Todo
Some of this is installation guide material and should probably be moved.
KVM is configured as the default hypervisor for Compute.
Note
This document contains several sections about hypervisor selection. If you
are reading this document linearly, you do not want to load the KVM module
before you install nova-compute
. The nova-compute
service depends
on qemu-kvm, which installs /lib/udev/rules.d/45-qemu-kvm.rules
, which
sets the correct permissions on the /dev/kvm
device node.
To enable KVM explicitly, add the following configuration options to the
/etc/nova/nova.conf
file:
compute_driver = libvirt.LibvirtDriver
[libvirt]
virt_type = kvm
The KVM hypervisor supports the following virtual machine image formats:
This section describes how to enable KVM on your system. For more information, see the following distribution-specific documentation:
Red Hat Enterprise Linux
Virtualization Host Configuration and Guest Installation Guide
.Virtualization Guide
.The following sections outline how to enable KVM based hardware virtualization
on different architectures and platforms. To perform these steps, you must be
logged in as the root
user.
To determine whether the svm
or vmx
CPU extensions are present, run
this command:
# grep -E 'svm|vmx' /proc/cpuinfo
This command generates output if the CPU is capable of hardware-virtualization. Even if output is shown, you might still need to enable virtualization in the system BIOS for full support.
If no output appears, consult your system documentation to ensure that your CPU and motherboard support hardware virtualization. Verify that any relevant hardware virtualization options are enabled in the system BIOS.
The BIOS for each manufacturer is different. If you must enable
virtualization in the BIOS, look for an option containing the words
virtualization
, VT
, VMX
, or SVM
.
To list the loaded kernel modules and verify that the kvm
modules are
loaded, run this command:
# lsmod | grep kvm
If the output includes kvm_intel
or kvm_amd
, the kvm
hardware
virtualization modules are loaded and your kernel meets the module
requirements for OpenStack Compute.
If the output does not show that the kvm
module is loaded, run this
command to load it:
# modprobe -a kvm
Run the command for your CPU. For Intel, run this command:
# modprobe -a kvm-intel
For AMD, run this command:
# modprobe -a kvm-amd
Because a KVM installation can change user group membership, you might need to log in again for changes to take effect.
If the kernel modules do not load automatically, use the procedures listed in these subsections.
If the checks indicate that required hardware virtualization support or kernel modules are disabled or unavailable, you must either enable this support on the system or find a system with this support.
Note
Some systems require that you enable VT support in the system BIOS. If you believe your processor supports hardware acceleration but the previous command did not produce output, reboot your machine, enter the system BIOS, and enable the VT option.
If KVM acceleration is not supported, configure Compute to use a different
hypervisor, such as QEMU
or Xen
. See QEMU or
XenServer (and other XAPI based Xen variants) for details.
These procedures help you load the kernel modules for Intel-based and AMD-based processors if they do not load automatically during KVM installation.
Intel-based processors
If your compute host is Intel-based, run these commands as root to load the kernel modules:
# modprobe kvm
# modprobe kvm-intel
Add these lines to the /etc/modules
file so that these modules load on
reboot:
kvm
kvm-intel
AMD-based processors
If your compute host is AMD-based, run these commands as root to load the kernel modules:
# modprobe kvm
# modprobe kvm-amd
Add these lines to /etc/modules
file so that these modules load on reboot:
kvm
kvm-amd
KVM as a hypervisor is supported on POWER system’s PowerNV platform.
To determine if your POWER platform supports KVM based virtualization run the following command:
# cat /proc/cpuinfo | grep PowerNV
If the previous command generates the following output, then CPU supports KVM based virtualization.
platform: PowerNV
If no output is displayed, then your POWER platform does not support KVM based hardware virtualization.
To list the loaded kernel modules and verify that the kvm
modules are
loaded, run the following command:
# lsmod | grep kvm
If the output includes kvm_hv
, the kvm
hardware virtualization
modules are loaded and your kernel meets the module requirements for
OpenStack Compute.
If the output does not show that the kvm
module is loaded, run the
following command to load it:
# modprobe -a kvm
For PowerNV platform, run the following command:
# modprobe -a kvm-hv
Because a KVM installation can change user group membership, you might need to log in again for changes to take effect.
Backing Storage is the storage used to provide the expanded operating system
image, and any ephemeral storage. Inside the virtual machine, this is normally
presented as two virtual hard disks (for example, /dev/vda
and /dev/vdb
respectively). However, inside OpenStack, this can be derived from one of these
methods: lvm
, qcow
, rbd
or flat
, chosen using the
libvirt.images_type
option in nova.conf
on the
compute node.
Note
The option raw
is acceptable but deprecated in favor of flat
. The
Flat back end uses either raw or QCOW2 storage. It never uses a backing
store, so when using QCOW2 it copies an image rather than creating an
overlay. By default, it creates raw files but will use QCOW2 when creating a
disk from a QCOW2 if force_raw_images
is not set in
configuration.
QCOW is the default backing store. It uses a copy-on-write philosophy to delay allocation of storage until it is actually needed. This means that the space required for the backing of an image can be significantly less on the real disk than what seems available in the virtual machine operating system.
Flat creates files without any sort of file formatting, effectively creating files with the plain binary one would normally see on a real disk. This can increase performance, but means that the entire size of the virtual disk is reserved on the physical disk.
Local LVM volumes can also be
used. Set the libvirt.images_volume_group
configuration
option to the name of the LVM group you have created.
The Compute service enables you to control the guest CPU model that is exposed to KVM virtual machines. Use cases include:
In libvirt, the CPU is specified by providing a base CPU model name (which is a
shorthand for a set of feature flags), a set of additional feature flags, and
the topology (sockets/cores/threads). The libvirt KVM driver provides a number
of standard CPU model names. These models are defined in the
/usr/share/libvirt/cpu_map.xml
file. Check this file to determine which
models are supported by your local installation.
Two Compute configuration options in the libvirt
group
of nova.conf
define which type of CPU model is exposed to the hypervisor
when using KVM: libvirt.cpu_mode
and
libvirt.cpu_model
.
The libvirt.cpu_mode
option can take one of the following
values: none
, host-passthrough
, host-model
, and custom
.
See Effective Virtual CPU configuration in Nova for a recorded presentation about this topic.
If your nova.conf
file contains cpu_mode=host-model
, libvirt identifies
the CPU model in /usr/share/libvirt/cpu_map.xml
file that most closely
matches the host, and requests additional CPU flags to complete the match. This
configuration provides the maximum functionality and performance and maintains
good reliability.
With regard to enabling and facilitating live migration between
compute nodes, you should assess whether host-model
is suitable
for your compute architecture. In general, using host-model
is a
safe choice if your compute node CPUs are largely identical. However,
if your compute nodes span multiple processor generations, you may be
better advised to select a custom
CPU model.
If your nova.conf
file contains cpu_mode=host-passthrough
, libvirt
tells KVM to pass through the host CPU with no modifications. The difference
to host-model, instead of just matching feature flags, every last detail of the
host CPU is matched. This gives the best performance, and can be important to
some apps which check low level CPU details, but it comes at a cost with
respect to migration.
In host-passthrough
mode, the guest can only be live-migrated to a
target host that matches the source host extremely closely. This
definitely includes the physical CPU model and running microcode, and
may even include the running kernel. Use this mode only if
If your nova.conf
file contains cpu_mode=custom
, you can explicitly
specify one of the supported named models using the cpu_model configuration
option. For example, to configure the KVM guests to expose Nehalem CPUs, your
nova.conf
file should contain:
[libvirt]
cpu_mode = custom
cpu_model = Nehalem
In selecting the custom
mode, along with a
libvirt.cpu_model
that matches the oldest of your compute
node CPUs, you can ensure that live migration between compute nodes will always
be possible. However, you should ensure that the
libvirt.cpu_model
you select passes the correct CPU
feature flags to the guest.
If you need to further tweak your CPU feature flags in the custom
mode, see Set CPU feature flags.
If your nova.conf
file contains cpu_mode=none
, libvirt does not specify
a CPU model. Instead, the hypervisor chooses the default model.
Regardless of whether your selected libvirt.cpu_mode
is
host-passthrough
, host-model
, or custom
, it is also
possible to selectively enable additional feature flags. Suppose your
selected custom
CPU model is IvyBridge
, which normally does
not enable the pcid
feature flag — but you do want to pass
pcid
into your guest instances. In that case, you would set:
[libvirt]
cpu_mode = custom
cpu_model = IvyBridge
cpu_model_extra_flags = pcid
You may choose to enable support for nested guests — that is, allow
your Nova instances to themselves run hardware-accelerated virtual
machines with KVM. Doing so requires a module parameter on
your KVM kernel module, and corresponding nova.conf
settings.
To enable nested KVM guests, your compute node must load the
kvm_intel
or kvm_amd
module with nested=1
. You can enable
the nested
parameter permanently, by creating a file named
/etc/modprobe.d/kvm.conf
and populating it with the following
content:
options kvm_intel nested=1
options kvm_amd nested=1
A reboot may be required for the change to become effective.
nova.conf
¶To support nested guests, you must set your
libvirt.cpu_mode
configuration to one of the following
options:
In this mode, nested virtualization is automatically enabled once the KVM kernel module is loaded with nesting support.
[libvirt]
cpu_mode = host-passthrough
However, do consider the other implications that Host pass through mode has on compute functionality.
In this mode, nested virtualization is automatically enabled once
the KVM kernel module is loaded with nesting support, if the
matching CPU model exposes the vmx
feature flag to guests by
default (you can verify this with virsh capabilities
on your
compute node). If your CPU model does not pass in the vmx
flag,
you can force it with libvirt.cpu_model_extra_flags
:
[libvirt]
cpu_mode = host-model
cpu_model_extra_flags = vmx
Again, consider the other implications that apply to the Host model (default for KVM & Qemu) mode.
In custom mode, the same considerations apply as in host-model mode,
but you may additionally want to ensure that libvirt passes not only
the vmx
, but also the pcid
flag to its guests:
[libvirt]
cpu_mode = custom
cpu_model = IvyBridge
cpu_model_extra_flags = vmx,pcid
When enabling nested guests, you should be aware of (and inform your users about) certain limitations that are currently inherent to nested KVM virtualization. Most importantly, guests using nested virtualization will, while nested guests are running,
See the KVM documentation for more information on these limitations.
Use guest agents to enable optional access between compute nodes and guests through a socket, using the QMP protocol.
To enable this feature, you must set hw_qemu_guest_agent=yes
as a metadata
parameter on the image you wish to use to create the guest-agent-capable
instances from. You can explicitly disable the feature by setting
hw_qemu_guest_agent=no
in the image metadata.
The VHostNet kernel module improves network performance. To load the kernel module, run the following command as root:
# modprobe vhost_net
Trying to launch a new virtual machine instance fails with the ERROR
state,
and the following error appears in the /var/log/nova/nova-compute.log
file:
libvirtError: internal error no supported architecture for os type 'hvm'
This message indicates that the KVM kernel modules were not loaded.
If you cannot start VMs after installation without rebooting, the permissions
might not be set correctly. This can happen if you load the KVM module before
you install nova-compute
. To check whether the group is set to kvm
,
run:
# ls -l /dev/kvm
If it is not set to kvm
, run:
# udevadm trigger
Except where otherwise noted, this document is licensed under Creative Commons Attribution 3.0 License. See all OpenStack Legal Documents.