from __future__ import with_statement
from itertools import chain
import datetime
import sys
import warnings
import time
import threading
import time as mod_time
from redis._compat import (b, basestring, bytes, imap, iteritems, iterkeys,
itervalues, izip, long, nativestr, unicode,
safe_unicode)
from redis.connection import (ConnectionPool, UnixDomainSocketConnection,
SSLConnection, Token)
from redis.lock import Lock, LuaLock
from redis.exceptions import (
ConnectionError,
DataError,
ExecAbortError,
NoScriptError,
PubSubError,
RedisError,
ResponseError,
TimeoutError,
WatchError,
)
SYM_EMPTY = b('')
def list_or_args(keys, args):
# returns a single list combining keys and args
try:
iter(keys)
# a string or bytes instance can be iterated, but indicates
# keys wasn't passed as a list
if isinstance(keys, (basestring, bytes)):
keys = [keys]
except TypeError:
keys = [keys]
if args:
keys.extend(args)
return keys
def timestamp_to_datetime(response):
"Converts a unix timestamp to a Python datetime object"
if not response:
return None
try:
response = int(response)
except ValueError:
return None
return datetime.datetime.fromtimestamp(response)
def string_keys_to_dict(key_string, callback):
return dict.fromkeys(key_string.split(), callback)
def dict_merge(*dicts):
merged = {}
for d in dicts:
merged.update(d)
return merged
def parse_debug_object(response):
"Parse the results of Redis's DEBUG OBJECT command into a Python dict"
# The 'type' of the object is the first item in the response, but isn't
# prefixed with a name
response = nativestr(response)
response = 'type:' + response
response = dict([kv.split(':') for kv in response.split()])
# parse some expected int values from the string response
# note: this cmd isn't spec'd so these may not appear in all redis versions
int_fields = ('refcount', 'serializedlength', 'lru', 'lru_seconds_idle')
for field in int_fields:
if field in response:
response[field] = int(response[field])
return response
def parse_object(response, infotype):
"Parse the results of an OBJECT command"
if infotype in ('idletime', 'refcount'):
return int_or_none(response)
return response
def parse_info(response):
"Parse the result of Redis's INFO command into a Python dict"
info = {}
response = nativestr(response)
def get_value(value):
if ',' not in value or '=' not in value:
try:
if '.' in value:
return float(value)
else:
return int(value)
except ValueError:
return value
else:
sub_dict = {}
for item in value.split(','):
k, v = item.rsplit('=', 1)
sub_dict[k] = get_value(v)
return sub_dict
for line in response.splitlines():
if line and not line.startswith('#'):
if line.find(':') != -1:
key, value = line.split(':', 1)
info[key] = get_value(value)
else:
# if the line isn't splittable, append it to the "__raw__" key
info.setdefault('__raw__', []).append(line)
return info
SENTINEL_STATE_TYPES = {
'can-failover-its-master': int,
'config-epoch': int,
'down-after-milliseconds': int,
'failover-timeout': int,
'info-refresh': int,
'last-hello-message': int,
'last-ok-ping-reply': int,
'last-ping-reply': int,
'last-ping-sent': int,
'master-link-down-time': int,
'master-port': int,
'num-other-sentinels': int,
'num-slaves': int,
'o-down-time': int,
'pending-commands': int,
'parallel-syncs': int,
'port': int,
'quorum': int,
'role-reported-time': int,
's-down-time': int,
'slave-priority': int,
'slave-repl-offset': int,
'voted-leader-epoch': int
}
def parse_sentinel_state(item):
result = pairs_to_dict_typed(item, SENTINEL_STATE_TYPES)
flags = set(result['flags'].split(','))
for name, flag in (('is_master', 'master'), ('is_slave', 'slave'),
('is_sdown', 's_down'), ('is_odown', 'o_down'),
('is_sentinel', 'sentinel'),
('is_disconnected', 'disconnected'),
('is_master_down', 'master_down')):
result[name] = flag in flags
return result
def parse_sentinel_master(response):
return parse_sentinel_state(imap(nativestr, response))
def parse_sentinel_masters(response):
result = {}
for item in response:
state = parse_sentinel_state(imap(nativestr, item))
result[state['name']] = state
return result
def parse_sentinel_slaves_and_sentinels(response):
return [parse_sentinel_state(imap(nativestr, item)) for item in response]
def parse_sentinel_get_master(response):
return response and (response[0], int(response[1])) or None
def pairs_to_dict(response):
"Create a dict given a list of key/value pairs"
it = iter(response)
return dict(izip(it, it))
def pairs_to_dict_typed(response, type_info):
it = iter(response)
result = {}
for key, value in izip(it, it):
if key in type_info:
try:
value = type_info[key](value)
except:
# if for some reason the value can't be coerced, just use
# the string value
pass
result[key] = value
return result
def zset_score_pairs(response, **options):
"""
If ``withscores`` is specified in the options, return the response as
a list of (value, score) pairs
"""
if not response or not options['withscores']:
return response
score_cast_func = options.get('score_cast_func', float)
it = iter(response)
return list(izip(it, imap(score_cast_func, it)))
def sort_return_tuples(response, **options):
"""
If ``groups`` is specified, return the response as a list of
n-element tuples with n being the value found in options['groups']
"""
if not response or not options['groups']:
return response
n = options['groups']
return list(izip(*[response[i::n] for i in range(n)]))
def int_or_none(response):
if response is None:
return None
return int(response)
def float_or_none(response):
if response is None:
return None
return float(response)
def bool_ok(response):
return nativestr(response) == 'OK'
def parse_client_list(response, **options):
clients = []
for c in nativestr(response).splitlines():
clients.append(dict([pair.split('=') for pair in c.split(' ')]))
return clients
def parse_config_get(response, **options):
response = [nativestr(i) if i is not None else None for i in response]
return response and pairs_to_dict(response) or {}
def parse_scan(response, **options):
cursor, r = response
return long(cursor), r
def parse_hscan(response, **options):
cursor, r = response
return long(cursor), r and pairs_to_dict(r) or {}
def parse_zscan(response, **options):
score_cast_func = options.get('score_cast_func', float)
cursor, r = response
it = iter(r)
return long(cursor), list(izip(it, imap(score_cast_func, it)))
def parse_slowlog_get(response, **options):
return [{
'id': item[0],
'start_time': int(item[1]),
'duration': int(item[2]),
'command': b(' ').join(item[3])
} for item in response]
class StrictRedis(object):
"""
Implementation of the Redis protocol.
This abstract class provides a Python interface to all Redis commands
and an implementation of the Redis protocol.
Connection and Pipeline derive from this, implementing how
the commands are sent and received to the Redis server
"""
RESPONSE_CALLBACKS = dict_merge(
string_keys_to_dict(
'AUTH EXISTS EXPIRE EXPIREAT HEXISTS HMSET MOVE MSETNX PERSIST '
'PSETEX RENAMENX SISMEMBER SMOVE SETEX SETNX',
bool
),
string_keys_to_dict(
'BITCOUNT BITPOS DECRBY DEL GETBIT HDEL HLEN INCRBY LINSERT LLEN '
'LPUSHX PFADD PFCOUNT RPUSHX SADD SCARD SDIFFSTORE SETBIT '
'SETRANGE SINTERSTORE SREM STRLEN SUNIONSTORE ZADD ZCARD '
'ZLEXCOUNT ZREM ZREMRANGEBYLEX ZREMRANGEBYRANK ZREMRANGEBYSCORE',
int
),
string_keys_to_dict('INCRBYFLOAT HINCRBYFLOAT', float),
string_keys_to_dict(
# these return OK, or int if redis-server is >=1.3.4
'LPUSH RPUSH',
lambda r: isinstance(r, long) and r or nativestr(r) == 'OK'
),
string_keys_to_dict('SORT', sort_return_tuples),
string_keys_to_dict('ZSCORE ZINCRBY', float_or_none),
string_keys_to_dict(
'FLUSHALL FLUSHDB LSET LTRIM MSET PFMERGE RENAME '
'SAVE SELECT SHUTDOWN SLAVEOF WATCH UNWATCH',
bool_ok
),
string_keys_to_dict('BLPOP BRPOP', lambda r: r and tuple(r) or None),
string_keys_to_dict(
'SDIFF SINTER SMEMBERS SUNION',
lambda r: r and set(r) or set()
),
string_keys_to_dict(
'ZRANGE ZRANGEBYSCORE ZREVRANGE ZREVRANGEBYSCORE',
zset_score_pairs
),
string_keys_to_dict('ZRANK ZREVRANK', int_or_none),
string_keys_to_dict('BGREWRITEAOF BGSAVE', lambda r: True),
{
'CLIENT GETNAME': lambda r: r and nativestr(r),
'CLIENT KILL': bool_ok,
'CLIENT LIST': parse_client_list,
'CLIENT SETNAME': bool_ok,
'CONFIG GET': parse_config_get,
'CONFIG RESETSTAT': bool_ok,
'CONFIG SET': bool_ok,
'DEBUG OBJECT': parse_debug_object,
'HGETALL': lambda r: r and pairs_to_dict(r) or {},
'HSCAN': parse_hscan,
'INFO': parse_info,
'LASTSAVE': timestamp_to_datetime,
'OBJECT': parse_object,
'PING': lambda r: nativestr(r) == 'PONG',
'RANDOMKEY': lambda r: r and r or None,
'SCAN': parse_scan,
'SCRIPT EXISTS': lambda r: list(imap(bool, r)),
'SCRIPT FLUSH': bool_ok,
'SCRIPT KILL': bool_ok,
'SCRIPT LOAD': nativestr,
'SENTINEL GET-MASTER-ADDR-BY-NAME': parse_sentinel_get_master,
'SENTINEL MASTER': parse_sentinel_master,
'SENTINEL MASTERS': parse_sentinel_masters,
'SENTINEL MONITOR': bool_ok,
'SENTINEL REMOVE': bool_ok,
'SENTINEL SENTINELS': parse_sentinel_slaves_and_sentinels,
'SENTINEL SET': bool_ok,
'SENTINEL SLAVES': parse_sentinel_slaves_and_sentinels,
'SET': lambda r: r and nativestr(r) == 'OK',
'SLOWLOG GET': parse_slowlog_get,
'SLOWLOG LEN': int,
'SLOWLOG RESET': bool_ok,
'SSCAN': parse_scan,
'TIME': lambda x: (int(x[0]), int(x[1])),
'ZSCAN': parse_zscan
}
)
@classmethod
def from_url(cls, url, db=None, **kwargs):
"""
Return a Redis client object configured from the given URL.
For example::
redis://[:password]@localhost:6379/0
unix://[:password]@/path/to/socket.sock?db=0
There are several ways to specify a database number. The parse function
will return the first specified option:
1. A ``db`` querystring option, e.g. redis://localhost?db=0
2. If using the redis:// scheme, the path argument of the url, e.g.
redis://localhost/0
3. The ``db`` argument to this function.
If none of these options are specified, db=0 is used.
Any additional querystring arguments and keyword arguments will be
passed along to the ConnectionPool class's initializer. In the case
of conflicting arguments, querystring arguments always win.
"""
connection_pool = ConnectionPool.from_url(url, db=db, **kwargs)
return cls(connection_pool=connection_pool)
def __init__(self, host='localhost', port=6379,
db=0, password=None, socket_timeout=None,
socket_connect_timeout=None,
socket_keepalive=None, socket_keepalive_options=None,
connection_pool=None, unix_socket_path=None,
encoding='utf-8', encoding_errors='strict',
charset=None, errors=None,
decode_responses=False, retry_on_timeout=False,
ssl=False, ssl_keyfile=None, ssl_certfile=None,
ssl_cert_reqs=None, ssl_ca_certs=None,
max_connections=None):
if not connection_pool:
if charset is not None:
warnings.warn(DeprecationWarning(
'"charset" is deprecated. Use "encoding" instead'))
encoding = charset
if errors is not None:
warnings.warn(DeprecationWarning(
'"errors" is deprecated. Use "encoding_errors" instead'))
encoding_errors = errors
kwargs = {
'db': db,
'password': password,
'socket_timeout': socket_timeout,
'encoding': encoding,
'encoding_errors': encoding_errors,
'decode_responses': decode_responses,
'retry_on_timeout': retry_on_timeout,
'max_connections': max_connections
}
# based on input, setup appropriate connection args
if unix_socket_path is not None:
kwargs.update({
'path': unix_socket_path,
'connection_class': UnixDomainSocketConnection
})
else:
# TCP specific options
kwargs.update({
'host': host,
'port': port,
'socket_connect_timeout': socket_connect_timeout,
'socket_keepalive': socket_keepalive,
'socket_keepalive_options': socket_keepalive_options,
})
if ssl:
kwargs.update({
'connection_class': SSLConnection,
'ssl_keyfile': ssl_keyfile,
'ssl_certfile': ssl_certfile,
'ssl_cert_reqs': ssl_cert_reqs,
'ssl_ca_certs': ssl_ca_certs,
})
connection_pool = ConnectionPool(**kwargs)
self.connection_pool = connection_pool
self._use_lua_lock = None
self.response_callbacks = self.__class__.RESPONSE_CALLBACKS.copy()
def __repr__(self):
return "%s<%s>" % (type(self).__name__, repr(self.connection_pool))
def set_response_callback(self, command, callback):
"Set a custom Response Callback"
self.response_callbacks[command] = callback
def pipeline(self, transaction=True, shard_hint=None):
"""
Return a new pipeline object that can queue multiple commands for
later execution. ``transaction`` indicates whether all commands
should be executed atomically. Apart from making a group of operations
atomic, pipelines are useful for reducing the back-and-forth overhead
between the client and server.
"""
return StrictPipeline(
self.connection_pool,
self.response_callbacks,
transaction,
shard_hint)
def transaction(self, func, *watches, **kwargs):
"""
Convenience method for executing the callable `func` as a transaction
while watching all keys specified in `watches`. The 'func' callable
should expect a single argument which is a Pipeline object.
"""
shard_hint = kwargs.pop('shard_hint', None)
value_from_callable = kwargs.pop('value_from_callable', False)
watch_delay = kwargs.pop('watch_delay', None)
with self.pipeline(True, shard_hint) as pipe:
while 1:
try:
if watches:
pipe.watch(*watches)
func_value = func(pipe)
exec_value = pipe.execute()
return func_value if value_from_callable else exec_value
except WatchError:
if watch_delay is not None and watch_delay > 0:
time.sleep(watch_delay)
continue
def lock(self, name, timeout=None, sleep=0.1, blocking_timeout=None,
lock_class=None, thread_local=True):
"""
Return a new Lock object using key ``name`` that mimics
the behavior of threading.Lock.
If specified, ``timeout`` indicates a maximum life for the lock.
By default, it will remain locked until release() is called.
``sleep`` indicates the amount of time to sleep per loop iteration
when the lock is in blocking mode and another client is currently
holding the lock.
``blocking_timeout`` indicates the maximum amount of time in seconds to
spend trying to acquire the lock. A value of ``None`` indicates
continue trying forever. ``blocking_timeout`` can be specified as a
float or integer, both representing the number of seconds to wait.
``lock_class`` forces the specified lock implementation.
``thread_local`` indicates whether the lock token is placed in
thread-local storage. By default, the token is placed in thread local
storage so that a thread only sees its token, not a token set by
another thread. Consider the following timeline:
time: 0, thread-1 acquires `my-lock`, with a timeout of 5 seconds.
thread-1 sets the token to "abc"
time: 1, thread-2 blocks trying to acquire `my-lock` using the
Lock instance.
time: 5, thread-1 has not yet completed. redis expires the lock
key.
time: 5, thread-2 acquired `my-lock` now that it's available.
thread-2 sets the token to "xyz"
time: 6, thread-1 finishes its work and calls release(). if the
token is *not* stored in thread local storage, then
thread-1 would see the token value as "xyz" and would be
able to successfully release the thread-2's lock.
In some use cases it's necessary to disable thread local storage. For
example, if you have code where one thread acquires a lock and passes
that lock instance to a worker thread to release later. If thread
local storage isn't disabled in this case, the worker thread won't see
the token set by the thread that acquired the lock. Our assumption
is that these cases aren't common and as such default to using
thread local storage. """
if lock_class is None:
if self._use_lua_lock is None:
# the first time .lock() is called, determine if we can use
# Lua by attempting to register the necessary scripts
try:
LuaLock.register_scripts(self)
self._use_lua_lock = True
except ResponseError:
self._use_lua_lock = False
lock_class = self._use_lua_lock and LuaLock or Lock
return lock_class(self, name, timeout=timeout, sleep=sleep,
blocking_timeout=blocking_timeout,
thread_local=thread_local)
def pubsub(self, **kwargs):
"""
Return a Publish/Subscribe object. With this object, you can
subscribe to channels and listen for messages that get published to
them.
"""
return PubSub(self.connection_pool, **kwargs)
# COMMAND EXECUTION AND PROTOCOL PARSING
def execute_command(self, *args, **options):
"Execute a command and return a parsed response"
pool = self.connection_pool
command_name = args[0]
connection = pool.get_connection(command_name, **options)
try:
connection.send_command(*args)
return self.parse_response(connection, command_name, **options)
except (ConnectionError, TimeoutError) as e:
connection.disconnect()
if not connection.retry_on_timeout and isinstance(e, TimeoutError):
raise
connection.send_command(*args)
return self.parse_response(connection, command_name, **options)
finally:
pool.release(connection)
def parse_response(self, connection, command_name, **options):
"Parses a response from the Redis server"
response = connection.read_response()
if command_name in self.response_callbacks:
return self.response_callbacks[command_name](response, **options)
return response
# SERVER INFORMATION
def bgrewriteaof(self):
"Tell the Redis server to rewrite the AOF file from data in memory."
return self.execute_command('BGREWRITEAOF')
def bgsave(self):
"""
Tell the Redis server to save its data to disk. Unlike save(),
this method is asynchronous and returns immediately.
"""
return self.execute_command('BGSAVE')
def client_kill(self, address):
"Disconnects the client at ``address`` (ip:port)"
return self.execute_command('CLIENT KILL', address)
def client_list(self):
"Returns a list of currently connected clients"
return self.execute_command('CLIENT LIST')
def client_getname(self):
"Returns the current connection name"
return self.execute_command('CLIENT GETNAME')
def client_setname(self, name):
"Sets the current connection name"
return self.execute_command('CLIENT SETNAME', name)
def config_get(self, pattern="*"):
"Return a dictionary of configuration based on the ``pattern``"
return self.execute_command('CONFIG GET', pattern)
def config_set(self, name, value):
"Set config item ``name`` with ``value``"
return self.execute_command('CONFIG SET', name, value)
def config_resetstat(self):
"Reset runtime statistics"
return self.execute_command('CONFIG RESETSTAT')
def config_rewrite(self):
"Rewrite config file with the minimal change to reflect running config"
return self.execute_command('CONFIG REWRITE')
def dbsize(self):
"Returns the number of keys in the current database"
return self.execute_command('DBSIZE')
def debug_object(self, key):
"Returns version specific meta information about a given key"
return self.execute_command('DEBUG OBJECT', key)
def echo(self, value):
"Echo the string back from the server"
return self.execute_command('ECHO', value)
def flushall(self):
"Delete all keys in all databases on the current host"
return self.execute_command('FLUSHALL')
def flushdb(self):
"Delete all keys in the current database"
return self.execute_command('FLUSHDB')
def info(self, section=None):
"""
Returns a dictionary containing information about the Redis server
The ``section`` option can be used to select a specific section
of information
The section option is not supported by older versions of Redis Server,
and will generate ResponseError
"""
if section is None:
return self.execute_command('INFO')
else:
return self.execute_command('INFO', section)
def lastsave(self):
"""
Return a Python datetime object representing the last time the
Redis database was saved to disk
"""
return self.execute_command('LASTSAVE')
def object(self, infotype, key):
"Return the encoding, idletime, or refcount about the key"
return self.execute_command('OBJECT', infotype, key, infotype=infotype)
def ping(self):
"Ping the Redis server"
return self.execute_command('PING')
def save(self):
"""
Tell the Redis server to save its data to disk,
blocking until the save is complete
"""
return self.execute_command('SAVE')
def sentinel(self, *args):
"Redis Sentinel's SENTINEL command."
warnings.warn(
DeprecationWarning('Use the individual sentinel_* methods'))
def sentinel_get_master_addr_by_name(self, service_name):
"Returns a (host, port) pair for the given ``service_name``"
return self.execute_command('SENTINEL GET-MASTER-ADDR-BY-NAME',
service_name)
def sentinel_master(self, service_name):
"Returns a dictionary containing the specified masters state."
return self.execute_command('SENTINEL MASTER', service_name)
def sentinel_masters(self):
"Returns a list of dictionaries containing each master's state."
return self.execute_command('SENTINEL MASTERS')
def sentinel_monitor(self, name, ip, port, quorum):
"Add a new master to Sentinel to be monitored"
return self.execute_command('SENTINEL MONITOR', name, ip, port, quorum)
def sentinel_remove(self, name):
"Remove a master from Sentinel's monitoring"
return self.execute_command('SENTINEL REMOVE', name)
def sentinel_sentinels(self, service_name):
"Returns a list of sentinels for ``service_name``"
return self.execute_command('SENTINEL SENTINELS', service_name)
def sentinel_set(self, name, option, value):
"Set Sentinel monitoring parameters for a given master"
return self.execute_command('SENTINEL SET', name, option, value)
def sentinel_slaves(self, service_name):
"Returns a list of slaves for ``service_name``"
return self.execute_command('SENTINEL SLAVES', service_name)
def shutdown(self):
"Shutdown the server"
try:
self.execute_command('SHUTDOWN')
except ConnectionError:
# a ConnectionError here is expected
return
raise RedisError("SHUTDOWN seems to have failed.")
def slaveof(self, host=None, port=None):
"""
Set the server to be a replicated slave of the instance identified
by the ``host`` and ``port``. If called without arguments, the
instance is promoted to a master instead.
"""
if host is None and port is None:
return self.execute_command('SLAVEOF', Token('NO'), Token('ONE'))
return self.execute_command('SLAVEOF', host, port)
def slowlog_get(self, num=None):
"""
Get the entries from the slowlog. If ``num`` is specified, get the
most recent ``num`` items.
"""
args = ['SLOWLOG GET']
if num is not None:
args.append(num)
return self.execute_command(*args)
def slowlog_len(self):
"Get the number of items in the slowlog"
return self.execute_command('SLOWLOG LEN')
def slowlog_reset(self):
"Remove all items in the slowlog"
return self.execute_command('SLOWLOG RESET')
def time(self):
"""
Returns the server time as a 2-item tuple of ints:
(seconds since epoch, microseconds into this second).
"""
return self.execute_command('TIME')
def wait(self, num_replicas, timeout):
"""
Redis synchronous replication
That returns the number of replicas that processed the query when
we finally have at least ``num_replicas``, or when the ``timeout`` was
reached.
"""
return self.execute_command('WAIT', num_replicas, timeout)
# BASIC KEY COMMANDS
def append(self, key, value):
"""
Appends the string ``value`` to the value at ``key``. If ``key``
doesn't already exist, create it with a value of ``value``.
Returns the new length of the value at ``key``.
"""
return self.execute_command('APPEND', key, value)
def bitcount(self, key, start=None, end=None):
"""
Returns the count of set bits in the value of ``key``. Optional
``start`` and ``end`` paramaters indicate which bytes to consider
"""
params = [key]
if start is not None and end is not None:
params.append(start)
params.append(end)
elif (start is not None and end is None) or \
(end is not None and start is None):
raise RedisError("Both start and end must be specified")
return self.execute_command('BITCOUNT', *params)
def bitop(self, operation, dest, *keys):
"""
Perform a bitwise operation using ``operation`` between ``keys`` and
store the result in ``dest``.
"""
return self.execute_command('BITOP', operation, dest, *keys)
def bitpos(self, key, bit, start=None, end=None):
"""
Return the position of the first bit set to 1 or 0 in a string.
``start`` and ``end`` difines search range. The range is interpreted
as a range of bytes and not a range of bits, so start=0 and end=2
means to look at the first three bytes.
"""
if bit not in (0, 1):
raise RedisError('bit must be 0 or 1')
params = [key, bit]
start is not None and params.append(start)
if start is not None and end is not None:
params.append(end)
elif start is None and end is not None:
raise RedisError("start argument is not set, "
"when end is specified")
return self.execute_command('BITPOS', *params)
def decr(self, name, amount=1):
"""
Decrements the value of ``key`` by ``amount``. If no key exists,
the value will be initialized as 0 - ``amount``
"""
return self.execute_command('DECRBY', name, amount)
def delete(self, *names):
"Delete one or more keys specified by ``names``"
return self.execute_command('DEL', *names)
def __delitem__(self, name):
self.delete(name)
def dump(self, name):
"""
Return a serialized version of the value stored at the specified key.
If key does not exist a nil bulk reply is returned.
"""
return self.execute_command('DUMP', name)
def exists(self, name):
"Returns a boolean indicating whether key ``name`` exists"
return self.execute_command('EXISTS', name)
__contains__ = exists
def expire(self, name, time):
"""
Set an expire flag on key ``name`` for ``time`` seconds. ``time``
can be represented by an integer or a Python timedelta object.
"""
if isinstance(time, datetime.timedelta):
time = time.seconds + time.days * 24 * 3600
return self.execute_command('EXPIRE', name, time)
def expireat(self, name, when):
"""
Set an expire flag on key ``name``. ``when`` can be represented
as an integer indicating unix time or a Python datetime object.
"""
if isinstance(when, datetime.datetime):
when = int(mod_time.mktime(when.timetuple()))
return self.execute_command('EXPIREAT', name, when)
def get(self, name):
"""
Return the value at key ``name``, or None if the key doesn't exist
"""
return self.execute_command('GET', name)
def __getitem__(self, name):
"""
Return the value at key ``name``, raises a KeyError if the key
doesn't exist.
"""
value = self.get(name)
if value:
return value
raise KeyError(name)
def getbit(self, name, offset):
"Returns a boolean indicating the value of ``offset`` in ``name``"
return self.execute_command('GETBIT', name, offset)
def getrange(self, key, start, end):
"""
Returns the substring of the string value stored at ``key``,
determined by the offsets ``start`` and ``end`` (both are inclusive)
"""
return self.execute_command('GETRANGE', key, start, end)
def getset(self, name, value):
"""
Sets the value at key ``name`` to ``value``
and returns the old value at key ``name`` atomically.
"""
return self.execute_command('GETSET', name, value)
def incr(self, name, amount=1):
"""
Increments the value of ``key`` by ``amount``. If no key exists,
the value will be initialized as ``amount``
"""
return self.execute_command('INCRBY', name, amount)
def incrby(self, name, amount=1):
"""
Increments the value of ``key`` by ``amount``. If no key exists,
the value will be initialized as ``amount``
"""
# An alias for ``incr()``, because it is already implemented
# as INCRBY redis command.
return self.incr(name, amount)
def incrbyfloat(self, name, amount=1.0):
"""
Increments the value at key ``name`` by floating ``amount``.
If no key exists, the value will be initialized as ``amount``
"""
return self.execute_command('INCRBYFLOAT', name, amount)
def keys(self, pattern='*'):
"Returns a list of keys matching ``pattern``"
return self.execute_command('KEYS', pattern)
def mget(self, keys, *args):
"""
Returns a list of values ordered identically to ``keys``
"""
args = list_or_args(keys, args)
return self.execute_command('MGET', *args)
def mset(self, *args, **kwargs):
"""
Sets key/values based on a mapping. Mapping can be supplied as a single
dictionary argument or as kwargs.
"""
if args:
if len(args) != 1 or not isinstance(args[0], dict):
raise RedisError('MSET requires **kwargs or a single dict arg')
kwargs.update(args[0])
items = []
for pair in iteritems(kwargs):
items.extend(pair)
return self.execute_command('MSET', *items)
def msetnx(self, *args, **kwargs):
"""
Sets key/values based on a mapping if none of the keys are already set.
Mapping can be supplied as a single dictionary argument or as kwargs.
Returns a boolean indicating if the operation was successful.
"""
if args:
if len(args) != 1 or not isinstance(args[0], dict):
raise RedisError('MSETNX requires **kwargs or a single '
'dict arg')
kwargs.update(args[0])
items = []
for pair in iteritems(kwargs):
items.extend(pair)
return self.execute_command('MSETNX', *items)
def move(self, name, db):
"Moves the key ``name`` to a different Redis database ``db``"
return self.execute_command('MOVE', name, db)
def persist(self, name):
"Removes an expiration on ``name``"
return self.execute_command('PERSIST', name)
def pexpire(self, name, time):
"""
Set an expire flag on key ``name`` for ``time`` milliseconds.
``time`` can be represented by an integer or a Python timedelta
object.
"""
if isinstance(time, datetime.timedelta):
ms = int(time.microseconds / 1000)
time = (time.seconds + time.days * 24 * 3600) * 1000 + ms
return self.execute_command('PEXPIRE', name, time)
def pexpireat(self, name, when):
"""
Set an expire flag on key ``name``. ``when`` can be represented
as an integer representing unix time in milliseconds (unix time * 1000)
or a Python datetime object.
"""
if isinstance(when, datetime.datetime):
ms = int(when.microsecond / 1000)
when = int(mod_time.mktime(when.timetuple())) * 1000 + ms
return self.execute_command('PEXPIREAT', name, when)
def psetex(self, name, time_ms, value):
"""
Set the value of key ``name`` to ``value`` that expires in ``time_ms``
milliseconds. ``time_ms`` can be represented by an integer or a Python
timedelta object
"""
if isinstance(time_ms, datetime.timedelta):
ms = int(time_ms.microseconds / 1000)
time_ms = (time_ms.seconds + time_ms.days * 24 * 3600) * 1000 + ms
return self.execute_command('PSETEX', name, time_ms, value)
def pttl(self, name):
"Returns the number of milliseconds until the key ``name`` will expire"
return self.execute_command('PTTL', name)
def randomkey(self):
"Returns the name of a random key"
return self.execute_command('RANDOMKEY')
def rename(self, src, dst):
"""
Rename key ``src`` to ``dst``
"""
return self.execute_command('RENAME', src, dst)
def renamenx(self, src, dst):
"Rename key ``src`` to ``dst`` if ``dst`` doesn't already exist"
return self.execute_command('RENAMENX', src, dst)
def restore(self, name, ttl, value):
"""
Create a key using the provided serialized value, previously obtained
using DUMP.
"""
return self.execute_command('RESTORE', name, ttl, value)
def set(self, name, value, ex=None, px=None, nx=False, xx=False):
"""
Set the value at key ``name`` to ``value``
``ex`` sets an expire flag on key ``name`` for ``ex`` seconds.
``px`` sets an expire flag on key ``name`` for ``px`` milliseconds.
``nx`` if set to True, set the value at key ``name`` to ``value`` if it
does not already exist.
``xx`` if set to True, set the value at key ``name`` to ``value`` if it
already exists.
"""
pieces = [name, value]
if ex:
pieces.append('EX')
if isinstance(ex, datetime.timedelta):
ex = ex.seconds + ex.days * 24 * 3600
pieces.append(ex)
if px:
pieces.append('PX')
if isinstance(px, datetime.timedelta):
ms = int(px.microseconds / 1000)
px = (px.seconds + px.days * 24 * 3600) * 1000 + ms
pieces.append(px)
if nx:
pieces.append('NX')
if xx:
pieces.append('XX')
return self.execute_command('SET', *pieces)
def __setitem__(self, name, value):
self.set(name, value)
def setbit(self, name, offset, value):
"""
Flag the ``offset`` in ``name`` as ``value``. Returns a boolean
indicating the previous value of ``offset``.
"""
value = value and 1 or 0
return self.execute_command('SETBIT', name, offset, value)
def setex(self, name, time, value):
"""
Set the value of key ``name`` to ``value`` that expires in ``time``
seconds. ``time`` can be represented by an integer or a Python
timedelta object.
"""
if isinstance(time, datetime.timedelta):
time = time.seconds + time.days * 24 * 3600
return self.execute_command('SETEX', name, time, value)
def setnx(self, name, value):
"Set the value of key ``name`` to ``value`` if key doesn't exist"
return self.execute_command('SETNX', name, value)
def setrange(self, name, offset, value):
"""
Overwrite bytes in the value of ``name`` starting at ``offset`` with
``value``. If ``offset`` plus the length of ``value`` exceeds the
length of the original value, the new value will be larger than before.
If ``offset`` exceeds the length of the original value, null bytes
will be used to pad between the end of the previous value and the start
of what's being injected.
Returns the length of the new string.
"""
return self.execute_command('SETRANGE', name, offset, value)
def strlen(self, name):
"Return the number of bytes stored in the value of ``name``"
return self.execute_command('STRLEN', name)
def substr(self, name, start, end=-1):
"""
Return a substring of the string at key ``name``. ``start`` and ``end``
are 0-based integers specifying the portion of the string to return.
"""
return self.execute_command('SUBSTR', name, start, end)
def ttl(self, name):
"Returns the number of seconds until the key ``name`` will expire"
return self.execute_command('TTL', name)
def type(self, name):
"Returns the type of key ``name``"
return self.execute_command('TYPE', name)
def watch(self, *names):
"""
Watches the values at keys ``names``, or None if the key doesn't exist
"""
warnings.warn(DeprecationWarning('Call WATCH from a Pipeline object'))
def unwatch(self):
"""
Unwatches the value at key ``name``, or None of the key doesn't exist
"""
warnings.warn(
DeprecationWarning('Call UNWATCH from a Pipeline object'))
# LIST COMMANDS
def blpop(self, keys, timeout=0):
"""
LPOP a value off of the first non-empty list
named in the ``keys`` list.
If none of the lists in ``keys`` has a value to LPOP, then block
for ``timeout`` seconds, or until a value gets pushed on to one
of the lists.
If timeout is 0, then block indefinitely.
"""
if timeout is None:
timeout = 0
if isinstance(keys, basestring):
keys = [keys]
else:
keys = list(keys)
keys.append(timeout)
return self.execute_command('BLPOP', *keys)
def brpop(self, keys, timeout=0):
"""
RPOP a value off of the first non-empty list
named in the ``keys`` list.
If none of the lists in ``keys`` has a value to LPOP, then block
for ``timeout`` seconds, or until a value gets pushed on to one
of the lists.
If timeout is 0, then block indefinitely.
"""
if timeout is None:
timeout = 0
if isinstance(keys, basestring):
keys = [keys]
else:
keys = list(keys)
keys.append(timeout)
return self.execute_command('BRPOP', *keys)
def brpoplpush(self, src, dst, timeout=0):
"""
Pop a value off the tail of ``src``, push it on the head of ``dst``
and then return it.
This command blocks until a value is in ``src`` or until ``timeout``
seconds elapse, whichever is first. A ``timeout`` value of 0 blocks
forever.
"""
if timeout is None:
timeout = 0
return self.execute_command('BRPOPLPUSH', src, dst, timeout)
def lindex(self, name, index):
"""
Return the item from list ``name`` at position ``index``
Negative indexes are supported and will return an item at the
end of the list
"""
return self.execute_command('LINDEX', name, index)
def linsert(self, name, where, refvalue, value):
"""
Insert ``value`` in list ``name`` either immediately before or after
[``where``] ``refvalue``
Returns the new length of the list on success or -1 if ``refvalue``
is not in the list.
"""
return self.execute_command('LINSERT', name, where, refvalue, value)
def llen(self, name):
"Return the length of the list ``name``"
return self.execute_command('LLEN', name)
def lpop(self, name):
"Remove and return the first item of the list ``name``"
return self.execute_command('LPOP', name)
def lpush(self, name, *values):
"Push ``values`` onto the head of the list ``name``"
return self.execute_command('LPUSH', name, *values)
def lpushx(self, name, value):
"Push ``value`` onto the head of the list ``name`` if ``name`` exists"
return self.execute_command('LPUSHX', name, value)
def lrange(self, name, start, end):
"""
Return a slice of the list ``name`` between
position ``start`` and ``end``
``start`` and ``end`` can be negative numbers just like
Python slicing notation
"""
return self.execute_command('LRANGE', name, start, end)
def lrem(self, name, count, value):
"""
Remove the first ``count`` occurrences of elements equal to ``value``
from the list stored at ``name``.
The count argument influences the operation in the following ways:
count > 0: Remove elements equal to value moving from head to tail.
count < 0: Remove elements equal to value moving from tail to head.
count = 0: Remove all elements equal to value.
"""
return self.execute_command('LREM', name, count, value)
def lset(self, name, index, value):
"Set ``position`` of list ``name`` to ``value``"
return self.execute_command('LSET', name, index, value)
def ltrim(self, name, start, end):
"""
Trim the list ``name``, removing all values not within the slice
between ``start`` and ``end``
``start`` and ``end`` can be negative numbers just like
Python slicing notation
"""
return self.execute_command('LTRIM', name, start, end)
def rpop(self, name):
"Remove and return the last item of the list ``name``"
return self.execute_command('RPOP', name)
def rpoplpush(self, src, dst):
"""
RPOP a value off of the ``src`` list and atomically LPUSH it
on to the ``dst`` list. Returns the value.
"""
return self.execute_command('RPOPLPUSH', src, dst)
def rpush(self, name, *values):
"Push ``values`` onto the tail of the list ``name``"
return self.execute_command('RPUSH', name, *values)
def rpushx(self, name, value):
"Push ``value`` onto the tail of the list ``name`` if ``name`` exists"
return self.execute_command('RPUSHX', name, value)
def sort(self, name, start=None, num=None, by=None, get=None,
desc=False, alpha=False, store=None, groups=False):
"""
Sort and return the list, set or sorted set at ``name``.
``start`` and ``num`` allow for paging through the sorted data
``by`` allows using an external key to weight and sort the items.
Use an "*" to indicate where in the key the item value is located
``get`` allows for returning items from external keys rather than the
sorted data itself. Use an "*" to indicate where int he key
the item value is located
``desc`` allows for reversing the sort
``alpha`` allows for sorting lexicographically rather than numerically
``store`` allows for storing the result of the sort into
the key ``store``
``groups`` if set to True and if ``get`` contains at least two
elements, sort will return a list of tuples, each containing the
values fetched from the arguments to ``get``.
"""
if (start is not None and num is None) or \
(num is not None and start is None):
raise RedisError("``start`` and ``num`` must both be specified")
pieces = [name]
if by is not None:
pieces.append(Token('BY'))
pieces.append(by)
if start is not None and num is not None:
pieces.append(Token('LIMIT'))
pieces.append(start)
pieces.append(num)
if get is not None:
# If get is a string assume we want to get a single value.
# Otherwise assume it's an interable and we want to get multiple
# values. We can't just iterate blindly because strings are
# iterable.
if isinstance(get, basestring):
pieces.append(Token('GET'))
pieces.append(get)
else:
for g in get:
pieces.append(Token('GET'))
pieces.append(g)
if desc:
pieces.append(Token('DESC'))
if alpha:
pieces.append(Token('ALPHA'))
if store is not None:
pieces.append(Token('STORE'))
pieces.append(store)
if groups:
if not get or isinstance(get, basestring) or len(get) < 2:
raise DataError('when using "groups" the "get" argument '
'must be specified and contain at least '
'two keys')
options = {'groups': len(get) if groups else None}
return self.execute_command('SORT', *pieces, **options)
# SCAN COMMANDS
def scan(self, cursor=0, match=None, count=None):
"""
Incrementally return lists of key names. Also return a cursor
indicating the scan position.
``match`` allows for filtering the keys by pattern
``count`` allows for hint the minimum number of returns
"""
pieces = [cursor]
if match is not None:
pieces.extend([Token('MATCH'), match])
if count is not None:
pieces.extend([Token('COUNT'), count])
return self.execute_command('SCAN', *pieces)
def scan_iter(self, match=None, count=None):
"""
Make an iterator using the SCAN command so that the client doesn't
need to remember the cursor position.
``match`` allows for filtering the keys by pattern
``count`` allows for hint the minimum number of returns
"""
cursor = '0'
while cursor != 0:
cursor, data = self.scan(cursor=cursor, match=match, count=count)
for item in data:
yield item
def sscan(self, name, cursor=0, match=None, count=None):
"""
Incrementally return lists of elements in a set. Also return a cursor
indicating the scan position.
``match`` allows for filtering the keys by pattern
``count`` allows for hint the minimum number of returns
"""
pieces = [name, cursor]
if match is not None:
pieces.extend([Token('MATCH'), match])
if count is not None:
pieces.extend([Token('COUNT'), count])
return self.execute_command('SSCAN', *pieces)
def sscan_iter(self, name, match=None, count=None):
"""
Make an iterator using the SSCAN command so that the client doesn't
need to remember the cursor position.
``match`` allows for filtering the keys by pattern
``count`` allows for hint the minimum number of returns
"""
cursor = '0'
while cursor != 0:
cursor, data = self.sscan(name, cursor=cursor,
match=match, count=count)
for item in data:
yield item
def hscan(self, name, cursor=0, match=None, count=None):
"""
Incrementally return key/value slices in a hash. Also return a cursor
indicating the scan position.
``match`` allows for filtering the keys by pattern
``count`` allows for hint the minimum number of returns
"""
pieces = [name, cursor]
if match is not None:
pieces.extend([Token('MATCH'), match])
if count is not None:
pieces.extend([Token('COUNT'), count])
return self.execute_command('HSCAN', *pieces)
def hscan_iter(self, name, match=None, count=None):
"""
Make an iterator using the HSCAN command so that the client doesn't
need to remember the cursor position.
``match`` allows for filtering the keys by pattern
``count`` allows for hint the minimum number of returns
"""
cursor = '0'
while cursor != 0:
cursor, data = self.hscan(name, cursor=cursor,
match=match, count=count)
for item in data.items():
yield item
def zscan(self, name, cursor=0, match=None, count=None,
score_cast_func=float):
"""
Incrementally return lists of elements in a sorted set. Also return a
cursor indicating the scan position.
``match`` allows for filtering the keys by pattern
``count`` allows for hint the minimum number of returns
``score_cast_func`` a callable used to cast the score return value
"""
pieces = [name, cursor]
if match is not None:
pieces.extend([Token('MATCH'), match])
if count is not None:
pieces.extend([Token('COUNT'), count])
options = {'score_cast_func': score_cast_func}
return self.execute_command('ZSCAN', *pieces, **options)
def zscan_iter(self, name, match=None, count=None,
score_cast_func=float):
"""
Make an iterator using the ZSCAN command so that the client doesn't
need to remember the cursor position.
``match`` allows for filtering the keys by pattern
``count`` allows for hint the minimum number of returns
``score_cast_func`` a callable used to cast the score return value
"""
cursor = '0'
while cursor != 0:
cursor, data = self.zscan(name, cursor=cursor, match=match,
count=count,
score_cast_func=score_cast_func)
for item in data:
yield item
# SET COMMANDS
def sadd(self, name, *values):
"Add ``value(s)`` to set ``name``"
return self.execute_command('SADD', name, *values)
def scard(self, name):
"Return the number of elements in set ``name``"
return self.execute_command('SCARD', name)
def sdiff(self, keys, *args):
"Return the difference of sets specified by ``keys``"
args = list_or_args(keys, args)
return self.execute_command('SDIFF', *args)
def sdiffstore(self, dest, keys, *args):
"""
Store the difference of sets specified by ``keys`` into a new
set named ``dest``. Returns the number of keys in the new set.
"""
args = list_or_args(keys, args)
return self.execute_command('SDIFFSTORE', dest, *args)
def sinter(self, keys, *args):
"Return the intersection of sets specified by ``keys``"
args = list_or_args(keys, args)
return self.execute_command('SINTER', *args)
def sinterstore(self, dest, keys, *args):
"""
Store the intersection of sets specified by ``keys`` into a new
set named ``dest``. Returns the number of keys in the new set.
"""
args = list_or_args(keys, args)
return self.execute_command('SINTERSTORE', dest, *args)
def sismember(self, name, value):
"Return a boolean indicating if ``value`` is a member of set ``name``"
return self.execute_command('SISMEMBER', name, value)
def smembers(self, name):
"Return all members of the set ``name``"
return self.execute_command('SMEMBERS', name)
def smove(self, src, dst, value):
"Move ``value`` from set ``src`` to set ``dst`` atomically"
return self.execute_command('SMOVE', src, dst, value)
def spop(self, name):
"Remove and return a random member of set ``name``"
return self.execute_command('SPOP', name)
def srandmember(self, name, number=None):
"""
If ``number`` is None, returns a random member of set ``name``.
If ``number`` is supplied, returns a list of ``number`` random
memebers of set ``name``. Note this is only available when running
Redis 2.6+.
"""
args = number and [number] or []
return self.execute_command('SRANDMEMBER', name, *args)
def srem(self, name, *values):
"Remove ``values`` from set ``name``"
return self.execute_command('SREM', name, *values)
def sunion(self, keys, *args):
"Return the union of sets specified by ``keys``"
args = list_or_args(keys, args)
return self.execute_command('SUNION', *args)
def sunionstore(self, dest, keys, *args):
"""
Store the union of sets specified by ``keys`` into a new
set named ``dest``. Returns the number of keys in the new set.
"""
args = list_or_args(keys, args)
return self.execute_command('SUNIONSTORE', dest, *args)
# SORTED SET COMMANDS
def zadd(self, name, *args, **kwargs):
"""
Set any number of score, element-name pairs to the key ``name``. Pairs
can be specified in two ways:
As *args, in the form of: score1, name1, score2, name2, ...
or as **kwargs, in the form of: name1=score1, name2=score2, ...
The following example would add four values to the 'my-key' key:
redis.zadd('my-key', 1.1, 'name1', 2.2, 'name2', name3=3.3, name4=4.4)
"""
pieces = []
if args:
if len(args) % 2 != 0:
raise RedisError("ZADD requires an equal number of "
"values and scores")
pieces.extend(args)
for pair in iteritems(kwargs):
pieces.append(pair[1])
pieces.append(pair[0])
return self.execute_command('ZADD', name, *pieces)
def zcard(self, name):
"Return the number of elements in the sorted set ``name``"
return self.execute_command('ZCARD', name)
def zcount(self, name, min, max):
"""
Returns the number of elements in the sorted set at key ``name`` with
a score between ``min`` and ``max``.
"""
return self.execute_command('ZCOUNT', name, min, max)
def zincrby(self, name, value, amount=1):
"Increment the score of ``value`` in sorted set ``name`` by ``amount``"
return self.execute_command('ZINCRBY', name, amount, value)
def zinterstore(self, dest, keys, aggregate=None):
"""
Intersect multiple sorted sets specified by ``keys`` into
a new sorted set, ``dest``. Scores in the destination will be
aggregated based on the ``aggregate``, or SUM if none is provided.
"""
return self._zaggregate('ZINTERSTORE', dest, keys, aggregate)
def zlexcount(self, name, min, max):
"""
Return the number of items in the sorted set ``name`` between the
lexicographical range ``min`` and ``max``.
"""
return self.execute_command('ZLEXCOUNT', name, min, max)
def zrange(self, name, start, end, desc=False, withscores=False,
score_cast_func=float):
"""
Return a range of values from sorted set ``name`` between
``start`` and ``end`` sorted in ascending order.
``start`` and ``end`` can be negative, indicating the end of the range.
``desc`` a boolean indicating whether to sort the results descendingly
``withscores`` indicates to return the scores along with the values.
The return type is a list of (value, score) pairs
``score_cast_func`` a callable used to cast the score return value
"""
if desc:
return self.zrevrange(name, start, end, withscores,
score_cast_func)
pieces = ['ZRANGE', name, start, end]
if withscores:
pieces.append(Token('WITHSCORES'))
options = {
'withscores': withscores,
'score_cast_func': score_cast_func
}
return self.execute_command(*pieces, **options)
def zrangebylex(self, name, min, max, start=None, num=None):
"""
Return the lexicographical range of values from sorted set ``name``
between ``min`` and ``max``.
If ``start`` and ``num`` are specified, then return a slice of the
range.
"""
if (start is not None and num is None) or \
(num is not None and start is None):
raise RedisError("``start`` and ``num`` must both be specified")
pieces = ['ZRANGEBYLEX', name, min, max]
if start is not None and num is not None:
pieces.extend([Token('LIMIT'), start, num])
return self.execute_command(*pieces)
def zrevrangebylex(self, name, max, min, start=None, num=None):
"""
Return the reversed lexicographical range of values from sorted set
``name`` between ``max`` and ``min``.
If ``start`` and ``num`` are specified, then return a slice of the
range.
"""
if (start is not None and num is None) or \
(num is not None and start is None):
raise RedisError("``start`` and ``num`` must both be specified")
pieces = ['ZREVRANGEBYLEX', name, max, min]
if start is not None and num is not None:
pieces.extend([Token('LIMIT'), start, num])
return self.execute_command(*pieces)
def zrangebyscore(self, name, min, max, start=None, num=None,
withscores=False, score_cast_func=float):
"""
Return a range of values from the sorted set ``name`` with scores
between ``min`` and ``max``.
If ``start`` and ``num`` are specified, then return a slice
of the range.
``withscores`` indicates to return the scores along with the values.
The return type is a list of (value, score) pairs
`score_cast_func`` a callable used to cast the score return value
"""
if (start is not None and num is None) or \
(num is not None and start is None):
raise RedisError("``start`` and ``num`` must both be specified")
pieces = ['ZRANGEBYSCORE', name, min, max]
if start is not None and num is not None:
pieces.extend([Token('LIMIT'), start, num])
if withscores:
pieces.append(Token('WITHSCORES'))
options = {
'withscores': withscores,
'score_cast_func': score_cast_func
}
return self.execute_command(*pieces, **options)
def zrank(self, name, value):
"""
Returns a 0-based value indicating the rank of ``value`` in sorted set
``name``
"""
return self.execute_command('ZRANK', name, value)
def zrem(self, name, *values):
"Remove member ``values`` from sorted set ``name``"
return self.execute_command('ZREM', name, *values)
def zremrangebylex(self, name, min, max):
"""
Remove all elements in the sorted set ``name`` between the
lexicographical range specified by ``min`` and ``max``.
Returns the number of elements removed.
"""
return self.execute_command('ZREMRANGEBYLEX', name, min, max)
def zremrangebyrank(self, name, min, max):
"""
Remove all elements in the sorted set ``name`` with ranks between
``min`` and ``max``. Values are 0-based, ordered from smallest score
to largest. Values can be negative indicating the highest scores.
Returns the number of elements removed
"""
return self.execute_command('ZREMRANGEBYRANK', name, min, max)
def zremrangebyscore(self, name, min, max):
"""
Remove all elements in the sorted set ``name`` with scores
between ``min`` and ``max``. Returns the number of elements removed.
"""
return self.execute_command('ZREMRANGEBYSCORE', name, min, max)
def zrevrange(self, name, start, end, withscores=False,
score_cast_func=float):
"""
Return a range of values from sorted set ``name`` between
``start`` and ``end`` sorted in descending order.
``start`` and ``end`` can be negative, indicating the end of the range.
``withscores`` indicates to return the scores along with the values
The return type is a list of (value, score) pairs
``score_cast_func`` a callable used to cast the score return value
"""
pieces = ['ZREVRANGE', name, start, end]
if withscores:
pieces.append(Token('WITHSCORES'))
options = {
'withscores': withscores,
'score_cast_func': score_cast_func
}
return self.execute_command(*pieces, **options)
def zrevrangebyscore(self, name, max, min, start=None, num=None,
withscores=False, score_cast_func=float):
"""
Return a range of values from the sorted set ``name`` with scores
between ``min`` and ``max`` in descending order.
If ``start`` and ``num`` are specified, then return a slice
of the range.
``withscores`` indicates to return the scores along with the values.
The return type is a list of (value, score) pairs
``score_cast_func`` a callable used to cast the score return value
"""
if (start is not None and num is None) or \
(num is not None and start is None):
raise RedisError("``start`` and ``num`` must both be specified")
pieces = ['ZREVRANGEBYSCORE', name, max, min]
if start is not None and num is not None:
pieces.extend([Token('LIMIT'), start, num])
if withscores:
pieces.append(Token('WITHSCORES'))
options = {
'withscores': withscores,
'score_cast_func': score_cast_func
}
return self.execute_command(*pieces, **options)
def zrevrank(self, name, value):
"""
Returns a 0-based value indicating the descending rank of
``value`` in sorted set ``name``
"""
return self.execute_command('ZREVRANK', name, value)
def zscore(self, name, value):
"Return the score of element ``value`` in sorted set ``name``"
return self.execute_command('ZSCORE', name, value)
def zunionstore(self, dest, keys, aggregate=None):
"""
Union multiple sorted sets specified by ``keys`` into
a new sorted set, ``dest``. Scores in the destination will be
aggregated based on the ``aggregate``, or SUM if none is provided.
"""
return self._zaggregate('ZUNIONSTORE', dest, keys, aggregate)
def _zaggregate(self, command, dest, keys, aggregate=None):
pieces = [command, dest, len(keys)]
if isinstance(keys, dict):
keys, weights = iterkeys(keys), itervalues(keys)
else:
weights = None
pieces.extend(keys)
if weights:
pieces.append(Token('WEIGHTS'))
pieces.extend(weights)
if aggregate:
pieces.append(Token('AGGREGATE'))
pieces.append(aggregate)
return self.execute_command(*pieces)
# HYPERLOGLOG COMMANDS
def pfadd(self, name, *values):
"Adds the specified elements to the specified HyperLogLog."
return self.execute_command('PFADD', name, *values)
def pfcount(self, *sources):
"""
Return the approximated cardinality of
the set observed by the HyperLogLog at key(s).
"""
return self.execute_command('PFCOUNT', *sources)
def pfmerge(self, dest, *sources):
"Merge N different HyperLogLogs into a single one."
return self.execute_command('PFMERGE', dest, *sources)
# HASH COMMANDS
def hdel(self, name, *keys):
"Delete ``keys`` from hash ``name``"
return self.execute_command('HDEL', name, *keys)
def hexists(self, name, key):
"Returns a boolean indicating if ``key`` exists within hash ``name``"
return self.execute_command('HEXISTS', name, key)
def hget(self, name, key):
"Return the value of ``key`` within the hash ``name``"
return self.execute_command('HGET', name, key)
def hgetall(self, name):
"Return a Python dict of the hash's name/value pairs"
return self.execute_command('HGETALL', name)
def hincrby(self, name, key, amount=1):
"Increment the value of ``key`` in hash ``name`` by ``amount``"
return self.execute_command('HINCRBY', name, key, amount)
def hincrbyfloat(self, name, key, amount=1.0):
"""
Increment the value of ``key`` in hash ``name`` by floating ``amount``
"""
return self.execute_command('HINCRBYFLOAT', name, key, amount)
def hkeys(self, name):
"Return the list of keys within hash ``name``"
return self.execute_command('HKEYS', name)
def hlen(self, name):
"Return the number of elements in hash ``name``"
return self.execute_command('HLEN', name)
def hset(self, name, key, value):
"""
Set ``key`` to ``value`` within hash ``name``
Returns 1 if HSET created a new field, otherwise 0
"""
return self.execute_command('HSET', name, key, value)
def hsetnx(self, name, key, value):
"""
Set ``key`` to ``value`` within hash ``name`` if ``key`` does not
exist. Returns 1 if HSETNX created a field, otherwise 0.
"""
return self.execute_command('HSETNX', name, key, value)
def hmset(self, name, mapping):
"""
Set key to value within hash ``name`` for each corresponding
key and value from the ``mapping`` dict.
"""
if not mapping:
raise DataError("'hmset' with 'mapping' of length 0")
items = []
for pair in iteritems(mapping):
items.extend(pair)
return self.execute_command('HMSET', name, *items)
def hmget(self, name, keys, *args):
"Returns a list of values ordered identically to ``keys``"
args = list_or_args(keys, args)
return self.execute_command('HMGET', name, *args)
def hvals(self, name):
"Return the list of values within hash ``name``"
return self.execute_command('HVALS', name)
def publish(self, channel, message):
"""
Publish ``message`` on ``channel``.
Returns the number of subscribers the message was delivered to.
"""
return self.execute_command('PUBLISH', channel, message)
def eval(self, script, numkeys, *keys_and_args):
"""
Execute the Lua ``script``, specifying the ``numkeys`` the script
will touch and the key names and argument values in ``keys_and_args``.
Returns the result of the script.
In practice, use the object returned by ``register_script``. This
function exists purely for Redis API completion.
"""
return self.execute_command('EVAL', script, numkeys, *keys_and_args)
def evalsha(self, sha, numkeys, *keys_and_args):
"""
Use the ``sha`` to execute a Lua script already registered via EVAL
or SCRIPT LOAD. Specify the ``numkeys`` the script will touch and the
key names and argument values in ``keys_and_args``. Returns the result
of the script.
In practice, use the object returned by ``register_script``. This
function exists purely for Redis API completion.
"""
return self.execute_command('EVALSHA', sha, numkeys, *keys_and_args)
def script_exists(self, *args):
"""
Check if a script exists in the script cache by specifying the SHAs of
each script as ``args``. Returns a list of boolean values indicating if
if each already script exists in the cache.
"""
return self.execute_command('SCRIPT EXISTS', *args)
def script_flush(self):
"Flush all scripts from the script cache"
return self.execute_command('SCRIPT FLUSH')
def script_kill(self):
"Kill the currently executing Lua script"
return self.execute_command('SCRIPT KILL')
def script_load(self, script):
"Load a Lua ``script`` into the script cache. Returns the SHA."
return self.execute_command('SCRIPT LOAD', script)
def register_script(self, script):
"""
Register a Lua ``script`` specifying the ``keys`` it will touch.
Returns a Script object that is callable and hides the complexity of
deal with scripts, keys, and shas. This is the preferred way to work
with Lua scripts.
"""
return Script(self, script)
class Redis(StrictRedis):
"""
Provides backwards compatibility with older versions of redis-py that
changed arguments to some commands to be more Pythonic, sane, or by
accident.
"""
# Overridden callbacks
RESPONSE_CALLBACKS = dict_merge(
StrictRedis.RESPONSE_CALLBACKS,
{
'TTL': lambda r: r >= 0 and r or None,
'PTTL': lambda r: r >= 0 and r or None,
}
)
def pipeline(self, transaction=True, shard_hint=None):
"""
Return a new pipeline object that can queue multiple commands for
later execution. ``transaction`` indicates whether all commands
should be executed atomically. Apart from making a group of operations
atomic, pipelines are useful for reducing the back-and-forth overhead
between the client and server.
"""
return Pipeline(
self.connection_pool,
self.response_callbacks,
transaction,
shard_hint)
def setex(self, name, value, time):
"""
Set the value of key ``name`` to ``value`` that expires in ``time``
seconds. ``time`` can be represented by an integer or a Python
timedelta object.
"""
if isinstance(time, datetime.timedelta):
time = time.seconds + time.days * 24 * 3600
return self.execute_command('SETEX', name, time, value)
def lrem(self, name, value, num=0):
"""
Remove the first ``num`` occurrences of elements equal to ``value``
from the list stored at ``name``.
The ``num`` argument influences the operation in the following ways:
num > 0: Remove elements equal to value moving from head to tail.
num < 0: Remove elements equal to value moving from tail to head.
num = 0: Remove all elements equal to value.
"""
return self.execute_command('LREM', name, num, value)
def zadd(self, name, *args, **kwargs):
"""
NOTE: The order of arguments differs from that of the official ZADD
command. For backwards compatability, this method accepts arguments
in the form of name1, score1, name2, score2, while the official Redis
documents expects score1, name1, score2, name2.
If you're looking to use the standard syntax, consider using the
StrictRedis class. See the API Reference section of the docs for more
information.
Set any number of element-name, score pairs to the key ``name``. Pairs
can be specified in two ways:
As *args, in the form of: name1, score1, name2, score2, ...
or as **kwargs, in the form of: name1=score1, name2=score2, ...
The following example would add four values to the 'my-key' key:
redis.zadd('my-key', 'name1', 1.1, 'name2', 2.2, name3=3.3, name4=4.4)
"""
pieces = []
if args:
if len(args) % 2 != 0:
raise RedisError("ZADD requires an equal number of "
"values and scores")
pieces.extend(reversed(args))
for pair in iteritems(kwargs):
pieces.append(pair[1])
pieces.append(pair[0])
return self.execute_command('ZADD', name, *pieces)
class PubSub(object):
"""
PubSub provides publish, subscribe and listen support to Redis channels.
After subscribing to one or more channels, the listen() method will block
until a message arrives on one of the subscribed channels. That message
will be returned and it's safe to start listening again.
"""
PUBLISH_MESSAGE_TYPES = ('message', 'pmessage')
UNSUBSCRIBE_MESSAGE_TYPES = ('unsubscribe', 'punsubscribe')
def __init__(self, connection_pool, shard_hint=None,
ignore_subscribe_messages=False):
self.connection_pool = connection_pool
self.shard_hint = shard_hint
self.ignore_subscribe_messages = ignore_subscribe_messages
self.connection = None
# we need to know the encoding options for this connection in order
# to lookup channel and pattern names for callback handlers.
conn = connection_pool.get_connection('pubsub', shard_hint)
try:
self.encoding = conn.encoding
self.encoding_errors = conn.encoding_errors
self.decode_responses = conn.decode_responses
finally:
connection_pool.release(conn)
self.reset()
def __del__(self):
try:
# if this object went out of scope prior to shutting down
# subscriptions, close the connection manually before
# returning it to the connection pool
self.reset()
except Exception:
pass
def reset(self):
if self.connection:
self.connection.disconnect()
self.connection.clear_connect_callbacks()
self.connection_pool.release(self.connection)
self.connection = None
self.channels = {}
self.patterns = {}
def close(self):
self.reset()
def on_connect(self, connection):
"Re-subscribe to any channels and patterns previously subscribed to"
# NOTE: for python3, we can't pass bytestrings as keyword arguments
# so we need to decode channel/pattern names back to unicode strings
# before passing them to [p]subscribe.
if self.channels:
channels = {}
for k, v in iteritems(self.channels):
if not self.decode_responses:
k = k.decode(self.encoding, self.encoding_errors)
channels[k] = v
self.subscribe(**channels)
if self.patterns:
patterns = {}
for k, v in iteritems(self.patterns):
if not self.decode_responses:
k = k.decode(self.encoding, self.encoding_errors)
patterns[k] = v
self.psubscribe(**patterns)
def encode(self, value):
"""
Encode the value so that it's identical to what we'll
read off the connection
"""
if self.decode_responses and isinstance(value, bytes):
value = value.decode(self.encoding, self.encoding_errors)
elif not self.decode_responses and isinstance(value, unicode):
value = value.encode(self.encoding, self.encoding_errors)
return value
@property
def subscribed(self):
"Indicates if there are subscriptions to any channels or patterns"
return bool(self.channels or self.patterns)
def execute_command(self, *args, **kwargs):
"Execute a publish/subscribe command"
# NOTE: don't parse the response in this function. it could pull a
# legitmate message off the stack if the connection is already
# subscribed to one or more channels
if self.connection is None:
self.connection = self.connection_pool.get_connection(
'pubsub',
self.shard_hint
)
# register a callback that re-subscribes to any channels we
# were listening to when we were disconnected
self.connection.register_connect_callback(self.on_connect)
connection = self.connection
self._execute(connection, connection.send_command, *args)
def _execute(self, connection, command, *args):
try:
return command(*args)
except (ConnectionError, TimeoutError) as e:
connection.disconnect()
if not connection.retry_on_timeout and isinstance(e, TimeoutError):
raise
# Connect manually here. If the Redis server is down, this will
# fail and raise a ConnectionError as desired.
connection.connect()
# the ``on_connect`` callback should haven been called by the
# connection to resubscribe us to any channels and patterns we were
# previously listening to
return command(*args)
def parse_response(self, block=True, timeout=0):
"Parse the response from a publish/subscribe command"
connection = self.connection
if not block and not connection.can_read(timeout=timeout):
return None
return self._execute(connection, connection.read_response)
def psubscribe(self, *args, **kwargs):
"""
Subscribe to channel patterns. Patterns supplied as keyword arguments
expect a pattern name as the key and a callable as the value. A
pattern's callable will be invoked automatically when a message is
received on that pattern rather than producing a message via
``listen()``.
"""
if args:
args = list_or_args(args[0], args[1:])
new_patterns = {}
new_patterns.update(dict.fromkeys(imap(self.encode, args)))
for pattern, handler in iteritems(kwargs):
new_patterns[self.encode(pattern)] = handler
ret_val = self.execute_command('PSUBSCRIBE', *iterkeys(new_patterns))
# update the patterns dict AFTER we send the command. we don't want to
# subscribe twice to these patterns, once for the command and again
# for the reconnection.
self.patterns.update(new_patterns)
return ret_val
def punsubscribe(self, *args):
"""
Unsubscribe from the supplied patterns. If empy, unsubscribe from
all patterns.
"""
if args:
args = list_or_args(args[0], args[1:])
return self.execute_command('PUNSUBSCRIBE', *args)
def subscribe(self, *args, **kwargs):
"""
Subscribe to channels. Channels supplied as keyword arguments expect
a channel name as the key and a callable as the value. A channel's
callable will be invoked automatically when a message is received on
that channel rather than producing a message via ``listen()`` or
``get_message()``.
"""
if args:
args = list_or_args(args[0], args[1:])
new_channels = {}
new_channels.update(dict.fromkeys(imap(self.encode, args)))
for channel, handler in iteritems(kwargs):
new_channels[self.encode(channel)] = handler
ret_val = self.execute_command('SUBSCRIBE', *iterkeys(new_channels))
# update the channels dict AFTER we send the command. we don't want to
# subscribe twice to these channels, once for the command and again
# for the reconnection.
self.channels.update(new_channels)
return ret_val
def unsubscribe(self, *args):
"""
Unsubscribe from the supplied channels. If empty, unsubscribe from
all channels
"""
if args:
args = list_or_args(args[0], args[1:])
return self.execute_command('UNSUBSCRIBE', *args)
def listen(self):
"Listen for messages on channels this client has been subscribed to"
while self.subscribed:
response = self.handle_message(self.parse_response(block=True))
if response is not None:
yield response
def get_message(self, ignore_subscribe_messages=False, timeout=0):
"""
Get the next message if one is available, otherwise None.
If timeout is specified, the system will wait for `timeout` seconds
before returning. Timeout should be specified as a floating point
number.
"""
response = self.parse_response(block=False, timeout=timeout)
if response:
return self.handle_message(response, ignore_subscribe_messages)
return None
def handle_message(self, response, ignore_subscribe_messages=False):
"""
Parses a pub/sub message. If the channel or pattern was subscribed to
with a message handler, the handler is invoked instead of a parsed
message being returned.
"""
message_type = nativestr(response[0])
if message_type == 'pmessage':
message = {
'type': message_type,
'pattern': response[1],
'channel': response[2],
'data': response[3]
}
else:
message = {
'type': message_type,
'pattern': None,
'channel': response[1],
'data': response[2]
}
# if this is an unsubscribe message, remove it from memory
if message_type in self.UNSUBSCRIBE_MESSAGE_TYPES:
subscribed_dict = None
if message_type == 'punsubscribe':
subscribed_dict = self.patterns
else:
subscribed_dict = self.channels
try:
del subscribed_dict[message['channel']]
except KeyError:
pass
if message_type in self.PUBLISH_MESSAGE_TYPES:
# if there's a message handler, invoke it
handler = None
if message_type == 'pmessage':
handler = self.patterns.get(message['pattern'], None)
else:
handler = self.channels.get(message['channel'], None)
if handler:
handler(message)
return None
else:
# this is a subscribe/unsubscribe message. ignore if we don't
# want them
if ignore_subscribe_messages or self.ignore_subscribe_messages:
return None
return message
def run_in_thread(self, sleep_time=0):
for channel, handler in iteritems(self.channels):
if handler is None:
raise PubSubError("Channel: '%s' has no handler registered")
for pattern, handler in iteritems(self.patterns):
if handler is None:
raise PubSubError("Pattern: '%s' has no handler registered")
thread = PubSubWorkerThread(self, sleep_time)
thread.start()
return thread
class PubSubWorkerThread(threading.Thread):
def __init__(self, pubsub, sleep_time):
super(PubSubWorkerThread, self).__init__()
self.pubsub = pubsub
self.sleep_time = sleep_time
self._running = False
def run(self):
if self._running:
return
self._running = True
pubsub = self.pubsub
sleep_time = self.sleep_time
while pubsub.subscribed:
pubsub.get_message(ignore_subscribe_messages=True,
timeout=sleep_time)
pubsub.close()
self._running = False
def stop(self):
# stopping simply unsubscribes from all channels and patterns.
# the unsubscribe responses that are generated will short circuit
# the loop in run(), calling pubsub.close() to clean up the connection
self.pubsub.unsubscribe()
self.pubsub.punsubscribe()
class BasePipeline(object):
"""
Pipelines provide a way to transmit multiple commands to the Redis server
in one transmission. This is convenient for batch processing, such as
saving all the values in a list to Redis.
All commands executed within a pipeline are wrapped with MULTI and EXEC
calls. This guarantees all commands executed in the pipeline will be
executed atomically.
Any command raising an exception does *not* halt the execution of
subsequent commands in the pipeline. Instead, the exception is caught
and its instance is placed into the response list returned by execute().
Code iterating over the response list should be able to deal with an
instance of an exception as a potential value. In general, these will be
ResponseError exceptions, such as those raised when issuing a command
on a key of a different datatype.
"""
UNWATCH_COMMANDS = set(('DISCARD', 'EXEC', 'UNWATCH'))
def __init__(self, connection_pool, response_callbacks, transaction,
shard_hint):
self.connection_pool = connection_pool
self.connection = None
self.response_callbacks = response_callbacks
self.transaction = transaction
self.shard_hint = shard_hint
self.watching = False
self.reset()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.reset()
def __del__(self):
try:
self.reset()
except Exception:
pass
def __len__(self):
return len(self.command_stack)
def reset(self):
self.command_stack = []
self.scripts = set()
# make sure to reset the connection state in the event that we were
# watching something
if self.watching and self.connection:
try:
# call this manually since our unwatch or
# immediate_execute_command methods can call reset()
self.connection.send_command('UNWATCH')
self.connection.read_response()
except ConnectionError:
# disconnect will also remove any previous WATCHes
self.connection.disconnect()
# clean up the other instance attributes
self.watching = False
self.explicit_transaction = False
# we can safely return the connection to the pool here since we're
# sure we're no longer WATCHing anything
if self.connection:
self.connection_pool.release(self.connection)
self.connection = None
def multi(self):
"""
Start a transactional block of the pipeline after WATCH commands
are issued. End the transactional block with `execute`.
"""
if self.explicit_transaction:
raise RedisError('Cannot issue nested calls to MULTI')
if self.command_stack:
raise RedisError('Commands without an initial WATCH have already '
'been issued')
self.explicit_transaction = True
def execute_command(self, *args, **kwargs):
if (self.watching or args[0] == 'WATCH') and \
not self.explicit_transaction:
return self.immediate_execute_command(*args, **kwargs)
return self.pipeline_execute_command(*args, **kwargs)
def immediate_execute_command(self, *args, **options):
"""
Execute a command immediately, but don't auto-retry on a
ConnectionError if we're already WATCHing a variable. Used when
issuing WATCH or subsequent commands retrieving their values but before
MULTI is called.
"""
command_name = args[0]
conn = self.connection
# if this is the first call, we need a connection
if not conn:
conn = self.connection_pool.get_connection(command_name,
self.shard_hint)
self.connection = conn
try:
conn.send_command(*args)
return self.parse_response(conn, command_name, **options)
except (ConnectionError, TimeoutError) as e:
conn.disconnect()
if not conn.retry_on_timeout and isinstance(e, TimeoutError):
raise
# if we're not already watching, we can safely retry the command
try:
if not self.watching:
conn.send_command(*args)
return self.parse_response(conn, command_name, **options)
except ConnectionError:
# the retry failed so cleanup.
conn.disconnect()
self.reset()
raise
def pipeline_execute_command(self, *args, **options):
"""
Stage a command to be executed when execute() is next called
Returns the current Pipeline object back so commands can be
chained together, such as:
pipe = pipe.set('foo', 'bar').incr('baz').decr('bang')
At some other point, you can then run: pipe.execute(),
which will execute all commands queued in the pipe.
"""
self.command_stack.append((args, options))
return self
def _execute_transaction(self, connection, commands, raise_on_error):
cmds = chain([(('MULTI', ), {})], commands, [(('EXEC', ), {})])
all_cmds = connection.pack_commands([args for args, _ in cmds])
connection.send_packed_command(all_cmds)
errors = []
# parse off the response for MULTI
# NOTE: we need to handle ResponseErrors here and continue
# so that we read all the additional command messages from
# the socket
try:
self.parse_response(connection, '_')
except ResponseError:
errors.append((0, sys.exc_info()[1]))
# and all the other commands
for i, command in enumerate(commands):
try:
self.parse_response(connection, '_')
except ResponseError:
ex = sys.exc_info()[1]
self.annotate_exception(ex, i + 1, command[0])
errors.append((i, ex))
# parse the EXEC.
try:
response = self.parse_response(connection, '_')
except ExecAbortError:
if self.explicit_transaction:
self.immediate_execute_command('DISCARD')
if errors:
raise errors[0][1]
raise sys.exc_info()[1]
if response is None:
raise WatchError("Watched variable changed.")
# put any parse errors into the response
for i, e in errors:
response.insert(i, e)
if len(response) != len(commands):
self.connection.disconnect()
raise ResponseError("Wrong number of response items from "
"pipeline execution")
# find any errors in the response and raise if necessary
if raise_on_error:
self.raise_first_error(commands, response)
# We have to run response callbacks manually
data = []
for r, cmd in izip(response, commands):
if not isinstance(r, Exception):
args, options = cmd
command_name = args[0]
if command_name in self.response_callbacks:
r = self.response_callbacks[command_name](r, **options)
data.append(r)
return data
def _execute_pipeline(self, connection, commands, raise_on_error):
# build up all commands into a single request to increase network perf
all_cmds = connection.pack_commands([args for args, _ in commands])
connection.send_packed_command(all_cmds)
response = []
for args, options in commands:
try:
response.append(
self.parse_response(connection, args[0], **options))
except ResponseError:
response.append(sys.exc_info()[1])
if raise_on_error:
self.raise_first_error(commands, response)
return response
def raise_first_error(self, commands, response):
for i, r in enumerate(response):
if isinstance(r, ResponseError):
self.annotate_exception(r, i + 1, commands[i][0])
raise r
def annotate_exception(self, exception, number, command):
cmd = safe_unicode(' ').join(imap(safe_unicode, command))
msg = unicode('Command # %d (%s) of pipeline caused error: %s') % (
number, cmd, safe_unicode(exception.args[0]))
exception.args = (msg,) + exception.args[1:]
def parse_response(self, connection, command_name, **options):
result = StrictRedis.parse_response(
self, connection, command_name, **options)
if command_name in self.UNWATCH_COMMANDS:
self.watching = False
elif command_name == 'WATCH':
self.watching = True
return result
def load_scripts(self):
# make sure all scripts that are about to be run on this pipeline exist
scripts = list(self.scripts)
immediate = self.immediate_execute_command
shas = [s.sha for s in scripts]
# we can't use the normal script_* methods because they would just
# get buffered in the pipeline.
exists = immediate('SCRIPT', 'EXISTS', *shas, **{'parse': 'EXISTS'})
if not all(exists):
for s, exist in izip(scripts, exists):
if not exist:
s.sha = immediate('SCRIPT', 'LOAD', s.script,
**{'parse': 'LOAD'})
def execute(self, raise_on_error=True):
"Execute all the commands in the current pipeline"
stack = self.command_stack
if not stack:
return []
if self.scripts:
self.load_scripts()
if self.transaction or self.explicit_transaction:
execute = self._execute_transaction
else:
execute = self._execute_pipeline
conn = self.connection
if not conn:
conn = self.connection_pool.get_connection('MULTI',
self.shard_hint)
# assign to self.connection so reset() releases the connection
# back to the pool after we're done
self.connection = conn
try:
return execute(conn, stack, raise_on_error)
except (ConnectionError, TimeoutError) as e:
conn.disconnect()
if not conn.retry_on_timeout and isinstance(e, TimeoutError):
raise
# if we were watching a variable, the watch is no longer valid
# since this connection has died. raise a WatchError, which
# indicates the user should retry his transaction. If this is more
# than a temporary failure, the WATCH that the user next issues
# will fail, propegating the real ConnectionError
if self.watching:
raise WatchError("A ConnectionError occured on while watching "
"one or more keys")
# otherwise, it's safe to retry since the transaction isn't
# predicated on any state
return execute(conn, stack, raise_on_error)
finally:
self.reset()
def watch(self, *names):
"Watches the values at keys ``names``"
if self.explicit_transaction:
raise RedisError('Cannot issue a WATCH after a MULTI')
return self.execute_command('WATCH', *names)
def unwatch(self):
"Unwatches all previously specified keys"
return self.watching and self.execute_command('UNWATCH') or True
def script_load_for_pipeline(self, script):
"Make sure scripts are loaded prior to pipeline execution"
# we need the sha now so that Script.__call__ can use it to run
# evalsha.
if not script.sha:
script.sha = self.immediate_execute_command('SCRIPT', 'LOAD',
script.script,
**{'parse': 'LOAD'})
self.scripts.add(script)
class StrictPipeline(BasePipeline, StrictRedis):
"Pipeline for the StrictRedis class"
pass
class Pipeline(BasePipeline, Redis):
"Pipeline for the Redis class"
pass
class Script(object):
"An executable Lua script object returned by ``register_script``"
def __init__(self, registered_client, script):
self.registered_client = registered_client
self.script = script
self.sha = ''
def __call__(self, keys=[], args=[], client=None):
"Execute the script, passing any required ``args``"
if client is None:
client = self.registered_client
args = tuple(keys) + tuple(args)
# make sure the Redis server knows about the script
if isinstance(client, BasePipeline):
# make sure this script is good to go on pipeline
client.script_load_for_pipeline(self)
try:
return client.evalsha(self.sha, len(keys), *args)
except NoScriptError:
# Maybe the client is pointed to a differnet server than the client
# that created this instance?
self.sha = client.script_load(self.script)
return client.evalsha(self.sha, len(keys), *args)