messages

Handshake

class os_ken.ofproto.ofproto_v1_4_parser.OFPFeaturesRequest(datapath)
Features request message

The controller sends a feature request to the switch upon session establishment.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

def send_features_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPFeaturesRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPFeaturesRequest": {}

}

class os_ken.ofproto.ofproto_v1_4_parser.OFPSwitchFeatures(datapath,
datap-
ath_id=None,
n_buffers=None,
n_tables=None,
auxil-
iary_id=None,
capa-
bili-
ties=None)

Features reply message

The switch responds with a features reply message to a features request.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

8.1. Writing Your OS-Ken Application 314

os-ken Documentation, Release 1.4.1.dev5

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPSwitchFeatures received: '
'datapath_id=0x%016x n_buffers=%d '
'n_tables=%d auxiliary_id=%d '
'capabilities=0x%08x',
msg.datapath_id, msg.n_buffers, msg.n_tables,
msg.auxiliary_id, msg.capabilities)

JSON Example:

{
"OFPSwitchFeatures": {

"auxiliary_id": 99,
"capabilities": 79,
"datapath_id": 9210263729383,
"n_buffers": 0,
"n_tables": 255

}
}

Switch Configuration

class os_ken.ofproto.ofproto_v1_4_parser.OFPSetConfig(datapath,
flags=0,
miss_send_len=0)

Set config request message

The controller sends a set config request message to set configuraion parameters.

Attribute Description
flags Bitmap of the following flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM

miss_send_len Max bytes of new flow that datapath should
send to the controller

Example:

def send_set_config(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPSetConfig(datapath, ofp.OFPC_FRAG_NORMAL, 256)
datapath.send_msg(req)

JSON Example:

8.1. Writing Your OS-Ken Application 315

os-ken Documentation, Release 1.4.1.dev5

{
"OFPSetConfig": {

"flags": 0,
"miss_send_len": 128

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGetConfigRequest(datapath)
Get config request message

The controller sends a get config request to query configuration parameters in the switch.

Example:

def send_get_config_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGetConfigRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGetConfigRequest": {}

}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGetConfigReply(datapath,
flags=None,
miss_send_len=None)

Get config reply message

The switch responds to a configuration request with a get config reply message.

Attribute Description
flags Bitmap of the following flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM

miss_send_len Max bytes of new flow that datapath should
send to the controller

Example:

@set_ev_cls(ofp_event.EventOFPGetConfigReply, MAIN_DISPATCHER)
def get_config_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto
flags = []

if msg.flags & ofp.OFPC_FRAG_NORMAL:
flags.append('NORMAL')

(continues on next page)

8.1. Writing Your OS-Ken Application 316

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

if msg.flags & ofp.OFPC_FRAG_DROP:
flags.append('DROP')

if msg.flags & ofp.OFPC_FRAG_REASM:
flags.append('REASM')

self.logger.debug('OFPGetConfigReply received: '
'flags=%s miss_send_len=%d',
','.join(flags), msg.miss_send_len)

JSON Example:

{
"OFPGetConfigReply": {

"flags": 0,
"miss_send_len": 128

}
}

Modify State Messages

class os_ken.ofproto.ofproto_v1_4_parser.OFPTableMod(datapath, ta-
ble_id, config,
properties)

Flow table configuration message

The controller sends this message to configure table state.

Attribute Description
table_id ID of the table (OFPTT_ALL indicates all ta-

bles)
config Bitmap of configuration flags.

OFPTC_EVICTION
OFPTC_VACANCY_EVENTS

properties List of OFPTableModProp subclass in-
stance

Example:

def send_table_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableMod(datapath, 1, 3)
flags = ofp.OFPTC_VACANCY_EVENTS
properties = [ofp_parser.OFPTableModPropEviction(flags)]
req = ofp_parser.OFPTableMod(datapath, 1, 3, properties)
datapath.send_msg(req)

JSON Example:

8.1. Writing Your OS-Ken Application 317

os-ken Documentation, Release 1.4.1.dev5

{
"OFPTableMod": {

"config": 0,
"properties": [

{
"OFPTableModPropEviction": {

"flags": 0,
"length": 8,
"type": 2

}
},
{

"OFPTableModPropVacancy": {
"length": 8,
"type": 3,
"vacancy": 0,
"vacancy_down": 0,
"vacancy_up": 0

}
},
{

"OFPTableModPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"table_id": 255

}
}

8.1. Writing Your OS-Ken Application 318

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_4_parser.OFPFlowMod(datapath,
cookie=0,
cookie_mask=0,
table_id=0,
command=0,
idle_timeout=0,
hard_timeout=0,
priority=32768,
buffer_id=4294967295,
out_port=0,
out_group=0,
flags=0, im-
portance=0,
match=None, in-
structions=None)

Modify Flow entry message

The controller sends this message to modify the flow table.

8.1. Writing Your OS-Ken Application 319

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
cookie Opaque controller-issued identifier
cookie_mask Mask used to restrict the cookie bits

that must match when the command is
OPFFC_MODIFY* or OFPFC_DELETE*

table_id ID of the table to put the flow in
command One of the following values.

OFPFC_ADD
OFPFC_MODIFY
OFPFC_MODIFY_STRICT
OFPFC_DELETE
OFPFC_DELETE_STRICT

idle_timeout Idle time before discarding (seconds)
hard_timeout Max time before discarding (seconds)
priority Priority level of flow entry
buffer_id Buffered packet to apply to (or

OFP_NO_BUFFER)
out_port For OFPFC_DELETE* commands, require

matching entries to include this as an output
port

out_group For OFPFC_DELETE* commands, require
matching entries to include this as an output
group

flags Bitmap of the following flags.

OFPFF_SEND_FLOW_REM
OFPFF_CHECK_OVERLAP
OFPFF_RESET_COUNTS
OFPFF_NO_PKT_COUNTS
OFPFF_NO_BYT_COUNTS

importance Eviction precedence
match Instance of OFPMatch
instructions list of OFPInstruction* instance

Example:

def send_flow_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
table_id = 0
idle_timeout = hard_timeout = 0
priority = 32768
buffer_id = ofp.OFP_NO_BUFFER
importance = 0

(continues on next page)

8.1. Writing Your OS-Ken Application 320

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

match = ofp_parser.OFPMatch(in_port=1, eth_dst='ff:ff:ff:ff:ff:ff
↪→')

actions = [ofp_parser.OFPActionOutput(ofp.OFPP_NORMAL, 0)]
inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,

actions)]
req = ofp_parser.OFPFlowMod(datapath, cookie, cookie_mask,

table_id, ofp.OFPFC_ADD,
idle_timeout, hard_timeout,
priority, buffer_id,
ofp.OFPP_ANY, ofp.OFPG_ANY,
ofp.OFPFF_SEND_FLOW_REM,
importance,
match, inst)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowMod": {

"buffer_id": 65535,
"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 0,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "vlan_vid",
"mask": null,
"value": 258

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionCopyTtlOut": {
"len": 8,
"type": 11

}
},
{

"OFPActionCopyTtlIn": {
"len": 8,
"type": 12

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 321

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OFPActionCopyTtlIn": {

"len": 8,
"type": 12

}
},
{

"OFPActionPopPbb": {
"len": 8,
"type": 27

}
},
{

"OFPActionPushPbb": {
"ethertype": 4660,
"len": 8,
"type": 26

}
},
{

"OFPActionPopMpls": {
"ethertype": 39030,
"len": 8,
"type": 20

}
},
{

"OFPActionPushMpls": {
"ethertype": 34887,
"len": 8,
"type": 19

}
},
{

"OFPActionPopVlan": {
"len": 8,
"type": 18

}
},
{

"OFPActionPushVlan": {
"ethertype": 33024,
"len": 8,
"type": 17

}
},
{

"OFPActionDecMplsTtl": {
"len": 8,
"type": 16

}
},
{

"OFPActionSetMplsTtl": {
"len": 8,
"mpls_ttl": 10,

(continues on next page)

8.1. Writing Your OS-Ken Application 322

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 15
}

},
{

"OFPActionDecNwTtl": {
"len": 8,
"type": 24

}
},
{

"OFPActionSetNwTtl": {
"len": 8,
"nw_ttl": 10,
"type": 23

}
},
{

"OFPActionExperimenterUnknown": {
"data": "AAECAwQFBgc=",
"experimenter": 101,
"len": 16,
"type": 65535

}
},
{

"OFPActionSetQueue": {
"len": 8,
"queue_id": 3,
"type": 21

}
},
{

"OFPActionGroup": {
"group_id": 99,
"len": 8,
"type": 22

}
},
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 6,
"type": 0

}
}

],
"len": 176,
"type": 3

}
},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionSetField": {

(continues on next page)

8.1. Writing Your OS-Ken Application 323

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"field": {
"OXMTlv": {

"field": "eth_src",
"mask": null,
"value": "01:02:03:04:05:06"

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "pbb_uca",
"mask": null,
"value": 1

}
},
"len": 16,
"type": 25

}
}

],
"len": 40,
"type": 4

}
}

],
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 1

}
}

{
"OFPFlowMod": {

"buffer_id": 65535,

(continues on next page)

8.1. Writing Your OS-Ken Application 324

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 0,
"instructions": [

{
"OFPInstructionGotoTable": {

"len": 8,
"table_id": 1,
"type": 1

}
}

],
"match": {

"OFPMatch": {
"length": 22,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 6

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 0

}
}

{
"OFPFlowMod": {

"buffer_id": 65535,
"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 325

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"instructions": [
{

"OFPInstructionMeter": {
"len": 8,
"meter_id": 1,
"type": 6

}
},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionOutput": {

"len": 16,
"max_len": 65535,
"port": 6,
"type": 0

}
}

],
"len": 24,
"type": 3

}
}

],
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 1

}
}

{
"OFPFlowMod": {

"buffer_id": 65535,
"command": 0,
"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"hard_timeout": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 326

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"idle_timeout": 0,
"importance": 0,
"instructions": [],
"match": {

"OFPMatch": {
"length": 329,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 84281096

}
},
{

"OXMTlv": {
"field": "in_phy_port",
"mask": null,
"value": 16909060

}
},
{

"OXMTlv": {
"field": "metadata",
"mask": null,
"value": 283686952306183

}
},
{

"OXMTlv": {
"field": "eth_type",
"mask": null,
"value": 2054

}
},
{

"OXMTlv": {
"field": "eth_dst",
"mask": null,
"value": "ff:ff:ff:ff:ff:ff"

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "vlan_vid",
"mask": null,
"value": 999

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 327

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OXMTlv": {

"field": "ip_dscp",
"mask": null,
"value": 9

}
},
{

"OXMTlv": {
"field": "ip_ecn",
"mask": null,
"value": 3

}
},
{

"OXMTlv": {
"field": "ip_proto",
"mask": null,
"value": 99

}
},
{

"OXMTlv": {
"field": "ipv4_src",
"mask": null,
"value": "1.2.3.4"

}
},
{

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "1.2.3.4"

}
},
{

"OXMTlv": {
"field": "tcp_src",
"mask": null,
"value": 8080

}
},
{

"OXMTlv": {
"field": "tcp_dst",
"mask": null,
"value": 18080

}
},
{

"OXMTlv": {
"field": "udp_src",
"mask": null,
"value": 28080

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 328

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OXMTlv": {

"field": "udp_dst",
"mask": null,
"value": 55936

}
},
{

"OXMTlv": {
"field": "sctp_src",
"mask": null,
"value": 48080

}
},
{

"OXMTlv": {
"field": "sctp_dst",
"mask": null,
"value": 59328

}
},
{

"OXMTlv": {
"field": "icmpv4_type",
"mask": null,
"value": 100

}
},
{

"OXMTlv": {
"field": "icmpv4_code",
"mask": null,
"value": 101

}
},
{

"OXMTlv": {
"field": "arp_op",
"mask": null,
"value": 1

}
},
{

"OXMTlv": {
"field": "arp_spa",
"mask": null,
"value": "10.0.0.1"

}
},
{

"OXMTlv": {
"field": "arp_tpa",
"mask": null,
"value": "10.0.0.3"

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 329

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OXMTlv": {

"field": "arp_sha",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "arp_tha",
"mask": null,
"value": "00:00:00:00:00:00"

}
},
{

"OXMTlv": {
"field": "ipv6_src",
"mask": null,
"value": "fe80::f00b:a4ff:fe48:28a5"

}
},
{

"OXMTlv": {
"field": "ipv6_dst",
"mask": null,
"value": "fe80::f00b:a4ff:fe05:b7dc"

}
},
{

"OXMTlv": {
"field": "ipv6_flabel",
"mask": null,
"value": 541473

}
},
{

"OXMTlv": {
"field": "icmpv6_type",
"mask": null,
"value": 200

}
},
{

"OXMTlv": {
"field": "icmpv6_code",
"mask": null,
"value": 201

}
},
{

"OXMTlv": {
"field": "ipv6_nd_target",
"mask": null,
"value": "fe80::a60:6eff:fe7f:74e7"

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 330

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OXMTlv": {

"field": "ipv6_nd_sll",
"mask": null,
"value": "00:00:00:00:02:9a"

}
},
{

"OXMTlv": {
"field": "ipv6_nd_tll",
"mask": null,
"value": "00:00:00:00:02:2b"

}
},
{

"OXMTlv": {
"field": "mpls_label",
"mask": null,
"value": 624485

}
},
{

"OXMTlv": {
"field": "mpls_tc",
"mask": null,
"value": 5

}
},
{

"OXMTlv": {
"field": "mpls_bos",
"mask": null,
"value": 1

}
},
{

"OXMTlv": {
"field": "pbb_isid",
"mask": null,
"value": 11259375

}
},
{

"OXMTlv": {
"field": "tunnel_id",
"mask": null,
"value": 651061555542690057

}
},
{

"OXMTlv": {
"field": "ipv6_exthdr",
"mask": null,
"value": 500

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 331

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OXMTlv": {

"field": "pbb_uca",
"mask": null,
"value": 1

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"priority": 123,
"table_id": 1

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGroupMod(datapath,
command=0,
type_=0,
group_id=0,
buckets=None)

Modify group entry message

The controller sends this message to modify the group table.

Attribute Description
command One of the following values.

OFPGC_ADD
OFPGC_MODIFY
OFPGC_DELETE

type One of the following values.

OFPGT_ALL
OFPGT_SELECT
OFPGT_INDIRECT
OFPGT_FF

group_id Group identifier
buckets list of OFPBucket

type attribute corresponds to type_ parameter of __init__.

Example:

def send_group_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

(continues on next page)

8.1. Writing Your OS-Ken Application 332

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

port = 1
max_len = 2000
actions = [ofp_parser.OFPActionOutput(port, max_len)]

weight = 100
watch_port = 0
watch_group = 0
buckets = [ofp_parser.OFPBucket(weight, watch_port, watch_group,

actions)]

group_id = 1
req = ofp_parser.OFPGroupMod(datapath, ofp.OFPGC_ADD,

ofp.OFPGT_SELECT, group_id, buckets)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupMod": {

"buckets": [
{

"OFPBucket": {
"actions": [

{
"OFPActionOutput": {

"len": 16,
"max_len": 65535,
"port": 2,
"type": 0

}
}

],
"len": 32,
"watch_group": 1,
"watch_port": 1,
"weight": 1

}
}

],
"command": 0,
"group_id": 1,
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPPortMod(datapath,
port_no=0,
hw_addr=’00:00:00:00:00:00’,
config=0, mask=0,
properties=None)

Port modification message

The controller sneds this message to modify the behavior of the port.

8.1. Writing Your OS-Ken Application 333

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number to modify
hw_addr The hardware address that must be

the same as hw_addr of OFPPort of
OFPSwitchFeatures

config Bitmap of configuration flags.

OFPPC_PORT_DOWN
OFPPC_NO_RECV
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

mask Bitmap of configuration flags above to be
changed

properties List of OFPPortModProp subclass instance

Example:

def send_port_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

port_no = 3
hw_addr = 'fa:c8:e8:76:1d:7e'
config = 0
mask = (ofp.OFPPC_PORT_DOWN | ofp.OFPPC_NO_RECV |

ofp.OFPPC_NO_FWD | ofp.OFPPC_NO_PACKET_IN)
advertise = (ofp.OFPPF_10MB_HD | ofp.OFPPF_100MB_FD |

ofp.OFPPF_1GB_FD | ofp.OFPPF_COPPER |
ofp.OFPPF_AUTONEG | ofp.OFPPF_PAUSE |
ofp.OFPPF_PAUSE_ASYM)

properties = [ofp_parser.OFPPortModPropEthernet(advertise)]
req = ofp_parser.OFPPortMod(datapath, port_no, hw_addr, config,

mask, properties)
datapath.send_msg(req)

JSON Example:

{
"OFPPortMod": {

"config": 0,
"hw_addr": "00:11:00:00:11:11",
"mask": 0,
"port_no": 1,
"properties": [

{
"OFPPortModPropEthernet": {

"advertise": 4096,
"length": 8,
"type": 0

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 334

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPPortModPropOptical": {
"configure": 3,
"fl_offset": 2000,
"freq_lmda": 1500,
"grid_span": 3000,
"length": 24,
"tx_pwr": 300,
"type": 1

}
},
{

"OFPPortModPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPPortModPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPPortModPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

]
}

}

class os_ken.ofproto.ofproto_v1_4_parser.OFPMeterMod(datapath,
command=0,
flags=1, me-
ter_id=1,
bands=None)

Meter modification message

The controller sends this message to modify the meter.

8.1. Writing Your OS-Ken Application 335

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
command One of the following values.

OFPMC_ADD
OFPMC_MODIFY
OFPMC_DELETE

flags Bitmap of the following flags.

OFPMF_KBPS
OFPMF_PKTPS
OFPMF_BURST
OFPMF_STATS

meter_id Meter instance
bands list of the following class instance.

OFPMeterBandDrop
OFPMeterBandDscpRemark
OFPMeterBandExperimenter

JSON Example:

{
"OFPMeterMod": {

"bands": [
{

"OFPMeterBandDrop": {
"burst_size": 10,
"len": 16,
"rate": 1000,
"type": 1

}
},
{

"OFPMeterBandDscpRemark": {
"burst_size": 10,
"len": 16,
"prec_level": 1,
"rate": 1000,
"type": 2

}
},
{

"OFPMeterBandExperimenter": {
"burst_size": 10,
"experimenter": 999,
"len": 16,
"rate": 1000,
"type": 65535

}

(continues on next page)

8.1. Writing Your OS-Ken Application 336

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
],
"command": 0,
"flags": 14,
"meter_id": 100

}
}

Multipart Messages

class os_ken.ofproto.ofproto_v1_4_parser.OFPDescStatsRequest(datapath,
flags=0,
type_=None)

Description statistics request message

The controller uses this message to query description of the switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPDescStatsRequest": {

"flags": 0,
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPDescStatsReply(datapath,
type_=None,
**kwargs)

Description statistics reply message

The switch responds with this message to a description statistics request.

Attribute Description
body Instance of OFPDescStats

Example:

@set_ev_cls(ofp_event.EventOFPDescStatsReply, MAIN_DISPATCHER)
def desc_stats_reply_handler(self, ev):

(continues on next page)

8.1. Writing Your OS-Ken Application 337

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

body = ev.msg.body

self.logger.debug('DescStats: mfr_desc=%s hw_desc=%s sw_desc=%s '
'serial_num=%s dp_desc=%s',
body.mfr_desc, body.hw_desc, body.sw_desc,
body.serial_num, body.dp_desc)

JSON Example:

{
"OFPDescStatsReply": {

"body": {
"OFPDescStats": {

"dp_desc": "dp",
"hw_desc": "hw",
"mfr_desc": "mfr",
"serial_num": "serial",
"sw_desc": "sw"

}
},
"flags": 0,
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPFlowStatsRequest(datapath,
flags=0,
ta-
ble_id=255,
out_port=4294967295,
out_group=4294967295,
cookie=0,
cookie_mask=0,
match=None,
type_=None)

Individual flow statistics request message

The controller uses this message to query individual flow statistics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch

Example:

def send_flow_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

(continues on next page)

8.1. Writing Your OS-Ken Application 338

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPFlowStatsRequest(datapath, 0,

ofp.OFPTT_ALL,
ofp.OFPP_ANY, ofp.OFPG_ANY,
cookie, cookie_mask,
match)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowStatsRequest": {

"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"table_id": 0,
"type": 1

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPFlowStatsReply(datapath,
type_=None,
**kwargs)

Individual flow statistics reply message

The switch responds with this message to an individual flow statistics request.

Attribute Description
body List of OFPFlowStats instance

Example:

@set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER)
def flow_stats_reply_handler(self, ev):

flows = []
for stat in ev.msg.body:

flows.append('table_id=%s '
'duration_sec=%d duration_nsec=%d '
'priority=%d '
'idle_timeout=%d hard_timeout=%d flags=0x%04x '
'importance=%d cookie=%d packet_count=%d '
'byte_count=%d match=%s instructions=%s' %
(stat.table_id,
stat.duration_sec, stat.duration_nsec,

(continues on next page)

8.1. Writing Your OS-Ken Application 339

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

stat.priority,
stat.idle_timeout, stat.hard_timeout,
stat.flags, stat.importance,
stat.cookie, stat.packet_count, stat.byte_count,
stat.match, stat.instructions))

self.logger.debug('FlowStats: %s', flows)

JSON Example:

{
"OFPFlowStatsReply": {

"body": [
{

"OFPFlowStats": {
"byte_count": 0,
"cookie": 0,
"duration_nsec": 115277000,
"duration_sec": 358,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 0,
"instructions": [],
"length": 56,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"packet_count": 0,
"priority": 65535,
"table_id": 0

}
},
{

"OFPFlowStats": {
"byte_count": 0,
"cookie": 0,
"duration_nsec": 115055000,
"duration_sec": 358,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 0,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 0,
"port": 4294967290,
"type": 0

(continues on next page)

8.1. Writing Your OS-Ken Application 340

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

],
"len": 24,
"type": 4

}
}

],
"length": 88,
"match": {

"OFPMatch": {
"length": 10,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_type",
"mask": null,
"value": 2054

}
}

],
"type": 1

}
},
"packet_count": 0,
"priority": 65534,
"table_id": 0

}
},
{

"OFPFlowStats": {
"byte_count": 238,
"cookie": 0,
"duration_nsec": 511582000,
"duration_sec": 316220,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 0,
"instructions": [

{
"OFPInstructionGotoTable": {

"len": 8,
"table_id": 1,
"type": 1

}
}

],
"length": 80,
"match": {

"OFPMatch": {
"length": 22,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
(continues on next page)

8.1. Writing Your OS-Ken Application 341

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"mask": null,
"value": 6

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"packet_count": 3,
"priority": 123,
"table_id": 0

}
},
{

"OFPFlowStats": {
"byte_count": 98,
"cookie": 0,
"duration_nsec": 980901000,
"duration_sec": 313499,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 0,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "vlan_vid",
"mask": null,
"value": 258

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionCopyTtlOut": {
"len": 8,
"type": 11

}
},
{

"OFPActionCopyTtlIn": {
"len": 8,

(continues on next page)

8.1. Writing Your OS-Ken Application 342

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 12
}

},
{

"OFPActionCopyTtlIn": {
"len": 8,
"type": 12

}
},
{

"OFPActionPopPbb": {
"len": 8,
"type": 27

}
},
{

"OFPActionPushPbb": {
"ethertype": 4660,
"len": 8,
"type": 26

}
},
{

"OFPActionPopMpls": {
"ethertype": 39030,
"len": 8,
"type": 20

}
},
{

"OFPActionPushMpls": {
"ethertype": 34887,
"len": 8,
"type": 19

}
},
{

"OFPActionPopVlan": {
"len": 8,
"type": 18

}
},
{

"OFPActionPushVlan": {
"ethertype": 33024,
"len": 8,
"type": 17

}
},
{

"OFPActionDecMplsTtl": {
"len": 8,
"type": 16

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 343

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPActionSetMplsTtl": {
"len": 8,
"mpls_ttl": 10,
"type": 15

}
},
{

"OFPActionDecNwTtl": {
"len": 8,
"type": 24

}
},
{

"OFPActionSetNwTtl": {
"len": 8,
"nw_ttl": 10,
"type": 23

}
},
{

"OFPActionSetQueue": {
"len": 8,
"queue_id": 3,
"type": 21

}
},
{

"OFPActionGroup": {
"group_id": 99,
"len": 8,
"type": 22

}
},
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 6,
"type": 0

}
},
{

"OFPActionExperimenterUnknown": {
"len": 16,
"data": "ZXhwX2RhdGE=",
"experimenter": 98765432,
"type": 65535

}
},
{

"NXActionUnknown": {
"len": 16,
"data": "cF9kYXRh",
"experimenter": 8992,
"type": 65535,
"subtype": 25976

(continues on next page)

8.1. Writing Your OS-Ken Application 344

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

],
"len": 192,
"type": 3

}
},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionSetField": {

"field": {
"OXMTlv": {

"field": "eth_src",
"mask": null,
"value": "01:02:03:04:05:06"

}
},
"len": 16,
"type": 25

}
},
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "pbb_uca",
"mask": null,
"value": 1

}
},
"len": 16,
"type": 25

}
}

],
"len": 40,
"type": 4

}
},
{

"OFPInstructionActions": {
"actions": [

{
"OFPActionOutput": {

"len": 16,
"max_len": 65535,
"port": 4294967293,
"type": 0

}
}

],
"len": 24,
"type": 3

}
(continues on next page)

8.1. Writing Your OS-Ken Application 345

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
],
"length": 312,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"packet_count": 1,
"priority": 0,
"table_id": 0

}
}

],
"flags": 0,
"type": 1

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPAggregateStatsRequest(datapath,
flags,
ta-
ble_id,
out_port,
out_group,
cookie,
cookie_mask,
match,
type_=None)

Aggregate flow statistics request message

The controller uses this message to query aggregate flow statictics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch

Example:

def send_aggregate_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPAggregateStatsRequest(datapath, 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 346

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

ofp.OFPTT_ALL,
ofp.OFPP_ANY,
ofp.OFPG_ANY,
cookie, cookie_mask,
match)

datapath.send_msg(req)

JSON Example:

{
"OFPAggregateStatsRequest": {

"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"table_id": 255,
"type": 2

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPAggregateStatsReply(datapath,
type_=None,
**kwargs)

Aggregate flow statistics reply message

The switch responds with this message to an aggregate flow statistics request.

Attribute Description
body Instance of OFPAggregateStats

Example:

@set_ev_cls(ofp_event.EventOFPAggregateStatsReply, MAIN_DISPATCHER)
def aggregate_stats_reply_handler(self, ev):

body = ev.msg.body

self.logger.debug('AggregateStats: packet_count=%d byte_count=%d '
'flow_count=%d',
body.packet_count, body.byte_count,
body.flow_count)

JSON Example:

{
"OFPAggregateStatsReply": {

"body": {

(continues on next page)

8.1. Writing Your OS-Ken Application 347

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPAggregateStats": {
"byte_count": 574,
"flow_count": 6,
"packet_count": 7

}
},
"flags": 0,
"type": 2

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPTableStatsRequest(datapath,
flags,
type_=None)

Table statistics request message

The controller uses this message to query flow table statictics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_table_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPTableStatsRequest": {

"flags": 0,
"type": 3

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPTableStatsReply(datapath,
type_=None,
**kwargs)

Table statistics reply message

The switch responds with this message to a table statistics request.

Attribute Description
body List of OFPTableStats instance

Example:

@set_ev_cls(ofp_event.EventOFPTableStatsReply, MAIN_DISPATCHER)
def table_stats_reply_handler(self, ev):

tables = []

(continues on next page)

8.1. Writing Your OS-Ken Application 348

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

for stat in ev.msg.body:
tables.append('table_id=%d active_count=%d lookup_count=%d '

' matched_count=%d' %
(stat.table_id, stat.active_count,
stat.lookup_count, stat.matched_count))

self.logger.debug('TableStats: %s', tables)

JSON Example:

{
"OFPTableStatsReply": {

"body": [
{

"OFPTableStats": {
"active_count": 4,
"lookup_count": 4,
"matched_count": 4,
"table_id": 0

}
},
{

"OFPTableStats": {
"active_count": 4,
"lookup_count": 4,
"matched_count": 4,
"table_id": 1

}
}

],
"flags": 0,
"type": 3

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPTableDescStatsRequest(datapath,
flags=0,
type_=None)

Table description request message

The controller uses this message to query description of all the tables.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_table_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

8.1. Writing Your OS-Ken Application 349

os-ken Documentation, Release 1.4.1.dev5

{
"OFPTableDescStatsRequest": {

"flags": 0,
"type": 14

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPTableDescStatsReply(datapath,
type_=None,
**kwargs)

Table description reply message

The switch responds with this message to a table description request.

Attribute Description
body List of OFPTableDesc instance

Example:

@set_ev_cls(ofp_event.EventOFPTableDescStatsReply, MAIN_DISPATCHER)
def table_desc_stats_reply_handler(self, ev):

tables = []
for p in ev.msg.body:

tables.append('table_id=%d config=0x%08x properties=%s' %
(p.table_id, p.config, repr(p.properties)))

self.logger.debug('OFPTableDescStatsReply received: %s', tables)

JSON Example:

{
"OFPTableDescStatsReply": {

"body": [
{

"OFPTableDesc": {
"config": 0,
"length": 24,
"properties": [

{
"OFPTableModPropExperimenter": {

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
}

],
"table_id": 7

}
},
{

"OFPTableDesc": {
"config": 0,
"length": 80,
"properties": [

(continues on next page)

8.1. Writing Your OS-Ken Application 350

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OFPTableModPropEviction": {

"flags": 0,
"length": 8,
"type": 2

}
},
{

"OFPTableModPropVacancy": {
"length": 8,
"type": 3,
"vacancy": 0,
"vacancy_down": 0,
"vacancy_up": 0

}
},
{

"OFPTableModPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"table_id": 8

}
}

],
"flags": 0,
"type": 14

}
(continues on next page)

8.1. Writing Your OS-Ken Application 351

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}

class os_ken.ofproto.ofproto_v1_4_parser.OFPTableFeaturesStatsRequest(datapath,
flags=0,
body=None,
type_=None)

Table features statistics request message

The controller uses this message to query table features.

Attribute Description
body List of OFPTableFeaturesStats instances. The default is [].

JSON Example:

See an example in:

os_ken/tests/unit/ofproto/json/of14/
5-53-ofp_table_features_request.packet.json

class os_ken.ofproto.ofproto_v1_4_parser.OFPTableFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Table features statistics reply message

The switch responds with this message to a table features statistics request.

Attribute Description
body List of OFPTableFeaturesStats instance

JSON Example:

See an example in:

os_ken/tests/unit/ofproto/json/of14/
5-54-ofp_table_features_reply.packet.json

class os_ken.ofproto.ofproto_v1_4_parser.OFPPortStatsRequest(datapath,
flags,
port_no,
type_=None)

Port statistics request message

The controller uses this message to query information about ports statistics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read (OFPP_ANY to all ports)

Example:

def send_port_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

(continues on next page)

8.1. Writing Your OS-Ken Application 352

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

req = ofp_parser.OFPPortStatsRequest(datapath, 0, ofp.OFPP_ANY)
datapath.send_msg(req)

JSON Example:

{
"OFPPortStatsRequest": {

"flags": 0,
"port_no": 4294967295,
"type": 4

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPPortStatsReply(datapath,
type_=None,
**kwargs)

Port statistics reply message

The switch responds with this message to a port statistics request.

Attribute Description
body List of OFPPortStats instance

Example:

@set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER)
def port_stats_reply_handler(self, ev):

ports = []
for stat in ev.msg.body:

ports.append(stat.length, stat.port_no,
stat.duration_sec, stat.duration_nsec,
stat.rx_packets, stat.tx_packets,
stat.rx_bytes, stat.tx_bytes,
stat.rx_dropped, stat.tx_dropped,
stat.rx_errors, stat.tx_errors,
repr(stat.properties))

self.logger.debug('PortStats: %s', ports)

JSON Example:

{
"OFPPortStatsReply": {

"body": [
{

"OFPPortStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 224,
"port_no": 7,
"properties": [

{
"OFPPortStatsPropEthernet": {

"collisions": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 353

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"length": 40,
"rx_crc_err": 0,
"rx_frame_err": 0,
"rx_over_err": 0,
"type": 0

}
},
{

"OFPPortStatsPropOptical": {
"bias_current": 300,
"flags": 3,
"length": 44,
"rx_freq_lmda": 1500,
"rx_grid_span": 500,
"rx_offset": 700,
"rx_pwr": 2000,
"temperature": 273,
"tx_freq_lmda": 1500,
"tx_grid_span": 500,
"tx_offset": 700,
"tx_pwr": 2000,
"type": 1

}
},
{

"OFPPortStatsPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPPortStatsPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPPortStatsPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

(continues on next page)

8.1. Writing Your OS-Ken Application 354

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

],
"rx_bytes": 0,
"rx_dropped": 0,
"rx_errors": 0,
"rx_packets": 0,
"tx_bytes": 336,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 4

}
},
{

"OFPPortStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 120,
"port_no": 6,
"properties": [

{
"OFPPortStatsPropEthernet": {

"collisions": 0,
"length": 40,
"rx_crc_err": 0,
"rx_frame_err": 0,
"rx_over_err": 0,
"type": 0

}
}

],
"rx_bytes": 336,
"rx_dropped": 0,
"rx_errors": 0,
"rx_packets": 4,
"tx_bytes": 336,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 4

}
}

],
"flags": 0,
"type": 4

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPPortDescStatsRequest(datapath,
flags=0,
type_=None)

Port description request message

The controller uses this message to query description of all the ports.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

8.1. Writing Your OS-Ken Application 355

os-ken Documentation, Release 1.4.1.dev5

def send_port_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPPortDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPPortDescStatsRequest": {

"flags": 0,
"type": 13

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPPortDescStatsReply(datapath,
type_=None,
**kwargs)

Port description reply message

The switch responds with this message to a port description request.

Attribute Description
body List of OFPPort instance

Example:

@set_ev_cls(ofp_event.EventOFPPortDescStatsReply, MAIN_DISPATCHER)
def port_desc_stats_reply_handler(self, ev):

ports = []
for p in ev.msg.body:

ports.append('port_no=%d hw_addr=%s name=%s config=0x%08x '
'state=0x%08x properties=%s' %
(p.port_no, p.hw_addr,
p.name, p.config, p.state, repr(p.properties)))

self.logger.debug('OFPPortDescStatsReply received: %s', ports)

JSON Example:

{
"OFPPortDescStatsReply": {

"body": [
{

"OFPPort": {
"config": 0,
"hw_addr": "f2:0b:a4:d0:3f:70",
"length": 168,
"name": "Port7",
"port_no": 7,
"properties": [

{
"OFPPortDescPropEthernet": {

"advertised": 10240,
"curr": 10248,
"curr_speed": 5000,

(continues on next page)

8.1. Writing Your OS-Ken Application 356

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"length": 32,
"max_speed": 5000,
"peer": 10248,
"supported": 10248,
"type": 0

}
},
{

"OFPPortDescPropOptical": {
"length": 40,
"rx_grid_freq_lmda": 1500,
"rx_max_freq_lmda": 2000,
"rx_min_freq_lmda": 1000,
"supported": 1,
"tx_grid_freq_lmda": 1500,
"tx_max_freq_lmda": 2000,
"tx_min_freq_lmda": 1000,
"tx_pwr_max": 2000,
"tx_pwr_min": 1000,
"type": 1

}
},
{

"OFPPortDescPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPPortDescPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPPortDescPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"state": 4

(continues on next page)

8.1. Writing Your OS-Ken Application 357

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
},
{

"OFPPort": {
"config": 0,
"hw_addr": "f2:0b:a4:7d:f8:ea",
"length": 72,
"name": "Port6",
"port_no": 6,
"properties": [

{
"OFPPortDescPropEthernet": {

"advertised": 10240,
"curr": 10248,
"curr_speed": 5000,
"length": 32,
"max_speed": 5000,
"peer": 10248,
"supported": 10248,
"type": 0

}
}

],
"state": 4

}
}

],
"flags": 0,
"type": 13

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPQueueStatsRequest(datapath,
flags=0,
port_no=4294967295,
queue_id=4294967295,
type_=None)

Queue statistics request message

The controller uses this message to query queue statictics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read
queue_id ID of queue to read

Example:

def send_queue_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueStatsRequest(datapath, 0, ofp.OFPP_ANY,
ofp.OFPQ_ALL)

(continues on next page)

8.1. Writing Your OS-Ken Application 358

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

datapath.send_msg(req)

JSON Example:

{
"OFPQueueStatsRequest": {

"flags": 0,
"port_no": 4294967295,
"queue_id": 4294967295,
"type": 5

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPQueueStatsReply(datapath,
type_=None,
**kwargs)

Queue statistics reply message

The switch responds with this message to an aggregate flow statistics request.

Attribute Description
body List of OFPQueueStats instance

Example:

@set_ev_cls(ofp_event.EventOFPQueueStatsReply, MAIN_DISPATCHER)
def queue_stats_reply_handler(self, ev):

queues = []
for stat in ev.msg.body:

queues.append('port_no=%d queue_id=%d '
'tx_bytes=%d tx_packets=%d tx_errors=%d '
'duration_sec=%d duration_nsec=%d'
'properties=%s' %
(stat.port_no, stat.queue_id,
stat.tx_bytes, stat.tx_packets, stat.tx_errors,
stat.duration_sec, stat.duration_nsec,
repr(stat.properties)))

self.logger.debug('QueueStats: %s', queues)

JSON Example:

{
"OFPQueueStatsReply": {

"body": [
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 104,
"port_no": 7,
"properties": [

{
"OFPQueueStatsPropExperimenter": {

"data": [],

(continues on next page)

8.1. Writing Your OS-Ken Application 359

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPQueueStatsPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPQueueStatsPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"queue_id": 1,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
},
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 48,
"port_no": 6,
"properties": [],
"queue_id": 1,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
},
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 48,
"port_no": 7,
"properties": [],

(continues on next page)

8.1. Writing Your OS-Ken Application 360

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"queue_id": 2,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
}

],
"flags": 0,
"type": 5

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPQueueDescStatsRequest(datapath,
flags=0,
port_no=4294967295,
queue_id=4294967295,
type_=None)

Queue description request message

The controller uses this message to query description of all the queues.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read (OFPP_ANY for all ports)
queue_id ID of queue to read (OFPQ_ALL for all queues)

Example:

def send_queue_desc_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser
req = ofp_parser.OFPQueueDescStatsRequest(datapath, 0,

ofp.OFPP_ANY,
ofp.OFPQ_ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPQueueDescStatsRequest": {

"flags": 0,
"port_no": 7,
"queue_id": 4294967295,
"type": 15

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPQueueDescStatsReply(datapath,
type_=None,
**kwargs)

Queue description reply message

The switch responds with this message to a queue description request.

8.1. Writing Your OS-Ken Application 361

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
body List of OFPQueueDesc instance

Example:

@set_ev_cls(ofp_event.EventOFPQueueDescStatsReply, MAIN_DISPATCHER)
def queue_desc_stats_reply_handler(self, ev):

queues = []
for q in ev.msg.body:

queues.append('port_no=%d queue_id=0x%08x properties=%s' %
(q.port_no, q.queue_id, repr(q.properties)))

self.logger.debug('OFPQueueDescStatsReply received: %s', queues)

JSON Example:

{
"OFPQueueDescStatsReply": {

"body": [
{

"OFPQueueDesc": {
"len": 32,
"port_no": 7,
"properties": [

{
"OFPQueueDescPropExperimenter": {

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
}

],
"queue_id": 0

}
},
{

"OFPQueueDesc": {
"len": 88,
"port_no": 8,
"properties": [

{
"OFPQueueDescPropMinRate": {

"length": 8,
"rate": 300,
"type": 1

}
},
{

"OFPQueueDescPropMaxRate": {
"length": 8,
"rate": 900,
"type": 2

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 362

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPQueueDescPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPQueueDescPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPQueueDescPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"queue_id": 1

}
}

],
"flags": 0,
"type": 15

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGroupStatsRequest(datapath,
flags=0,
group_id=4294967292,
type_=None)

Group statistics request message

The controller uses this message to query statistics of one or more groups.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
group_id ID of group to read (OFPG_ALL to all groups)

Example:

8.1. Writing Your OS-Ken Application 363

os-ken Documentation, Release 1.4.1.dev5

def send_group_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupStatsRequest(datapath, 0, ofp.OFPG_ALL)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupStatsRequest": {

"flags": 0,
"group_id": 4294967292,
"type": 6

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGroupStatsReply(datapath,
type_=None,
**kwargs)

Group statistics reply message

The switch responds with this message to a group statistics request.

Attribute Description
body List of OFPGroupStats instance

Example:

@set_ev_cls(ofp_event.EventOFPGroupStatsReply, MAIN_DISPATCHER)
def group_stats_reply_handler(self, ev):

groups = []
for stat in ev.msg.body:

groups.append('length=%d group_id=%d '
'ref_count=%d packet_count=%d byte_count=%d '
'duration_sec=%d duration_nsec=%d' %
(stat.length, stat.group_id,
stat.ref_count, stat.packet_count,
stat.byte_count, stat.duration_sec,
stat.duration_nsec))

self.logger.debug('GroupStats: %s', groups)

JSON Example:

{
"OFPGroupStatsReply": {

"body": [
{

"OFPGroupStats": {
"bucket_stats": [

{
"OFPBucketCounter": {

"byte_count": 2345,
"packet_count": 234

}

(continues on next page)

8.1. Writing Your OS-Ken Application 364

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
],
"byte_count": 12345,
"duration_nsec": 609036000,
"duration_sec": 9,
"group_id": 1,
"length": 56,
"packet_count": 123,
"ref_count": 2

}
}

],
"flags": 0,
"type": 6

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGroupDescStatsRequest(datapath,
flags=0,
type_=None)

Group description request message

The controller uses this message to list the set of groups on a switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_group_desc_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupDescStatsRequest": {

"flags": 0,
"type": 7

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGroupDescStatsReply(datapath,
type_=None,
**kwargs)

Group description reply message

The switch responds with this message to a group description request.

Attribute Description
body List of OFPGroupDescStats instance

8.1. Writing Your OS-Ken Application 365

os-ken Documentation, Release 1.4.1.dev5

Example:

@set_ev_cls(ofp_event.EventOFPGroupDescStatsReply, MAIN_DISPATCHER)
def group_desc_stats_reply_handler(self, ev):

descs = []
for stat in ev.msg.body:

descs.append('length=%d type=%d group_id=%d '
'buckets=%s' %
(stat.length, stat.type, stat.group_id,
stat.bucket))

self.logger.debug('GroupDescStats: %s', descs)

JSON Example:

{
"OFPGroupDescStatsReply": {

"body": [
{

"OFPGroupDescStats": {
"buckets": [

{
"OFPBucket": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 2,
"type": 0

}
}

],
"len": 32,
"watch_group": 1,
"watch_port": 1,
"weight": 1

}
}

],
"group_id": 1,
"length": 40,
"type": 0

}
}

],
"flags": 0,
"type": 7

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGroupFeaturesStatsRequest(datapath,
flags=0,
type_=None)

Group features request message

The controller uses this message to list the capabilities of groups on a switch.

8.1. Writing Your OS-Ken Application 366

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_group_features_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupFeaturesStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupFeaturesStatsRequest": {

"flags": 0,
"type": 8

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGroupFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Group features reply message

The switch responds with this message to a group features request.

Attribute Description
body Instance of OFPGroupFeaturesStats

Example:

@set_ev_cls(ofp_event.EventOFPGroupFeaturesStatsReply, MAIN_
↪→DISPATCHER)
def group_features_stats_reply_handler(self, ev):

body = ev.msg.body

self.logger.debug('GroupFeaturesStats: types=%d '
'capabilities=0x%08x max_groups=%s '
'actions=%s',
body.types, body.capabilities,
body.max_groups, body.actions)

JSON Example:

{
"OFPGroupFeaturesStatsReply": {

"body": {
"OFPGroupFeaturesStats": {

"actions": [
67082241,
67082241,
67082241,
67082241

(continues on next page)

8.1. Writing Your OS-Ken Application 367

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

],
"capabilities": 5,
"max_groups": [

16777216,
16777216,
16777216,
16777216

],
"types": 15

}
},
"flags": 0,
"type": 8

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPMeterStatsRequest(datapath,
flags=0,
me-
ter_id=4294967295,
type_=None)

Meter statistics request message

The controller uses this message to query statistics for one or more meters.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
meter_id ID of meter to read (OFPM_ALL to all meters)

Example:

def send_meter_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterStatsRequest(datapath, 0, ofp.OFPM_ALL)
datapath.send_msg(req)

JSON Example:

{
"OFPMeterStatsRequest": {

"flags": 0,
"meter_id": 4294967295,
"type": 9

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPMeterStatsReply(datapath,
type_=None,
**kwargs)

Meter statistics reply message

The switch responds with this message to a meter statistics request.

8.1. Writing Your OS-Ken Application 368

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
body List of OFPMeterStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterStatsReply, MAIN_DISPATCHER)
def meter_stats_reply_handler(self, ev):

meters = []
for stat in ev.msg.body:

meters.append('meter_id=0x%08x len=%d flow_count=%d '
'packet_in_count=%d byte_in_count=%d '
'duration_sec=%d duration_nsec=%d '
'band_stats=%s' %
(stat.meter_id, stat.len, stat.flow_count,
stat.packet_in_count, stat.byte_in_count,
stat.duration_sec, stat.duration_nsec,
stat.band_stats))

self.logger.debug('MeterStats: %s', meters)

JSON Example:

{
"OFPMeterStatsReply": {

"body": [
{

"OFPMeterStats": {
"band_stats": [

{
"OFPMeterBandStats": {

"byte_band_count": 0,
"packet_band_count": 0

}
}

],
"byte_in_count": 0,
"duration_nsec": 480000,
"duration_sec": 0,
"flow_count": 0,
"len": 56,
"meter_id": 100,
"packet_in_count": 0

}
}

],
"flags": 0,
"type": 9

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPMeterConfigStatsRequest(datapath,
flags=0,
me-
ter_id=4294967295,
type_=None)

Meter configuration statistics request message

8.1. Writing Your OS-Ken Application 369

os-ken Documentation, Release 1.4.1.dev5

The controller uses this message to query configuration for one or more meters.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
meter_id ID of meter to read (OFPM_ALL to all meters)

Example:

def send_meter_config_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterConfigStatsRequest(datapath, 0,
ofp.OFPM_ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPMeterConfigStatsRequest": {

"flags": 0,
"meter_id": 4294967295,
"type": 10

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPMeterConfigStatsReply(datapath,
type_=None,
**kwargs)

Meter configuration statistics reply message

The switch responds with this message to a meter configuration statistics request.

Attribute Description
body List of OFPMeterConfigStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterConfigStatsReply, MAIN_DISPATCHER)
def meter_config_stats_reply_handler(self, ev):

configs = []
for stat in ev.msg.body:

configs.append('length=%d flags=0x%04x meter_id=0x%08x '
'bands=%s' %
(stat.length, stat.flags, stat.meter_id,
stat.bands))

self.logger.debug('MeterConfigStats: %s', configs)

JSON Example:

{
"OFPMeterConfigStatsReply": {

"body": [
{

(continues on next page)

8.1. Writing Your OS-Ken Application 370

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPMeterConfigStats": {
"bands": [

{
"OFPMeterBandDrop": {

"burst_size": 10,
"len": 16,
"rate": 1000,
"type": 1

}
}

],
"flags": 14,
"length": 24,
"meter_id": 100

}
}

],
"flags": 0,
"type": 10

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPMeterFeaturesStatsRequest(datapath,
flags=0,
type_=None)

Meter features statistics request message

The controller uses this message to query the set of features of the metering subsystem.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_meter_features_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterFeaturesStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPMeterFeaturesStatsRequest": {

"flags": 0,
"type": 11

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPMeterFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Meter features statistics reply message

The switch responds with this message to a meter features statistics request.

8.1. Writing Your OS-Ken Application 371

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
body List of OFPMeterFeaturesStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterFeaturesStatsReply, MAIN_
↪→DISPATCHER)
def meter_features_stats_reply_handler(self, ev):

features = []
for stat in ev.msg.body:

features.append('max_meter=%d band_types=0x%08x '
'capabilities=0x%08x max_bands=%d '
'max_color=%d' %
(stat.max_meter, stat.band_types,
stat.capabilities, stat.max_bands,
stat.max_color))

self.logger.debug('MeterFeaturesStats: %s', features)

JSON Example:

{
"OFPMeterFeaturesStatsReply": {

"body": [
{

"OFPMeterFeaturesStats": {
"band_types": 2147483654,
"capabilities": 15,
"max_bands": 255,
"max_color": 0,
"max_meter": 16777216

}
}

],
"flags": 0,
"type": 11

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPFlowMonitorRequest(datapath,
flags=0,
mon-
i-
tor_id=0,
out_port=4294967295,
out_group=4294967295,
mon-
i-
tor_flags=0,
ta-
ble_id=255,
com-
mand=0,
match=None,
type_=None)

Flow monitor request message

8.1. Writing Your OS-Ken Application 372

os-ken Documentation, Release 1.4.1.dev5

The controller uses this message to query flow monitors.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
monitor_id Controller-assigned ID for this monitor
out_port Require matching entries to include this as an

output port
out_group Require matching entries to include this as an

output group
monitor_flags Bitmap of the following flags.

OFPFMF_INITIAL
OFPFMF_ADD
OFPFMF_REMOVED
OFPFMF_MODIFY
OFPFMF_INSTRUCTIONS
OFPFMF_NO_ABBREV
OFPFMF_ONLY_OWN

table_id ID of table to monitor
command One of the following values.

OFPFMC_ADD
OFPFMC_MODIFY
OFPFMC_DELETE

match Instance of OFPMatch

Example:

def send_flow_monitor_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

monitor_flags = [ofp.OFPFMF_INITIAL, ofp.OFPFMF_ONLY_OWN]
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPFlowMonitorRequest(datapath, 0, 10000,

ofp.OFPP_ANY, ofp.OFPG_ANY,
monitor_flags,
ofp.OFPTT_ALL,
ofp.OFPFMC_ADD, match)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowMonitorRequest": {

"command": 0,
"flags": 0,
"match": {

"OFPMatch": {

(continues on next page)

8.1. Writing Your OS-Ken Application 373

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"monitor_flags": 15,
"monitor_id": 100000000,
"out_group": 4294967295,
"out_port": 22,
"table_id": 33,
"type": 16

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPFlowMonitorReply(datapath,
type_=None,
**kwargs)

Flow monitor reply message

The switch responds with this message to a flow monitor request.

Attribute Description
body List of list of the following class instance.

OFPFlowMonitorFull
OFPFlowMonitorAbbrev
OFPFlowMonitorPaused

Example:

@set_ev_cls(ofp_event.EventOFPFlowMonitorReply, MAIN_DISPATCHER)
def flow_monitor_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto
flow_updates = []

for update in msg.body:
update_str = 'length=%d event=%d' %

(update.length, update.event)
if (update.event == ofp.OFPFME_INITIAL or

update.event == ofp.OFPFME_ADDED or
update.event == ofp.OFPFME_REMOVED or
update.event == ofp.OFPFME_MODIFIED):
update_str += 'table_id=%d reason=%d idle_timeout=%d '

(continues on next page)

8.1. Writing Your OS-Ken Application 374

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

'hard_timeout=%d priority=%d cookie=%d '
'match=%d instructions=%s' %
(update.table_id, update.reason,
update.idle_timeout, update.hard_timeout,
update.priority, update.cookie,
update.match, update.instructions)

elif update.event == ofp.OFPFME_ABBREV:
update_str += 'xid=%d' % (update.xid)

flow_updates.append(update_str)
self.logger.debug('FlowUpdates: %s', flow_updates)

JSON Example:

{
"OFPFlowMonitorReply": {

"body": [
{

"OFPFlowUpdateFull": {
"cookie": 0,
"event": 0,
"hard_timeout": 700,
"idle_timeout": 600,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 0,
"port": 4294967290,
"type": 0

}
}

],
"len": 24,
"type": 4

}
}

],
"length": 64,
"match": {

"OFPMatch": {
"length": 10,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_type",
"mask": null,
"value": 2054

}
}

],
"type": 1

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 375

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"priority": 3,
"reason": 0,
"table_id": 0

}
},
{

"OFPFlowUpdateAbbrev": {
"event": 4,
"length": 8,
"xid": 1234

}
},
{

"OFPFlowUpdatePaused": {
"event": 5,
"length": 8

}
}

],
"flags": 0,
"type": 16

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPExperimenterStatsRequest(datapath,
flags,
ex-
per-
i-
menter,
exp_type,
data,
type_=None)

Experimenter multipart request message

Attribute Description
flags Zero or OFPMPF_REQ_MORE
experimenter Experimenter ID
exp_type Experimenter defined
data Experimenter defined additional data

JSON Example:

{
"OFPExperimenterStatsRequest": {

"data": "aG9nZWhvZ2U=",
"exp_type": 3405678728,
"experimenter": 3735928495,
"flags": 0,
"type": 65535

}
}

8.1. Writing Your OS-Ken Application 376

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_4_parser.OFPExperimenterStatsReply(datapath,
type_=None,
**kwargs)

Experimenter multipart reply message

Attribute Description
body An OFPExperimenterMultipart instance

JSON Example:

{
"OFPExperimenterStatsReply": {

"body": {
"OFPExperimenterMultipart": {

"data": "dGVzdGRhdGE5OTk5OTk5OQ==",
"exp_type": 3405674359,
"experimenter": 3735928495

}
},
"flags": 0,
"type": 65535

}
}

Packet-Out Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPPacketOut(datapath,
buffer_id=None,
in_port=None,
actions=None,
data=None, ac-
tions_len=None)

Packet-Out message

The controller uses this message to send a packet out throught the switch.

Attribute Description
buffer_id ID assigned by datapath (OFP_NO_BUFFER if none)
in_port Packet’s input port or OFPP_CONTROLLER
actions list of OpenFlow action class
data Packet data of a binary type value or an instances of packet.Packet.

Example:

def send_packet_out(self, datapath, buffer_id, in_port):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD, 0)]
req = ofp_parser.OFPPacketOut(datapath, buffer_id,

in_port, actions)
datapath.send_msg(req)

8.1. Writing Your OS-Ken Application 377

os-ken Documentation, Release 1.4.1.dev5

JSON Example:

{
"OFPPacketOut": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 4294967292,
"type": 0

}
}

],
"actions_len": 16,
"buffer_id": 4294967295,
"data":

↪→"8guk0D9w8gukffjqCABFAABU+BoAAP8Br4sKAAABCgAAAggAAgj3YAAAMdYCAAAAAACrjS0xAAAAABAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKissLS4vAAAAAAAAAAA=
↪→",

"in_port": 4294967293
}

}

Barrier Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPBarrierRequest(datapath)
Barrier request message

The controller sends this message to ensure message dependencies have been met or receive noti-
fications for completed operations.

Example:

def send_barrier_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPBarrierRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPBarrierRequest": {}

}

class os_ken.ofproto.ofproto_v1_4_parser.OFPBarrierReply(datapath)
Barrier reply message

The switch responds with this message to a barrier request.

Example:

@set_ev_cls(ofp_event.EventOFPBarrierReply, MAIN_DISPATCHER)
def barrier_reply_handler(self, ev):

self.logger.debug('OFPBarrierReply received')

JSON Example:

8.1. Writing Your OS-Ken Application 378

os-ken Documentation, Release 1.4.1.dev5

{
"OFPBarrierReply": {}

}

Role Request Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPRoleRequest(datapath,
role=None,
genera-
tion_id=None)

Role request message

The controller uses this message to change its role.

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

generation_id Master Election Generation ID

Example:

def send_role_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPRoleRequest(datapath, ofp.OFPCR_ROLE_EQUAL, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPRoleRequest": {

"generation_id": 17294086455919964160,
"role": 2

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPRoleReply(datapath,
role=None,
genera-
tion_id=None)

Role reply message

The switch responds with this message to a role request.

8.1. Writing Your OS-Ken Application 379

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

generation_id Master Election Generation ID

Example:

@set_ev_cls(ofp_event.EventOFPRoleReply, MAIN_DISPATCHER)
def role_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.role == ofp.OFPCR_ROLE_NOCHANGE:
role = 'NOCHANGE'

elif msg.role == ofp.OFPCR_ROLE_EQUAL:
role = 'EQUAL'

elif msg.role == ofp.OFPCR_ROLE_MASTER:
role = 'MASTER'

elif msg.role == ofp.OFPCR_ROLE_SLAVE:
role = 'SLAVE'

else:
role = 'unknown'

self.logger.debug('OFPRoleReply received: '
'role=%s generation_id=%d',
role, msg.generation_id)

JSON Example:

{
"OFPRoleReply": {

"generation_id": 17294086455919964160,
"role": 3

}
}

Bundle Messages

class os_ken.ofproto.ofproto_v1_4_parser.OFPBundleCtrlMsg(datapath,
bun-
dle_id=None,
type_=None,
flags=None,
proper-
ties=None)

Bundle control message

8.1. Writing Your OS-Ken Application 380

os-ken Documentation, Release 1.4.1.dev5

The controller uses this message to create, destroy and commit bundles

Attribute Description
bundle_id Id of the bundle
type One of the following values.

OFPBCT_OPEN_REQUEST
OFPBCT_OPEN_REPLY
OFPBCT_CLOSE_REQUEST
OFPBCT_CLOSE_REPLY
OFPBCT_COMMIT_REQUEST
OFPBCT_COMMIT_REPLY
OFPBCT_DISCARD_REQUEST
OFPBCT_DISCARD_REPLY

flags Bitmap of the following flags.

OFPBF_ATOMIC
OFPBF_ORDERED

properties List of OFPBundleProp subclass instance

Example:

def send_bundle_control(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPBundleCtrlMsg(datapath, 7,
ofp.OFPBCT_OPEN_REQUEST,
ofp.OFPBF_ATOMIC, [])

datapath.send_msg(req)

JSON Example:

{
"OFPBundleCtrlMsg": {

"bundle_id": 1234,
"flags": 1,
"properties": [

{
"OFPBundlePropExperimenter": {

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPBundlePropExperimenter": {
"data": [

(continues on next page)

8.1. Writing Your OS-Ken Application 381

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPBundlePropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_4_parser.OFPBundleAddMsg(datapath,
bundle_id,
flags,
message,
properties)

Bundle add message

The controller uses this message to add a message to a bundle

Attribute Description
bundle_id Id of the bundle
flags Bitmap of the following flags.

OFPBF_ATOMIC
OFPBF_ORDERED

message MsgBase subclass instance
properties List of OFPBundleProp subclass instance

Example:

def send_bundle_add_message(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

msg = ofp_parser.OFPRoleRequest(datapath, ofp.OFPCR_ROLE_EQUAL, 0)

req = ofp_parser.OFPBundleAddMsg(datapath, 7, ofp.OFPBF_ATOMIC,

(continues on next page)

8.1. Writing Your OS-Ken Application 382

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

msg, [])
datapath.send_msg(req)

JSON Example:

{
"OFPBundleAddMsg": {

"bundle_id": 1234,
"flags": 1,
"message": {

"OFPEchoRequest": {
"data": null

}
},
"properties": [

{
"OFPBundlePropExperimenter": {

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPBundlePropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPBundlePropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

]
}

}

8.1. Writing Your OS-Ken Application 383

os-ken Documentation, Release 1.4.1.dev5

Set Asynchronous Configuration Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPSetAsync(datapath, proper-
ties=None)

Set asynchronous configuration message

The controller sends this message to set the asynchronous messages that it wants to receive on a
given OpneFlow channel.

Attribute Description
properties List of OFPAsyncConfigProp subclass instances

Example:

def send_set_async(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

properties = [
ofp_parser.OFPAsyncConfigPropReasons(

ofp.OFPACPT_PACKET_IN_SLAVE, 8,
(1 << ofp.OFPR_APPLY_ACTION
| 1 << ofp.OFPR_INVALID_TTL))]

req = ofp_parser.OFPSetAsync(datapath, properties)
datapath.send_msg(req)

JSON Example:

{
"OFPSetAsync": {

"properties": [
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 0

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 1

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 2

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,

(continues on next page)

8.1. Writing Your OS-Ken Application 384

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 3
}

},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 4

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 5

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 6

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 7

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 24,
"type": 8

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 24,
"type": 9

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 10

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,

(continues on next page)

8.1. Writing Your OS-Ken Application 385

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 11
}

},
{

"OFPAsyncConfigPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65534

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

]
}

}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGetAsyncRequest(datapath)
Get asynchronous configuration request message

The controller uses this message to query the asynchronous message.

Example:

def send_get_async_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGetAsyncRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGetAsyncRequest": {}

(continues on next page)

8.1. Writing Your OS-Ken Application 386

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}

class os_ken.ofproto.ofproto_v1_4_parser.OFPGetAsyncReply(datapath,
proper-
ties=None)

Get asynchronous configuration reply message

The switch responds with this message to a get asynchronous configuration request.

Attribute Description
properties List of OFPAsyncConfigProp subclass instances

Example:

@set_ev_cls(ofp_event.EventOFPGetAsyncReply, MAIN_DISPATCHER)
def get_async_reply_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPGetAsyncReply received: '
'properties=%s', repr(msg.properties))

JSON Example:

{
"OFPGetAsyncReply": {

"properties": [
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 0

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 1

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 2

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 3

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 387

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 4

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 5

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 6

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 7

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 24,
"type": 8

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 24,
"type": 9

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 10

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 11

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 388

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPAsyncConfigPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65534

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

]
}

}

Asynchronous Messages

Packet-In Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPPacketIn(datapath,
buffer_id=None,
total_len=None,
reason=None,
table_id=None,
cookie=None,
match=None,
data=None)

Packet-In message

The switch sends the packet that received to the controller by this message.

8.1. Writing Your OS-Ken Application 389

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
buffer_id ID assigned by datapath
total_len Full length of frame
reason Reason packet is being sent.

OFPR_TABLE_MISS
OFPR_APPLY_ACTION
OFPR_INVALID_TTL
OFPR_ACTION_SET
OFPR_GROUP
OFPR_PACKET_OUT

table_id ID of the table that was looked up
cookie Cookie of the flow entry that was looked up
match Instance of OFPMatch
data Ethernet frame

Example:

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def packet_in_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.TABLE_MISS:
reason = 'TABLE MISS'

elif msg.reason == ofp.OFPR_APPLY_ACTION:
reason = 'APPLY ACTION'

elif msg.reason == ofp.OFPR_INVALID_TTL:
reason = 'INVALID TTL'

elif msg.reason == ofp.OFPR_ACTION_SET:
reason = 'ACTION SET'

elif msg.reason == ofp.OFPR_GROUP:
reason = 'GROUP'

elif msg.reason == ofp.OFPR_PACKET_OUT:
reason = 'PACKET OUT'

else:
reason = 'unknown'

self.logger.debug('OFPPacketIn received: '
'buffer_id=%x total_len=%d reason=%s '
'table_id=%d cookie=%d match=%s data=%s',
msg.buffer_id, msg.total_len, reason,
msg.table_id, msg.cookie, msg.match,
utils.hex_array(msg.data))

JSON Example:

{
"OFPPacketIn": {

"buffer_id": 2,
"cookie": 283686884868096,

(continues on next page)

8.1. Writing Your OS-Ken Application 390

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"data": "////////
↪→8gukffjqCAYAAQgABgQAAfILpH346goAAAEAAAAAAAAKAAAD",

"match": {
"OFPMatch": {

"length": 80,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 6

}
},
{

"OXMTlv": {
"field": "eth_type",
"mask": null,
"value": 2054

}
},
{

"OXMTlv": {
"field": "eth_dst",
"mask": null,
"value": "ff:ff:ff:ff:ff:ff"

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "arp_op",
"mask": null,
"value": 1

}
},
{

"OXMTlv": {
"field": "arp_spa",
"mask": null,
"value": "10.0.0.1"

}
},
{

"OXMTlv": {
"field": "arp_tpa",
"mask": null,
"value": "10.0.0.3"

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 391

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OXMTlv": {
"field": "arp_sha",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "arp_tha",
"mask": null,
"value": "00:00:00:00:00:00"

}
}

],
"type": 1

}
},
"reason": 3,
"table_id": 1,
"total_len": 42

}
}

{
"OFPPacketIn": {

"buffer_id": 4026531840,
"cookie": 283686884868096,
"data": "",
"match": {

"OFPMatch": {
"length": 329,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 84281096

}
},
{

"OXMTlv": {
"field": "in_phy_port",
"mask": null,
"value": 16909060

}
},
{

"OXMTlv": {
"field": "metadata",
"mask": null,
"value": 283686952306183

}
},
{

"OXMTlv": {

(continues on next page)

8.1. Writing Your OS-Ken Application 392

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"field": "eth_type",
"mask": null,
"value": 2054

}
},
{

"OXMTlv": {
"field": "eth_dst",
"mask": null,
"value": "ff:ff:ff:ff:ff:ff"

}
},
{

"OXMTlv": {
"field": "eth_src",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "vlan_vid",
"mask": null,
"value": 999

}
},
{

"OXMTlv": {
"field": "ip_dscp",
"mask": null,
"value": 9

}
},
{

"OXMTlv": {
"field": "ip_ecn",
"mask": null,
"value": 3

}
},
{

"OXMTlv": {
"field": "ip_proto",
"mask": null,
"value": 99

}
},
{

"OXMTlv": {
"field": "ipv4_src",
"mask": null,
"value": "1.2.3.4"

}
},
{

"OXMTlv": {
(continues on next page)

8.1. Writing Your OS-Ken Application 393

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"field": "ipv4_dst",
"mask": null,
"value": "1.2.3.4"

}
},
{

"OXMTlv": {
"field": "tcp_src",
"mask": null,
"value": 8080

}
},
{

"OXMTlv": {
"field": "tcp_dst",
"mask": null,
"value": 18080

}
},
{

"OXMTlv": {
"field": "udp_src",
"mask": null,
"value": 28080

}
},
{

"OXMTlv": {
"field": "udp_dst",
"mask": null,
"value": 55936

}
},
{

"OXMTlv": {
"field": "sctp_src",
"mask": null,
"value": 48080

}
},
{

"OXMTlv": {
"field": "sctp_dst",
"mask": null,
"value": 59328

}
},
{

"OXMTlv": {
"field": "icmpv4_type",
"mask": null,
"value": 100

}
},
{

"OXMTlv": {
(continues on next page)

8.1. Writing Your OS-Ken Application 394

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"field": "icmpv4_code",
"mask": null,
"value": 101

}
},
{

"OXMTlv": {
"field": "arp_op",
"mask": null,
"value": 1

}
},
{

"OXMTlv": {
"field": "arp_spa",
"mask": null,
"value": "10.0.0.1"

}
},
{

"OXMTlv": {
"field": "arp_tpa",
"mask": null,
"value": "10.0.0.3"

}
},
{

"OXMTlv": {
"field": "arp_sha",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
},
{

"OXMTlv": {
"field": "arp_tha",
"mask": null,
"value": "00:00:00:00:00:00"

}
},
{

"OXMTlv": {
"field": "ipv6_src",
"mask": null,
"value": "fe80::f00b:a4ff:fe48:28a5"

}
},
{

"OXMTlv": {
"field": "ipv6_dst",
"mask": null,
"value": "fe80::f00b:a4ff:fe05:b7dc"

}
},
{

"OXMTlv": {
(continues on next page)

8.1. Writing Your OS-Ken Application 395

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"field": "ipv6_flabel",
"mask": null,
"value": 541473

}
},
{

"OXMTlv": {
"field": "icmpv6_type",
"mask": null,
"value": 200

}
},
{

"OXMTlv": {
"field": "icmpv6_code",
"mask": null,
"value": 201

}
},
{

"OXMTlv": {
"field": "ipv6_nd_target",
"mask": null,
"value": "fe80::a60:6eff:fe7f:74e7"

}
},
{

"OXMTlv": {
"field": "ipv6_nd_sll",
"mask": null,
"value": "00:00:00:00:02:9a"

}
},
{

"OXMTlv": {
"field": "ipv6_nd_tll",
"mask": null,
"value": "00:00:00:00:02:2b"

}
},
{

"OXMTlv": {
"field": "mpls_label",
"mask": null,
"value": 624485

}
},
{

"OXMTlv": {
"field": "mpls_tc",
"mask": null,
"value": 5

}
},
{

"OXMTlv": {
(continues on next page)

8.1. Writing Your OS-Ken Application 396

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"field": "mpls_bos",
"mask": null,
"value": 1

}
},
{

"OXMTlv": {
"field": "pbb_isid",
"mask": null,
"value": 11259375

}
},
{

"OXMTlv": {
"field": "tunnel_id",
"mask": null,
"value": 651061555542690057

}
},
{

"OXMTlv": {
"field": "ipv6_exthdr",
"mask": null,
"value": 500

}
},
{

"OXMTlv": {
"field": "pbb_uca",
"mask": null,
"value": 1

}
}

],
"type": 1

}
},
"reason": 0,
"table_id": 200,
"total_len": 0

}
}

8.1. Writing Your OS-Ken Application 397

os-ken Documentation, Release 1.4.1.dev5

Flow Removed Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPFlowRemoved(datapath,
cookie=None,
prior-
ity=None,
rea-
son=None,
ta-
ble_id=None,
dura-
tion_sec=None,
dura-
tion_nsec=None,
idle_timeout=None,
hard_timeout=None,
packet_count=None,
byte_count=None,
match=None)

Flow removed message

When flow entries time out or are deleted, the switch notifies controller with this message.

Attribute Description
cookie Opaque controller-issued identifier
priority Priority level of flow entry
reason One of the following values.

OFPRR_IDLE_TIMEOUT
OFPRR_HARD_TIMEOUT
OFPRR_DELETE
OFPRR_GROUP_DELETE
OFPRR_METER_DELETE
OFPRR_EVICTION

table_id ID of the table
duration_sec Time flow was alive in seconds
duration_nsec Time flow was alive in nanoseconds beyond

duration_sec
idle_timeout Idle timeout from original flow mod
hard_timeout Hard timeout from original flow mod
packet_count Number of packets that was associated with

the flow
byte_count Number of bytes that was associated with the

flow
match Instance of OFPMatch

Example:

8.1. Writing Your OS-Ken Application 398

os-ken Documentation, Release 1.4.1.dev5

@set_ev_cls(ofp_event.EventOFPFlowRemoved, MAIN_DISPATCHER)
def flow_removed_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPRR_IDLE_TIMEOUT:
reason = 'IDLE TIMEOUT'

elif msg.reason == ofp.OFPRR_HARD_TIMEOUT:
reason = 'HARD TIMEOUT'

elif msg.reason == ofp.OFPRR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPRR_GROUP_DELETE:
reason = 'GROUP DELETE'

else:
reason = 'unknown'

self.logger.debug('OFPFlowRemoved received: '
'cookie=%d priority=%d reason=%s table_id=%d '
'duration_sec=%d duration_nsec=%d '
'idle_timeout=%d hard_timeout=%d '
'packet_count=%d byte_count=%d match.fields=%s',
msg.cookie, msg.priority, reason, msg.table_id,
msg.duration_sec, msg.duration_nsec,
msg.idle_timeout, msg.hard_timeout,
msg.packet_count, msg.byte_count, msg.match)

JSON Example:

{
"OFPFlowRemoved": {

"byte_count": 86,
"cookie": 0,
"duration_nsec": 48825000,
"duration_sec": 3,
"hard_timeout": 0,
"idle_timeout": 3,
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"packet_count": 1,
"priority": 65535,
"reason": 0,
"table_id": 0

(continues on next page)

8.1. Writing Your OS-Ken Application 399

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

Port Status Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPPortStatus(datapath,
reason=None,
desc=None)

Port status message

The switch notifies controller of change of ports.

Attribute Description
reason One of the following values.

OFPPR_ADD
OFPPR_DELETE
OFPPR_MODIFY

desc instance of OFPPort

Example:

@set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER)
def port_status_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPPR_ADD:
reason = 'ADD'

elif msg.reason == ofp.OFPPR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPPR_MODIFY:
reason = 'MODIFY'

else:
reason = 'unknown'

self.logger.debug('OFPPortStatus received: reason=%s desc=%s',
reason, msg.desc)

JSON Example:

{
"OFPPortStatus": {

"desc": {
"OFPPort": {

"config": 0,
"hw_addr": "f2:0b:a4:d0:3f:70",
"length": 168,
"name": "\u79c1\u306e\u30dd\u30fc\u30c8",
"port_no": 7,

(continues on next page)

8.1. Writing Your OS-Ken Application 400

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"properties": [
{

"OFPPortDescPropEthernet": {
"advertised": 10240,
"curr": 10248,
"curr_speed": 5000,
"length": 32,
"max_speed": 5000,
"peer": 10248,
"supported": 10248,
"type": 0

}
},
{

"OFPPortDescPropOptical": {
"length": 40,
"rx_grid_freq_lmda": 1500,
"rx_max_freq_lmda": 2000,
"rx_min_freq_lmda": 1000,
"supported": 1,
"tx_grid_freq_lmda": 1500,
"tx_max_freq_lmda": 2000,
"tx_min_freq_lmda": 1000,
"tx_pwr_max": 2000,
"tx_pwr_min": 1000,
"type": 1

}
},
{

"OFPPortDescPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPPortDescPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPPortDescPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,

(continues on next page)

8.1. Writing Your OS-Ken Application 401

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"length": 20,
"type": 65535

}
}

],
"state": 4

}
},
"reason": 0

}
}

Controller Role Status Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPRoleStatus(datapath,
role=None,
reason=None,
genera-
tion_id=None,
proper-
ties=None)

Role status message

The switch notifies controller of change of role.

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER

reason One of the following values.

OFPCRR_MASTER_REQUEST
OFPCRR_CONFIG
OFPCRR_EXPERIMENTER

generation_id Master Election Generation ID
properties List of OFPRoleProp subclass instance

Example:

@set_ev_cls(ofp_event.EventOFPRoleStatus, MAIN_DISPATCHER)
def role_status_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.role == ofp.OFPCR_ROLE_NOCHANGE:

(continues on next page)

8.1. Writing Your OS-Ken Application 402

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

role = 'ROLE NOCHANGE'
elif msg.role == ofp.OFPCR_ROLE_EQUAL:

role = 'ROLE EQUAL'
elif msg.role == ofp.OFPCR_ROLE_MASTER:

role = 'ROLE MASTER'
else:

role = 'unknown'

if msg.reason == ofp.OFPCRR_MASTER_REQUEST:
reason = 'MASTER REQUEST'

elif msg.reason == ofp.OFPCRR_CONFIG:
reason = 'CONFIG'

elif msg.reason == ofp.OFPCRR_EXPERIMENTER:
reason = 'EXPERIMENTER'

else:
reason = 'unknown'

self.logger.debug('OFPRoleStatus received: role=%s reason=%s '
'generation_id=%d properties=%s', role, reason,
msg.generation_id, repr(msg.properties))

JSON Example:

{
"OFPRoleStatus": {

"generation_id": 7,
"properties": [

{
"OFPRolePropExperimenter": {

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPRolePropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPRolePropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,

(continues on next page)

8.1. Writing Your OS-Ken Application 403

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 65535
}

}
],
"reason": 0,
"role": 2

}
}

Table Status Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPTableStatus(datapath,
rea-
son=None,
ta-
ble=None)

Table status message

The switch notifies controller of change of table status.

Attribute Description
reason One of the following values.

OFPTR_VACANCY_DOWN
OFPTR_VACANCY_UP

table OFPTableDesc instance

Example:

@set_ev_cls(ofp_event.EventOFPTableStatus, MAIN_DISPATCHER)
def table(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPTR_VACANCY_DOWN:
reason = 'VACANCY_DOWN'

elif msg.reason == ofp.OFPTR_VACANCY_UP:
reason = 'VACANCY_UP'

else:
reason = 'unknown'

self.logger.debug('OFPTableStatus received: reason=%s '
'table_id=%d config=0x%08x properties=%s',
reason, msg.table.table_id, msg.table.config,
repr(msg.table.properties))

JSON Example:

{
"OFPTableStatus": {

(continues on next page)

8.1. Writing Your OS-Ken Application 404

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"reason": 3,
"table": {

"OFPTableDesc": {
"config": 0,
"length": 80,
"properties": [

{
"OFPTableModPropEviction": {

"flags": 0,
"length": 8,
"type": 2

}
},
{

"OFPTableModPropVacancy": {
"length": 8,
"type": 3,
"vacancy": 0,
"vacancy_down": 0,
"vacancy_up": 0

}
},
{

"OFPTableModPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"table_id": 8

(continues on next page)

8.1. Writing Your OS-Ken Application 405

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

}
}

Request Forward Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPRequestForward(datapath,
re-
quest=None)

Forwarded request message

The swtich forwards request messages from one controller to other controllers.

Attribute Description
request OFPGroupMod or OFPMeterMod instance

Example:

@set_ev_cls(ofp_event.EventOFPRequestForward, MAIN_DISPATCHER)
def request_forward_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.request.msg_type == ofp.OFPT_GROUP_MOD:
self.logger.debug(

'OFPRequestForward received: request=OFPGroupMod('
'command=%d, type=%d, group_id=%d, buckets=%s)',
msg.request.command, msg.request.type,
msg.request.group_id, msg.request.buckets)

elif msg.request.msg_type == ofp.OFPT_METER_MOD:
self.logger.debug(

'OFPRequestForward received: request=OFPMeterMod('
'command=%d, flags=%d, meter_id=%d, bands=%s)',
msg.request.command, msg.request.flags,
msg.request.meter_id, msg.request.bands)

else:
self.logger.debug(

'OFPRequestForward received: request=Unknown')

JSON Example:

{
"OFPRequestForward": {

"request": {
"OFPGroupMod": {

"buckets": [
{

"OFPBucket": {
"actions": [

{
"OFPActionOutput": {

(continues on next page)

8.1. Writing Your OS-Ken Application 406

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"len": 16,
"max_len": 65535,
"port": 2,
"type": 0

}
}

],
"len": 32,
"watch_group": 1,
"watch_port": 1,
"weight": 1

}
}

],
"command": 0,
"group_id": 1,
"type": 0

}
}

}
}

Symmetric Messages

Hello

class os_ken.ofproto.ofproto_v1_4_parser.OFPHello(datapath, ele-
ments=None)

Hello message

When connection is started, the hello message is exchanged between a switch and a controller.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
elements list of OFPHelloElemVersionBitmap instance

JSON Example:

{
"OFPHello": {

"elements": [
{

"OFPHelloElemVersionBitmap": {
"length": 8,
"type": 1,
"versions": [

1,
2,
3,
9,
10,

(continues on next page)

8.1. Writing Your OS-Ken Application 407

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

30
]

}
}

]
}

}

class os_ken.ofproto.ofproto_v1_4_parser.OFPHelloElemVersionBitmap(versions,
type_=None,
length=None)

Version bitmap Hello Element

Attribute Description
versions list of versions of OpenFlow protocol a device supports

Echo Request

class os_ken.ofproto.ofproto_v1_4_parser.OFPEchoRequest(datapath,
data=None)

Echo request message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data

Example:

def send_echo_request(self, datapath, data):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPEchoRequest(datapath, data)
datapath.send_msg(req)

@set_ev_cls(ofp_event.EventOFPEchoRequest,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_request_handler(self, ev):

self.logger.debug('OFPEchoRequest received: data=%s',
utils.hex_array(ev.msg.data))

JSON Example:

{
"OFPEchoRequest": {

"data": "aG9nZQ=="
}

}

8.1. Writing Your OS-Ken Application 408

os-ken Documentation, Release 1.4.1.dev5

Echo Reply

class os_ken.ofproto.ofproto_v1_4_parser.OFPEchoReply(datapath,
data=None)

Echo reply message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data

Example:

def send_echo_reply(self, datapath, data):
ofp_parser = datapath.ofproto_parser

reply = ofp_parser.OFPEchoReply(datapath, data)
datapath.send_msg(reply)

@set_ev_cls(ofp_event.EventOFPEchoReply,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_reply_handler(self, ev):

self.logger.debug('OFPEchoReply received: data=%s',
utils.hex_array(ev.msg.data))

JSON Example:

{
"OFPEchoReply": {

"data": "aG9nZQ=="
}

}

Error Message

class os_ken.ofproto.ofproto_v1_4_parser.OFPErrorMsg(datapath,
type_=None,
code=None,
data=None,
**kwargs)

Error message

The switch notifies controller of problems by this message.

Attribute Description
type High level type of error
code Details depending on the type
data Variable length data depending on the type and code

type attribute corresponds to type_ parameter of __init__.

8.1. Writing Your OS-Ken Application 409

os-ken Documentation, Release 1.4.1.dev5

Types and codes are defined in os_ken.ofproto.ofproto.

Type Code
OFPET_HELLO_FAILED OFPHFC_*
OFPET_BAD_REQUEST OFPBRC_*
OFPET_BAD_ACTION OFPBAC_*
OFPET_BAD_INSTRUCTION OFPBIC_*
OFPET_BAD_MATCH OFPBMC_*
OFPET_FLOW_MOD_FAILED OFPFMFC_*
OFPET_GROUP_MOD_FAILED OFPGMFC_*
OFPET_PORT_MOD_FAILED OFPPMFC_*
OFPET_TABLE_MOD_FAILED OFPTMFC_*
OFPET_QUEUE_OP_FAILED OFPQOFC_*
OFPET_SWITCH_CONFIG_FAILED OFPSCFC_*
OFPET_ROLE_REQUEST_FAILED OFPRRFC_*
OFPET_METER_MOD_FAILED OFPMMFC_*
OFPET_TABLE_FEATURES_FAILED OFPTFFC_*
OFPET_EXPERIMENTER N/A

If type == OFPET_EXPERIMENTER, this message has also the following attributes.

Attribute Description
exp_type Experimenter defined type
experimenter Experimenter ID

Example:

@set_ev_cls(ofp_event.EventOFPErrorMsg,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def error_msg_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPErrorMsg received: type=0x%02x code=0x%02x '
'message=%s',
msg.type, msg.code, utils.hex_array(msg.data))

JSON Example:

{
"OFPErrorMsg": {

"code": 11,
"data": "ZnVnYWZ1Z2E=",
"type": 2

}
}

8.1. Writing Your OS-Ken Application 410

os-ken Documentation, Release 1.4.1.dev5

Experimenter

class os_ken.ofproto.ofproto_v1_4_parser.OFPExperimenter(datapath,
experi-
menter=None,
exp_type=None,
data=None)

Experimenter extension message

Attribute Description
experimenter Experimenter ID
exp_type Experimenter defined
data Experimenter defined arbitrary additional data

JSON Example:

{
"OFPExperimenter": {

"data": "bmF6bw==",
"exp_type": 123456789,
"experimenter": 98765432

}
}

Port Structures

class os_ken.ofproto.ofproto_v1_4_parser.OFPPort(port_no=None,
length=None,
hw_addr=None,
name=None, con-
fig=None, state=None,
properties=None)

Description of a port

8.1. Writing Your OS-Ken Application 411

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number and it uniquely identifies a port

within a switch.
length Length of ofp_port (excluding padding).
hw_addr MAC address for the port.
name Null-terminated string containing a human-

readable name for the interface.
config Bitmap of port configration flags.

OFPPC_PORT_DOWN
OFPPC_NO_RECV
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

state Bitmap of port state flags.

OFPPS_LINK_DOWN
OFPPS_BLOCKED
OFPPS_LIVE

properties List of OFPPortDescProp subclass in-
stance

Flow Match Structure

class os_ken.ofproto.ofproto_v1_4_parser.OFPMatch(type_=None,
length=None, _or-
dered_fields=None,
**kwargs)

Flow Match Structure

This class is implementation of the flow match structure having compose/query API.

You can define the flow match by the keyword arguments. The following arguments are available.

Argument Value Description
in_port Integer 32bit Switch input port
in_phy_port Integer 32bit Switch physical input port
metadata Integer 64bit Metadata passed between tables
eth_dst MAC address Ethernet destination address
eth_src MAC address Ethernet source address
eth_type Integer 16bit Ethernet frame type
vlan_vid Integer 16bit VLAN id
vlan_pcp Integer 8bit VLAN priority
ip_dscp Integer 8bit IP DSCP (6 bits in ToS field)
ip_ecn Integer 8bit IP ECN (2 bits in ToS field)
ip_proto Integer 8bit IP protocol
ipv4_src IPv4 address IPv4 source address

continues on next page

8.1. Writing Your OS-Ken Application 412

os-ken Documentation, Release 1.4.1.dev5

Table 3 – continued from previous page
Argument Value Description
ipv4_dst IPv4 address IPv4 destination address
tcp_src Integer 16bit TCP source port
tcp_dst Integer 16bit TCP destination port
udp_src Integer 16bit UDP source port
udp_dst Integer 16bit UDP destination port
sctp_src Integer 16bit SCTP source port
sctp_dst Integer 16bit SCTP destination port
icmpv4_type Integer 8bit ICMP type
icmpv4_code Integer 8bit ICMP code
arp_op Integer 16bit ARP opcode
arp_spa IPv4 address ARP source IPv4 address
arp_tpa IPv4 address ARP target IPv4 address
arp_sha MAC address ARP source hardware address
arp_tha MAC address ARP target hardware address
ipv6_src IPv6 address IPv6 source address
ipv6_dst IPv6 address IPv6 destination address
ipv6_flabel Integer 32bit IPv6 Flow Label
icmpv6_type Integer 8bit ICMPv6 type
icmpv6_code Integer 8bit ICMPv6 code
ipv6_nd_target IPv6 address Target address for ND
ipv6_nd_sll MAC address Source link-layer for ND
ipv6_nd_tll MAC address Target link-layer for ND
mpls_label Integer 32bit MPLS label
mpls_tc Integer 8bit MPLS TC
mpls_bos Integer 8bit MPLS BoS bit
pbb_isid Integer 24bit PBB I-SID
tunnel_id Integer 64bit Logical Port Metadata
ipv6_exthdr Integer 16bit IPv6 Extension Header pseudo-field
pbb_uca Integer 8bit PBB UCA header field
tcp_flags Integer 16bit TCP flags (EXT-109 ONF Extension)
actset_output Integer 32bit Output port from action set metadata (EXT-233 ONF Extension)

Example:

>>> # compose
>>> match = parser.OFPMatch(
... in_port=1,
... eth_type=0x86dd,
... ipv6_src=('2001:db8:bd05:1d2:288a:1fc0:1:10ee',
... 'ffff:ffff:ffff:ffff::'),
... ipv6_dst='2001:db8:bd05:1d2:288a:1fc0:1:10ee')
>>> # query
>>> if 'ipv6_src' in match:
... print match['ipv6_src']
...
('2001:db8:bd05:1d2:288a:1fc0:1:10ee', 'ffff:ffff:ffff:ffff::')

Note: For the list of the supported Nicira experimenter matches, please refer to

8.1. Writing Your OS-Ken Application 413

os-ken Documentation, Release 1.4.1.dev5

os_ken.ofproto.nx_match.

Note: For VLAN id match field, special values are defined in OpenFlow Spec.

1) Packets with and without a VLAN tag

• Example:

match = parser.OFPMatch()

• Packet Matching

non-VLAN-tagged MATCH
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) MATCH

2) Only packets without a VLAN tag

• Example:

match = parser.OFPMatch(vlan_vid=0x0000)

• Packet Matching

non-VLAN-tagged MATCH
VLAN-tagged(vlan_id=3) x
VLAN-tagged(vlan_id=5) x

3) Only packets with a VLAN tag regardless of its value

• Example:

match = parser.OFPMatch(vlan_vid=(0x1000, 0x1000))

• Packet Matching

non-VLAN-tagged x
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) MATCH

4) Only packets with VLAN tag and VID equal

• Example:

match = parser.OFPMatch(vlan_vid=(0x1000 | 3))

• Packet Matching

non-VLAN-tagged x
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) x

8.1. Writing Your OS-Ken Application 414

os-ken Documentation, Release 1.4.1.dev5

Flow Instruction Structures

class os_ken.ofproto.ofproto_v1_4_parser.OFPInstructionGotoTable(table_id,
type_=None,
len_=None)

Goto table instruction

This instruction indicates the next table in the processing pipeline.

Attribute Description
table_id Next table

class os_ken.ofproto.ofproto_v1_4_parser.OFPInstructionWriteMetadata(metadata,
meta-
data_mask,
type_=None,
len_=None)

Write metadata instruction

This instruction writes the masked metadata value into the metadata field.

Attribute Description
metadata Metadata value to write
metadata_mask Metadata write bitmask

class os_ken.ofproto.ofproto_v1_4_parser.OFPInstructionActions(type_,
ac-
tions=None,
len_=None)

Actions instruction

This instruction writes/applies/clears the actions.

Attribute Description
type One of following values.

OFPIT_WRITE_ACTIONS
OFPIT_APPLY_ACTIONS
OFPIT_CLEAR_ACTIONS

actions list of OpenFlow action class

type attribute corresponds to type_ parameter of __init__.

class os_ken.ofproto.ofproto_v1_4_parser.OFPInstructionMeter(meter_id=1,
type_=None,
len_=None)

Meter instruction

This instruction applies the meter.

Attribute Description
meter_id Meter instance

8.1. Writing Your OS-Ken Application 415

os-ken Documentation, Release 1.4.1.dev5

Action Structures

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionOutput(port,
max_len=65509,
type_=None,
len_=None)

Output action

This action indicates output a packet to the switch port.

Attribute Description
port Output port
max_len Max length to send to controller

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionCopyTtlOut(type_=None,
len_=None)

Copy TTL Out action

This action copies the TTL from the next-to-outermost header with TTL to the outermost header
with TTL.

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionCopyTtlIn(type_=None,
len_=None)

Copy TTL In action

This action copies the TTL from the outermost header with TTL to the next-to-outermost header
with TTL.

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionSetMplsTtl(mpls_ttl,
type_=None,
len_=None)

Set MPLS TTL action

This action sets the MPLS TTL.

Attribute Description
mpls_ttl MPLS TTL

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionDecMplsTtl(type_=None,
len_=None)

Decrement MPLS TTL action

This action decrements the MPLS TTL.

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionPushVlan(ethertype=33024,
type_=None,
len_=None)

Push VLAN action

This action pushes a new VLAN tag to the packet.

Attribute Description
ethertype Ether type. The default is 802.1Q. (0x8100)

8.1. Writing Your OS-Ken Application 416

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionPopVlan(type_=None,
len_=None)

Pop VLAN action

This action pops the outermost VLAN tag from the packet.

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionPushMpls(ethertype=34887,
type_=None,
len_=None)

Push MPLS action

This action pushes a new MPLS header to the packet.

Attribute Description
ethertype Ether type

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionPopMpls(ethertype=2048,
type_=None,
len_=None)

Pop MPLS action

This action pops the MPLS header from the packet.

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionSetQueue(queue_id,
type_=None,
len_=None)

Set queue action

This action sets the queue id that will be used to map a flow to an already-configured queue on a
port.

Attribute Description
queue_id Queue ID for the packets

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionGroup(group_id=0,
type_=None,
len_=None)

Group action

This action indicates the group used to process the packet.

Attribute Description
group_id Group identifier

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionSetNwTtl(nw_ttl,
type_=None,
len_=None)

Set IP TTL action

This action sets the IP TTL.

Attribute Description
nw_ttl IP TTL

8.1. Writing Your OS-Ken Application 417

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionDecNwTtl(type_=None,
len_=None)

Decrement IP TTL action

This action decrements the IP TTL.

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionSetField(field=None,
**kwargs)

Set field action

This action modifies a header field in the packet.

The set of keywords available for this is same as OFPMatch.

Example:

set_field = OFPActionSetField(eth_src="00:00:00:00:00:00")

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionPushPbb(ethertype,
type_=None,
len_=None)

Push PBB action

This action pushes a new PBB header to the packet.

Attribute Description
ethertype Ether type

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionPopPbb(type_=None,
len_=None)

Pop PBB action

This action pops the outermost PBB service instance header from the packet.

class os_ken.ofproto.ofproto_v1_4_parser.OFPActionExperimenter(experimenter)
Experimenter action

This action is an extensible action for the experimenter.

Attribute Description
experimenter Experimenter ID

Note: For the list of the supported Nicira experimenter actions, please refer to
os_ken.ofproto.nx_actions.

8.1. Writing Your OS-Ken Application 418

os-ken Documentation, Release 1.4.1.dev5

OpenFlow v1.5 Messages and Structures

Controller-to-Switch Messages

Handshake

class os_ken.ofproto.ofproto_v1_5_parser.OFPFeaturesRequest(datapath)
Features request message

The controller sends a feature request to the switch upon session establishment.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

def send_features_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPFeaturesRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPFeaturesRequest": {}

}

class os_ken.ofproto.ofproto_v1_5_parser.OFPSwitchFeatures(datapath,
datap-
ath_id=None,
n_buffers=None,
n_tables=None,
auxil-
iary_id=None,
capa-
bili-
ties=None)

Features reply message

The switch responds with a features reply message to a features request.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Example:

@set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
def switch_features_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPSwitchFeatures received: '
'datapath_id=0x%016x n_buffers=%d '
'n_tables=%d auxiliary_id=%d '
'capabilities=0x%08x',

(continues on next page)

8.1. Writing Your OS-Ken Application 419

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

msg.datapath_id, msg.n_buffers, msg.n_tables,
msg.auxiliary_id, msg.capabilities)

JSON Example:

{
"OFPSwitchFeatures": {

"auxiliary_id": 0,
"capabilities": 79,
"datapath_id": 1,
"n_buffers": 255,
"n_tables": 255

}
}

Switch Configuration

class os_ken.ofproto.ofproto_v1_5_parser.OFPSetConfig(datapath,
flags=0,
miss_send_len=0)

Set config request message

The controller sends a set config request message to set configuraion parameters.

Attribute Description
flags Bitmap of the following flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM

miss_send_len Max bytes of new flow that datapath should
send to the controller

Example:

def send_set_config(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPSetConfig(datapath, ofp.OFPC_FRAG_NORMAL, 256)
datapath.send_msg(req)

JSON Example:

{
"OFPSetConfig": {

"flags": 0,
"miss_send_len": 128

}
}

8.1. Writing Your OS-Ken Application 420

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPGetConfigRequest(datapath)
Get config request message

The controller sends a get config request to query configuration parameters in the switch.

Example:

def send_get_config_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGetConfigRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGetConfigRequest": {}

}

class os_ken.ofproto.ofproto_v1_5_parser.OFPGetConfigReply(datapath,
flags=None,
miss_send_len=None)

Get config reply message

The switch responds to a configuration request with a get config reply message.

Attribute Description
flags Bitmap of the following flags.

OFPC_FRAG_NORMAL
OFPC_FRAG_DROP
OFPC_FRAG_REASM

miss_send_len Max bytes of new flow that datapath should
send to the controller

Example:

@set_ev_cls(ofp_event.EventOFPGetConfigReply, MAIN_DISPATCHER)
def get_config_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto
flags = []

if msg.flags & ofp.OFPC_FRAG_NORMAL:
flags.append('NORMAL')

if msg.flags & ofp.OFPC_FRAG_DROP:
flags.append('DROP')

if msg.flags & ofp.OFPC_FRAG_REASM:
flags.append('REASM')

self.logger.debug('OFPGetConfigReply received: '
'flags=%s miss_send_len=%d',
','.join(flags), msg.miss_send_len)

JSON Example:

8.1. Writing Your OS-Ken Application 421

os-ken Documentation, Release 1.4.1.dev5

{
"OFPGetConfigReply": {

"flags": 0,
"miss_send_len": 128

}
}

Modify State Messages

class os_ken.ofproto.ofproto_v1_5_parser.OFPTableMod(datapath, ta-
ble_id, config,
properties)

Flow table configuration message

The controller sends this message to configure table state.

Attribute Description
table_id ID of the table (OFPTT_ALL indicates all ta-

bles)
config Bitmap of configuration flags.

OFPTC_EVICTION
OFPTC_VACANCY_EVENTS

properties List of OFPTableModProp subclass in-
stance

Example:

def send_table_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableMod(datapath, 1, 3)
flags = ofp.OFPTC_VACANCY_EVENTS
properties = [ofp_parser.OFPTableModPropEviction(flags)]
req = ofp_parser.OFPTableMod(datapath, 1, 3, properties)
datapath.send_msg(req)

JSON Example:

{
"OFPTableMod": {

"config": 4,
"properties": [

{
"OFPTableModPropEviction": {

"flags": 2,
"length": 8,
"type": 2

}
}

(continues on next page)

8.1. Writing Your OS-Ken Application 422

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

],
"table_id": 255

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPFlowMod(datapath,
cookie=0,
cookie_mask=0,
table_id=0,
command=0,
idle_timeout=0,
hard_timeout=0,
priority=32768,
buffer_id=4294967295,
out_port=0,
out_group=0,
flags=0, im-
portance=0,
match=None, in-
structions=None)

Modify Flow entry message

The controller sends this message to modify the flow table.

8.1. Writing Your OS-Ken Application 423

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
cookie Opaque controller-issued identifier
cookie_mask Mask used to restrict the cookie bits

that must match when the command is
OPFFC_MODIFY* or OFPFC_DELETE*

table_id ID of the table to put the flow in
command One of the following values.

OFPFC_ADD
OFPFC_MODIFY
OFPFC_MODIFY_STRICT
OFPFC_DELETE
OFPFC_DELETE_STRICT

idle_timeout Idle time before discarding (seconds)
hard_timeout Max time before discarding (seconds)
priority Priority level of flow entry
buffer_id Buffered packet to apply to (or

OFP_NO_BUFFER)
out_port For OFPFC_DELETE* commands, require

matching entries to include this as an output
port

out_group For OFPFC_DELETE* commands, require
matching entries to include this as an output
group

flags Bitmap of the following flags.

OFPFF_SEND_FLOW_REM
OFPFF_CHECK_OVERLAP
OFPFF_RESET_COUNTS
OFPFF_NO_PKT_COUNTS
OFPFF_NO_BYT_COUNTS

importance Eviction precedence
match Instance of OFPMatch
instructions list of OFPInstruction* instance

Example:

def send_flow_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
table_id = 0
idle_timeout = hard_timeout = 0
priority = 32768
buffer_id = ofp.OFP_NO_BUFFER
importance = 0

(continues on next page)

8.1. Writing Your OS-Ken Application 424

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

match = ofp_parser.OFPMatch(in_port=1, eth_dst='ff:ff:ff:ff:ff:ff
↪→')

actions = [ofp_parser.OFPActionOutput(ofp.OFPP_NORMAL, 0)]
inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS,

actions)]
req = ofp_parser.OFPFlowMod(datapath, cookie, cookie_mask,

table_id, ofp.OFPFC_ADD,
idle_timeout, hard_timeout,
priority, buffer_id,
ofp.OFPP_ANY, ofp.OFPG_ANY,
ofp.OFPFF_SEND_FLOW_REM,
importance,
match, inst)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowMod": {

"buffer_id": 0,
"command": 0,
"cookie": 1311768467463790320,
"cookie_mask": 18446744073709551615,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 39032,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionPopVlan": {
"len": 8,
"type": 18

}
},
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "192.168.2.9"

}
},
"len": 16,
"type": 25

}
},
{

"NXActionLearn": {
"cookie": 0,
"experimenter": 8992,
"fin_hard_timeout": 0,
"fin_idle_timeout": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 425

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"flags": 0,
"hard_timeout": 300,
"idle_timeout": 0,
"len": 96,
"priority": 1,
"specs": [

{
"NXFlowSpecMatch": {

"dst": [
"vlan_vid",
0

],
"n_bits": 12,
"src": [

"vlan_vid",
0

]
}

},
{

"NXFlowSpecMatch": {
"dst": [

"eth_dst_nxm",
0

],
"n_bits": 48,
"src": [

"eth_src_nxm",
0

]
}

},
{

"NXFlowSpecLoad": {
"dst": [

"vlan_vid",
0

],
"n_bits": 12,
"src": 0

}
},
{

"NXFlowSpecLoad": {
"dst": [

"tunnel_id_nxm",
0

],
"n_bits": 64,
"src": [

"tunnel_id_nxm",
0

]
}

},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 426

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"NXFlowSpecOutput": {
"dst": "",
"n_bits": 32,
"src": [

"in_port",
0

]
}

}
],
"subtype": 16,
"table_id": 99,
"type": 65535

}
}

],
"len": 128,
"type": 4

}
},
{

"OFPInstructionGotoTable": {
"len": 8,
"table_id": 100,
"type": 1

}
}

],
"match": {

"OFPMatch": {
"length": 70,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 43981

}
},
{

"OXMTlv": {
"field": "eth_dst",
"mask": null,
"value": "aa:bb:cc:99:88:77"

}
},
{

"OXMTlv": {
"field": "eth_type",
"mask": null,
"value": 2048

}
},
{

"OXMTlv": {
"field": "vlan_vid",

(continues on next page)

8.1. Writing Your OS-Ken Application 427

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"mask": null,
"value": 5095

}
},
{

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "192.168.2.1"

}
},
{

"OXMTlv": {
"field": "tunnel_id",
"mask": null,
"value": 50000

}
},
{

"OXMTlv": {
"field": "tun_ipv4_src",
"mask": null,
"value": "192.168.2.3"

}
},
{

"OXMTlv": {
"field": "tun_ipv4_dst",
"mask": null,
"value": "192.168.2.4"

}
}

],
"type": 1

}
},
"out_group": 0,
"out_port": 0,
"priority": 0,
"table_id": 2

}
}

{
"OFPFlowMod": {

"buffer_id": 0,
"command": 0,
"cookie": 1311768467463790320,
"cookie_mask": 18446744073709551615,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 39032,
"instructions": [

{

(continues on next page)

8.1. Writing Your OS-Ken Application 428

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPInstructionActions": {
"actions": [

{
"NXActionConjunction": {

"clause": 1,
"experimenter": 8992,
"id": 11259375,
"len": 16,
"n_clauses": 2,
"subtype": 34,
"type": 65535

}
}

],
"len": 24,
"type": 4

}
}

],
"match": {

"OFPMatch": {
"length": 70,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 43981

}
},
{

"OXMTlv": {
"field": "eth_dst",
"mask": null,
"value": "aa:bb:cc:99:88:77"

}
},
{

"OXMTlv": {
"field": "eth_type",
"mask": null,
"value": 2048

}
},
{

"OXMTlv": {
"field": "vlan_vid",
"mask": null,
"value": 5095

}
},
{

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "192.168.2.1"

(continues on next page)

8.1. Writing Your OS-Ken Application 429

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
},
{

"OXMTlv": {
"field": "tunnel_id",
"mask": null,
"value": 50000

}
},
{

"OXMTlv": {
"field": "tun_ipv4_src",
"mask": null,
"value": "192.168.2.3"

}
},
{

"OXMTlv": {
"field": "tun_ipv4_dst",
"mask": null,
"value": "192.168.2.4"

}
}

],
"type": 1

}
},
"out_group": 0,
"out_port": 0,
"priority": 0,
"table_id": 4

}
}

{
"OFPFlowMod": {

"buffer_id": 0,
"command": 0,
"cookie": 1311768467463790320,
"cookie_mask": 18446744073709551615,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 39032,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionPopVlan": {
"len": 8,
"type": 18

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 430

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "192.168.2.9"

}
},
"len": 16,
"type": 25

}
}

],
"len": 32,
"type": 4

}
},
{

"OFPInstructionGotoTable": {
"len": 8,
"table_id": 100,
"type": 1

}
}

],
"match": {

"OFPMatch": {
"length": 12,
"oxm_fields": [

{
"OXMTlv": {

"field": "conj_id",
"mask": null,
"value": 11259375

}
}

],
"type": 1

}
},
"out_group": 0,
"out_port": 0,
"priority": 0,
"table_id": 3

}
}

8.1. Writing Your OS-Ken Application 431

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPGroupMod(datapath,
command=0,
type_=0,
group_id=0,
com-
mand_bucket_id=4294967295,
buckets=None,
proper-
ties=None,
bucket_array_len=None)

Modify group entry message

The controller sends this message to modify the group table.

Attribute Description
command One of the following values.

OFPGC_ADD
OFPGC_MODIFY
OFPGC_DELETE
OFPGC_INSERT_BUCKET
OFPGC_REMOVE_BUCKET

type One of the following values.

OFPGT_ALL
OFPGT_SELECT
OFPGT_INDIRECT
OFPGT_FF

group_id Group identifier.
command_bucket_id Bucket Id used as part of OF-

PGC_INSERT_BUCKET and OF-
PGC_REMOVE_BUCKET commands
execution.

buckets List of OFPBucket instance
properties List of OFPGroupProp instance

type attribute corresponds to type_ parameter of __init__.

Example:

def send_group_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

port = 1
max_len = 2000
actions = [ofp_parser.OFPActionOutput(port, max_len)]

weight = 100

(continues on next page)

8.1. Writing Your OS-Ken Application 432

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

watch_port = 0
watch_group = 0
buckets = [ofp_parser.OFPBucket(weight, watch_port, watch_group,

actions)]

group_id = 1
command_bucket_id=1
req = ofp_parser.OFPGroupMod(datapath, ofp.OFPGC_ADD,

ofp.OFPGT_SELECT, group_id,
command_bucket_id, buckets)

datapath.send_msg(req)

JSON Example:

{
"OFPGroupMod": {

"bucket_array_len": 56,
"buckets": [

{
"OFPBucket": {

"action_array_len": 24,
"actions": [

{
"OFPActionPopVlan": {

"len": 8,
"type": 18

}
},
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "192.168.2.9"

}
},
"len": 16,
"type": 25

}
}

],
"bucket_id": 305419896,
"len": 56,
"properties": [

{
"OFPGroupBucketPropWeight": {

"length": 8,
"type": 0,
"weight": 52428

}
},
{

"OFPGroupBucketPropWatch": {
"length": 8,
"type": 1,

(continues on next page)

8.1. Writing Your OS-Ken Application 433

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"watch": 56797
}

},
{

"OFPGroupBucketPropWatch": {
"length": 8,
"type": 2,
"watch": 4008636142

}
}

]
}

}
],
"command": 3,
"command_bucket_id": 3149642683,
"group_id": 2863311530,
"properties": [],
"type": 1

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPPortMod(datapath,
port_no=0,
hw_addr=’00:00:00:00:00:00’,
config=0, mask=0,
properties=None)

Port modification message

The controller sneds this message to modify the behavior of the port.

Attribute Description
port_no Port number to modify
hw_addr The hardware address that must be

the same as hw_addr of OFPPort of
OFPSwitchFeatures

config Bitmap of configuration flags.

OFPPC_PORT_DOWN
OFPPC_NO_RECV
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

mask Bitmap of configuration flags above to be
changed

properties List of OFPPortModProp subclass instance

Example:

def send_port_mod(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

(continues on next page)

8.1. Writing Your OS-Ken Application 434

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

port_no = 3
hw_addr = 'fa:c8:e8:76:1d:7e'
config = 0
mask = (ofp.OFPPC_PORT_DOWN | ofp.OFPPC_NO_RECV |

ofp.OFPPC_NO_FWD | ofp.OFPPC_NO_PACKET_IN)
advertise = (ofp.OFPPF_10MB_HD | ofp.OFPPF_100MB_FD |

ofp.OFPPF_1GB_FD | ofp.OFPPF_COPPER |
ofp.OFPPF_AUTONEG | ofp.OFPPF_PAUSE |
ofp.OFPPF_PAUSE_ASYM)

properties = [ofp_parser.OFPPortModPropEthernet(advertise)]
req = ofp_parser.OFPPortMod(datapath, port_no, hw_addr, config,

mask, properties)
datapath.send_msg(req)

JSON Example:

{
"OFPPortMod": {

"config": 0,
"hw_addr": "00:11:00:00:11:11",
"mask": 0,
"port_no": 1,
"properties": [

{
"OFPPortModPropEthernet": {

"advertise": 4096,
"length": 8,
"type": 0

}
},
{

"OFPPortModPropOptical": {
"configure": 3,
"fl_offset": 2000,
"freq_lmda": 1500,
"grid_span": 3000,
"length": 24,
"tx_pwr": 300,
"type": 1

}
},
{

"OFPPortModPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPPortModPropExperimenter": {
"data": [

1
],

(continues on next page)

8.1. Writing Your OS-Ken Application 435

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPPortModPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

]
}

}

class os_ken.ofproto.ofproto_v1_5_parser.OFPMeterMod(datapath,
command=0,
flags=1, me-
ter_id=1,
bands=None)

Meter modification message

The controller sends this message to modify the meter.

Attribute Description
command One of the following values.

OFPMC_ADD
OFPMC_MODIFY
OFPMC_DELETE

flags Bitmap of the following flags.

OFPMF_KBPS
OFPMF_PKTPS
OFPMF_BURST
OFPMF_STATS

meter_id Meter instance
bands list of the following class instance.

OFPMeterBandDrop
OFPMeterBandDscpRemark
OFPMeterBandExperimenter

8.1. Writing Your OS-Ken Application 436

os-ken Documentation, Release 1.4.1.dev5

JSON Example:

{
"OFPMeterMod": {

"bands": [
{

"OFPMeterBandDrop": {
"burst_size": 10,
"len": 16,
"rate": 1000,
"type": 1

}
},
{

"OFPMeterBandDscpRemark": {
"burst_size": 10,
"len": 16,
"prec_level": 1,
"rate": 1000,
"type": 2

}
}

],
"command": 0,
"flags": 14,
"meter_id": 100

}
}

Multipart Messages

class os_ken.ofproto.ofproto_v1_5_parser.OFPDescStatsRequest(datapath,
flags=0,
type_=None)

Description statistics request message

The controller uses this message to query description of the switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPDescStatsRequest": {

"flags": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 437

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 0
}

}

class os_ken.ofproto.ofproto_v1_5_parser.OFPDescStatsReply(datapath,
type_=None,
**kwargs)

Description statistics reply message

The switch responds with this message to a description statistics request.

Attribute Description
body Instance of OFPDescStats

Example:

@set_ev_cls(ofp_event.EventOFPDescStatsReply, MAIN_DISPATCHER)
def desc_stats_reply_handler(self, ev):

body = ev.msg.body

self.logger.debug('DescStats: mfr_desc=%s hw_desc=%s sw_desc=%s '
'serial_num=%s dp_desc=%s',
body.mfr_desc, body.hw_desc, body.sw_desc,
body.serial_num, body.dp_desc)

JSON Example:

{
"OFPDescStatsReply": {

"body": {
"OFPDescStats": {

"dp_desc": "dp",
"hw_desc": "hw",
"mfr_desc": "mfr",
"serial_num": "serial",
"sw_desc": "sw"

}
},
"flags": 0,
"type": 0

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPFlowDescStatsRequest(datapath,
flags=0,
ta-
ble_id=255,
out_port=4294967295,
out_group=4294967295,
cookie=0,
cookie_mask=0,
match=None,
type_=None)

Individual flow descriptions request message

8.1. Writing Your OS-Ken Application 438

os-ken Documentation, Release 1.4.1.dev5

The controller uses this message to query individual flow descriptions.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch

Example:

def send_flow_desc_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPFlowDescStatsRequest(datapath, 0,

ofp.OFPTT_ALL,
ofp.OFPP_ANY,
ofp.OFPG_ANY,
cookie, cookie_mask,
match)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowDescStatsRequest": {

"cookie": 1234605616436508552,
"cookie_mask": 18446744073709551615,
"flags": 0,
"match": {

"OFPMatch": {
"length": 12,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 1

}
}

],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"table_id": 1,
"type": 1

}
}

8.1. Writing Your OS-Ken Application 439

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPFlowDescStatsReply(datapath,
type_=None,
**kwargs)

Individual flow descriptions reply message

The switch responds with this message to an individual flow descriptions request.

Attribute Description
body List of OFPFlowDesc instance

Example:

@set_ev_cls(ofp_event.EventOFPFlowDescStatsReply, MAIN_DISPATCHER)
def flow_desc_reply_handler(self, ev):

flows = []
for stat in ev.msg.body:

flows.append('table_id=%s priority=%d '
'idle_timeout=%d hard_timeout=%d flags=0x%04x '
'importance=%d cookie=%d match=%s '
'stats=%s instructions=%s' %
(stat.table_id, stat.priority,
stat.idle_timeout, stat.hard_timeout,
stat.flags, stat.importance,
stat.cookie, stat.match,
stat.stats, stat.instructions))

self.logger.debug('FlowDesc: %s', flows)

JSON Example:

{
"OFPFlowDescStatsReply": {

"body": [
{

"OFPFlowDesc": {
"cookie": 1234605616436508552,
"flags": 1,
"hard_timeout": 255,
"idle_timeout": 255,
"importance": 43690,
"instructions": [

{
"OFPInstructionGotoTable": {

"len": 8,
"table_id": 2,
"type": 1

}
}

],
"length": 64,
"match": {

"OFPMatch": {
"length": 12,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",

(continues on next page)

8.1. Writing Your OS-Ken Application 440

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"mask": null,
"value": 1

}
}

],
"type": 1

}
},
"priority": 5,
"stats": {

"OFPStats": {
"length": 12,
"oxs_fields": [

{
"OXSTlv": {

"field": "flow_count",
"value": 1

}
}

]
}

},
"table_id": 1

}
}

],
"flags": 0,
"type": 1

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPFlowStatsRequest(datapath,
flags=0,
ta-
ble_id=255,
out_port=4294967295,
out_group=4294967295,
cookie=0,
cookie_mask=0,
match=None,
type_=None)

Individual flow statistics request message

The controller uses this message to query individual flow statistics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch

8.1. Writing Your OS-Ken Application 441

os-ken Documentation, Release 1.4.1.dev5

Example:

def send_flow_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPFlowStatsRequest(datapath, 0,

ofp.OFPTT_ALL,
ofp.OFPP_ANY, ofp.OFPG_ANY,
cookie, cookie_mask,
match)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowStatsRequest": {

"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"out_group": 4294967295,
"out_port": 4294967295,
"table_id": 0,
"type": 17

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPFlowStatsReply(datapath,
type_=None,
**kwargs)

Individual flow statistics reply message

The switch responds with this message to an individual flow statistics request.

Attribute Description
body List of OFPFlowStats instance

Example:

@set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER)
def flow_stats_reply_handler(self, ev):

flows = []
for stat in ev.msg.body:

flows.append('table_id=%s reason=%d priority=%d '
'match=%s stats=%s' %
(stat.table_id, stat.reason, stat.priority,

(continues on next page)

8.1. Writing Your OS-Ken Application 442

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

stat.match, stat.stats))
self.logger.debug('FlowStats: %s', flows)

JSON Example:

{
"OFPFlowStatsReply": {

"body": [
{

"OFPFlowStats": {
"length": 40,
"match": {

"OFPMatch": {
"length": 12,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 1

}
}

],
"type": 1

}
},
"priority": 1,
"reason": 0,
"stats": {

"OFPStats": {
"length": 12,
"oxs_fields": [

{
"OXSTlv": {

"field": "flow_count",
"value": 1

}
}

]
}

},
"table_id": 1

}
}

],
"flags": 0,
"type": 17

}
}

8.1. Writing Your OS-Ken Application 443

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPAggregateStatsRequest(datapath,
flags,
ta-
ble_id,
out_port,
out_group,
cookie,
cookie_mask,
match,
type_=None)

Aggregate flow statistics request message

The controller uses this message to query aggregate flow statictics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
table_id ID of table to read
out_port Require matching entries to include this as an output port
out_group Require matching entries to include this as an output group
cookie Require matching entries to contain this cookie value
cookie_mask Mask used to restrict the cookie bits that must match
match Instance of OFPMatch

Example:

def send_aggregate_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

cookie = cookie_mask = 0
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPAggregateStatsRequest(datapath, 0,

ofp.OFPTT_ALL,
ofp.OFPP_ANY,
ofp.OFPG_ANY,
cookie, cookie_mask,
match)

datapath.send_msg(req)

JSON Example:

{
"OFPAggregateStatsRequest": {

"cookie": 0,
"cookie_mask": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 4,
"oxm_fields": [],
"type": 1

}
},
"out_group": 4294967295,

(continues on next page)

8.1. Writing Your OS-Ken Application 444

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"out_port": 4294967295,
"table_id": 255,
"type": 2

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPAggregateStatsReply(datapath,
type_=None,
**kwargs)

Aggregate flow statistics reply message

The switch responds with this message to an aggregate flow statistics request.

Attribute Description
body Instance of OFPAggregateStats

Example:

@set_ev_cls(ofp_event.EventOFPAggregateStatsReply, MAIN_DISPATCHER)
def aggregate_stats_reply_handler(self, ev):

body = ev.msg.body

self.logger.debug('AggregateStats: stats=%s', body.stats)

JSON Example:

{
"OFPAggregateStatsReply": {

"body": {
"OFPAggregateStats": {

"length": 16,
"stats": {

"OFPStats": {
"length": 12,
"oxs_fields": [

{
"OXSTlv": {

"field": "flow_count",
"value": 1

}
}

]
}

}
}

},
"flags": 0,
"type": 2

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPPortStatsRequest(datapath,
flags,
port_no,
type_=None)

8.1. Writing Your OS-Ken Application 445

os-ken Documentation, Release 1.4.1.dev5

Port statistics request message

The controller uses this message to query information about ports statistics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read (OFPP_ANY to all ports)

Example:

def send_port_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPPortStatsRequest(datapath, 0, ofp.OFPP_ANY)
datapath.send_msg(req)

JSON Example:

{
"OFPPortStatsRequest": {

"flags": 0,
"port_no": 4294967295,
"type": 4

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPPortStatsReply(datapath,
type_=None,
**kwargs)

Port statistics reply message

The switch responds with this message to a port statistics request.

Attribute Description
body List of OFPPortStats instance

Example:

@set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER)
def port_stats_reply_handler(self, ev):

ports = []
for stat in ev.msg.body:

ports.append(stat.length, stat.port_no,
stat.duration_sec, stat.duration_nsec,
stat.rx_packets, stat.tx_packets,
stat.rx_bytes, stat.tx_bytes,
stat.rx_dropped, stat.tx_dropped,
stat.rx_errors, stat.tx_errors,
repr(stat.properties))

self.logger.debug('PortStats: %s', ports)

JSON Example:

8.1. Writing Your OS-Ken Application 446

os-ken Documentation, Release 1.4.1.dev5

{
"OFPPortStatsReply": {

"body": [
{

"OFPPortStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 224,
"port_no": 7,
"properties": [

{
"OFPPortStatsPropEthernet": {

"collisions": 0,
"length": 40,
"rx_crc_err": 0,
"rx_frame_err": 0,
"rx_over_err": 0,
"type": 0

}
},
{

"OFPPortStatsPropOptical": {
"bias_current": 300,
"flags": 3,
"length": 44,
"rx_freq_lmda": 1500,
"rx_grid_span": 500,
"rx_offset": 700,
"rx_pwr": 2000,
"temperature": 273,
"tx_freq_lmda": 1500,
"tx_grid_span": 500,
"tx_offset": 700,
"tx_pwr": 2000,
"type": 1

}
},
{

"OFPPortStatsPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPPortStatsPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 447

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OFPPortStatsPropExperimenter": {

"data": [
1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"rx_bytes": 0,
"rx_dropped": 0,
"rx_errors": 0,
"rx_packets": 0,
"tx_bytes": 336,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 4

}
},
{

"OFPPortStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 120,
"port_no": 6,
"properties": [

{
"OFPPortStatsPropEthernet": {

"collisions": 0,
"length": 40,
"rx_crc_err": 0,
"rx_frame_err": 0,
"rx_over_err": 0,
"type": 0

}
}

],
"rx_bytes": 336,
"rx_dropped": 0,
"rx_errors": 0,
"rx_packets": 4,
"tx_bytes": 336,
"tx_dropped": 0,
"tx_errors": 0,
"tx_packets": 4

}
}

],
"flags": 0,
"type": 4

}
}

8.1. Writing Your OS-Ken Application 448

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPPortDescStatsRequest(datapath,
flags=0,
port_no=4294967295,
type_=None)

Port description request message

The controller uses this message to query description of one or all the ports.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read (OFPP_ANY to all ports)

Example:

def send_port_desc_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPPortDescStatsRequest(datapath, 0, ofp.OFPP_
↪→ANY)

datapath.send_msg(req)

JSON Example:

{
"OFPPortDescStatsRequest": {

"flags": 0,
"port_no": 48346,
"type": 13

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPPortDescStatsReply(datapath,
type_=None,
**kwargs)

Port description reply message

The switch responds with this message to a port description request.

Attribute Description
body List of OFPPort instance

Example:

@set_ev_cls(ofp_event.EventOFPPortDescStatsReply, MAIN_DISPATCHER)
def port_desc_stats_reply_handler(self, ev):

ports = []
for p in ev.msg.body:

ports.append('port_no=%d hw_addr=%s name=%s config=0x%08x '
'state=0x%08x properties=%s' %
(p.port_no, p.hw_addr,
p.name, p.config, p.state, repr(p.properties)))

self.logger.debug('OFPPortDescStatsReply received: %s', ports)

JSON Example:

8.1. Writing Your OS-Ken Application 449

os-ken Documentation, Release 1.4.1.dev5

{
"OFPPortDescStatsReply": {

"body": [
{

"OFPPort": {
"config": 0,
"hw_addr": "f2:0b:a4:d0:3f:70",
"length": 168,
"name": "Port7",
"port_no": 7,
"properties": [

{
"OFPPortDescPropEthernet": {

"advertised": 10240,
"curr": 10248,
"curr_speed": 5000,
"length": 32,
"max_speed": 5000,
"peer": 10248,
"supported": 10248,
"type": 0

}
},
{

"OFPPortDescPropOptical": {
"length": 40,
"rx_grid_freq_lmda": 1500,
"rx_max_freq_lmda": 2000,
"rx_min_freq_lmda": 1000,
"supported": 1,
"tx_grid_freq_lmda": 1500,
"tx_max_freq_lmda": 2000,
"tx_min_freq_lmda": 1000,
"tx_pwr_max": 2000,
"tx_pwr_min": 1000,
"type": 1

}
},
{

"OFPPortDescPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPPortDescPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
(continues on next page)

8.1. Writing Your OS-Ken Application 450

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

},
{

"OFPPortDescPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"state": 4

}
},
{

"OFPPort": {
"config": 0,
"hw_addr": "f2:0b:a4:7d:f8:ea",
"length": 72,
"name": "Port6",
"port_no": 6,
"properties": [

{
"OFPPortDescPropEthernet": {

"advertised": 10240,
"curr": 10248,
"curr_speed": 5000,
"length": 32,
"max_speed": 5000,
"peer": 10248,
"supported": 10248,
"type": 0

}
}

],
"state": 4

}
}

],
"flags": 0,
"type": 13

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPQueueStatsRequest(datapath,
flags=0,
port_no=4294967295,
queue_id=4294967295,
type_=None)

Queue statistics request message

The controller uses this message to query queue statictics.

8.1. Writing Your OS-Ken Application 451

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read
queue_id ID of queue to read

Example:

def send_queue_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueStatsRequest(datapath, 0, ofp.OFPP_ANY,
ofp.OFPQ_ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPQueueStatsRequest": {

"flags": 0,
"port_no": 43981,
"queue_id": 4294967295,
"type": 5

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPQueueStatsReply(datapath,
type_=None,
**kwargs)

Queue statistics reply message

The switch responds with this message to an aggregate flow statistics request.

Attribute Description
body List of OFPQueueStats instance

Example:

@set_ev_cls(ofp_event.EventOFPQueueStatsReply, MAIN_DISPATCHER)
def queue_stats_reply_handler(self, ev):

queues = []
for stat in ev.msg.body:

queues.append('port_no=%d queue_id=%d '
'tx_bytes=%d tx_packets=%d tx_errors=%d '
'duration_sec=%d duration_nsec=%d'
'properties=%s' %
(stat.port_no, stat.queue_id,
stat.tx_bytes, stat.tx_packets, stat.tx_errors,
stat.duration_sec, stat.duration_nsec,
repr(stat.properties)))

self.logger.debug('QueueStats: %s', queues)

JSON Example:

8.1. Writing Your OS-Ken Application 452

os-ken Documentation, Release 1.4.1.dev5

{
"OFPQueueStatsReply": {

"body": [
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 104,
"port_no": 7,
"properties": [

{
"OFPQueueStatsPropExperimenter": {

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPQueueStatsPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPQueueStatsPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"queue_id": 1,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
},
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 48,
"port_no": 6,
"properties": [],
"queue_id": 1,

(continues on next page)

8.1. Writing Your OS-Ken Application 453

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
},
{

"OFPQueueStats": {
"duration_nsec": 0,
"duration_sec": 0,
"length": 48,
"port_no": 7,
"properties": [],
"queue_id": 2,
"tx_bytes": 0,
"tx_errors": 0,
"tx_packets": 0

}
}

],
"flags": 0,
"type": 5

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPQueueDescStatsRequest(datapath,
flags=0,
port_no=4294967295,
queue_id=4294967295,
type_=None)

Queue description request message

The controller uses this message to query description of all the queues.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
port_no Port number to read (OFPP_ANY for all ports)
queue_id ID of queue to read (OFPQ_ALL for all queues)

Example:

def send_queue_desc_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPQueueDescStatsRequest(datapath, 0,
ofp.OFPP_ANY,
ofp.OFPQ_ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPQueueDescStatsRequest": {

"flags": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 454

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"port_no": 52651,
"queue_id": 57020,
"type": 15

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPQueueDescStatsReply(datapath,
type_=None,
**kwargs)

Queue description reply message

The switch responds with this message to a queue description request.

Attribute Description
body List of OFPQueueDesc instance

Example:

@set_ev_cls(ofp_event.EventOFPQueueDescStatsReply, MAIN_DISPATCHER)
def queue_desc_stats_reply_handler(self, ev):

queues = []
for q in ev.msg.body:

queues.append('port_no=%d queue_id=0x%08x properties=%s' %
(q.port_no, q.queue_id, repr(q.properties)))

self.logger.debug('OFPQueueDescStatsReply received: %s', queues)

JSON Example:

{
"OFPQueueDescStatsReply": {

"body": [
{

"OFPQueueDesc": {
"len": 32,
"port_no": 7,
"properties": [

{
"OFPQueueDescPropExperimenter": {

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
}

],
"queue_id": 0

}
},
{

"OFPQueueDesc": {
"len": 88,
"port_no": 8,
"properties": [

{
(continues on next page)

8.1. Writing Your OS-Ken Application 455

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPQueueDescPropMinRate": {
"length": 8,
"rate": 300,
"type": 1

}
},
{

"OFPQueueDescPropMaxRate": {
"length": 8,
"rate": 900,
"type": 2

}
},
{

"OFPQueueDescPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPQueueDescPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPQueueDescPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"queue_id": 1

}
}

],
"flags": 0,
"type": 15

}
}

8.1. Writing Your OS-Ken Application 456

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPGroupStatsRequest(datapath,
flags=0,
group_id=4294967292,
type_=None)

Group statistics request message

The controller uses this message to query statistics of one or more groups.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
group_id ID of group to read (OFPG_ALL to all groups)

Example:

def send_group_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupStatsRequest(datapath, 0, ofp.OFPG_ALL)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupStatsRequest": {

"flags": 0,
"group_id": 4294967292,
"type": 6

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPGroupStatsReply(datapath,
type_=None,
**kwargs)

Group statistics reply message

The switch responds with this message to a group statistics request.

Attribute Description
body List of OFPGroupStats instance

Example:

@set_ev_cls(ofp_event.EventOFPGroupStatsReply, MAIN_DISPATCHER)
def group_stats_reply_handler(self, ev):

groups = []
for stat in ev.msg.body:

groups.append('length=%d group_id=%d '
'ref_count=%d packet_count=%d byte_count=%d '
'duration_sec=%d duration_nsec=%d' %
(stat.length, stat.group_id,
stat.ref_count, stat.packet_count,
stat.byte_count, stat.duration_sec,
stat.duration_nsec))

self.logger.debug('GroupStats: %s', groups)

8.1. Writing Your OS-Ken Application 457

os-ken Documentation, Release 1.4.1.dev5

JSON Example:

{
"OFPGroupStatsReply": {

"body": [
{

"OFPGroupStats": {
"bucket_stats": [

{
"OFPBucketCounter": {

"byte_count": 2345,
"packet_count": 234

}
}

],
"byte_count": 12345,
"duration_nsec": 609036000,
"duration_sec": 9,
"group_id": 1,
"length": 56,
"packet_count": 123,
"ref_count": 2

}
}

],
"flags": 0,
"type": 6

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPGroupDescStatsRequest(datapath,
flags=0,
group_id=4294967292,
type_=None)

Group description request message

The controller uses this message to list the set of groups on a switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
group_id ID of group to read (OFPG_ALL to all groups)

Example:

def send_group_desc_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupDescStatsRequest(datapath, 0, ofp.OFPG_
↪→ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPGroupDescStatsRequest": {

(continues on next page)

8.1. Writing Your OS-Ken Application 458

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"flags": 0,
"group_id": 52651,
"type": 7

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPGroupDescStatsReply(datapath,
type_=None,
**kwargs)

Group description reply message

The switch responds with this message to a group description request.

Attribute Description
body List of OFPGroupDescStats instance

Example:

@set_ev_cls(ofp_event.EventOFPGroupDescStatsReply, MAIN_DISPATCHER)
def group_desc_stats_reply_handler(self, ev):

descs = []
for stat in ev.msg.body:

descs.append('length=%d type=%d group_id=%d '
'buckets=%s properties=%s' %
(stat.length, stat.type, stat.group_id,
stat.bucket, repr(stat.properties)))

self.logger.debug('GroupDescStats: %s', descs)

JSON Example:

{
"OFPGroupDescStatsReply": {

"body": [
{

"OFPGroupDescStats": {
"bucket_array_len": 32,
"buckets": [

{
"OFPBucket": {

"action_array_len": 16,
"actions": [

{
"OFPActionOutput": {

"len": 16,
"max_len": 65509,
"port": 1,
"type": 0

}
}

],
"bucket_id": 65535,
"len": 32,
"properties": [

{
"OFPGroupBucketPropWeight": {

(continues on next page)

8.1. Writing Your OS-Ken Application 459

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"length": 8,
"type": 0,
"weight": 65535

}
}

]
}

}
],
"group_id": 1,
"length": 48,
"properties": [],
"type": 1

}
}

],
"flags": 0,
"type": 7

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPGroupFeaturesStatsRequest(datapath,
flags=0,
type_=None)

Group features request message

The controller uses this message to list the capabilities of groups on a switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_group_features_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGroupFeaturesStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPGroupFeaturesStatsRequest": {

"flags": 0,
"type": 8

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPGroupFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Group features reply message

The switch responds with this message to a group features request.

8.1. Writing Your OS-Ken Application 460

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
body Instance of OFPGroupFeaturesStats

Example:

@set_ev_cls(ofp_event.EventOFPGroupFeaturesStatsReply, MAIN_
↪→DISPATCHER)
def group_features_stats_reply_handler(self, ev):

body = ev.msg.body

self.logger.debug('GroupFeaturesStats: types=%d '
'capabilities=0x%08x max_groups=%s '
'actions=%s',
body.types, body.capabilities,
body.max_groups, body.actions)

JSON Example:

{
"OFPGroupFeaturesStatsReply": {

"body": {
"OFPGroupFeaturesStats": {

"actions": [
67082241,
67082241,
67082241,
67082241

],
"capabilities": 5,
"max_groups": [

16777216,
16777216,
16777216,
16777216

],
"types": 15

}
},
"flags": 0,
"type": 8

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPMeterStatsRequest(datapath,
flags=0,
me-
ter_id=4294967295,
type_=None)

Meter statistics request message

The controller uses this message to query statistics for one or more meters.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
meter_id ID of meter to read (OFPM_ALL to all meters)

8.1. Writing Your OS-Ken Application 461

os-ken Documentation, Release 1.4.1.dev5

Example:

def send_meter_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterStatsRequest(datapath, 0, ofp.OFPM_ALL)
datapath.send_msg(req)

JSON Example:

{
"OFPMeterStatsRequest": {

"flags": 0,
"meter_id": 4294967295,
"type": 9

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPMeterStatsReply(datapath,
type_=None,
**kwargs)

Meter statistics reply message

The switch responds with this message to a meter statistics request.

Attribute Description
body List of OFPMeterStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterStatsReply, MAIN_DISPATCHER)
def meter_stats_reply_handler(self, ev):

meters = []
for stat in ev.msg.body:

meters.append('meter_id=0x%08x len=%d ref_count=%d '
'packet_in_count=%d byte_in_count=%d '
'duration_sec=%d duration_nsec=%d '
'band_stats=%s' %
(stat.meter_id, stat.len, stat.ref_count,
stat.packet_in_count, stat.byte_in_count,
stat.duration_sec, stat.duration_nsec,
stat.band_stats))

self.logger.debug('MeterStats: %s', meters)

JSON Example:

{
"OFPMeterStatsReply": {

"body": [
{

"OFPMeterStats": {
"band_stats": [

{
"OFPMeterBandStats": {

"byte_band_count": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 462

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"packet_band_count": 0
}

}
],
"byte_in_count": 0,
"duration_nsec": 480000,
"duration_sec": 0,
"ref_count": 0,
"len": 56,
"meter_id": 100,
"packet_in_count": 0

}
}

],
"flags": 0,
"type": 9

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPMeterDescStatsRequest(datapath,
flags=0,
me-
ter_id=4294967295,
type_=None)

Meter description statistics request message

The controller uses this message to query configuration for one or more meters.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
meter_id ID of meter to read (OFPM_ALL to all meters)

Example:

def send_meter_desc_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterDescStatsRequest(datapath, 0,
ofp.OFPM_ALL)

datapath.send_msg(req)

JSON Example:

{
"OFPMeterDescStatsRequest": {

"flags": 0,
"meter_id": 4294967295,
"type": 10

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPMeterDescStatsReply(datapath,
type_=None,
**kwargs)

8.1. Writing Your OS-Ken Application 463

os-ken Documentation, Release 1.4.1.dev5

Meter description statistics reply message

The switch responds with this message to a meter description statistics request.

Attribute Description
body List of OFPMeterDescStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterDescStatsReply, MAIN_DISPATCHER)
def meter_desc_stats_reply_handler(self, ev):

configs = []
for stat in ev.msg.body:

configs.append('length=%d flags=0x%04x meter_id=0x%08x '
'bands=%s' %
(stat.length, stat.flags, stat.meter_id,
stat.bands))

self.logger.debug('MeterDescStats: %s', configs)

JSON Example:

{
"OFPMeterDescStatsReply": {

"body": [
{

"OFPMeterDescStats": {
"bands": [

{
"OFPMeterBandDrop": {

"burst_size": 10,
"len": 16,
"rate": 1000,
"type": 1

}
}

],
"flags": 14,
"length": 24,
"meter_id": 100

}
}

],
"flags": 0,
"type": 10

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPMeterFeaturesStatsRequest(datapath,
flags=0,
type_=None)

Meter features statistics request message

The controller uses this message to query the set of features of the metering subsystem.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

8.1. Writing Your OS-Ken Application 464

os-ken Documentation, Release 1.4.1.dev5

Example:

def send_meter_features_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPMeterFeaturesStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPMeterFeaturesStatsRequest": {

"flags": 0,
"type": 11

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPMeterFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Meter features statistics reply message

The switch responds with this message to a meter features statistics request.

Attribute Description
body List of OFPMeterFeaturesStats instance

Example:

@set_ev_cls(ofp_event.EventOFPMeterFeaturesStatsReply, MAIN_
↪→DISPATCHER)
def meter_features_stats_reply_handler(self, ev):

features = []
for stat in ev.msg.body:

features.append('max_meter=%d band_types=0x%08x '
'capabilities=0x%08x max_bands=%d '
'max_color=%d' %
(stat.max_meter, stat.band_types,
stat.capabilities, stat.max_bands,
stat.max_color))

self.logger.debug('MeterFeaturesStats: %s', features)

JSON Example:

{
"OFPMeterFeaturesStatsReply": {

"body": [
{

"OFPMeterFeaturesStats": {
"band_types": 2147483654,
"capabilities": 15,
"features": 3,
"max_bands": 255,
"max_color": 0,
"max_meter": 16777216

}

(continues on next page)

8.1. Writing Your OS-Ken Application 465

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
],
"flags": 0,
"type": 11

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPControllerStatusStatsRequest(datapath,
flags=0,
type_=None)

Controller status multipart request message

The controller uses this message to request the status, the roles and the control channels of other
controllers configured on the switch.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_controller_status_multipart_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPPortDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPControllerStatusStatsRequest": {

"flags": 0,
"type": 18

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPControllerStatusStatsReply(datapath,
type_=None,
**kwargs)

Controller status multipart reply message

The switch responds with this message to a controller status multipart request.

Attribute Description
body List of OFPControllerStatus instance

Example:

@set_ev_cls(ofp_event.EventOFPControllerStatusStatsReply,
MAIN_DISPATCHER)

def controller_status_multipart_reply_handler(self, ev):
status = []
for s in ev.msg.body:

status.append('short_id=%d role=%d reason=%d '

(continues on next page)

8.1. Writing Your OS-Ken Application 466

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

'channel_status=%d properties=%s' %
(s.short_id, s.role, s.reason,
s.channel_status, repr(s.properties)))

self.logger.debug('OFPControllerStatusStatsReply received: %s',
status)

JSON Example:

{
"OFPControllerStatusStatsReply": {

"body": [
{

"OFPControllerStatusStats": {
"channel_status": 1,
"length": 48,
"properties": [

{
"OFPControllerStatusPropUri": {

"length": 26,
"type": 0,
"uri": "tls:192.168.34.23:6653"

}
}

],
"reason": 1,
"role": 1,
"short_id": 65535

}
}

],
"flags": 0,
"type": 18

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPTableStatsRequest(datapath,
flags,
type_=None)

Table statistics request message

The controller uses this message to query flow table statictics.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_table_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

8.1. Writing Your OS-Ken Application 467

os-ken Documentation, Release 1.4.1.dev5

{
"OFPTableStatsRequest": {

"flags": 0,
"type": 3

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPTableStatsReply(datapath,
type_=None,
**kwargs)

Table statistics reply message

The switch responds with this message to a table statistics request.

Attribute Description
body List of OFPTableStats instance

Example:

@set_ev_cls(ofp_event.EventOFPTableStatsReply, MAIN_DISPATCHER)
def table_stats_reply_handler(self, ev):

tables = []
for stat in ev.msg.body:

tables.append('table_id=%d active_count=%d lookup_count=%d '
' matched_count=%d' %
(stat.table_id, stat.active_count,
stat.lookup_count, stat.matched_count))

self.logger.debug('TableStats: %s', tables)

JSON Example:

{
"OFPTableStatsReply": {

"body": [
{

"OFPTableStats": {
"active_count": 4,
"lookup_count": 4,
"matched_count": 4,
"table_id": 0

}
},
{

"OFPTableStats": {
"active_count": 4,
"lookup_count": 4,
"matched_count": 4,
"table_id": 1

}
}

],
"flags": 0,
"type": 3

}
}

8.1. Writing Your OS-Ken Application 468

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPTableDescStatsRequest(datapath,
flags=0,
type_=None)

Table description request message

The controller uses this message to query description of all the tables.

Attribute Description
flags Zero or OFPMPF_REQ_MORE

Example:

def send_table_desc_stats_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPTableDescStatsRequest(datapath, 0)
datapath.send_msg(req)

JSON Example:

{
"OFPTableDescStatsRequest": {

"flags": 0,
"type": 14

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPTableDescStatsReply(datapath,
type_=None,
**kwargs)

Table description reply message

The switch responds with this message to a table description request.

Attribute Description
body List of OFPTableDesc instance

Example:

@set_ev_cls(ofp_event.EventOFPTableDescStatsReply, MAIN_DISPATCHER)
def table_desc_stats_reply_handler(self, ev):

tables = []
for p in ev.msg.body:

tables.append('table_id=%d config=0x%08x properties=%s' %
(p.table_id, p.config, repr(p.properties)))

self.logger.debug('OFPTableDescStatsReply received: %s', tables)

JSON Example:

{
"OFPTableDescStatsReply": {

"body": [
{

"OFPTableDesc": {
"config": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 469

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"length": 24,
"properties": [

{
"OFPTableModPropExperimenter": {

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
}

],
"table_id": 7

}
},
{

"OFPTableDesc": {
"config": 0,
"length": 80,
"properties": [

{
"OFPTableModPropEviction": {

"flags": 0,
"length": 8,
"type": 2

}
},
{

"OFPTableModPropVacancy": {
"length": 8,
"type": 3,
"vacancy": 0,
"vacancy_down": 0,
"vacancy_up": 0

}
},
{

"OFPTableModPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},

(continues on next page)

8.1. Writing Your OS-Ken Application 470

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OFPTableModPropExperimenter": {

"data": [
1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"table_id": 8

}
}

],
"flags": 0,
"type": 14

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPTableFeaturesStatsRequest(datapath,
flags=0,
body=None,
type_=None)

Table features statistics request message

The controller uses this message to query table features.

Attribute Description
body List of OFPTableFeaturesStats instances. The default is [].

JSON Example:

{
"OFPTableFeaturesStatsRequest": {

"body": [
{

"OFPTableFeaturesStats": {
"capabilities": 4,
"command": 1,
"features": 1,
"length": 80,
"max_entries": 255,
"metadata_match": 18446744073709551615,
"metadata_write": 18446744073709551615,
"name": "table1",
"properties": [

{
"OFPTableFeaturePropOxmValues": {

"length": 14,
"oxm_values": [

{
"OXMTlv": {

(continues on next page)

8.1. Writing Your OS-Ken Application 471

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"field": "eth_src",
"mask": null,
"value":

↪→"aa:bb:cc:dd:ee:ff"
}

}
],
"type": 22

}
}

],
"table_id": 1

}
}

],
"flags": 0,
"type": 12

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPTableFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Table features statistics reply message

The switch responds with this message to a table features statistics request.

Attribute Description
body List of OFPTableFeaturesStats instance

JSON Example:

{
"OFPTableFeaturesStatsReply": {

"body": [
{

"OFPTableFeaturesStats": {
"capabilities": 4,
"command": 1,
"features": 1,
"length": 80,
"max_entries": 255,
"metadata_match": 18446744073709551615,
"metadata_write": 18446744073709551615,
"name": "table1",
"properties": [

{
"OFPTableFeaturePropOxmValues": {

"length": 14,
"oxm_values": [

{
"OXMTlv": {

"field": "eth_src",
"mask": null,
"value": "aa:bb:cc:dd:ee:ff"

(continues on next page)

8.1. Writing Your OS-Ken Application 472

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

],
"type": 22

}
}

],
"table_id": 1

}
}

],
"flags": 0,
"type": 12

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPFlowMonitorRequest(datapath,
flags=0,
mon-
i-
tor_id=0,
out_port=4294967295,
out_group=4294967295,
mon-
i-
tor_flags=0,
ta-
ble_id=255,
com-
mand=0,
match=None,
type_=None)

Flow monitor request message

The controller uses this message to query flow monitors.

8.1. Writing Your OS-Ken Application 473

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
flags Zero or OFPMPF_REQ_MORE
monitor_id Controller-assigned ID for this monitor
out_port Require matching entries to include this as an

output port
out_group Require matching entries to include this as an

output group
monitor_flags Bitmap of the following flags.

OFPFMF_INITIAL
OFPFMF_ADD
OFPFMF_REMOVED
OFPFMF_MODIFY
OFPFMF_INSTRUCTIONS
OFPFMF_NO_ABBREV
OFPFMF_ONLY_OWN

table_id ID of table to monitor
command One of the following values.

OFPFMC_ADD
OFPFMC_MODIFY
OFPFMC_DELETE

match Instance of OFPMatch

Example:

def send_flow_monitor_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

monitor_flags = [ofp.OFPFMF_INITIAL, ofp.OFPFMF_ONLY_OWN]
match = ofp_parser.OFPMatch(in_port=1)
req = ofp_parser.OFPFlowMonitorRequest(datapath, 0, 10000,

ofp.OFPP_ANY, ofp.OFPG_ANY,
monitor_flags,
ofp.OFPTT_ALL,
ofp.OFPFMC_ADD, match)

datapath.send_msg(req)

JSON Example:

{
"OFPFlowMonitorRequest": {

"command": 0,
"flags": 0,
"match": {

"OFPMatch": {
"length": 14,
"oxm_fields": [

(continues on next page)

8.1. Writing Your OS-Ken Application 474

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"OXMTlv": {

"field": "eth_dst",
"mask": null,
"value": "f2:0b:a4:7d:f8:ea"

}
}

],
"type": 1

}
},
"monitor_flags": 15,
"monitor_id": 100000000,
"out_group": 4294967295,
"out_port": 22,
"table_id": 33,
"type": 16

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPFlowMonitorReply(datapath,
type_=None,
**kwargs)

Flow monitor reply message

The switch responds with this message to a flow monitor request.

Attribute Description
body List of list of the following class instance.

OFPFlowMonitorFull
OFPFlowMonitorAbbrev
OFPFlowMonitorPaused

Example:

@set_ev_cls(ofp_event.EventOFPFlowMonitorReply, MAIN_DISPATCHER)
def flow_monitor_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto
flow_updates = []

for update in msg.body:
update_str = 'length=%d event=%d' %

(update.length, update.event)
if (update.event == ofp.OFPFME_INITIAL or

update.event == ofp.OFPFME_ADDED or
update.event == ofp.OFPFME_REMOVED or
update.event == ofp.OFPFME_MODIFIED):
update_str += 'table_id=%d reason=%d idle_timeout=%d '

'hard_timeout=%d priority=%d cookie=%d '
'match=%d instructions=%s' %

(continues on next page)

8.1. Writing Your OS-Ken Application 475

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

(update.table_id, update.reason,
update.idle_timeout, update.hard_timeout,
update.priority, update.cookie,
update.match, update.instructions)

elif update.event == ofp.OFPFME_ABBREV:
update_str += 'xid=%d' % (update.xid)

flow_updates.append(update_str)
self.logger.debug('FlowUpdates: %s', flow_updates)

JSON Example:

{
"OFPFlowMonitorReply": {

"body": [
{

"OFPFlowUpdateFull": {
"cookie": 0,
"event": 0,
"hard_timeout": 700,
"idle_timeout": 600,
"instructions": [

{
"OFPInstructionActions": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 0,
"port": 4294967290,
"type": 0

}
}

],
"len": 24,
"type": 4

}
}

],
"length": 64,
"match": {

"OFPMatch": {
"length": 10,
"oxm_fields": [

{
"OXMTlv": {

"field": "eth_type",
"mask": null,
"value": 2054

}
}

],
"type": 1

}
},
"priority": 3,
"reason": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 476

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"table_id": 0
}

},
{

"OFPFlowUpdateAbbrev": {
"event": 4,
"length": 8,
"xid": 1234

}
},
{

"OFPFlowUpdatePaused": {
"event": 5,
"length": 8

}
}

],
"flags": 0,
"type": 16

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPBundleFeaturesStatsRequest(datapath,
flags=0,
fea-
ture_request_flags=0,
prop-
er-
ties=None,
type_=None)

Bundle features request message

The controller uses this message to query a switch about its bundle capabilities, including whether
it supports atomic bundles, ordered bundles, and scheduled bundles.

Attribute Description
flags Zero or OFPMPF_REQ_MORE
feature_request_flags Bitmap of the following flags.

OFPBF_TIMESTAMP
OFPBF_TIME_SET_SCHED

properties List of OFPBundleFeaturesProp sub-
class instance

Example:

def send_bundle_features_stats_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPBundleFeaturesStatsRequest(datapath, 0)
datapath.send_msg(req)

8.1. Writing Your OS-Ken Application 477

os-ken Documentation, Release 1.4.1.dev5

JSON Example:

{
"OFPBundleFeaturesStatsRequest": {

"feature_request_flags": 3,
"flags": 0,
"properties": [

{
"OFPBundleFeaturesPropTime": {

"length": 72,
"sched_accuracy": {

"OFPTime": {
"nanoseconds": 1717986918,
"seconds": 6148914691236517205

}
},
"sched_max_future": {

"OFPTime": {
"nanoseconds": 2290649224,
"seconds": 8608480567731124087

}
},
"sched_max_past": {

"OFPTime": {
"nanoseconds": 2863311530,
"seconds": 11068046444225730969

}
},
"timestamp": {

"OFPTime": {
"nanoseconds": 3435973836,
"seconds": 13527612320720337851

}
},
"type": 1

}
}

],
"type": 19

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPBundleFeaturesStatsReply(datapath,
type_=None,
**kwargs)

Bundle features reply message

The switch responds with this message to a bundle features request.

Attribute Description
body Instance of OFPBundleFeaturesStats

Example:

@set_ev_cls(ofp_event.EventOFPBundleFeaturesStatsReply, MAIN_
↪→DISPATCHER)

(continues on next page)

8.1. Writing Your OS-Ken Application 478

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

def bundle_features_stats_reply_handler(self, ev):
body = ev.msg.body

self.logger.debug('OFPBundleFeaturesStats: capabilities=%0x%08x '
'properties=%s',
body.capabilities, repr(body.properties))

JSON Example:

{
"OFPBundleFeaturesStatsReply": {

"body": {
"OFPBundleFeaturesStats": {

"capabilities": 7,
"properties": [

{
"OFPBundleFeaturesPropTime": {

"length": 72,
"sched_accuracy": {

"OFPTime": {
"nanoseconds": 1717986918,
"seconds": 6148914691236517205

}
},
"sched_max_future": {

"OFPTime": {
"nanoseconds": 2290649224,
"seconds": 8608480567731124087

}
},
"sched_max_past": {

"OFPTime": {
"nanoseconds": 2863311530,
"seconds": 11068046444225730969

}
},
"timestamp": {

"OFPTime": {
"nanoseconds": 3435973836,
"seconds": 13527612320720337851

}
},
"type": 1

}
}

]
}

},
"flags": 0,
"type": 19

}
}

8.1. Writing Your OS-Ken Application 479

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPExperimenterStatsRequest(datapath,
flags,
ex-
per-
i-
menter,
exp_type,
data,
type_=None)

Experimenter multipart request message

Attribute Description
flags Zero or OFPMPF_REQ_MORE
experimenter Experimenter ID
exp_type Experimenter defined
data Experimenter defined additional data

JSON Example:

{
"OFPExperimenterStatsRequest": {

"data": "aG9nZWhvZ2U=",
"exp_type": 3405678728,
"experimenter": 3735928495,
"flags": 0,
"type": 65535

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPExperimenterStatsReply(datapath,
type_=None,
**kwargs)

Experimenter multipart reply message

Attribute Description
body An OFPExperimenterMultipart instance

JSON Example:

{
"OFPExperimenterStatsReply": {

"body": {
"OFPExperimenterMultipart": {

"data": "dGVzdGRhdGE5OTk5OTk5OQ==",
"exp_type": 3405674359,
"experimenter": 3735928495

}
},
"flags": 0,
"type": 65535

}
}

8.1. Writing Your OS-Ken Application 480

os-ken Documentation, Release 1.4.1.dev5

Packet-Out Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPPacketOut(datapath,
buffer_id=None,
match=None,
actions=None,
data=None, ac-
tions_len=None)

Packet-Out message

The controller uses this message to send a packet out throught the switch.

Attribute Description
buffer_id ID assigned by datapath (OFP_NO_BUFFER if none)
match Instance of OFPMatch (in_port is mandatory in the match field)
actions list of OpenFlow action class
data Packet data of a binary type value or an instances of packet.Packet.

Example:

def send_packet_out(self, datapath, buffer_id, in_port):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

match = OFPMatch(in_port=in_port)
actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD, 0)]
req = ofp_parser.OFPPacketOut(datapath, buffer_id,

match, actions)
datapath.send_msg(req)

JSON Example:

{
"OFPPacketOut": {

"actions": [
{

"OFPActionOutput": {
"len": 16,
"max_len": 65535,
"port": 4294967291,
"type": 0

}
}

],
"actions_len": 16,
"buffer_id": 4294967295,
"data": "dGVzdA==",
"match": {

"OFPMatch": {
"length": 12,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,

(continues on next page)

8.1. Writing Your OS-Ken Application 481

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"value": 4294967040
}

}
],
"type": 1

}
}

}
}

Barrier Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPBarrierRequest(datapath)
Barrier request message

The controller sends this message to ensure message dependencies have been met or receive noti-
fications for completed operations.

Example:

def send_barrier_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPBarrierRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPBarrierRequest": {}

}

class os_ken.ofproto.ofproto_v1_5_parser.OFPBarrierReply(datapath)
Barrier reply message

The switch responds with this message to a barrier request.

Example:

@set_ev_cls(ofp_event.EventOFPBarrierReply, MAIN_DISPATCHER)
def barrier_reply_handler(self, ev):

self.logger.debug('OFPBarrierReply received')

JSON Example:

{
"OFPBarrierReply": {}

}

8.1. Writing Your OS-Ken Application 482

os-ken Documentation, Release 1.4.1.dev5

Role Request Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPRoleRequest(datapath,
role=None,
short_id=None,
genera-
tion_id=None)

Role request message

The controller uses this message to change its role.

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

short_id ID number for the controller. The default is
OFPCID_UNDEFINED.

generation_id Master Election Generation ID

Example:

def send_role_request(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPRoleRequest(datapath, ofp.OFPCR_ROLE_EQUAL,
ofp.OFPCID_UNDEFINED, 0)

datapath.send_msg(req)

JSON Example:

{
"OFPRoleRequest": {

"generation_id": 1234605616436508552,
"role": 1,
"short_id": 43690

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPRoleReply(datapath,
role=None,
short_id=None,
genera-
tion_id=None)

Role reply message

The switch responds with this message to a role request.

8.1. Writing Your OS-Ken Application 483

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

short_id ID number for the controller. The default is
OFPCID_UNDEFINED.

generation_id Master Election Generation ID

Example:

@set_ev_cls(ofp_event.EventOFPRoleReply, MAIN_DISPATCHER)
def role_reply_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.role == ofp.OFPCR_ROLE_NOCHANGE:
role = 'NOCHANGE'

elif msg.role == ofp.OFPCR_ROLE_EQUAL:
role = 'EQUAL'

elif msg.role == ofp.OFPCR_ROLE_MASTER:
role = 'MASTER'

elif msg.role == ofp.OFPCR_ROLE_SLAVE:
role = 'SLAVE'

else:
role = 'unknown'

self.logger.debug('OFPRoleReply received: '
'role=%s short_id=%d, generation_id=%d',
role, msg.short_id, msg.generation_id)

JSON Example:

{
"OFPRoleReply": {

"generation_id": 1234605616436508552,
"role": 1,
"short_id": 43690

}
}

8.1. Writing Your OS-Ken Application 484

os-ken Documentation, Release 1.4.1.dev5

Bundle Messages

class os_ken.ofproto.ofproto_v1_5_parser.OFPBundleCtrlMsg(datapath,
bun-
dle_id=None,
type_=None,
flags=None,
proper-
ties=None)

Bundle control message

The controller uses this message to create, destroy and commit bundles

Attribute Description
bundle_id Id of the bundle
type One of the following values.

OFPBCT_OPEN_REQUEST
OFPBCT_OPEN_REPLY
OFPBCT_CLOSE_REQUEST
OFPBCT_CLOSE_REPLY
OFPBCT_COMMIT_REQUEST
OFPBCT_COMMIT_REPLY
OFPBCT_DISCARD_REQUEST
OFPBCT_DISCARD_REPLY

flags Bitmap of the following flags.

OFPBF_ATOMIC
OFPBF_ORDERED

properties List of OFPBundleProp subclass instance

Example:

def send_bundle_control(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPBundleCtrlMsg(datapath, 7,
ofp.OFPBCT_OPEN_REQUEST,
ofp.OFPBF_ATOMIC, [])

datapath.send_msg(req)

JSON Example:

{
"OFPBundleCtrlMsg": {

"bundle_id": 99999999,
"flags": 1,
"properties": [],

(continues on next page)

8.1. Writing Your OS-Ken Application 485

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 1
}

}

class os_ken.ofproto.ofproto_v1_5_parser.OFPBundleAddMsg(datapath,
bundle_id,
flags,
message,
properties)

Bundle add message

The controller uses this message to add a message to a bundle

Attribute Description
bundle_id Id of the bundle
flags Bitmap of the following flags.

OFPBF_ATOMIC
OFPBF_ORDERED

message MsgBase subclass instance
properties List of OFPBundleProp subclass instance

Example:

def send_bundle_add_message(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

msg = ofp_parser.OFPRoleRequest(datapath, ofp.OFPCR_ROLE_EQUAL, 0)

req = ofp_parser.OFPBundleAddMsg(datapath, 7, ofp.OFPBF_ATOMIC,
msg, [])

datapath.send_msg(req)

JSON Example:

{
"OFPBundleAddMsg": {

"bundle_id": 99999999,
"flags": 1,
"message": {

"OFPFlowMod": {
"buffer_id": 0,
"command": 0,
"cookie": 1311768467463790320,
"cookie_mask": 18446744073709551615,
"flags": 0,
"hard_timeout": 0,
"idle_timeout": 0,
"importance": 39032,
"instructions": [

{

(continues on next page)

8.1. Writing Your OS-Ken Application 486

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPInstructionActions": {
"actions": [

{
"OFPActionPopVlan": {

"len": 8,
"type": 18

}
},
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "192.168.2.9"

}
},
"len": 16,
"type": 25

}
},
{

"NXActionLearn": {
"cookie": 0,
"experimenter": 8992,
"fin_hard_timeout": 0,
"fin_idle_timeout": 0,
"flags": 0,
"hard_timeout": 300,
"idle_timeout": 0,
"len": 96,
"priority": 1,
"specs": [

{
"NXFlowSpecMatch": {

"dst": [
"vlan_vid",
0

],
"n_bits": 12,
"src": [

"vlan_vid",
0

]
}

},
{

"NXFlowSpecMatch": {
"dst": [

"eth_dst_nxm",
0

],
"n_bits": 48,
"src": [

"eth_src_nxm",
0

(continues on next page)

8.1. Writing Your OS-Ken Application 487

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

]
}

},
{

"NXFlowSpecLoad": {
"dst": [

"vlan_vid",
0

],
"n_bits": 12,
"src": 0

}
},
{

"NXFlowSpecLoad": {
"dst": [

"tunnel_id_nxm",
0

],
"n_bits": 64,
"src": [

"tunnel_id_nxm",
0

]
}

},
{

"NXFlowSpecOutput": {
"dst": "",
"n_bits": 32,
"src": [

"in_port",
0

]
}

}
],
"subtype": 16,
"table_id": 99,
"type": 65535

}
}

],
"len": 128,
"type": 4

}
},
{

"OFPInstructionGotoTable": {
"len": 8,
"table_id": 100,
"type": 1

}
}

],
"match": {

(continues on next page)

8.1. Writing Your OS-Ken Application 488

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPMatch": {
"length": 70,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 43981

}
},
{

"OXMTlv": {
"field": "eth_dst",
"mask": null,
"value": "aa:bb:cc:99:88:77"

}
},
{

"OXMTlv": {
"field": "eth_type",
"mask": null,
"value": 2048

}
},
{

"OXMTlv": {
"field": "vlan_vid",
"mask": null,
"value": 5095

}
},
{

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "192.168.2.1"

}
},
{

"OXMTlv": {
"field": "tunnel_id",
"mask": null,
"value": 50000

}
},
{

"OXMTlv": {
"field": "tun_ipv4_src",
"mask": null,
"value": "192.168.2.3"

}
},
{

"OXMTlv": {
"field": "tun_ipv4_dst",
"mask": null,

(continues on next page)

8.1. Writing Your OS-Ken Application 489

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"value": "192.168.2.4"
}

}
],
"type": 1

}
},
"out_group": 0,
"out_port": 0,
"priority": 0,
"table_id": 2

}
},
"properties": []

}
}

Set Asynchronous Configuration Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPSetAsync(datapath, proper-
ties=None)

Set asynchronous configuration message

The controller sends this message to set the asynchronous messages that it wants to receive on a
given OpneFlow channel.

Attribute Description
properties List of OFPAsyncConfigProp subclass instances

Example:

def send_set_async(self, datapath):
ofp = datapath.ofproto
ofp_parser = datapath.ofproto_parser

properties = [
ofp_parser.OFPAsyncConfigPropReasons(

ofp.OFPACPT_PACKET_IN_SLAVE, 8,
(1 << ofp.OFPR_APPLY_ACTION
| 1 << ofp.OFPR_INVALID_TTL))]

req = ofp_parser.OFPSetAsync(datapath, properties)
datapath.send_msg(req)

JSON Example:

{
"OFPSetAsync": {

"properties": [
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 0

(continues on next page)

8.1. Writing Your OS-Ken Application 490

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 1

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 2

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 3

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 4

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 5

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 6

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 7

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 24,
"type": 8

(continues on next page)

8.1. Writing Your OS-Ken Application 491

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 24,
"type": 9

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 10

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 11

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65534

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

]
(continues on next page)

8.1. Writing Your OS-Ken Application 492

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

class os_ken.ofproto.ofproto_v1_5_parser.OFPGetAsyncRequest(datapath)
Get asynchronous configuration request message

The controller uses this message to query the asynchronous message.

Example:

def send_get_async_request(self, datapath):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPGetAsyncRequest(datapath)
datapath.send_msg(req)

JSON Example:

{
"OFPGetAsyncRequest": {}

}

class os_ken.ofproto.ofproto_v1_5_parser.OFPGetAsyncReply(datapath,
proper-
ties=None)

Get asynchronous configuration reply message

The switch responds with this message to a get asynchronous configuration request.

Attribute Description
properties List of OFPAsyncConfigProp subclass instances

Example:

@set_ev_cls(ofp_event.EventOFPGetAsyncReply, MAIN_DISPATCHER)
def get_async_reply_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPGetAsyncReply received: '
'properties=%s', repr(msg.properties))

JSON Example:

{
"OFPGetAsyncReply": {

"properties": [
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 0

}
},
{

"OFPAsyncConfigPropReasons": {

(continues on next page)

8.1. Writing Your OS-Ken Application 493

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"length": 8,
"mask": 3,
"type": 1

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 2

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 3

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 4

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 5

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 6

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 7

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 24,
"type": 8

}
},
{

"OFPAsyncConfigPropReasons": {
(continues on next page)

8.1. Writing Your OS-Ken Application 494

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"length": 8,
"mask": 24,
"type": 9

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 10

}
},
{

"OFPAsyncConfigPropReasons": {
"length": 8,
"mask": 3,
"type": 11

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65534

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPAsyncConfigPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

]
}

}

8.1. Writing Your OS-Ken Application 495

os-ken Documentation, Release 1.4.1.dev5

Asynchronous Messages

Packet-In Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPPacketIn(datapath,
buffer_id=None,
total_len=None,
reason=None,
table_id=None,
cookie=None,
match=None,
data=None)

Packet-In message

The switch sends the packet that received to the controller by this message.

Attribute Description
buffer_id ID assigned by datapath
total_len Full length of frame
reason Reason packet is being sent.

OFPR_TABLE_MISS
OFPR_APPLY_ACTION
OFPR_INVALID_TTL
OFPR_ACTION_SET
OFPR_GROUP
OFPR_PACKET_OUT

table_id ID of the table that was looked up
cookie Cookie of the flow entry that was looked up
match Instance of OFPMatch
data Ethernet frame

Example:

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def packet_in_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.TABLE_MISS:
reason = 'TABLE MISS'

elif msg.reason == ofp.OFPR_APPLY_ACTION:
reason = 'APPLY ACTION'

elif msg.reason == ofp.OFPR_INVALID_TTL:
reason = 'INVALID TTL'

elif msg.reason == ofp.OFPR_ACTION_SET:
reason = 'ACTION SET'

elif msg.reason == ofp.OFPR_GROUP:
reason = 'GROUP'

(continues on next page)

8.1. Writing Your OS-Ken Application 496

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

elif msg.reason == ofp.OFPR_PACKET_OUT:
reason = 'PACKET OUT'

else:
reason = 'unknown'

self.logger.debug('OFPPacketIn received: '
'buffer_id=%x total_len=%d reason=%s '
'table_id=%d cookie=%d match=%s data=%s',
msg.buffer_id, msg.total_len, reason,
msg.table_id, msg.cookie, msg.match,
utils.hex_array(msg.data))

JSON Example:

{
"OFPPacketIn": {

"buffer_id": 200,
"cookie": 0,
"data": "aG9nZQ==",
"match": {

"OFPMatch": {
"length": 40,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 43981

}
},
{

"OXMTlv": {
"field": "tunnel_id",
"mask": null,
"value": 50000

}
},
{

"OXMTlv": {
"field": "tun_ipv4_src",
"mask": null,
"value": "192.168.2.3"

}
},
{

"OXMTlv": {
"field": "tun_ipv4_dst",
"mask": null,
"value": "192.168.2.4"

}
}

],
"type": 1

}
},
"reason": 0,

(continues on next page)

8.1. Writing Your OS-Ken Application 497

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"table_id": 100,
"total_len": 1000

}
}

Flow Removed Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPFlowRemoved(datapath, ta-
ble_id=None,
rea-
son=None,
prior-
ity=None,
idle_timeout=None,
hard_timeout=None,
cookie=None,
match=None,
stats=None)

Flow removed message

When flow entries time out or are deleted, the switch notifies controller with this message.

Attribute Description
table_id ID of the table
reason One of the following values.

OFPRR_IDLE_TIMEOUT
OFPRR_HARD_TIMEOUT
OFPRR_DELETE
OFPRR_GROUP_DELETE
OFPRR_METER_DELETE
OFPRR_EVICTION

priority Priority level of flow entry
idle_timeout Idle timeout from original flow mod
hard_timeout Hard timeout from original flow mod
cookie Opaque controller-issued identifier
match Instance of OFPMatch
stats Instance of OFPStats

Example:

@set_ev_cls(ofp_event.EventOFPFlowRemoved, MAIN_DISPATCHER)
def flow_removed_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPRR_IDLE_TIMEOUT:

(continues on next page)

8.1. Writing Your OS-Ken Application 498

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

reason = 'IDLE TIMEOUT'
elif msg.reason == ofp.OFPRR_HARD_TIMEOUT:

reason = 'HARD TIMEOUT'
elif msg.reason == ofp.OFPRR_DELETE:

reason = 'DELETE'
elif msg.reason == ofp.OFPRR_GROUP_DELETE:

reason = 'GROUP DELETE'
elif msg.reason == ofp.OFPRR_METER_DELETE:

reason = 'METER DELETE'
elif msg.reason == ofp.OFPRR_EVICTION:

reason = 'EVICTION'
else:

reason = 'unknown'

self.logger.debug('OFPFlowRemoved received: '
'table_id=%d reason=%s priority=%d '
'idle_timeout=%d hard_timeout=%d cookie=%d '
'match=%s stats=%s',
msg.table_id, reason, msg.priority,
msg.idle_timeout, msg.hard_timeout, msg.cookie,
msg.match, msg.stats)

JSON Example:

{
"OFPFlowRemoved": {

"cookie": 1234605616436508552,
"hard_timeout": 255,
"idle_timeout": 255,
"match": {

"OFPMatch": {
"length": 12,
"oxm_fields": [

{
"OXMTlv": {

"field": "in_port",
"mask": null,
"value": 1

}
}

],
"type": 1

}
},
"priority": 1,
"reason": 0,
"stats": {

"OFPStats": {
"length": 12,
"oxs_fields": [

{
"OXSTlv": {

"field": "flow_count",
"value": 1

}
}

(continues on next page)

8.1. Writing Your OS-Ken Application 499

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

]
}

},
"table_id": 1

}
}

Port Status Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPPortStatus(datapath,
reason=None,
desc=None)

Port status message

The switch notifies controller of change of ports.

Attribute Description
reason One of the following values.

OFPPR_ADD
OFPPR_DELETE
OFPPR_MODIFY

desc instance of OFPPort

Example:

@set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER)
def port_status_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPPR_ADD:
reason = 'ADD'

elif msg.reason == ofp.OFPPR_DELETE:
reason = 'DELETE'

elif msg.reason == ofp.OFPPR_MODIFY:
reason = 'MODIFY'

else:
reason = 'unknown'

self.logger.debug('OFPPortStatus received: reason=%s desc=%s',
reason, msg.desc)

JSON Example:

{
"OFPPortStatus": {

"desc": {
"OFPPort": {

"config": 0,
(continues on next page)

8.1. Writing Your OS-Ken Application 500

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"hw_addr": "f2:0b:a4:d0:3f:70",
"length": 168,
"name": "\u79c1\u306e\u30dd\u30fc\u30c8",
"port_no": 7,
"properties": [

{
"OFPPortDescPropEthernet": {

"advertised": 10240,
"curr": 10248,
"curr_speed": 5000,
"length": 32,
"max_speed": 5000,
"peer": 10248,
"supported": 10248,
"type": 0

}
},
{

"OFPPortDescPropOptical": {
"length": 40,
"rx_grid_freq_lmda": 1500,
"rx_max_freq_lmda": 2000,
"rx_min_freq_lmda": 1000,
"supported": 1,
"tx_grid_freq_lmda": 1500,
"tx_max_freq_lmda": 2000,
"tx_min_freq_lmda": 1000,
"tx_pwr_max": 2000,
"tx_pwr_min": 1000,
"type": 1

}
},
{

"OFPPortDescPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPPortDescPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPPortDescPropExperimenter": {
"data": [

1,
(continues on next page)

8.1. Writing Your OS-Ken Application 501

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

2
],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"state": 4

}
},
"reason": 0

}
}

Controller Role Status Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPRoleStatus(datapath,
role=None,
reason=None,
genera-
tion_id=None,
proper-
ties=None)

Role status message

The switch notifies controller of change of role.

Attribute Description
role One of the following values.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER

reason One of the following values.

OFPCRR_MASTER_REQUEST
OFPCRR_CONFIG
OFPCRR_EXPERIMENTER

generation_id Master Election Generation ID
properties List of OFPRoleProp subclass instance

Example:

@set_ev_cls(ofp_event.EventOFPRoleStatus, MAIN_DISPATCHER)
def role_status_handler(self, ev):

msg = ev.msg

(continues on next page)

8.1. Writing Your OS-Ken Application 502

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

dp = msg.datapath
ofp = dp.ofproto

if msg.role == ofp.OFPCR_ROLE_NOCHANGE:
role = 'ROLE NOCHANGE'

elif msg.role == ofp.OFPCR_ROLE_EQUAL:
role = 'ROLE EQUAL'

elif msg.role == ofp.OFPCR_ROLE_MASTER:
role = 'ROLE MASTER'

else:
role = 'unknown'

if msg.reason == ofp.OFPCRR_MASTER_REQUEST:
reason = 'MASTER REQUEST'

elif msg.reason == ofp.OFPCRR_CONFIG:
reason = 'CONFIG'

elif msg.reason == ofp.OFPCRR_EXPERIMENTER:
reason = 'EXPERIMENTER'

else:
reason = 'unknown'

self.logger.debug('OFPRoleStatus received: role=%s reason=%s '
'generation_id=%d properties=%s', role, reason,
msg.generation_id, repr(msg.properties))

JSON Example:

{
"OFPRoleStatus": {

"generation_id": 17356517385562371090,
"properties": [],
"reason": 0,
"role": 3

}
}

Table Status Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPTableStatus(datapath,
rea-
son=None,
ta-
ble=None)

Table status message

The switch notifies controller of change of table status.

8.1. Writing Your OS-Ken Application 503

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
reason One of the following values.

OFPTR_VACANCY_DOWN
OFPTR_VACANCY_UP

table OFPTableDesc instance

Example:

@set_ev_cls(ofp_event.EventOFPTableStatus, MAIN_DISPATCHER)
def table(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.reason == ofp.OFPTR_VACANCY_DOWN:
reason = 'VACANCY_DOWN'

elif msg.reason == ofp.OFPTR_VACANCY_UP:
reason = 'VACANCY_UP'

else:
reason = 'unknown'

self.logger.debug('OFPTableStatus received: reason=%s '
'table_id=%d config=0x%08x properties=%s',
reason, msg.table.table_id, msg.table.config,
repr(msg.table.properties))

JSON Example:

{
"OFPTableStatus": {

"reason": 3,
"table": {

"OFPTableDesc": {
"config": 0,
"length": 80,
"properties": [

{
"OFPTableModPropEviction": {

"flags": 0,
"length": 8,
"type": 2

}
},
{

"OFPTableModPropVacancy": {
"length": 8,
"type": 3,
"vacancy": 0,
"vacancy_down": 0,
"vacancy_up": 0

}
},
{

(continues on next page)

8.1. Writing Your OS-Ken Application 504

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFPTableModPropExperimenter": {
"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1
],
"exp_type": 1,
"experimenter": 101,
"length": 16,
"type": 65535

}
},
{

"OFPTableModPropExperimenter": {
"data": [

1,
2

],
"exp_type": 2,
"experimenter": 101,
"length": 20,
"type": 65535

}
}

],
"table_id": 8

}
}

}
}

Request Forward Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPRequestForward(datapath,
re-
quest=None)

Forwarded request message

The swtich forwards request messages from one controller to other controllers.

Attribute Description
request OFPGroupMod or OFPMeterMod instance

Example:

8.1. Writing Your OS-Ken Application 505

os-ken Documentation, Release 1.4.1.dev5

@set_ev_cls(ofp_event.EventOFPRequestForward, MAIN_DISPATCHER)
def request_forward_handler(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto

if msg.request.msg_type == ofp.OFPT_GROUP_MOD:
self.logger.debug(

'OFPRequestForward received: request=OFPGroupMod('
'command=%d, type=%d, group_id=%d, command_bucket_id=%d, '
'buckets=%s, properties=%s)',
msg.request.command, msg.request.type,
msg.request.group_id, msg.request.command_bucket_id,
msg.request.buckets, repr(msg.request.properties))

elif msg.request.msg_type == ofp.OFPT_METER_MOD:
self.logger.debug(

'OFPRequestForward received: request=OFPMeterMod('
'command=%d, flags=%d, meter_id=%d, bands=%s)',
msg.request.command, msg.request.flags,
msg.request.meter_id, msg.request.bands)

else:
self.logger.debug(

'OFPRequestForward received: request=Unknown')

JSON Example:

{
"OFPRequestForward": {

"request": {
"OFPGroupMod": {

"bucket_array_len": 56,
"buckets": [

{
"OFPBucket": {

"action_array_len": 24,
"actions": [

{
"OFPActionPopVlan": {

"len": 8,
"type": 18

}
},
{

"OFPActionSetField": {
"field": {

"OXMTlv": {
"field": "ipv4_dst",
"mask": null,
"value": "192.168.2.9"

}
},
"len": 16,
"type": 25

}
}

],

(continues on next page)

8.1. Writing Your OS-Ken Application 506

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"bucket_id": 305419896,
"len": 56,
"properties": [

{
"OFPGroupBucketPropWeight": {

"length": 8,
"type": 0,
"weight": 52428

}
},
{

"OFPGroupBucketPropWatch": {
"length": 8,
"type": 1,
"watch": 56797

}
},
{

"OFPGroupBucketPropWatch": {
"length": 8,
"type": 2,
"watch": 4008636142

}
}

]
}

}
],
"command": 3,
"command_bucket_id": 3149642683,
"group_id": 2863311530,
"properties": [],
"type": 1

}
}

}
}

Controller Status Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPControllerStatus(datapath,
sta-
tus=None)

Controller status message

The switch informs the controller about the status of the control channel it maintains with each
controller.

Attribute Description
status OFPControllerStatusStats instance

Example:

8.1. Writing Your OS-Ken Application 507

os-ken Documentation, Release 1.4.1.dev5

@set_ev_cls(ofp_event.EventOFPControllerStatus, MAIN_DISPATCHER)
def table(self, ev):

msg = ev.msg
dp = msg.datapath
ofp = dp.ofproto
status = msg.status

if status.role == ofp.OFPCR_ROLE_NOCHANGE:
role = 'NOCHANGE'

elif status.role == ofp.OFPCR_ROLE_EQUAL:
role = 'EQUAL'

elif status.role == ofp.OFPCR_ROLE_MASTER:
role = 'MASTER'

elif status.role == ofp.OFPCR_ROLE_SLAVE:
role = 'SLAVE'

else:
role = 'unknown'

if status.reason == ofp.OFPCSR_REQUEST:
reason = 'REQUEST'

elif status.reason == ofp.OFPCSR_CHANNEL_STATUS:
reason = 'CHANNEL_STATUS'

elif status.reason == ofp.OFPCSR_ROLE:
reason = 'ROLE'

elif status.reason == ofp.OFPCSR_CONTROLLER_ADDED:
reason = 'CONTROLLER_ADDED'

elif status.reason == ofp.OFPCSR_CONTROLLER_REMOVED:
reason = 'CONTROLLER_REMOVED'

elif status.reason == ofp.OFPCSR_SHORT_ID:
reason = 'SHORT_ID'

elif status.reason == ofp.OFPCSR_EXPERIMENTER:
reason = 'EXPERIMENTER'

else:
reason = 'unknown'

if status.channel_status == OFPCT_STATUS_UP:
channel_status = 'UP'

if status.channel_status == OFPCT_STATUS_DOWN:
channel_status = 'DOWN'

else:
channel_status = 'unknown'

self.logger.debug('OFPControllerStatus received: short_id=%d'
'role=%s reason=%s channel_status=%s '
'properties=%s',
status.short_id, role, reason, channel_status,
repr(status.properties))

JSON Example:

{
"OFPControllerStatus": {

"status": {
"OFPControllerStatusStats": {

"channel_status": 1,
"length": 48,

(continues on next page)

8.1. Writing Your OS-Ken Application 508

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"properties": [
{

"OFPControllerStatusPropUri": {
"length": 26,
"type": 0,
"uri": "tls:192.168.34.23:6653"

}
}

],
"reason": 1,
"role": 1,
"short_id": 65535

}
}

}
}

Symmetric Messages

Hello

class os_ken.ofproto.ofproto_v1_5_parser.OFPHello(datapath, ele-
ments=None)

Hello message

When connection is started, the hello message is exchanged between a switch and a controller.

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
elements list of OFPHelloElemVersionBitmap instance

JSON Example:

{
"OFPHello": {

"elements": [
{

"OFPHelloElemVersionBitmap": {
"length": 8,
"type": 1,
"versions": [

6
]

}
}

]
}

}

8.1. Writing Your OS-Ken Application 509

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPHelloElemVersionBitmap(versions,
type_=None,
length=None)

Version bitmap Hello Element

Attribute Description
versions list of versions of OpenFlow protocol a device supports

Echo Request

class os_ken.ofproto.ofproto_v1_5_parser.OFPEchoRequest(datapath,
data=None)

Echo request message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data

Example:

def send_echo_request(self, datapath, data):
ofp_parser = datapath.ofproto_parser

req = ofp_parser.OFPEchoRequest(datapath, data)
datapath.send_msg(req)

@set_ev_cls(ofp_event.EventOFPEchoRequest,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_request_handler(self, ev):

self.logger.debug('OFPEchoRequest received: data=%s',
utils.hex_array(ev.msg.data))

JSON Example:

{
"OFPEchoRequest": {

"data": ""
}

}

8.1. Writing Your OS-Ken Application 510

os-ken Documentation, Release 1.4.1.dev5

Echo Reply

class os_ken.ofproto.ofproto_v1_5_parser.OFPEchoReply(datapath,
data=None)

Echo reply message

This message is handled by the OSKen framework, so the OSKen application do not need to
process this typically.

Attribute Description
data An arbitrary length data

Example:

def send_echo_reply(self, datapath, data):
ofp_parser = datapath.ofproto_parser

reply = ofp_parser.OFPEchoReply(datapath, data)
datapath.send_msg(reply)

@set_ev_cls(ofp_event.EventOFPEchoReply,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def echo_reply_handler(self, ev):

self.logger.debug('OFPEchoReply received: data=%s',
utils.hex_array(ev.msg.data))

JSON Example:

{
"OFPEchoReply": {

"data": ""
}

}

Error Message

class os_ken.ofproto.ofproto_v1_5_parser.OFPErrorMsg(datapath,
type_=None,
code=None,
data=None,
**kwargs)

Error message

The switch notifies controller of problems by this message.

Attribute Description
type High level type of error
code Details depending on the type
data Variable length data depending on the type and code

type attribute corresponds to type_ parameter of __init__.

8.1. Writing Your OS-Ken Application 511

os-ken Documentation, Release 1.4.1.dev5

Types and codes are defined in os_ken.ofproto.ofproto.

Type Code
OFPET_HELLO_FAILED OFPHFC_*
OFPET_BAD_REQUEST OFPBRC_*
OFPET_BAD_ACTION OFPBAC_*
OFPET_BAD_INSTRUCTION OFPBIC_*
OFPET_BAD_MATCH OFPBMC_*
OFPET_FLOW_MOD_FAILED OFPFMFC_*
OFPET_GROUP_MOD_FAILED OFPGMFC_*
OFPET_PORT_MOD_FAILED OFPPMFC_*
OFPET_TABLE_MOD_FAILED OFPTMFC_*
OFPET_QUEUE_OP_FAILED OFPQOFC_*
OFPET_SWITCH_CONFIG_FAILED OFPSCFC_*
OFPET_ROLE_REQUEST_FAILED OFPRRFC_*
OFPET_METER_MOD_FAILED OFPMMFC_*
OFPET_TABLE_FEATURES_FAILED OFPTFFC_*
OFPET_EXPERIMENTER N/A

If type == OFPET_EXPERIMENTER, this message has also the following attributes.

Attribute Description
exp_type Experimenter defined type
experimenter Experimenter ID

Example:

@set_ev_cls(ofp_event.EventOFPErrorMsg,
[HANDSHAKE_DISPATCHER, CONFIG_DISPATCHER, MAIN_

↪→DISPATCHER])
def error_msg_handler(self, ev):

msg = ev.msg

self.logger.debug('OFPErrorMsg received: type=0x%02x code=0x%02x '
'message=%s',
msg.type, msg.code, utils.hex_array(msg.data))

JSON Example:

{
"OFPErrorMsg": {

"code": 6,
"data": "Bg4ACAAAAAA=",
"type": 4

}
}

8.1. Writing Your OS-Ken Application 512

os-ken Documentation, Release 1.4.1.dev5

Experimenter

class os_ken.ofproto.ofproto_v1_5_parser.OFPExperimenter(datapath,
experi-
menter=None,
exp_type=None,
data=None)

Experimenter extension message

Attribute Description
experimenter Experimenter ID
exp_type Experimenter defined
data Experimenter defined arbitrary additional data

JSON Example:

{
"OFPErrorMsg": {

"code": null,
"data": "amlra2VuIGRhdGE=",
"exp_type": 60000,
"experimenter": 999999,
"type": 65535

}
}

Port Structures

class os_ken.ofproto.ofproto_v1_5_parser.OFPPort(port_no=None,
length=None,
hw_addr=None,
name=None, con-
fig=None, state=None,
properties=None)

Description of a port

8.1. Writing Your OS-Ken Application 513

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
port_no Port number and it uniquely identifies a port

within a switch.
length Length of ofp_port (excluding padding).
hw_addr MAC address for the port.
name Null-terminated string containing a human-

readable name for the interface.
config Bitmap of port configration flags.

OFPPC_PORT_DOWN
OFPPC_NO_RECV
OFPPC_NO_FWD
OFPPC_NO_PACKET_IN

state Bitmap of port state flags.

OFPPS_LINK_DOWN
OFPPS_BLOCKED
OFPPS_LIVE

properties List of OFPPortDescProp subclass in-
stance

Flow Match Structure

class os_ken.ofproto.ofproto_v1_5_parser.OFPMatch(type_=None,
length=None, _or-
dered_fields=None,
**kwargs)

Flow Match Structure

This class is implementation of the flow match structure having compose/query API.

You can define the flow match by the keyword arguments. The following arguments are available.

Argument Value Description
in_port Integer 32bit Switch input port
in_phy_port Integer 32bit Switch physical input port
metadata Integer 64bit Metadata passed between tables
eth_dst MAC address Ethernet destination address
eth_src MAC address Ethernet source address
eth_type Integer 16bit Ethernet frame type
vlan_vid Integer 16bit VLAN id
vlan_pcp Integer 8bit VLAN priority
ip_dscp Integer 8bit IP DSCP (6 bits in ToS field)
ip_ecn Integer 8bit IP ECN (2 bits in ToS field)
ip_proto Integer 8bit IP protocol
ipv4_src IPv4 address IPv4 source address

continues on next page

8.1. Writing Your OS-Ken Application 514

os-ken Documentation, Release 1.4.1.dev5

Table 4 – continued from previous page
Argument Value Description
ipv4_dst IPv4 address IPv4 destination address
tcp_src Integer 16bit TCP source port
tcp_dst Integer 16bit TCP destination port
udp_src Integer 16bit UDP source port
udp_dst Integer 16bit UDP destination port
sctp_src Integer 16bit SCTP source port
sctp_dst Integer 16bit SCTP destination port
icmpv4_type Integer 8bit ICMP type
icmpv4_code Integer 8bit ICMP code
arp_op Integer 16bit ARP opcode
arp_spa IPv4 address ARP source IPv4 address
arp_tpa IPv4 address ARP target IPv4 address
arp_sha MAC address ARP source hardware address
arp_tha MAC address ARP target hardware address
ipv6_src IPv6 address IPv6 source address
ipv6_dst IPv6 address IPv6 destination address
ipv6_flabel Integer 32bit IPv6 Flow Label
icmpv6_type Integer 8bit ICMPv6 type
icmpv6_code Integer 8bit ICMPv6 code
ipv6_nd_target IPv6 address Target address for ND
ipv6_nd_sll MAC address Source link-layer for ND
ipv6_nd_tll MAC address Target link-layer for ND
mpls_label Integer 32bit MPLS label
mpls_tc Integer 8bit MPLS TC
mpls_bos Integer 8bit MPLS BoS bit
pbb_isid Integer 24bit PBB I-SID
tunnel_id Integer 64bit Logical Port Metadata
ipv6_exthdr Integer 16bit IPv6 Extension Header pseudo-field
pbb_uca Integer 8bit PBB UCA header field
tcp_flags Integer 16bit TCP flags
actset_output Integer 32bit Output port from action set metadata
packet_type Integer 32bit Packet type value

Example:

>>> # compose
>>> match = parser.OFPMatch(
... in_port=1,
... eth_type=0x86dd,
... ipv6_src=('2001:db8:bd05:1d2:288a:1fc0:1:10ee',
... 'ffff:ffff:ffff:ffff::'),
... ipv6_dst='2001:db8:bd05:1d2:288a:1fc0:1:10ee')
>>> # query
>>> if 'ipv6_src' in match:
... print match['ipv6_src']
...
('2001:db8:bd05:1d2:288a:1fc0:1:10ee', 'ffff:ffff:ffff:ffff::')

Note: For the list of the supported Nicira experimenter matches, please refer to

8.1. Writing Your OS-Ken Application 515

os-ken Documentation, Release 1.4.1.dev5

os_ken.ofproto.nx_match.

Note: For VLAN id match field, special values are defined in OpenFlow Spec.

1) Packets with and without a VLAN tag

• Example:

match = parser.OFPMatch()

• Packet Matching

non-VLAN-tagged MATCH
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) MATCH

2) Only packets without a VLAN tag

• Example:

match = parser.OFPMatch(vlan_vid=0x0000)

• Packet Matching

non-VLAN-tagged MATCH
VLAN-tagged(vlan_id=3) x
VLAN-tagged(vlan_id=5) x

3) Only packets with a VLAN tag regardless of its value

• Example:

match = parser.OFPMatch(vlan_vid=(0x1000, 0x1000))

• Packet Matching

non-VLAN-tagged x
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) MATCH

4) Only packets with VLAN tag and VID equal

• Example:

match = parser.OFPMatch(vlan_vid=(0x1000 | 3))

• Packet Matching

non-VLAN-tagged x
VLAN-tagged(vlan_id=3) MATCH
VLAN-tagged(vlan_id=5) x

8.1. Writing Your OS-Ken Application 516

os-ken Documentation, Release 1.4.1.dev5

Flow Stats Structures

class os_ken.ofproto.ofproto_v1_5_parser.OFPStats(length=None, _or-
dered_fields=None,
**kwargs)

Flow Stats Structure

This class is implementation of the flow stats structure having compose/query API.

You can define the flow stats by the keyword arguments. The following arguments are available.

Argu-
ment

Value Description

dura-
tion

Integer
32bit*2

Time flow entry has been alive. This field is a tuple of two Integer 32bit.
The first value is duration_sec and the second is duration_nsec.

idle_time Integer
32bit*2

Time flow entry has been idle.

flow_countInteger
32bit

Number of aggregated flow entries.

packet_countInteger
64bit

Number of packets matched by a flow entry.

byte_countInteger
64bit

Number of bytes matched by a flow entry.

Example:

>>> # compose
>>> stats = parser.OFPStats(
... packet_count=100,
... duration=(100, 200)
>>> # query
>>> if 'duration' in stats:
... print stats['duration']
...
(100, 200)

Flow Instruction Structures

class os_ken.ofproto.ofproto_v1_5_parser.OFPInstructionGotoTable(table_id,
type_=None,
len_=None)

Goto table instruction

This instruction indicates the next table in the processing pipeline.

Attribute Description
table_id Next table

8.1. Writing Your OS-Ken Application 517

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPInstructionWriteMetadata(metadata,
meta-
data_mask,
type_=None,
len_=None)

Write metadata instruction

This instruction writes the masked metadata value into the metadata field.

Attribute Description
metadata Metadata value to write
metadata_mask Metadata write bitmask

class os_ken.ofproto.ofproto_v1_5_parser.OFPInstructionActions(type_,
ac-
tions=None,
len_=None)

Actions instruction

This instruction writes/applies/clears the actions.

Attribute Description
type One of following values.

OFPIT_WRITE_ACTIONS
OFPIT_APPLY_ACTIONS
OFPIT_CLEAR_ACTIONS

actions list of OpenFlow action class

type attribute corresponds to type_ parameter of __init__.

class os_ken.ofproto.ofproto_v1_5_parser.OFPInstructionStatTrigger(flags,
thresh-
olds,
type_=None,
len_=None)

Statistics triggers instruction

This instruction defines a set of statistics thresholds using OXS.

Attribute Description
flags Bitmap of the following flags.

OFPSTF_PERIODIC
OFPSTF_ONLY_FIRST

thresholds Instance of OFPStats

8.1. Writing Your OS-Ken Application 518

os-ken Documentation, Release 1.4.1.dev5

Action Structures

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionOutput(port,
max_len=65509,
type_=None,
len_=None)

Output action

This action indicates output a packet to the switch port.

Attribute Description
port Output port
max_len Max length to send to controller

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionCopyTtlOut(type_=None,
len_=None)

Copy TTL Out action

This action copies the TTL from the next-to-outermost header with TTL to the outermost header
with TTL.

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionCopyTtlIn(type_=None,
len_=None)

Copy TTL In action

This action copies the TTL from the outermost header with TTL to the next-to-outermost header
with TTL.

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionSetMplsTtl(mpls_ttl,
type_=None,
len_=None)

Set MPLS TTL action

This action sets the MPLS TTL.

Attribute Description
mpls_ttl MPLS TTL

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionDecMplsTtl(type_=None,
len_=None)

Decrement MPLS TTL action

This action decrements the MPLS TTL.

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionPushVlan(ethertype=33024,
type_=None,
len_=None)

Push VLAN action

This action pushes a new VLAN tag to the packet.

Attribute Description
ethertype Ether type. The default is 802.1Q. (0x8100)

8.1. Writing Your OS-Ken Application 519

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionPopVlan(type_=None,
len_=None)

Pop VLAN action

This action pops the outermost VLAN tag from the packet.

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionPushMpls(ethertype=34887,
type_=None,
len_=None)

Push MPLS action

This action pushes a new MPLS header to the packet.

Attribute Description
ethertype Ether type

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionPopMpls(ethertype=2048,
type_=None,
len_=None)

Pop MPLS action

This action pops the MPLS header from the packet.

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionSetQueue(queue_id,
type_=None,
len_=None)

Set queue action

This action sets the queue id that will be used to map a flow to an already-configured queue on a
port.

Attribute Description
queue_id Queue ID for the packets

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionGroup(group_id=0,
type_=None,
len_=None)

Group action

This action indicates the group used to process the packet.

Attribute Description
group_id Group identifier

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionSetNwTtl(nw_ttl,
type_=None,
len_=None)

Set IP TTL action

This action sets the IP TTL.

Attribute Description
nw_ttl IP TTL

8.1. Writing Your OS-Ken Application 520

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionDecNwTtl(type_=None,
len_=None)

Decrement IP TTL action

This action decrements the IP TTL.

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionSetField(field=None,
**kwargs)

Set field action

This action modifies a header field in the packet.

The set of keywords available for this is same as OFPMatch which including with/without mask.

Example:

set_field = OFPActionSetField(eth_src="00:00:00:00:00:00")
set_field = OFPActionSetField(ipv4_src=("192.168.100.0",

"255.255.255.0"))

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionPushPbb(ethertype,
type_=None,
len_=None)

Push PBB action

This action pushes a new PBB header to the packet.

Attribute Description
ethertype Ether type

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionPopPbb(type_=None,
len_=None)

Pop PBB action

This action pops the outermost PBB service instance header from the packet.

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionCopyField(n_bits=0,
src_offset=0,
dst_offset=0,
oxm_ids=None,
type_=None,
len_=None)

Copy Field action

This action copy value between header and register.

At-
tribute

Description

n_bits Number of bits to copy.
src_offsetStarting bit offset in source.
dst_offsetStarting bit offset in destination.
oxm_idsList of OFPOxmId instances. The first element of this list, src_oxm_id, identifies the

field where the value is copied from. The second element of this list, dst_oxm_id, iden-
tifies the field where the value is copied to. The default is [].

8.1. Writing Your OS-Ken Application 521

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionMeter(meter_id,
type_=None,
len_=None)

Meter action

This action applies meter (rate limiter)

Attribute Description
meter_id Meter instance

class os_ken.ofproto.ofproto_v1_5_parser.OFPActionExperimenter(experimenter)
Experimenter action

This action is an extensible action for the experimenter.

Attribute Description
experimenter Experimenter ID

Note: For the list of the supported Nicira experimenter actions, please refer to
os_ken.ofproto.nx_actions.

Controller Status Structure

class os_ken.ofproto.ofproto_v1_5_parser.OFPControllerStatusStats(short_id=None,
role=None,
rea-
son=None,
chan-
nel_status=None,
prop-
er-
ties=None,
length=None)

Controller status structure

8.1. Writing Your OS-Ken Application 522

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
length Length of this entry.
short_id ID number which identifies the controller.
role Bitmap of controller’s role flags.

OFPCR_ROLE_NOCHANGE
OFPCR_ROLE_EQUAL
OFPCR_ROLE_MASTER
OFPCR_ROLE_SLAVE

reason Bitmap of controller status reason flags.

OFPCSR_REQUEST
OFPCSR_CHANNEL_STATUS
OFPCSR_ROLE
OFPCSR_CONTROLLER_ADDED
OFPCSR_CONTROLLER_REMOVED
OFPCSR_SHORT_ID
OFPCSR_EXPERIMENTER

channel_status Bitmap of control channel status flags.

OFPCT_STATUS_UP
OFPCT_STATUS_DOWN

properties List of OFPControllerStatusProp
subclass instance

8.1.6 Nicira Extension Structures

Nicira Extension Actions Structures

The followings shows the supported NXAction classes only in OpenFlow1.0

class os_ken.ofproto.ofproto_v1_0_parser.NXActionSetQueue(queue_id,
type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

Set queue action

This action sets the queue that should be used to queue when packets are output.

And equivalent to the followings action of ovs-ofctl command.

set_queue:queue

8.1. Writing Your OS-Ken Application 523

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
queue_id Queue ID for the packets

Note: This actions is supported by OFPActionSetQueue in OpenFlow1.2 or later.

Example:

actions += [parser.NXActionSetQueue(queue_id=10)]

class os_ken.ofproto.ofproto_v1_0_parser.NXActionDecTtl(type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

Decrement IP TTL action

This action decrements TTL of IPv4 packet or hop limit of IPv6 packet.

And equivalent to the followings action of ovs-ofctl command.

dec_ttl

Note: This actions is supported by OFPActionDecNwTtl in OpenFlow1.2 or later.

Example:

actions += [parser.NXActionDecTtl()]

class os_ken.ofproto.ofproto_v1_0_parser.NXActionPushMpls(ethertype,
type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

Push MPLS action

This action pushes a new MPLS header to the packet.

And equivalent to the followings action of ovs-ofctl command.

push_mpls:ethertype

Attribute Description
ethertype Ether type(The value must be either 0x8847 or 0x8848)

8.1. Writing Your OS-Ken Application 524

os-ken Documentation, Release 1.4.1.dev5

Note: This actions is supported by OFPActionPushMpls in OpenFlow1.2 or later.

Example:

match = parser.OFPMatch(dl_type=0x0800)
actions += [parser.NXActionPushMpls(ethertype=0x8847)]

class os_ken.ofproto.ofproto_v1_0_parser.NXActionPopMpls(ethertype,
type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

Pop MPLS action

This action pops the MPLS header from the packet.

And equivalent to the followings action of ovs-ofctl command.

pop_mpls:ethertype

Attribute Description
ethertype Ether type

Note: This actions is supported by OFPActionPopMpls in OpenFlow1.2 or later.

Example:

match = parser.OFPMatch(dl_type=0x8847)
actions += [parser.NXActionPushMpls(ethertype=0x0800)]

class os_ken.ofproto.ofproto_v1_0_parser.NXActionSetMplsTtl(ttl,
type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

Set MPLS TTL action

This action sets the MPLS TTL.

And equivalent to the followings action of ovs-ofctl command.

set_mpls_ttl:ttl

Attribute Description
ttl MPLS TTL

8.1. Writing Your OS-Ken Application 525

os-ken Documentation, Release 1.4.1.dev5

Note: This actions is supported by OFPActionSetMplsTtl in OpenFlow1.2 or later.

Example:

actions += [parser.NXActionSetMplsTil(ttl=128)]

class os_ken.ofproto.ofproto_v1_0_parser.NXActionDecMplsTtl(type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

Decrement MPLS TTL action

This action decrements the MPLS TTL.

And equivalent to the followings action of ovs-ofctl command.

dec_mpls_ttl

Note: This actions is supported by OFPActionDecMplsTtl in OpenFlow1.2 or later.

Example:

actions += [parser.NXActionDecMplsTil()]

class os_ken.ofproto.ofproto_v1_0_parser.NXActionSetMplsLabel(label,
type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

Set MPLS Lavel action

This action sets the MPLS Label.

And equivalent to the followings action of ovs-ofctl command.

set_mpls_label:label

Attribute Description
label MPLS Label

Note: This actions is supported by OFPActionSetField(mpls_label=label) in Open-
Flow1.2 or later.

Example:

8.1. Writing Your OS-Ken Application 526

os-ken Documentation, Release 1.4.1.dev5

actions += [parser.NXActionSetMplsLabel(label=0x10)]

class os_ken.ofproto.ofproto_v1_0_parser.NXActionSetMplsTc(tc,
type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

Set MPLS Tc action

This action sets the MPLS Tc.

And equivalent to the followings action of ovs-ofctl command.

set_mpls_tc:tc

Attribute Description
tc MPLS Tc

Note: This actions is supported by OFPActionSetField(mpls_label=tc) in Open-
Flow1.2 or later.

Example:

actions += [parser.NXActionSetMplsLabel(tc=0x10)]

The followings shows the supported NXAction classes in OpenFlow1.0 or later

class os_ken.ofproto.ofproto_v1_3_parser.NXActionPopQueue(type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Pop queue action

This action restors the queue to the value it was before any set_queue actions were applied.

And equivalent to the followings action of ovs-ofctl command.

pop_queue

Example:

actions += [parser.NXActionPopQueue()]

8.1. Writing Your OS-Ken Application 527

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.NXActionRegLoad(ofs_nbits,
dst, value,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Load literal value action

This action loads a literal value into a field or part of a field.

And equivalent to the followings action of ovs-ofctl command.

load:value->dst[start..end]

At-
tribute

Description

ofs_nbits Start and End for the OXM/NXM field. Setting method refer to the nicira_ext.
ofs_nbits

dst OXM/NXM header for destination field
value OXM/NXM value to be loaded

Example:

actions += [parser.NXActionRegLoad(
ofs_nbits=nicira_ext.ofs_nbits(4, 31),
dst="eth_dst",
value=0x112233)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionRegLoad2(dst, value,
mask=None,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Load literal value action

This action loads a literal value into a field or part of a field.

And equivalent to the followings action of ovs-ofctl command.

set_field:value[/mask]->dst

Attribute Description
value OXM/NXM value to be loaded
mask Mask for destination field
dst OXM/NXM header for destination field

Example:

8.1. Writing Your OS-Ken Application 528

os-ken Documentation, Release 1.4.1.dev5

actions += [parser.NXActionRegLoad2(dst="tun_ipv4_src",
value="192.168.10.0",
mask="255.255.255.0")]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionNote(note,
type_=None,
len_=None,
experi-
menter=None,
subtype=None)

Note action

This action does nothing at all.

And equivalent to the followings action of ovs-ofctl command.

note:[hh]..

Attribute Description
note A list of integer type values

Example:

actions += [parser.NXActionNote(note=[0xaa,0xbb,0xcc,0xdd])]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionSetTunnel(tun_id,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Set Tunnel action

This action sets the identifier (such as GRE) to the specified id.

And equivalent to the followings action of ovs-ofctl command.

Note: This actions is supported by OFPActionSetField in OpenFlow1.2 or later.

set_tunnel:id

Attribute Description
tun_id Tunnel ID(32bits)

Example:

actions += [parser.NXActionSetTunnel(tun_id=0xa)]

8.1. Writing Your OS-Ken Application 529

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.NXActionSetTunnel64(tun_id,
type_=None,
len_=None,
ex-
peri-
menter=None,
sub-
type=None)

Set Tunnel action

This action outputs to a port that encapsulates the packet in a tunnel.

And equivalent to the followings action of ovs-ofctl command.

Note: This actions is supported by OFPActionSetField in OpenFlow1.2 or later.

set_tunnel64:id

Attribute Description
tun_id Tunnel ID(64bits)

Example:

actions += [parser.NXActionSetTunnel64(tun_id=0xa)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionRegMove(src_field,
dst_field,
n_bits,
src_ofs=0,
dst_ofs=0,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Move register action

This action copies the src to dst.

And equivalent to the followings action of ovs-ofctl command.

move:src[start..end]->dst[start..end]

Attribute Description
src_field OXM/NXM header for source field
dst_field OXM/NXM header for destination field
n_bits Number of bits
src_ofs Starting bit offset in source
dst_ofs Starting bit offset in destination

8.1. Writing Your OS-Ken Application 530

os-ken Documentation, Release 1.4.1.dev5

Caution:

src_start and src_end difference and dst_start and dst_end difference must be the same.

Example:

actions += [parser.NXActionRegMove(src_field="reg0",
dst_field="reg1",
n_bits=5,
src_ofs=0
dst_ofs=10)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionResubmit(in_port=65528,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Resubmit action

This action searches one of the switch’s flow tables.

And equivalent to the followings action of ovs-ofctl command.

resubmit:port

Attribute Description
in_port New in_port for checking flow table

Example:

actions += [parser.NXActionResubmit(in_port=8080)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionResubmitTable(in_port=65528,
ta-
ble_id=255,
type_=None,
len_=None,
ex-
per-
i-
menter=None,
sub-
type=None)

Resubmit action

This action searches one of the switch’s flow tables.

And equivalent to the followings action of ovs-ofctl command.

resubmit([port],[table])

8.1. Writing Your OS-Ken Application 531

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
in_port New in_port for checking flow table
table_id Checking flow tables

Example:

actions += [parser.NXActionResubmit(in_port=8080,
table_id=10)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionOutputReg(ofs_nbits,
src,
max_len,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Add output action

This action outputs the packet to the OpenFlow port number read from src.

And equivalent to the followings action of ovs-ofctl command.

output:src[start...end]

At-
tribute

Description

ofs_nbits Start and End for the OXM/NXM field. Setting method refer to the nicira_ext.
ofs_nbits

src OXM/NXM header for source field
max_len Max length to send to controller

Example:

actions += [parser.NXActionOutputReg(
ofs_nbits=nicira_ext.ofs_nbits(4, 31),
src="reg0",
max_len=1024)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionOutputReg2(ofs_nbits,
src,
max_len,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Add output action

This action outputs the packet to the OpenFlow port number read from src.

8.1. Writing Your OS-Ken Application 532

os-ken Documentation, Release 1.4.1.dev5

And equivalent to the followings action of ovs-ofctl command.

output:src[start...end]

Note: Like the NXActionOutputReg but organized so that there is room for a 64-bit experi-
menter OXM as ’src’.

At-
tribute

Description

ofs_nbits Start and End for the OXM/NXM field. Setting method refer to the nicira_ext.
ofs_nbits

src OXM/NXM header for source field
max_len Max length to send to controller

Example:

actions += [parser.NXActionOutputReg2(
ofs_nbits=nicira_ext.ofs_nbits(4, 31),
src="reg0",
max_len=1024)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionLearn(table_id,
specs,
idle_timeout=0,
hard_timeout=0,
prior-
ity=32768,
cookie=0,
flags=0,
fin_idle_timeout=0,
fin_hard_timeout=0,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Adds or modifies flow action

This action adds or modifies a flow in OpenFlow table.

And equivalent to the followings action of ovs-ofctl command.

learn(argument[,argument]...)

8.1. Writing Your OS-Ken Application 533

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
table_id The table in which the new flow should be in-

serted
specs Adds a match criterion to the new flow

Please use the NXFlowSpecMatch in order
to set the following format

field=value
field[start..end] =src[start..end]
field[start..end]

Please use the NXFlowSpecLoad in order
to set the following format

load:value->dst[start..end]
load:src[start..end] ->dst[start..end]

Please use the NXFlowSpecOutput in or-
der to set the following format

output:field[start..end]

idle_timeout Idle time before discarding(seconds)
hard_timeout Max time before discarding(seconds)
priority Priority level of flow entry
cookie Cookie for new flow
flags send_flow_rem
fin_idle_timeout Idle timeout after FIN(seconds)
fin_hard_timeout Hard timeout after FIN(seconds)

Caution: The arguments specify the flow’s match fields, actions, and other properties, as
follows. At least one match criterion and one action argument should ordinarily be specified.

Example:

actions += [
parser.NXActionLearn(able_id=10,

specs=[parser.NXFlowSpecMatch(src=0x800,
dst=('eth_type_nxm', 0),
n_bits=16),

parser.NXFlowSpecMatch(src=('reg1', 1),
dst=('reg2', 3),
n_bits=5),

parser.NXFlowSpecMatch(src=('reg3', 1),
dst=('reg3', 1),
n_bits=5),

(continues on next page)

8.1. Writing Your OS-Ken Application 534

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

parser.NXFlowSpecLoad(src=0,
dst=('reg4', 3),
n_bits=5),

parser.NXFlowSpecLoad(src=('reg5', 1),
dst=('reg6', 3),
n_bits=5),

parser.NXFlowSpecOutput(src=('reg7', 1),
dst="",
n_bits=5)],

idle_timeout=180,
hard_timeout=300,
priority=1,
cookie=0x64,
flags=ofproto.OFPFF_SEND_FLOW_REM,
fin_idle_timeout=180,
fin_hard_timeout=300)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionExit(type_=None,
len_=None,
experi-
menter=None,
subtype=None)

Halt action

This action causes OpenvSwitch to immediately halt execution of further actions.

And equivalent to the followings action of ovs-ofctl command.

exit

Example:

actions += [parser.NXActionExit()]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionController(max_len,
con-
troller_id,
rea-
son,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Send packet in message action

This action sends the packet to the OpenFlow controller as a packet in message.

And equivalent to the followings action of ovs-ofctl command.

controller(key=value...)

8.1. Writing Your OS-Ken Application 535

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
max_len Max length to send to controller
controller_id Controller ID to send packet-in
reason Reason for sending the message

Example:

actions += [
parser.NXActionController(max_len=1024,

controller_id=1,
reason=ofproto.OFPR_INVALID_TTL)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionController2(type_=None,
len_=None,
ven-
dor=None,
sub-
type=None,
**kwargs)

Send packet in message action

This action sends the packet to the OpenFlow controller as a packet in message.

And equivalent to the followings action of ovs-ofctl command.

controller(key=value...)

Attribute Description
max_len Max length to send to controller
controller_id Controller ID to send packet-in
reason Reason for sending the message
userdata Additional data to the controller in the packet-in message
pause Flag to pause pipeline to resume later

Example:

actions += [
parser.NXActionController(max_len=1024,

controller_id=1,
reason=ofproto.OFPR_INVALID_TTL,
userdata=[0xa,0xb,0xc],
pause=True)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionDecTtlCntIds(cnt_ids,
type_=None,
len_=None,
ex-
per-
i-
menter=None,
sub-
type=None)

8.1. Writing Your OS-Ken Application 536

os-ken Documentation, Release 1.4.1.dev5

Decrement TTL action

This action decrements TTL of IPv4 packet or hop limits of IPv6 packet.

And equivalent to the followings action of ovs-ofctl command.

dec_ttl(id1[,id2]...)

Attribute Description
cnt_ids Controller ids

Example:

actions += [parser.NXActionDecTtlCntIds(cnt_ids=[1,2,3])]

Note: If you want to set the following ovs-ofctl command. Please use OFPActionDecNwTtl.

dec_ttl

class os_ken.ofproto.ofproto_v1_3_parser.NXActionStackPush(field,
start,
end,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Push field action

This action pushes field to top of the stack.

And equivalent to the followings action of ovs-ofctl command.

pop:dst[start...end]

Attribute Description
field OXM/NXM header for source field
start Start bit for source field
end End bit for source field

Example:

actions += [parser.NXActionStackPush(field="reg2",
start=0,
end=5)]

8.1. Writing Your OS-Ken Application 537

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.NXActionStackPop(field,
start, end,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Pop field action

This action pops field from top of the stack.

And equivalent to the followings action of ovs-ofctl command.

pop:src[start...end]

Attribute Description
field OXM/NXM header for destination field
start Start bit for destination field
end End bit for destination field

Example:

actions += [parser.NXActionStackPop(field="reg2",
start=0,
end=5)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionSample(probability,
collec-
tor_set_id=0,
obs_domain_id=0,
obs_point_id=0,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Sample packets action

This action samples packets and sends one sample for every sampled packet.

And equivalent to the followings action of ovs-ofctl command.

sample(argument[,argument]...)

Attribute Description
probability The number of sampled packets
collec-
tor_set_id

The unsigned 32-bit integer identifier of the set of sample collectors to send
sampled packets to

obs_domain_id The Unsigned 32-bit integer Observation Domain ID
obs_point_id The unsigned 32-bit integer Observation Point ID

8.1. Writing Your OS-Ken Application 538

os-ken Documentation, Release 1.4.1.dev5

Example:

actions += [parser.NXActionSample(probability=3,
collector_set_id=1,
obs_domain_id=2,
obs_point_id=3,)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionSample2(probability,
collec-
tor_set_id=0,
obs_domain_id=0,
obs_point_id=0,
sam-
pling_port=0,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Sample packets action

This action samples packets and sends one sample for every sampled packet. ’sampling_port’ can
be equal to ingress port or one of egress ports.

And equivalent to the followings action of ovs-ofctl command.

sample(argument[,argument]...)

Attribute Description
probability The number of sampled packets
collec-
tor_set_id

The unsigned 32-bit integer identifier of the set of sample collectors to send
sampled packets to

obs_domain_id The Unsigned 32-bit integer Observation Domain ID
obs_point_id The unsigned 32-bit integer Observation Point ID
sam-
pling_port

Sampling port number

Example:

actions += [parser.NXActionSample2(probability=3,
collector_set_id=1,
obs_domain_id=2,
obs_point_id=3,
sampling_port=8080)]

8.1. Writing Your OS-Ken Application 539

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.NXActionFinTimeout(fin_idle_timeout,
fin_hard_timeout,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Change TCP timeout action

This action changes the idle timeout or hard timeout or both, of this OpenFlow rule when the rule
matches a TCP packet with the FIN or RST flag.

And equivalent to the followings action of ovs-ofctl command.

fin_timeout(argument[,argument]...)

Attribute Description
fin_idle_timeout Causes the flow to expire after the given number of seconds of inactivity
fin_idle_timeout Causes the flow to expire after the given number of second, regardless of

activity

Example:

match = parser.OFPMatch(ip_proto=6, eth_type=0x0800)
actions += [parser.NXActionFinTimeout(fin_idle_timeout=30,

fin_hard_timeout=60)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionConjunction(clause,
n_clauses,
id_,
type_=None,
len_=None,
ex-
peri-
menter=None,
sub-
type=None)

Conjunctive matches action

This action ties groups of individual OpenFlow flows into higher-level conjunctive flows. Please
refer to the ovs-ofctl command manual for details.

And equivalent to the followings action of ovs-ofctl command.

conjunction(id,k/n)

Attribute Description
clause Number assigned to the flow’s dimension
n_clauses Specify the conjunctive flow’s match condition
id_ Conjunction ID

8.1. Writing Your OS-Ken Application 540

os-ken Documentation, Release 1.4.1.dev5

Example:

actions += [parser.NXActionConjunction(clause=1,
n_clauses=2,
id_=10)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionMultipath(fields,
basis,
algo-
rithm,
max_link,
arg,
ofs_nbits,
dst,
type_=None,
len_=None,
experi-
menter=None,
sub-
type=None)

Select multipath link action

This action selects multipath link based on the specified parameters. Please refer to the ovs-ofctl
command manual for details.

And equivalent to the followings action of ovs-ofctl command.

multipath(fields, basis, algorithm, n_links, arg, dst[start..end])

At-
tribute

Description

fields One of NX_HASH_FIELDS_*
basis Universal hash parameter
algo-
rithm

One of NX_MP_ALG_*.

max_link Number of output links
arg Algorithm-specific argument
ofs_nbits Start and End for the OXM/NXM field. Setting method refer to the nicira_ext.

ofs_nbits
dst OXM/NXM header for source field

Example:

actions += [parser.NXActionMultipath(
fields=nicira_ext.NX_HASH_FIELDS_SYMMETRIC_L4,
basis=1024,
algorithm=nicira_ext.NX_MP_ALG_HRW,
max_link=5,
arg=0,
ofs_nbits=nicira_ext.ofs_nbits(4, 31),
dst="reg2")]

8.1. Writing Your OS-Ken Application 541

os-ken Documentation, Release 1.4.1.dev5

class os_ken.ofproto.ofproto_v1_3_parser.NXActionBundle(algorithm,
fields, basis,
slave_type,
n_slaves,
ofs_nbits,
dst, slaves)

Select bundle link action

This action selects bundle link based on the specified parameters. Please refer to the ovs-ofctl
command manual for details.

And equivalent to the followings action of ovs-ofctl command.

bundle(fields, basis, algorithm, slave_type, slaves:[s1, s2,...])

Attribute Description
algorithm One of NX_MP_ALG_*.
fields One of NX_HASH_FIELDS_*
basis Universal hash parameter
slave_type Type of slaves(must be NXM_OF_IN_PORT)
n_slaves Number of slaves
ofs_nbits Start and End for the OXM/NXM field. (must be zero)
dst OXM/NXM header for source field(must be zero)
slaves List of slaves

Example:

actions += [parser.NXActionBundle(
algorithm=nicira_ext.NX_MP_ALG_HRW,
fields=nicira_ext.NX_HASH_FIELDS_ETH_SRC,
basis=0,
slave_type=nicira_ext.NXM_OF_IN_PORT,
n_slaves=2,
ofs_nbits=0,
dst=0,
slaves=[2, 3])]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionBundleLoad(algorithm,
fields,
basis,
slave_type,
n_slaves,
ofs_nbits,
dst,
slaves)

Select bundle link action

This action has the same behavior as the bundle action, with one exception. Please refer to the
ovs-ofctl command manual for details.

And equivalent to the followings action of ovs-ofctl command.

bundle_load(fields, basis, algorithm, slave_type, dst[start... *emd*], slaves:[s1, s2,...]) |

8.1. Writing Your OS-Ken Application 542

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description

algo-
rithm

One of NX_MP_ALG_*.

fields One of NX_HASH_FIELDS_*
basis Universal hash parameter
slave_type Type of slaves(must be NXM_OF_IN_PORT)
n_slaves Number of slaves
ofs_nbits Start and End for the OXM/NXM field. Setting method refer to the

nicira_ext.ofs_nbits
dst OXM/NXM header for source field
slaves List of slaves

Example:

actions += [parser.NXActionBundleLoad(
algorithm=nicira_ext.NX_MP_ALG_HRW,
fields=nicira_ext.NX_HASH_FIELDS_ETH_SRC,
basis=0,
slave_type=nicira_ext.NXM_OF_IN_PORT,
n_slaves=2,
ofs_nbits=nicira_ext.ofs_nbits(4, 31),
dst="reg0",
slaves=[2, 3])]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionCT(flags, zone_src,
zone_ofs_nbits, re-
circ_table, alg, ac-
tions, type_=None,
len_=None, ex-
perimenter=None,
subtype=None)

Pass traffic to the connection tracker action

This action sends the packet through the connection tracker.

And equivalent to the followings action of ovs-ofctl command.

ct(argument[,argument]...)

At-
tribute

Description

flags Zero or more(Unspecified flag bits must be zero.)
zone_src OXM/NXM header for source field
zone_ofs_nbitsStart and End for the OXM/NXM field. Setting method refer to the nicira_ext.

ofs_nbits. If you need set the Immediate value for zone, zone_src must be set to
None or empty character string.

re-
circ_table

Recirculate to a specific table

alg Well-known port number for the protocol
ac-
tions

Zero or more actions may immediately follow this action

8.1. Writing Your OS-Ken Application 543

os-ken Documentation, Release 1.4.1.dev5

Note: If you set number to zone_src, Traceback occurs when you run the to_jsondict.

Example:

match = parser.OFPMatch(eth_type=0x0800, ct_state=(0,32))
actions += [parser.NXActionCT(

flags = 1,
zone_src = "reg0",
zone_ofs_nbits = nicira_ext.ofs_nbits(4, 31),
recirc_table = 4,
alg = 0,
actions = [])]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionNAT(flags,
range_ipv4_min=”,
range_ipv4_max=”,
range_ipv6_min=”,
range_ipv6_max=”,
range_proto_min=None,
range_proto_max=None,
type_=None,
len_=None,
experi-
menter=None,
subtype=None)

Network address translation action

This action sends the packet through the connection tracker.

And equivalent to the followings action of ovs-ofctl command.

Note: The following command image does not exist in ovs-ofctl command manual and has been
created from the command response.

nat(src=ip_min-ip_max : proto_min-proto-max)

Attribute Description
flags Zero or more(Unspecified flag bits must be zero.)
range_ipv4_min Range ipv4 address minimun
range_ipv4_max Range ipv4 address maximun
range_ipv6_min Range ipv6 address minimun
range_ipv6_max Range ipv6 address maximun
range_proto_min Range protocol minimum
range_proto_max Range protocol maximun

Caution: NXActionNAT must be defined in the actions in the NXActionCT.

Example:

8.1. Writing Your OS-Ken Application 544

os-ken Documentation, Release 1.4.1.dev5

match = parser.OFPMatch(eth_type=0x0800)
actions += [

parser.NXActionCT(
flags = 1,
zone_src = "reg0",
zone_ofs_nbits = nicira_ext.ofs_nbits(4, 31),
recirc_table = 255,
alg = 0,
actions = [

parser.NXActionNAT(
flags = 1,
range_ipv4_min = "10.1.12.0",
range_ipv4_max = "10.1.13.255",
range_ipv6_min = "",
range_ipv6_max = "",
range_proto_min = 1,
range_proto_max = 1023

)
]

)
]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionOutputTrunc(port,
max_len,
type_=None,
len_=None,
ex-
peri-
menter=None,
sub-
type=None)

Truncate output action

This action truncate a packet into the specified size and outputs it.

And equivalent to the followings action of ovs-ofctl command.

output(port=port,max_len=max_len)

Attribute Description
port Output port
max_len Max bytes to send

Example:

actions += [parser.NXActionOutputTrunc(port=8080,
max_len=1024)]

class os_ken.ofproto.ofproto_v1_3_parser.NXActionDecNshTtl(type_=None,
len_=None,
ven-
dor=None,
sub-
type=None)

8.1. Writing Your OS-Ken Application 545

os-ken Documentation, Release 1.4.1.dev5

Decrement NSH TTL action

This action decrements the TTL in the Network Service Header(NSH).

This action was added in OVS v2.9.

And equivalent to the followings action of ovs-ofctl command.

dec_nsh_ttl

Example:

actions += [parser.NXActionDecNshTtl()]

class os_ken.ofproto.ofproto_v1_3_parser.NXFlowSpecMatch(src, dst,
n_bits)

Specification for adding match criterion

This class is used by NXActionLearn.

For the usage of this class, please refer to NXActionLearn.

Attribute Description
src OXM/NXM header and Start bit for source field
dst OXM/NXM header and Start bit for destination field
n_bits The number of bits from the start bit

class os_ken.ofproto.ofproto_v1_3_parser.NXFlowSpecLoad(src, dst,
n_bits)

Add NXAST_REG_LOAD actions

This class is used by NXActionLearn.

For the usage of this class, please refer to NXActionLearn.

Attribute Description
src OXM/NXM header and Start bit for source field
dst OXM/NXM header and Start bit for destination field
n_bits The number of bits from the start bit

class os_ken.ofproto.ofproto_v1_3_parser.NXFlowSpecOutput(src,
n_bits,
dst=”)

Add an OFPAT_OUTPUT action

This class is used by NXActionLearn.

For the usage of this class, please refer to NXActionLearn.

Attribute Description
src OXM/NXM header and Start bit for source field
dst Must be ”
n_bits The number of bits from the start bit

os_ken.ofproto.nicira_ext.ofs_nbits(start, end)
The utility method for ofs_nbits

8.1. Writing Your OS-Ken Application 546

os-ken Documentation, Release 1.4.1.dev5

This method is used in the class to set the ofs_nbits.

This method converts start/end bits into ofs_nbits required to specify the bit range of OXM/NXM
fields.

ofs_nbits can be calculated as following:

ofs_nbits = (start << 6) + (end - start)

The parameter start/end means the OXM/NXM field of ovs-ofctl command.

field[start..end]

Attribute Description
start Start bit for OXM/NXM field
end End bit for OXM/NXM field

Nicira Extended Match Structures

The API of this class is the same as OFPMatch.

You can define the flow match by the keyword arguments. The following arguments are available.

Argument Value Description
in_port_nxm Integer 16bit OpenFlow port number.
eth_dst_nxm MAC address Ethernet destination address.
eth_src_nxm MAC address Ethernet source address.
eth_type_nxm Integer 16bit Ethernet type. Needed to support Nicira extensions that require the eth_type to be set. (i.e. tcp_flags_nxm)
vlan_tci Integer 16bit VLAN TCI. Basically same as vlan_vid plus vlan_pcp.
nw_tos Integer 8bit IP ToS or IPv6 traffic class field dscp. Requires setting fields: eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)]
ip_proto_nxm Integer 8bit IP protocol. Needed to support Nicira extensions that require the ip_proto to be set. (i.e. tcp_flags_nxm) Requires setting fields: eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)]
ipv4_src_nxm IPv4 address IPv4 source address. Requires setting fields: eth_type_nxm = 0x0800 (IPv4)
ipv4_dst_nxm IPv4 address IPv4 destination address. Requires setting fields: eth_type_nxm = 0x0800 (IPv4)
tcp_src_nxm Integer 16bit TCP source port. Requires setting fields: eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)] and ip_proto_nxm = 6 (TCP)
tcp_dst_nxm Integer 16bit TCP destination port. Requires setting fields: eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)] and ip_proto_nxm = 6 (TCP)
udp_src_nxm Integer 16bit UDP source port. Requires setting fields: eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)] and ip_proto_nxm = 17 (UDP)
udp_dst_nxm Integer 16bit UDP destination port. eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)] and ip_proto_nxm = 17 (UDP)
icmpv4_type_nxm Integer 8bit Type matches the ICMP type and code matches the ICMP code. Requires setting fields: eth_type_nxm = 0x0800 (IPv4) and ip_proto_nxm = 1 (ICMP)
icmpv4_code_nxm Integer 8bit Type matches the ICMP type and code matches the ICMP code. Requires setting fields: eth_type_nxm = 0x0800 (IPv4) and ip_proto_nxm = 1 (ICMP)
arp_op_nxm Integer 16bit Only ARP opcodes between 1 and 255 should be specified for matching. Requires setting fields: eth_type_nxm = 0x0806 (ARP)
arp_spa_nxm IPv4 address An address may be specified as an IP address or host name. Requires setting fields: eth_type_nxm = 0x0806 (ARP)
arp_tpa_nxm IPv4 address An address may be specified as an IP address or host name. Requires setting fields: eth_type_nxm = 0x0806 (ARP)
tunnel_id_nxm Integer 64bit Tunnel identifier.
arp_sha_nxm MAC address An address is specified as 6 pairs of hexadecimal digits delimited by colons. Requires setting fields: eth_type_nxm = 0x0806 (ARP)
arp_tha_nxm MAC address An address is specified as 6 pairs of hexadecimal digits delimited by colons. Requires setting fields: eth_type_nxm = 0x0806 (ARP)
ipv6_src_nxm IPv6 address IPv6 source address. Requires setting fields: eth_type_nxm = 0x86dd (IPv6)
ipv6_dst_nxm IPv6 address IPv6 destination address. Requires setting fields: eth_type_nxm = 0x86dd (IPv6)
icmpv6_type_nxm Integer 8bit Type matches the ICMP type and code matches the ICMP code. Requires setting fields: eth_type_nxm = 0x86dd (IPv6) and ip_proto_nxm = 58 (ICMP for IPv6)
icmpv6_code_nxm Integer 8bit Type matches the ICMP type and code matches the ICMP code. Requires setting fields: eth_type_nxm = 0x86dd (IPv6) and ip_proto_nxm = 58 (ICMP for IPv6)

continues on next page

8.1. Writing Your OS-Ken Application 547

os-ken Documentation, Release 1.4.1.dev5

Table 5 – continued from previous page
Argument Value Description
nd_target IPv6 address The target address ipv6. Requires setting fields: eth_type_nxm = 0x86dd (IPv6) and ip_proto_nxm = 58 (ICMP for IPv6)
nd_sll MAC address The source link-layer address option. Requires setting fields: eth_type_nxm = 0x86dd (IPv6) and ip_proto_nxm = 58 (ICMP for IPv6) and icmpv6_type_nxm = 135 (Neighbor solicitation)
nd_tll MAC address The target link-layer address option. Requires setting fields: eth_type_nxm = 0x86dd (IPv6) and ip_proto_nxm = 58 (ICMP for IPv6) and icmpv6_type_nxm = 136 (Neighbor advertisement)
ip_frag Integer 8bit frag_type specifies what kind of IP fragments or non-fragments to match. Requires setting fields: eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)]
ipv6_label Integer 32bit Matches IPv6 flow label. Requires setting fields: eth_type_nxm = 0x86dd (IPv6)
ip_ecn_nxm Integer 8bit Matches ecn bits in IP ToS or IPv6 traffic class fields. Requires setting fields: eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)]
nw_ttl Integer 8bit IP TTL or IPv6 hop limit value ttl. Requires setting fields: eth_type_nxm = [0x0800 (IPv4)|0x86dd (IPv6)]
mpls_ttl Integer 8bit The TTL of the outer MPLS label stack entry of a packet. Requires setting fields: eth_type_nxm = 0x8847 (MPLS Unicast)
tun_ipv4_src IPv4 address Tunnel IPv4 source address. Requires setting fields: eth_type_nxm = 0x0800 (IPv4)
tun_ipv4_dst IPv4 address Tunnel IPv4 destination address. Requires setting fields: eth_type_nxm = 0x0800 (IPv4)
pkt_mark Integer 32bit Packet metadata mark.
tcp_flags_nxm Integer 16bit TCP Flags. Requires setting fields: eth_type_nxm = [0x0800 (IP)|0x86dd (IPv6)] and ip_proto_nxm = 6 (TCP)
conj_id Integer 32bit Conjunction ID used only with the conjunction action
tun_gbp_id Integer 16bit The group policy identifier in the VXLAN header.
tun_gbp_flags Integer 8bit The group policy flags in the VXLAN header.
tun_flags Integer 16bit Flags indicating various aspects of the tunnel encapsulation.
ct_state Integer 32bit Conntrack state.
ct_zone Integer 16bit Conntrack zone.
ct_mark Integer 32bit Conntrack mark.
ct_label Integer 128bit Conntrack label.
tun_ipv6_src IPv6 address Tunnel IPv6 source address. Requires setting fields: eth_type_nxm = 0x86dd (IPv6)
tun_ipv6_dst IPv6 address Tunnel IPv6 destination address. Requires setting fields: eth_type_nxm = 0x86dd (IPv6)
_recirc_id Integer 32bit ID for recirculation.
_dp_hash Integer 32bit Flow hash computed in Datapath.
nsh_flags Integer 8bit Flags field in NSH Base Header. Requires eth_type_nxm = 0x894f (NSH). Since OpenFlow 1.3 and OVS v2.8.
nsh_mdtype Integer 8bit Metadata Type in NSH Base Header. Requires eth_type_nxm = 0x894f (NSH). Since OpenFlow 1.3 and OVS v2.8.
nsh_np Integer 8bit Next Protocol type in NSH Base Header. Requires eth_type_nxm = 0x894f (NSH). Since OpenFlow 1.3 and OVS v2.8.
nsh_spi Integer 32bit Service Path Identifier in NSH Service Path Header. Requires eth_type_nxm = 0x894f (NSH). Since OpenFlow 1.3 and OVS v2.8.
nsh_si Integer 8bit Service Index in NSH Service Path Header. Requires eth_type_nxm = 0x894f (NSH). Since OpenFlow 1.3 and OVS v2.8.
nsh_c<N> Integer 32bit Context fields in NSH Context Header. <N> is a number of 1-4. Requires eth_type_nxm = 0x894f (NSH). Since OpenFlow 1.3 and OVS v2.8.
nsh_ttl Integer 8bit TTL field in NSH Base Header. Requires eth_type_nxm = 0x894f (NSH). Since OpenFlow 1.3 and OVS v2.9.
reg<idx> Integer 32bit Packet register. <idx> is register number 0-15.
xxreg<idx> Integer 128bit Packet extended-extended register. <idx> is register number 0-3.

Note: Setting the TCP flags via the nicira extensions. This is required when using OVS version <
2.4. When using the nxm fields, you need to use any nxm prereq fields as well or you will receive a
OFPBMC_BAD_PREREQ error

Example:

WILL NOT work
flag = tcp.TCP_ACK
match = parser.OFPMatch(

tcp_flags_nxm=(flag, flag),
ip_proto=inet.IPPROTO_TCP,
eth_type=eth_type)

Works

(continues on next page)

8.1. Writing Your OS-Ken Application 548

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

flag = tcp.TCP_ACK
match = parser.OFPMatch(

tcp_flags_nxm=(flag, flag),
ip_proto_nxm=inet.IPPROTO_TCP,
eth_type_nxm=eth_type)

8.1.7 OS-Ken API Reference

class os_ken.base.app_manager.OSKenApp(*_args, **_kwargs)
The base class for OSKen applications.

OSKenApp subclasses are instantiated after osken-manager loaded all requested OSKen applica-
tion modules. __init__ should call OSKenApp.__init__ with the same arguments. It’s illegal to
send any events in __init__.

The instance attribute ’name’ is the name of the class used for message routing among OSKen
applications. (Cf. send_event) It’s set to __class__.__name__ by OSKenApp.__init__. It’s dis-
couraged for subclasses to override this.

OFP_VERSIONS = None
A list of supported OpenFlow versions for this OSKenApp. The default is all versions sup-
ported by the framework.

Examples:

OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION,
ofproto_v1_2.OFP_VERSION]

If multiple OSKen applications are loaded in the system, the intersection of their
OFP_VERSIONS is used.

_CONTEXTS = {}
A dictionary to specify contexts which this OSKen application wants to use. Its key is a
name of context and its value is an ordinary class which implements the context. The class
is instantiated by app_manager and the instance is shared among OSKenApp subclasses
which has _CONTEXTS member with the same key. A OSKenApp subclass can obtain a
reference to the instance via its __init__’s kwargs as the following.

Example:

_CONTEXTS = {
'network': network.Network

}

def __init__(self, *args, *kwargs):
self.network = kwargs['network']

_EVENTS = []
A list of event classes which this OSKenApp subclass would generate. This should be speci-
fied if and only if event classes are defined in a different python module from the OSKenApp
subclass is.

8.1. Writing Your OS-Ken Application 549

os-ken Documentation, Release 1.4.1.dev5

close()
teardown method. The method name, close, is chosen for python context manager

classmethod context_iteritems()
Return iterator over the (key, contxt class) of application context

reply_to_request(req, rep)
Send a reply for a synchronous request sent by send_request. The first argument should be
an instance of EventRequestBase. The second argument should be an instance of EventRe-
plyBase.

send_event(name, ev, state=None)
Send the specified event to the OSKenApp instance specified by name.

send_event_to_observers(ev, state=None)
Send the specified event to all observers of this OSKenApp.

send_request(req)
Make a synchronous request. Set req.sync to True, send it to a OSKen application specified
by req.dst, and block until receiving a reply. Returns the received reply. The argument
should be an instance of EventRequestBase.

start()
Hook that is called after startup initialization is done.

class os_ken.controller.dpset.DPSet(*args, **kwargs)
DPSet application manages a set of switches (datapaths) connected to this controller.

Usage Example:

...(snip)...
from os_ken.controller import dpset

class MyApp(app_manager.OSKenApp):
_CONTEXTS = {

'dpset': dpset.DPSet,
}

def __init__(self, *args, **kwargs):
super(MyApp, self).__init__(*args, **kwargs)
Stores DPSet instance to call its API in this app
self.dpset = kwargs['dpset']

def _my_handler(self):
Get the datapath object which has the given dpid
dpid = 1
dp = self.dpset.get(dpid)
if dp is None:

self.logger.info('No such datapath: dpid=%d', dpid)

get(dp_id)
This method returns the os_ken.controller.controller.Datapath instance for the given Datap-
ath ID.

get_all()
This method returns a list of tuples which represents instances for switches con-
nected to this controller. The tuple consists of a Datapath ID and an instance of

8.1. Writing Your OS-Ken Application 550

os-ken Documentation, Release 1.4.1.dev5

os_ken.controller.controller.Datapath.

A return value looks like the following:

[(dpid_A, Datapath_A), (dpid_B, Datapath_B), ...]

get_port(dpid, port_no)
This method returns the os_ken.controller.dpset.PortState instance for the given Datapath ID
and the port number. Raises os_ken_exc.PortNotFound if no such a datapath connected to
this controller or no such a port exists.

get_ports(dpid)
This method returns a list of os_ken.controller.dpset.PortState instances for the given Data-
path ID. Raises KeyError if no such a datapath connected to this controller.

8.2 Configuration

8.2.1 Setup TLS Connection

If you want to use secure channel to connect OpenFlow switches, you need to use TLS connection. This
document describes how to setup OS-Ken to connect to the Open vSwitch over TLS.

Configuring a Public Key Infrastructure

If you don’t have a PKI, the ovs-pki script included with Open vSwitch can help you. This section is
based on the INSTALL.SSL in the Open vSwitch source code.

NOTE: How to install Open vSwitch isn’t described in this document. Please refer to the Open vSwitch
documents.

Create a PKI by using ovs-pki script:

% ovs-pki init
(Default directory is /usr/local/var/lib/openvswitch/pki)

The pki directory consists of controllerca and switchca subdirectories. Each directory contains CA files.

Create a controller private key and certificate:

% ovs-pki req+sign ctl controller

ctl-privkey.pem and ctl-cert.pem are generated in the current directory.

Create a switch private key and certificate:

% ovs-pki req+sign sc switch

sc-privkey.pem and sc-cert.pem are generated in the current directory.

8.2. Configuration 551

os-ken Documentation, Release 1.4.1.dev5

Testing TLS Connection

Configuring ovs-vswitchd to use CA files using the ovs-vsctl "set-ssl" command, e.g.:

% ovs-vsctl set-ssl /etc/openvswitch/sc-privkey.pem \
/etc/openvswitch/sc-cert.pem \
/usr/local/var/lib/openvswitch/pki/controllerca/cacert.pem

% ovs-vsctl add-br br0
% ovs-vsctl set-controller br0 ssl:127.0.0.1:6633

Substitute the correct file names, if they differ from the ones used above. You should use absolute file
names.

Run OS-Ken with CA files:

% osken-manager --ctl-privkey ctl-privkey.pem \
--ctl-cert ctl-cert.pem \
--ca-certs /usr/local/var/lib/openvswitch/pki/switchca/

↪→cacert.pem \
--verbose

You can see something like:

loading app os_ken.controller.ofp_handler
instantiating app os_ken.controller.ofp_handler
BRICK ofp_event

CONSUMES EventOFPSwitchFeatures
CONSUMES EventOFPErrorMsg
CONSUMES EventOFPHello
CONSUMES EventOFPEchoRequest

connected socket:<SSLSocket fileno=4 sock=127.0.0.1:6633 peer=127.0.0.
↪→1:61302> a
ddress:('127.0.0.1', 61302)
hello ev <os_ken.controller.ofp_event.EventOFPHello object at 0x1047806d0>
move onto config mode
switch features ev version: 0x1 msg_type 0x6 xid 0xb0bb34e5 port
↪→OFPPhyPort(port
_no=65534, hw_addr='\x16\xdc\xa2\xe2}K', name='br0\x00\x00\x00\x00\x00\x00\
↪→x00\x
00\x00\x00\x00\x00\x00', config=0, state=0, curr=0, advertised=0,
↪→supported=0, p
eer=0)
move onto main mode

8.2.2 Topology Viewer

os_ken.app.gui_topology.gui_topology provides topology visualization.

This depends on following os_ken applications.

os_ken.app.rest_topology Get node and link data.
os_ken.app.ws_topology Being notified change of link up/down.
os_ken.app.ofctl_rest Get flows of datapaths.

8.2. Configuration 552

os-ken Documentation, Release 1.4.1.dev5

Usage

Run mininet (or join your real environment):

$ sudo mn --controller remote --topo tree,depth=3

Run GUI application:

$ PYTHONPATH=. ./bin/os_ken run --observe-links os_ken/app/gui_topology/
↪→gui_topology.py

Access http://<ip address of os_ken host>:8080 with your web browser.

Screenshot

8.2. Configuration 553

http:/

os-ken Documentation, Release 1.4.1.dev5

8.3 Tests

8.3.1 Testing VRRP Module

This page describes how to test OS-Ken VRRP service

Running integrated tests

Some testing scripts are available.

• os_ken/tests/integrated/test_vrrp_linux_multi.py

• os_ken/tests/integrated/test_vrrp_multi.py

Each files include how to run in the comment. Please refer to it.

Running multiple OS-Ken VRRP in network namespace

The following command lines set up necessary bridges and interfaces.

And then run OSKen-VRRP:

ip netns add gateway1
ip netns add gateway2

ip link add dev vrrp-br0 type bridge
ip link add dev vrrp-br1 type bridge

ip link add veth0 type veth peer name veth0-br0
ip link add veth1 type veth peer name veth1-br0
ip link add veth2 type veth peer name veth2-br0
ip link add veth3 type veth peer name veth3-br1
ip link add veth4 type veth peer name veth4-br1
ip link add veth5 type veth peer name veth5-br1

ip link set dev veth0-br0 master vrrp-br0
ip link set dev veth1-br0 master vrrp-br0
ip link set dev veth2-br0 master vrrp-br0
ip link set dev veth3-br0 master vrrp-br1
ip link set dev veth4-br0 master vrrp-br1
ip link set dev veth5-br0 master vrrp-br1

ip link set vrrp-br0 up
ip link set vrrp-br1 up

ip link set veth0 up
ip link set veth0-br0 up
ip link set veth1-br0 up
ip link set veth2-br0 up
ip link set veth3-br1 up
ip link set veth4-br1 up
ip link set veth5 up
ip link set veth5-br1 up

ip link set veth1 netns gateway1
(continues on next page)

8.3. Tests 554

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

ip link set veth2 netns gateway2
ip link set veth3 netns gateway1
ip link set veth4 netns gateway2

ip netns exec gateway1 ip link set veth1 up
ip netns exec gateway2 ip link set veth2 up
ip netns exec gateway1 ip link set veth3 up
ip netns exec gateway2 ip link set veth4 up

ip netns exec gateway1 .os_ken-vrrp veth1 '10.0.0.2' 254
ip netns exec gateway2 .os_ken-vrrp veth2 '10.0.0.3' 100

Caveats

Please make sure that all interfaces and bridges are UP. Don’t forget interfaces in netns gate-
way1/gateway2.

^ veth5
|
V veth5-br1

Linux Brirge vrrp-br1

veth3-br1^ ^ veth4-br1
| |

veth3V V veth4
------------- -------------
netns		netns
gateway1		gateway2
os_ken-vrrp		os_ken-vrrp
------------- ----------
veth1^ ^ veth2

| |
veth1-br0V V veth2-br0

Linux Brirge vrrp-br0

^ veth0-br0
|
V veth0

Here’s the helper executable, os_ken-vrrp:

#!/usr/bin/env python
#
Copyright (C) 2013 Nippon Telegraph and Telephone Corporation.
Copyright (C) 2013 Isaku Yamahata <yamahata at valinux co jp>
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#

(continues on next page)

8.3. Tests 555

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.

from os_ken.lib import hub
hub.patch()

TODO:
Right now, we have our own patched copy of ovs python bindings
Once our modification is upstreamed and widely deployed,
use it
#
NOTE: this modifies sys.path and thus affects the following imports.
eg. oslo.config.cfg.
import os_ken.contrib

from oslo.config import cfg
import logging
import netaddr
import sys
import time

from os_ken import log
log.early_init_log(logging.DEBUG)

from os_ken import flags
from os_ken import version
from os_ken.base import app_manager
from os_ken.controller import controller
from os_ken.lib import mac as lib_mac
from os_ken.lib.packet import vrrp
from os_ken.services.protocols.vrrp import api as vrrp_api
from os_ken.services.protocols.vrrp import event as vrrp_event

CONF = cfg.CONF

_VRID = 7
_IP_ADDRESS = '10.0.0.1'
_PRIORITY = 100

class VRRPTestRouter(app_manager.OSKenApp):
def __init__(self, *args, **kwargs):

super(VRRPTestRouter, self).__init__(*args, **kwargs)
print args
self.logger.debug('vrrp_config %s', args)
self._ifname = args[0]
self._primary_ip_address = args[1]
self._priority = int(args[2])

def start(self):
print 'start'

(continues on next page)

8.3. Tests 556

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

hub.spawn(self._main)

def _main(self):
print self
interface = vrrp_event.VRRPInterfaceNetworkDevice(

lib_mac.DONTCARE, self._primary_ip_address, None, self._ifname)
self.logger.debug('%s', interface)

ip_addresses = [_IP_ADDRESS]
config = vrrp_event.VRRPConfig(

version=vrrp.VRRP_VERSION_V3, vrid=_VRID, priority=self._
↪→priority,

ip_addresses=ip_addresses)
self.logger.debug('%s', config)

rep = vrrp_api.vrrp_config(self, interface, config)
self.logger.debug('%s', rep)

def main():
vrrp_config = sys.argv[-3:]
sys.argv = sys.argv[:-3]
CONF(project='os_ken', version='os_ken-vrrp %s' % version)

log.init_log()
always enable ofp for now.
app_lists = ['os_ken.services.protocols.vrrp.manager',

'os_ken.services.protocols.vrrp.dumper',
'os_ken.services.protocols.vrrp.sample_manager']

app_mgr = app_manager.AppManager.get_instance()
app_mgr.load_apps(app_lists)
contexts = app_mgr.create_contexts()
app_mgr.instantiate_apps(**contexts)
vrrp_router = app_mgr.instantiate(VRRPTestRouter, *vrrp_config,

↪→**contexts)
vrrp_router.start()

while True:
time.sleep(999999)

app_mgr.close()

if __name__ == "__main__":
main()

8.3. Tests 557

os-ken Documentation, Release 1.4.1.dev5

8.3.2 Testing OF-config support with LINC

This page describes how to setup LINC and test OS-Ken OF-config with it.

The procedure is as follows. Although all the procedure is written for reader’s convenience, please refer
to LINC document for latest informations of LINC.

https://github.com/FlowForwarding/LINC-Switch

The test procedure

• install Erlang environment

• build LINC

• configure LINC switch

• setup for LINC

• run LINC switch

• run OS-Ken test_of_config app

For getting/installing OS-Ken itself, please refer to http://osrg.github.io/os_ken/

Install Erlang environment

Since LINC is written in Erlang, you need to install Erlang execution environment. Required version is
R15B+.

The easiest way is to use binary package from https://www.erlang-solutions.com/downloads/
download-erlang-otp

The distribution may also provide Erlang package.

build LINC

install necessary packages for build

install necessary build tools

On Ubuntu:

apt-get install git-core bridge-utils libpcap0.8 libpcap-dev libcap2-bin
↪→uml-utilities

On RedHat/CentOS:

yum install git sudo bridge-utils libpcap libpcap-devel libcap tunctl

Note that on RedHat/CentOS 5.x you need a newer version of libpcap:

yum erase libpcap libpcap-devel
yum install flex byacc
wget http://www.tcpdump.org/release/libpcap-1.2.1.tar.gz
tar xzf libpcap-1.2.1.tar.gz

(continues on next page)

8.3. Tests 558

https://github.com/FlowForwarding/LINC-Switch
http://osrg.github.io/os_ken/
https://www.erlang-solutions.com/downloads/download-erlang-otp
https://www.erlang-solutions.com/downloads/download-erlang-otp

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

cd libpcap-1.2.1
./configure
make && make install

get LINC repo and built

Clone LINC repo:

% git clone git://github.com/FlowForwarding/LINC-Switch.git

Then compile everything:

% cd LINC-Switch
% make

Note: At the time of this writing, test_of_config fails due to a bug of LINC. You can try this test with
LINC which is built by the following methods.

% cd LINC-Switch
% make
% cd deps/of_config
% git reset --hard f772af4b765984381ad024ca8e5b5b8c54362638
% cd ../..
% make offline

Setup LINC

edit LINC switch configuration file. rel/linc/releases/0.1/sys.config Here is the sample
sys.config for test_of_config.py to run.

[{linc,
[{of_config,enabled},
{capable_switch_ports,

[{port,1,[{interface,"linc-port"}]},
{port,2,[{interface,"linc-port2"}]},
{port,3,[{interface,"linc-port3"}]},
{port,4,[{interface,"linc-port4"}]}]},

{capable_switch_queues,
[

{queue,991,[{min_rate,10},{max_rate,120}]},
{queue,992,[{min_rate,10},{max_rate,130}]},
{queue,993,[{min_rate,200},{max_rate,300}]},
{queue,994,[{min_rate,400},{max_rate,900}]}
]},

{logical_switches,
[{switch,0,

[{backend,linc_us4},
{controllers,[{"Switch0-Default-Controller","127.0.0.1",

↪→6633,tcp}]},

(continues on next page)

8.3. Tests 559

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{controllers_listener,{"127.0.0.1",9998,tcp}},
{queues_status,enabled},
{ports,[{port,1,{queues,[]}},{port,2,{queues,[991,992]}}]}

↪→]}
,

{switch,7,
[{backend,linc_us3},
{controllers,[{"Switch7-Controller","127.0.0.1",6633,tcp}]}

↪→,
{controllers_listener,disabled},
{queues_status,enabled},
{ports,[{port,4,{queues,[]}},{port,3,{queues,[993,994]}}]}

↪→]}
]}]},

{enetconf,
[{capabilities,

[{base,{1,0}},
{base,{1,1}},
{startup,{1,0}},
{'writable-running',{1,0}}]},

{callback_module,linc_ofconfig},
{sshd_ip,{127,0,0,1}},
{sshd_port,1830},
{sshd_user_passwords,[{"linc","linc"}]}]},

{lager,
[{handlers,

[{lager_console_backend,debug},
{lager_file_backend,

[{"log/error.log",error,10485760,"$D0",5},
{"log/console.log",info,10485760,"$D0",5}]}]}]},

{sasl,
[{sasl_error_logger,{file,"log/sasl-error.log"}},
{errlog_type,error},
{error_logger_mf_dir,"log/sasl"},
{error_logger_mf_maxbytes,10485760},
{error_logger_mf_maxfiles,5}]},

{sync,[{excluded_modules,[procket]}]}].

setup for LINC

As the above sys.config requires some network interface, create them:

ip link add linc-port type veth peer name linc-port-peer
ip link set linc-port up
ip link add linc-port2 type veth peer name linc-port-peer2
ip link set linc-port2 up
ip link add linc-port3 type veth peer name linc-port-peer3
ip link set linc-port3 up
ip link add linc-port4 type veth peer name linc-port-peer4
ip link set linc-port4 up

After stopping LINC, those created interfaces can be deleted:

8.3. Tests 560

os-ken Documentation, Release 1.4.1.dev5

ip link delete linc-port
ip link delete linc-port2
ip link delete linc-port3
ip link delete linc-port4

Starting LINC OpenFlow switch

Then run LINC:

rel/linc/bin/linc console

Run OS-Ken test_of_config app

Run test_of_config app:

osken-manager --verbose os_ken.tests.integrated.test_of_config os_ken.
↪→app.rest

If you don’t install os_ken and are working in the git repo directly:

osken-manager --verbose os_ken.tests.integrated.test_of_config os_ken.
↪→app.rest

8.4 Snort Intergration

This document describes how to integrate OS-Ken with Snort.

8.4.1 Overview

There are two options can send alert to OS-Ken controller. The Option 1 is easier if you just want
to demonstrate or test. Since Snort need very large computation power for analyzing packets you can
choose Option 2 to separate them.

[Option 1] OS-Ken and Snort are on the same machine

+------------------------+
| unixsock |
| OS-Ken == snort |
+----eth0-----eth1-------+

| |
+-------+ +----------+ +-------+
| HostA |---| OFSwitch |---| HostB |
+-------+ +----------+ +-------+

The above depicts OS-Ken and Snort architecture. OS-Ken receives Snort alert packet via Unix Domain
Socket . To monitor packets between HostA and HostB, installing a flow that mirrors packets to Snort.

[Option 2] OS-Ken and Snort are on the different machines

8.4. Snort Intergration 561

os-ken Documentation, Release 1.4.1.dev5

+---------------+
| Snort eth0--|
| Sniffer | |
+-----eth1------+ |

| |
+-------+ +----------+ +-----------+
| HostA |---| OFSwitch |---| LAN (*CP) |
+-------+ +----------+ +-----------+

| |
+----------+ +-------------+
| HostB | | OS-Ken |
+----------+ +-------------+

*CP: Control Plane

The above depicts OS-Ken and Snort architecture. OS-Ken receives Snort alert packet via Network
Socket . To monitor packets between HostA and HostB, installing a flow that mirrors packets to Snort.

8.4.2 Installation Snort

Snort is an open source network intrusion prevention and detectionsystem developed by Sourcefire. If
you are not familiar with installing/setting up Snort, please referto snort setup guides.

http://www.snort.org/documents

8.4.3 Configure Snort

The configuration example is below:

• Add a snort rules file into /etc/snort/rules named Myrules.rules

alert icmp any any -> any any (msg:"Pinging...";sid:1000004;)
alert tcp any any -> any 80 (msg:"Port 80 is accessing"; sid:1000003;)

• Add the custom rules in /etc/snort/snort.conf

include $RULE_PATH/Myrules.rules

Configure NIC as a promiscuous mode.

$ sudo ifconfig eth1 promisc

8.4.4 Usage

[Option 1]

1. Modify the simple_switch_snort.py:

socket_config = {'unixsock': True}
True: Unix Domain Socket Server [Option1]
False: Network Socket Server [Option2]

2. Run OS-Ken with sample application:

8.4. Snort Intergration 562

http://www.snort.org/documents

os-ken Documentation, Release 1.4.1.dev5

$ sudo osken-manager os_ken/app/simple_switch_snort.py

The incoming packets will all mirror to port 3 which should be connect to Snort network inter-
face. You can modify the mirror port by assign a new value in the self.snort_port = 3 of
simple_switch_snort.py

3. Run Snort:

$ sudo -i
$ snort -i eth1 -A unsock -l /tmp -c /etc/snort/snort.conf

4. Send an ICMP packet from HostA (192.168.8.40) to HostB (192.168.8.50):

$ ping 192.168.8.50

5. You can see the result under next section.

[Option 2]

1. Modify the simple_switch_snort.py:

socket_config = {'unixsock': False}
True: Unix Domain Socket Server [Option1]
False: Network Socket Server [Option2]

2. Run OS-Ken with sample application (On the Controller):

$ osken-manager os_ken/app/simple_switch_snort.py

3. Run Snort (On the Snort machine):

$ sudo -i
$ snort -i eth1 -A unsock -l /tmp -c /etc/snort/snort.conf

4. Run pigrelay.py (On the Snort machine):

$ sudo python pigrelay.py

This program listening snort alert messages from unix domain socket and sending it to OS-Ken using
network socket.

You can clone the source code from this repo. https://github.com/John-Lin/pigrelay

5. Send an ICMP packet from HostA (192.168.8.40) to HostB (192.168.8.50):

$ ping 192.168.8.50

6. You can see the alert message below:

alertmsg: Pinging...
icmp(code=0,csum=19725,data=echo(data=array('B', [97, 98, 99, 100,
↪→101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
↪→114, 115, 116, 117, 118, 119, 97, 98, 99, 100, 101, 102, 103, 104,
↪→105]),id=1,seq=78),type=8)

ipv4(csum=42562,dst='192.168.8.50',flags=0,header_length=5,
↪→identification=724,offset=0,option=None,proto=1,src='192.168.8.40',
↪→tos=0,total_length=60,ttl=128,version=4) (continues on next page)

8.4. Snort Intergration 563

https://github.com/John-Lin/pigrelay

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

ethernet(dst='00:23:54:5a:05:14',ethertype=2048,src='00:23:54:6c:1d:17
↪→')

alertmsg: Pinging...
icmp(code=0,csum=21773,data=echo(data=array('B', [97, 98, 99, 100,
↪→101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
↪→114, 115, 116, 117, 118, 119, 97, 98, 99, 100, 101, 102, 103, 104,
↪→105]),id=1,seq=78),type=0)

ipv4(csum=52095,dst='192.168.8.40',flags=0,header_length=5,
↪→identification=7575,offset=0,option=None,proto=1,src='192.168.8.50',
↪→tos=0,total_length=60,ttl=64,version=4)

8.5 Built-in OS-Ken applications

OS-Ken has some built-in OS-Ken applications. Some of them are examples. Others provide some
functionalities to other OS-Ken applications.

8.5.1 os_ken.app.ofctl

os_ken.app.ofctl provides a convenient way to use OpenFlow messages synchronously.

OfctlService os_ken application is automatically loaded if your OS-Ken application imports ofctl.api
module.

Example:

import os_ken.app.ofctl.api

OfctlService application internally uses OpenFlow barrier messages to ensure message boundaries. As
OpenFlow messages are asynchronous and some of messages does not have any replies on success,
barriers are necessary for correct error handling.

api module

os_ken.app.ofctl.api.get_datapath(app, dpid=None)
Get datapath object by dpid.

Parameters

• app -- Client OSKenApp instance

• dpid -- Datapath ID (int type) or None to get all datapath objects

Returns a object of datapath, a list of datapath objects when no dpid given or None when error.

Raises an exception if any of the given values is invalid.

Example:

8.5. Built-in OS-Ken applications 564

os-ken Documentation, Release 1.4.1.dev5

...(snip)...
import os_ken.app.ofctl.api as ofctl_api

class MyApp(app_manager.OSKenApp):

def _my_handler(self, ev):
Get all datapath objects
result = ofctl_api.get_datapath(self)

Get the datapath object which has the given dpid
result = ofctl_api.get_datapath(self, dpid=1)

os_ken.app.ofctl.api.send_msg(app, msg, reply_cls=None, reply_multi=False)
Send an OpenFlow message and wait for reply messages.

Parameters

• app -- Client OSKenApp instance

• msg -- An OpenFlow controller-to-switch message to send

• reply_cls -- OpenFlow message class for expected replies. None means
no replies are expected. The default is None.

• reply_multi -- True if multipart replies are expected. The default is False.

If no replies, returns None. If reply_multi=False, returns OpenFlow switch-to-controller message.
If reply_multi=True, returns a list of OpenFlow switch-to-controller messages.

Raise an exception on error.

Example:

...(snip)...
import os_ken.app.ofctl.api as ofctl_api

class MyApp(app_manager.OSKenApp):

def _my_handler(self, ev):
...(snip)...
msg = parser.OFPPortDescStatsRequest(datapath=datapath)
result = ofctl_api.send_msg(

self, msg,
reply_cls=parser.OFPPortDescStatsReply,
reply_multi=True)

8.5. Built-in OS-Ken applications 565

os-ken Documentation, Release 1.4.1.dev5

exceptions

exception os_ken.app.ofctl.exception.InvalidDatapath(result)
Datapath is invalid.

This can happen when the bridge disconnects.

exception os_ken.app.ofctl.exception.OFError(result)
OFPErrorMsg is received.

exception os_ken.app.ofctl.exception.UnexpectedMultiReply(result)
Two or more replies are received for reply_muiti=False request.

8.5.2 os_ken.app.ofctl_rest

os_ken.app.ofctl_rest provides REST APIs for retrieving the switch stats and Updating the switch stats.
This application helps you debug your application and get various statistics.

This application supports OpenFlow version 1.0, 1.2, 1.3, 1.4 and 1.5.

Contents

• os_ken.app.ofctl_rest

– Retrieve the switch stats

* Get all switches

* Get the desc stats

* Get all flows stats

* Get flows stats filtered by fields

* Get aggregate flow stats

* Get aggregate flow stats filtered by fields

* Get table stats

* Get table features

* Get ports stats

* Get ports description

* Get queues stats

* Get queues config

* Get queues description

* Get groups stats

* Get group description stats

* Get group features stats

* Get meters stats

* Get meter config stats

8.5. Built-in OS-Ken applications 566

os-ken Documentation, Release 1.4.1.dev5

* Get meter description stats

* Get meter features stats

* Get role

– Update the switch stats

* Add a flow entry

* Modify all matching flow entries

* Modify flow entry strictly

* Delete all matching flow entries

* Delete flow entry strictly

* Delete all flow entries

* Add a group entry

* Modify a group entry

* Delete a group entry

* Modify the behavior of the port

* Add a meter entry

* Modify a meter entry

* Delete a meter entry

* Modify role

– Support for experimenter multipart

* Send a experimenter message

– Reference: Description of Match and Actions

* Description of Match on request messages

* Description of Actions on request messages

Retrieve the switch stats

Get all switches

Get the list of all switches which connected to the controller.

Usage:

Method GET
URI /stats/switches

Response message body:

8.5. Built-in OS-Ken applications 567

os-ken Documentation, Release 1.4.1.dev5

Attribute Description Example
dpid Datapath ID 1

Example of use:

$ curl -X GET http://localhost:8080/stats/switches

[
1,
2,
3

]

Note: The result of the REST command is formatted for easy viewing.

Get the desc stats

Get the desc stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/desc/<dpid>

Response message body:

Attribute Description Example
dpid Datapath ID "1"
mfr_desc Manufacturer description "Nicira, Inc.",
hw_desc Hardware description "Open vSwitch",
sw_desc Software description "2.3.90",
serial_num Serial number "None",
dp_desc Human readable description of datapath "None"

Example of use:

$ curl -X GET http://localhost:8080/stats/desc/1

{
"1": {

"mfr_desc": "Nicira, Inc.",
"hw_desc": "Open vSwitch",
"sw_desc": "2.3.90",
"serial_num": "None",
"dp_desc": "None"

}
}

8.5. Built-in OS-Ken applications 568

os-ken Documentation, Release 1.4.1.dev5

Get all flows stats

Get all flows stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/flow/<dpid>

Response message body(OpenFlow1.3 or earlier):

Attribute Description Example
dpid Datapath ID "1"
length Length of this entry 88
table_id Table ID 0
dura-
tion_sec

Time flow has been alive in seconds 2

dura-
tion_nsec

Time flow has been alive in nanoseconds beyond
duration_sec

6.76e+08

priority Priority of the entry 11111
idle_timeout Number of seconds idle before expiration 0
hard_timeout Number of seconds before expiration 0
flags Bitmap of OFPFF_* flags 1
cookie Opaque controller-issued identifier 1
packet_count Number of packets in flow 0
byte_count Number of bytes in flow 0
match Fields to match {"in_port":

1}
actions Instruction set ["OUT-

PUT:2"]

Response message body(OpenFlow1.4 or later):

8.5. Built-in OS-Ken applications 569

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description Example

dpid Datapath ID "1"
length Length of this entry 88
table_id Table ID 0
dura-
tion_sec

Time flow has been alive in seconds 2

dura-
tion_nsec

Time flow has been alive in nanosec-
onds beyond duration_sec

6.76e+08

priority Priority of the entry 11111
idle_timeoutNumber of seconds idle before expi-

ration
0

hard_timeoutNumber of seconds before expiration 0
flags Bitmap of OFPFF_* flags 1
cookie Opaque controller-issued identifier 1
packet_countNumber of packets in flow 0
byte_countNumber of bytes in flow 0
impor-
tance

Eviction precedence 0

match Fields to match {"eth_type": 2054}
instruc-
tions

struct ofp_instruction_header [{"type":GOTO_TABLE",
"table_id":1}]

Example of use:

$ curl -X GET http://localhost:8080/stats/flow/1

Response (OpenFlow1.3 or earlier):

{
"1": [

{
"length": 88,
"table_id": 0,
"duration_sec": 2,
"duration_nsec": 6.76e+08,
"priority": 11111,
"idle_timeout": 0,
"hard_timeout": 0,
"flags": 1,
"cookie": 1,
"packet_count": 0,
"byte_count": 0,
"match": {

"in_port": 1
},
"actions": [

"OUTPUT:2"
]

}
]

}

8.5. Built-in OS-Ken applications 570

os-ken Documentation, Release 1.4.1.dev5

Response (OpenFlow1.4 or later):

{
"1": [

{
"length": 88,
"table_id": 0,
"duration_sec": 2,
"duration_nsec": 6.76e+08,
"priority": 11111,
"idle_timeout": 0,
"hard_timeout": 0,
"flags": 1,
"cookie": 1,
"packet_count": 0,
"byte_count": 0,
"match": {

"eth_type": 2054
},
"importance": 0,
"instructions": [

{
"type": "APPLY_ACTIONS",
"actions": [

{
"port": 2,
"max_len": 0,
"type": "OUTPUT"

}
]

}
]

}
]

}

Get flows stats filtered by fields

Get flows stats of the switch filtered by the OFPFlowStats fields. This is POST method
version of Get all flows stats.

Usage:

Method POST
URI /stats/flow/<dpid>

Request message body:

8.5. Built-in OS-Ken applications 571

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description Exam-
ple

Default

table_id Table ID (int) 0 OF-
PTT_ALL

out_port Require matching entries to include this
as an output port (int)

2 OFPP_ANY

out_group Require matching entries to include this
as an output group (int)

1 OFPG_ANY

cookie Require matching entries to contain this
cookie value (int)

1 0

cookie_maskMask used to restrict the cookie bits that
must match (int)

1 0

match Fields to match (dict) {"in_port":
1}

{} #wild-
carded

priority Priority of the entry (int) (See Note) 11111 #wild-
carded

Note: OpenFlow Spec does not allow to filter flow entries by priority, but when
with a large amount of flow entries, filtering by priority is convenient to get
statistics efficiently. So, this app provides priority field for filtering.

Response message body: The same as Get all flows stats

Example of use:

$ curl -X POST -d '{
"table_id": 0,
"out_port": 2,
"cookie": 1,
"cookie_mask": 1,
"match":{

"in_port":1
}

}' http://localhost:8080/stats/flow/1

Response (OpenFlow1.3 or earlier):

{
"1": [

{
"length": 88,
"table_id": 0,
"duration_sec": 2,
"duration_nsec": 6.76e+08,
"priority": 11111,
"idle_timeout": 0,
"hard_timeout": 0,
"flags": 1,
"cookie": 1,
"packet_count": 0,
"byte_count": 0,
"match": {

(continues on next page)

8.5. Built-in OS-Ken applications 572

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"in_port": 1
},
"actions": [

"OUTPUT:2"
]

}
]

}

Response (OpenFlow1.4 or later):

{
"1": [

{
"length": 88,
"table_id": 0,
"duration_sec": 2,
"duration_nsec": 6.76e+08,
"priority": 11111,
"idle_timeout": 0,
"hard_timeout": 0,
"flags": 1,
"cookie": 1,
"packet_count": 0,
"byte_count": 0,
"match": {

"eth_type": 2054
},
"importance": 0,
"instructions": [

{
"type": "APPLY_ACTIONS",
"actions": [

{
"port": 2,
"max_len": 0,
"type": "OUTPUT"

}
]

}
]

}
]

}

8.5. Built-in OS-Ken applications 573

os-ken Documentation, Release 1.4.1.dev5

Get aggregate flow stats

Get aggregate flow stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/aggregateflow/<dpid>

Response message body:

Attribute Description Example
dpid Datapath ID "1"
packet_count Number of packets in flows 18
byte_count Number of bytes in flows 756
flow_count Number of flows 3

Example of use:

$ curl -X GET http://localhost:8080/stats/aggregateflow/1

{
"1": [

{
"packet_count": 18,
"byte_count": 756,
"flow_count": 3

}
]

}

Get aggregate flow stats filtered by fields

Get aggregate flow stats of the switch filtered by the OFPAggregateStats fields. This is
POST method version of Get aggregate flow stats.

Usage:

Method POST
URI /stats/aggregateflow/<dpid>

Request message body:

8.5. Built-in OS-Ken applications 574

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description Exam-
ple

Default

table_id Table ID (int) 0 OF-
PTT_ALL

out_port Require matching entries to include this
as an output port (int)

2 OFPP_ANY

out_group Require matching entries to include this
as an output group (int)

1 OFPG_ANY

cookie Require matching entries to contain this
cookie value (int)

1 0

cookie_maskMask used to restrict the cookie bits that
must match (int)

1 0

match Fields to match (dict) {"in_port":
1}

{} #wild-
carded

Response message body: The same as Get aggregate flow stats

Example of use:

$ curl -X POST -d '{
"table_id": 0,
"out_port": 2,
"cookie": 1,
"cookie_mask": 1,
"match":{

"in_port":1
}

}' http://localhost:8080/stats/aggregateflow/1

{
"1": [

{
"packet_count": 18,
"byte_count": 756,
"flow_count": 3

}
]

}

Get table stats

Get table stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/table/<dpid>

Response message body(OpenFlow1.0):

8.5. Built-in OS-Ken applications 575

os-ken Documentation, Release 1.4.1.dev5

Attribute Description Example
dpid Datapath ID "1"
table_id Table ID 0
name Name of Table "classifier"
max_entries Max number of entries supported 1e+06
wildcards Bitmap of OFPFW_* wildcards that are

supported by the table
["IN_PORT","DL_VLAN"]

ac-
tive_count

Number of active entries 0

lookup_countNumber of packets looked up in table 8
matched_countNumber of packets that hit table 0

Response message body(OpenFlow1.2):

At-
tribute

Description Example

dpid Datapath ID "1"
ta-
ble_id

Table ID 0

name Name of Table "classifier"
match Bitmap of (1 « OFPXMT_*) that indicate

the fields the table can match on
["OFB_IN_PORT","OFB_METADATA"]

wild-
cards

Bitmap of (1 « OFPXMT_*) wildcards that
are supported by the table

["OFB_IN_PORT","OFB_METADATA"]

write_actionsBitmap of OFPAT_* that are supported by
the table with OFPIT_WRITE_ACTIONS

["OUT-
PUT","SET_MPLS_TTL"]

ap-
ply_actions

Bitmap of OFPAT_* that are supported by
the table with OFPIT_APPLY_ACTIONS

["OUT-
PUT","SET_MPLS_TTL"]

write_setfieldsBitmap of (1 « OFPXMT_*) header
fields that can be set with OF-
PIT_WRITE_ACTIONS

["OFB_IN_PORT","OFB_METADATA"]

ap-
ply_setfields

Bitmap of (1 « OFPXMT_*) header
fields that can be set with OF-
PIT_APPLY_ACTIONS

["OFB_IN_PORT","OFB_METADATA"]

meta-
data_match

Bits of metadata table can match 18446744073709552000

meta-
data_write

Bits of metadata table can write 18446744073709552000

instruc-
tions

Bitmap of OFPIT_* values supported ["GOTO_TABLE","WRITE_METADATA"]

config Bitmap of OFPTC_* values []
max_entriesMax number of entries supported 1e+06
ac-
tive_count

Number of active entries 0

lookup_countNumber of packets looked up in table 0
matched_countNumber of packets that hit table 8

Response message body(OpenFlow1.3):

8.5. Built-in OS-Ken applications 576

os-ken Documentation, Release 1.4.1.dev5

Attribute Description Example
dpid Datapath ID "1"
table_id Table ID 0
active_count Number of active entries 0
lookup_count Number of packets looked up in table 8
matched_count Number of packets that hit table 0

Example of use:

$ curl -X GET http://localhost:8080/stats/table/1

Response (OpenFlow1.0):

{
"1": [

{
"table_id": 0,
"lookup_count": 8,
"max_entries": 1e+06,
"active_count": 0,
"name": "classifier",
"matched_count": 0,
"wildcards": [
"IN_PORT",
"DL_VLAN"

]
},
...
{

"table_id": 253,
"lookup_count": 0,
"max_entries": 1e+06,
"active_count": 0,
"name": "table253",
"matched_count": 0,
"wildcards": [
"IN_PORT",
"DL_VLAN"

]
}

]
}

Response (OpenFlow1.2):

{
"1": [

{
"apply_setfields": [
"OFB_IN_PORT",
"OFB_METADATA"

],
"match": [
"OFB_IN_PORT",
"OFB_METADATA"

(continues on next page)

8.5. Built-in OS-Ken applications 577

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

],
"metadata_write": 18446744073709552000,
"config": [],
"instructions":[
"GOTO_TABLE",
"WRITE_METADATA"

],
"table_id": 0,
"metadata_match": 18446744073709552000,
"lookup_count": 8,
"wildcards": [
"OFB_IN_PORT",
"OFB_METADATA"

],
"write_setfields": [
"OFB_IN_PORT",
"OFB_METADATA"

],
"write_actions": [
"OUTPUT",
"SET_MPLS_TTL"

],
"name": "classifier",
"matched_count": 0,
"apply_actions": [
"OUTPUT",
"SET_MPLS_TTL"

],
"active_count": 0,
"max_entries": 1e+06

},
...
{

"apply_setfields": [
"OFB_IN_PORT",
"OFB_METADATA"

],
"match": [
"OFB_IN_PORT",
"OFB_METADATA"

],
"metadata_write": 18446744073709552000,
"config": [],
"instructions": [
"GOTO_TABLE",
"WRITE_METADATA"

],
"table_id": 253,
"metadata_match": 18446744073709552000,
"lookup_count": 0,
"wildcards": [
"OFB_IN_PORT",
"OFB_METADATA"

],
"write_setfields": [
"OFB_IN_PORT",

(continues on next page)

8.5. Built-in OS-Ken applications 578

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"OFB_METADATA"
],
"write_actions": [
"OUTPUT",
"SET_MPLS_TTL"

],
"name": "table253",
"matched_count": 0,
"apply_actions": [
"OUTPUT",
"SET_MPLS_TTL"

],
"active_count": 0,
"max_entries": 1e+06

}
]

}

Response (OpenFlow1.3):

{
"1": [

{
"active_count": 0,
"table_id": 0,
"lookup_count": 8,
"matched_count": 0

},
...
{

"active_count": 0,
"table_id": 253,
"lookup_count": 0,
"matched_count": 0

}
]

}

Get table features

Get table features of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/tablefeatures/<dpid>

Response message body:

8.5. Built-in OS-Ken applications 579

os-ken Documentation, Release 1.4.1.dev5

Attribute Description Example
dpid Datapath ID "1"
table_id Table ID 0
name Name of Table "table_0"
meta-
data_match

Bits of metadata table
can match

18446744073709552000

meta-
data_write

Bits of metadata table
can write

18446744073709552000

config Bitmap of OFPTC_*
values

0

max_entries Max number of entries
supported

4096

properties struct
ofp_table_feature_prop_header

[{"type": "INSTRUC-
TIONS","instruction_ids": [...]},...]

Example of use:

$ curl -X GET http://localhost:8080/stats/tablefeatures/1

{
"1": [

{
"metadata_write": 18446744073709552000,
"config": 0,
"table_id": 0,
"metadata_match": 18446744073709552000,
"max_entries": 4096,
"properties": [

{
"type": "INSTRUCTIONS",
"instruction_ids": [
{
"len": 4,
"type": 1
},
...
]

},
...

],
"name": "table_0"

},
{

"metadata_write": 18446744073709552000,
"config": 0,
"table_id": 1,
"metadata_match": 18446744073709552000,
"max_entries": 4096,
"properties": [

{
"type": "INSTRUCTIONS",
"instruction_ids": [
{
"len": 4,

(continues on next page)

8.5. Built-in OS-Ken applications 580

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": 1
},
...
]

},
...

],
"name": "table_1"

},
...

]
}

Get ports stats

Get ports stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/port/<dpid>[/<port>]

Note: Specification of port number is optional.

Response message body(OpenFlow1.3 or earlier):

Attribute Description Exam-
ple

dpid Datapath ID "1"
port_no Port number 1
rx_packets Number of received packets 9
tx_packets Number of transmitted packets 6
rx_bytes Number of received bytes 738
tx_bytes Number of transmitted bytes 252
rx_dropped Number of packets dropped by RX 0
tx_dropped Number of packets dropped by TX 0
rx_errors Number of receive errors 0
tx_errors Number of transmit errors 0
rx_frame_err Number of frame alignment errors 0
rx_over_err Number of packets with RX overrun 0
rx_crc_err Number of CRC errors 0
collisions Number of collisions 0
dura-
tion_sec

Time port has been alive in seconds 12

dura-
tion_nsec

Time port has been alive in nanoseconds beyond du-
ration_sec

9.76e+08

8.5. Built-in OS-Ken applications 581

os-ken Documentation, Release 1.4.1.dev5

Response message body(OpenFlow1.4 or later):

At-
tribute

Description Example

dpid Datapath ID "1"
port_no Port number 1
rx_packetsNumber of received packets 9
tx_packetsNumber of transmitted pack-

ets
6

rx_bytes Number of received bytes 738
tx_bytes Number of transmitted bytes 252
rx_droppedNumber of packets dropped

by RX
0

tx_droppedNumber of packets dropped
by TX

0

rx_errorsNumber of receive errors 0
tx_errors Number of transmit errors 0
dura-
tion_sec

Time port has been alive in
seconds

12

dura-
tion_nsec

Time port has been alive
in nanoseconds beyond dura-
tion_sec

9.76e+08

prop-
erties

struct
ofp_port_desc_prop_header

[{"rx_frame_err": 0, "rx_over_err":
0, "rx_crc_err": 0, "collisions":
0,...},...]

Example of use:

$ curl -X GET http://localhost:8080/stats/port/1

Response (OpenFlow1.3 or earlier):

{
"1": [

{
"port_no": 1,
"rx_packets": 9,
"tx_packets": 6,
"rx_bytes": 738,
"tx_bytes": 252,
"rx_dropped": 0,
"tx_dropped": 0,
"rx_errors": 0,
"tx_errors": 0,
"rx_frame_err": 0,
"rx_over_err": 0,
"rx_crc_err": 0,
"collisions": 0,
"duration_sec": 12,
"duration_nsec": 9.76e+08

},
{

(continues on next page)

8.5. Built-in OS-Ken applications 582

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

:
:

}
]

}

Response (OpenFlow1.4 or later):

{
"1": [

{
"port_no": 1,
"rx_packets": 9,
"tx_packets": 6,
"rx_bytes": 738,
"tx_bytes": 252,
"rx_dropped": 0,
"tx_dropped": 0,
"rx_errors": 0,
"tx_errors": 0,
"duration_nsec": 12,
"duration_sec": 9.76e+08,
"properties": [

{
"rx_frame_err": 0,
"rx_over_err": 0,
"rx_crc_err": 0,
"collisions": 0,
"type": "ETHERNET"

},
{

"bias_current": 300,
"flags": 3,
"rx_freq_lmda": 1500,
"rx_grid_span": 500,
"rx_offset": 700,
"rx_pwr": 2000,
"temperature": 273,
"tx_freq_lmda": 1500,
"tx_grid_span": 500,
"tx_offset": 700,
"tx_pwr": 2000,
"type": "OPTICAL"

},
{

"data": [],
"exp_type": 0,
"experimenter": 101,
"type": "EXPERIMENTER"

},
{

:

:
}

]
(continues on next page)

8.5. Built-in OS-Ken applications 583

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
]

}

Get ports description

Get ports description of the switch which specified with Datapath ID in URI.

Usage(OpenFlow1.4 or earlier):

Method GET
URI /stats/portdesc/<dpid>

Usage(OpenFlow1.5 or later):

Method GET
URI /stats/portdesc/<dpid>/[<port>]

Note: Specification of port number is optional.

Response message body(OpenFlow1.3 or earlier):

Attribute Description Example
dpid Datapath ID "1"
port_no Port number 1
hw_addr Ethernet hardware address "0a:b6:d0:0c:e1:d7"
name Name of port "s1-eth1"
config Bitmap of OFPPC_* flags 0
state Bitmap of OFPPS_* flags 0
curr Current features 2112
advertised Features being advertised by the port 0
supported Features supported by the port 0
peer Features advertised by peer 0
curr_speed Current port bitrate in kbps 1e+07
max_speed Max port bitrate in kbps 0

Response message body(OpenFlow1.4 or later):

8.5. Built-in OS-Ken applications 584

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description Example

dpid Datapath ID "1"
port_no Port number 1
hw_addr Ethernet hardware address "0a:b6:d0:0c:e1:d7"
name Name of port "s1-eth1"
config Bitmap of OFPPC_* flags 0
state Bitmap of OFPPS_* flags 0
length Length of this entry 168
proper-
ties

struct
ofp_port_desc_prop_header

[{"length": 32, "curr":
10248,...}...]

Example of use:

$ curl -X GET http://localhost:8080/stats/portdesc/1

Response (OpenFlow1.3 or earlier):

{
"1": [

{
"port_no": 1,
"hw_addr": "0a:b6:d0:0c:e1:d7",
"name": "s1-eth1",
"config": 0,
"state": 0,
"curr": 2112,
"advertised": 0,
"supported": 0,
"peer": 0,
"curr_speed": 1e+07,
"max_speed": 0

},
{

:
:

}
]

}

Response (OpenFlow1.4 or later):

{
"1": [

{
"port_no": 1,
"hw_addr": "0a:b6:d0:0c:e1:d7",
"name": "s1-eth1",
"config": 0,
"state": 0,
"length": 168,
"properties": [

{
"length": 32,

(continues on next page)

8.5. Built-in OS-Ken applications 585

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"curr": 10248,
"advertised": 10240,
"supported": 10248,
"peer": 10248,
"curr_speed": 5000,
"max_speed": 5000,
"type": "ETHERNET"

},
{

"length": 40,
"rx_grid_freq_lmda": 1500,
"tx_grid_freq_lmda": 1500,
"rx_max_freq_lmda": 2000,
"tx_max_freq_lmda": 2000,
"rx_min_freq_lmda": 1000,
"tx_min_freq_lmda": 1000,
"tx_pwr_max": 2000,
"tx_pwr_min": 1000,
"supported": 1,
"type": "OPTICAL"

},
{

"data": [],
"exp_type": 0,
"experimenter": 101,
"length": 12,
"type": "EXPERIMENTER"

},
{

:

:
}

]
}

]
}

Get queues stats

Get queues stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/queue/<dpid>[/<port>[/<queue_id>]]

Note: Specification of port number and queue id are optional.

If you want to omitting the port number and setting the queue id, please specify
the keyword "ALL" to the port number.

8.5. Built-in OS-Ken applications 586

os-ken Documentation, Release 1.4.1.dev5

e.g. GET http://localhost:8080/stats/queue/1/ALL/1

Response message body(OpenFlow1.3 or earlier):

Attribute Description Example
dpid Datapath ID "1"
port_no Port number 1
queue_id Queue ID 0
tx_bytes Number of transmitted bytes 0
tx_packets Number of transmitted packets 0
tx_errors Number of packets dropped due to overrun 0
dura-
tion_sec

Time queue has been alive in seconds 4294963425

dura-
tion_nsec

Time queue has been alive in nanoseconds beyond
duration_sec

3912967296

Response message body(OpenFlow1.4 or later):

At-
tribute

Description Example

dpid Datapath ID "1"
port_no Port number 1
queue_id Queue ID 0
tx_bytes Number of transmitted bytes 0
tx_packets Number of transmitted packets 0
tx_errors Number of packets dropped due to over-

run
0

dura-
tion_sec

Time queue has been alive in seconds 4294963425

dura-
tion_nsec

Time queue has been alive in nanosec-
onds beyond duration_sec

3912967296

length Length of this entry 104
proper-
ties

struct ofp_queue_stats_prop_header [{"type":
65535,"length":
12,...},...]

Example of use:

$ curl -X GET http://localhost:8080/stats/queue/1

Response (OpenFlow1.3 or earlier):

{
"1": [

{
"port_no": 1,
"queue_id": 0,
"tx_bytes": 0,
"tx_packets": 0,
"tx_errors": 0,

(continues on next page)

8.5. Built-in OS-Ken applications 587

http://localhost:8080/stats/queue/1/ALL/1

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"duration_sec": 4294963425,
"duration_nsec": 3912967296

},
{

"port_no": 1,
"queue_id": 1,
"tx_bytes": 0,
"tx_packets": 0,
"tx_errors": 0,
"duration_sec": 4294963425,
"duration_nsec": 3912967296

}
]

}

Response (OpenFlow1.4 or later):

{
"1": [

{
"port_no": 1,
"queue_id": 0,
"tx_bytes": 0,
"tx_packets": 0,
"tx_errors": 0,
"duration_sec": 4294963425,
"duration_nsec": 3912967296,
"length": 104,
"properties": [

{
"OFPQueueStatsPropExperimenter": {

"type": 65535,
"length": 16,
"data": [

1
],
"exp_type": 1,
"experimenter": 101

}
},
{

:

:
}

]
},
{

"port_no": 2,
"queue_id": 1,
"tx_bytes": 0,
"tx_packets": 0,
"tx_errors": 0,
"duration_sec": 4294963425,
"duration_nsec": 3912967296,
"length": 48,

(continues on next page)

8.5. Built-in OS-Ken applications 588

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"properties": []
}

]
}

Get queues config

Get queues config of the switch which specified with Datapath ID and Port in URI.

Usage:

Method GET
URI /stats/queueconfig/<dpid>/[<port>]

Note: Specification of port number is optional.

Caution: This message is deprecated in Openflow1.4. If OpenFlow 1.4 or
later is in use, please refer to Get queues description instead.

Response message body:

Attribute Description Example
dpid Datapath ID "1"
port Port which was queried 1
queues struct ofp_packet_queue
--
queue_id

ID for the specific queue 2

-- port Port this queue is attached to 0
-- prop-
erties

struct ofp_queue_prop_header
properties

[{"property":
"MIN_RATE","rate": 80}]

Example of use:

$ curl -X GET http://localhost:8080/stats/queueconfig/1/1

{
"1": [

{
"port": 1,
"queues": [

{
"properties": [
{

"property": "MIN_RATE",
"rate": 80

(continues on next page)

8.5. Built-in OS-Ken applications 589

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
],
"port": 0,
"queue_id": 1

},
{

"properties": [
{

"property": "MAX_RATE",
"rate": 120

}
],
"port": 2,
"queue_id": 2

},
{

"properties": [
{

"property": "EXPERIMENTER",
"data": [],
"experimenter": 999

}
],
"port": 3,
"queue_id": 3

}
]

}
]

}

Get queues description

Get queues description of the switch which specified with Datapath ID, Port and Queue_id
in URI.

Usage:

Method GET
URI /stats/queuedesc/<dpid>[/<port>/[<queue_id>]]

Note: Specification of port number and queue id are optional.

If you want to omitting the port number and setting the queue id, please specify
the keyword "ALL" to the port number.

e.g. GET http://localhost:8080/stats/queuedesc/1/ALL/1

Caution: This message is available in OpenFlow1.4 or later. If Openflow1.3
or earlier is in use, please refer to Get queues config instead.

8.5. Built-in OS-Ken applications 590

http://localhost:8080/stats/queuedesc/1/ALL/1

os-ken Documentation, Release 1.4.1.dev5

Response message body:

Attribute Description Example
dpid Datapath ID "1"
len Length in bytes of this queue desc 88
port_no Port which was queried 1
queue_id Queue ID 1
properties struct ofp_queue_desc_prop_header [{"length": 8, ...},...]

Example of use:

$ curl -X GET http://localhost:8080/stats/queuedesc/1/1/1

{
"1": [

{
"len": 88,
"port_no": 1,
"queue_id": 1,
"properties": [

{
"length": 8,
"rate": 300,
"type": "MIN_RATE"

},
{

"length": 8,
"rate": 900,
"type": "MAX_RATE"

},
{

"length": 16,
"exp_type": 0,
"experimenter": 101,
"data": [1],
"type": "EXPERIMENTER"

},
{

:

:
}

]
}

]
}

8.5. Built-in OS-Ken applications 591

os-ken Documentation, Release 1.4.1.dev5

Get groups stats

Get groups stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/group/<dpid>[/<group_id>]

Note: Specification of group id is optional.

Response message body:

Attribute Description Exam-
ple

dpid Datapath ID "1"
length Length of this entry 56
group_id Group ID 1
ref_count Number of flows or groups that directly forward to

this group
1

packet_count Number of packets processed by group 0
byte_count Number of bytes processed by group 0
dura-
tion_sec

Time group has been alive in seconds 161

dura-
tion_nsec

Time group has been alive in nanoseconds beyond
duration_sec

3.03e+08

bucket_stats struct ofp_bucket_counter
--
packet_count

Number of packets processed by bucket 0

--
byte_count

Number of bytes processed by bucket 0

Example of use:

$ curl -X GET http://localhost:8080/stats/group/1

{
"1": [

{
"length": 56,
"group_id": 1,
"ref_count": 1,
"packet_count": 0,
"byte_count": 0,
"duration_sec": 161,
"duration_nsec": 3.03e+08,
"bucket_stats": [

{
"packet_count": 0,
"byte_count": 0

(continues on next page)

8.5. Built-in OS-Ken applications 592

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
]

}
]

}

Get group description stats

Get group description stats of the switch which specified with Datapath ID in URI.

Usage(Openflow1.4 or earlier):

Method GET
URI /stats/groupdesc/<dpid>

Usage(Openflow1.5 or later):

Method GET
URI /stats/groupdesc/<dpid>/[<group_id>]

Note: Specification of group id is optional.

Response message body(Openflow1.3 or earlier):

At-
tribute

Description Exam-
ple

dpid Datapath ID "1"
type One of OFPGT_* "ALL"
group_id Group ID 1
buckets struct ofp_bucket
--
weight

Relative weight of bucket (Only defined for select
groups)

0

--
watch_port

Port whose state affects whether this bucket is live
(Only required for fast failover groups)

4294967295

--
watch_group

Group whose state affects whether this bucket is live
(Only required for fast failover groups)

4294967295

-- ac-
tions

0 or more actions associated with the bucket ["OUT-
PUT:1"]

Response message body(Openflow1.4 or later):

8.5. Built-in OS-Ken applications 593

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description Example

dpid Datapath ID "1"
type One of OFPGT_* "ALL"
group_id Group ID 1
length Length of this entry 40
buck-
ets

struct ofp_bucket

--
weight

Relative weight of bucket (Only defined for
select groups)

0

--
watch_port

Port whose state affects whether this bucket
is live (Only required for fast failover
groups)

4294967295

--
watch_group

Group whose state affects whether this
bucket is live (Only required for fast failover
groups)

4294967295

-- len Length the bucket in bytes, including this
header and any adding to make it 64-bit
aligned.

32

--
actions

0 or more actions associated with the bucket [{"OUTPUT:1",
"max_len":
65535,...}]

Example of use:

$ curl -X GET http://localhost:8080/stats/groupdesc/1

Response (Openflow1.3 or earlier):

{
"1": [

{
"type": "ALL",
"group_id": 1,
"buckets": [

{
"weight": 0,
"watch_port": 4294967295,
"watch_group": 4294967295,
"actions": [
"OUTPUT:1"

]
}

]
}

]
}

Response (Openflow1.4 or later):

{
"1": [

{
(continues on next page)

8.5. Built-in OS-Ken applications 594

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"type": "ALL",
"group_id": 1,
"length": 40,
"buckets": [

{
"weight": 1,
"watch_port": 1,
"watch_group": 1,
"len": 32,
"actions": [

{
"type": "OUTPUT",
"max_len": 65535,
"port": 2

}
]

}
]

}
]

}

Get group features stats

Get group features stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/groupfeatures/<dpid>

Response message body:

At-
tribute

Description Example

dpid Datapath ID "1"
types Bitmap of (1 « OFPGT_*)

values supported
[]

capa-
bilities

Bitmap of OFPGFC_* ca-
pability supported

["SE-
LECT_WEIGHT","SELECT_LIVENESS","CHAINING"]

max_groupsMaximum number of
groups for each type

[{"ALL": 4294967040},...]

actions Bitmaps of (1 « OF-
PAT_*) values supported

[{"ALL": ["OUTPUT",...]},...]

Example of use:

$ curl -X GET http://localhost:8080/stats/groupfeatures/1

8.5. Built-in OS-Ken applications 595

os-ken Documentation, Release 1.4.1.dev5

{
"1": [

{
"types": [],
"capabilities": [

"SELECT_WEIGHT",
"SELECT_LIVENESS",
"CHAINING"

],
"max_groups": [

{
"ALL": 4294967040

},
{

"SELECT": 4294967040
},
{

"INDIRECT": 4294967040
},
{

"FF": 4294967040
}

],
"actions": [

{
"ALL": [
"OUTPUT",
"COPY_TTL_OUT",
"COPY_TTL_IN",
"SET_MPLS_TTL",
"DEC_MPLS_TTL",
"PUSH_VLAN",
"POP_VLAN",
"PUSH_MPLS",
"POP_MPLS",
"SET_QUEUE",
"GROUP",
"SET_NW_TTL",
"DEC_NW_TTL",
"SET_FIELD"

]
},
{

"SELECT": []
},
{

"INDIRECT": []
},
{

"FF": []
}

]
}

]
}

8.5. Built-in OS-Ken applications 596

os-ken Documentation, Release 1.4.1.dev5

Get meters stats

Get meters stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/meter/<dpid>[/<meter_id>]

Note: Specification of meter id is optional.

Response message body:

Attribute Description Exam-
ple

dpid Datapath ID "1"
meter_id Meter ID 1
len Length in bytes of this stats 56
flow_count Number of flows bound to meter 0
packet_in_count Number of packets in input 0
byte_in_count Number of bytes in input 0
duration_sec Time meter has been alive in seconds 37
duration_nsec Time meter has been alive in nanoseconds be-

yond duration_sec
988000

band_stats struct ofp_meter_band_stats
--
packet_band_count

Number of packets in band 0

--
byte_band_count

Number of bytes in band 0

Example of use:

$ curl -X GET http://localhost:8080/stats/meter/1

{
"1": [

{
"meter_id": 1,
"len": 56,
"flow_count": 0,
"packet_in_count": 0,
"byte_in_count": 0,
"duration_sec": 37,
"duration_nsec": 988000,
"band_stats": [

{
"packet_band_count": 0,
"byte_band_count": 0

}

(continues on next page)

8.5. Built-in OS-Ken applications 597

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

]
}

]
}

Get meter config stats

Get meter description stats

Get meter config stats of the switch which specified with Datapath ID in URI.

Caution: This message has been renamed in openflow 1.5. If Openflow 1.4
or earlier is in use, please used as Get meter description stats. If Openflow
1.5 or later is in use, please used as Get meter description stats.

Usage(Openflow1.4 or earlier):

Method GET
URI /stats/meterconfig/<dpid>[/<meter_id>]

Usage(Openflow1.5 or later):

Method GET
URI /stats/meterdesc/<dpid>[/<meter_id>]

Note: Specification of meter id is optional.

Response message body:

Attribute Description Example
dpid Datapath ID "1"
flags All OFPMC_* that apply "KBPS"
meter_id Meter ID 1
bands struct ofp_meter_band_header
-- type One of OFPMBT_* "DROP"
-- rate Rate for this band 1000
-- burst_size Size of bursts 0

Example of use:

$ curl -X GET http://localhost:8080/stats/meterconfig/1

8.5. Built-in OS-Ken applications 598

os-ken Documentation, Release 1.4.1.dev5

{
"1": [

{
"flags": [

"KBPS"
],
"meter_id": 1,
"bands": [

{
"type": "DROP",
"rate": 1000,
"burst_size": 0

}
]

}
]

}

Get meter features stats

Get meter features stats of the switch which specified with Datapath ID in URI.

Usage:

Method GET
URI /stats/meterfeatures/<dpid>

Response message body:

At-
tribute

Description Example

dpid Datapath ID "1"
max_meter Maximum number of meters 256
band_types Bitmaps of (1 « OFPMBT_*) values

supported
["DROP"]

capabili-
ties

Bitmaps of "ofp_meter_flags" ["KBPS", "BURST",
"STATS"]

max_bands Maximum bands per meters 16
max_color Maximum color value 8

Example of use:

$ curl -X GET http://localhost:8080/stats/meterfeatures/1

{
"1": [

{
"max_meter": 256,
"band_types": [

"DROP"
],

(continues on next page)

8.5. Built-in OS-Ken applications 599

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"capabilities": [
"KBPS",
"BURST",
"STATS"

],
"max_bands": 16,
"max_color": 8

}
]

}

Get role

Get the current role of the controller from the switch.

Usage:

Method GET
URI /stats/role/<dpid>

Response message body(Openflow1.4 or earlier):

Attribute Description Example
dpid Datapath ID 1
role One of OFPCR_ROLE_* "EQUAL"
generation_id Master Election Generation Id 0

Response message body(Openflow1.5 or later):

Attribute Description Example
dpid Datapath ID 1
role One of OFPCR_ROLE_* "EQUAL"
short_id ID number for the controller 0
generation_id Master Election Generation Id 0

Example of use:

$ curl -X GET http://localhost:8080/stats/role/1

Response (Openflow1.4 or earlier):

{
"1": [

{
"generation_id": 0,
"role": "EQUAL"

}
]

}

8.5. Built-in OS-Ken applications 600

os-ken Documentation, Release 1.4.1.dev5

Response (Openflow1.5 or later):

{
"1": [

{
"generation_id": 0,
"role": "EQUAL",
"short_id": 0

}
]

}

Update the switch stats

Add a flow entry

Add a flow entry to the switch.

Usage:

Method POST
URI /stats/flowentry/add

Request message body(Openflow1.3 or earlier):

At-
tribute

Description Example Default

dpid Datapath ID (int) 1 (Manda-
tory)

cookie Opaque controller-issued iden-
tifier (int)

1 0

cookie_maskMask used to restrict the cookie
bits (int)

1 0

ta-
ble_id

Table ID to put the flow in (int) 0 0

idle_timeoutIdle time before discarding
(seconds) (int)

30 0

hard_timeoutMax time before discarding
(seconds) (int)

30 0

priority Priority level of flow entry (int) 11111 0
buffer_id Buffered packet to apply to, or

OFP_NO_BUFFER (int)
1 OFP_NO_BUFFER

flags Bitmap of OFPFF_* flags (int) 1 0
match Fields to match (dict) {"in_port":1} {} #wild-

carded
actions Instruction set (list of dict) [{"type":"OUTPUT",

"port":2}]
[] #DROP

Request message body(Openflow1.4 or later):

8.5. Built-in OS-Ken applications 601

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description Example Default

dpid Datapath ID (int) 1 (Manda-
tory)

cookie Opaque controller-issued iden-
tifier (int)

1 0

cookie_maskMask used to restrict the
cookie bits (int)

1 0

ta-
ble_id

Table ID to put the flow in (int) 0 0

idle_timeoutIdle time before discarding
(seconds) (int)

30 0

hard_timeoutMax time before discarding
(seconds) (int)

30 0

prior-
ity

Priority level of flow entry (int) 11111 0

buffer_id Buffered packet to apply to, or
OFP_NO_BUFFER (int)

1 OFP_NO_BUFFER

flags Bitmap of OFPFF_* flags (int) 1 0
match Fields to match (dict) {"in_port":1} {} #wild-

carded
in-
struc-
tions

Instruction set (list of dict) [{"type":"METER",
"meter_id":2}]

[] #DROP

Note: For description of match and actions, please see Reference: Description of Match
and Actions.

Example of use(Openflow1.3 or earlier):

$ curl -X POST -d '{
"dpid": 1,
"cookie": 1,
"cookie_mask": 1,
"table_id": 0,
"idle_timeout": 30,
"hard_timeout": 30,
"priority": 11111,
"flags": 1,
"match":{

"in_port":1
},
"actions":[

{
"type":"OUTPUT",
"port": 2

}
]

}' http://localhost:8080/stats/flowentry/add

8.5. Built-in OS-Ken applications 602

os-ken Documentation, Release 1.4.1.dev5

$ curl -X POST -d '{
"dpid": 1,
"priority": 22222,
"match":{

"in_port":1
},
"actions":[

{
"type":"GOTO_TABLE",
"table_id": 1

}
]

}' http://localhost:8080/stats/flowentry/add

$ curl -X POST -d '{
"dpid": 1,
"priority": 33333,
"match":{

"in_port":1
},
"actions":[

{
"type":"WRITE_METADATA",
"metadata": 1,
"metadata_mask": 1

}
]

}' http://localhost:8080/stats/flowentry/add

$ curl -X POST -d '{
"dpid": 1,
"priority": 44444,
"match":{

"in_port":1
},
"actions":[

{
"type":"METER",
"meter_id": 1

}
]

}' http://localhost:8080/stats/flowentry/add

Example of use(Openflow1.4 or later):

$ curl -X POST -d '{
"dpid": 1,
"cookie": 1,
"cookie_mask": 1,
"table_id": 0,
"idle_timeout": 30,
"hard_timeout": 30,
"priority": 11111,
"flags": 1,
"match":{

"in_port":1
(continues on next page)

8.5. Built-in OS-Ken applications 603

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

},
"instructions": [

{
"type": "APPLY_ACTIONS",
"actions": [

{
"max_len": 65535,
"port": 2,
"type": "OUTPUT"

}
]

}
]

}' http://localhost:8080/stats/flowentry/add

$ curl -X POST -d '{
"dpid": 1,
"priority": 22222,
"match":{

"in_port":1
},
"instructions": [

{
"type":"GOTO_TABLE",
"table_id": 1

}
]

}' http://localhost:8080/stats/flowentry/add

$ curl -X POST -d '{
"dpid": 1,
"priority": 33333,
"match":{

"in_port":1
},
"instructions": [

{
"type":"WRITE_METADATA",
"metadata": 1,
"metadata_mask": 1

}
]

}' http://localhost:8080/stats/flowentry/add

$ curl -X POST -d '{
"dpid": 1,
"priority": 44444,
"match":{

"in_port":1
},
"instructions": [

{
"type":"METER",
"meter_id": 1

}
(continues on next page)

8.5. Built-in OS-Ken applications 604

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

]
}' http://localhost:8080/stats/flowentry/add

Note: To confirm flow entry registration, please see Get all flows stats or Get flows stats
filtered by fields.

Modify all matching flow entries

Modify all matching flow entries of the switch.

Usage:

Method POST
URI /stats/flowentry/modify

Request message body:

At-
tribute

Description Example Default

dpid Datapath ID (int) 1 (Manda-
tory)

cookie Opaque controller-issued iden-
tifier (int)

1 0

cookie_maskMask used to restrict the cookie
bits (int)

1 0

ta-
ble_id

Table ID to put the flow in (int) 0 0

idle_timeoutIdle time before discarding
(seconds) (int)

30 0

hard_timeoutMax time before discarding
(seconds) (int)

30 0

priority Priority level of flow entry (int) 11111 0
buffer_id Buffered packet to apply to, or

OFP_NO_BUFFER (int)
1 OFP_NO_BUFFER

flags Bitmap of OFPFF_* flags (int) 1 0
match Fields to match (dict) {"in_port":1} {} #wild-

carded
actions Instruction set (list of dict) [{"type":"OUTPUT",

"port":2}]
[] #DROP

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"cookie": 1,

(continues on next page)

8.5. Built-in OS-Ken applications 605

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"cookie_mask": 1,
"table_id": 0,
"idle_timeout": 30,
"hard_timeout": 30,
"priority": 11111,
"flags": 1,
"match":{

"in_port":1
},
"actions":[

{
"type":"OUTPUT",
"port": 2

}
]

}' http://localhost:8080/stats/flowentry/modify

Modify flow entry strictly

Modify flow entry strictly matching wildcards and priority

Usage:

Method POST
URI /stats/flowentry/modify_strict

Request message body:

8.5. Built-in OS-Ken applications 606

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description Example Default

dpid Datapath ID (int) 1 (Manda-
tory)

cookie Opaque controller-issued iden-
tifier (int)

1 0

cookie_maskMask used to restrict the cookie
bits (int)

1 0

ta-
ble_id

Table ID to put the flow in (int) 0 0

idle_timeoutIdle time before discarding
(seconds) (int)

30 0

hard_timeoutMax time before discarding
(seconds) (int)

30 0

priority Priority level of flow entry (int) 11111 0
buffer_id Buffered packet to apply to, or

OFP_NO_BUFFER (int)
1 OFP_NO_BUFFER

flags Bitmap of OFPFF_* flags (int) 1 0
match Fields to match (dict) {"in_port":1} {} #wild-

carded
actions Instruction set (list of dict) [{"type":"OUTPUT",

"port":2}]
[] #DROP

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"cookie": 1,
"cookie_mask": 1,
"table_id": 0,
"idle_timeout": 30,
"hard_timeout": 30,
"priority": 11111,
"flags": 1,
"match":{

"in_port":1
},
"actions":[

{
"type":"OUTPUT",
"port": 2

}
]

}' http://localhost:8080/stats/flowentry/modify_strict

8.5. Built-in OS-Ken applications 607

os-ken Documentation, Release 1.4.1.dev5

Delete all matching flow entries

Delete all matching flow entries of the switch.

Usage:

Method POST
URI /stats/flowentry/delete

Request message body:

At-
tribute

Description Example Default

dpid Datapath ID (int) 1 (Manda-
tory)

cookie Opaque controller-issued iden-
tifier (int)

1 0

cookie_maskMask used to restrict the cookie
bits (int)

1 0

ta-
ble_id

Table ID to put the flow in (int) 0 0

idle_timeoutIdle time before discarding
(seconds) (int)

30 0

hard_timeoutMax time before discarding
(seconds) (int)

30 0

priority Priority level of flow entry (int) 11111 0
buffer_id Buffered packet to apply to, or

OFP_NO_BUFFER (int)
1 OFP_NO_BUFFER

out_port Output port (int) 1 OFPP_ANY
out_groupOutput group (int) 1 OFPG_ANY
flags Bitmap of OFPFF_* flags (int) 1 0
match Fields to match (dict) {"in_port":1} {} #wild-

carded
actions Instruction set (list of dict) [{"type":"OUTPUT",

"port":2}]
[] #DROP

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"cookie": 1,
"cookie_mask": 1,
"table_id": 0,
"idle_timeout": 30,
"hard_timeout": 30,
"priority": 11111,
"flags": 1,
"match":{

"in_port":1
},

(continues on next page)

8.5. Built-in OS-Ken applications 608

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"actions":[
{

"type":"OUTPUT",
"port": 2

}
]

}' http://localhost:8080/stats/flowentry/delete

Delete flow entry strictly

Delete flow entry strictly matching wildcards and priority.

Usage:

Method POST
URI /stats/flowentry/delete_strict

Request message body:

At-
tribute

Description Example Default

dpid Datapath ID (int) 1 (Manda-
tory)

cookie Opaque controller-issued iden-
tifier (int)

1 0

cookie_maskMask used to restrict the cookie
bits (int)

1 0

ta-
ble_id

Table ID to put the flow in (int) 0 0

idle_timeoutIdle time before discarding
(seconds) (int)

30 0

hard_timeoutMax time before discarding
(seconds) (int)

30 0

priority Priority level of flow entry (int) 11111 0
buffer_id Buffered packet to apply to, or

OFP_NO_BUFFER (int)
1 OFP_NO_BUFFER

out_port Output port (int) 1 OFPP_ANY
out_groupOutput group (int) 1 OFPG_ANY
flags Bitmap of OFPFF_* flags (int) 1 0
match Fields to match (dict) {"in_port":1} {} #wild-

carded
actions Instruction set (list of dict) [{"type":"OUTPUT",

"port":2}]
[] #DROP

Example of use:

8.5. Built-in OS-Ken applications 609

os-ken Documentation, Release 1.4.1.dev5

$ curl -X POST -d '{
"dpid": 1,
"cookie": 1,
"cookie_mask": 1,
"table_id": 0,
"idle_timeout": 30,
"hard_timeout": 30,
"priority": 11111,
"flags": 1,
"match":{

"in_port":1
},
"actions":[

{
"type":"OUTPUT",
"port": 2

}
]

}' http://localhost:8080/stats/flowentry/delete_strict

Delete all flow entries

Delete all flow entries of the switch which specified with Datapath ID in URI.

Usage:

Method DELETE
URI /stats/flowentry/clear/<dpid>

Example of use:

$ curl -X DELETE http://localhost:8080/stats/flowentry/clear/1

Add a group entry

Add a group entry to the switch.

Usage:

Method POST
URI /stats/groupentry/add

Request message body:

8.5. Built-in OS-Ken applications 610

os-ken Documentation, Release 1.4.1.dev5

At-
tribute

Description Example De-
fault

dpid Datapath ID (int) 1 (Manda-
tory)

type One of OFPGT_* (string) "ALL" "ALL"
group_id Group ID (int) 1 0
buck-
ets

struct ofp_bucket

--
weight

Relative weight of bucket (Only defined
for select groups)

0 0

--
watch_port

Port whose state affects whether this
bucket is live (Only required for fast
failover groups)

4294967295 OFPP_ANY

--
watch_group

Group whose state affects whether this
bucket is live (Only required for fast
failover groups)

4294967295 OFPG_ANY

-- ac-
tions

0 or more actions associated with the
bucket (list of dict)

[{"type":
"OUTPUT",
"port": 1}]

[]
#DROP

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"type": "ALL",
"group_id": 1,
"buckets": [

{
"actions": [

{
"type": "OUTPUT",
"port": 1

}
]

}
]

}' http://localhost:8080/stats/groupentry/add

Note: To confirm group entry registration, please see Get group description stats.

Modify a group entry

Modify a group entry to the switch.

Usage:

Method POST
URI /stats/groupentry/modify

8.5. Built-in OS-Ken applications 611

os-ken Documentation, Release 1.4.1.dev5

Request message body:

At-
tribute

Description Example De-
fault

dpid Datapath ID (int) 1 (Manda-
tory)

type One of OFPGT_* (string) "ALL" "ALL"
group_id Group ID (int) 1 0
buck-
ets

struct ofp_bucket

--
weight

Relative weight of bucket (Only defined
for select groups)

0 0

--
watch_port

Port whose state affects whether this
bucket is live (Only required for fast
failover groups)

4294967295 OFPP_ANY

--
watch_group

Group whose state affects whether this
bucket is live (Only required for fast
failover groups)

4294967295 OFPG_ANY

-- ac-
tions

0 or more actions associated with the
bucket (list of dict)

[{"type":
"OUTPUT",
"port": 1}]

[]
#DROP

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"type": "ALL",
"group_id": 1,
"buckets": [

{
"actions": [

{
"type": "OUTPUT",
"port": 1

}
]

}
]

}' http://localhost:8080/stats/groupentry/modify

Delete a group entry

Delete a group entry to the switch.

Usage:

Method POST
URI /stats/groupentry/delete

Request message body:

8.5. Built-in OS-Ken applications 612

os-ken Documentation, Release 1.4.1.dev5

Attribute Description Example Default
dpid Datapath ID (int) 1 (Mandatory)
group_id Group ID (int) 1 0

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"group_id": 1

}' http://localhost:8080/stats/groupentry/delete

Modify the behavior of the port

Modify the behavior of the physical port.

Usage:

Method POST
URI /stats/portdesc/modify

Request message body:

At-
tribute

Description Exam-
ple

Default

dpid Datapath ID (int) 1 (Manda-
tory)

port_no Port number (int) 1 0
config Bitmap of OFPPC_* flags (int) 1 0
mask Bitmap of OFPPC_* flags to be changed

(int)
1 0

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"port_no": 1,
"config": 1,
"mask": 1
}' http://localhost:8080/stats/portdesc/modify

Note: To confirm port description, please see Get ports description.

8.5. Built-in OS-Ken applications 613

os-ken Documentation, Release 1.4.1.dev5

Add a meter entry

Add a meter entry to the switch.

Usage:

Method POST
URI /stats/meterentry/add

Request message body:

Attribute Description Example Default
dpid Datapath ID (int) 1 (Mandatory)
flags Bitmap of OFPMF_* flags (list) ["KBPS"] [] #Empty
meter_id Meter ID (int) 1 0
bands struct ofp_meter_band_header
-- type One of OFPMBT_* (string) "DROP" None
-- rate Rate for this band (int) 1000 None
-- burst_size Size of bursts (int) 100 None

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"flags": "KBPS",
"meter_id": 1,
"bands": [

{
"type": "DROP",
"rate": 1000

}
]

}' http://localhost:8080/stats/meterentry/add

Note: To confirm meter entry registration, please see Get meter config stats.

Modify a meter entry

Modify a meter entry to the switch.

Usage:

Method POST
URI /stats/meterentry/modify

Request message body:

8.5. Built-in OS-Ken applications 614

os-ken Documentation, Release 1.4.1.dev5

Attribute Description Example Default
dpid Datapath ID (int) 1 (Mandatory)
flags Bitmap of OFPMF_* flags (list) ["KBPS"] [] #Empty
meter_id Meter ID (int) 1 0
bands struct ofp_meter_band_header
-- type One of OFPMBT_* (string) "DROP" None
-- rate Rate for this band (int) 1000 None
-- burst_size Size of bursts (int) 100 None

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"meter_id": 1,
"flags": "KBPS",
"bands": [

{
"type": "DROP",
"rate": 1000

}
]

}' http://localhost:8080/stats/meterentry/modify

Delete a meter entry

Delete a meter entry to the switch.

Usage:

Method POST
URI /stats/meterentry/delete

Request message body:

Attribute Description Example Default
dpid Datapath ID (int) 1 (Mandatory)
meter_id Meter ID (int) 1 0

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"meter_id": 1

}' http://localhost:8080/stats/meterentry/delete

8.5. Built-in OS-Ken applications 615

os-ken Documentation, Release 1.4.1.dev5

Modify role

modify the role of the switch.

Usage:

Method POST
URI /stats/role

Request message body:

At-
tribute

Description Example Default

dpid Datapath ID (int) 1 (Mandatory)
role One of OF-

PCR_ROLE_*(string)
"MAS-
TER"

OF-
PCR_ROLE_EQUAL

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"role": "MASTER"

}' http://localhost:8080/stats/role

Support for experimenter multipart

Send a experimenter message

Send a experimenter message to the switch which specified with Datapath ID in URI.

Usage:

Method POST
URI /stats/experimenter/<dpid>

Request message body:

Attribute Description Exam-
ple

Default

dpid Datapath ID (int) 1 (Manda-
tory)

experi-
menter

Experimenter ID (int) 1 0

exp_type Experimenter defined (int) 1 0
data_type Data format type ("ascii" or

"base64")
"ascii" "ascii"

data Data to send (string) "data" "" #Empty

8.5. Built-in OS-Ken applications 616

os-ken Documentation, Release 1.4.1.dev5

Example of use:

$ curl -X POST -d '{
"dpid": 1,
"experimenter": 1,
"exp_type": 1,
"data_type": "ascii",
"data": "data"
}' http://localhost:8080/stats/experimenter/1

Reference: Description of Match and Actions

Description of Match on request messages

List of Match fields (OpenFlow1.0):

Match
field

Description Example

in_port Input switch port (int) {"in_port": 7}
dl_src Ethernet source address (string) {"dl_src":

"aa:bb:cc:11:22:33"}
dl_dst Ethernet destination address

(string)
{"dl_dst":
"aa:bb:cc:11:22:33"}

dl_vlan Input VLAN id (int) {"dl_vlan": 5}
dl_vlan_pcpInput VLAN priority (int) {"dl_vlan_pcp": 3, "dl_vlan":

3}
dl_type Ethernet frame type (int) {"dl_type": 123}
nw_tos IP ToS (int) {"nw_tos": 16, "dl_type":

2048}
nw_proto IP protocol or lower 8 bits of

ARP opcode (int)
{"nw_proto": 5, "dl_type":
2048}

nw_src IPv4 source address (string) {"nw_src": "192.168.0.1",
"dl_type": 2048}

nw_dst IPv4 destination address
(string)

{"nw_dst": "192.168.0.1/24",
"dl_type": 2048}

tp_src TCP/UDP source port (int) {"tp_src": 1, "nw_proto": 6,
"dl_type": 2048}

tp_dst TCP/UDP destination port (int) {"tp_dst": 2, "nw_proto": 6,
"dl_type": 2048}

Note: IPv4 address field can be described as IP Prefix like as follows.

IPv4 address:

"192.168.0.1"
"192.168.0.2/24"

List of Match fields (OpenFlow1.2 or later):

8.5. Built-in OS-Ken applications 617

os-ken Documentation, Release 1.4.1.dev5

Match field Description Example
in_port Switch input port (int) {"in_port": 7}
in_phy_port Switch physical input port (int) {"in_phy_port": 5, "in_port": 3}
metadata Metadata passed between tables (int or string) {"metadata": 12345} or {"metadata": "0x1212/0xffff"}
eth_dst Ethernet destination address (string) {"eth_dst": "aa:bb:cc:11:22:33/00:00:00:00:ff:ff"}
eth_src Ethernet source address (string) {"eth_src": "aa:bb:cc:11:22:33"}
eth_type Ethernet frame type (int) {"eth_type": 2048}
vlan_vid VLAN id (int or string) See Example of VLAN ID match field
vlan_pcp VLAN priority (int) {"vlan_pcp": 3, "vlan_vid": 3}
ip_dscp IP DSCP (6 bits in ToS field) (int) {"ip_dscp": 3, "eth_type": 2048}
ip_ecn IP ECN (2 bits in ToS field) (int) {"ip_ecn": 0, "eth_type": 34525}
ip_proto IP protocol (int) {"ip_proto": 5, "eth_type": 34525}
ipv4_src IPv4 source address (string) {"ipv4_src": "192.168.0.1", "eth_type": 2048}
ipv4_dst IPv4 destination address (string) {"ipv4_dst": "192.168.10.10/255.255.255.0", "eth_type": 2048}
tcp_src TCP source port (int) {"tcp_src": 3, "ip_proto": 6, "eth_type": 2048}
tcp_dst TCP destination port (int) {"tcp_dst": 5, "ip_proto": 6, "eth_type": 2048}
udp_src UDP source port (int) {"udp_src": 2, "ip_proto": 17, "eth_type": 2048}
udp_dst UDP destination port (int) {"udp_dst": 6, "ip_proto": 17, "eth_type": 2048}
sctp_src SCTP source port (int) {"sctp_src": 99, "ip_proto": 132, "eth_type": 2048}
sctp_dst SCTP destination port (int) {"sctp_dst": 99, "ip_proto": 132, "eth_type": 2048}
icmpv4_type ICMP type (int) {"icmpv4_type": 5, "ip_proto": 1, "eth_type": 2048}
icmpv4_code ICMP code (int) {"icmpv4_code": 6, "ip_proto": 1, "eth_type": 2048}
arp_op ARP opcode (int) {"arp_op": 3, "eth_type": 2054}
arp_spa ARP source IPv4 address (string) {"arp_spa": "192.168.0.11", "eth_type": 2054}
arp_tpa ARP target IPv4 address (string) {"arp_tpa": "192.168.0.44/24", "eth_type": 2054}
arp_sha ARP source hardware address (string) {"arp_sha": "aa:bb:cc:11:22:33", "eth_type": 2054}
arp_tha ARP target hardware address (string) {"arp_tha": "aa:bb:cc:11:22:33/00:00:00:00:ff:ff", "eth_type": 2054}
ipv6_src IPv6 source address (string) {"ipv6_src": "2001::aaaa:bbbb:cccc:1111", "eth_type": 34525}
ipv6_dst IPv6 destination address (string) {"ipv6_dst": "2001::ffff:cccc:bbbb:1111/64", "eth_type": 34525}
ipv6_flabel IPv6 Flow Label (int) {"ipv6_flabel": 2, "eth_type": 34525}
icmpv6_type ICMPv6 type (int) {"icmpv6_type": 3, "ip_proto": 58, "eth_type": 34525}
icmpv6_code ICMPv6 code (int) {"icmpv6_code": 4, "ip_proto": 58, "eth_type": 34525}
ipv6_nd_target Target address for Neighbor Discovery (string) {"ipv6_nd_target": "2001::ffff:cccc:bbbb:1111", "icmpv6_type": 135, "ip_proto": 58, "eth_type": 34525}
ipv6_nd_sll Source link-layer for Neighbor Discovery (string) {"ipv6_nd_sll": "aa:bb:cc:11:22:33", "icmpv6_type": 135, "ip_proto": 58, "eth_type": 34525}
ipv6_nd_tll Target link-layer for Neighbor Discovery (string) {"ipv6_nd_tll": "aa:bb:cc:11:22:33", "icmpv6_type": 136, "ip_proto": 58, "eth_type": 34525}
mpls_label MPLS label (int) {"mpls_label": 3, "eth_type": 34888}
mpls_tc MPLS Traffic Class (int) {"mpls_tc": 2, "eth_type": 34888}
mpls_bos MPLS BoS bit (int) (Openflow1.3+) {"mpls_bos": 1, "eth_type": 34888}
pbb_isid PBB I-SID (int or string) (Openflow1.3+) {"pbb_isid": 5, "eth_type": 35047} or{"pbb_isid": "0x05/0xff", "eth_type": 35047}
tunnel_id Logical Port Metadata (int or string) (Openflow1.3+) {"tunnel_id": 7} or {"tunnel_id": "0x07/0xff"}
ipv6_exthdr IPv6 Extension Header pseudo-field (int or string) (Openflow1.3+) {"ipv6_exthdr": 3, "eth_type": 34525} or {"ipv6_exthdr": "0x40/0x1F0", "eth_type": 34525}
pbb_uca PBB UCA hander field(int) (Openflow1.4+) {"pbb_uca": 1, "eth_type": 35047}
tcp_flags TCP flags(int) (Openflow1.5+) {"tcp_flags": 2, "ip_proto": 6, "eth_type": 2048}
actset_output Output port from action set metadata(int) (Openflow1.5+) {"actset_output": 3}
packet_type Packet type value(int) (Openflow1.5+) {"packet_type": [1, 2048]}

Note: Some field can be described with mask like as follows.

8.5. Built-in OS-Ken applications 618

os-ken Documentation, Release 1.4.1.dev5

Ethernet address:

"aa:bb:cc:11:22:33"
"aa:bb:cc:11:22:33/00:00:00:00:ff:ff"

IPv4 address:

"192.168.0.11"
"192.168.0.44/24"
"192.168.10.10/255.255.255.0"

IPv6 address:

"2001::ffff:cccc:bbbb:1111"
"2001::ffff:cccc:bbbb:2222/64"
"2001::ffff:cccc:bbbb:2222/ffff:ffff:ffff:ffff::0"

Metadata:

"0x1212121212121212"
"0x3434343434343434/0x01010101010101010"

Example of VLAN ID match field

The following is available in OpenFlow1.0 or later.

• To match only packets with VLAN tag and VLAN ID equal value 5:

$ curl -X POST -d '{
"dpid": 1,
"match":{

"dl_vlan": 5
},
"actions":[

{
"type":"OUTPUT",
"port": 1

}
]

}' http://localhost:8080/stats/flowentry/add

Note: When "dl_vlan" field is described as decimal int value, OF-
PVID_PRESENT(0x1000) bit is automatically applied.

The following is available in OpenFlow1.2 or later.

• To match only packets without a VLAN tag:

$ curl -X POST -d '{
"dpid": 1,
"match":{

"dl_vlan": "0x0000" # Describe OFPVID_NONE(0x0000)

(continues on next page)

8.5. Built-in OS-Ken applications 619

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

},
"actions":[

{
"type":"OUTPUT",
"port": 1

}
]

}' http://localhost:8080/stats/flowentry/add

• To match only packets with a VLAN tag regardless of its value:

$ curl -X POST -d '{
"dpid": 1,
"match":{

"dl_vlan": "0x1000/0x1000" # Describe OFPVID_
↪→PRESENT(0x1000/0x1000)

},
"actions":[

{
"type":"OUTPUT",
"port": 1

}
]

}' http://localhost:8080/stats/flowentry/add

• To match only packets with VLAN tag and VLAN ID equal value 5:

$ curl -X POST -d '{
"dpid": 1,
"match":{

"dl_vlan": "0x1005" # Describe sum of VLAN-ID(e.g.
↪→5) | OFPVID_PRESENT(0x1000)

},
"actions":[

{
"type":"OUTPUT",
"port": 1

}
]

}' http://localhost:8080/stats/flowentry/add

Note: When using the descriptions for OpenFlow1.2 or later, please describe "dl_vlan"
field as hexadecimal string value, and OFPVID_PRESENT(0x1000) bit is NOT automati-
cally applied.

8.5. Built-in OS-Ken applications 620

os-ken Documentation, Release 1.4.1.dev5

Description of Actions on request messages

List of Actions (OpenFlow1.0):

Actions Description Example
OUTPUT Output packet from "port" {"type": "OUTPUT", "port": 3}
SET_VLAN_VIDSet the 802.1Q VLAN ID

using "vlan_vid"
{"type": "SET_VLAN_VID",
"vlan_vid": 5}

SET_VLAN_PCPSet the 802.1Q priority using
"vlan_pcp"

{"type": "SET_VLAN_PCP",
"vlan_pcp": 3}

STRIP_VLANStrip the 802.1Q header {"type": "STRIP_VLAN"}
SET_DL_SRCSet ethernet source address

using "dl_src"
{"type": "SET_DL_SRC",
"dl_src": "aa:bb:cc:11:22:33"}

SET_DL_DSTSet ethernet destination ad-
dress using "dl_dst"

{"type": "SET_DL_DST",
"dl_dst": "aa:bb:cc:11:22:33"}

SET_NW_SRCIP source address using
"nw_src"

{"type": "SET_NW_SRC",
"nw_src": "10.0.0.1"}

SET_NW_DSTIP destination address using
"nw_dst"

{"type": "SET_NW_DST",
"nw_dst": "10.0.0.1"}

SET_NW_TOSSet IP ToS (DSCP field, 6
bits) using "nw_tos"

{"type": "SET_NW_TOS",
"nw_tos": 184}

SET_TP_SRCSet TCP/UDP source port
using "tp_src"

{"type": "SET_TP_SRC",
"tp_src": 8080}

SET_TP_DSTSet TCP/UDP destination
port using "tp_dst"

{"type": "SET_TP_DST",
"tp_dst": 8080}

EN-
QUEUE

Output to queue with
"queue_id" attached to
"port"

{"type": "ENQUEUE",
"queue_id": 3, "port": 1}

List of Actions (OpenFlow1.2 or later):

8.5. Built-in OS-Ken applications 621

os-ken Documentation, Release 1.4.1.dev5

Ac-
tions

Description Example

OUT-
PUT

Output packet from "port" {"type": "OUTPUT", "port": 3}

COPY_TTL_OUTCopy TTL outwards {"type": "COPY_TTL_OUT"}
COPY_TTL_INCopy TTL inwards {"type": "COPY_TTL_IN"}
SET_MPLS_TTLSet MPLS TTL using

"mpls_ttl"
{"type": "SET_MPLS_TTL",
"mpls_ttl": 64}

DEC_MPLS_TTLDecrement MPLS TTL {"type": "DEC_MPLS_TTL"}
PUSH_VLANPush a new VLAN tag with

"ethertype"
{"type": "PUSH_VLAN", "ether-
type": 33024}

POP_VLANPop the outer VLAN tag {"type": "POP_VLAN"}
PUSH_MPLSPush a new MPLS tag with

"ethertype"
{"type": "PUSH_MPLS", "ether-
type": 34887}

POP_MPLSPop the outer MPLS tag
with "ethertype"

{"type": "POP_MPLS", "ethertype":
2054}

SET_QUEUESet queue id using
"queue_id" when outputting
to a port

{"type": "SET_QUEUE",
"queue_id": 7}

GROUP Apply group identified by
"group_id"

{"type": "GROUP", "group_id": 5}

SET_NW_TTLSet IP TTL using "nw_ttl" {"type": "SET_NW_TTL",
"nw_ttl": 64}

DEC_NW_TTLDecrement IP TTL {"type": "DEC_NW_TTL"}
SET_FIELDSet a "field" using "value"

(The set of keywords avail-
able for "field" is the same
as match field)

See Example of set-field action

PUSH_PBBPush a new PBB service
tag with "ethertype" (Open-
flow1.3+)

{"type": "PUSH_PBB", "ethertype":
35047}

POP_PBBPop the outer PBB service
tag (Openflow1.3+)

{"type": "POP_PBB"}

COPY_FIELDCopy value between header
and register (Openflow1.5+)

{"type": "COPY_FIELD", "n_bits":
32, "src_offset": 1, "dst_offset":
2, "src_oxm_id": "eth_src",
"dst_oxm_id": "eth_dst"}

ME-
TER

Apply meter identified by
"meter_id" (Openflow1.5+)

{"type": "METER", "meter_id": 3}

EX-
PERI-
MENTER

Extensible action for the ex-
perimenter (Set "base64" or
"ascii" to "data_type" field)

{"type": "EXPERIMENTER",
"experimenter": 101, "data":
"AAECAwQFBgc=", "data_type":
"base64"}

GOTO_TABLE(Instruction) Setup the
next table identified by
"table_id"

{"type": "GOTO_TABLE", "ta-
ble_id": 8}

WRITE_METADATA(Instruction) Setup the
metadata field using "meta-
data" and "metadata_mask"

{"type": "WRITE_METADATA",
"metadata": 0x3, "metadata_mask":
0x3}

ME-
TER

(Instruction) Apply meter
identified by "meter_id"
(deprecated in Open-
flow1.5)

{"type": "METER", "meter_id": 3}

WRITE_ACTIONS(Instruction) Write the ac-
tion(s) onto the datapath ac-
tion set

{"type": "WRITE_ACTIONS",
actions":[{"type":"POP_VLAN",},{
"type":"OUTPUT", "port": 2}]}

CLEAR_ACTIONS(Instruction) Clears all ac-
tions from the datapath ac-
tion set

{"type": "CLEAR_ACTIONS"}

8.5. Built-in OS-Ken applications 622

os-ken Documentation, Release 1.4.1.dev5

Example of set-field action

To set VLAN ID to non-VLAN-tagged frame:

$ curl -X POST -d '{
"dpid": 1,
"match":{

"dl_type": "0x8000"
},
"actions":[

{
"type": "PUSH_VLAN", # Push a new VLAN tag if a

↪→input frame is non-VLAN-tagged
"ethertype": 33024 # Ethertype 0x8100(=33024):

↪→IEEE 802.1Q VLAN-tagged frame
},
{

"type": "SET_FIELD",
"field": "vlan_vid", # Set VLAN ID
"value": 4102 # Describe sum of vlan_id(e.

↪→g. 6) | OFPVID_PRESENT(0x1000=4096)
},
{

"type": "OUTPUT",
"port": 2

}
]

}' http://localhost:8080/stats/flowentry/add

8.5.3 os_ken.app.rest_vtep

This sample application performs as VTEP for EVPN VXLAN and constructs a Single Subnet per EVI
corresponding to the VLAN Based service in [RFC7432].

Note: This app will invoke OVSDB request to the switches. Please set the manager address before
calling the API of this app.

$ sudo ovs-vsctl set-manager ptcp:6640
$ sudo ovs-vsctl show

...(snip)
Manager "ptcp:6640"
...(snip)

8.5. Built-in OS-Ken applications 623

os-ken Documentation, Release 1.4.1.dev5

Usage Example

Environment

This example supposes the following environment:

Host A (172.17.0.1) Host B (172.17.0.2)
+--------------------+ +--------------------+
| OSKen1 | --- BGP(EVPN) --- | OSKen2 |
+--------------------+ +--------------------+

| |
+--------------------+ +--------------------+
| s1 (OVS) | ===== vxlan ===== | s2 (OVS) |
+--------------------+ +--------------------+
(s1-eth1) (s1-eth2) (s2-eth1) (s2-eth2)

| | | |
+--------+ +--------+ +--------+ +--------+
| s1h1 | | s1h2 | | s2h1 | | s2h2 |
+--------+ +--------+ +--------+ +--------+

Configuration steps

1. Creates a new BGPSpeaker instance on each host.

On Host A:

(Host A)$ curl -X POST -d '{
"dpid": 1,
"as_number": 65000,
"router_id": "172.17.0.1"
}' http://localhost:8080/vtep/speakers | python -m json.tool

On Host B:

(Host B)$ curl -X POST -d '{
"dpid": 1,
"as_number": 65000,
"router_id": "172.17.0.2"
}' http://localhost:8080/vtep/speakers | python -m json.tool

2. Registers the neighbor for the speakers on each host.

On Host A:

(Host A)$ curl -X POST -d '{
"address": "172.17.0.2",
"remote_as": 65000
}' http://localhost:8080/vtep/neighbors |
python -m json.tool

On Host B:

(Host B)$ curl -X POST -d '{
"address": "172.17.0.1",
"remote_as": 65000

(continues on next page)

8.5. Built-in OS-Ken applications 624

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}' http://localhost:8080/vtep/neighbors |
python -m json.tool

3. Defines a new VXLAN network(VNI=10) on the Host A/B.

On Host A:

(Host A)$ curl -X POST -d '{
"vni": 10
}' http://localhost:8080/vtep/networks | python -m json.tool

On Host B:

(Host B)$ curl -X POST -d '{
"vni": 10
}' http://localhost:8080/vtep/networks | python -m json.tool

4. Registers the clients to the VXLAN network.

For "s1h1"(ip="10.0.0.11", mac="aa:bb:cc:00:00:11") on Host A:

(Host A)$ curl -X POST -d '{
"port": "s1-eth1",
"mac": "aa:bb:cc:00:00:11",
"ip": "10.0.0.11"
} ' http://localhost:8080/vtep/networks/10/clients |
python -m json.tool

For "s2h1"(ip="10.0.0.21", mac="aa:bb:cc:00:00:21") on Host B:

(Host B)$ curl -X POST -d '{
"port": "s2-eth1",
"mac": "aa:bb:cc:00:00:21",
"ip": "10.0.0.21"
} ' http://localhost:8080/vtep/networks/10/clients |
python -m json.tool

Testing

If BGP (EVPN) connection between OSKen1 and OSKen2 has been established, pings between the
client s1h1 and s2h1 should work.

(s1h1)$ ping 10.0.0.21

8.5. Built-in OS-Ken applications 625

os-ken Documentation, Release 1.4.1.dev5

Troubleshooting

If connectivity between s1h1 and s2h1 isn’t working, please check the followings.

1. Make sure that Host A and Host B have full network connectivity.

(Host A)$ ping 172.17.0.2

2. Make sure that BGP(EVPN) connection has been established.

(Host A)$ curl -X GET http://localhost:8080/vtep/neighbors |
python -m json.tool

...
{

"172.17.0.2": {
"EvpnNeighbor": {

"address": "172.17.0.2",
"remote_as": 65000,
"state": "up" # "up" shows the connection

↪→established
}

}
}

3. Make sure that BGP(EVPN) routes have been advertised.

(Host A)$ curl -X GET http://localhost:8080/vtep/networks |
python -m json.tool

...
{

"10": {
"EvpnNetwork": {

"clients": {
"aa:bb:cc:00:00:11": {

"EvpnClient": {
"ip": "10.0.0.11",
"mac": "aa:bb:cc:00:00:11",
"next_hop": "172.17.0.1",
"port": 1

}
},
"aa:bb:cc:00:00:21": { # route for "s2h1" on

↪→Host B
"EvpnClient": {

"ip": "10.0.0.21",
"mac": "aa:bb:cc:00:00:21",
"next_hop": "172.17.0.2",
"port": 3

}
}

},
"ethernet_tag_id": 0,
"route_dist": "65000:10",
"vni": 10

}
(continues on next page)

8.5. Built-in OS-Ken applications 626

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

4. Make sure that the IPv6 is enabled on your environment. Some OSKen BGP features require the IPv6
connectivity to bind sockets. Mininet seems to disable IPv6 on its installation.

For example:

$ sysctl net.ipv6.conf.all.disable_ipv6
net.ipv6.conf.all.disable_ipv6 = 0 # should NOT be enabled

$ grep GRUB_CMDLINE_LINUX_DEFAULT /etc/default/grub
please remove "ipv6.disable=1" and reboot
GRUB_CMDLINE_LINUX_DEFAULT="ipv6.disable=1 quiet splash"

5. Make sure that your switch using the OpenFlow version 1.3. This application supports only the
OpenFlow version 1.3.

For example:

$ ovs-vsctl get Bridge s1 protocols
["OpenFlow13"]

Note: At the time of this writing, we use the the following version of OSKen, Open vSwitch and
Mininet.

$ os_ken --version
os_ken 4.19

$ ovs-vsctl --version
ovs-vsctl (Open vSwitch) 2.5.2 # APT packaged version of Ubuntu 16.04
Compiled Oct 17 2017 16:38:57
DB Schema 7.12.1

$ mn --version
2.2.1 # APT packaged version of Ubuntu 16.04

REST API

class os_ken.app.rest_vtep.RestVtepController(req, link, data, **config)

add_speaker(req, **kwargs)
Creates a new BGPSpeaker instance.

Usage:

Method URI
POST /vtep/speakers

Request parameters:

8.5. Built-in OS-Ken applications 627

os-ken Documentation, Release 1.4.1.dev5

Attribute Description
dpid ID of Datapath binding to speaker. (e.g. 1)
as_number AS number. (e.g. 65000)
router_id Router ID. (e.g. "172.17.0.1")

Example:

$ curl -X POST -d '{
"dpid": 1,
"as_number": 65000,
"router_id": "172.17.0.1"
}' http://localhost:8080/vtep/speakers | python -m json.tool

{
"172.17.0.1": {

"EvpnSpeaker": {
"as_number": 65000,
"dpid": 1,
"neighbors": {},
"router_id": "172.17.0.1"

}
}

}

get_speakers(_, **kwargs)
Gets the info of BGPSpeaker instance.

Usage:

Method URI
GET /vtep/speakers

Example:

$ curl -X GET http://localhost:8080/vtep/speakers |
python -m json.tool

{
"172.17.0.1": {

"EvpnSpeaker": {
"as_number": 65000,
"dpid": 1,
"neighbors": {

"172.17.0.2": {
"EvpnNeighbor": {

"address": "172.17.0.2",
"remote_as": 65000,
"state": "up"

}
}

},
"router_id": "172.17.0.1"

}

(continues on next page)

8.5. Built-in OS-Ken applications 628

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

}
}

del_speaker(_, **kwargs)
Shutdowns BGPSpeaker instance.

Usage:

Method URI
DELETE /vtep/speakers

Example:

$ curl -X DELETE http://localhost:8080/vtep/speakers |
python -m json.tool

{
"172.17.0.1": {

"EvpnSpeaker": {
"as_number": 65000,
"dpid": 1,
"neighbors": {},
"router_id": "172.17.0.1"

}
}

}

add_neighbor(req, **kwargs)
Registers a new neighbor to the speaker.

Usage:

Method URI
POST /vtep/neighbors

Request parameters:

Attribute Description
address IP address of neighbor. (e.g. "172.17.0.2")
remote_as AS number of neighbor. (e.g. 65000)

Example:

$ curl -X POST -d '{
"address": "172.17.0.2",
"remote_as": 65000
}' http://localhost:8080/vtep/neighbors |
python -m json.tool

{
"172.17.0.2": {

(continues on next page)

8.5. Built-in OS-Ken applications 629

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"EvpnNeighbor": {
"address": "172.17.0.2",
"remote_as": 65000,
"state": "down"

}
}

}

get_neighbors(_, **kwargs)
Gets a list of all neighbors.

Usage:

Method URI
GET /vtep/neighbors

Example:

$ curl -X GET http://localhost:8080/vtep/neighbors |
python -m json.tool

{
"172.17.0.2": {

"EvpnNeighbor": {
"address": "172.17.0.2",
"remote_as": 65000,
"state": "up"

}
}

}

get_neighbor(_, **kwargs)
Gets the neighbor for the specified address.

Usage:

Method URI
GET /vtep/neighbors/{address}

Request parameters:

Attribute Description
address IP address of neighbor. (e.g. "172.17.0.2")

Example:

$ curl -X GET http://localhost:8080/vtep/neighbors/172.17.0.2 |
python -m json.tool

{
"172.17.0.2": {

(continues on next page)

8.5. Built-in OS-Ken applications 630

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

"EvpnNeighbor": {
"address": "172.17.0.2",
"remote_as": 65000,
"state": "up"

}
}

}

del_neighbor(_, **kwargs)
Unregister the specified neighbor from the speaker.

Usage:

Method URI
DELETE /vtep/speaker/neighbors/{address}

Request parameters:

Attribute Description
address IP address of neighbor. (e.g. "172.17.0.2")

Example:

$ curl -X DELETE http://localhost:8080/vtep/speaker/neighbors/172.
↪→17.0.2 |
python -m json.tool

{
"172.17.0.2": {

"EvpnNeighbor": {
"address": "172.17.0.2",
"remote_as": 65000,
"state": "up"

}
}

}

add_network(req, **kwargs)
Defines a new network.

Usage:

Method URI
POST /vtep/networks

Request parameters:

Attribute Description
vni Virtual Network Identifier. (e.g. 10)

Example:

8.5. Built-in OS-Ken applications 631

os-ken Documentation, Release 1.4.1.dev5

$ curl -X POST -d '{
"vni": 10
}' http://localhost:8080/vtep/networks | python -m json.tool

{
"10": {

"EvpnNetwork": {
"clients": {},
"ethernet_tag_id": 0,
"route_dist": "65000:10",
"vni": 10

}
}

}

get_networks(_, **kwargs)
Gets a list of all networks.

Usage:

Method URI
GET /vtep/networks

Example:

$ curl -X GET http://localhost:8080/vtep/networks |
python -m json.tool

{
"10": {

"EvpnNetwork": {
"clients": {

"aa:bb:cc:dd:ee:ff": {
"EvpnClient": {

"ip": "10.0.0.1",
"mac": "aa:bb:cc:dd:ee:ff",
"next_hop": "172.17.0.1",
"port": 1

}
}

},
"ethernet_tag_id": 0,
"route_dist": "65000:10",
"vni": 10

}
}

}

get_network(_, **kwargs)
Gets the network for the specified VNI.

Usage:

Method URI
GET /vtep/networks/{vni}

8.5. Built-in OS-Ken applications 632

os-ken Documentation, Release 1.4.1.dev5

Request parameters:

Attribute Description
vni Virtual Network Identifier. (e.g. 10)

Example:

$ curl -X GET http://localhost:8080/vtep/networks/10 |
python -m json.tool

{
"10": {

"EvpnNetwork": {
"clients": {

"aa:bb:cc:dd:ee:ff": {
"EvpnClient": {

"ip": "10.0.0.1",
"mac": "aa:bb:cc:dd:ee:ff",
"next_hop": "172.17.0.1",
"port": 1

}
}

},
"ethernet_tag_id": 0,
"route_dist": "65000:10",
"vni": 10

}
}

}

del_network(_, **kwargs)
Deletes the network for the specified VNI.

Usage:

Method URI
DELETE /vtep/networks/{vni}

Request parameters:

Attribute Description
vni Virtual Network Identifier. (e.g. 10)

Example:

$ curl -X DELETE http://localhost:8080/vtep/networks/10 |
python -m json.tool

{
"10": {

"EvpnNetwork": {
"ethernet_tag_id": 10,
"clients": [

(continues on next page)

8.5. Built-in OS-Ken applications 633

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

{
"EvpnClient": {

"ip": "10.0.0.11",
"mac": "e2:b1:0c:ba:42:ed",
"port": 1

}
}

],
"route_dist": "65000:100",
"vni": 10

}
}

}

add_client(req, **kwargs)
Registers a new client to the specified network.

Usage:

Method URI
POST /vtep/networks/{vni}/clients

Request parameters:

At-
tribute

Description

vni Virtual Network Identifier. (e.g. 10)
port Port number to connect client. For convenience, port name can be spec-

ified and automatically translated to port number. (e.g. "s1-eth1" or 1)
mac Client MAC address to register. (e.g. "aa:bb:cc:dd:ee:ff")
ip Client IP address. (e.g. "10.0.0.1")

Example:

$ curl -X POST -d '{
"port": "s1-eth1",
"mac": "aa:bb:cc:dd:ee:ff",
"ip": "10.0.0.1"
}' http://localhost:8080/vtep/networks/10/clients |
python -m json.tool

{
"10": {

"EvpnClient": {
"ip": "10.0.0.1",
"mac": "aa:bb:cc:dd:ee:ff",
"next_hop": "172.17.0.1",
"port": 1

}
}

}

8.5. Built-in OS-Ken applications 634

os-ken Documentation, Release 1.4.1.dev5

del_client(_, **kwargs)
Registers a new client to the specified network.

Usage:

Method URI
DELETE /vtep/networks/{vni}/clients/{mac}

Request parameters:

Attribute Description
vni Virtual Network Identifier. (e.g. 10)
mac Client MAC address to register.

Example:

$ curl -X DELETE http://localhost:8080/vtep/networks/10/clients/
↪→aa:bb:cc:dd:ee:ff |
python -m json.tool

{
"10": {

"EvpnClient": {
"ip": "10.0.0.1",
"mac": "aa:bb:cc:dd:ee:ff",
"next_hop": "172.17.0.1",
"port": 1

}
}

}

8.5.4 os_ken.services.protocols.bgp.application

This module provides a convenient application for using OSKen BGPSpeaker and for writing your BGP
application.

It reads a configuration file which includes settings for neighbors, routes and some others. Please refer to
os_ken/services/protocols/bgp/bgp_sample_conf.py for the sample configuration.

Usage Example:

$ osken-manager os_ken/services/protocols/bgp/application.py \
--bgp-app-config-file os_ken/services/protocols/bgp/bgp_sample_conf.py

8.5. Built-in OS-Ken applications 635

os-ken Documentation, Release 1.4.1.dev5

SSH Console

You can also use the SSH console and see the RIB and do some operations from this console. The SSH
port and username/password can be configured by the configuration file. You can check the help by
hitting ’?’ key in this interface.

Example:

$ ssh localhost -p 4990

Hello, this is OSKen BGP speaker (version 4.19).

bgpd> # Hit '?' key
clear - allows to reset BGP connections
help - show this help
quit - exit this session
set - set runtime settings
show - shows runtime state information

bgpd>
bgpd> show rib all
Status codes: * valid, > best
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Labels Next Hop Reason Metric LocPrf Path

*> 10.10.1.0/24 None 0.0.0.0 Only Path i
bgpd>

Integration with Other Applications

os_ken.services.protocols.bgp.application.OSKenBGPSpeaker will notifies the
following events to other OSKen applications.

• EventBestPathChanged

• EventAdjRibInChanged

• EventPeerDown

• EventPeerUp

To catch these events, specify @set_ev_cls() decorator to the event handlers in the OSKen applica-
tions.

Example Application:

my_bgp_app.py

from os_ken.base import app_manager
from os_ken.controller.handler import set_ev_cls
from os_ken.services.protocols.bgp import application as bgp_application

class MyBGPApp(app_manager.OSKenApp):
_CONTEXTS = {

'os_kenbgpspeaker': bgp_application.OSKenBGPSpeaker,
}

def __init__(self, *args, **kwargs):

(continues on next page)

8.5. Built-in OS-Ken applications 636

os-ken Documentation, Release 1.4.1.dev5

(continued from previous page)

super(MyBGPApp, self).__init__(*args, **kwargs)

Stores "os_ken.services.protocols.bgp.application.OSKenBGPSpeaker
↪→"

instance in order to call the APIs of
"os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker" via
"self.app.speaker".
Please note at this time, "BGPSpeaker" is NOT instantiated yet.
self.app = kwargs['os_kenbgpspeaker']

@set_ev_cls(bgp_application.EventBestPathChanged)
def _best_patch_changed_handler(self, ev):

self.logger.info(
'Best path changed: is_withdraw=%s, path=%s',
ev.is_withdraw, ev.path)

Usage Example:

$ osken-manager my_bgp_app.py \
--bgp-app-config-file os_ken/services/protocols/bgp/bgp_sample_conf.py

Note: For the APIs for os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker,
please refer to BGP speaker library API Reference.

API Reference

exception os_ken.services.protocols.bgp.application.ApplicationException(desc=None)
Specific Base exception related to BSPSpeaker.

class os_ken.services.protocols.bgp.application.EventAdjRibInChanged(path,
is_withdraw,
peer_ip,
peer_as)

Event called when any adj-RIB-in path is changed due to UPDATE messages or remote peer’s
down.

This event is the wrapper for adj_rib_in_change_handler of bgpspeaker.
BGPSpeaker.

path attribute contains an instance of info_base.base.Path subclasses.

If is_withdraw attribute is True, path attribute has the information of the withdraw route.

peer_ip is the peer’s IP address who sent this path.

peer_as is the peer’s AS number who sent this path.

class os_ken.services.protocols.bgp.application.EventBestPathChanged(path,
is_withdraw)

Event called when any best remote path is changed due to UPDATE messages or remote peer’s
down.

This event is the wrapper for best_path_change_handler of bgpspeaker.
BGPSpeaker.

8.5. Built-in OS-Ken applications 637

os-ken Documentation, Release 1.4.1.dev5

path attribute contains an instance of info_base.base.Path subclasses.

If is_withdraw attribute is True, path attribute has the information of the withdraw route.

class os_ken.services.protocols.bgp.application.EventPeerDown(remote_ip,
re-
mote_as)

Event called when the session to the remote peer goes down.

This event is the wrapper for peer_down_handler of bgpspeaker.BGPSpeaker.

remote_ip attribute is the IP address of the remote peer.

remote_as attribute is the AS number of the remote peer.

class os_ken.services.protocols.bgp.application.EventPeerUp(remote_ip,
re-
mote_as)

Event called when the session to the remote peer goes up.

This event is the wrapper for peer_up_handler of bgpspeaker.BGPSpeaker.

remote_ip attribute is the IP address of the remote peer.

remote_as attribute is the AS number of the remote peer.

class os_ken.services.protocols.bgp.application.OSKenBGPSpeaker(*args,
**kwargs)

Base application for implementing BGP applications.

start()
Hook that is called after startup initialization is done.

os_ken.services.protocols.bgp.application.load_config(config_file)
Validates the given file for use as the settings file for BGPSpeaker and loads the configuration
from the given file as a module instance.

os_ken.services.protocols.bgp.application.validate_rpc_host(ip)
Validates the given ip for use as RPC server address.

8.5. Built-in OS-Ken applications 638

PYTHON MODULE INDEX

o
os_ken.app.cbench, 12
os_ken.app.ofctl.api, 564
os_ken.app.ofctl.exception, 566
os_ken.app.rest_vtep, 623
os_ken.app.simple_switch, 12
os_ken.base.app_manager, 10
os_ken.controller.controller, 10
os_ken.controller.dpset, 10
os_ken.controller.ofp_event, 11
os_ken.controller.ofp_handler, 11
os_ken.lib.netconf, 13
os_ken.lib.of_config, 13
os_ken.lib.ovs, 13
os_ken.lib.ovs.bridge, 157
os_ken.lib.ovs.vsctl, 156
os_ken.lib.packet, 13
os_ken.lib.packet.arp, 25
os_ken.lib.packet.bfd, 26
os_ken.lib.packet.bgp, 32
os_ken.lib.packet.bmp, 49
os_ken.lib.packet.bpdu, 55
os_ken.lib.packet.cfm, 60
os_ken.lib.packet.dhcp, 66
os_ken.lib.packet.dhcp6, 67
os_ken.lib.packet.ethernet, 70
os_ken.lib.packet.geneve, 70
os_ken.lib.packet.gre, 71
os_ken.lib.packet.icmp, 73
os_ken.lib.packet.icmpv6, 74
os_ken.lib.packet.igmp, 79
os_ken.lib.packet.ipv4, 83
os_ken.lib.packet.ipv6, 85
os_ken.lib.packet.llc, 88
os_ken.lib.packet.lldp, 90
os_ken.lib.packet.mpls, 93
os_ken.lib.packet.openflow, 94
os_ken.lib.packet.ospf, 95
os_ken.lib.packet.packet, 23
os_ken.lib.packet.packet_base, 25
os_ken.lib.packet.pbb, 98

os_ken.lib.packet.sctp, 98
os_ken.lib.packet.slow, 112
os_ken.lib.packet.stream_parser, 24
os_ken.lib.packet.tcp, 117
os_ken.lib.packet.udp, 118
os_ken.lib.packet.vlan, 119
os_ken.lib.packet.vrrp, 119
os_ken.lib.packet.vxlan, 123
os_ken.lib.packet.zebra, 124
os_ken.lib.xflow, 13
os_ken.ofproto.nicira_ext, 547
os_ken.ofproto.ofproto_v1_0, 11
os_ken.ofproto.ofproto_v1_0_parser,

11
os_ken.ofproto.ofproto_v1_2, 11
os_ken.ofproto.ofproto_v1_2_parser,

11
os_ken.ofproto.ofproto_v1_3, 11
os_ken.ofproto.ofproto_v1_3_parser,

11
os_ken.ofproto.ofproto_v1_4, 12
os_ken.ofproto.ofproto_v1_4_parser,

12
os_ken.ofproto.ofproto_v1_5, 12
os_ken.ofproto.ofproto_v1_5_parser,

12
os_ken.services.protocols.bgp.application,

635
os_ken.topology, 13

639

INDEX

Symbols
_CONTEXTS (os_ken.base.app_manager.OSKenApp

attribute), 549
_EVENTS (os_ken.base.app_manager.OSKenApp

attribute), 549
_TYPE (os_ken.ofproto.ofproto_parser.MsgBase

attribute), 160

A
add_bond() (os_ken.lib.ovs.bridge.OVSBridge

method), 157
add_client() (os_ken.app.rest_vtep.RestVtepController

method), 634
add_db_attribute()

(os_ken.lib.ovs.bridge.OVSBridge
method), 157

add_gre_port()
(os_ken.lib.ovs.bridge.OVSBridge
method), 157

add_neighbor()
(os_ken.app.rest_vtep.RestVtepController
method), 629

add_network()
(os_ken.app.rest_vtep.RestVtepController
method), 631

add_protocol()
(os_ken.lib.packet.packet.Packet
method), 23

add_speaker()
(os_ken.app.rest_vtep.RestVtepController
method), 627

add_tunnel_port()
(os_ken.lib.ovs.bridge.OVSBridge
method), 157

add_vxlan_port()
(os_ken.lib.ovs.bridge.OVSBridge
method), 158

AdminReset, 32
AdminShutdown, 32
ApplicationException, 637
arp (class in os_ken.lib.packet.arp), 25

arp_ip() (in module os_ken.lib.packet.arp), 26
ASPathFilter (class in

os_ken.services.protocols.bgp.info_base.base),
150

AttrFlagError, 32
attribute_map_get()

(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 140

attribute_map_set()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 140

AttributeMap (class in
os_ken.services.protocols.bgp.info_base.base),
151

AttrLenError, 32
auth (class in os_ken.lib.packet.ipv6), 85
authenticate() (os_ken.lib.packet.bfd.bfd

method), 31
authenticate()

(os_ken.lib.packet.bfd.KeyedMD5
method), 28

authenticate()
(os_ken.lib.packet.bfd.KeyedSHA1
method), 29

authenticate()
(os_ken.lib.packet.bfd.SimplePassword
method), 30

AuthFailure, 32

B
BadBgpId, 38
BadLen, 38
BadMsg, 38
BadNotification, 38
BadPeerAs, 38
bfd (class in os_ken.lib.packet.bfd), 30
BFDAuth (class in os_ken.lib.packet.bfd), 27
BGPEvpnEsiLabelExtendedCommunity

(class in os_ken.lib.packet.bgp), 32
BGPEvpnEsImportRTExtendedCommunity

(class in os_ken.lib.packet.bgp), 32

640

os-ken Documentation, Release 1.4.1.dev5

BGPEvpnMacMobilityExtendedCommunity
(class in os_ken.lib.packet.bgp), 33

BgpExc, 38
BGPFlowSpecRedirectCommunity (class

in os_ken.lib.packet.bgp), 33
BGPFlowSpecTPIDActionCommunity

(class in os_ken.lib.packet.bgp), 33
BGPFlowSpecTrafficActionCommunity

(class in os_ken.lib.packet.bgp), 33
BGPFlowSpecTrafficMarkingCommunity

(class in os_ken.lib.packet.bgp), 33
BGPFlowSpecTrafficRateCommunity

(class in os_ken.lib.packet.bgp), 33
BGPFlowSpecVlanActionCommunity

(class in os_ken.lib.packet.bgp), 33
BGPKeepAlive (class in os_ken.lib.packet.bgp),

34
BGPMessage (class in os_ken.lib.packet.bgp), 34
BGPNotification (class in

os_ken.lib.packet.bgp), 35
BGPOpen (class in os_ken.lib.packet.bgp), 35
BGPPathAttributePmsiTunnel (class in

os_ken.lib.packet.bgp), 36
BGPRouteRefresh (class in

os_ken.lib.packet.bgp), 36
BGPSpeaker (class in

os_ken.services.protocols.bgp.bgpspeaker),
139

BGPUpdate (class in os_ken.lib.packet.bgp), 37
bmp_server_add()

(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 141

bmp_server_del()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 141

BMPInitiation (class in
os_ken.lib.packet.bmp), 49

BMPMessage (class in os_ken.lib.packet.bmp),
49

BMPPeerDownNotification (class in
os_ken.lib.packet.bmp), 50

BMPPeerMessage (class in
os_ken.lib.packet.bmp), 51

BMPPeerUpNotification (class in
os_ken.lib.packet.bmp), 51

BMPRouteMonitoring (class in
os_ken.lib.packet.bmp), 52

BMPStatisticsReport (class in
os_ken.lib.packet.bmp), 53

BMPTermination (class in
os_ken.lib.packet.bmp), 54

bpdu (class in os_ken.lib.packet.bpdu), 59

C
cause_cookie_while_shutdown (class in

os_ken.lib.packet.sctp), 98
cause_invalid_param (class in

os_ken.lib.packet.sctp), 99
cause_invalid_stream_id (class in

os_ken.lib.packet.sctp), 99
cause_missing_param (class in

os_ken.lib.packet.sctp), 99
cause_no_userdata (class in

os_ken.lib.packet.sctp), 100
cause_out_of_resource (class in

os_ken.lib.packet.sctp), 100
cause_protocol_violation (class in

os_ken.lib.packet.sctp), 100
cause_restart_with_new_addr (class in

os_ken.lib.packet.sctp), 101
cause_stale_cookie (class in

os_ken.lib.packet.sctp), 101
cause_unrecognized_chunk (class in

os_ken.lib.packet.sctp), 101
cause_unrecognized_param (class in

os_ken.lib.packet.sctp), 102
cause_unresolvable_addr (class in

os_ken.lib.packet.sctp), 102
cause_user_initiated_abort (class in

os_ken.lib.packet.sctp), 102
cc_message (class in os_ken.lib.packet.cfm), 60
cfm (class in os_ken.lib.packet.cfm), 60
ChassisID (class in os_ken.lib.packet.lldp), 91
chunk_abort (class in os_ken.lib.packet.sctp),

103
chunk_cookie_ack (class in

os_ken.lib.packet.sctp), 103
chunk_cookie_echo (class in

os_ken.lib.packet.sctp), 103
chunk_cwr (class in os_ken.lib.packet.sctp), 104
chunk_data (class in os_ken.lib.packet.sctp),

104
chunk_ecn_echo (class in

os_ken.lib.packet.sctp), 104
chunk_error (class in os_ken.lib.packet.sctp),

105
chunk_heartbeat (class in

os_ken.lib.packet.sctp), 105
chunk_heartbeat_ack (class in

os_ken.lib.packet.sctp), 105
chunk_init (class in os_ken.lib.packet.sctp),

106

Index 641

os-ken Documentation, Release 1.4.1.dev5

chunk_init_ack (class in
os_ken.lib.packet.sctp), 106

chunk_sack (class in os_ken.lib.packet.sctp),
107

chunk_shutdown (class in
os_ken.lib.packet.sctp), 107

chunk_shutdown_ack (class in
os_ken.lib.packet.sctp), 108

chunk_shutdown_complete (class in
os_ken.lib.packet.sctp), 108

clear_db_attribute()
(os_ken.lib.ovs.bridge.OVSBridge
method), 158

clone() (os_ken.services.protocols.bgp.info_base.base.ASPathFilter
method), 150

clone() (os_ken.services.protocols.bgp.info_base.base.AttributeMap
method), 151

clone() (os_ken.services.protocols.bgp.info_base.base.PrefixFilter
method), 150

close() (os_ken.base.app_manager.OSKenApp
method), 549

CODE (os_ken.lib.packet.bgp.BgpExc attribute),
38

CollisionResolution, 38
ConfigurationBPDUs (class in

os_ken.lib.packet.bpdu), 56
ConnRejected, 38
context_iteritems()

(os_ken.base.app_manager.OSKenApp
class method), 550

ControlFormatI (class in
os_ken.lib.packet.llc), 89

ControlFormatS (class in
os_ken.lib.packet.llc), 89

ControlFormatU (class in
os_ken.lib.packet.llc), 89

create() (os_ken.lib.packet.vrrp.vrrpv2 static
method), 122

create() (os_ken.lib.packet.vrrp.vrrpv3 static
method), 122

create_packet()
(os_ken.lib.packet.vrrp.vrrp method),
121

D
data_tlv (class in os_ken.lib.packet.cfm), 61
Datapath (class in os_ken.controller.controller),

16
db_get_map() (os_ken.lib.ovs.bridge.OVSBridge

method), 158
db_get_val() (os_ken.lib.ovs.bridge.OVSBridge

method), 158
del_client() (os_ken.app.rest_vtep.RestVtepController

method), 634
del_controller()

(os_ken.lib.ovs.bridge.OVSBridge
method), 158

del_neighbor()
(os_ken.app.rest_vtep.RestVtepController
method), 631

del_network()
(os_ken.app.rest_vtep.RestVtepController
method), 633

del_port() (os_ken.lib.ovs.bridge.OVSBridge
method), 158

del_qos() (os_ken.lib.ovs.bridge.OVSBridge
method), 158

del_speaker()
(os_ken.app.rest_vtep.RestVtepController
method), 629

delete_port()
(os_ken.lib.ovs.bridge.OVSBridge
method), 158

dest_unreach (class in
os_ken.lib.packet.icmp), 73

dhcp (class in os_ken.lib.packet.dhcp), 66
dhcp6 (class in os_ken.lib.packet.dhcp6), 68
DPSet (class in os_ken.controller.dpset), 550
dst_opts (class in os_ken.lib.packet.ipv6), 85

E
echo (class in os_ken.lib.packet.icmp), 73
echo (class in os_ken.lib.packet.icmpv6), 74
End (class in os_ken.lib.packet.lldp), 91
ethernet (class in os_ken.lib.packet.ethernet),

70
evaluate() (os_ken.services.protocols.bgp.info_base.base.ASPathFilter

method), 150
evaluate() (os_ken.services.protocols.bgp.info_base.base.AttributeMap

method), 151
evaluate() (os_ken.services.protocols.bgp.info_base.base.PrefixFilter

method), 150
EventAdjRibInChanged (class in

os_ken.services.protocols.bgp.application),
637

EventBase (class in os_ken.controller.event), 17
EventBestPathChanged (class in

os_ken.services.protocols.bgp.application),
637

EventDP (class in os_ken.controller.dpset), 18
EventMacAddress (class in

os_ken.controller.network), 20

Index 642

os-ken Documentation, Release 1.4.1.dev5

EventNetworkDel (class in
os_ken.controller.network), 20

EventNetworkPort (class in
os_ken.controller.network), 19

EventOFPMsgBase (class in
os_ken.controller.ofp_event), 15

EventOFPPortStateChange (class in
os_ken.controller.ofp_event), 18

EventOFPStateChange (class in
os_ken.controller.ofp_event), 18

EventPeerDown (class in
os_ken.services.protocols.bgp.application),
638

EventPeerUp (class in
os_ken.services.protocols.bgp.application),
638

EventPortAdd (class in
os_ken.controller.dpset), 19

EventPortDelete (class in
os_ken.controller.dpset), 19

EventPortModify (class in
os_ken.controller.dpset), 19

EventPrefix (class in
os_ken.services.protocols.bgp.bgpspeaker),
149

EventReplyBase (class in
os_ken.controller.event), 18

EventRequestBase (class in
os_ken.controller.event), 18

EventTunnelKeyAdd (class in
os_ken.controller.tunnels), 20

EventTunnelKeyDel (class in
os_ken.controller.tunnels), 21

EventTunnelPort (class in
os_ken.controller.tunnels), 21

evpn_prefix_add()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 141

evpn_prefix_del()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 142

EvpnArbitraryEsi (class in
os_ken.lib.packet.bgp), 39

EvpnASBasedEsi (class in
os_ken.lib.packet.bgp), 38

EvpnEsi (class in os_ken.lib.packet.bgp), 39
EvpnEthernetAutoDiscoveryNLRI (class

in os_ken.lib.packet.bgp), 39
EvpnEthernetSegmentNLRI (class in

os_ken.lib.packet.bgp), 39
EvpnInclusiveMulticastEthernetTagNLRI

(class in os_ken.lib.packet.bgp), 39
EvpnIpPrefixNLRI (class in

os_ken.lib.packet.bgp), 39
EvpnL2BridgeEsi (class in

os_ken.lib.packet.bgp), 40
EvpnLACPEsi (class in os_ken.lib.packet.bgp),

40
EvpnMacBasedEsi (class in

os_ken.lib.packet.bgp), 40
EvpnMacIPAdvertisementNLRI (class in

os_ken.lib.packet.bgp), 40
EvpnNLRI (class in os_ken.lib.packet.bgp), 40
EvpnRouterIDEsi (class in

os_ken.lib.packet.bgp), 40
EvpnUnknownEsi (class in

os_ken.lib.packet.bgp), 40
EvpnUnknownNLRI (class in

os_ken.lib.packet.bgp), 40

F
find_db_attributes()

(os_ken.lib.ovs.bridge.OVSBridge
method), 158

FiniteStateMachineError, 40
flowspec_prefix_add()

(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 142

flowspec_prefix_del()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 144

FlowSpecComponentUnknown (class in
os_ken.lib.packet.bgp), 41

FlowSpecDestinationMac (class in
os_ken.lib.packet.bgp), 41

FlowSpecDestPort (class in
os_ken.lib.packet.bgp), 41

FlowSpecDestPrefix (class in
os_ken.lib.packet.bgp), 41

FlowSpecDSCP (class in os_ken.lib.packet.bgp),
41

FlowSpecEtherType (class in
os_ken.lib.packet.bgp), 41

FlowSpecFragment (class in
os_ken.lib.packet.bgp), 41

FlowSpecIcmpCode (class in
os_ken.lib.packet.bgp), 44

FlowSpecIcmpType (class in
os_ken.lib.packet.bgp), 44

FlowSpecInnerVLANCoS (class in
os_ken.lib.packet.bgp), 44

FlowSpecInnerVLANID (class in

Index 643

os-ken Documentation, Release 1.4.1.dev5

os_ken.lib.packet.bgp), 45
FlowSpecIPProtocol (class in

os_ken.lib.packet.bgp), 41
FlowSpecIPv4NLRI (class in

os_ken.lib.packet.bgp), 41
FlowSpecIPv6DestPrefix (class in

os_ken.lib.packet.bgp), 43
FlowSpecIPv6FlowLabel (class in

os_ken.lib.packet.bgp), 43
FlowSpecIPv6Fragment (class in

os_ken.lib.packet.bgp), 43
FlowSpecIPv6NLRI (class in

os_ken.lib.packet.bgp), 43
FlowSpecIPv6SrcPrefix (class in

os_ken.lib.packet.bgp), 44
FlowSpecL2VPNNLRI (class in

os_ken.lib.packet.bgp), 45
FlowSpecLLCControl (class in

os_ken.lib.packet.bgp), 45
FlowSpecLLCDSAP (class in

os_ken.lib.packet.bgp), 45
FlowSpecLLCSSAP (class in

os_ken.lib.packet.bgp), 45
FlowSpecNextHeader (class in

os_ken.lib.packet.bgp), 45
FlowSpecPacketLen (class in

os_ken.lib.packet.bgp), 45
FlowSpecPort (class in os_ken.lib.packet.bgp),

46
FlowSpecSNAP (class in os_ken.lib.packet.bgp),

46
FlowSpecSourceMac (class in

os_ken.lib.packet.bgp), 46
FlowSpecSrcPort (class in

os_ken.lib.packet.bgp), 46
FlowSpecSrcPrefix (class in

os_ken.lib.packet.bgp), 46
FlowSpecTCPFlags (class in

os_ken.lib.packet.bgp), 46
FlowSpecVLANCoS (class in

os_ken.lib.packet.bgp), 46
FlowSpecVLANID (class in

os_ken.lib.packet.bgp), 46
FlowSpecVPNv4NLRI (class in

os_ken.lib.packet.bgp), 46
FlowSpecVPNv6NLRI (class in

os_ken.lib.packet.bgp), 47
fragment (class in os_ken.lib.packet.ipv6), 85
from_jsondict()

(os_ken.lib.packet.bgp.BGPPathAttributePmsiTunnel
class method), 36

from_jsondict()
(os_ken.lib.packet.packet.Packet class
method), 23

from_jsondict()
(os_ken.ofproto.ofproto_parser.MsgBase
class method), 161

from_user() (os_ken.lib.packet.bgp.FlowSpecIPv4NLRI
class method), 41

from_user() (os_ken.lib.packet.bgp.FlowSpecIPv6NLRI
class method), 43

from_user() (os_ken.lib.packet.bgp.FlowSpecL2VPNNLRI
class method), 45

from_user() (os_ken.lib.packet.bgp.FlowSpecVPNv4NLRI
class method), 46

from_user() (os_ken.lib.packet.bgp.FlowSpecVPNv6NLRI
class method), 47

G
geneve (class in os_ken.lib.packet.geneve), 71
get() (os_ken.controller.dpset.DPSet method),

550
get_all() (os_ken.controller.dpset.DPSet

method), 550
get_controller()

(os_ken.lib.ovs.bridge.OVSBridge
method), 159

get_datapath() (in module
os_ken.app.ofctl.api), 564

get_datapath_id()
(os_ken.lib.ovs.bridge.OVSBridge
method), 159

get_db_attribute()
(os_ken.lib.ovs.bridge.OVSBridge
method), 159

get_neighbor()
(os_ken.app.rest_vtep.RestVtepController
method), 630

get_neighbors()
(os_ken.app.rest_vtep.RestVtepController
method), 630

get_network()
(os_ken.app.rest_vtep.RestVtepController
method), 632

get_networks()
(os_ken.app.rest_vtep.RestVtepController
method), 632

get_ofport() (os_ken.lib.ovs.bridge.OVSBridge
method), 159

get_packet_type()
(os_ken.lib.packet.ethernet.ethernet
class method), 70

Index 644

os-ken Documentation, Release 1.4.1.dev5

get_packet_type()
(os_ken.lib.packet.packet_base.PacketBase
class method), 25

get_packet_type()
(os_ken.lib.packet.udp.udp static
method), 118

get_packet_type()
(os_ken.lib.packet.vlan.svlan class
method), 119

get_packet_type()
(os_ken.lib.packet.vlan.vlan class
method), 119

get_port() (os_ken.controller.dpset.DPSet
method), 551

get_port_name_list()
(os_ken.lib.ovs.bridge.OVSBridge
method), 159

get_ports() (os_ken.controller.dpset.DPSet
method), 551

get_protocol()
(os_ken.lib.packet.packet.Packet
method), 24

get_protocols()
(os_ken.lib.packet.packet.Packet
method), 24

get_speakers()
(os_ken.app.rest_vtep.RestVtepController
method), 628

get_vif_ports()
(os_ken.lib.ovs.bridge.OVSBridge
method), 159

gre (class in os_ken.lib.packet.gre), 71

H
has_flags() (os_ken.lib.packet.tcp.tcp

method), 117
header (class in os_ken.lib.packet.ipv6), 85
HoldTimerExpired, 47
hop_opts (class in os_ken.lib.packet.ipv6), 85

I
icmp (class in os_ken.lib.packet.icmp), 73
icmpv6 (class in os_ken.lib.packet.icmpv6), 74
igmp (class in os_ken.lib.packet.igmp), 80
igmpv3_query (class in

os_ken.lib.packet.igmp), 81
igmpv3_report (class in

os_ken.lib.packet.igmp), 82
igmpv3_report_group (class in

os_ken.lib.packet.igmp), 83
in_filter_get()

(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker

method), 144
in_filter_set()

(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 144

init() (os_ken.lib.ovs.bridge.OVSBridge
method), 159

interface_status_tlv (class in
os_ken.lib.packet.cfm), 61

InterfaceLinkParams (class in
os_ken.lib.packet.zebra), 124

InvalidChecksum, 95
InvalidDatapath, 566
InvalidNetworkField, 47
InvalidNextHop, 47
InvalidOriginError, 47
ipv4 (class in os_ken.lib.packet.ipv4), 83
ipv6 (class in os_ken.lib.packet.ipv6), 86
itag (class in os_ken.lib.packet.pbb), 98

K
KeyedMD5 (class in os_ken.lib.packet.bfd), 28
KeyedSHA1 (class in os_ken.lib.packet.bfd), 28

L
label_from_bin() (in module

os_ken.lib.packet.mpls), 93
label_to_bin() (in module

os_ken.lib.packet.mpls), 93
lacp (class in os_ken.lib.packet.slow), 112
link_trace_message (class in

os_ken.lib.packet.cfm), 61
link_trace_reply (class in

os_ken.lib.packet.cfm), 62
list_db_attributes()

(os_ken.lib.ovs.bridge.OVSBridge
method), 159

llc (class in os_ken.lib.packet.llc), 89
lldp (class in os_ken.lib.packet.lldp), 92
load_config() (in module

os_ken.services.protocols.bgp.application),
638

loopback_message (class in
os_ken.lib.packet.cfm), 62

loopback_reply (class in
os_ken.lib.packet.cfm), 63

ltm_egress_identifier_tlv (class in
os_ken.lib.packet.cfm), 63

ltr_egress_identifier_tlv (class in
os_ken.lib.packet.cfm), 63

M
MalformedAsPath, 47

Index 645

os-ken Documentation, Release 1.4.1.dev5

MalformedAttrList, 47
MalformedOptionalParam, 48
ManagementAddress (class in

os_ken.lib.packet.lldp), 91
MaxPrefixReached, 48
MeticulousKeyedMD5 (class in

os_ken.lib.packet.bfd), 29
MeticulousKeyedSHA1 (class in

os_ken.lib.packet.bfd), 30
MissingWellKnown, 48
mld (class in os_ken.lib.packet.icmpv6), 75
mldv2_query (class in

os_ken.lib.packet.icmpv6), 75
mldv2_report (class in

os_ken.lib.packet.icmpv6), 76
mldv2_report_group (class in

os_ken.lib.packet.icmpv6), 76
module

os_ken.app.cbench, 12
os_ken.app.ofctl.api, 564
os_ken.app.ofctl.exception, 566
os_ken.app.rest_vtep, 623
os_ken.app.simple_switch, 12
os_ken.base.app_manager, 10
os_ken.controller.controller, 10
os_ken.controller.dpset, 10
os_ken.controller.ofp_event, 11
os_ken.controller.ofp_handler,

11
os_ken.lib.netconf, 13
os_ken.lib.of_config, 13
os_ken.lib.ovs, 13
os_ken.lib.ovs.bridge, 157
os_ken.lib.ovs.vsctl, 156
os_ken.lib.packet, 13
os_ken.lib.packet.arp, 25
os_ken.lib.packet.bfd, 26
os_ken.lib.packet.bgp, 32
os_ken.lib.packet.bmp, 49
os_ken.lib.packet.bpdu, 55
os_ken.lib.packet.cfm, 60
os_ken.lib.packet.dhcp, 66
os_ken.lib.packet.dhcp6, 67
os_ken.lib.packet.ethernet, 70
os_ken.lib.packet.geneve, 70
os_ken.lib.packet.gre, 71
os_ken.lib.packet.icmp, 73
os_ken.lib.packet.icmpv6, 74
os_ken.lib.packet.igmp, 79
os_ken.lib.packet.ipv4, 83
os_ken.lib.packet.ipv6, 85

os_ken.lib.packet.llc, 88
os_ken.lib.packet.lldp, 90
os_ken.lib.packet.mpls, 93
os_ken.lib.packet.openflow, 94
os_ken.lib.packet.ospf, 95
os_ken.lib.packet.packet, 23
os_ken.lib.packet.packet_base,

25
os_ken.lib.packet.pbb, 98
os_ken.lib.packet.sctp, 98
os_ken.lib.packet.slow, 112
os_ken.lib.packet.stream_parser,

24
os_ken.lib.packet.tcp, 117
os_ken.lib.packet.udp, 118
os_ken.lib.packet.vlan, 119
os_ken.lib.packet.vrrp, 119
os_ken.lib.packet.vxlan, 123
os_ken.lib.packet.zebra, 124
os_ken.lib.xflow, 13
os_ken.ofproto.nicira_ext, 547
os_ken.ofproto.ofproto_v1_0, 11
os_ken.ofproto.ofproto_v1_0_parser,

11
os_ken.ofproto.ofproto_v1_2, 11
os_ken.ofproto.ofproto_v1_2_parser,

11
os_ken.ofproto.ofproto_v1_3, 11
os_ken.ofproto.ofproto_v1_3_parser,

11
os_ken.ofproto.ofproto_v1_4, 12
os_ken.ofproto.ofproto_v1_4_parser,

12
os_ken.ofproto.ofproto_v1_5, 12
os_ken.ofproto.ofproto_v1_5_parser,

12
os_ken.services.protocols.bgp.application,

635
os_ken.topology, 13

mpls (class in os_ken.lib.packet.mpls), 93
MsgBase (class in

os_ken.ofproto.ofproto_parser), 160

N
nd_neighbor (class in

os_ken.lib.packet.icmpv6), 77
nd_option_pi (class in

os_ken.lib.packet.icmpv6), 77
nd_option_sla (class in

os_ken.lib.packet.icmpv6), 77
nd_option_tla (class in

Index 646

os-ken Documentation, Release 1.4.1.dev5

os_ken.lib.packet.icmpv6), 78
nd_router_advert (class in

os_ken.lib.packet.icmpv6), 78
nd_router_solicit (class in

os_ken.lib.packet.icmpv6), 78
neighbor_add()

(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 144

neighbor_del()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 146

neighbor_get()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 146

neighbor_reset()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 146

neighbor_state_get()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 146

neighbor_update()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 146

neighbors_get()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 146

NextHopBlackhole (class in
os_ken.lib.packet.zebra), 124

NextHopIFIndex (class in
os_ken.lib.packet.zebra), 124

NextHopIFName (class in
os_ken.lib.packet.zebra), 124

NextHopIPv4 (class in os_ken.lib.packet.zebra),
124

NextHopIPv4IFIndex (class in
os_ken.lib.packet.zebra), 124

NextHopIPv4IFName (class in
os_ken.lib.packet.zebra), 124

NextHopIPv6 (class in os_ken.lib.packet.zebra),
124

NextHopIPv6IFIndex (class in
os_ken.lib.packet.zebra), 124

NextHopIPv6IFName (class in
os_ken.lib.packet.zebra), 124

NotSync, 48
nvgre() (in module os_ken.lib.packet.gre), 72
NXActionBundle (class in

os_ken.ofproto.ofproto_v1_3_parser),
541

NXActionBundleLoad (class in
os_ken.ofproto.ofproto_v1_3_parser),

542
NXActionConjunction (class in

os_ken.ofproto.ofproto_v1_3_parser),
540

NXActionController (class in
os_ken.ofproto.ofproto_v1_3_parser),
535

NXActionController2 (class in
os_ken.ofproto.ofproto_v1_3_parser),
536

NXActionCT (class in
os_ken.ofproto.ofproto_v1_3_parser),
543

NXActionDecMplsTtl (class in
os_ken.ofproto.ofproto_v1_0_parser),
526

NXActionDecNshTtl (class in
os_ken.ofproto.ofproto_v1_3_parser),
545

NXActionDecTtl (class in
os_ken.ofproto.ofproto_v1_0_parser),
524

NXActionDecTtlCntIds (class in
os_ken.ofproto.ofproto_v1_3_parser),
536

NXActionExit (class in
os_ken.ofproto.ofproto_v1_3_parser),
535

NXActionFinTimeout (class in
os_ken.ofproto.ofproto_v1_3_parser),
539

NXActionLearn (class in
os_ken.ofproto.ofproto_v1_3_parser),
533

NXActionMultipath (class in
os_ken.ofproto.ofproto_v1_3_parser),
541

NXActionNAT (class in
os_ken.ofproto.ofproto_v1_3_parser),
544

NXActionNote (class in
os_ken.ofproto.ofproto_v1_3_parser),
529

NXActionOutputReg (class in
os_ken.ofproto.ofproto_v1_3_parser),
532

NXActionOutputReg2 (class in
os_ken.ofproto.ofproto_v1_3_parser),
532

NXActionOutputTrunc (class in
os_ken.ofproto.ofproto_v1_3_parser),

Index 647

os-ken Documentation, Release 1.4.1.dev5

545
NXActionPopMpls (class in

os_ken.ofproto.ofproto_v1_0_parser),
525

NXActionPopQueue (class in
os_ken.ofproto.ofproto_v1_3_parser),
527

NXActionPushMpls (class in
os_ken.ofproto.ofproto_v1_0_parser),
524

NXActionRegLoad (class in
os_ken.ofproto.ofproto_v1_3_parser),
527

NXActionRegLoad2 (class in
os_ken.ofproto.ofproto_v1_3_parser),
528

NXActionRegMove (class in
os_ken.ofproto.ofproto_v1_3_parser),
530

NXActionResubmit (class in
os_ken.ofproto.ofproto_v1_3_parser),
531

NXActionResubmitTable (class in
os_ken.ofproto.ofproto_v1_3_parser),
531

NXActionSample (class in
os_ken.ofproto.ofproto_v1_3_parser),
538

NXActionSample2 (class in
os_ken.ofproto.ofproto_v1_3_parser),
539

NXActionSetMplsLabel (class in
os_ken.ofproto.ofproto_v1_0_parser),
526

NXActionSetMplsTc (class in
os_ken.ofproto.ofproto_v1_0_parser),
527

NXActionSetMplsTtl (class in
os_ken.ofproto.ofproto_v1_0_parser),
525

NXActionSetQueue (class in
os_ken.ofproto.ofproto_v1_0_parser),
523

NXActionSetTunnel (class in
os_ken.ofproto.ofproto_v1_3_parser),
529

NXActionSetTunnel64 (class in
os_ken.ofproto.ofproto_v1_3_parser),
529

NXActionStackPop (class in
os_ken.ofproto.ofproto_v1_3_parser),

537
NXActionStackPush (class in

os_ken.ofproto.ofproto_v1_3_parser),
537

NXFlowSpecLoad (class in
os_ken.ofproto.ofproto_v1_3_parser),
546

NXFlowSpecMatch (class in
os_ken.ofproto.ofproto_v1_3_parser),
546

NXFlowSpecOutput (class in
os_ken.ofproto.ofproto_v1_3_parser),
546

O
OFError, 566
ofp_msg_from_jsondict() (in module

os_ken.ofproto.ofproto_parser), 162
OFP_VERSIONS (os_ken.base.app_manager.OSKenApp

attribute), 549
OFPAction (class in

os_ken.ofproto.ofproto_v1_0_parser),
186

OFPActionCopyField (class in
os_ken.ofproto.ofproto_v1_5_parser),
521

OFPActionCopyTtlIn (class in
os_ken.ofproto.ofproto_v1_2_parser),
243

OFPActionCopyTtlIn (class in
os_ken.ofproto.ofproto_v1_3_parser),
312

OFPActionCopyTtlIn (class in
os_ken.ofproto.ofproto_v1_4_parser),
416

OFPActionCopyTtlIn (class in
os_ken.ofproto.ofproto_v1_5_parser),
519

OFPActionCopyTtlOut (class in
os_ken.ofproto.ofproto_v1_2_parser),
243

OFPActionCopyTtlOut (class in
os_ken.ofproto.ofproto_v1_3_parser),
312

OFPActionCopyTtlOut (class in
os_ken.ofproto.ofproto_v1_4_parser),
416

OFPActionCopyTtlOut (class in
os_ken.ofproto.ofproto_v1_5_parser),
519

OFPActionDecMplsTtl (class in

Index 648

os-ken Documentation, Release 1.4.1.dev5

os_ken.ofproto.ofproto_v1_2_parser),
242

OFPActionDecMplsTtl (class in
os_ken.ofproto.ofproto_v1_3_parser),
312

OFPActionDecMplsTtl (class in
os_ken.ofproto.ofproto_v1_4_parser),
416

OFPActionDecMplsTtl (class in
os_ken.ofproto.ofproto_v1_5_parser),
519

OFPActionDecNwTtl (class in
os_ken.ofproto.ofproto_v1_2_parser),
243

OFPActionDecNwTtl (class in
os_ken.ofproto.ofproto_v1_3_parser),
312

OFPActionDecNwTtl (class in
os_ken.ofproto.ofproto_v1_4_parser),
417

OFPActionDecNwTtl (class in
os_ken.ofproto.ofproto_v1_5_parser),
520

OFPActionDlAddr (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPActionEnqueue (class in
os_ken.ofproto.ofproto_v1_0_parser),
188

OFPActionExperimenter (class in
os_ken.ofproto.ofproto_v1_2_parser),
244

OFPActionExperimenter (class in
os_ken.ofproto.ofproto_v1_3_parser),
313

OFPActionExperimenter (class in
os_ken.ofproto.ofproto_v1_4_parser),
418

OFPActionExperimenter (class in
os_ken.ofproto.ofproto_v1_5_parser),
522

OFPActionGroup (class in
os_ken.ofproto.ofproto_v1_2_parser),
242

OFPActionGroup (class in
os_ken.ofproto.ofproto_v1_3_parser),
311

OFPActionGroup (class in
os_ken.ofproto.ofproto_v1_4_parser),
417

OFPActionGroup (class in

os_ken.ofproto.ofproto_v1_5_parser),
520

OFPActionHeader (class in
os_ken.ofproto.ofproto_v1_0_parser),
186

OFPActionMeter (class in
os_ken.ofproto.ofproto_v1_5_parser),
521

OFPActionNwAddr (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPActionOutput (class in
os_ken.ofproto.ofproto_v1_0_parser),
186

OFPActionOutput (class in
os_ken.ofproto.ofproto_v1_2_parser),
242

OFPActionOutput (class in
os_ken.ofproto.ofproto_v1_3_parser),
311

OFPActionOutput (class in
os_ken.ofproto.ofproto_v1_4_parser),
416

OFPActionOutput (class in
os_ken.ofproto.ofproto_v1_5_parser),
519

OFPActionPopMpls (class in
os_ken.ofproto.ofproto_v1_2_parser),
243

OFPActionPopMpls (class in
os_ken.ofproto.ofproto_v1_3_parser),
313

OFPActionPopMpls (class in
os_ken.ofproto.ofproto_v1_4_parser),
417

OFPActionPopMpls (class in
os_ken.ofproto.ofproto_v1_5_parser),
520

OFPActionPopPbb (class in
os_ken.ofproto.ofproto_v1_4_parser),
418

OFPActionPopPbb (class in
os_ken.ofproto.ofproto_v1_5_parser),
521

OFPActionPopVlan (class in
os_ken.ofproto.ofproto_v1_2_parser),
243

OFPActionPopVlan (class in
os_ken.ofproto.ofproto_v1_3_parser),
313

OFPActionPopVlan (class in

Index 649

os-ken Documentation, Release 1.4.1.dev5

os_ken.ofproto.ofproto_v1_4_parser),
416

OFPActionPopVlan (class in
os_ken.ofproto.ofproto_v1_5_parser),
519

OFPActionPushMpls (class in
os_ken.ofproto.ofproto_v1_2_parser),
243

OFPActionPushMpls (class in
os_ken.ofproto.ofproto_v1_3_parser),
313

OFPActionPushMpls (class in
os_ken.ofproto.ofproto_v1_4_parser),
417

OFPActionPushMpls (class in
os_ken.ofproto.ofproto_v1_5_parser),
520

OFPActionPushPbb (class in
os_ken.ofproto.ofproto_v1_4_parser),
418

OFPActionPushPbb (class in
os_ken.ofproto.ofproto_v1_5_parser),
521

OFPActionPushVlan (class in
os_ken.ofproto.ofproto_v1_2_parser),
243

OFPActionPushVlan (class in
os_ken.ofproto.ofproto_v1_3_parser),
313

OFPActionPushVlan (class in
os_ken.ofproto.ofproto_v1_4_parser),
416

OFPActionPushVlan (class in
os_ken.ofproto.ofproto_v1_5_parser),
519

OFPActionSetDlDst (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPActionSetDlSrc (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPActionSetField (class in
os_ken.ofproto.ofproto_v1_2_parser),
244

OFPActionSetField (class in
os_ken.ofproto.ofproto_v1_3_parser),
313

OFPActionSetField (class in
os_ken.ofproto.ofproto_v1_4_parser),
418

OFPActionSetField (class in

os_ken.ofproto.ofproto_v1_5_parser),
521

OFPActionSetMplsTtl (class in
os_ken.ofproto.ofproto_v1_2_parser),
242

OFPActionSetMplsTtl (class in
os_ken.ofproto.ofproto_v1_3_parser),
312

OFPActionSetMplsTtl (class in
os_ken.ofproto.ofproto_v1_4_parser),
416

OFPActionSetMplsTtl (class in
os_ken.ofproto.ofproto_v1_5_parser),
519

OFPActionSetNwDst (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPActionSetNwSrc (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPActionSetNwTos (class in
os_ken.ofproto.ofproto_v1_0_parser),
188

OFPActionSetNwTtl (class in
os_ken.ofproto.ofproto_v1_2_parser),
242

OFPActionSetNwTtl (class in
os_ken.ofproto.ofproto_v1_3_parser),
312

OFPActionSetNwTtl (class in
os_ken.ofproto.ofproto_v1_4_parser),
417

OFPActionSetNwTtl (class in
os_ken.ofproto.ofproto_v1_5_parser),
520

OFPActionSetQueue (class in
os_ken.ofproto.ofproto_v1_2_parser),
242

OFPActionSetQueue (class in
os_ken.ofproto.ofproto_v1_3_parser),
312

OFPActionSetQueue (class in
os_ken.ofproto.ofproto_v1_4_parser),
417

OFPActionSetQueue (class in
os_ken.ofproto.ofproto_v1_5_parser),
520

OFPActionSetTpDst (class in
os_ken.ofproto.ofproto_v1_0_parser),
188

OFPActionSetTpSrc (class in

Index 650

os-ken Documentation, Release 1.4.1.dev5

os_ken.ofproto.ofproto_v1_0_parser),
188

OFPActionStripVlan (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPActionTpPort (class in
os_ken.ofproto.ofproto_v1_0_parser),
188

OFPActionVendor (class in
os_ken.ofproto.ofproto_v1_0_parser),
188

OFPActionVlanPcp (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPActionVlanVid (class in
os_ken.ofproto.ofproto_v1_0_parser),
187

OFPAggregateStatsReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
173

OFPAggregateStatsReply (class in
os_ken.ofproto.ofproto_v1_2_parser),
210

OFPAggregateStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
271

OFPAggregateStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
347

OFPAggregateStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
445

OFPAggregateStatsRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
173

OFPAggregateStatsRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
208

OFPAggregateStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
269

OFPAggregateStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
346

OFPAggregateStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
443

OFPBarrierReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
179

OFPBarrierReply (class in

os_ken.ofproto.ofproto_v1_2_parser),
225

OFPBarrierReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
291

OFPBarrierReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
378

OFPBarrierReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
482

OFPBarrierRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
179

OFPBarrierRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
225

OFPBarrierRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
291

OFPBarrierRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
378

OFPBarrierRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
482

OFPBundleAddMsg (class in
os_ken.ofproto.ofproto_v1_4_parser),
382

OFPBundleAddMsg (class in
os_ken.ofproto.ofproto_v1_5_parser),
486

OFPBundleCtrlMsg (class in
os_ken.ofproto.ofproto_v1_4_parser),
380

OFPBundleCtrlMsg (class in
os_ken.ofproto.ofproto_v1_5_parser),
485

OFPBundleFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
478

OFPBundleFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_5_parser),
477

OFPControllerStatus (class in
os_ken.ofproto.ofproto_v1_5_parser),
507

OFPControllerStatusStats (class in
os_ken.ofproto.ofproto_v1_5_parser),
522

OFPControllerStatusStatsReply (class

Index 651

os-ken Documentation, Release 1.4.1.dev5

in os_ken.ofproto.ofproto_v1_5_parser),
466

OFPControllerStatusStatsRequest
(class in
os_ken.ofproto.ofproto_v1_5_parser),
466

OFPDescStats (class in
os_ken.ofproto.ofproto_v1_2_parser),
202

OFPDescStatsReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
171

OFPDescStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
261

OFPDescStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
337

OFPDescStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
438

OFPDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
171

OFPDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
202

OFPDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
260

OFPDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
337

OFPDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
437

OFPEchoReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
184

OFPEchoReply (class in
os_ken.ofproto.ofproto_v1_2_parser),
236

OFPEchoReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
306

OFPEchoReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
409

OFPEchoReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
511

OFPEchoRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
183

OFPEchoRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
235

OFPEchoRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
305

OFPEchoRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
408

OFPEchoRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
510

OFPErrorMsg (class in
os_ken.ofproto.ofproto_v1_0_parser),
182

OFPErrorMsg (class in
os_ken.ofproto.ofproto_v1_2_parser),
233

OFPErrorMsg (class in
os_ken.ofproto.ofproto_v1_3_parser),
303

OFPErrorMsg (class in
os_ken.ofproto.ofproto_v1_4_parser),
409

OFPErrorMsg (class in
os_ken.ofproto.ofproto_v1_5_parser),
511

OFPExperimenter (class in
os_ken.ofproto.ofproto_v1_2_parser),
236

OFPExperimenter (class in
os_ken.ofproto.ofproto_v1_3_parser),
306

OFPExperimenter (class in
os_ken.ofproto.ofproto_v1_4_parser),
411

OFPExperimenter (class in
os_ken.ofproto.ofproto_v1_5_parser),
513

OFPExperimenterStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
376

OFPExperimenterStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
480

OFPExperimenterStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
376

Index 652

os-ken Documentation, Release 1.4.1.dev5

OFPExperimenterStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
479

OFPFeaturesRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
162

OFPFeaturesRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
189

OFPFeaturesRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
244

OFPFeaturesRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
314

OFPFeaturesRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
419

OFPFlowDescStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
439

OFPFlowDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
438

OFPFlowMod (class in
os_ken.ofproto.ofproto_v1_0_parser),
166

OFPFlowMod (class in
os_ken.ofproto.ofproto_v1_2_parser),
194

OFPFlowMod (class in
os_ken.ofproto.ofproto_v1_3_parser),
248

OFPFlowMod (class in
os_ken.ofproto.ofproto_v1_4_parser),
318

OFPFlowMod (class in
os_ken.ofproto.ofproto_v1_5_parser),
423

OFPFlowMonitorReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
374

OFPFlowMonitorReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
475

OFPFlowMonitorRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
372

OFPFlowMonitorRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
473

OFPFlowRemoved (class in
os_ken.ofproto.ofproto_v1_0_parser),
180

OFPFlowRemoved (class in
os_ken.ofproto.ofproto_v1_2_parser),
230

OFPFlowRemoved (class in
os_ken.ofproto.ofproto_v1_3_parser),
300

OFPFlowRemoved (class in
os_ken.ofproto.ofproto_v1_4_parser),
398

OFPFlowRemoved (class in
os_ken.ofproto.ofproto_v1_5_parser),
498

OFPFlowStats (class in
os_ken.ofproto.ofproto_v1_2_parser),
204

OFPFlowStatsReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
172

OFPFlowStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
263

OFPFlowStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
339

OFPFlowStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
442

OFPFlowStatsRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
171

OFPFlowStatsRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
203

OFPFlowStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
261

OFPFlowStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
338

OFPFlowStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
441

OFPGetAsyncReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
295

OFPGetAsyncReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
387

Index 653

os-ken Documentation, Release 1.4.1.dev5

OFPGetAsyncReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
493

OFPGetAsyncRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
295

OFPGetAsyncRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
386

OFPGetAsyncRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
493

OFPGetConfigReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
165

OFPGetConfigReply (class in
os_ken.ofproto.ofproto_v1_2_parser),
191

OFPGetConfigReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
246

OFPGetConfigReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
316

OFPGetConfigReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
421

OFPGetConfigRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
165

OFPGetConfigRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
191

OFPGetConfigRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
246

OFPGetConfigRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
316

OFPGetConfigRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
420

OFPGroupDescStats (class in
os_ken.ofproto.ofproto_v1_2_parser),
218

OFPGroupDescStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
280

OFPGroupDescStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
365

OFPGroupDescStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
459

OFPGroupDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
218

OFPGroupDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
279

OFPGroupDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
365

OFPGroupDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
458

OFPGroupFeaturesStats (class in
os_ken.ofproto.ofproto_v1_2_parser),
220

OFPGroupFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
281

OFPGroupFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
367

OFPGroupFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
460

OFPGroupFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_2_parser),
220

OFPGroupFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_3_parser),
281

OFPGroupFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_4_parser),
366

OFPGroupFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_5_parser),
460

OFPGroupMod (class in
os_ken.ofproto.ofproto_v1_2_parser),
198

OFPGroupMod (class in
os_ken.ofproto.ofproto_v1_3_parser),
255

OFPGroupMod (class in
os_ken.ofproto.ofproto_v1_4_parser),
332

OFPGroupMod (class in
os_ken.ofproto.ofproto_v1_5_parser),
431

Index 654

os-ken Documentation, Release 1.4.1.dev5

OFPGroupStats (class in
os_ken.ofproto.ofproto_v1_2_parser),
217

OFPGroupStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
279

OFPGroupStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
364

OFPGroupStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
457

OFPGroupStatsRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
217

OFPGroupStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
278

OFPGroupStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
363

OFPGroupStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
456

OFPHello (class in
os_ken.ofproto.ofproto_v1_0_parser),
183

OFPHello (class in
os_ken.ofproto.ofproto_v1_2_parser),
235

OFPHello (class in
os_ken.ofproto.ofproto_v1_3_parser),
304

OFPHello (class in
os_ken.ofproto.ofproto_v1_4_parser),
407

OFPHello (class in
os_ken.ofproto.ofproto_v1_5_parser),
509

OFPHelloElemVersionBitmap (class in
os_ken.ofproto.ofproto_v1_3_parser),
305

OFPHelloElemVersionBitmap (class in
os_ken.ofproto.ofproto_v1_4_parser),
408

OFPHelloElemVersionBitmap (class in
os_ken.ofproto.ofproto_v1_5_parser),
509

OFPInstructionActions (class in
os_ken.ofproto.ofproto_v1_2_parser),
241

OFPInstructionActions (class in
os_ken.ofproto.ofproto_v1_3_parser),
311

OFPInstructionActions (class in
os_ken.ofproto.ofproto_v1_4_parser),
415

OFPInstructionActions (class in
os_ken.ofproto.ofproto_v1_5_parser),
518

OFPInstructionGotoTable (class in
os_ken.ofproto.ofproto_v1_2_parser),
241

OFPInstructionGotoTable (class in
os_ken.ofproto.ofproto_v1_3_parser),
310

OFPInstructionGotoTable (class in
os_ken.ofproto.ofproto_v1_4_parser),
415

OFPInstructionGotoTable (class in
os_ken.ofproto.ofproto_v1_5_parser),
517

OFPInstructionMeter (class in
os_ken.ofproto.ofproto_v1_3_parser),
311

OFPInstructionMeter (class in
os_ken.ofproto.ofproto_v1_4_parser),
415

OFPInstructionStatTrigger (class in
os_ken.ofproto.ofproto_v1_5_parser),
518

OFPInstructionWriteMetadata (class in
os_ken.ofproto.ofproto_v1_2_parser),
241

OFPInstructionWriteMetadata (class in
os_ken.ofproto.ofproto_v1_3_parser),
310

OFPInstructionWriteMetadata (class in
os_ken.ofproto.ofproto_v1_4_parser),
415

OFPInstructionWriteMetadata (class in
os_ken.ofproto.ofproto_v1_5_parser),
517

OFPMatch (class in
os_ken.ofproto.ofproto_v1_0_parser),
185

OFPMatch (class in
os_ken.ofproto.ofproto_v1_2_parser),
238

OFPMatch (class in
os_ken.ofproto.ofproto_v1_3_parser),
308

Index 655

os-ken Documentation, Release 1.4.1.dev5

OFPMatch (class in
os_ken.ofproto.ofproto_v1_4_parser),
412

OFPMatch (class in
os_ken.ofproto.ofproto_v1_5_parser),
514

OFPMeterConfigStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
284

OFPMeterConfigStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
370

OFPMeterConfigStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
284

OFPMeterConfigStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
369

OFPMeterDescStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
463

OFPMeterDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
463

OFPMeterFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
286

OFPMeterFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
371

OFPMeterFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
465

OFPMeterFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_3_parser),
285

OFPMeterFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_4_parser),
371

OFPMeterFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_5_parser),
464

OFPMeterMod (class in
os_ken.ofproto.ofproto_v1_3_parser),
259

OFPMeterMod (class in
os_ken.ofproto.ofproto_v1_4_parser),
335

OFPMeterMod (class in
os_ken.ofproto.ofproto_v1_5_parser),
436

OFPMeterStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
283

OFPMeterStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
368

OFPMeterStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
462

OFPMeterStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
282

OFPMeterStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
368

OFPMeterStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
461

OFPPacketIn (class in
os_ken.ofproto.ofproto_v1_0_parser),
179

OFPPacketIn (class in
os_ken.ofproto.ofproto_v1_2_parser),
227

OFPPacketIn (class in
os_ken.ofproto.ofproto_v1_3_parser),
297

OFPPacketIn (class in
os_ken.ofproto.ofproto_v1_4_parser),
389

OFPPacketIn (class in
os_ken.ofproto.ofproto_v1_5_parser),
496

OFPPacketOut (class in
os_ken.ofproto.ofproto_v1_0_parser),
178

OFPPacketOut (class in
os_ken.ofproto.ofproto_v1_2_parser),
224

OFPPacketOut (class in
os_ken.ofproto.ofproto_v1_3_parser),
290

OFPPacketOut (class in
os_ken.ofproto.ofproto_v1_4_parser),
377

OFPPacketOut (class in
os_ken.ofproto.ofproto_v1_5_parser),
481

OFPPhyPort (class in
os_ken.ofproto.ofproto_v1_0_parser),
184

Index 656

os-ken Documentation, Release 1.4.1.dev5

OFPPort (class in
os_ken.ofproto.ofproto_v1_2_parser),
237

OFPPort (class in
os_ken.ofproto.ofproto_v1_3_parser),
307

OFPPort (class in
os_ken.ofproto.ofproto_v1_4_parser),
411

OFPPort (class in
os_ken.ofproto.ofproto_v1_5_parser),
513

OFPPortDescStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
275

OFPPortDescStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
356

OFPPortDescStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
449

OFPPortDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
275

OFPPortDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
355

OFPPortDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
448

OFPPortMod (class in
os_ken.ofproto.ofproto_v1_0_parser),
168

OFPPortMod (class in
os_ken.ofproto.ofproto_v1_2_parser),
200

OFPPortMod (class in
os_ken.ofproto.ofproto_v1_3_parser),
257

OFPPortMod (class in
os_ken.ofproto.ofproto_v1_4_parser),
333

OFPPortMod (class in
os_ken.ofproto.ofproto_v1_5_parser),
434

OFPPortStats (class in
os_ken.ofproto.ofproto_v1_2_parser),
213

OFPPortStatsReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
175

OFPPortStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
273

OFPPortStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
353

OFPPortStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
446

OFPPortStatsRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
175

OFPPortStatsRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
212

OFPPortStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
273

OFPPortStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
352

OFPPortStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
445

OFPPortStatus (class in
os_ken.ofproto.ofproto_v1_0_parser),
182

OFPPortStatus (class in
os_ken.ofproto.ofproto_v1_2_parser),
232

OFPPortStatus (class in
os_ken.ofproto.ofproto_v1_3_parser),
302

OFPPortStatus (class in
os_ken.ofproto.ofproto_v1_4_parser),
400

OFPPortStatus (class in
os_ken.ofproto.ofproto_v1_5_parser),
500

OFPQueueDescStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
361

OFPQueueDescStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
455

OFPQueueDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
361

OFPQueueDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
454

Index 657

os-ken Documentation, Release 1.4.1.dev5

OFPQueueGetConfigReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
170

OFPQueueGetConfigReply (class in
os_ken.ofproto.ofproto_v1_2_parser),
222

OFPQueueGetConfigReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
288

OFPQueueGetConfigRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
170

OFPQueueGetConfigRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
222

OFPQueueGetConfigRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
287

OFPQueueStats (class in
os_ken.ofproto.ofproto_v1_2_parser),
215

OFPQueueStatsReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
177

OFPQueueStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
277

OFPQueueStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
359

OFPQueueStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
452

OFPQueueStatsRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
176

OFPQueueStatsRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
215

OFPQueueStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
276

OFPQueueStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
358

OFPQueueStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
451

OFPRequestForward (class in
os_ken.ofproto.ofproto_v1_4_parser),
406

OFPRequestForward (class in
os_ken.ofproto.ofproto_v1_5_parser),
505

OFPRoleReply (class in
os_ken.ofproto.ofproto_v1_2_parser),
226

OFPRoleReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
292

OFPRoleReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
379

OFPRoleReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
483

OFPRoleRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
225

OFPRoleRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
292

OFPRoleRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
379

OFPRoleRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
483

OFPRoleStatus (class in
os_ken.ofproto.ofproto_v1_4_parser),
402

OFPRoleStatus (class in
os_ken.ofproto.ofproto_v1_5_parser),
502

OFPSetAsync (class in
os_ken.ofproto.ofproto_v1_3_parser),
293

OFPSetAsync (class in
os_ken.ofproto.ofproto_v1_4_parser),
384

OFPSetAsync (class in
os_ken.ofproto.ofproto_v1_5_parser),
490

OFPSetConfig (class in
os_ken.ofproto.ofproto_v1_0_parser),
164

OFPSetConfig (class in
os_ken.ofproto.ofproto_v1_2_parser),
190

OFPSetConfig (class in
os_ken.ofproto.ofproto_v1_3_parser),
246

Index 658

os-ken Documentation, Release 1.4.1.dev5

OFPSetConfig (class in
os_ken.ofproto.ofproto_v1_4_parser),
315

OFPSetConfig (class in
os_ken.ofproto.ofproto_v1_5_parser),
420

OFPStats (class in
os_ken.ofproto.ofproto_v1_5_parser),
517

OFPSwitchFeatures (class in
os_ken.ofproto.ofproto_v1_0_parser),
163

OFPSwitchFeatures (class in
os_ken.ofproto.ofproto_v1_2_parser),
189

OFPSwitchFeatures (class in
os_ken.ofproto.ofproto_v1_3_parser),
245

OFPSwitchFeatures (class in
os_ken.ofproto.ofproto_v1_4_parser),
314

OFPSwitchFeatures (class in
os_ken.ofproto.ofproto_v1_5_parser),
419

OFPTableDescStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
350

OFPTableDescStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
469

OFPTableDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
349

OFPTableDescStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
468

OFPTableFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
287

OFPTableFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
352

OFPTableFeaturesStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
472

OFPTableFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_3_parser),
287

OFPTableFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_4_parser),
352

OFPTableFeaturesStatsRequest (class
in os_ken.ofproto.ofproto_v1_5_parser),
471

OFPTableMod (class in
os_ken.ofproto.ofproto_v1_2_parser),
193

OFPTableMod (class in
os_ken.ofproto.ofproto_v1_3_parser),
248

OFPTableMod (class in
os_ken.ofproto.ofproto_v1_4_parser),
317

OFPTableMod (class in
os_ken.ofproto.ofproto_v1_5_parser),
422

OFPTableStats (class in
os_ken.ofproto.ofproto_v1_2_parser),
211

OFPTableStatsReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
174

OFPTableStatsReply (class in
os_ken.ofproto.ofproto_v1_3_parser),
272

OFPTableStatsReply (class in
os_ken.ofproto.ofproto_v1_4_parser),
348

OFPTableStatsReply (class in
os_ken.ofproto.ofproto_v1_5_parser),
468

OFPTableStatsRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
174

OFPTableStatsRequest (class in
os_ken.ofproto.ofproto_v1_2_parser),
210

OFPTableStatsRequest (class in
os_ken.ofproto.ofproto_v1_3_parser),
271

OFPTableStatsRequest (class in
os_ken.ofproto.ofproto_v1_4_parser),
348

OFPTableStatsRequest (class in
os_ken.ofproto.ofproto_v1_5_parser),
467

OFPTableStatus (class in
os_ken.ofproto.ofproto_v1_4_parser),
404

OFPTableStatus (class in
os_ken.ofproto.ofproto_v1_5_parser),
503

Index 659

os-ken Documentation, Release 1.4.1.dev5

OFPUnparseableMsg (class in
os_ken.lib.packet.openflow), 94

OFPVendor (class in
os_ken.ofproto.ofproto_v1_0_parser),
184

OFPVendorStatsReply (class in
os_ken.ofproto.ofproto_v1_0_parser),
177

OFPVendorStatsRequest (class in
os_ken.ofproto.ofproto_v1_0_parser),
177

ofs_nbits() (in module
os_ken.ofproto.nicira_ext), 546

openflow (class in os_ken.lib.packet.openflow),
95

opt_header (class in os_ken.lib.packet.ipv6),
86

OptAttrError, 48
option (class in os_ken.lib.packet.dhcp), 67
option (class in os_ken.lib.packet.dhcp6), 69
Option (class in os_ken.lib.packet.geneve), 70
option (class in os_ken.lib.packet.ipv6), 87
OptionDataUnknown (class in

os_ken.lib.packet.geneve), 70
options (class in os_ken.lib.packet.dhcp), 67
options (class in os_ken.lib.packet.dhcp6), 69
organization_specific_tlv (class in

os_ken.lib.packet.cfm), 64
OrganizationallySpecific (class in

os_ken.lib.packet.lldp), 91
os_ken.app.cbench

module, 12
os_ken.app.ofctl.api

module, 564
os_ken.app.ofctl.exception

module, 566
os_ken.app.rest_vtep

module, 623
os_ken.app.simple_switch

module, 12
os_ken.base.app_manager

module, 10
os_ken.controller.controller

module, 10
os_ken.controller.dpset

module, 10
os_ken.controller.ofp_event

module, 11
os_ken.controller.ofp_handler

module, 11
os_ken.lib.netconf

module, 13
os_ken.lib.of_config

module, 13
os_ken.lib.ovs

module, 13
os_ken.lib.ovs.bridge

module, 157
os_ken.lib.ovs.vsctl

module, 156
os_ken.lib.packet

module, 13
os_ken.lib.packet.arp

module, 25
os_ken.lib.packet.bfd

module, 26
os_ken.lib.packet.bgp

module, 32
os_ken.lib.packet.bmp

module, 49
os_ken.lib.packet.bpdu

module, 55
os_ken.lib.packet.cfm

module, 60
os_ken.lib.packet.dhcp

module, 66
os_ken.lib.packet.dhcp6

module, 67
os_ken.lib.packet.ethernet

module, 70
os_ken.lib.packet.geneve

module, 70
os_ken.lib.packet.gre

module, 71
os_ken.lib.packet.icmp

module, 73
os_ken.lib.packet.icmpv6

module, 74
os_ken.lib.packet.igmp

module, 79
os_ken.lib.packet.ipv4

module, 83
os_ken.lib.packet.ipv6

module, 85
os_ken.lib.packet.llc

module, 88
os_ken.lib.packet.lldp

module, 90
os_ken.lib.packet.mpls

module, 93
os_ken.lib.packet.openflow

module, 94

Index 660

os-ken Documentation, Release 1.4.1.dev5

os_ken.lib.packet.ospf
module, 95

os_ken.lib.packet.packet
module, 23

os_ken.lib.packet.packet_base
module, 25

os_ken.lib.packet.pbb
module, 98

os_ken.lib.packet.sctp
module, 98

os_ken.lib.packet.slow
module, 112

os_ken.lib.packet.stream_parser
module, 24

os_ken.lib.packet.tcp
module, 117

os_ken.lib.packet.udp
module, 118

os_ken.lib.packet.vlan
module, 119

os_ken.lib.packet.vrrp
module, 119

os_ken.lib.packet.vxlan
module, 123

os_ken.lib.packet.zebra
module, 124

os_ken.lib.xflow
module, 13

os_ken.ofproto.nicira_ext
module, 547

os_ken.ofproto.ofproto_v1_0
module, 11

os_ken.ofproto.ofproto_v1_0_parser
module, 11

os_ken.ofproto.ofproto_v1_2
module, 11

os_ken.ofproto.ofproto_v1_2_parser
module, 11

os_ken.ofproto.ofproto_v1_3
module, 11

os_ken.ofproto.ofproto_v1_3_parser
module, 11

os_ken.ofproto.ofproto_v1_4
module, 12

os_ken.ofproto.ofproto_v1_4_parser
module, 12

os_ken.ofproto.ofproto_v1_5
module, 12

os_ken.ofproto.ofproto_v1_5_parser
module, 12

os_ken.services.protocols.bgp.application

module, 635
os_ken.topology

module, 13
OSKenApp (class in os_ken.base.app_manager),

549
OSKenBGPSpeaker (class in

os_ken.services.protocols.bgp.application),
638

ospf (in module os_ken.lib.packet.ospf), 97
OSPFDBDesc (class in os_ken.lib.packet.ospf),

95
OSPFHello (class in os_ken.lib.packet.ospf), 96
OSPFLSAck (class in os_ken.lib.packet.ospf), 96
OSPFLSReq (class in os_ken.lib.packet.ospf), 96
OSPFLSUpd (class in os_ken.lib.packet.ospf), 97
OSPFMessage (class in os_ken.lib.packet.ospf),

97
OtherConfChange, 48
out_filter_get()

(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 147

out_filter_set()
(os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 147

OutOfResource, 48
OVSBridge (class in os_ken.lib.ovs.bridge), 157
OVSBridgeNotFound, 160

P
pack() (os_ken.lib.packet.bfd.bfd method), 31
Packet (class in os_ken.lib.packet.packet), 23
PacketBase (class in

os_ken.lib.packet.packet_base), 25
param_cookie_preserve (class in

os_ken.lib.packet.sctp), 108
param_ecn (class in os_ken.lib.packet.sctp), 109
param_heartbeat (class in

os_ken.lib.packet.sctp), 109
param_host_addr (class in

os_ken.lib.packet.sctp), 109
param_ipv4 (class in os_ken.lib.packet.sctp),

110
param_ipv6 (class in os_ken.lib.packet.sctp),

110
param_state_cookie (class in

os_ken.lib.packet.sctp), 110
param_supported_addr (class in

os_ken.lib.packet.sctp), 111
param_unrecognized_param (class in

os_ken.lib.packet.sctp), 111
parse() (os_ken.lib.packet.stream_parser.StreamParser

Index 661

os-ken Documentation, Release 1.4.1.dev5

method), 24
parser() (os_ken.lib.packet.arp.arp class

method), 26
parser() (os_ken.lib.packet.bfd.bfd class

method), 32
parser() (os_ken.lib.packet.bgp.BGPKeepAlive

class method), 34
parser() (os_ken.lib.packet.bgp.BGPMessage

class method), 34
parser() (os_ken.lib.packet.bgp.BGPNotification

class method), 35
parser() (os_ken.lib.packet.bgp.BGPOpen

class method), 36
parser() (os_ken.lib.packet.bgp.BGPRouteRefresh

class method), 37
parser() (os_ken.lib.packet.bgp.BGPUpdate

class method), 37
parser() (os_ken.lib.packet.bmp.BMPInitiation

class method), 49
parser() (os_ken.lib.packet.bmp.BMPMessage

class method), 50
parser() (os_ken.lib.packet.bmp.BMPPeerDownNotification

class method), 50
parser() (os_ken.lib.packet.bmp.BMPPeerMessage

class method), 51
parser() (os_ken.lib.packet.bmp.BMPPeerUpNotification

class method), 52
parser() (os_ken.lib.packet.bmp.BMPRouteMonitoring

class method), 53
parser() (os_ken.lib.packet.bmp.BMPStatisticsReport

class method), 54
parser() (os_ken.lib.packet.bmp.BMPTermination

class method), 54
parser() (os_ken.lib.packet.bpdu.bpdu class

method), 59
parser() (os_ken.lib.packet.bpdu.ConfigurationBPDUs

class method), 57
parser() (os_ken.lib.packet.bpdu.RstBPDUs

class method), 58
parser() (os_ken.lib.packet.bpdu.TopologyChangeNotificationBPDUs

class method), 59
parser() (os_ken.lib.packet.cfm.cfm class

method), 61
parser() (os_ken.lib.packet.dhcp.dhcp class

method), 66
parser() (os_ken.lib.packet.dhcp6.dhcp6 class

method), 68
parser() (os_ken.lib.packet.ethernet.ethernet

class method), 70
parser() (os_ken.lib.packet.geneve.geneve

class method), 71

parser() (os_ken.lib.packet.gre.gre class
method), 72

parser() (os_ken.lib.packet.icmp.icmp class
method), 74

parser() (os_ken.lib.packet.icmpv6.icmpv6
class method), 75

parser() (os_ken.lib.packet.igmp.igmp class
method), 81

parser() (os_ken.lib.packet.igmp.igmpv3_query
class method), 82

parser() (os_ken.lib.packet.igmp.igmpv3_report
class method), 82

parser() (os_ken.lib.packet.ipv4.ipv4 class
method), 84

parser() (os_ken.lib.packet.ipv6.ipv6 class
method), 86

parser() (os_ken.lib.packet.llc.llc class
method), 90

parser() (os_ken.lib.packet.lldp.lldp class
method), 93

parser() (os_ken.lib.packet.mpls.mpls class
method), 94

parser() (os_ken.lib.packet.openflow.openflow
class method), 95

parser() (os_ken.lib.packet.ospf.OSPFDBDesc
class method), 95

parser() (os_ken.lib.packet.ospf.OSPFHello
class method), 96

parser() (os_ken.lib.packet.ospf.OSPFLSAck
class method), 96

parser() (os_ken.lib.packet.ospf.OSPFLSReq
class method), 96

parser() (os_ken.lib.packet.ospf.OSPFLSUpd
class method), 97

parser() (os_ken.lib.packet.ospf.OSPFMessage
class method), 97

parser() (os_ken.lib.packet.packet_base.PacketBase
class method), 25

parser() (os_ken.lib.packet.pbb.itag class
method), 98

parser() (os_ken.lib.packet.sctp.sctp class
method), 111

parser() (os_ken.lib.packet.slow.lacp class
method), 116

parser() (os_ken.lib.packet.slow.slow class
method), 116

parser() (os_ken.lib.packet.tcp.tcp class
method), 117

parser() (os_ken.lib.packet.udp.udp class
method), 118

parser() (os_ken.lib.packet.vrrp.vrrp class

Index 662

os-ken Documentation, Release 1.4.1.dev5

method), 121
parser() (os_ken.lib.packet.vrrp.vrrpv2 class

method), 122
parser() (os_ken.lib.packet.vrrp.vrrpv3 class

method), 122
parser() (os_ken.lib.packet.vxlan.vxlan class

method), 123
parser() (os_ken.lib.packet.zebra.ZebraMessage

class method), 132
parser_hdr() (os_ken.lib.packet.bfd.BFDAuth

class method), 28
PeerDeConfig, 48
PmsiTunnelIdUnknown (class in

os_ken.lib.packet.bgp), 48
port_status_tlv (class in

os_ken.lib.packet.cfm), 64
PortDescription (class in

os_ken.lib.packet.lldp), 91
PortID (class in os_ken.lib.packet.lldp), 92
prefix_add() (os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker

method), 147
prefix_del() (os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker

method), 147
PrefixFilter (class in

os_ken.services.protocols.bgp.info_base.base),
149

R
Reader (class in os_ken.lib.mrtlib), 152
Reader (class in os_ken.lib.pcaplib), 136
register_packet_type()

(os_ken.lib.packet.packet_base.PacketBase
class method), 25

RegisteredNexthop (class in
os_ken.lib.packet.zebra), 125

remove_db_attribute()
(os_ken.lib.ovs.bridge.OVSBridge
method), 159

reply_egress_tlv (class in
os_ken.lib.packet.cfm), 64

reply_ingress_tlv (class in
os_ken.lib.packet.cfm), 65

reply_to_request()
(os_ken.base.app_manager.OSKenApp
method), 550

RestVtepController (class in
os_ken.app.rest_vtep), 627

rib_get() (os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 147

RouteTargetMembershipNLRI (class in
os_ken.lib.packet.bgp), 48

routing (class in os_ken.lib.packet.ipv6), 87
routing_type3 (class in

os_ken.lib.packet.ipv6), 87
RoutingLoop, 48
RstBPDUs (class in os_ken.lib.packet.bpdu), 57
run_command()

(os_ken.lib.ovs.bridge.OVSBridge
method), 160

run_command() (os_ken.lib.ovs.vsctl.VSCtl
method), 156

S
sctp (class in os_ken.lib.packet.sctp), 111
SEND_ERROR (os_ken.lib.packet.bgp.BgpExc at-

tribute), 38
send_event() (os_ken.base.app_manager.OSKenApp

method), 550
send_event_to_observers()

(os_ken.base.app_manager.OSKenApp
method), 550

send_msg() (in module os_ken.app.ofctl.api),
565

send_request()
(os_ken.base.app_manager.OSKenApp
method), 550

sender_id_tlv (class in
os_ken.lib.packet.cfm), 65

serialize() (os_ken.lib.packet.arp.arp
method), 26

serialize() (os_ken.lib.packet.bfd.bfd
method), 32

serialize() (os_ken.lib.packet.bfd.KeyedMD5
method), 28

serialize() (os_ken.lib.packet.bfd.KeyedSHA1
method), 29

serialize() (os_ken.lib.packet.bfd.SimplePassword
method), 30

serialize() (os_ken.lib.packet.bgp.BGPMessage
method), 35

serialize() (os_ken.lib.packet.bmp.BMPMessage
method), 50

serialize() (os_ken.lib.packet.bpdu.bpdu
method), 59

serialize() (os_ken.lib.packet.bpdu.ConfigurationBPDUs
method), 57

serialize() (os_ken.lib.packet.bpdu.RstBPDUs
method), 59

serialize() (os_ken.lib.packet.cfm.cfm
method), 61

serialize() (os_ken.lib.packet.dhcp.dhcp
method), 66

Index 663

os-ken Documentation, Release 1.4.1.dev5

serialize() (os_ken.lib.packet.dhcp6.dhcp6
method), 69

serialize() (os_ken.lib.packet.ethernet.ethernet
method), 70

serialize() (os_ken.lib.packet.geneve.geneve
method), 71

serialize() (os_ken.lib.packet.gre.gre
method), 72

serialize() (os_ken.lib.packet.icmp.icmp
method), 74

serialize() (os_ken.lib.packet.icmpv6.icmpv6
method), 75

serialize() (os_ken.lib.packet.igmp.igmp
method), 81

serialize() (os_ken.lib.packet.igmp.igmpv3_query
method), 82

serialize() (os_ken.lib.packet.igmp.igmpv3_report
method), 83

serialize() (os_ken.lib.packet.ipv4.ipv4
method), 84

serialize() (os_ken.lib.packet.ipv6.ipv6
method), 86

serialize() (os_ken.lib.packet.llc.llc
method), 90

serialize() (os_ken.lib.packet.lldp.lldp
method), 93

serialize() (os_ken.lib.packet.mpls.mpls
method), 94

serialize() (os_ken.lib.packet.openflow.openflow
method), 95

serialize() (os_ken.lib.packet.ospf.OSPFMessage
method), 97

serialize() (os_ken.lib.packet.packet.Packet
method), 24

serialize() (os_ken.lib.packet.packet_base.PacketBase
method), 25

serialize() (os_ken.lib.packet.pbb.itag
method), 98

serialize() (os_ken.lib.packet.sctp.sctp
method), 112

serialize() (os_ken.lib.packet.slow.lacp
method), 116

serialize() (os_ken.lib.packet.tcp.tcp
method), 117

serialize() (os_ken.lib.packet.udp.udp
method), 118

serialize() (os_ken.lib.packet.vrrp.vrrp
method), 121

serialize() (os_ken.lib.packet.vxlan.vxlan
method), 123

serialize() (os_ken.lib.packet.zebra.ZebraMessage

method), 132
serialize_hdr()

(os_ken.lib.packet.bfd.BFDAuth method),
28

set_controller()
(os_ken.lib.ovs.bridge.OVSBridge
method), 160

set_db_attribute()
(os_ken.lib.ovs.bridge.OVSBridge
method), 160

set_ev_cls() (in module
os_ken.controller.handler), 16

set_qos() (os_ken.lib.ovs.bridge.OVSBridge
method), 160

shutdown() (os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker
method), 148

SimplePassword (class in
os_ken.lib.packet.bfd), 30

slow (class in os_ken.lib.packet.slow), 116
start() (os_ken.base.app_manager.OSKenApp

method), 550
start() (os_ken.services.protocols.bgp.application.OSKenBGPSpeaker

method), 638
StreamParser (class in os_ken.lib.packet.bgp),

48
StreamParser (class in

os_ken.lib.packet.stream_parser), 24
StreamParser.TooSmallException, 24
SUB_CODE (os_ken.lib.packet.bgp.BgpExc

attribute), 38
svlan (class in os_ken.lib.packet.vlan), 119
SystemCapabilities (class in

os_ken.lib.packet.lldp), 92
SystemDescription (class in

os_ken.lib.packet.lldp), 92
SystemName (class in os_ken.lib.packet.lldp), 92

T
tcp (class in os_ken.lib.packet.tcp), 117
TimeExceeded (class in

os_ken.lib.packet.icmp), 73
to_jsondict()

(os_ken.ofproto.ofproto_parser.MsgBase
method), 161

TopologyChangeNotificationBPDUs
(class in os_ken.lib.packet.bpdu), 59

try_parse() (os_ken.lib.packet.bgp.StreamParser
method), 48

try_parse() (os_ken.lib.packet.stream_parser.StreamParser
method), 24

TTL (class in os_ken.lib.packet.lldp), 92

Index 664

os-ken Documentation, Release 1.4.1.dev5

U
udp (class in os_ken.lib.packet.udp), 118
UnacceptableHoldTime, 49
UnexpectedMultiReply, 566
UnRegWellKnowAttr, 48
UnsupportedOptParam, 49
UnsupportedVersion, 49

V
valid_ovsdb_addr() (in module

os_ken.lib.ovs.vsctl), 156
validate_rpc_host() (in module

os_ken.services.protocols.bgp.application),
638

vlan (class in os_ken.lib.packet.vlan), 119
vni_from_bin() (in module

os_ken.lib.packet.vxlan), 123
vni_to_bin() (in module

os_ken.lib.packet.vxlan), 123
vrf_add() (os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker

method), 148
vrf_del() (os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker

method), 148
vrfs_get() (os_ken.services.protocols.bgp.bgpspeaker.BGPSpeaker

method), 148
vrrp (class in os_ken.lib.packet.vrrp), 120
vrrpv2 (class in os_ken.lib.packet.vrrp), 121
vrrpv3 (class in os_ken.lib.packet.vrrp), 122
VSCtl (class in os_ken.lib.ovs.vsctl), 156
VSCtlCommand (class in os_ken.lib.ovs.vsctl),

156
vxlan (class in os_ken.lib.packet.vxlan), 123

W
Writer (class in os_ken.lib.mrtlib), 152
Writer (class in os_ken.lib.pcaplib), 136

Z
zebra (in module os_ken.lib.packet.zebra), 135
ZebraBfdClientRegister (class in

os_ken.lib.packet.zebra), 125
ZebraBfdDestinationDeregister (class

in os_ken.lib.packet.zebra), 125
ZebraBfdDestinationRegister (class in

os_ken.lib.packet.zebra), 125
ZebraBfdDestinationReply (class in

os_ken.lib.packet.zebra), 125
ZebraBfdDestinationUpdate (class in

os_ken.lib.packet.zebra), 125
ZebraHello (class in os_ken.lib.packet.zebra),

125

ZebraImportCheckUpdate (class in
os_ken.lib.packet.zebra), 129

ZebraImportRouteRegister (class in
os_ken.lib.packet.zebra), 129

ZebraImportRouteUnregister (class in
os_ken.lib.packet.zebra), 129

ZebraInterfaceAdd (class in
os_ken.lib.packet.zebra), 129

ZebraInterfaceAddressAdd (class in
os_ken.lib.packet.zebra), 129

ZebraInterfaceAddressDelete (class in
os_ken.lib.packet.zebra), 129

ZebraInterfaceBfdDestinationUpdate
(class in os_ken.lib.packet.zebra), 129

ZebraInterfaceDelete (class in
os_ken.lib.packet.zebra), 130

ZebraInterfaceDisableRadv (class in
os_ken.lib.packet.zebra), 130

ZebraInterfaceDown (class in
os_ken.lib.packet.zebra), 130

ZebraInterfaceEnableRadv (class in
os_ken.lib.packet.zebra), 130

ZebraInterfaceLinkParams (class in
os_ken.lib.packet.zebra), 130

ZebraInterfaceNbrAddressAdd (class in
os_ken.lib.packet.zebra), 130

ZebraInterfaceNbrAddressDelete
(class in os_ken.lib.packet.zebra), 131

ZebraInterfaceUp (class in
os_ken.lib.packet.zebra), 131

ZebraInterfaceVrfUpdate (class in
os_ken.lib.packet.zebra), 131

ZebraIPv4ImportLookup (class in
os_ken.lib.packet.zebra), 126

ZebraIPv4NexthopAdd (class in
os_ken.lib.packet.zebra), 126

ZebraIPv4NexthopDelete (class in
os_ken.lib.packet.zebra), 126

ZebraIPv4NexthopLookup (class in
os_ken.lib.packet.zebra), 126

ZebraIPv4NexthopLookupMRib (class in
os_ken.lib.packet.zebra), 126

ZebraIPv4RouteAdd (class in
os_ken.lib.packet.zebra), 126

ZebraIPv4RouteDelete (class in
os_ken.lib.packet.zebra), 127

ZebraIPv4RouteIPv6NexthopAdd (class
in os_ken.lib.packet.zebra), 127

ZebraIPv6ImportLookup (class in
os_ken.lib.packet.zebra), 127

ZebraIPv6NexthopAdd (class in

Index 665

os-ken Documentation, Release 1.4.1.dev5

os_ken.lib.packet.zebra), 128
ZebraIPv6NexthopDelete (class in

os_ken.lib.packet.zebra), 128
ZebraIPv6NexthopLookup (class in

os_ken.lib.packet.zebra), 128
ZebraIPv6RouteAdd (class in

os_ken.lib.packet.zebra), 128
ZebraIPv6RouteDelete (class in

os_ken.lib.packet.zebra), 128
ZebraMessage (class in

os_ken.lib.packet.zebra), 131
ZebraMplsLabelsAdd (class in

os_ken.lib.packet.zebra), 132
ZebraMplsLabelsDelete (class in

os_ken.lib.packet.zebra), 132
ZebraNexthopRegister (class in

os_ken.lib.packet.zebra), 132
ZebraNexthopUnregister (class in

os_ken.lib.packet.zebra), 132
ZebraNexthopUpdate (class in

os_ken.lib.packet.zebra), 132
ZebraRedistributeAdd (class in

os_ken.lib.packet.zebra), 133
ZebraRedistributeDefaultAdd (class in

os_ken.lib.packet.zebra), 133
ZebraRedistributeDefaultDelete

(class in os_ken.lib.packet.zebra), 133
ZebraRedistributeDelete (class in

os_ken.lib.packet.zebra), 133
ZebraRedistributeIPv4Add (class in

os_ken.lib.packet.zebra), 133
ZebraRedistributeIPv4Delete (class in

os_ken.lib.packet.zebra), 133
ZebraRedistributeIPv6Add (class in

os_ken.lib.packet.zebra), 134
ZebraRedistributeIPv6Delete (class in

os_ken.lib.packet.zebra), 134
ZebraRouterIDAdd (class in

os_ken.lib.packet.zebra), 135
ZebraRouterIDDelete (class in

os_ken.lib.packet.zebra), 135
ZebraRouterIDUpdate (class in

os_ken.lib.packet.zebra), 135
ZebraUnknownMessage (class in

os_ken.lib.packet.zebra), 135
ZebraVrfAdd (class in os_ken.lib.packet.zebra),

135
ZebraVrfDelete (class in

os_ken.lib.packet.zebra), 135
ZebraVrfUnregister (class in

os_ken.lib.packet.zebra), 135

Index 666

	Overview
	Usage
	Contributor Documentation
	Configuration
	Users guide
	Administrators guide
	References
	Archived Contents
	Writing Your OS-Ken Application
	The First Application
	Components of OS-Ken
	OS-Ken application API
	Library
	OpenFlow protocol API Reference
	Nicira Extension Structures
	OS-Ken API Reference

	Configuration
	Setup TLS Connection
	Topology Viewer

	Tests
	Testing VRRP Module
	Testing OF-config support with LINC

	Snort Intergration
	Overview
	Installation Snort
	Configure Snort
	Usage

	Built-in OS-Ken applications
	os_ken.app.ofctl
	os_ken.app.ofctl_rest
	os_ken.app.rest_vtep
	os_ken.services.protocols.bgp.application

	Python Module Index
	Index

