Monasca provides monitoring and logging as-a-service for OpenStack. It consists of a large number of micro-services coupled together by Apache Kafka. If it is enabled in Kolla, it is automatically configured to collect logs and metrics from across the control plane. These logs and metrics are accessible from the Monasca APIs to anyone with credentials for the OpenStack project to which they are posted.
Monasca is not just for the control plane. Monitoring data can just as easily be gathered from tenant deployments, by for example baking the Monasca Agent into the tenant image, or installing it post-deployment using an orchestration tool.
Finally, one of the key tenets of Monasca is that it is scalable. In Kolla Ansible, the deployment has been designed from the beginning to work in a highly available configuration across multiple nodes. Traffic is typically balanced across multiple instances of a service by HAProxy, or in other cases using the native load balancing mechanism provided by the service. For example, topic partitions in Kafka. Of course, if you start out with a single server that’s fine too, and if you find that you need to improve capacity later on down the line, adding additional nodes should be a fairly straightforward exercise.
Enable Monasca in /etc/kolla/globals.yml
:
enable_monasca: "yes"
Currently Monasca is only supported using the source
install type Kolla
images. If you are using the binary
install type you should set the
following override in /etc/kolla/globals.yml
:
monasca_install_type: "source"
Monasca can be deployed via Kolla-Ansible in a standalone configuration. The deployment will include all supporting services such as HAProxy, Keepalived, MariaDB and Memcached. It can also include Keystone, but you will likely want to integrate with the Keystone instance provided by your existing OpenStack deployment. Some reasons to perform a standalone deployment are:
To configure a standalone installation you will need to add the following to /etc/kolla/globals.yml`:
enable_nova: "no"
enable_neutron: "no"
enable_heat: "no"
enable_openvswitch: "no"
enable_horizon: "no"
enable_glance: "no"
enable_rabbitmq: "no"
With the above configuration alone Keystone will be deployed. If you want Monasca to be registered with an external instance of Keystone you can add the following, additional configuration to /etc/kolla/globals.yml:
enable_keystone: "no"
keystone_admin_url: "http://172.28.128.254:35357"
keystone_internal_url: "http://172.28.128.254:5000"
monasca_openstack_auth:
auth_url: "{{ keystone_admin_url }}"
username: "admin"
password: "{{ external_keystone_admin_password }}"
project_name: "admin"
domain_name: "default"
user_domain_name: "default"
In this example it is assumed that the external Keystone admin and internal URLs are http://172.28.128.254:35357 and http://172.28.128.254:5000 respectively, and that the external Keystone admin password is defined by the variable external_keystone_admin_password which you will most likely want to save in /etc/kolla/passwords.yml. Note that the Keystone URLs can be obtained from the external OpenStack CLI, for example:
openstack endpoint list --service identity
+----------------------------------+-----------+--------------+--------------+---------+-----------+-----------------------------+
| ID | Region | Service Name | Service Type | Enabled | Interface | URL |
+----------------------------------+-----------+--------------+--------------+---------+-----------+-----------------------------+
| 162365440e6c43d092ad6069f0581a57 | RegionOne | keystone | identity | True | admin | http://172.28.128.254:35357 |
| 6d768ee2ce1c4302a49e9b7ac2af472c | RegionOne | keystone | identity | True | public | http://172.28.128.254:5000 |
| e02067a58b1946c7ae53abf0cfd0bf11 | RegionOne | keystone | identity | True | internal | http://172.28.128.254:5000 |
+----------------------------------+-----------+--------------+--------------+---------+-----------+-----------------------------+
If you are also using Kolla-Ansible to manage the external OpenStack installation, the external Keystone admin password will most likely be defined in the external /etc/kolla/passwords.yml file. For other deployment methods you will need to consult the relevant documentation.
To build any custom images required by Monasca see the instructions in the Kolla repo: kolla/doc/source/admin/template-override/monasca.rst. The remaining images may be pulled from Docker Hub, but if you need to build them manually you can use the following commands:
$ kolla-build -t source monasca
$ kolla-build kafka zookeeper storm elasticsearch logstash kibana
If you are deploying Monasca standalone you will also need the following images:
$ kolla-build cron chrony fluentd mariadb kolla-toolbox keystone memcached keepalived haproxy
Run the deploy as usual, following whichever procedure you normally use to decrypt secrets if you have encrypted them with Ansible Vault:
$ kolla-genpwd
$ kolla-ansible deploy
The first thing you will want to do is to create a Monasca user to view metrics harvested by the Monasca Agent. By default these are saved into the monasca_control_plane project, which serves as a place to store all control plane logs and metrics:
[vagrant@operator kolla]$ openstack project list
+----------------------------------+-----------------------+
| ID | Name |
+----------------------------------+-----------------------+
| 03cb4b7daf174febbc4362d5c79c5be8 | service |
| 2642bcc8604f4491a50cb8d47e0ec55b | monasca_control_plane |
| 6b75784f6bc942c6969bc618b80f4a8c | admin |
+----------------------------------+-----------------------+
The permissions of Monasca users are governed by the roles which they have assigned to them in a given OpenStack project. This is an important point and forms the basis of how Monasca supports multi-tenancy.
By default the admin role and the monasca-read-only-user role are configured. The admin role grants read/write privileges and the monasca-read-only-user role grants read privileges to a user.
[vagrant@operator kolla]$ openstack role list
+----------------------------------+------------------------+
| ID | Name |
+----------------------------------+------------------------+
| 0419463fd5a14ace8e5e1a1a70bbbd84 | agent |
| 1095e8be44924ae49585adc5d1136f86 | member |
| 60f60545e65f41749b3612804a7f6558 | admin |
| 7c184ade893442f78cea8e074b098cfd | _member_ |
| 7e56318e207a4e85b7d7feeebf4ba396 | reader |
| fd200a805299455d90444a00db5074b6 | monasca-read-only-user |
+----------------------------------+------------------------+
Now lets consider the example of creating a monitoring user who has read/write privileges in the monasca_control_plane project. First we create the user:
openstack user create --project monasca_control_plane mon_user
User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
| default_project_id | 2642bcc8604f4491a50cb8d47e0ec55b |
| domain_id | default |
| enabled | True |
| id | 088a725872c9410d9c806c24952f9ae1 |
| name | mon_user |
| options | {} |
| password_expires_at | None |
+---------------------+----------------------------------+
Secondly we assign the user the admin role in the monasca_control_plane project:
openstack role add admin --project monasca_control_plane --user mon_user
Alternatively we could have assigned the user the read only role:
openstack role add monasca_read_only_user --project monasca_control_plane --user mon_user
The user is now active and the credentials can be used to log into the Monasca fork of Grafana which will be available by default on port 3001 on both internal and external VIPs.
For log analysis Kibana is also available, by default on port 5601 on both internal and external VIPs. Currently the Keystone authentication plugin is not configured and the HAProxy endpoints are protected by a password which is defined in /etc/kolla/passwords.yml under kibana_password.
Monasca will deploy the following Docker containers:
In addition to these, Monasca will also utilise Kolla deployed MariaDB, Keystone, Memcached and HAProxy/Keepalived. The Monasca Agent containers will, by default, be deployed on all nodes managed by Kolla Ansible. This includes all nodes in the control plane as well as compute, storage and monitoring nodes.
Whilst these services will run on an all-in-one deployment, in a production environment it is recommended to use at least one dedicated monitoring node to avoid the risk of starving core OpenStack services of resources. As a general rule of thumb, for a standalone monitoring server running Monasca in a production environment, you will need at least 32GB RAM and a recent multi-core CPU. You will also need enough space to store metrics and logs, and to buffer these in Kafka. Whilst Kafka is happy with spinning disks, you will likely want to use SSDs to back InfluxDB and Elasticsearch.
The Monasca API and the Monasca Log API will be exposed on public endpoints via HAProxy/Keepalived.
If you are using the multi-tenant capabilities of Monasca there is a risk that tenants could gain access to other tenants logs and metrics. This could include logs and metrics for the control plane which could reveal sensitive information about the size and nature of the deployment.
Another risk is that users may gain access to system logs via Kibana, which is not accessed via the Monasca APIs. Whilst Kolla configures a password out of the box to restrict access to Kibana, the password will not apply if a user has access to the network on which the individual Kibana service(s) bind behind HAProxy. Note that Elasticsearch, which is not protected by a password, will also be directly accessible on this network, and therefore great care should be taken to ensure that untrusted users do not have access to it.
A full evaluation of attack vectors is outside the scope of this document.
Monasca support in Kolla was contributed by StackHPC Ltd. and the Kolla community. If you have any issues with the deployment please ask in the Kolla IRC channel.
Except where otherwise noted, this document is licensed under Creative Commons Attribution 3.0 License. See all OpenStack Legal Documents.