
Zun Documentation
Release 16.1.0.dev4

Zun development team

Feb 14, 2026

CONTENTS

1 What is Zun? 1

2 For End Users 2

3 For Operators 3
3.1 Installation . 3

3.1.1 Zun Installation Guide . 3
Overview . 3
Container service overview . 4
Install and configure controller node . 4
Install and configure a compute node . 11
Verify operation . 18
Launch a container . 18
Next steps . 20

4 For Contributors 21
4.1 Developer Quick-Start . 21

4.1.1 Exercising the Services Using Devstack . 21
4.1.2 Using the service . 22

4.2 Contributors Guide . 23
4.2.1 HowTos and Tutorials . 23

So You Want to Contribute . 23
Installing the API via WSGI . 24
Run tempest tests locally . 26
Run unit tests . 27
Multi-host Devstack . 28
API Microversions . 29
Versioned Objects . 35

4.2.2 Documentation Contribution . 37
Contributing Documentation to Zun . 37

4.2.3 Other Resources . 39
Project hosting with Launchpad . 39
Code Reviews with Gerrit . 39
Continuous Integration with Jenkins . 39
Release notes . 40
Capsule Quick Start . 41
Technical Vision for Zun . 44

5 Additional Material 47

i

5.1 Zun Command Line Guide . 47
5.1.1 zun-status . 47

CLI interface for Zun status commands . 47
5.2 Administrators Guide . 48

5.2.1 Installation & Operations . 48
Use OSProfiler in Zun . 48
Clear Containers in Zun . 49
Keep Containers Alive . 50
Manage container security . 50
How to use private docker registry with Zun . 55

5.3 Sample Configuration File . 57
5.3.1 Zun Configuration Options . 57
5.3.2 Policy configuration . 57

Configuration . 57
5.4 Filter Scheduler . 71

5.4.1 Filtering . 71
5.4.2 Configuring Filters . 72
5.4.3 Writing Your Own Filter . 72

5.5 Reference Material . 72
5.5.1 REST API Version History . 72

1.1 . 72
1.2 . 73
1.3 . 73
1.4 . 73
1.5 . 73
1.6 . 73
1.7 . 73
1.8 . 73
1.9 . 73
1.10 . 74
1.11 . 74
1.12 . 74
1.13 . 74
1.14 . 74
1.15 . 74
1.16 . 74
1.17 . 74
1.18 . 74
1.19 . 75
1.20 . 75
1.21 . 75
1.22 . 75
1.23 . 75
1.24 . 75
1.25 . 75
1.26 . 76
1.27 . 76
1.28 . 76
1.29 . 76
1.30 . 76
1.31 . 76

ii

1.32 . 76
1.33 . 76
1.34 . 76
1.35 . 76
1.36 . 77
1.37 . 77
1.38 . 77
1.39 . 77
1.40 . 77

iii

CHAPTER

ONE

WHAT IS ZUN?

Zun is an OpenStack Container service. It aims to provide an API service for running application con-
tainers without the need to manage servers or clusters.

It requires the following additional OpenStack services for basic function:

• Keystone

• Neutron

• Kuryr-libnetwork

It can also integrate with other services to include:

• Cinder

• Heat

• Glance

1

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/kuryr-libnetwork/latest/
https://docs.openstack.org/cinder/latest/
https://docs.openstack.org/heat/latest/
https://docs.openstack.org/glance/latest/

CHAPTER

TWO

FOR END USERS

As an end user of Zun, youll use Zun to create and manage containerized workload with either tools or
the API directly. All end user (and some administrative) features of Zun are exposed via a REST API,
which can be consumed directly. The following resources will help you get started with consuming the
API directly.

• API Reference

Alternatively, end users can consume the REST API via various tools or SDKs. These tools are collected
below.

• Horizon: The official web UI for the OpenStack Project.

• OpenStack Client: The official CLI for OpenStack Projects.

• Zun Client: The Python client for consuming the Zuns API.

2

https://docs.openstack.org/api-ref/application-container/
https://docs.openstack.org/zun-ui/latest/
https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/python-zunclient/latest/

CHAPTER

THREE

FOR OPERATORS

3.1 Installation
The detailed install guide for Zun. A functioning Zun will also require having installed Keystone, Neu-
tron, and Kuryr-libnetwork. Please ensure that you follow their install guides first.

3.1.1 Zun Installation Guide

Overview

The Container service provides OpenStack-native API for launching and managing application containers
without any virtual machine managements.

Also known as the zun project, the OpenStack Container service may, depending upon configuration,
interact with several other OpenStack services. This includes:

• The OpenStack Identity service (keystone) for request authentication and to locate other Open-
Stack services

• The OpenStack Networking service (neutron) for DHCP and network configuration

• The Docker remote network driver for OpenStack (kuryr-libnetwork)

• The OpenStack Placement service (placement) for resource tracking and container allocation
claiming.

• The OpenStack Block Storage (cinder) provides volumes for container (optional).

• The OpenStack Image service (glance) from which to retrieve container images (optional).

• The OpenStack Dashboard service (horizon) for providing the web UI (optional).

• The OpenStack Orchestration service (heat) for providing orchestration between containers and
other OpenStack resources (optional).

Zun requires at least two nodes (Controller node and Compute node) to run a container. Optional services
such as Block Storage require additional nodes.

Controller

The controller node runs the Identity service, Image service, management portions of Zun, management
portion of Networking, various Networking agents, and the Dashboard. It also includes supporting ser-
vices such as an SQL database, message queue, and Network Time Protocol (NTP).

Optionally, the controller node runs portions of the Block Storage, Object Storage, and Orchestration
services.

3

https://docs.openstack.org/keystone/latest/install/
https://docs.openstack.org/neutron/latest/install/
https://docs.openstack.org/neutron/latest/install/
https://docs.openstack.org/kuryr-libnetwork/latest/install/

Zun Documentation, Release 16.1.0.dev4

The controller node requires a minimum of two network interfaces.

Compute

The compute node runs the engine portion of Zun that operates containers. By default, Zun uses Docker
as container engine. The compute node also runs a Networking service agent that connects containers to
virtual networks and provides firewalling services to instances via security groups.

You can deploy more than one compute node. Each node requires a minimum of two network interfaces.

Container service overview

The Container service consists of the following components:

zun-api
An OpenStack-native REST API that processes API requests by sending them to the zun-compute
over Remote Procedure Call (RPC).

zun-compute
A worker daemon that creates and terminates containers or capsules (pods) through container en-
gine API. Manage containers, capsules and compute resources in local host.

zun-wsproxy
Provides a proxy for accessing running containers through a websocket connection.

zun-cni-daemon
Provides a CNI daemon service that provides implementation for the Zun CNI plugin.

Optionally, one may wish to utilize the following associated projects for additional functionality:

python-zunclient
A command-line interface (CLI) and python bindings for interacting with the Container service.

zun-ui
The Horizon plugin for providing Web UI for Zun.

Install and configure controller node

This section describes how to install and configure the Container service on the controller node for Ubuntu
16.04 (LTS) and CentOS 7.

Prerequisites

Before you install and configure Zun, you must create a database, service credentials, and API endpoints.

1. To create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the zun database:

MariaDB [(none)] CREATE DATABASE zun;

• Grant proper access to the zun database:

4 Chapter 3. For Operators

https://docs.openstack.org/python-zunclient/latest/
https://docs.openstack.org/zun-ui/latest/

Zun Documentation, Release 16.1.0.dev4

MariaDB [(none)]> GRANT ALL PRIVILEGES ON zun.* TO 'zun'@'localhost'␣
↪→\
IDENTIFIED BY 'ZUN_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON zun.* TO 'zun'@'%' \
IDENTIFIED BY 'ZUN_DBPASS';

Replace ZUN_DBPASS with a suitable password.

• Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

• Create the zun user:

$ openstack user create --domain default --password-prompt zun
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	e0353a670a9e496da891347c589539e9
enabled	True
id	ca2e175b851943349be29a328cc5e360
name	zun
+-----------+----------------------------------+

• Add the admin role to the zun user:

$ openstack role add --project service --user zun admin

Note

This command provides no output.

• Create the zun service entities:

$ openstack service create --name zun \
--description "Container Service" container

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	Container Service
enabled	True
id	727841c6f5df4773baa4e8a5ae7d72eb
name	zun
type	container
+-------------+----------------------------------+

3.1. Installation 5

Zun Documentation, Release 16.1.0.dev4

4. Create the Container service API endpoints:

$ openstack endpoint create --region RegionOne \
container public http://controller:9517/v1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	3f4dab34624e4be7b000265f25049609
interface	public
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	zun
service_type	container
url	http://controller:9517/v1
+--------------+---+

$ openstack endpoint create --region RegionOne \
container internal http://controller:9517/v1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	9489f78e958e45cc85570fec7e836d98
interface	internal
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	zun
service_type	container
url	http://controller:9517/v1
+--------------+---+

$ openstack endpoint create --region RegionOne \
container admin http://controller:9517/v1

+--------------+---+
| Field | Value |
+--------------+---+
enabled	True
id	76091559514b40c6b7b38dde790efe99
interface	admin
region	RegionOne
region_id	RegionOne
service_id	727841c6f5df4773baa4e8a5ae7d72eb
service_name	zun
service_type	container
url	http://controller:9517/v1
+--------------+---+

6 Chapter 3. For Operators

Zun Documentation, Release 16.1.0.dev4

Install and configure components

1. Create zun user and necessary directories:

• Create user:

groupadd --system zun
useradd --home-dir "/var/lib/zun" \

--create-home \
--system \
--shell /bin/false \
-g zun \
zun

• Create directories:

mkdir -p /etc/zun
chown zun:zun /etc/zun

2. Install the following dependencies:

For Ubuntu, run:

apt-get install python3-pip git

For CentOS, run:

yum install python3-pip git python3-devel libffi-devel gcc openssl-devel

3. Clone and install zun:

cd /var/lib/zun
git clone https://opendev.org/openstack/zun.git
chown -R zun:zun zun
git config --global --add safe.directory /var/lib/zun/zun
cd zun
pip3 install -r requirements.txt
python3 setup.py install

4. Generate a sample configuration file:

su -s /bin/sh -c "oslo-config-generator \
--config-file etc/zun/zun-config-generator.conf" zun

su -s /bin/sh -c "cp etc/zun/zun.conf.sample \
/etc/zun/zun.conf" zun

5. Copy api-paste.ini:

su -s /bin/sh -c "cp etc/zun/api-paste.ini /etc/zun" zun

6. Edit the /etc/zun/zun.conf:

• In the [DEFAULT] section, configure RabbitMQ message queue access:

3.1. Installation 7

Zun Documentation, Release 16.1.0.dev4

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [api] section, configure the IP address that Zun API server is going to listen:

[api]
...
host_ip = 10.0.0.11
port = 9517

Replace 10.0.0.11 with the management interface IP address of the controller node if dif-
ferent.

• In the [database] section, configure database access:

[database]
...
connection = mysql+pymysql://zun:ZUN_DBPASS@controller/zun

Replace ZUN_DBPASS with the password you chose for the zun database.

• In the [keystone_auth] section, configure Identity service access:

[keystone_auth]
memcached_servers = controller:11211
www_authenticate_uri = http://controller:5000
project_domain_name = default
project_name = service
user_domain_name = default
password = ZUN_PASS
username = zun
auth_url = http://controller:5000
auth_type = password
auth_version = v3
auth_protocol = http
service_token_roles_required = True
endpoint_type = internalURL

• In the [keystone_authtoken] section, configure Identity service access:

[keystone_authtoken]
...
memcached_servers = controller:11211
www_authenticate_uri = http://controller:5000
project_domain_name = default
project_name = service
user_domain_name = default
password = ZUN_PASS

(continues on next page)

8 Chapter 3. For Operators

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

username = zun
auth_url = http://controller:5000
auth_type = password
auth_version = v3
auth_protocol = http
service_token_roles_required = True
endpoint_type = internalURL

Replace ZUN_PASS with the password you chose for the zun user in the Identity service.

• In the [oslo_concurrency] section, configure the lock_path:

[oslo_concurrency]
...
lock_path = /var/lib/zun/tmp

• In the [oslo_messaging_notifications] section, configure the driver:

[oslo_messaging_notifications]
...
driver = messaging

• In the [websocket_proxy] section, configure the IP address that the websocket proxy is
going to listen to:

[websocket_proxy]
...
wsproxy_host = 10.0.0.11
wsproxy_port = 6784
base_url = ws://controller:6784/

Note

This base_urlwill be used by end users to access the console of their containers so make
sure this URL is accessible from your intended users and the port 6784 is not blocked by
firewall.

Replace 10.0.0.11 with the management interface IP address of the controller node if dif-
ferent.

Note

Make sure that /etc/zun/zun.conf still have the correct permissions. You can set the per-
missions again with:

chown zun:zun /etc/zun/zun.conf

7. Populate Zun database:

3.1. Installation 9

Zun Documentation, Release 16.1.0.dev4

su -s /bin/sh -c "zun-db-manage upgrade" zun

Finalize installation

1. Create an upstart config, it could be named as /etc/systemd/system/zun-api.service:

Note

CentOS might install binary files into /usr/bin/. If it does, replace /usr/local/bin/ di-
rectory with the correct in the following example files.

[Unit]
Description = OpenStack Container Service API

[Service]
ExecStart = /usr/local/bin/zun-api
User = zun

[Install]
WantedBy = multi-user.target

2. Create an upstart config, it could be named as /etc/systemd/system/zun-wsproxy.service:

[Unit]
Description = OpenStack Container Service Websocket Proxy

[Service]
ExecStart = /usr/local/bin/zun-wsproxy
User = zun

[Install]
WantedBy = multi-user.target

3. Enable and start zun-api and zun-wsproxy:

systemctl enable zun-api
systemctl enable zun-wsproxy

systemctl start zun-api
systemctl start zun-wsproxy

4. Verify that zun-api and zun-wsproxy services are running:

systemctl status zun-api
systemctl status zun-wsproxy

10 Chapter 3. For Operators

Zun Documentation, Release 16.1.0.dev4

Install and configure a compute node

This section describes how to install and configure the Compute service on a compute node.

Note

This section assumes that you are following the instructions in this guide step-by-step to configure
the first compute node. If you want to configure additional compute nodes, prepare them in a similar
fashion. Each additional compute node requires a unique IP address.

Prerequisites

Before you install and configure Zun, you must have Docker and Kuryr-libnetwork installed properly in
the compute node. Refer Get Docker for Docker installation and Kuryr libnetwork installation guide

Install and configure components

1. Create zun user and necessary directories:

• Create user:

groupadd --system zun
useradd --home-dir "/var/lib/zun" \

--create-home \
--system \
--shell /bin/false \
-g zun \
zun

• Create directories:

mkdir -p /etc/zun
chown zun:zun /etc/zun

• Create CNI directories:

mkdir -p /etc/cni/net.d
chown zun:zun /etc/cni/net.d

2. Install the following dependencies:

For Ubuntu, run:

apt-get install python3-pip git numactl

For CentOS, run:

yum install python3-pip git python3-devel libffi-devel gcc openssl-
↪→devel numactl

3. Clone and install zun:

3.1. Installation 11

https://docs.docker.com/engine/install#supported-platforms
https://docs.openstack.org/kuryr-libnetwork/latest/install

Zun Documentation, Release 16.1.0.dev4

cd /var/lib/zun
git clone https://opendev.org/openstack/zun.git
chown -R zun:zun zun
git config --global --add safe.directory /var/lib/zun/zun
cd zun
pip3 install -r requirements.txt
python3 setup.py install

4. Generate a sample configuration file:

su -s /bin/sh -c "oslo-config-generator \
--config-file etc/zun/zun-config-generator.conf" zun

su -s /bin/sh -c "cp etc/zun/zun.conf.sample \
/etc/zun/zun.conf" zun

su -s /bin/sh -c "cp etc/zun/rootwrap.conf \
/etc/zun/rootwrap.conf" zun

su -s /bin/sh -c "mkdir -p /etc/zun/rootwrap.d" zun
su -s /bin/sh -c "cp etc/zun/rootwrap.d/* \

/etc/zun/rootwrap.d/" zun
su -s /bin/sh -c "cp etc/cni/net.d/* /etc/cni/net.d/" zun

5. Configure sudoers for zun users:

Note

CentOS might install binary files into /usr/bin/. If it does, replace /usr/local/bin/ di-
rectory with the correct in the following command.

echo "zun ALL=(root) NOPASSWD: /usr/local/bin/zun-rootwrap \
/etc/zun/rootwrap.conf *" | sudo tee /etc/sudoers.d/zun-rootwrap

6. Edit the /etc/zun/zun.conf:

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [DEFAULT] section, configure the path that is used by Zun to store the states:

[DEFAULT]
...
state_path = /var/lib/zun

• In the [database] section, configure database access:

12 Chapter 3. For Operators

Zun Documentation, Release 16.1.0.dev4

[database]
...
connection = mysql+pymysql://zun:ZUN_DBPASS@controller/zun

Replace ZUN_DBPASS with the password you chose for the zun database.

• In the [keystone_auth] section, configure Identity service access:

[keystone_auth]
memcached_servers = controller:11211
www_authenticate_uri = http://controller:5000
project_domain_name = default
project_name = service
user_domain_name = default
password = ZUN_PASS
username = zun
auth_url = http://controller:5000
auth_type = password
auth_version = v3
auth_protocol = http
service_token_roles_required = True
endpoint_type = internalURL

• In the [keystone_authtoken] section, configure Identity service access:

[keystone_authtoken]
...
memcached_servers = controller:11211
www_authenticate_uri= http://controller:5000
project_domain_name = default
project_name = service
user_domain_name = default
password = ZUN_PASS
username = zun
auth_url = http://controller:5000
auth_type = password

Replace ZUN_PASS with the password you chose for the zun user in the Identity service.

• In the [oslo_concurrency] section, configure the lock_path:

[oslo_concurrency]
...
lock_path = /var/lib/zun/tmp

• (Optional) If you want to run both containers and nova instances in this compute node, in the
[compute] section, configure the host_shared_with_nova:

[compute]
...
host_shared_with_nova = true

3.1. Installation 13

Zun Documentation, Release 16.1.0.dev4

Note

Make sure that /etc/zun/zun.conf still have the correct permissions. You can set the per-
missions again with:

chown zun:zun /etc/zun/zun.conf

7. Configure Docker and Kuryr:

• Create the directory /etc/systemd/system/docker.service.d

mkdir -p /etc/systemd/system/docker.service.d

• Create the file /etc/systemd/system/docker.service.d/docker.conf. Configure
docker to listen to port 2375 as well as the default unix socket:

[Service]
ExecStart=
ExecStart=/usr/bin/dockerd --group zun -H tcp://compute1:2375 -H␣
↪→unix:///var/run/docker.sock

• Restart Docker:

systemctl daemon-reload
systemctl restart docker

• Edit the Kuryr config file /etc/kuryr/kuryr.conf. Set
process_external_connectivity to False:

[DEFAULT]
...
process_external_connectivity = False

• Restart Kuryr-libnetwork:

systemctl restart kuryr-libnetwork

8. Configure containerd:

• Generate config file for containerd:

containerd config default > /etc/containerd/config.toml

• Edit the /etc/containerd/config.toml. In the [grpc] section, configure the gid as the
group ID of the zun user:

[grpc]
...
gid = ZUN_GROUP_ID

Replace ZUN_GROUP_ID with the real group ID of zun user. You can retrieve the ID by (for
example):

14 Chapter 3. For Operators

Zun Documentation, Release 16.1.0.dev4

getent group zun | cut -d: -f3

Note

Make sure that /etc/containerd/config.toml still have the correct permissions. You
can set the permissions again with:

chown zun:zun /etc/containerd/config.toml

• Restart containerd:

systemctl restart containerd

9. Configure CNI:

• Download and install the standard loopback plugin:

mkdir -p /opt/cni/bin
curl -L https://github.com/containernetworking/plugins/releases/
↪→download/v0.7.1/cni-plugins-amd64-v0.7.1.tgz \

| tar -C /opt/cni/bin -xzvf - ./loopback

• Install the Zun CNI plugin:

install -o zun -m 0555 -D /usr/local/bin/zun-cni /opt/cni/bin/zun-
↪→cni

Note

CentOS might install binary files into /usr/bin/. If it does, replace /usr/local/bin/
zun-cni with the correct path in the command above.

Finalize installation

1. Create an upstart config for zun compute, it could be named as /etc/systemd/system/
zun-compute.service:

Note

CentOS might install binary files into /usr/bin/. If it does, replace /usr/local/bin/ di-
rectory with the correct in the following example file.

[Unit]
Description = OpenStack Container Service Compute Agent

[Service]
ExecStart = /usr/local/bin/zun-compute
User = zun

(continues on next page)

3.1. Installation 15

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

[Install]
WantedBy = multi-user.target

2. Create an upstart config for zun cni daemon, it could be named as /etc/systemd/system/
zun-cni-daemon.service:

Note

CentOS might install binary files into /usr/bin/, If it does, replace /usr/local/bin/ di-
rectory with the correct in the following example file.

[Unit]
Description = OpenStack Container Service CNI daemon

[Service]
ExecStart = /usr/local/bin/zun-cni-daemon
User = zun

[Install]
WantedBy = multi-user.target

3. Enable and start zun-compute:

systemctl enable zun-compute
systemctl start zun-compute

4. Enable and start zun-cni-daemon:

systemctl enable zun-cni-daemon
systemctl start zun-cni-daemon

5. Verify that zun-compute and zun-cni-daemon services are running:

systemctl status zun-compute
systemctl status zun-cni-daemon

Enable Kata Containers (Optional)

By default, runc is used as the container runtime. If you want to use Kata Containers instead, this section
describes the additional configuration steps.

Note

Kata Containers requires nested virtualization or bare metal. See the official document for details.

1. Enable the repository for Kata Containers:

For Ubuntu, run:

16 Chapter 3. For Operators

https://github.com/kata-containers/documentation/tree/master/install#prerequisites

Zun Documentation, Release 16.1.0.dev4

curl -sL http://download.opensuse.org/repositories/home:/
↪→katacontainers:/releases:/$(arch):/master/xUbuntu_$(lsb_release -rs)/
↪→Release.key | apt-key add -
add-apt-repository "deb http://download.opensuse.org/repositories/home:/
↪→katacontainers:/releases:/$(arch):/master/xUbuntu_$(lsb_release -rs)/ /"

For CentOS, run:

yum-config-manager --add-repo "http://download.opensuse.org/
↪→repositories/home:/katacontainers:/releases:/$(arch):/master/CentOS_7/
↪→home:katacontainers:releases:$(arch):master.repo"

2. Install Kata Containers:

For Ubuntu, run:

apt-get update
apt install kata-runtime kata-proxy kata-shim

For CentOS, run:

yum install kata-runtime kata-proxy kata-shim

3. Configure Docker to add Kata Container as runtime:

• Edit the file /etc/systemd/system/docker.service.d/docker.conf. Append
--add-runtime option to add kata-runtime to Docker:

[Service]
ExecStart=
ExecStart=/usr/bin/dockerd --group zun -H tcp://compute1:2375 -H␣
↪→unix:///var/run/docker.sock --add-runtime kata=/usr/bin/kata-
↪→runtime

• Restart Docker:

systemctl daemon-reload
systemctl restart docker

4. Configure containerd to add Kata Containers as runtime:

• Edit the /etc/containerd/config.toml. In the [plugins.cri.containerd] section,
add the kata runtime configuration:

[plugins]
...
[plugins.cri]

...
[plugins.cri.containerd]
...
[plugins.cri.containerd.runtimes.kata]

runtime_type = "io.containerd.kata.v2"

• Restart containerd:

3.1. Installation 17

Zun Documentation, Release 16.1.0.dev4

systemctl restart containerd

5. Configure Zun to use Kata runtime:

• Edit the /etc/zun/zun.conf. In the [DEFAULT] section, configure container_runtime
as kata:

[DEFAULT]
...
container_runtime = kata

• Restart zun-compute:

systemctl restart zun-compute

Verify operation

Verify operation of the Container service.

Note

Perform these commands on the controller node.

1. Install python-zunclient:

pip3 install python-zunclient

2. Source the admin tenant credentials:

$. admin-openrc

3. List service components to verify successful launch and registration of each process:

$ openstack appcontainer service list
+----+-----------------------+-------------+-------+----------+-----------
↪→------+---------------------------+--------------------+
| Id | Host | Binary | State | Disabled | Disabled␣
↪→Reason | Updated At | Availability Zone |
+----+-----------------------+-------------+-------+----------+-----------
↪→------+---------------------------+--------------------+
| 1 | localhost.localdomain | zun-compute | up | False | None ␣
↪→ | 2018-03-13 14:15:40+00:00 | nova |
+----+-----------------------+-------------+-------+----------+-----------
↪→------+---------------------------+--------------------+

Launch a container

In environments that include the Container service, you can launch a container.

1. Source the demo credentials to perform the following steps as a non-administrative project:

$. demo-openrc

18 Chapter 3. For Operators

Zun Documentation, Release 16.1.0.dev4

2. Determine available networks.

$ openstack network list
+--------------------------------------+-------------+--------------------
↪→------------------+
| ID | Name | Subnets ␣
↪→ |
+--------------------------------------+-------------+--------------------
↪→------------------+
| 4716ddfe-6e60-40e7-b2a8-42e57bf3c31c | selfservice | 2112d5eb-f9d6-45fd-
↪→906e-7cabd38b7c7c |
| b5b6993c-ddf9-40e7-91d0-86806a42edb8 | provider | 310911f6-acf0-4a47-
↪→824e-3032916582ff |
+--------------------------------------+-------------+--------------------
↪→------------------+

Note

This output may differ from your environment.

3. Set the NET_ID environment variable to reflect the ID of a network. For example, using the self-
service network:

$ export NET_ID=$(openstack network list | awk '/ selfservice / { print
↪→$2 }')

4. Run a CirrOS container on the selfservice network:

$ openstack appcontainer run --name container --net network=$NET_ID␣
↪→cirros ping 8.8.8.8

5. After a short time, verify successful creation of the container:

$ openstack appcontainer list
+--------------------------------------+-----------+--------+---------+---
↪→---------+---+-------+
| uuid | name | image | status |␣
↪→task_state | addresses | ports |
+--------------------------------------+-----------+--------+---------+---
↪→---------+---+-------+
| 4ec10d48-1ed8-492a-be5a-402be0abc66a | container | cirros | Running |␣
↪→None | 10.0.0.11, fd13:fd51:ebe8:0:f816:3eff:fe9c:7612 | [] |
+--------------------------------------+-----------+--------+---------+---
↪→---------+---+-------+

6. Access the container and verify access to the internet:

$ openstack appcontainer exec --interactive container /bin/sh
ping -c 4 openstack.org
exit

3.1. Installation 19

Zun Documentation, Release 16.1.0.dev4

7. Stop and delete the container.

$ openstack appcontainer stop container
$ openstack appcontainer delete container

Next steps

Your OpenStack environment now includes the zun service.

To add more services, see the additional documentation on installing OpenStack .

To learn more about the zun service, read the Zun developer documentation.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorial.

20 Chapter 3. For Operators

https://docs.openstack.org/latest/install/
https://docs.openstack.org/zun/latest/
https://docs.openstack.org/install-guide/

CHAPTER

FOUR

FOR CONTRIBUTORS

If you are new to Zun, the developer quick-start guide should help you quickly setup the development
environment and get started. There are also a number of technical references on various topics collected
in contributors guide.

4.1 Developer Quick-Start
This is a quick walkthrough to get you started developing code for Zun. This assumes you are already
familiar with submitting code reviews to an OpenStack project.

See also

https://docs.openstack.org/infra/manual/developers.html

4.1.1 Exercising the Services Using Devstack
This session has been tested on Ubuntu 16.04 (Xenial) only.

Clone devstack:

Create a root directory for devstack if needed
$ sudo mkdir -p /opt/stack
$ sudo chown $USER /opt/stack
$ git clone https://opendev.org/openstack/devstack /opt/stack/devstack

We will run devstack with minimal local.conf settings required to enable required OpenStack services:

$ HOST_IP=<your ip>
$ git clone https://opendev.org/openstack/zun /opt/stack/zun
$ cat /opt/stack/zun/devstack/local.conf.sample \

| sed "s/HOST_IP=.*/HOST_IP=$HOST_IP/" \
> /opt/stack/devstack/local.conf

More devstack configuration information can be found at Devstack Configuration

More neutron configuration information can be found at Devstack Neutron Configuration

Run devstack:

$ cd /opt/stack/devstack
$./stack.sh

21

https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/devstack/latest/configuration.html
https://docs.openstack.org/devstack/latest/guides/neutron.html

Zun Documentation, Release 16.1.0.dev4

Note

If the developer have a previous devstack environment and they want to re-stack the environment,
they need to uninstall the pip packages before restacking:

$./unstack.sh
$./clean.sh
$ pip freeze | grep -v '^\-e' | xargs sudo pip uninstall -y
$./stack.sh

Prepare your session to be able to use the various openstack clients including nova, neutron, and glance.
Create a new shell, and source the devstack openrc script:

$ source /opt/stack/devstack/openrc admin admin

4.1.2 Using the service
We will create and run a container that pings the address 8.8.8.8 four times:

$ zun run --name test cirros ping -c 4 8.8.8.8

Above command will use the Docker image cirros from DockerHub which is a public image repository.
Alternatively, you can use Docker image from Glance which serves as a private image repository:

$ docker pull cirros
$ docker save cirros | openstack image create cirros --public --container-
↪→format docker --disk-format raw
$ zun run --image-driver glance cirros ping -c 4 8.8.8.8

You should see a similar output to:

$ zun list
+--------------------------------------+------+--------+---------+----------

↪→--+------------+-------+
| uuid | name | image | status | task_

↪→state | addresses | ports |
+--------------------------------------+------+--------+---------+----------

↪→--+------------+-------+
| 46dd001b-7474-412c-a0f4-7adc047aaedf | test | cirros | Stopped | None ␣

↪→ | 172.17.0.2 | [] |
+--------------------------------------+------+--------+---------+----------

↪→--+------------+-------+

$ zun logs test
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 8.8.8.8: seq=0 ttl=40 time=25.513 ms
64 bytes from 8.8.8.8: seq=1 ttl=40 time=25.348 ms
64 bytes from 8.8.8.8: seq=2 ttl=40 time=25.226 ms
64 bytes from 8.8.8.8: seq=3 ttl=40 time=25.275 ms

--- 8.8.8.8 ping statistics ---
(continues on next page)

22 Chapter 4. For Contributors

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 25.226/25.340/25.513 ms

Delete the container:

$ zun delete test

4.2 Contributors Guide
In this section you will find information on how to contribute to Zun. Content includes architectural
overviews, tips and tricks for setting up a development environment, and information on Cinders lower
level programming APIs.

4.2.1 HowTos and Tutorials
If you are new to Zun, this section contains information that should help you quickly get started.

There are documents that should help you develop and contribute to the project.

So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Zun.

Communication

• IRC channel: #openstack-zun

• Mailing lists prefix: [zun]

• Office Hours:

This is general Zun team meeting. Anyone can bring up a topic to discuss with the Zun team.

– time: http://eavesdrop.openstack.org/#Zun_Team_Meeting

Contacting the Core Team

The list of current Zun core reviewers is available on gerrit.

New Feature Planning

Zun team uses Launchpad to propose new features. A blueprint should be submitted in Launchpad first.
Such blueprints need to be discussed and approved by the Zun driver team

Task Tracking

We track our tasks in Launchpad

https://bugs.launchpad.net/zun

4.2. Contributors Guide 23

https://docs.openstack.org/contributors/
http://eavesdrop.openstack.org/#Zun_Team_Meeting
https://review.opendev.org/#/admin/groups/1382,members
https://launchpad.net/~zun-drivers
https://bugs.launchpad.net/zun

Zun Documentation, Release 16.1.0.dev4

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad.

Getting Your Patch Merged

All changes proposed to the Zun project require one or two +2 votes from Zun core reviewers before one
of the core reviewers can approve patch by giving Workflow +1 vote.

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

Installing the API via WSGI

This document provides two WSGI deployments as examples: uwsgi and mod_wsgi.

See also

https://governance.openstack.org/tc/goals/pike/deploy-api-in-wsgi.html#uwsgi-vs-mod-wsgi

Installing the API behind mod_wsgi

Zun comes with a few example files for configuring the API service to run behind Apache with mod_wsgi.

app.wsgi

The file zun/api/app.wsgi sets up the V2 API WSGI application. The file is installed with the rest of
the zun application code, and should not need to be modified.

etc/apache2/zun.conf

The etc/apache2/zun.conf file contains example settings that work with a copy of zun installed via
devstack.

Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

This is an example Apache2 configuration file for using the
(continues on next page)

24 Chapter 4. For Contributors

https://bugs.launchpad.net/zun
https://docs.openstack.org/project-team-guide/ptl.html
https://governance.openstack.org/tc/goals/pike/deploy-api-in-wsgi.html#uwsgi-vs-mod-wsgi

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

zun API through mod_wsgi.

Note: If you are using a Debian-based system then the paths
"/var/log/httpd" and "/var/run/httpd" will use "apache2" instead
of "httpd".
#
The number of processes and threads is an example only and should
be adjusted according to local requirements.

Listen %PUBLICPORT%
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\" %D(us)
↪→" zun_combined

<VirtualHost *:%PUBLICPORT%>
WSGIDaemonProcess zun-api user=%USER% processes=5 threads=1 display-name=%

↪→{GROUP}
WSGIScriptAlias / %PUBLICWSGI%
WSGIProcessGroup zun-api
ErrorLogFormat "%M"
ErrorLog /var/log/%APACHE_NAME%/zun_api.log
LogLevel info
CustomLog /var/log/%APACHE_NAME%/zun_access.log zun_combined

<Directory /opt/stack/zun/zun/api>
WSGIProcessGroup zun-api
WSGIApplicationGroup %{GLOBAL}
AllowOverride All
Require all granted

</Directory>
</VirtualHost>

1. On deb-based systems copy or symlink the file to /etc/apache2/sites-available. For rpm-
based systems the file will go in /etc/httpd/conf.d.

2. Modify the WSGIDaemonProcess directive to set the user and group values to an appropriate user
on your server. In many installations zun will be correct. Modify the WSGIScriptAlias directive
to set the path of the wsgi script. If you are using devstack, the value should be /opt/stack/zun/
zun/api/app.wsgi. In the ErrorLog and CustomLog directives, replace %APACHE_NAME% with
apache2.

3. Enable the zun site. On deb-based systems:

$ a2ensite zun
$ service apache2 reload

On rpm-based systems:

4.2. Contributors Guide 25

Zun Documentation, Release 16.1.0.dev4

$ service httpd reload

Installing the API with uwsgi

Create zun-uwsgi.ini file:

[uwsgi]
http = 0.0.0.0:9517
wsgi-file = <path_to_zun>/zun/api/app.wsgi
plugins = python
This is running standalone
master = true
Set die-on-term & exit-on-reload so that uwsgi shuts down
exit-on-reload = true
die-on-term = true
uwsgi recommends this to prevent thundering herd on accept.
thunder-lock = true
Override the default size for headers from the 4k default. (mainly for␣
↪→keystone token)
buffer-size = 65535
enable-threads = true
Set the number of threads usually with the returns of command nproc
threads = 8
Make sure the client doesn't try to re-use the connection.
add-header = Connection: close
Set uid and gip to a appropriate user on your server. In many
installations ``zun`` will be correct.
uid = zun
gid = zun

Then start the uwsgi server:

uwsgi ./zun-uwsgi.ini

Or start in background with:

uwsgi -d ./zun-uwsgi.ini

Run tempest tests locally

This is a guide for developers who want to run tempest tests in their local machine.

Zun contains a suite of tempest tests in the zun/tests/tempest directory. Tempest tests are primary for
testing integration between Zun and its depending software stack (i.e. Docker, other OpenStack services).
Any proposed code change will be automatically rejected by the gate if the change causes tempest test
failures. If this happens, contributors are suggested to refer this document to re-run the tests locally and
perform any necessary trouble-shooting.

26 Chapter 4. For Contributors

Zun Documentation, Release 16.1.0.dev4

Prerequisite

You need to deploy Zun in a devstack environment.

Refer the Exercising the Services Using Devstack session at Developer Quick-Start Guide for
details.

Run the test

Edit /opt/stack/tempest/etc/tempest.conf:

• Add the [container_service] section, configure min_microversion and
max_microversion:

[container_service]
min_microversion=1.26
max_microversion=1.26

Note

You might need to modify the min/max microversion based on your test environment.

Navigate to tempest directory:

cd /opt/stack/tempest

Run this command:

tempest run --regex zun_tempest_plugin.tests.tempest.api

To run a single test case, run with the test case name, for example:

tempest run --regex zun_tempest_plugin.tests.tempest.api.test_containers.
↪→TestContainer.test_list_containers

Run unit tests

This is a guide for developers who want to run unit tests in their local machine.

Prerequisite

Zun source code should be pulled directly from git:

from your home or source directory
cd ~
git clone https://opendev.org/openstack/zun
cd zun

Install the prerequisite packages listed in the bindep.txt file.

On Debian-based distributions (e.g., Debian/Mint/Ubuntu):

4.2. Contributors Guide 27

https://docs.openstack.org/zun/latest/contributor/quickstart.html#exercising-the-services-using-devstack

Zun Documentation, Release 16.1.0.dev4

Ubuntu/Debian (recommend Ubuntu 16.04):
sudo apt-get update
sudo apt-get install python-pip
sudo pip install tox
tox -e bindep
sudo apt-get install <indicated missing package names>

On Fedora-based distributions (e.g., Fedora/RHEL/CentOS/Scientific Linux):

sudo yum install python-pip
sudo pip install tox
tox -e bindep
sudo yum install <indicated missing package names>

On openSUSE-based distributions (SLES 12, openSUSE Leap 42.1 or Tumbleweed):

sudo zypper in python-pip
sudo pip install tox
tox -e bindep
sudo zypper in <indicated missing package names>

Running the tests

All unit tests should be run using tox. To run Zuns entire test suite:

run all tests (unit and pep8)
tox

To run a specific test, use a positional argument for the unit tests:

run a specific test for Python 2.7
tox -epy27 -- test_container

You may pass options to the test programs using positional arguments:

run all the Python 2.7 unit tests (in parallel!)
tox -epy27 -- --parallel

To run only the pep8/flake8 syntax and style checks:

tox -epep8

Multi-host Devstack

This is a guide for developers who want to setup Zun in more than one hosts.

Prerequisite

You need to deploy Zun in a devstack environment in the first host.

Refer the Exercising the Services Using Devstack session at Developer Quick-Start Guide for
details.

28 Chapter 4. For Contributors

https://docs.openstack.org/zun/latest/contributor/quickstart.html#exercising-the-services-using-devstack

Zun Documentation, Release 16.1.0.dev4

Enable additional zun host

Refer to the Multi-Node lab for more information.

On the second host, clone devstack:

Create a root directory for devstack if needed
$ sudo mkdir -p /opt/stack
$ sudo chown $USER /opt/stack

$ git clone https://opendev.org/openstack/devstack /opt/stack/devstack

The second host will only need zun-compute service along with kuryr-libnetwork support. You also need
to tell devstack where the SERVICE_HOST is:

$ SERVICE_HOST=<controller's ip>
$ HOST_IP=<your ip>
$ git clone https://opendev.org/openstack/zun /opt/stack/zun
$ cat /opt/stack/zun/devstack/local.conf.subnode.sample \

| sed "s/HOST_IP=.*/HOST_IP=$HOST_IP/" \
| sed "s/SERVICE_HOST=.*/SERVICE_HOST=$SERVICE_HOST/" \
> /opt/stack/devstack/local.conf

Run devstack:

$ cd /opt/stack/devstack
$./stack.sh

On the controller host, you can see 2 zun-compute hosts available:

$ zun service-list
+----+-------------+-------------+-------+----------+-----------------+-------
↪→--------------------+---------------------------+
| Id | Host | Binary | State | Disabled | Disabled Reason |␣
↪→Updated At | Availability Zone |
+----+-------------+-------------+-------+----------+-----------------+-------
↪→--------------------+---------------------------+
| 1 | zun-hosts-1 | zun-compute | up | False | None | 2018-
↪→03-13 14:15:40+00:00 | Nova |
| 2 | zun-hosts-2 | zun-compute | up | False | None | 2018-
↪→03-13 14:15:41+00:00 | Nova |
+----+-------------+-------------+-------+----------+-----------------+-------
↪→--------------------+---------------------------+

There are some other important documents also that helps new contributors to contribute effectively
towards code standards to the project.

API Microversions

Background

Zun uses a framework we call API Microversions for allowing changes to the API while preserving
backward compatibility. The basic idea is that a user has to explicitly ask for their request to be treated
with a particular version of the API. So breaking changes can be added to the API without breaking users

4.2. Contributors Guide 29

https://docs.openstack.org/devstack/latest/guides/multinode-lab.html

Zun Documentation, Release 16.1.0.dev4

who dont specifically ask for it. This is done with an HTTP header OpenStack-API-Version which
has as its value a string containing the name of the service, container, and a monotonically increasing
semantic version number starting from 1.1. The full form of the header takes the form:

OpenStack-API-Version: container 1.1

If a user makes a request without specifying a version, they will get the BASE_VER as defined in zun/
api/controllers/versions.py. This value is currently 1.1 and is expected to remain so for quite a
long time.

When do I need a new Microversion?

A microversion is needed when the contract to the user is changed. The user contract covers many kinds
of information such as:

• the Request

– the list of resource urls which exist on the server

Example: adding a new container/{ID}/foo which didnt exist in a previous version of the
code

– the list of query parameters that are valid on urls

Example: adding a new parameter is_yellow container/{ID}?is_yellow=True

– the list of query parameter values for non free form fields

Example: parameter filter_by takes a small set of constants/enums A, B, C. Adding support
for new enum D.

– new headers accepted on a request

– the list of attributes and data structures accepted.

Example: adding a new attribute locked: True/False to the request body

• the Response

– the list of attributes and data structures returned

Example: adding a new attribute locked: True/False to the output of container/{ID}

– the allowed values of non free form fields

Example: adding a new allowed status to container/{ID}

– the list of status codes allowed for a particular request

Example: an API previously could return 200, 400, 403, 404 and the change would make the
API now also be allowed to return 409.

30 Chapter 4. For Contributors

Zun Documentation, Release 16.1.0.dev4

See2 for the 400, 403, 404 and 415 cases.

– changing a status code on a particular response

Example: changing the return code of an API from 501 to 400.

Note

Fixing a bug so that a 400+ code is returned rather than a 500 or 503 does not require
a microversion change. Its assumed that clients are not expected to handle a 500 or 503
response and therefore should not need to opt-in to microversion changes that fixes a 500
or 503 response from happening. According to the OpenStack API Working Group, a 500
Internal Server Error should not be returned to the user for failures due to user error
that can be fixed by changing the request on the client side. See1.

– new headers returned on a response

The following flow chart attempts to walk through the process of do we need a microversion.
2 The exception to not needing a microversion when returning a previously unspecified error code is the 400, 403, 404

and 415 cases. This is considered OK to return even if previously unspecified in the code since its implied given keystone
authentication can fail with a 403 and API validation can fail with a 400 for invalid JSON request body. Request to url/resource
that does not exist always fails with 404. Invalid content types are handled before API methods are called which results in a
415.

Note

When in doubt about whether or not a microversion is required for changing an error response code, consult the
Zun Team.

1 When fixing 500 errors that previously caused stack traces, try to map the new error into the existing set of errors that
API call could previously return (400 if nothing else is appropriate). Changing the set of allowed status codes from a request is
changing the contract, and should be part of a microversion (except in2).

The reason why we are so strict on contract is that wed like application writers to be able to know, for sure, what the contract is
at every microversion in Zun. If they do not, they will need to write conditional code in their application to handle ambiguities.

When in doubt, consider application authors. If it would work with no client side changes on both Zun versions, you probably
dont need a microversion. If, on the other hand, there is any ambiguity, a microversion is probably needed.

4.2. Contributors Guide 31

https://wiki.openstack.org/wiki/Zun

Zun Documentation, Release 16.1.0.dev4

Do I need a microversion?

Did we silently
fail to do what is asked?

Did we return a 500
before?

 no

No microversion needed, it's
a bug

yes

Are we changing what
 status code is returned?

 no

yes [1]

Did we add or remove an
 attribute to a payload?

 no

Yes, you need a microversion

yes

Did we add or remove
 an accepted query string parameter or value?

 no

yes

Did we add or remove a
resource url?

 no

yes

No microversion needed

 no

yes

Footnotes

When a microversion is not needed

A microversion is not needed in the following situation:

• the response

– Changing the error message without changing the response code does not require a new mi-
croversion.

– Removing an inapplicable HTTP header, for example, suppose the Retry-After HTTP header
is being returned with a 4xx code. This header should only be returned with a 503 or 3xx
response, so it may be removed without bumping the microversion.

32 Chapter 4. For Contributors

Zun Documentation, Release 16.1.0.dev4

In Code

In zun/api/controllers/base.py we define an @api_version decorator which is intended to be
used on top-level Controller methods. It is not appropriate for lower-level methods. Some examples:

Adding a new API method

In the controller class:

@base.Controller.api_version("1.2")
def my_api_method(self, req, id):

....

This method would only be available if the caller had specified an OpenStack-API-Version of >= 1.2.
If they had specified a lower version (or not specified it and received the default of 1.1) the server would
respond with HTTP/406.

Removing an API method

In the controller class:

@base.Controller.api_version("1.2", "1.3")
def my_api_method(self, req, id):

....

This method would only be available if the caller had specified an OpenStack-API-Version of >= 1.
2 and OpenStack-API-Version of <= 1.3. If 1.4 or later is specified the server will respond with
HTTP/406.

Changing a methods behavior

In the controller class:

@base.Controller.api_version("1.2", "1.3")
def my_api_method(self, req, id):

.... method_1 ...

@base.Controller.api_version("1.4") # noqa
def my_api_method(self, req, id):

.... method_2 ...

If a caller specified 1.2, 1.3 (or received the default of 1.1) they would see the result from method_1,
and for 1.4 or later they would see the result from method_2.

It is vital that the two methods have the same name, so the second of them will need # noqa to avoid
failing flake8s F811 rule. The two methods may be different in any kind of semantics (schema validation,
return values, response codes, etc)

4.2. Contributors Guide 33

Zun Documentation, Release 16.1.0.dev4

When not using decorators

When you dont want to use the @api_version decorator on a method or you want to change behavior
within a method (say it leads to simpler or simply a lot less code) you can directly test for the requested
version with a method as long as you have access to the api request object (commonly accessed with
pecan.request). Every API method has an versions object attached to the request object and that can
be used to modify behavior based on its value:

def index(self):
<common code>

req_version = pecan.request.version
req1_min = versions.Version('', '', '', "1.1")
req1_max = versions.Version('', '', '', "1.5")
req2_min = versions.Version('', '', '', "1.6")
req2_max = versions.Version('', '', '', "1.10")

if req_version.matches(req1_min, req1_max):
....stuff....

elif req_version.matches(req2min, req2_max):
....other stuff....

elif req_version > versions.Version("1.10"):
....more stuff.....

<common code>

The first argument to the matches method is the minimum acceptable version and the second is maximum
acceptable version. If the specified minimum version and maximum version are null then ValueError
is returned.

Other necessary changes

If you are adding a patch which adds a new microversion, it is necessary to add changes to other places
which describe your change:

• Update REST_API_VERSION_HISTORY in zun/api/controllers/versions.py

• Update CURRENT_MAX_VER in zun/api/controllers/versions.py

• Add a verbose description to zun/api/rest_api_version_history.rst. There should be
enough information that it could be used by the docs team for release notes.

• Update min_microversion in .zuul.yaml.

• Update the expected versions in affected tests, for example in zun/tests/unit/api/
controllers/test_root.py.

• Update CURRENT_VERSION in zun/tests/unit/api/base.py.

• Make a new commit to python-zunclient and update corresponding files to enable the newly added
microversion API.

• If the microversion changes the response schema, a new schema and test for the microversion must
be added to Tempest.

34 Chapter 4. For Contributors

Zun Documentation, Release 16.1.0.dev4

Allocating a microversion

If you are adding a patch which adds a new microversion, it is necessary to allocate the next microversion
number. Except under extremely unusual circumstances and this would have been mentioned in the zun
spec for the change, the minor number of CURRENT_MAX_VER will be incremented. This will also be the
new microversion number for the API change.

It is possible that multiple microversion patches would be proposed in parallel and the microversions
would conflict between patches. This will cause a merge conflict. We dont reserve a microversion for
each patch in advance as we dont know the final merge order. Developers may need over time to rebase
their patch calculating a new version number as above based on the updated value of CURRENT_MAX_VER.

Licensed under the Apache License, Version 2.0 (the License); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the Li-
cense is distributed on an AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Versioned Objects

Zun uses the oslo.versionedobjects library to construct an object model that can be communicated via
RPC. These objects have a version history and functionality to convert from one version to a previous
version. This allows for 2 different levels of the code to still pass objects to each other, as in the case of
rolling upgrades.

Object Version Testing

In order to ensure object versioning consistency is maintained, oslo.versionedobjects has a fixture to aid
in testing object versioning. oslo.versionedobjects.fixture.ObjectVersionChecker generates fingerprints
of each object, which is a combination of the current version number of the object, along with a hash of
the RPC-critical parts of the object (fields and remotable methods).

The tests hold a static mapping of the fingerprints of all objects. When an object is changed, the hash
generated in the test will differ from that held in the static mapping. This will signal to the developer
that the version of the object needs to be increased. Following this version increase, the fingerprint that
is then generated by the test can be copied to the static mapping in the tests. This symbolizes that if the
code change is approved, this is the new state of the object to compare against.

Object Change Example

The following example shows the unit test workflow when changing an object (Container was updated to
hold a new foo field):

tox -e py27 zun.tests.unit.objects.test_objects

This results in a unit test failure with the following output:

testtools.matchers._impl.MismatchError: !=:
reference = {'Container': '1.0-35edde13ad178e9419e7ea8b6d580bcd'}
actual = {'Container': '1.0-22b40e8eed0414561ca921906b189820'}

4.2. Contributors Guide 35

http://www.apache.org/licenses/LICENSE-2.0
https://docs.openstack.org/oslo.versionedobjects/latest/
https://docs.openstack.org/oslo.versionedobjects/latest/reference/fixture.html#objectversionchecker

Zun Documentation, Release 16.1.0.dev4

: Fields or remotable methods in some objects have changed. Make␣
↪→sure the versions of the objects has been bumped, and update the␣
↪→hashes in the static fingerprints tree (object_data). For more␣
↪→information, read https://docs.openstack.org/zun/latest/.

This is an indication that me adding the foo field to Container means I need to bump the version of
Container, so I increase the version and add a comment saying what I changed in the new version:

@base.ZunObjectRegistry.register
class Container(base.ZunPersistentObject, base.ZunObject,

base.ZunObjectDictCompat):
Version 1.0: Initial version
Version 1.1: Add container_id column
Version 1.2: Add memory column
Version 1.3: Add task_state column
Version 1.4: Add cpu, workdir, ports, hostname and labels␣

↪→columns
Version 1.5: Add meta column
Version 1.6: Add addresses column
Version 1.7: Add host column
Version 1.8: Add restart_policy
Version 1.9: Add status_detail column
Version 1.10: Add tty, stdin_open
Version 1.11: Add image_driver
VERSION = '1.11'

Now that I have updated the version, I will run the tests again and let the test tell me the fingerprint that
I now need to put in the static tree:

testtools.matchers._impl.MismatchError: !=:
reference = {'Container': '1.10-35edde13ad178e9419e7ea8b6d580bcd'}
actual = {'Container': '1.11-ddffeb42cb5472decab6d73534fe103f'}

I can now copy the new fingerprint needed (1.11-ddffeb42cb5472decab6d73534fe103f), to the ob-
ject_data map within zun/tests/unit/objects/test_objects.py:

object_data = {
'Container': '1.11-ddffeb42cb5472decab6d73534fe103f',
'Image': '1.0-0b976be24f4f6ee0d526e5c981ce0633',
'NUMANode': '1.0-cba878b70b2f8b52f1e031b41ac13b4e',
'NUMATopology': '1.0-b54086eda7e4b2e6145ecb6ee2c925ab',
'ResourceClass': '1.0-2c41abea55d0f7cb47a97bdb345b37fd',
'ResourceProvider': '1.0-92b427359d5a4cf9ec6c72cbe630ee24',
'ZunService': '1.0-2a19ab9987a746621b2ada02d8aadf22',

}

Running the unit tests now shows no failure.

If I did not update the version, and rather just copied the new hash to the object_data map, the review
would show the hash (but not the version) was updated in object_data. At that point, a reviewer should
point this out, and mention that the object version needs to be updated.

36 Chapter 4. For Contributors

Zun Documentation, Release 16.1.0.dev4

If a remotable method were added/changed, the same process is followed, because this will also cause a
hash change.

4.2.2 Documentation Contribution

Contributing Documentation to Zun

Zuns documentation has been moved from the openstack-manuals repository to the docs directory in the
Zun repository. This makes it even more important that Zun add and maintain good documentation.

This page provides guidance on how to provide documentation for those who may not have previously
been active writing documentation for OpenStack.

Using RST

OpenStack documentation uses reStructuredText to write documentation. The files end with a .rst
extension. The .rst files are then processed by Sphinx to build HTML based on the RST files.

Note

Files that are to be included using the .. include:: directive in an RST file should use the .inc
extension. If you instead use the .rst this will result in the RST file being processed twice during
the build and cause Sphinx to generate a warning during the build.

reStructuredText is a powerful language for generating web pages. The documentation team has put
together an RST conventions page with information and links related to RST.

Building Zuns Documentation

To build documentation the following command should be used:

tox -e docs,pep8

When building documentation it is important to also run pep8 as it is easy to introduce pep8 failures
when adding documentation. Currently, we do not have the build configured to treat warnings as errors,
so it is also important to check the build output to ensure that no warnings are produced by Sphinx.

Note

Many Sphinx warnings result in improperly formatted pages being generated.

During the documentation build a number of things happen:

• All of the RST files under doc/source are processed and built.

– The openstackdocs theme is applied to all of the files so that they will look consistent with
all the other OpenStack documentation.

– The resulting HTML is put into doc/build/html.

• Sample files like zun.conf.sample are generated and put into doc/soure/_static.

After the build completes the results may be accessed via a web browser in the doc/build/html direc-
tory structure.

4.2. Contributors Guide 37

https://docs.openstack.org/contributor-guide/rst-conv.html

Zun Documentation, Release 16.1.0.dev4

Review and Release Process

Documentation changes go through the same review process as all other changes.

Note

Reviewers can see the resulting web page output by clicking on gate-zun-docs-ubuntu-xenial!

Once a patch is approved it is immediately released to the docs.openstack.org website and can be seen
under Zuns Documentation Page at https://docs.openstack.org/zun/latest . When a new release is cut a
snapshot of that documentation will be kept at https://docs.openstack.org/zun/<release> . Changes from
master can be backported to previous branches if necessary.

Doc Directory Structure

The main location for Zuns documentation is the doc/source directory. The top level index file that is
seen at https://docs.openstack.org/zun/latest resides here as well as the conf.py file which is used to set
a number of parameters for the build of OpenStacks documentation.

Each of the directories under source are for specific kinds of documentation as is documented in the
README in each directory:

Zun Administration Documentation (source/admin)

This directory is intended to hold any documentation that is related to how to run or operate Zun.

Zun CLI Documentation (source/cli)

This directory is intended to hold any documentation that relates to Zuns Command Line Interface.
Note that this directory is intended for basic descriptions of the commands supported, similar to what
you would find with a man page. Tutorials or step-by-step guides should go into doc/source/admin or
doc/source/user depending on the target audience.

Zun Configuration Documentation (source/configuration)

This directory is intended to hold any documentation that relates to how to configure Zun. It is intended
that some of this content be automatically generated in the future. At the moment, however, it is not.
Changes to configuration options for Zun or its drivers needs to be put under this directory.

Zun Contributor Documentation (source/contributor)

This directory is intended to hold any documentation that relates to how to contribute to Zun or how
the project is managed. Some of this content was previous under developer in openstack-manuals. The
content of the documentation, however, goes beyond just developers to anyone contributing to the project,
thus the change in naming.

Zun Installation Documentation (source/install)

Introduction:

This directory is intended to hold any installation documentation for Zun. Documentation that explains
how to bring Zun up to the point that it is ready to use in an OpenStack or standalone environment should

38 Chapter 4. For Contributors

https://docs.openstack.org/zun/latest
https://docs.openstack.org/zun
https://docs.openstack.org/zun/latest

Zun Documentation, Release 16.1.0.dev4

be put in this directory.

The full spec for organization of documentation may be seen in the OS Manuals Migration Spec
<https://specs.openstack.org/openstack/docs-specs/specs/pike/os-manuals-migration.html>.

4.2.3 Other Resources

Project hosting with Launchpad

Launchpad hosts the Zun project. The Zun project homepage on Launchpad is http://launchpad.net/zun.

Mailing list

The mailing list email is openstack@lists.openstack.org. This is a common mailing list across the
OpenStack projects. To participate in the mailing list:

#. Subscribe to the list at http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack

The mailing list archives are at http://lists.openstack.org/pipermail/openstack/.

Bug tracking

Report Zun bugs at https://bugs.launchpad.net/zun

Launchpad credentials

Creating a login on Launchpad is important even if you dont use the Launchpad site itself, since Launch-
pad credentials are used for logging in on several OpenStack-related sites.

Feature requests (Blueprints)

Zun uses Launchpad Blueprints to track feature requests. Blueprints are at https://blueprints.launchpad.
net/zun.

Technical support (Answers)

Zun no longer uses Launchpad Answers to track Zun technical support questions.

Note that Ask OpenStack (which is not hosted on Launchpad) can be used for technical support requests.

Code Reviews with Gerrit

Zun uses the Gerrit tool to review proposed code changes. The review site is https://review.opendev.org.

Gerrit is a complete replacement for Github pull requests. All Github pull requests to the Zun repository
will be ignored.

See Gerrit Workflow Quick Reference for information about how to get started using Gerrit. See Devel-
opment Workflow for more detailed documentation on how to work with Gerrit.

Continuous Integration with Jenkins

Zun uses a Jenkins server to automate development tasks.

Jenkins performs tasks such as:

4.2. Contributors Guide 39

https://launchpad.net
http://launchpad.net/zun
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://lists.openstack.org/pipermail/openstack/
https://bugs.launchpad.net/zun
https://blueprints.launchpad.net/zun
https://blueprints.launchpad.net/zun
https://ask.openstack.org
https://bugs.chromium.org/p/gerrit/
https://review.opendev.org
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/infra/manual/developers.html#development-workflow
http://jenkins-ci.org

Zun Documentation, Release 16.1.0.dev4

gate-zun-pep8-ubuntu-xenial
Run PEP8 checks on proposed code changes that have been reviewed.

gate-zun-python27-ubuntu-xenial
Run unit tests using python2.7 on proposed code changes that have been reviewed.

gate-zun-python35
Run unit tests using python3.5 on proposed code changes that have been reviewed.

gate-zun-docs-ubuntu-xenial
Build this documentation and push it to OpenStack Zun.

Release notes

The release notes for a patch should be included in the patch.

If the following applies to the patch, a release note is required:

• Upgrades

– The deployer needs to take an action when upgrading

– A new config option is added that the deployer should consider changing from the default

– A configuration option is deprecated or removed

• Features

– A new feature or driver is implemented

– Feature is deprecated or removed

– Current behavior is changed

• Bugs

– A security bug is fixed

– A long-standing or important bug is fixed

• APIs

– REST API changes

Zun uses reno to generate release notes. Please read the docs for details. In summary, use

$ tox -e venv -- reno new <bug-,bp-,whatever>

Then edit the sample file that was created and push it with your change.

To see the results:

$ git commit # Commit the change because reno scans git log.

$ tox -e releasenotes

Then look at the generated release notes files in releasenotes/build/html in your favorite browser.

40 Chapter 4. For Contributors

https://docs.openstack.org/zun/latest/
https://docs.openstack.org/reno/latest/

Zun Documentation, Release 16.1.0.dev4

Capsule Quick Start

Capsule is a container composition unit that includes sandbox container, multiple application containers
and multiple volumes. All container inside the capsule share the same network, ipc, pid namespaces. In
general, it is the same unit like Azure Container Instance(ACI) or Kubernetes Pod.

The diagram below is an overview of the structure of capsule.

+---+
| +-----------+ |
	Sandbox	
+-----------+		
+-------------+ +-------------+ +-------------+		
	Container	
+-------------+ +-------------+ +-------------+		
+----------+ +----------+		
	Volume	
+----------+ +----------+		
+---+

Capsule API is currently in v1 phase now.

Now basic capsule functions are supported. Capsule API methods:

• Create: Create a capsule based on special yaml file or json file.

• Delete: Delete an existing capsule.

• Describe: Get detailed information about selected capsule.

• List: List all the capsules with essential fields.

Note

Volume is not yet supported, but it is in the roadmap. It will be implemented after Zun volume support
has been finished.

If you need to access to the capsule port, you might need to open the port in security group rules and
access the port via the floating IP that assigned to the capsule. The capsule example below assumes that a
capsule has been launched with security group default and user want to access the port 22, 80 and 3306:

use "-" because that the fields have many items
capsuleVersion: beta

(continues on next page)

4.2. Contributors Guide 41

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

kind: capsule
metadata:
name: template
labels:
app: web
foo: bar

restartPolicy: Always
spec:
containers:
- image: ubuntu
command:

- "/bin/bash"
imagePullPolicy: ifnotpresent
workDir: /root
ports:

- name: ssh-port
containerPort: 22
hostPort: 22
protocol: TCP

resources:
requests:
cpu: 1
memory: 1024

env:
ENV1: /usr/local/bin
ENV2: /usr/sbin

volumeMounts:
- name: volume1
mountPath: /data1
readOnly: True

- image: centos
command:

- "/bin/bash"
args:

- "-c"
- "\"while true; do echo hello world; sleep 1; done\""

imagePullPolicy: ifnotpresent
workDir: /root
ports:

- name: nginx-port
containerPort: 80
hostPort: 80
protocol: TCP

- name: mysql-port
containerPort: 3306
hostPort: 3306
protocol: TCP

resources:
requests:

(continues on next page)

42 Chapter 4. For Contributors

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

cpu: 1
memory: 1024

env:
ENV2: /usr/bin/

volumeMounts:
- name: volume2
mountPath: /data2

- name: volume3
mountPath: /data3

volumes:
- name: volume1
cinder:
size: 5
autoRemove: True

- name: volume2
cinder:
volumeID: 9f81cbb2-10f9-4bab-938d-92fe33c57a24

- name: volume3
cinder:
volumeID: 67618d54-dd55-4f7e-91b3-39ffb3ba7f5f

Pay attention, the volume2 and volume3 referred in the above yaml are already created by Cinder. Also
capsule doesnt support Cinder multiple attach now. One volume only could be attached to one Container.

Capsule management commands in details:

Create capsule, it will create capsule based on capsule.yaml:

$ source ~/devstack/openrc demo demo
$ zun capsule-create -f capsule.yaml

If you want to get access to the port, you need to set the security group rules for it.

$ openstack security group rule create default \
--protocol tcp --dst-port 3306:3306 --remote-ip 0.0.0.0/0

$ openstack security group rule create default \
--protocol tcp --dst-port 80:80 --remote-ip 0.0.0.0/0

$ openstack security group rule create default \
--protocol tcp --dst-port 22:22 --remote-ip 0.0.0.0/0

Delete capsule:

$ zun capsule-delete <uuid>
$ zun capsule-delete <capsule-name>

List capsule:

$ zun capsule-list

Describe capsule:

4.2. Contributors Guide 43

Zun Documentation, Release 16.1.0.dev4

$ zun capsule-describe <uuid>
$ zun capsule-describe <capsule-name>

TODO

Add security group set to Capsule
Build this documentation and push it to .

Add Gophercloud support for Capsule
See Gophercloud support for Zun

Add Kubernetes connect to Capsule
see zun connector for k8s.

Technical Vision for Zun

This document is a self-evaluation of Zun with regard to the Technical Committees technical vision.

Mission Statement

Zuns mission is to provide an OpenStack containers service that integrates with various container tech-
nologies for managing application containers on OpenStack.

Vision for OpenStack

Self-service

Zun are self-service. It provides users with the ability to deploy containerized applications on demand
without having to wait for human action. Zun containers are isolated between tenants. Containers con-
trolled by one tenant are not accessible by other tenants. Quotas are used to limit the number of containers
or compute resources (i.e. CPU, RAM) within a tenant.

Application Control

Zun allows application control of containers by offering RESTful API, CLI, and Python API binding. In
addition, there are third-party tools like Gophercloud that provide API binding for other programming
languages. The access of Zuns API is secured by Keystone so applications that are authenticatable with
Keystone can access Zuns API securely.

Interoperability

Zun containers (and other API resources) are designed to be deployable and portable across a variety of
public and private OpenStack clouds. Zuns API hides differences between container engines and exposes
standard container abstraction.

Bidirectional Compatibility

Zun implements API microversion. API consumers can query the min/max API version that an Open-
Stack cloud supports, as well as pinning a specific API version to guarantee consistent API behavior
across different versions of OpenStack.

44 Chapter 4. For Contributors

https://blueprints.launchpad.net/zun/+spec/golang-client
https://blueprints.launchpad.net/zun/+spec/zun-connector-for-k8s
https://governance.openstack.org/tc/reference/technical-vision.html
https://github.com/gophercloud/gophercloud
https://docs.openstack.org/zun/latest/reference/api-microversion-history.html

Zun Documentation, Release 16.1.0.dev4

Cross-Project Dependencies

Zun depends on Keystone for authentication, Neutron for container networks, Cinder for container vol-
umes. Zun aims to integrate with Placement for tracking compute resources and retrieving allocation
candidates. Therefore, Placement is expected to be another dependency of Zun in the near future.

Partitioning

It is totally fine to deploy Zun in multiple OpenStack regions, and each region could have a Zun endpoint
in Keystone service catalog. Zun also supports the concept of availability zones - groupings within a
region that share no common points of failure.

Basic Physical Data Center Management

Zun interfaces with external systems like Docker engine, which consumes compute resources in data
center and offers compute capacity to end-users in the form of containers. Zun APIs provide a consistent
interface to various container technologies, which can be implemented by different Open Source projects.

Hardware Virtualisation

Similar to Nova, Zun also aims to virtualize hardware resources (essentially physical servers) and provide
them to users via a vendor-independent API. The difference is that Zun delivers compute resources in
the form of containers instead of VMs. Operators have a choice of container runtimes which could be
a hypervisor-based runtime (i.e. Kata Container) or a traditional runtime (i.e. runc). The choice of
container runtime is a trade-off between tenant isolation and performance.

Plays Well With Others

Zun plays well with Container Orchestration Engines like Kubernetes. In particular, there is an OpenStack
provider for Virtual Kubelet, which mimics Kubelet to register itself as a node in a Kubernetes cluster.
The OpenStack provider leverages Zun to launch container workloads that Kubernetes schedules to the
virtual node.

Infinite, Continuous Scaling

Zun facilitates infinite and continuous scaling of applications. It allows users to scale up their applications
by spinning up containers on demand (without pre-creating a container host or cluster). Containers allow
sharing of physical resources in data center at a more fine-grained level than a VM thus resulting in a
better utilization of resources.

Built-in Reliability and Durability

Unlike VMs, containers are usually transient and allowed to be deleted and re-created in response to
failure. In this context, Zun aims to provide primitives for deployers to deploy a highly available applica-
tions. For example, it allows deployers to deploy their applications across different availability zones. It
supports health check of containers so that orchestrators can quickly detect failure and perform recover
actions.

4.2. Contributors Guide 45

https://github.com/virtual-kubelet/virtual-kubelet/tree/master/providers/openstack
https://github.com/virtual-kubelet/virtual-kubelet/tree/master/providers/openstack

Zun Documentation, Release 16.1.0.dev4

Customizable Integration

Zun is integrated with Heat, which allows users to wire containers with resources provided by other
services (i.e. networks, volumes, security groups, floating IPs, load balancers, or even VMs). In addition,
the Kubernetes integration feature provides another option to wire containers to customize the topology
of application deployments.

Graphical User Interface

Zun has a Horizon plugin, which allows users to consume Zun services through a graphical user interface
provided by Horizon.

46 Chapter 4. For Contributors

CHAPTER

FIVE

ADDITIONAL MATERIAL

5.1 Zun Command Line Guide
In this section you will find information on Zuns command line interface.

5.1.1 zun-status

CLI interface for Zun status commands

Synopsis

zun-status <category> <command> [<args>]

Description

zun-status is a tool that provides routines for checking the status of a Zun deployment.

Options

The standard pattern for executing a zun-status command is:

zun-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

zun-status

Categories are:

• upgrade

Detailed descriptions are below:

You can also run with a category argument such as upgrade to see a list of all commands in that category:

zun-status upgrade

These sections describe the available categories and arguments for zun-status.

47

Zun Documentation, Release 16.1.0.dev4

Upgrade

zun-status upgrade check
Performs a release-specific readiness check before restarting services with new code. For example,
missing or changed configuration options, incompatible object states, or other conditions that could
lead to failures while upgrading.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

3.0.0 (Stein)

• Sample check to be filled in with checks as they are added in Stein.

Note

Other command line guide for Zun to be added. The work will be tracked here: https://blueprints.
launchpad.net/zun/+spec/zun-cli-guide

5.2 Administrators Guide

5.2.1 Installation & Operations
If you are a system administrator running Zun, this section contains information that should help you
understand how to deploy, operate, and upgrade the services.

Use OSProfiler in Zun

This is the demo for Zun integrating with osprofiler. Zun is an OpenStack container management services,
while OSProfiler provides a tiny but powerful library that is used by most OpenStack projects and their
python clients.

Install Redis database

After osprofiler 1.4.0, user can choose mongodb or redis as the backend storage option without using
ceilometer. Here just use Redis as an example, user can choose mongodb, elasticsearch, and etc. Install
Redis as the centralized collector. Redis in container is easy to launch, choose Redis Docker and run:

$ docker run --name some-redis -p 6379:6379 -d redis

Now there is a redis database which has an expose port to access. OSProfiler will send data to this
key-value database.

48 Chapter 5. Additional Material

https://blueprints.launchpad.net/zun/+spec/zun-cli-guide
https://blueprints.launchpad.net/zun/+spec/zun-cli-guide
https://wiki.openstack.org/wiki/Zun
https://docs.openstack.org/osprofiler/latest/
https://opendev.org/openstack/osprofiler/src/branch/master/osprofiler/drivers
https://docs.openstack.org/osprofiler/latest/user/collectors.html
https://hub.docker.com/_/redis/

Zun Documentation, Release 16.1.0.dev4

Change the configure file

Change the /etc/zun/zun.conf, add the following lines, change the <ip-address> to the real IP:

[profiler]
enabled = True
trace_sqlalchemy = True
hmac_keys = SECRET_KEY
connection_string = redis://<ip-address>:6379/

Then restart zun-api and zun-compute (Attention, the newest version of Zun has move zun-api service to
apache2 server. You cant restart the service just in screen. Use systemctl restart apache2 will work).

Use below commands to get the trace information:

$ zun --profile SECRET_KEY list

Use <TRACE-ID>, you will get a <TRACE-ID> for trace:

$ osprofiler trace show <TRACE-ID> --connection-string=redis://<ip-address>
↪→:6379 --html

Troubleshooting

How to check whether the integration is fine: Stop the Redis container, then run the command:

$ zun --profile SECRET_KEY list

In the zun-api log, will see ConnectionError: Error 111 connecting to <ip-address>:6379. ECONNRE-
FUSED. That means that osprofiler will write the trace data to redis, but cant connect it. So the integra-
tion is fine. When /etc/zun/api-paste.ini file changed (change the pipeline), you need to re-deploy the zun
service.

Clear Containers in Zun

Zun now supports running Clear Containers with regular Docker containers. Clear containers run con-
tainers as very lightweight virtual machines which boot up really fast and has low memory footprints. It
provides security to the containers with an isolated environment. You can read more about Clear Con-
tainers here.

Installation with DevStack

It is possible to run Clear Containers with Zun. Follow the Developer Quick-Start to download DevStack,
Zun code and copy the local.conf file. Now perform the following steps to install Clear Containers with
DevStack:

cd /opt/stack/devstack
echo "ENABLE_CLEAR_CONTAINER=true" >> local.conf
./stack.sh

Verify the installation by:

5.2. Administrators Guide 49

https://github.com/clearcontainers/runtime/wiki

Zun Documentation, Release 16.1.0.dev4

$ sudo docker info | grep Runtimes
Runtimes: cor runc

Using Clear Containers with Zun

To create Clear Containers with Zun, specify the runtime option:

zun run --name clear-container --runtime cor cirros ping -c 4 8.8.8.8

Note

Clear Containers support in Zun is not production ready. It is recommended not to running Clear
Containers and runc containers on the same host.

Keep Containers Alive

As we know, the Docker daemon shuts down all running containers during daemon downtime. Starting
with Docker Engine 1.12, users can configure the daemon so that containers remain running when the
docker service becomes unavailable. This functionality is called live restore. You can read more about
Live Restore here.

Installation with DevStack

It is possible to keep containers alive. Follow the Developer Quick-Start to download DevStack, Zun
code and copy the local.conf file. Now perform the following steps to install Zun with DevStack:

cd /opt/stack/devstack
echo "ENABLE_LIVE_RESTORE=true" >> local.conf
./stack.sh

Verify the installation by:

$ sudo docker info | grep "Live Restore"
Live Restore Enabled: true

Manage container security

Security groups are sets of IP filter rules that define networking access to the container. Group rules are
project specific; project members can edit the default rules for their group and add new rule sets.

All projects have a default security group which is applied to any container that has no other defined
security group. Unless you change the default, this security group denies all incoming traffic and allows
only outgoing traffic to your container.

Create a container with security group

When adding a new security group, you should pick a descriptive but brief name. This name shows up
in brief descriptions of the containers that use it where the longer description field often does not. For
example, seeing that a container is using security group http is much easier to understand than bobs_group
or secgrp1.

50 Chapter 5. Additional Material

https://docs.docker.com/config/containers/live-restore

Zun Documentation, Release 16.1.0.dev4

1. Add the new security group, as follows:

$ openstack security group create SEC_GROUP_NAME --description Description

For example:

$ openstack security group create global_http --description "Allows Web␣
↪→traffic anywhere on the Internet."
+-----------------+---
↪→---+
| Field | Value ␣
↪→ |
+-----------------+---
↪→---+
| created_at | 2016-11-03T13:50:53Z ␣
↪→ |
| description | Allows Web traffic anywhere on the Internet. ␣
↪→ |
| headers | ␣
↪→ |
| id | c0b92b20-4575-432a-b4a9-eaf2ad53f696 ␣
↪→ |
| name | global_http ␣
↪→ |
| project_id | 5669caad86a04256994cdf755df4d3c1 ␣
↪→ |
| project_id | 5669caad86a04256994cdf755df4d3c1 ␣
↪→ |
| revision_number | 1 ␣
↪→ |
| rules | created_at='2016-11-03T13:50:53Z', direction='egress',
↪→ ethertype='IPv4', id='4d8cec94-e0ee-4c20-9f56-8fb67c21e4df', |
| | project_id='5669caad86a04256994cdf755df4d3c1',␣
↪→revision_number='1', updated_at='2016-11-03T13:50:53Z' ␣
↪→ |
| | created_at='2016-11-03T13:50:53Z', direction='egress',
↪→ ethertype='IPv6', id='31be2ad1-be14-4aef-9492-ecebede2cf12', |
| | project_id='5669caad86a04256994cdf755df4d3c1',␣
↪→revision_number='1', updated_at='2016-11-03T13:50:53Z' ␣
↪→ |
| updated_at | 2016-11-03T13:50:53Z ␣
↪→ |
+-----------------+---
↪→---+

2. Add a new group rule, as follows:

$ openstack security group rule create SEC_GROUP_NAME \
--protocol PROTOCOL --dst-port FROM_PORT:TO_PORT --remote-ip CIDR

The arguments are positional, and the from-port and to-port arguments specify the local port
range connections are allowed to access, not the source and destination ports of the connection.

5.2. Administrators Guide 51

Zun Documentation, Release 16.1.0.dev4

For example:

$ openstack security group rule create global_http \
--protocol tcp --dst-port 80:80 --remote-ip 0.0.0.0/0

+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
created_at	2016-11-06T14:02:00Z
description	
direction	ingress
ethertype	IPv4
headers	
id	2ba06233-d5c8-43eb-93a9-8eaa94bc9eb5
port_range_max	80
port_range_min	80
project_id	5669caad86a04256994cdf755df4d3c1
project_id	5669caad86a04256994cdf755df4d3c1
protocol	tcp
remote_group_id	None
remote_ip_prefix	0.0.0.0/0
revision_number	1
security_group_id	c0b92b20-4575-432a-b4a9-eaf2ad53f696
updated_at	2016-11-06T14:02:00Z
+-------------------+--------------------------------------+

3. Create a container with the new security group, as follows:

$ openstack appcontainer run --security-group SEC_GROUP_NAME IMAGE

For example:

$ openstack appcontainer run --security-group global_http nginx

Find containers security groups

If you cannot access your application inside the container, you might want to check the security groups
of the container to ensure the rules dont block the traffic.

1. List the containers, as follows:

$ openstack appcontainer list
+--------------------------------------+--------------------+-------+-----
↪→----+------------+-----------+-------+
| uuid | name | image |␣
↪→status | task_state | addresses | ports |
+--------------------------------------+--------------------+-------+-----
↪→----+------------+-----------+-------+
| 6595aff8-6c1c-4e64-8aad-bfd3793efa54 | delta-24-container | nginx |␣
↪→Running | None | 10.5.0.14 | [80] |
+--------------------------------------+--------------------+-------+-----
↪→----+------------+-----------+-------+

2. Find all your containers ports, as follows:

52 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

$ openstack port list --fixed-ip ip-address=10.5.0.14
+--------------------------------------+----------------------------------
↪→-------------------------------------+-------------------+--------------
↪→--+--------+
| ID | Name ␣
↪→ | MAC Address | Fixed IP␣
↪→Addresses |␣
↪→Status |
+--------------------------------------+----------------------------------
↪→-------------------------------------+-------------------+--------------
↪→--+--------+
| b02df384-fd58-43ee-a44a-f17be9dd4838 |␣
↪→405061f9eeda5dbfa10701a72051c91a5555d19f6ef7b3081078d102fe6f60ab-port |␣
↪→fa:16:3e:52:3c:0c | ip_address='10.5.0.14', subnet_id='7337ad8b-7314-
↪→4a33-ba54-7362f0a7a680' | ACTIVE |
+--------------------------------------+----------------------------------
↪→-------------------------------------+-------------------+--------------
↪→--+--------+

3. View the details of each port to retrieve the list of security groups, as follows:

$ openstack port show b02df384-fd58-43ee-a44a-f17be9dd4838
+-----------------------+---
↪→-------------------------+
| Field | Value ␣
↪→ |
+-----------------------+---
↪→-------------------------+
| admin_state_up | UP ␣
↪→ |
| allowed_address_pairs | ␣
↪→ |
| binding_host_id | None ␣
↪→ |
| binding_profile | None ␣
↪→ |
| binding_vif_details | None ␣
↪→ |
| binding_vif_type | None ␣
↪→ |
| binding_vnic_type | normal ␣
↪→ |
| created_at | 2018-05-11T21:58:42Z ␣
↪→ |
| data_plane_status | None ␣
↪→ |
| description | ␣
↪→ |
| device_id | 6595aff8-6c1c-4e64-8aad-bfd3793efa54 ␣
↪→ |

(continues on next page)

5.2. Administrators Guide 53

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

| device_owner | compute:kuryr ␣
↪→ |
| dns_assignment | None ␣
↪→ |
| dns_name | None ␣
↪→ |
| extra_dhcp_opts | ␣
↪→ |
| fixed_ips | ip_address='10.5.0.14', subnet_id='7337ad8b-
↪→7314-4a33-ba54-7362f0a7a680' |
| id | b02df384-fd58-43ee-a44a-f17be9dd4838 ␣
↪→ |
| ip_address | None ␣
↪→ |
| mac_address | fa:16:3e:52:3c:0c ␣
↪→ |
| name |␣
↪→405061f9eeda5dbfa10701a72051c91a5555d19f6ef7b3081078d102fe6f60ab-port ␣
↪→ |
| network_id | 695aff90-66c6-4383-b37c-7484c4046a64 ␣
↪→ |
| option_name | None ␣
↪→ |
| option_value | None ␣
↪→ |
| port_security_enabled | True ␣
↪→ |
| project_id | c907162152fe41f288912e991762b6d9 ␣
↪→ |
| qos_policy_id | None ␣
↪→ |
| revision_number | 9 ␣
↪→ |
| security_group_ids | ba20b63e-8a61-40e4-a1a3-5798412cc36b ␣
↪→ |
| status | ACTIVE ␣
↪→ |
| subnet_id | None ␣
↪→ |
| tags | kuryr.port.existing ␣
↪→ |
| trunk_details | None ␣
↪→ |
| updated_at | 2018-05-11T21:58:47Z ␣
↪→ |
+-----------------------+---
↪→-------------------------+

4. View the rules of security group showed up at security_group_ids field of the port, as follows:

54 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

$ openstack security group rule list ba20b63e-8a61-40e4-a1a3-5798412cc36b
+--------------------------------------+-------------+-----------+--------
↪→----+-----------------------+
| ID | IP Protocol | IP Range | Port␣
↪→Range | Remote Security Group |
+--------------------------------------+-------------+-----------+--------
↪→----+-----------------------+
| 24ebfdb8-591c-40bb-a7d3-f5b5eadc72ca | None | None | ␣
↪→ | None |
| 907bf692-3dbb-4b34-ba7a-22217e6dbc4f | None | None | ␣
↪→ | None |
| bbcd3b46-0214-4966-8050-8b5d2f9121d1 | tcp | 0.0.0.0/0 | 80:80 ␣
↪→ | None |
+--------------------------------------+-------------+-----------+--------
↪→----+-----------------------+

How to use private docker registry with Zun

Zun by default pull container images from Docker Hub. However, it is possible to configure Zun to pull
images from a private registry.

This document provides an example to deploy and configure a docker registry for Zun. For a compre-
hensive guide about deploying a docker registry, see here

Deploy Private Docker Registry

A straightforward approach to install a private docker registry is to deploy it as a Zun container:

$ openstack appcontainer create \
--restart always \
--expose-port 443 \
--name registry \
--environment REGISTRY_HTTP_ADDR=0.0.0.0:443 \
--environment REGISTRY_HTTP_TLS_CERTIFICATE=/domain.crt \
--environment REGISTRY_HTTP_TLS_KEY=/domain.key \
registry:2

Note

Depending on the configuration of your tenant network, you might need to make sure the container is
accessible from other tenants of your cloud. For example, you might need to associate a floating IP
to the container.

In order to make your registry accessible to external hosts, you must use a TLS certificate (issued by a
certificate issuer) or create self-signed certificates. This document shows you how to generate and use
self-signed certificates:

$ mkdir -p certs
$ cat > certs/domain.conf <<EOF
[req]

(continues on next page)

5.2. Administrators Guide 55

https://docs.docker.com/registry/deploying/

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

distinguished_name = req_distinguished_name
req_extensions = req_ext
prompt = no
[req_distinguished_name]
CN = zunregistry.com
[req_ext]
subjectAltName = IP:172.24.4.49
EOF
$ openssl req \

-newkey rsa:4096 -nodes -sha256 -keyout certs/domain.key \
-x509 -days 365 -out certs/domain.crt -config certs/domain.conf

Note

Replace zunregistry.com with the domain name of your registry.

Note

Replace 172.24.4.49 with the IP address of your registry.

Note

You need to make sure the domain name (i.e. zunregistry.com) will be resolved to the IP address
(i.e. 172.24.4.49). For example, you might need to edit /etc/hosts accordingly.

Copy the certificates to registry:

$ openstack appcontainer cp certs/domain.key registry:/
$ openstack appcontainer cp certs/domain.crt registry:/

Configure docker daemon to accept the certificates:

mkdir -p /etc/docker/certs.d/zunregistry.com
cp certs/domain.crt /etc/docker/certs.d/zunregistry.com/ca.crt

Note

Replace zunregistry.com with the domain name of your registry.

Note

Perform this steps in every compute nodes.

Start the registry:

56 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

$ openstack appcontainer start registry

Verify the registry is working:

$ docker pull ubuntu:16.04
$ docker tag ubuntu:16.04 zunregistry.com/my-ubuntu
$ docker push zunregistry.com/my-ubuntu
$ openstack appcontainer run --interactive zunregistry.com/my-ubuntu /bin/bash

Note

Replace zunregistry.com with the domain name of your registry.

5.3 Sample Configuration File

5.3.1 Zun Configuration Options
The following is a sample Zun configuration for adaptation and use. It is auto-generated from Zun when
this documentation is built, so if you are having issues with an option, please compare your version of
Zun with the version of this documentation.

5.3.2 Policy configuration

Configuration

Warning

JSON formatted policy file is deprecated since Zun 7.0.0 (Wallaby). This oslopolicy-convert-json-to-
yaml tool will migrate your existing JSON-formatted policy file to YAML in a backward-compatible
way.

The following is an overview of all available policies in Zun. For a sample configuration file.

zun

context_is_admin

Default
role:admin

(no description provided)

admin_or_owner

Default
is_admin:True or project_id:%(project_id)s

(no description provided)

admin_api

Default
rule:context_is_admin

5.3. Sample Configuration File 57

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Zun Documentation, Release 16.1.0.dev4

(no description provided)

deny_everybody

Default
!

Default rule for deny everybody.

container:create

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers

Create a new container.

container:create:runtime

Default
rule:context_is_admin

Operations

• POST /v1/containers

Create a new container with specified runtime.

container:create:privileged

Default
rule:deny_everybody

Operations

• POST /v1/containers

Create a new privileged container.Warning: the privileged container has a big security risk so be
caution if you want to enable this feature

container:create:requested_destination

Default
rule:context_is_admin

Operations

• POST /v1/containers

Create a container on the requested compute host.

container:create:image_pull_policy

Default
rule:context_is_admin

Operations

• POST /v1/containers

Create a new container with specified image pull policy.

container:delete

58 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

Default
is_admin:True or project_id:%(project_id)s

Operations

• DELETE /v1/containers/{container_ident}

Delete a container.

container:delete_all_projects

Default
rule:context_is_admin

Operations

• DELETE /v1/containers/{container_ident}

Delete a container from all projects.

container:delete_force

Default
rule:context_is_admin

Operations

• DELETE /v1/containers/{container_ident}

Forcibly delete a container.

container:get_one

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/containers/{container_ident}

Retrieve the details of a specific container.

container:get_one:host

Default
rule:context_is_admin

Operations

• GET /v1/containers/{container_ident}

• GET /v1/containers

• POST /v1/containers

• PATCH /v1/containers/{container_ident}

Retrieve the host field of containers.

container:get_one:image_pull_policy

Default
rule:context_is_admin

Operations

5.3. Sample Configuration File 59

Zun Documentation, Release 16.1.0.dev4

• GET /v1/containers/{container_ident}

• GET /v1/containers

• POST /v1/containers

• PATCH /v1/containers/{container_ident}

Retrieve the image_pull_policy field of containers.

container:get_one:privileged

Default
rule:context_is_admin

Operations

• GET /v1/containers/{container_ident}

• GET /v1/containers

• POST /v1/containers

• PATCH /v1/containers/{container_ident}

Retrieve the privileged field of containers.

container:get_one:runtime

Default
rule:context_is_admin

Operations

• GET /v1/containers/{container_ident}

• GET /v1/containers

• POST /v1/containers

• PATCH /v1/containers/{container_ident}

Retrieve the runtime field of containers.

container:get_one_all_projects

Default
rule:context_is_admin

Operations

• GET /v1/containers/{container_ident}

Retrieve the details of a specific container from all projects.

container:get_all

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/containers

Retrieve the details of all containers.

container:get_all_all_projects

60 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

Default
rule:context_is_admin

Operations

• GET /v1/containers

Retrieve the details of all containers across projects.

container:update

Default
is_admin:True or project_id:%(project_id)s

Operations

• PATCH /v1/containers/{container_ident}

Update a container.

container:start

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/start

Start a container.

container:stop

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/stop

Stop a container.

container:reboot

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/reboot

Reboot a container.

container:pause

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/pause

Pause a container.

container:unpause

5.3. Sample Configuration File 61

Zun Documentation, Release 16.1.0.dev4

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/unpause

Unpause a container.

container:logs

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/containers/{container_ident}/logs

Get the log of a container

container:execute

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/execute

Execute command in a running container

container:execute_resize

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/execute_resize

Resize the TTY used by an execute command.

container:kill

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/kill

Kill a running container

container:rename

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/rename

Rename a container.

container:attach

62 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/containers/{container_ident}/attach

Attach to a running container

container:resize

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/resize

Resize a container.

container:top

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/containers/{container_ident}/top

Display the running processes inside the container.

container:get_archive

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/containers/{container_ident}/get_archive

Get a tar archive of a path of container.

container:put_archive

Default
is_admin:True or project_id:%(project_id)s

Operations

• PUT /v1/containers/{container_ident}/put_archive

Put a tar archive to be extracted to a path of container

container:stats

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/containers/{container_ident}/stats

Display the statistics of a container

container:commit

5.3. Sample Configuration File 63

Zun Documentation, Release 16.1.0.dev4

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/commit

Commit a container

container:add_security_group

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/add_security_group

Add a security group to a specific container.

container:network_detach

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/network_detach

Detach a network from a container.

container:network_attach

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/network_attach

Attach a network from a container.

container:remove_security_group

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/
remove_security_group

Remove security group from a specific container.

container:rebuild

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/rebuild

Rebuild a container.

container:resize_container

64 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/containers/{container_ident}/resize_container

Resize an existing container.

image:pull

Default
rule:context_is_admin

Operations

• POST /v1/images

Pull an image.

image:get_all

Default
rule:context_is_admin

Operations

• GET /v1/images

Print a list of available images.

image:get_one

Default
rule:context_is_admin

Operations

• GET /v1/images/{image_id}

Retrieve the details of a specific image.

image:search

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/images/{image_ident}/search

Search an image.

image:delete

Default
rule:context_is_admin

Operations

• DELETE /v1/images/{image_ident}

Delete an image.

zun-service:delete

5.3. Sample Configuration File 65

Zun Documentation, Release 16.1.0.dev4

Default
rule:context_is_admin

Operations

• DELETE /v1/services

Delete a service.

zun-service:disable

Default
rule:context_is_admin

Operations

• PUT /v1/services/disable

Disable a service.

zun-service:enable

Default
rule:context_is_admin

Operations

• PUT /v1/services/enable

Enable a service.

zun-service:force_down

Default
rule:context_is_admin

Operations

• PUT /v1/services/force_down

Forcibly shutdown a service.

zun-service:get_all

Default
rule:context_is_admin

Operations

• GET /v1/services

Show the status of a service.

host:get_all

Default
rule:context_is_admin

Operations

• GET /v1/hosts

List all compute hosts.

host:get

66 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

Default
rule:context_is_admin

Operations

• GET /v1/hosts/{host_ident}

Show the details of a specific compute host.

capsule:create

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/capsules/

Create a capsule

capsule:delete

Default
is_admin:True or project_id:%(project_id)s

Operations

• DELETE /v1/capsules/{capsule_ident}

Delete a capsule

capsule:delete_all_projects

Default
rule:context_is_admin

Operations

• DELETE /v1/capsules/{capsule_ident}

Delete a container in any project.

capsule:get

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/capsules/{capsule_ident}

Retrieve the details of a capsule.

capsule:get:host

Default
rule:context_is_admin

Operations

• GET /v1/capsules/{capsule_ident}

• GET /v1/capsules

• POST /v1/capsules

5.3. Sample Configuration File 67

Zun Documentation, Release 16.1.0.dev4

Retrieve the host field of a capsule.

capsule:get_one_all_projects

Default
rule:context_is_admin

Operations

• GET /v1/capsules/{capsule_ident}

Retrieve the details of a capsule in any project.

capsule:get_all

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/capsules/

List all capsules.

capsule:get_all_all_projects

Default
rule:context_is_admin

Operations

• GET /v1/capsules/

List all capsules across projects.

network:attach_external_network

Default
role:admin

Operations

• POST /v1/containers

Attach an unshared external network to a container

network:create

Default
role:admin

Operations

• POST /v1/networks

Create a network

network:delete

Default
role:admin

Operations

• DELETE /v1/networks

68 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

Delete a network

container:actions

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/containers/{container_ident}/container_actions/

• GET /v1/containers/{container_ident}/container_actions/
{request_id}

List actions and show action details for a container

container:action:events

Default
rule:context_is_admin

Operations

• GET /v1/containers/{container_ident}/container_actions/
{request_id}

Add events details in action details for a container.

availability_zones:get_all

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/availability_zones

List availability zone

quota:update

Default
rule:context_is_admin

Operations

• PUT /v1/quotas/{project_id}

Update quotas for a project

quota:delete

Default
rule:context_is_admin

Operations

• DELETE /v1/quotas/{project_id}

Delete quotas for a project

quota:get

Default
is_admin:True or project_id:%(project_id)s

5.3. Sample Configuration File 69

Zun Documentation, Release 16.1.0.dev4

Operations

• GET /v1/quotas/{project_id}

Get quotas for a project

quota:get_default

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/quotas/defaults

Get default quotas for a project

quota_class:update

Default
rule:context_is_admin

Operations

• PUT /v1/quota_classes/{quota_class_name}

Update quotas for specific quota class

quota_class:get

Default
rule:context_is_admin

Operations

• GET /v1/quota_classes/{quota_class_name}

List quotas for specific quota class

registry:create

Default
is_admin:True or project_id:%(project_id)s

Operations

• POST /v1/registries

Create a new registry.

registry:delete

Default
is_admin:True or project_id:%(project_id)s

Operations

• DELETE /v1/registries/{registry_ident}

Delete a registry.

registry:get_one

Default
is_admin:True or project_id:%(project_id)s

70 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

Operations

• GET /v1/registries/{registry_ident}

Retrieve the details of a specific registry.

registry:get_all

Default
is_admin:True or project_id:%(project_id)s

Operations

• GET /v1/registries

Retrieve the details of all registries.

registry:get_all_all_projects

Default
rule:context_is_admin

Operations

• GET /v1/registries

Retrieve the details of all registries across projects.

registry:update

Default
is_admin:True or project_id:%(project_id)s

Operations

• PATCH /v1/registries/{registry_ident}

Update a registry.

5.4 Filter Scheduler
The Filter Scheduler supports filtering zun compute hosts to make decisions on where a new container
should be created.

5.4.1 Filtering
Filter Scheduler iterates over all found compute hosts,evaluating each host against a set of filters. The
Scheduler then chooses a host for the requested container. A specific filter can decide whether to pass
or filter out a specific host. The decision is made based on the user request specification, the state of the
host, and/or some extra information.

If the Scheduler cannot find candidates for the container, it means that there are no appropriate host where
that container can be scheduled.

The Filter Scheduler has a set of filters that are built-in. If the built-in filters are insufficient, you can
implement your own filters with your filtering algorithm.

There are many standard filter classes which may be used (zun.scheduler.filters):

• CPUFilter - filters based on CPU core utilization. It passes hosts with sufficient number of CPU
cores.

5.4. Filter Scheduler 71

Zun Documentation, Release 16.1.0.dev4

• RamFilter - filters hosts by their RAM. Only hosts with sufficient RAM to host the instance are
passed.

• LabelFilter - filters hosts based on whether host has the CLI specified labels.

• ComputeFilter - filters hosts that are operational and enabled. In general, you should always enable
this filter.

• RuntimeFilter - filters hosts by their runtime. It passes hosts with the specified runtime.

5.4.2 Configuring Filters
To use filters you specify two settings:

• filter_scheduler.available_filters - Defines filter classes made available to the sched-
uler.

• filter_scheduler.enabled_filters - Of the available filters, defines those that the scheduler
uses by default.

The default values for these settings in zun.conf are:

--filter_scheduler.available_filters=zun.scheduler.filters.all_filters
--filter_scheduler.enabled_filters=RamFilter,CPUFilter,ComputeFilter,
↪→RuntimeFilter

With this configuration, all filters in zun.scheduler.filters would be available, and by default the
RamFilter and CPUFilter would be used.

5.4.3 Writing Your Own Filter
To create your own filter you must inherit from BaseHostFilter and implement one method:
host_passes. This method should return True if the host passes the filter.

P.S.: you can find more examples of using Filter Scheduler and standard filters in zun.tests.
scheduler.

5.5 Reference Material

5.5.1 REST API Version History
This documents the changes made to the REST API with every microversion change. The description
for each version should be a verbose one which has enough information to be suitable for use in user
documentation.

1.1

This is the initial version of the v1.1 API which supports microversions. The v1.1 API is
from the REST API userss point of view exactly the same as v1.0 except with strong input
validation.

A user can specify a header in the API request:

OpenStack-API-Version: <version>

72 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

where <version> is any valid api version for this API.

If no version is specified then the API will behave as if a version request of v1.1 was re-
quested.

1.2

Add a new attribute nets to the request to create a container. Users can use this attribute to
specify one or multiple networks for the container. Each network could specify the neutron
network, neutron port, or a v4/v6 IP address. For examples:

[{'port': '1234567'}]
[{'v4-fixed-ip': '127.0.0.1'}]
[{'network': 'test'}]
[{'network': 'test2'}]
[{'v6-fixed-ip': '2f:33:45'}]

1.3

Add auto_remove field for creating a container. With this field, the container will be auto-
matically removed if it exists. The new one will be created instead.

1.4

Add host list api. Users can use this api to list all the zun compute hosts. Add get host api
Users can use this api to get details of a zun compute host.

1.5

Add a new attribute runtime to the request to create a container. Users can use this attribute
to choose runtime for their containers. The specified runtime should be configured by admin
to run with Zun. The default runtime for Zun is runc.

1.6

Add detach a network from a container api. Users can use this api to detach a neutron network
from a container.

1.7

Disallow non-admin users to force delete containers Only Admin User can use delete force
to force delete a container.

1.8

Add attach a network to a container. Users can use this api to attach a neutron network to a
container.

1.9

Add a new attribute hostname to the request to create a container. Users can use this attribute
to specify containers hostname.

5.5. Reference Material 73

Zun Documentation, Release 16.1.0.dev4

1.10

Make container delete API async. Delete operation for a container can take long time, so
making it async to improve user experience.

1.11

Add a new attribute mounts to the request to create a container. Users can use this attribute
to specify one or multiple mounts for the container. Each mount could specify the source
and destination. The source is the Cinder volume id or name, and the destination is the path
where the file or directory will be mounted in the container. For examples:

[{source: my-vol, destination: /data}]

1.12

Add a new attribute stop to the request to delete containers. Users can use this attribute to
stop and delete the container without using the force option.

1.13

Add a new api for a list of networks on a container. Users can use this api to list up neutron
network on a container.

1.14

Remove the container rename endpoint (POST /containers/<container>/rename). The equiv-
alent functionality is re-introduced by the patch endpoint (PATCH /containers/<container>).
To rename a container, users can send a request to the endpoint with the data in the following
form:

{name: <new-name>}

1.15

Remove the APIs for adding/removing security group to/from a container. These APIs are
removed because they are proxy APIs to Neutron.

1.16

Modify restart_policy to capsule spec content to align with Kubernetes.

1.17

Add parameter port to the network_detach API. This allow users to detach a container from
a neutron port.

1.18

Modify the response of network_list (GET /v1/containers/{container_ident}/network_list)
API. The normal response will be something like:

{
"networks": [

{
(continues on next page)

74 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

(continued from previous page)

"port_id": "5be06e49-70dc-4984-94a2-1b946bb136fb",
"net_id": "7e6b5e1b-9b44-4f55-b4e3-16a1ead98161",
"fixed_ips" [

"ip_address": "30.30.30.10",
"version": 4,
"subnet_id": "ae8d7cce-859e-432f-8a33-d7d8834ccd14"

]
}

]
}

1.19

Introduce an API endpoint for resizing a container, such as changing the CPU or memory of
the container.

1.20

Convert type of command from string to list

1.21

Support privileged container

1.22

Add healthcheck to container create

1.23

Add support for file injection when creating a container. The content of the file is sent to
Zun server via parameter mounts.

1.24

Add a parameter exposed_ports to the request of creating a container. This parameter is of
the following form:

exposed_ports: { <port>/<protocol>: {} }

where port is the containers port and protocol is either tcp or udp. If this parameter is spec-
ified, Zun will create a security group and open the exposed port. This parameter cannot
be used together with the security_groups parameter because Zun will manage the security
groups of the container.

1.25

The get_archive endpoint returns a encoded archived file data by using Base64 algorithm.
The put_archive endpoint take a Base64-encoded archived file data as input.

5.5. Reference Material 75

Zun Documentation, Release 16.1.0.dev4

1.26

Introduce Quota support API

1.27

Introduce API for deleting network. By default, this is an admin API.

1.28

Add a new attribute cpu_policy. Users can use this attribute to determine which CPU policy
the container uses.

1.29

Add a new attribute enable_cpu_pinning to host resource.

1.30

Introduce API endpoint for create/read/update/delete private registry.

1.31

Add registry_id to container resource. This attribute indicate the registry from which the
container pulls images.

1.32

Make capsule deletion asynchronized. API request to delete a capsule will return without
waiting for the capsule to be deleted.

1.33

Add finish_time to container action resource. If the action is finished, finish_time shows the
finish time. Otherwise, this field will be None.

1.34

Add init_containers to capsule. This field contains a list of init_container information.

1.35

Support processing ports field in capsules container. Users can leverage this field to open
ports of a container. For example:

spec:
containers:
- image: "nginx"
ports:
- containerPort: 80
protocol: TCP

76 Chapter 5. Additional Material

Zun Documentation, Release 16.1.0.dev4

1.36

Add tty to container. This field indicate if the container should allocate a TTY for itself.

1.37

Add tty and stdin to capsule. Containers in capsule can specify these two fields.

1.38

Add annotations to capsule. This field stores metadata of the capsule in key-value format.

1.39

Add host parameter on POST /v1/containers. This field is used to request a host to run the
container.

1.40

Add entrypoint parameter on POST /v1/containers. This field is used to overwrite the default
ENTRYPOINT of the image.

5.5. Reference Material 77

	What is Zun?
	For End Users
	For Operators
	Installation
	Zun Installation Guide
	Overview
	Controller
	Compute

	Container service overview
	Install and configure controller node
	Prerequisites
	Install and configure components
	Finalize installation

	Install and configure a compute node
	Prerequisites
	Install and configure components
	Finalize installation
	Enable Kata Containers (Optional)

	Verify operation
	Launch a container
	Next steps

	For Contributors
	Developer Quick-Start
	Exercising the Services Using Devstack
	Using the service

	Contributor’s Guide
	HowTos and Tutorials
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	Installing the API via WSGI
	Installing the API behind mod_wsgi
	app.wsgi
	etc/apache2/zun.conf
	Installing the API with uwsgi

	Run tempest tests locally
	Prerequisite
	Run the test

	Run unit tests
	Prerequisite
	Running the tests

	Multi-host Devstack
	Prerequisite
	Enable additional zun host

	API Microversions
	Background
	When do I need a new Microversion?
	When a microversion is not needed
	In Code
	Adding a new API method
	Removing an API method
	Changing a method’s behavior
	When not using decorators

	Other necessary changes
	Allocating a microversion

	Versioned Objects
	Object Version Testing
	Object Change Example

	Documentation Contribution
	Contributing Documentation to Zun
	Using RST
	Building Zun’s Documentation
	Review and Release Process
	Doc Directory Structure
	Zun Administration Documentation (source/admin)
	Zun CLI Documentation (source/cli)
	Zun Configuration Documentation (source/configuration)
	Zun Contributor Documentation (source/contributor)
	Zun Installation Documentation (source/install)
	Introduction:

	Other Resources
	Project hosting with Launchpad
	Mailing list
	Bug tracking
	Launchpad credentials
	Feature requests (Blueprints)
	Technical support (Answers)

	Code Reviews with Gerrit
	Continuous Integration with Jenkins
	Release notes
	Capsule Quick Start
	TODO

	Technical Vision for Zun
	Mission Statement
	Vision for OpenStack
	Self-service
	Application Control
	Interoperability
	Bidirectional Compatibility
	Cross-Project Dependencies
	Partitioning
	Basic Physical Data Center Management
	Hardware Virtualisation
	Plays Well With Others
	Infinite, Continuous Scaling
	Built-in Reliability and Durability
	Customizable Integration
	Graphical User Interface

	Additional Material
	Zun Command Line Guide
	zun-status
	CLI interface for Zun status commands
	Synopsis
	Description
	Options
	Upgrade

	Administrator’s Guide
	Installation & Operations
	Use OSProfiler in Zun
	Install Redis database
	Change the configure file
	Troubleshooting

	Clear Containers in Zun
	Installation with DevStack
	Using Clear Containers with Zun

	Keep Containers Alive
	Installation with DevStack

	Manage container security
	Create a container with security group
	Find container’s security groups

	How to use private docker registry with Zun
	Deploy Private Docker Registry

	Sample Configuration File
	Zun Configuration Options
	Policy configuration
	Configuration
	zun

	Filter Scheduler
	Filtering
	Configuring Filters
	Writing Your Own Filter

	Reference Material
	REST API Version History
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7
	1.8
	1.9
	1.10
	1.11
	1.12
	1.13
	1.14
	1.15
	1.16
	1.17
	1.18
	1.19
	1.20
	1.21
	1.22
	1.23
	1.24
	1.25
	1.26
	1.27
	1.28
	1.29
	1.30
	1.31
	1.32
	1.33
	1.34
	1.35
	1.36
	1.37
	1.38
	1.39
	1.40

