Jobs and jobboards are a novel concept that TaskFlow provides to allow for automatic ownership transfer of workflows between capable owners (those owners usually then use engines to complete the workflow). They provide the necessary semantics to be able to atomically transfer a job from a producer to a consumer in a reliable and fault tolerant manner. They are modeled off the concept used to post and acquire work in the physical world (typically a job listing in a newspaper or online website serves a similar role).
TLDR: It’s similar to a queue, but consumers lock items on the queue when claiming them, and only remove them from the queue when they’re done with the work. If the consumer fails, the lock is automatically released and the item is back on the queue for further consumption.
Note
For more information, please visit the paradigm shift page for more details.
All jobboards are mere classes that implement same interface, and of course it is possible to import them and create instances of them just like with any other class in Python. But the easier (and recommended) way for creating jobboards is by using the fetch() function which uses entrypoints (internally using stevedore) to fetch and configure your backend.
Using this function the typical creation of a jobboard (and an example posting of a job) might look like:
from taskflow.persistence import backends as persistence_backends
from taskflow.jobs import backends as job_backends
...
persistence = persistence_backends.fetch({
"connection': "mysql",
"user": ...,
"password": ...,
})
book = make_and_save_logbook(persistence)
board = job_backends.fetch('my-board', {
"board": "zookeeper",
}, persistence=persistence)
job = board.post("my-first-job", book)
...
Consumption of jobs is similarly achieved by creating a jobboard and using the iteration functionality to find and claim jobs (and eventually consume them). The typical usage of a jobboard for consumption (and work completion) might look like:
import time
from taskflow import exceptions as exc
from taskflow.persistence import backends as persistence_backends
from taskflow.jobs import backends as job_backends
...
my_name = 'worker-1'
coffee_break_time = 60
persistence = persistence_backends.fetch({
"connection': "mysql",
"user": ...,
"password": ...,
})
board = job_backends.fetch('my-board', {
"board": "zookeeper",
}, persistence=persistence)
while True:
my_job = None
for job in board.iterjobs(only_unclaimed=True):
try:
board.claim(job, my_name)
except exc.UnclaimableJob:
pass
else:
my_job = job
break
if my_job is not None:
try:
perform_job(my_job)
except Exception:
LOG.exception("I failed performing job: %s", my_job)
board.abandon(my_job, my_name)
else:
# I finished it, now cleanup.
board.consume(my_job)
persistence.get_connection().destroy_logbook(my_job.book.uuid)
time.sleep(coffee_break_time)
...
There are a few ways to provide arguments to the flow. The first option is to add a store to the flowdetail object in the logbook.
You can also provide a store in the job itself when posting it to the job board. If both store values are found, they will be combined, with the job store overriding the logbook store.
import uuid
from taskflow import engines
from taskflow.persistence import backends as persistence_backends
from taskflow.persistence import models
from taskflow.jobs import backends as job_backends
...
persistence = persistence_backends.fetch({
"connection': "mysql",
"user": ...,
"password": ...,
})
board = job_backends.fetch('my-board', {
"board": "zookeeper",
}, persistence=persistence)
book = models.LogBook('my-book', uuid.uuid4())
flow_detail = models.FlowDetail('my-job', uuid.uuid4())
book.add(flow_detail)
connection = persistence.get_connection()
connection.save_logbook(book)
flow_detail.meta['store'] = {'a': 1, 'c': 3}
job_details = {
"flow_uuid": flow_detail.uuid,
"store": {'a': 2, 'b': 1}
}
engines.save_factory_details(flow_detail, flow_factory,
factory_args=[],
factory_kwargs={},
backend=persistence)
jobboard = get_jobboard(zk_client)
jobboard.connect()
job = jobboard.post('my-job', book=book, details=job_details)
# the flow global parameters are now the combined store values
# {'a': 2, 'b': 1', 'c': 3}
...
Board type: 'zookeeper'
Uses zookeeper to provide the jobboard capabilities and semantics by using a zookeeper directory, ephemeral, non-ephemeral nodes and watches.
Additional kwarg parameters:
Additional configuration parameters:
Note
See ZookeeperJobBoard for implementation details.
Board type: 'redis'
Uses redis to provide the jobboard capabilities and semantics by using a redis hash data structure and individual job ownership keys (that can optionally expire after a given amount of time).
Note
See RedisJobBoard for implementation details.
Some usage considerations should be used when using a jobboard to make sure it’s used in a safe and reliable manner. Eventually we hope to make these non-issues but for now they are worth mentioning.
What: Since atoms and engines are not currently preemptable we can not force an engine (or the threads/remote workers... it is using to run) to stop working on an atom (it is general bad behavior to force code to stop without its consent anyway) if it has already started working on an atom (short of doing a kill -9 on the running interpreter). This could cause problems since the points an engine can notice that it no longer owns a claim is at any state change that occurs (transitioning to a new atom or recording a result for example), where upon noticing the claim has been lost the engine can immediately stop doing further work. The effect that this causes is that when a claim is lost another engine can immediately attempt to acquire the claim that was previously lost and it could begin working on the unfinished tasks that the later engine may also still be executing (since that engine is not yet aware that it has lost the claim).
TLDR: not preemptable, possible to become aware of losing a claim after the fact (at the next state change), another engine could have acquired the claim by then, therefore both would be working on a job.
Alleviate by:
Bases: enum.Enum
Enum of job priorities (modeled after hadoop job priorities).
Extremely urgent job priority.
Mildly urgent job priority.
Default job priority.
Not needed anytime soon job priority.
Very much not needed anytime soon job priority.
Bases: object
A abstraction that represents a named and trackable unit of work.
A job connects a logbook, a owner, a priority, last modified and created on dates and any associated state that the job has. Since it is a connected to a logbook, which are each associated with a set of factories that can create set of flows, it is the current top-level container for a piece of work that can be owned by an entity (typically that entity will read those logbooks and run any contained flows).
Only one entity will be allowed to own and operate on the flows contained in a job at a given time (for the foreseeable future).
NOTE(harlowja): It is the object that will be transferred to another entity on failure so that the contained flows ownership can be transferred to the secondary entity/owner for resumption, continuation, reverting...
The JobPriority of this job.
Wait for job to enter completion state.
If the job has not completed in the given timeout, then return false, otherwise return true (a job failure exception may also be raised if the job information can not be read, for whatever reason). Periodic state checks will happen every delay seconds where delay will be multiplied by the given multipler after a state is found that is not complete.
Note that if no timeout is given this is equivalent to blocking until the job has completed. Also note that if a jobboard backend can optimize this method then its implementation may not use delays (and backoffs) at all. In general though no matter what optimizations are applied implementations must always respect the given timeout value.
Logbook associated with this job.
If no logbook is associated with this job, this property is None.
UUID of logbook associated with this job.
If no logbook is associated with this job, this property is None.
Bases: six.Iterator
Iterator over a jobboard that iterates over potential jobs.
It provides the following attributes:
Bases: object
A place where jobs can be posted, reposted, claimed and transferred.
There can be multiple implementations of this job board, depending on the desired semantics and capabilities of the underlying jobboard implementation.
NOTE(harlowja): the name is meant to be an analogous to a board/posting system that is used in newspapers, or elsewhere to solicit jobs that people can interview and apply for (and then work on & complete).
Returns an iterator of jobs that are currently on this board.
NOTE(harlowja): the ordering of this iteration should be by posting order (oldest to newest) with higher priority jobs being provided before lower priority jobs, but it is left up to the backing implementation to provide the order that best suits it..
NOTE(harlowja): the iterator that is returned may support other attributes which can be used to further customize how iteration can be accomplished; check with the backends iterator object to determine what other attributes are supported.
Parameters: |
|
---|
Waits a given amount of time for any jobs to be posted.
When jobs are found then an iterator will be returned that can be used to iterate over those jobs.
NOTE(harlowja): since a jobboard can be mutated on by multiple external entities at the same time the iterator that can be returned may still be empty due to other entities removing those jobs after the iterator has been created (be aware of this when using it).
Parameters: | timeout – float that indicates how long to wait for a job to appear (if None then waits forever). |
---|
Returns how many jobs are on this jobboard.
NOTE(harlowja): this count may change as jobs appear or are removed so the accuracy of this count should not be used in a way that requires it to be exact & absolute.
Permanently (and atomically) removes a job from the jobboard.
Consumption signals to the board (and any others examining the board) that this job has been completed by the entity that previously claimed that job.
Only the entity that has claimed that job is able to consume the job.
A job that has been consumed can not be reclaimed or reposted by another entity (job postings are immutable). Any entity consuming a unclaimed job (or a job they do not have a claim on) will cause an exception.
Parameters: |
|
---|
Atomically creates and posts a job to the jobboard.
This posting allowing others to attempt to claim that job (and subsequently work on that job). The contents of the provided logbook, details dictionary, or name (or a mix of these) must provide enough information for consumers to reference to construct and perform that jobs contained work (whatever it may be).
Once a job has been posted it can only be removed by consuming that job (after that job is claimed). Any entity can post/propose jobs to the jobboard (in the future this may be restricted).
Returns a job object representing the information that was posted.
Atomically attempts to claim the provided job.
If a job is claimed it is expected that the entity that claims that job will at sometime in the future work on that jobs contents and either fail at completing them (resulting in a reposting) or consume that job from the jobboard (signaling its completion). If claiming fails then a corresponding exception will be raised to signal this to the claim attempter.
Parameters: |
|
---|
Atomically attempts to abandon the provided job.
This abandonment signals to others that the job may now be reclaimed. This would typically occur if the entity that has claimed the job has failed or is unable to complete the job or jobs it had previously claimed.
Only the entity that has claimed that job can abandon a job. Any entity abandoning a unclaimed job (or a job they do not own) will cause an exception.
Parameters: |
|
---|
Trash the provided job.
Trashing a job signals to others that the job is broken and should not be reclaimed. This is provided as an option for users to be able to remove jobs from the board externally. The trashed job details should be kept around in an alternate location to be reviewed, if desired.
Only the entity that has claimed that job can trash a job. Any entity trashing a unclaimed job (or a job they do not own) will cause an exception.
Parameters: |
|
---|
Bases: taskflow.jobs.base.JobBoard
A jobboard subclass that can notify others about board events.
Implementers are expected to notify at least about jobs being posted and removed.
NOTE(harlowja): notifications that are emitted may be emitted on a separate dedicated thread when they occur, so ensure that all callbacks registered are thread safe (and block for as little time as possible).
Fetch a jobboard backend with the given configuration.
This fetch method will look for the entrypoint name in the entrypoint namespace, and then attempt to instantiate that entrypoint using the provided name, configuration and any board specific kwargs.
NOTE(harlowja): to aid in making it easy to specify configuration and options to a board the configuration (which is typical just a dictionary) can also be a URI string that identifies the entrypoint name and any configuration specific to that board.
For example, given the following configuration URI:
zookeeper://<not-used>/?a=b&c=d
This will look for the entrypoint named ‘zookeeper’ and will provide a configuration object composed of the URI’s components, in this case that is {'a': 'b', 'c': 'd'} to the constructor of that board instance (also including the name specified).
Bases: taskflow.jobs.base.Job
A zookeeper job.
Bases: taskflow.jobs.base.NotifyingJobBoard
A jobboard backed by zookeeper.
Powered by the kazoo library.
This jobboard creates sequenced persistent znodes in a directory in zookeeper and uses zookeeper watches to notify other jobboards of jobs which were posted using the post() method (this creates a znode with job contents/details encoded in json). The users of these jobboard(s) (potentially on disjoint sets of machines) can then iterate over the available jobs and decide if they want to attempt to claim one of the jobs they have iterated over. If so they will then attempt to contact zookeeper and they will attempt to create a ephemeral znode using the name of the persistent znode + ”.lock” as a postfix. If the entity trying to use the jobboard to claim() the job is able to create a ephemeral znode with that name then it will be allowed (and expected) to perform whatever work the contents of that job described. Once the claiming entity is finished the ephemeral znode and persistent znode will be deleted (if successfully completed) in a single transaction. If the claiming entity is not successful (or the entity that claimed the znode dies) the ephemeral znode will be released (either manually by using abandon() or automatically by zookeeper when the ephemeral node and associated session is deemed to have been lost).
Do note that the creation of a kazoo client is achieved by make_client() and the transfer of this jobboard configuration to that function to make a client may happen at __init__ time. This implies that certain parameters from this jobboard configuration may be provided to make_client() such that if a client was not provided by the caller one will be created according to make_client()‘s specification
Transaction support was added in 3.4.0 so we need at least that version.
Znode postfix that lock entries have.
Znode child path created under root path that contains trashed jobs.
Znode child path created under root path that contains registered entities.
Znode prefix that job entries have.
Default znode path used for jobs (data, locks...).
Number of prior state changes to keep a history of, mainly useful for history tracking and debugging connectivity issues.
Client states underwhich we return empty lists from fetching routines, during these states the underlying connection either is being recovered or may be recovered (aka, it has not full disconnected).
Bases: taskflow.jobs.base.Job
A redis job.
How many seconds until the claim expires.
Returns the number of seconds until the ownership entry expires or DOES_NOT_EXPIRE or KEY_NOT_FOUND if it does not expire or if the expiry can not be determined (perhaps the owner_key expired at/before time of inquiry?).
Extends the owner key (aka the claim) expiry for this job.
NOTE(harlowja): if the claim for this job did not previously have an expiry associated with it, calling this method will create one (and after that time elapses the claim on this job will cease to exist).
Returns True if the expiry request was performed otherwise False.
Bases: taskflow.jobs.base.JobBoard
A jobboard backed by redis.
Powered by the redis-py library.
This jobboard creates job entries by listing jobs in a redis hash. This hash contains jobs that can be actively worked on by (and examined/claimed by) some set of eligible consumers. Job posting is typically performed using the post() method (this creates a hash entry with job contents/details encoded in msgpack). The users of these jobboard(s) (potentially on disjoint sets of machines) can then iterate over the available jobs and decide if they want to attempt to claim one of the jobs they have iterated over. If so they will then attempt to contact redis and they will attempt to create a key in redis (using a embedded lua script to perform this atomically) to claim a desired job. If the entity trying to use the jobboard to claim() the job is able to create that lock/owner key then it will be allowed (and expected) to perform whatever work the contents of that job described. Once the claiming entity is finished the lock/owner key and the hash entry will be deleted (if successfully completed) in a single request (also using a embedded lua script to perform this atomically). If the claiming entity is not successful (or the entity that claimed the job dies) the lock/owner key can be released automatically (by optional usage of a claim expiry) or by using abandon() to manually abandon the job so that it can be consumed/worked on by others.
NOTE(harlowja): by default the claim() has no expiry (which means claims will be persistent, even under claiming entity failure). To ensure a expiry occurs pass a numeric value for the expiry keyword argument to the claim() method that defines how many seconds the claim should be retained for. When an expiry is used ensure that that claim is kept alive while it is being worked on by using the extend_expiry() method periodically.
Keys (and value type converters) that we allow to proxy from the jobboard configuration into the redis client (used to configure the redis client internals if no explicit client is provided via the client keyword argument).
See: http://redis-py.readthedocs.org/en/latest/#redis.Redis
See: https://github.com/andymccurdy/redis-py/blob/2.10.3/redis/client.py
Postfix (combined with job key) used to make a jobs owner key.
Postfix (combined with job key) used to make a jobs last modified key.
Default namespace for keys when none is provided.
Minimum redis version this backend requires.
This version is required since we need the built-in server-side lua scripting support that is included in 2.6 and newer.
Separator that is used to combine a key with the namespace (to get the actual key that will be used).
Separator that is used to combine a bunch of key pieces together (to get the actual key that will be used).
Expected lua response status field when call is ok.
Expected lua response status field when call is not ok.
Expected lua script error response when the owner is not as expected.
Expected lua script error response when the owner is not findable.
Expected lua script error response when the job is not findable.
Expected lua script error response when the job is already claimed.
Lua template scripts that will be used by various methods (they are turned into real scripts and loaded on call into the connect() method).
Some things to note:
So overall after thinking, it seemed like having little lua scripts was not that bad (even if it is somewhat convoluted) due to the above and public mentioned issues with transactions. In general using lua scripts for this purpose seems to be somewhat common practice and it solves the issues that came up when transactions were considered & implemented.
Some links about redis (and redis + lua) that may be useful to look over:
Create and return a namespaced key from many segments.
NOTE(harlowja): all pieces that are text/unicode are converted into their binary equivalent (if they are already binary no conversion takes place) before being joined (as redis expects binary keys and not unicode/text ones).