Source code for ceilometer.transformer.conversions
#
# Copyright 2013 Red Hat, Inc
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import collections
import re
from oslo_log import log
from oslo_utils import timeutils
import six
from ceilometer.i18n import _, _LW
from ceilometer import sample
from ceilometer import transformer
LOG = log.getLogger(__name__)
[docs]class BaseConversionTransformer(transformer.TransformerBase):
"""Transformer to derive conversion."""
grouping_keys = ['resource_id']
def __init__(self, source=None, target=None, **kwargs):
"""Initialize transformer with configured parameters.
:param source: dict containing source sample unit
:param target: dict containing target sample name, type,
unit and scaling factor (a missing value
connotes no change)
"""
self.source = source or {}
self.target = target or {}
super(BaseConversionTransformer, self).__init__(**kwargs)
def _map(self, s, attr):
"""Apply the name or unit mapping if configured."""
mapped = None
from_ = self.source.get('map_from')
to_ = self.target.get('map_to')
if from_ and to_:
if from_.get(attr) and to_.get(attr):
try:
mapped = re.sub(from_[attr], to_[attr], getattr(s, attr))
except Exception:
pass
return mapped or self.target.get(attr, getattr(s, attr))
[docs]class DeltaTransformer(BaseConversionTransformer):
"""Transformer based on the delta of a sample volume."""
def __init__(self, target=None, growth_only=False, **kwargs):
"""Initialize transformer with configured parameters.
:param growth_only: capture only positive deltas
"""
super(DeltaTransformer, self).__init__(target=target, **kwargs)
self.growth_only = growth_only
self.cache = {}
[docs] def handle_sample(self, s):
"""Handle a sample, converting if necessary."""
key = s.name + s.resource_id
prev = self.cache.get(key)
timestamp = timeutils.parse_isotime(s.timestamp)
self.cache[key] = (s.volume, timestamp)
if prev:
prev_volume = prev[0]
prev_timestamp = prev[1]
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
# disallow violations of the arrow of time
if time_delta < 0:
LOG.warning(_LW('Dropping out of time order sample: %s'), (s,))
# Reset the cache to the newer sample.
self.cache[key] = prev
return None
volume_delta = s.volume - prev_volume
if self.growth_only and volume_delta < 0:
LOG.warning(_LW('Negative delta detected, dropping value'))
s = None
else:
s = self._convert(s, volume_delta)
LOG.debug('Converted to: %s', s)
else:
LOG.warning(_LW('Dropping sample with no predecessor: %s'), (s,))
s = None
return s
def _convert(self, s, delta):
"""Transform the appropriate sample fields."""
return sample.Sample(
name=self._map(s, 'name'),
unit=s.unit,
type=sample.TYPE_DELTA,
volume=delta,
user_id=s.user_id,
project_id=s.project_id,
resource_id=s.resource_id,
timestamp=s.timestamp,
resource_metadata=s.resource_metadata
)
[docs]class ScalingTransformer(BaseConversionTransformer):
"""Transformer to apply a scaling conversion."""
def __init__(self, source=None, target=None, **kwargs):
"""Initialize transformer with configured parameters.
:param source: dict containing source sample unit
:param target: dict containing target sample name, type,
unit and scaling factor (a missing value
connotes no change)
"""
super(ScalingTransformer, self).__init__(source=source, target=target,
**kwargs)
self.scale = self.target.get('scale')
self.max = self.target.get('max')
LOG.debug('scaling conversion transformer with source:'
' %(source)s target: %(target)s:', {'source': self.source,
'target': self.target})
def _scale(self, s):
"""Apply the scaling factor.
Either a straight multiplicative factor or else a string to be eval'd.
"""
ns = transformer.Namespace(s.as_dict())
scale = self.scale
return ((eval(scale, {}, ns) if isinstance(scale, six.string_types)
else s.volume * scale) if scale else s.volume)
def _convert(self, s, growth=1):
"""Transform the appropriate sample fields."""
volume = self._scale(s) * growth
return sample.Sample(
name=self._map(s, 'name'),
unit=self._map(s, 'unit'),
type=self.target.get('type', s.type),
volume=min(volume, self.max) if self.max else volume,
user_id=s.user_id,
project_id=s.project_id,
resource_id=s.resource_id,
timestamp=s.timestamp,
resource_metadata=s.resource_metadata
)
[docs] def handle_sample(self, s):
"""Handle a sample, converting if necessary."""
LOG.debug('handling sample %s', s)
if self.source.get('unit', s.unit) == s.unit:
s = self._convert(s)
LOG.debug('converted to: %s', s)
return s
[docs]class RateOfChangeTransformer(ScalingTransformer):
"""Transformer based on the rate of change of a sample volume.
For example, taking the current and previous volumes of a cumulative sample
and producing a gauge value based on the proportion of some maximum used.
"""
def __init__(self, **kwargs):
"""Initialize transformer with configured parameters."""
super(RateOfChangeTransformer, self).__init__(**kwargs)
self.cache = {}
self.scale = self.scale or '1'
[docs] def handle_sample(self, s):
"""Handle a sample, converting if necessary."""
LOG.debug('handling sample %s', s)
key = s.name + s.resource_id
prev = self.cache.get(key)
timestamp = timeutils.parse_isotime(s.timestamp)
self.cache[key] = (s.volume, timestamp, s.monotonic_time)
if prev:
prev_volume = prev[0]
prev_timestamp = prev[1]
prev_monotonic_time = prev[2]
if (prev_monotonic_time is not None and
s.monotonic_time is not None):
# NOTE(sileht): Prefer high precision timer
time_delta = s.monotonic_time - prev_monotonic_time
else:
time_delta = timeutils.delta_seconds(prev_timestamp, timestamp)
# disallow violations of the arrow of time
if time_delta < 0:
LOG.warning(_('dropping out of time order sample: %s'), (s,))
# Reset the cache to the newer sample.
self.cache[key] = prev
return None
# we only allow negative volume deltas for noncumulative
# samples, whereas for cumulative we assume that a reset has
# occurred in the interim so that the current volume gives a
# lower bound on growth
volume_delta = (s.volume - prev_volume
if (prev_volume <= s.volume or
s.type != sample.TYPE_CUMULATIVE)
else s.volume)
rate_of_change = ((1.0 * volume_delta / time_delta)
if time_delta else 0.0)
s = self._convert(s, rate_of_change)
LOG.debug('converted to: %s', s)
else:
LOG.warning(_('dropping sample with no predecessor: %s'),
(s,))
s = None
return s
[docs]class AggregatorTransformer(ScalingTransformer):
"""Transformer that aggregates samples.
Aggregation goes until a threshold or/and a retention_time, and then
flushes them out into the wild.
Example:
To aggregate sample by resource_metadata and keep the
resource_metadata of the latest received sample;
AggregatorTransformer(retention_time=60, resource_metadata='last')
To aggregate sample by user_id and resource_metadata and keep the
user_id of the first received sample and drop the resource_metadata.
AggregatorTransformer(size=15, user_id='first',
resource_metadata='drop')
To keep the timestamp of the last received sample rather
than the first:
AggregatorTransformer(timestamp="last")
"""
def __init__(self, size=1, retention_time=None,
project_id=None, user_id=None, resource_metadata="last",
timestamp="first", **kwargs):
super(AggregatorTransformer, self).__init__(**kwargs)
self.samples = {}
self.counts = collections.defaultdict(int)
self.size = int(size) if size else None
self.retention_time = float(retention_time) if retention_time else None
if not (self.size or self.retention_time):
self.size = 1
if timestamp in ["first", "last"]:
self.timestamp = timestamp
else:
self.timestamp = "first"
self.initial_timestamp = None
self.aggregated_samples = 0
self.key_attributes = []
self.merged_attribute_policy = {}
self._init_attribute('project_id', project_id)
self._init_attribute('user_id', user_id)
self._init_attribute('resource_metadata', resource_metadata,
is_droppable=True, mandatory=True)
def _init_attribute(self, name, value, is_droppable=False,
mandatory=False):
drop = ['drop'] if is_droppable else []
if value or mandatory:
if value not in ['last', 'first'] + drop:
LOG.warning('%s is unknown (%s), using last' % (name, value))
value = 'last'
self.merged_attribute_policy[name] = value
else:
self.key_attributes.append(name)
def _get_unique_key(self, s):
# NOTE(arezmerita): in samples generated by ceilometer middleware,
# when accessing without authentication publicly readable/writable
# swift containers, the project_id and the user_id are missing.
# They will be replaced by <undefined> for unique key construction.
keys = ['<undefined>' if getattr(s, f) is None else getattr(s, f)
for f in self.key_attributes]
non_aggregated_keys = "-".join(keys)
# NOTE(sileht): it assumes, a meter always have the same unit/type
return "%s-%s-%s" % (s.name, s.resource_id, non_aggregated_keys)
[docs] def handle_sample(self, sample_):
if not self.initial_timestamp:
self.initial_timestamp = timeutils.parse_isotime(sample_.timestamp)
self.aggregated_samples += 1
key = self._get_unique_key(sample_)
self.counts[key] += 1
if key not in self.samples:
self.samples[key] = self._convert(sample_)
if self.merged_attribute_policy[
'resource_metadata'] == 'drop':
self.samples[key].resource_metadata = {}
else:
if self.timestamp == "last":
self.samples[key].timestamp = sample_.timestamp
if sample_.type == sample.TYPE_CUMULATIVE:
self.samples[key].volume = self._scale(sample_)
else:
self.samples[key].volume += self._scale(sample_)
for field in self.merged_attribute_policy:
if self.merged_attribute_policy[field] == 'last':
setattr(self.samples[key], field,
getattr(sample_, field))
[docs] def flush(self):
if not self.initial_timestamp:
return []
expired = (self.retention_time and
timeutils.is_older_than(self.initial_timestamp,
self.retention_time))
full = self.size and self.aggregated_samples >= self.size
if full or expired:
x = list(self.samples.values())
# gauge aggregates need to be averages
for s in x:
if s.type == sample.TYPE_GAUGE:
key = self._get_unique_key(s)
s.volume /= self.counts[key]
self.samples.clear()
self.counts.clear()
self.aggregated_samples = 0
self.initial_timestamp = None
return x
return []