#
# Copyright 2012 New Dream Network, LLC (DreamHost)
# Copyright 2013 eNovance
# Copyright 2014 Red Hat, Inc
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""MongoDB storage backend"""
import itertools
import operator
import copy
import datetime
import uuid
import bson.code
import bson.objectid
from oslo_log import log
from oslo_utils import timeutils
import pymongo
import six
import ceilometer
from ceilometer.i18n import _
from ceilometer import storage
from ceilometer.storage import base
from ceilometer.storage import models
from ceilometer.storage.mongo import utils as pymongo_utils
from ceilometer.storage import pymongo_base
from ceilometer import utils
LOG = log.getLogger(__name__)
AVAILABLE_CAPABILITIES = {
'resources': {'query': {'simple': True,
'metadata': True}},
'statistics': {'groupby': True,
'query': {'simple': True,
'metadata': True},
'aggregation': {'standard': True,
'selectable': {'max': True,
'min': True,
'sum': True,
'avg': True,
'count': True,
'stddev': True,
'cardinality': True}}}
}
[docs]class Connection(pymongo_base.Connection):
"""Put the data into a MongoDB database
Collections::
- meter
- the raw incoming data
- resource
- the metadata for resources
- { _id: uuid of resource,
metadata: metadata dictionaries
user_id: uuid
project_id: uuid
meter: [ array of {counter_name: string, counter_type: string,
counter_unit: string} ]
}
"""
CAPABILITIES = utils.update_nested(pymongo_base.Connection.CAPABILITIES,
AVAILABLE_CAPABILITIES)
CONNECTION_POOL = pymongo_utils.ConnectionPool()
STANDARD_AGGREGATES = dict([(a.name, a) for a in [
pymongo_utils.SUM_AGGREGATION, pymongo_utils.AVG_AGGREGATION,
pymongo_utils.MIN_AGGREGATION, pymongo_utils.MAX_AGGREGATION,
pymongo_utils.COUNT_AGGREGATION,
]])
AGGREGATES = dict([(a.name, a) for a in [
pymongo_utils.SUM_AGGREGATION,
pymongo_utils.AVG_AGGREGATION,
pymongo_utils.MIN_AGGREGATION,
pymongo_utils.MAX_AGGREGATION,
pymongo_utils.COUNT_AGGREGATION,
pymongo_utils.STDDEV_AGGREGATION,
pymongo_utils.CARDINALITY_AGGREGATION,
]])
SORT_OPERATION_MAPPING = {'desc': (pymongo.DESCENDING, '$lt'),
'asc': (pymongo.ASCENDING, '$gt')}
MAP_RESOURCES = bson.code.Code("""
function () {
emit(this.resource_id,
{user_id: this.user_id,
project_id: this.project_id,
source: this.source,
first_timestamp: this.timestamp,
last_timestamp: this.timestamp,
metadata: this.resource_metadata})
}""")
REDUCE_RESOURCES = bson.code.Code("""
function (key, values) {
var merge = {user_id: values[0].user_id,
project_id: values[0].project_id,
source: values[0].source,
first_timestamp: values[0].first_timestamp,
last_timestamp: values[0].last_timestamp,
metadata: values[0].metadata}
values.forEach(function(value) {
if (merge.first_timestamp - value.first_timestamp > 0) {
merge.first_timestamp = value.first_timestamp;
merge.user_id = value.user_id;
merge.project_id = value.project_id;
merge.source = value.source;
} else if (merge.last_timestamp - value.last_timestamp <= 0) {
merge.last_timestamp = value.last_timestamp;
merge.metadata = value.metadata;
}
});
return merge;
}""")
_GENESIS = datetime.datetime(year=datetime.MINYEAR, month=1, day=1)
_APOCALYPSE = datetime.datetime(year=datetime.MAXYEAR, month=12, day=31,
hour=23, minute=59, second=59)
def __init__(self, conf, url):
super(Connection, self).__init__(conf, url)
# NOTE(jd) Use our own connection pooling on top of the Pymongo one.
# We need that otherwise we overflow the MongoDB instance with new
# connection since we instantiate a Pymongo client each time someone
# requires a new storage connection.
self.conn = self.CONNECTION_POOL.connect(conf, url)
self.version = self.conn.server_info()['versionArray']
# Require MongoDB 2.4 to use $setOnInsert
if self.version < pymongo_utils.MINIMUM_COMPATIBLE_MONGODB_VERSION:
raise storage.StorageBadVersion(
"Need at least MongoDB %s" %
pymongo_utils.MINIMUM_COMPATIBLE_MONGODB_VERSION)
connection_options = pymongo.uri_parser.parse_uri(url)
self.db = getattr(self.conn, connection_options['database'])
if connection_options.get('username'):
self.db.authenticate(connection_options['username'],
connection_options['password'])
# NOTE(jd) Upgrading is just about creating index, so let's do this
# on connection to be sure at least the TTL is correctly updated if
# needed.
self.upgrade()
@staticmethod
[docs] def update_ttl(ttl, ttl_index_name, index_field, coll):
"""Update or create time_to_live indexes.
:param ttl: time to live in seconds.
:param ttl_index_name: name of the index we want to update or create.
:param index_field: field with the index that we need to update.
:param coll: collection which indexes need to be updated.
"""
indexes = coll.index_information()
if ttl <= 0:
if ttl_index_name in indexes:
coll.drop_index(ttl_index_name)
return
if ttl_index_name in indexes:
return coll.database.command(
'collMod', coll.name,
index={'keyPattern': {index_field: pymongo.ASCENDING},
'expireAfterSeconds': ttl})
coll.create_index([(index_field, pymongo.ASCENDING)],
expireAfterSeconds=ttl,
name=ttl_index_name)
[docs] def upgrade(self):
# Establish indexes
#
# We need variations for user_id vs. project_id because of the
# way the indexes are stored in b-trees. The user_id and
# project_id values are usually mutually exclusive in the
# queries, so the database won't take advantage of an index
# including both.
# create collection if not present
if 'resource' not in self.db.conn.collection_names():
self.db.conn.create_collection('resource')
if 'meter' not in self.db.conn.collection_names():
self.db.conn.create_collection('meter')
name_qualifier = dict(user_id='', project_id='project_')
background = dict(user_id=False, project_id=True)
for primary in ['user_id', 'project_id']:
name = 'meter_%sidx' % name_qualifier[primary]
self.db.meter.create_index([
('resource_id', pymongo.ASCENDING),
(primary, pymongo.ASCENDING),
('counter_name', pymongo.ASCENDING),
('timestamp', pymongo.ASCENDING),
], name=name, background=background[primary])
self.db.meter.create_index([('timestamp', pymongo.DESCENDING)],
name='timestamp_idx')
# NOTE(ityaptin) This index covers get_resource requests sorting
# and MongoDB uses part of this compound index for different
# queries based on any of user_id, project_id, last_sample_timestamp
# fields
self.db.resource.create_index([('user_id', pymongo.DESCENDING),
('project_id', pymongo.DESCENDING),
('last_sample_timestamp',
pymongo.DESCENDING)],
name='resource_user_project_timestamp',)
self.db.resource.create_index([('last_sample_timestamp',
pymongo.DESCENDING)],
name='last_sample_timestamp_idx')
# update or create time_to_live index
ttl = self.conf.database.metering_time_to_live
self.update_ttl(ttl, 'meter_ttl', 'timestamp', self.db.meter)
self.update_ttl(ttl, 'resource_ttl', 'last_sample_timestamp',
self.db.resource)
[docs] def clear(self):
self.conn.drop_database(self.db.name)
# Connection will be reopened automatically if needed
self.conn.close()
[docs] def record_metering_data(self, data):
# TODO(liusheng): this is a workaround that is because there are
# storage scenario tests which directly invoke this method and pass a
# sample dict with all the storage backends and
# call conn.record_metering_data. May all the Ceilometer
# native storage backends can support batch recording in future, and
# then we need to refactor the scenario tests.
self.record_metering_data_batch([data])
[docs] def record_metering_data_batch(self, samples):
"""Record the metering data in batch.
:param samples: a list of samples dict.
"""
# Record the updated resource metadata - we use $setOnInsert to
# unconditionally insert sample timestamps and resource metadata
# (in the update case, this must be conditional on the sample not
# being out-of-order)
sorted_samples = sorted(
copy.deepcopy(samples),
key=lambda s: (s['resource_id'], s['timestamp']))
res_grouped_samples = itertools.groupby(
sorted_samples, key=operator.itemgetter('resource_id'))
samples_to_update_resource = []
for resource_id, g_samples in res_grouped_samples:
g_samples = list(g_samples)
g_samples[-1]['meter'] = [{'counter_name': s['counter_name'],
'counter_type': s['counter_type'],
'counter_unit': s['counter_unit'],
} for s in g_samples]
g_samples[-1]['last_sample_timestamp'] = g_samples[-1]['timestamp']
g_samples[-1]['first_sample_timestamp'] = g_samples[0]['timestamp']
samples_to_update_resource.append(g_samples[-1])
for sample in samples_to_update_resource:
sample['resource_metadata'] = pymongo_utils.improve_keys(
sample.pop('resource_metadata'))
resource = self.db.resource.find_one_and_update(
{'_id': sample['resource_id']},
{'$set': {'project_id': sample['project_id'],
'user_id': sample['user_id'],
'source': sample['source'],
},
'$setOnInsert': {
'metadata': sample['resource_metadata'],
'first_sample_timestamp': sample['timestamp'],
'last_sample_timestamp': sample['timestamp'],
},
'$addToSet': {
'meter': {'$each': sample['meter']},
},
},
upsert=True,
return_document=pymongo.ReturnDocument.AFTER,
)
# only update last sample timestamp if actually later (the usual
# in-order case)
last_sample_timestamp = resource.get('last_sample_timestamp')
if (last_sample_timestamp is None or
last_sample_timestamp <= sample['last_sample_timestamp']):
self.db.resource.update_one(
{'_id': sample['resource_id']},
{'$set': {'metadata': sample['resource_metadata'],
'last_sample_timestamp':
sample['last_sample_timestamp']}}
)
# only update first sample timestamp if actually earlier (
# the unusual out-of-order case)
# NOTE: a null first sample timestamp is not updated as this
# indicates a pre-existing resource document dating from before
# we started recording these timestamps in the resource collection
first_sample_timestamp = resource.get('first_sample_timestamp')
if (first_sample_timestamp is not None and
first_sample_timestamp > sample['first_sample_timestamp']):
self.db.resource.update_one(
{'_id': sample['resource_id']},
{'$set': {'first_sample_timestamp':
sample['first_sample_timestamp']}}
)
# Record the raw data for the meter. Use a copy so we do not
# modify a data structure owned by our caller (the driver adds
# a new key '_id').
record = copy.deepcopy(samples)
for s in record:
s['recorded_at'] = timeutils.utcnow()
s['resource_metadata'] = pymongo_utils.improve_keys(
s.pop('resource_metadata'))
self.db.meter.insert_many(record)
[docs] def clear_expired_metering_data(self, ttl):
"""Clear expired data from the backend storage system.
Clearing occurs with native MongoDB time-to-live feature.
"""
LOG.debug("Clearing expired metering data is based on native "
"MongoDB time to live feature and going in background.")
@classmethod
def _build_sort_instructions(cls, sort_keys=None, sort_dir='desc'):
"""Returns a sort_instruction and paging operator.
Sort instructions are used in the query to determine what attributes
to sort on and what direction to use.
:param q: The query dict passed in.
:param sort_keys: array of attributes by which results be sorted.
:param sort_dir: direction in which results be sorted (asc, desc).
:return: sort instructions and paging operator
"""
sort_keys = sort_keys or []
sort_instructions = []
_sort_dir, operation = cls.SORT_OPERATION_MAPPING.get(
sort_dir, cls.SORT_OPERATION_MAPPING['desc'])
for _sort_key in sort_keys:
_instruction = (_sort_key, _sort_dir)
sort_instructions.append(_instruction)
return sort_instructions, operation
def _get_time_constrained_resources(self, query,
start_timestamp, start_timestamp_op,
end_timestamp, end_timestamp_op,
metaquery, resource, limit):
"""Return an iterable of models.Resource instances
Items are constrained by sample timestamp.
:param query: project/user/source query
:param start_timestamp: modified timestamp start range.
:param start_timestamp_op: start time operator, like gt, ge.
:param end_timestamp: modified timestamp end range.
:param end_timestamp_op: end time operator, like lt, le.
:param metaquery: dict with metadata to match on.
:param resource: resource filter.
"""
if resource is not None:
query['resource_id'] = resource
# Add resource_ prefix so it matches the field in the db
query.update(dict(('resource_' + k, v)
for (k, v) in six.iteritems(metaquery)))
# FIXME(dhellmann): This may not perform very well,
# but doing any better will require changing the database
# schema and that will need more thought than I have time
# to put into it today.
# Look for resources matching the above criteria and with
# samples in the time range we care about, then change the
# resource query to return just those resources by id.
ts_range = pymongo_utils.make_timestamp_range(start_timestamp,
end_timestamp,
start_timestamp_op,
end_timestamp_op)
if ts_range:
query['timestamp'] = ts_range
sort_keys = base._handle_sort_key('resource')
sort_instructions = self._build_sort_instructions(sort_keys)[0]
# use a unique collection name for the results collection,
# as result post-sorting (as oppposed to reduce pre-sorting)
# is not possible on an inline M-R
out = 'resource_list_%s' % uuid.uuid4()
self.db.meter.map_reduce(self.MAP_RESOURCES,
self.REDUCE_RESOURCES,
out=out,
sort={'resource_id': 1},
query=query)
try:
if limit is not None:
results = self.db[out].find(sort=sort_instructions,
limit=limit)
else:
results = self.db[out].find(sort=sort_instructions)
for r in results:
resource = r['value']
yield models.Resource(
resource_id=r['_id'],
user_id=resource['user_id'],
project_id=resource['project_id'],
first_sample_timestamp=resource['first_timestamp'],
last_sample_timestamp=resource['last_timestamp'],
source=resource['source'],
metadata=pymongo_utils.unquote_keys(resource['metadata']))
finally:
self.db[out].drop()
def _get_floating_resources(self, query, metaquery, resource, limit):
"""Return an iterable of models.Resource instances
Items are unconstrained by timestamp.
:param query: project/user/source query
:param metaquery: dict with metadata to match on.
:param resource: resource filter.
"""
if resource is not None:
query['_id'] = resource
query.update(dict((k, v)
for (k, v) in six.iteritems(metaquery)))
keys = base._handle_sort_key('resource')
sort_keys = ['last_sample_timestamp' if i == 'timestamp' else i
for i in keys]
sort_instructions = self._build_sort_instructions(sort_keys)[0]
if limit is not None:
results = self.db.resource.find(query, sort=sort_instructions,
limit=limit)
else:
results = self.db.resource.find(query, sort=sort_instructions)
for r in results:
yield models.Resource(
resource_id=r['_id'],
user_id=r['user_id'],
project_id=r['project_id'],
first_sample_timestamp=r.get('first_sample_timestamp',
self._GENESIS),
last_sample_timestamp=r.get('last_sample_timestamp',
self._APOCALYPSE),
source=r['source'],
metadata=pymongo_utils.unquote_keys(r['metadata']))
[docs] def get_resources(self, user=None, project=None, source=None,
start_timestamp=None, start_timestamp_op=None,
end_timestamp=None, end_timestamp_op=None,
metaquery=None, resource=None, limit=None):
"""Return an iterable of models.Resource instances
:param user: Optional ID for user that owns the resource.
:param project: Optional ID for project that owns the resource.
:param source: Optional source filter.
:param start_timestamp: Optional modified timestamp start range.
:param start_timestamp_op: Optional start time operator, like gt, ge.
:param end_timestamp: Optional modified timestamp end range.
:param end_timestamp_op: Optional end time operator, like lt, le.
:param metaquery: Optional dict with metadata to match on.
:param resource: Optional resource filter.
:param limit: Maximum number of results to return.
"""
if limit == 0:
return
metaquery = pymongo_utils.improve_keys(metaquery, metaquery=True) or {}
query = {}
if user is not None:
query['user_id'] = user
if project is not None:
query['project_id'] = project
if source is not None:
query['source'] = source
if start_timestamp or end_timestamp:
return self._get_time_constrained_resources(query,
start_timestamp,
start_timestamp_op,
end_timestamp,
end_timestamp_op,
metaquery, resource,
limit)
else:
return self._get_floating_resources(query, metaquery, resource,
limit)
@staticmethod
def _make_period_dict(period, first_ts):
"""Create a period field for _id of grouped fields.
:param period: Period duration in seconds
:param first_ts: First timestamp for first period
:return:
"""
if period >= 0:
period_unique_dict = {
"period_start":
{
"$divide": [
{"$subtract": [
{"$subtract": ["$timestamp",
first_ts]},
{"$mod": [{"$subtract": ["$timestamp",
first_ts]},
period * 1000]
}
]},
period * 1000
]
}
}
else:
# Note(ityaptin) Hack for older MongoDB versions (2.4.+ and older).
# Since 2.6+ we could use $literal operator
period_unique_dict = {"$period_start": {"$add": [0, 0]}}
return period_unique_dict
[docs] def get_meter_statistics(self, sample_filter, period=None, groupby=None,
aggregate=None):
"""Return an iterable of models.Statistics instance.
Items are containing meter statistics described by the query
parameters. The filter must have a meter value set.
"""
# NOTE(zqfan): We already have checked at API level, but
# still leave it here in case of directly storage calls.
if aggregate:
for a in aggregate:
if a.func not in self.AGGREGATES:
msg = _('Invalid aggregation function: %s') % a.func
raise storage.StorageBadAggregate(msg)
if (groupby and set(groupby) -
set(['user_id', 'project_id', 'resource_id', 'source',
'resource_metadata.instance_type'])):
raise ceilometer.NotImplementedError(
"Unable to group by these fields")
q = pymongo_utils.make_query_from_filter(sample_filter)
group_stage = {}
project_stage = {
"unit": "$_id.unit",
"name": "$_id.name",
"first_timestamp": "$first_timestamp",
"last_timestamp": "$last_timestamp",
"period_start": "$_id.period_start",
}
# Add timestamps to $group stage
group_stage.update({"first_timestamp": {"$min": "$timestamp"},
"last_timestamp": {"$max": "$timestamp"}})
# Define a _id field for grouped documents
unique_group_field = {"name": "$counter_name",
"unit": "$counter_unit"}
# Define a first timestamp for periods
if sample_filter.start_timestamp:
first_timestamp = sample_filter.start_timestamp
else:
first_timestamp_cursor = self.db.meter.find(
limit=1, sort=[('timestamp',
pymongo.ASCENDING)])
if first_timestamp_cursor.count():
first_timestamp = first_timestamp_cursor[0]['timestamp']
else:
first_timestamp = utils.EPOCH_TIME
# Add a start_period field to unique identifier of grouped documents
if period:
period_dict = self._make_period_dict(period,
first_timestamp)
unique_group_field.update(period_dict)
# Add a groupby fields to unique identifier of grouped documents
if groupby:
unique_group_field.update(dict((field.replace(".", "/"),
"$%s" % field)
for field in groupby))
group_stage.update({"_id": unique_group_field})
self._compile_aggregate_stages(aggregate, group_stage, project_stage)
# Aggregation stages list. It's work one by one and uses documents
# from previous stages.
aggregation_query = [{'$match': q},
{"$sort": {"timestamp": 1}},
{"$group": group_stage},
{"$sort": {"_id.period_start": 1}},
{"$project": project_stage}]
# results is dict in pymongo<=2.6.3 and CommandCursor in >=3.0
results = self.db.meter.aggregate(aggregation_query,
**self._make_aggregation_params())
return [self._stats_result_to_model(point, groupby, aggregate,
period, first_timestamp)
for point in self._get_results(results)]
def _stats_result_aggregates(self, result, aggregate):
stats_args = {}
for attr, func in Connection.STANDARD_AGGREGATES.items():
if attr in result:
stats_args.update(func.finalize(result,
version_array=self.version))
if aggregate:
stats_args['aggregate'] = {}
for agr in aggregate:
stats_args['aggregate'].update(
Connection.AGGREGATES[agr.func].finalize(
result, agr.param, self.version))
return stats_args
def _stats_result_to_model(self, result, groupby, aggregate, period,
first_timestamp):
if period is None:
period = 0
first_timestamp = pymongo_utils.from_unix_timestamp(first_timestamp)
stats_args = self._stats_result_aggregates(result, aggregate)
stats_args['unit'] = result['unit']
stats_args['duration'] = (result["last_timestamp"] -
result["first_timestamp"]).total_seconds()
stats_args['duration_start'] = result['first_timestamp']
stats_args['duration_end'] = result['last_timestamp']
stats_args['period'] = period
start = result.get("period_start", 0) * period
stats_args['period_start'] = (first_timestamp +
datetime.timedelta(seconds=start))
stats_args['period_end'] = (first_timestamp +
datetime.timedelta(seconds=start + period)
if period else result['last_timestamp'])
stats_args['groupby'] = (
dict((g, result['_id'].get(g.replace(".", "/")))
for g in groupby) if groupby else None)
return models.Statistics(**stats_args)
def _compile_aggregate_stages(self, aggregate, group_stage, project_stage):
if not aggregate:
for aggregation in Connection.STANDARD_AGGREGATES.values():
group_stage.update(
aggregation.group(version_array=self.version)
)
project_stage.update(
aggregation.project(
version_array=self.version
)
)
else:
for description in aggregate:
aggregation = Connection.AGGREGATES.get(description.func)
if aggregation:
if not aggregation.validate(description.param):
raise storage.StorageBadAggregate(
'Bad aggregate: %s.%s' % (description.func,
description.param))
group_stage.update(
aggregation.group(description.param,
version_array=self.version)
)
project_stage.update(
aggregation.project(description.param,
version_array=self.version)
)
@staticmethod
def _get_results(results):
if isinstance(results, dict):
return results.get('result', [])
else:
return results
def _make_aggregation_params(self):
if self.version >= pymongo_utils.COMPLETE_AGGREGATE_COMPATIBLE_VERSION:
return {"allowDiskUse": True}
return {}