iDRAC driver¶
Overview¶
The integrated Dell Remote Access Controller (iDRAC) is an out-of-band
management platform on Dell EMC servers, and is supported directly by
the idrac
hardware type. This driver uses the Dell Web Services for
Management (WSMAN) protocol and the standard Distributed Management Task
Force (DMTF) Redfish protocol to perform all of its functions.
iDRAC hardware is also supported by the generic ipmi
and redfish
hardware types, though with smaller feature sets.
Key features of the Dell iDRAC driver include:
Out-of-band node inspection
Boot device management and firmware management
Power management
RAID controller management and RAID volume configuration
BIOS settings configuration
Ironic Features¶
The idrac
hardware type supports the following Ironic interfaces:
BIOS Interface: BIOS management
Inspect Interface: Hardware inspection
Management Interface: Boot device and firmware management
Power Interface: Power management
RAID Interface: RAID controller and disk management
Vendor Interface: BIOS management
Prerequisites¶
The idrac
hardware type requires the python-dracclient
library
to be installed on the ironic conductor node(s) if an Ironic node is
configured to use an idrac-wsman
interface implementation, for example:
sudo pip install 'python-dracclient>=3.1.0'
Additionally, the idrac
hardware type requires the sushy
library
to be installed on the ironic conductor node(s) if an Ironic node is
configured to use an idrac-redfish
interface implementation, for example:
sudo pip install 'python-dracclient>=3.1.0' 'sushy>=2.0.0'
Enabling¶
The iDRAC driver supports WSMAN for the bios, inspect, management, power, raid, and vendor interfaces. In addition, it supports Redfish for the bios, inspect, management, and power interfaces. The iDRAC driver allows you to mix and match WSMAN and Redfish interfaces.
The idrac-wsman
implementation must be enabled to use WSMAN for
an interface. The idrac-redfish
implementation must be enabled
to use Redfish for an interface.
Note
Redfish is supported for only the bios, inspect, management, and power interfaces at the present time.
To enable the idrac
hardware type with the minimum interfaces,
all using WSMAN, add the following to your /etc/ironic/ironic.conf
:
[DEFAULT]
enabled_hardware_types=idrac
enabled_management_interfaces=idrac-wsman
enabled_power_interfaces=idrac-wsman
To enable all optional features (BIOS, inspection, RAID, and vendor passthru) using Redfish where it is supported and WSMAN where not, use the following configuration:
[DEFAULT]
enabled_hardware_types=idrac
enabled_bios_interfaces=idrac-redfish
enabled_inspect_interfaces=idrac-redfish
enabled_management_interfaces=idrac-redfish
enabled_power_interfaces=idrac-redfish
enabled_raid_interfaces=idrac-wsman
enabled_vendor_interfaces=idrac-wsman
Below is the list of supported interface implementations in priority order:
Interface |
Supported Implementations |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Note
idrac
is the legacy name of the WSMAN interface. It has been
deprecated in favor of idrac-wsman
and may be removed in a
future release.
Protocol-specific Properties¶
The WSMAN and Redfish protocols require different properties to be specified
in the Ironic node’s driver_info
field to communicate with the bare
metal system’s iDRAC.
The WSMAN protocol requires the following properties:
drac_username
: The WSMAN user name to use when communicating with the iDRAC. Usuallyroot
.drac_password
: The password for the WSMAN user to use when communicating with the iDRAC.drac_address
: The IP address of the iDRAC.
The Redfish protocol requires the following properties:
redfish_username
: The Redfish user name to use when communicating with the iDRAC. Usuallyroot
.redfish_password
: The password for the Redfish user to use when communicating with the iDRAC.redfish_address
: The URL address of the iDRAC. It must include the authority portion of the URL, and can optionally include the scheme. If the scheme is missing, https is assumed.redfish_system_id
: The Redfish ID of the server to be managed. This should always be:/redfish/v1/Systems/System.Embedded.1
.
For other Redfish protocol parameters see Redfish driver.
If using only interfaces which use WSMAN (idrac-wsman
), then only
the WSMAN properties must be supplied. If using only interfaces which
use Redfish (idrac-redfish
), then only the Redfish properties must be
supplied. If using a mix of interfaces, where some use WSMAN and others
use Redfish, both the WSMAN and Redfish properties must be supplied.
Enrolling¶
The following command enrolls a bare metal node with the idrac
hardware type using WSMAN for all interfaces:
openstack baremetal node create --driver idrac \
--driver-info drac_username=user \
--driver-info drac_password=pa$$w0rd \
--driver-info drac_address=drac.host
The following command enrolls a bare metal node with the idrac
hardware type using Redfish for all interfaces:
openstack baremetal node create --driver idrac \
--driver-info redfish_username=user \
--driver-info redfish_password=pa$$w0rd \
--driver-info redfish_address=drac.host \
--driver-info redfish_system_id=/redfish/v1/Systems/System.Embedded.1 \
--bios-interface idrac-redfish \
--inspect-interface idrac-redfish \
--management-interface idrac-redfish \
--power-interface idrac-redfish \
--raid-interface no-raid \
--vendor-interface no-vendor
The following command enrolls a bare metal node with the idrac
hardware type assuming a mix of Redfish and WSMAN interfaces are used:
openstack baremetal node create --driver idrac \
--driver-info drac_username=user \
--driver-info drac_password=pa$$w0rd
--driver-info drac_address=drac.host \
--driver-info redfish_username=user \
--driver-info redfish_password=pa$$w0rd \
--driver-info redfish_address=drac.host \
--driver-info redfish_system_id=/redfish/v1/Systems/System.Embedded.1 \
--bios-interface idrac-redfish \
--inspect-interface idrac-redfish \
--management-interface idrac-redfish \
--power-interface idrac-redfish
Note
If using WSMAN for the management interface, then WSMAN must be used for the power interface. The same applies to Redfish. It is currently not possible to use Redfish for one and WSMAN for the other.
BIOS Interface¶
The BIOS interface implementations supported by the idrac
hardware type
allows BIOS to be configured with the standard clean/deploy step approach.
Example¶
A clean step to enable Virtualization
and SRIOV
in BIOS of an iDRAC
BMC would be as follows:
{
"target":"clean",
"clean_steps": [
{
"interface": "bios",
"step": "apply_configuration",
"args": {
"settings": [
{
"name": "ProcVirtualization",
"value": "Enabled"
},
{
"name": "SriovGlobalEnable",
"value": "Enabled"
}
]
}
}
]
}
See the Known Issues for a known issue with factory_reset
clean step.
For additional details of BIOS configuration, see BIOS Configuration.
Inspect Interface¶
The Dell iDRAC out-of-band inspection process catalogs all the same attributes of the server as the IPMI driver. Unlike IPMI, it does this without requiring the system to be rebooted, or even to be powered on. Inspection is performed using the Dell WSMAN or Redfish protocol directly without affecting the operation of the system being inspected.
The inspection discovers the following properties:
cpu_arch
: cpu architecturecpus
: number of cpuslocal_gb
: disk size in gigabytesmemory_mb
: memory size in megabytes
Extra capabilities:
boot_mode
: UEFI or BIOS boot mode.pci_gpu_devices
: number of GPU devices connected to the bare metal.
It also creates baremetal ports for each NIC port detected in the system.
The idrac-wsman
inspect interface discovers which NIC ports are
configured to PXE boot and sets pxe_enabled
to True
on those ports.
The idrac-redfish
inspect interface does not currently set pxe_enabled
on the ports. The user should ensure that pxe_enabled
is set correctly on
the ports following inspection with the idrac-redfish
inspect interface.
Management Interface¶
The management interface for idrac-redfish
supports updating firmware on
nodes using a manual cleaning step.
See Redfish driver for more information on firmware update support.
RAID Interface¶
See RAID Configuration for more information on Ironic RAID support.
The following properties are supported by the iDRAC WSMAN raid interface
implementation, idrac-wsman
:
Mandatory properties¶
size_gb
: Size in gigabytes (integer) for the logical disk. UseMAX
assize_gb
if this logical disk is supposed to use the rest of the space available.raid_level
: RAID level for the logical disk. Valid values are0
,1
,5
,6
,1+0
,5+0
and6+0
.
Note
JBOD
and 2
are not supported, and will fail with reason: ‘Cannot
calculate spans for RAID level.’
Optional properties¶
is_root_volume
: Optional. Specifies whether this disk is a root volume. By default, this isFalse
.volume_name
: Optional. Name of the volume to be created. If this is not specified, it will be auto-generated.
Backing physical disk hints¶
See RAID Configuration for more information on backing disk hints.
These are machine-independent information. The hints are specified for each logical disk to help Ironic find the desired disks for RAID configuration.
disk_type
interface_type
share_physical_disks
number_of_physical_disks
Backing physical disks¶
These are Dell RAID controller-specific values and must match the names provided by the iDRAC.
controller
: Mandatory. The name of the controller to use.physical_disks
: Optional. The names of the physical disks to use.
Note
physical_disks
is a mandatory parameter if the property size_gb
is set to MAX
.
Examples¶
Creation of RAID 1+0
logical disk with six disks on one controller:
{ "logical_disks":
[ { "controller": "RAID.Integrated.1-1",
"is_root_volume": "True",
"physical_disks": [
"Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.1:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.2:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.3:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.4:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.5:Enclosure.Internal.0-1:RAID.Integrated.1-1"],
"raid_level": "1+0",
"size_gb": "MAX"}]}
Manual RAID Invocation¶
The following command can be used to delete any existing RAID configuration. It deletes all virtual disks/RAID volumes, unassigns all global and dedicated hot spare physical disks, and clears foreign configuration:
openstack baremetal node clean --clean-steps \
'[{"interface": "raid", "step": "delete_configuration"}]' ${node_uuid}
The following command shows an example of how to set the target RAID configuration:
openstack baremetal node set --target-raid-config '{ "logical_disks":
[ { "controller": "RAID.Integrated.1-1",
"is_root_volume": true,
"physical_disks": [
"Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1",
"Disk.Bay.1:Enclosure.Internal.0-1:RAID.Integrated.1-1"],
"raid_level": "0",
"size_gb": "MAX"}]}' ${node_uuid}
The following command can be used to create a RAID configuration:
openstack baremetal node clean --clean-steps \
'[{"interface": "raid", "step": "create_configuration"}]' ${node_uuid}
When the physical disk names or controller names are not known, the
following Python code example shows how the python-dracclient
can
be used to fetch the information directly from the Dell bare metal:
import dracclient.client
client = dracclient.client.DRACClient(
host="192.168.1.1",
username="root",
password="calvin")
controllers = client.list_raid_controllers()
print(controllers)
physical_disks = client.list_physical_disks()
print(physical_disks)
Vendor Interface¶
Dell iDRAC BIOS management is available through the Ironic vendor passthru interface.
Method Name |
HTTP Method |
Description |
---|---|---|
|
|
Abandon a BIOS configuration job. |
|
|
Commit a BIOS configuration job
submitted through |
|
|
Returns a dictionary containing the node’s BIOS settings. |
|
|
Returns a dictionary containing
the key |
|
|
Change the BIOS configuration on
a node. Required argument: a
dictionary of { |
Examples¶
Get BIOS Config¶
openstack baremetal node passthru call --http-method GET ${node_uuid} get_bios_config
Snippet of output showing virtualization enabled:
{"ProcVirtualization": {
"current_value": "Enabled",
"instance_id": "BIOS.Setup.1-1:ProcVirtualization",
"name": "ProcVirtualization",
"pending_value": null,
"possible_values": [
"Enabled",
"Disabled"],
"read_only": false }}
There are a number of items to note from the above snippet:
name
: this is the name to use in a call toset_bios_config
.current_value
: the current state of the setting.pending_value
: if the value has been set, but not yet committed, the new value is shown here. The change can either be committed or abandoned.possible_values
: shows a list of valid values which can be used in a call toset_bios_config
.read_only
: indicates if the value is capable of being changed.
Set BIOS Config¶
openstack baremetal node passthru call ${node_uuid} set_bios_config --arg "name=value"
Walkthrough of perfoming a BIOS configuration change:
The following section demonstrates how to change BIOS configuration settings, detect that a commit and reboot are required, and act on them accordingly. The two properties that are being changed are:
Enable virtualization technology of the processor
Globally enable SR-IOV
openstack baremetal node passthru call ${node_uuid} set_bios_config \
--arg "ProcVirtualization=Enabled" \
--arg "SriovGlobalEnable=Enabled"
This returns a dictionary indicating what actions are required next:
{
"is_reboot_required": true,
"is_commit_required": true
}
Commit BIOS Changes¶
The next step is to commit the pending change to the BIOS. Note that in this
example, the reboot
argument is set to true
. The response indicates
that a reboot is no longer required as it has been scheduled automatically
by the commit_bios_config
call. If the reboot argument is not supplied,
the job is still created, however it remains in the scheduled
state
until a reboot is performed. The reboot can be initiated through the
Ironic power API.
openstack baremetal node passthru call ${node_uuid} commit_bios_config \
--arg "reboot=true"
{
"job_id": "JID_499377293428",
"reboot_required": false
}
The state of any executing job can be queried:
openstack baremetal node passthru call --http-method GET ${node_uuid} list_unfinished_jobs
{"unfinished_jobs":
[{"status": "Scheduled",
"name": "ConfigBIOS:BIOS.Setup.1-1",
"until_time": "TIME_NA",
"start_time": "TIME_NOW",
"message": "Task successfully scheduled.",
"percent_complete": "0",
"id": "JID_499377293428"}]}
Abandon BIOS Changes¶
Instead of committing, a pending change can be abandoned:
openstack baremetal node passthru call --http-method DELETE ${node_uuid} abandon_bios_config
The abandon command does not provide a response body.
Change Boot Mode¶
The boot mode of the iDRAC can be changed to:
BIOS - Also called legacy or traditional boot mode. The BIOS initializes the system’s processors, memory, bus controllers, and I/O devices. After initialization is complete, the BIOS passes control to operating system (OS) software. The OS loader uses basic services provided by the system BIOS to locate and load OS modules into system memory. After booting the system, the BIOS and embedded management controllers execute system management algorithms, which monitor and optimize the condition of the underlying hardware. BIOS configuration settings enable fine-tuning of the performance, power management, and reliability features of the system.
UEFI - The Unified Extensible Firmware Interface does not change the traditional purposes of the system BIOS. To a large extent, a UEFI-compliant BIOS performs the same initialization, boot, configuration, and management tasks as a traditional BIOS. However, UEFI does change the interfaces and data structures the BIOS uses to interact with I/O device firmware and operating system software. The primary intent of UEFI is to eliminate shortcomings in the traditional BIOS environment, enabling system firmware to continue scaling with industry trends.
The UEFI boot mode offers:
Improved partitioning scheme for boot media
Support for media larger than 2 TB
Redundant partition tables
Flexible handoff from BIOS to OS
Consolidated firmware user interface
Enhanced resource allocation for boot device firmware
The boot mode can be changed via the vendor passthru interface as follows:
openstack baremetal node passthru call ${node_uuid} set_bios_config \
--arg "BootMode=Uefi"
openstack baremetal node passthru call ${node_uuid} commit_bios_config \
--arg "reboot=true"
openstack baremetal node passthru call ${node_uuid} set_bios_config \
--arg "BootMode=Bios"
openstack baremetal node passthru call ${node_uuid} commit_bios_config \
--arg "reboot=true"
Known Issues¶
Nodes go into maintenance mode¶
After some period of time, nodes managed by the idrac
hardware type may go
into maintenance mode in Ironic. This issue can be worked around by changing
the Ironic power state poll interval to 70 seconds. See
[conductor]sync_power_state_interval
in /etc/ironic/ironic.conf
.
PXE reset with “factory_reset” BIOS clean step¶
When using the UEFI boot mode`
with non-default PXE interface, the factory
reset can cause the PXE interface to be reset to default, which doesn’t allow
the server to PXE boot for any further operations. This can cause a
clean_failed
state on the node or deploy_failed
if you attempt to
deploy a node after this step. For now, the only solution is for the operator
to manually restore the PXE settings of the server for it to PXE boot again,
properly.
The problem is caused by the fact that with the UEFI boot mode
, the
idrac
uses BIOS settings to manage PXE configuration. This is not the case
with the BIOS boot mode
where the PXE configuration is handled as a
configuration job on the integrated NIC itself, independently of the BIOS
settings.
Vendor passthru timeout¶
When iDRAC is not ready and executing vendor passthru commands, they take more time as waiting for iDRAC to become ready again and then time out, for example:
openstack baremetal node passthru call --http-method GET \
aed58dca-1b25-409a-a32f-3a817d59e1e0 list_unfinished_jobs
Timed out waiting for a reply to message ID 547ce7995342418c99ef1ea4a0054572 (HTTP 500)
To avoid this need to increase timeout for messaging in /etc/ironic/ironic.conf
and restart Ironic API service.
[DEFAULT]
rpc_response_timeout = 600
Timeout when powering off¶
Some servers might be slow when soft powering off and time out. The default retry count
is 6, resulting in 30 seconds timeout (the default retry interval set by
post_deploy_get_power_state_retry_interval
is 5 seconds).
To resolve this issue, increase the timeout to 90 seconds by setting the retry count to
18 as follows:
[agent]
post_deploy_get_power_state_retries = 18