This appendix describes an example production environment for a working OpenStack-Ansible (OSA) deployment with high availability services where provider networks and connectivity between physical machines are routed (layer 3).
This example environment has the following characteristics:
The following CIDR assignments are used for this environment.
Network | CIDR | VLAN |
---|---|---|
POD 1 Management Network | 172.29.236.0/24 | 10 |
POD 1 Tunnel (VXLAN) Network | 172.29.237.0/24 | 30 |
POD 1 Storage Network | 172.29.238.0/24 | 20 |
POD 2 Management Network | 172.29.239.0/24 | 10 |
POD 2 Tunnel (VXLAN) Network | 172.29.240.0/24 | 30 |
POD 2 Storage Network | 172.29.241.0/24 | 20 |
POD 3 Management Network | 172.29.242.0/24 | 10 |
POD 3 Tunnel (VXLAN) Network | 172.29.243.0/24 | 30 |
POD 3 Storage Network | 172.29.244.0/24 | 20 |
POD 4 Management Network | 172.29.245.0/24 | 10 |
POD 4 Tunnel (VXLAN) Network | 172.29.246.0/24 | 30 |
POD 4 Storage Network | 172.29.247.0/24 | 20 |
The following host name and IP address assignments are used for this environment.
Host name | Management IP | Tunnel (VxLAN) IP | Storage IP |
---|---|---|---|
lb_vip_address | 172.29.236.9 | ||
infra1 | 172.29.236.10 | ||
infra2 | 172.29.239.10 | ||
infra3 | 172.29.242.10 | ||
log1 | 172.29.236.11 | ||
NFS Storage | 172.29.244.15 | ||
compute1 | 172.29.245.10 | 172.29.246.10 | 172.29.247.10 |
compute2 | 172.29.245.11 | 172.29.246.11 | 172.29.247.11 |
Each host will require the correct network bridges to be implemented. The
following is the /etc/network/interfaces
file for infra1
.
Note
If your environment does not have eth0
, but instead has p1p1
or
some other interface name, ensure that all references to eth0
in all
configuration files are replaced with the appropriate name. The same
applies to additional network interfaces.
# This is a multi-NIC bonded configuration to implement the required bridges
# for OpenStack-Ansible. This illustrates the configuration of the first
# Infrastructure host and the IP addresses assigned should be adapted
# for implementation on the other hosts.
#
# After implementing this configuration, the host will need to be
# rebooted.
# Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
# eth0 with eth2 and eth1 with eth3 for increased resiliency
# in the case of one interface card failing.
auto eth0
iface eth0 inet manual
bond-master bond0
bond-primary eth0
auto eth1
iface eth1 inet manual
bond-master bond1
bond-primary eth1
auto eth2
iface eth2 inet manual
bond-master bond0
auto eth3
iface eth3 inet manual
bond-master bond1
# Create a bonded interface. Note that the "bond-slaves" is set to none. This
# is because the bond-master has already been set in the raw interfaces for
# the new bond0.
auto bond0
iface bond0 inet manual
bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200
# This bond will carry VLAN and VXLAN traffic to ensure isolation from
# control plane traffic on bond0.
auto bond1
iface bond1 inet manual
bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 250
bond-updelay 250
# Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual
vlan-raw-device bond0
# OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30
iface bond1.30 inet manual
vlan-raw-device bond1
# Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual
vlan-raw-device bond0
# Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.10
netmask 255.255.255.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4
# OpenStack Networking VXLAN (tunnel/overlay) bridge
#
# Only the COMPUTE and NETWORK nodes must have an IP address
# on this bridge. When used by infrastructure nodes, the
# IP addresses are assigned to containers which use this
# bridge.
#
auto br-vxlan
iface br-vxlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
# compute1 VXLAN (tunnel/overlay) bridge config
#auto br-vxlan
#iface br-vxlan inet static
# bridge_stp off
# bridge_waitport 0
# bridge_fd 0
# bridge_ports bond1.30
# address 172.29.246.10
# netmask 255.255.255.0
# OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1
# compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
# bridge_stp off
# bridge_waitport 0
# bridge_fd 0
#
# For tenant vlan support, create a veth pair to be used when the neutron
# agent is not containerized on the compute hosts. 'eth12' is the value used on
# the host_bind_override parameter of the br-vlan network section of the
# openstack_user_config example file. The veth peer name must match the value
# specified on the host_bind_override parameter.
#
# When the neutron agent is containerized it will use the container_interface
# value of the br-vlan network, which is also the same 'eth12' value.
#
# Create veth pair, do not abort if already exists
# pre-up ip link add br-vlan-veth type veth peer name eth12 || true
# Set both ends UP
# pre-up ip link set br-vlan-veth up
# pre-up ip link set eth12 up
# Delete veth pair on DOWN
# post-down ip link del br-vlan-veth || true
# bridge_ports bond1 br-vlan-veth
# Storage bridge (optional)
#
# Only the COMPUTE and STORAGE nodes must have an IP address
# on this bridge. When used by infrastructure nodes, the
# IP addresses are assigned to containers which use this
# bridge.
#
auto br-storage
iface br-storage inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
# compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
# bridge_stp off
# bridge_waitport 0
# bridge_fd 0
# bridge_ports bond0.20
# address 172.29.247.10
# netmask 255.255.255.0
The /etc/openstack_deploy/openstack_user_config.yml
file defines the
environment layout.
For each pod, a group will need to be defined containing all hosts within that pod.
Within defined provider networks, address_prefix
is used to override the
prefix of the key added to each host that contains IP address information. This
should usually be one of either container
, tunnel
, or storage
.
reference_group
contains the name of a defined pod group and is used to
limit the scope of each provider network to that group.
Static routes are added to allow communication of provider networks between pods.
The following configuration describes the layout for this environment.
---
cidr_networks:
pod1_container: 172.29.236.0/24
pod2_container: 172.29.237.0/24
pod3_container: 172.29.238.0/24
pod4_container: 172.29.239.0/24
pod1_tunnel: 172.29.240.0/24
pod2_tunnel: 172.29.241.0/24
pod3_tunnel: 172.29.242.0/24
pod4_tunnel: 172.29.243.0/24
pod1_storage: 172.29.244.0/24
pod2_storage: 172.29.245.0/24
pod3_storage: 172.29.246.0/24
pod4_storage: 172.29.247.0/24
used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.237.1,172.29.237.50"
- "172.29.238.1,172.29.238.50"
- "172.29.239.1,172.29.239.50"
- "172.29.240.1,172.29.240.50"
- "172.29.241.1,172.29.241.50"
- "172.29.242.1,172.29.242.50"
- "172.29.243.1,172.29.243.50"
- "172.29.244.1,172.29.244.50"
- "172.29.245.1,172.29.245.50"
- "172.29.246.1,172.29.246.50"
- "172.29.247.1,172.29.247.50"
global_overrides:
internal_lb_vip_address: internal-openstack.example.com
#
# The below domain name must resolve to an IP address
# in the CIDR specified in haproxy_keepalived_external_vip_cidr.
# If using different protocols (https/http) for the public/internal
# endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
tunnel_bridge: "br-vxlan"
management_bridge: "br-mgmt"
provider_networks:
- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod1_container"
address_prefix: "container"
type: "raw"
group_binds:
- all_containers
- hosts
reference_group: "pod1_hosts"
is_container_address: true
is_ssh_address: true
# Containers in pod1 need routes to the container networks of other pods
static_routes:
# Route to container networks
- cidr: 172.29.236.0/22
gateway: 172.29.236.1
- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod2_container"
address_prefix: "container"
type: "raw"
group_binds:
- all_containers
- hosts
reference_group: "pod2_hosts"
is_container_address: true
is_ssh_address: true
# Containers in pod2 need routes to the container networks of other pods
static_routes:
# Route to container networks
- cidr: 172.29.236.0/22
gateway: 172.29.237.1
- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod3_container"
address_prefix: "container"
type: "raw"
group_binds:
- all_containers
- hosts
reference_group: "pod3_hosts"
is_container_address: true
is_ssh_address: true
# Containers in pod3 need routes to the container networks of other pods
static_routes:
# Route to container networks
- cidr: 172.29.236.0/22
gateway: 172.29.238.1
- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod4_container"
address_prefix: "container"
type: "raw"
group_binds:
- all_containers
- hosts
reference_group: "pod4_hosts"
is_container_address: true
is_ssh_address: true
# Containers in pod4 need routes to the container networks of other pods
static_routes:
# Route to container networks
- cidr: 172.29.236.0/22
gateway: 172.29.239.1
- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod1_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent
reference_group: "pod1_hosts"
# Containers in pod1 need routes to the tunnel networks of other pods
static_routes:
# Route to tunnel networks
- cidr: 172.29.240.0/22
gateway: 172.29.240.1
- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod2_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent
reference_group: "pod2_hosts"
# Containers in pod2 need routes to the tunnel networks of other pods
static_routes:
# Route to tunnel networks
- cidr: 172.29.240.0/22
gateway: 172.29.241.1
- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod3_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent
reference_group: "pod3_hosts"
# Containers in pod3 need routes to the tunnel networks of other pods
static_routes:
# Route to tunnel networks
- cidr: 172.29.240.0/22
gateway: 172.29.242.1
- network:
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod4_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:
- neutron_linuxbridge_agent
reference_group: "pod4_hosts"
# Containers in pod4 need routes to the tunnel networks of other pods
static_routes:
# Route to tunnel networks
- cidr: 172.29.240.0/22
gateway: 172.29.243.1
- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
group_binds:
- neutron_linuxbridge_agent
- network:
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "1:1"
net_name: "vlan"
group_binds:
- neutron_linuxbridge_agent
- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod1_storage"
address_prefix: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute
reference_group: "pod1_hosts"
# Containers in pod1 need routes to the storage networks of other pods
static_routes:
# Route to storage networks
- cidr: 172.29.244.0/22
gateway: 172.29.244.1
- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod2_storage"
address_prefix: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute
reference_group: "pod2_hosts"
# Containers in pod2 need routes to the storage networks of other pods
static_routes:
# Route to storage networks
- cidr: 172.29.244.0/22
gateway: 172.29.245.1
- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod3_storage"
address_prefix: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute
reference_group: "pod3_hosts"
# Containers in pod3 need routes to the storage networks of other pods
static_routes:
# Route to storage networks
- cidr: 172.29.244.0/22
gateway: 172.29.246.1
- network:
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod4_storage"
address_prefix: "storage"
type: "raw"
group_binds:
- glance_api
- cinder_api
- cinder_volume
- nova_compute
reference_group: "pod4_hosts"
# Containers in pod4 need routes to the storage networks of other pods
static_routes:
# Route to storage networks
- cidr: 172.29.244.0/22
gateway: 172.29.247.1
###
### Infrastructure
###
pod1_hosts:
infra1:
ip: 172.29.236.10
log1:
ip: 172.29.236.11
pod2_hosts:
infra2:
ip: 172.29.239.10
pod3_hosts:
infra3:
ip: 172.29.242.10
pod4_hosts:
compute1:
ip: 172.29.245.10
compute2:
ip: 172.29.245.11
# galera, memcache, rabbitmq, utility
shared-infra_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# repository (apt cache, python packages, etc)
repo-infra_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# load balancer
# Ideally the load balancer should not use the Infrastructure hosts.
# Dedicated hardware is best for improved performance and security.
haproxy_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# rsyslog server
log_hosts:
log1:
ip: 172.29.236.11
###
### OpenStack
###
# keystone
identity_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# cinder api services
storage-infra_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# glance
# The settings here are repeated for each infra host.
# They could instead be applied as global settings in
# user_variables, but are left here to illustrate that
# each container could have different storage targets.
image_hosts:
infra1:
ip: 172.29.236.11
container_vars:
limit_container_types: glance
glance_nfs_client:
- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"
infra2:
ip: 172.29.236.12
container_vars:
limit_container_types: glance
glance_nfs_client:
- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"
infra3:
ip: 172.29.236.13
container_vars:
limit_container_types: glance
glance_nfs_client:
- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"
# nova api, conductor, etc services
compute-infra_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# heat
orchestration_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# horizon
dashboard_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# neutron server, agents (L3, etc)
network_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# ceilometer (telemetry data collection)
metering-infra_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# aodh (telemetry alarm service)
metering-alarm_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# gnocchi (telemetry metrics storage)
metrics_hosts:
infra1:
ip: 172.29.236.10
infra2:
ip: 172.29.239.10
infra3:
ip: 172.29.242.10
# nova hypervisors
compute_hosts:
compute1:
ip: 172.29.245.10
compute2:
ip: 172.29.245.11
# ceilometer compute agent (telemetry data collection)
metering-compute_hosts:
compute1:
ip: 172.29.245.10
compute2:
ip: 172.29.245.11
# cinder volume hosts (NFS-backed)
# The settings here are repeated for each infra host.
# They could instead be applied as global settings in
# user_variables, but are left here to illustrate that
# each container could have different storage targets.
storage_hosts:
infra1:
ip: 172.29.236.11
container_vars:
cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"
infra2:
ip: 172.29.236.12
container_vars:
cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"
infra3:
ip: 172.29.236.13
container_vars:
cinder_backends:
limit_container_types: cinder_volume
nfs_volume:
volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:
- ip: "172.29.244.15"
share: "/vol/cinder"
The optionally deployed files in /etc/openstack_deploy/env.d
allow the
customization of Ansible groups. This allows the deployer to set whether
the services will run in a container (the default), or on the host (on
metal).
For this environment, the cinder-volume
runs in a container on the
infrastructure hosts. To achieve this, implement
/etc/openstack_deploy/env.d/cinder.yml
with the following content:
---
# This file contains an example to show how to set
# the cinder-volume service to run in a container.
#
# Important note:
# When using LVM or any iSCSI-based cinder backends, such as NetApp with
# iSCSI protocol, the cinder-volume service *must* run on metal.
# Reference: https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855
container_skel:
cinder_volumes_container:
properties:
is_metal: false
The /etc/openstack_deploy/user_variables.yml
file defines the global
overrides for the default variables.
For this environment, implement the load balancer on the infrastructure
hosts. Ensure that keepalived is also configured with HAProxy in
/etc/openstack_deploy/user_variables.yml
with the following content.
---
# This file contains an example of the global variable overrides
# which may need to be set for a production environment.
## Load Balancer Configuration (haproxy/keepalived)
haproxy_keepalived_external_vip_cidr: "1.2.3.4/32"
haproxy_keepalived_internal_vip_cidr: "172.29.236.0/22"
haproxy_keepalived_external_interface: ens2
haproxy_keepalived_internal_interface: br-mgmt
Except where otherwise noted, this document is licensed under Creative Commons Attribution 3.0 License. See all OpenStack Legal Documents.