Solum Documentation
Release 13.0.1.dev3

OpenStack Foundation

Nov 22, 2022

CONTENTS

Solum Quick Start Guide 3
1.1 Setup Solum development environment 3
L2 OVerview o e e e e e e 3
1.3 Create alanguagepack 3
1.4 Create yourapp o v v v v v v v e e e e e e e e e e e e e 5
1.5 Deploy yourapp v o v i e e e e e e e e e e e e 6
1.6 Connectto YOUr APp . « .« v v v v v i e e e e e e e e e e e 9
1.7 Update YOUr APp . .« o v o e e e e e e e e e e e e e e e 9
1.8 Languagepacks e e 9
1.9 appfile L e 10
1.10 App configuration and environment variables Lo 10
1.11 Setup a Development Environment 11
1.12 Vagrant Dev Environment e 11
1.13 Devstack o e e e 11
Install Solum 13
2.1 Distro specific installation L. 13
2.2 For adevelopment installation use devstack 13
Enabling Solum in DevStack 15
Configure and run Solum 17
4.1 Configuration Reference 17
4.2 Administrator Guide oL e 17
4.2.1 Man pages for services and utilities L. 17
Solumutilities Lo 17

4.3 High Availability Guide 19
44 OperationsGuide e e e e 19
4.5 Security Guide L e e e e 20
Develop applications for Solum 21
5.1 APIComplete Reference e 21
S.1.1 0 Version disCOVery i e e e e e e e e e e e 21

512 VIAPL . . o o e 22
Platform. e 22

Plans o e 25

Pipelines e 27

Executions 28

Assemblies L 29

Services e e e e e 31

Operations o v i i e e e e e e e e e e e 32

SENSOTS . . . v v e e e e e e e e e e e e 34

Components i e e e e e e e 35

Extensions e e e 38

LanguagePacks 39

Infrastructure e 42

Triggers L 43

6 How to contribute to Solum 45
7 CLI Reference 47
7.1 solum-status e e e e e e e 47
T11 0 Synopsis . . . v v v i e e e e e e e e e e e e e e 47

7.1.2 Description e e 47

713 Options v it e e e e e e e e e e e e e e 47

Upgrade o o e e 48

Solum Documentation, Release 13.0.1.dev3

Contents:

CONTENTS 1

Solum Documentation, Release 13.0.1.dev3

2 CONTENTS

CHAPTER
ONE

SOLUM QUICK START GUIDE

1.1 Setup Solum development environment

https://wiki.openstack.org/wiki/Solum/solum-development-setup

The following is a guide to deploying an app with Solum.

1.2 Overview

solum languagepack create <NAME> <GIT_REPO>

solum languagepack show <UUID/Name>

solum languagepack logs <UUID>

solum languagepack list

solum app create --app-file <app_file> [--param-file param_file]
solum app show <UUID/Name>

curl <application_uri>

©H A A A A s

In this document we will work with a python example to demonstrate how you can use solum to deploy
an application.

1.3 Create a languagepack

Before deploying an app on Solum, we need to create a run time environment, called languagepack,
for the application. A languagepack must exist in Solum, as every application deployed with Solum
requires an association to a languagepack to run (even if the languagepack only implements a no-op).
Languagepacks can be added to Solum in the following ways:

1. Solum comes with pre-existing languagepacks
2. Solum System Operator creates and adds languagepack(s) available for all users
3. Solum User creates and adds languagepack(s) available only to that user

To learn more, see the languagepacks section of this document.

1. Authenticate to Keystone. The easiest way is to use the credentials supplied by Devstack.

$§ . ~/devstack/openrc

2. Create languagepack

https://wiki.openstack.org/wiki/Solum/solum-development-setup

Solum Documentation, Release 13.0.1.dev3

$ solum languagepack create python https://github.com/rackspace-solum-samples/
—»solum-languagepack-python.git

oo e
R +

| Property | Value o
< I

T e
e ————— +

| status | QUEUED o
o I

| source_uri | https://github.com/rackspace-solum-samples/solum-languagepack-
—python.git |

| description | None o
o I

| uvuid | 0233f461-5fb0-4de7-8f06-5527721c3e97 o
- I

| name | python o
; I

Fom - e ettt e ettt
R +

Solum takes a few minutes to build your languagepack. You can check the state by using the languagepack
show command. A languagepack is ready for use once the state changes to "/READY".

$ solum languagepack show python

fom - e
Gm——m———— - +

| Property | Value o
o I

fomm e o
G —m—— +

| status | READY o
; I

| source_uri | https://github.com/rackspace-solum-samples/solum-languagepack-
—python.git |

| description | None o
< I

| uuid | 0233£f461-5fb0-4de7-8£06-5527721c3e97 o
. I

| name | python o
. I

fomm e e
Cmmm——————— o +

You can check logs that were generated while building the languagepack with the following command.
This is a great way to debug your languagepack if it fails to build.

$ solum languagepack logs python

(continues on next page)

4 Chapter 1. Solum Quick Start Guide

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

| resource_uuid | created_at | local_storage ..
< I
e et e e e e et tomm -
e e e e e e e e e +

| 0233f461-5fb0-4de7-8f06-5527721c3e97 | 2016-04-07 13:33:35 | /var/log/solum/
—worker/languagepack-2a8cd98e-8b37-4ec7-b17b-£511814a7d6f.1log |

You can find all available languagepacks with the following command

$ solum languagepack list

R et et e e e +-—m— - tomm - +-——— - +-—-——-
e e e L L L e L e R P P P PP Pt +

| uuid | name | description | status |.
;source_uri |

e et Fo—mmm - e Fommmm - e
e et e EE LR L P L e +

| 95310b74-b3ed-4150-bObf-e64c21359900 | java | None | READY |.
—https://github.com/rackspace-solum-samples/solum-languagepack-java.git |

| 96£889e7-e8db-4ae3-a38d-0bfda8268e30 | python | None | READY |.
—https://github.com/rackspace-solum-samples/solum-languagepack-python.git |
e Fo—mmmm - oo Fommmm - oo -
it i T e L LD e e +

1.4 Create your app

Solum clones code from the user’s public Git repository or user’s public/private GitHub repository. Be-
fore you begin, push your code to a Git repo. From within your devstack host, you can now run solum
commands to build and deploy your application.

2. To register an app with Solum, you will need to write an appfile to describe it. The following appfile
deploys a sample python application. You can find other examples in the examples/apps/ folder of the
solum repo on github. To learn more, see the appfile section of this document.

(continues on next page)

1.4. Create your app 5

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

The app is named cherrypy, and it describes a single application, running the code from the given
Github repo. The code in that repo is a Python app that listens for HTTP requests and returns environment
variables supplied by the user during app creation. We have configured this example to listen on port 80.

1.5 Deploy your app

3. Create an app by supplying the appfile. This registers your app with Solum. For demonstration
purposes, we will use the provided example.

$ solum app create --app-file appfile.yaml --param-file params.yaml

it +

| Property | Value o
< I

fomm e e ettt e eatatatata e L PP
=== +

| description | Sample Python web app. o
< I

| uri | http://10.0.2.15:9777/v1/plans/4a795b99-936d-4330-be4dd-
—d2099b160075 |

| name | cherrypy -
. |

| trigger_uri | o
< I

| uuid | 4a795b99-936d-4330-bed4d-d2099b160075 o
< I

Fomm - R ettt et it T
pm————= +

The uri field above refers to the newly-registered app. At this point, your app is not deployed yet.
Your app is now ready to be deployed using the uuid from above to deploy your app.

4. Deploy app

$ solum app deploy 4a795b99-936d-4330-bed4d-d2099b160075

Fmmmm - e
S +
| Property | Value o
< I
Fommm e T et
S +
| wf_id | 1 o
< I

(continues on next page)

6 Chapter 1. Solum Quick Start Guide

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

| created_at | 2016-04-07T13:36:45.497519 o
o I

| app_id | 7d64347c-93d6-4adf-b£f70-309£9d53c034 o
. I

| actions | [u'unittest', u'build', u'deploy"'] o
o I

| updated_at | 2016-04-07T13:36:45.497519 =
o I

| source | {u'repository': u'https://github.com/rackspace-solum-samples/
—solum- |

| | python-sample-app.git', u'revision': u'master'} o
o I

| config | {u'run_cmd': u'python app.py', u'test_cmd': u'./unit_tests.sh'}
o I

| id | 97e7e2c1-8bal-4320-9831-b5baef1d480d o
o I

fmm - e
y————- +

Solum builds a Docker image by layering your app’s code on top of the related languagepack’s docker
image. Then, Solum creates a stack via Heat to deploy your app. At this point, Solum is done, and in a
matter of minutes your app will be deployed.

5. You can monitor the progress of your app as it builds and deploys. The status field will show the
progress of your app through the process.

$ solum app show 4a795b99-936d-4330-be4d-d2099b160075

fomm e et T ettt et L L
G +

| Property | Value o
; I

e -
Cmmmmmmm +

| status | BUILDING o
o I

| description | Sample Python web app. o
. |

| application_uri | None o
< |

| created_at | 2015-03-10T22:47:04 o
o |

| updated_at | 2015-03-10T22:49:59 o
o I

| name | cherrypy o
o I

| trigger_uri | http://10.0.2.15:9777/v1/triggers/b6eb26e5-3b7b-416b-b932-
—302c514071cc |

| uuid | 185£f2741-61e0-497e-b2b7-c890c7el51dd o
o I

fomm e et T ettt et L L
. u (continues on next page)

1.5. Deploy your app 7

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

|

6. Run the solum app show command a few times to see the status change. You will notice the
status field changes to DEPLOYMENT_COMPLETE and the application_uri is available.

$ solum app show cherrypy

e et B e ittt et T
ym———m—————— +

| Property | Value o
. |

T TR e
ymmm +

| app_url | 172.24.4.3:80 o
o I

| entry_points | o
o I

| description | python web app o
o I

| created_at | 2016-04-07T13:36:32 o
o I

| languagepack | python o
o I

| target_instances | 1 o
- I

| ports | [80] o
o |

| source | {u'repository': u'https://github.com/rackspace-solum-
—samples/solum- |

| | python-sample-app.git', u'revision': u'master'} o
o I

| trigger | [u'unittest', u'build', u'deploy"'] o
- |

| trigger_uuid | b85bdf42-d126-4223-9a64-8c10930447e3 o
. |

| id | 4a795b99-936d-4330-be4d-d2099b160075 o
< I

| name | cherrypy =
o I

e -
Gmmmm———— - +

'cherrypy' workflows and their status:

+o—————- R et B et ettt +

| wf_id | id | status |
e e e o e T +

| 1 | 97e7e2c1-8bal-4320-9831-b5baef1d480d | DEPLOYMENT_COMPLETE |
o e e +

8 Chapter 1. Solum Quick Start Guide

Solum Documentation, Release 13.0.1.dev3

1.6 Connect to Your App

7. Connect to your app using the value in the app_url field.

$ curl <your_application_uri_here>

1.7 Update Your App

You can set up your Git repository to fire an on_commit action to make a webhook call to Solum
each time you make a commit. The webhook call sends a POST request to http://10.0.2.15:9777/v1/
triggers/<trigger_id> causing Solum to automatically build a new image and re-deploy your application.

To do this with a GitHub repo, go to your repo on the web, click on Settings, and then select "Webhooks &
Services" form the left navigation menu. In the Webhooks section, click "Add Webhook", and enter your
GitHub account password when prompted. Copy and paste the value of trigger_uri from your "solum
app show" command into the "Payload URL" filed. Note that this will only work if you have a public IP
address or hostname in the trigger_uri field. Select the "application/vnd.github.v3+json" Payload version,
determine if you only want to trigger this webhook on "git push" or if you want it for other events too by
using the radio buttons and Checkboxes provided. Finish by clicking "Add Webhook". Now next time
that event is triggered on GitHub, Solum will automatically check out your change, build it, and deploy
it for you.

1.8 Languagepacks

Languagepacks define the runtime environment required by your application.

To build a languagepack, solum requires a git repo containing a Dockerfile. Solum creates a Docker and
stores the image for use when building and deploying your application. See the sample languagepack
repo below

$ https://github.com/rackspace-solum-samples/solum-languagepack-python

Here are some best practices to keep in mind while creating a languagepack
1. A good languagepack is reusable across application
2. All Operating system level libraries should be defined in the languagepack
3. Test tools should be installed in the languagepack

4. Includes a mandatory build.sh script, which Solum CI expects and executes during the build phase

1.6. Connect to Your App 9

http://10.0.2.15:9777/v1/triggers
http://10.0.2.15:9777/v1/triggers

Solum Documentation, Release 13.0.1.dev3

1.9 appfile

An appfile is used to define your application and passed in during application creation.

$ solum app create --app-file appfile.yaml --param-file params.yaml

In the above command, we use the --app-file flag to provide

The appfile is used to define the following
1. The git repo where your code exists
2. The languagepack to use
3. A name for your application
4

. A command that executes your unittests. This command is executed during the unit test phase of
the Solum CI workflow.

5. The port which is exposed publicly for accessing your application.

6. A command that executes your command.

1.10 App configuration and environment variables

Applications deployed using Solum can be configured using environment variables. Provide a parameter
file during application creation to inject environment variables

$ solum app create --app-file appfile.yaml --param-file params.yaml

In the example above, we pass in the parameter file (shown in the table below) using the --param-file flag.
The parameter file contains key value pairs which are injected into the application run time environment.

10 Chapter 1. Solum Quick Start Guide

Solum Documentation, Release 13.0.1.dev3

1.11 Set up a Development Environment

These instructions are for those who want to contribute to Solum, or use features that are not yet in the
latest release.

1. Clone the Solum repo. Solum repository is available on the OpenStack Git server.

$ mkdir ~/Solum
$ cd Solum
$ git clone https://opendev.org/openstack/solum.git

In addition to Solum, your environment will also need Devstack to configure and run the requisite Open-
Stack components, including Keystone, Glance, Nova, Neutron, and Heat.

1.12 Vagrant Dev Environment

2. We have provided a Vagrant environment to deploy Solum and its required OpenStack components
via Devstack. We recommend using this approach if you are planning to contribute to Solum. This takes
about the same amount of time as setting up Devstack manually, but it automates the setup for you. By
default, it uses Virtualbox as its provisioner. We have tested this with Vagrant 1.5.4. The environment
will need to know where your Solum code is, via the environment variable SOLUM.

$ cd ~/Solum

$ export SOLUM=~/Solum/solum

$ git clone https://github.com/rackerlabs/vagrant-solum-dev.git vagrant
$ cd vagrant

3. Bring up the devstack vagrant environment. This may take a while. Allow about an hour, more or less
depending on your machine speed and its connection to the internet.

$ vagrant up --provision devstack
$ vagrant ssh devstack

1.13 Devstack

Using Vagrant is not a requirement for deploying Solum. You may instead opt to install Solum and
Devstack yourself. The details of integrating Solum with Devstack can be found in devstack/README.
rst.

1.11. Set up a Development Environment 11

Solum Documentation, Release 13.0.1.dev3

12 Chapter 1. Solum Quick Start Guide

CHAPTER
TWO

INSTALL SOLUM

2.1 Distro specific installation

TODO add docs here on how to install on different distros like:
* debian
* redhat
* suse

e ubuntu

2.2 For a development installation use devstack

13

Solum Documentation, Release 13.0.1.dev3

14 Chapter 2. Install Solum

CHAPTER
THREE

ENABLING SOLUM IN DEVSTACK

1. Install Docker version 1.7.0 using following steps (Solum has been tested with this version of
Docker):

2. Download DevStack:

3. Add this repo as an external repository:

To use stable branches, make sure devstack is on that branch, and specify the branch name to
enable_plugin, for example:

4. Run ./stack.sh.

Note: This setup will produce virtual machines, not Docker containers. For an example of the Docker
setup, see:

15

Solum Documentation, Release 13.0.1.dev3

16 Chapter 3. Enabling Solum in DevStack

CHAPTER
FOUR

CONFIGURE AND RUN SOLUM

4.1 Configuration Reference

To alter the default compute flavor edit /etc/solum/templates/*.yaml

Edit the default section to the desired value.

4.2 Administrator Guide

4.2.1 Man pages for services and utilities
Solum utilities

solum-db-manage
SYNOPSIS

solum-db-manage <action> [options]

DESCRIPTION

solum-db-manage helps manage solum specific database operations.

The migrations in the "alembic_migrations/versions/" directory contain the changes needed to migrate
from older Solum releases to newer versions. A migration occurs by executing a script that details the
changes needed to upgrade/downgrade the database. The migration scripts are ordered so that multi-
ple scripts can run sequentially to update the database. The scripts are executed by Solum’s migration
wrapper which uses the Alembic library to manage the migration.

17

Solum Documentation, Release 13.0.1.dev3

OPTIONS

The standard pattern for executing a solum-db-manage command is:
solum-db-manage <command> [<args>]
Run with -h to see a list of available commands:
solum-db-manage -h
Commands are:

* version

* upgrade

* downgrade

* stamp

* revision

Detailed descriptions are below.

Upgrading/Downgrading

If you are a deployer or developer and want to migrate from Icehouse to Juno or later you must first add
version tracking to the database:

solum-db-manage stamp icehouse

You can then upgrade to the latest database version via:
solum-db-manage upgrade head

To check the current database version:
solum-db-manage version

Downgrade the database to a specific revision:

solum-db-manage downgrade 594288b1585a

Generating migration templates (developers only)

A database migration script is required when you submit a change to Solum that alters the database
model definition. The migration script is a special python file that includes code to update/downgrade
the database to match the changes in the model definition. Alembic will execute these scripts in order
to provide a linear migration path between revision. The solum-db-manage command can be used to
generate migration template for you to complete. The operations in the template are those supported by
the Alembic migration library.

solum-db-manage revision -m "description of revision" --autogenerate

This generates a prepopulated template with the changes needed to match the database state with the
models. You should inspect the autogenerated template to ensure that the proper models have been
altered.

18 Chapter 4. Configure and run Solum

Solum Documentation, Release 13.0.1.dev3

In rare circumstances, you may want to start with an empty migration template and manually author the
changes necessary for an upgrade/downgrade. You can create a blank file via:

solum-db-manage revision -m "description of revision"

FILES

The /etc/solum/solum.conf file contains global options which can be used to configure some aspects of
solum-db-manage, for example the DB connection and logging.

BUGS

Solum issues are tracked in Launchpad so you can view or report bugs here: OpenStack Solum
Bugs

4.3 High Availability Guide

4.4 Operations Guide

Solum has been successfully running in production environments with the following example architec-
ture:

i "
MNgire
Salum
©omonn, | loopback Solum API Solum viorker Do
static content | °¥Er 9997 Seavce (x10) S&':l"'[']t;e
caching)

| N\ N S

PrivateMet over 443

Solum
Conductor
Service

Keystone

Load Balancer Service

PrivateNet over 443

\ v /i

MNgire
Salum
\ Iea{r%?zl_vm | loopback Salum API Solgg:r\ifcz;rker Deployer
static content over 9997 Seavce (x10) S&':l"'[']t;e
caching)

Solum application deployment follows this flow:

* Load Balancer listening on HTTPS port

4.3. High Availability Guide 19

https://bugs.launchpad.net/solum
https://bugs.launchpad.net/solum

Solum Documentation, Release 13.0.1.dev3

Traffic travels across private net to 2+ nodes to Nginx listening on port 443
Nginx tears down SSL and redirects traffic over loopback to port 9777 to Solum API service

Solum API Service authenticates with Keystone service (open up outbound traffic to only keystone
service from Solum API)

To retrieve Solum applications, API service would send messages to Conductor service, which
communicates over service net to Trove to retrieve data

During app deployment, Solum API service sends a queue message to Rabbit MQ service [1]
(should be multi-node over private net)

Solum Worker service picks up a queue message from Rabbit MQ [2] and pulls down a git repos-
itory, builds it, runs unit tests (if specified), builds a docker container, and uploads it to Swift *
This is a fairly lengthy process and completely blocks this service. You should scale out your in-
frastructure to easily accommodate your traffic. A performance test based on your expected load
can give you a good idea of how many nodes and how many worker services per node you need.

Solum Worker persists application state to Trove via Conductor service
Upon completion, worker service sends a message to Rabbit MQ [3]

Solum Deployer service picks up the message from Rabbit MQ [4] and calls Heat to deploy a heat
stack with user’s information and newly created docker container * Deployer service also blocks
on this call so your infrastructure should scale out to support your user load

Deployer service persists application state to Trove via Conductor service

Solum deployment infrastructure is dependent on existence of the following OpenStack services:

Nova
Keystone
Trove
Swift
Glance

Heat

To assist with deploying a new Solum architecture, please refer to the following cookbooks to get started:

https://github.com/rackerlabs/cookbook-openstack-paas
https://github.com/openstack/cookbook-openstack-identity.git

https://github.com/openstack/cookbook-openstack-common.git

4.5 Security Guide

20

Chapter 4. Configure and run Solum

https://github.com/rackerlabs/cookbook-openstack-paas
https://github.com/openstack/cookbook-openstack-identity.git
https://github.com/openstack/cookbook-openstack-common.git

CHAPTER
FIVE

DEVELOP APPLICATIONS FOR SOLUM

5.1 API Complete Reference

5.1.1 Version discovery

type Version

Version representation.

Data samples:

Json
XML
b' \n v1.0 \n CURRENT \n \n .
. http://example.com:9777/v1 \n vl
— \n \n !
id
Type str

The version identifier.
link
Type Link
The link to the versioned APL
status
Type Enum(SUPPORTED, CURRENT, DEPRECATED)
The status of the API (SUPPORTED, CURRENT or DEPRECATED).

21

Solum Documentation, Release 13.0.1.dev3

5.1.2 V1 API

type Link
A link representation.

Data samples:

Json
XML
b' \h http://example.com:9777/v1 \n
vl \n !
href
Type str
The link URI.
target_name
Type str

Textual name of the target link.

Platform

type Platform
Representation of a Platform.

The Platform resource is the root level resource that refers to all the other resources owned by this

tenant.
Data samples:

Json

(continues on next page)

22 Chapter 5. Develop applications for Solum

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

"pipelines_uri": "http://example.com:9777/v1/pipelines™
"plans_uri": "http://example.com:9777/v1/plans"”
"project_id": "ldae5a09ef2b4d8cbf3594b0eb4f6b94"

"sensors_uri": "http://example.com:9777/v1/sensors"
"services_uri": "http://example.com:9777/v1/services"
"tags"

"solid"
"triggers_uri": "http://example.com:9777/v1/triggers"
"type": "platform"
"uri": "http://example.com/v1"

"user_id": "55f41cf46df74320b9486a35f5d28al1l"

XML

b'<value>\n <implementation_version>2014.1.1</implementation_
—version>\n <plans_uri>http://example.com:9777/v1/plans</plans_uri>
~\n <assemblies_uri>http://example.com:9777/v1/assemblies</
—assemblies_uri>\n <services_uri>http://example.com:9777/v1/
—,services</services_uri>\n <components_uri>http://example.com:9777/
—v1/components</components_uri>\n <extensions_uri>http://example.
—com:9777/v1/extensions</extensions_uri>\n <operations_uri>http://
—example.com:9777/vl1/operations</operations_uri>\n <sensors_uri>
—http://example.com:9777/v1/sensors</sensors_uri>\n <language_
—packs_uri>http://example.com:9777/v1/language_packs</language_
—packs_uri>\n <pipelines_uri>http://example.com:9777/v1/pipelines</
—pipelines_uri>\n <triggers_uri>http://example.com:9777/v1/triggers
—</triggers_uri>\n <infrastructure_uri>http://example.com:9777/v1/
—infrastructure</infrastructure_uri>\n <name>solum</name>\n <type>
—platform</type>\n <tags>\n <item>solid</item>\n </tags>\n
—<project_id>1dae5a09ef2b4d8cbf3594b0eb4f6b94</project_id>\n <user_
,1d>55f41cf46d£f74320b9486a35f5d28all</user_id>\n <description>
—solum native implementation</description>\n <uri>http://example.
—com/vl</uri>\n</value>"'

assemblies_uri
Type str
URI to assemblies.
components_uri
Type str
URI to components.
extensions_uri

Type str

URI to extensions.

5.1. API Complete Reference 23

Solum Documentation, Release 13.0.1.dev3

implementation_version

Type str

Version of the platform.

infrastructure_uri

Type str
URI to infrastructure.
language_packs_uri
Type str
URI to language packs.

operations_uri

Type str
URI to operations.
pipelines_uri
Type str
URI to pipelines.
plans_uri
Type str
URI to plans.
sensors_uri
Type str
URI to sensors.
services_uri
Type str
URI to services.
triggers_uri

Type str
URI to triggers.

24 Chapter 5.

Develop applications for Solum

Solum Documentation, Release 13.0.1.dev3

Plans

GET /vl/plans
Return all plans, based on the query provided.

POST /vl1/plans
Create a new plan.

GET /vl1/plans/(plan_id)
Return this plan.

PUT /v1/plans/(plan_id)
Modify this plan.

DELETE /v1/plans/(plan_id)
Delete this plan.

type Plan
Representation of an Plan file.
The Plan resource is a representation of a Plan file. Plans are used to create Assembly resources. A
Plan resource may be used to create an arbitrary number of Assembly instances. They use artifacts
and services to indicate what will be used to generate the plan, and what services Solum can use

to satisfy them. Note: Plan files are YAML and Plan resources are the REST representation of the
Plan file after services have been matched to ones offered by Solum.

Data samples:

Json

(continues on next page)

5.1. API Complete Reference 25

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

"characteristics"
"python_build_service"

llidll Ilbuildll
"name": "Build-Service"
"tags"
"small"
"trigger_uri": "http://example.com/vl1/triggers/labc234"

"type": "plan”

uri "http://example.com/v1/plans/x1"
"user_id": "55f41cf46df74320b9486a35f5d28all"

XML

b'<value>\n <artifacts>\n <item>\n <name>My-python-app</

< name>\n <artifact_type>git_pull</artifact_type>\n
—<content>\n <item>\n <key>href</key>\n
—<value>git://example.com/project.git</value>\n </item>\n .
o <item>\n <key>private</key>\n <value>False</
—value>\n </item>\n </content>\n <language_pack>
—b56ccca7-1f14-4a6a-8de3-b64d8047a5h2</language_pack>\n
—<requirements>\n <item>\n <requirement_type>git_
—pull</requirement_type>\n <fulfillment>id:build</
—fulfillment>\n </item>\n </requirements>\n </item>\
on </artifacts>\n <services>\n <item>\n <name>Build-

. Service</name>\n <id>build</id>\n <characteristics>\n .
. <item>python_build_service</item>\n </characteristics>\n .
« </item>\n </services>\n <trigger_uri>http://example.com/v1/
—triggers/labc234</trigger_uri>\n <name>Example-plan</name>\n
<type>plan</type>\n <tags>\n <item>small</item>\n </tags>\n
—<project_id>1dae5a09ef2b4d8cbf3594b0eb4f6b94</project_id>\n <user_
—1d>55f41cf46d£f74320b9486a35f5d28all</user_id>\n <description>A.
—plan with no services or artifacts shown</description>\n <uri>
~http://example.com/vl/plans/x1</uri>\n</value>"'

artifacts

Type list(Artifact)
List of artifacts defining the plan.

parameters

Type dict(str: None)
User defined parameters

services

26 Chapter 5. Develop applications for Solum

Solum Documentation, Release 13.0.1.dev3

Type list(ServiceReference)
List of services needed by the plan.
trigger_uri

Type str
The trigger uri used to trigger the build of the plan

Pipelines

GET /v1/pipelines
Return all pipelines.

Return type list(Pipeline)

POST /v1/pipelines
Create a new pipeline. :type data: Pipeline

Return type Pipeline

GET /v1/pipelines/(pipeline_id)
Return this pipeline.

Return type Pipeline

PUT /v1/pipelines/(pipeline_id)
Modify this pipeline. :type data: Pipeline

Return type Pipeline

DELETE /v1/pipelines/(pipeline_id)
Delete this pipeline.

type Pipeline
Representation of an Pipeline.

A pipeline is the association between a plan, a mistral workbook and a git trigger. Together they
form a working development "pipeline".

Data samples:

Json

(continues on next page)

5.1. API Complete Reference 27

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

XML
b' \h http://example.com/vl/plans/x1 \nh
. build-deploy \n http://
—example.com/v1l/triggers/labc234 \nh
78f41c£f46d£7430b9486a35f5d28a41 \n pipeline
o \n Example-pipeline \n A
—pipeline for my app \n \n small
-\n \n ldae5a09ef2b4d8cb£3594b0eb4£6b94
. \n 55f41cf46d£74320b9486a35£5d28all \
—n http://example.com/v2/pipelines/pl \n '

last_execution

Type str
The UUID of the last run execution.

plan_uri

Type str
Link to the plan URI.

trigger_uri

Type str
The trigger uri used to trigger the pipeline.

workbook_name

Type str

Name of the workbook in Mistral to use.

Executions

GET /vl1/pipelines/(pipeline_id) /executions

Return all executions, based on the provided pipeline_id. :type pipeline_id: str
Return type list(Execution)

type Execution

Data samples:

Json

(continues on next page)

28 Chapter 5. Develop applications for Solum

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

XML
b' \n http://example.com:9777/v1 \n
vl \n !
Assemblies

GET /v1/assemblies

Return all assemblies, based on the query provided.
Return type list(Assembly)

POST /v1/assemblies
Create a new assembly. :type data: Assembly

Return type Assembly
GET /v1/assemblies/(assembly_id)

Return this assembly.
Return type Assembly

PUT /v1/assemblies/(assembly_id)
Modify this assembly. :type data: Assembly
Return type Assembly

DELETE /v1/assemblies/(assembly_id)
Delete this assembly.

type Assembly

Representation of an Assembly.

The Assembly resource represents a group of components that make up a running instance of an
application. You may casually refer to this as "the application" but we refer to it as an Assembly
because most cloud applications are actually a system of multiple service instances that make up a
system. For example, a three-tier web application may have a load balancer component, a group of
application servers, and a database server all represented as Component resources that make up an
Assembly resource. An Assembly resource has at least one Component resource associated with

it.
Data samples:

Json

(continues on next page)

5.1. API Complete Reference

29

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

XML
b’ \h http://example.com/v1l/plans/45-09 \
—n \n \n \n
2022-11-22T04:47:08.433490 \n 2022-11-
22T04:47:08.433490 \n database \n
—,assembly \h \nh small \nh \n
. ldae5a09ef2b4d8cb£3594b0eb4f6b94 \n
o 55f41cf46d£f74320b9486a35f5d28all \n A
—mysql database \n http://example.com/v1/
—,assemblies/x4 \n '

application_uri

Type str
The uri of the deployed application.

components

Type list(Component)
Components that belong to the assembly.

created_at

Type datetime
The time the assembly initially created.
operations
Type list(Operation)
Operations that belong to the assembly.

plan_uri

Type str
The URI to the plan to be used to create this assembly.

30 Chapter 5. Develop applications for Solum

Solum Documentation, Release 13.0.1.dev3

sensors
Type list(Sensor)
Sensors that belong to the assembly.
status
Type str
The status of the assembly.
updated_at
Type datetime
The last time a change was made to the assembly’s status.
workflow
Type list(Enum(unittest, build, deploy))

Defines the workflow that an assembly will go through.

Services

GET /vl1/services
Return all services, based on the query provided.

Return type list(Service)

POST /v1/services
Create a new service. :type data: Service

Return type Service

GET /v1/services/(service_id)
Return this service.

Return type Service

PUT /vl1/services/(service_id)
Modify this service. :type data: Service

Return type Service

DELETE /vl1/services/(service_id)
Delete this service.

type Service
The Service resource represents a networked service.

You may create Component resources that refer to Service resources. A Component represents an
instance of a Service. Your application connects to such a Component using a network protocol.
For example, the Platform may offer a default Service named "mysql". You may create multiple
Component resources that reference different instances of the "mysql" service. Each Component
may be a multi-tenant instance of a MySQL database (perhaps a logical database) service offered

by the Platform for a given Assembly.

Data samples:

5.1. API Complete Reference

31

Solum Documentation, Release 13.0.1.dev3

Json
XML
b' \h false \n language_

—pack \n language-pack \n service
- \n A language pack service \n
. 1dae5a09e£2b4d8cb£3594b0eb4£6b94 \n
- 55f41cf46d£74320b9486a35£5d28a1ll \n \n
—group_xyz \n \n http://example.com/v1/language_
—packs/javal.4 \n !

read_only

Type bool

The service is read only when this value is true.

service_type

Type str
Type of service. Example: language_pack or db::mysql

Operations

GET /v1/operations

Return all operations, based on the query provided.
Return type list(Operation)

POST /v1/operations
Create a new operation. :type data: Operation

Return type Operation

GET /v1/operations/(operation_id)

Return this operation.

Return type Operation

32 Chapter 5. Develop applications for Solum

Solum Documentation, Release 13.0.1.dev3

PUT /v1/operations/(operation_id)
Modify this operation. :type data: str

Return type Operation
DELETE /v1/operations/ (operation_id)
Delete this operation.

type Operation
An Operation resource represents an operation or action.
This is for defining actions that may change the state of the resource they are related to. For exam-
ple, the API already provides ways to register, start, and stop your application (POST an Assembly

to register+start, and DELETE an Assembly to stop) but Operations provide a way to extend the
system to add your own actions such as "pause” and "resume", or "scale_up" and "scale_down".

Data samples:

Json
XML
b’ \h http://example.com/docs/resume_op

< \n http://example.com/instances/
—uuid \h resume \n operation
- \n \n small \n \n
—.1dae5a09ef2b4d8cbf3594b0eb4£f6b94 \n
—55f41cf46d£f74320b9486a35f5d28all \h A
—.resume operation \n http://example.com/v1/
—operations/resume \n !

documentation

Type str

Documentation URI for the operation.

target_resource

Type str

Target resource URI to the operation.

5.1. API Complete Reference 33

Solum Documentation, Release 13.0.1.dev3

Sensors

GET /v1/sensors
Return all sensors, based on the query provided.

Return type list(Sensor)

POST /v1/sensors
Create a new sensor. :type data: str

Return type Sensor

GET /v1/sensors/(sensor_id)
Return this sensor.

Return type Sensor

PUT /v1/sensors/(sensor_id)
Modify this sensor. :type data: str

Return type Sensor

DELETE /v1/sensors/(sensor_id)
Delete this sensor.

type Sensor
A Sensor resource represents exactly one supported sensor.

Sensor resources represent dynamic data about resources, such as metrics or state. Sensor resources
are useful for exposing data that changes rapidly, or that may need to be fetched from a secondary
system.

Data samples:

Json

XML
b' \n http://example.com/docs/heartbeat/
o \n http://example.com/instances/
~uuid \n str \n
= mem
<\n 30 \n sensor \n
— Idae5a09%et2b4d8cb 416b94 C L n

34 - 55f41cf46df7432®b9486a35f5§?ﬁ v, f[?evek{%app"cat'on\s for golum

—heartbeat sensor http://example.com/v1l/

—.sensors/hb \n !

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

l |

documentation

Type str
Documentation URI for the sensor.
operations
Type list(Operation)
Operations that belong to the sensor.

sensor_type

Type Enum(str, float, int)
Sensor data type.

target_resource

Type str
Target resource URI to the sensor.

timestamp

Type datetime
Timestamp for Sensor.

property value

Value of the sensor.

Components

GET /v1/components

Return all components, based on the query provided.
Return type list(Component)

POST /v1/components
Create a new component. :type data: Component

Return type Component

GET /v1/components/(component_id)

Return this component.
Return type Component

PUT /v1/components/(component_id)
Modify this component. :type data: Component

Return type Component

DELETE /v1/components/ (component_id)
Delete this component.

5.1. API Complete Reference 35

Solum Documentation, Release 13.0.1.dev3

type Component

The Component resource represents one part of an Assembly.

For example, an instance of a database service may be a Component. A Component resource
may also represent a static artifact, such as an archive file that contains data for initializing your
application. An Assembly may have different components that represent different processes that
run. For example, you may have one Component that represents an API service process, and
another that represents a web Ul process that consumes that API service. The simplest case is
when an Assembly has only one component. For example, your component may be named "PHP"
and refers to the PHP Service offered by the platform for running a PHP application.

Data samples:

Json
XML
b' \n \n \n \n
. true \n \n
- heat_stack \n
—4c712026-dcd5-4664-90b8-0915494c1332 \n php-
—web-app \n component \n A php web..
—application component \n \n group_xyz
. \n \n 1dae5a09e£2b4d8cb£3594b0eb4£6b94
. \n 55f41cf46d£74320b9486a35f5d28a1ll
. \n http://example.com/v1/components/php-web-app \n
abbreviated

Type bool

Boolean value indicating if this components has nested components at more than one level
of depth.

36 Chapter 5. Develop applications for Solum

Solum Documentation, Release 13.0.1.dev3

assembly_uuid

Type str
"The uuid of the assembly that this component belongs in.

component_type
Type str

Type of component e.g. heat_stack.

components_ids

Type list(str)
IDs of nested component of the component.

heat_stack_id

Type str
Unique identifier of the Heat Stack.
operations
Type list(Operation)
Operations that belong to the component.
plan_uri
Type str
URI of Plan of which the component is a part.
resource_uri
Type str
Remote resource URI of the component.
sensors
Type list(Sensor)
Sensors that belong to the component.
services
Type list(Service)

Services that belong to the component.

5.1. API Complete Reference 37

Solum Documentation, Release 13.0.1.dev3

Extensions

GET /v1/extensions
Return all extensions, based on the query provided.

Return type list(Extension)

POST /vl/extensions
Create a new extension. :type data: str

Return type Extension

GET /v1/extensions/ (extension_id)
Return this extension.

Return type Extension

PUT /v1/extensions/ (extension_id)
Modify this extension. :type data: str

Return type Extension

DELETE /v1/extensions/(extension_id)
Delete this extension.

type Extension
The Extension resource represents Provider modifications.

This may include additional protocol semantics, resource types, application lifecycle states, re-
source attributes, etc. Anything may be added, as long as it does not contradict the base function-
ality offered by Solum.

Data samples:

Json
XML
b' \n 2.13 \n http://
—example.com/docs/ext/logstash \n logstash
= \n extension \n \n large \
dae 0FUOCD 4otebd LR €s/0n next page
. \n 55f41cf46df74320b9486a35£5d28all \
- Th 1 tash t d I
38 n . 1S ~ogstas C?\’%rft%i]‘\i.n eve 06 sapaplfggtlionosrfor Solum
—managing your application events 'and logs. \n

—http://example.com/vl1/extensions/logstash \n

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

l |

documentation

Type str
Documentation URI to the extension.

version

Type str

Version of the extension.

LanguagePacks

GET /v1/language_packs
Return all languagepacks, based on the query provided.

Return type list(LanguagePack)

POST /v1/language_packs
Create a new languagepack. :type data: LanguagePack

Return type LanguagePack

GET /v1/language_packs/(lp_id)
Return a languagepack.

Return type LanguagePack

DELETE /v1/language_packs/(lp_id)
Delete a languagepack.

type LanguagePack
Representation of a language pack.

When a user creates an application, he specifies the language pack to be used. The language pack
is responsible for building the application and producing an artifact for deployment.

For a complete list of language pack attributes please refer: https://etherpad.openstack.org/p/
Solum-Language-pack-json-format

Data samples:

Json

(continues on next page)

5.1. API Complete Reference 39

https://etherpad.openstack.org/p/Solum-Language-pack-json-format
https://etherpad.openstack.org/p/Solum-Language-pack-json-format

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

"version': "1.7"
”type” llmavenll
"version": "1.2"

"compiler_versions"
"1.4"
"1.6"
"1.7"

"created_image_id": "4afasa®9ef2b4d8cbf3594b0ec4£f6b94"
"description": "A php web application"

"image_format": "docker"
"language_implementation": "Sun"
"language_pack_type": "org.openstack.solum.Java"

"name": "php-web-app"
"os_platform"
"0S": "Ubuntu"
"version": "12.04"

"project_id": "ldae5a09ef2b4d8cbf3594b0eb4f6b94"
"runtime_versions"

"1.4"

"1.6"

"1.7"

"source_format": "heroku"
"source_uri": "git://example.com/project/app.git"
"tags"

"group_xyz"

"type": "languagepack"
"uri": "http://example.com/v1/images/b3e0d79"
"user_id": "55f41cf46d£74320b9486a35f£5d28a11"

b'<value>\n <name>php-web-app</name>\n <language_pack_type>org.

—openstack.solum.Java</language_pack_type>\n <compiler_versions>\n.,
o <item>1.4</item>\n <item>1.6</item>\n <item>1.7</item>\n
—</compiler_versions>\n <runtime_versions>\n <item>1l.4</item>\n.
< <item>1.6</item>\n <item>1l.7</item>\n </runtime_versions>\n.,
— <language_implementation>Sun</language_implementation>\n <build_
—tool_chain>\n <item>\n <type>ant</type>\n <version>1.7
—</version>\n </item>\n <item>\n <type>maven</type>\n .
— <version>1l.2</version>\n </item>\n </build_tool_chain>\n
—<0s_platform>\n <item>\n <key>0S</key>\n <value>Ubuntu

</value>\n </item>\n <item>\n <key>versiofSYHRYES Of next page)

_ <<value>12.04</value>\n </item>\n </os_platform>\n <attributes>

40

~\n <item>\n <key>optiGhepterts:1-Develop applications:-foraSodum
—value>\n </item>\n <item>\n <key>admin_email</key>\n .
< <value>someadmin@somewhere.com</value>\n </item>\n </
cattributees>\n <<ource uri>ait://example com/proiect/ann ait</

Solum Documentation, Release 13.0.1.dev3

(continued from previous page)

l |

attributes

Type dict(str: str)

Additional section attributes will be used to expose custom attributes designed by language
pack creator.

base_image_id

Type str
The id (in glance) of the image to customize.

build_tool_chain

Type list(BuildTool)

Toolchain available in the language pack. Example: For a java language pack which supports

nan

Ant and Maven, build_tool_chain = ["{type:ant,version:1.7}"," {type:maven,version:1.2}"]

compiler_versions

Type list(str)

List of all the compiler versions supported by the language pack. Example: For a java lan-
guage pack supporting Java versions 1.4 to 1.7, version=["1.4",1.6°, ’1.7°]

created_image_id

Type str
The id of the created image in glance.

image_format

Type Enum(auto, gcow2, docker)
The image format.

language_implementation

Type str

Actual language implementation supported by the language pack. Example: In case of java
it might be *Sun’ or ’openJava’ In case of C++ it can be "gcc’ or ’icc’ or *microsoft’.

language_pack_type

Type str

Type of the language pack. Identifies the language supported by the language pack. This
attribute value will use the org.openstack.solum namespace.

1p_metadata

Type str

The languagepack meta data.

5.1. API Complete Reference a1

Solum Documentation, Release 13.0.1.dev3

os_platform

Type dict(str: str)
OS and its version used by the language pack. This attribute identifies the base image of the

language pack.

runtime_versions

Type list(str)

List of all runtime versions supported by the language pack. Runtime version can be different
than compiler version. Example: An application can be compiled with java 1.7 but it should

run in java 1.6 as it is backward compatible.
source_format
Type Enum(auto, heroku, dib, dockerfile)
The source repository format.
source_uri
Type str
The URI of the app/element.

status
Type Enum(QUEUED, BUILDING, ERROR, READY)

The state of the image.

Infrastructure

type Infrastructure
Description of an Infrastructure.
Data samples:

Json

XML

42 Chapter 5. Develop applications for Solum

Solum Documentation, Release 13.0.1.dev3

b' \n http://example.com/vl/infrastructure/stacks
o \h infrastructure \n
—infrastructure \h \n small \h \
—n ldae5a09ef2b4d8cb£3594b0eb4£f6b94 \n
. 55f41cf46d£74320b9486a35f5d28all \n
. Solum Infrastructure endpoint \n
—http://example.com/vl/infrastructure \n !
stacks_uri
Type str

URI to services.

Triggers

POST /v1/triggers

Trigger a new event on Solum.

5.1. API Complete Reference 43

Solum Documentation, Release 13.0.1.dev3

44 Chapter 5. Develop applications for Solum

CHAPTER
SIX

HOW TO CONTRIBUTE TO SOLUM

If you would like to contribute to Solum, please see our contributing wiki: https://wiki.openstack.
org/wiki/Solum/Contributing

We have the same CLA requirements as OpenStack, so you must follow the steps in the "If you're a
developer, start here" section of this page:

https://docs.openstack.org/infra/manual/developers.html

Once those steps have been completed, submit your changes to for review via the Gerrit tool, following
the workflow documented at:

https://docs.openstack.org/infra/manual/developers.html#development- workflow
Pull requests submitted through GitHub will be ignored.
Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/solum
For tips to help with running unit tests and functional tests on your code, see:

https://wiki.openstack.org/wiki/Solum/Testing

45

https://wiki.openstack.org/wiki/Solum/Contributing
https://wiki.openstack.org/wiki/Solum/Contributing
https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/solum
https://wiki.openstack.org/wiki/Solum/Testing

Solum Documentation, Release 13.0.1.dev3

46 Chapter 6. How to contribute to Solum

CHAPTER
SEVEN

CLI REFERENCE

7.1 solum-status

7.1.1 Synopsis

7.1.2 Description

solum-status is a tool that provides routines for checking the status of a Solum deployment.

7.1.3 Options

The standard pattern for executing a solum-status command is:

Run without arguments to see a list of available command categories:

Categories are:
e upgrade
Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

These sections describe the available categories and arguments for solum-status.

47

Solum Documentation, Release 13.0.1.dev3

Upgrade

solum-status upgrade check Performs arelease-specific readiness check before restarting services
with new code. This command expects to have complete configuration and access to databases and

services.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.
This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This
should be considered something that stops an upgrade.
255 An unexpected error occurred.
History of Checks
5.8.0 (Stein)

* Placeholder to be filled in with checks as they are added in Stein.

48 Chapter 7. CLI Reference

	Solum Quick Start Guide
	Setup Solum development environment
	Overview
	Create a languagepack
	Create your app
	Deploy your app
	Connect to Your App
	Update Your App
	Languagepacks
	appfile
	App configuration and environment variables
	Set up a Development Environment
	Vagrant Dev Environment
	Devstack

	Install Solum
	Distro specific installation
	For a development installation use devstack

	Enabling Solum in DevStack
	Configure and run Solum
	Configuration Reference
	Administrator Guide
	Man pages for services and utilities
	Solum utilities
	solum-db-manage
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Upgrading/Downgrading
	Generating migration templates (developers only)
	FILES
	BUGS

	High Availability Guide
	Operations Guide
	Security Guide

	Develop applications for Solum
	API Complete Reference
	Version discovery
	V1 API
	Platform
	Plans
	Pipelines
	Executions
	Assemblies
	Services
	Operations
	Sensors
	Components
	Extensions
	LanguagePacks
	Infrastructure
	Triggers

	How to contribute to Solum
	CLI Reference
	solum-status
	Synopsis
	Description
	Options
	Upgrade

